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ABSTRACT

BIODIVERSITY RESPONSES TO ALTERNATIVE GREEN TREE RETENTION
PRACTICES IN THE PACIFIC NORTHWEST: A REGIONAL FORESTRY EXPERIMENT

By

Sean Michael Sultaire
Conserving forest biodiversity while meeting global demand for wood products is an ongoing
challenge for 21 century forest management. Naturally regenerated and regulated forests are
typically heterogeneous but forest management intended to maximize wood production often
homogenizes forest structure. Retaining green trees and dead wood at the time of forest harvest,
termed structural retention, is a common practice for promoting biodiversity in forests managed
intensively for wood production. Despite widespread implementation of structural retention and
substantial body of research on effects of retention on forest biodiversity, there remains a need to
evaluate alternative tree retention practices on biodiversity in specific forested regions and
silvicultural systems. Further, ecologists are increasingly interested in the impacts of
management actions on functional trait diversity, but few studies have quantified the effects of
alternative retention practices on functional diversity of animal communities. I used a
manipulative study with five experimental retention treatments to quantify effects of differing
size, number, and location of retention tree patches on two animal taxa in clearcut forests within
the U.S. Pacific Northwest. In my first chapter, I quantified the effects of experimental retention
treatment on ground beetle species (Coleoptera: Carabidae) and functional (morphological)
richness and variation in community composition between retention and clearcut areas. Although
I did not find strong effects of retention treatment on either species or functional richness, |
found less variation in community composition between retention and clearcut areas in the

treatment that contained several small patches. This finding indicates that ground beetle



communities supported by small, dispersed retention patches are redundant to those found in
surrounding clearcut areas. In Chapter 2, I quantified effects of retention treatment on abundance
of three common small mammal species and found that generalist and forest species were more
abundant in smaller, isolated retention tree patches, and for one species this effect was related to
higher levels of downed trees in small patches. In Chapter 3, I related small mammal species and
functional richness to retention treatment and found that species, but not functional richness was
slightly higher in patches connected to forested riparian buffers compared to isolated upland
patches. I conclude from these results that retention placement does not strongly influence the
number of small mammal species present or their contribution to forest ecosystem function, but
small increases in species richness can be obtained by grouping all trees adjacent to riparian
zones. In Chapter 4, I analyzed abundance data from eleven small mammal species to look for
evidence of competitive interactions between species, finding that when the effects of retention
treatment and environmental variation were accounted for, most species abundances were
positively correlated, suggesting that environmental factors and not inter-specific competition
structured small mammal communities in early seral forest plantations. Results from my research
indicate that no single retention strategy is optimal among taxa for biodiversity conservation in
clearcut forests of the Pacific Northwest, and implementing a combination of retention
treatments favors diversity and abundance of the two animal groups I studied. My results further
indicate that community responses to fragmentation of retained forest patches in clearcuts differs
between taxonomic groups, highlighting the importance of clearly articulated biodiversity

objectives (as opposed to a broad goal of conserving biodiversity).



This dissertation is dedicated to all the animals who endured long nights in traps, unwanted ear
piercings, and at times paid the ultimate sacrifice in the name of conservation science. Hopefully
the information in this dissertation will help make intensively managed forests a more hospitable

place for your species going forward.
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PREFACE

Each chapter within this dissertation was drafted as a stand-alone manuscript for
publication in a peer-reviewed journal. Chapter 1 is currently in revision with Ecosphere.
Chapter 2 is in revision in Forest Ecology and Management and Chapter 3 is formatted for
Forests. As such, I use the pronouns “we” and “our” throughout these chapters. Although I am
listed as the sole author and use the pronoun I in Chapter 4 of this dissertation, this chapter was
also collaborative and associated manuscripts will include one or more co-authors when

submitted for peer-review.
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INTRODUCTION

Maintaining native species diversity in forests managed for wood production is an increasingly
important management consideration. In forests around the world, intensive management for
wood production has homogenized components of forest structure, which changes species
composition compared to unmanaged forests (Martikainen et al. 1996) and can reduce ecological
variation across space (Mori et al. 2015). Even-aged harvesting often reduces heterogeneity of
early seral forest conditions, which is typically the most diverse stage of forest succession
(Swanson et al. 2011), and mechanical and chemical preparation on harvested sites for replanting
can act as an environmental filter, reducing occurrence of species typically found in young
forests (Kroll et al. 2017). Several alternative management practices have been proposed to
alleviate the impacts of intensive forest management on native species diversity. These practices,
such as green tree retention and dead wood creation at the time of forest harvest, aim to mimic
conditions created by natural disturbances and have become standard practice in many timber
producing regions (Gustafsson et al. 2012, Sandstrom et al 2019). Studies spanning local to
global scales indicate that retention forestry can be effective at increasing diversity in harvested
forests (Fedrowitz et al. 2014, Mori and Kitigawa 2014, Baker et al. 2016). However, regional
scale studies that assess the relative effectiveness of alternative retention practices, implemented
in the context of existing forest harvesting regimes, are needed to maximize retention
effectiveness and understand potential conservation tradeoffs between alternatives.

In addition to maintaining native species diversity, resource managers and conservation
biologists are increasingly interested in maintaining functional diversity of species communities
(McGill et al. 2006). Within ecological communities, species differ in their contributions to

ecosystem function, and those contributions can be described using measures of functional trait



diversity (Tilman 2001, Petchey and Gaston 2006). Understanding the effects of management
practices on functional diversity can reveal changes in community composition that species-
based approaches do not, important because functional diversity is often more sensitive than
taxonomic diversity to intensive management of ecosystems (Flynn et al. 2009). Comparing
patterns of functional diversity and species diversity can also provide insights into the factors
structuring ecological communities and whether impacts on species richness are likely to
influence ecosystem function. Hence, studies on the impacts of forest management on ecological
diversity are increasingly focused on patterns of functional diversity (Spake et al. 2016, Curzon
et al. 2020).

Conifer forests of the U.S. Pacific Northwest are highly productive, with old growth
forests in the region containing more biomass per unit area than almost any other forests globally
(Franklin and Waring 1981). Due to these high levels of productivity, these forests have been
heavily exploited for timber, with over 70% of the historical old growth logged after European
settlement (Strittholt et al. 2006). In response to the decline of species that require mature forest
conditions, most commercial logging ceased on federally-owned lands in the region, while
private timber companies continue to manage secondary forests intensively for wood production
(OFRI 2017). These managed forest landscapes are losing important structural elements
associated with ecological diversity (Hayes et al. 2005, Linden and Roloff 2013), and private
forest managers are altering harvesting practices to meet sustainability requirements and forest
harvesting regulations. Retention forestry is one conservation practice implemented in wood
producing forest landscapes to alleviate negative impacts of even-aged forest management on
forest biodiversity (Lindenmayer et al. 2012). Retention forestry is required by forest harvesting

regulations in the Pacific Northwest. Specific goals of retention forestry include allowing forest



interior species to persist following harvest, increasing structural diversity of early seral forests,
and creating uneven-aged forest structure later in succession (Rosenvald and Lohmus 2008).
Several experimental studies in the Pacific Northwest measured the effectiveness of alternative
retention practices at achieving these goals (Aubry et al. 2009, Gustafsson et al. 2012), but these
studies have not evaluated the effects of retention on forest biodiversity at lower proportions of
trees retained (i.e., <10% of original basal area). Retrospective studies on retention in the region
indicated that larger retention patches have higher bird species richness (Linden et al. 2012) but
effects of retention patch size on diversity are not well understood for most taxonomic groups
(Fedrowitz et al. 2014). Lack of data on retention patch sizes and biodiversity leads to decisions
on placement of retention trees that are often based on timber harvesting logistics rather than
biodiversity conservation outcomes.

In this dissertation, I use a manipulative experiment to evaluate the relative benefits of
five alternative structural retention patterns at increasing the diversity and abundance of two
indicator taxa in recently logged Pacific Northwest forests; small mammals and ground beetles.
In Chapter 1, I used taxonomic and functional approaches to understand how five retention
alternatives influenced ground beetle diversity and variance in community composition across
recently harvested forest stands. In Chapter 2, I use a spatially explicit analysis to quantify how
population density of common small mammal species responds to retention alternatives and how
small mammal density varies in response to measures of structural complexity within retention
patches. In Chapter 3, I quantified the effects of retention pattern on small mammal species and
functional richness. Similar to my first chapter this analysis provided insights into the effects of
patch size and number on ecological diversity as well as the importance of riparian forests for

conserving small mammal diversity. In Chapter 4, I used a joint species distribution model to



quantify levels of residual correlation between small mammal species abundance at two spatial
extents. In the Conclusion, I identify useful future research to further our understanding of
biodiversity responses to structural retention and the effect of retention patch size on forest

biodiversity in the U.S. Pacific Northwest and other wood producing regions.
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CHAPTER 1
CARABID BEETLE FUNCTIONAL AND TAXONOMIC DIVERSITY RESPOND

CONSISTENTLY TO SPATIAL ARRANGEMENT OF RETENTION TREES

Co-authors on the manuscript resulting from this chapter include: Andrew J. Kroll, Jake
Verschuyl, Douglas A. Landis, and Gary J. Roloff

1.1 Abstract
Managing forests intensively for wood production can homogenize components of forest
structure, which can alter species richness and functional composition of native species
communities. Retention forestry, the practice of retaining structural elements of forests during
timber harvest, has been shown to increase species diversity in recently harvested forests but its
effect on functional diversity is less understood. We implemented an experimental study that
manipulated retention tree patch size and location at a constant proportion of retention within
harvested areas. We evaluated the effectiveness of five retention patterns at increasing the
species and functional diversity within early seral, production forests in the Pacific Northwest
U.S.A. Within these treatments, we tested effect of retention treatment on ground beetle (Family:
Carabidae) taxonomic and functional richness and community dissimilarity. We found no
evidence for differences in carabid species or functional richness among treatments when
considering species present in both retention and clearcut areas of harvest units. However, within
harvest units, we found evidence for lower taxonomic and functional variation between carabid
communities present in retention and clearcut areas when retention was allocated to several small
patches. Furthermore, the lower levels of functional variation between carabid communities in

retention and harvested areas in the treatment containing several small retention patches was



primarily driven by lower abundances of specialized predators in small retention patches
compared to aggregated or riparian-associated retention patches. We found that relative to single
large or riparian-associated patches, small retention patches function similarly to clearcuts within
harvested forests and several small patches does not increase species or functional richness. At
levels of retention currently required in the Pacific Northwest, retention trees should be allocated
to a single upland patch or split between riparian and upland patches to increase variation in
ground beetle taxonomic and functional composition within clearcut forests.
1.2 Introduction
Intensive management to increase wood yield has homogenized components of forest structure in
many regions of the world (Lindenmayer et al. 2012, Mori et al. 2015). Harvesting trees on short,
even-aged rotations can reduce important resources such as the diversity of tree sizes and ages
and abundance of standing and downed woody debris (Hayes et al. 2005, Ranius et al. 2014).
Also, regeneration practices may reduce plant diversity shortly after harvest and shorten duration
of the early seral stage (Demarais et al. 2017, Kroll et al. 2017). Structural retention, in which
forest elements such as live and dead trees are retained during timber harvest, can increase
ecological diversity within intensively managed forests (Gustafsson et al. 2012, Fedrowitz et al.
2014, Mori and Kitagawa 2014). Although operational efficiency and wood production per unit
area are the primary objectives of intensive forest management, understanding how ecological
communities respond to variation in retention tree patterns is critical to meet sustainability
objectives.

Management of ecosystems often changes the composition of ecological communities
without changing species richness (Hillebrand et al. 2018). Quantifying variation among

ecological communities based on differences in species identities, known as taxonomic
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dissimilarity, can indicate if management practices shift species composition (Socolar et al.
2016). However, species within assemblages exhibit varying degrees of functional
differentiation, an aspect of community composition that taxonomic dissimilarity does not
capture. Diversity in morphological, physiological, and life history traits (collectively termed
functional diversity) provides a different perspective on community diversity and assembly
processes (McGill et al. 2006). For communities organized by competition among species,
differences in species composition (i.e., taxonomic dissimilarity) may not reflect changes in
functional capacity if species replacement is by functionally similar, competing species (Smith et
al. 2013). In contrast, environmental filtering, whereby environmental factors (e.g., climate,
habitat structure) inhibit species with certain traits, can result in consistent responses between
taxonomic and functional community composition (Smith et al. 2013). Intensive management of
ecosystems often acts as an environmental filter, excluding species with traits that depend on
components of the ecosystem that are lost (Flynn et al. 2009, Gdmez-Virués et al. 2015, Kroll et
al. 2017). Therefore, functional and taxonomic richness and dissimilarity measures provide
complementary insights into mechanisms structuring ecological communities and effect of
management practices on ecological diversity (Flynn et al. 2009).

Carabid beetles are taxonomically well-described and exhibit a variety of habitat and diet
specializations, making them a useful indicator taxon for effects of forest management practices
on biodiversity (Pearce and Venier 2006, Hoekman et al. 2017). Although the ecosystem level
effects of ground beetles in forests is not well understood, in agricultural systems ground beetles
are associated with control of both animal (Krompe 1999) and plant pests through granivory
(Carbonne et al. 2020). The functional diversity of ground beetle changes in relation to the

functional composition of ground vegetation in open vegetation conditions (Pakeman and
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Stockan 2014), and variation in canopy cover in managed forests (Spake et al. 2016). Studies
indicate that retention forestry in the Pacific Northwest alters the taxonomic composition of
ground beetle communities (Halaj et al. 2008, Baker et al. 2016), but information on whether
retention practices also influence functional composition of carabid communities is lacking.
Measuring the response of functional and taxonomic diversity of carabids to retention forestry
can yield mechanistic insights into processes driving responses of this taxon to size and
configuration of retained forest patches (Ding et al. 2013).

We measured responses of ground beetle (Family Carabidae) taxonomic and functional
diversity to tree retention practices in forests of the U.S. Pacific Northwest managed for wood
production. We compared carabid beetle taxonomic and functional richness, and levels of
taxonomic and functional dissimilarity between retention patches and clearcut areas within
harvest units in five different retention configurations implemented at a constant level of
retention. When considering beetle communities pooled between retention and clearcut patches
in treatment harvest units, we predicted that ground beetle taxonomic and functional richness
would be highest in aggregated retention treatments, particularly the treatment with retention
adjacent to riparian protection zones. When comparing ground beetle communities in retention
and clearcut patches within treatments, we predicted lower taxonomic and functional
dissimilarity in treatments with multiple, dispersed retention patches (Blanchet et al. 2013,
Phillips et al. 2017). Both predictions are consistent with forest harvest acting as an
environmental filter, where species with traits associated with older forests persist in large but
not small retention patches. Alternatively, if interspecific competitive interactions are more
important than environmental filtering in structuring post-harvest carabid communities, we

predict higher taxonomic richness in multiple dispersed patches, but similar levels of functional
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richness across treatments, because dispersing retention throughout the harvested area allows
functionally similar, competing species to coexist (Smith et al. 2013).

1.3 Methods

1.3.1 Study Area

We established 10 experimental blocks on production forestlands in the humid conifer forests of
the Pacific Northwest (PNW), USA, between 122°W and 124°W, and N44.5° and N46.5° (Fig.
1.1). We sampled conifer plantations in the Cascade and Coast Ranges of western Oregon and
Washington, USA (Fig. 1.1). The landscapes around blocks ranged from mostly commercial
forest ownerships, where forests are primarily managed intensively for wood production, to
mosaics of private and public ownership. In this region, forests managed intensively for wood
production are in second or third tree harvest rotations. Public lands ranged from a mixture of
conservation and wood production objectives (e.g., state-owned lands in Oregon) to federally
protected (e.g., Wilderness Areas in Oregon). A large agricultural area (Willamette River Valley)
separated the forested mountain ranges, and the Columbia River separated the two states (Figure
1.1). Elevations of study treatments ranged from 43 m in southwest Washington to 1,230 m in
the Oregon Cascades and climate ranged from cooler and wetter in coastal Washington to
warmer and drier in the southern Oregon Cascades (Table 1.1). Forests consisted primarily of
coastal Douglas fir (Psuedotsuga menziesii), the dominant natural and commercial species, with
western hemlock (7suga heterophylla) and western red cedar occurring on more mesic sites, and
noble fir (4bies procera) at higher elevations. Bigleaf maple (Acer macrophyllum) and red alder

(Alnus rubrum) were the most common deciduous trees.
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Intensive silviculture in the PNW generally employs clearcutting and subsequent planting
of desirable native tree species after site preparation (e.g. herbicide application, burning) to
temporarily control competing plants (Demarais et al. 2017). At the time of this research, forest
harvesting policies in the region required retaining approximately 5 trees/ha and set the
maximum continuous area that could be clearcut to ~55 ha in Oregon (Washington Forest
Practices Board 2002, Oregon Department of Forestry 2018). Retention trees were intended to
provide structure for wildlife, protect water quality and sensitive soils, and improve aesthetics of
clearcut areas. With the exception of requirements in Washington that no part of a harvested area
was >244 m from retention (Washington Forest Practices Board 2002), standard practice was to
focus placement of retention patches along riparian protection zones, in large part because stream

buffering and harvesting logistics are of primary focus when designing forest harvests.

1.3.2 Experimental Design

Within each of the 10 experimental blocks, we made random assignments of five treatments,
with each harvest unit receiving only one treatment:
1. Riparian Aggregated (RA): All retention trees grouped together in one patch connected to
an unharvested riparian protection zone.
2. Upland Aggregated (UA): All retention trees grouped together in one patch upslope from
unharvested riparian protection zones that was either isolated within the harvest unit or

on the edge next to recently regenerated forest (<10 years old).
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3. Split (S): Half the retention trees grouped in a patch connected to unharvested riparian
protection zone, and half in the upland portion of the stand, isolated within the harvest
unit or on the edge next to recently regenerated forest.

4. Split with Snags (SS): Same as the Split (S) treatment but removed tops of half of
retention trees, leaving the lower ~8m of the tree.

5. Dispersed with Snags (DS): Retention trees dispersed throughout the harvest unit in a
minimum of four patches, each containing at least 15 green trees and an equal number of
created snags.

Aside from changes in spatial pattern of retention, harvesting and other silvicultural treatments of
each experimental unit followed typical practices in the region. Snag creation in retention

patches primarily benefits cavity-nesting birds (Kroll et al. 2012), but also reduces canopy cover
of retention patches and modifies ground cover used by ground-dwelling species like carabid
beetles. Retention patches in the DS treatment initially had >15 trees per patch, based on
previous studies of bird community responses to retention patch size (Linden et al. 2012), but
extensive post-harvest tree mortality resulted in many DS retention patches containing <5
standing trees by the time sampling commenced. At the first year of sampling, time since post-

harvest planting of tree seedlings ranged from two to five years.

1.3.3 Carabid Sampling and Identification

We sampled carabid beetles using pitfall traps from late May through early September (the dry
season in the PNW) 1-4 times between 2017 and 2018. Although timing of trap deployment

varied among treatments, we sampled each treatment once early (before June 1) and once later
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(after July 1). We deployed traps in treatments within a block during the same sampling period
within 2-3 days. We sampled all 50 stands for at least one 28-day period. We missed sampling
one RA treatment in 2017, and one S treatment in 2018. We sampled the three blocks in the
Oregon Cascades for a single 28-day period in 2017 due to logistical constraints. We constructed
pitfall traps from 5 cm diameter by 8 cm depth plastic storage cups, with a square cover
suspended 1 cm above the cup to keep out rain and debris (Hoekman et al. 2017). We filled cups
halfway with a 50:50 mix of propylene glycol and water and opened traps for two 28-day periods
each summer. In each treatment harvest unit, we placed four traps in a retention patch(es) and
four in the clearcut area (Figure 1.2). Because the spatial arrangement of retention patches
varied by treatment, spatial arrangement of pitfall traps also varied by treatment (Figure 1.2). In
RA and UA treatments, we located four traps 10 m from patch center in cardinal directions
(Figure 1.2A). In S and SS treatments, we located two traps 10 m from patch center, 180° from
one another in each of the two retention patches (resulting in 20 m spacing; Figure 1.2B). In DS,
we placed one trap at the center of four small (~15 trees) retention patches (Figure 1.2C). In each
treatment, we placed four traps in the clearcut area of each harvest unit in the same arrangement
as the patch traps: in a grid of four in the aggregated treatments, paired in the two split
treatments, and singly in the dispersed treatment (Figure 1.2). We located clearcut plots at a
random distance and bearing from patch center; distances varied from 12 to 212 m
(average=49.50, SD=27.50) with only one distance < 20 or > 200m.

After approximately 28 days (22-35, average=28, SD=1.7), we collected pitfall contents
and separated carabid beetles from other traps contents. We quantified number of carabid beetles
in each pitfall sample and identified them to species. We grouped unidentified species into

morphospecies that included some species of Harpalus genus, two species of Trachypachus, and
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some individuals of the Hypherpes subgenus of Pterostichus. Although two widespread genera
sampled, Omus and Trachypachus, were recently reclassified outside Carabidae, their families
Cicindelinae and Trachypachidae form a monophyletic group with carabids and we included
these in analyses. We deposited voucher specimens of each species in the Michigan State
University Albert J. Cook Arthropod Research Collection.

Given that little life history information is available for most species of carabids in the
PNW, we quantified the functional niche occupied by each species based on three morphometric
traits that reflect their food resources: body length, mandible length, and width between
mandibles at their base (Deroulers and Bretagnolle 2019). We randomly sampled five individuals
from each collected species to measure traits, and for species represented by <5 individuals we
measured all individuals collected. Using a Nikon stereomicroscope (Model SMZ1270, Nikon
Instruments Inc., Melville, NY, USA), we measured body length (mm) as the longest distance
from the base of the mandibles to anterior of the elytra, or abdomen, whichever extended further,
excluding genitalia. We quantified mandible length (mm) by measuring the length of one
mandible, defined as hinge of attachment to the tip, and mandible width, defined as the width
(mm) between mandibles at the hinge of attachment. Quantifying mandible length and width at
the hinge attachment point ensured that these measurements were not sensitive to position of the
mandible at the time of measurement. To simplify the number of traits used, we combined
mandible length and width into one trait value, the ratio of individual mandible length to the
widt