THESIS

ANALYSIS OF DESIGN

III. A. C. WATER TOWBR.
J. U, LAYER. A, J. RITCHIE.

1916

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

$$
\text { AMrum: } x-10
$$

wn arosiou

by
condidates for the inegree of
A. J. Iitchie

$$
\text { Jure, } 1,16 .
$$

$$
\begin{aligned}
& \text { Aン: }
\end{aligned}
$$

THESIS

Cop.l

I $\mathrm{N}=\mathrm{X}$

Iryioduction
Sumelfiod Anit atreses
Frce. 1

* 3
et. and c.of.g. of piers" 4
EEL. of tower piers to balcony * 5
... of hemispherical bottom
and piping 8-9
Yis. of tink cylinder 8
fet. of roof, ladoer,finisal 8 a
and indicator ncit. of jalcony-8
"it. of ater 13
ind prememres ciaronnl 14
ind prissures sqquare 17
livet and plate stregnes for
hemispherical botton tank cylinder 20
lyoes and eficiencit: of jcints 23
Axjal colurn etresaes 25
fabulation 0 stresses in ind bracira 27
rax. unit atresses in bociy of colunns 28
Stress in ta:k ilate dise to flexure 31
Thear on heas or rivets ot colum consection to tan 32
Stress in colman due to eccentricity 34
Stresses in sioc details Page 36
Unit gtress in wina lracing 38
Streases in fioor plates and balcony
oomection to columns 42
Unit strees in anchor bolts 42
Factor of sufety afis ost overturrine 43
Data for satilement of foundation 45
Criticism with reapect to "ircho:ord's
specidications 47
The effect of future builcing
excavatio on afety of tan: 46
Acknowledgement a lechnical referenceg " 57
Sumenary 58
Marking diagram viue rrint 4
Graphical analyais of dead loadstreaces " 3
Graphical analyais of stresses ivo
to dead load plus water " 2
Graphical analysis oi wini lozds
blowint squarely on tower 1
lyax.unit pressures on piers and
Poundation 9
Sectional view of tank and roof 6
Typical columa section 7
Typical etrut section 8

Feundaticn plan
Graphicaj analysis of yind strecses
an solved by Chicaco friçe co. Thibit A. locket.

Durimy the winter ank early soring of 1920 a steel water tow wras built or tie l'.A.C. campus, tust in the rear of the Farm : echent es mide. rhe lamer in 177\% ot high, from the top of tice nierg to the findal; and the cylinarical turle hea a cepretty of 30,000 alr. The stecl worl was decizned. furnishee sor mit in place by the Chicaro Pridgo main Iron Co. Fhe college buitt the concreta foundations, wre wit the finsehtug onath no maint na tio steel.

The water tower was built as a remedy to mest difficulties ariaing from tie high presgura due to an incrasse in pu po ing capacity. Soveral jcara 2,0 difficulty was eacountored becruse not enough water aculd te nbtained fror: the wella to meet the peak loacig. Tris necescitated the driving of a 1. in. inell, in tie rear of tac Forestry indg., and Invtallinf an electrically criven 400 al rer vinute pump, whel, is sufficientyy laree to meet the anticipated future crowth of the collere. The pumpine capacity now consists of tile 400 and mationer above, anc a 100
 wells. nz the ordinary consumption of the collecs is ai) oot 1 ju fals. per minute; ark? it is plamed to run the steam purp constantly, tilis lenves only 50 eals. per minute to be purnged by the 400 53l. purp. "ith the 400 al. pump working directly on the mains the pressure world become
excessive, and would bo apt to burst the pipes. So the vater tomer was constructed to relieve tis a prosurre: amd tine 400 ge?. mun neeu onjy to be mun for zhrse 3 day, tu meet the recuiroments oi fin oystem.

The rite upon winin the torex was kuilt mar selected because the tovor rill not in ard way corflict win tiae future buisतinc operations.

5ponifeu mit infeger

$$
\begin{aligned}
& \text { Goecizication: of O. Dircinmbord. }
\end{aligned}
$$

Sension in tari: pintea $12000 / \mathrm{sg}$. in. net area
Yengion in otrier parts of structure $16000 \% / \mathrm{sq} \cdot \mathrm{s}$.n. ner area Compression 10000\%/se.in. (reaced)

Sinear on shop rivets nend pins l2000yfor.in. * \quad ficld " (tont rivets)and bolts ooco:/groin. n In plates (Grons Area) $10000 \% / \mathbf{c}$ in.

Bearing preseuxe on shop rivets and pirs 24000/i/ar.in. " " "field " (tonic rivete)l800c:"/ss.in.

Fiber strain in pins 4000\%/E.Er.

For compresion momber the rermisonble unit stress of 16000 : shall be reciuce: by the formula

$$
P=16000-70 \frac{1}{R}
$$

```
Volume o: one wirer
```



```
240 x 200 = 40.30% wot. ai 2ne pier.
Contre of sravity of pios
yramis extences tr apex.
altituce of yyrandi = %.ory fi.
    " " rruatrum - 4.25
Volume oí total myravid = 81 x 7.65/3=206.5 cu. ft.
Distance of c. of g. &iuve bose or yier = 2.01 ft.
volume of small pyramid = 16 % 3.1/3=18.15 cu. ft.
"istence of coofe. nove bues = 6.lft.
Volune of Tarolleloniped = 10 < 10\times1=100 cu. ft.
rirtance of c. of e. owove bose = . 5 ft.
jistance of c.of g. of entire pier soove its nose
Bar x = 206.5x 2.01 * 100 x . 5-18.15 x 6.10/203.4
iarx* = 2.0. ft.
hots this star as shown used as a plus sigh thROUGHOUT THIS THESIS.
```

Wrt, of tower and tower bracink in detail to balcony

Part Member

	Fill plate 2 2 $\times 3 / 8$					
	Bent Plate ${ }^{\text {and }} \times 3 \times 3 / 8$	11.48	"4:"	8	1.13 3.85	$9{ }^{\circ}$
Remur	Sis Lent $\quad 5 \times 3 \times 3 / 8$	9.8	$1{ }^{1} 80$	¢	16.33	131
stoes		9.8		4	6.74	27
	Chamel ${ }_{10}$	9.3 15.0	${ }^{1} \cdot 1005 / 8^{\prime \prime}$	8	10.0	80
		40.8	1.-84	4	12.85	51
	Rivet: $5 / 8^{\prime \prime}$	17.2/100		100		273

sotal

WGT.OF TAIK ROOF, PIMIAL, LADDER AND IMDICATOR -CONTINUED

Hot Are
${ }^{\text {Vol }}$
ft.
IUDICATOR

Leasth
125°
$1^{\circ}-2^{2}$
$\begin{array}{ll}125 & 2 \\ 1-2^{2} & 13\end{array}$
"st. $/$ /ft. Wst. $/$ /ou. st.
Mare up
$2^{12} \times 3$ 3/8
$3 / 4 \mathrm{rd}$.

3.19 1.502

Name of
part
Inder
bape
Inder
Funge
Ind.aope
and Ilost

$$
\begin{aligned}
& \text { nen. } \\
& 5 \\
& \text { Torar. }
\end{aligned}
$$

$$
\begin{gathered}
\text { sotal } \\
\text { weto } \\
82 \# \\
24 \\
-275 \\
27414
\end{gathered}
$$

MGI. OR TAIE BOOR PLHIAL, LADDRR ATD IMDICATOR

:

Tankroof. finial is Indicator	2741:	4.7\%
Tank Cylinder	6900	21.3%
Hemisphemical bottom inclidirs		
expansion connection	3312	5.7\%
50\% of whtoof pipinf and caring	3730	6.1\%
Balcony	2392	4.1\%
Four shoes	672	1.2\%
Tover puers to 3 a loony	38271	66.0 :
	01818	100\%;

Voilume of cylinder plus henisphere $=$ $3.141211 \times 2 \times 3.14 \pi^{3} / 323.14 \times 64 \times 14.83 \times 3.14 \times 512=405504 . f t$. Volume of columnof water supported by pipe $=23 \times 3.14 \times 0.11=8: u . f t$. rotal volure of water $=4055-3=4047 \mathrm{cu} . \mathrm{ft}$. wgt. volume one cu. ft. mater 6 62.5i' Total wet. of water $=1047 \times 62.5=252.500 \%$ gt. of retil in $\%$ of wet. or water $=23$;

-

inf blogita uinemally on toucs.
 and $2 / 3$ of hat suont foe tho curvol profocta areas.

$$
\text { Ancepoots } x \times 0.1 \times 3=3.0 a r . f t
$$

$$
\text { Mandrail } 31.4 \times 0.1 \text { yxa/3 a.lec.ft. }
$$

Mat.bera xjxt.10= 5.0"

$$
\text { circ. Lannel } 34 \times 0 \cdot 3.3 \times 2 / 3=7.0 \mathrm{n}
$$

$$
\text { brachets } 0.416 \times 2 \times=4.7 n^{n}
$$

$$
\text { roter } 2.4 n \quad n=6,0
$$

ioste C.C. 2 xiextr $=\quad 4.2 .4$ e.t.

$$
\begin{aligned}
& \text { - TACDY }
\end{aligned}
$$

PAMI I

Poste $0.882 \times 4 \times 0.72$	\pm	73.0	
Tower rocis x073 x2a 19	$=$	13.0	"
Pipe rods $2 \times 14 \mathrm{xK} .052$	$=$	1.5	
Strute $8 \times 0.416 \times 19.95$	$=$	47.0	
Inlet Ippe $2 \times 20.58 \times 2 / 3$	=	27.5	
		62.0 "	$=$

PANS 2
Posts $4 \times 0.00 \mathrm{O}$ 人 0.72
Btrut rods $4 \times .062$ x21.10 $=$

Tower rods Uxi-3. $\%$. 002
$=\quad 13.8$
sipe rodsix. 052×16.37

Stints $8 \times 0.416 \times 23.25 x .707$

PANE迤 2

Posts $4 \times .882 \times 20.72$
Strut roci $4 x .062 \times 21.19$
Tower rides 3×0 O3x 25.29
Pipe rods $2 x .052 \times 3.44$
struts \&x.416 $2: 33.2$?
Inlet *ipe x? $0.58 \mathrm{x} 2 / 3$

玉	73.2 sq. ft.
$=$	5.3
6	16.9
$=$	2.5
$=$	70.5
$=$	$7.5 n^{n}$

$\underline{\text { PareL }}$
Posts 4x.832 xico.9
Icwer rods $8 \times 108: 227$
Inlet Pipe $2 \times 20.81 \times 2 / 3$
$=\quad 74 . \%$ sq. ft.
$=20.0$
$=$
$27.7^{n}-$
$119.0 " n=3600 \mathrm{~F}$

Roof, tank, henfenere botton and kialcon sam as Tor widd diayonal.

Poets $4 x .882 \times 12$ $=\quad 42.4 \mathrm{soc}$ ft.
riower rods8x.052 $3: 9.44$
$=$
i) 4.0

Pipe rods $4 \times .052 \times 9.29 \times .707=$

$$
2.3
$$

Struts $4 x .416$ xl3.29
ニ
22.1

Inlet pipe $2 \times 4 \times 2 / 3$
$=$
73.0 s3.ft.

Posts 4x. $882 \times 20.72 \ldots \quad=$
Tpwer rocis sx.06? $\times 24.95=$
Pipe roda $4 x .052 \times 11 . i 4 x ' 707=$
strute $4 x .416$ xló. 64
$=$
12.5

Ind. Guide. $5 \times 26 \times \cdot 70 \%$
2.'7

Inlet Pipe ? $\times 20.56 \times 2 / 3$
$=$

josts $4 x .002 \mathrm{Coc} 0.72$
$=$
$73.0 \mathrm{sq} . \mathrm{ft}$.
そower rois ix. $73 \times 3 \times 19$
\pm
13.0
ripe $5 \mathrm{ds} 4 \times 053 \times 14 \times 7 \mathrm{C} 7$
*
2.1

Ctruts $4 \times .416 \times 29.95$
$=$
$33 \cdot 3$
Inlet ripe $2 x: 0.50 \times 2 / 3$
$=$
27.7
0.2

PADGI li4

Posts 4 x .882 x ? 0.12	$=$	$73.2 \mathrm{sq}. \mathrm{ft}$.
etrut rois $4 \times 000 \times 21.10$	$=$	$5 \cdot 3$
Tomer ${ }^{\prime}$ ($0 \times .073 \times 3.58$	=	23.8
Pipe rods $4 \times .052 \times 16.37 \times .707$	$=$	2.4
Struts 4:.416 203.29	$=$	30.7
Inlet pipe $\mathrm{cx} 0.72 \times 2 / 3$	$=$	2.2.5 "
		160.9 "

PAITIU

6GPN:

Posts 4x. $882 x=0.72$
Strut rods ix.062 xi.1.

Pogts 4x．082 x C．7	$=$	73.2 sq．ft．
Strut rcis． $4 \mathrm{x} .062 \times 1 . \$ 9$	$=$	$5 \cdot 3$
sower rds． $8 \times .01 \times 25.29$	$=$	16.9
Pipe rds 4x．05，x23．44x．707	$=$	3.5
Struts $4 \mathrm{x} .46 \times 3.3 . ⿱ 亠 ⿱ 口 小 彡$	－	5.4
Inlet $\mathrm{r}_{\text {ipe }} 2 \times 0.7 \mathrm{l}^{2} \mathrm{x} / 3$	$=$	$\frac{27 \cdot 5}{151}{ }^{n}$

Same as for wint diagonal．
$T=$ adaxial stress per sq. in.
hog head of water imit.
$r=r a d u s$ of tan: in ft.
$t=$ thickness of plate in finches

$$
T=2.6 \times 23 \times 8 / 0.1375=2550 \text {; per sq. ft. }
$$

Test of rivets in redial joint.
$a=$ pitch of rivets $=1.52 \mathrm{in}$.
à fouler. of rivet hole $=17 / 32$ in.

$\because *$ = trill tana i: plate st joint per equare inch
$\mathrm{H}_{\mathrm{g}}=$ unit ricer on rivet
stress pe: lineal inch of plate $=2550 \frac{7}{7} \times 0.175=470 \%$

$S .=F \| x(a-c)=727 /(1.52-0.53) \times 0.1875=3920$
loos per sci. in. of net plate.
deary: G onplate from rivet: of radial joint
$\mathrm{B}_{\mathrm{c}}=$ unit compressive matres?
$\varepsilon_{c}=x / * D=7 T 7 / 0.1875 x 0.567750$ lbs per eq. in.
hearing stress on rivets of radial joint.
$S_{\mathfrak{s}}=$ unit riearinf stress
$\left.\mathrm{S}_{8}=4 \mathrm{~F} / 3.141\right)^{2}=4 \times 727 / 3.14 \times 0.25=3700 \mathrm{dbs}$ per sq. in.

of spherical bottom

$I=2.6 \mathrm{hr} / \mathrm{t}=2.6 \times 22.41 \mathrm{x} / 0.10775=2190 \mathrm{lbs}$. per sq．in．of plate．

Stress ner 11ヶ．Ench of plate $=2490 \times 0.1875=467$ 1bs． Pitch $=1.5$ inches．
$P=$ loas per pitch $=1.5 \times 467=7001 \mathrm{bs}$.
$D=0.5$ inch
$d=17 / 32$ inoh
S＝＿$P / t(a-\alpha)=70 c / 0.1875(1.5-0.53)=3840103 . / \mathrm{sq.in}$ ．

$S_{c}=\mathrm{p} / 4=700 / 0.1875 \times 0.5=7450 \mathrm{lbs.per} \mathrm{sq} . \operatorname{sn}$ ．

Riveted conneotion betwon cylindeteal tank and hemispher

ical bottom．

$$
\begin{aligned}
& \text { Ygt. of water } \\
& 252.500 \text { 多 } \\
& \text { WEt. of hemispherical lotton } \\
& 3312 \\
& \therefore \quad n 50 \% \text { of pipin; } \\
& \text { Total wo. } \\
& 3730 \\
& 259.542 i^{\prime \prime} \\
& \text { Lone ne: juch of circurarence }=25 \text {. } 542 / 603=430 \text { IUs. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { c }=17 / 3 \text { incl. } y=2.5 \text { incr. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Es }=4 \mathrm{P} / 3.14 \mathrm{D}^{2}=4 \mathrm{x} 576 / 3.14 \times 0.25=3450: / \mathrm{Eq} \cdot \mathrm{in} \text {. } \\
& c=p / *=676 / 0.1875 \times 0.5=7210.1 / \mathrm{s} \cdot \mathrm{in} \text {. }
\end{aligned}
$$

$T=2.6 \mathrm{hx} \mathrm{x}=2.6 \times 15 \times 8 / 0.1575=1664 \mathrm{t} / \mathrm{s}$? e . in. tress per 1in. inch $=1664 \times 0.1975=312$ \%
$\mathrm{I}=312 \times 1.407=463$
iais is amalier loat on tine sare rize rivet and a
snaller picci than for the previously calculated joints as the etresses wi.ll be smaller.

$$
\begin{aligned}
& \mathrm{d}=13 / 32 \text { inch } \\
& D=3 / 8 \quad " \\
& \text { II } \pm 2.6 \mathrm{hr} / \mathrm{t}=2.6 \times 10 \times 0 / 0.1075=111 \mathrm{C} / \mathrm{sq} \cdot \text { in. } \\
& 2110 \times 0.1 \%=20 \% \text { /1in. inc: of joint. } \\
& z=1.2 . j \text { inctes } \\
& P=1.2 j \times 203=260 \\
& S_{ \pm}=3 / t \text { OR-d) }=60 / 0.1075(1.25-0.41)=1650 \% / \mathrm{sq} \cdot \mathrm{in} \text {. }
\end{aligned}
$$

LORIXOTAL JUINI IAID CYLINAR

$$
\begin{array}{rl}
D=3 / 8 \text { inoh. } d=13 / 3 & 1.351 \text { inches } \\
& =2741 \% \\
\text { gt. of roof } & =\frac{4600}{} \\
\text { Total of } 2 / 3 \text { tiank cylinder } & =\frac{7341}{}
\end{array}
$$

ciroumference of taink is 604 incies
7341/604 = 12.2
$P=1.351 \times 1 .{ }^{\circ}=16.5$
As the logd es exceedinely arall the stress whll be

Aaixal joint in hemispharicel votton.
t is a dixle riveted lap joint.
ff. of plate in tension $=(8-d) / a=(1 \cdot 59-0.53) / 1.5$
$=65:$

$\because \times 0.5 \times 10000 / 1.52 \times 13000=90.7 ;$
fi. of rivet in siezr = $3.14 \mathrm{~J}^{2} \mathrm{ga} / \mathrm{cxa}$. $=$
$3.14 \times 0.5 \times 9000 / 2 \times 1.5 \times 0.1875 \times 12000=1045$
'lise joint is $6 y_{j}$ eficicnt.

it is a sirele riveted lap foist..
ff: of plate in tension $=(a-d) / a=(1.5-0.53) / 1.5$
$=64.6 ;$
ff. in shear and weari same as for radial joint.
'he officiency oi his: joint 18 64.6;:

Qircumferentin? ioint botoen cilinder trik
und zerioneriral bottom.
it is a sirile rivetei lap joint.
iff. of plate in tension (a-d)/a=(1.5'72-0.53)/1. 7
$=6 c \cdot 3$
siffs. in stear and bearing sune ns for radial joint. ihe efficiency of the joint is 6'.3:

It is s single riveted lap joint
aff. of plate in tenaion $=(a-d) / a=(1.487-0.53) / 1.487$
$=64.3 \%$
The effs. In shearing and bearing sane as for racial joint.

The eff. of the joint is 64.3%.

Ealculation for the efficiency of the tank plate in tension, at the riveted conrection of the column to the tank plate.
fotal area of plate at connection $=14 \times 21=294 \mathrm{sq} .1 \mathrm{n}$.
Area of $64-\frac{1}{2}$ inch rivets $=0.22 \times 64=14 \mathrm{sq}$. in.
ifficiency of plate $=280 / 294=95 \therefore$

(1) PMCR

$s=4 / 2 r$
Ketchural: : i: $3 \mathrm{p} \mathrm{p}_{\mathrm{F}} \cdot 370$
Stress in onlurn 0_{0}
Teking mongit: soout the botton of panel fis


```
    - 150.3 x a,00 134 x49)2 * 113.4 x4660
    * 92.0 x 5200 * 7%.3 x5540 * 51.7 x5020
    - 32.3 * 6120- 10.5 < 3360=4,411,400 ft.1:8.
        r=5.j2 ft.
    sec a = 1.01 where a = arile Mane of beat makes with
```

the vertical

$$
\begin{aligned}
& \because \text { ニ \&ec artizr } \\
& \mathrm{S}=1.01 \times 4,411,400 / 2 \times 25.92=-65.000 \\
& \text { TH: Tos: In Coman C5 } \\
& y=110.6 \times 1500 \cdot 102.2 \times 5050 \cdot 90.8 \times 200 \\
& \text { - } 8.3 \times 2520 \cdot 72 \times 409 ? 51.5 \times 460 \\
& \text { * } 30.3 \times 5050 \cdot 10.3 \times 5540=1.914 .700 \mathrm{ft} .1 \mathrm{lu} \text {. } \\
& =13.03 \mathrm{Ft} \\
& \therefore=\text { eec.a } \times \mathrm{F}=1.01 \times 1,924,700 / \mathrm{x}=18.83=-52.300 \text {, }
\end{aligned}
$$


```
    * 208.9 rig e * 92.6 x 40%. * 72 x 4060
    * 51.5 x 5:00 30.9 人554C 10.4 x.50%0
    = \therefore,!6,00crt. Ima.
    r=1.1% it.
*=0ec ? %/2 r = 2.01 x 2,626,000/2 x 21.10
1% = -62. 600 i=
```


rerier jead mpty "ank filiak ird Digeonel "ax. conototal.

c	5260	0000
n_{3}	5020	70000
$\overbrace{3}$	7440	71400

C_{4} \& $00 \quad 72750$

C_{5}	10000	74000

51.800
1.5,300
$c_{6} \quad 11310$
75250
$6 \% 600$
137.850
$\begin{array}{lll}C_{7} & 3: 620 & 76700\end{array}$
C j 13:0
?750
5 \%
163550
lember jead mpt;
ind dis,0:3?

25300
"ax.uplift
(i) 13.670
$71.93 i$

UYIT STRESS IN COLDNA C_{5}

Hake up is one 10 in.chan. $s 15$ 筑 \& one 8 in. chan. 114 it Area 10" Chan. 6 15月 $=4.46$ sq. in/

Totalarea7.81**
Totas compressite otress in column $=125.300$ \#
Unit stress $=125.300 / 7.81=26030$ 1bs. per s? . in.
Allowable otress $=16000-70 \mathrm{I} / \mathrm{R}$
Considering the (y) axie coinoident with the outer edge of the fange of the $10^{\prime \prime}$ chan., and the (x) sxis coinoident With the outer edge of the extreme flange of the $8 n$ etan. $\operatorname{Bax}(y)=4.46=8.639 \cdot 3.35 \times 4 / 7.81=6.65 \mathrm{in}$.
jer $(x)=4.46 x 5 \cdot 3.35 x 4.201 / 7.81=4.661 n$.
monent of inertia about (x) sxis thru c.of g. of column.
$I=2.30 \cdot 1.983^{2} \times 4.46 \cdot 32.3 \cdot 2.65^{2} \times 3.35$
$I=75.7$ inches4
Honent of inertis bu $t(y)$ axis thre c.of g. of column. $I=66.9 \cdot 4.46 \times 0.342 \cdot 1.33 \cdot 3.35 \times 0.449^{2}$
I - 69.42 Inches ${ }^{4}$
E es guare root of I / A
R - square root $69.42 / 7.81=2.98$ Inches.
Allowale stress $=16000-70 \times 20.72 / 2.93$

$$
\cdots \quad=10160 \text { 1ns.per ou. in. }
$$

$I / R=83.5$

UNIT STRESS ON COLDIN C6

Fake up 1s ore $10^{\prime \prime}$ Channel $15^{\prime \prime}$ and one $8^{\prime \prime}$ chanpel at $13 \frac{3}{4}$ Area 10" Chan. $=4.46$ 8q. in/
 Total area 8.50 .

Tetal compressive stress in column $=137.850_{i}$
Und etrees $=137,850$ \#/8.50 $=16,200$ lbs. per eq. in. Bar $(y)=4.46 \times 8.639 \cdot 4.0454 / 8: 50=6.44$ inches $\operatorname{Bar}(x)=4.46 \times 5 \cdot 4.04 \times 4.182 / 3.50=4.62$ inches. Noment of inertia about (y) axis thru c.of g. of column. $I=66.9 \cdot 4.46 \times 0.36 \cdot 1.55 \cdot 4.04 \times 0.433^{2}=69.88 \mathrm{in} .4$ yoment of inertis about (x) sais thru c.of g. of column. $I=2.30 \cdot 4.46 \times 1.972 \cdot 36.0 \cdot 4.04 \times 2.442=80.23 \mathrm{in} .4$ $P=$ square root of $63.83 / 8.50=2.87$ inches $I / K=20.72 \times 12 / 2.07=36.7$

Allowable unit stress $=160 \mathrm{c}-70 \times 86.7=9930 \mathrm{ibs} / \mathrm{s}$ © $\cdot \operatorname{In}$.

UNIT STRE S IN COLUEN C8
"ake up in one 10° Chan. $20 \because$ ant one E"Chan 13 :
Ares 10° Chsm. $=5.33$ sq. in.

- 8 -

Total area

rotal compresaive stress in column $=163.550$
Unst stres $=163.550 / 9.92=1 \therefore 500$ 1bs per ã. in. Far $(y)=5.83 \times 8.607 \cdot 4.04 \times 4 / 7.92=6.73$ inches $\operatorname{Bar}(x)=5.88 \times 5 \cdot 4.04 \times 4.102 / 9.92=4.67$ inches.

Foment of inertia about (x) axis thru c. of g. of column $I=2.85 \cdot 5.88 \times 1.88^{2} \cdot 36.0 \cdot 4.04 \times 2.73^{2}=89.75$ in 4. moment of inertia about (y) axis three c. of 5 . of column I $+78.7 \cdot 5.88 \times 0.33^{2} \cdot 2.55 \cdot 4.04 \times 0.4832=01.85$ in 4 . $\mathrm{R}=$ square root of $82.85 / 9.92=2.87$ inches
$I_{2} / \mathbf{R}=20.90 \times 12 / 2.87=87.5$
Allowable unit stress $=16000-70 \times 87.5$

* * \quad - 9890 lbs per sq in.

Leterminetion of co preraive etress in tank plate considere? na a simple beam between column connections: to note if this atress exceeds the rtress due to the outward preesure of water.

Length of beam	$=2 / 4 \times 3.14 \times 16=125 \% \mathrm{ft}$.
iopth n	$=15 \mathrm{ft}$.
inickmese	$=3 / 26$ inch.

St. of water in tank $=252.500$ 1bs.

* " Hemispherical "ot. 3 312*
* 50% of pine $\quad 3730$.

Total 259.542 .
Vgt. fallire on one span $=259.542 / 4=64.885$ ibs.
Uniform load per ft. $=64,885 / 12.56=5165$ 1bs. Considered as ample berm fixed at both oncis. rax. monent oocurs at encis $=w 1^{2} / 12$

$$
x=5165 \times 12.562 / 12=63.000 \mathrm{ft} .1 \mathrm{bs}
$$

$$
\because=s I / C
$$

$$
I / c a b d^{2} / 6=.1875 \times 32.400 / 6=1012
$$

$$
M=68,000 \times 12=S \times 1012
$$

$$
S=806 . \text { 1bs. per 8q. in. }
$$

strees outward due to water
$\mathbf{T}=2.6 \mathrm{hr} / \mathrm{t}=2.6 \times 25 \times 8 / .1075=1.6701 \mathrm{is} / \mathrm{e} \cdot$ in.
These resulta ibdicate tiat this is about the largest size tank that an be gafely built oith on: y four peints of support.

Determination of the ehear on the heads of the rivets at the connections of columns to tank due to bending moment produced by vive.

H $=9.4 \times 450 \times 12=276.500 \mathrm{in} . \mathrm{lbs}$.
Taken from gramhical solution.
$276.500 \times .707=195.300 \mathrm{in}$. 10 s is the moment perpendieular to the connection.
d = lever arm of resisting force
$d=7 \mathrm{in}$.
V = avge, shear on one rivet head
There are 32, $\frac{1}{2}$ inch rivets resisting the force
\# = 32 v d
$195.300=32$ V $\times 7$
$\nabla=872 \mathrm{Iks}$.
Nax. shear on one rivet head $=2 \times 872=1744$ 1bs.
Shearing area of one $\frac{1}{2}$ ritet $=3.14 \times .5 \times .281=.4425$ s.in.
Allowable shear one one rivet $=.4425 \times 9000=3980 \mathrm{ibs}$.

AT THE COLONY COMBATS H SO TANG

Yet. on one connection $=269.183 / 4=67.296$ lbs.
No. of ${ }^{2}$ rivets taking shear $=64$
hear on one rivet $=67.296 / 64=1052 \mathrm{Iba}$.
Ares of \dot{t} ' rivet $=.196$. in.
Allowable value on one rivet $=.196 \times 9000=1765$:

Test fer bearing value of $:$ in rivets on $3 / 16$ inch plate.
bearing area of one rivet $=.1875 \times .5=.0938$ eq. $\mathrm{in} /$
Total bearing area $\quad=64=.0938=6.0 \mathrm{sq} \cdot$ in.
Uni bearing value $=67.296 / 6.0=11,200108 / \mathrm{s} \cdot \mathrm{in}$.
Allowable value $=28000$ Ib per eq. in.

Miagonal wind, and dead loed plus water.

STRES: DUT WOCUKTYICIT

recentrieity = the distance betwen the extended o.of f. of the column proper, and the e. of E. of the column section at the connection to the tank.

Tec. - = 2.72 inoties
Loment due to ecoentrieity $=$ totol load on one column $x=68261 \times 2.72=185.600$ in. Ins.

Vake up of eeotion at conneotion
One 10" Chan, 2 in $^{\prime \prime}$
One 8"x 3/8" plate on outside of channel.
One $6^{\circ}=3^{\circ} \times 3 / 8$ ang on each stde of Chen.
(x) uxis coincident with tio back of the obiannel
$\operatorname{Iar}(y)=4.46 \times .639 \cdot .437 \times 3 \cdot 6.84 \times 2.04 / 14.3=$ 1.267 1n.
roment of inertia $300 t(x)$ axis thru the c of ε.
of section.
PCR AGIS

$$
I=2\left(12.86 \cdot 3.42 \times .773^{2}\right)=29.82
$$

FCR PLAT:

$$
I=0 d 3 / 12=2 \times .053 / 12 \cdot 3 \times .83^{2}=2.11
$$

FOH CHANE AL
$I=2.30 \cdot 4.46 \times .6 \pi^{2}=4.06$
Total I $=4.06 \cdot 2.11 \cdot 29.82=35.99$
$H=S I / C$
185. $600=\mathrm{S} \times 35.99 / 4.73$
$s=24,400$ los per nq. in.
loment of wind loads a out tire bottom of panel ill

I. $=170.270 \mathrm{ft}$. Lbs.
$\mathbf{r}=9.39 \mathrm{ft}$.
$S=\sec a 1 / 2 \mathbf{r}=1.01 \times 170.210 / 28.70=9.170168$.
lint tress $=9.170 / 14.3=6421 \mathrm{bs}$ per as. In.
STRESS DUE TC DAD ICAO ETD. . AMP

Total stress $=69,0001 \mathrm{bs}$.
init $\quad=69,000 / 44.3=4820$ lbs per sa. in.

eccentricity $=24.400$ lbs per sq. in.

Lead plus water= 4.820 * . . . Tots 24862 " " "

Allowable stress $=16000-701 / \mathrm{K}$
"

$$
\begin{aligned}
& =16000-70 \times 1 \times 12 / 1.505 \\
& =15.400 \text { lbs per sq. in. }
\end{aligned}
$$

Total compresaion on bearing plate $=506$ 1bs per sc. in. fent fur shear on cross-eetion of rivets connecting side antlen to columns.

Area of plate covered by one srele $=3^{\prime \prime} \times 20^{\prime \prime}=6 \mathrm{C}$ 8. in. hearing fisce $=60 \times 506=30,400$ \#
mhí foree taren by twe $3 / 4^{\prime \prime}$ rivets and two $5 / 8^{\prime \prime}$ mivets Two 3/4" rivetse 9000 are worth $2(.442 \times 9000)=7950$ 型
 Total mount rivets can teke $=13.480 \mathrm{~F}$ This is considerably less tian $30,400_{i}^{\circ}$

Test fro shear on crossesection of four $3 / 4^{\prime \prime}$ rivets at back of column.
notal foree taken by these four rivets $=30.4000 * 30 \times 506$
$=45,600 \mathrm{Mi}^{3}$
Value of four $3 / 4$ nivets in sivie shear $-4(.442 \times 9000)$

$$
=15.900 A
$$

One $3 / 4^{\prime \prime}$ rivet on $1 / 4^{n}$ web of chan. 10000 is north $33^{0} 0{ }_{0}^{N}$
Fotra value $=4 \times 3380=13.500$ hence vearine soverns; but
is much less than mount taten by rivets.

Test to see if angles on the side of the columns are thick entugh to take the shear.

The angles are $3 / 8^{\prime \prime}$ thick and 20 " long
$20 \times .375=7.5$ q. in.
All dowable shearing value $=10,000 / j$ persq. in.
One anele is worth $10,000 \times 7.5=75,0007$
It has to take only 30,400 :

Test on the ten $5 / 8^{\circ}$ rivets on front of column in single shear.

Force coming to the 10 rivet $=30,400 \cdot 87.5 \times 506=74,800$.
One 5/8" rivet in single shear 9000 is worth $2.756 \frac{*}{k}$
Fen 5/3" rivets " " " " " " 27.650 \%
which is considerably less than 74, 00:
Max. uplift of 71, 730 " is tale by thirteen $5 / 0^{\prime \prime}$ rivets in single shear, which are worth only 35.950 .

Test of shear on rivets holding the diagonal tod D7
It is hold by four $5 / 3^{n}$ rivets
Stress in rod is 19.350 ,
Total stress on section of rivets $=19.950 x .707=14,030: \%$
Allowable stress $=4 \times 2765=11,000$:
Total shear on heads of rivets $=19,650 \mathrm{x} .707=14,0300^{\circ}$
Shear on cross section governs 38 this is weaker thin the head in shear.
ute is two $5^{\prime \prime}$ cahanels s 6.5 ft $^{\prime \prime}$
San section used thruout the tower
iotal max. atress $=12,060 \mathrm{~J}$ cumpression area $=3.90 \mathrm{sq} \cdot \mathrm{in}$.
Unit strese $=12,060 / 3.9=3,10016 \mathrm{si}$. in.
Ares $=3.90$ g. 1 n .
Alsewnebletrees $=16000-70 \mathrm{I} / \mathrm{H}$
(x) axis considered as coinoldent witil back of inaide chan.
$\operatorname{Bar}(y)=1.95=4.89 * 1.95 \times 7.9 .5=4.24$ inches.
Frone of incrtia soout (x) thrie cofe.
$I=.48 \cdot 1.95 \times 3.75^{2} \cdot .88 \cdot 1.95 \times 3.75^{2}=55 .-96$
Lan. of intelis about (y) axis thruc. of E.
$I=7.4 \cdot 7.4=14.8$
R = 8q. $000 t$ 14. $8 / 3.9=1.95^{n}$
$I / R=14.98 \times 12 / 1.95=92.2$
Allemed strese $=26000-70 \times 9 \% .2=9.540, "$ per eq.1n.

P = strese in lacing bar = 200 A rcsc.a/c
A = area of strut
x - least rad . of cyr.
C. dist. metral sais to most remote fibre
a ansio made by bar with axis of etrut cos. $3=2.167$
$p=220 \times 3.9 \times 3.78 \times 1.17 / 5.01=763 \#$
Lacing bar is $13 / 4^{\prime \prime} \times 1 / 4 *=.4375$ sc. in.
Unit stress $=963 / .4375=2200 \%$ sc: in.

Test for shear on one rivet holding lacing ber.
cos.a = 517
S = aheas on s ection of rivet

one $5 / 8 "$ rivet in eirile shear is mortin 2765

Eane design used in each of the connections.
S6 gete the largest compressive atress of 12,060 \# $5 / 8$ in rivets on $5 / 16$ in plate, chear coverns.
light $5 / 8$ in rivets take theestress in sinsle shear.
Yalue of one $5 / 8$ rivet in $3.5 .=2765$ if
Connection is whrth $8 \times 2765 \pi=22.100$ 宕
These plates are bent and are riveted to the flanges of the column cliannel.

Twelve $5 / 8$ n rivets take the stress in \therefore.
Stress on rivete $=12060 \times .707=8540 \%$
Value of the rivets $=12 \times 2765=33.200 \%$

STRGAS ON PIMS

Ğreatest stress produced in pin at the intersection of $\mathrm{S}_{7} \mathrm{D}_{6} \mathrm{~T}_{4} \mathrm{~N}_{7}$

Strese in ${ }^{2} 6=18400$ tens for one only

- " $D_{7}=19350$ ii

Strem " T4 = 3000 n \quad n
Horiz. comp. of $116=18400 \times 16,65 / 25.31=12,100 \mathrm{f}$
Vertical " " $\quad=13400 \times 21.19 / 25.31=15.400_{i}^{\prime \prime}$
Horiz. " " $\mathrm{N}_{7}=19850 \times 16.65 / 27=-12250$
Vert. $\quad n \quad=19850 \times 20.5 / 27=-15060$
Yert. conn. of in $=3000$:"
Moriz." n " $=0$
Iemeth of in is 9 inches, $8 T_{4}$ bs at centre.
lioriz. oomponet of the left reaction.
$R=12.250 \times 6.30-12.100 \times 5.30 / 9=\cdot 1456 i \%$
Horiz. ${ }^{1 \times m}$ oment at centre line T_{4}

-5870 in 10s.
Moris. Moment at centre line D_{6}

$$
M=1456 \times 3.625-12,250 \times 1=-6970 \text { in } 1 \mathrm{bs}
$$

I:oriz Noment at centre line D_{7}
$N=1456 \times 2.625=3830$ in 1bs.
Vertical component of teft reaction.
$R=15060 \times 6.38-15.400 \times 5.33-3000 \times 4.5 / 9=-44.5 \#$ Vert. moment at centre line I_{4}
$\mathrm{m}=-44.5 \times 4.5-15060 \times 1.875 * 15400 \times .875=-14990$ 年
Vert. moment at centre ane 1×6
$Y=44.5 \times 3.625-15060 \times 1=15221$ in 1 bs.
Vert moment at centre line D_{7}
$1 .=-44.5 \times 2.625=117 \mathrm{in} .26 \mathrm{c}$.
sax. resultant moment occurs at I: 6
H. = square root of $6970^{2} \cdot 15$ "212 $=16760$ in 16 b .

Diam. of pin $=$ a in .
$\mathrm{I} / \mathrm{c}=.784$
$=S I / c=16760=5 \times-794$
$\mathrm{S}=21,400$ in sq. in.
Allowable stress $=24,000_{i /}^{\prime \prime}$ sn. in.

A ALTOS CF FLOOR PLATLFF BALCONY

30\# sr. it. as uniform load.
late is $24^{\prime \prime}$ wide and $1 / 4$ " thick
$\mathrm{M}=12 / 8$
Slate wee. 20.4 lbs per inf ft.
${ }^{H}=80.4 \times 14.13^{2} / 8=2010 \mathrm{ft} 2 \mathrm{bs}$.
$I / c=0.25$
$r=51 / 0=2010 \times 12=5 \times .25$
$s=9,660.7 \mathrm{~s} \mathrm{~m} . \mathrm{in}$.
Allowable stress $=16,000$ sq. in.

ANALYSIS OF BRACKET CONLCILISN TO COURTS
Force tending to shear rivets
$1 / 4$ wet of balcony $=578$ 复
Uniform load on floor

total 1426
Lever arm of force $=10.5 \mathrm{in}$.
lending moment
$=10.5 \times 1406=15000$ in 2 bs.
Distance between ace lines of rivets $=21 / 4 \mathrm{in}$.
resisted by four $5 / 0^{n}$ rivets in single shear.
$s=s t r e s s$ on one rivet
$25000=2.25 \times 4 \times 5$
$3=1667 i$
Value of $5 / 8^{\prime \prime}$ rivet in s. $3 .=2765 h^{\prime \prime}$
" " \quad " bearing on $3 / 3$ plate $=420 \%$

BTRESS IN AUCHOL: BCLIS.

Max. uplift total $=71930$ \%
Vert. comp. in a anchor bolt $=71930 \times 156.3 / 1.01$
x 157.300 70.700先
Diam of anchor bolt $=2^{\prime \prime}$ at root of thread
Unit stress in anchor bolt $=70,700 / 3.14=22,500 \%_{i}^{\prime \prime}$

FACHOR GAMETY AATMER WMIMG.

Konenta about sxis of shoes.
Over turning moment due to wind.

Entire wit. of steel in tower. $5 \mathcal{E} .018$
subtract 50% of wit. of pipe
Iet Total $=54.28 \%$ i
Lever arm of wist. of stee $1=1 / 2$ square cugtance of tower be tween anchor bolts $=18.5 \mathrm{ft}$.

$$
\begin{aligned}
& \text { 54.288" } \times 18.5=1,005,000 \mathrm{ft} . \text { lbs. } \\
& \mathrm{mg} \text {. of } 2 \text { piers }=2 \times 42,850^{\prime \prime}=85,700 \mathrm{~B} \\
& \text { lever irm }=37 \mathrm{ft} .
\end{aligned}
$$

$85.700 \times 37^{\circ}=3,170,00007$
Caloulation of wet. of earth arouni pigr wich offers resietance to overturning.

Valume of masonry pier $=288 . c u . f t$.
Volume of solic ecual to area of base of pier times height of pier, equal $20^{\circ} \times 10^{\circ} \times 5.25^{\circ}=525 . c u . f t$.
$525-283=237$ ou. ft. of earth.
wit. of earth on 2 piers. $\quad 237 \times 2=4 \% 4$ cu. ft.
wit. of earth $=200^{n}$ per cu. ft.
$474 \times 100=47.400$
lever smm ecinals 37 ft .
$47.400 \times 37=1.755,000 \mathrm{ft} .1 \mathrm{lbs}$.
gotal resisting moment.

Factor of safety ag inst overturnine $=5.930,000 \%-$

$$
4.149 .500=1.43
$$

(a) yidh four panels of tower in place takon Fob, 12w 1916.
(b) With all the steel in place April 7. 1916.
(a) ith water on tank, June 2.2916.

Nopth :Vent Pier levations

\% corner	103.107	\{b\} ${ }^{\text {b }}$ ¢ 101	\{0) 03.106
N	103.151	203.144	103.151
Is	203.142	203.139	103.141
3 -	103.139	103.129	103.132

North sast Pier

7	Comer	103.165	103.156	103.162
M	0	103.111	103.097	103.104
B	0	103.116	103.106	103.108
S	0	103.13 C	103.118	103.128

South East Pier

	rner	103.122	103.125	103.109
N	\#	103.112	103.098	203.109
8	"	103. 093	103.086	103.091
s	"	203.071	103.066	203.067

South est pier		Elevations	
	(a)	(b)	(e)
* Corner	103.165	103.161	103.165
N	103.173	103.156	103.171
F	103.152	103.146	103.148
S	103.169	103.161	103.165

Three pipes were driven in the ground near the Nort: iest pier Pipe

Hest of pier
(c)
pipe $4 \mathrm{ft}$. lomg
103.244
$103.141 \quad 103.141$
dast of Pier
(1) 6 et.erom piertft long $102.969102 .961 \quad 102.966$
(2) 9ft.
"7直" long
103.010
203. 006
103.0n2

The above data showa that the lier geve not netiled materially. "ho apparant rise in the elevations of the piexe In the later aurfey in in all probability due to an error in the neight of ingtrument.

It is a know fact that cuick-sand is predoninant in the sub-moll of the IE A C campus. 'iherefore tive most logieal thing to have done woild have been to set the piers on piles. If future excaration caused the ruick sand to run, the failure

CRITISIZX TITH RESPECE BIRCH MORDS SPECIPICATIONE.

Irmier refer se apec. articles as quoted in Ketchum ans 10. Por compresel an mubere, the permiselble und ntrese of 16,000 2b. chall be reduced by the fermalat

$$
1=16,000-702 / \mathrm{s}_{0}
$$

where p- permiseible vorinag etrese in compresicm, in 2b. per aq. 1m. 12 longth of mombor, frem conter to center of concetione, In lachos; Ig leat raliue of garetion of eaction, In inches. The ratie, $1 / 5$, mani nover exceed 120 for main mombers and 180 for etrute and roof cunetruction memares.

The allowatie relue of 1 !- F is not exceoded in any of the numbers. Howerer the allowable mit compreseive ot reases mre cacecded in all of the parts of the columan. Tho mont extron casen are an excess of 95% in colum C_{2} and an uxcess of 67% in celuma 68 .
11. Btrences due to wind may be megleetel if they are lese than 25 por cent of the combinci dead and live 2 ende.

011 Find etresees are in excese of 25% of the combined lead and 2ive Icad.
12. Dait stresees en bracing and other membere takiag wind stresees may be increasel to 20,000 2b. per an. in., except se chown in 8eetion 21.

In the onsion members of the bracinc the allumble etrese of 20,000 1bit. per eq. 1n. has been excecded in mearly every case. The extrene case being an excest of 35%.
13. Portland cement concrete.................. 350 1b. per eq. in. The allomble unit pressures on the piers are exceeded 45\%.
14. The plates forming the sides of cyidndrical tanke ohall be of different diameters, se that the courses ahall lap ove eack other, inside and outside, alternately

This item has been very aptiy complice with.
15. The joints for the horisontel seans, and for the radial ceenf in opherical bottome, thall proferably be lay joints. The lay joint has been used throughout this desien. 16. Fer vertical seams deuble-riveted lapjoints shall te usect for $2 / 4,5 / 16$, and $3 / 8 i n$. plates. Triple lap jeints mall be used for $7 / 26$ and $2 / 2$ in. plates; double-rivetel
 plates; and triple-rivited butt joints for $13 / 16,7 / 8,15 / 16$ and I in. plater.

Biagle riveted lap jointe with $3 / 16$ inch plates have been used, wich is allowable with plates 203 thon $2 / 4$ inuh. 17. Rivete $5 / 8 \mathrm{in}$. in dianeter shall be used IOF 1/4 in. plates; rivets $3 / 4$ in in diantoes ohall be used for $5 / 6^{\prime \prime}$ plates; rivete 7/8" in diameter shall be used for $3 / 8$ to $7 / 8$ in. platee, imelusive. Rivets $l^{\prime \prime}$ in dianter shall be used fer 15/16 in, and 1 in. platen.

1/2" fivets have been used which is allewable with $3 / 16$ inch plates. The efficiency falls alichtiy below the opecified anount. The lewent value being about 65%.
18. In ac case ohall the apacing between rivets along the callked edges of plates be more than ten times the thickness of the plates. 411 rivets shall be entered from the incide of the tank, and whall be driven from the outiside, that is, new heads on rivete chall always be formed from the opposite side of the plate on which the caulking it done.

Thie requirement has been cemplied with.
20. The miniman thickness of the platee for the cyliadrical part ahall be $1 / 4 i n$. The thickese of the plates in aphericalt bottome thall never be lese than that of the lower course in the eylindrical part of the tank.

The thicheas of the plates in the cylindrical part of the tank are $3 / 16$ of an inch thick which is thinaer than the required amount
25. The radial ceetions of opherical mottome mhall be madd: in maltiples of the number of column supporting the tank, aad chall be reinforced at the lower parts, where holes are made for piping.

There are 12 radial ecetions of the ophert ial bottow asd this is a multiple of the 4 columas. The apherical bottom is reinforeed with a circular heal plate where the pipiag 18 comnected.
26. Whan the conter of the opherical botten is above the point of conncetion with the cylindrical part of the tank, there chall be provided a girder at eaid point of connection to takt the horisental thrust. The herisontal girder may be made in.
comestion with a balcony. This also applies where the tank is oupported by inclined colume.

The centre of the opherical bottom is at theline: of connection of the opherical bottom to the cylindrical part, so there is no horisental thrust.
27. The balcony around the tank shall be 3 ft wide, and sall have $1 \mathbf{1 0 0 r - p l a t e} 2 / 4 \mathrm{in}$. thicir. which ohall be panched for drainage. The balcony hall be provided with a outiabie railing. 3 ft 6in, high.

This item has not been etriesiy adhered to. The baleeny io 24 inchef wide. made of $2 / 4$ inch plates, and the railing is 2 ft 9-3/4" high.
28. The upper parts of aphetical botten platet chall alraye be comacted on the ingide of the cylindrical section of the th tank.

The platet of the mpherical bottom are connested to the yneide of the platee of the eylindrieal part.
29. In order to aroid eocentric ieadimg on the tower eolumne. and local thresest in sphericni bottome the cenneckions beto ween the columas and the ade of the tank thall be made in moh a manner that the center of gravity of the celum cection interacete the conter of conncetione brtweon the mpherical bettor and the sides of the tank. Enough rivets ohall be provided above this intereection to transmit the total colum h 1oad.

This item has been somewhat overlooked ill thie doalgn; and escentric stresses of considorable value are produced. the riveted comnection at this point se etreag enough to tranmit the lead.
30. If the tank is eupperted on oelumns riveted directiy to the oldes, additional material mall be provided in the tank plates riveted direetly to the columns to take the shear. The shear may be taken by providing thicker tank plates, or my reinforcement plates at the column connections, while bendiac mements mall be taken by upper and lower flange. angles. Corncetione to colume chail be mide in such a maner that the officiency of the tank plates ahall aot be lese that that of the vertical seams.

There is ne additional, material riveted to the tenk plates, howover they are afe in bearing yalue. there is a plate riveted te the outaide of the channel of the celuman to strengthen the web in bearing value. The efficiency of the tank plates at thio conaection ia about 95% while the officiency of a vortical joint is about 65%.
32. For high towert, the columns chall have a metter of 1 te 12. The height of the tovez shall be the distance from the top of the maconry to the ecancetion of the opherical Dotten, or the flat betten. With the eyiindrical part of the tank.

The colums have a batter of $2-3 / 8$ inches in 12 inches.
32. Mear the top of the tank there shall te provided oae 2-bar to act as apport for the painter' e trolley, and for stiffening the tank. Its seotion moulus ahall not be less than $D^{2} / 250$. where D is the diameter of the tank in feet. If the apper part of the tank is thoroughly held by the rool conilfuctions this may be reduced.

There is ne 2 bar to ect as a mpport for the painter's trolley and for etiffeniag the tank there is a $3^{\prime \prime} \times 2^{\prime \prime} \times$ $1 / 4^{\circ}$ angle at the top of the tank. Its seetion modulua is 0.26 in 3 for bending in a vertical direction which is considerably lese than

$$
\frac{D^{2}}{250}=1.02
$$

33. On large tanke, circular atiffoning angles chail ie provided in order to provent the platen from buckling during windstorme. The distance betwoen the angles shall be deternined by the formala: $E 900 \mathrm{c}^{\frac{t}{2}} \mathrm{D}$ where 4 appronim ate distance between angles in feet; ta thickrese of tank plates in incheni D_{n} diameter of tank, in foet.
 are required in thit dealgn, and none are placed on the temb. 34. The top of the tank will genoraliy be tevered with a ceaical roef of tin plate: ; and the pitch mall be one to ofix. For tank up te $22 f t$ in dian. . the roof plates will be asaumed to be celf sopporting. If the diameter of the tank crecedee 22 ft, angle rafters ahail be uned to support the reef plates which are cenerally $2 / 8^{\prime \prime}$ thick

Plates of the following thicknces will be asmaned to be solf mpperting for various dianeters; $3 / 32$ inek plate, up to a diameter of 18 feet. $3 / 8^{\circ}$ plate up te a diameter of 20 feet 3/16 inch plate, te a diameter of 22 feet. Rivets in the reof plate whall be from $1 / 4$ to $5 / 16$ of an inch in dianeter and shail be driven cold. These fivete nect not be headed with a button set.

The piteh of the roof is greater than 2 te 6 inch The foof platen are $1 / 8$ inch thick, an the dianoter of the tank $1: 16 \mathrm{ft}$, the plates are eelf mapporting. The rivete are $5 / 26$ inch round.
35. The trap ceer 2 feet square, shall te provided in the seef plate. Hear the top of the higher tanke, there chall be a platform with a railing for the eafoty of the men eporating the trap deer.

There is a trap door 22^{2} inches by 28" There is no platform and railiag. There is an ornamental fiaial. $37 /$ There mall be a ladder i foet 3 in. wide, extending frem a point about 8 feet above the foundation to the topof the tank, and also one on the inside of the tank. Fach ladder shall be made of twe $2-1 / 2$ by $3 / 8 \mathrm{in}$. bars with $3 / 4^{\circ}$ sound rwage ome foot apart. On large high tanke 30 feet or more in diameter, walk shall be provided frea the columan neareat the ladder to the expaneion joint on the riser or inlet nipe.

The ladder extende from the piere to the tep of the tank.

It 1 ene foot $2-1 / 4$ inches wide: the bara are 2 inches by $3 / 8$ inch; and the runge are $3 / 4$ inch round and are apacal oee foot epart.
38. In designing a tank a height of 6 in. shall be addod to the required height of the tank if an overfiow pipe ia not apeciried by the owner.

The rieer or inlet pipe is 8 stainches in diametor. Ther is an outiet pipe
40. All pipen enteriag the tank shell have cait iren expansien jointe with rubber packing and facilities for tightening sach jointe the expansion joiat. cemerally. whall be fastenct to the botton of the tank with bolts haviag lead washora. The tank platea shall be reanforced where the pipe enter the tank.

This design has a cast iron expansion jodat wiht brase packint; there is a bait for tighteniag the joint. The expansion joint 1 : fantened to the tank with rivets 41. All pipea entering the tank shall be thowoughly braced latterly with adjuatable diagoaml bractag at the panel pointe of the tower .

There are latteral brace rods, diagonally placed at the panel poiats for etrengthening the inlet pipe. 42. The diagonal braeing in the tover ahail prefermbly be adjustable, and shall be calculated for an enitial strese 3000 1b. in adition to wind stressen atc.

The mar uplift is 71,930 1be. The anchor belte are fastence directly to the colums by the means of beat plates beariag on angles.
43. The aise and number of the mehor bolte in the towor chail be deterieived by the maximue uplift when the tank is empty. The anchor bolt ia the tower, where the mamimal uplift is greater than 10.000 lb.. shall be fagtened directly to tie colume vith bent plates ox oiailst detailz. In all ether cawes it wouldie eufficient to connect the ancher belts dircetiy to the base piates.

The tenion and anchor belte will not exeesd 25,000 lbs per eq. in. of net sres. The menimas efetion ohall be lifited to dismeter of $2-1 / 4$ in. The detaile mail be made en that the suchor bolty will develop thiar fall strangth and at the lower end, they minll be furnithed with an ancher plete, net less timn $1 / 2$ in. thick to asaure cood ancherage to the foundstion whenout depending on the adhosion botwecm the conrete and ateel.

The nnehor bolte 21nches ia diam. The tadt thasion in the oncher boit is 22,500 Ibs. per sq. in. which exceede the allowable value of 25.000 lba . per dq. in. 44/ The conarete foundation shall be assumed to have a waight of 140 pounde per i cu. ft. and shall be oufficient 2n equatity to teke the uplift, with a factor of safety of 1-1/2.

The facter of sofety against overturning is 1.395 which is silghtly below the specified value .
45. Threaply frostproot casing thall be provided if meceseary, nround the pipes leading to and fron the tank. Thi eaning shall be eomposed of two layfrs of $7 / 8=2-2 / 2$ Inch dreaeed lumber of and each layer shall be corered with tar paper or tarred felt, and one outside loyer of $7 / 6 \times 2-2 / 2$ in. dressed and antched 1000 ing . The lumber fhail be in leagthe of biout 12 ft . The ohall be one inch aif apace between the layers of lumber ahd wooden r ings or seperator ahall te nalled to them every thre feet. (In very cola cilmate it it coad practise te fill the space between the pipas and the rirat lager of lumber of th hay or bibilar materiall The fropt casins may be equare er cyilndrical; it shall be bracel to the tewer with edfastable dirgonal oracing, as described for pipes in ceetion 41.

In this denifn a twe-ply frobtproof cesing waz uged it consints of threequspter inch dressed and ratched iunter. A atrip of bailding paper is placed on the outaide of the inner meath. There art rooden segeratore and they nre maced ebout two feet 8 in. spart.

ACHO LDOQ

In the solution of tilis wort we are indebted to Prof. C. A. relick for advice and helpe to prof. J.A. Polson and r. I. Y. Tewall fer the information resarding tie recessity of building a wtacr towor at A C: and also to KetchuFi's truatural Yard-boor. the American Civil infe's IIanibnok, and Siazelhuret's zesign of Steel そher towers, for formia, information and genere. 1 xnowlecise of steel structures.

The analysis of the various members, shows thet the tover is overstressed in almost every detail. the most extrerie cases beine an excess of stress of $95 ;$ in the columns of the uppermost panel, due to eccectricity of centers and an excess of 67% in the columns of the lowest panel. The wind bracinc is also overstressed to the extent of 35%.

It would have been better to have designed the diagonal uracing in the lower panels to take compression as ell as tencion; as showi ioy the eraphical analysis of the wind stresses, there will be a compressive stress of 9.9000 if in $1, y$ wilen the horizontal components of the reactions are equal. 'This will reduce the initial tension to zero and produce excessive ierding in the columns at the first panel points siove teriers.

On the hole toe dosicu apmears to ive a scant affair. As shown by the graphical analysis s.nt us by the Chicaco rideg ni Iron Co., and the unit stresse use in the desifa; they dia not use standard voues an eood matin woild call for. ace for ula fry the allownibe cormesenve atress in the coluns, ar use b: them, is

Tre allowaile tensile etress usea is l!,00G? or. in. "he wind loade appear to rave veen rrived at in a rainer crude anner. ihe wind on tank being taiken at 3 (: so. it. on 60.: of projected area, and the wind on tomer at 200, vertical fit. of heisht. This however E (irces with nome of tie older and more liberal specifictions.

The stresser in the column of the toy panel, dex to accentrinity appear to have been negiected entirely. he worknanshin in rivetile on the tower has been done in a careless mimez, rone of tile bution heads are scant ani irregular, and here counter-sunk rivets are used the head is not large enough to entirely fill the nole.

The site appern to be a ratier poor one en regards tice nearriess to the rtack of the power hiuse. Te deleterious effect of tie acid eases upon the paint is beyond a:iy cuestion of a coubt. A dark ereen or black paint might better have been selected, as tice viite paint is all ready becomirfs discolored.

The extreme tianness of metsi used in the entire structure togetiner with tio unfortunate exposure to ases ans the probability, anou:ainc almost to acertainty trat tice tank vill not ve kept properly paintei and tie lare percentre of area rendered inert by a comparatively tiin coating of rust do not argue well for a long and uincerrute life of eervice to tle collece.

MARKING DIAGRAI OF

M.A.C. WATER TO THESIS OF | J.U.LAYまR |
| :---: |
| |
| |
| |
| |
| |
| 1916 |

Section on A-A showing horizont pipe rod's

FOUNDATION PLAN For
M.A.C. WATER TOWER

Thesis of
A.J.Aitchie-U.U.Layer 19/6.

FGE: USE vava
CiY

