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ABSTRACT

A SYSTEMS APPROACH TO ANALYZE HOUSEHOLD VULNERABILITY TO FOOD
INSECURITY IN RURAL SOUTHERN MALI USING A SPATIALLY-EXPLICIT

INTEGRATED SOCIAL AND BIOPHYSICAL MODEL

By

Rajiv Paudel

Mali is expected to be profoundly impacted by climate change. Its mid-century temperature could

increase by 2◦C, which could have detrimental impacts on crop production. Besides, northern

Mali is currently highly arid and is not suitable for agriculture. The South has the responsibility to

feed the national population. However, the region is experiencing rapid population growth. Mali is

likely to struggle to feed its growing population under climate change. Food production and food

security in the South have a wider influence on the national food supply. Food security lies at the

interface of biophysical, climatic, and socio-economic systems and demands a systemic approach

for evaluation. Using a biophysical crop model with an agent-based model of household food

systems, we capture the dynamics within and across multiple associated systems. We focus in the

South and use multidisciplinary tools to explore the trajectories of household food security under

climate change and population growth in the region.

The dissertation is organized into three research papers. Paper 1, entitled “A Largely Unsu-

pervised Domain-Independent Qualitative Data Extraction Approach for Empirical Agent-based

Model Development.”, focuses on exploring household food systems and identifying actors of

household food security and their behaviors. Chiefly, we aim to extract the information needed

to develop an ABM of household food systems. We apply largely automatic efficient approaches

for information extraction from contextually rich qualitative field narratives. Using a combination

of semantics and syntactic Natural Language Processing, we identify actors (agents) of household

food security, their properties, and actions and interactions responsible for household food supply.

The data extraction is primarily unsupervised and, apart from being efficient, it controls manual

manipulation and bias introduction in the model development. We use the extracted information



for developing a contextual model of household food security. Finally, we subject the model to

stakeholder evaluation for credibility and validity.

Paper 2, entitled “Analyzing household vulnerability to food insecurity in rural southern Mali

- a coupled biophysical and social model approach.”, combines a biophysical process-based crop

model with an ABMof household food system to analyze household vulnerability to food insecurity

in southern Mali. We use the Systems Approach to Land Use Sustainability (SALUS) as the crop

model to simulate the cultivation of maize, millet, and sorghum in the region. While SALUS

provides information on food production, ABM simulates interactions for food access. We measure

household vulnerability using Food Security Vulnerability Index (FSVI), a coping-based index,

that evaluates households’ vulnerability to food insecurity by assessing the mechanisms used by

the households to address household food scarcity. Running a business-as-usual scenario, defined

by low access to input, high population growth, and a high emission climate change scenario

at Representative Concentration Pathway (RCP) 8.5 level, we find that maize and sorghum lose

their productivity significantly under future climate change. Besides, the region sees a significant

increase in its food insecure population. Around 80% of the regional households are at risk of food

insecurity by mid-century.

In paper 3, entitled “Global or Local? Effects of policy interventions on household food security

in Koutiala, southern Mali: A coupled biophysical and social systems approach.”, we evaluate the

effectiveness of selected global and local level policy intervention in promoting household food

security in the South. Themodel recommends local level interventions that include improved access

to input and lower population growth for a prompt and significant increase in food security in the

region. More than 60% of the regional households could be food secure under the combinations

of the interventions. However, the global level intervention that consists of lowering emission

to RCP4.5 level does not have significant impacts on local household food production and food

security.
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CHAPTER 1

INTRODUCTION

1.1 Background

Unlike many countries in the world, Mali could not seize the benefits of the Green Revolution.

The development and application of improved technology and farm management, that were nec-

essary for a successful Green Revolution, were severely inadequate (Otsuka and Muraoka 2017).

As a result, farmers in the region could not intensify their agriculture (Brown, Hintermann, and

Higgins 2009), and their productivity remained stagnant for decades (Djurfeldt et al. 2005). The

current farming practices in Mali are still very traditional. Conventional hand tools, low-yielding

cultivars, and poor application of inputs are quite ubiquitous (Brown, Hintermann, and Higgins

2009). Consequently, its crop productivity remains amongst the lowest in the world. The future of

Malian agriculture does not look promising either. The country is expected to be profoundly im-

pacted by climate change. Climate models used by the Intergovernmental Panel on Climate Change

(IPCC) unanimously predict a warmer climate in Mali (Traore et al. 2013). High temperature

has detrimental effects on crop productivity (Asseng et al. 2017; Basso, Kendall, and Hyndman

2013). As a result, the region may see a further decline in its crop production. With some models

predicting increased rainfall, Mali can expect to see improved production in the future (Patricola

and Cook 2010; Sultan and Gaetani 2016). However, the increased frequency of erratic rainfall

and a warmer climate expected under climate change may nullify such benefits (Sivakumar 1988).

Mali has four broad bio-climatic zones (Figure 1). The northern half of Mali is highly arid

and unsuitable for agriculture. People living in the North are generally nomadic; their livelihood

depends on trans-Saharan trades. They rely entirely on food imports. The country becomes wetter

and more productive in the South. The Sudano-Guinean zone receives more than 1000mm of

annual rainfall (Traore et al. 2013). Due to the relative abundance of fertile land, people in the

South are more involved in agricultural activities. The region is the primary exporter of food in
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Figure 1.1: Bio-Climatic Zones of Mali. Source: https://www.climatelinks.org/

the nation. However, the regional farmers are predominantly poor and into subsistence farming.

Intensification in the region is highly limited due to inadequate access to technology and resources.

Furthermore, soil degradation is omnipresent (Adger et al. 2001) in the region.

Mali is experiencing rapid population growth (Farvacque-Vitkovic et al. 2007; Dijk, Bruijn, and

Beek 2004). With the current state of farming in the South, the country will face difficulties feeding

its growing population. The South has a daunting task of feeding its people while maintaining

food supply to the nation. Household food security here has broader implications for the national

2



Figure 1.2: Koutiala: the study area

food supply. The purpose of this study is to explore household vulnerability to food insecurity

from climate change and population growth in rural southern Mali. In this study, we explore

the trajectories of household food security in Koutiala, a region in rural southern Mali (Figure

2). Koutiala makes a significant contribution to the national food supply and is regarded as the

breadbasket of the country (Bingen 1998). Using a systems approach, we look at household

food systems in the region. Additionally, combining multidisciplinary approaches, we explore

their trajectories under climate change and population growth and evaluate the efficacies of selected

policy interventions in promoting food security in the region. Household food security in rural Mali

mainly relies on household food production and access. Food production responds to biophysical

and climatic factors and farm management. Food access, on the other hand, is affected by resource

availability and social norms and practices. In other words, food security lies at the intersection

3



of biophysical, climatic, and socio-economic systems and, therefore, demands a systems approach

for its analysis (Jones et al. 2017). In this study, we integrate a bio-physical crop model with an

agent-based model (ABM) developed using field narratives of household food systems to evaluate

vulnerability to food insecurity. The crop model incorporates the dynamics within biophysical

and climatic systems for estimating household food production while the ABM explores social

interactions contributing to household food access.

Vulnerability to food insecurity is governed by complex interactions between the associated

dynamic systems. Vulnerabilitymeasurement needs to capture the dynamics of the complex systems

(Krishnamurthy, Lewis, and Choularton 2014). In this study, we measure household vulnerabilities

using a coping-based Food Security Vulnerability Index (FSVI). FSVI evaluates vulnerability by

exploring household coping mechanisms. Households start to cope when faced with food scarcity

at home. The options they choose generally reflect their current severity and future vulnerability

(D. Maxwell, Caldwell, and Langworthy 2008; D. G. Maxwell 1996; D. Maxwell, Watkins, et al.

2003). By incorporating FSVI into the ABM, we are able to capture the dynamics and interactions

occurring within and across the associated systems.

Although food security is defined in terms of food availability, access, utilization, and stability,

its measurement is often limited to food production (availability) or access. In this study, we

try to capture all four dimensions for measuring food security in our analysis. We evaluate

food availability and access through analyzing household food production, social interactions, and

resource availability. Similarly, we measure utilization using household calorie sufficiency. The

simulations we perform provide information on the temporal stability of household food security.

This dissertation is organized into three papers, each with specified research questions. The first

paper delves into household food systems in Koutiala. The second paper explores the trajectories of

household food security under climate change and population growth, and the third paper evaluates

selected policy intervention. The following research questions guide this study:

Research Question 1: What are the actors and factors of household food security? How do

household actions and interactions affect their food security?

4



Research Question 2: How do dynamic interactions across socio-economic, climatic, and

bio-physical systems spatially and temporally affect household vulnerabilities to food insecurity?

Research Question 3: What are the global and local level management recommendations for

effective policy interventions?

The development of ABM needs information on agents, their properties, actions, and inter-

actions. In Paper one, we use qualitative field narratives to identify the actors (agents) of food

security, their attributes, and actions/interactions responsible for maintaining food security at the

households in Koutiala. Qualitative data, primarily narratives, is an excellent source of informa-

tion. The narratives contain rich contextual information for systems representation essential for

model development. However, qualitative data processing and extraction is complex, and time and

resource consuming. ABM developers often avoid extracting model components from qualitative

data. Models are usually developed ad-hoc, based on modelers’ subjective interpretation of target

systems. The resulting models often have questionable quality and reliability. In this paper, we

use Natural Language Processing tools to extract ABM components from qualitative narratives.

The process is largely unsupervised and, therefore, highly efficient. Further, it limits manual

manipulation, reducing opportunities for human bias introduction during model development.

In paper two, we integrate a biophysical crop model with an ABM of household food systems

to analyze household vulnerability to food insecurity. We simulate a ‘business-as-usual’ scenario

based on the current level of farm management, population growth, and expected climate change.

The ABM receives information on household crop production from the crop model. Household

food sufficiency is determined by calculating food availability and demand at the household level.

The model treats food sufficient households as food secure. Food insufficient households look for

coping alternatives, and the ABM provides FSVI indices to the households based on the severity

indicated by alternatives used by the households.

In paper three, we evaluate the effects of global and local level policy interventions on house-

hold food security in the study area. We simulate alternative futures combining different farm

management, population growth, and climate change interventions. We explore the trajectories

5



of household food security under combinations of interventions. Additionally, we compare the

outputs with the ‘business-as-usual’ scenario from paper two to assess the effectiveness of the

interventions.
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CHAPTER 2

A LARGELY UNSUPERVISED DOMAIN-INDEPENDENT QUALITATIVE DATA
EXTRACTION APPROACH FOR EMPIRICAL AGENT-BASED MODEL

DEVELOPMENT.

Agent-basedmodel (ABM) development needs information on system components and interactions.

Qualitative narratives contain contextually rich system information immensely useful for ABM

conceptualization. However, traditional qualitative data extraction is usually manual, complex, and

time and resource consuming. As a result, modelers often shy away from using qualitative data or

follow unorthodox ad-hoc approaches for ABM development. That could yield models difficult to

validate and replicate. Besides, manual data extraction is generally bias-prone and may produce

models of questionable quality and reliability. In this study, we present a largely-unsupervised

qualitative data extraction for ABM development. Using a combination of semantic and syntactic

Natural Language Processing tools, our methodology extracts information on system agents, their

attributes, and actions and interactions. In addition to expediting information extraction for ABM,

the largely-unsupervised approach also minimizes biases arising from modelers’ preconceptions

about target systems. To make it usable on large unstructured datasets, we also introduce multiple

automatic and manual noise-reduction stages. We demonstrate the approach by developing a

conceptual ABM of household food security in rural Mali. The data for the model contains a large

set of unstructured qualitative field narratives. The data extraction is swift and mainly automatic

and devoid of human manipulation. We contextualize the model manually using the extracted

information. For added credibility and validity, we also put the conceptual model to stakeholder

evaluation.

2.1 Introduction

Qualitative data provides thick contextual information (Miles 1979; Rich and Ginsburg 1999;

Watkins 2012) that can support reliable quantitative socioecological systems (SES) model devel-

opment. Qualitative data analysis explores systems components, their complex relationships and
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behavior (Kemp-Benedict 2004; Rich and Ginsburg 1999; Watkins 2012), and provides a struc-

tured framework that can guide the formulation of quantitative SES models (Ackermann, Eden,

and Williams 1997; Coyle 2000; Forbus and Falkenhainer 1990; Wolstenholme 1999). However,

qualitative research is complex, time, and resource-consuming (Miles 1979; Watkins 2012). Data

analysis usually involves keyword-based data extraction and evaluation that requires multiple coders

to reduce biases. Moreover, model development using qualitative data requires multiple, lengthy,

and expensive interactions with stakeholders (Polhill, Sutherland, and Gotts 2010), which adds

to its inconvenience. Consequently, quantitative modelers often shy away from using qualitative

data for their model development. Often, modelers either entirely skip qualitative data analysis or

use unorthodox approaches for framework development. This usually fails to capture the complex

dynamics of target systems and produces inaccurate and unreliable outputs (Landrum and Garza

2015).

The development in the information technology sector has substantially increased access to

qualitative data over the past few decades. Harvesting large, credible data is crucial for reliable

model development. Increased access to voluminous data presents a challenge, as well as an

opportunity for model developers (B. Runck 2018). However, qualitative data analysis has always

been a hard nut to crack for SES modelers. Most of the existing qualitative data analyses are

highly supervised (i.e., done mainly by humans) and, hence, bias-prone and inefficient for large

datasets. An approach that can efficiently analyze and extract qualitative data for developing

credible, reliable and valid SES models is urgently required. This study presents a methodology

that uses an efficient largely unsupervised qualitative data extraction method for credible Agent-

based Model (ABM) development using Natural Language Processing (NLP) toolkits. As the

process of information extraction is unsupervised and does not require manual interventions, it

reduces potential for subjectivity and biases in the model development. ABM, one of the widely

used SES models, requires information on socioecological agents, their attributes, and interactions

for its development.

The paper is organized as follows. Section 2.2 describes the importance of qualitative data
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and outlines some of the existing approaches for translating qualitative data to empirical ABM.

In section 2.3, we present a largely unsupervised domain-independent qualitative data processing

and extraction using NLP for ABM development. We use the approach to develope an ABM of

household food security in Koutiala Mali, which is reported in section 2.4. Section 2.5 outlines

some of the limitations and recommendations for future research. Finally, Section 2.6 concludes

our paper.

2.2 Background

ABM is useful for understanding phenomena that emerge from nonlinear interactions of au-

tonomous and heterogeneous constituents of socioecological systems (An et al. 2005). ABM is

a bottom-up approach; interactions occurring at micro-level produce complex and emergent phe-

nomena at a macro (higher) level. To simulate such behaviors, ABM requires micro-scale data.

However, obtaining data at the required scale is not always feasible. ABM had enjoyed a prosperous

era of nonempirical models that showcased the model’s effectiveness in exploring complex sys-

tems (Janssen and Ostrom 2006). Using synthetic data, the nonempirical abstract models simulate

simple system behaviors to generate and test complex systems theories (O’Sullivan et al. 2016).

Models like Conway’s Game of Life and Shelling’s Segregation are some of the first and renowned

nonempirical ABMs, that despite lacking real-world data, simulate simple behaviors to adequately

explain system complexity and emergence (Axelrod 1997).

As the access to micro-level data becomes easier, modelers are increasingly using empirical

data for more realistic system representation and simulation (Janssen and Ostrom 2006; O’Sullivan

et al. 2016; Robinson et al. 2007). These empirical models use quantitative as well as qualitative

data to evaluate systems theories. Quantitative data is primarily useful for parameterizing and

running simulation. Additionally, quantitative model outputs are also used for model verification

and validation. Qualitative data, on the other hand, finds its uses at various stages of the model cycle

(Seidl 2014). Apart from the routine tasks of identifying systems constituents and behaviors for

model development, qualitative data also supports the model structure and output representations
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(Grimm, U. Berger, et al. 2010; Ligmann-Zielinska, Siebers, et al. 2020; B. Müller et al. 2014).

Qualitative model representations facilitate communication for learning and model evaluation and

replication.

Several researchers believe that the qualitative/quantitative dichotomy is artificial and inaccurate

(Gorard 2002; Kemp-Benedict 2004; Rich and Ginsburg 1999). They argue that both approaches

have similar philosophies - both aim to advance scientific knowledge through verified tools and

methods. Scientific rigor and integrity of theoretical knowledge are central to both paradigms

(Gorard 2002; Rich and Ginsburg 1999). Although their inductive and deductive approaches are

different, data used for the analyses are predominantly nonbinary. Numbers can be textualized,

and textual data can be counted (Gorard 2002). However, pro-qualitative researchers challenge

such ideas. They believe that the qualitative and quantitative approaches have distinct philosophies,

characteristics, and goals (Leininger 1992). They find quantitative research to be highly rigid

and context-deprived (Rich and Ginsburg 1999; Watkins 2012). On the contrary, the quantitative

domain finds qualitative research vague, bias-prone, and without scientific rigor (Gorard 2002).

Such finger-pointing and blame game is omnipresent in the scientific community, especially in

the post-Kuhn era (Niglas 2000). Moreover, there is a broader dissatisfaction amongst qualitative

researchers as quantitative research is deemed more important in the scientific community and is

prioritized for funding and publication. Improperly mixed methods create more issues than they

typically address (Leininger 1992). However, SES models can naturally embrace both approaches.

ABM, specifically, uses both deductive and inductive approaches to generate and test systems

theories. Epstein (2006) promotes such ABM quality as a generative social science, while Axelrod

(1997) calls it a third way of doing science.

Mixed-methods are gradually getting traction in the wider modeling community (Forbus and

Falkenhainer 1990; Gorard 2002; Kemp-Benedict 2004; J. D. A. Millington and Wainwright 2016;

Wolstenholme 1999). Specifically, qualitative analysis is used at the beginning of research to

explore system dynamics that inform the development of structured frameworks for quantitative

model formulation (Coyle 2000; Forbus and Falkenhainer 1990). Without such frameworks,

13



quantitative modelers often get bogged down by systems complexities. Besides, qualitative research

also lays down model assumptions explicitly that solidify the credibility and reliability of the

resulting models (Ackermann, Eden, and Williams 1997; Coyle 2000; Forbus and Falkenhainer

1990; Wolstenholme 1999). As a result, such frameworks are frequent in the quantitative models

across various disciplines including engineering (Forbus and Falkenhainer 1990), transportation

management (Ackermann, Eden, and Williams 1997), public health (Rich and Ginsburg 1999),

geography (Ligmann-Zielinska and Jankowski 2010), and other socioecological systems (Schmitt

Olabisi et al. 2010).

Somequantitativemodels have predefined structures formodel development. SystemDynamics,

for instance, uses Causal Loop Diagrams as qualitative tools (A. Ford and F. A. Ford 1999). Causal

Loop Diagrams elucidate systems components, their interrelationships, and feedbacks that can be

used for learning and developing quantitative System Dynamics models. ABM, however, does not

have a predefined structure for model development; models are mostly based on ad-hoc structures.

Structural validation is crucial for ABM (Heath, Ciarallo, and Hill 2012). However, such ad-hoc

development is problematic for model validation and replication (Grimm, Augusiak, et al. 2014).

Besides, similar systems can have different structures that make learning through models extremely

difficult (O’Sullivan et al. 2016). Hence, there is a need for a standard structure for the development

of credible, reliable, and educational ABMs.

2.2.1 The use of qualitative data for ABM conceptualization

Social and cognitive theories often form the basis for translating qualitative data to empirical

ABM (Becu et al. 2005). Since gathering and organizing micro-level qualitative data is difficult,

using theories streamlines data management and analysis for model development. Theories like

Belief-Desire-Intension (Balke and Gilbert 2014), Theory of Planned Behavior (Edwards-Jones

2006), Utility Maximization (Doscher et al. 2014), and Consumat (Janssen and Jager 1999) are

typical for defining behavioral rules in ABM. Since social behavior is complex and challenging to

comprehend, the use of social and cognition theories helps in determining the expected behavior
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of the system.

Another school of thought bases model development on stakeholder cognition. Rather than

relying mainly on social theories, this approach focuses on extracting empirical information about

system components and behaviors. Nicolas Becu et al. (2003) identified two approaches for

using stakeholder information in model building – a modeling view and a transfer view. The

modeling view requires direct involvement of stakeholders in model development. Participatory

or companion modeling, as well as role-playing games, are some of the conventional approaches

of eliciting stakeholder knowledge for model development (Robinson et al. 2007). Stakeholders

usually develop model structures in real-time, while some modelers prefer to process stakeholder’s

information after the discussions. For instance, Bharwani (2006) employs computer technologies to

post-process stakeholder responses to develop a rule-induction algorithm for herABM.Stakeholders

are assumed to be the experts of their systems, and using their knowledge in model building

makes model valid and reliable. However, this approach also has its limitations. Working with

stakeholders can be complicated and may require specialized skills. Stakeholder bias (Seidl 2014)

is also a common problem. Relying entirely on stakeholders for model development, on the other

hand, can completely hijack the initially intended model objectives. As social systems are ‘socially

constructed,’ conflicting views on the systems are also likely to occur. Collating the conflicting and

contrasting views in one representation may not always be possible. That may require developing

multiple models of the same system to reflect different perspectives (Nicolas Becu et al. 2003).

However, Participatory Modeling (Voinov and Bousquet 2010) has been continually developed to

acknowledge and minimize various biases that may be introduced by stakeholders involvement in

model building (Sterling et al. 2019; Voinov, Kolagani, et al. 2016).

Stakeholder involvement is not always feasible; for instance, whenmodeling remote or historical

events. In such cases, a transfer view is preferred. The transfer view requires textual information,

usually in the form of narratives or interviews. Modelers use knowledge engineers and information

elicitation tools for information extraction. Thus, translating empirical textual data into agent

architecture is difficult and requires concrete algorithms and structures (Seidl 2014). Edmonds
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(2015) formulated a context, scope, and narrative element structure for eliciting model elements

from textual data. Modelers first explore the context of the narratives and then identify potential

context-specific scopes. Once context and scopes are identified, according to Edmonds (2015),

identifying narrative elements becomes easy.

Many ABM modelers have formulated structures for organizing qualitative data for model

development. For instance, Ghorbani, Schrauwen, and Dijkema (2013) used Ostrom’s Institu-

tional Analysis and Development (IAD) framework for managing qualitative data in their Modeling

Agent-system based on Institutions Analysis (MAIA). MAIA comprises five structures: collective,

constitutional, physical, operational, and evaluative. Information on agents is populated in collec-

tive structure while behavior rules and environment go in constitutional and physical structures,

respectively. A similar example can also be found in Gilbert and Terna (2000). They presented

an Environment-Rule-Agent structure for organizing qualitative data for ABM development. Like-

wise, the MameLuke framework developed by Huigen (2004) is also a highly popular approach. It

uses Action-in-Context (De Groot 1992) for translating real-life stories into computerized ABM.

2.2.2 Formulating ABM for model development

ABMs are essentially computer tools that have software agents and environments. The high-level

model descriptions elicited from qualitative data needs to be translated to low-level computer

languages. Frequently, modelers are not computer programmers. That often prompts modelers

to represent their models to programmers. The widely used ABM representations are either in

the form of natural languages (e.g., ODD (Grimm, Railsback, et al. 2020)), Graphics (e.g., UML

(Bersini 2012)), or formal language (e.g., pseudocodes, ontologies). B. Müller et al. (2014)

compared these approaches and found that UML representation has broader applicability in coding,

validating, communicating, and replicatingmodels. UML is a standardized graphical representation

of software development (Bersini 2012). It has a set of well-defined class and activity diagrams

that are effective in representing the inner workings of ABMs (Collins et al. 2015). Although there

are other forms of graphical ABM representations like Petri Nets (Bakam et al. 2000), Conceptual
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Model for Simulation (Heath, Ciarallo, and Hill 2012) and sequence and activity diagrams (Gilbert

2004), UML is natural in representing ABM. Due to which, Miller and Page (2009) expected UML

to be the default lingua franca of ABM. Recently, ABMs are increasingly being represented using

UML (Li et al. 2015; Serrano and Iglesias 2016). Furthermore, ABM specific UMLs like Agent

UML (AUML) (Bauer, J. P. Müller, and Odell 2001) that captures the adaptive nature of agents

and Agent Modeling Language (AML) (Trencansky and Cervenka 2005) are also being developed

(Subburaj and Urban 2018).

ABM has a close resemblance to Object-Oriented Programming (OOP) (An 2012; Dearden

and Wilson 2012; Gilbert 2004; Simoes 2012). In OOP, objects belong to classes; they have

attributes as well as methods and relationships. Likewise, in ABM, agents have attributes and

actions/interactions. Code proficient modelers often develop their ABMs using object-oriented

programs (T. Berger 2001; Standish 2008). OOP flows naturally and is easy to understand (Bersini

2012; Torrens 2010); hence, translating ABM to OOP makes coding much easier (Crooks and

Heppenstall 2012). However, ABM is not necessarily an OOP. Many ABMs have been developed

using non-OOP NetLogo (Krejci et al. 2016; J. D. Millington 2012). NetLogo effectively caters to

modelers who have an elementary coding experience (Tisue and Wilensky 2004).

UML is widely accepted for representing OOP (Bauer, J. P. Müller, and Odell 2001). Trans-

ferring narratives to an object-oriented framework and representing it through UML is useful for

communicating and developing ABM.Many software engineers are exploring ways to extract infor-

mation from qualitative data directly to object-oriented frameworks. Similarly, database designers

are also trying to auto-populate entity-relationship diagrams from textual information (Harmain

and Gaizauskas 2000). They primarily exploit the syntactic structure of sentences for information

extraction. The syntactic analysis usually treats the subject of a sentence as a class (an entity for a

database) and the main verb as a method (relationship for a database).

Software engineers have been exploring various supervised and unsupervised approaches for

information extraction. In supervised approaches, syntactical patterns are defined (Clark et al.

2012), and text is manually scanned for such patterns. In unsupervised information extraction, the
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machine does the pattern matching. NLP (Loper and Bird 2002; Manning, Surdeanu, et al. 2014)

toolkits are increasingly used for unsupervised pattern matching and information extraction (Fraga

et al. 2017; Salloum et al. 2018). Tools like lemmatizing, tokenizing, stemming, and part of speech

tagging (Bird, Klein, and Loper 2009) are useful for syntactic information extraction. These tools

can normalize texts and identify subjects and main verbs from their sentences.

Supervised approaches are reliable but slow. On the contrary, the faster unsupervised approaches

are difficult and prone to errors, mostly due to the word sense ambiguation (Al-Safadi 2009). A

purely syntactical analysis cannot capture the nuanced meaning of texts, which is often the culprit

of the problem. Recently, pattern matching also involves semantic analysis. External databases

of hierarchically-structured words (e.g., WordNet, VerbNet) (Navigli 2009), as well as machine

learning tools, are increasingly used for understanding semantics for reduced word sense ambiguity

(Husain and Khanum 2016; Orkphol and Yang 2019).

2.3 Using NLP for largely unsupervised ABM development

NLP is instrumental in efficiently analyzing, tagging, and extracting information from broad

textual data (Liddy 2001; Sun, Luo, and Chen 2017). The ability to convert highly unstructured

texts to structured information through predominantly unsupervised approaches is one of the main

advantages of NLP in qualitative data analysis. NLP efficiently analyzes intertextual relationships

using syntactic and semantics algorithms. Approaches like word co-occurrence statistics and

sentiment analysis (Nasukawa and Yi 2003) are highly useful for domain modeling (Clark et al.

2012), and for exploring contextual and behavioral information from textual data. Similarly,

its efficiency in pattern matching for information extraction is particularly important for model

development. Although being present for decades in object-oriented programming and database

development (Harris 1978; Lees 1970), NLP has a minimal footprint in ABM development.

The introduction of NLP in ABM development is very recent. Runk (B. Runck 2018; B. C.

Runck et al. 2019) usedNLP tomodel human cognition throughweb embedding. Word embeddings

are contextually analyzed vector representations of texts. They place closely related texts next to
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each other. Placing agents with similar worldviews together supports theorizing agent decision-

making. Although the approach helps in developing agent decision-making, it is not yet well

equipped for developing a comprehensive agent architecture.

Padilla, Shuttleworth, and O’Brien (2019) applied NLP in conjunction with machine learning to

create an ABM structure from unstructured textual data. Texts are translated to the agent-attribute-

rule framework. They defined agents as nouns (e.g., person, place) that perform some actions, and

attributes as words that represent some variables. Similarly, the sentences that contain agents or

attributes together with action verbs are considered rules. The primary goal of their approach is to

create an ABM structure mainly for communicating the model to non-modelers.

As with machine learning approaches in general, the Padilla el al. approach requires a large

amount of training data. They used ten highly concise formally written ABM descriptions from

published journals as their training datasets. Another limitation, according to the researchers, is the

lack of precise distinctions between agents and attributes - attributes could also be nouns that might

confuse the machine. Using repeated training with large data is found to be effective in increasing

the accuracy of the agent-attribute-rule detection. However, the model frequently resulted in under

and over predictions.

Our study proposes and tests a largely unsupervised domain-independent approach for de-

veloping ABM structures from unstructured, informal narratives using Python-based semantic

and syntactic NLP tools Figure 2.1. The method primarily uses syntactic NLP approaches for

information extraction directly to the widely accepted OOP framework (i.e., agents, attributes,

actions/interactions), and creates UML for its representation. Since the approach is not based

on machine learning, it does not require large training data. The semantic analysis is limited

to the use of external static datasets like WordNet (https://wordnet.princeton.edu/) and VerbNet

(https://verbs.colorado.edu/verbnet/). The process is mainly unsupervised and involves the follow-

ing:

• Unsupervised data processing and extraction
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– Data preprocessing (cleaning and normalization)

– Data volume reduction

– Tagging and information extraction

• Supervised contextualization and evaluation

– UML/Model conceptualization

– Model evaluation

2.3.1 Unsupervised data processing and extraction

2.3.1.1 Data preprocessing (cleaning and normalization)

Qualitative data analysis is computationally expensive. Unstructured narratives often contain

redundant or inflected texts that can bog down NLP analysis. Hence, removing non-informative

contents from large textual data is highly recommended at the start of the analysis. NLP is well

equipped with stop words removal tools that can effectively remove redundant texts. Similarly,

tools like stemming and lemmatizing are useful for normalizing texts to their base forms (Manning,

Raghavan, and Schütze 2010).

2.3.1.2 Data volume reduction

Data volume reduction can tremendously speed up NLP analyses. Traditional volume reduction

approaches usually contain highly supervised keyword-basedmethods. Data analysts use predefined

keywords to select and extract sentences perceived to be relevant (Namey et al. 2008). Keyword

identification generally requires a priori knowledge on the system and is often bias-prone. We

recommend a domain-independent unsupervised Term Frequency Inverse Document Frequency

(TFIDF) approach (Ramos 2003) that eliminates the requirement for manual keyword identification.

The approach provides weightage to individual words based on their uniqueness and machine-

perceived importance. The TFIDF differentiates between important words and common words by
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comparing their frequency in individual documents and across the entire body of texts. Sentences

that have high cumulative TFIDF scores are perceived to have higher importance. Given a document

collection D, a word w, and an individual document d n D, TFIDF can be defined as,

5F,3
∗ ;>6( |� |\ 5F , �)

where fw, d equals the number of times w appears in d, |D| is the size of the corpus, and fw, D

equals the number of documents in which w appears in D (Ramos 2003).

2.3.1.3 Tagging and Information Extraction

Once the preprocessed data is reduced, tagging for agents, attributes, and actions/interactions can

occur. We propose the following approaches for tagging agent architecture:

Candidate agents: Following the conventional approaches in database design and object-

oriented programming, we propose the subjects of sentences to be identified as candidate agents.

For instance, the farmer in ‘The farmer grows cotton’ can be a candidate agent. NLP has well-

developed tools like part-of-speech tagger and named-entity tagger that can be used to detect

subjects of sentences.

Candidate actions: The main verbs of sentences can become candidate actions. The main

verbs need to have candidate agents as the subject of the sentences. In the sentence ‘The farmer

grows cotton,’ the farmer is a candidate agent and the subject of the sentence; grows is the main

verb and, hence, a candidate action.

Candidate attributes: Attributes are properties inherent to the agents. Sentences containing

candidate agents as subjects and be or have verbs as their primary (non-auxiliary) verbs provide

attribute information. E.g. The farmer is a member of a cooperative. The farmer has 10 ha

of land. Additionally, the use of possessive words also indicates attributes. E.g., the cow in the

sentence ‘My cow is very small’ is an attribute of ‘I’.

Candidate interactions: Main verbs indicating relationships between two candidate agents are

identified as interactions. Hence the sentences containing two or more candidate agents provide

information on interactions. E.g., The Government trains the farmers.
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Figure 2.1: Largely unsupervised information extraction for ABM development, TFIDF: Term
Frequency Inverse Document Frequency
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Since the data tagging is strictly unsupervised, false positives are likely to occur. The algorithm

can overpredict agents, as the subjects of all the sentences are treated as candidate agents. In ABM,

however, agents are defined as autonomous actors – they act and make decisions. We propose to

use a hard-coded list of action (e.g., eat, grow, walk) and decision (e.g., choose, decide, think)

verbs to filter agents from the list of candidate agents. Only the candidate agents that use both types

of verbs qualify as agents. Candidate agents that do not use both verbs are categorized as entities

that may be subjected to manual evaluation. Similarly, people use different terminologies that are

semantically similar. We recommend using external databases like WordNet to group semantically

similar terminologies.

2.3.2 Supervised contextualization and evaluation

The unsupervised analysis reduces data volume and translates unstructured narratives to the agent-

action-attribute structure. However, since the process is unsupervised, noise can still percolate to

the outputs. Additionally, the outputs need to be contextualized. We suggest performing a series

of supervised output filtration, followed by manual contextualization and validation.

The domain-independent unsupervised analysis extracts individual sentences that can some-

times be ambiguous or domain irrelevant. Hence the output should be filtered based on the level

of ambiguity and domain relevancy. Once output filtration is done, contextual structures can be

developed and validated with domain experts and stakeholders.

2.4 Development and evaluation of ABM of household food security using
the proposed framework

We applied the above approach to develop a structural ABM of household food security using

unstructured field narratives. The data contains 42 semi-structured interviews collected from

different members (young and old; male and female) of farm households in Koutiala, SouthernMali.

The interviews were initially conducted for developing mental models of household food security

in the region (Rivers III et al. 2017), see, for example, Figure 2.2. The mental model development
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Figure 2.2: Mental Model of household food security (Rivers III et al. 2017)
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Table 2.1: An excerpt of action and decision verbs

Decision Verbs Action Verbs
adhere abandon
advise accelerate
approve accept
assess access
choose accompany
comply accord
consult achieve
decide acquaint
determine acquire
discourage add
educate address
encourage adjust
expect adopt
favor advertise
follow affect
guide afford
instruct agree
learn aim
obey alert
oblige allow
plan analyze
prefer apply
propose appoint
provoke appreciate
recommend argue
refuse arrange
regulate arrive
reject assemble
reprimand assist
suggest associate
withdraw attach
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Figure 2.3: Candidate agents before and after using the external database

followed the lengthy conventional qualitative data analysis approach that used multiple coders and

keyword-based sentence extraction. That inspired us to develop a more efficient alternative data

processing and extraction approach for ABM development.

For this study, we used Python 3.7 programming language (https://www.python.org/) along with

several NLP libraries (e.g., scikit-learn, nltk, spacy, textacy) to perform data reduction, tagging,

extraction, and structuration. We grouped the narratives by the member types (i.e., elder male,

younger male, elder female, and younger female) and analyzed the grouped narratives collectively.

After preprocessing the narratives using NLTK tools, we used the scikit-learn TfidfVectorizer to

reduce the volume of qualitative data. Textacy was primarily used for identifying candidate agents,

actions, and attributes. Additionally, Textacy extract (textacy.extract.semistructured_statements)

was useful in converting sentences to structured outputs. We manually filtered the unsupervised

outputs based on their domain relevancy and ambiguity. The final outputs were then visualized

and conceptualized using Gephi (https://gephi.org/) and Lucid Chart (https://www.lucidchart.com/)

platforms.

As expected, the unsupervised tagging overpredicted the agents. Subjects that do not make a

decisionwere also identified as candidate agents. We created an external database of action/decision

verbs (Table 2.1) that somewhat addressed the problem. There was more than a 60% reduction in

the number of agents after the external database was used (e.g., Figure 2.3). The initially identified

candidates, such as porridge, food, cereal, or farm, were discarded by the filtration process. We

also used external WordNet database to group semantically similar actions.

Next, we developed UML class diagrams (Figure 2.4) and contextual diagram (Figure 2.5) using

the extracted information. We found that different members of households support household food

security differently (see Appendix A; Appendix B). Male members of the households are generally
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Figure 2.4: UML class diagram of agents of household food security
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involved in farming. They grow cereal crops, vegetables and are also into cash-cropping. Women

look after household works and also support men in the farm. Households generally consume the

food they produce. In case of food shortages, households seek help from their fellow villagers or buy

food from the market. They use money obtained from cash-cropping for buying food. Additionally,

women in the households are involved in small businesses that can support food purchases. Some

households may need to rely on off-farm jobs or sell their livestock to buy food. There are also

other organizations and credit agencies that provide the households with credits and supports.
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Figure 2.5: Conceptual model of household food security in Koutiala, Mali (EM: Elderly male, YM: Younger male, EF: Elderly female,
YF: Younger female)
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We simplified the contextual model (see Appendix D) and brought it to the stakeholders

(interviewees) for validation. The stakeholders received the structure well and acknowledged that it

included all the principal dynamics of the household food system. They, however, pointed out that

the contextualized structure did not provide the dynamics of the government and non-government

actors. Since the input data only contained interviews from farm households, we failed to capture

the dynamics occurring outside of the households. In addition to representing the dynamics of

the household food system, the structure also revealed data gaps. More information needs to be

gathered on the government and non-government actors of household food security.

2.5 Limitations and future direction

The proposed unsupervised information extraction picked individual sentences based on their

cumulative TFIDF weights. Some of the individually extracted sentences lacked contextuality

and were ambiguous. To add context and reduce this ambiguity, we propose to use neighboring

sentences at the unsupervised data extraction and processing phase (Figure 2.1). We hypothesize

that extracting a tuple of preceding and trailing sentences along with the identified sentence,

could provide vital contextual information. Similarly, some of the extracted sentences contained

pronouns. Without the information on preceding sentences, these pronouns were impossible to

resolve. Extracting the preceding sentence should help in resolving their references. NLP also

has a coreference resolution tool that automatically replaces pronouns with their referenced nouns.

However, the tool is still in development. We found that it generated too many errors that would

require manual checks. We had to proceed without using the tool, and the pronouns identified as

agents were ignored.

We only collected information on agents, attributes, and actions/interactions for ABM.However,

ABMalso requires information on agent decision-making. Although the use of social and behavioral

theories in defining agent decision-making is predominant, empirically derived decision-making

frameworks are context-specific and, therefore, more desirable. We realize that some sentences are

particularly useful in deriving agent decision-making. Specifically, the conditional sentences like ‘if
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it rains, we plant maize,’ and compound sentences like ‘when production is low, we buy food from

the market’ can reveal decision-making. Harvesting these sentences with semantics and machine

learning approaches can open up new avenues for formulating empirically-based decision-making

rules for ABM.

Information obtained in the outputs is limited by the information contained in the input. We

noticed that agent tagging, after using the action and decision verbs, underpredicted agents. Entities

like ‘father’ and ‘the government’ should also be identified as agents of this particular system.

However, since subjects did not use both types of verbs (action and decision) in the provided

narratives, some information was missed out. Additionally, stakeholders pointed out that our

model structure did not include the dynamics of the governmental and non-governmental actors.

It prompts a need for a careful analysis of entities that failed to qualify as agents for data gaps.

Furthermore, the narratives (see Appendix C)went through different stages of translations (from

local dialect to French and English) that could have corrupted some of their original meanings.

2.6 Conclusion

Complexities, ambiguities, and difficulties in data processing often discourage ABM devel-

opers from using qualitative data for model development. This prevents modelers from using

rich-contextual information about their target systems. ABMs are usually developed using ad-hoc

approaches, potentially producing models that lack credibility and reliability. In this paper, we

introduced a systematical approach for ABM development from unstructured qualitative narra-

tives using NLP. The proposed methodology contained largely unsupervised, domain-independent,

efficient, and bias-controlled data processing and extraction for ABM. We demonstrated its ef-

fectiveness by developing an ABM of household food security from large open-ended qualitative

field narratives. Additionally, we outlined some of the significant limitations of the approach and

recommended improvements for future development.

We initially aimed to develop an efficient and bias-free, completely unsupervised information

extraction for conceptualizing an ABM. After preliminary algorithm development, we realized that,
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with the current level of NLP capabilities, entirely unsupervised data processing and conceptual-

ization is not realistic. We decided to use manual filtration and contextualization that potentially

introduced subjectivity and biases in model development. To address this deficiency, we performed

a stakeholder validation to check for subjectivity and biases.

Although we could not fully develop a completely unsupervised approach, we successfully

managed to reduce subjectivity and biases through limiting manipulation in data extraction. Data

processing and extraction are fully unsupervised, and manual inputs are only required towards the

end of model development. That effectively limits the opportunities for introducing human bias in

model development. Furthermore, the unsupervised approach is much faster compared to manual

coding. The NLP development community is highly active, and hopefully, these limitations will

soon be resolved, making semantic and syntactic NLP more effective for unsupervised information

extraction and model conceptualization.
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APPENDIX A

HOUSEHOLD-LEVEL ACTION AS DESCRIBED BY ELDERLY MALES

Figure A.1: Household-level action as described by elderly males
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APPENDIX B

INDIVIDUAL ACTIONS AS DESCRIBED BY ELDERLY MALES

Figure B.1: Individual actions as described by elderly males
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APPENDIX C

AN EXCERPT FROM THE FIELD NARRATIVES

Figure C.1: An excerpt from the field narratives (Note: Conversation took place in a local dialect
that was later transcribed into English by a local translator)
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CHAPTER 3

ANALYZING HOUSEHOLD VULNERABILITY TO FOOD INSECURITY IN RURAL
SOUTHERN MALI - A COUPLED BIOPHYSICAL AND SOCIAL MODEL APPROACH.

Household food security is dependent on, among other things, food production and access. How-

ever, food security discourse is dominated by the productionist arguments, and the role of food

access is often ignored. Food security lies at the interface of biophysical, climatic, and socioe-

conomic systems and requires a systems approach for evaluation. In this study, we integrate a

biophysical crop model with an agent-based model (ABM) of household food systems to analyze

household vulnerability to food insecurity in rural southern Mali. The crop model analyzes the

effects of biophysical and climatic environments on household food production, while the ABM

evaluates the effects of socioeconomic systems on household food access. We measure household

vulnerability to food insecurity using a coping-based food security vulnerability Index (FSVI).

The FSVI reflects households’ current severity and also indicates their future vulnerability to food

insecurity. Vulnerability to food insecurity results from complex and dynamic interactions between

biophysical and social systems. By integrating the FSVI into the model, we capture the interplay

between the dynamic systems for the vulnerability analysis. We simulate a ‘business-as-usual’

scenario and find that around 80% of the regional households are likely to be food insecure by

2050. Large families and those living in the North are more susceptible to future food insecurity.

However, the severity of food insecurity is higher especially in some smaller families.

3.1 Introduction and Background

Despite realizing the importance of food access for decades (Sen 1981), food availability still

dominates the food security discourse. Regional food availability is often used as a sole indicator

of food security (Pinstrup-Andersen 2009), and policies are fixated on increasing food production.

However, food security is a multicausal issue that varies across households. Multiple factors,

including lack of resources, socio-cultural norms, and policies, often dictate households’ access to
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available food. As food access is non-homogenous, regional food availability does not adequately

reflect household food security. A comprehensive food security analysis, therefore, needs evaluating

heterogeneous food availability and access at the household level.

In this study, we develop a spatial agent-based model (ABM) of a household food system

coupled with a process-based crop model to analyze household vulnerability to food insecurity in

rural Southern Mali. The crop model examines the effects of biophysical and climatic factors on

household food production. At the same time, the ABM explores the influence of socioeconomic

factors on adequacy and stability of household food access. Social vulnerability is often defined in

terms of risk exposure, coping capacity, and recovery potential (Bohle, Downing, and Watts 1994;

Watts and Bohle 1993). We define vulnerability at the interface of biophysical and socioeconomic

systems and measure it using a coping-based food security vulnerability index (FSVI). The FSVI

measures the current severity of food shortages at the households as well as provides an outlook on

their future vulnerability.

Malian agriculture had a disappointing past; it could not seize the benefits of the Green

Revolution (Otsuka and Muraoka 2017). The promoted technologies and farm management were

largely inadequate for improved crop production (Djurfeldt et al. 2005). The regional farmers could

not intensify their agriculture, and their productivity remained stagnant for decades (M. E. Brown,

Hintermann, and Higgins 2009). On the other hand, due to rapid population growth, food demand

kept on rising. Farmers had to rely on extensification tomeet the expanding food demand. Also, due

to poor management, there was widespread soil degradation (Ruelland, Levavasseur, and Tribotté

2010) that further deteriorated the agricultural productivity.

The outlook of Malian agriculture looks bleak. The country is expected to be profoundly

impacted by future climate change. All of the General Circulation Models (GCMs) used by the

Intergovernmental Panel for Climate Change (IPCC) predict a warmer Mali (Traore et al. 2013).

Since crop yield generally declines with increased temperature (Bassu et al. 2014), Mali is likely to

see reduced crop production under climate change. Some climate models foresee increased rainfall

in the future (Patricola and Cook 2010; Sultan and Gaetani 2016) that can arguably benefit crop
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production. However, an increased frequency of erratic rainfall predicted under climate change,

together with warmer weather, is expected to nullify such benefits (Sivakumar 1988).

The northern half ofMali lies in the Saharan region. It is highly arid and not suitable for agricul-

ture. However, southernMali receives higher rainfall and is more productive. Koutiala (Figure 1.2),

our study area, lies in the Sudano-Guinean region in the South and receives 600-1400mm of annual

rainfall (Falconnier et al. 2015). Agriculture is a prime activity here. Maize, millet, and sorghum

are the major staple crops grown in the region. However, farming is predominantly traditional. The

Head of the household, usually the oldest male member, makes most of the farm-related decisions

(Rivers III et al. 2017). Besides, farmers are mostly poor and perform subsistence farming, and

their access to resources is highly limited.

Koutiala houses a large cotton industry that supports local farmers with logistics and training.

Since cotton production technologies also help with crop production (Bingen 1998; Cooper and

West 2017), local farmers also cultivate cotton to receive such benefits (Dembele et al. 2017). In a

way, the cotton industry plays a vital role in the growth of regional agriculture. Food produced here

often gets exported to other parts of the country, including the northern region. Since the area plays

a critical role in addressing broader food security, it is considered a breadbasket of Mali (Bingen

1998). Ironically, Koutiala has one of the largest food-poor and malnourished populations in the

country (Cooper and West 2017; Eozenou, Madani, and Swinkels 2013) that highlights existing

disparities in food access at a granular level. Nevertheless, local policy discussions focus on

improving food production (Olabisi et al. 2018); discourse on food access remains largely dormant.

3.2 Measuring household vulnerability to food insecurity

3.2.1 Food security: definition and measurement

Food security is dominated by ‘productionist’ arguments (Clapp 2014; Fouilleux, Bricas, and

Alpha 2017) where food production has been emphasized for achieving food security. Traditionally

regional food production used to be the indicator of food security. However, with globalization

and commercialization, food transport got easier, and food-deprived regions like Northern Mali
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could become equally food secure as the South (Cooper and West 2017; Eozenou, Madani, and

Swinkels 2013; Staatz, D’agostino, and Sundberg 1990). This brought food access into the center

of food security definition. Recently, food security is increasingly analyzed at more granular levels.

Households’ or individuals’ access to sufficient, stable, and diverse food supply becomes the central

theme of current food security definitions. Food security is increasingly defined in terms of its

three pillars and a foundation (Figure 3.1): food availability, access, utilization, and stability (FAO

2008).

Figure 3.1: The pillars of food security

Since food production indicates food availability, its measurement is generally straightforward.
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However, measuring food access and utilization is challenging. Due to the lack of suitable indicators,

food access and utilization are usually measured using proxies. For instance, household assets are

often used as a proxy for food access. Wealthy households are assumed to have better access to food

and, hence, poorer families are considered vulnerable (S. Maxwell and Smith 1992). Utilization,

on the other hand, is often measured using anthropometric indices (Scaramozzino 2006). These

indicators are usually expensive to collect and prone to errors (Bickel et al. 2000; Scaramozzino

2006). Subjective experiences with food and hunger (Bickel et al. 2000; Hoddinott 1999) are also

increasingly used to analyze food security. Although they are easier to collect, subjective indicators

are bias-prone and often unreliable for making future projections.

3.2.2 Measuring vulnerability to food insecurity

The notion of vulnerability differs across disciplines but is often considered as synonymous to

poverty (Chambers 1989; Scaramozzino 2006). However, Chambers (1989) dichotomizes poverty

and vulnerability - the first indicates a lack of resources, while the latter is a defenseless state.

Specific groups of people like the elderly, pregnant women, and children are increasingly vulnerable

to stresses regardless of their economic conditions (Kelly and Adger 2000). Furthermore, there are

external and internal sides of vulnerability. The external side indicates shock, and the internal side

of vulnerability is a defenseless state (Chambers 1989). Watts and Bohle (1993) extend this idea

and define vulnerability in terms of exposure to risk (external), the capacity to cope (internal), and

the ability to recover (internal). Risk exposure does not necessarily indicate a vulnerable state, as

long as one can cope with it. However, coping can impede future recovery potential.

Based onWatts and Bohle’s approach, we define vulnerability to food insecurity at the interface

of biophysical and socioeconomic systems (Figure 3.2). The biophysical environment generally

offset food availability by affecting household food production, while socioeconomic factors influ-

ence households’ access to food. Households look for options to feed their family when exposed to

food shortages. These measures (coping strategies) can vary by geography, culture, and severity but

usually start with easily accessible low-impact approaches such as meal rationing and in-kind help
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Figure 3.2: Space of Vulnerability (Adapted from Watts and Bohle, 1993)

from relatives or neighbors (S. Maxwell and Smith 1992). However, as the severity of food scarcity

increases, households need to resort to more drastic measures, including the sale of household as-

sets and migration (Figure 3.3). Such approaches generally put a strain on domestic resources that

can affect households’ ability to cope with future food scarcity (D. G. Maxwell 1996; S. Maxwell

and Smith 1992).

Vulnerability assessment provides early warning and helps with target identification for relief

planning and emergency management (Flanagan et al. 2011; Füssel and Klein 2006; Riely 2000).

Disaster management literature uses several vulnerability indices for social (Flanagan et al. 2011),

economic (Guillaumont 2009), and climatic (Pandey and Jha 2012) stresses. However, indices

specific to food security are highly limited. Existing food security vulnerability indices often work

at macro-levels (e.g., Burg 2008; Krishnamurthy, Lewis, and Choularton 2014) and fail to represent

household level vulnerabilities. Moreover, these indices focus on current vulnerabilities. Future

predictions generally use trend extrapolations that are unreliable as they ignore the dynamics of

associated systems (Burg 2008). Since vulnerability is dynamic and complex, it demands an index

that captures the dynamics of the complex systems (Riely 2000).
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Figure 3.3: Household responses to food shortages (based on FGD and Maxwell 1992)

Despite recognizing food security as a function of food availability, access, utilization, and

stability, literature still lacks an index that simultaneously checks all the dimensions of food

security. Besides, vulnerability to food insecurity results from complex and dynamic interactions

between biophysical and social systems and is difficult to quantify (Krishnamurthy, Lewis, and

Choularton 2014). The FSVI, used in the study, is a simple coping-based index that provides

vulnerability information based on the coping mechanisms households use to address their food

scarcities. Furthermore, we integrate it into the ABM to effectively capture systems complexities

needed to explore future vulnerabilities.

The FSVI has four severity1 levels (Table 3.1). It evaluates food availability by analyzing

household food production and food access by examining their interactions. Similarly, it checks

1Since current severity also affects future vulnerability, we use severity and vulnerability inter-
changeably in the paper.
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Table 3.1: Food Security Vulnerability Index (FSVI)

Index Description

FSVI I Food secure - households have sufficient food
production/availability to feed their family.

FSVI II Slightly food insecure – households face slight
shortages that can be covered by rationing or
in-kind help from neighbors and relatives.

FSVI III Moderately food insecure – households need to
purchase food. They might have to sell their
assets or go for off-farm jobs.

FSVI IV Severely food insecure – households deplete all
their domestic resources. Members gone for
off-farm jobs decide to migrate, creating work-
force shortages at home and further exacerbating
household’s food insecurity.

household calorie sufficiency for evaluatingutilization. The longitudinalABMsimulations, in turn,

provide information on the stability of household food supply. The highlighted terms constitute

a comprehensive approach to food security (Figure 3.1). Maxwell and the team (D. Maxwell,

Caldwell, and Langworthy 2008; D. G. Maxwell 1996; D. Maxwell, Watkins, et al. 2003) are big

proponents of coping-based indices for measuring food security. According to them, these indices

work as ‘current’ as well as ‘leading’ indicators; i.e., beside reflecting the current severity of food

scarcity, the indices also indicate households’ susceptibility to future vulnerabilities.

3.2.3 Coupled biophysical and social food security analysis

Biophysical and social sciences are highly active but often disjoint in defining food security.

Biophysical crop science emphasizes promoting crop productivity for food security (Gebbers and

Adamchuk 2010). Social science, on the other hand, attributes food insecurity to unjust resource

distribution and access (Jenkins andScanlan 2001). Household food security requires sufficient food

supply supported through stable production and access. Food production is generally influenced by

biophysical and climatic conditions and farm management. Food access, on the other hand, relies

on resource availability controlled by prevailing socioeconomic policies and practices. Besides,
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household access to resources also affects farm management.

Hence, food security lies at the intersection of biophysical, climatic, and socioeconomic systems,

and requires a broader systems approach for its analysis (Hammond and Dube 2012; J. W. Jones et

al. 2017). In this study, we integrate SALUS (SystemsApproach to LandUse Sustainability) (Basso,

Ritchie, et al. 2006), a bio-physical process-based crop model, with an ABM for a comprehensive

household food security analysis. By using the crop model that explores the dynamics of crop

production coupled with the ABM of household food system, we aim to capture the interplay

between biophysical, climatic, and socioeconomic environments responsible for household food

availability and access (Figure 3.4).

Figure 3.4: An integrated systems approach to food security analysis

3.2.3.1 Crop models for estimating food production

Farmers regularlymonitor the growth and development of their crops at different stages of crop cycle

to get the real-time evaluation of yield and management. These estimations are often subjective,

restricted to small spatial and temporal scales, and are not expandable or transferable (i.e., the

same approach cannot be used at different locations). Crop modelers, on the other hand, develop

statistical and process-based models that can forecast yields based on empirical biophysical and

54



climatic observations. These models can predict harvests at a much larger extent and are often

transferable (Basso and Liu 2019).

Statistical crop models extrapolate past trends to predict future yields. These models are

simple and have low data requirements but usually need high-quality data for reliable estimations.

Recent advancements in technologies like remote sensing and machine learning have increased the

reliability of statistical models (Basso and Liu 2019). However, these models do not capture the

complex dynamics of agricultural sub-systems and cannot explain ‘out of sample’ scenarios (Basso

and Liu 2019; J. W. Jones et al. 2017). Unlike statistical approaches, process-based models capture

systems complexities, making them useful in exploring plausible future scenarios. Process-based

crop models are based on plant responses to physical and bio-climatic variables and are suitable

alternatives to statistical models for long-term yield estimations.

The process-based models use agroecological and climatic indicators to evaluate crop biomass.

They are modular (Asseng et al. 2014) and contain a series of mathematical equations representing

the growth and development of crops. Some of their key processes include phenology, biomass

accumulation, and water and nutrient uptake (Asseng et al. 2014). These models are highly

useful for evaluating management practices, yield gap, nutrient cycling, environmental impacts,

and climate change mitigation and adaptation (Asseng et al. 2014; Basso and Ritchie 2015; Basso,

Ritchie, et al. 2006; Basso, Sartori, et al. 2012; Liu and Basso 2017).

SALUS uses a systemic approach (Figure 3.5) to simulate daily plant growth and soil conditions.

It consists of three major components – a crop growth module, soil organic matter and nutrient

cycling module, and soil water balance and temperature module. The model has been used

extensively for simulating crop productivity (Basso and Ritchie 2015; Basso, Sartori, et al. 2012;

Liu and Basso 2017) and evaluating farm management and their environmental impacts (Basso,

Ritchie, et al. 2006; Basso, Sartori, et al. 2012). However, SALUS has a large data requirement.

It generally requires information on physical and chemical composition at each layer of soil, daily

weather conditions, crop genetics, and crop management. As a result, using SALUS in developing

African countries, where detailed quality data is usually scarce, is often challenging (Liu and Basso
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2017).

Figure 3.5: A systems approach in SALUS model (Source: Basso, Ritchie, et al. 2006)

A key criticism of crop sciences is their total fixation on crop production, ignoring the social

dimensions of food security (James W Jones et al. 2017). Furthermore, the crop models generally

treat farmers as rational ‘homo-economicus’. They supposedly have the knowledge and resources

to optimally exploit the productivity of their farms completely. However, farmers are neither

uniformly capable and knowledgeable; nor do all want to maximize productivity. Hence, one needs

to consider household heterogeneity and bounded rationality for a reliable food security analysis.

3.2.3.2 Integrating ABM for food security analysis

ABM is useful for understanding phenomena that emerge from complex and nonlinear interactions

of autonomous as well as heterogeneous social constituents of a system (An et al. 2005). ABM

can adequately consider population heterogeneity and bounded rationality, and is highly useful

in analyzing food security (An et al. 2005; Bithell, Brasington, and Richards 2008; Kennedy

2012). It has been widely used in evaluating land management (Ligmann-Zielinska 2009) and its
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repercussion on food production (T. Berger and Troost 2014; Magliocca, D. G. Brown, and Ellis

2013; Polhill, Sutherland, and Gotts 2010). Since ABM can handle social interactions well, it can

naturally analyze food access (Koh, Reno, and Hyder 2019).

In Mali, rural households are mostly subsistence farmers. Thus, capturing food production is

essential for rural food security analysis. However, ABM, being primarily a model of the social

system, cannot capture crop dynamics. Coupling a process-based crop model with an ABM of

household food system incorporates the dynamics required for an effective and comprehensive

food security analysis. However, literature severely lacks integrated crop-ABM models for food

security analysis. Most of the integrated models focus on the impacts of policies and practices

on land and farm management and their effects on household food production and economy. For

instance, the People and Landscape Model (Matthews 2006) integrates a process-based crop model

with an ABM to analyze crop-nutrient management. Marohn et al. (2013) used Land Use Change

Impact Assessment (LUCIA), a process-based crop model, with a Multi-Agent System to evaluate

soil conservation strategies in Vietnam. Similarly, Schreinemachers and Thomas Berger (2011)

integrated a Mathematical Programming-based Multi-Agent System with biophysical models to

examine the effects of agricultural technologies, market dynamics, environmental change, and

policies on household and agroecological resources. Earlier research by them (Schreinemachers,

Thomas Berger, and Aune 2007) used ABM with the Tropical Soil Fertility Calculator (TSPC) to

simulate the effect of crop productivity on household economy.

A more recent integrated food security analysis, done by Wossen and Thomas Berger (2015),

used a crop model with an ABM to analyze the impacts of climate and price fluctuations on

household food availability and access. However, their research does not check the stability aspect

of food security as it lacks long-term climate and market projections. Recently, Dobbie et al. (2018)

looked at all four dimensions of food security for community food security analysis using crop and

agent-based models. They integrate climate change scenarios in their study to simulate future

crop production. However, they do not use a process-based crop model and represent crop yield

as a function of input and water availability. Although crop productivity is profoundly affected
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by temperature, their model does not capture such dynamics. Additionally, they used RCP 2.6, a

‘highly stringent’ climate change scenario, which only simulates a best-case future. Our research

addresses these gaps by capturing all four dimensions of food security by integrating a process-

based crop model with an ABM. Additionally, we use a high emission RCP 8.5 climate change

scenario that helps with risk estimation and planning interventions.

3.2.3.3 Model parameterization, setup, and evaluation:

Agents in the ABM represent farm households in Koutiala. The households are represented in

the landscape by vector polygons (representing households’ land parcels) of different shapes and

sizes. We develop a simple GIS model for creating the distributions of land parcels. GIS places the

parcels randomly in and around arable land. Additionally, the GIS model is set to place the land

parcels denser and smaller within urban areas reflecting their distribution in reality (N’Danikou

et al. 2017). We divide households into the following four categories based on the size of their land

parcels (Falconnier et al. 2015):

1. High Resource Endowed – Large Herds (LRE_LH) households

2. High Resource Endowed (HRE) households

3. Medium Resource Endowed (MRE) households

4. Low Resource Endowed (LRE) households

Koutiala has only one growing season; households partition their farmland to cultivate different

crops. We use SALUS to simulate the cultivation of maize, millet, and sorghum. At the beginning

of a model run, the ABM randomly selects one set of land parcels generated by the GIS model.

The ABM then receives the productivity estimates from SALUS and interpolates the values to the

land parcels. The model then calculates household food production and evaluates food sufficiency

(Figure 6). Food sufficient families are labeled as food secure households (FSVI I), and food insuf-

ficient households look for coping alternatives beginning with in-kind help from close neighbors
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or relatives. The families whose food deficiency is addressed by in-kind support get labeled as

slightly food insecure (FSVI II) and the households that need to purchase food are moderately food

insecure (FSVI III). Households either sell their livestock or go for off-farm jobs to purchase food.

The households that deplete their internal resources (i.e., livestock and workforce) are labeled as

severely food insecure (FSVI IV).

For the model simulations, We define a ‘business-as-usual’ scenario based on the current trends

in climate change, population growth, and farmers’ access to input. We select a high emission

climate change scenario (Representative Concentration Pathway – RCP 8.5) (Riahi et al. 2011).

Similarly, the population growth rate for Koutiala is set at 5% per annum (Farvacque-Vitkovic

et al. 2007; Dijk, Bruijn, and Beek 2004). During our focus group discussions, the local farmers

highlighted the issue of the lack of access to agricultural input. Farmers usually produce manure

for their fields using household and agricultural residues. Based on the discussions, we set the

input application at 1T/ha of manure. We use the Met Office Hadley Centre ESM (HadGEM2-ES)

(C. Jones et al. 2011) climate change model to generate future weather conditions for the crop

model. Daily estimated weather data is obtained from Marksim DSSAT weather file generator

(http://gismap.ciat.cgiar.org/MarkSimGCM). Although the region lies within a uniform Sudano-

Guinean agroecological zone, to account for local variability in weather (albeit small), we divide

our study area into four quadrants and use their centroids as weather stations.

Each model simulation runs for 40 years (from 2010 to 2050) with one-year timesteps. SALUS

is run for the entire Koutiala landscape containing 690,000 grids of 250m spatial resolution. SALUS

outputs are validated using reported field data (Table 3.2). ABM is generated from stakeholder vali-

datedABMstructure (AppendixD).We applied standard verification includingmethods such as unit

tests, extreme tests, assertions, and debugging (An et al. 2005; Gilbert 2019). We run 1000 ABM

simulations for the business-as-usual scenario. The ABM is developed in Python 3.7 programming

language (https://www.python.org/) using multiple libraries, including Pandas, GeoPandas,

and Rasterio. ABM parallelization is achieved through the concurrent.futures library. Since both

crop and agent-basedmodels are extensive and resource-intensive, we usedHigh PerformanceCom-
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Figure 3.6: Structure of Crop-ABM coupled Model
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Table 3.2: Koutiala crop yields (reported) (Source: Cellule de Planification et de Statistique, Mali)

Year Millet Yield (Kg/ha) Sorghum Yield (Kg/ha) Maize Yield (Kg/ha)
2003 958 1059 1800
2004 921 994 1804
2005 983 989 1773
2006 979 991 1896
2007 1000 1095 2040
2008 1100 1150 2000
2009 1000 1100 2300
2010 1000 1100 2500
2011 892 710 2285
2012 900 1000 2214
2013 979 955 2118
2014 1050 1106 2475
2015 1046 1099 2896
2016 1025 1066 2440

puting (HPC) at Michigan State University for the simulations. Detailed information on the ABM

is presented in the ODD format (V. Grimm et al. 2006; Volker Grimm et al. 2010) in Appendix E,

and the details on SALUS can be found at https://basso.ees.msu.edu/salus/index.html.

Additionally, itemized model parameters are presented in Table 3.3 and Table 3.4..
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Table 3.3: SALUS Parameters

SALUS Parameterization Source

Soil Parameters Resolution International Soil Reference and Information Center
(http://www.isric.org)

Physical Properties Bulk density, Clay content,
Coarse fragments, Sand, Silt

250m

Chemical Properties Cation exchange capacity, Nitro-
gen, Soil Organic Carbon, pH

250m

Weather/Climate Parameters Resolution Marksim DSSAT weather file generator (http://
gismap.ciat.cgiar.org/MarkSimGCM)

Weather data Tmax, Tmin, Rainfall, Solar ra-
diation

Daily

Future Climate RCP 8.5 (HadGEM2-ES) -

Farm Management Parameters Value Focus Group Discussion/ Expert Advice/ (Soumaré
et al. 2002)

Crops Maize, Millet, Sorghum 20%, 40%, 40% of total
land respectively

Input Barnyard Compost 1T/ha
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Table 3.4: ABM Parameters

ABM Parameterization Source

Total Farm Households (No of
Agents)

9000 Census (2009)

HH typologies Distribution Land_size:
mean (std)

HH_Size:
mean (std)

Livestk:
mean (std)

(Falconnier et al. 2015)

High Resource Endowed - Large
Herdsize (HRE_LH)

13% 16.6 (8.33) 45.3 (18) 5.7 (1.5)

High Resource Endowed (HRE) 28% 11.8 (6) 27.3 (6.6) 2.7 (1.6)
Medium Resource Endowed
(MRE)

40% 7.5 (2.4) 12.6 (1.7) 4.1 (6.5)

Low Resource Endowed (LRE) 19% 3.2 (2) 7.9 (4.9) 1.3 (1)
Food supply Values
Calorie demand 2400 per person FAO

(http://www.fao.org/)
Calorie supply 3100 per kg

maize; 3550 per kg
sorghum/millet

Sale of 1 cattle provides 1285 kg of grain Derived from ICRISAT,
2017

Food Production Values
Workforce available 1/2*hh_size (Ruben et al. 1997)
Worker-days required (Crops) 63
Worker-days required (Cotton) 149
Food Access Distribution
Neighborhood distance Uniform

2000,3000,4000
(meters)

based on Focus Group
Discussion

Neighborhood support Discrete (0%, 5%,
10%, 20%) % of
surplus

P(0.1,0.5,0.3,0.1)
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Figure 3.7: Future climate under RCP 8.5 scenario

3.3 Results and Discussions

The climate model predicts a warmer Koutiala; its mid-century temperature could rise by

more than 2◦C (Figure 3.7). Temperature increase accelerates plant phenological development and

shortens the growing season. This can lead to reduced biomass accumulation (S. Asseng et al.

2017; Basso, Kendall, and Hyndman 2013). Bassu et al. (2014) suggested that with every ◦C

increase in temperature maize productivity could decline by 0.5T/ha. Since Koutiala is expected to

see an increase in future temperature, crop productivity is likely to decline. The region experiences

no significant changes in future rainfall patterns. However, increased temperature causes increased

evapotranspiration (Roudier et al. 2011) that can limit water availability to plants. Our SALUS

modeling produced results where maize and sorghum suffered from water stress, and their future

yields declined by more than 40% (Figure 3.8). Since millet is more water-efficient than maize and

sorghum (Saxena et al. 2018; Schlenker and Lobell 2010), it showed no water stress in the model.

Millet productivity remained relatively stable, with a mere 2% decline in its future yields. We also

found that southern Koutiala was more productive than the north (Figure 3.9). However, the region

would significantly lose its productivity in the future (Figure 3.10).
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Figure 3.8: SALUS predicted yields (kg/ha) for business-as-usual scenario (dashed lines represent
field reported data)

65



Figure 3.9: Spatial distribution of crop productivity in Koutiala
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The crops we simulated belong to C4 plant categories. These plants are highly resistant to

heat and drought (Roudier et al. 2011). Still, SALUS predicted a significant decline in their future

productivity, especially for maize and sorghum. Farm management plays a vital role in plant water

use efficiency (Basso, Kendall, and Hyndman 2013; Ritchie and Basso 2008). The lack of improved

technologies and farm management predominant in the region were not effective in reducing crop

water stress. Additionally, these plants are less sensitive to atmospheric CO2 (Roudier et al. 2011;

Schlenker and Lobell 2010). Although RCP 8.5 has a high level of CO2, its benefits on the

productivity of the crops have been minuscule.

Koutiala is witnessing population growth higher than the national average (Farvacque-Vitkovic

et al. 2007; Dijk, Bruijn, and Beek 2004). At this rate, the region is likely to see a significant

increase in its baseline population by 2050. Increased population, together with reduced crop

productivity, substantially offsets regional food balance. We found that the regional cumulative

food demand would surpass its food production by 2025 (Figure 3.11). This can severely impact the

region’s food export, jeopardizing its status as the breadbasket of the country. However, the ABM

revealed that household food insecurity, defined by using the FSVI, existed well before 2025. It

further signifies the inadequacy of regional food availability in reflecting household food security.

Similarly, we found that almost 80% of the households were likely to be food insecure by 2050

(Figure 3.12). For the subsistence farmer in the region, household food production is critical. The

households in the less productive north were found to be more susceptible to food insecurity than

their counterparts in the South (Figure 3.13). Additionally, population dynamics play an important

role in household food security. Population growth increases food demand to a level that some

households cannot easily meet. The model revealed a higher number of FSVI II than FSVI III

households at the beginning of the simulation, indicating that the food shortages were small with

a smaller population. However, it was later superseded by FSVI III households that needed food

purchases to feed the family. The model identified larger households (HRE_LH and HRE) to be

more dependent upon food purchases (Figure 3.14)

However, population growth is not all doom and gloom. Traditionally, rural households in
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Figure 3.10: Maize productivity decline from 2010 to 2050 (kg/ha)

Figure 3.11: Regional food production vs. demand

Koutiala are large and contain extended family members living and working together. Since

farming is mainly manual, a large family usually means the availability of a large agricultural

workforce. Older generation in the region still prefers the traditionally large households (Rivers III

et al. 2017). The large households often have sufficient workforce for farm and off-farm jobs.

Although they were found to be prone to food insecurity in the study, the large households usually

had resources – in the form of workforce and livestock - to address the problem. This prevents them
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from being severely food insecure (FSVI IV). However, smaller households have highly limited

livestock and workforce for farm and off-farm jobs. Any depletion of domestic resources could

easily expose them to severe forms of food insecurity (Figure 3.14).

Figure 3.12: Trajectory of food security

3.4 Limitations and future development

There is only one-way communication between SALUS and the ABM; the ABM uses outputs

from the crop model as its inputs. Due to this loose coupling, incorporating some dynamics are

challenging (Parker, Hessl, and Davis 2008). Households learn from their experience, and farming

evolves over time. Ourmodel considers farmmanagement uniform across time and space. Learning

and adaptation, some of the most critical characteristics of ABM, are not incorporated in the model.

Future updates to the model should integrate such dynamics through tighter integration between

SALUS and ABM. This enables the crop model to receive farming information from ABM in

real-time.

Similarly, post-harvest crop loss and loss due to pests and diseases are not considered in the

model. Households consume fruits, vegetables, and animal products. However, non-cereal food is
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Figure 3.13: Spatial distribution of vulnerability to food insecurity

not included in the calorie calculation. Additionally, calorie requirements and access are considered

uniform across household members.

Almost all farm households in Koutiala cultivate cotton. In our model, we did not explicitly

incorporate non-farm income and income from cash-crops. According to Cooper and West (2017),

only a small portion of such income is used for food purchases. Our model considers households

having minor food deficits (less than 5% of total food demand) as food secure, assuming that such

income will cover these shortages.
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Figure 3.14: Vulnerability to food insecurity by household types
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Furthermore, the model assumes a constant population growth. In reality, resource availability

dictates growth (A. Ford and F. A. Ford 1999). The population might not be able to grow

continuously at the current rate under food scarcity. Similarly, the ABM agents are farm households

only; non-farm households and other stakeholders are not considered in the model. Other agents of

the food security system like government/non-government agencies, credit agencies, and extension

workers should also be included in the updated model.

3.5 Conclusion

Productionist arguments dominate food security discourse. Food production is, indeed, essential

for food security. However, adequate food access is also necessary, especially for attaining food

security at the household level. Household food security analysis, therefore, primarily needs to look

at both household food production and access. We integrate a cropmodelwith anABMof household

food systems for a comprehensive evaluation of household food security. The coupled model allows

us to explore food security at the intersection of biophysical, climatic, and socioeconomic systems.

Additionally, the model has the granularity, heterogeneity, and complexities needed to effectively

analyze future food security at the household level.

Households usually find ways to address food scarcity at home. The measure they use reflects

not only the current severity but also their future vulnerability. Food security is inherently dynamic

and non-binary. The use of FSVI integrated with ABM allows us to explore the dynamics and

nuances of household food security. We find that the majority of regional households will be

food insecure in the future. Large families, especially, are more susceptible to food insecurity.

In contrast, smaller households are prone to higher severity of food insecurity. Also, the spatial

feature of the coupled model highlights the areas prone to food insecurity. Such information has

broad policy implications, especially for target identification and intervention.
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APPENDIX D

PICTORIAL CONCEPTUAL DIAGRAM USED FOR STAKEHOLDER EVALUATION

Figure D.1: Pictorial conceptual diagram used for stakeholder evaluation
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APPENDIX E

ABM DESCRIPTION IN ODD FORMAT

The model description follows the ODD (Overview, Design concepts, Details) protocol for describ-

ing individual- and agent-based models.

E.1 Purpose

The ABM explores the effect of biophysical and socioeconomic factors on household vulnera-

bility to food insecurity. For a comprehensive food security analysis, the model looks at household

food availability, access, utilization, and stability. It is coupled with a process-based crop model

that provides the information on household food productivity. Using the information, the ABM

evaluates household food production, checks for sufficiency, and looks for coping options during

food shortages. Household vulnerability is measured by evaluating recovery potential of the options

used for coping food shortages.

E.2 Entities, state variables, and scales

Agents: Agents represents rural farm households in Koutiala district of Southern Mali. They

are represented in the model by vector polygons (i.e., their farmland) of different shapes and sizes

distributed randomly across the landscape. Households work towards securing food for their family.

There are the following four types of households (Falconnier et al. 2015):

• High Resource Endowed – Large Herd size (HRE_LH) households

• High Resource Endowed (HRE) households

• Medium Resource Endowed (MRE) households

• Low Resource Endowed (LRE) households

The agents contain following state variables:
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Table E.1: State variables used in the ABM

Entity Sub-group Variable name Description Possible Values Units/Notes

Household

HRE_LH

HH_size size of the households 45.3 (18) >4 in a household
Livestk number of the livestock 5.7 (1.5) >= 0
Land_ha household land size 16.6 (8.3) Ha / (2-100 ha)
Neigh_dist neighborhood distance 2000,3000,4000 meters
Neigh_support portion of food saved for supporting the neighbors 0,0.5,0.10,0.20 %
FSVI Food Security Vulnerability Index I - IV

HRE

HH_size size of the households 27.3 (6.6) >4 in a household
Livestk number of the livestock 2.7 (1.6) >= 0
Land_ha household land size 11.8 (6.2) Ha / (2-100 ha)
Neigh_dist neighborhood distance 2000,3000,4000 meters
Neigh_support portion of food saved for supporting the neighbors 0,0.5,0.10,0.20 %
FSVI Food Security Vulnerability Index I - IV

MRE

HH_size size of the households 12.6 (1.7) >4 in a household
Livestk number of the livestock 4.1 (6.5) >= 0
Land_ha household land size 7.5 (2.4) Ha / (2-100 ha)
Neigh_dist neighborhood distance 2000,3000,4000 meters
Neigh_support portion of food saved for supporting the neighbors 0,0.5,0.10,0.20 %
FSVI Food Security Vulnerability Index I - IV

LRE

HH_size size of the households 7.9 (4.9) >4 in a household
Livestk number of the livestock 1.3 (1) >= 0
Land_ha household land size 3.2 (2) Ha / (2-100)
Neigh_dist neighborhood distance 2000,3000,4000 meters
Neigh_support portion of food saved for supporting the neighbors 0,0.5,0.10,0.20 %
FSVI Food Security Vulnerability Index I - IV
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Spatial Units: One household owns only one land parcel. The land parcels are of various sizes

ranging from 2 ha to 100 ha. The crop model simulates biophysical and climatic conditions to

estimate crop productivity of the land parcels.

Temporal Units: The model is run for 41 years (from 2010 to 2050) and one timestep represents

one year.

Environment: Since crop production influence households’ interactions and behavior, crop

yield represents model environment.

E.3 Process overview and scheduling

Every time step, the model runs in a predefined order (Figure 1). First, a defined number of land

parcels representing the households are placed randomly in space. Model then calculates cultivable

area and food production for each household. Households with adequate food supply are identified

as food secure. Households with food shortages look for options to secure food for the family.

get_cultivable_area: Themodel first estimates cultivable area of each household. Since farming

is predominantly manual, depending upon the farmworkers at home, cultivable landmay be smaller

than total farmland. Famers have one crop cycle a year; they divide the cultivable area for maize,

millet, and sorghum cultivation.

get_status: Once the ABM calculates household food production, it converts the available food

to calorie supply and checks for its sufficiency. Households with positive calorie sufficiency (calorie

sufficiency = calorie supply – calorie demand) are tagged as food secure (FSVI I) households.

get_inkind: Food insecure households seek for in-kind support from their neighbors. Every

household is provided with a predefined neighborhood size. Neighbors with surplus food contribute

a small portion from their food storage.

use_cattle: Households with more severe food shortages sell cattle to buy food. However,

households do not sell all their livestock as they need some for farming.

off_farm: Households also send some family members to off-farm jobs to be able to purchase

food. Some members decide to migrate that creates labor shortages at home. As households do
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Figure E.1: ABM flow diagram
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not want to lose their farm workers, off-farm job is used as the last available option.

E.4 Design concept

Basic principles: Vulnerability is defined by exposure to risk, capacity to cope, and ability

to recover (Watts and Bohle 1993). Households starts to cope when faced with food shortages.

Coping mechanisms usually start with high accessible low impact options. Households gradually

move to low accessible high impact options as severity of food shortages increases. Such options

may hinder households capacity to cope in the future. The ABM checks household food sufficiency,

looks for available coping options and measures the vulnerability based on the recovery potential.

Emergence: The spatial and temporal distribution of household vulnerability to food insecurity

is an emergent phenomenon that results from households’ interactions with each other and their

environment.

Adaptation: During food shortages, households first start with low-impact coping options like

skipping or rationing meals and getting in-kind help from relatives and neighbors, and slowly move

to high-impact alternatives.

Objectives: The overall objective of the households is to secure enough food for the family

without impairing their ability to fight future vulnerabilities.

Interaction: Households interact with each other and the environment. Environment (i.e., crop

productivity) influences household food sufficiency that affects household behavior. Households

interact with other households for food (for in-kind support). Households also go for off-farm jobs

and to market to buy food or sell livestock.

Stochasticity: Stochasticity is incorporated at various places in the model. First, the land

parcels’ shape, size, and the distribution over the landscape are random. Additionally, the model

populates agents’ attributes from the predefined probability distribution (Table 1).

Observation: The model measures household vulnerability to food insecurity using Food

Security Vulnerability Index (FSVI). Households with FSVI I are self-sufficient and food secure.

FSVI II households face slight food shortages that can be addressed through meal rationing or
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in-kind help. FSVI III households need to purchase food. They might need to go for off-farm jobs

or sell their livestock to be able to purchase food. FSVI IV households neither have sufficient food

production nor they have resources to purchase food. The model shows the temporal distribution of

household vulnerability to food insecurity. Since this is coupled with a process-based crop model,

we also see the impacts of climate change on household food production and security. Additionally,

as the model is spatial in nature, we can also see the distribution of household vulnerabilities across

space.

E.5 Initialization

The model consists of 9000 agents, amongst them 1170 are HRE_LH, 2520 are HRE, 1710

are LRE, and 3600 are MRE. Land parcels representing the agents are randomly placed within

the cultivable area of the landscape. We use ‘Thiessen Polygon’ feature in ArcGIS to generate the

distributions of land parcels. We have above 2000 realizations of GIS model and ABM picks one

land parcel distribution (at random) at the start of a run. ABM divides households’ cultivable areas

to parcels for maize (20%), millet (40%), and sorghum (40%). The model receives productivity

information from the crop model. Other attributes are populated from the provided distribution

(Table 2).
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Table E.2: SALUS Parameters

SALUS Parameterization Source

Soil Parameters Resolution International Soil Reference and Information Center
(http://www.isric.org)

Physical Properties Bulk density, Clay content,
Coarse fragments, Sand, Silt

250m

Chemical Properties Cation exchange capacity, Nitro-
gen, Soil Organic Carbon, pH

250m

Weather/Climate Parameters Resolution Marksim DSSAT weather file generator (http://
gismap.ciat.cgiar.org/MarkSimGCM)

Weather data Tmax, Tmin, Rainfall, Solar ra-
diation

Daily

Future Climate RCP 8.5 (HadGEM2-ES) -

Farm Management Parameters Value Focus Group Discussion/ Expert Advice/ (Soumaré
et al. 2002)

Crops Maize, Millet, Sorghum 20%, 40%, 40% of total
land respectively

Input Barnyard Compost 1T/ha
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Table E.3: ABM Parameters

ABM Parameterization Source

Total Farm Households (No of
Agents)

9000 Census (2009)

HH typologies Distribution Land_size:
mean (std)

HH_Size:
mean (std)

Livestk:
mean (std)

(Falconnier et al. 2015)

High Resource Endowed - Large
Herdsize (HRE_LH)

13% 16.6 (8.33) 45.3 (18) 5.7 (1.5)

High Resource Endowed (HRE) 28% 11.8 (6) 27.3 (6.6) 2.7 (1.6)
Medium Resource Endowed
(MRE)

40% 7.5 (2.4) 12.6 (1.7) 4.1 (6.5)

Low Resource Endowed (LRE) 19% 3.2 (2) 7.9 (4.9) 1.3 (1)
Food supply Values
Calorie demand 2400 per person FAO

(http://www.fao.org/)
Calorie supply 3100 per kg

maize; 3550 per kg
sorghum/millet

Sale of 1 cattle provides 1285 kg of grain Derived from ICRISAT,
2017

Food Production Values
Workforce available 1/2*hh_size (Ruben et al. 1997)
Worker-days required (Crops) 63
Worker-days required (Cotton) 149
Food Access Distribution
Neighborhood distance Uniform

2000,3000,4000
(meters)

based on Focus Group
Discussion

Neighborhood support Discrete (0%, 5%,
10%, 20%) % of
surplus

P(0.1,0.5,0.3,0.1)
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E.6 Input data

The ABM is coupled with SALUS - a process-based crop model. SALUS requires soil, climate

crop, and farm management information to predict crop productivity (Basso, Ritchie, et al. 2006).

SALUS is provided with information on soil biophysical and chemical properties, climate, and farm

management. Additionally, we use RCP 8.5 to represent future climate scenario. Farm information

is obtained from focus group discussions in the field. SALUS provides estimated crop productivity

for each land parcel for every year until 2050.

E.7 Submodels

get_cultivable_area: Since households are essentially intomanual farming, available farm labor

at home determines the areas that a household can cultivate . According to Ruben et al. (1997), only

½ of household members can be considered as farm labors. They also suggest that cultivating 1 ha

of cereal crop requires 63 man-days in the region. Assuming a farm labor can work for 120 days

(a crop season) per year, we estimate cultivable_area of the household by: Man-days available = ½

household * 120 Man-days required = 63 cultivable_area = man-days available/man-days required

get_status: This simply calculates household food sufficiency. Households with positive caloric

sufficiency (calorie sufficiency = calorie supply – calorie demand) are categorized as food sufficient.

get_inkind: Households with food shortages initially try low-impact options for securing food.

If a household has a low food shortage (less than 5% of total food demand), it skips/rations to

address the problem. However, if it suffers from larger food shortages, it seeks for in-kind help

from neighbors or relatives. Every household has defined a neighborhood area (walkable distance

- ranging from 2 to 4 km). It looks for help from food secure households within the neighborhood

area. Neighbors usually donate a small portion (0-20%) from their surplus food.

use_cattle: When neighbors’ support is not enough, households buy food from market. Since

most of the households are cash-constrained, they might have to sell their livestock to be able to

purchase food. Every time step, a household sells one of their livestock (cattle) to purchase food.

They will keep at least 2 livestock at home for farm work. Using ICRISAT data (Badolo 2017), we
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estimate the average price of 1 kg crop (140 FCFA ) and unit price for adult cattle (180,000 FCFA).

Using the information, we estimate the amount of food that can be purchased by selling one cattle.

We also assume a uniform inflation across commodities in the future (i.e., prices for cattle and food

increases/decreases at the same rates).

off_farm: In addition to sale of livestock, households also send their members for off-farm jobs.

We assume that the off-farm jobs result in food sufficiency at home. However, based on the focus

group discussion, we learned that around 15% of members going for off-farm jobs do not return.

Such out-migration results in lower food demand, but also decreases farm labor at home.
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CHAPTER 4

GLOBAL OR LOCAL? EFFECTS OF POLICY INTERVENTIONS ON HOUSEHOLD
FOOD SECURITY IN KOUTIALA, SOUTHERN MALI: A COUPLED BIOPHYSICAL

AND SOCIAL SYSTEMS APPROACH.

Northern Mali is highly arid and not suitable for agriculture. The South is mainly responsible for

supplying food to the nation. However, climate change and rapid population growth in the South

are threatening local food production and food security. Regional food demand is likely to surpass

its production very soon. Besides, the majority of households in the South are likely to be food

insecure in the near future. This can tremendously affect the national food supply. The South

needs to act soon to maintain its food security and the food supply to the nation. In this study,

we evaluate the effectiveness of global and local level interventions in addressing household food

security in the region. We integrate a biophysical process-based crop model with an agent-based

model of household food systems to explore the trajectories of household food security under policy

interventions. We find that the local level interventions that include improved access to agriculture

inputs and reduced population growth are highly effective in promoting household food security

in the region. At least 60% of the households could remain food secure by mid-century under the

local level interventions. On the other hand, global level intervention that includes climate change

mitigation to RCP4.5 levels does not show immediate effects on food production and food security

in the region.

4.1 Introduction

Mali is expected to be profoundly impacted by climate change. Climate models used by

the Intergovernmental Panel for Climate Change (IPCC) unanimously agree that the country will

experience warmer weather in the future (Traore et al. 2013). High temperature shortens the plant’s

phenological cycle and reduces biomass accumulation (S. Asseng et al. 2017; Basso, Kendall, and

Hyndman 2013) that can have a significant impact on regional crop production. Maize, millet, and

sorghum are the major staple crops grown in the region. Since these crops are C4 plants, they are
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less likely to be affected by increased temperature (Roudier et al. 2011). However, every degree

rise in temperature can decrease maize productivity by 0.5T/ha (Bassu et al. 2014). Yields of other

C4 crops are also expected to decline under climate change (Schlenker and Lobell 2010; Sultan

et al. 2013). Since productivity in the region is currently very low, further loss in yields could be

detrimental to the regional food supply. Although Mali may see an increased rainfall in the future,

its impact on crop production is expected to be marginal (Sivakumar 1988).

Northern Mali is highly arid and not suitable for agriculture. Being more productive, the South

has the responsibility to feed the entire national population. Koutiala, our study area, lies in the

South and receives 600-1400mm of rainfall annually (refer to Figure 1.1) (Falconnier et al. 2015).

Farming is the prime activity here. Food grown locally gets exported to the North and other parts

of the nation. Since the region plays a significant role in the national food supply, it is considered

the breadbasket of Mali (Bingen 1998). However, with climate change, the region is expected to

lose its productivity significantly. Our study in the previous paper finds that the mid-century maize

and sorghum yields could fall by 40%. Additionally, with the current level of population growth,

Koutiala is likely to see a massive surge in food insecure population in the future. Around 80% of

the households will be at risk of food insecurity by 2050. Moreover, regional food demand is likely

to surpass its food production by 2025. This could significantly impact food supply to the nation,

potentially jeopardizing the breadbasket status of the region. Mali needs to act soon to promote

food security in the region in order to maintain the national food supply.

Food security lies at the interface of biophysical, climatic, and socio-economic systems (Ham-

mond and Dube 2012). Besides, household food security is determined by household food access

and production. In this study, we couple a biophysical process-based crop model with an agent-

based model (ABM) of household food systems to explore the trajectories of household food

security in Koutiala. Using the coupled model, we test the efficiency of global and local level

interventions in promoting food production and security in the region. The crop model integrates

the dynamics of biophysical and climatic systems to simulate household food production, and the

ABM explores prevailing socio-economic systems to evaluate household food access. The study
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has significant policy implications in that, it explores future trajectories of household food security

and evaluates the efficacies of selected interventions.

The process-based crop and the agent-basedmodels are systemsmodels (J. W. Jones et al. 2017;

Parker et al. 2003) and ideal tools for performing scenario analyses (Boero and Squazzoni 2005).

Unlike the models based on statistical relationships, systems models capture the interplay within

and across the associated dynamic systems (Basso and Liu 2019). Such complexity is essential for

effective scenario analyses. ABM can simulate human decisions and interactions with great realism

and, hence, has been widely used as a virtual laboratory for social experimentations (Ligmann-

Zielinska and Jankowski 2007; Parker et al. 2003). It allows modelers to explore micro-level

interactions responsible for macro events. Even simple ABMs can explain complex phenomena

(Epstein 2006). Conway’s Game of Life and Shelling’s Segregation are prime examples of simple

models explaining the emergence of macro-phenomena from micro-interactions (Axelrod 1997).

Complex and more realistic ABMs need empirically-based sophisticated algorithms for decision

and interaction. These models allow modelers to explore complex systems, perform modifications,

and evaluate alternative outcomes.

Farm field experimentations may not always be feasible due to spatio-temporal and economic

limitations. Crop models provide cost-effective, practical, and efficient options to carry out agri-

cultural investigations (J. W. Jones et al. 2017). Process-based crop models have interconnected

modules containing a series of mathematical equations representing crop growth, soil nutrient

cycling, soil water balance, and temperature (Basso, Ritchie, et al. 2006). As the changes in

one module are reflected in others, these models allow researchers to evaluate the implications of

modification in one system on others. Such analyses allow farmers and policymakers to identify

sustainable and effective management options (Basso and Ritchie 2015). For example, Basso,

Sartori, et al. (2012), and Liu and Basso (2017) used crop models to evaluate changes in Nitrogen

application on crop production and environment. S. Asseng et al. (2017) used multiple crop mod-

els to check the effects of changes in atmospheric temperature on wheat yield. Similarly, Basso,

Ritchie, et al. (2006) used a process-based crop model to evaluate the effects of tillage differences
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on soil conditions and crop yields. García-Vila and Fereres (2012), on the other hand, used a crop

model, in combination with an economic model, to evaluate sustainable water management at the

farm level.

The coupled model has added advantages over the decoupled crop and agent-based models.

Crop models do not consider the social side of farming and crop production (Antle et al. 2017;

James W Jones et al. 2017). Similarly, ABMs cannot incorporate crop growth and dynamics.

Our integrated model adds crop dynamics to the representation of a social system. This allows

modelers to explore human interactions and their implications on farming and crop production.

Literature contains only a few examples integrating crop models with ABM for analyzing the

effects of farm management on household food production (Wossen and Berger 2015), economy

(Schreinemachers and Berger 2011; Schreinemachers, Berger, and Aune 2007), and environmental

management (Marohn et al. 2013). Crop modelers are increasingly aware of such limitations

demanding more integration with social systems (James W Jones et al. 2017).

4.2 The coupled model

We develop the ABM of household food systems using information from field interviews and

focus group discussions. The field interviews are useful for developing the ABM structure, while

the focus group discussions help us formulate decision making in the model. Agents in the ABM

represent farm households from Koutiala. We have 9000 agents in the models represented in the

landscape by their land parcels. We develop a GIS model to generate distributions of land parcels

as vector polygons of different shapes and sizes. Since the agents are farmers, the land parcels are

placed in arable land. Additionally, land parcels are smaller and densely distributed in and around

urban areas reflecting their actual spatial distribution (N’Danikou et al. 2017). Households are

classified into the following four groups based on their land sizes (Falconnier et al. 2015):

1. High Resource Endowed – Large Herds (LRE_LH) households

2. High Resource Endowed (HRE) households
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3. Medium Resource Endowed (MRE) households

4. Low Resource Endowed (LRE) households

We select the Systems Approach to Land Use Sustainability (SALUS) model as our crop model.

SALUS is a process-based crop model that requires information on daily weather conditions,

physical and chemical properties at each layer of soil, and information on farm management to

simulate daily plant growth and development. Detailed information on SALUS can be found at

https://basso.ees.msu.edu/salus/index.html. We use SALUS to simulate household cultivation of

maize, millet, and sorghum in the region. The model structure, and SALUS and ABM parameters

are presented in Figure 3.6 and Table 3.3 and Table 3.4 of Chapter 3, respectively. Additionally, we

present detailed information on ABM in ODD format (V. Grimm et al. 2006; Volker Grimm et al.

2010) in Appendix E.

At the beginning of a model run, the ABM randomly selects a set of land parcel distributions

generated by the GIS model. It then receives crop productivity from SALUS and interpolates

the values to land parcels. ABM calculates household food sufficiency based on food production

and household food demand. We develop a Food Security Vulnerability Index (FSVI) to measure

household food security. FSVI is a coping-based vulnerability index that measures the severity of

food security based on applied coping mechanisms by the households. Households generally use

different coping mechanisms when faced with food scarcity. Such mechanisms range from low

impact alternatives such as meal rationing or neighborhood support to high impact alternatives like

sale of household assets, off-farm jobs, and migration. Their application reflects the severity of

households’ food scarcity and their future vulnerability (D. Maxwell, Caldwell, and Langworthy

2008; D. G. Maxwell 1996; D. Maxwell, Watkins, et al. 2003). The FSVI has four severity levels

(Table 3.1).

4.3 Scenario analysis

Farmers in the region increasingly worry about low soil fertility and crop productivity (Olabisi

et al. 2018; Rivers III et al. 2017). Poor access to input and farm management are major factors
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responsible for productivity decline. Farmers are also concerned about sporadic rainfall in the

region (Rivers III et al. 2017). Climate change was one of the significant issues local farmers raised

during our focus group discussions. Besides, the rapidly growing population is increasing regional

food demand. Farmers demand a future where they have increased access to input and water

availability for increased food production (Olabisi et al. 2018) to feed their household population.

Based on farmers’ concerns and observed issues in the region, we develop the following three

interventions grouped by their spatial scale.

4.3.1 Intervention at the global level

4.3.1.1 Climate change mitigation (CCM)

Since Mali is likely to be profoundly affected by climate change, it is an essential issue for regional

food security and food production. As seen in the previous paper (Figure 3.7), under Representative

Concentration Pathway (RCP) 8.5, the mid-century temperature could rise by 2◦C. That can have

detrimental impacts on regional food production. Although future rainfall largely remains the

same, the increased temperature can in turn increase evapotranspiration that can exacerbate the

regional water problem. Malian alone cannot contribute to climate change mitigation as it requires

a global effort. With the realization that climate change is currently unavoidable, we consider a less

severe climate change, i.e., RCP 4.5, under which, emission of greenhouse gases is curbed. This

can positively contribute to regional food production by lowering the temperature and its resulting

evapotranspiration.

4.3.2 Interventions at the local level

4.3.2.1 Lower population growth (LPG)

Population growth rate in Koutiala, currently at 5% per annum, is higher than the national average.

Households in the region are usually big, containing extended family living together and working

in collective farms (Rivers III et al. 2017). Since farming is mainly manual, large households are
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generally preferred. For locals, a large family means more people to work in the field and go for off-

farm jobs. Remittances from off-farm jobs generally support household food purchases (Eozenou,

Madani, and Swinkels 2013; Rivers III et al. 2017). Since the large family is considered beneficial,

population growth is often a non-issue here. However, the increase in population increases food

demand, and for food constrained households having a large family might not always be beneficial.

On the other hand, small families have a small agricultural workforce that can negatively impact

household food production. It is crucial to explore the tradeoffs of population growth on household

food production and demand. For this scenario, we set the population growth equal to the national

average of 3% per annum.

4.3.2.2 Improved access to agricultural inputs

Koutiala has a large cotton industry that provides logistic supports in the form of credits, training,

and agricultural inputs to cotton farmers in the region. The technologies and inputs used for cotton

also help with crop production. Hence, to become its beneficiaries, most of the households in the

region choose cotton production (Dembele et al. 2017). Households allocate a small portion of their

farms for cotton plantation. However, support from the cotton industry is not usually sufficient for

the entire farms. Since most of the farmers are food poor, they severely lack resources to purchase

agricultural input. Households usually prepare manure using household and farm residues, but its

application is often insufficient (Traore et al. 2013).

Under this scenario, we increase the application of input and check its impact on household

food production and food security. We test the following two sub-scenarios:

• Mixed access to input (MAI): Since resourceful households usually have better access to inputs

than resource-scarce households, HRE_LH and HRE households apply 5T/ha of manure in

their fields. In contrast, households with low endowments (i.e., MRE and LRE households)

apply 1T/ha.

• High access to input (HAI): All households have high access to inputs; all apply 5T/ha of
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Table 4.1: Combinations of intervention scenarios

Scenario ID Assumptions Access to Input Climate
Change

Population
Growth

BAU Business-as-usual Low (1T/ha) RCP8.5 5%
CCM Climate Change Mitigation Low (1T/ha) RCP4.5 5%
HAI High Access to Input High (5T/ha) RCP8.5 5%
LPG Low Population Growth Low (1T/ha) RCP8.5 3%
CCM+LPG Climate Change Mitigation + Low

Population Growth
Low (1T/ha) RCP4.5 3%

HAI+CCM High Access to Input + Climate
Change Mitigation

High (5T/ha) RCP4.5 5%

HAI+CCM+LPGHigh Access to Input + Climate
Change Mitigation + Low Popula-
tion Growth

High (5T/ha) RCP4.5 3%

HAI+LPG High Access to Input + Low Popu-
lation Growth

High (1T/ha) RCP8.5 3%

MAI Mixed Access to Input Mixed (5T/ha, 1T/ha) RCP8.5 5%
MAI+CCM Mixed Access to Input + Climate

Change Mitigation
Mixed (5T/ha, 1T/ha) RCP4.5 5%

MAI+LPG Mixed Access to Input + Low Pop-
ulation Growth

Mixed (5T/ha, 1T/ha) RCP8.5 3%

MAI+CCM+LPGMixed Access to Input + Climate
Change Mitigation + Low Popula-
tion Growth

Mixed (5T/ha, 1T/ha) RCP4.5 3%

manure in their fields.

4.4 Results and discussion

In paper 2, we simulated a business-as-usual (BAU) scenario using high emission climate

change (RCP 8.5), low access to input (1T/ha) and high population growth rate (5%). In this study,

we ran multiple simulations for different combinations of scenarios (Table 1) and evaluated their

impacts on household food production and security. Each simulation was run for 40 years (from

2010 to 2050) with a one-year timestep. For each scenario, we ran 50 simulations. We used High

Performance Computing (HPC) at Michigan State University for the simulations. In this section,

we present only the significant outputs of the above scenarios.
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4.4.1 Intervention at global level

4.4.1.1 Climate change mitigation

The future climate under this scenario is highly similar to that of BAU (Figure 4.1). Although there

are visible interannual variabilities, the overall rainfall pattern remains the same. However, the

rise in temperature is lower under the RCP 4.5 climate change scenario. Since high temperature

is detrimental to crop productivity, we expected to see an increase in yields under milder RCP 4.5

climate. Surprisingly, the crop model did not show significant variations in crop yields (Figure 4.2).

In addition to the lower temperature, RCP 4.5 has lower ambient CO2. CO2 in the atmosphere acts

as a natural fertilizer (Senthold Asseng et al. 2013) and plays a significant role in crop productivity,

especially in dry climates (Asseng et al. 2004). Additionally, the increased level of ambient CO2

reduces evapotranspiration (Asseng et al. 2004). Hence, we believe that the lower level of CO2

under CCM largely neutralizes the benefits of lower temperatures in the atmosphere. Since the

productivity did not change, household food security under CCM (Figure 4.3:1b) remained similar

to that of BAU (Figure 4.3:1d).

4.4.2 Interventions at local/regional levels

4.4.2.1 Lower Population Growth

The coupled model showed a significant impact of LPG on household food security. Compared to

BAU, which had a 5% annual population growth, the LPG intervention increased mid-century food

security by 40% (Figure 4.3: 1c). Also, the severity of food security was reduced - the number

of moderately food insecure (FSVI III) households significantly declined under this intervention.

FSVI III households either became food secure (FSVI I) or slightly food insecure (FSVI II). We

expected to see the impact of decreased farm labor under lower population growth on household

food production and food security. However, the model suggested that such impacts were miniscule.
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Figure 4.1: Climate predictions under BAU (RCP 8.5) and CCM (RCP 4.5) (RCP: Representative
Concentration Pathway)
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4.4.2.2 Improved access to agricultural inputs

Crop productivity increased substantially with increased application of inputs (Figure 4.4). That

contributed positively to household food security in the region. Under the MAI scenario, mid-

century food security rose to almost 40% (Figure 4.3:3d) compared to 20% in BAU. Under this

scenario, only large endowed households (i.e., HRE_LH and HRE households), that constitute

40% of total farm households in Koutiala, have increased access to inputs. However, when all

the households get equal and high access to inputs (HAI), there was a drastic improvement in

household food security. More than 55% of the households would be food secure by 2050 under

this scenario(Figure 4.3: 2d).
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Figure 4.2: Crop yield (Kg/ha) under BAU (RCP 8.5) and CCM (RCP 4.5)
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Figure 4.3: Household food security under different scenarios (LPG: Lower Population Growth, CCM: Climate Change Mitigation, HAI:
High Access to Input, MAI: Mixed Access to Input)
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In sum, the intervention at the global level was not effective in promotingmid-century household

food security. However, trajectories of crop yields underRCP4.5 andRCP8.5 are expected to change

significantly beyond 2050 (Levis et al. 2018). This can have a very different impact on household

food security in the region. Note that analysis beyond 2050 is not included in our study.

Both local level interventions are highly effective in addressing future food insecurity. However,

different interventions affect households differently. Although LPG and HAI were equally effective,

LPG has a slight edge in reducing the severity of food security, especially of smaller households

(Figure 4.5). A combination of interventions that includes improved access to input and lower

population growth, can significantly increase future food security. When HAI and LPG are

combined, mid-century household food security can increase by up to 90%. Such an increase

in regional food security can have significant impacts on local and national food supply.

The region contains many mildly food insecure (FSVI II) households. These households are

supported by formal and informal cooperation between local community members. Households

with surplus food generally support neighbors that are in need. Koutiala has various groups and

cooperatives that promote supports amongst community members. They usually act as social

safety-nets that absorb the impacts of food scarcity in the locality. They allow sharing of benefits

amongst the community members. The impact of such cooperation is clearly visible in the MAI

scenario. Although households having low endowment could not access high inputs, they could

still reduce their food insecurity by 20% (Figure 4.5). These smaller households benefited from the

improved production in their neighborhood, especially in large endowed households.

4.5 Limitations

The empirical results reported above should be considered in light of several limitations.

There are inter and intra-model variabilities in climate change projections. Crop models are

highly sensitive to climatic parameters (Senthold Asseng et al. 2013). However, for the sake of

simplicity and parsimony, we used only one observation from one climate model.

Furthermore, due to the loose coupling between the crop and the agent-based models, we
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Figure 4.4: Crop yield (Kg/ha) under low and high access to input
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assumed a uniform farm management across time and space. We also did not include learning and

adaptation in the model. Such limitations could have resulted in overprediction of the food insecure

households. Farmers regularly modify their farming practices; they apply improved technologies

and crop varieties improving crop productivity and food security. Furthermore, resource availability

may affect population growth. A constant population growth, assumed in the study, may not be

possible under household food scarcity.

A desire for large households is engraved in the local culture due to their apparent benefits on

farm and off-farm jobs. This raises a question of practicality of low population growth interventions

in the local context. Consequently, the feasibility of improved and uniform access to agricultural

inputs for all farm households in a developing country like Mali requires further study.
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Figure 4.5: Food insecurity by household types
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4.6 Conclusion

As northern Mali is unsuitable for agricultural farming, the South has the responsibility to feed

the nation. So far, it has been able to export local production to other regions. Since Mali is

expected to be impacted by climate change, its crop productivity is likely to decline. Moreover,

the South is observing a rapid increase in its population. Local food demand will rise while the

production declines. As a result, future without interventions could lead to massive food insecurity

in the region.

Southern Mali has a daunting task of providing food to the locals while maintaining food

supply to the nation. There is an urgency to start interventions to promote food security in the

region. Based on our simulations, we conclude that local level interventions, such as improving

farmers’ access to input and controlling population growth, are effective in promoting household

food security. In contrast, the global intervention that includes climate change mitigation to the

RCP4.5 level does not have similar success in maintaining food production and food security in the

region.

The coupled model incorporates the dynamics within and across biophysical, climatic, and

social systems. As food security lies at the intersection of these systems, the coupled model is an

appropriate tool for its analysis. Moreover, the interconnectedness between biophysical and social

systems allows for exploring the impacts of changes in one system on others. Such characteristic

is essential for evaluating policy interventions. Using the coupled model for scenario analyses has

broader policy implications as it provides valuable information on the potential efficacies of the

interventions in the modeled system.
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CHAPTER 5

CONCLUDING REMARKS

Koutiala, a region in the South of Mali, is currently considered the breadbasket of the country. The

trajectories of national food supply depend heavily on food production and food security in Koutiala.

In this study, we analyzed the vulnerability of households to food insecurity in Koutiala. Mali

is expected to be profoundly impacted by climate change. Under a high emission climate change

scenario, which is very likely without a global intervention, its mid-century temperature could rise

by 2◦C. This can have detrimental impacts on national crop production. Furthermore, southern

Mali is mainly responsible for providing food to the nation as the North is highly unsuitable for

agriculture. However, farming in the South has its own set of problems. Poor access to inputs and

farm management has substantially lowered crop productivity in the region. With climate change,

the region may see a further decline in its agricultural productivity. Moreover, Mali is experiencing

rapid population growth. With reduced production, the country will struggle to feed its growing

population.

Food security crisscrosses biophysical, climatic, and socio-economic systems. Household food

security, particularly in rural areas, depends on household food production and access. We used

a systems approach for defining and analyzing household food security and employed multidisci-

plinary tools to capture the dynamics of associated systems. Through combining an ABM, a model

of the social system that analyzes social interactions for food access, with a biophysical crop model

simulating crop production, we essentially captured the basic dynamics responsible for household

food security. We used Food Security Vulnerability Index (FSVI), a coping-based index, to measure

vulnerability to future food insecurity at the household level. Furthermore, we incorporated all four

dimensions of household food security in our analysis. Household food production was used to

obtain information on food availability. We assessed household food access by analyzing resource

availability and social interactions. Similarly, calorie sufficiency was used to estimate household

food utilization, and temporal stability was represented through simulations.
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Agent-based model development needs information on systems actors and their interactions. In

chapter two, we aimed to identify actors (agents) of household food security in Koutiala, together

with their characteristics, and their interactions required for the development of agent-based model

(ABM). Since qualitative data, especially in the narrative form, contains rich contextual systems

information, we decided to use field narratives to extract ABM components. Qualitative data

extraction is usually tricky and often blamed for being subjective and bias-prone. Modelers often

skip extracting model components from narratives and develop models based on their subjective

interpretation of the target systems. This can produce models with questionable credibility. In

this chapter, we used Natural Language Processing (NLP) tools for enhancing and expediting

qualitative data extraction for model development. Using a combination of semantic and syntactic

tools, we used an unsupervised approach to extract information on agents and their attributes and

interactions. We identified subjects of sentences as agents, while root verbs were characterized as

actions. Similarly, we obtained attribute information from sentences containing possessive nouns

and be or have as their root verbs. We contextualized the extracted information manually and asked

the stakeholders for evaluation. Since the approach is mainly unsupervised, especially during the

initial information extraction, it controls opportunities for subjectivity and biases during model

development.

In chapter three, we explored the future trajectory of household food security in Koutiala. We

developed an ABM of household food security and integrated it with (Systems Approach to Land

Use Sustainability) SALUS, a process-based biophysical crop model. Using the crop model, we

simulated household cultivation of maize, millet, and sorghum – the three major cereal crops in the

region. For the simulations, we defined a ‘business-as-usual’ scenario based on the current state

of regional farm management, population growth, and global climate change. The ABM received

productivity information from SALUS and calculated household food availability and demand.

Households with sufficient food were tagged as food secure. We simulated the interactions for

food access by food-deprived households and provided FSVI values to the households based on

their interactions. Under status-quo, the model predicted a massive reduction in crop productivity;
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maize and sorghum productivity, in particular, could decline by almost 40%. We also found that

almost 80% of the Koutiala population is likely to be food insecure by 2050. Large households are

particularly vulnerable to food insecurity, and smaller houses are more likely to suffer from severe

forms of food insecurity.

A staggering level of food insecurity in one of the most productive regions of the nation is

troublesome. Mali needs to start promoting food production and food security in the South. In

chapter four, we formulated three global and local level interventions based on observed issues

and local public demand. We simulated climate change mitigation to the RCP4.5 level as a global

level intervention. For the local level, we formulated scenarios with low population growth and

a high level of input application. The consequences of climate change mitigation appeared to be

highly similar to the Business-as-usual scenario. Even though the intervention represents lower

temperature, its benefits on regional food production and food security were noninfluential. We

believe that the lower level of atmospheric CO2, predicted under RCP4.5, canceled the expected

benefits of a lower temperature. As a result, household food security would remain unaffected

under the global level intervention, at least until 2050. However, both local level interventions were

highly effective in showing immediate impacts on household food security in the region. More

than 60% of the households in Koutiala are likely to remain food secure under any of the local

interventions. Besides, a combination of the local level interventions could substantially increase

food secure households, which can significantly promote food supply to the nation.

In sum, Mali relies on the South for food, and it needs to act soon to maintain the food supply

to the nation. Without any interventions, the majority of households in the South will soon be food

insecure potentially disrupting the national food supply. Our simulations suggest that Mali should

immediately focus on local level interventions to promote regional food security and national food

supply.

There are five major technical and methodological limitations in this study to be addressed in

future research. First, we only extracted individual sentences during NLP data extraction, which

resulted in increased ambiguity and loss of contextual information. We encourage extracting a set
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containing sentences before and after the sentence identified for extraction. This can help preserve

contextual information and reduce ambiguity. Additionally, extracting a set instead of individual

sentences can help resolving pronouns used in the sentences. Second, the NLP data extraction

was largely limited to syntactic analysis. We focused mainly on extracting agents, attributes,

and interactions using syntactic approaches. Future research should increase the use of semantic

analysis for understanding decision-making in the system. Compound and conditional sentences,

we believe, could provide the key to decisions in the system. The third limitation is the failure

to identify other actors of household food security. Since our data source contains information

collected from household members, information on other actors of household food security was

left out. This prompts for careful consideration of all candidate agents identified during the NLP

analysis.

The fourth major shortcoming is related to the loose coupling between the ABM and the crop

model. Due to models high resource requirements, we opted for a loose coupling between the

models. This essentially prevented us from introducing some crucial dynamics in the analysis.

Although the crop model captures the heterogeneity in weather and soil conditions, we kept the

farm management uniform across time and space. Farmers learn from experience and make

modifications in their farming approaches. Such adaptation could not be incorporated due to the

loose coupling. A more integrated model can update farm management input to the crop model in

real-time. The final limitation involves the exclusion of cash crops and non-farm incomes in model

simulations. The regional farmers are involved in cash cropping and cottage industries, and their

income helps in food purchases. Future research should include all types of income contributing

to food security at the household level.

With all the limitations, the data extraction process is quick, structured, and effective. It

can become a suitable substitute for lengthy and subjective traditional data extraction for model

development. This can help ABM developers in identifying model components and interactions

needed for credible and reliable model development. Similarly, the coupled model is highly useful

for comprehensive household food security analysis. The model effectively integrates dynamics
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across multiple systems responsible for household food security. Besides, the coping-based index

is simple and incorporates multiple dimensions of food security. Overall, the model we presented is

an efficient and cost-effective laboratory for exploring expected and alternative futures of household

food security for evaluating effective intervention strategies.
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