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ABSTRACT 
 

CLIMATE EFFECTS ON FRESHWATER ECOLOGICAL COMMUNITIES: FROM LOCAL 
SPECIES INTERACTIONS TO CONTINENTAL BIODIVERSITY PATTERNS 

 
By 

 
Laura Anne Twardochleb 

 
 Climate change is altering freshwater habitats in the United States by increasing water 

temperatures and changing stream flows. These habitat changes can directly impact survival and 

geographic ranges of ectothermic freshwater organisms through thermal stress and habitat loss, 

and indirectly through changes to life-history traits such as generation time. Thus, it is likely that 

many freshwater organisms will be vulnerable to extinction under climate change, and many 

more will undergo distributional shifts to track their climatic niche, driving large-scale 

alterations to freshwater biodiversity in the United States. I investigated the effects of climate 

change on freshwater biodiversity at multiple levels of ecological organization and spatial scales.  

In Chapter 1, I examined how climate change could alter the survival of predators with 

different foraging traits. I used experiments to quantify the effects of temperature on predator-

prey interactions of freshwater insects and zooplankton living in Southwest Michigan ponds. I 

found that freshwater insects increased their feeding and growth rates at higher temperatures. 

Further, predators with sit-and-wait foraging strategies may outperform insects with active 

strategies in a warming world, because active predators may be more likely than sit-and-wait 

predators to starve if their prey populations decline as a result of climate warming.  

In Chapter 2, I investigated how increases in predator feeding and growth rates with 

climate warming could alter populations of freshwater insects with complex life cycles. Using 

data from experiments in Chapter 1 and field surveys, I parameterized a consumer-resource 

population model for damselflies (consumer) and (zooplankton) resource. I used this model to 



simulate changes in populations with climate warming and found that damselflies shifted their 

life-history from one to two generations per year and increased their population size.  

In Chapters 3 and 4, I scaled up my research by investigating the effects of climate 

change on freshwater insect biodiversity in the contiguous United States. I addressed the 

limitations of existing biodiversity databases for freshwater insects in Chapter 3 by assembling a 

database, Freshwater insect occurrences and traits for the contiguous United States (Freshwater 

insects CONUS). This database contains 2.05 million genus occurrence records for 932 genera in 

the major freshwater insect orders, at 51,044 stream locations, and life history, dispersal, 

morphology, and ecology traits for 1,007 insect genera.  

In Chapter 4, I paired this database with spatial environmental data on climate, 

hydrology, land cover, and topography of watersheds to assess the climate sensitivity of insect 

genera across the contiguous United States. Of the 488 insect genera that I examined, insects 

with erosional flow preference, cold-cool eurythermal preference, and univoltine life-histories, 

and insects in the orders Plecoptera and Trichoptera are likely the most sensitive to climate 

change. I also found that watersheds with the highest proportions of sensitive taxa are in the 

mountain West and Appalachian regions of the United States. These insect genera and regions 

should be prioritized for further research and protection against losing freshwater biodiversity.  

 I addressed two knowledge gaps that have hindered efforts to conserve freshwater 

biodiversity in a changing climate, including understanding physiological and demographic 

consequences of increasing temperatures and relationships between climate and geographic 

distributions of freshwater insects. Conservation practitioners can use the results of my research 

to prioritize freshwater organisms and watersheds for protection in a changing climate.
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CHAPTER 1. Foraging strategy mediates ectotherm predator-prey responses to climate warming 

 

†This chapter has been published with the following citation:  

Twardochleb, L.A., T.C. Treakle, and P.L. Zarmetske. 2020. Foraging strategy mediates 

ectotherm predator-prey responses to climate warming. Ecology. (doi:10.1002/ecy.3146). 

 

Abstract 

 Climate warming and species traits interact to influence predator performance, including 

individual feeding and growth rates. However, the effects of an important trait—predator 

foraging strategy—are largely unknown. We investigated the interactions between predator 

foraging strategy and temperature on two ectotherm predators: an active predator, the 

backswimmer Notonecta undulata, and a sit-and-wait predator, the damselfly Enallagma 

annexum. In a series of predator-prey experiments across a temperature gradient, we measured 

predator feeding rates on an active prey species, zooplankton Daphnia pulex, predator growth 

rates, and mechanisms that influence predator feeding: body speed of predators and prey (here 

measured as swimming speed), prey encounter rates, capture success, and attack rates. Overall, 

warming led to increased feeding rates for both predators through changes to each component of 

the predator’s functional response. We found that prey swimming speed strongly increased with 

temperature. The active predator’s swimming speed also increased with temperature, and 

together, the increase in predator and prey swimming speed resulted in two-fold higher prey 

encounter rates for the active predator at warmer temperatures. By contrast, prey encounter rates 

of the sit-and-wait predator increased four-fold with rising temperatures as a result of increased 

prey swimming speed. Concurrently, increased prey swimming speed caused a decline in the 
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active predator’s capture success at high temperatures but did not affect the sit-and-wait 

predator’s capture success, which increased with temperature. We provide some of the first 

evidence that foraging traits mediate the indirect effects of warming on predator performance. 

Understanding how traits influence species’ responses to warming could clarify how climate 

change will affect entire functional groups of species. 

 

Introduction 

Ecologists are challenged with predicting the consequences of climate change on 

ecological communities. This effort requires understanding how warming affects predators, 

because changes to predator populations can lead to larger consequences across communities 

through trophic interactions (Zarnetske et al. 2012, Urban et al. 2017). In particular, we require 

knowledge of how temperature affects individual predator feeding and growth rates (hereafter, 

predator performance) that in turn, influence individual predator survival and populations 

(Vasseur and McCann 2005, Lang et al. 2017). Species traits, such as predator and prey body 

speed and predator foraging strategy, that modify the effects of temperature on predator 

performance (Barton and Schmitz 2009, Vucic-Pestic et al. 2011, Öhlund et al. 2014) can help us 

predict the performance of different predators under climate warming.  

Despite recent research into the effects of climate warming on predator foraging (Vucic-

Pestic et al. 2011, Öhlund et al. 2014, Culler et al. 2014, Frances and McCauley 2018), the 

relationship between predator foraging strategy and temperature remains poorly understood (Dell 

et al. 2014). Predator foraging strategies include active pursuit whereby predators patrol for prey 

and sit-and-pursue or sit-and-wait, where predators remain in a fixed location and attack prey 

that move within their pursuit distance (Preisser et al. 2007). Predators can be especially 
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sensitive to climate change and can amplify its effects on ecological communities (Zarnetske et 

al. 2012, Urban et al. 2017) by influencing predator-prey population dynamics (Vasseur and 

McCann 2005), community stability (Paine 1980), and trophic cascades (Shurin et al. 2002). 

Thus, understanding how predator foraging strategy interacts with temperature to alter predator 

performance will improve our ability to predict the direct and indirect effects of climate change 

on ecological communities.  

Ectotherms experience especially strong effects of climate warming because rising 

temperatures alter their metabolism, which in turn influences other biological rates critical to 

survival, including body speed, feeding, and growth (Gillooly et al. 2001, Brown et al. 2004, 

Dell et al. 2011, Rall et al. 2012). Over sufficiently large temperature ranges, metabolism and 

feeding show unimodal responses to temperature, rising with temperature up to a thermal 

optimum, and declining at very high temperatures (Englund et al. 2011). Metabolic theory 

suggests that within the rising portion of the unimodal response, ectotherm rates of feeding and 

growth should scale exponentially with temperature as a result of increasing metabolism, with 

activation energies (strength of increase with temperature) between 0.60 to 0.70 eV (Brown et al. 

2004). However, there is substantial deviation from this expectation in observed rates of predator 

feeding (Englund et al. 2011, Rall et al. 2012), which suggests that other components of 

predator-prey interactions, in addition to metabolism, are mediating the effects of temperature.  

By increasing metabolism, rising temperatures also increase predator and prey body 

speed, for example, the swimming speed of aquatic animals (Dell et al. 2011, Grady et al. 2019). 

Foraging theory indicates that predator and prey body speed mediate a predator’s feeding rate by 

influencing each component of its functional response (Holling 1959), including its encounter 

rate, capture success (the number of successful attacks per encounter), and the attack rate 
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parameter (Holling 1966, McGill and Mittelbach 2006). Specifically, encounter rates increase 

with predator or prey body speed (Holling 1966, McGill and Mittelbach 2006, Dell et al. 2014). 

In turn, a predator’s attack rate increases with rates of prey encounter and capture success 

(Holling 1966). All else being equal, the higher the attack rate, the higher the predator’s 

functional response (Holling 1959). Thus, by increasing body speed, warming results in higher 

encounter rates between predators and prey (Vucic-Pestic et al. 2011, Öhlund et al. 2014), which 

leads to higher attack rates (given constant capture success), and higher feeding rates (Rall et al. 

2012). Little is known from contemporary theory about how warming should influence capture 

success. However, capture success should increase if warming increases relative predator to prey 

body speed such that predator attack speed exceeds prey escape speed, and capture success 

should decrease with higher relative prey escape speed (Grady et al. 2019).  

The effects of temperature on predator metabolism and feeding can either increase or 

decrease predator individual growth rates. Higher feeding rates can result in faster individual 

growth rates if prey ingestion exceeds metabolism. However, predator growth rates can decrease 

at very high temperatures if metabolism exceeds ingestion (Culler et al. 2014, Lang et al. 2017). 

This process is referred to as a decline in energetic efficiency, whereby the biomass losses from 

metabolism exceed the biomass gains from feeding, resulting in predator starvation (Lang et al. 

2017). Therefore, metabolism and predator and prey body speed mediate the effects of 

temperature on predator feeding and growth rates.    

Ecological theory predicts that foraging strategy is another species trait that should 

interact with temperature to mediate the effects of climate warming on ectotherm predator 

feeding, and its components of body speed, prey encounter, and attack rates (Dell et al. 2014). 

This is because actively foraging predators have higher body speeds, rates of prey capture, 
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consumption, and metabolism relative to sit-and-wait predators (Huey and Pianka 1981, Taigen 

and Pough 1983). Theory predicts that the temperature scaling of active predator encounter and 

attack rates will depend on the relative temperature scaling of predator and prey body speed 

(Dell et al. 2014). Theory also predicts that because the body speed of sit-and-wait predators will 

not vary with temperature, the temperature scaling of sit-and-wait predator encounter and attack 

rates will depend on the temperature scaling of prey body speed. Therefore, if body speed of 

active predators and prey increase under warming (Dell et al. 2011), prey encounter rates will 

also increase, resulting in higher feeding rates for active predators (Dell et al. 2014). Further, 

warming will increase feeding rates for sit-and-wait predators only if prey body speed (and thus 

encounter rate) increases with warming (Dell et al. 2014).  

We expect that predator foraging strategy mediates the effects of temperature on 

ectotherm predator feeding rates through its effects on predator body speed and encounter rate 

(Dell et al. 2014). All else being equal, we predict that climate warming could be more 

advantageous for performance of active predators due to their increased body speed and feeding 

rates. In addition, we propose that foraging strategy mediates the effects of temperature on 

predator growth rates through its effects on predator metabolism, whereby active predators have 

higher metabolic rates than sit-and-wait predators due to the metabolic demands of movement 

during feeding (Huey and Pianka 1981, Taigen and Pough 1983). Therefore, we suggest that 

metabolism will increase more with temperature for active compared to sit-and-wait predators. If 

metabolic rates of active predators increase more with warming than feeding rates, this would 

result in in lower energetic efficiencies that reduce individual growth rates and could result in 

starvation (Lang et al. 2017). Thus, even if feeding rates of active predators are higher relative to 

sit-and-wait predators, their individual growth rates may be lower due to higher metabolic rates 
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(Huey and Pianka 1981, Taigen and Pough 1983), potentially leading to smaller population sizes 

or local extinction in warmed conditions (Vasseur and McCann 2005).  

Here, we examine the relationships between foraging strategy and temperature on 

ectotherms using a three-species aquatic community module (sensu Paine 1980), consisting of an 

active prey species, the water flea Daphnia pulex, an active predator, the backswimmer 

Notonecta undulata, and a sit-and-wait predator, the damselfly Enallagma annexum. Our work 

provides one of the first tests of recent theory (Dell et al. 2014) predicting how foraging strategy 

mediates the effects of temperature to shape predator feeding. We test the following hypotheses 

with a series of predator-prey experiments across a temperature gradient where we measure each 

predator’s individual growth rate and functional response to prey. As temperature increases, we 

expect: 

H1: Swimming speed of the active predator and prey will increase as a result of 

increasing metabolism. 

H2: Prey encounter rates and capture success will increase more strongly for the active 

predator as a result of its faster swimming speed.  

H3: Prey attack rates will increase more for the active predator as result of its higher prey 

encounter rates and capture success.  

H4: Individual growth rates of the active predator will increase less than growth rates of 

the sit-and-wait predator as a result of the active predator’s higher metabolism.  
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Methods 

Aquatic community module 

 Notonecta (Hemiptera: Notonectidae) are piercing-sucking predators that actively hunt by 

swimming toward and grasping prey (Fox 1975). Enallagma (Odonata: Coenagrionidae) are 

engulfing predators that hunt from aquatic plants by waiting for prey to move within striking 

distance of their labium, a prehensile mouthpart for grasping (Merritt and Cummins 1996). 

Daphnia (Cladocera: Daphniidae) are actively swimming prey that compose a large proportion 

of the diet of nymphal Notonecta and Enallagma (Lawton 1970, Scott and Murdoch 1983). Our 

community module is well suited to address the interactions between foraging strategy and 

temperature, because all three species coexist in shallow ponds (Hanly 2017, Twardochleb 

unpublished data) where predators share prey resources, and are of similar body sizes (McPeek 

and Crowley 1987, Gergs and Ratte 2009). Therefore, this community module can provide 

insight into how temperature influences measures of predator performance among species that 

differ in foraging strategy, but otherwise share similar ecological requirements and local 

adaptation to temperature. 

Predator functional response experiments  

 We conducted functional response experiments to quantify relationships between 

predator feeding rates and temperature (H3), and we analyzed video-recordings of these 

experiments to assess how temperature affects predator and prey swimming speed (H1), and 

encounter rates and capture success (H2). Experiments were conducted from July to October 

2017 at Kellogg Biological Station in southwestern Michigan, USA. We collected predators and 

prey from fishless ponds in Lux Arbor Reserve, Barry Co., MI and acclimated them to laboratory 

conditions at 20 °C until their first molt (several days to two weeks), then placed them inside an 
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environmental growth chamber (I36LLVL, Percival Scientific, Perry, IA, USA) set to 10, 15, 20, 

25, 30, or 35 °C, which encompassed the mean (24 °C) and range (10 – 31 °C) of ambient pond 

temperatures during spring to fall, and one temperature (35 °C) above ambient. We monitored 

chamber temperature using HOBO pendant temperature loggers (UA-001-64, Onset Corporation, 

Bourne, MA, USA). We fed predators pond zooplankton and allowed them to acclimate to a 

given temperature for 24 hours (Thompson 1978), and we then deprived them of food to 

standardize hunger levels. We acclimated Daphnia to a given temperature for two hours prior to 

trials (Thompson 1978).  

For Notonecta trials, we used densities of 10, 20, 50, 100 Daphnia L-1. For Enallagma 

trials, we used densities of 5, 10, 20, 50, 100 Daphnia 100 mL-1 for 10 – 20 °C, and 5, 10, 20, 50, 

100, 150 Daphnia 100 mL-1 for 25 – 35 °C. Prey densities were determined from preliminary 

trials in 2016 and 2017 in order to capture the shape of the functional response curve. For each 

trial, we placed an individual predator into an experimental arena with Daphnia for one hour 

inside an environmental chamber. We quantified the number consumed as the difference 

between initial and final prey densities, including a correction for errors in enumerating 

Daphnia. We replicated each prey density at every temperature at least four times for a total of 

100 trials for Notonecta and 158 trials for Enallagma. Methods followed those commonly used 

in functional response experiments (e.g., Thompson 1978, Vucic-Pestic et al. 2011). 

Testing H1: Video analysis of predator and prey swimming speed 

 We video recorded functional response experiments at each temperature for Notonecta 

(29 total) and Enallagma (30 total) to test H1 and H2. Speed (cm s-1) for Notonecta (28 total) 

and Daphnia (24 total) was quantified using Tracker Video Analysis software 

(https://physlets.org/tracker/). We calculated Daphnia speed over 20 second intervals three times 
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during each trial by tracking the Daphnia closest to the center of the experimental arena. We 

averaged these three speeds by trial. Notonecta speed was calculated by accounting for two 

distinct swimming patterns; short bursts lasting 1-2 seconds each that were associated with 

attacks, and longer “patrolling” movements lasting 3-5 seconds each that occurred between bouts 

of attacking and consuming prey. We analyzed the relationship between Notonecta speed and 

temperature individually for “burst” and “patrolling” movements but found no effect of 

temperature on “burst” swimming speed (see Tables 2 and 3 in Appendix B). 

Testing H2: Video analysis of encounter rates and capture success 

 We quantified encounters as the number of reactive plus non-reactive encounters. A 

reactive encounter was any instance when a predator visibly reacted to prey, and a non-reactive 

encounter was when prey moved within the predator’s reactive distance, but the predator did not 

react visibly. We used a reactive distance of a 4x1 cm rectangle around Notonecta (Giller and 

McNeill 1981), and a 0.5 cm radius circle around Enallagma (Johansson 1993). We quantified 

capture success as the number of successful attacks per encounter (reactive and non-reactive) 

(Holling 1966).  

Testing H3: Prey attack rates from functional response experiments 

 We fit separate, Type 2 functional response curves (Holling 1959) to feeding data for 

each predator species and each temperature using Rogers Random Predator Equation to account 

for prey depletion (Rogers 1972):  

Algorithm 1. Rogers Random Predator Equation  

𝑁! = 𝑁#1 − 𝑒"#(%"&'!)'.  

Here, Nc is the number of prey consumed (hr-1), N is prey abundance, a is the attack, or search 

rate (L hr-1), and h is handling time (hr.). We used the ‘frair’ R package version 0.5.10 (Pritchard 
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et al. 2017) to fit the lambert w version of Algorithm 1 using maximum likelihood estimation 

(Bolker 2008). See Table 1 in Appendix B for fits of Algorithm 1 to feeding data. 

We used estimates of a (Algorithm 1) to test H3. We fit three models to describe the 

temperature-dependence of a and h for each predator: an intercept (Algorithm 2), an exponential 

(Algorithm 3), and a quadratic model (Algorithm 4). The intercept model describes no effect of 

temperature on the biological rate of interest Y (in this case, a or h): 

Algorithm 2. Intercept model 

𝑌 = 𝑐.             

Here, c is the model intercept. 

The Arrhenius equation (Gillooly et al. 2001) describes the temperature-dependence of 

biological reaction rates for temperatures below thermal optima (Englund et al., 2011):  

Algorithm 3. Arrhenius model 

𝑌 = 𝑐𝑒)"("
#
$%),            

where c is a fitted constant, Ea is the activation energy (eV) describing the strength of the 

temperature response, k is Boltzmann’s constant (8.617 x 10-5 eV), and T is temperature 

(Kelvin). We also fit the Arrhenius-quadratic model describing the temperature-dependence of 

biological rates for temperatures below and above thermal optima (Englund et al. 2011): 

Algorithm 4. Arrhenius-quadratic model 

𝑌 = 𝑐𝑒*+"
#
$%,-.+

&#
$%,

'

.           

Here, c, b (eV), and q (eV2) are fitted parameters. Models were fit using linear regression in R, 

and regression fits were weighted by the inverse of the standard error around each estimate of a 

and h (n = 6 estimates of a and h per predator, n = 1 estimate per temperature, per predator).  
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Testing H4: Predator growth experiments  

 We ran experiments to quantify relationships between temperature and predator 

individual growth rates, from July to September 2018. Our temperature gradient included 10, 15, 

20, 25, 30 or 35 °C. Predators were collected and acclimated the same way as above (see Testing 

H1: Predator functional response experiments). We measured initial wet mass by gently blotting 

predators dry on a paper towel and weighing them (± 0.01 mg) on a microbalance (Sartorius 

XM1000P, Goettingen, Germany). We then fed each predator Daphnia for three (Notonecta) or 

four (Enallagma) days. Each predator was fed ad libidum by ensuring that we fed enough 

Daphnia to recover at least two individual Daphnia the following day (5 to 50 Daphnia day-1) 

(Culler et al. 2014). After three or four days of feeding, we deprived predators of food to allow 

for gut evacuation, blotted them dry, and then weighed them for final wet mass. We then dried 

predators for 24 hours at 60 °C and weighed them again for final dry mass. We calculated the 

relationship between wet and dry mass using linear regression (Notonecta: final dry mass = 

0.0033 + 0.94*final wet mass, R2 = 0.98; Enallagma: final dry mass = -0.61 + 0.22*final wet 

mass, R2 = 0.75), and used this relationship to calculate initial and final dry mass for the trials 

(McPeek and Anholt 2004). We then calculated daily relative growth rate (RGR) as: 

Algorithm 5. Relative growth rate 

𝑅𝐺𝑅 = [(012#3	567	8#99)"(121%1#3	567	8#99)]
;<%61#3	3=2>%&	(5#79)?∗(A())B

,        

where We is the exponential mean dry mass and m is an allometric scaling exponent that accounts 

for the effect of body size on growth rate (Gordon 1968). The exponential dry mass accounts for 

the fact that insect growth rates are exponential rather than linear. Rather than dividing the mass 

change by the mean dry mass of the organism, we divide by the exponential dry mass to obtain 

mass-specific growth rates. We set m equal to -0.34 (Niven and Scharlemann 2005). We 
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replicated each temperature treatment six times for Notonecta (36 trials) and seven times for 

Enallagma (42 trials). We used estimates of RGR (Algorithm 5) to test H4.  

Statistical analyses 

 We used Analysis of Variance (ANOVA) to test whether biological rates varied with 

temperature and between predator species. We tested whether Notonecta or Daphnia speed 

varied with temperature using one-way ANOVA with temperature as the predictor. We used 

two-way ANOVA with temperature and predator species as predictors, and encounter rate, 

capture success, or RGR as responses. Data were log-transformed as needed to meet assumptions 

of normality and homoscedasticity. For significant ANOVA models, we ran Tukey’s HSD to test 

pairwise differences between temperature and predator species. We also assessed temperature 

effects by fitting intercept (Algorithm 2), Arrhenius (Algorithm 3), and Arrhenius-quadratic 

(Algorithm 4) models for encounters, capture success, attack rates, and growth rates. We also fit 

intercept and Arrhenius models for Notonecta and Daphnia swimming speed, and a segmented 

Arrhenius model for Daphnia swimming speed. We fit the segmented model using maximum 

likelihood estimation (MLE) with the ‘Segmented’ R package version 1.1-0 (Muggeo 2008). We 

used AIC corrected for small sample sizes to select the best-fitting model (See Table 2 in 

Appendix B), except in the case of the segmented Arrhenius model. To compare models fit using 

ordinary least squares (intercept and Arrhenius) and MLE (segmented), we selected the model 

with the lowest residual variation and AIC value, and the highest R2 (Table 4 in Appendix B). 

When the Arrhenius equation was selected as the best model, we based inference on whether 

95% confidence intervals for Ea (Algorithm 3) overlapped zero or overlapped between predators. 

All analyses were implemented in R Version 3.5.1 (R Core Team 2018). Significance levels for 

all models were set to 0.05.  
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For more details on the experimental methods described above, see Appendix B. 

 

Results 

Testing H1: Video analysis of predator and prey swimming speed  

 Prey Daphnia swimming speed (cm s-1) increased with temperature (ANOVA, F5,18 = 

16.73, p < 0.01; Tukey’s HSD, Table 5 in Appendix B). A segmented Arrhenius model with a 

breakpoint of 28.36 ± 1.46 (°C ± 1 SE) provided the best fit to the relationship between Daphnia 

speed and temperature (Fig. 1; Table 3, 4 in Appendices). We found an activation energy Ea = 

0.11 ± 0.06 (eV ± 1 SE) at temperatures below the breakpoint, and Ea = 1.04 ± 0.23 (eV ± 1 SE) 

above the breakpoint. The Arrhenius equation was the best fit to the relationship between 

temperature and “patrolling” speed of the active predator Notonecta (Fig. 1; Table 2, 3 in 

Appendices), but ANOVA indicated no strong differences in speed among temperatures (F5,22 = 

0.83, p = 0.55).  

Testing H2: Video analysis of encounter rates and capture success  

 Prey encounters, quantified as an hourly rate at a density of 20 Daphnia per liter (hr-1 20 

Daphnia L-1), differed across the temperature range (F5,44 = 12.19, p < 0.01; Table 6 in Appendix 

B), between the active predator Notonecta and sit-and-wait predator Enallagma (F1,44 = 971.52, p 

< 0.01), and there was an interaction between temperature and predator species on encounter 

rates (F5,44 = 2.92, p = 0.02). Notonecta had more prey encounters than Enallagma at all 

temperatures, and Enallagma had more encounters at higher than lower temperatures (Fig. 2a; 

Table 7 in Appendices). Enallagma had a four-fold increase in prey encounters between 10 and 

35 °C, compared to a two-fold increase for Notonecta (Fig. 2, Appendix A). The fit of the 

Arrhenius equation revealed that Ea for encounters was greater for Enallagma than Notonecta 
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(Fig. 2a; Table 3 in Appendices). There were nonoverlapping 95% confidence intervals for Ea 

(Notonecta: 0.06-0.23, Enallagma: 0.30-0.66), indicating a stronger increase in Enallagma’s 

encounter rate with warming. 

Capture success (number of successful attacks per encounter) varied between predators 

(F1,44 = 49.64, p < 0.01) and was higher overall for Enallagma than Notonecta (Fig. 2b in 

Appendix A). Although there was not an overall effect of temperature on capture success (F5,44 = 

0.60, p = 0.70), the Arrhenius-quadratic model (Algorithm 3) provided the best fit to the 

relationship between capture success and temperature for Notonecta, and the Arrhenius equation 

provided the best fit for Enallagma (Fig. 2b; Table 2, 3 in Appendices). This indicates that 

Enallagma capture success increased slightly with temperature, but Notonecta capture success 

increased up to a thermal optimum of 22.64 ± 0.01 (°C ± 1 SE), and then declined. There was no 

strong interactive effect of temperature and predator species on capture success (F5,44 = 0.99, p = 

0.43).  

Testing H3: Prey attack rates from functional response experiments 

 Predator functional responses (Algorithm 1) increased with temperature for both 

predators (Fig. 3 in Appendix A). Attack rates were higher for Notonecta than Enallagma, but 

their attack rates increased by a similar magnitude with warming (Fig. 2c; Table 3 in 

Appendices). The 95% confidence intervals for Ea (Algorithm 2) overlapped between predator 

species (Notonecta: 0.33-1.01, Enallagma: 0.42-0.73). Attack rates from video observations 

supported these results (Tables 2, 3 in Appendix B).  

Testing H4: Predator growth experiments  

 Predator RGR (Algorithm 4, mg mg0.34 day-1) increased with temperature (Fig. 2d; F5,67 = 

15.88, p < 0.01; Table 7 in Appendices) and differed between predator species (F1,67 = 475.60, p 
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< 0.01), but there was no interaction between temperature and predator species (F5,67 = 1.02, p = 

0.4). Enallagma had an overall higher RGR than Notonecta (Fig. 2d in Appendix A). The 

Arrhenius equation provided the best fit to the relationship between RGR and temperature for 

Notonecta and Enallagma (Fig. 2d; Tables 2, 3 in Appendices). Overlapping 95% confidence 

intervals for Ea (Notonecta: 0.04-0.07, Enallagma: 0.02-0.06) indicate that Notonecta and 

Enallagma experienced a similar magnitude of increase in RGR.     

 

Discussion 

 We found that both predators—Notonecta and Enallagma—increased their feeding rates 

with temperature (Fig. 3, Appendix A) as a result of changes to each component of the functional 

response, including predator and prey swimming speed, encounter rates, and capture success. 

Prey swimming speed increased with warming according to a segmented Arrhenius function 

(Fig. 1, Appendix A), which is consistent with other studies demonstrating that body speed can 

show biphasic responses to increasing temperature (Gibert et al. 2016). This overall increase in 

prey swimming speed increased encounter rates with both predators (Fig. 2, Appendix A). The 

active predator also increased its swimming speed (Fig. 1, Appendix A), which further 

contributed to increases in its prey encounter rate (Fig. 2, Appendix A). However, the increase in 

prey swimming speed more strongly influenced the encounter rate with the sit-and-wait predator; 

whereas the encounter rate with the active predator increased two-fold with warming, the 

encounter rate with the sit-and-wait predator increased four-fold (Fig. 2, Appendix A). In 

addition, increasing prey speed may have contributed to a decline in capture success for the 

active predator at high temperatures, whereas the sit-and-wait predator experienced a slight 
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increase in capture success. The predators experienced similar increases in individual growth 

rates with increasing temperatures (Fig. 2, Appendix A).  

Foraging strategy and prey body speed mediate the effects of warming  

 Feeding rates of sit-and-wait predators have been found to increase with warming when 

they forage for active prey (Culler et al. 2014, Frances and McCauley 2018) but not inactive prey 

(Novich et al. 2014). Thus, if prey speed remains constant or declines in warm climates, sit-and-

wait strategies could be less energetically efficient because their encounter and feeding rates may 

not increase enough to offset their higher metabolism. By contrast, active predators are affected 

by their own body speed as well as prey speed. Therefore, when temperatures rise, active 

predators may be able to increase their encounter and feeding rates whether they are foraging for 

mobile or immobile prey (e.g., Vucic-Pestic et al. 2011, Öhlund et al. 2014) by increasing their 

own body speed. If prey speed does not increase with temperature, active predators could gain a 

relative performance advantage over sit-and-wait predators at high temperatures.  

Foraging strategy and prey body speed also mediated capture success. Whereas the active 

predator’s capture success declined at high temperatures, the sit-and-wait predator was 

successful at all temperatures, and its success increased somewhat with warming. This increase 

may have been due to unmeasured changes in predator movement that could influence capture 

success, such as faster protrusion of the labium, the raptorial appendage that damselflies use to 

capture prey. Overall, our observations suggest that the sit-and-wait predator may have had 

higher capture success because it was less detectable than the active predator. We observed that 

Daphnia moved away from the active predator as it approached but moved away from the sit-

and-wait predator only after an unsuccessful attack, as prey were apparently unaware of the 

predator’s location prior to the attack. Studies in aquatic environments have shown that prey rely 
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on visual cues to assess predator location and risk. Prey respond to these visual cues through 

reduced activity and escape responses (Hall and Clark 2016, Fischer et al. 2017).  

Given that prey detect predator movement as a predation risk, capture success may have 

decreased with warming for the active predator due to two mechanisms: 1) active predators are 

more likely to be detected by prey because they are moving, and 2) prey’s escape ability was 

enhanced due to their faster body speed. This is supported by the fact that the active predator’s 

“burst” swimming speed (associated with prey attacks) remained constant while the prey’s 

swimming speed increased with warming (Tables 2, 3 in Appendix B). Our results are consistent 

with previous research showing that warming increases swimming speed of Daphnia (Ziarek et 

al. 2011) but contrast with other findings of predator body speed increasing more with 

temperature than prey speed (Dell et al. 2011). Our results are also consistent with studies 

showing that capture success decreases when prey relative speed increases with warming 

(Grigaltchik et al. 2012, Grady et al. 2019). Knowledge of the thermal responses of prey body 

speed is thus necessary to predict the outcomes of warming on predator-prey interactions.   

We found that attack rates of the active predator increased with temperature with an 

activation energy of 0.67 eV (Fig. 3, Appendix A). However, encounter rate showed a weaker 

temperature scaling of 0.14 eV, and capture success decreased at high temperatures. These 

results suggest that unmeasured components of foraging, such as hunger, could have contributed 

to the increase in attack rates with warming. In addition, we did not test whether prey body speed 

responded differently to temperature between the two predators, which could have contributed to 

differences in the temperature scaling of their encounter rates. Other components of predator and 

prey biology may also influence how climate changes alters predator performance (Grady et al. 

2019).  
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Our experiments used a single species of prey, and a single species of sit-and-wait and 

active predator. Therefore, our results may have been due to species-specific differences in 

temperature responses rather than differences in foraging strategy. We believe that additional 

research will reveal that foraging strategy affects species’ responses to climate warming in 

predictable ways (e.g., Barton and Schmitz 2009, Archer et al. 2019). At present, more research 

using multiple species of active and sit-and-wait predator is needed to validate our results and 

predictions of theory (Dell et al. 2014). We outline below some additional hypotheses that could 

be tested to better reveal the influences of predator foraging strategy and prey body speed on 

predator performance at different temperatures and prey densities. 

Conclusions  

 Foraging differences between active and sit-and-wait predators could scale up to 

influence their relative performance in environments that differ in prey density and temperature. 

We found that attack rates were higher overall for the active predator at ten-fold lower prey 

densities relative to the sit-and-wait predator (Figs. 2 and 3). In addition, encounter rates of the 

sit-and-wait predator were strongly affected by prey body speed, whereas encounter rates of the 

active predator were affected by predator and prey body speed. Thus, our results support 

previous research and theory predicting that active predators will gain a relative performance 

advantage when prey speed and density are low, and that sit-and-wait strategies will be 

advantageous when prey speed and density are high (Huey and Pianka 1981, Werner and Anholt 

1993, Ross and Winterhalder 2015). In addition, we found that the sit-and-wait predator was 

more energetically efficient, because it had higher growth rates despite lower feeding rates (Fig. 

2, Appendix A). This supports previous research showing that actively foraging species have 

higher metabolic rates than related sit-and-wait species (Huey and Pianka 1981, Taigen and 
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Pough 1983). Taken together, this evidence suggests that sit-and-wait predators may be more 

efficient in high prey density environments, where their lower metabolism results in higher 

growth rates. Thus, we hypothesize that when prey speed increases with warming, active 

strategies should be relatively advantageous at low temperatures when prey density is low, while 

sit-and-wait strategies should be advantageous at high temperatures when prey density is high 

(Fig. 4a, Appendix A). If prey speed decreases with temperature, active strategies should be 

advantageous at high temperatures when prey density is low, while sit-and-wait strategies should 

be advantageous at low temperatures when prey density is high (Fig. 4b, Appendix A).  

Tests of these hypotheses could improve trait-based assessments of predator performance 

under climate change. Indirect effects of warming on predator performance could influence 

predator persistence and population dynamics (Vasseur and McCann 2005), and food web 

structure and stability (Gilbert et al. 2014). Knowledge of trait-mediated effects of temperature 

on predators could also help predict ecosystem responses to climate change, because sit-and-wait 

and actively foraging predators have different effects on ecosystem functions that may strengthen 

with warming (Barton et al. 2009). Ultimately, knowledge of how foraging traits mediate the 

effects of temperature on predator performance can help clarify how climate change will affect 

entire functional groups of species.  
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Figure 1. Relationships between temperature and swimming speed. The Arrhenius equation 

provided the best fit for the relationship between temperature and swimming speed (cm s-1) of 

Notonecta, with slope Ea (activation energy, eV ± 1 SE) = 0.10 (± 0.05). A segmented model 

provided the best fit for Daphnia, with a breakpoint near 28 °C, Ea = 0.11 (± 0.06) at 

temperatures below the breakpoint, and Ea = 1.04 (± 0.23) above the breakpoint. The 95% 

confidence intervals around the best fit line are represented by gray bands for Daphnia and 

broken red lines for Notonecta. 
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Figure 2. Relationships between temperature, functional response components, and growth 

rates. (a) Best fit lines of the Arrhenius equation for encounters (hr-1 20 Daphnia L-1 ± 1 SE); (b) 

Fit of the Arrhenius equation for capture success (number of successful attacks per encounter) of 

Enallagma, and the Arrhenius-quadratic equation for Notonecta; (c) Arrhenius fit for attack rates 

(L hr-1) and (d) relative growth rates (mg mg0.34 day-1). Ea (eV ± 1 SE) is the activation energy, 

and Topt (°C ± 1 SE) is the thermal optimum. Broken lines represent 95% confidence intervals.  
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Figure 3. Functional responses at each temperature for (a) Notonecta and (b) Enallagma.  
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Figure 4. Hypothesized combinations of temperature and prey density that should favor 

active or sit-and-wait strategies. (a) When prey speed increases with warming, active strategies 

could be advantageous at low temperatures when prey density is low. Sit-and-wait strategies 

could be advantageous at high temperatures when prey density is high. (b) When prey speed 

decreases with warming, active strategies could be favored at high temperatures when prey 

density is low. Sit-and-wait strategies could be favored at low temperatures when prey density is 

high. 
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Methods 

Predator functional response experiments: predator-prey acclimation 

Instar 1 Notonecta were collected from June 20 to July 28 and instar F-4 and F-3 

Enallagma (F-1 is the penultimate instar) were collected from September 1 to October 7. We 

acclimated predators to laboratory conditions at 20 °C (mean ± 1 SD: Notonecta 19.1 ± 0.42, 

Enallagma 20.6 ± 0.73) under a 15:9 h L:D photoperiod for Notonecta and a 13:11 h L:D 

photoperiod for Enallagma (Culler et al. 2014). Notonecta were held in 37.8 L aquaria filled with 

pond water and abundant habitat structure at a density of ~1 Notonecta L-1. Enallagma were held 

individually in 200-mL glass jars filled with pond water and an artificial plastic plant for 

structure. After their first molt, predators were moved to an experimental arena (Vucic-Pestic et 

al. 2011, Culler et al. 2014). Daphnia were collected from ponds in June and July 2017 and 

acclimated at 20 °C until experiments in filtered pond water. Preliminary acclimation periods to 

laboratory conditions at 20 °C were used to standardize predators to a similar size and number of 

days post-molt, which can affect feeding rates (Johnson 1975). Predators were then acclimated to 

the target experimental temperature for 24 hours prior to the food deprivation period, and 

Daphnia were acclimated for two hours at the target temperature prior to beginning trials 

(Thompson 1978). Daphnia were given a shorter acclimation period to the target temperature 

than predators because of their much shorter life span and to avoid natural mortality before 

beginning trials. Recent research has shown that shorter acclimation times are needed for shorter-

lived and smaller-sized species because acclimation rate scales negatively with body size (Rohr 

et al. 2018). 
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Experimental conditions 

Arenas for Notonecta trials were 9 x 16 x 10 cm containers filled with 1L filtered pond 

water, and 3 artificial plants similar in structure to Ceratophyllum demersum, the dominant 

aquatic plant in ponds in Lux Arbor Reserve. Enallagma trials were performed in 150-mL 

beakers filled with 100-mL filtered pond water, and two plants identical to those used in 

Notonecta trials suspended from the surface of the beaker. Artificial plants mimicked the habitat 

structure found in ponds and provided a perch for predators.  

Predators were between 2 to 5 days post-molt (Johnson et al. 1975) and had been both 

pre-satiated and food-deprived at their target experimental temperature when trials began. 

Notonecta were food deprived for 6 hours, and Enallagma for 24 hours. Notonecta deprivation 

period was determined based on preliminary trials in 2016. Twenty-four hours is the optimal 

deprivation period to standardize hunger levels in Enallagma (Johnson et al. 1975). We 

standardized predator and prey body sizes by size-sorting under a microscope (Zeiss Stemi 508) 

fit with an ocular micrometer accurate to ± 0.1 mm. Notonecta were all instar 2 (mean ± SE 

length, 3.33 ± 0.01 mm) and Enallagma were instars F-3 and F-2 (mean ± SE head capsule 

width, 2.75 ± 0.02 mm). Daphnia used in trials were between 1 to 1.5 mm carapace length 

(Gergs and Ratte 2009, Culler et al. 2014) 

We used experimental temperatures of 10, 15, 20, 25, 30 or 35 °C (mean ± 1 SD, 10.81 ± 

0.88, 15.81 ± 1.09, 21.05 ± 1.01, 24.43 ± 1.27, 30.36 ± 0.65, 35.33 ± 0.63 °C). We used diffuse 

light of 610 – 725 lux inside growth chambers to avoid Daphnia photo-attraction toward a light 

source. We rotated the temperature in each chamber every other day to avoid chamber effects. 

Notonecta trials were run from July to August 2017 and Enallagma trials from September to 

October 2017.  
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Correction for errors in enumerating Daphnia 

Notonecta digest their prey externally and leave behind Daphnia carapaces that are easily 

distinguishable from Daphnia that died naturally. Thus, we estimated errors in Notonecta trials 

by counting all consumed and unconsumed Daphnia, plus natural deaths, the sum of which was 

used as the actual prey density. By contrast, Enallagma completely consume Daphnia, and 

therefore, we estimated counting errors by running three replicate controls for each Daphnia 

density. Controls followed the same methods used in predator-prey trials, excluding the predator. 

The counting error was less than 1%, thus, we ignored counting errors in subsequent analyses. 

Testing H1: Video analysis of predator and prey swimming speed  

We used video recordings of functional response experiments to calculate Notonecta 

swimming speed (cm s-1) by randomly selecting 6 movements for each video between 30 and 60 

minutes, 3 of which were “burst” movements, associated with attacks on prey, lasting 1-2 

seconds, and 3 were longer “patrolling” movements lasting 3-5 seconds that predators exhibited 

in between bouts of attacking and consuming prey. The speed of each movement was calculated 

using Tracker Video Software, and a mean trial speed for each respective movement was 

calculated as the average of the 3 swimming speeds. We also ran separate Daphnia swimming 

speed experiments following the methods from Notonecta functional response trials for 

acclimation and experimental arena. We used densities of 20 Daphnia L-1 and excluded artificial 

plants and predators from arenas to better observe Daphnia. We video-recorded these 

experiments for twenty minutes at each temperature of 10, 15, 20, 25, 30, 35 °C, and replicated 

each temperature treatment four times. Videos were analyzed for Daphnia swimming speed 

using Tracker software as follows. We quantified speed (cm s-1) of the Daphnia individual 

nearest the center of the experimental arena for 20 second intervals at 5, 10, and 15 minutes of 
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video time. Mean speed from these three observation periods was used as the overall trial 

velocity. To confirm that Daphnia were moving at a similar speed between experiments with and 

without predators, Daphnia mean speed was also calculated from videos of Notonecta functional 

response experiments at 20 and 30 °C, using the above methods. Daphnia speed did not differ 

significantly between trials with and without Notonecta (Welch's two-sample t-test, 20 °C, t2 = 

0.0002, p = 0.999; 30 °C, t1.74 = 0.281, p = 0.808).  

Testing H2: Video analysis of encounter rates and capture success  

We video-recorded functional response experiments with prey densities of 20 Daphnia L-

1 and 20 Daphnia 100 mL-1 for Notonecta and Enallagma respectively, to test whether prey 

encounter rates and capture success increase more strongly for active predators with warming. 

Recordings were analyzed for the 60-minute duration of the experiment. We estimated total 

encounters as the sum of reactive and non-reactive encounters. Reactive distance was measured 

by taping a 4-cm grid to the back of the experimental containers.  

We used video estimates of predator attack rates to quantify capture success, or the 

number of successful attacks per encounter (Holling 1966). Attack rates were quantified as the 

number of successful and unsuccessful attacks. For Enallagma, a successful attack was a rapid 

protrusion of the labium that resulted in prey capture (McPeek and Crowley 1987). For 

Notonecta, a successful attack was a rapid advance toward, and grasping of, prey (Gergs and 

Ratte 2009). For either predator, an attack was considered unsuccessful when the prey 

subsequently escaped. Before running statistical models, we calculated an hourly rate for each 

foraging behavior (e.g., number of encounters hr-1) based on the number of seconds the predator 

was observable (i.e. not obscured by an artificial plant). 
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Testing H4: Predator growth experiments  

 We used a duration of four days for Enallagma and three days for Notonecta in growth 

experiments because preliminary trials showed that these two predators molt at different rates (it 

can take up to a month for Enallagma to molt in the lab, and days for Notonecta). We ran 

Enallagma growth experiments for four days to maintain consistency with methods of previous 

successful experiments on damselflies in the same genus (e.g., Culler et al. 2014), and because 

meaningful weight gain needs to be observed during the experimental duration to obtain accurate 

estimates of growth rates (Gordon 1968). Notonecta were fed for three days because of their 

comparatively much faster growth rate. In preliminary trials conducted over four days Notonecta 

began molting during the fourth day. Our goal was to compare intra-molt growth rates, because 

molting can significantly alter feeding and growth measurements (e.g., Johnson 1975). However, 

because we calculated relative growth rate and accounted for trial duration, we used comparable 

intra-molt growth rates when fitting the Arrhenius equation and running ANOVA to test for 

differences in the temperature scaling of growth between predator species (Fig. 2, Appendix A).  

 

Results 

Testing H3: Video analysis of predator attack rates 

Total attacks (hr-1) based on video observations varied significantly with temperature 

(ANOVA, F5,44 = 14.56, p < 0.01; Tukey’s HSD, Table 9) and between the predators (F1,44 = 

821.21, p < 0.01), with Notonecta having more attacks overall. There was not a significant 

interaction between temperature and predator species on total attacks (F5,44 = 0.38, p = 0.86). The 

95% confidence intervals of Ea from the fit of the Arrhenius equation for attack rate (Table 2, 3) 

was 0.15 to 0.40 for Notonecta, and 0.14 to 0.33 for Enallagma, indicating a similar magnitude 
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of increase in attack rates with temperature. The number of attacks per encounter did not vary 

with temperature (ANOVA, F5,44 = 1.76, p = 0.14), but did vary between predator species (F1,44 = 

108.14, p < 0.01). There was no interaction between temperature and predator species on the 

number of attacks per encounter (F5,44 = 0.90, p = 0.49). The Arrhenius-quadratic equation 

provided the best fit to the relationship between temperature and number of attacks per encounter 

for Notonecta, whereas an intercept model provided the best fit for Enallagma (Table 2, 3). This 

result indicates that Notonecta had a hump-shaped increase in number of attacks per encounter 

with warming, and Enallagma had no increase in number of attacks per encounter with warming.  

Relationship between predator handling time and warming 

Although handling time was lower for Notonecta than Enallagma across all temperatures 

(Fig. 5), handling time of Enallagma decreased more with warming (Table 3). However, 

predators had overlapping 95% confidence intervals for Ea (Algorithm 3) for handling time 

(Notonecta: -0.05 to -0.36, Enallagma: -0.13 to -0.62), which indicates that the rate of change in 

handling time with warming did not differ significantly between the two predators.  
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Figure 5. Relationships between temperature and handling time for Notonecta and 

Enallagma.  (a) Handling time (hr. ± 1 SE) estimates from functional response curves, and (b) 

fits of the Arrhenius equation to handling times. Ea is the activation energy (eV ± 1 SE) 

estimated from the slope of the best-fit line of the Arrhenius equation, and gives the strength of 

the temperature response. 
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Table 1. Fit of Rogers Random Predator Equation to feeding data from functional response 

experiments at each temperature. Columns show the estimated value of a (attack rate, 100 mL-

1 for Enallagma and 1 L-1 for Notonecta) and h (handling time, hr) along with their associated Z-

values and P-values. P-values less than 0.05 indicate that the value for that parameter differs 

from zero. R2 is the coefficient of determination.  

Enallagma        
Temperature 
°C 

a estimate 
(SE) 

Z-value P-value h estimate 
(SE) 

Z-value P-value R2 

10 0.187 (0.083) 2.262 0.024 0.235 (0.072) 3.284 0.001 0.16 
15 0.340 (0.125) 2.713 <0.01 0.196 (0.043) 4.560 <0.01 0.33 
20 0.573 (0.157) 3.641 <0.01 0.100 (0.017) 5.738 <0.01 0.46 
25 0.539 (0.108) 4.99 <0.01 0.076 (<0.01) 8.376 <0.01 0.50 
30 1.079 (0.193) 5.588 <0.01 0.060 (<0.01) 10.794 <0.01 0.48 
35 1.149 (0.214) 5.370 <0.01 0.060 (<0.01) 9.378 <0.01 0.55 
Notonecta        
10 0.303 (0.106) 2.857 <0.01 0.111 (0.031) 3.587 <0.01 0.67 
15 0.969 (0.245) 3.948 <0.01 0.055 (<0.01) 6.427 <0.01 0.55 
20 1.060 (0.273) 3.890 <0.01 0.054 (<0.01) 6.539 <0.01 0.62 
25 1.299 (0.267) 4.858 <0.01 0.042 (<0.01) 7.985 <0.01 0.64 
30 2.263 (0.515) 4.393 <0.01 0.043 (<0.01) 9.566 <0.01 0.87 
35 2.286 (0.461) 4.957 <0.01 0.036 (<0.01) 9.979 <0.01 0.83 
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Table 2. Results of AICc model selection for models testing relationships between 

temperature and biological rates. Models fit to each response variable included intercept, 

Arrhenius, and Arrhenius-quadratic. The selected model is shown in bold. K is the number of 

model parameters. ΔAICc = AICc of the model - AICc minimum of all models under 

consideration. AICc Weight is the probability that the model provides the best fit to the data.  

Response Model K AICc ΔAICc AICc 
Weight 

Log-
likelihood 

aNotonecta Arrhenius 3 19.38 0.00 0.81 -0.92 
 Intercept 2 22.67 2.84 0.19 -7.34 
 Arrhenius-

quadratic 
4 44.73 24.90 0.00 1.64 

aEnallagma Arrhenius 3 10.22 0.00 0.99 3.89 
 Intercept 2 20.01 9.79 0.01 -6.01 
 Arrhenius-

quadratic 
4 38.45 28.23 0.00 4.78 

hNotonecta Intercept 2 8.36 0.00 0.63 -0.18 
 Arrhenius 3 9.40 1.04 0.37 4.30 
 Arrhenius-

quadratic 
4 36.78 28.42 0.00 5.61 

hEnallagma Arrhenius 3 13.75 0.00 0.54 2.12 
 Intercept 2 14.11 0.35 0.46 -3.05 
 Arrhenius-

quadratic 
4 34.79 21.04 0.00 6.60 

Video attack 
rateNotonecta 

Arrhenius 3 24.55 0.00 0.64 -8.75 

 Arrhenius-
quadratic 

4 25.66 1.11 0.36 -7.92 

 Intercept 2 38.07 13.52 0.00 -16.78 
Video attack 
rateEnallagma 

Arrhenius 3 9.91 0.00 0.79 -1.48 

 Arrhenius-
quadratic 

4 12.60 2.68 0.21 -1.46 

 Intercept 2 27.62 17.71 0.00 -11.58 
EncountersNotonecta Arrhenius 3 4.87 0.00 0.73 1.09 
 Arrhenius-

quadratic 
4 6.96 2.09 0.26 1.43 

 Intercept 2 12.53 7.66 0.02 -4.02 
EncountersEnallagma Arrhenius 3 48.22 0.00 0.64 -20.63 
 Arrhenius-

quadratic 
4 49.39 1.17 0.36 -19.86 

 Intercept 2 67.64 19.42 0.00 -31.59 
Capture 
successNotonecta 

Arrhenius-
quadratic 

4 43.01 
 

0.00 0.84 -16.60 

 Intercept 2 46.77 3.76 0.13 -21.14 
 Arrhenius 3 49.29 6.28 0.04 -21.12 
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Table 2. (cont’d) 

Capture 
successEnallagma 

Arrhenius 3 -38.66 0.00 0.55 22.81 

 Intercept 2 -37.42 1.23 0.30 20.94 
 Arrhenius-

quadratic 
4 -36.17 2.49 0.16 22.92 

Attacks per 
encounterNotonecta 

Arrhenius-
quadratic 

4 19.60 0.00 0.61 -4.89 

 Arrhenius 3 20.99 1.39 0.31 -6.97 
 Intercept 2 23.63 4.04 0.08 -9.57 
Attacks per 
encounterEnallagma 

Intercept 2 -22.06 0.00 0.71 13.26 

 Arrhenius 3 -19.75 2.31 0.22 13.35 
 Arrhenius-

quadratic 
4 -17.12 4.94 0.06 13.39 

“Patrolling” 
swimming 
speedNotonecta 

Arrhenius 3 14.19 0.00 0.72 -5.77 

 Intercept 2 16.04 1.85 0.28 -3.58 
“Burst” swimming 
speedNotonecta 

Intercept 2 11.68 0.00 0.59 -3.59 

 Arrhenius 3 12.43 0.75 0.41 -2.69 
GrowthNotonecta Arrhenius 3 -114.38 0.00 0.75 60.55 
 Arrhenius-

quadratic 
4 -112.16 2.22 0.25 60.70 

 Intercept 2 -80.88 33.50 0.00 42.61 
GrowthEnallagma Arrhenius 3 -104.22 0.00 0.77 55.43 
 Arrhenius-

quadratic 
4 -101.77 2.45 0.23 55.43 

 Intercept 2 -85.72 18.50 0.00 45.01 
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Table 3. Parameter estimates from best-fit models describing relationships between 

temperature and biological rates. Models fit to each response variable included intercept, 

Arrhenius, Arrhenius-quadratic, and segmented Arrhenius. P-values less than 0.05 indicate that 

the value for that parameter differs from zero and affects the response variable. c is the model 

intercept. b is the activation energy Ea from the Arrhenius equation measured in electron volts 

(eV). q is the quadratic term of the Arrhenius-quadratic equation.  

Response Model ln (c)  
± (SE)  

p b1*  
(eV) 
± 
(SE)  

p b2† (eV) 
± (SE) 

q 
(eV2) 
± (SE) 

p R2 

aNotonecta Arrhenius 26.42 
(4.88) 

<0.01 0.67 
(0.12) 

<0.01    0.88 

aEnallagma Arrhenius 21.98 
(2.23) 

<0.01 0.58 
(0.06) 

<0.01    0.96 

Encounter 
Notonecta 

Arrhenius 10.46 
(1.66)  

<0.01 0.14 
(0.04) 

<0.01    0.31 

Encounter 
Enallagma 

Arrhenius 19.66 
(3.44)  

<0.01 0.48 
(0.09)  

<0.01    0.53 

Capture 
success 
Notonecta 

Arrhenius-
quadratic 

- 411.15 
(132.18)  

<0.01 20.85 
(6.75) 

<0.01  -0.27 
(0.09) 

<0.01  0.29 

Capture 
success 
Enallagma 

Arrhenius 1.70 
(0.77) 

0.04 0.04 
(0.02) 

0.06    0.12 

Swimming 
speed 
Daphnia 

Segmented 
Arrhenius 

38.63 
(8.58)  

<0.01 1.04 
(0.23) 

<0.01 0.11 
(0.06) 

  0.82 

Patrolling 
swimming 
speed 
Notonecta 

Arrhenius 2.69 
(1.92) 

0.17 0.10 
(0.05) 

0.05    0.15 

Burst 
swimming 
speed 
Notonecta 

Intercept -0.02 
(0.05) 

0.70       

Growth 
Notonecta 

Arrhenius 2.13 
(0.27) 

<0.01 0.05 
(0.01) 

<0.01    0.62 

Growth 
Enallagma 

Arrhenius 1.90 
(0.35) 

<0.01 0.05 
(0.01) 

<0.01    0.39 

hNotonecta Arrhenius -11.17 
(2.17)  

<0.01 -0.21 
(0.06) 

0.02    0.78 
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Table 3. (cont’d) 

hEnallagma Arrhenius -17.07 
(3.36) 

<0.01 -0.38 
(0.09) 

0.01    0.82 

Video 
attack rate 
Notonecta 

Arrhenius 13.62 
(2.39) 

<0.01 0.27 <0.01    0.45 

Video 
attack rate 
Enallagma 

Arrhenius 9.94 
(1.78) 

<0.01 0.24 
(0.05) 

<0.01    0.50 

Attacks per 
encounter 
Notonecta 

Arrhenius-
quadratic 

-168.26 
(85.67) 

0.06 8.62 
(4.37) 

0.06  -0.11 
(0.06) 

0.06 0.29 

Attacks per 
encounter 
Enallagma 

Intercept 0.37 
(0.03) 

<0.01       

 

*†Note that for capture success of Notonecta, b1 is the linear term of the Arrhenius-quadratic 

equation, and thus cannot be interpreted as the activation energy. For swimming speed of 

Daphnia, b1 is the slope of the line segment for temperatures above the breakpoint of 28 °C, and 

b2 is the slope of the line segment for temperatures below the breakpoint of the segmented 

Arrhenius model. 

 

Table 4. Comparison of models fit to the relationship between temperature and swimming 

speed of Daphnia. An intercept and an Arrhenius model fit using ordinary least squares 

regression were compared to a segmented Arrhenius model fit using maximum likelihood 

estimation. Lower AIC scores indicate a better fitting model. The selected best-fitting model is 

shown in bold.  

Model Residual std. error R2 AIC 
Intercept 0.43  30.98 
Arrhenius 0.27 0.63 9.16 
Segmented 
Arrhenius 

0.20 0.82 -3.88 
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Table 5. P-values from Tukey’s HSD testing for differences in Daphnia swimming speed 

(cm s-1) between temperatures. P-values below the significance threshold of 0.05 are indicated 

in bold.  

  10°C 15°C 20°C 25°C 30°C 
15°C 0.87 - 0.99 0.98 0.20 
20°C 0.92 0.99 - 0.96 0.16 
25°C 0.50 0.98 0.96 - 0.51 
30°C 0.02  0.20 0.16 0.51 - 
35°C < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

 

Table 6. P-Values from Tukey’s HSD testing for differences in encounter rates, quantified 

as an hourly rate at a density of 20 Daphnia per liter (hr-1 20 Daphnia L-1), between 

temperatures. P-values below the significance threshold of 0.05 are indicated in bold.  

  10°C 15°C 20°C 25°C 30°C 

15°C 0.42 - 0.16 0.19 < 0.01 

20°C < 0.01 0.35 - 0.99 0.61 

25°C < 0.01 0.20 0.99 - 0.84 

30°C < 0.01 0.01 0.61 0.84 - 

35°C < 0.01 < 0.01 0.04 0.10 0.64 
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Table 7. P-values from Tukey’s HSD testing for interactions between temperature and 

predator species on encounter rates, quantified as an hourly rate at a density of 20 Daphnia 

per liter (hr-1 20 Daphnia L-1). (E = Enallagma, N = Notonecta). P-values below the 

significance threshold of 0.05 are indicated in bold.  

   10°C 
(E) 

15°C 
(E) 

20°C 
(E)  

25°C 
(E) 

30°C 
(E) 

  35°C 
(E) 

15°C 
(N) 

20°C 
(N) 

25°C 
(N) 

30°C 
(N) 

35°C 
(N) 

10°C 
(N) 

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1.00 1.00 0.99 0.99 0.99 

15°C 
(N) 

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 - 0.99 0.99 0.99 0.99 

20°C 
(N) 

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.99 - 1.00 0.99 0.99 

25°C 
(N) 

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.99 1.00 - 0.99 0.99 

30°C 
(N) 

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.99 0.99 0.99 - 1.00 

35°C 
(N) 

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.98 0.99 0.99 1.00 - 

15°C 
(E) 

0.31 - 0.99 0.25 0.30 0.13 - - - - - 

20°C 
(E) 

0.03 0.99 - 0.86 0.89 0.63 - - - - - 

25°C 
(E) 

< 0.01 0.25 0.86 - 1.00 0.99 - - - - - 

30°C 
(E) 

< 0.01 0.30 0.89 1.00 - 0.99 - - - - - 

35°C 
(E) 

< 0.01 0.13 0.63 0.99 0.99 - - - - - - 
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Table 8. P-Values from Tukey’s HSD testing for differences in predator relative growth 

rates (mg mg0.34 day-1) between temperatures. P-values below the significance threshold of 

0.05 are indicated in bold. 

 10°C 15°C 20°C 25°C 30°C 

15°C 0.99 - 0.24 < 0.01 < 0.01 

20°C 0.14 0.24 - 0.30 0.02 

25°C < 0.01 < 0.01 0.30 - 0.82 

30°C < 0.01 < 0.01 0.02 0.82 - 

35°C < 0.01 < 0.01 < 0.01 0.42 0.99 

 

Table 9. P-Values from Tukey’s HSD testing for differences in total attacks (hr-1) between 

temperatures from video observations. P-values below the significance threshold of 0.05 are 

indicated in bold. 

  10°C 15°C 20°C 25°C 30°C 

15°C 0.60 - 0.32 0.05 < 0.01 

20°C < 0.01 0.32 - 0.91 0.29 

25°C < 0.01 0.05 0.91 - 0.89 

30°C < 0.01 < 0.01 0.29 0.89 - 

35°C < 0.01 < 0.01 < 0.01 0.09 0.50 
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CHAPTER 2. Life-history responses to temperature and seasonality mediate ectotherm 

consumer-resource dynamics under climate warming  

 

†The following co-authors contributed to this chapter: Laura Twardochleb, Phoebe Zarnetske, 

and Christopher Klausmeier 

 

Abstract 

 Climate warming is altering life cycles of ectotherms by advancing their phenology and 

decreasing their generation times, which may have profound consequences for consumer-

resource population dynamics and community structure. Theoretical models provide powerful 

tools to investigate these potential effects of climate warming on ecological communities. Yet, 

existing theory primarily considers communities of interacting organisms with simplified life-

histories living in constant temperature environments. As such, it is difficult to predict how 

climate warming will affect organisms with complex life cycles living in seasonal environments. 

We address this knowledge gap by developing a size-structured, consumer-resource population 

model with seasonal temperature dependence. We parameterized our model using data from field 

surveys and experiments of a freshwater insect, the damselfly Enallagma annexum, consuming 

zooplankton. We use our model to simulate how climate warming in a seasonal environment 

could alter a key life-history trait of the consumer, the number of generations per year, and how 

changes in this trait mediate responses of consumer-resource population sizes and consumer 

persistence to increasing environmental temperature. We find that in a warming world, damselfly 

population sizes increase through multiple mechanisms. First, warming can decrease damselfly 

generation times by increasing their rates of resource ingestion and growth and/or lengthening 
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the growing season. Second, these life-history changes shorten the duration of the juvenile stage 

and “the window of vulnerability” to mortality, which increases the number of emerging adults 

and population-level reproduction. Unstructured models with similar assumptions found that 

increasing consumer rates of resource ingestion, consumer growth, and population sizes with 

warming destabilized consumer-resource dynamics. In contrast, our size-structured model 

predicts increased stability of consumer-resource populations with increased predator 

persistence. Our study reveals mechanisms by which climate change and latitude can alter 

ectotherm life-histories and populations. Overall, our study suggests that life-history changes 

could delay population extinctions with future warming. Life-history changes and temperature 

seasonality should therefore be incorporated into research investigating the impacts of climate 

warming on consumer-resource populations in seasonal environments.  

 

Introduction 

 An outstanding question of climate change research is how rising temperatures will alter 

ecological communities through its effects on consumer-resource interactions. Over large 

temperature ranges, ectotherm biological rates, including metabolism and feeding, show 

concave, unimodal responses to temperature (Huey and Stevenson 1979, Englund et al. 2011), 

and within the rising portion of the unimodal response, ectotherm feeding rates increase 

exponentially with temperature as a result of increasing metabolism (Gillooly et al. 2001, Brown 

et al. 2004, Dell et al. 2011). Previous research has shown that higher consumer feeding rates can 

cause communities to become top-heavy by increasing consumer biomass (Yvon-Durocher et al. 

2011, Shurin et al. 2012). However, rising temperatures can also cause declines in consumer 
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biomass by lowering consumer energetic efficiency, the balance between biomass gains from 

feeding and losses from metabolism (Lang et al. 2017).  

 Theoretical models provide powerful tools to investigate the potential effects of climate 

warming on ecological communities because they allow the user to simulate population 

dynamics and changes in community structure over long time scales. Yet, most existing models 

cannot simulate realistic community outcomes, because theory has primarily considered 

communities of interacting organisms with simplified life histories living in constant temperature 

environments (Uszko et al. 2017). This contrasts with the reality that temperate species 

experience pronounced seasonal changes in temperature, and the majority of ectotherms have 

structured populations with complex life cycles that have different physiological responses to 

warming (Kingsolver et al. 2011, Sinclair et al. 2016). To improve our understanding of climate 

change effects on ecological communities, theory must consider interactions among organisms 

with complex life cycles in seasonally fluctuating environments.  

 Theory has often focused on unstructured populations of consumer-resource pairs when 

predicting the effects of climate warming on communities (Uszko et al. 2017). Many of these 

models predict that consumer biomass will decrease with warming as consumers become more 

susceptible to starvation extinction, and communities will become more stable (Vasseur and 

McCann 2005, Vucic-Pestic, Olivera et al. 2011, Binzer et al. 2012, Fussmann et al. 2014). The 

same models with different assumptions have predicted that consumer biomass will increase with 

warming and destabilize communities (Vasseur and McCann 2005, Uszko et al. 2017). These 

differing predictions depend, in part, on whether consumer feeding and metabolism change 

exponentially or in a unimodal fashion with temperature, whether consumer metabolism or 
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feeding increases more with temperature, and whether resource carrying capacity varies with 

temperature (Uszko et al. 2017). 

Structured population models have revealed additional mechanisms by which 

temperature can affect population dynamics and communities (Lindmark et al. 2019). Stage-

structured models have shown that warming can alter population stage-structure (Lindmark et al. 

2018) and decrease predator persistence due to feedbacks between individual performance and 

population stage-structure, regardless of the assumed temperature scaling of feeding and 

metabolism or resource carrying capacity (Lindmark et al. 2019). However, these models have 

focused on changes in mean temperature and have yet to include the effects of temperature 

seasonality. Stage-structured population models developed for insects have yielded insights into 

how temperature seasonality can alter life-histories of organisms with complex life cycles, 

including that higher mean temperatures and longer growing seasons can lead to shorter 

generation times (Crowley et al. 1987, Amarasekare 2019). However, these insect life history 

models are far more complex than simpler models derived from the familiar Rosenzweig-

MacArthur model due to their use of delay differential equations to model changes in many life 

stages, and their results are thus difficult to compare to other theory (Uszko et al. 2017). Our aim 

is to provide a relatively simple and interpretable model to examine the effects of climate 

warming on size-structured organisms with complex life-histories in seasonal environments. 

Climate warming has already altered life cycles of ectotherms by advancing their 

phenology and decreasing their generation times (Parmesan and Yohe 2003, Forrest 2016). All 

else being equal, higher environmental temperatures result in faster rates of metabolism, feeding, 

and growth (Gillooly et al. 2001, 2002, Brown et al. 2004, Rall et al. 2012), which also speed 

maturation to the adult stage (Roy and Sparks 2000, Hassall et al. 2007, Matsuda et al. 2018). 
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Shorter generation times could influence population dynamics by decreasing the length of time 

juveniles are susceptible to mortality, thereby increasing their survival to the adult stage (Benrey 

and Denno 1997, Anderson et al. 2001, Culler et al. 2015, Chen et al. 2019). For example, 

mosquitoes are predicted to have higher survival in the warming Arctic due to faster 

development and emergence to the adult stage, despite higher juvenile mortality from predators 

(Culler et al. 2015). If shorter generation times contribute to higher survivorship, then these 

benefits of warming may offset the negative effects of increasing mortality and result in larger 

consumer population sizes (Amarasekare and Savage 2012, Amarasekare 2019). Accounting for 

temperature effects on life cycles in consumer-resource models could modify the frequent 

prediction that rising temperatures increase consumer extinction risks as a result of higher 

metabolism and mortality (Uszko et al. 2017) and reveal new mechanisms by which warming 

alters population dynamics and communities.  

 Diverse ectotherms experience seasonally fluctuating temperatures that structure their 

life-history, including annual timing of feeding and growth, transitions among life stages, and 

adult emergence and reproduction (Wassersug 1975, Mousseau and Roff 1989, Conover 1992, 

Adolph and Porter 1996, Mackas et al. 2012). For these organisms, climate warming can interact 

with seasonality to alter their phenology and population dynamics (Kingsolver et al. 2011, Boggs 

2016, Forrest 2016). For example, many insects in temperate environments have synchronized 

life cycles maintained by a period of winter diapause that is triggered by photoperiod and 

temperature (Forrest 2016). Increases in temperature and longer growing seasons have enabled 

insects to become active earlier in the season and produce more generations per year (Roy and 

Sparks 2000, Musolin 2007, Hassall et al. 2007, Matsuda et al. 2018). Yet, seasonal 

photoperiodic cues still induce winter diapause in many species, placing upper limits on changes 
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in their phenology and generation times with warming (Forrest 2016). The effects of warming in 

seasonal environments also depend on the organisms’ thermal performance: warming can have 

negative consequences for consumer populations by increasing summer temperatures above the 

thermal optimum for activity and growth, which can induce diapause, lengthen time to maturity, 

and increase mortality due to thermal stress (Kingsolver et al. 2011, Levy et al. 2015, 2016, 

Forrest 2016, Sinclair et al. 2016). The effects of warming may be most pronounced for 

organisms at high latitudes where warming is greater and seasonal fluctuations are more extreme 

(Parmesan 2007).  

 Theoretical models have examined the effects of seasonality on populations to understand 

the evolution of thermal traits (Thomas et al. 2012, Amarasekare and Johnson 2017) and species 

coexistence (Miller and Klausmeier 2017, Kremer and Klausmeier 2017). In addition, life cycle 

models have demonstrated the consequences of seasonality on life-histories and phenology for 

ectotherms (Taylor 1980, Gurney et al. 1992, Varpe et al. 2007). However, there are still gaps in 

our understanding of how climate warming affects consumer-resource population dynamics for 

organisms with complex life cycles living in seasonal environments. We bridge this knowledge 

gap by developing a size-structured consumer-resource model for ectotherms with seasonal 

temperature dependence. We use the framework of physiologically structured population models 

(PSPMs; De Roos et al. 2008), in which population dynamics depend on metabolism, feeding, 

growth in size, and transitions among life stages of the consumer, in response to resource levels 

and seasonally fluctuating environmental temperature. We develop and parameterize our model 

using field surveys and experiments of a freshwater insect, the damselfly Enallagma annexum, 

feeding on zooplankton. We use our model to simulate how climate warming in a seasonal 

environment could alter a key life-history trait of the consumer, the number of generations per 
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year, and how changes in this trait mediate responses of consumer-resource population sizes and 

consumer persistence to increasing environmental temperature. 

 

Methods 

Life-history of Enallagma annexum 

 Damselflies have complex life cycles (Figs. 6-8 in Appendix) in which they spend the 

majority of their lifespan in an aquatic juvenile stage and emerge to a short-lived, terrestrial adult 

stage for reproduction. Many species have generation times that vary within and across latitudes; 

for species of Enallagma, the number of generations per year increases from less than one to two 

from the northern to the southern portion of their range (Corbet et al. 2006). Enallagma species 

in different locations at the same latitude also vary in their number of generations per year 

because environmental temperature directly increases their growth rates and decreases generation 

times within a latitudinal band (Corbet et al. 2006). We investigated the life-history and 

population dynamics of Enallagma annexum in southwestern Michigan, USA, where these 

damselflies have 11 juvenile stages (instars) requiring 10-11 months for development from egg 

to adult, and one generation per year with synchronized emergence to the adult stage that is 

maintained by a period of winter diapause as juveniles (McPeek1989, 1998). Adults live 1-4 

weeks (Corbet 1980), during which they feed on terrestrial insects and breed, depositing their 

eggs in aquatic plants (Merritt and Cummins 1996).  

Surveys of population dynamics of Enallagma annexum and zooplankton in ponds 

 We surveyed E. annexum, and their prey zooplankton, to characterize seasonal changes in 

population abundances and biomass. We sampled three ponds of Lux Arbor Reserve, 

southwestern Michigan, USA, twice per month from May 2016 to November 2016, and again 
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from April to May 2017. We recorded surface water temperatures at hourly intervals using 

HOBO pendant temperature loggers (UA-001-64, Onset Corporation, Bourne, MA, USA). We 

collected E. annexum at three locations within each pond by sweeping a D-frame aquatic dip net 

(500 µm mesh, Wildco Wildlife Supply Co., Yulee, FL, USA) through macrophyte beds along a 

1-m transect parallel to shore at depths of 0.25-0.75 m. We sampled zooplankton using vertical 

zooplankton net tows (153 µm mesh, 20.32 cm diameter opening, Wildco Wildlife Supply Co.) 

at water depths of 0.25 to 1.0 m and froze samples for estimation of biomass. We monitored 

adult emergence of E. annexum from May to June 2017 using floating insect emergence traps 

(Cadmus et al. 2016). We collected and counted all damselflies every other day and identified 

males to species (Westfall and May 2006). We determined that E. annexum is the only species of 

Enallagma in these ponds based on emergence samples and observations of adult damselflies at 

ponds throughout the year.  

We identified E. annexum under a dissecting microscope (Stemi 508, Zeiss, USA) using 

published and online taxonomic guides (Hungerford 1933, Westfall and May 2006, Bright 2020). 

We tracked growth in body size of E. annexum by measuring the head capsule width (a common 

determinant of instar, Corbet 1999) of the first 20 individuals in each sample with an ocular 

micrometer (± 0.1 mm) and drying and weighing (± 0.01 mg) at least ten individuals of each 

probable instar. We estimated zooplankton biomass by sorting individuals of the Orders Diptera, 

Cladocera, Copepoda, and Rotifera from each sample under a dissecting microscope, drying 

them for 24 hours at 60°C, and weighing them (± 0.01 mg). We then calculated zooplankton 

biomass per liter sampled as: (dry weight)/(volume filtered by the plankton net). We estimated 

the volume filtered as: pi * net radius2 * sample depth * filtering efficiency, assuming filtering 

efficiency of 0.5 (Benndorf 1986).  
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Temperature effects on feeding and growth rates of Enallagma annexum 

 We conducted experiments to quantify relationships between temperature and consumer 

functional responses and growth rates, at Kellogg Biological Station in southwestern Michigan, 

USA. We briefly outline methods below. For additional details, see Twardochleb et al. 2020. We 

collected E. annexum and zooplankton, Daphnia pulex, from ponds in Lux Arbor Reserve and 

acclimated them to laboratory conditions at 20 °C. We then ran experiments inside of 

environmental growth chambers (I36LLVL, Percival Scientific, Perry, IA, USA) set to 10, 15, 

20, 25, 30 or 35 °C. These temperatures encompassed the annual mean (13 °C), the range 

(minimum to maximum: 10 – 31 °C) of ambient pond temperatures during the growing season, 

and a temperature (35 °C) above the recorded maximum (Fig. 6 in Appendix). We ran 

experiments with individual E. annexum feeding on densities of D. pulex ranging from 5 to 150 

individuals 100 mL-1. We replicated each density at every temperature at least four times for a 

total of 158 trials. We fit separate, Type 2 functional response curves (Holling 1959) to feeding 

data at each temperature using Rogers Random Predator Equation to account for prey depletion 

(Rogers 1972) using the ‘frair’ package in R Version 3.5.1 (Pritchard et al. 2017).  

 We also ran experiments to quantify relationships between temperature and E. annexum 

individual growth rates. We collected and acclimated E. annexum as above. Our temperature 

gradient included 10, 15, 20, 25, 30 or 35 °C. We replicated each temperature treatment seven 

times for 42 trials. We measured initial wet mass prior to trials and then fed each damselfly D. 

pulex ad libidum for four days. We then deprived damselflies of food to allow for gut evacuation, 

blotted them dry, weighed them for final wet mass, and then dried them for 24 hours at 60 °C, 

and weighed them again for final dry mass. We calculated the relationship between wet and dry 
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mass using linear regression and used this relationship to calculate initial and final dry mass for 

the trials (McPeek and Anholt 2004).  

 We used estimates of growth and feeding rates to calculate the respiration rate of E. 

annexum at each temperature. We calculated daily mass-specific respiration 𝜇 (mg/mg/day) 

(Ayres and Scriber 1994, Culler et al. 2014): 

Algorithm 6. Daily mass-specific respiration 

𝜇 = 𝑒!(𝑐8=#2)(	
8*
8+
)	𝑡5 −	𝑔6=3.          

Here,	𝑒! is conversion efficiency, 𝑐8=#2	is the mean consumption rate (prey hr-1) at each 

temperature, 𝑚C and 𝑚D  are dry mass (mg) of an individual resource and consumer, 𝑡5 is the 

number of hours per day spent feeding, and 𝑔6=3 	is the relative mass gain of the consumer 

(mg/mg/day). We set 𝑒! equal to 0.85 (Lawton 1970, Culler et al. 2014) and 𝑡5 equal to 8 hours 

(Johnson et al. 1975). We weighed D. pulex and E. annexum from experiments to determine 𝑚C 

and 𝑚D . We calculated 𝑔6=3 (mg/mg/day) as log(initial dry mass) - log(final dry mass) from 

growth experiments (Ayres and Scriber 1994, Culler et al. 2014). 

We fit the Arrhenius equation (Gillooly et al. 2001) to describe the temperature-

dependence of biological rates (a, h, and 𝜇): 

Algorithm 7. Arrhenius model 

𝑌 = 𝑐𝑒)"("
#
$%).            

Here, 𝑌 is the biological rate, c is a fitted constant, Ea is the activation energy (eV) describing the 

strength of the temperature response, k is Boltzmann’s constant (8.617 x 10-5 eV), and T is 

temperature (Kelvin). We also fit intercept-only and Arrhenius-quadratic equations (Englund et 

al. 2011) but found that the Arrhenius equation provided the best fit. We fit models using linear 

regression in R.   
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Size-structured consumer-resource population model (standard model) 

 We developed a size-structured consumer-resource model, which we refer to as the 

“standard model” when discussing results of simulations below. We based our size-structured 

consumer-resource population model on the biomass-based model of (Yodzis and Innes 1992), 

which is a reworking of the consumer-resource model of (Rosenzweig and MacArthur 1963). We 

modified this model to incorporate the complex life-history of a damselfly (Figs. 6-8 in 

Appendix). Using a system of ordinary differential equations, we model changes throughout the 

growing season in zooplankton (resource) biomass (mg/L), juvenile damselfly (consumer) body 

size (mg) and abundance (number of damselflies), and discrete transitions between juvenile and 

adult damselfly life stages (Fig. 8 in Appendix). We define the growing season as the period 

between when pond temperature reaches 10 ºC in spring and fall. Our lab experiments showed 

that damselfly and zooplankton activity was low at 10 ºC, which is consistent with previous 

studies demonstrating that the threshold temperature for insect development is near 10 ºC (Dixon 

et al. 2009). Thus, we model dynamics only during the growing season (Persson et al. 1998, Sun 

and de Roos 2015). We track yearly emergence from the juvenile to adult stage using discrete 

events within our continuous system. We track discrete, year-to-year changes in damselfly and 

zooplankton populations by modeling abundance and biomass at the beginning of each growing 

season as a function of the abundance and biomass at the end of the previous years’ growing 

season.  

To model within-season dynamics, we consider a consumer-resource pair in which 

biomass growth of the resource (zooplankton) 𝑍 in the absence of the consumer (damselflies) is 

controlled by the resource intrinsic rate of increase 𝑟 and carrying capacity 𝐾. Juvenile 

damselflies increase their body size 𝑆 by ingesting zooplankton following a saturating type 2 
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functional response, minus loss in growth potential due to respiration 𝜇 (Fig. 8 in Appendix). 

Rates of resource consumption and respiration increase linearly with juvenile body size. Changes 

in abundance of juvenile damselflies 𝐶 is controlled by density independent, background 

mortality 𝑑 and density dependent, interference mortality ∝, because cannibalism is an important 

source of mortality in damselflies (McPeek 1998). Abundance of adult damselflies 𝐶#	is zero 

when juveniles are present: 

Algorithm 8. Zooplankton population growth Equation 

5E
5%
= 𝑟 <1 − E

F
= − 𝑎(𝑇) E

G-&(H)#(H)E
𝐶𝑆,  

Algorithm 9. Juvenile damselfly body size       

5I
5%
= 𝑒!𝑎(𝑇)

E
G-&(H)#(H)E

𝑆 − 𝜇(𝑇)𝑆,    

Algorithm 10. Juvenile damselfly abundance       

5D
5%
=	−𝑑(𝑇)𝐶 −∝ 𝐶J ,  

Algorithm 11. Adult damselfly abundance         

5D"
5%

= 0.            

Here, 𝑎 and ℎ are the consumer attack rate and handling time on the resource, and 𝑒! is 

conversion efficiency of the resource into growth in juvenile body size. The rates 𝑎, ℎ, 𝜇, and 𝑑 

are modeled as functions of temperature T using Algorithm 7 (and Algorithm 22, see below).  

 Our assumptions are similar to those of physiologically structured population models 

(PSPMs) in that rates of resource ingestion and respiration increase with damselfly body size, 

and ingestion is converted into growth in size. In addition, juveniles do not reproduce but they 

use energy for growth and development to the adult stage, and adults reproduce but do not grow 

(De Roos et al. 2008). Our assumptions differ from PSPMs in that we do not model energy 
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storage or resource consumption by adults, which are terrestrial and rely on different resources. 

Instead, we assume that adult damselfly abundance is equivalent to the total juvenile abundance 

in a pond prior to emergence, and the number of new juveniles produced by adults depends on 

the number of adults at emergence and their fecundity. These assumptions are reasonable 

because the juvenile stage comprises the majority of the damselfly lifespan (see above and 

Corbet 1980, McPeek 1989). Therefore, to investigate the effects of temperature on life-history, 

we focused on modeling dynamics in the juvenile stage.  

In our system (Fig. 8 in Appendix), juvenile damselflies are born at an initial body size 

𝑆812, develop synchronously as a cohort, and emerge to the adult stage after individual body size 

has reached a threshold 𝑆8#K. To emerge to the adult stage, the temperature in ponds must also 

exceed 20 ºC (emergence window, Corbet 1999). If these emergence conditions are not met, then 

the population remains in the juvenile stage until the next emergence window (Crowley et al. 

1987). Adult emergence is modeled using discrete events that are triggered by emergence 

conditions. Specifically, a discrete change occurs in the damselflies as all juveniles emerge from 

the pond and spend 30 days in the adult stage (emergence period), converting juvenile 

abundance into adult abundance. During the emergence period, damselflies are absent from the 

pond, enabling zooplankton biomass to recover. The discrete changes in the system at the time of 

emergence (𝑡=)	are described by: 

Algorithm 12. Zooplankton population biomass at time of emergence 

𝑍(𝑡=) = 𝑍(𝑡),  

Algorithm 13. Juvenile damselfly body size at time of emergence     

𝑆(𝑡=) = 	𝑆8#K, 
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Algorithm 14. Juvenile damselfly abundance at time of emergence     

𝐶(𝑡=) = 0,   

Algorithm 15. Adult damselfly abundance at time of emergence     

𝐶#(𝑡=) = 𝐶(𝑡) .           

Here 𝑍(𝑡) is zooplankton biomass, and 𝐶(𝑡) is damselfly abundance just before 𝑡= . Following 

emergence, adults reproduce, and adult abundance is converted into new juveniles according to 

their fecundity 𝑓. Upon reproduction, damselflies re-enter the pond, and the discrete changes in 

the system are described by: 

Algorithm 16. Zooplankton population biomass after discrete event 

𝑍(𝑡) = 𝑍(𝑡=),  

Algorithm 17. Juvenile damselfly body size after discrete event   

𝑆(𝑡) = 𝑆812, 

Algorithm 18. Juvenile damselfly abundance after discrete event    

𝐶(𝑡) = 	𝑓 ∗ 	𝐶#	(𝑡=), 

Algorithm 19. Adult damselfly abundance after discrete event   

𝐶#(𝑡) = 0,            

Here 𝑍(𝑡), 𝑆(𝑡), 𝐶(𝑡), and 𝐶#(𝑡)	are state variables in Algorithms 8-11 just after the emergence 

period.    

If juvenile size reaches 𝑆8#K outside of the emergence window, juveniles continue to 

ingest zooplankton but no longer grow in size. In addition, at low prey densities, respiration may 

exceed resource consumption and assimilation, leading to starvation mortality for juveniles. To 

account for these conditions, we assume that growth in body size equals zero either when 

respiration exceeds resource consumption and assimilation, or 𝑆 = 	𝑆8#K, in Algorithm 9. We 
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model starvation mortality (De Roos et al. 2008) through Algorithm 10. Thus, juveniles are 

restricted to positive growth in body size as described by the piecewise equations: 

Algorithm 20. Piecewise equation describing restrictions in growth in juvenile damselfly 

body size 

5I
5%
= D

𝑒!𝑎(𝑇)
E

G-&(H)#(H)E
𝑆 − 𝜇(𝑇)𝑆	if	 =!#(H)E

G-#(H)&(H)E
	> 	𝜇(𝑇)	and	𝑆 < 	𝑆8#K ,

0	if	 =!#(H)E
G-#(H)&(H)E

< 	𝜇(𝑇)	or	𝑆 = 	𝑆8#K
         

Algorithm 21. Piecewise equation describing changes in juvenile damselfly abundance 

when respiration exceeds resource consumption and assimilation  

5D
5%
N

−𝑑(𝑇)𝐶 −∝ 𝐶J	if		 =!#(H)E
G-#(H)&(H)E

	> 	𝜇(𝑇),

O−𝑑(𝑇) + 𝑒!𝑎(𝑇)
E

G-&(H)#(H)E
− 𝜇(𝑇)Q𝐶 −∝ 𝐶J		if		 =!#(H)E

G-#(H)&(H)E
< 	𝜇(𝑇)	

    

Temperature seasonality influences the length of the growing season, the timing and 

width of the emergence window, and consumer biological rates. We vary temperature seasonally 

in Algorithm 7 according to a sinusoidal function, 

Algorithm 22. Temperature seasonality function 

5H
5%
= 𝑇#L +	𝑇#8M 	<

I12JN(%"O)
PQR

=	,         

where 𝑇#L is average yearly temperature, 𝑇#8M is the amplitude giving the temperature range, 𝑡 is 

the number of days in the year, and 𝑡 − 𝜙 is the phase shift. Increasing 𝑇#L leads to a longer 

growing season and a larger emergence window. 

Model parameterization 

 We estimated damselfly body sizes 𝑆812 and 𝑆8#K, and zooplankton carrying capacity 𝐾 

from field data (Fig. 6 in Appendix). We assume that 𝐾 is equivalent to the maximum 

zooplankton biomass in ponds during summer, although this is likely a conservative estimate 
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because predation reduces standing biomass. Other biological rates were determined from the 

primary literature or set as needed to capture population dynamics observed in ponds (Table 10 

in Appendix). We quantified parameter values for Algorithm 22 by fitting the sinusoidal function 

to our hourly pond temperature data using maximum likelihood estimation in R. We 

parameterized the temperature-dependence of biological rates 𝑎, ℎ, and 𝜇 by fitting Algorithm 7 

to our experimental data (Table 10 in Appendix). There is no clear evidence that conversion 

efficiency 𝑒! or carrying capacity 𝐾 vary with temperature (Peters 1983, Yvon-Durocher et al. 

2011, Culler et al. 2014). We also assume that 𝑟 does not vary with temperature, which is 

reasonable for our system in which the consumer feeds on a wide variety of zooplankton species 

with abundances that vary throughout the growing season, and therefore likely have different 

temperature-sensitivities that could not be captured by a single function.  

Analysis 

 We analyzed our model in four forms: the “standard model” described above, and three 

“alternative models” in which we fixed the values of parameters or algorithms to explore their 

effects on the results. In alternative model 1 we fixed consumer generation time to one 

generation per year to demonstrate the effects of varying 𝑇#L in the absence of life-history 

changes in the consumer. In alternative model 2 we allowed growing season length and the width 

of the emergence window to vary with 𝑇#L but fixed temperature-dependent biological rates in 

Algorithms 8-10 to 𝑇#L = 13 °C. Rates still varied seasonally, but did not increase with 𝑇#L. In 

alternative model 3 we allowed biological rates to increase with 𝑇#L, but restricted the growing 

season length and the width of the emergence window to their values at 𝑇#L = 13 °C. These two 

variants together demonstrate how changing season length vs. biological rates mediate consumer 

life-history and population responses to 𝑇#L.  
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 For all versions of our model, the long-term dynamics of the system Algorithms 8-11 are 

not independent of time due to temperature seasonality (Algorithm 22). We therefore simulated 

consumer-resource population dynamics for 100 years at 𝑇#L ranging from 7 to 30 °C and 

examined within-season population dynamics during the last ten years to compare consumer life-

history (number of generations per year) among temperatures. We also examined changes in the 

yearly average of consumer-resource population sizes during the last twenty years of 

simulations. Simulations with the standard model in which we varied 𝐾 or 𝜇 demonstrated that 

changes in either parameter did not strongly affect consumer-resource population dynamics, and 

therefore, we do not discuss those results further. We ran model simulations in Mathematica 

version 12.0 (Wolfram Research, 2019).  

 

Results 

Population dynamics of Enallagma annexum and zooplankton in ponds 

 We monitored consumer-resource populations during 2016-2017 in three southwestern 

Michigan ponds and found that 𝑇#L = 13 °C, and the growing season extended from April to 

November (Fig. 6 in Appendix). The average high temperature during July was 26 °C, 

corresponding to 𝑇#8M = 13 °C (Fig. 6a in Appendix). Zooplankton biomass varied throughout 

the growing season and peaked during July, with a mean across all ponds of ~ 1.5 mg/L and 

maximum of ~ 3 mg/L (Fig. 6b in Appendix). We detected newly hatched juvenile damselflies at 

the beginning of July (Fig. 6c, d in Appendix). Damselflies grew in size (Fig. 6c in Appendix) 

and declined in abundance (Fig. 6d in Appendix) throughout the growing season. They 

overwintered as juveniles, during which their average body size did not increase (Fig. 6c in 

Appendix). Damselflies resumed growing the following spring (Fig. 6c in Appendix) and 
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emerged as adults in May (Fig. 6e in Appendix). We present an idealized depiction of how these 

consumer-resource population dynamics vary over the course of a year in Figure 7 in Appendix.  

Effects of increasing temperature on consumer life-history  

 After 100 years of simulations of the standard model at different 𝑇#L, we found that 

damselflies persisted at 𝑇#L ≥ 7.5 °C, below which, the emergence window was too narrow to 

permit emergence and reproduction. By examining within-season dynamics, we found that 

increasing 𝑇#L increased damselfly rates of prey ingestion and growth, lengthened the growing 

season, increase the width of the emergence window, and enabled shorter damselfly generation 

times (Fig. 9 in Appendix). At 𝑇#L =	8 °C, damselflies had one generation every two years (Fig. 

9a in Appendix). At 𝑇#L =	13 °C, damselflies had one generation per year (Fig. 9b in Appendix), 

and at 𝑇#L =	22.5 °C, they had two generations per year (Fig. 9c in Appendix). Between these 

temperatures, damselflies had intermediate generation times. For example, between 𝑇#L =	13 and 

22.5 °C they had one generation in some years, and two in others. Between 𝑇#L = 22.5 and 30 °C, 

damselflies continued transitioning to shorter generation times (Fig. 10 in Appendix).  

Changes in consumer life-history and temperature seasonality affected consumer-resource 

population sizes and consumer persistence 

  Simulations of the standard model revealed that within a damselfly life-history strategy 

of one generation per year, the yearly average of juvenile and adult damselfly abundance, and 

zooplankton biomass, decreased with increasing temperature (Fig. 10a in Appendix). However, 

consumer-resource population sizes both abruptly increased when damselflies underwent a 

warming-induced change in life-history, for example, when transitioning from one to two 

generations per year at higher temperatures. Between 𝑇#L = 7.5 and 30 °C, the damselfly 

population size was above the persistence level and increased overall with warming (Fig. 10b in 
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Appendix). Because individual damselflies consumed more resources at higher temperatures, we 

found an overall decrease in zooplankton population biomass with warming (Fig. 10b in 

Appendix).  

 Simulations of alternative model 1 showed that damselfly population abundance declined 

with warming, and damselflies went extinct at 𝑇#L = 26 °C, when they were restricted to one 

generation or fewer per year (Fig. 11a in Appendix). As a result, the yearly average of 

zooplankton biomass remained near 𝐾 across the temperature range, and above 26 °C, 

zooplankton biomass stabilized at 𝐾. In alternative model 2, we examined the effect of fixing 

temperature-dependent biological rates to 𝑇#L = 13 °C. Similar to our standard model, juvenile 

and adult damselfly abundance declined with increasing temperature within a life-history 

strategy of one generation per year (Fig. 11b in Appendix). The damselfly population size 

increased abruptly above	𝑇#L = 22 °C as they transitioned to more than one generation per year. 

This transition occurred at a lower temperature of 16.5 °C in the standard model (Fig. 10 in 

Appendix). In contrast to the standard model, damselflies did not transition to two generations 

per year below 𝑇#L = 30 °C (Fig. 11b in Appendix).  

 In alternative model 3, in which we fixed the growing season length to 𝑇#L = 13 °C, 

damselflies did not transition to more than one generation per year unless 𝑇#L > 28 °C (Fig. 11c 

in Appendix), whereas in the standard model, they transitioned at 16.5 °C (Fig. 10 in Appendix). 

Between 𝑇#L = 12 and 28 °C, damselfly abundance declined with increasing temperature (Fig. 

11c in Appendix). Damselflies did not go extinct at very high temperatures (𝑇#L ≥ 30 °C) when 

season length was fixed. They continued transitioning to shorter generation times with increasing 

temperature as in the standard model.  
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Discussion 

 With our size-structured consumer-resource model, we demonstrate that warming results 

in larger consumer-resource populations, due to increased consumer rates of prey ingestion and 

growth, a longer growing season, and a larger emergence window that altogether enabled shorter 

consumer generation times. This life-history change in the consumer can offset warming-induced 

population declines that influence resource population biomass. In fact, high temperatures enable 

damselflies to transition to more than one generation per year, resulting in population 

persistence. In contrast, if damselflies maintain only a single generation per year, their 

population goes extinct at an average temperature of 26 °C. In addition, life-history transitions to 

more than one generation per year allowed the damselfly population size to increase at higher 

temperatures in our standard model. As a result, the larger damselfly population exerts stronger 

predation pressure, decreasing zooplankton biomass. Increasing the growing season length and 

consumer biological rates with temperature both contributed to these life-history changes in 

damselflies. Therefore, accounting for life cycle complexity and temperature seasonality 

modified the predicted effects of climate warming on consumer-resource population dynamics 

and consumer persistence.  

Warming induces changes in consumer life-history 

 We found that warming decreased damselfly generation time through two mechanisms, 

increasing biological rates and increasing season length. First, warming increased damselfly rates 

of resource ingestion and growth, advancing their emergence to the adult stage (Fig. 9 in 

Appendix). Second, warming lengthened the growing season and increased the width of the 

emergence window, which enabled damselflies to emerge a second time in some years after 

reaching the emergence size. Restricting changes in resource ingestion rates or seasonality 
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delayed life-history transitions in alternative models 2 and 3, in which damselflies did not 

transition to two generations per year at 𝑇#L ≤ 30 °C. If damselflies cannot ingest more resources 

and grow faster by increasing their resource attack and handling rates, a relatively longer season 

is necessary to permit multiple emergence events per year. Alternatively, if season length does 

not vary, the damselfly growth rate must be sufficiently high to reach the emergence size twice 

per year. However, allowing either biological rates or season length to vary with temperature was 

sufficient to prevent population extinction at high temperatures (Fig. 10 in Appendix), and 

previous research suggests that each mechanism contributes to changes in life-history. 

Experimental warming increases growth rates and advances emergence in dragonflies and 

damselflies (Nilsson-Örtman et al. 2013, Culler et al. 2014, McCauley et al. 2018a), and their 

life-histories vary latitudinally (Corbet 1999, Corbet et al. 2006). 

Changes in consumer life-history and temperature seasonality affect consumer persistence 

 Life-history transitions are necessary to offset warming-induced population declines and 

delay extinction. Restricting damselflies to one generation or fewer per year (alternative model 

1) resulted in damselfly population declines at higher temperatures due to longer exposure to 

higher rates of background and respiration mortality with a longer growing season (Fig. 11 in 

Appendix). The key to escaping increased mortality at high temperatures is decreasing the “the 

window of vulnerability”, by translating increased rates of resource ingestion and growth into 

earlier adult emergence (Benrey and Denno 1997), thereby increasing population-level 

reproduction. The benefits of faster transitions from juvenile to adult stages for offsetting higher 

mortality with warming have been demonstrated for diverse ectotherms ranging from insects to 

anurans and fish (Anderson et al. 2001, Taylor and Collie 2003, Culler et al. 2015, Chen et al. 

2019). 
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Effects of life-history transitions on resource biomass and community structure 

 Damselflies more effectively suppressed resource biomass with warming, because their 

rate of resource ingestion increased with temperature through their attack rates and handling time 

(Table 10 in Appendix), and their population size increased as they transitioned to shorter 

generation times (Fig. 10 in Appendix). Therefore, our standard model predicted a top-heavy 

community relative to our alternative models restricting changes in consumer life-history. Our 

prediction of increasing consumer to resource population size is consistent with experiments 

(Yvon-Durocher et al. 2011, Shurin et al. 2012) and the unstructured population model of 

Vasseur and McCann (2005), assuming that consumer biomass gains from ingestion increase 

more rapidly with warming than losses from respiration, and that prey carrying capacity does not 

vary with temperature (also equivalent to ‘scenario a’ of Uszko et al. 2017, their Fig. 4). Vasseur 

and McCann (2005) predicted that this scenario would increase consumer persistence and 

destabilize community dynamics. Our model does not predict destabilization of community 

dynamics because damselflies did not overexploit their prey. Two mechanisms likely explain this 

difference. First, when damselflies emerged from ponds as adults, the zooplankton biomass 

recovered to carrying capacity as adult damselflies switched to consuming terrestrial resources 

(Fig. 9 in Appendix). Second, interference mortality prevented the damselfly population from 

becoming too large and depleting its resources (see also Crowley et al. 1987). Both mechanisms 

should help prevent predator-prey cycles resulting from over-exploitation of resources (Hassell 

and May 1973, Oaten and Murdoch 1975). Therefore, incorporating life cycle complexity, 

temperature seasonality, and other components of biological realism predicts alternative 

outcomes for consumer-resource dynamics under warming compared with simpler, unstructured 

models.  
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Model assumptions  

 We included simplifying assumptions in our model that may have affected the outcome 

of increasing temperature on population dynamics. Notably, we did not include temperature 

dependence of the resource intrinsic rate of increase or carrying capacity, and we modeled 

increases in resource ingestion rates using the Arrhenius equation, even though it is now 

recognized that unimodal temperature functions are more appropriate for describing changes in 

the attack rate and maximum ingestion rate over a large temperature range (Englund et al. 2011, 

Uszko et al. 2017). We used the Arrhenius equation because it provided a better fit to our 

experimental data than a unimodal function for temperatures at or below 35 °C (Twardochleb et 

al. 2020), and we restricted model simulations to 𝑇#L ≤ 30 °C. This already represents an 

increase of 17 °C above the current average in southwestern Michigan ponds, well beyond the 

projected increase of 3 to 5 °C by 2100 for the high emissions scenario RCP 8.5 (IPCC 2014). 

Therefore, the Arrhenius equation is appropriate for modeling population responses to warming 

at or beyond temperatures that are realistic for our study system. Inclusion of a unimodal 

temperature function for resource attack and handling rates could reduce the consumer 

population size or cause extinction at high temperatures (Uszko et al. 2017). Temperature 

dependence of the zooplankton intrinsic rate of increase or carrying capacity would be unlikely 

to change the qualitative outcomes of our simulations, because damselflies never depleted their 

resources enough to induce starvation mortality. Simulations in which we varied the value of 

𝐾	from 0 to 100 at different temperatures showed that it had no qualitative effect on consumer-

resource dynamics. 

 We also made simplifying assumptions about damselfly life-history to more effectively 

demonstrate temperature effects on populations. For example, we omitted the effects of 
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photoperiod when defining the growing season and emergence window, despite its importance 

for regulating the damselfly life cycle (Ingram 1975, Ingram and Jenner 1976). We also assumed 

a linear increase in biological rates with body size, although the effects of temperature can vary 

considerably with size and life stage (Kingsolver et al. 2011). To update our model, more 

research is needed to quantify biological rates across a range of temperatures and damselfly body 

sizes. Despite these simplifying assumptions, our standard model at the reference temperature is 

faithful to the dynamics of damselfly populations in southwestern Michigan ponds (Figs. 6, 9 in 

Appendix). In addition, our model captures many of the same dynamics in the more complex 

damselfly population model of Crowley et al. (1987), including that damselflies fall into a stable 

cycle of yearly emergence within a life-history strategy and the average population size is 

smaller at lower temperatures (Figs. 9, 10 in Appendix). Their model was not designed to 

simulate climate change effects on populations, and it also differs in its depiction of transitions 

between life-history strategies (i.e., between one emergence every other year and one every year) 

by capturing “cohort-splitting”, or sub-populations that emerge in different years (Corbet 1999). 

Although our model cannot demonstrate the effects of temperature in producing sub-populations, 

it effectively captures the qualitative changes in life-history already observed in dragonflies and 

damselflies (Corbet et al. 2006, Braune et al. 2008, McCauley et al. 2018a) and other ectotherms 

in response to climate change or latitude (Roy and Sparks 2000, Musolin 2007, Hassall et al. 

2007, Matsuda et al. 2018).  

Conclusions 

 We show that changes in consumer life-history can alter the predicted outcomes of 

warming on populations compared to unstructured models parameterized for constant-

temperature environments. Uncovering this role of life-history in mediating organism responses 
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to warming was only possible when we incorporated life cycle complexity and temperature 

seasonality in our size-structured consumer-resource model. We further show that warming can 

induce changes in ectotherm generation times by increasing rates of resource ingestion and 

growth or lengthening the growing season. Moreover, life-history changes can prevent consumer 

population declines with warming by shortening the duration of the juvenile stage and “the 

window of vulnerability” to mortality, increasing the number of emerging adults and population-

level reproduction. In contrast to unstructured models with similar assumptions, we find 

increased stability of consumer-resource populations with increased predator persistence. Our 

study reveals mechanisms by which climate change and latitude can affect ectotherm life-

histories and populations. Overall, our study suggests that life-history transitions to shorter 

generation times could delay population extinctions with warming. Life cycle complexity and 

temperature seasonality should therefore be incorporated into research investigating the impacts 

of climate warming on consumer-resource populations in seasonal environments.  
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Table 10. Model variables and default parameter values. *Average fecundity is 618 eggs 

female damselfly-1 or 309 damselfly-1. †Selected such that modeled dynamics match population 

dynamics observed in field measurement. ‡Measurements from our experiments closely match 

those for Enallagma from (Culler et al. 2014).  

Parameter Value Unit Interpretation Source 
𝑟	 1 day-1 Resource intrinsic rate 

of increase 
 

𝐾	 3 mg L-1 Resource carrying 
capacity 

Field measurements 

𝑎	 1.8756 L day mg damselfly-1  Mass-specific consumer 
attack rate 

Twardochleb et al. 
2020 

ℎ	 3.75 days mg damselfly mg 
Daphnia-1  

Consumer handling time † 

𝜇	 0.19 mg mg day1 Consumer respiration 
rate 

Twardochleb et al. 
2020 ‡ 

𝑒! 0.85 unitless proportion Consumer conversion 
efficiency 

Culler et al. 2014, 
Lang et al. 2017 

𝑑	 0.006 day-1 damselfly-1 Per capita consumer 
background mortality 

McPeek and 
Peckarsky 1998 

∝	 0.01 day-1 damselfly-1 Per capita interference 
mortality coefficient 

Anholt 1990 

𝑆"#$ 	 0.01 mg Initial consumer mass Field measurements 
𝑆"%& 	 4.5 mg Maximum juvenile 

consumer mass 
Field measurements 

𝑓	 309 eggs damselfly-1 Total per capita 
consumer fecundity 

Bots et al. 2010* 

𝐸𝑎	 0.55 eV (electron volts) Activation energy of 
attack rate 

Twardochleb et al. 
2020 

𝐸ℎ	 -0.37 eV (electron volts) Activation energy of 
handling time 

Twardochleb et al. 
2020 

𝐸𝜇	 0.36 eV (electron volts) Activation energy of 
respiration 

Twardochleb et al. 
2020‡ 

𝐸𝑑	 0.57 eV (electron volts) Activation energy of 
background mortality 

McCoy and Bolker 
2008 

𝑇%'	 13 ºC Average yearly 
temperature 

Field measurements 

𝑇%"(	 13 ºC Amplitude of yearly 
temperature 

Field measurements 

𝜙	 365/4 days Phase shift of 
temperature function 

Field measurements 
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Figure 6. Average seasonal dynamics in three ponds. a) temperature from May 2016 to May 

2017 overlayed with vertical lines indicating the time period for consumer-resource population 

dynamics shown in panels b-e); b) zooplankton biomass during the 2016 growing season (pond 

temperature > 10 ºC); c) juvenile damselfly head capsule width (a proxy for body size) increased 

after juvenile damselflies hatched in July 2016 and reached its maximum in April and May 2017 
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Figure 6. (cont’d) just before damselflies emerged to the adult stage; d) juvenile damselfly 

abundance was highest in the summer of 2016 after juvenile damselflies hatched and declined 

throughout the growing season. Abundance was at a minimum in May-June 2017 when 

damselflies emerged from the pond to the adult stage; e) damselfly emergence to the adult stage 

occurred throughout May 2017. In b), c), and d) no samples were taken December 2016 through 

March 2017. Zooplankton icon courtesy of Integration and Application Network. 
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Figure 7. Idealized depiction of consumer-resource population dynamics in Michigan 

ponds throughout a year. Here damselflies have one generation per year. Top panel: 

zooplankton biomass varies seasonally and peaks in mid-July. Middle panel: damselfly body size 
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Figure 7. (cont’d) is at its minimum after juvenile damselflies hatch in early summer. Juvenile 

damselflies grow in size (black lines) over the course of the year and overwinter in a state of 

reduced activity and growth. They resume growth the following spring and emerge to the adult 

stage. Adult damselflies spend ~30 days outside of ponds foraging and reproducing (orange bars 

depict adult size and duration outside of ponds). Bottom panel: juvenile damselfly abundance 

(blue lines) is high after they hatch in early summer and declines due to background and 

respiration mortality throughout the year. In spring of the following year, damselflies emerge to 

the adult stage (orange bars depict adult abundance and duration spent outside of the pond) and 

reproduce. Juvenile abundance is high in ponds after juvenile damselflies hatch.  
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Figure 8. Conceptual diagram of the size-structured consumer-resource model. Top panel: 

within a growing season, juvenile damselflies grow in size when their ingestion of zooplankton 

exceeds metabolism, which reduces zooplankton biomass. Juvenile damselfly abundance is 

reduced through background and interference mortality, and also through respiration mortality 

when metabolism exceeds ingestion. Damselflies emerge to the adult stage when their body size 

is equal to 𝑆8#K and temperature exceeds 20 ºC, which is represented by a discrete event within 
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Figure 8. (cont’d) otherwise continuous dynamics. In a second discrete event, reproduction by 

adult damselflies produces the following cohort of damselflies. State variables are shown in 

ovals, biological events affecting state variables are enclosed in rectangles, and biological rates 

affecting each event are in parentheses. Temperature-dependent parameters are shown with a 

bracketed T. Bottom panel: biological rates vary in our model with both average temperature 

(Algorithm 7) and seasonal changes in temperature (Algorithm 22). Zooplankton icon courtesy 

of Integration and Application Network. 
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Figure 9. Modeled within season dynamics. Modeled for a) average temperature of 8 ºC, 

damselflies have one generation every other year; b) 13 ºC (reference temperature), one 

generation per year; and c) 22.5 ºC, two generations per year. From left to right: solid lines 

represent temperature, zooplankton biomass, damselfly body size, and damselfly abundance 

during one growing season. Broken lines on plots of zooplankton biomass indicate the break-

even zooplankton biomass required for damselflies to avoid starvation mortality. Broken lines on 

plots of damselfly body size indicate 𝑆8#K, the threshold size for emergence to the adult stage. 
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Figure 9. (cont’d) Blue fill on plots of damselfly abundance give the juvenile abundance, and 

orange bars are the number of emerging adults multiplied by their fecundity. This gives the 

number of new damselflies produced during the emergence window. Black vertical lines on plots 

indicate the duration of the growing season (temperature ≥ 20 ºC) and gray bars at the bottom of 

plots indicate the width of the emergence window (temperature ≥ 10 ºC).  
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Figure 10. Bifurcation diagrams demonstrating effects of temperature in our standard 

model. Yearly average zooplankton biomass (bottom panel), juvenile damselfly abundance 

(middle panel), and the number of emerging adult damselflies multiplied by their fecundity, 

a) Trajectory by life-history 
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Figure 10. (cont’d) giving the number of new damselflies produced during the emergence 

window (top panel). Vertical lines and annotations at the top of each panel divide the diagram 

according to the damselflies’ qualitative life-history dynamics. From left to right, as temperature 

increases damselflies transition from fewer than one generation per year to more than two 

generations per year. Solid arrows in panel a) show population trajectories within a damselfly 

life-history strategy (e.g. one or fewer generations per year). Broken arrows track abrupt shifts in 

population size at major life-history transitions (e.g. when damselflies transition from one to 

more generations per year). Solid arrows in panel b) demonstrate overall population trajectories 

across the temperature range. 
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Figure 11. Bifurcation diagrams demonstrating effects of temperature in our alternative 

models. a) alternative model 1, b) alternative model 2, c) alternative model 3. Panels and 

annotations are as in Figure 10. From left to right in each panel, as temperature increases 

damselflies transition from fewer than one generation per year to more than one generation per 

year, except in a) damselflies go extinct at high temperatures. Solid arrows show population 

trajectories within a damselfly life-history strategy (e.g. one or fewer generations per year). 

Broken arrows track abrupt shifts in population size when damselflies transition from one to 

more generations per year. 
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CHAPTER 3. Freshwater insect occurrences and traits for the contiguous United States 

 

†The following co-authors contributed to this chapter: Laura Twardochleb, Ethan Hiltner, 

Matthew Pyne, and Phoebe Zarnetske 

††Upon publication of this chapter, the data package referenced herein will be openly accessible 

through Environmental Data Initiative with the following citation:  

Twardochleb, L.A., E. Hiltner, M. Pyne, P. Bills, and P.L. Zarnetske. 2020. Freshwater insect 

occurrences and traits for the contiguous United States, 2001 - 2018 ver 5. Environmental Data 

Initiative. https://doi.org/10.6073/pasta/8238ea9bc15840844b3a023b6b6ed158.  

 

Abstract 

 Freshwater insects are essential indicators of ecosystem health. They comprise 60% of 

freshwater animal diversity, are widely used to assess water quality, and provide prey for 

numerous freshwater and terrestrial taxa. Our knowledge of the distribution of freshwater insect 

diversity in the United States is incomplete because we lack comprehensive, standardized data on 

their distributions and traits at the scale of the contiguous US (CONUS). We fill this knowledge 

gap by presenting a database of 2.05 million occurrence records for 932 genera in the major 

freshwater insect orders, at 51,044 stream locations sampled between 2001 and 2018 by federal 

and state biological monitoring programs. We tripled the number of occurrence records and 

locations, and added records for 118 genera, over existing open-access databases. We also 

present life history, dispersal, morphology, and ecology traits and trait affinities (analogous to 

fuzzy-coded traits) for 1,007 stream insect genera, assembled from existing databases, reference 

books, and the primary literature. We nearly doubled the number of traits for 11 trait groups and 

added traits for 180 genera that were not available from open-access databases. Our database, 
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Freshwater insect occurrences and traits for the contiguous United States (Freshwater insects 

CONUS), facilitates mapping freshwater insect taxonomic and functional diversity, and when 

paired with environmental data, will provide a powerful resource for quantifying how the 

environment shapes stream insect diversity and taxon-specific distributions.  

 

Introduction 

 Understanding the distribution of biological diversity at continental scales is a key goal of 

biogeography, community ecology, and conservation research (Ricklefs et al. 1993, Wiens and 

Donoghue 2004, Pereira et al. 2013). Species occurrence records and functional traits are needed 

to quantify and map taxonomic and functional diversity for monitoring and assessing 

environmental influences on populations, ecological communities, and ecosystem functioning 

(Pereira et al. 2013, Jetz et al. 2019). Taxon-specific distribution data are also essential for 

predicting geographic ranges and species responses to global change, important facets of 

conservation planning (Rodríguez et al. 2007, Serra-Diaz and Franklin 2019). Ecologists have 

made progress toward assembling taxonomic occurrence and trait datasets that enable mapping 

broad-scale biodiversity patterns of terrestrial organisms (e.g., Belmaker and Jetz 2011, Butler et 

al. 2017), marine organisms (Grady et al. 2019), and freshwater fish (Comte and Olden 2017). 

Despite this progress, open-access biodiversity datasets for freshwater insects, such as the 

USEPA Freshwater Biological Traits database (USEPA database, U.S. EPA 2012, Poff et al. 

2006, Vieira et al. 2006), and the Water Quality Portal (WQP, waterqualitydata.us) are not easily 

combined for biodiversity mapping, because they contain outdated taxonomic names and trait 

terminology, and have gaps in trait assignment for many taxa. In addition, they do not provide 

fuzzy traits commonly used by researchers in European and other regions that would facilitate 



 95 

cross-continental comparisons and assembly of global trait databases (Schmera et al. 2015). 

Below we briefly describe the history, uses, and limitations of existing databases, and the need 

for integrated, comprehensive, and standardized trait and occurrence datasets for mapping 

taxonomic and functional diversity and taxon-specific distributions of freshwater insects in the 

contiguous US. 

  Freshwater insects are indicators of ecosystem health, and changes to their biodiversity 

can signal wider shifts in biodiversity of other taxonomic groups and ecosystem functioning 

(Covich et al. 1999, Bonada et al. 2006, Suter and Cormier 2015). Despite the importance of 

freshwater insects in both aquatic and terrestrial realms (Covich et al. 1999, Baxter et al. 2005), 

there are significant gaps in our knowledge of their biodiversity patterns (Balian et al. 2008). 

Without data on their occurrences and traits, it is difficult to map distributions of freshwater 

insect taxonomic and trait diversity, especially at broad scales (Balian et al. 2008 Troia and 

McManamay 2016). It is critical that we fill these knowledge gaps because freshwater insects are 

used to assess water quality (Barbour et al. 2000, Bonada et al. 2006) and provide prey for 

numerous taxa, including freshwater fish, riparian birds, bats, and lizards (Baxter et al. 2005).  

 Systematic surveys of ecological communities provide some of the highest quality 

occurrence data for assessing biodiversity, but few of these datasets have been integrated over 

large spatial scales, especially for freshwater insects (Troia and McManamay 2016, Jetz et al. 

2019). Incidence data and range maps are also limiting for freshwater insects. For example, 

insect occurrence records from the Global Biodiversity Information Facility (GBIF), derived 

primarily from museum collections, are sparse (Troia and McManamay 2016), and expert range 

maps from the International Union for the Conservation of Nature (IUCN) are only available for 

one of the nine major freshwater insect orders, damselflies and dragonflies (Odonata), (IUCN, 
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2020). Because ecologists still lack a dataset of systematically surveyed, freshwater insect 

occurrence records covering the major freshwater insect orders and spanning the contiguous US, 

previous studies have mapped stream insect diversity only for a subset of insect orders (e.g., 

Ephemeroptera, Plecoptera, Trichoptera, Vinson and Hawkins 2003, Shah et al. 2014) or for 

regions of the US (Poff et al. 2010, Pyne and Poff 2017). One of our goals is to integrate 

systematically surveyed community data for freshwater insects into occurrence datasets for 

biodiversity mapping.  

 Environmental agencies in the United States and in countries throughout the world use 

macroinvertebrates in bioassessment of stream condition in compliance with mandates to protect 

the ecological integrity of surface waters (Barbour et al. 2000, Bonada et al. 2006). In the US, 

local, tribal, state, and federal agencies have monitored macroinvertebrate community 

composition at georeferenced stream locations since the passage of the Clean Water Act in 1972 

(Barbour et al. 2000). These systematic community surveys provide a rich source of information 

about stream insect occurrences. Some of these data are already publicly available online through 

the Water Quality Portal (WQP, waterqualitydata.us), including data from the US Geological 

Survey (USGS) National Water Quality Assessment and the US Environmental Protection 

Agency (USEPA) National Aquatic Resource Surveys. However, additional monitoring data 

from state agencies have yet to be integrated and released as open-access datasets. A database is 

needed that collates and standardizes the biological monitoring data from these disparate sources 

and integrates it with trait databases using consistent and updated trait terminology (Schmera et 

al. 2015) and up-to-date taxonomy. It is important to standardize and integrate traits with 

freshwater insect occurrence records, because trait distributions are needed to assess biodiversity 

patterns and monitor the ecological integrity of surface waters (Statzner and Bêche 2010, 
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Schmera et al. 2017). An integrated database of occurrence records and functional traits will 

facilitate mapping of stream insect diversity in the US. 

 There is a long history in stream ecology of using functional traits of stream 

macroinvertebrates to measure aquatic community and ecosystem responses to environmental 

stressors (Dolédec et al. 1999, Statzner and Bêche 2010). The composition of insect traits, such 

as body size, functional feeding group, and morphology, is influenced both by instream habitat 

measures, including velocity and timing of stream flow (the habitat template, Townsend and 

Hildrew 1994), and landscape filters, including climate and human activity (Poff 1997). 

Therefore, trait composition of stream insect communities is often used to infer impacts of 

human disturbance (Bonada et al. 2006), and traits are widely incorporated into indicator 

analyses by state and federal agencies for assessing stream condition (e.g., Stoddard et al. 2008, 

Mazor et al. 2016). Previous efforts to standardize and document traits of stream insects for the 

US have resulted in a widely used, publicly available dataset, the USEPA Freshwater Biological 

Traits database (U.S. EPA 2012). The initial data for the USEPA database were compiled for 

USGS by Vieira et al. (2006) and subsequently reclassified by Poff et al. (2006) to reflect 

functional trait niches of lotic insects. However, there remain significant gaps in trait coverage. 

Many insect taxa were never assigned traits, and many more have assignments for just a single 

trait, such as body size. The USEPA database also contains limited data on trait variation within 

genera, either by species, literature source, or geographic region, and the database does not 

summarize this variation using fuzzy trait assignments commonly used by researchers in Europe 

and other regions (Schmera et al. 2015). Moreover, the trait assignments are not consistent with a 

recently proposed unified terminology for traits of stream organisms (Schmera et al. 2015). 

Therefore, the US traits are not compatible with those used in Europe and other regions. 
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Expanding on the USEPA traits database by increasing the number of trait assignments, 

standardizing taxonomy and trait terminology, and providing trait variation in the form of fuzzy 

traits would facilitate continental and global mapping of stream insect trait composition and 

functional diversity. 

 We present a database, Freshwater insect occurrences and traits for the contiguous US 

(Freshwater insects CONUS), for genera from the major freshwater insect orders: Coleoptera, 

Diptera, Ephemeroptera, Hemiptera, Lepidoptera, Megaloptera, Neuroptera, Odonata, 

Plecoptera, and Trichoptera. Our occurrence dataset contains over 2.05 million occurrence 

records for 932 genera sampled from 51,044 stream locations between 2001 and 2018. Our trait 

dataset includes dispersal, ecology, life-history, and morphology traits (Table 11 in Appendix) 

assigned at the genus level for 1,007 freshwater insect genera, including the 932 genera in our 

occurrence dataset. Our occurrence records are primarily from wadable streams, and our trait 

dataset is primarily for stream insects, although some occurrence records are from larger rivers, 

and some insects assigned traits also occur in ponds, lakes, or rivers. We build upon the 

foundational occurrence and trait databases described above by integrating occurrence records 

from state agencies that were not accessible online and providing updated, standardized 

taxonomy and trait terminology. We also greatly expanded the number of insect genera with trait 

assignments and provided fuzzy traits to facilitate integration and comparison with trait 

databases in other regions of the world. Together, these datasets enable mapping both taxonomic 

and functional diversity of stream insects, as well as distributions of individual insect genera and 

traits. 
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Methods 

 We implemented five sequential steps of compiling data sources, digitalizing data, data 

cleaning, taxonomic harmonization, and trait assignment (Fig. 12 in Appendix). We detail these 

steps below. 

Data sources 

 We compiled our freshwater insect occurrence dataset by downloading records from the 

WQP in February 2017 as follows. We selected “All” for Location, Site, and Sampling 

parameters. We selected “Invertebrates” and “Benthic macroinvertebrates” for the Assemblage 

and “All” for the Taxonomic Name under Biological Sampling parameters. This resulted in a 

dataset of 2,738,480 records for macroinvertebrate taxa identified to order, family, genus, or 

species from 66,356 sampling locations, before data cleaning and taxonomic harmonization. To 

fill spatial gaps in occurrence records, we requested biomonitoring data from 30 state agencies, 

and downloaded or received records from 19 agencies. This added 6,067,204 records from 

55,791 locations, some of which were duplicates of the WQP data. 

We began assembling the freshwater insect trait dataset by downloading records from the 

USEPA database in September 2017. The USEPA database contains trait information from 967 

publications and government reports spanning 2005 to 2017, but primary data sources are Vieira 

et al. (2006) and Poff et al. (2006). The database includes habitat, life history, mobility, 

morphology and ecology trait data for 1,343 North American macroinvertebrate genera, 

including freshwater insects, mollusks, and arachnids. We subset the USEPA database to include 

only insect taxa, which resulted in a dataset of traits for 908 insect genera before harmonizing 

genus names with the latest taxonomic designations. We cross-referenced genera between the 

USEPA database and our occurrence dataset to search for taxa without trait assignments, 
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identified the needed traits for those taxa, and filled the gaps in trait data through systematic 

literature review (outlined below). We also added trait data for taxa already in the USEPA 

database that were missing assignments for some traits. 

We began by merging unpublished trait data compiled in 2014 by M. I. Pyne for a 

California project on stream hydrology (Mazor et al. 2016, Stein et al. 2017). This dataset 

focused on macroinvertebrates found in California streams that were not represented in the Poff 

et al. (2006) trait database and included trait assignments for 73 insect genera not in the USEPA 

database. The 2014 trait data were compiled using a systematic search of 1) the Vieira et al. 

(2006) and USEPA trait databases, 2) freshwater entomology books and taxonomic identification 

manuals, and 3) peer-reviewed articles of each taxon (mostly at genus level) that contained life-

history information (Usinger 1963, Edmunds et al. 1976, Menke 1979, Brigham et al. 1982, 

McAlpine and Wood 1989, Hilsenhoff 1995, Westfall and May 1996, Wiggins 1996, McCafferty 

1998, Needham et al. 2000, Smith 2001, Stewart and Stark 2002, Ward et al. 2002, Epler 2006, 

Merritt et al. 2008, Thorp and Covich 2009, Epler 2010, Tachet et al. 2010). If there were 

remaining gaps in trait information, an expert taxonomist was consulted to fill in the gaps (Boris 

Kondratieff, personal communication).  

After merging the unpublished trait data, we conducted an initial search of the freshwater 

insect trait literature in the contiguous US. We began by searching freshwater entomology books 

and published and online taxonomic identification manuals. We then followed established 

guidelines for conducting a systematic search of the primary literature (Pullin and Stewart 2006). 

We searched Web of Science, Google Scholar, and the Michigan State Library Catalog to 

identify peer-reviewed papers containing information on the ecology of freshwater insects. This 

search was conducted from September 2017 to December 2018 and referenced papers from 1911 
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to 2018. We used the following search terms: genus AND Emergence synchron* OR emergence 

season* OR feed mode* OR dispersal* OR flight strength OR flying strength OR voltinism OR 

thermal preference OR rheophil* OR respir* OR body size OR habit OR larvae OR gill OR 

tegument OR plastron OR depositional OR erosional. We retained sources published in English 

with one or more of these search terms in the abstract, title, or key words, and that contained 

dispersal, ecology, life history, or morphology information for freshwater insects of North 

America. In addition to published trait sources, we used iNaturalist citizen science data 

(iNaturalist 2018) to assign emergence season. These data consist of time-stamped occurrence 

records submitted by commercial and recreational fisherman since May 2013 in order to track 

emergence dates of freshwater insects across North America. Sources for trait data are provided 

in the final data tables (Fig. 13 in Appendix). 

Data digitalization 

 We digitized details about sampling methodology that were absent from state datasets. 

We requested the geodetic datum of horizontal coordinates for sampling locations through E-

mails with agencies. We also recorded the sampling equipment and area of stream bottom 

sampled by requesting methodology directly from agencies or by digitizing information in state 

field sampling manuals. These details could potentially be used to estimate sampling effort 

across sites. Yet, many agencies did not record their sampling methods for some samples, and 

thus gaps remain in the documentation of sampling methodology.  

When digitizing trait information, we focused on a subset of the traits originally 

documented in the USEPA database that should be influenced by environmental gradients of 

climate, land use, topography, and base flow that are important predictors of stream insect 

functional composition at broad spatial extents (Bonada et al. 2007, Díaz et al. 2007, Lawrence 
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et al. 2010, Poff et al. 2010, Statzner and Bêche 2010, Pyne and Poff 2017). We organized traits 

following recommendations for a global, unified trait terminology for stream ecology (Schmera 

et al. 2015), by creating “trait groups” of closely related traits (e.g. “small”, “medium”, and 

“large” are traits of the trait group “maximum body size”), and summarizing related trait groups 

into “grouping features” of life history, dispersal, morphology, or ecology (Table 11 in 

Appendix).  

When digitizing traits from entomology books and taxonomic guides we reviewed each 

source for all genera in our database with missing traits. When pulling information from the 

primary literature, we systematically searched for traits one genus at a time. Where possible, we 

also converted trait textual descriptions in the “comments” column of the USEPA database into 

trait assignments. We recorded traits at the genus or the species level using accepted trait 

definitions (Table 11 in Appendix). We documented trait variation within each genus by 

separating sources by row when compiling traits from multiple literature sources for a single 

genus. In addition, traits for the same genus from different geographical regions, and traits for 

different species within a genus were separated by row. Thus, each genus could have a different 

trait recorded for each row based on the species, region, and literature source. If, for any source 

(within a row) there were two or more possible traits from the same trait group (Table 11 in 

Appendix), we recorded the most commonly occurring trait documented by the source while also 

noting all other possible traits as “trait comments”. Although the traits recorded as “comments” 

did not influence final trait assignments, they are provided with the final datasets as additional 

natural history information. We summarized trait variation across rows within a genus (across 

species, regions, and literature sources) into trait affinity scores (analogous to fuzzy-coded traits; 

see Assigning traits, below). 
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One of the limitations of both the USEPA database and our database is that traits are not 

well defined by life-history stage for certain taxa. Most freshwater insects have an obligate 

aquatic larval stage transitioning to a terrestrial adult stage, and traits for these insects are 

assigned for the aquatic larval stage. However, many insects in the orders Coleoptera and 

Hemiptera are aquatic in both the larval and adult stages and have traits that differ by stage 

(Merritt et al. 2008). Most trait entries for these taxa in the USEPA database are for the adult 

stage. Similarly, we found during our systematic search of the trait literature that adult traits for 

Coleoptera and Hemiptera were more commonly available than larval traits. Therefore, there is a 

bias toward traits for adult stages of Coleoptera and Hemiptera in our database.  

Data cleaning 

 During the first step of data cleaning, we removed duplicate occurrence records and those 

with missing coordinates. Next, we visually examined records for georeferencing errors by 

mapping all occurrence locations for each insect family and comparing maps of their 

distributions to GBIF range maps (GBIF 2020). This represents an independent assessment of 

range, as most GBIF records are from museum collections. In addition, we searched data 

providers and datasets in GBIF for the agencies that provided our occurrence records and found 

no records of data contributions to GBIF from those providers. We removed obvious 

geographical outliers (e.g., points in the ocean), corrected transposed latitude and longitude 

coordinates, and coordinates with an incorrect sign on the decimal degrees of latitude or 

longitude. We also mapped data by state to asses georeferencing errors (records falling outside 

state bounds). In total, we removed 5,325,297 duplicate records and 836,310 records that were 

missing sampling coordinates or contained georeferencing errors. We then removed an additional 

211,627 records during taxonomic harmonization (see below) either because records were for 
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non-insect taxa, or misspellings or other errors rendered the taxa unidentifiable. This resulted in a 

dataset of 2,432,450 occurrence records of insects identified to order, family, genus, or species, 

from 55,791 sampling locations. We performed data cleaning and taxonomic harmonization in R 

version 3.5.3 (R Core Team 2019). Scripts with R code for data cleaning are provided through 

GitHub and the Environmental Data Initiative (see Data accessibility, below). 

Taxonomic harmonization 

 After data cleaning, we verified and harmonized taxonomic names between the 

occurrence and trait datasets using the ‘taxize’ package version 0.9.92 in R (Chamberlain et al. 

2019). We used ‘taxize’ to search the database of the Integrated Taxonomic Information System 

(ITIS) to extract updated genus names, taxonomic serial numbers, and upstream names (Family, 

Order) for each taxon. Some names were not found in the ITIS database due to misspellings, 

missing data in ITIS (e.g. for recently identified taxa), or because names were invalid, and ITIS 

contained no valid synonyms. For these cases, we verified names by manually searching other 

online sources, including GBIF (GBIF 2020), IUCN (IUCN 2020), and the primary literature. 

We accepted names that were listed as valid US taxa by a majority of sources. Although we 

assigned an accepted name for those taxa, we could not assign an accepted taxonomic serial 

number from ITIS. In addition, some names could not be verified using any source. For those 

taxa, we assigned the valid upstream name (Family or Order) from ITIS. In total, we re-assigned 

names for 413 taxa in the trait dataset, including 58 changes to the genus name. In the occurrence 

dataset, we re-assigned 704 names, including 177 genus names, 96 of which were combined into 

36 genera. 
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Assigning traits 

 We assigned traits at the genus level in two ways, as modal traits and trait affinities (Fig. 

12 in Appendix). We assigned modal traits as the most frequently occurring trait in a trait group 

(Table 11 in Appendix) across all species, geographic regions, and literature sources (rows) for a 

genus. Affinity scores account for trait variation within a genus by species, geographic region, or 

literature source, and are analogous to fuzzy-coded traits used by researchers in Europe and other 

regions (Usseglio-Polatera et al. 2000, Schmera et al. 2015). Trait affinities differ from fuzzy-

coded traits in that they are assigned as proportions, whereas fuzzy-coded traits are assigned 

using an ordinal scale (Usseglio-Polatera et al. 2000, Schmera et al., 2015). They were assigned 

by computing the proportion of rows for each genus that were assigned to each trait in a trait 

group, such that each row counted as a single trait contribution. Thus, each species, geographic 

location, and literature source for a genus contributed a single value toward the affinity score. 

Affinity scores sum to 1 across all traits in a trait group for each genus. 

 

Results    

Data organization and usage 

 The freshwater insects CONUS database is organized as nine relational data tables with 

associated metadata (Fig. 13, Table 12 in Appendix). Metadata accompanying the dataset 

includes information on project funding, contributors, geographic and temporal scope, variable 

names, descriptions, measurement scales, missing values, and trait codes. We provide our data 

tables as .csv files with metadata through Environmental Data Initiative (EDI). The R scripts that 

we used for data cleaning are also available through EDI and GitHub. We encourage 

submissions of occurrence and trait records for future updates to the database. A template and 
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instructions for data submission is available at GitHub. See Data accessibility, below, for links to 

the EDI and GitHub repositories. 

 Here, we describe a few of the many uses for our database. In its “raw” form users can 

extract trait data for insects identified to order, family, genus, or species by merging the 

Raw_Traits table with the Ancillary_Trait and Ancillary_Taxonomy tables (Fig. 13 in 

Appendix). We recorded trait variation in Raw_Traits, with each row for a genus presenting trait 

data for a different species, location, or literature source. Users can thus extract traits by state 

(“Study_location_state”) or literature source (“Study_citation”), or summarize trait variation 

within a genus, family, or order when the Raw_Traits table is merged with the 

Ancillary_Taxonomy table (through the “Submitted_name” column). In addition, users can 

merge the Raw_Community_Data and Ancillary_Taxonomy tables (Fig. 13 in Appendix) to find 

occurrence records for insect species and map their distributions across the US (as in Fig. 14 for 

insect genera, in Appendix). Searching columns in the Raw_Community_Data table enables 

users to extract and map insect records for each state (“Study_state” column), monitoring 

organization (“Monitoring_organization” column), or type of water body 

(“Location_description” column). Moreover, merging the Raw_Community_Data and 

Ancillary_Sample_Method tables will enable users to isolate records that were sampled using a 

particular equipment or protocol, such as a Hess sampler, D-frame aquatic dipnet, or Hester-

Dendy sampler by searching the “Sample_method” column.  

 In the “cleaned” form of the database, the Genus_Occurrences table enables users to map 

genus richness (Fig. 14a in Appendix) and the distributions of individual insect genera. In 

addition, when merged with the Ancillary_Taxonomy table, records in the Genus_Occurrences 

table enable mapping distributions of genus richness and individual insect genera by family or 
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order (Fig. 14b in Appendix). A great strength of the “cleaned” data tables comes from merging 

the Genus_Occurrences table with the Genus_Traits or Genus_Trait_Affinities table using the 

“Genus” columns. This enables users to examine the spatial distributions of insect traits and trait 

affinities by genus (Fig. 15 in Appendix), and family or order when also combined with the 

Ancillary_Taxonomy table. More nuanced mapping of trait distributions is also possible. For 

example, users could map trait distributions for a particular state, monitoring organization, water 

body type, or sampling methodology, as described above for the “raw” data tables.  

Biodiversity patterns in data 

 We mapped insect genus richness by location using data in Genus_Occurrences (Fig. 14 

in Appendix). By merging Genus_Occurrences and Genus_Traits, we also mapped distributions 

of freshwater insect functional traits for the contiguous US (Fig. 15 in Appendix). These maps 

reveal some obvious sampling biases (see Bias in occurrence and trait records, below) and 

interesting patterns in the distributions of functional traits. For example, insect genera with 

bivoltine or multivoltine life cycles, corresponding to short generation times, and genera that 

prefer warm eurythermal habitats are concentrated in warm, low-lying regions, including 

southern California and Florida (Fig. 15 in Appendix). We see opposite patterns for some 

rheophily and respiration traits, where gilled insects and those preferring erosional habitats are 

concentrated in mountain regions of the Western and Northeastern US. Previous studies suggest 

that gilled insects and those with adaptations to life in erosional habitats should be found in cool, 

well-oxygenated, and fast-flowing waters, such as are found in high elevation streams (Poff et al. 

2010, Statzner and Bêche, 2010). These hypotheses could be tested definitively by combining 

our database with environmental data.  
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Bias in occurrence and trait records 

 Our maps of genus richness (Fig. 14 in Appendix) clearly illustrate spatial bias in 

occurrence records. These biases are partly due to the fact that some state agencies have not 

digitized their biological monitoring data. Moreover, sampling effort, including the number of 

samples, and the area sampled, varied within and among datasets. These sources of bias resulted 

in sparse genus occurrence records in several states in the Midwest, mountain West, and 

Southeastern US (Fig. 14a in Appendix). There are also obvious gaps in occurrences and traits 

for the insect orders Hemiptera, Lepidoptera, Megaloptera, and Neuroptera (Fig. 14b, Table 13 in 

Appendix). Fewer aquatic insect genera reside within these orders compared to the obligate 

aquatic orders Ephemeroptera, Plecoptera, and Trichoptera, or the other well-represented aquatic 

orders Coleoptera and Diptera. Their relative rarity could have resulted in training biases in 

which aquatic ecologists and taxonomists are less likely to accurately identify uncommon taxa, 

or targeted sampling biases in which sampling methodology is designed to capture genera from 

common orders.  

 Another common source of bias originated when identifying specimens in the laboratory. 

Some state agencies identify all macroinvertebrate specimens to family, whereas others use 

inconsistent methodology by identifying some taxonomic groups (e.g., Dipterans) to family or 

order, and other groups to genus. We removed all records for insects identified to family when 

producing our Genus_Occurrences table, which effectively excluded whole state datasets. 

However, records for insects identified to family or order are still available in 

Raw_Community_Data.  

 Biases in occurrence records could be corrected by aggregating records using a larger 

spatial unit and then applying coverage-based rarefaction (Chao and Jost 2012) to down-weight 
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the influence of well-sampled areas on spatial patterns of genus richness. For example, one could 

aggregate occurrence records by watershed (e.g., USGS hydrologic units), treating each 

occurrence location as a spatial replicate, and then compute the sample coverage in each 

watershed. One would then rarefy or interpolate genus richness for equal levels of sample 

coverage across watersheds. Coverage-based rarefaction can be performed with the ‘iNext” 

package in R (Hsieh et al. 2016). The R packages “biogeo” and “dismo” can also assist with 

assessing bias in occurrence records and modeling genus distributions (Hijmans et al. 2017, 

Robertson et al. 2016).  

 Trait coverage was most complete for the ecology trait groups feeding style, habit, and 

rheophily, and the morphology trait group maximum body size (Fig. 16a in Appendix). The trait 

groups with the fewest genera with assignments included the following life history and dispersal 

trait groups: synchronization of emergence, emergence season, female dispersal, and adult flying 

strength (Fig. 16a in Appendix). Approximately half of the insect genera in our database are still 

missing assignments for these four trait groups. In addition, there are gaps in coverage for all 

traits; no trait group contains a trait assignment for every genus in our database. These gaps 

highlight the need for more trait measurements of freshwater insects, especially insects in the 

orders Hemiptera, Lepidoptera, Megaloptera, and Neuroptera (Fig. 14b, Table 13 in Appendix). 

Moreover, there is bias toward adult stage traits for Coleoptera and Hemiptera (see Data 

digitalization, above), which indicates that more trait measurements are also needed for larval 

stages of insects in these orders. We expect that additional trait data is available in books and 

scientific articles that has yet to be digitized and standardized, and many research programs have 

trait datasets that are not published in any form. We encourage submission of these unpublished 

datasets to future updates of our database (see Data accessibility, below).  
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 Data sources for most of our 11 trait categories were from every state in the contiguous 

US. However, there are geographic biases in trait assignments for certain trait groups, including 

female dispersal and emergence synchrony, which we derived from studies conducted in fewer 

than 30 states. Another source of geographic bias arises from the USEPA database, which 

contains a large amount of trait information from insects in Maine, North Carolina, and Utah. In 

addition, the trait data from the USEPA database were compiled by researchers from Colorado 

State University (Poff et al. 2006, Vieira et al. 2006), and the traits for our database, Freshwater 

insects CONUS, were compiled by researchers at Michigan State University. Each of these 

components could bias the assignment of modal traits or affinities for certain trait groups, such as 

thermal preference, that are spatially influenced by environmental variables. Overrepresentation 

of trait information for certain species within a genus could also skew trait assignments toward 

values for those species. Trait affinities (analogous to fuzzy-coded traits) help to account for 

these sources of bias by quantifying trait variation for each trait group within a genus across 

species, geographic areas, and literature sources. Data users should compare modal traits to trait 

affinities and the data in Raw_Traits to gain insight into the sources of trait variation and biases 

for each genus. These sources of bias are not unique, and future updates to our database will 

improve the geographic scope and resolution of traits across species within each genus.  

Comparison to other datasets 

 We tripled the number of occurrence records and locations from what was available in 

the WQP, and we added occurrence records for 118 genera that were not previously available in 

open-access databases. The WQP contained 677,005 genus occurrence records from 18,705 

locations and 814 genera, after data cleaning and taxonomic harmonization. Our Freshwater 

insects CONUS database contains over 2.05 million genus occurrence records for 932 genera at 
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51,044 stream locations (Fig. 16 in Appendix). Of the occurrence records, 565,376 are repeat 

detections of the same taxa over time.  

 We nearly doubled the number of trait records available for the 11 trait groups we 

considered, from 24,655 traits in the USEPA database to 47,000 in our CONUS database 

(Raw_Traits, Fig. 13 in Appendix). As a result, we increased the number of genera assigned a 

modal trait (Fig. 16 in Appendix). After taxonomic harmonization and data cleaning, the USEPA 

database contained traits for 827 insect genera, to which we added traits for 180 genera, for a 

total of 1,007 insect genera with trait assignments (Fig. 16, Table 13 in Appendix). We also 

updated taxonomic names to reflect the most current genus designations and trait assignments to 

align with the unified trait terminology for stream organisms (Schmera et al. 2015). Finally, we 

added trait affinity scores (Genus_Trait_Affinities, Fig. 13 in Appendix), which were not 

included in the USEPA database, in order to facilitate conversion of US traits to the European 

system of fuzzy coding and account for trait variation within genera.   

Conclusions 

 Our Freshwater insects CONUS database provides the most comprehensive datasets of 

freshwater insect occurrence records and traits for the contiguous US by including records for a 

majority of the estimated 1,160 freshwater insect genera in North America (Balian et al. 2008). 

Our occurrence dataset provides good spatial coverage of occurrence records for most of the 

major freshwater insect orders because our data derive from systematic community surveys. 

Another strength of our database is that our trait data are more comparable to datasets used by 

researchers in Europe and other regions of the world by including trait variation as trait affinities, 

analogous to fuzzy-coded traits, and utilizing unified trait terminology (Schmera et al. 2015). 

These components are included to facilitate linking our database to those in other countries for 
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cross-continental analyses of functional composition and diversity in freshwater insects. We 

identified regions of the US and taxa for which more occurrence and trait data are needed, and 

we encourage data submissions for future updates to our database. Our database can be used to 

map freshwater insect taxonomic and functional diversity, and when paired with environmental 

data, will provide a powerful resource for quantifying how the environment shapes diversity 

patterns, as well as taxon-specific distributions, across the contiguous US.  

Data accessibility 

The database is available as .csv files through the Environmental Data Initiative (EDI) with the 

following citation:  

Twardochleb, L.A., E. Hiltner, M. Pyne, P. Bills, and P.L. Zarnetske. 2020. Freshwater insect 

occurrences and traits for the contiguous United States, 2001 - 2018 ver 5. Environmental Data 

Initiative. https://doi.org/10.6073/pasta/8238ea9bc15840844b3a023b6b6ed158.  

We also provide the R scripts used for data cleaning through EDI and GitHub at 

https://github.com/aquaXterra/freshwater_insects_CONUS. We invite data submissions for 

future updates to the database. Instructions and a data submission template are available through 

GitHub: https://github.com/aquaXterra/freshwater_insects_CONUS. To submit data or ask 

questions about the data submission process, email Dr. Phoebe Zarnetske, Michigan State 

University SpaCE Lab (Spatial & Community Ecology Lab) plz@msu.edu. A link to this 

repository with updated information can be found at the MSU SpaCE Lab website: 

www.communityecologylab.com. 
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Table 11. Functional traits of freshwater insects. To be consistent with the unified trait 

terminology for stream organisms proposed by Schmera et al. (2015), we have reorganized traits 

by grouping feature and trait groups. A definition for each trait and literature citation for that 

definition are provided.  

Grouping 
Feature  

Trait Group Trait Definition Definition 
Citation 

Life history Number of 
generations per 
year  

Semivoltine < 1 generation per year Poff et al. 
2006 

  Univoltine 1 generation per year Poff et al. 
2006 

  Bi_multivoltine > 1 generation per year Poff et al. 
2006 

  
Synchronization 
of emergence 

 
Well 

 
Emergence occurs within a 
matter of days 

 
Poff et al. 
2006 

  Poorly  Emergence occurs within a 
matter of weeks or months 

Poff et al. 
2006 

  
Emergence 
season 

 
Spring 

 
Emergence between the 
months of March and May  

 

  Summer Emergence between the 
months of June and August 

 

  Fall Emergence between the 
months of September and 
November 

 

  Winter Emergence between the 
months of December and 
February  

 

Dispersal  Female 
dispersal 

Low < 1 km flight before laying 
eggs 

Poff et al. 
2006 

  High > 1 km flight before laying 
eggs 

Poff et al. 
2006 

  
Adult flying 
strength 

 
Weak 

 
Taking frequent breaks 
while flying, or flight is 
low to the ground 

 
Poff et al. 
2006 

  Strong Able to fly into a light 
breeze or fly for several 
miles without breaks 

Poff et al. 
2006 
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Table 11. (cont’d) 
 
Morphology Maximum body 

size 
Small < 9 mm Poff et al. 

2006 
  Medium 9-16 mm Poff et al. 

2006 
  Large > 16 mm Poff et al. 

2006 
 Respiration 

mode 
Tegument An outer covering, outer 

enveloping cell layer, or 
membrane used to acquire 
oxygen 

Merritt et al. 
2008 

  Gills A thin walled structure 
with trachea, used for the 
absorption of oxygen 

Arnett Jr. 
2000 

  Plastron, 
spiracle  

Oxygen is absorbed from 
the atmosphere, from 
aquatic plants, or from a 
temporary air store, such as 
an air film or bubble on the 
surface of the body, or a 
permanent air store (a 
plastron). 

Merritt et al. 
2008 

Ecology Rheophily Depo Occupies running-water 
pools or margins with fine 
sediments (sand and silt)  

Merritt et al. 
2008 

  Depo_eros Occupies both erosional 
and depositional habitats 

Merritt et al. 
2008 

  Eros Occupies running-water 
riffles with coarse 
sediments (cobbles, pebble, 
gravel) 

Merritt et al. 
2008 

  
Thermal 
preference 

 
Cold 
stenothermal  

 
< 5 oC 

 
Vieira et al. 
2006 

  Cold-cool 
eurythermal  

0-15 oC Vieira et al. 
2006 

  Cool-warm 
eurythermal 

5-30 oC Vieira et al. 
2006 

  Warm 
eurythermal 

15-30 oC Vieira et al. 
2006 

  Hot eurythermal  > 30 oC Vieira et al. 
2006 
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Table 11. (cont’d) 
 
 Habit Crawler Adapted for crawling on 

the surface of floating 
leaves of vascular 
hydrophytes or fine 
sediments on the bottom of 
water bodies 

Merritt et al. 
2008 

  Burrower Inhabiting the fine 
sediment of streams and 
lakes  

Merritt et al. 
2008 

  Clinger Representatives have 
behavioral and 
morphological adaptations 
for attachment to surfaces 
in stream riffles and wave-
swept rocky littoral zones 
of lakes 

Merritt et al. 
2008 

  Skater Adapted for skating on the 
surface where they feed as 
scavengers on organisms 
trapped in the surface film 

Merritt et al. 
2008 

  Swimmer Adapted for “fishlike” 
swimming in lotic or lentic 
habitats 

Merritt et al. 
2008 

  Sprawler Inhabiting the surface of 
floating leaves of vascular 
hydrophytes or fine 
sediments  

Merritt et al. 
2008 

  Climber Adapted for living on 
vascular hydrophytes or 
detrital debris with 
modifications for moving 
vertically on stem-type 
surfaces 

Merritt et al. 
2008 

  Planktonic Inhabiting the open water 
limnetic zone of standing 
waters 

Merritt et al. 
2008 

 Feeding Style 
 

Predator Insects that ingest prey 
whole or in parts 
(engulfers), or pierce prey 
tissues and suck fluids 
(piercers) 

Merritt et al. 
2008 

  Collector-
gatherer 

Insects that collect and 
consume decomposing 
organic matter 

Cummins 
1973 



 117 

Table 11. (cont’d) 
 
  Collector-

filterer 
Insects that collect and 
filter living algal cells or 
detritus 

Merritt et al. 
2008 

  Herbivore Insects that scrape algae, or 
shred or pierce living 
aquatic plants 

Merritt et al. 
2008, Poff 
et al. 2006 

  Shredder Insects that shred 
decomposing vascular 
plant tissue (detritivores) 

Poff et al. 
2006 

  Parasite  Parasites that consume 
living animal tissue 

Merritt et al. 
2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 118 

Table 12. Contents and relationships among data tables (Fig. 13). “Links to Other Tables” 

indicates which columns can be used to join related tables. The database assembly steps (Fig. 12) 

involved in creating each table are also provided.  

Data Table Name Content Links to Other Tables Database 
Assembly 
Steps 

Raw_Traits Cleaned trait data using 
R scripts for each 
taxonomic name 
(“Submitted 
name_trait”, usually 
genus, occasionally 
species or family) 
recorded in datasets 
from the WQP, state 
agencies, or USEPA. 
There are multiple trait 
entries separated by row 
for each taxon, with 
each row presenting 
trait data recorded from 
a different location, 
species, or literature 
source. 

Ancillary_Taxonomy 
through 
“Submitted_name” 
column.  

1,2,3,4 

Genus_Traits Modal traits for each 
genus assigned from 
data in Raw_Traits 
using R scripts. 

Genus_Trait_Affinities 
and Ancillary_Trait 
through “Trait” column. 
Genus_Occurrences and 
Ancillary_Taxonomy 
through “Genus” column. 

5 

Genus_Trait_Affinities Trait affinities for each 
genus assigned from 
data in Raw_Traits 
using R scripts. 

Linkages are the same as 
for Genus_Traits, above. 

5 

Ancillary_Trait Information about traits 
contained in Table 1. 

Genus_Traits and 
Genus_Trait_Affinities 
through “Trait” column. 

1 

Genus_Occurrences Genus occurrence 
records produced from 
Raw_Community_Data 
using R scripts. 

Genus_Traits through 
“Trait” column and 
Ancillary_Taxonomy 
through “Genus” column. 

3,4 
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Table 12. (cont’d) 
 
Ancillary_Taxonomy Data from taxonomic 

harmonization, 
including taxonomic 
names 
(“Submitted_name”) 
recorded in the WQP, 
state data, and USEPA 
database, and the 
corresponding accepted 
names, taxonomic serial 
numbers, and higher 
taxonomic designations. 
Users can search on any 
column in 
Ancillary_Taxonomy 
and find corresponding 
occurrence and trait 
records in other tables. 

Raw_Traits and 
Raw_Community_Data 
through 
“Submitted_name” 
column. Genus_Traits, 
Genus_Trait_Affinities, 
and Genus_Occurrences 
through “Genus” column. 

4 

Data_Sources Information about 
source data files, state 
agency websites, and 
agency contacts. 
 

 1 

Raw_Community_Data Cleaned occurrence data 
from the WQP and state 
agencies using R 
scripts. Includes records 
for taxa identified to 
species, genus, family, 
or order. 

Genus_Occurrences 
through “Unique_ID”. 
Ancillary_Taxonomy 
through 
“Submitted_name”. 
Ancillary_Sample_Method 
through 
“Sample_method”. 

2,3,4 

Ancillary_Sample_Method Detailed methodology 
for sample methods in 
Raw_Community_Data. 

Raw_Community_Data 
through “Sample_method” 
and Data_Sources through 
“Data_source”. 

2 
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Table 13. Number of genus occurrence and trait records by insect order. 

Order Number of 
genus 
occurrence 
records 

Number of 
genus 
occurrence 
locations  

Number of 
genera with 
occurrence 
records 

Number of 
genera with 
trait records 

Coleoptera 210,077 44,669 145 160 
Diptera 862,826 49,572 335 363 
Ephemeroptera 381,077 46,737 93 100 
Hemiptera 22,528 10,231 48 56 
Lepidoptera 3,756 2,956 18 4 
Megaloptera 25,056 15,302 9 8 
Neuroptera 389 362 3 2 
Odonata 73,760 23,102 66 73 
Plecoptera 137,377 29,155 97 99 
Trichoptera 338,460 46,682 127 145 
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Figure 12. Database assembly steps. Steps for traits are shown in green boxes and occurrence 

records in blue boxes. We assembled our trait dataset from the USEPA Biological Traits 

Database, taxonomic guides and entomology texts, scientific articles, and with the help of  
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Figure 12. (cont’d) taxonomic experts. The occurrence dataset was assembled from data from 

the Water Quality Portal and requests to state environmental agencies. We recorded trait data 

following definitions in Table 11 and recorded state sampling methodology based on state 

agencies’ field sampling manuals. We digitized data in Microsoft Excel. We then performed data 

cleaning and taxonomic harmonization in R, using the package “taxize” version 0.9.92. Finally, 

we assigned modal traits as the most commonly occurring trait in a trait group for each genus, 

and a trait affinity, or the percentage affinity of a genus toward each trait in a trait group. Icons 

courtesy of the Integration and Application Network. 
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Figure 13. Database layout with connecting lines indicating relations among tables. Orange 

boxes are the “raw” community and trait datasets cleaned from data in the Data_Sources table 

(purple) using R scripts. “Cleaned” trait tables are shown in green and occurrence records in 

blue. Tables of ancillary information are in gray. From left to right: Raw_Traits contains data for 

each genus varying by location, species, and literature source, that we digitized and cleaned 

during steps 2, 3, and 4 of database assembly (Fig. 12). Genus_Traits and Genus_Trait_Affinities 

contain modal traits and trait affinities that we produced from Raw_Traits using R scripts during 

step 5. Ancillary_Trait contains information about each trait (Table 11). Genus_Occurrences 

contains occurrence records that we produced from Raw_Community_Data using R scripts in 

database assembly steps 3 and 4. Ancillary_Taxonomy contains taxonomic names recorded in 
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Figure 13. (cont’d) the WQP, state data, and USEPA database, and their corresponding accepted 

names, taxonomic serial numbers, and higher taxonomic designations obtained during step 4. 

Raw_Community_Data contains occurrence data from the WQP and state agencies supplied in 

data tables listed in Data_Sources. We recorded additional data about state sampling 

methodology in Ancillary_Sample_Method during step 2. We cleaned the data files in 

Data_Sources using R scripts during steps 3 and 4.  
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Figure 14. Genus richness by occurrence location. For all orders A), and B) for each order 
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Figure 14. (cont’d) individually. Blue points indicate low genus richness, and red indicate high 

richness. Note that genus richness has not been corrected for sampling bias. 
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Figure 15. Proportion of genera at each occurrence location assigned a modal trait of 

bivoltine-multivoltine (number of generations per year), erosional (rheophily), gills 

(respiration mode), and warm eurythermal (thermal preference). Blue points are sites where 

a low proportion of genera have the trait, and red points indicate that a high proportion have the 

trait.  
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Figure 16. Numbers of trait and occurrence records in the database.  
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Figure 16. (cont’d) a) Traits: number of genera assigned a modal trait for each trait group after 

data cleaning and taxonomic harmonization with data originating from the USEPA traits 

database (black bars; USEPA) vs. our database (green bars; CONUS). b) Occurrence Records: 

locations after data cleaning originating from the WQP (black points) vs. our database (blue 

points; CONUS).  
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CHAPTER 4. A trait-based assessment of climate sensitivity of freshwater insects in the 

contiguous United States 

 

†The following co-authors contributed to this chapter: Laura Twardochleb, Kate Boersma, and 

Phoebe Zarnetske 

 

Abstract 

 Climate change threatens freshwater biodiversity in the United States. As a result of 

thermal stress and changes in stream flows, many freshwater organisms are likely to experience 

geographic range shifts and population extinctions in the future. Stream insects control many 

ecosystem processes, fuel terrestrial food webs, and are widely used as bioindicators. However, 

their vulnerability to climate change has been largely overlooked. We examined the climate-

sensitivity of freshwater insects, or the degree to which their geographic distributions are strongly 

determined by climatic variability, using the relationships between climate and measures of 

freshwater insect biodiversity. These measures included insect genus richness, Ephemeroptera, 

Plecoptera, and Trichoptera (EPT) genus richness, functional richness, Rao’s quadratic entropy, 

and individual traits and trait profile groups (i.e., clusters of interrelated traits). Among the 11 

traits and 3 trait profile groups we considered, erosional flow preference, cold-cool eurythermal 

preference, and univoltine life-history traits were the most sensitive to climate. We used these 

traits to assess and map the climate-sensitivity of stream insect genera. Using these trait-based 

indicators, we found that insects in the orders Plecoptera and Trichoptera are likely the most 

sensitive to climate change. Insect species within these orders should be prioritized for protection 

in order to avoid population extirpations and species extinctions with climate change. Our trait-
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based indicators of climate sensitivity also showed that watersheds with the highest proportions 

of sensitive taxa are throughout the mountain West and Appalachian regions of the United 

States. These regions should be prioritized for further research and protection of their watersheds 

to guard against losing freshwater biodiversity due to climate change. By providing biological 

indicators of climate change vulnerability, our research enhances efforts by scientists and 

managers to prioritize watersheds and taxa for restoration and conservation in the United States. 

 

Introduction 

 Climate change is altering freshwater habitats in the United States by increasing water 

temperatures and changing stream flows (Poff et al. 2002). These habitat changes can directly 

impact survival and geographic ranges of ectothermic freshwater organisms through thermal 

stress and habitat loss (Ficke et al. 2007, Heino 2009), and indirectly through changes to life-

history traits such as dispersal and reproduction (Braune et al. 2008, Poff et al. 2012, McCauley 

et al. 2018b). Thus, we expect that many freshwater organisms will be vulnerable to extinction 

under climate change, and many more will undergo distributional shifts to track their climatic 

niche, driving large-scale alterations in freshwater biodiversity in the United States (Poff et al. 

2012). Despite this expectation, the climate change vulnerability of stream insects, or the extent 

that their biodiversity will be lost due to climate change (Foden and Young 2016), has not been 

assessed at the extent of the contiguous United States. Assessing the vulnerability of stream 

insects across watersheds in the contiguous US would identify vulnerable insect taxa and 

enhance efforts by scientists and managers to prioritize watersheds for restoration and 

conservation, by identifying biological indicators of climate change vulnerability.  
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 Insect vulnerability to climate change is under-assessed (Pacifici et al. 2015), and the 

relationship between freshwater insect diversity and climate is poorly understood (Vinson and 

Hawkins 1998, Heino 2009). These knowledge gaps are especially troubling given that a 

biodiversity crisis is already underway for terrestrial insects (Hallmann et al. 2017, Lister and 

Garcia 2018). The few studies that have examined stream insect vulnerability to climate change 

have been conducted in Europe or in smaller regions of the United States or for a limited subset 

of insect taxa (Poff et al. 2010, Conti et al. 2014, Shah et al. 2014, Pyne and Poff 2017). One 

study predicted losses of up to 80% of genus richness for freshwater insects in the orders 

Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) in some regions 

of the US by 2080 (Shah et al. 2014). However, these taxa represent just 353 (30%) of the 

estimated 1,160 freshwater insect genera in North America (Balian et al. 2008). Freshwater 

insects comprise the majority of freshwater animal diversity (Balian et al. 2008), are used in the 

assessment and regulation of water quality (Barbour et al. 2000, Bonada et al. 2006), and provide 

a prey base for freshwater fish, riparian birds, amphibians, bats, and lizards (Covich et al. 1999, 

Baxter et al. 2005, Suter and Cormier 2015). Thus, losses of stream insect diversity due to 

climate change could threaten critical freshwater ecosystem functions (Dudgeon et al. 2006).  

Stream macroinvertebrates serve as indicators of ecosystem health, and changes to their 

biodiversity can signal wider shifts in ecosystem functioning and biodiversity of other taxonomic 

groups (Bonada et al. 2006, Suter and Cormier 2015). Thus, US state and federal environmental 

agencies use stream macroinvertebrate taxonomic and trait diversity measures for bioassessment 

of stream condition in compliance with the Clean Water Act’s mandate for protecting the 

ecological integrity of surface waters (Barbour et al. 2000). However, standard bioassessment 

metrics are designed as indicators of generalized ecosystem stress and may underestimate the 
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impacts of climate change (e.g., Lawrence et al. 2010). Identifying stream insect taxa that are 

vulnerable to climate change, and the mechanistic drivers of their vulnerability (e.g., biological 

traits), would provide new tools that researchers and managers could use to measure ecosystem 

responses to climate-specific stressors.  

Climate change vulnerability is commonly assessed using correlative or trait-based 

approaches (Foden and Young 2016). Correlative approaches typically use a species distribution 

model (SDM) to estimate a species’ current climatic niche and apply climate projections to 

predict the species’ future range (Pacifici et al. 2015, Foden and Young 2016). This is effective 

for identifying exposure to climate change by revealing which taxa may undergo range 

contractions (Foden and Young 2016). However, this approach does not provide information 

about why species are vulnerable, because SDMs do not identify the components of species’ 

biology that influence their responses to climate change (Thomas et al. 2011). Trait-based 

assessment approaches can identify why species are vulnerable (Garcia et al. 2014, Pacifici et al. 

2017), because traits are organismal features that impact fitness via their effects on growth, 

reproduction and survival (Violle et al. 2007) and provide the mechanistic link between the 

environment and fitness of freshwater insects (Poff 1997). Climate-responsive traits could 

include preference for cold, fast-flowing water (cold-cool eurythermal preference and erosional 

rheophily traits; Table 1 in Appendix). In addition, voltinism (number of generations per year) 

could be responsive to climate because insect development rates increase with temperature 

(Table 1 in Appendix, see also Chapter 2 and the review by Ward and Stanford 1982). Traits are 

already used in bioassessment metrics (e.g., Gerritsen 1995, Mazor et al. 2016), and knowledge 

of which traits are responsive to climate change would help scientists and managers develop 

trait-based indicators to assess watershed vulnerability to climate change.  
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Climate change is occurring in tandem with increases in human land use, such as 

developed and cultivated land cover (Martinuzzi et al. 2014), which are often considered the 

largest threats to biodiversity because they cause habitat loss and pollution (Sala 2000). At the 

watershed scale, the aggregate effects of land use, geography, and climate likely explain patterns 

of freshwater biodiversity (Poff 1997, McCluney et al. 2014), and thus watershed attributes such 

as land cover, topography, and flow could modify observed relationships between climate and 

stream insect taxonomic and trait diversity (Table 14 in Appendix). Although these relationships 

are well studied at local, within-stream scales (Allan 2004, Bonada et al. 2007, Lawrence et al. 

2010, Herbst et al. 2019), there remains a significant gap in our understanding of how these 

relationships scale up to larger, continental extents (Vinson and Hawkins 1998, Heino 2009). 

Quantifying the relationships between stream insect taxonomic and trait diversity and climate 

within the context of other watershed attributes across the contiguous US will enhance our 

understanding of the vulnerability of stream insects to climate change.  

One of the first steps to understanding stream insect and watershed vulnerability to 

climate change is identifying biological indicators of climate sensitivity, such as the insect taxa, 

biological traits, and biodiversity measures (e.g., taxonomic and functional diversity) whose 

geographic distributions are strongly determined by climatic variability or change (Foden and 

Young 2016). An assessment of the climate sensitivity of stream insects for the contiguous US is 

needed to facilitate conservation planning by identifying taxonomic and trait-based biological 

indicators of climate change vulnerability, that would enhance existing efforts to prioritize 

watersheds for restoration and conservation. Here, we present an assessment of the climate-

sensitivity of stream insects in the contiguous US at the watershed scale. Our goals are to: 1) 

investigate how relationships with climate and other watershed attributes differ among 
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taxonomic and trait diversity measures, 2) compare these measures as indicators of stream insect 

climate sensitivity, 3) identify insect genera that are sensitive to climate change based on their 

traits, and 4) identify watersheds containing a high proportion of climate-sensitive taxa. We 

quantify the climate-sensitivity of stream insect taxonomic and trait measures relevant for 

bioassessment and understanding relationships between the environment and biodiversity 

(Statzner and Bêche 2010, Pereira et al. 2013, Mazor et al. 2016, Schmera et al. 2017). These 

include insect genus richness, Ephemeroptera, Plecoptera, and Trichoptera (EPT) genus richness, 

functional richness, Rao’s quadratic entropy, and individual traits (Table 14 in Appendix) and 

trait profile groups (i.e., clusters of interrelated traits; Verberk et al. 2013). Using relationships 

between climate and traits and trait profile groups, we assess the sensitivity of individual insect 

genera to climate change and map distributions of sensitive taxa in watersheds across the 

contiguous US. In Table 14 we provide expected relationships between traits, climate, and other 

watershed attributes. 

 

Methods 

Climate, land cover, and other watershed attributes  

We compiled environmental watershed attributes of bioclimatic predictors, hydrology, 

land cover, and topography summarized at the grain size of U.S. Geological Survey (USGS) 

Hydrologic Unit Code 4 (HUC4) and only within the political boundaries of the contiguous US 

using R version 3.6.2 (R Core Team 2019). These watershed boundaries were equivalent to 

LAGOS watersheds (Soranno et al. 2017), hereafter, “watershed”. Climatic predictors were 

summarized by watershed for the contiguous US for 2001-2018, comprising 19 annual 

bioclimatic variables (Hijmans et al. 2005). Modeled climate data were obtained from the 
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PRISM Climate Group (PRISM 2020). We downloaded the version labelled "M3" in January 

2020. From the 4 km PRISM monthly projections from 2001-2018 we included modeled 

precipitation (PRISM variable 'ppt') and modeled temperature ranges (PRISM variables 'tmin', 

'tmean', 'tmax'). We calculated 19 Annual Bioclimatic variables for our 18 years of PRISM data 

using the 'dismo' R package version 1.1-4 (Hijmans et al. 2017) and saved to the Open 

Geospatial Consortium (OGC) geotiff format. We reprojected the rasters to Albers Equal Area 

Conic projection (origin 23 N 96 W; standard parallels 29.5 N and 45.5 N; datum NAD83; 

ellipse GRS80; EPSG = 5070) to match the watersheds. The gridded annual bioclimatic variables 

(raster layers) were then divided into watershed polygons by first using the R package 'raster' 

version 3.0-12 (Hijmans et al. 2020) with the 'crop' followed by 'mask' functions. We then 

summarized the bioclimatic values in each watershed with annual mean using standard functions 

in R. We then calculated the mean and standard deviation of annual mean values across all years 

in order to obtain a mean and standard deviation for each bioclimatic predictor for 2001-2018 by 

watershed.  

We calculated percentage perennial, intermittent, and ephemeral stream length, and 

baseflow in each watershed by downloading shapefiles for the USGS National Hydrography 

Dataset for hydrology variables (NHD; USGS 2016) between November 2017 and January 

2018. Percentage stream length data comprise stream length at the grain size of watershed 

polygons across the contiguous US. Stream data were obtained from the NHD (USGS 2016). For 

each polygon, we calculated the total stream length by categories (e.g., natural stream) and 

permanence, as well the percentage of total polygon stream length that is within each 

permanence category. We downloaded the 1 km resolution gridded dataset based on 

interpolations of baseflow index values from stream gauges between 1951-1980 on October 5, 



 144 

2018 (USGS 2003). Metadata for the dataset is included in the data download location. We 

reprojected the rasters to Albers Equal Area Conic projection and summarized the raster within 

watershed polygons using R. All raster cells touched by the polygons were included in the 

watershed summaries by using the ‘mask’ function in the ‘raster’ package version 3.0-12 in R 

(Hijmans et al. 2020). We summarized baseflow index values to means at the watershed grain 

size across the contiguous US. A website URL for R scripts and detailed methods for calculating 

these variables are in Bibliography. We summarized the files by category and permanence within 

watershed polygons. 

For watershed topography, we downloaded the 30 m National Elevation Dataset (NED, 

USGS 1999) on June 22, 2016. We merged all 1x1 degree tiles to generate a raster reprojected to 

Albers Equal Area Conic projection. We computed slope and aspect from the elevation raster, 

using a 9x9 pixel kernel. The digital elevation model, slope, and aspect (raster layers) were 

summarized to hydrologic unit polygons using the ‘rasterstats’ module in python (Perry 2015), 

specifically the ‘zonal_stats’ function, to calculate summary statistics. Pixels were considered 

inside the watershed polygon if their center point was within the polygon (all_touched = False). 

For each polygon, we computed the mean, minimum, maximum, and standard deviation of 

elevation, and the mean of slope and mean of aspect. 

For land cover classes, we downloaded the National Land Cover Dataset (NLCD, see 

Bibliography) and summarized the mean spatial percent of land cover class by watershed for 

each year using Google Earth Engine. We used the 30 m NLCD for 2001, 2004, 2006, 2008, 

2011, 2013, and 2016, obtained via the Google Earth Engine Catalog (see Bibliography), which 

uses automatic reprojection. We used Google Earth Engine API (GEE) data manipulation 

functions to extract annual NLCD land class values, and the reducer function 'frequency 
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histogram' (see Bibliography) to obtain counts of pixels for each NLCD land cover class within 

each watershed polygon, per year. We then derived the percentage of area covered by each land 

cover class within each NLCD per year with the simple division counts dividing the land cover 

class pixels by total pixels in all land cover classes in the watershed. Note the denominator does 

not include those pixels within the watershed that were not assigned a land cover class by 

NLCD, so this is an approximation of the total area of the watershed. The GEE reducer functions 

include a pixel if at least ~50% of the pixel is in the region. We then calculated the mean and 

standard deviation of percentage of each of the 20 land cover classes across years (temporal 

mean) by watershed (See Bibliography). We further summarized NLCD land cover into the 

following categories: percentage barren land (31), percentage cultivated land (81 + 82), 

percentage forested land (41 + 42 + 43), percentage wetland (90). 

Stream insect occurrence and trait database 

We compiled a database, Freshwater insects CONUS (see Chapter 3, Freshwater insect 

occurrences and traits for the contiguous United States), of freshwater insect occurrences and 

functional traits for the contiguous US, for genera from the major freshwater insect orders: 

Coleoptera (beetles), Diptera (midges), Ephemeroptera (mayflies), Hemiptera (true bugs), 

Lepidoptera (moths), Megaloptera (fishflies), Neuroptera (net-winged insects), Odonata 

(dragonflies and damselflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). We 

compiled and standardized over 2.05 million genus occurrence records for 932 genera, at 51,044 

stream locations sampled between 2001 and 2018 by federal and state biological monitoring 

programs. We also assembled life history, dispersal, morphology, and ecology traits from 

existing databases, scientific books, and the primary literature, and assigned traits and trait 

affinities for 1,007 insect genera. The traits in Freshwater insects CONUS are all categorical and 
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were assigned using standardized terminology and definitions for traits of stream organisms, 

such that related traits were grouped into the following categories: adult flying strength, body 

size, emergence season, emergence synchrony, feeding style (similar to functional feeding 

group), female dispersal, habit (mode of living), respiration mode, rheophily (flow preference), 

thermal preference, and voltinism (number of generations per year) (Poff et al. 2006, Schmera et 

al. 2015). 

Taxonomic and trait diversity measures 

We quantified taxonomic and trait diversity measures at the watershed scale by treating 

each sampling location within a watershed as a replicated incidence sample and using coverage-

based rarefaction to correct for differences in sample coverage among HUCs. We calculated 

coverage-based rarefaction curves (genus richness by sample coverage) for each HUC from 

sample size-based rarefaction curves (genus richness by number of samples) and sample 

completeness curves (sample coverage by number of samples), using the ‘iNext’ R package 

version 2.0.2 (Chao and Jost 2012, Hsieh et al. 2016). Eighty five percent of watersheds were 

sampled at 90% or higher coverage, and 4% had no samples. We removed watersheds with less 

than 90% sample coverage from further consideration in analyses. We then randomly resampled 

the sites in each of the remaining watersheds with replacement down to 90% sample coverage 

before calculating diversity measures. We repeated resampling 100 times, and then calculated the 

mean overall genus richness and EPT richness, as the mean number of unique genera across all 

resampled sites within a watershed.  

We quantified two complementary measures of functional diversity (FD) by watershed 

using sites resampled to 90% coverage as above and the ‘FD’ R package version 1.0-12 

(Laliberté and Legendre 2010). We calculated functional richness, the number of unique trait 
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combinations in a community when traits are categorical, and Rao’s quadratic entropy (Rao’s Q), 

a measure of pairwise functional distances between taxa that is similar to functional dispersion 

(Botta-Dukát 2005, Villéger et al. 2008, Laliberté and Legendre 2010). To calculate functional 

richness and Rao’s Q, the FD package requires a pairwise distance or dissimilarity matrix, with 

distances among genera that can be represented in Euclidean space, and then analyzes the 

distance matrix with principal coordinate analysis (PCoA). The resulting PCoA axes are then 

used as traits to compute FD indices (Laliberté and Legendre 2010). 

We used all available traits from 10 of the 11 trait groups. We excluded emergence 

season because many taxa were missing a trait assignment for that group, and there is no strong 

evidence that this trait’s distribution is clearly linked to climate, land cover, or other 

environmental attributes. We equally weighted traits across groups to avoid biasing FD indices 

toward groups containing many traits (e.g., body size has three traits and habit has eight) 

(Laliberté and Legendre 2010). The raw trait by genus matrix contains categorical traits for 1,007 

genera, many with missing values. We first removed genera that were missing values for over 

half of the traits, then we calculated Gower dissimilarity and applied a square root transformation 

(Legendre and Legendre 2012). However, we found that the resulting dissimilarity matrix was 

not representative of Euclidean space. Therefore, we repeated this procedure by sequentially 

removing taxa with missing traits and recalculating the square root corrected, Gower 

dissimilarity matrix. After removing all genera that were missing traits, we found that the 

resulting matrix was approximately Euclidean. This resulted in a dissimilarity matrix for 363 

genera.  

As alternatives to removing genera with missing traits, we compared two imputation 

methods. In the first, we assigned the most commonly occurring trait by insect family. In the 
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second, we used the missForest package version 1.4 in R, which uses a nonparametric imputation 

method that does not require phylogenetic relationships among taxa (Stekhoven and Buhlmann 

2012). For both methods, we compared the resulting trait composition of insect families and the 

spatial distributions of traits to values from the raw dataset using all 1,007 insect genera. The 

imputation methods strongly homogenized traits spatially and across insect families. Therefore, 

we proceeded with unimputed data and excluding genera with missing traits. 

We calculated functional richness and Rao’s Q from the square root corrected Gower 

dissimilarity matrix. When calculating functional richness, we retained the first 9 PCoA axes, 

representing 80% of the information in the dissimilarity matrix. To facilitate comparison of 

diversity values across watersheds and indices, we standardized functional richness by the global 

value across all watersheds, and scaled Rao’s Q by its maximal value (Villéger et al. 2008). We 

also rescaled genus and EPT richness using min-max normalization. This constrained all 

taxonomic and functional diversity measures to values between 0 and 1.  

Relationships between climate and stream insect diversity 

 We selected environmental predictor variables with low multicollinearity for quantifying 

relationships with stream insect diversity, by examining correlation matrices among all possible 

predictor and response variables. We also mapped distributions of environmental predictors (Fig. 

17 in Appendix) and taxonomic and functional diversity (Fig. 18 in Appendix) to examine 

potential relationships. We selected the following as continuous, fixed effects predictors for 

regression models: the mean of maximum temperature of the warmest month (bio 5, 

temperature), mean baseflow, mean slope, mean precipitation of the warmest quarter (bio 18, 

precipitation), mean percent intermittent stream length, mean percentage of the watershed with 

barren land cover, mean percentage cultivated land cover, mean percentage forested land cover, 
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and mean percentage wetland cover, and a first order interaction between temperature and 

forested land cover. We scaled all predictor variables to zero mean and unit variance using the 

‘decostand’ function in the ‘Vegan’ R package version 2.5-6 (Oksanen et al. 2017). We then fit 

multiple linear regression models separately for each response variable. 

 We found evidence for significant spatial autocorrelation in the residuals for all models 

using Moran’s I statistic. Therefore, we fit each model as a spatial autoregressive model using a 

Bayesian framework with the ‘CarBayes’ R package version 5.2 (Lee 2013). We modeled the 

influence of spatial autocorrelation on diversity measures with spatially correlated random 

effects conditioned on a weighted neighborhood matrix specifying the adjacency structure of 

watersheds. We specified a Gaussian error structure for the response variables and used 

conditional autoregressive priors of Leroux et al. (2000). We assessed convergence of models 

using Geweke diagnostics and trace plots (Hobbs and Hooten 2015). We defined important 

predictors as having 95% credible intervals not overlapping zero. We compared full models to 

reduced models omitting less important predictors, using the Deviance Information Criterion 

(DIC) and the Watanabe-Akaike Information Criterion (WAIC) (Hobbs and Hooten 2015). 

Models with lower DIC or WAIC scores are considered more parsimonious (Table 15 in 

Appendix). To compare different biological indicators of climate sensitivity, we also used a 

consistent set of reduced models across all diversity and trait measures (see fourth corner 

analyses, described below) that included six predictors with consistently strong relationships 

with biodiversity: temperature, precipitation, baseflow, slope, cultivated land cover, forested land 

cover, and spatial random effects (Fig. 17, Tables 14, 15 in Appendix).  
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Identifying trait profile groups 

 Trait profile groups are traits that co-occur within organisms due to trait interrelationships 

(trade-offs, spinoffs, and synergies between traits, Verberk et al. 2013) and phylogenetic 

constraints (Poff et al. 2006), and have been proposed as an alternative to individual traits for 

understanding how climate influences distributions of stream insects (Hamilton et al. 2020). We 

identified trait profile groups using cluster analysis of insect genera and the same traits as FD 

indices, in the ‘cluster’ R package version 2.1.0 (Maechler et al. 2019). We removed genera that 

were missing over half of the traits and calculated Gower dissimilarity for the remaining 689 

genera in the trait by genus matrix. We then used partitioning around medoids to identify clusters 

of 2 to 10 trait profiles and selected the optimal number of clusters using three methods: average 

silhouette width, the total within-cluster sum of squares, and the gap statistic (Tibshirani et al. 

2001, Borcard et al. 2011, Legendre and Legendre 2012). Each of these methods suggested that 

three clusters were optimal for grouping genera by traits.  

Fourth corner analysis to identify trait sensitivity to climate 

 We tested individual trait-environment and trait profile-environment relationships using 

fourth corner analysis in the ‘ade4’ R package version 1.7-15 (Dray et al. 2007). We combined 

three data matrices: genus occurrence by watershed, environment by watershed, and traits or trait 

profiles by genus, using watersheds that were resampled to 90% sample coverage and the same 

environmental predictors as above, except for spatial random effects, as there is currently no 

method for incorporating spatial effects into fourth corner analysis with categorical traits (Braga 

et al. 2018). We selected a subset of traits in trait groups that are most responsive to climate, 

including rheophily, thermal preference, and voltinism (Table 14, Fig. 19 in Appendix). We 

omitted genera with missing values, which are not permitted in fourth corner analysis, resulting 
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in a trait matrix for 488 genera. We then used permutation model 2, randomly permuting the 

rows of the genus by watershed matrix to test the hypothesis that the environment controls genus 

assemblages. This permutation procedure has a correct type I error rate when traits are fixed 

(Legendre and Legendre 2012). We repeated this permutation 999 times and used the ‘holm’ 

method of adjusting p-values to test for significance of trait-environment relationships.  

Identifying climate-sensitive stream insects and mapping climate sensitivity 

 We quantified the climate-sensitivity of biodiversity measures using the median 

coefficient estimates for temperature and precipitation from the set of reduced spatial models 

including temperature, precipitation, baseflow, slope, percent cultivated land cover, percent 

forested land cover, and spatial random effects (Table 16 in Appendix). We estimated the 

climate-sensitivity of individual traits and trait profiles using the correlation coefficient ‘r’ for 

temperature and precipitation from fourth corner analyses (Tables 17-20 in Appendix). For each 

measure, we calculated climate sensitivity as the mean of the absolute value of model 

coefficients (Figs. 22-25 in Appendix). We then assigned two sensitivity scores for each insect 

genus, using the mean sensitivity of rheophily, thermal preference, and voltinism traits, and the 

sensitivity score for its trait profile (Fig. 25 in Appendix). We examined separate histograms of 

mean scores for individual traits and trait profiles for a breakpoint to categorize genera into 

‘high’, ‘medium’, and ‘low’ sensitivity categories. We selected breakpoints for each sensitivity 

category, where taxa classified as highly sensitive to climate based on their traits had a mean 

score above 0.08, taxa with medium sensitivity had a score between 0.05 and 0.075, and taxa 

with low sensitivity had a score below 0.05. For trait profiles, highly sensitive taxa had scores 

above 0.008, and taxa with low sensitivity had scores below 0.005. Histograms did not show an 

intermediate group of scores based on trait profile groups. These methods for assigning 
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categories are similar to methods of Pritt and Frimpong (2010) for determining rarity of 

freshwater fish. However, rather than using expert opinion to assign trait scores (Foden et al. 

2013, Spencer et al. 2019), we used observed relationships of traits with climate to determine 

sensitivity (Pacifici et al. 2017, 2018, Jarić et al. 2019). We mapped the proportion of taxa with 

high climate sensitivity in each watershed separately for scores based on traits and trait profiles.  

 

Results 

Spatial patterns of stream insect diversity and traits 

 Genus and EPT genus richness were relatively high in watersheds of the US West coasts 

and Southeast, the Ozark plateau of Arkansas and Missouri, the upper Midwest, and Maine (Fig. 

18 in Appendix). EPT richness was relatively higher in the Appalachian region and 

intermountain West compared with other diversity measures. Functional richness was highest 

along the Southwest and East coasts and in the Ozark region. Rao’s quadratic entropy showed 

somewhat different spatial patterns than other measures and was highest in the Southeast and 

Midwest. We also mapped the proportion of genera in each watershed possessing rheophily, 

thermal preference, and voltinism traits that were previously shown to be climate-sensitive (i.e., 

with spatial distributions that are strongly determined by climate, Fig. 19 in Appendix). 

Watersheds in the Western US and Appalachian region had the highest proportions of genera 

with cold-cool eurythermal preference and erosional flow preference (rheophily). These regions 

also had relatively high proportions of taxa with univoltine life-histories, although this trait was 

more widely distributed across the US than sensitive rheophily and thermal preference traits.  
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Trait profile groups 

 We identified three trait profile groups from cluster analysis (Fig. 20 in Appendix). Trait 

profile 1 is composed primarily of genera in the EPT and Diptera orders with small to medium 

juvenile body sizes, low female dispersal, well synchronized emergence, mixed feedings styles, 

weak adult flying strength, clinging and sprawling habits, gill and tegument respiration, 

depositional and depositional-erosional rheophily traits, cold-cool eurythermal (0 - 15 ºC) to 

cool-warm eurythermal (5 - 30 ºC) preferences, and univoltine life-histories. A representative 

genus for this group is Doroneuria (Plecoptera). Taxa in trait group 1 dominate the genus 

richness in mountainous watersheds of the western and northeastern US (Fig. 21 in Appendix). 

Trait profile 2 is dominated by genera in the orders Diptera and Coleoptera (Fig. 20 in 

Appendix). These taxa have primarily small body sizes, low female dispersal, poorly to well 

synchronized emergence, collector-gatherer and predatory feeding styles, strong to weak adult 

flying strength, burrowing, clinging, sprawling, or swimming habits, tegument respiration, mixed 

rheophily, primarily cool-warm eurythermal (5 - 30 ºC) and warm eurythermal (15 - 30 ºC) 

preferences, and bi-multivoltine life-histories. A representative genus for this group is Aedes 

(Diptera). Taxa in this group have a cosmopolitan distribution (Fig. 21 in Appendix). Trait 

profile 3 is representative of taxa in the orders Coleoptera, Diptera, and Odonata (Fig. 20 in 

Appendix) that have primarily medium to large body sizes and high female dispersal, poorly to 

well synchronized emergence, and are predators with strong adult flying strength, gilled 

respiration, depositional rheophily, a mix of habits, cool-warm eurythermal (5 - 30 ºC) to warm 

eurythermal (15 - 30 ºC) preference, and univoltine and semivoltine life-histories. A 

representative genus for this group is Anax (Odonata). Overall, taxa from this group are most 

dominant in watersheds of the Midwest, and they comprise a smaller proportion of the genus 
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richness in watersheds across the US relative to taxa in trait groups 1 and 2 (Fig. 21 in 

Appendix).  

Relationships between climate and stream insect diversity 

 Results of model selection for conditional autoregressive models are given in Table 15 in 

Appendix. We found that models including only spatial random effects were the most 

parsimonious according to DIC and WAIC for explaining patterns in genus richness and 

functional richness across the contiguous US. However, two alternative models, including 

temperature, slope, percent forested land cover, and spatial random effects, or temperature, 

precipitation, and spatial effects, performed nearly as well for predicting functional richness. In 

addition, an alternative model including temperature, precipitation, and spatial random effects 

performed nearly as well for genus richness as the selected model. The best-performing model 

for EPT genus richness included temperature, precipitation, and spatial random effects, although 

an alternative model including baseflow, percent forested land cover, and spatial random effects, 

and one including only temperature and spatial effects performed nearly as well as the selected 

model. Two models performed nearly equally for explaining Rao’s quadratic entropy, one 

including temperature, precipitation, slope, and spatial random effects, and one including 

temperature, baseflow, slope, percent cultivated and forested land cover, and spatial effects.  

 Among our selected best-performing models, we found that maximum temperature of the 

warmest month was positively correlated with all diversity measures, and mean precipitation of 

the warmest quarter was negatively correlated with genus and EPT richness (Fig. 22, Table 16 in 

Appendix). Forested land cover was positively correlated with genus, EPT, and functional 

richness, and cultivated land cover was positively correlated with functional richness. Baseflow 

was positively correlated with EPT richness and negatively correlated with Rao’s Q. Slope was 
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negatively correlated with all diversity measures except EPT richness. In addition, spatial 

autocorrelation had a strong, positive effect on all four biodiversity measures (Fig. 22, Table 16 

in Appendix). 

Relationships between climate, traits, and trait profile groups 

 Temperature and precipitation were not strong predictors of distributions of trait groups 

(Fig. 23, Table 17 in Appendix). In contrast, baseflow, cultivated land cover, and slope explained 

the majority of variation in trait profile distributions. Insect genera in trait profile 1 (EPT and 

Diptera) more commonly occurred in watersheds with high baseflow, slope, and percentage of 

forested land cover. Watersheds with a high percentage of cultivated land cover had lower 

occurrences of taxa in trait profile 1, and higher occurrences of taxa in trait profile 3 (Coleoptera 

and Odonata). Insect genera in trait profile 2 (Diptera and Coleoptera) were more common in 

watersheds with lower baseflow and slope.  

 Insect genera with erosional, cold-cool eurythermal, and univoltine traits occurred less 

commonly in watersheds with higher temperatures (Fig. 24, Tables 18-20 in Appendix). In 

addition, insects with erosional rheophily and cold-cool eurythermal preference were less 

common, and insects with univoltine traits were more common, in watersheds with high 

precipitation in the warmest quarter. Overall, the strongest relationship between climate and 

individual traits was the negative relationship between precipitation in the warmest quarter and 

taxa with cold-cool eurythermal preference. We detected other strong relationships between the 

environment and traits. Baseflow, slope, and forested land cover were positively correlated with 

occurrences of erosional, cold-cool eurythermal, univoltine, and semivoltine taxa, and cultivated 

land cover was negatively correlated with the same traits. In general, we detected opposite 

relationships between these environmental variables and taxa with depositional or depositional-



 156 

erosional traits, cool-warm eurythermal, warm eurythermal, and hot euthermal preferences, and 

bi-multivoltine life-histories. Occurrences of taxa with cold stenothermal preference were not 

strongly correlated with environmental variables.  

Indicators of climate sensitivity in stream insects 

 We compared the climate sensitivity of stream insect diversity measures, individual traits, 

and trait profile groups (Fig. 25 in Appendix). Overall, individual traits were more sensitive to 

climate than trait profile groups or diversity measures. Among the diversity measures, genus 

richness and EPT genus richness responded more strongly to climatic predictors than functional 

richness or Rao’s quadratic entropy. Among the traits, cold-cool eurythermal preference was the 

most sensitive to climate, followed by erosional flow preference and other rheophily traits, 

thermal preference, and voltinism traits. Trait profile groups were weakly responsive to climate. 

Distributions of climate-sensitive taxa in US watersheds 

 More than half of highly sensitive insect genera are in the orders Plecoptera and 

Trichoptera according to sensitivities of individual traits, whereas sensitive genera according to 

trait profiles are primarily in the orders Coleoptera, Diptera, and Odonata (Table 21 in Appendix 

and Electronic Appendix 1). Approximately one third of insect genera within the orders 

Plecoptera and Trichoptera are highly sensitive to climate according to their individual traits, 

whereas the majority of Coleoptera and Odonata are highly sensitive according to their trait 

profiles (Table 22 in Appendix). Watersheds in the US with the highest proportions of climate-

sensitive taxa according to individual traits are in the mountain west and Appalachian regions, 

whereas the highest proportions of sensitive taxa according to trait profiles are in the Southeast 

and Midwest (Fig. 26 in Appendix).  
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Discussion 

 Our objectives were to assess the sensitivity of individual insect genera to climate change 

and map distributions of sensitive taxa in watersheds across the contiguous US. We assessed 

climate sensitivity using traits and trait profile groups and found that the distributions of insect 

genera with erosional flow preference, cold-cool eurythermal preference, and univoltine life-

histories were most sensitive to climate. This finding is congruent with our expectations based on 

previous, smaller-scale studies (Table 14 in Appendix). Our study is unique in providing the first 

evidence that these traits are strong indicators of climate sensitivity at a national scale and for a 

very large number (488) of insect genera. We also found that trait profile groups were poor 

indicators of climate sensitivity, contrary to suggestions that trait profiles could outperform 

individual traits in detecting relationships between geographic distributions of freshwater insects 

and the environment (Hamilton et al. 2020). Using our trait-based indicators of climate 

sensitivity, we found that insects in the orders Plecoptera and Trichoptera are likely the most 

sensitive to climate change, and watersheds with the highest proportions of sensitive taxa are 

found throughout the mountain West and Appalachian regions of the United States. We also 

examined relationships of freshwater insect diversity measures of genus richness, EPT genus 

richness, functional richness, and Rao’s quadratic entropy, with climate and other watershed 

attributes across the contiguous United States. Overall, we found that spatial effects had a 

stronger influence on the geographic distribution of diversity measures than climate variables 

(Table 16, Fig. 22 in Appendix).  

Relationships between climate and stream insect diversity 

 Genus richness and EPT richness showed stronger relationships with temperature and 

precipitation than functional richness and Rao’s Q among models including climatic predictors 
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of taxonomic and trait diversity (Figs. 22 and 23, Table 16 in Appendix). However, the best 

performing model for genus richness and functional richness included only spatial random 

effects (Table 15 in Appendix). Strong spatial effects could result from historical biogeography 

constraining regional patterns of genus and functional richness (Wiens and Donoghue 2004), and 

other studies have found similarly strong spatial effects at the extent of the contiguous US for 

other taxonomic groups (e.g., Read et al. 2020). Alternative models for genus richness and 

functional richness including temperature and precipitation performed nearly as well as the best 

performing models including only spatial random effects, and the best model for Rao’s quadratic 

entropy also included climate variables (Table 15 in Appendix). Temperature had a strong 

positive effect on all measures, but precipitation strongly affected only genus richness (Fig. 22, 

Table 16 in Appendix). Each of these diversity measures was relatively high in watersheds of the 

Southeast and West coasts where temperatures are warmer (Figs. 17 and 18 in Appendix). 

Positive correlations between temperature and taxonomic and functional diversity are common at 

broad spatial extents, because warmer regions receive more energy, fueling primary production 

that supports diverse niche opportunities and higher numbers of taxa (Hawkins et al. 2003). 

Lower temperatures in mountain streams could explain why diversity was relatively low in 

mountainous regions (McCain and Grytnes 2010). In addition, genus richness and functional 

richness were higher in watersheds with forested land cover (Figs. 17, 18, 22 in Appendix), 

consistent with a large body of research demonstrating the importance of forest cover for 

providing instream habitat, shading, and food resources for freshwater organisms (Naiman and 

Decamps 1997, Sponseller et al. 2001, Allan 2004). 

 The positive association of EPT genus richness with temperature at the continental scale 

is consistent with relationships detected at the extent of Europe and could explain the global 
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pattern of decreasing EPT genus richness with latitude (Vinson and Hawkins 2003, Shah et al. 

2015). Our findings that EPT richness was highest in mountainous regions of the US, and that 

richness increased with watershed slope and forested land cover are also consistent with these 

studies (Vinson and Hawkins 2003, Shah et al. 2015). Thus, at the continental scale, high EPT 

genus richness may be indicative of habitat conditions of mountain streams, including low 

human land use and cold, fast-flowing, well-oxygenated waters. Although the best-performing 

model for EPT genus richness included temperature and precipitation (Table 15 in Appendix), 

this diversity measure is likely not an effective indicator of watershed vulnerability to climate 

change at the extent of the contiguous US, because its positive correlation with maximum 

temperature of the warmest month suggests that warming could increase watershed EPT genus 

richness. Yet, previous research has projected that EPT genus richness will decrease at the extent 

of the contiguous US (Shah et al. 2014), and individual EPT genera will be locally extirpated 

(Pyne and Poff 2017) due to increasing temperature and altered stream flows. In addition, long-

term studies have detected local declines in EPT richness due to increasing temperature and 

drought (Hamilton et al. 2010, Herbst et al. 2019), although one long-term study found equivocal 

responses of EPT richness to climate change (Lawrence et al. 2010). Occurrences of individual 

EPT genera may provide better indicators of climate change vulnerability for watersheds than 

EPT genus richness (see below). Although taxonomic and trait diversity measures reveal 

important relationships between stream insects and the environment, we did not consider them 

further as indicators of climate change vulnerability.  

Relationships between climate and stream insect traits 

 Distributions of insect genera with erosional flow preference, cold-cool eurythermal 

preference, and univoltine life-histories were most strongly determined by climate (Fig. 24 in 
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Appendix). Many of the genera possessing these traits are distributed in mountainous watersheds 

of Western states (Fig. 19 in Appendix) that are relatively cool, receive little precipitation, and 

baseflow contributes the majority of their permanent stream flow (Fig. 17 in Appendix). Climate 

change in the Western US is expected to increase stream temperatures and alter habitat 

availability by advancing snowmelt and increasing summer stream drying (Barnett et al. 2008, 

Wu et al. 2012, Seager et al. 2013, Reynolds et al. 2015), which could directly affect 

distributions and survival of taxa with cool-cool eurythermal and erosional flow preferences 

(Chessman 2012). Climate change could also indirectly reduce their survival, because many of 

these taxa have gilled or tegument respiration (Fig. 20 in Appendix) requiring high levels of 

dissolved oxygen that are likely to decline with stream warming and drying. For these reasons, 

an earlier vulnerability assessment of freshwater insects in the Western US used rheophily and 

thermal preference to assess climate sensitivity (Poff et al. 2010). In addition, studies have 

already shown that drought shifts the trait composition of stream macroinvertebrate communities 

from taxa with cold thermal preference and erosional flow preference to taxa with warm 

eurythermal preference and depositional flow preference (Aspin et al. 2019, Herbst et al. 2019). 

Our findings are consistent with previous research and suggest that cold-cool eurythermal 

preference and erosional flow preference are good indicators of climate vulnerability for stream 

insects. 

Relationships between climate and trait profile groups 

 Trait profile groups have been proposed as a metric for understanding how the 

environment shapes freshwater biodiversity and community composition, that could outperform 

individual traits by accounting for trait interrelationships (Poff et al. 2006, Verberk et al. 2013, 

Hamilton et al. 2020). Compared to individual traits, we found that distributions of trait profiles 
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were less affected by the environment overall (compare coefficient estimates in figures 23 and 24 

in Appendix), and less sensitive to climate (Fig. 25 in Appendix). Their relative insensitivity to 

environmental variables is likely due to their geographic distributions being more spatially 

dispersed than individual traits (Figs. 19 and 21 in Appendix). Previous studies have found 

stronger relationships between climate and trait profile groups (but see Pilière et al. 2016), but 

these did not use trait profiles for insects at a continental extent (Poff et al. 2010, Aspin et al. 

2019). There are currently no guidelines for computing trait profiles, and although most studies 

use the traits of Poff et al. (2006), each study has used a different clustering method or assembled 

profiles based on expert knowledge, and computed numbers of profiles ranging from three (Poff 

et al. 2010) to eight or more (Verberk et al. 2008, Pilière et al. 2016, Aspin et al. 2019). The trait 

profiles that we computed are similar to the three trait profiles of Poff et al. (2010) that were 

indicative of streams with different thermal and flow regimes in the western US. Trait profile 1 is 

similar to their cold, stable trait group, and trait profiles 2 and 3 each have trait combinations 

overlapping with their warm, unstable group. These groups are widely distributed across the US 

(Poff et al. 2010). Our research indicates that these trait profiles are not as effective as individual 

traits for identifying climate sensitivity of stream insects at the watershed scale and at the extent 

of the contiguous US. They may be more effective for understanding climate vulnerability of 

stream insects at finer grains and smaller extents (e.g., Poff et al. 2010, Aspin et al. 2019). 

Standardizing the methodology for computing trait profiles would facilitate evaluations of their 

effectiveness for different applications.  

Distributions of climate-sensitive taxa in US watersheds 

 Assigning sensitivity by rheophily, thermal preference, and voltinism traits suggests that 

the highest concentrations of climate-sensitive stream insects are in the Western US and the 
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Appalachian region (Fig. 26 in Appendix). Trait profiles suggest the opposite pattern, that the 

highest concentrations are in the Southeast and Midwest. Moreover, the individual traits indicate 

that sensitive genera are primarily in the Plecoptera and Trichoptera orders, whereas trait profiles 

indicate that sensitive taxa are in the Coleoptera, Diptera, and Odonata. These latter orders 

dominate trait profiles 2 and 3, which are similar to the warm, unstable trait group that Poff et al. 

(2010) suggested are resistant to population declines and range contractions with climate change 

because of their adaptations to warm, fluctuating environmental conditions. Moreover, climate 

vulnerability assessments for stream insects conducted in the mountainous regions of the US 

suggest that EPT taxa and those with cold thermal preference and erosional rheophily traits are 

most vulnerable to climate change (Hamilton et al. 2010, Poff et al. 2010, Pyne and Poff 2017). 

Therefore, individual rheophily and thermal preference traits provide reliable indicators of 

climate change vulnerability. 

Moving forward: using climate-sensitive traits as indicators of climate change vulnerability 

  We assessed the climate-sensitivity of stream insect genera in watersheds across the 

contiguous US and showed that the distributions of insect genera with erosional flow preference, 

cold-cool eurythermal preference, and univoltine life-histories are most strongly affected by 

climate. Climate sensitive traits could be used to assess the vulnerability of individual taxa (see 

Electronic Appendx 1 for climate-sensitive genera) and incorporated into multi-metric indices 

for assessing climate change vulnerability of stream sites, similar to those already in use for 

assessing stream condition (e.g., Lawrence et al. 2010, Mazor et al. 2016). For example, many 

multi-metric indices incorporate the percentage of shredder taxa in assessment of ecosystem 

condition, and percentage of erosional and cold-cool eurythermal taxa could similarly be 

incorporated as indicators of climate change vulnerability. Moreover, the percentage of climate-
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sensitive genera (Electronic Appendix 1) could be incorporated into metrics, similar to the 

percentages of EPT taxa and intolerant taxa (Mazor et al. 2016).  

 Using our trait-based indicators of climate sensitivity, we found that insects in the orders 

Plecoptera and Trichoptera are likely the most sensitive to climate change. Insect species within 

these orders should be prioritized for protection in order to avoid population extirpations and 

species extinctions with climate change. Our trait-based indicators of climate sensitivity also 

showed that watersheds with the highest proportions of sensitive taxa are throughout the 

mountain West and Appalachian regions of the United States. These regions should be 

prioritized for further research and protection of their watersheds to protect against losing 

freshwater biodiversity due to climate change. By providing biological indicators of climate 

change vulnerability, our research enhances efforts by scientists and managers to prioritize 

watersheds and taxa for restoration and conservation in the United States. 
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Table 14. Hypothesized relationships between climate and other watershed attributes and 

stream insect taxonomic and trait indicators. 

Env. variable Env. state Taxonomic 
and trait 
diversity 

Responsive trait 
groups 

Dominant traits Evidence 

Temperature High High or 
low 

Rheophily, 
Thermal 
preference, 
Voltinism 

Depositional, Cool-warm 
eurythermal (5 - 30 ºC), 
Warm eurythermal (15 - 
30 ºC), Bi-multivoltine 
(> 1 generation per year) 
 

Vinson and 
Hawkins 1998, 
Bonada et al. 
2007, Poff et al. 
2010, Lawrence et 
al. 2010, Domisch 
et al. 2011, 
Chessman 2012, 
Kuemmerlen et al. 
2015 

Precipitation High High Rheophily, 
Thermal 
preference, 
Voltinism 

Erosional, Depositional-
erosional, Cool 
eurythermal (0 - 15 ºC), 
Semivoltine (< 1 
generation per year) 
 

Chessman 2012, 
Aspin et al. 2019, 
Herbst et al. 2019 

Baseflow High High Rheophily, 
Thermal 
preference, 
Voltinism  

Erosional, Depositional-
erosional, Cold 
stenothermal (< 5 ºC) or 
cool eurythermal (0 - 15 
ºC), Univoltine (1 
generation per year), 
Semivoltine (< 1 
generation per year) 
 

Poff et al. 2010, 
Aspin et al. 2019, 
Herbst et al. 2019 

Elevation High Low Thermal 
preference, 
Voltinism  

Cold stenothermal (< 5 
ºC) or cool eurythermal 
(0 - 15 ºC), Univoltine (1 
generation per year) or 
Semivoltine (< 1 
generation per year) 

Rahbek 1995, 
Vinson and 
Hawkins 2003, 
Díaz et al. 2007 

Cultivated 
land cover 

High Low Thermal 
preference, 
Voltinism  

Warm eurythermal (15 - 
30 ºC), Bi-multivoltine 
(> 1 generation per year) 
 

Díaz et al. 2007, 
Dolédec et al. 
2006, Dolédec et 
al. 2011, 
Kuemmerlen et al. 
2015, Zuellig and 
Schmidt 2012 

Forested land 
cover 

High High Thermal 
preference, 
Voltinism  

Warm eurythermal (15 - 
30 ºC), Bi-multivoltine 
(> 1 generation per year) 

Vinson and 
Hawkins 2003, 
Zuellig and 
Schmidt 
2012,Twardochleb 
and Olden 2016 
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Table 15. Results of spatial model selection. Models in bold are the best model according to 

the deviance information criterion (DIC) and widely applicable information criterion (WAIC). 

Models with lower DIC and WAIC scores are considered more parsimonious. The number of 

effective parameters for each model is the p.d. (DIC) or p.w. (WAIC). Underlined models were 

those used in further analyses comparing climate sensitivity of different biodiversity and trait 

indicators. Ephemeroptera, Plecoptera, and Trichoptera richness is abbreviated as EPT richness, 

and Rao’s quadratic entropy as Rao’s Q. The full model included a spatial autocorrelation 

parameter and the following fixed effects parameters: climate (temperature and precipitation), 

baseflow, slope, barren land cover, cultivated land cover, forested land cover, and wetland cover, 

percent intermittent stream length, and an interaction term between temperature and forested 

land cover.  

Biodiversity 
measure 

Model DIC p.d. WAIC p.w. 

Genus richness Full -226.51 85.84 -205.72 83.24 
Genus richness Climate + baseflow + slope + 

cultivated + forest + space 
-248.41 95.41 -233.05 85.20 

Genus richness Climate + slope + space -253.65 99.01 -241.40 85.23 
Genus richness Climate + space -266.17 104.92 -257.80 86.26 
Genus richness Temperature + space -265.85 103.58 -255.72 86.70 
Genus richness Space -269.67 105.83 -262.35 86.04 

EPT richness Full -221.71 70.11 -194.16 78.69 
EPT richness Climate + baseflow + slope + 

cultivated + forest + space 
-249.34 85.98 -229.39 82.60 

EPT richness Climate + baseflow + forest + 
space 

-251.19 88.97 -233.59 82.63 

EPT richness Baseflow + forest + space -264.46 95.91 -251.98 83.38 
EPT richness Climate + space -266.72 105.58 -258.29 86.88 
EPT richness Temperature + space -265.18 106.65 -258.11 78.14 
EPT richness Space -262.68 106.09 -255.51 86.25 

Functional richness Full -363.27 60.56 -358.20 53.38 
Functional richness Climate + baseflow + slope + 

cultivated + forest + space 
-365.64 58.80 -360.72 52.15 

Functional richness Climate + slope + cultivated + 
forest + space 

-362.25 55.93 -357.27 50.26 

Functional richness Temperature + slope + cultivated + 
forest + space 

-366.21 59.37 -360.83 52.86 

Functional richness Temperature + slope + forest + 
space 

-369.77 64.00 -365.91 54.71 

Functional richness Climate + space -369.31 66.92 -365.07 57.01 
Functional richness Temperature + space -368.49 65.11 -364.68 55.49 
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Table 15. (cont’d) 
 

Functional richness Space -371.57 68.73 -368.26 57.50 
Rao’s Q Full -668.12 58.91 -677.00 40.22 
Rao’s Q Climate + baseflow + slope + 

cultivated + forest + space 
-669.22 56.94 -677.96 39.03 

Rao’s Q Climate + slope + space -669.99 62.49 -680.80 41.39 
Rao’s Q Temperature + slope + space -668.63 60.72 -679.05 40.49 
Rao’s Q Climate + space -644.99 65.81 -656.54 43.29 
Rao’s Q Temperature + space -646.30 65.49 -657.84 43.08 
Rao’s Q Space -631.74 71.99 -644.12 46.96 

 
 
Table 16. Parameter values for reduced spatial models. Posterior medians, and lower (2.5%) 

and upper (97.5%) 95% credible intervals for each parameter. The term ‘space’ refers to the 

spatial autocorrelation parameter. Other parameters are fixed effects.  

Biodiversity 
measure Parameter Median 2.5% 97.5% 

Genus richness Intercept 0.5082 0.4921 0.5248 
 Temperature 0.0837 0.0259 0.1359 
 Precipitation -0.0718 -0.1385 -0.0020 
 Baseflow 0.0318 -0.0146 0.0783 
 Slope -0.0837 -0.1335 -0.0345 
 Cultivated land 0.0316 -0.0208 0.0831 
 Forested land 0.1482 0.0819 0.2143 
 Space 0.4895 0.1952 0.8697 

EPT richness Intercept 0.5226 0.5063 0.5388 
 Temperature 0.0538 0.0042 0.1034 
 Precipitation -0.0837 -0.1406 -0.0229 
 Baseflow 0.0826 0.0397 0.1256 
 Slope -0.0446 -0.0905 0.0008 
 Cultivated land 0.0246 -0.0211 0.0694 
 Forested land 0.1857 0.1256 0.2437 
 Space 0.3666 0.1167 0.7794 

Functional richness Intercept 0.195 0.1841 0.2061 
 Temperature 0.0460 0.0210 0.0705 
 Precipitation -0.0228 -0.0519 0.0065 
 Baseflow 0.0147 -0.0073 0.0367 
 Slope -0.0347 -0.0588 -0.0109 
 Cultivated land 0.0316 0.0074 0.0549 
 Forested land 0.0591 0.0294 0.0884 
 Space 0.4919 0.1159 0.9072 

Rao’s Q Intercept 0.8408 0.8362 0.8454 
 Temperature 0.0133 0.0025 0.0239 
 Precipitation 0.0144 -0.0007 0.0286 
 Baseflow -0.0112 -0.0202 -0.0024 
 Slope -0.0168 -0.0269 -0.0066 
 Cultivated land 0.0055 -0.0047 0.0156 
 Forested land -0.0066 -0.0196 0.0065 
 Space 0.8706 0.5723 0.9875 
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Table 17. Fourth-corner analysis results for trait profile groups. The column ‘r’ provides the 

correlation coefficient between each watershed environmental variable and the trait profile group 

and ‘r std. error’ is the standard error of the correlation coefficient. The ‘P-value’ is the 

probability value for the correlation coefficient before adjustment for multiple pairwise 

comparisons, and ‘P-value adj.’ is the P-value adjusted for multiple comparisons. 

Trait 
profile Environmental variable r r std. error P-value P-value adj. 

1 Temperature -0.001 -0.100 0.982 1 
1 Precipitation -0.008 -1.635 0.091 0.637 
1 Baseflow 0.018 3.387 0.001 0.018 
1 Cultivated land -0.024 -4.832 0.001 0.018 
1 Forested land 0.013 2.479 0.012 0.108 
1 Slope 0.022 4.424 0.001 0.018 
2 Temperature 0.014 2.698 0.006 0.072 
2 Precipitation 0.004 0.701 0.483 1 
2 Baseflow -0.021 -4.143 0.001 0.018 
2 Cultivated land 0.012 2.291 0.021 0.168 
2 Forested land -0.014 -2.823 0.010 0.1 
2 Slope -0.017 -3.414 0.001 0.018 
3 Temperature -0.012 -2.665 0.006 0.072 
3 Precipitation 0.006 1.127 0.260 1 
3 Baseflow 0.001 0.190 0.837 1 
3 Cultivated land 0.016 3.230 0.003 0.039 
3 Forested land 0.000 -0.080 0.947 1 
3 Slope -0.008 -1.675 0.099 0.637 

 
Table 18. Fourth-corner analysis results for rheophily (flow preference) traits. 

Trait Environmental variable r r std. error P-value P-value 
adj. 

Depositional Temperature 0.093 4.371 0.001 0.066 
Depositional Precipitation 0.102 5.108 0.001 0.066 
Depositional Baseflow -0.133 -6.460 0.001 0.066 
Depositional Cultivated land 0.156 7.590 0.001 0.066 
Depositional Forested land -0.130 -5.940 0.001 0.066 
Depositional Slope -0.165 -8.160 0.001 0.066 

Depositional-erosional Temperature 0.039 4.550 0.001 0.066 
Depositional-erosional Precipitation 0.055 6.463 0.001 0.066 
Depositional-erosional Baseflow -0.044 -5.081 0.001 0.066 
Depositional-erosional Cultivated land 0.0184 2.276 0.02 0.360 
Depositional-erosional Forested land 0.002 0.192 0.856 1 
Depositional-erosional Slope -0.048 -5.588 0.001 0.066 

Erosional Temperature -0.112 -5.165 0.001 0.066 
Erosional Precipitation -0.135 -6.580 0.001 0.066 
Erosional Baseflow 0.148 6.963 0.001 0.066 
Erosional Cultivated land -0.141 -6.797 0.001 0.066 
Erosional Forested land 0.100 4.544 0.001 0.066 
Erosional Slope 0.177 8.615 0.001 0.066 
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Table 19. Fourth-corner analysis results for thermal preference traits. 
Trait Environmental 

variable r r std. 
error P-value P-value 

adj. 
Cold stenothermal (< 5 ºC) Temperature 0.020 2.859 0.005 0.105 
Cold stenothermal (< 5 ºC) Precipitation -0.028 -4.031 0.001 0.066 
Cold stenothermal (< 5 ºC) Baseflow -0.002 -0.258 0.81 1 
Cold stenothermal (< 5 ºC) Cultivated land -0.023 -3.023 0.002 0.066 
Cold stenothermal (< 5 ºC) Forested land -0.009 -1.321 0.186 1 
Cold stenothermal (< 5 ºC) Slope 0.011 1.549 0.123 1 

Cold-cool eurythermal (0 - 15 ºC) Temperature -0.097 -3.959 0.001 0.066 
Cold-cool eurythermal (0 - 15 ºC) Precipitation -0.2016 -8.320 0.001 0.066 
Cold-cool eurythermal (0 - 15 ºC) Baseflow 0.179 7.290 0.001 0.066 
Cold-cool eurythermal (0 - 15 ºC) Cultivated land -0.150 -6.088 0.001 0.066 
Cold-cool eurythermal (0 - 15 ºC) Forested land 0.056 2.232 0.025 0.391 
Cold-cool eurythermal (0 - 15 ºC) Slope 0.220 8.680 0.001 0.066 

Cool-warm eurythermal (5 - 30 ºC) Temperature -0.003 -0.254 0.799 1 
Cool-warm eurythermal (5 - 30 ºC) Precipitation 0.114 9.137 0.001 0.066 
Cool-warm eurythermal (5 - 30 ºC) Baseflow -0.065 -4.963 0.001 0.066 
Cool-warm eurythermal (5 - 30 ºC) Cultivated land 0.045 3.650 0.001 0.066 
Cool-warm eurythermal (5 - 30 ºC) Forested land 0.058 4.697 0.001 0.066 
Cool-warm eurythermal (5 - 30 ºC) Slope -0.070 -5.229 0.001 0.066 

Warm eurythermal (15 - 30 ºC) Temperature 0.078 5.071 0.001 0.066 
Warm eurythermal (15 - 30 ºC) Precipitation 0.056 3.726 0.001 0.066 
Warm eurythermal (15 - 30 ºC) Baseflow -0.083 -5.604 0.001 0.066 
Warm eurythermal (15 - 30 ºC) Cultivated land 0.084 5.527 0.001 0.066 
Warm eurythermal (15 - 30 ºC) Forested land -0.104 -6.495 0.001 0.066 
Warm eurythermal (15 - 30 ºC) Slope -0.115 -7.533 0.001 0.066 

Hot euthermal (> 30 ºC) Temperature 0.045 4.643 0.001 0.066 
Hot euthermal (> 30 ºC) Precipitation 0.048 5.131 0.001 0.066 
Hot euthermal (> 30 ºC) Baseflow -0.042 -4.311 0.001 0.066 
Hot euthermal (> 30 ºC) Cultivated land 0.036 3.795 0.001 0.066 
Hot euthermal (> 30 ºC) Forested land -0.037 -3.750 0.001 0.066 
Hot euthermal (> 30 ºC) Slope -0.054 -5.791 0.001 0.066 
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Table 20. Fourth-corner analysis results for voltinism (number of generations per year). Bi-

multivoltine is two or more generations per year, univoltine is one generation per year, and 

semivoltine is fewer than one generation per year.  

Trait Environmental variable r r std. error P-value P-value adj. 
Bi-multivoltine Temperature 0.027 2.073 0.038 0.456 
Bi-multivoltine Precipitation -0.018 -1.461 0.147 1 
Bi-multivoltine Baseflow -0.028 -2.301 0.031 0.403 
Bi-multivoltine Cultivated land 0.028 2.313 0.023 0.391 
Bi-multivoltine Forested land -0.079 -6.213 0.001 0.066 
Bi-multivoltine Slope -0.038 -2.981 0.004 0.088 

Univoltine Temperature -0.024 -2.532 0.016 0.304 
Univoltine Precipitation 0.024 2.723 0.007 0.140 
Univoltine Baseflow 0.016 1.706 0.088 0.968 
Univoltine Cultivated land -0.019 -2.161 0.027 0.391 
Univoltine Forested land 0.058 6.337 0.001 0.066 
Univoltine Slope 0.014 1.528 0.132 1 

Semivoltine Temperature -0.004 -0.477 0.649 1 
Semivoltine Precipitation -0.010 -1.188 0.235 1 
Semivoltine Baseflow 0.019 2.315 0.023 0.391 
Semivoltine Cultivated land -0.013 -1.560 0.121 1 
Semivoltine Forested land 0.031 3.582 0.001 0.066 
Semivoltine Slope 0.035 4.086 0.001 0.066 

 
Table 21. Proportion of climate-sensitive genera that are in each insect order according to 
individual traits and trait profile groups. 

Order Traits  
Proportion of sensitive 

genera 

Trait profiles 
Proportion of sensitive 

genera 
Coleoptera 0.115 0.201 

Diptera 0.159 0.345 
Ephemeroptera 0.097 0.063 

Hemiptera 0.053 0.075 
Lepidoptera 0.000 0.000 
Megaloptera 0.000 0.005 
Neuroptera 0.000 0.003 

Odonata 0.027 0.155 
Plecoptera 0.257 0.043 
Trichoptera 0.292 0.109 
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Table 22. Proportion of genera in each insect order that are climate-sensitive according to 
individual traits and trait profile groups. 

Order Traits 
Proportion highly 

sensitive 

Trait profiles 
Proportion highly 

sensitive 
Coleoptera 0.224 0.714 

Diptera 0.138 0.632 
Ephemeroptera 0.157 0.259 

Hemiptera 0.231 0.634 
Lepidoptera 0.000 0.000 
Megaloptera 0.000 0.400 
Neuroptera 0.000 0.500 

Odonata 0.060 0.871 
Plecoptera 0.330 0.167 
Trichoptera 0.303 0.295 
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Figure 17. Environmental variables summarized by watershed. These include mean of the 

maximum temperature of the warmest month (ºC) and mean precipitation of the warmest quarter 

(mm) for 2001-2018 (PRISM 2018), baseflow mean (percent) for 1951-1980 (USGS 2003), 

slope mean (degree) (NED, USGS 1999), and mean cultivated land cover (percent) and mean 

forested land cover (percent) for 2001, 2004, 2006, 2008, 2011, 2013, and 2016 (NLCD).  
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Figure 18. Freshwater insect diversity measures summarized by watershed. Measures have 

been scaled to facilitate comparison.  
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Figure 19. Proportion of genera in each watershed with climate-sensitive traits.  
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Figure 19. (cont’d) 

These include cold-cool eurythermal preference (0-15 ºC), associations with erosional habitats 

(rheophily), and univoltine life-history (one generation per year). 
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Figure 20. Composition of each trait profile group. The first ten panels provide the trait 

composition, and the final panel gives the composition of insect orders. Representative genera 

for each profile are: 1) Doroneuria (Plecoptera), 2) Aedes (Diptera), and 3) Anax (Odonata). 

Trait abbreviations are: Feeding style, CF=collector-filterer, CG=Collector-gatherer, 

HB=herbivore, PA=parasite, PR=predator, SH=shredder; Rheophily, Depo=depositional, Depo-

eros=depositional-erosional, Eros=erosional; Voltinism, Bi-multi=bi-multivoltine (>1 generation 

per year), Uni=univoltine (1 generation per year), Semi=semivoltine (<1 generation per year).  
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Figure 21. Proportion of genera in each watershed belonging to each trait profile group. 

Trait profile 1 is composed primarily of genera in the EPT and Diptera orders with small to 

medium juvenile body sizes, depositional and depositional-erosional rheophily traits, cold-cool 

eurythermal (0 - 15 ºC) to cool-warm eurythermal (5 - 30 ºC) preferences, and univoltine life- 
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Figure 21. (cont’d) histories. Trait profile 2 is dominated by genera in the orders Diptera and 

Coleoptera. These taxa have primarily small body sizes, mixed rheophily, primarily cool-warm 

eurythermal (5 - 30 ºC) and warm eurythermal (15 - 30 ºC) preferences, and bi-multivoltine life-

histories. Trait profile 3 is representative of taxa in the orders Coleoptera, Diptera, and Odonata 

that have primarily medium to large body sizes, depositional rheophily, cool-warm eurythermal 

(5 - 30 ºC) to warm eurythermal (15 - 30 ºC) preference, and univoltine and semivoltine life-

histories.  
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Figure 22. Coefficient estimate (median ± 95% credible intervals) for each predictor 

variable in spatial models with freshwater insect diversity measures. Orange points indicate 

coefficients with 95% credible intervals not overlapping zero.  
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Figure 23. Correlation coefficients for predictor variables from fourth corner analysis with 

trait profile groups. Orange points indicate coefficients that were significant after adjustment of 

p-values. Purple points indicate coefficients that are not significant. Error bars are omitted for 

clarity.  
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Figure 24. Correlation coefficients for predictor variables from fourth corner analysis with 

individual traits. From top to bottom: rheophily, thermal preference, and voltinism (number of 

generations per year). Bi-multivoltine is two or more generations per year, univoltine is one 
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Figure 24. (cont’d) generation per year, and semivoltine is fewer than one generation per year. 

Error bars are omitted for clarity.  
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Figure 25. Mean climate sensitivity score for insect diversity measures (top) and traits and 

trait profile groups. Trait abbreviations are: rheophily, Depo=depositional, Depo-

eros=depositional-erosional, Eros=erosional; Voltinism, Bi-multi=bi-multivoltine (>1 generation 

per year), Uni=univoltine (1 generation per year), Semi=semivoltine (<1 generation per year). 
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Figure 26. Proportion of genera in each watershed classified as highly sensitivity to climate. 

Climate sensitivity is calculated according to sensitivity of each genus’ rheophily, thermal 

preference, and voltinism traits (left) or trait profile groups (right).  
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CHAPTER 5. Conclusions, and recommendations for managers and conservation practitioners 
 

Introduction 

 I addressed two, important knowledge gaps that have hindered efforts to conserve 

freshwater biodiversity in a changing climate, including understanding 1) physiological and 

demographic consequences of increasing temperatures for freshwater organisms and 2) 

relationships between climate and freshwater organisms across large geographic areas. In this 

chapter, I briefly describe the need for research addressing these two knowledge gaps and how 

each of my dissertation chapters advances our knowledge of these topics for freshwater insects. I 

also provide recommendations for how managers and conservation practitioners can use the 

results of my research to prioritize freshwater organisms and watersheds for protection in a 

changing climate. 

 1) Quantifying physiological and demographic consequences of increasing temperatures 

was identified as a key knowledge gap in recent frameworks for assessing the effects of climate 

change on species (Foden and Young 2016, Paukert et al. 2017). In particular, we need research 

demonstrating how climate change will alter individual physiology through changes to biological 

rates of metabolism, feeding, growth, and reproduction, to accurately forecast changes in 

populations and geographic distributions of freshwater organisms (Ficke et al. 2007, Paukert et 

al. 2017). We can use relationships between climate and physiology to forecast changes in 

populations with physiologically structured population models (De Roos and Persson 2001), and 

changes in geographic distributions using mechanistic species distribution models (Kearney and 

Porter 2009). Predictions from such models inform conservation and management of freshwater 

organisms by identifying species that are likely to experience population declines, geographic 
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range contractions, or extinctions (Foden and Young 2016). Those species can then be prioritized 

for protection and further research.  

 For many freshwater organisms, we still lack knowledge of key physiological responses 

to temperature that are needed to forecast changes in populations and geographic distributions 

with climate change (Dell et al. 2011, Whitney et al. 2016). These include upper thermal 

tolerance limits and thermal performance curves for biological rates such as metabolism, 

swimming speed, and feeding and growth rates (Deutsch et al. 2008, Dell et al. 2011). We can 

fill these knowledge gaps by conducting experiments to understand physiological changes with 

increasing temperature for a large number of freshwater organisms. Knowing that we cannot 

measure physiological responses of all species, we can also utilize trait-based approaches for 

prediction. For example, we can predict responses of species to climate change by grouping them 

into thermal tolerance trait categories (Poff et al. 2010) or thermal guilds (Comte and Grenouillet 

2013). Either approach has its advantages and disadvantages. Using detailed thermal 

relationships from experiments can provide more precise predictions of demographic responses 

to climate change than trait-based approaches, but these experimental data are more difficult to 

obtain (Foden and Young 2016). Alternatively, trait-based approaches can help us generalize 

physiological and population responses of organisms with similar traits without directly 

measuring their thermal responses (Foden et al. 2013, Pacifici et al. 2017, 2018). When possible, 

we should utilize these complementary approaches to identify freshwater species to prioritize for 

conservation in a changing climate (Pacifici et al. 2015, Foden and Young 2016). 

 With my research, I used detailed experiments and a trait-based approach to understand 

physiological and demographic consequences of increasing temperature for freshwater 

organisms. In Chapter 1 (Twardochleb et al. 2020), I investigated how changes in biological 
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rates with temperature are mediated by foraging traits of freshwater insects. These foraging traits 

are ubiquitous and include active predation whereby predators patrol for prey (e.g., sharks) and 

sit-and-wait, where predators remain in a fixed location and attack prey that move within their 

pursuit distance (e.g., snakes) (Preisser et al. 2007). Using a series of experiments across a 

temperature gradient of 10 to 35 ºC, I demonstrated that for two predatory freshwater insects, the 

sit-and-wait damselfly Enallagma annexum and the active backswimmer Notonecta undulata, 

metabolism, feeding, and growth rates increased with warming when predators consumed 

crustacean zooplankton prey Daphia pulex. In particular, feeding rates more than doubled for 

both predator species between 10 and 35 ºC.  

 Despite apparent similarities in their responses to temperature, the active backswimmer 

may be more likely than the sit-and-wait damselfly to starve as a result of climate warming if 

prey populations decline (Twardochleb et al. 2020). Because the backswimmer has a higher 

metabolic rate due to its active feeding style, it has to eat more prey than the sit-and-wait 

damselfly. Warming further increases the active predator’s hunger, requiring that it eat even 

more prey to avoid starvation. By contrast, the sit-and-wait damselfly uses little energy to 

capture prey and may be able to withstand periods of low prey availability even at high 

temperatures. More research is needed that investigates how active vs. sit-and-wait foraging 

traits mediate physiological and demographic responses to temperature for freshwater organisms 

living in environments with variable prey availability. If sit-and-wait predators generally 

outperform active predators in warm environments with low prey availability, then these 

predators could proliferate with climate warming in environments where prey populations have 

declined. With future research, we may be able to categorize predator species according to their 

feeding traits and predict where their populations will increase or decline with climate warming. 
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 In Chapter 2, I used physiological data from experiments in Chapter 1 (Twardochleb et 

al. 2020) to parameterize a physiologically structured population model and predict the 

population-level consequences of climate warming for the predatory damselfly Enallagma 

annexum consuming zooplankton Daphnia pulex. I used this model to simulate how climate 

warming in a seasonal environment could alter a key life-history trait of the damselfly, 

generation time, and how changes in this trait mediated responses of predator-prey population 

sizes and predator persistence to increasing environmental temperature. I found that with 

warming, the damselfly population size increased due to higher feeding and growth rates, and a 

longer growing season, that enabled damselflies to emerge faster to the adult stage and reproduce 

more times per year. These life-history changes prevented extinction of the damselfly population 

at very high temperatures. Overall, the results of Chapters 1 and 2 demonstrate that by increasing 

predator feeding and growth rates with temperature, climate warming can result in shorter 

generation times and larger population sizes of predators. Species that decrease their generation 

times in response to warming may benefit from climate change with larger populations and 

reduced extinction risks. Damselflies and dragonflies have generation times that vary with 

latitude (Corbet et al. 2006), and thus more research is needed to understand how these and other 

freshwater organisms with variable generation times respond to climate change throughout their 

geographic range. Such knowledge could help us better identify the geographic locations where 

species are vulnerable to extinction or are likely to benefit from climate change.  

 2) Identifying relationships between climate and freshwater organisms across large 

geographic areas will improve our understanding of which species are most vulnerable to range 

contraction and extinction and which regions will likely lose freshwater biodiversity (Heino 

2009). Such studies have already shown promise for identifying climate change-induced range 
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shifts (Hickling et al. 2006), regional changes in species traits (Bonada et al. 2007), and regions 

that are susceptible to biodiversity loss (Poff et al. 2010, Pyne and Poff 2017). Further, these 

studies are used in climate change vulnerability assessments, which rely on relationships 

between climate and species’ traits and geographic distributions to quantify vulnerability and 

prioritize species and regions for protection (Foden and Young 2016). More studies are needed 

that identify climate change vulnerability of freshwater insects in the United States, because the 

few vulnerability assessments for freshwater organisms have focused on fish (Comte and Olden 

2017) and those for freshwater insects have been regional or for a limited number of taxa (Poff et 

al. 2010, Shah et al. 2014, Pyne and Poff 2017).  

  Datasets of species occurrences and traits covering large geographic areas are central to 

conducting climate change vulnerability assessments (Foden and Young 2016, Jetz et al. 2019). 

Existing open-access biodiversity datasets for freshwater insects, such as the USEPA Freshwater 

Biological Traits database (U.S. EPA 2012, Poff et al. 2006, Vieira et al. 2006) and the Water 

Quality Portal (waterqualitydata.us) omit many occurrence records available from state 

biological monitoring programs, contain outdated taxonomic names and trait terminology, and 

have gaps in trait assignment for many taxa. To conduct climate change vulnerability 

assessments for freshwater insects in the United States, we need updated biodiversity datasets of 

occurrence records and traits.  

 In Chapter 3, I filled this knowledge gap by creating a database of occurrence records and 

functional traits for freshwater insects in the contiguous United States. I compiled over 2.05 

million genus occurrence records for 932 genera in the major freshwater insect orders, at 51,044 

stream locations sampled between 2001 and 2018 by federal and state biological monitoring 

programs. I assembled life history, dispersal, morphology, and ecology traits for 1,007 insect 
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genera. I provide updated, standardized taxonomy and trait terminology, and greatly expanded 

the number of insect genera with trait assignments and occurrence records over previous open-

access databases. My database, Freshwater insect occurrences and traits for the contiguous US 

(Freshwater insects CONUS), can be used to map freshwater insect taxonomic and trait 

distributions. When paired with environmental data, my database will enable quantification of 

relationships between climate and freshwater insect geographic distributions across the 

contiguous US.   

 In Chapter 4, I used my database, Freshwater insect occurrences and traits for the 

contiguous US (Freshwater insects CONUS, Chapter 3), to assess the climate-sensitivity of 

freshwater insects in the United States, or the degree to which their geographic distributions are 

strongly determined by climatic variability. This is a first step toward assessing their climate 

change vulnerability (Foden and Young 2016). I assessed the strength of relationships between 

temperature, precipitation, and the geographic distributions of freshwater insect traits and trait 

profile groups (i.e., clusters of interrelated traits). Among the 11 traits and 3 trait profile groups 

that I considered, erosional flow preference, cold-cool eurythermal preference, and univoltine 

life-history traits (one generation per year) were the most sensitive to climate. I used these traits 

to assess and map the climate-sensitivity of stream insect genera. Using these trait-based 

indicators, I found that insect genera in the orders Plecoptera and Trichoptera are likely the most 

sensitive to climate change, indicating that their geographic distributions are strongly correlated 

with climate. Insect genera with high climate sensitivity may be more likely to experience 

changes in their geographic ranges, including range contractions, local extirpations, or 

extinctions, as a result of climate change. I also found that watersheds with the highest 

proportions of sensitive taxa are throughout the mountain West and Appalachian regions of the 
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United States. These watersheds may be more likely to lose biodiversity with climate change, as 

a high proportion of their resident insect genera may undergo range contractions and extinctions. 

By providing biological indicators of climate change vulnerability, my research can enhance 

efforts by managers and conservation practitioners to prioritize watersheds and taxa for 

restoration and conservation in the United States. 

 

Recommendations for managers and conservation practitioners 

 With knowledge of freshwater insects’ traits in local watersheds, managers and 

conservation practitioners can use traits identified in Chapter 4 (rheophily, thermal preference, 

and voltinism) to rapidly assess the sensitivity of individual insect species, genera (see Electronic 

Appendix 1 in Chapter 4 for climate-sensitive genera), and families. If trait information is 

lacking for freshwater insects in a particular area, managers and conservation practitioners can 

use the trait database of Chapter 3 to first assign traits, and then assess freshwater insect 

sensitivity to climate change using the climate sensitive traits of Chapter 4 (Electronic Appendix 

1). Taxa with high sensitivity to climate based on these traits should then be prioritized for 

protection, because they are likely to undergo population declines or range contractions with 

climate change. By combining these sensitivity assessments with downscaled climate 

projections, managers and conservation practitioners can then conduct a full vulnerability 

assessment (Foden and Young 2016). 

 Climate sensitive traits should also be incorporated into multi-metric indices for assessing 

climate change vulnerability of stream sites, similar to those already in use for assessing stream 

ecological condition (e.g., Lawrence et al. 2010, Mazor et al. 2016). For example, many multi-

metric indices incorporate the percentage of shredder taxa in assessment of ecosystem condition, 
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and percentage of erosional and cold-cool eurythermal taxa could similarly be incorporated as 

indicators of climate change vulnerability. Moreover, the percentage of climate-sensitive genera 

(Chapter 4) could be incorporated into metrics, similar to the percentages of EPT taxa and 

intolerant taxa (Mazor et al. 2016). Stream sites with high climate sensitivity index scores are 

those that should be restored and protected to prevent losses of biodiversity due to climate 

change.  

 My trait-based indicators of climate sensitivity showed that insects in the orders 

Plecoptera and Trichoptera are likely the most sensitive to climate change. Insect species within 

these orders should be prioritized for protection in order to avoid population extirpations and 

species extinctions with climate change. Without further knowledge of insect species’ traits, 

percentage of an insect assemblage in the Plecoptera and Trichoptera orders could be used as an 

indicator of climate change vulnerability for streams, whereby streams with large percentages of 

Plecoptera and Trichoptera species in their insect assemblages are considered more vulnerable to 

biodiversity loss with climate change than streams with low representation of species in these 

orders. Further, my trait-based indicators of climate sensitivity showed that watersheds with the 

highest proportions of sensitive taxa are throughout the mountain West and Appalachian regions 

of the United States. These watersheds should be prioritized for conducting full vulnerability 

assessments and protection against losing freshwater biodiversity due to climate change.  
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