METHODS OF TESTING MOTHER BEETS FOR SUGAR CONTENT

THESIS FOR DEGREE OF M.AGR. ELDON E, DOWN

1922

Thesis

$$
\because C ?
$$

Mhosis

$$
\begin{aligned}
& \text { Reapactauly rnbuitted in fulfillsent for } \\
& \text { the darroe of lactor on wricelturn } \\
& \text { u.t } \\
& \text { inclairan acrichiturel Coilose } \\
& \text { M! Na } \\
& -\quad-\quad- \\
& F \\
& \cdots \cdot \\
& \therefore \text { 江分OH } \therefore \text { - }
\end{aligned}
$$

1982

$$
\begin{aligned}
& \text { retcisic mpati: an monetic - - - - - } 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { III-a, } \\
& \text { (I) arovicur Ǐrariiniicn - - - - - - - - - } 4 \\
& \text { (B) Eresort Inootimiticr - - - - - - - - - - } 5 \\
& \therefore \text {. Scurce of listorial - - - - - - - - - - } 6 \\
& \text { B. Determination of Specific Gravity - - - - } 6 \\
& \text { ©. Determination of Suaur Content - - - - - - 7 } \\
& \text { (3) Relutionships (Currelutions) Ancl? Peets - - - } 7 \\
& \therefore \text { - } A_{p} \text { ocific frurity re an Cortent - - - - E } \\
& \text { (i) Prolity Brotr } \quad-\quad-\ldots-\ldots \\
& \text { 1. }
\end{aligned}
$$

\therefore Intilg－－－－－－－－Iu

$$
\begin{aligned}
& \text { ¿とミユし : - - - - - - - - } 11
\end{aligned}
$$

$\therefore し \therefore$ icn－－－－－－－ 1%

$$
\begin{aligned}
& \text { - - い" }
\end{aligned}
$$

solution－－－－－ 15 \＆ 16
＂しl：口icn－－－－－－2\％
jolirji－－－－－－ 10
Zciution－－－－－－
1．＂periaic oruvite Colonactors－－－El
a．＂uciaic rruvity ly alt
clation－－－－－－in

$$
\begin{aligned}
& \text { (c) Somation, Uirowrad dis "olle Bootr- - } 25
\end{aligned}
$$

> 2. , ociric Ornvit? $\begin{aligned} \text { aralt } \\ \text { and }\end{aligned}$
> Zon:rion - - - - - - - 28
E．＂pocinio rrivity in ：iolt
Ocinivon－－－－－3u \＆$\quad 1$

> "olic: anots - - - - - 32
> 1. "ßocific Aruvity Cilculatod - - - Oe

$$
\begin{aligned}
& \text { ジcuticn - - - - -33 \& Et } \\
& \text { B. Quciaic ravity ve ioirtu - - - - - - P5 } \\
& \text { (a) 'ionad Mombry Bode - - - - - - - } 25 \\
& \text { 1. Sacific Srevity Cuncuratad - - - } 35
\end{aligned}
$$

こんうにさicn－－－－－－O
（ $\because \mathrm{C}=\mathrm{hajo} \mathrm{\%}$ ）－－－ 37
(c) Wopyod Yoitury, Uirameod anci Yollow

Goctr - - - - - - - E E
I. Spocific Gravity Celouletod - - - 20
b. pocific Gruvity by wit
solution $-\ldots-\ldots-\ldots$

(a) Mopeod minlthy wots - - - - - - - 41
(i) FIctrond roultur wa jiroared rioote

(c) Topped Yoolthy, Jicousod aid Yollow

D. Sumicury of Corrolintions - - - - - - - 45

B. Lines solection $-\ldots-\ldots-\ldots-\ldots 2$

D. illczyrous X sillozygous - - - - - - - 54

\therefore I: Selecticn $-\ldots-\ldots 5$
B. lass jelection $\quad \ldots-\ldots-\ldots 5$
C. Allozygons X inllozygous $-\ldots-\ldots-\ldots$
(3) Comarins zocultine iothods - - - - - - - - 57

(4) Disudvintiono $-\ldots-\ldots 0$

I--IMNODUCNICH:

(1). Ieed of Investicution.

The wichifun sufar boet industry depended on foreign seed before the vorld iar. is sudden reduction of the quantity and quality of the supply forced the sudar manufacturers to pron their cown it present, some huve returned to the foreion source, wille others are prowins at least a part of thoir seed. sbout 250 acres of beets for scet will te grown in lichiren during the sumar cf 1922. Tests at the i.ichisan agricultural Colloge durine lyd choned that tise dichipen ercon seed produced a ereater tomaxe of boets per acre, but with a lower craur test tiwn fromer rown eeed. These recults are borne out by the eurlier Morn done under the direction of Director Gaith of the I ichipan sericialtural College aperiront station and by tho obsorvations of the manufacturers. who luwer encor cortert is no doubt aue to the corrolation botwoen size of beet und sumar content, While the increase in tonare ray be aue to the seed boching aduptod to liichiman conaiticns. Fobever, this docrease in the percont eurur lanos it leos profitalele to extract eugar frai: beets produced fron lichipur rom seed. Peculla or tiris condition, invertirution rhculd
be andertaken thet will aid in the selection of a type of beet that will give a reasonable tonnage under Michigan conditions and have a high sugar content.

It is not known how the inheritance for sugar content is transmitted from a mother beet to its offspring; it can only be compared to other open pollinated crops. An individual beet is the resultant of two forces: heredity and environment. These are so related that it is impossible to tell which is the more important. Heredity determines what type an individual should be, while environment determines whether the individual will develop to the limit set by its heredity or not. No matter how good the environment may be, the individual can not develop beyond this limit. Because the ultimate yielding power of any variety is limited by the hereditary Jielding power of the original stock from which it came, it is most important that this stock be the best that can be obtained. It is the purpose of this thesis to discuss methods of testing mother beets for sugar content to determine those best suited to become the foundation stock of future varieties.
(2.) Methods Under Discussion, Defined. Three general methods of testing mother beets for sugar content are discussed: chemical, specific gravity,
and genetic.
The chemical method is a process of determining the percent of sugar in a beet by analyzing a core sample.

The specific gravity method is a process of determining the percent sugar in a beet by immersing the whole beet in a solution of given specific gravity.

The genetic method is a process of determining the hereditable percent sugar of a beet by its progeny record.

II--CHMICAL MNHOD
(1.) Selecting Beets in the Field.

Hother beets are carefully selected in the field, chiefly on the basis of leaf surface and size of beets. Characters such as: large leaf surface, leaves with fine texture, wrinkled leaves, roots having many fine rootlets, and deep root furrows, are also considered. These points are selected because there is some data to show that a positive correlation between them and sugar content exists. Also, there is a general belief that these characters are transmitted to their progeny. The selected beets are stored under uniform conditions until the following spring.
(2) Testing for Sugar Content.

The final selection is based on the percentage of sugar found in the root. The method of obtaining a sample of the mother beet for sugar analysis used by the different breeders is essentially the same. The sample for analysis is obtained by boring a hole diagonally through the thickest part of the beet in such a way as to sample all the zones of high and low sugar. The sugar is extracted from a given weight of pulp by any one of a number of standard methods. The solution containing the sugar is then placed in a tube which is inserted in a saccharimeter and the percent sugar read direct. The beets with the highest sugar test are thrown into a superelite class and used for further breeding. Those above the average are classed as elite and used for increase seed production; the remainder are discarded.

The ability of the superelite class to transmit high sugar content to its progeny will be discussed under the genetic methods.

III--SPECIFIC GRAVITY LBTHODS
(1.) Previous Investigation.

Breeders have for many years separated beets with a high and low average sugar content by floating off the low average group on a solution of a given specific gravity.

It is not snom hog lone this las been dore. Pruarty ir his buor "Jie ziachtung Der Lancivirtschuftlichen sulturinumen", refers to the surly breeders deterrining percert sumar by flouting slices of beets on a standard sugar solution. Nares in hia kook "sugar Beet woed", tells cf the Gerwan hreeders heing a salt solution to rase a prolirinury eowration of broeding beets into hifn end los avorame sumer content before the cher icul analysis is rade. Harris in his book "Sugar Beets in smerica", fentions the rethod. Fowever, no dati is siven by there wuthoritios to show that there is a dofinite relationship betmeen the specific gravity anci sagar content.

Arras, Pranco, shows that the avoraoe suour contont increases vith the increase of the specific gravity.
(2). iresont Investirution. Mro aritor undertoos en investiration that woulà determine wetier the relctionship between the specific gravity and sugur content of lifichicin grown beets is sufficient to sllow for their sejuration into groups with hish and low average onmar content by means of a salt solution.

B. Deterninution of sjocific Gravite

 The roociaic erivity ci ési beets ver ctitivou inovior thun matore ma kootr mor firct wolod in

 distillod \because utur is culled tho calonatod rpecidic rrurity in trin urbere.

To dotoming tion racific sravity by sult

 becwurn it is knom inat the suedric rruvitw of heots

Scurce of material used
in specific gravity invostigation.

$$
-\mathrm{Cb}-
$$

Squipment used in doterminine seecific rrivity or tie beet.
range from 1.005 to 1.090 . The beets that floated were assumed to have a specific gravity less than 1.045 , while those that sank were considered to have a greater specific gravity. Since the former group contained beets from 1.005 to 1.045 and the latter group ranged from 1.045 to 1.090 , the midclasses used for each group were 1.025 and $1.0 \dot{5} 5$ respectively.
C. Determination of Sugar Content.

All sugar analyses were made by the Experiment Station, Chemistry Division of the Michigan Agricultural College, under the direction of 0. B. Winter. Each beet was ground and a uniform sample of its pulp used for sugar extraction purposes. The hot water digestion method of analysis was used.
(3.) Relationships (Correlations): Whole Beets. The method of calculating the coefficient of correlation and probable error is that explained by Eugene Davenport in his "Principles of Breeding", pp.419492. If there is a perfect correlation in two characters the coefficient is unity, while if there is no correlation the coefficient is zero. If the coefficient is not greater than four times its probable error it is usually considered not significant. When the correlation is negative the coefficient is preceded by a minus sign. The coefficient of correlation between the different
factors are shown in the following tables.
Besides the correlation between specific gravity and sugar content, the relationship between factors that may influence this relationship were determined.
A. Specific Gravity vs. Sugar Content. (a) Healthy Beets.
I. Specific Gravity Calculated.

Table 1 shows the results for 310 beets. A positive correlation of .5401 is shown between specific gravity and sugar content with a probable error of .0271. This correlation is definite and is usually expressed as follows: . $5401 \pm .0271$.
-Table l-
Correlation between specific gravity and sugar content. Healthy Beets.

10			4						4
11		5	9	3					17
12		3	13	16	1	1			34
13		1	13	30	12				56
14	1		8	44	19	3			75
15		2	7	15	21	4	1		50
16	1	1	3	6	21	12			44
17			2	4	11	8	1		26
18				1			1	1	3
19					1				1
Y	2	12	59	119	86	28	3	1	tal

2. Specific Gravity by Salt Solution. An examination of table 2 shows a positive corelation of $.5873 \pm .0291$ between the specific gravity of 231 beets and their sugar content. The coefficient is over 20 times its probable error. -Table 2-

Correlation between specific gravity (salt solution) and sugar content. Heal thy beets.
X $1.025 \quad 1.065$

103
$\begin{array}{llll}11 & 12 & 2 & 14\end{array}$
$1218 \quad 5$
$13 \quad 17 \quad 15 \quad 32$
$14318 \quad 31$
$\begin{array}{llll}15 & 7 & 33\end{array}$
16
2
39
41
17
25
25
18
19
Y
77
3
3
$1 \quad 1$

Total
231
$X=$ midclasses for specific gravity.
$Y=$ midclasses for sugar percent.
Correlati on $=.5873 \pm .0291$.
Mean specific gravity $=1.0516$.
hean sugar percent $=14.3549$.
(b) Healthy and Diseased Beets (not hollow). 1. Specific Gravity Calculated.

Table 3 gives results with 337 beets, and shows a correlation of $.6898 \pm .0192$. The coefficient is over 35 times its probable error.
-Table 3-
Correlation between specific gravity (calculated) and sugar content. Healthy and diseased beets (not hollow). X--1.005-1.015-1.025-1.035-1.045-1.055-1.065-1.075-1.085
1
2

3
4
1
5 I
611
$\begin{array}{lll}7 & 2 & 3\end{array}$
$\begin{array}{lllll}8 & 1 & 1 & 1 & 3\end{array}$
9

10	3	2	5					10
11		8	9	3				20
12		6	14	16	1	1		38
13	1	2	13	30	12			58
14	1		8	44	19	3		75
15		2	7	15	21	4	1	50
16	1	1	3	6	21	12		44
17			2	4	11	8	1	
18				1			1	1

X = midclasses for specific gravity (calculated). Y = midclasses for sugar percent. Correlation $=.6898 \pm .0192$.

Mean specific gravity $=1.0448$.
liean sugar percent $=13.7211$.
2. Specific Gravity by Salt Solution.

Table 4 shows the results with 255 beets. A positive correlation of .6241 $\pm .0258$. The coefficient is practically 25 times it probable error.

$$
\begin{gathered}
-13- \\
- \text { Table } 4-
\end{gathered}
$$

Correlation between specific gravity (salt solution) and sugar content. Healthy and diseased beets (not hollow).

$X-$	1.025	1.065
2	1	

4
1
1
5 1 1
6 1 I
$\begin{array}{lll}7 & 4 & 4\end{array}$
8 3
3
10
111
14
2
16
12
22
5
27
$13 \quad 19$
19
15 34
$14 \quad 18$
15
6
33 39

16
2
39
41
17
25
25
18
3
3
19
Y
101
154

Total
255
$X=$ midclasses specific gravity. Y - midclasses sueqar percent.

Correlation $=.6241 \pm .0257$.
liean specific gravity $=1.0491$.
Nean sugar percent = 13.8471.

(c) Healthy, Diseased and Hollow Beets.

I. Specific Gravity Calculated.

Table 5 shows a correlation of . $6870 \pm .0180$ between the calculated specific gravity and sugar content. The correlation is definite.
-Table 5-

Correlation between specific gravity (calculated) und sugar content. Healthy, diseased and hollow beets. X--1.005-1.015-1.025-1.035-1.045-1.055-1.0055-1.075-1.085

1	1		1
4		1	1
5	1		1

6	1			1	
7	2	3			5
8	1	1	1		3
9			1		1
10		3	3	5	11

11325

12	10	19	20	1	1	51
13	1	5	14	34	13	

14	1		14	50	21	3			89	
15		2	8	18	23	5	1	57		
16	1	1	3	6	24	13			48	
17			2	4	11	8	1		26	
18					1			1	1	3
19						1				1
Y	4	12	32	78	137	94	30	3	1	391

-

$X=$ midclasses for specific gravity.
$Y=$ midclasses for sugar percent.
Correlation $=.6870 \pm .0180$.
Mean specific gravity $=1.0443$.
Lean sugar percent $=13.6471$.

2. Specific Gravity by Salt Solution.

Table 6 shows the correlation between the specific gravity (salt solution) and sugar content to be . $6161 \pm .0251$. The coefficient is over 24 times its probable error.

Correlation between specific gravity (skilt solution) and sugar content. Healthy, diseased and hollow beets.

$X--$	1.025	1.065	
2	1		

3

4	1
5	1

6 1

7
4
8
3
1
1
1
4

9
1
9
9
11
16
2
18
12
26
5
31
13
22
15
37
14
23
32 55

1510
34
44
16
2
42 44

17
25 25

18
19
Y
l20
$X=$ midclasses specific gravity.
$Y=$ midclasses sugar percent.
Correlation $=.6161 \pm .0251$.
liean specific gravity $=1.0477$
liean sugar percent $=13.8028$.
B. Specific Gravity vs. Weight.
(a). Hecilthy Beets.

1. Specific Gravity Calculated.

Table 7 shows the correlation between the specific gravity (calculated) and weight to be -.1015 $\pm .0379$. The correlation is not significant. The coefficient is less than 3 times its probable error.
-T'able 7-

Correlation between specific gravity and weight. Healthy beets.

$$
x-1.015-1.025-1.035-1.045-1.055-1.065-1.075-1.085
$$

100	1	2	6	8	7	4			28
200		4	12	26	26	9	2	1	80
300	1	3	9	19	13	8	1		54
400		1	6	19	21	1			48
500		2	5	14	5	3			29
600			9	14	6	1			30
700			7	7	3	1			18
800			1	6	4				11
900			4	3		1			7
1000				1					1
1200					1				1
1300 Y				2					$\begin{gathered} 2 \\ \text { Total } \end{gathered}$
	2	12	59	119	86	28	3	1	310

$X=$ midclasses specific gravity. Nean specific gravity $=1.0471$. $\mathrm{Y}=$ midclasses weight in grams. Liean weight in grams $=387.4194$ Correlation $=-.1015 \pm .0379$.

-
2. Specific Gravity by Salt Solution.

Table 8 shows there is a slight correlation between the specific gravity (salt solution) and weight of beet. The correlation is -.222l $\pm .0422$. The coefficient is over 5 times its probable error.
-Table 8-
Correlation between specific gravity (salt solution) and weight. Healthy beets.

X	1.025	1.065	
100	5	23	28
200	20	50	70
300	11	26	37
400	9	22	31
500	8	10	18
600	8	10	18
700	7	7	14
800	5	2	7
900	3	1	6
1000			1
1300	1	154	1
Y	77	1	

$X=$ midclasses specific greivity. Mean specific gravity $=1.0516$.
Y = midclasses weight in grams. liean weight in grams $=360.1731$. Correlation $=-.2221 \pm .0422$.
(b) Heal thy and Diseased Beets (not hollow).

1. Specific Gravity Calculated.

Table 9 shows that the addition of the diseased beets decreases the correlation. The coefficient of correlation is -.0245 土.0367. The correlation is zero. The probable error is greater than the coefficient.
-Table 9-

Correlation between specific gravity (calculated) and weight. Healthy and diseased beets (not hollow). X--1.005-1.015-1.025-1.035-1.045-1.055-1.065-1.075-1.085

100		3	5	6	8	7	4	2	1	36
200	2	1	8	12	26	26	9	1		85
300	2	6	6	9	19	13	8			63

400	1	6	19	21	1	48

500	2	2	6	14	5	3	32

600	9	14	6	1	30

700	7	7	3	1	18

800 1 $\quad 6 \quad 41$

900	4	3	1	8

1000111
11001 I
1200111
1300 1 2 3 Y Total
$\begin{array}{llllllllll}4 & 12 & 23 & 61 & 119 & 86 & 28 & 3 & 1 & 337\end{array}$
X = midclasses specific gravity. liean specific gravity - l.0448. $Y=$ midclasses weight in grams. hean weight in grams $=381.3056$. Correlation $=-.0245 \pm .0367$.

$$
-20-
$$

2. Specific Gravity by Salt Solution. Table 10 shows that the correlation between the specific gravity (salt solution) and weioht was also decreased with the addition of diseased beets. The correlation is -. $1689 \pm .0410$.
-Table 10_

Correlation between specific gravity (salt solution) and weight.

	Heqilthy and Diseased beets.		
X--	1.025	1.065	
100	10	23	33
200	27	50	77
300	19	26	45
400	9	22	31
500	10	10	20
600	8	10	18
700	7	7	14
800	5	2	7
900	3	3	6
1000	1	1	1
1200	2		254

$X=$ midclasses specific gravity. lean specific gravity $=1.0491$. $Y=$ midclasses weight in grums. liean weipht in grams $=356.8627$. Correlation $=-.1689 \pm .0410$.
(c). Healthy, Dis eased and Hollow Beets.

1. Specific Gravity Culculated.

Table ll shows that the correlation is increased by the addition of the hollow beets. The coefficient is -. 1044 $\pm .0337$. The coefficient is slightly over 3 times its probable error.
-Table 11-
Correlation between specific gravity (calculated) and weight. Healthy, Diseased and Hollow beets. X--1.005-1.015-1.025-1.035-1.045-1.055-1.0055-1.075-1.085

100		3	5	6	8	7	4	2	1	36
200	2	1	8	13	27	28	9	1		89

300	2	6	8	10	21	14	10	71

400	1	12	24	22	1	60

500	2	2	9	22	6	3	44

600	1	12	16	8	1	38

700	1	8	7	4	1	21

$\begin{array}{llllll}800 & 2 & 2 & \text { b } & 4 & 14\end{array}$
$\begin{array}{lllll}900 & 4 & 3 & 1 & 8\end{array}$
1000111
1100112
1200111
$\begin{array}{lllll}1300 & 1 & 1 & 2\end{array}$
1400111
15001
Y Total
$X=$ midclasses specific gravity. I.ean specific gravity $=1.0443$.
$Y=$ midclasses weipht in grams. liean weight in grams $=401.7903$. Correlation $=-.1044 \pm .0337$.

2. Specific Gravity by Salt Solution.

Table 12 ulso shows an increase in the correlation with the addition of hollow beets. The correlation is -. $1841 \pm$. 0390 .
-Tघble 12-

Correlation between specific gravity (selt solution) and weicht. Healthy, Diseased and Hollow beets.

$\mathbf{z -}$	1.025	1.065	
100	10	23	33
200	30	51	81
300	23	28	51
400	12	22	34
500	14	11	25
600	10	11	21
700	8	7	15
800	7	2	9
900	3	1	1
1000	1		1
1200	2		2
1300	120		279

$X=$ midclasces epecific gravity. lean specific gravity $=1.0478$. $Y=$ midclasses weight in grams. Mean weight in grams $=303.4408$.

$$
\text { Correlation }=-.1841 \pm .0390
$$

C. Sugar Content vs. Neicht. (a). Healthy Beets.

Table 13 shows the relationship between sugar content and weight to be -. $4552 \pm .0304$. The coefficient is 15 times its probable error.
-Table 13-

10						1	1	1	1				4
11		3	7	1	3	1	2						17
12	1	5	4	5	3	8	1	3	2	1		1	34
13		8	8	10	6	10	6	2	4		1	1	56
14	5	14	9	19	11	7	5	5					75
15	6	15	10	10	5	2	1		1				50
16	9	20	12	2	1	1	1						46
17	6	14	4				1						25
18		1	1										2
	1												$\stackrel{1}{\text { Total }}$
	28	80	55	47	29	30	18	11	8	1	1	2	310
X - nidclasses weight in grams.													
$Y=$ midclasses sugar percent.													
Correlation $=-.4552 \pm .0304$.													
liean weicht in grams $=387.0967$.													
Lean sugar percent $=14.1858$.													

(b). Peal thy and Diseased Beets (not hollow).

Table 14 shows that the addition of the diseased beets has materially reduced tre correlation. The correlation is -. $2792 \pm .0338$.
-Table 14-
Correlation between supar content and waight. Fealthy and diseased reets (not hollow).

2 1 1
4 I
5 I
6 1 1
$\begin{array}{lll}7 & 3 & 5\end{array}$
8 1 2 3

10	1	3	1	1	1	1	1	9

$\begin{array}{llllllll}11 & 5 & 7 & 1 & 4 & 1 & 2 & 20\end{array}$
$\begin{array}{lllllllllllll}12 & 3 & 6 & 6 & 5 & 3 & 8 & 1 & 3 & 2 & 1 & 1 & 39\end{array}$
$\begin{array}{llllllllllllll}13 & 2 & 8 & 8 & 10 & 6 & 10 & 6 & 2 & 4 & 1 & 1 & 58\end{array}$
$\begin{array}{llllllllll}14 & 5 & 14 & 9 & 19 & 11 & 7 & 5 & 5 & 75\end{array}$
$\begin{array}{llllllllll}15 & 6 & 15 & 10 & 10 & 5 & 2 & 1 & 1 & 50\end{array}$
$\begin{array}{lllllllll}16 & 9 & 20 & 12 & 2 & 1 & 1 & 1 & 46\end{array}$
$\begin{array}{llllll}17 & 6 & 14 & 4 & 1 & 25\end{array}$
18 1 1 2
$191 \quad$ Total
$\begin{array}{lllllllllllllll}Y & 33 & 88 & 65 & 47 & 32 & 30 & 18 & 11 & 8 & 1 & 1 & 1 & 2 & 337\end{array}$ $X=$ midclasses weicht in grams. hean weight in grans $=378.9317$. $Y=$ midelasses sugar percent. \quad Lean sugar percent $=13.7210$. Correl\&ition $=-.2792 \pm .0338$.
(c). Healthy, Diseased and Nollow beets. Table 15 shows the currelation has slichtly increased with the addition of the hollow beets. The coefficient of correlation is -. $3044 \pm .0395$. The coefficient is about 7.5 times its probable error.
-Tuble 15-
Correlation between sugar content and weicht. Healthy, Diseased and Hollow beets.

2	1			1	
4				1	1
5			1		1
6		1			1
7	3	2			5
8	1	2			3

9					1		1	
10	1	3	1	2	2	1	1	11

11		5	8	2	6	5	3	1						30
12	3	6	6	7	6	8	1	4	2	1	1	1	2	48
13	2	9	10	13	8	10	6	2	4			1	1	66

 18 1 1 2
 19 I

$$
\begin{aligned}
& X=\text { midclasses weight in gralis. } \\
& Y=\text { midclasses sugar percent. } \\
& \text { Correlation }=-.3044 \pm .0395 . \\
& \text { Mean weipht in grams }=396.9309 . \\
& \text { liean sugar percent }=13.6189 .
\end{aligned}
$$

(4). Relationships (Correlations) Topped Peets.

The pur pose of presenting the data for topped beets is to determinc the influence the crown may have had on the results of the whole beets. This is important because the hioh crown was a direct result of leaf spot. Leaf spot, a fungus disease, killed the old leaves and the beet sent out new ones. This resulted in a building up of the crown.
A. Specific Gravity vs. Sugar Content.
(a) Topped healthy beets.

1. Specific Gravity calculated.

Table 16 shows the correlation for 283 beets to be .6561 $\pm .0228$. This is an increase over the corresponding table for whole beets.

Correlation specific gravity (calculated) to sugar content. Topped Healthy Beets.

$X--$	1.025	1.035	1.045	1.055	1.065	1.075	1.085	1.095
10	3	1						4

11	1	7	7	1	16

12	7	17	6	1	31

13	1	13	25	5	44

14		19	31	15	1		66
15	4	3	21	17	3		48
16		5	8	20	10	1	44
17		4	13	7	2	26	
18		1			1	1	3
19		1					1
Y							Total

2．Specific Gravity by ぶalt ふolution．
Table 17 shows a correlation of ． $5331 \pm .0317$ ．The coeficicient is over sixteen tincs its probable error．
－Table 17－
Correlation betwoen specific gravity by salt solution and sugar content．Tomed IVeulthy Beets．

X－－	1.085	1．005	
10	3		3
11	11	3	14
12	ε	15	23
13	3	29	32
14	1	48	49
15	1	39	40
16		41	41
17		25	25
18		3	3
19		1	$\stackrel{l}{\operatorname{Tot}]_{1}}$
Y	27	204	231

$$
\begin{aligned}
& X=\text { midclasses specific gravity. } \\
& Y=\text { ridclasses sugar percent. } \\
& \text { Correlation }=.5331 \pm .0317 \\
& \text { liesn specific pravity }=1.0003 \\
& \text { liean suerur percent }=14.3549 .
\end{aligned}
$$

(b) 'ropped Moulting und incoased Beets (rot nollow). Tatio 18 chone tie corroletion for sus beets to be $.7054 \pm .0235$. The corbinins o: the diseased and healthy beets has increased the relationsnip.
-rable l8-

Corrolation Eetweon specific sravite and suewr contont. Top:ed Yealthy ind Direased loete (not hollowj.

Х--1.005-1.015-1.025-1.035-1.045-1.055-1.005-1.075-1.065-1.095

2		1									1
4				1							1
5		1									1
6	1										1
7		3	2								5
8		1	2								3
10		1	3	4	2						10
11			2	9	0	1					18
12			2	7	19	\because		1			35
13			1	2	13	25	5				40
14					19	21	15	1			60
15				4	3	21	17	3			48
16					5	ξ	20	10	1		44
17						4	13	7	2		26
18						1			1	1	5
19						1					$\stackrel{1}{t \in 1}$
Y	1	7	12	27	67	98	70	22	4	1	08

$$
-30-
$$

$X=$ midclasses specific gravity
$Y=$ midclasses sugar percent.
Correlation $=.7654 \pm .0235$.
lisan specific gravity $=1.0531$.
Lean sugar percent $=13.7702$.
2. Specific Gravity by Salt Solution.

Table 19 including 255 beets show a correlation
of . $6782 \pm .0228$. This is an increase over the coefficient with healthy beets alone.

(c) Topped Heal thy, Diseased, and Hollow Beets.

1. Specific Gravity Calculated.

Table 20 shows a correlation of .7553 士.0152. The addition of the hollow beets has sliontly decreased the coefficient of correletion.
-Table 20-
Correlation between specific gravity (csiculated) and sugar content. Topped Hesulthy, Diseased and Hollow beets. X-1.005-1.015-1.025-1.035-1.045-1.055-1.0005-1.075-1.085-1.095-
2111

4 1 1
5 1 1
61 I
$\begin{array}{lll}7 & 3 & 5\end{array}$
8 1 2 3
9 1 1
$\begin{array}{llllll}10 & 1 & 3 & 5 & 2 & 11\end{array}$
$\begin{array}{llllll}11 & 2 & 11 & 9 & 1 & 23\end{array}$
$\begin{array}{lllllll}12 & 2 & 9 & 23 & 11 & 1 & 46\end{array}$

13	1	3	14	28	8			54
14		1	25	39	17	1		83
15		4	4	24	17	4		53
16			5	8	23	11	1	48
17				4	13	7	2	26
18				1			1	1

Y
$\begin{array}{lllllllllll}1 & 7 & 13 & 34 & 82 & 117 & 78 & 24 & 4 & 1 & 361\end{array}$

$$
\begin{aligned}
& X=\text { midclasses specific gravity. } \\
& Y=\text { ridclasses sugar percent. } \\
& \text { Cor relation }=.7553 \pm .0152 \\
& \text { Nean specific gravity }=1.0527 . \\
& \text { Lean suear percent }=13 . \cup 897 .
\end{aligned}
$$

2. Specific Gravity by Salt solution. Table 21 shoms the coefficient of correlation has decreased when comparea with the correlation of Table 19. The correlation is . $0063 \pm .0225$.

-
-
-

\square

```
    -34-
-Tcikle 21-
```

Correlation between specific gravity by salt sclution and sugar content. Topsed Feulthy, Diseased and Foilow beets.
エー- 1.025 1.065

2	1
4	1
5	1

6 I

1 1
7
4 4
$8 \quad 3$
3 3
91
1 1
10 99
$1114 \quad 48$

1213
13
18
31
13
7
29 36

14
2
54
56
15
2
42
44
16
44
44
17
25
25
18
19
Y
59
220
279
$X=$ midclasses specific gravity.
$Y=$ midclasses sugar percent.
Correlation $=.6663 \pm .0224$.
liean specific gravity $=1.0565$.
lean surar percent $=13.8064$.
-
B. Specific Gravity vs. Weight.
(a) Topped Heal thy Beets.

1. Specific Gravity Calculated.

Table 22 shows tho results with 283 topped beets when the specific ravity is compared with weirht. The coefficient of correlation is -. $2007 \pm .0385$.
-Table 22-
Correlation between specific rravity (calculated) and weight. Topped Heultry Poets.

X--1.025--1.035--1.045--1.055--1.005--1.075--1.085--1.095-

100		6	12	17	22	9	1		67
200		4	15	31	11	7	3		71
300		3	9	17	14	3		1	47
400	1	3	10	15	14	2			45
500		3	6	9	5				23
600		1	7	6	3				17
700		1	4	3	1	1			10
800		1	1						2
1100			1						$\begin{gathered} 1 \\ \text { Total } \end{gathered}$
Y	1	22	65	98	70	22	4	1	283

$X=$ midclasses specific gravity•
$Y=$ midclasses weight in grems.
Correlution $=-.2007 \pm .0384$.
liean specific gravity $=\mathbf{1 . 0 5 6 3}$.
Inean weicht in Eraws $=297.8798$.
2. Specific Gravity by Salt Solution.

Table 23 gives the results of 231 beets tested by salt water solution. The correlation is $-.2251 \pm .0421$. -Table 23-

Correlation betwe en specific pravity. (salt solution) and weight. Topped Fekithy Beets.

(b) Topped Heal thy and Diseased Beets (not hollow). Tuble 24 shows that the eddition of diseased beets has decreased the relationsiip to a point where it is not sionificant. The correlstion is $-.0748 \pm .0355$. The coefficient of correlation is a little over twice its probable error.

$$
\text { -Table } 24 \text { - }
$$

Correlation between specific gravity (culculated) and weight. Topped Houltiny and Diseased Beets (not hollow).

X---1.005-1.015-1.055-1.055-1.045-1.055-1.005-1.075-1.085-1.095

100		2	2	9	12	17	22	9	1	74
200	1	4	0	5	15	31	11	7	3	83
300			2	3	9	17	14	3		1
400	1	1	4	11	15	14	2		48	
500		1	3	6	9	5			24	
600				1	7	6	3			17
700			1	4	3	1	1		10	
800			1	1					2	
900				1					1	
1000				1					1	
Y									Total	

$\begin{array}{llll}1 & 7 & 12 & 27\end{array}$
$X=$ midclasses specific gravity. $Y=$ midclasses weight in grems.

Correlation $=-.0748 \pm .0354$.
liean suecific gravity $=1.0530$.
I.ean woight in grans $=293.2039$.

2. Specific Gravity by Salt Solution.

Table 25 shows a correlation of -. $1454 \pm .0413$. The coefficient is less than four times its probable error.
-Table 25-
Correletion between specific gravity (salt solution) and weight. Topped Feglthy and Diseased Beets (not hollow).

$X-0$	1.025	1.065	
100	8	65	73
200	15	55	70
300	7	32	39
400	7	22	29
500	4	14	18
600	3	12	15
700	2	3	5
800	2	1	2
900	1	1	1
1000		206	$20 t \varepsilon 1$

$X=$ midclasses specific gravity.
$Y=$ midclasses weight in grams.
Correlation $=-.1454 \pm .0413$.
Nean specific gravity - 1.0573 .
Lean weimh in grams $=279.6079$.
ic Topped Hecitry, Diseased and Hollow Beets. 1. Specific Gravity Ccilculeted.

Table 26 shows the results with 301 beets. A correlation of -.l021 士.0351. The coefficient is less timn three times the probable error.
-Table 26-
Correlation between specific gravity (calculated) and weight. Topped Healthy, Diseased and Hollow Beets. X--1.005-1.015-1.0.25-1.035-1.0455-1.055-1.065-1.075-1.085-1.095-

100	2	2	9	13	17	22	9	1	75	
200	1	4	6	5	16	33	13	8	3	89
300		2	5	12	22	17	4		1	63
400	1	1	0	15	21	15	2		61	
500		1	5	9	12	6			33	
600		1	1	10	7	4			23	

700
$\begin{array}{lllll}1 & 4 & 3 & 1 & 1\end{array}$
800
1
1
900 1 1
1000111
1100 I
1 1
1200
1
Y

$$
\begin{aligned}
& \begin{array}{lllllllllll}
1 & 7 & 13 & 34 & 82 & 117 & 78 & 24 & 4 & 1 & 361
\end{array} \\
& X=\text { midclasses specific gravity. } \\
& Y=\text { midclasses weioht in grams. } \\
& \text { Correlation }=-.1021 \pm .0351 \text {. } \\
& \text { liean specific gravity }=1.0527 \text {. } \\
& \text { liean weight in grarns - 312.1883. }
\end{aligned}
$$

2. Specific Gravity by Salt Solution.

Table 27 gives the results with 279 beets and shows a correlation of -.1769 $\pm .0391$.
-Table 27-
Correlation between specific gravity (selt solution) and weight. Topped Houlthy, Diseased and Hollow Beets. X-- $1.025 \quad 1.065$

100	9	65	74
200	10	60	76
300	8	37	45
$4 \cup 0$	9	25	34

$500 \quad 75$

600	5	12	17

700	2	3	5
800	2	1	3
900	1	1	2
1000		1	1
Y	59	220	Total
		279	

$X=$ midclasses specific pravity.
$Y=$ midclasses weight in grems.
Correlation $=-.1769 \pm .0391$.
hean specific gravity $=1.0505$.
Nean weight in grams $=285.3047$.

$$
\bullet
$$

C. Sugar Content vs. Teight.
(a) Tropped Heal thy Beets.

Table 28 shows a corrolation of $-.4639 \pm .0315$. Whe correlation is significant. The coefficient is practically 15 tiraes its probable error.
-Table 28-

Correlation between weight of beet in grams and sugar content.
Topped Heal thy Beets.
x--100--2ט0--30u--400--500--i00--70u--800--900--1000-

10					1	1	2			4
11	2	5	2	4	2	1				16
12	3	5	4	4	6	2	4	1	1	30
13	2	11	8	10	5	6	2			44
14	10	13	15	16	6	5	2			67
15	12	14	10	8	2	1		1		48
16	20	17	4	2		1				44
17	17	4	4		1					26
18		2	1							3
19	1									$\begin{gathered} 1 \\ \text { Total } \end{gathered}$
Y	67	71	48	44	23	17	10	2	1	283

$$
\begin{aligned}
& X=\text { midclasses weight in grams. } \\
& Y=\text { midclasses sugar percent. } \\
& \text { Correlation }=-.4639 \pm .0314 . \\
& \text { liean weight in grams }=297.5261 . \\
& \text { I.ean sugar parcent }=14.2226 .
\end{aligned}
$$

-

(b) Woped Houlthe and Discasca eots (wot lollow).
 The correlation is decreared to -. $2.00 \pm .0351$.

$$
\text { -rulle } \mathrm{as} \text { - }
$$

Topped Fenlthy and Dis eared beets (not rollow).											
2	1										1
4								1			1
5				1							1
6		1									1
7		5									5
8		2	1								3
9			1								1
10	1	2		1	1	1	2				8
11	3	0	2	5	2	1			1		20
12	5	6	4	4	0	2	4	1		1	33
13	4	11	8	10	5	0	2				46
14	10	13	15	10	6	5	2				67
15	12	14	10	8	2	1		1			48
16	20	17	4	2		1					44
17	17	4	4		1						26
18		2	1								3
19	1										$\stackrel{1}{\operatorname{motan}}$
Y	74	83	50	47	23	17	10	3	1	1	309

-

X - midclascee woipht in rrms.
Y - minclusses in eurar percent.
Corrolation $=-.2003 \pm .0351$.
lisen sumar percent $=13.7734$.
(c) Nop:ed Foulthy, Diceused und Hoilc: Jocts. Tuble Bu sume that the addition of the hollow beets scarcoly chinmod tho currolation. The corrclation is -.3007 $\pm .032 l$.

$$
\begin{aligned}
& -45 \\
& \text { D. Sumary of Úcreleticras. } \\
& \text { - Wals Oユー } \\
& \text { Correlations collocted. } \\
& \text { A - Yesil try Beets. } \\
& \text { B - Heculthy and Disoured Reets (nct hollow). } \\
& \text { C - Toulthy, Disosred and Yollon Eoetr. }
\end{aligned}
$$

Relation of suecific Aruvi ty to Vrer Content．
－incle noets－
－rojuad Eoete－
Culculated－－－－siont clution
Culculated－－－－Silt Solution

$A=.54 \pm .03$	$.02 \pm .03$	$.00 \pm .02$	$.03 \pm .03$
$B=.09 \pm .02$	$.02 \pm .03$	$.70 \pm .02$	$.08 \pm .02$
$C=.04 \pm .02$	$.02 \pm .03$	$.70 \pm .02$	$.07 \pm .02$

Rolution ce ojecific Sruvity to Moimet of Peots． －Mole Poets－Hojend Toete－

$B=-. し i \pm .03 \quad-.17 \pm .044 \quad-.67 \pm .03 \quad-.14 \pm .04$
$C=-. I \cup \pm .03 \quad-.13 \pm .04 \quad-.1 \cup \pm .03 \quad-.17 \pm .04$
Relution of reignt to wumer．
－Whole roots－

Culculated
$\dot{H}=-.4 \dot{4} \pm .03$
Culculated
$B=-.28 \pm .03$
$-.40 \pm .03$

$C=-.30 \pm .04$
$-.30 \pm .05$
. - , - -

- -

. -

- -

. -
. -

 tine relationslip is :rfficient to wilo: for the rosuration
 by mesus of a l. U45 salt solution. Ohis scinticn is not dones onourh io mevent a number oiseote miti a rociur: loy suma content fon sinkine Walle : singe thet 22

 increase in the density of the solution. Data obtained by the ariter in this investirntion bot not ronorted
 all excet on: of tre becte baloy lo. 5 per cerit. whis mewn that a dorsor solution ruch as l. Uu would float off all but a fod of the excoutionaily him averaon formr content beote.
(1) Disease (Cercosjora beticolu) Leif pot.

> Ioni rpot is u funcus disouso tiout attecns the leaves of the surur plant and in case of bad infection rprous ruidily ovor the on ojr: louf arfece sioline the louves. Fieh nuriaity incroases the rapiaity of the

Leaf spot hue killed lowor louves.

Ne:7 leaves have replaced the old
that were killed by leaf epot.

A norrul koet (lont) and diseaoed boot (richt).
Leuf spot has dostroved the ncrnzl structure of the beet.

 are atzacsed before hirn wrexc or let: field aitr d eremll wourit 0 : Poliare. The loror lawes succurb first becauce of moater hundity. Durinc lual, leaf spot destroyed all oí tio old leavos oi rany beets in lichimen. In its firyt ar existence tio boet sont up no: leaf eircles, Erudidelly increwine the heime of the crown, in rany instancer from 2 to 5 incies hisroc than it oculd inve been. Tho effoct orending wo: lokes on tre sumer contont of the beet is well explained in Circular If. 121 Biresul cf mint Induetry, "Control of urar Beet Iesef Not" by V. if. 2001 and J. B. jcirny, "If too rany leaves Gue isilled the boet plant cun only mintain its normal sucur production terporarily redncire tho womet in the root. Accordingly the sugur irur the root is transferred und used in the developrent of ne: lerf tissue. Since this sorotires requires 3 to 5 per cert o: the sueur contont of tho root the and total is correspondincly reduced." The uveruso sumar colitent of the discased beets usou in tife invostiretion was 9.04 por cent in comparison aith 14.14 per cent for healthy beets. Tuble 31 crows thet tho addition of the di seared beets to tis healthy boets has increased the corrolation between specific gravity urid cupur cortent. "ris increase

Types of beete that sink on $\mathbf{I} .45$ solution.

Structure of beets that sink on I. 045 solution.

Tupes of beets that float on l. 045 solution.

lany beets are holloa that float on 1.015 sclution.

-
sems to indicate tidut tie difeased beets liave a himer correlation. Shis i: not true. The correlation is . 45 $\pm .10$ in cornarison iith $54 \pm .03$ for lieulthy beots. The cosididing of these two populations rerults in a corcolation of.ju士.02. Taule 3 shows that the diceured buets uer atirely flouted off by the (1.045) sult solution, as they luve \& lonor reecific gravity and E love surur contont.

Whe robovial of tho crom incrowsed the correlation in all but one case. Whis tas in the case of healthy beets when tested ith salt solution. Whe hioh cro:ms on the beets produced abnorrail populatione and reduced the correlation. The specific sravity of meny crown :Wes unity.

> (2). Size.

The correlation, $-.30 \pm .04$, obtained betweer weignt and supar content for the ertire population, is very sirilar to the correlation roported by farris in ris boon "Sugur jeets in warice". The healthy beets in one however, save a much hipher relationship. Because of this correlation it wigint be exrocted that a sult solution of a aifferent donsity wolidd be reouired when separating largo or eraill beets. The ccrrelation betwoen specific sravity and woight doer not show this io ke true. The correlation is only elimhty cirnificant wen tho

houlthy beete are tected hy u sult rcluticne Noese

 ion C - hoots or oxtreno sizese

l.cthor lootr wo nimem senoticuly in their

Foronir rocorar. It is not oufficiont thut tho rectors
 Eroeding true is wemit tio Ebilit.: on rotier reete to ropoduce their sind. Whe newer they coie to this rod the more vinaiblo tion are for breadino atcon.

Little is knom rocuringe the exact niture of the irhoritince of somur in the sumar bot. It is probable tisiot several fuctors are involvod. T. I. Palatis stiatos in ine iritrcáaction to lis book "Sugar Beet seed" "Uriminully contairilu but 4 to 5 yer cort of suour of

 of which in rocuvoratle". Mais increuse las core thrown the selection cf hirh testing rother boots. Snet himb testing ractier beete du not nocescurily breod trye is
 michigun Station, roprted in the station report of lous.
"At the harvent cf liva cortuin nother beete vore selocted, first by their Sorm wird next ly tre poleriscope. Those tiat tosied higin in sugar ure ret out, in Isub, cind fror them seed was hurvered. whis seed wes som in lyua and the resulting beote tosted. It was fourd that the er uit rajority of the other boets aid not moduce seed wicin wold in turn rrov boets as rich as the rothor buets therselves". mhese fucts indicate that the gugar prodacine factore are of a dorinant mature. They are the diloreres of buch rencoler (reaction between each epistatic suear fuctor). This siovs that improvement cones throum tio seloction of tho illozerote fur at least one monoblex. allozyous und hotorozyecus mother bouts secom mater pructicalliv tho emme conditions and allonat to reach practicially the surie size can therefore be sogurated frof the protozyour by a salt sclution or by chericul unalysis. Caro muet be taken to solect leots tiat wro hifh tostino becare of their heredity and not because of their envirchaent. (n tho dverare the doninunt trpes (allozyrctes and reterczyrutes) wnlā have as good an environient as tie recercive (protozyectes) and the eolection of a for of the hionost tectine beets fron a larmo monletion shouid rive kllozyous wind hetorzfrour beetr for broodine work. Whese two
\square

cluseres cum be diotingairad only hy thoir promery rocorus. jothode of bian this will ko dironsen under

$$
\begin{aligned}
& \text {.. I: . elocticn. }
\end{aligned}
$$

I: che sulectis seed fra. chen polifinte:
 goneraiion witor remeration, ho is sucticine no selection in millomy. wris !omod is diecuseod in orrer to atterpt un arssor to tise question: aill tho frown coritent docreure milese risid roloction is pructiced?
suy colected populution is mstalile ernd will
 no selection.

Bupocer a popalailon wo left ig coloction con-
 no retozyouter mad tiat the populution is allowed to crose poilinate. an aqual numor of allogamous arid heterozyculas l..cther beets aill produce male and fermo gunetes in rutio ci threc allcorenes to cho protornne.

 no selection, thic nea population will contirme to prounce ruide and ade raneter in the ratic of three
allorenes und ono proterone, urd recouinine to maintioin tife ひ : $\dot{U}: 1$ rutio urtil dieturcod hy solection. mpe percentaro oi qulozrotos und retorozysotes in tre populution hus aecreused fror: 100 to 63.75 por cent. Fhis decreace rems d ricuterial reduction in tro surar percentbere und would account for hiph whalyzinp rotier keots not breoding true, wlich would we the cuse co lons as the poplation contwinc heterozygous beets.

```
B. Hars \widetilde{election.}
```

If one herveste seed fror billozeous cond leterozy 刃cuc open pollinated rother beets collectively and reselocts the hiohest malyzing beots produced fror this seed, he is practicing rase seloction in uilcomag ohe rothers may be vel ectea ly floktine off the beets with low cusur content on a sult solution leuving a eroup aitia hish \&voruro sarur content. an actum choricin andilys of the boct sroup will diecover tre beets aith the hiohost ware cortorit. Ghoec are eithor allozyrous or reterozyous for hirp cuorar production. The clinination of the protozyous boets rewdully reduces ite protozyous innoritance in any race arnd increbses the allozyous intrationce. rise resulto in a gradual improverant in the surur content.

The relutivo size is un ersentiki point to consiacr deen nasinr selection. If the boets are of equal size, thie is mn incication that cicie beet had practicully the rife chance to dovelope. If rewll keets are to be eelected they should heve \& hirier surer content thun is necescury for tiee lurgor beets to contuin. This is because of the correlation between size und suour content.

The rixture of ellozrous ina heterozerous boets triat ar finally selocted are piancod in an isolated groun and ailowed to crose polinate. The protozocus irhoritance is continued in the race throum the hetorosyoctes. Fhis l..wes it necessary to repert rigid solocii on peneration dfter rearation. mis mothod of imprevoment is slow at best, and ernetic exoectations indicate thiat tios heterozygotes can nevor bo ontirely elimineted.

$$
\text { C. illozoous } \bar{x} \text { lines selection. }
$$

If one selectis seed from allozypous rother beots that dre fertilized by pollen from the mined allozyoous and noterozyocus population, he is practicinp allozyrous \mathbf{x} mass selection in ullowmy - Whe hion tostino recther beete are firet selected as outlined undor rice seiection

the heterozyotos. This is àne at uid inicisman station oy plantins the seed from edici individual wother ioet in a progeny ron in compuricon with a etariard variety. Luch proserny is eorpared directiy with the standard growinc on oach siade of it. since the corparicons are all made with the standurd they cun be cormared directly with each othor. It ie considered tiat tro progenies havire the himhest avarame reard won eorared with the stinderd core fron allozrons lutiors, wile those aitr lown recurds cone irpor: heterozrous aothers. Whe vest proponier uro saved and planted in an isolateú oroup for continuod breedine 3% this rethod the pereentare of protozyeun inneritance in ai race docrewores much fester thon aithrwis solection• In fect senetic ewectations

 not roached unil tha cörd roveration of rase solection. ${ }^{1}$
D. sillczyous X allozycue : Blection. If ono solocts ceed fror allozyous rothor beets trét wre only fertilized by allazyrous buets, ine is practicing allozacus x ullozerw soloction in ullomey.

[^0]

Comparing prozenies with a standard variety
as outlined under allozygcus x muss selection in allogany.

Harvesting beets from breeding plats.

Tusing weighte of each individukl lot.

Isolated beet. rracticinc close fertilization.
\qquad
deterrined ae cutlirea wan ellozerous rease soleciione Wila tivis is roina done advanture wast bo twinn o the
 can be savod ly siluing and thor rugentins to jreauco
 boen rolectod by their morony recorde, ine: are rtorod Wily the hotorogrous setrers we discurced. Nio folloming efring the whozrous nothers are nlantod in en
 dilcoled to crose wollimuto. Ouch whothod bringe tomether tio hionert poserikle wewoers from any pupulation and illows sog to lie juctuced from illozecus rothers in two Eeneratione. It cefore tion rreatoct chance for irneveremt cr uny matiod mator aillormot

$$
\begin{gathered}
\text { (a) suturemy (boli Esertilizetion). } \\
\text { A. No Selcotion. }
\end{gathered}
$$

IVc selection in butorery requires ine selection of sother keets ut randol: ind without animysis, tise isolution of those beete to roance seed, tho raving of
 of motnere at random to be reisolated to insure antcmarme mutine Genetic expectations show tiat the nuser of roterozyrotos is rapialy raciuced und in tho on the population containe a : izture of 2^{t} puro lines, where

-50-

Abstract

t is the mum m_{f} menonlexes involved.l For euch of inlozyroter wid rotozroutos. The presence of the protozyotse docrouse the sumur contont. hllozyrous races cura be isolutad at wry time by orecticino allozarons a ullozrous suloction. B. I.ass Seloction lass soloction recuires the selection of phonotypicially sllempous nothore, the isolation of trese to prodace ceod and the rerixins of the seod before serwing winctine crop. acocrairo to menetic expectations it culi require tre sula lencth of tire to brauce a pure line as under no solection. ${ }^{l}$ only one pure line will be prodiacod zor edich remonlox involved, i. e. the protozgeous beete fill be olininuted. Rimid raes selection wiald ruicily recuce the nurbor wieterozygotes and incrouse the percent surar to the linit of the allozyous Innes.

C. Allozysous Xillozyous.

 If one selects hish ancivzine mother boete and isolates there by siace so they mill produce close fertilized seed and gliminates the heterczyeotes by progeny records, he is ructicing allozyous x ailozycous[^1]

Practicing allozygous mating.

Progeny from a hiph producins mother bect.
-
-
\qquad
selection in atutomat ble sued is harvested fron each iridividaul boet wad tested in comparieon aith a stardard varietÿ as outlinoü urdor allozyecus x rase coloction
 f..ctiers wre aiscarded. Luch ullozypous promeng is plenten in an isolated sroiaj ard illow to cress pollinate. Phic eallows for the production of himi radrang lines in one goneration. It is the guichost possible way of producince in allozorous raco of buets.

One obsection to this aetioca is the daraser of redncing the visor of the race throush inbreeding. Ghe viofr cun ve reacquired ly croscins eeversu of tre hiohost prodiac inx lines.
(3) Comparing Restilting I ethods. shlozyoue x whlozereus in eutcoury is the only revida tiat allome tine breeder to tost cut tho ability on

 allogany the breenar must assumo thiot the mixed yollon chane

 not bo true. Thon the dirficuly of rumine the motners
for too extra reworn rimose tho motiod lard to ractice.

sllozerous x ases in fillocur cvorec: os the cositinued storing of the wilogrous motier beote tut

(1) ISU Axporireont Stiutions.

It is eviount fror the ratericul ciforod in tris

 interrolated. Cne is a contiruation of tine ctiner. pre
 beets ard lewving a peralution of hion whalyzine rethere tolu tontar for their wijitu tu transmit hirg crars.

tirea motnode. Ton 10% analyane inete cin ro oliranated

 choicul rathod. Mo foy hirn uricuzine boots ciun be

to be used demende on the podiprea of re iother betse
(2) Corrercimily.

The chenicul whanetic beuncas of detorninins the saジur colitantof motior beots ure or little vilue on u Lare coororoial scuie. The expenco and lebor involvod mines those metions inpractical, except in the curo of the crail breedine plats nead by the comercial froner. mhe specilic raviter mothod ullowe the aro:ner chouply and rapidly to float of the beets with low mame corntert, leaving a group ath a high \&verare rumar contont to be pianted for condercial seed. Ciur must be twinon to mixintain the density of the salt roiution used rer floatine
 flouts in the sult colurion in an uprislit josition. any mintoriml chenea in tioe donsizy of the colution will diter the position of the beet.

(3) advurtiogns.

The adventares to be derived fror the chenical, spocific eravity, ind genctic motiods are classificd as follows:
-Chomical liethoci-
(1) Gives tho suecir content of individuki beote.
(2) sillovs for the solection of hiph tesing mother beets.
-Specific Gravity-
(1) Separatos tho beets into toro froupe, ono aith a hioh sund tio cther aith a low avorioe surer coistent.
(2) Reducoo tho erperso of elirinutine low tertine IICtrer beeto.
(3) Lininates the disessod what hollow beets. -Genetic liethod-
(1) Distincuisros rother beets hy their cuibility to
 proconies.
(2) On tris basis it is possible to dietinouish allozrecue from heterozyenur ricther heets und to elir:irate the hetor zreote.
(3) lanes it porsille to racortine the cilozyrons motiors.
(4) illous for the isclution of prosenies from allozyour mothers.
(4) Disudvintuges. -Chanicel and adecific oravity leticar-
(1) Dunger of beinc deceived by the environent and obtainine himh testins recthor keets tiat have little or no wility to truncrit hish fugur coritent to their proreny.
(2) Does not dietinguish noterozyrous fircr: diloayrous rothers.
(3) Fothois not accurate enourin to prevent \& few protosyoour rotrer beete eriterino the selected class.
-Genetic l.ethoã-
(1) :ore enemsive.
(え) Zequires hore time.
Trees to cljoctione ure offect by better ond results.

Fhe uritor aishes to acinowlede his indebtednoss to F ． $2 \cdot$ Sprace for his mung hoinfur rucoortions in hundinse this invostimetion and for his thoronen criticinl：of the work．Fo is indebted to rubert Prom for viluate sumeretione． for the finul reviev of this thesis．

```
    -6%-
    -CIMD IINGamQaj-
```



```
    Iichen iowltarpolunzer,
Murris, Э. S. ISI!. Whe Suser Beet in mmoricue
Mulmor, M.G. 1018. Snemr Beet äood.
```



```
    Bost Louf bjuct. Cir. l2l Mureau of Mrint
    Incuetry•
    Wmith, C. D. IsUS. Nicinera ETMtion Report.
```



```
        Brot. Mheris for l. E. at Micrisun AmPi-
        cultiurin Cclloce.
Nures, L. Ẅ. IEse. Sliciur Beet ieod.
```

-2. use cat

[^0]: Discuscod in tio thesis: "ietnods of reoairm tie venr

[^1]: $\overline{1}$
 Thesis: iothode (fi Boedine the Sugwr Boet, by Hugh B. Srith.

