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ABSTRACT 

 

THE RISING RISK OF RISING WATER: EXAMINING RISK PERCEPTION AND OTHER 

PREDICTORS OF FLOOD MITIGATION BEHAVIOR 

 

By  

 

Eleanor Rappolee 

 

 As a result of heat-trapping pollution from human activities, rising sea levels and increasing 

precipitation could within three decades push chronic floods on land currently home to more than 300 

million people. Water levels in the Great Lakes, heavy rainfall, and flooding have all substantially 

increased in Michigan, causing erosion, water quality decline, and negative impacts on society. Taking 

action to mitigate flooding at all scales is essential to ensure social and economic sustainability. This 

study explores predictor variables of flood mitigation behaviors among Michigan residents in a proposed 

theoretical framework that synthesizes three behavioral theories: Theory of Planned Behavior, Values-

Beliefs-Norms, and Protection Motivation Theory. This study also includes empirically measured actual 

flood risk in the theoretical framework, which is often left out in behavioral studies. Actual flood risk 

alone was found to weakly align with perceived flood risk and was a significant predictor of flood 

mitigation behavior during regression. However, when other variables were included, actual flood risk 

became an insignificant part of the model. Instead, subjective norms, perceived flood risk, self-efficacy, 

education level, having a flood-related home inspection, and having a basement emerged as significant 

predictors of flood mitigation behaviors. These findings lay the groundwork for future research and have 

implications for planning around flood mitigation and policy within and beyond the Midwest region. 
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CHAPTER 1: RISING RISK OF RISING WATER: EXAMINING RISK PERCEPTION AND 

OTHER PREDICTORS OF FLOOD MITIGATION BEHAVIOR 

 

Abstract 

As a result of heat-trapping pollution from human activities, rising sea levels and increasing 

precipitation could within three decades push chronic floods on land currently home to more than 300 

million people. Water levels in the Great Lakes, heavy rainfall, and flooding have all substantially 

increased in Michigan, causing erosion, water quality decline, and negative impacts on society. Taking 

action to mitigate flooding at all scales is essential to ensure social and economic sustainability. This 

study explores predictor variables of flood mitigation behaviors among Michigan residents in a proposed 

theoretical framework that synthesizes three behavioral theories: Theory of Planned Behavior, Values-

Beliefs-Norms, and Protection Motivation Theory. This study also includes empirically measured actual 

flood risk in the theoretical framework, which is often left out in behavioral studies. Actual flood risk 

alone was found to weakly align with perceived flood risk and was a significant predictor of flood 

mitigation behavior during regression. However, when other variables were included, actual flood risk 

became an insignificant part of the model. Instead, subjective norms, perceived flood risk, self-efficacy, 

education level, having a flood-related home inspection, and having a basement emerged as significant 

predictors of flood mitigation behaviors. These findings lay the groundwork for future research and have 

implications for planning around flood mitigation and policy within and beyond the Midwest region. 

 

Introduction 

Increasing global populations, urbanization, and resource consumption have put immense 

strain on environmental systems and, in turn, have significantly increased natural hazards 

exposure, vulnerability, and economic losses (Parker 2000; Klein et al. 2003; Wisner et al. 2004; 
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Harvatt et al. 2011). Ninety percent of natural hazards in the U.S. involve flooding, making 

flooding the most common and costliest natural hazard (Kousky et al. 2016). Floods have 

brought destruction to every state and nearly every county, claiming hundreds of lives annually, 

inflicting financial losses on households and businesses, and straining the government agencies 

that provide flood response and relief (Ashley et al. 2008; McShane et al. 2019).  

From 2016 to 2019, the annual average number of billion-dollar natural hazards was more 

than double the long-term average. During this period, damages from severe storms and flooding 

amounted to more than $300 billion in costs to the public and government (Smith 2020). In 2019, 

historic flooding in the Midwest caused $10.8 billion worth of damages across millions of acres 

of land, documented as one of the costliest inland U.S. flooding events on record (Smith 2020). 

Damages are compounded even further as populations increase and invest more economic 

growth in infrastructure that can be damaged by flooding (Masson-Delmotte et al. 2018).  

Anthropogenic climate change coupled with human activities has altered the hydrological 

cycle and substantially increased flood risk (Trenberth 2018; Masson-Delmotte et al. 2018). 

Human activities such as land-use changes, modifications in river morphology, construction of 

hydropower plants, dikes and weirs, wetland drainage, and agricultural practices have decreased 

the capacity of watershed systems to mitigate flooding impacts (Masson-Delmotte et al. 2018). 

Climate change driven sea level rise and heavy rainfall associated with tropical cyclones are 

putting more strain on watershed systems and exacerbating coastal and fluvial floods (Masson-

Delmotte et al. 2018). Coastal flooding is a major concern in the U.S. given that more than 8.6 

million Americans live in vulnerable areas along coasts (Vitousek et al. 2017). Florida’s sea level 

is rising at a rate of one inch every three years and this rate is increasing, while hurricanes in the 

North Atlantic are projected to rise in frequency, intensity, and rainfall (Kekeh et al. 2020). 
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Other types of flooding, such as fluvial and flash flooding, could affect more than 41 million 

Americans who live in high-risk areas. Additionally, fluvial and flash floods flush out both 

pollutants and soil into rivers and streams, contaminating freshwater resources and threatening 

water security (Solek et al. 2018). 

Differences in flood risks among regions reflect a balance between the severity of potential 

floods, the regional population and vulnerabilities, and the capacity to cope with flood risks, all 

of which depend on socio-economic conditions as well as topography and hydro-climatic 

conditions (Tanoue et al. 2016, Masson-Delmotte et al. 2018). For more vulnerable populations 

(i.e. low-income communities, the elderly, and/or ethnic minority groups), the exposure to flood 

risk could be an order of magnitude greater than that of communities under sustainable 

socioeconomic development (Masson-Delmotte et al. 2018). Vulnerable populations are least 

likely to have flood insurance, access to transportation during an evacuation, or the ability to 

relocate (Rufat et al. 2015; Adelekan 2010). Flooding also has lasting effects that disrupt the 

economy, livelihoods, infrastructure, and ecosystems - especially in vulnerable populations 

(Dewan 2015). Future economic losses and social disruption caused by flooding is projected to 

occur gradually, although these are likely to be greater in total than the losses experienced during 

the Great Recession in 2008 (Kunreuther et al. 2019).  

Flood losses are not covered by standard homeowners and commercial property insurance 

policies. Therefore, the Federal Emergency Management Agency (FEMA) administers the 

National Flood Insurance Program (NFIP) to provide vital coverage to properties in communities 

that comply with minimum standards for floodplain management (Brown 2016). The Federal 

Government provides flood insurance to communities located in a Special Flood Hazard Area 

(SFHA), an area with at least a one-percent chance a flood occurring annually (a 100-year flood), 
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when the community agrees to adopt a floodplain management ordinance to reduce future flood 

risks (Brown 2016). Although many communities in SFHAs participate in the NFIP, only 15% of 

people across those communities invest in a flood insurance policy (Kriesel et al. 2004). Due to 

expanding floodplains, the number of SFHAs identified by FEMA is estimated to increase by an 

average 45% nationally and 55% in coastal areas by the end of the 21st century (Kunreuther et al. 

2019).  

Given the expected growing influence of flooding on individual and community well-being, 

there is an urgent need to understand the ways in which people can adopt adaptive strategies and 

prepare for flooding across spatial and temporal scales. Flood hazard management requires both 

individual and community participation and action, as well as national guidance (Burton et al. 

1993, 163). However, Americans generally do not perceive flooding as a risk and less than half 

of people living in flood prone areas engage in some form of flood mitigation behavior (FEMA 

2013). Understanding perceived flood risk and drivers of individual engagement in flood 

mitigation behavior then becomes vital for building effective strategies to reduce actual flood 

risk. Flood mitigation behavior includes, but is not limited to, creating an evacuation plan, 

elevating valuables, sealing basements, and supporting flood mitigation policies (Bubeck et al. 

2012, FEMA 2013, Masson-Delmotte et al. 2018). If the majority of individuals in a community 

engage in flood mitigation behaviors, the community will enhance its resiliency and help shape 

preventative flood policies. Therefore, it is imperative that current individual engagement in 

flood mitigation behaviors are measured to inform natural hazard management and policy to 

promote flood mitigation behaviors and reduce destructive impacts of inescapable future floods 

(Bubeck et al. 2012). 
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Predicting behavior is a challenge that extends across disciplines. Numerous behavioral 

theories have been tested, modified, and used in environmental and natural hazard risk studies 

(Rahman et al. 2016; Oreg et al. 2006; Terpstra et al. 2013; Bockarjova et al. 2014). Behavioral 

theories that are often used to measure protective behaviors against health risks and 

environmental impacts include: Theory of Planned Behavior (TPB), Values-Beliefs-Norms 

Theory (VBN), and Protection Motivation Theory (PMT). The TPB was proposed by Ajzen and 

suggests that behavior is shaped by an individual’s attitude towards the behavior, normative 

beliefs, and perceived behavioral control (Ajzen 1991). Stern et al. (1999) proposed the VBN 

theory, which suggests that environmental protective behaviors are more likely to occur when 

personal values, beliefs and norms are present. PMT was formulated and revised by Rogers 

(1975; 1983) and suggests that preventive behavior is shaped by perceived severity of a threat, 

perceived vulnerability to that threat, and the efficacy of the preventive behavior. Unlike TPB 

and VBN, PMT has been specifically used in the context of actual flood risk (Poussin et al. 2014; 

Bubeck et al. 2012; Grothmann et al. 2006). Previous studies have also found that people are 

more likely to engage in flood mitigation behavior if they have been previously impacted by a 

flood and/or are knowledgeable of flooding and flood safety (FEMA 2013, Spence et al. 2011; 

Whitmarsh 2008; Poussin et al. 2014, Grothmann et al. 2006). Also, the frequently observed 

discrepancy between actual flood risks – as measured by physical environmental variables – and 

perceived flood risks is a cause for concern for natural hazard management (Lechowska 2018). 

Interestingly, actual flood risk is rarely included in studies of flood mitigation behavior 

assessments (Brody et al. 2010, Bubeck et al. 2012) and is not typically incorporated into 

theoretical models. 
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The current study synthesizes these three theories together and incorporates physical flood 

risk as measured by the NFIP and personal flood experience. Collectively, this produces a well-

rounded theoretical framework for measuring flood mitigation behaviors. This study seeks to 

identify variables within the synthesized theoretical framework that most influence flood 

mitigation behavior. Ultimately, this work will help policy makers to develop sustainable 

solutions that incorporate peoples’ perceptions and behaviors into decision making processes.  

Hence, this study explores the following research questions: 

Research Question 1: What is the relationship between perceived and actual flood risk? 

Research Question 2: How effective is the proposed theoretical framework in predicting 

flood mitigation behavior? 

 

Methodology 

This research received ethics approval from the Michigan State University Institutional Review 

Board. 

Study Area 

The Northern Plains and Upper Midwest regions are at a high risk for flooding caused by 

snowmelt, intense downpours, and rising lake levels (Pryor et al. 2014). In 2020, the water levels 

in the Great Lakes reached a record high and are forecasted to continue rising in the future (Kelly 

2020). These changes are a response to the combinations of extreme lake evaporation, persistent 

increases in the magnitude and intensity of precipitation events, and intermittent outbursts of 

cold arctic air (Fujisaki-Manome et al. 2020). Michigan is surrounded by the Great Lakes, which 

hold 20% of the world’s fresh water, and has more square miles of river per state acreage than 
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many other states (Dahl et al. 1982; EPA 2019). Michigan has been negatively impacted by these 

unprecedented lake levels and flood risks extend to communities along rivers and other channels 

connecting the Great Lakes. Flooding across the state affects agriculture, transportation, 

infrastructure, and water quality (Wheater et al. 2009). Washed out roads, underwater docks, 

damaged shoreline properties and parks, and extensive flooding are forcing shoreline residents to 

move inland or invest in flood barriers to protect the shoreline and their homes (Fujisaki-

Manome et al. 2020).  

Michigan is home to over 40 million people who depend on the preservation of water quality in the 

Great Lakes, food security, and infrastructure for economic, societal, and personal vitality (Troutman et 

al. 2020). Additionally, infrastructure such as dams, culverts, bridges, and storm drains were not designed 

and built based on projections of rising flood risks (Kelly 2020). Consequently, Michigan has experienced 

several significant and damaging floods in the past fifty years and especially in more recent years 

(Villarini et al. 2011). In 2013, flood walls along the Grand River in Grand Rapids, Michigan failed as 

waters rose to record stages, causing over 1,200 homes and 300 roads to flood and causing an estimated 

$450 million in damages to downtown Grand Rapids (Nordman et al. 2018). In 2020, Mideastern 

Michigan experienced two dam failures on the Tittabawassee River causing a 500-year (0.2 percent 

chance of occurring annually) flash flood event (Freedman et al. 2020). This event forced the evacuation 

of around 10,000 people and caused more than $200 million in damages (Freedman et al. 2020). Given 

the rising need for effective individual action, attention to flood mitigation behaviors in this region is 

essential for shaping effective flood mitigation management and policies to reduce the impacts of 

flooding. 

Variables 

The proposed theoretical framework (Figure 1) that guides this study synthesizes variables 

from Protection Motivation Theory (PMT), Theory of Planned Behavior (TPB), Values-Beliefs-
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Norms Theory (VBN), and prior research to identify predictors of flood mitigation behaviors. 

Flood mitigation behavior is the phenomenon this theoretical framework aims to understand and 

predict. It is defined as individual actions that consciously seek to (indirectly or directly) mitigate 

the impacts of flooding (Bubeck et al. 2012). Specific variables from each theory were therefore 

chosen based on their observed influence on behavior in previous studies (Libarkin et al. 2018; 

Gao et al. 2017; Fornara et al. 2020).  

Variables drawn from the original PMT include perceived consequences, perceived 

vulnerability, fear, self-efficacy, and response efficacy. Revised PMT additionally adds flood 

experience and flood knowledge (Spence et al. 2011; Rogers 1983). Perceived consequences are 

defined as the range of harmful impacts a flood would have on an individual or an individual’s 

valuables if a flood were to occur (Rogers 1983). Perceived vulnerability is the expected 

probability of being exposed and susceptible to a flood (Babcicky et al. 2019). Together, 

perceived consequences and perceived vulnerability define perceived flood risk (also termed 

“risk perception”; Wilson et al. 2019; Sjöberg et al. 2004). Therefore, perceived flood risk was 

calculated by multiplying averaged perceived vulnerability and perceived consequences values 

together for each survey respondent. Fear is concern of being affected by a flood (Poussin et al. 

2014; Rogers 1983) and is similar to attitude, which is a variable used in TPB. Self-efficacy is the 

perceived ability to carry out protective actions to prepare for a flood (Rogers 1983) and is the 

same as perceived behavioral control, a variable used in TPB. Response efficacy is the belief that 

protective actions will in fact be effective to protect oneself or others from being harmed by a 

flood (Rogers 1983). Flood experience is defined as previous experience (direct or indirect) with 

a flood. Flood knowledge is information that has been learned through other means than flood 

experience (Kellens et al. 2012).  
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Other variables were drawn from TPB and VBN. Subjective norms was drawn from both 

TPB and VBN and can be defined as perceived social pressure to engage in flood mitigation 

behaviors (Ajzen 1991). This study uses three types of values derived from VBN: biospheric, 

egoistic, and altruistic values. Biospheric values are personal values towards the environment. 

Egoistic values regard oneself as important and the reason for engaging in flood mitigation 

behaviors. Altruistic values are personal values of others and community (Stern et al. 1999).  

Two variables - general risk (Wilson et al. 2019) and actual flood risk (Kick et al. 2011) - 

were included in the theoretical framework based on previous studies. General risk is defined as 

something that is perceived as risky or hazardous. Actual flood risk is defined by FEMA as the 

probability and magnitude (e.g. depth, velocity, discharge) of flooding. It is important to note 

that the probability and magnitude defining actual flood risk parallels the perceived 

consequences and vulnerability that define perceived flood risk. 

Finally, a suite of demographic and home environment variables were measured base on their 

importance in prior studies (FEMA 2013; Osberghaus et al. 2015; Thistlethwaite et al. 2018) 

and/or their recognized importance in increasing actual flood risk within the home. 

 

 

 

 

Figure 1 The proposed theoretical framework synthesizes variables from Protection 

Motivation Theory, Theory of Planned Behavior, Values-Beliefs-Norms, Theory and FEMA 

FIRMs together to measure flood mitigation behaviors. 
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Survey Design 

A survey probing adult Michigan residents’ flood mitigation behaviors was developed to include: 1) 

Likert-type 4-point scale (i.e. strongly disagree, disagree, agree, strongly agree) questions measuring the 

variables in the proposed theoretical framework (Figure 1), 2) questions pertaining to the makeup and 

physical characteristics of the participants’ home, and 3) demographic questions in both multiple choice 

and written response form. Likert-type questions taken from previous literature were modified for this 

study and used to measure each variable (Grothmann et al. 2006; Spence et al. 2011; Poussin et al. 2014; 

Slimak et al. 2006; Stern et al. 1999). Home environment questions related to household income, home 

ownership, home inspections, and home structure were derived from Grothmann et al. (2006). 

Demographic questions targeted standard age, gender, ethnicity, disability, and education level; these 

variables have been documented as important in modeling hazard-related behaviors (e.g., Spence et al. 

2011). Survey respondents were also asked to provide the closest cross streets to their home address and 

corresponding zip code as a precise, yet anonymous, location. A prompt was provided at the start of the 

survey: “The following set of questions ask about flooding in your neighborhood and household. Rate 

your agreement with each of the following statements.” An attention check question was also included to 

allow for identification and removal of potentially problematic surveys (e.g. Libarkin et al. 2018). All 

survey items are presented in the Online Supplement.   

Survey Procedures and Participants 

The survey was administered online via Mechanical Turk (MTurk) from November to 

January 2020 (N=351) and took on average 7.5 ± 8.8 minutes to complete. Mturk samples are 

representatively similar to traditional subject pools in terms of race, gender, age, and education 

(Paolacci et al. 2010). Survey respondents were recruited based on MTurk documentation of 

reliable performance completing other MTurk tasks and were prescreened to ensure that only 

those with good performance records participated in this study. Respondents were compensated 

at a far wage for their labor (~$8/hour). The survey instrument was designed and written in 
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English and reviewed by research scientists in the Geocognition Research Laboratory at 

Michigan State University. Survey data was collected over a three-month period across Michigan 

to achieve a large enough sample and to ensure data collection both during times of flooding and 

times of non-flooding. 

Respondents (n=332) were all geographically located in Michigan and ranged in age from 21 

to 77, with an average age of 39.9±11.6 years. More than half of the respondents identified as 

female, 62%. About 87% of the sample identified as Caucasian, 7% as African American, 3% as 

Asian, 2% as Latinx, 1% Native American, and 5 participants chose not to respond. Participants 

represented the entire range of education levels, with 35% having a high school degree, 50% 

having a bachelor’s or associates degree, and 15% having a higher degree (e.g. M.S., M.D., 

Ph.D., etc.).  

Participants were asked a few questions pertaining to their home environment, such as “What 

is your household annual income?”. Participants with a household annual income of less than 

$35,000 made up 32% of the sample; between $35,000-$75,000 made up 42%; and greater than 

$75,000 made up 26%. Participants were asked if they owned a home, with 71% saying yes, and 

29% saying no. Those that said no were renting a home or apartment. Following this question, 

participants were asked, “If you own a home, has your home been inspected for flood-related 

damages?”; 39% responded with yes. A “wet” or flooded basement are a common consequence 

of heavy rainfall; therefore, participants were asked, “Do you have a basement in your apartment 

or house?”; 74% of participants said yes. Lastly, 6% of participants indicated that they had 

experienced evacuation of their home due to flooding (Table 1). 
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Table 1 Descriptive statistics of sample. 

Demographics 

Sample size N = 351 (Original), N = 332 (Quality Control) 

Duration of Study November to January 

Location Michigan, U.S. 

Age 21-77 years 

Gender 38% Men, 61%, Women, 1% Other 

Ethnicity 87% Caucasian, 16% Other 

Education Level 35% GED; 50% B.S or A.S.; 15% Higher 

Degree  

Homeowners 71% Yes  

Household Annual 

Income 

32% < $35,000; 26% >$75,000, 42% in 

between 

Home Inspection 39% Yes 

Home has a Basement 74% Yes 

Evacuation due to 

Flooding 

6% Yes 

 

 

Actual Flood Risk Analysis 

Actual flood risk is measured empirically in the environment. Actual flood risk was 

calculated using FEMA flood hazard data collected from Flood Insurance Rate Maps (FIRMs) 

and coupled with survey respondent location in a Geographic Information System (GIS). Based 

on hydrologic data and topographic surveys, FIRMs identify three levels of flood risk: 1. Level 

one are those areas of minimal flood risk with a less than 0.2% chance of flooding annually; 2. 

Level two are areas with intermediate flood risk with 0.2-1% change of annual floods; and 3. 

Level three are areas with a 1% or greater chance of flooding each year. Level three areas are 
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designated Special Flood Hazard Areas (SFHA) for access to the National Flood Insurance 

Program. Each participant location was assigned a corresponding FIRM risk level. These FIRM 

levels were gathered from digital FIRM maps, when available, or read off PDFs of older paper 

FIRM maps.  

To visualize differences in actual and perceived flood risk, differences between actual and 

perceived flood risk were mapped. To interpolate differences in actual and perceived flood risk 

in areas with no data, inverse distance weighting (IDW) was used. IDW is one of the most 

common interpolation methods. It is used to predict the values for any unmeasured location 

(Childs 2004) and is primarily based on two assumptions: first, unknown values are related to 

close known values. Second, the amount of influence known value has on an unknown value is 

directly proportional to the inverse of the distance between points. The value given to an 

unknown point can be mathematically represented (Bartier et al. 1996; Huang et al. 2011). 

𝑍𝑝 =
∑ 𝑤𝑖𝑍𝑖
𝑛
𝑖=1

𝑤𝑖
=

∑ (
𝑍𝑖

𝐷
𝑖
𝑝)

𝑛
𝑖=1

∑ (
1

𝐷
𝑖
𝑝)

𝑛
𝑖=1

 ……………………………………………………… Equation (1), 

Where Z refers to the interpolated value of an unknown point, 𝑤𝑖 is the weighting function that 

controls the significance of 𝑍𝑖, and 𝑍𝑖 is a measured value at a known point. This represents the 

nearest neighborhood of a produced interpolated point and ranges between -3.13 to 4.98. n is the 

nearest neighborhood of known points that is required. 𝐷𝑖
𝑝
 refers to the distance between a 

known and unknown point, p is a weighting exponent equal to 1 (Guan and Wu, 2008). 

Analysis 

Multiple methods were used to analyze the survey and actual risk data. First, descriptive 

statistics of the survey data provided an overview of the sample and informed the analytical 
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approach. This included computing Spearman’s rank-order correlations to explore the bivariate 

relationship between each variable and flood mitigation behaviors. Second, a confirmatory factor 

analysis (CFA) was conducted on the survey data to ensure validity and reliability of the survey 

instrument. Third, a Spearman’s rank-order correlation was run against perceived and actual 

flood risk to examine their relationship, couples with the visualization of the relationship through 

generating a map of perceived minus actual risk in GIS. Fifth, a hierarchical regression was 

conducted to identify predictors of flood mitigation behavior. Spatial analyses were conducted in 

ArcGIS, while all statistical analyses were performed using SPSS Statistics 25 and SPSS AMOS 

25. 

 

Results 

Survey responses from nineteen participants who failed the attention question were removed, 

leaving n=332 participants.  
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Figure 2 Confirmatory factor analysis with eleven latent variables. 

 

Validity and Reliability 

A confirmatory factor analysis (CFA) was run on all Likert items to test the fit of the 

theoretical framework using robust maximum likelihood estimation (Figure 2). All variables 

loaded significantly on the latent factors. The comparative fit index (CFI) was 0.787 and the 

Tucker-Lewis fit index (TLI) was 0.746. We expect CFI and TLI to be less than the ideal values 

because of the number of uncorrelated items in the model. Point estimates for the RMSEA were 

adequate at 0.08. In addition, Cronbach’s α > 0.6 for all scales with three or more items. Each of 

the standardized factor loadings and Cronbach’s α for Likert scales are displayed in Table 2. 

Although the CFI and TLI values are lower than the minimum recommended of 0.90, the 

adequate RMSEA and factor loading suggest a strong model. Cronbach’s α is also a measure of 
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internal consistency often reported to support factor analytical results; Cronbach’s is strong for 

most scales, with expected reduction as the number of items per scales is reduced. 

Table 2 Confirmatory Factor Analysis and Cronbach’s Alpha results. 

Variables Factor Loadings 

Behavior 0.793         

Behavior 0.734         

Behavior 0.521         

Behavior 0.737         

Behavior 0.602         

Behavior 0.619         

Behavior 0.465         

Behavior 0.406         

Subjective Norms  0.762        

Subjective Norms  0.670        

Subjective Norms  0.689        

Self-Efficacy   0.816       

Self-Efficacy   0.553       

Self-Efficacy   0.522       

Response Efficacy    0.573      

Response Efficacy    0.765      

Response Efficacy    0.493      

Egoistic Values     0.466     

Egoistic Values     0.733     

Altruistic Values      0.505    

Altruistic Values      0.825    

Biospheric Values       0.513   

Biospheric Values       0.668   

Flood Experience        0.777  

Flood Experience        0.838  
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Table 2 (cont’d)   

Perceived flood risk         0.852 

Perceived flood risk         0.739 

Cronbach’s Alpha 0.828 0.746 0.679 0.624 0.509 0.589 0.510 0.789 0.767 

 

Descriptive Statistics 

Participants had an intermediate level of understanding of floods and flood safety, with 40% of 

participants responding correctly to all knowledge items. Participants’ opinions on whether they have 

already or are going to engage in flood mitigation behaviors were fairly distributed. 15% of participants 

strongly disagreed, 34% disagreed, 33% agreed, and 18% strongly agreed to currently or planning on 

engaging in flood mitigation behaviors. Measured variables (1 is low and to 4 is high) indicate variation 

within the population, with individual scores covering the full range of each scale. Flood experience 

scores were high, averaging 2.7±1.0. Value scores were also high with Egoistic Values averaging 3.0±0.8, 

Altruistic Values averaging 2.8±0.8, and Biospheric Values averaging 3.2±0.8. Subjective Norm scores 

averaged 2.5±0.6, Self-efficacy averaging 3.1±0.6 and Response Efficacy averaging 2.9±0.5. Perceived 

flood risk and general risk scores were moderate to low, 2.1±0.78 and 2.6±1.1, respectively. Lastly, fear 

scores were also moderate, averaging 2.7±0.9 (Table 3). 

Correlations 

Spearman’s rank-order correlation coefficients between the dependent variable of flood 

mitigation behavior and the independent variables laid out in the theoretical framework are 

shown in Table 3. All independent variables demonstrated significant correlations to flood 

mitigation behavior except for flood knowledge, general risk, education level, household annual 

income, age, homeowning, and actual flood risk. The strongest correlation to flood mitigation 

behavior was subjective norms, with similarly strong correlations to self-efficacy and perceived 
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flood risk. In fact, most correlations were high; the smallest correlation observed was with 

response efficacy, biospheric values, gender, and basement. 

Table 3 Spearman’s rank-order correlation with flood mitigation behavior.   

Variables Mean Standard Deviation Correlation Coefficient 

Flood Mitigation Behavior 2.55 0.59 --- 

Fear 2.73 0.90 .407** 

Flood Experience 2.71 0.88 .439** 

Subjective Norms 2.47 0.62 .603** 

Self-Efficacy 3.08 0.57 .421** 

Perceived Flood Risk 2.08 3.03 .513** 

General Risk 2.60 1.06 .023 

Response Efficacy 2.96 0.51 .326** 

Egoistic Values 2.94 0.66 .387** 

Altruistic Values 2.83 0.67 .386** 

Biospheric Values 3.14 0.62 .343** 

Flood Knowledge 2.76 0.49 .083 

Education Level 4.23 1.30 .059 

Household Annual Income 3.45 1.61 .030 

Age 39.4 11.7 -.025 

Gender 2.61 0.51 .194** 

Homeowner 1.31 0.49 .102 

Home Inspection 1.61 0.65 .246** 

Basement 1.25 0.43 .163** 

Evacuation 1.94 0.24 -.208** 

Actual Flood Risk 1.35 0.73 .092 

 

Perceived vs. Actual Flood Risk 

 According to the Spearman’s rank-order correlation, perceived flood risk is significantly, although 
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weakly, correlated with flood risk, r (332) = 0.13, p < 0.05. This correlation can be observed on the map 

shown in Figure 3, displaying spatial differences between perceived and actual flood risk (Research 

Question 1). Interpolation using IDW was achieved for the prediction of differences between actual and 

perceived flood risk values in areas that were not measured in Michigan. According to IDW, differences 

between actual and perceived flood risk were classified into ten classes using a defined interval of 0.83. 

These classes display the spatial distribution of differences in actual and perceived flood risk across the 

state of Michigan and range from -3.13 to 4.98. Light tan classes represent areas where people hold a 

perceived flood risk that is the same as their actual flood risk and are close to zero. Classes that are shades 

of purple indicate people who have a higher perceived flood risk than actual flood risk and range from 

1.66 to 4.98. Purple areas are concentrated along the Great Lakes shoreline, although not everyone who 

lives along the Great Lakes shoreline fits in this category. Classes that are shades of orange indicate 

people who have a higher actual flood risk than perceived flood risk and range from -0.83 to -3.13. These 

orange areas primarily occur in the lower peninsula of Michigan. There are two relationship between 

water bodies and orange areas worth noting. First, in the northern part of the lower peninsula, people 

living along Lake Michigan-Huron shoreline have a higher actual flood risk than perceived. Second, mid- 

and southern Michigan host a belt of orange areas that is closely aligned with geographic locations of 

rivers (Figure 4). 
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Figure 3 Spatial variation among perceived and actual flood risk through Michigan. Orange 

areas are where individuals have a higher actual flood risk (AFR) than perceived flood risk 

(PFR), and therefore values are negative. Purple areas are where individuals have a higher 

perceived flood risk than actual flood risk and therefore values are positive. Tan areas represent 

where individuals have similar perceived and actual flood risk and therefore values are close to 

zero. Raster cell size (0.1, 0.1). 
 

 

Figure 4 Map shown in Figure 3 with overlaying Michigan hydrology. 
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Hierarchical Regression 

A hierarchical regression was conducted to evaluate the importance of each variable in 

predicting flood mitigation behavior. Due to the strong correlation between most variables and 

behavior, all variables were included in the regression. The Durbin-Watson was 1.898 indicating 

no issue with multicollinearity, and therefore only main effects were considered. The results of 

the regression analysis are presented in Table 4. The first step included actual flood risk alone 

(R2 = 0.012, F = 4.146, p < 0.05). Actual flood risk explained 1% of the variance in flood 

mitigation behavior. The second step included demographic variables, and these explained 15% 

of the model variance (R2 = 0.164, F = 7.282, p < 0.001). Demographic variables of most 

importance included gender, home inspection, basement, actual flood risk, and flood evacuation. 

The third step included fear of flooding and flood experience, which explained 18% of the model 

variance (R2 = 0.348, F = 45.164, p < 0.001). Variables of most importance in the third step were 

fear, flood experience, gender, home inspection, basement, and education level. The fourth step 

consisted of subjective norms, perceived flood risk, egoistic values, altruistic values, and 

biospheric values, which explained 21% of the model variance (R2 = 0.564, F = 31.260, p < 

0.001). The variables of most importance in the fourth step were subjective norms, perceived 

flood risk, biospheric values, gender, home inspection, basement, and education level. The fifth 

and final step included self-efficacy and response efficacy and explained 2% of the model 

variance (R2 = 0.582, F= 6.661, p< 0.001). Self-efficacy along with subjective norms, perceived 

flood risk, home inspection, basement, and education level were the variables of most 

importance in step five.
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Table 4  Hierarchical Regression Results. 

 

 

 1    2    3    4    5    

Variable B SE 

B 

b t B SE 

B 

b t B SE 

B 

b t B SE 

B 

b t B SE 

B 

b t 

Flood Risk 0.12 0.06 0.12 1.99

* 

0.11 0.06 0.11 2.02

* 

0.07 0.05 0.07 1.36 0.03 0.04 0.03 0.65 0.02 0.04 0.02 0.40 

Gender     0.19 0.06 0.20 3.47

** 

0.13 0.05 0.14 2.69

* 

0.08 0.04 0.08 1.97

* 

0.07 0.04 0.07 1.57 

Ethnicity     0.04 0.06 0.04 0.64 0.05 0.05 0.05 0.91 0.01 0.04 0.01 0.28 0.01 0.04 0.01 0.21 

Disability     0.06 0.06 0.06 1.01 0.04 0.05 0.04 0.75 0.00 0.04 0.00 0.01 -

0.01 

0.04 -

0.01 

-

0.26 

Education 

Level 

    0.15 0.06 0.15 2.45 0.12 0.05 0.12 2.24

* 

0.11 0.05 0.11 2.49

* 

0.12 0.04 0.12 2.72

* 

Home 

Inspection  

    -

0.15 

0.06 -

0.16 

-

2.68

** 

-

0.15 

0.05 -

0.15 

-

2.87

** 

-

0.11 

0.04 -

0.11 

-

2.47

* 

-

0.10 

0.04 -

0.10 

-

2.27

* 

Home as a 

Basement 

    -

0.14 

0.06 -

0.15 

-

2.55

* 

-

0.10 

0.05 -

0.10 

-

1.95

* 

-

0.10 

0.04 -

0.10 

-

2.47

* 

-

0.12 

0.04 -

0.12 

-

2.83

** 

Evacuated 

due to 

Flooding 

    -

0.19 

0.06 -

0.19 

-

3.35

** 

-

0.09 

0.05 -

0.09 

-

1.66 

-

0.04 

0.04 -

0.04 

-

0.97 

-

0.04 

0.04 -

0.04 

-

0.88 

Household 

Annual 

Income 

    -

0.07 

0.06 -

0.07 

-

1.18 

0.00 0.06 0.00 0.04 0.02 0.05 0.02 0.46 0.01 0.05 0.01 0.32 
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Table 4 (cont’d)  

 

Fear         0.25 0.06 0.26 4.55

** 

0.06 0.05 0.06 1.13 0.03 0.05 0.03 0.63 

Flood 

Experience 

        0.27 0.06 0.27 4.72

** 

-

0.02 

0.06 -

0.02 

-

0.26 

0.01 0.06 0.01 0.18 

Flood 

Knowledge 

        -

0.06 

0.05 -

0.06 

-

1.27 

-

0.06 

0.04 -

0.06 

-

1.36 

-

0.06 

0.04 -

0.06 

-

1.47 

Subjective 

Norms 

            0.41 0.05 0.42 7.86

* 

0.36 0.05 0.37 6.67

** 

Perceived 

flood risk 

            0.20 0.06 0.21 3.29

* 

0.20 0.06 0.20 3.32

** 

Egoistic 

Values 

            0.09 0.06 0.09 1.54 0.06 0.06 0.06 1.02 

Altruistic 

Values 

            -

0.01 

0.06 -

0.01 

-

0.15 

-

0.01 

0.06 -

0.01 

-

0.10 

Biospheric 

Values 

            0.12 0.05 0.12 2.28

* 

0.06 0.05 0.06 1.10 

Self-

Efficacy  

                0.16 0.05 0.16 3.06

** 

Response 

Efficacy 

                0.05 0.05 0.05 1.06 

Adjusted 

R2 

0.01    0.16    0.34    0.55    0.57    

F change in 

R2 

3.87

* 

   6.85

** 

   25.4

** 

   24.8

** 

   6.01

** 
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Discussion 

The aim of this study was to examine perceived flood risk and other predictors of flood 

mitigation behavior through answering two questions: (1) What is the relationship between 

perceived and actual flood risk?; and (2) How effective is the proposed theoretical framework 

(Figure 1) in predicting flood mitigation behavior? This context of this study was the state of 

Michigan, an area with overall high flood risk.  

First, the relationship between perceived and actual flood risk was considered (Research 

Question1). Spearman’s rank-order correlation results suggested a significant yet weak 

relationship between the two. Differences between the actual and perceived flood risk were 

mapped and interpolated using IDW (Figure 3). People living along the Great Lakes shoreline in 

Michigan generally either over or underestimate their flood risk. Two possible reasons may exist 

for this. First, lack of nuance in flood risk communication and heterogeneity in elevation of 

shoreline homes may contribute to this discrepancy between actual and perceived flood risk. 

Second, several counties in Michigan were missing spatial flood hazard data. Therefore, older, 

non-digitized FIRMs were used to manually assign actual flood risk scores to survey participants 

from those counties. This manual assignment could result in incorrect approximation of actual 

flood risk scores for participants located within these counties. One of Michigan’s most 

populated cities is Grand Rapids, which is in Kent county and lies along the Grand River, 

Michigan’s largest river. Kent county is one of the counties with missing spatial flood hazard 

data. Due to this discrepancy, actual risk calculation for the western shoreline of the lower 

peninsula could be erroneous. 

People who live in mid and southern Michigan tend to underestimate their flood risk, as 

shown in the flood risk maps in Figure 3. This phenomenon appears to align with high 
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concentrations of rivers and small lakes in Michigan (Figure 4). It is noted that high flood risk is 

defined by FEMA as a greater than 1% chance of experiencing an annual flood. This indicates 

that not all individuals living along rivers and/or lakes have experienced flooding. Lack of flood 

experience might explain why people living in these areas have a lower perceived than actual 

flood risk. Additionally, prior research has shown that people who have experienced flooding but 

without flood damages continue to underestimate their flood risk (Spence et al. 2011; Whitmarsh 

2008). Lastly, studies have shown that people tend to be overall not good at perceiving flood risk 

(Działek et al. 2013; Ceobanu et al. 2009; Heijmans 2001). Therefore, in high risk areas we 

would expect to see an underestimation of flood risk.   

Furthermore, areas where people tend to have a higher perceived flood risk than actual flood 

risk are primarily located along the Great Lakes shoreline and are especially prevalent in the 

upper peninsula along Lake Superior. Lake Superior is the largest of the Great Lakes and has 

experienced dramatic rise in water levels and consequential erosion and flooding along its 

shoreline (Motiee et al. 2009). Most upper peninsula residents live on or near Lake Superior, 

increasing their exposure to flooding both individually and as communities. This high prevalence 

of flooding and could explain why we see higher perceived than actual flood risk for individuals 

living in this region. 

Actual flood risk was not significant in predicting behavior after the second step in the 

regression. This finding implies that perceived flood risk is an important variable for flood risk 

managers and policymakers to measure; actual flood risk is not as powerful in predicting 

behavior and could result in unproductive efforts if measured alone. The interpolated map of 

perceived and actual risk differences could be the beginnings of a robust tool for risk managers 
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and policymakers to utilize when identifying areas where training for flood mitigation behavior 

might be most needed. 

Second, predictors of flood mitigation behaviors were identified (Research Question 2). A 

hierarchical regression indicated that individuals having a home with a basement, higher 

education level, previous home inspection, high subjective norms, high perceived flood risk, and 

high self-efficacy are more likely to engage in more flood mitigation behaviors. We consider 

below potential reasons for these observed relationships. 

The higher an individual’s education level the more likely the individual was to engage in 

flood mitigation behavior, in alignment with previous behavioral study findings. With a higher 

education, individuals tend to have better access to informational resources that are useful for 

engaging in flood mitigation behavior before, during, and after a flood. This might explain why 

actual flood risk and flood-related evacuation fell out of the model as education level emerged as 

significant. Individuals who have a high education level and experienced flooding can be 

expected to seek out information on flood mitigation measures.  

Basements in Michigan are well-known to be wet or prone to seepage during rainstorms. In 

fact, a flooded basement is a form of flood experience, which might explain why it consistently 

was a significant predictor whereas flood experience emerged as a significant predictor only in 

the third step of the regression. Similarly, having a previous home inspection for flood damages 

was a significant predictor of behavior across regression steps. Such a home inspection is an 

indicator that someone (e.g. homeowner, insurance company, realtor) recognized that the home 

was prone to flooding. This suggests that at some level the homeowner was primed for learning 

about flood impacts and potential flood mitigation measures.  
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Subjective norms, self-efficacy and perceived flood risk were also important predictors of 

risk behavior. These results are consistent with previous research suggesting that subjective 

norms and self-efficacy play significant roles in shaping behavior (Tikir et al. 2011; Keshavarz et 

al. 2015; Bubeck et al. 2018). Certainly, subjective norms are an integral part of a community’s 

culture (Bubeck et al. 2018). People are more likely to behave in similar ways to the people 

around them due to a perceived social pressure (Minton et al. 2018). Current study findings align 

with that phenomenon; people are more likely to engage in flood mitigation behavior if they 

believe other people in their neighborhood or community are also engaging in these behaviors. 

Self-efficacy, the perceived ability to carry out protective actions against flooding, emerged as a 

significant predictor of flood mitigation behavior in the fifth and final step in the regression. This 

is consistent with previous research that has used PMT in studies observing behaviors around 

flooding (Poussin et al. 2014). Additionally, self-efficacy is the same as perceived behavioral 

control, a variable used in TPB, which has also often shown to be a predictor variable of 

behavior among previous research that used TPB (Hamilton et al. 2016; Allred et al. 2019). This 

finding suggests that if an individual perceives themselves as capable of engaging in flood 

mitigation behaviors, they are more likely to do so. In this context, being capable to engage in 

such behaviors can refer to physical and financial capability. Perceived flood risk emerged as a 

strong predictor of flood mitigation behaviors. Perceived flood risk is a complex phenomenon 

that is a major focus among risk analysts and has often been measured and associated with 

behavior. This current study aligns with this association and confirms that there is a significant 

connection between perceived flood risk and flood mitigation behavior. Also, perceived flood 

risk has been shown to be strongly driven by emotion, among other variables (Wilson et al. 2019; 

Xie et al. 2019; Lechowska 2018). This could explain why fear emerged as a significant 
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predictor in the third step but became insignificant in the fourth step when perceived flood risk 

was added to the regression.  

Interestingly, while previous research suggests values are a significant predictor of behavior, 

values were not significant predictors of flood mitigation behavior. Biospheric values emerged as 

minimally significant in the fourth step and became insignificant in the fifth and final step of the 

regression. Previous studies have found biospheric values to have a strong influence on climate 

change risk perception and pro-environmental behaviors (Libarkin et al. 2018; Kirby et al. 2017). 

These studies use VBN theory in a much larger context, whereas this study uses VBN theory in a 

smaller context for a very specific type of behaviors. This suggests two possibilities: (1) the 

public does not associate flooding and climate change, which aligns with previous studies (Crona 

et al. 2013); and (2) VBN theory is a better framework for predicting behavior at larger scales 

and values may not be as important for predicting specific behaviors as previously thought. 

Future research considering the conditions under which values are important for behavior change 

is warranted.  

Lastly, actual flood risk was significant in the first and second step of the regression but 

became insignificant thereafter. This indicates that actual flood risk is important if it is the only 

predictor variable being investigated, which previous studies investigating physical variables 

have found (Berndtsson et al. 2019; Plate 2002; Schanze 2006). Overall, results suggest that 

demographic and social variables are much strong predictors of flood mitigation behavior than 

actual flood risk. Collecting more survey data – to allow full state coverage – and using updated 

FIRMs could improve the quality and predictive power of the proposed framework as well as 

provide more insight into the relationship between actual risk and behavior. This study is one of 

the few to combine actual flood risk, demographic, and social variables in a framework to 
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measure flood mitigation behaviors. Risk management strategies rarely take this approach, which 

could pose a large disadvantage and create inefficient strategies for harm reduction. 

 

Limitations and Future Work 

Although the proposed theoretical framework for predicting flood mitigation behavior shows 

overall strong explanatory power and has a good model fit, more data collection in the future is 

needed to uncover nuances that were not captured in this study. One limitation of this study was 

that the explanatory power of the proposed theoretical framework was just below recommended 

standards, suggesting that there may be a number of other variables influencing flood mitigation 

behaviors or that the survey instrument was insufficient at measuring predictor variables of 

behavior. Exploring flood mitigation behaviors is still an emerging research field with much to 

improve upon and learn about predictor variables. This study also synthesized empirically 

measure flood risk and perceived flood risk, which has rarely been done and therefore has no 

standards based in research. Additionally, some counties lacked spatial flood risk data and 

therefore less efficient ways of identifying actual flood risk were used, which could pose 

limitations on the influence of actual flood risk on flood mitigation behaviors, as well as the 

relationship between actual and perceived flood risk.  

This research lays the groundwork for future work in measuring flood mitigation and other 

protective behaviors. This is important now, more than ever, given the changing climate and 

increasing exposure and vulnerability to natural hazards. Socio-economic growth has an even 

larger effect on actual flood risk compared to changes in climate (Winsemius et al. 2016). 

Vulnerable communities with low-income families, the elderly, and ethnically minoritized 

groups are at a magnitude greater risk of flooding and harm than other communities (Masson-
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Delmotte et al. 2018; Winsemius et al. 2016). The framework presented in this study not only 

includes social variables to measure flood mitigation behavior, but also includes actual flood 

risk, socioeconomic, and demographic variables. Incorporating all these variables into models is 

necessary for informing decision-making around flood mitigation and adaptation planning and 

policy in areas within and beyond Michigan.  

 

Conclusion 

The theoretical framework proposed in this study holds promise for predicting flood mitigation 

behavior. Using online survey responses from 332 Michigan residents, this study showed that having a 

home with a basement, high education level, having a home inspection, high subjective norms, high 

perceived flood risk, and high self-efficacy all had a significant influence on flood mitigation behaviors. 

In addition, this research empirically demonstrated the significant, however weak, relationship between 

perceived and actual flood risk. In addition, a map that highlights spatial differences among perceived and 

actual flood risk was created and shows parallels to the geography and hydrology of Michigan. These 

findings are timely, given that Michigan is experiencing increased flooding associated with record high 

water levels in the Great Lakes and heavier rainfall. This study helps provide the foundation for decision-

makers to improve planning and policy around flood mitigation and adaptation in the Midwest and 

beyond.  
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