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ABSTRACT 

 

THE ROLE OF INTERNATIONAL SOYBEAN TRADE IN TELECOUPLED HUMAN AND 

NATURAL SYSTEMS   

 

By 

 

Anna Jean Herzberger 

 

International food trade and globalized agriculture production connects humans and the 

environment around the world. As consumption demands are increasingly met abroad by importing 

food products, environmental and socioeconomic effects of production are left in the producing 

region, while the effects on the importing countries’ domestic production remain understudied due 

to the complexity and low visibility of the impacts. As population growth increases the caloric 

demand and rising affluence drives changes in consumption patterns, connections via food trade 

will continue to increase. Therefore, to identify local impacts of global phenomena, this 

dissertation analyses the environmental and socioeconomic impacts of international soybean trade 

within Brazil (e.g., largest producer), China (e.g., largest consumer) and the U.S. (e.g., the former 

largest producer). Drawing from both natural and social science disciplines, global trade data, 

satellite-imagery, farmer interviews and soil samples were combined for an interdisciplinary 

assessment of how international soybean trade couples distant human and the environment systems, 

the true extent of land-use change driven by soybean trade and the resulting impacts within each 

respective country. Chapter 1 provides a review of the published literature and background on 

international soybean trade and production. In chapter 2, the influence of China’s soybean demand 

was measured on Brazil’s production and trade. The results suggest that export-oriented soybean 

expansion in Brazil displaced the production of other crops and increased imports from nearby 

countries. For chapter 3, the impact of imported soybeans on production in China’s main 

agricultural region was explored. Competition from imported soybeans has resulted in many 



 

 

farmers switching cultivation to corn or to abandon farming in search of more lucrative options. 

This cultivation shift requires changes in management that involve increased nitrogen inputs and 

residual crop biomass – both of which have resulted in environmental spillovers. Chapter 4 

furthered the analysis by considering the impacts of farmer cultivation and management decisions 

on soil properties. Soil texture, pH, total organic carbon and 16S rRNA gene sequence were used 

in combination with detailed farmer management surveys to understand how changes in residue 

management effect efficiency, productivity, profitability and sustainability of the system. The 

results indicated that the accumulation of residual corn biomass has increased the use of residue 

fires and decreased the amount of crop residue being returned to the soil. The culminating chapter 

used an agent-based modeling (ABM) to integrate the above chapters into a TeleABM. The 

teleABM models land use change in Brazil and China based on global soybean demand. Land-use 

change decisions are made by farmer agents which have parametrized using the farmer interviews. 

Next, the farmer agent cultivation and management decisions have environmental impacts that 

were determined by analyzing the soil samples under the context of management decisions. Finally, 

production and the impact of farmer agent decisions on the soil properties feedback to the farmer’s 

future cultivation and management decisions. Because of the economic, environmental and 

political importance of international soybean trade, the results of this dissertation are of great 

interest for future soybean production and trade between the specified countries as well as food 

security and environmental sustainability across the world. 
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1 

 INTRODUCTION AND LITERATURE REVIEW 

 Overview  

International food trade and globalized agriculture production connects humans and the 

environment around the world [1, 2]. The rate and scale of food trade has significantly increased 

in the past several decades, even though similar food types exist in both importing and exporting 

countries [1, 3-5]. As consumption demands are increasingly met abroad by importing food 

products, environmental and socioeconomic effects of production are left in the producing region 

[6-8]. However, the effects of food trade beyond the immediate trade partners, known as spillover 

effects, are often understudied due to the complexity and low visibility of the socioeconomic and 

environmental impacts. Connections via food trade and the associated spillover effects are 

expected to continue to increase as population growth increases the caloric demand increased 

affluence drives changes in consumption patterns. The highly interconnected and complex trade 

networks that society has come to rely pose threats that are difficult to foresee, understand and 

control. One of the world’s greatest challenges is how to balance growing human demands for 

food and sustainability[9-11].   

International soybean trade is representative of how distant people and places are connected. 

Soybean production and trade are dominated by a small number of countries; 97% of the area 

planted to soybeans, globally resides in Brazil, the United States, China, Argentina and India[12].  

China first domesticated the soybean nearly 3,000 years ago and was the world’s largest producer 

and exporter during much of the 19th and early 20th centuries[13]. However, due to domestic 

population growth and rising affluence, China enacted a series of polices which encouraged  

importing 80% of its total soybean supply, importing 88 million tonnes in 2018[14-16]. Much of 
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this demand has been supplemented by Brazil and the United States, the world’s top two soybean 

producers and exporters[1, 14].   

Much research has been conducted on either the socioeconomic or environmental impacts of 

international soybean trade at international and national scales[6, 17-19]. That is, we know broadly 

soybean production is increasing in Brazil as well as several other countries (Argentina, Canada, 

Uruguay, Paraguay, etc. and several African countries such as Mozambique, South Africa and 

Zimbabwe [12, 15, 20, 21]) to meet China’s rising demand.  

Several studies have focused on the environmental and socioeconomic consequences of 

soybean expansion in the sending system, Brazil. Briefly, land use change associated with soybean 

expansion has led to unfavorable environmental impacts including deforestation, displacement of 

cattle production, biodiversity loss and increased greenhouse gas emissions [3, 12, 22, 23]. While 

the socioeconomic effects include economic growth of the agricultural sector including the 

agribusiness sector (production, processing, transportation, trade, etc.), increased farmer incomes, 

creation of on-farm employment as well as jobs within the supply chain (inputs, processing, 

transportation, etc.). Less research has been within the receiving system, China, but the literature 

does highlight low domestic soybean prices, land use change [24-26], increased nitrogen pollution 

[27], improved levels of soil carbon [28] and access to livestock feed for the pork sector as results 

of international imported soybeans.  

However, little is known of the impacts of international soybean trade beyond the trading 

partners of Brazil and China. Specifically, how has land use change in the main production regions 

of Brazil and China has affected neighboring countries. Further, the internal mechanisms behind 

production and farmer cultivation decisions within Heilonjiang are not clear, the environmental 

and socioeconomic impacts of soybean decline are not well quantified and farmer response and 
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ability to adapt is largely unknown. Soybean cultivation trends in Brazil and China’s major 

production region are of great importance as they may influence future soybean production and 

trade as well as food security and environmental sustainability across the world. The information 

gained from this research will be relevant to Brazil, China and the US as they may inform 

agricultural and environmental policy across local to international scales. 

 Conceptual Framework 

The telecoupling framework is an ideal tool for understanding the complex interactions within 

global soybean trade [1], offering a novel integration of natural and social systems across distances 

that historically would have been studied in their respective disciplines. The telecoupling 

framework consists of five interrelated components: systems, flows, agents, causes, and 

effects[1](Figure 1). Systems are coupled human and natural systems that exchange information, 

material, and energy with other systems, which may be located relatively close or far away [1].  

Systems can be further classified as sending (origins, exporting country), receiving (destinations, 

importing countries), and spillover systems. Global soybean trade is a perfect example of this, 

where the importing country is the receiving system and the exporting country is the sending 

system. Movement of soybeans represents the flows, which could also be forms of information, 

materials, or energy responsible for connecting the two systems. Spillover systems are a byproduct 

of the coupled relationship between the sending and receiving systems. They may be connected to 

the sending and receiving systems in multiple ways: as a stopover between the two systems (e.g., 

port, truck stop), as the pathway between the two systems (e.g., transportation route), as an outside 

entity that is connected to the telecoupling (e.g., third party in trade negotiations), or the recipient 

of externalities produced by the telecoupling[1] (e.g., GHG emissions, food price fluctuations). 

Agents are decision-making entities involved in the telecoupling, which facilitate or hinder flows 
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between the systems; agents may take the form of domestic and international farmers, 

governments and agribusiness companies. Causes are drivers or factors originating from any 

system (sending, receiving, and spillover) and generate a telecoupling between a minimum of two 

coupled human and natural systems. Telecouplings often have multiple causes (e.g., economic, 

political, technological, cultural, and ecological), which are responsible for altering the dynamics 

(e.g., emergence, patterns, changes) of the telecoupling. Effects are the resulting socioeconomic 

and environmental impacts of a telecoupling, which can appear in the sending, receiving, and/or 

spillover system. Effects may result in feedbacks loops (to the cause), time lags (showing up years 

to decades later), and legacy effects (persisting for years or decades)[1].  

 

 

Figure 1. Adapted from Liu et al.[1]) Summary of the 5 interrelated components of the telecoupling framework. 
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 Study Areas 

In order to put this research in its’ global context, the second and third chapters of this 

dissertation analyzes spillover effects of international soybean trade between Brazil and China. In 

chapter 2, the trade relationships between Brazil (shown in yellow, Figure 1) and other South 

American soybean sending systems (e.g., Argentina, Paraguay and Uruguay shown in grey, Figure 

1) were analyzed for changes prior to, and after China’s large soybean demand. In Chapter 3 we 

move from the sending system to the receiving system to analyzes how land use change patterns 

in Heilongjiang, China (shown in lime green, Figure 1) resulted in air pollution spilling across the 

border to Russian Provinces (shown in grey, Figure 1). Next, chapter 4 considers the effects of 

land use change in Heilongjiang on the soil conditions (shown in lime green, Figure 1). Finally, 

chapter 5 integrates the research done in previous chapters by simulating international trade and 

land use dynamics using an agent-based model (tele-ABM).  
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Figure 2. World map highlighting the study locations for this dissertation. Brazil, the sending system is shown in 

yellow while China, the receiving system is shown in green. Heilongjiang China, was the site of field work and the 

core study area is highlighted in lime green. Additionally, the spillover systems are shown in grey and include 

Argentina, Paraguay and Uruguay as well as the Russian Provinces that border Heilongjiang. 

 Objectives of this dissertation 

Chapter 2 Analyzes the tele- and peri-coupled flows between South American soybean 

sending systems before and after China joined the World Trade Organization.  

Chapter 3 Explores air pollution spillovers in Russia that are a result of land use conversion 

in Heilongjiang, China. 

Chapter 4 Assesses the impact of farmer cultivation and management decisions in 

Heilongjiang on the soil microbial community. 

Chapter 5 Evaluates to what degree land-use changes contributes to greenhouse gas emissions 

and soil carbon in Heilongjiang using the TeleABM.  
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 Significance 

This project will fill research gaps by providing insight on regional and local cultivation 

patterns, their relationship to microbial community composition and function and the 

environmental effects of international soybean trade in the receiving country. The telecoupling 

framework will serve as the conceptual framework for this work and will be used to better 

understand and identify the complex and interrelated causes and effects of international soybean 

trade[1]. Starting Chapter 2, the international soybean trade network will be organized 

conceptually using the telecoupling framework. The systems are countries that send flows of 

soybeans between them, the causes are the factors influencing soybean export or import behavior 

and the effects are soybean flows under future scenarios. This chapter will fill research gaps on 

how to apply quantitative methods to components of the telecoupling framework and how to 

integrate cross-scale data. Chapter 3 sees the continuation of the telecoupling concept by exploring 

how regional crop cultivation patterns, influenced by soybean imports, vary across Heilongjiang. 

This chapter will address the land use effects of soybean imports on the receiving countries’ 

production at the regional scale. In addition to a regional comparison, Chapter 4 will consider the 

effects of management decisions (influenced by soybean imports) on microbial community 

composition and function at the local level. Lastly, Chapter 5 culminates this research project by 

integrating the previous chapters in an agent-based model. The model, created from information 

gathered during the household survey and soil sampling, builds upon empirical data to forecast 

future crop cultivation patterns and soil dynamics under different scenarios. By considering micro-

scale effects of a macro-scale process we will integrate cross-scale data to address a major research 

challenge.  
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 TELECOUPLED FOOD TRADE AFFECTS PERICOUPLED TRADE AND 

INTRACOUPLED PRODUCTION 

Herzberger, A.; Chung, M.G.; Kapsar, K.; Frank, K.A.; Liu, J. Telecoupled Food Trade Affects 

Pericoupled Trade and Intracoupled Production. Sustainability 2019, 11, 2908. 

 

This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited 

 Abstract 

Technology, transportation and global appetites have transformed trade relationships between 

nearby and distant countries. The impact of distant food demand has had on local agricultural 

production and trade has attracted considerable scientific scrutiny, yet still little is known about 

how distant trade affects trade relationships between and production in adjacent countries. In this 

paper, we explore this important issue by examining international food trade and agriculture 

production, which represent how distant places are connected through trade networks. By 

analyzing patterns of soybean, corn and wheat trade from 1991-2016 under the framework of 

metacoupling (human-nature interactions within as well as between adjacent and distant systems), 

this study provides new insights on the spatio-temporal dynamics of trade flows. Results reveal 

that telecoupled (between distant countries) trade interacts with the geo-political landscape to 

enhance or offset intracoupled production (within country) and pericoupled (between neighboring 

countries) trade. Evidence from the literature and the results of autoregressive integrated moving 

average models indicate that when restrictions are placed on direct export routes, pericoupled trade 

increased. The extent to which telecoupled food trade affected pericoupled trade and intracoupled 

processes holds implications for the true extent of production driven by distant demands.  

Keywords: soybeans; international trade; metacoupling; telecoupling 
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 Introduction 

International food trade and globalized agricultural production connect humans and the 

environment around the world [37-41]. The rate and scale of food trade have significantly 

increased in the past several decades, even though both importing and exporting countries produce 

and consume similar food types [42]. These interconnections may continue increasing as 

population growth increases caloric demand and greater affluence drives changes in consumption 

patterns [43-46]. Because these phenomena have been implicated as the main drivers of increased 

crop production and trade as well as their associated environmental and socioeconomic impacts, 

the conceptual framework of telecoupling has emerged to help disentangle distant human-

environment interactions [47].  

Soybean trade is representative of the ways distant people and places are connected through 

telecouplings. In the context of global food trade, much research has been conducted on the large 

flow of soybeans from the Americas to China [12, 27, 48-50]. For example, many studies have 

documented production increases in Brazil and the United States (U.S.) as well as several other 

countries (e.g., Argentina, Canada, Uruguay, Paraguay [51, 52]) to meet the rising demand from 

China. China’s soybean demand is primarily driven by meat consumption of their burgeoning 

middle class [53], however, the catalyst that initiated the flow of soybeans from west to east was 

China lowering the soybean import tariff from 130% to 3% in 1995 [48, 51]. This reduction quickly 

increased China’s imports of soybeans and sent a signal through the global market that increased 

demand for, and therefore production of, soybeans around the world. At the time, the U.S. was the 

world’s largest producer and exporter of soybeans, accounting for 68% of China’s soybean imports 

in 1995, but has since declined to 40% in 2016 [54]. Brazil first surpassed the U.S. in terms of 

Chinese market share in 2006 and then again in terms of total soybean production in 2013 [54]. 

Between 1995 (when China lowered their soybean import tariff) and 2016, total soybean exports 
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from Brazil to China increased by over 750,000% [54]. Numerous previous studies have 

highlighted a highly concentrated trade network where Brazil and the U.S. account for 80% of 

global soybean exports and China makes up 64% of global soybean imports [42, 46, 50, 54]. Given 

the economic [24, 53], environmental [12, 55] and political [56, 57] importance of soybean trade, 

the dynamics among Brazil, China and the U.S. have been widely studied by academics [49, 58, 

59], governments [60-62], industry [63] and NGOs [64]. 

While the literature documents production increases in South American countries in response 

to China’s soybean demand [52, 56], little is known about how China’s soybean demand has 

altered trade relationships among South American countries. Few studies have looked beyond 

soybean flows between the world’s top producing and consuming countries to determine the 

structure of trade between medium-size producers or the effects that high volume soybean trade 

has had on them. To address this research gap, this study uses the metacoupling framework [65], 

which is an extension of the telecoupling framework [47], to explore how telecoupled (e.g., distant) 

soybean trade between Brazil and China has influenced pericoupled (e.g., trade between 

neighboring countries) and intracoupled (e.g., production within a country) processes within South 

America.  

To study the interaction between telecouplings and pericouplings, we identified soybean 

exports from Brazil to China as our focal telecoupling, because it is the largest bilateral exchange 

of soybeans [54]. To explore the influence of telecouplings on pericouplings, Argentina, Paraguay 

and Uruguay were identified for several reasons. First, they share a border and joint membership 

in the Mercosur trade agreement with Brazil allowing feasible pericoupled trade both, 

geographically and politically [66, 67]. Second, Argentina, Paraguay and Uruguay are net soybean 

exporters to Brazil, while Bolivia, Chile, Colombia, Ecuador, Peru and Venezuela are net 
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importers from Brazil and do not send soybeans to China. Because of their lack of participation in 

the Chinese soybean trade, these countries were excluded from further analysis. Third, Argentina, 

Paraguay and Uruguay have ideal climatic and environmental conditions for soybean production 

and were the respective 3rd, 4th, and 7th largest soybean exporters in 2016 [54]. Last, the literature 

has suggested that there are spillover effects of Brazil’s large-scale soybean production on regional 

cropping patterns [55, 68, 69]. Corn and wheat trade were identified as possible relationships to 

be affected by soybean expansion based on production-substitute suitability, status as globally 

important food crops, literature review, preliminary analyses as well as data availability. After 

analyzing production and trade data to identify patterns in bilateral trade relationships of soybeans, 

corn and wheat, literature review and autoregressive integrated moving average models (ARIMA) 

were used to identify changes in trade patterns before and after China lowered their soybean tariff. 

 Methods  

2.3.1. Conceptual Framework 

This study treats the South American food trade network as a metacoupled system. The 

metacoupling framework is an umbrella framework that examines three types of human-nature 

interactions. Human-nature interactions occurring within a coupled human and natural system are 

called intracouplings. Pericouplings occur when human-nature interactions cross boundaries 

between adjacent systems, while telecouplings examine human-nature interactions across distance. 

By providing a typology that categorizes processes as intracouplings, pericouplings, and 

telecouplings (Figure 3), the metacoupling framework provides a structure for developing a more 

complete understanding of the complexity within trade networks. In relation to telecoupled trade 

between South American soybean-sending systems (e.g., Brazil, Argentina, Paraguay and 

Uruguay) and China, trade relationships among the neighboring countries in South America are 
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classified as pericouplings and production within a country is considered as intracoupling. Because 

30% of all global soybean trade flows in 2016 occurred between Brazil and China [54], this 

relationship is considered the main soybean telecoupling and a driver of structural change in the 

metacoupled soybean trade network. 

 

Figure 3. Conceptual overview of the metacoupling framework adapted from Liu (2017). The green circles represent 

natural components while the orange circles represent human components of the system. Grey arrows are interactions 

within systems (i.e., intracoupling) and black arrows are interactions between systems (i.e., peri- and telecouplings). 

2.3.2. Relevant Theories  

Originating in the interdisciplinary field of land system science, the metacoupling framework 

aims to capture various socioeconomic and environmental interactions as well as their impacts, at 

multiple distances. The metacoupling concept and framework [65] is an extension of the 

telecoupling concept and framework [47] which was derived from the integration of the concepts 

such as teleconnections (e.g., distant climatic connections [70]) and globalization (e.g., distant 

connections among human systems [71]). The metacoupling concept and framework are also 

supported through the integration of a variety of interdisciplinary concepts and theories [72]. For 
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example, metacoupled systems can be treated as complex adaptive systems [73, 74] with 

interacting feedbacks and spillovers at multiple scales.  

The metacoupling framework can also be integrated with traditional theories of international 

trade. International trade theory suggests that every country has a comparative advantage in terms 

of a good or service that could be produced at a relatively lower cost than other countries. Countries 

producing similar goods and services still trade with one another, because comparative advantages 

stem from not only differences in climate as well as natural and human resources but also from 

differences in technology, economies of scale, preference for variety, and other factors [75]. By 

framing this study under the metacoupling framework and incorporating interdisciplinary concepts, 

such as theories of international trade, we were able to identify multiple drivers that influence tele- 

and pericoupled trade relationships.   

2.3.3. Data Collection 

 Soybean, corn and wheat production data were collected from FAOstat for the years 1991 to 

2016 [15]. Total imports, total exports, and bilateral crop trade data were collected from 

UNComTrade [54] under HS code 1201 (soybeans), 1005 (corn), and 1001 (wheat) for the same 

time period. The study period 1991-2016 was chosen to capture change in the soybean trade 

network since the Chinese soybean tariff was lowered from 130% to 3% in 1995 [27, 51]. While 

China did not join to the World Trade Organization (WTO) until 2001, the study period was chosen 

to reflect the time before and after China’s soybean demand entered the global market. Data were 

thus split into two periods, before (1991-1995) and after (1996-2016) China’s soybean demand 

entered the global market. Due to limited trade during the pre-period values are reported as average 

to avoid comparing trade values in 2016 to a trade value of 0. Trade values below 25,000 MT, 

which is 0.0007% of the soybeans exported from Brazil to China in 2016, were excluded from the 
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analysis. Furthermore, many countries did not report bilateral trade data prior to 1991 which 

limited further historical analysis. While this study discusses four countries (i.e., Brazil, Argentina, 

Paraguay and Uruguay) in detail, data were collected and analyzed for all countries that were 

available during the study period (~75 countries). 

2.3.4. Data Analysis 

To identify trends in the production and trade of soybeans, corn, and wheat both within and 

between country pairs from 1991 to 2016, descriptive statistics, data visualization and trend 

analyses were performed. To understand the drivers behind these trade trends, literature was 

collected from academic, government and NGO sources. Finally, to capture the interaction 

between tele- and pericouplings and to estimate the impact of China’s soybean demand on trade 

between South America sending systems, time series autoregressive integrated moving average 

(ARIMA) models [76-78] were specified for each commodity (i.e., soybeans, corn and wheat) and 

bilateral country pair (e.g., China, Brazil, Argentina, Uruguay and Paraguay). When the dependent 

variable was telecoupling (e.g., soybean export to China), pericoupling (e.g., cross-border trade) 

was added as an independent variable and vice versa, to test for significance. Several country pairs 

had very little or no trade for certain commodities during the study period and are not discussed in 

the manuscript, full ARIMA results can be found in the appendix (Figures 9-12, Table 2).   

Following the protocol specified in [77], outliers were smoothed and missing values were 

linearly interpolated before diagnostic tests were used to determine parameters and the best model 

fit using R packages tseries [79], forecast [77] and ggplot2 [80]. The ARIMA models capture time 

series trends and predict future values of trade (𝒀) at time 𝒕 by including autoregressive (AR(p)), 

integrated (I(d)) and moving average (MA(q)) model terms. The AR model term assumes the 
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current value of trade between two countries is a linear function of the previous trade values and 

therefore includes p time lags to predict future values of 𝒀(1).  

𝒀𝒕 = 𝒄 + Ø𝟏𝒚𝒕−𝟏 + Ø𝒑𝒚𝒕−𝒑 + 𝜺𝒕                    (1) AR 

where 𝒄 is a constant, Ø𝟏 + ⋯ + Ø𝒑 are parameters and 𝒑 is AR polynomial order. The integrated 

model term I refers to the differencing degree which is calculated by subtracting the current of 

trade between two countries and previous values of trade 𝒅 times to stabilize the time series, where 

𝒚𝒅𝒕  is 𝒚𝒕 differenced 𝒅 times (2a-b). 

𝒚𝒅𝒕 = 𝒀𝒕 − 𝒀𝒕−𝟏                                (2a) I 

𝒀𝒕 = 𝒄 + Ø𝟏𝒚𝒅𝒕−𝟏 + Ø𝒑𝒚𝒅𝒕−𝒑 + 𝜺𝒕                   (2b) AR+I 

The MA model term calculates future error terms, 𝒆 at time 𝒕, by combining previous errors 

terms, 𝒆𝒕−𝟏, where 𝒒 indicates the number of error terms included (3).   

𝒀𝒕 = 𝒄 + 𝜭𝟏𝒆𝒕−𝟏 + 𝜭𝒒𝒆𝒕−𝒒 + 𝜺𝒕                      (3) MA 

where 𝒄 is a constant, 𝜭𝟏 + ⋯ + 𝜭𝒒 are parameters and 𝒒 is the MA polynomial order. Through 

the combination of model terms, ARIMA models (4) are commonly used to recreate a time series 

trend and then project into the future for predictive purposes. 

𝒀𝒕 = 𝒄 + Ø𝟏𝒚𝒅𝒕−𝟏 + Ø𝒑𝒚𝒅𝒕−𝒑 + 𝜭𝟏𝒆𝒕−𝟏 + 𝜭𝒒𝒆𝒕−𝒒 + 𝜺𝒕          (4) AR+I+MA 

Last, the ARIMA models were modified to test the influence of pericoupling processes (𝒙) on 

telecoupling processes (𝒀) (5).  

𝒀𝒕 = 𝜷𝒙𝒕 + Ø𝟏𝒚𝒅𝒕−𝟏 + Ø𝒑𝒚𝒅𝒕−𝒑 + 𝜭𝟏𝒆𝒕−𝟏 + 𝜭𝒒𝒆𝒕−𝒒 + 𝜺𝒕          (5) AR+I+MA+X 

Where 𝒙 is a covariate at time 𝒕 and 𝜷 is its coefficient. 

While ARIMA models are traditionally used for the purpose of forecasting, in the present case 

it is more informative to hindcast the predicted values in order to examine the influence of China’s 

tariff reduction on soybean trade. Therefore, the ARIMA models were trained on trade data in the 
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post period (e.g., 1996-2016) and then hindcast for the pre period (e.g., 1991-1995). This method 

allowed for comparison between the observed and hindcast trade data among South American 

sending systems before China lowered the soybean import tariff. Because the hindcast values were 

calculated from the trend in the post period, differences between the observed and hindcasted data 

approximate the effect that China’s soybean demand (e.g., telecoupling) had on trade between 

Brazil and nearby countries (e.g., pericoupling).  

 Results  

2.4.1. Trend Analysis 

Overview 

While several countries in South America, as well as around the world, increased intracoupled 

soybean production and telecoupled export in response to China’s increased demand after entering 

the global market [59], Brazil emerged as the most competitive. Brazil’s success as a soybean 

sending system may be due to strategies used by the Brazilian government to liberalize trade and 

increase imports of and farmer access to fertilizers, pesticides, and seeds [81]. Since the pre-period 

average (1991-1995), Brazil steadily increased their market share from 0% to 46% of China’s 

soybean imports in 2016. The remaining 2016 market shares belonged to the U.S. (40%), 

Argentina (9%) followed by Uruguay and then Canada, who each accounted for less than 2% of 

China’s soybean imports [54]. While, Argentina, Paraguay and Uruguay share a border with Brazil 

as well as suitable land for soybean cultivation, their varying shares of the Chinese soybean market 

are largely reflective of the unique geo-political strategies taken by each country’s respective 

government.
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Argentina 

Exports of soybeans from Argentina to China started in 1995 and experienced rapid growth 

during the first decade of the study period. However, in 2006, the Argentine government placed a 

domestic tariff on exports of soybean of 23.5% which resulted in slower growth in soybean exports 

to China [82] (Figure 4). Soybean exports to other South American countries were exempt from 

the tariff through joint membership in the Mercosur trade agreement [66]. Between the pre-period 

average and 2005, Argentina’s soybean exports to China increased more than 35,000%, 

corresponding with a cessation of soybean exports from Argentina to Brazil in 1995 that did not 

start again consistently until 2005, just before Argentina’s domestic tariff went into effect. In 

contrast, since 2006 soybean exports from Argentina to Brazil, Paraguay and Uruguay have 

increased by 128,766%, 128% and 88%, respectively, while exports to China increased by 23% 

(Figure 5, Table 1) [54, 83]. Furthermore, the rate of soybean expansion by area planted in 

Argentina was much higher before the domestic tariff started in 2006 (e.g., 215% increase between 

1995-2005 vs. 45% increase between 2006-2016). In contrast, the rate of corn expansion by area 

planted was much higher after 2006 (e.g., 80% increase between 1995-2005 vs. 175% increase 

between 2006-2016), while the rate of wheat expansion by area planted occurred at approximately 

the same rate before and after Argentina’s domestic tariff started in 2006 (e.g., 41% increase 

between 1995-2005 vs. 46% increase between 2006-2016) (Figure 5, Table 1). Along with 

literature support, these results suggest that Argentina’s domestic tariff on soybean exports slowed 

soybean expansion and drove corn expansion while wheat intracoupling has remained relatively 

stable during the study period [24, 84-88].  



 

18 

 

Figure 4. Timeline that defines the pre period (1991-1995) and post period (1996-2016) and highlights important 

events. 

Uruguay  

Differing from Argentina, Uruguay has tariff-free access to the Chinese soybean market as 

well as land prices that are about 50% cheaper than soybean land in Argentina. These factors, in 

combination with the financial crisis during the early 2000s, promoted investment in Uruguayan 

agriculture from nearby producers. In addition to investments from multinational companies, 

soybean expansion in Uruguay was driven primarily by investments from Argentina [63]. The 

flows of investment capital rapidly expanded Uruguay’s soybean production and exports, 

increasing exports to China by 1,250% between 2005 and 2016 [54]. In 2007, two years after 

Uruguay began exporting soybeans to China, its soybean imports from Argentina, Brazil and 

Paraguay were equal to 60% of the amount Uruguay exported to China. As Uruguay increased 

soybean intracoupling, the contribution from nearby countries had become consistent but small. 

However, the rapid establishment of soybean production and foreign land ownership limited the 

development of soybean processing industry. Therefore, Uruguay is a net importer of both soybean 

oil and meal to support its a booming livestock industry, 100% of which comes from Argentina, 

Brazil and Paraguay [54].  



 

19 

 

Figure 5. Flow maps depicting telecoupled soybean trade and pericoupled trade of soybeans (green arrow), corn 

(orange arrow) and wheat (blue arrow) from 1991-2016. Panels are split into 5-year time periods: 1991-1995 (A), 

1996-2000 (B), 2001-2005 (C), 2006-2010 (D) and 2011-2016 (E). The width of the line represents average 

commodity flow from a single trade partner during the respective time period and the arrows are weighted according 

to total import from all trade partners. All values are presented in millions of metric tonnes. Trade amounts averaging 

below 25,000 MT per year were excluded.  
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Paraguay 

Unlike Argentina and Uruguay, Paraguay chose to forgo diplomatic ties with China and 

market access due to ties with Taiwan [89]. Despite having restricted access to the largest soybean 

market, Paraguay’s soybean production increased by more than 400% between 1995 and 2016, 

more than half of which were exported [15, 64, 90]. Due to the geographic and political landscape, 

Paraguayan soybeans were sent via barge to river ports in Argentina and Uruguay [89, 91]. Prior 

to 2009, exports to Argentina, Brazil and Uruguay accounted for between 40% and 70% of 

Paraguay’s total soybean exports. Since 2009, Paraguay has increased soybean exports to Russia 

and Turkey. Russia and Turkey are net exporters of processed soybean products and export 

soybean oil to China [54]. In 2016 29% of Paraguay’s soybean exports went to Argentina, Brazil, 

and Uruguay, while 15% went to Russia and 13% to Turkey [54]. While re-export analysis was 

not performed in the present study, the literature confirms that even though Paraguay does not 

directly engage in soybean trade with China, intracoupled soybean production, and pericoupled 

and telecoupled soybean exports have been increasingly driven by China’s soybean demand [89, 

91, 92].  
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Table 1. Brazil’s soybean (HS 1201), corn (HS 1005) and wheat (HS 1001) imports in metric tonnes (MT) from 

Argentina, Paraguay, Uruguay and the U.S. The table includes the trade value for the pre period (the average trade 

value between 1991 and 1995), 2016 and the percent change between the pre period and 2016. 

Brazil's Soybean Imports 
 Argentina Paraguay Uruguay USA 

Pre Period 129,079 177,765 33,016 187,397 

2016 670 381,448 0 0 

Percent Change -99.5% 114.6% -100% -100% 

Brazil's Corn Imports 
 Argentina Paraguay Uruguay USA 

Pre Period 811,167 80,831 5,188 123,894 

2016 1,436,245 1,465,053 0 532 

Percent Change 77% 1712% -100% -99.5% 

Brazil's Wheat Imports 

 Argentina Paraguay Uruguay USA 

Pre Period 1,074,906 14,544 47,287 173,355 

2016 3,950,036 956,125 577,415 1,226,210 

Percent Change 268 6474% 1121% 607% 

 

2.4.2. Differences in Trade Between the Pre- and Post-Period Trends 

Overview  

To explore differences in trade between the pre-period trend (e.g., 1991-1995, prior to China’s 

soybean tariff reduction) and the post-period trend (e.g., 1996-2016, after China’s soybean tariff 

reduction), autoregressive integrated moving average (e.g., ARIMA) models were constructed. For 

illustrative purposes, Figure 6 shows the ARIMA results for soybean exports from Argentina, 

Brazil and Uruguay to China. In all three cases, the hindcast values (e.g., dashed line) for the pre 

period were higher than the observed values (e.g., solid black line), indicating that based on the 

trend during the post period, more trade was expected during the pre period. Differences in the 

hindcast values and observed trade values during the pre period indicate that the trade trends before 

and after China’s market entry were different but cannot be used to directly infer the influence of 

China’s market demand. The relationships between telecoupled exports and pericoupled imports 

are shown in Table 2. Brazil and Uruguay’s soybean exports to China had a statistically significant 
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relationship with their pericoupled soybean imports. Many other factors could drive bilateral trade 

relationships, such as population and economic growth, however because the models were 

constructed from the observed data the impact of major factors is endogenized in the ARIMA trend. 

The varying degrees of access to the Chinese soybean market by Argentina (somewhat restricted 

access), Uruguay (unrestricted access) and Paraguay (completely restricted) allow for a unique 

analysis of how telecoupled, pericoupled and intracoupled processes interact. 

 

Figure 6. ARIMA for Argentina, Brazil and Uruguay’s soybean exports to China. See SF1 for full country and 

commodity results. The solid line represents the natural log of imports in metric tons and the dashed line represents 

the natural log of the trend derived from the ARIMA models. The shaded grey area is the 95% CI. P-values, NRMSE 

(normalized by standard deviation) and MASE can be found in Table S1. 

Argentina 

The observed trade data show that soybean exports from Argentina to Brazil have declined by 

99% between the pre period (average of 1991-1995) and 2016 while exports of corn and wheat 

have increased 77% and 267%, respectively (Table 1) [54]. Using the trend from post period to 

hindcast the values for the pre period, the ARIMA results indicate that the observed soybean and 

corn exports from Argentina to Brazil during the pre period were higher than the hindcast values 

while the observed wheat exports were lower than the ARIMA values (Figure 7 A1). With respect 

to soybean trade, the lower hindcast values reflect when the observed soybean exports from 

Argentina to Brazil dropped to zero in 1995 and did not start again consecutively until 2005, which 
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respectively correspond with the reduction of the Chinese import tariff and the start of the 

Argentine export tariff.  

The ARIMA results suggest that fewer soybean exports from Argentina to Brazil reflect the 

observed trend during the first half of the study period. However, between 2006 and 2016 soybean 

exports from Argentina to Brazil increased by over 400% [54]. The opposite trend observed during 

the second half of the study period may have masked the and contributed to the relatively small 

difference between the observed and hindcast values (Table 2). These results suggest that 

pericoupled soybean trade between Argentina and Brazil was reduced between 1995 and 2005 and 

then enhanced between 2006 and 2016. Similarly, the hindcast values for corn exports from 

Argentina to Brazil are slightly lower than the observed data (Figure 7 B1) which supports the 

literature finding that corn expansion in Argentina was driven by biofuel mandates in Europe and 

the U.S. during the mid-2000’s [88]. Competition from biofuel mandates, as well as other drivers, 

may have offset pericoupled corn trade between Argentina and Brazil during the post period. 

Differing from soybeans and corn, the observed wheat imports from Argentina to Brazil were 

much lower than the hindcast values (Figure 7 C1), indicating that while pericoupled corn and 

soybean trade were offset during the post period, pericoupled wheat trade was enhanced.  
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Figure 7. ARIMA for Brazil’s soybean (A), corn (B) and wheat (C) imports from Argentina (1), Uruguay (2) and 

Paraguay (3). The solid line represents the natural log of imports in metric tons and the dashed line represents the 

natural log of the trend derived from the ARIMA models. The shaded grey area is the 95% CI.  

Uruguay 

Based on hindcasting the post-period trend, the ARIMA values for soybean and corn exports 

from Uruguay to Brazil were lower than the observed values during the pre period (Figure 7 & 

Table 2). This is because observed soybean and corn exports from Uruguay to Brazil during the 

post period decline to zero (Table 1). In 1997, three years after China’s tariff was lowered, soybean 

exports from Uruguay to Brazil decline to zero and do not start again consistently. Further, corn 

exports from Uruguay to Brazil both increase and decrease but trade only occurred intermittently 

during the post period. The highly variable pattern and lower hindcast values indicate that exports 

of corn and soybean from Uruguay to Brazil were reduced in the post period. In contrast, the 
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observed values for wheat exports from Uruguay to Brazil were substantially lower than the 

hindcast values (Figure 7 C2). The observed exports from Uruguay to Brazil increased by 1121% 

since the pre period (Table 1), indicating that pericoupled wheat trade was enhanced during the 

post period. Additionally, there was a significant relationship between Uruguay’s soybean exports 

to China and their soybean imports from Argentina, Brazil and Uruguay. Further, the hindcast 

values were higher than the observed trade for exports of corn and wheat from Argentina to 

Uruguay and exports of corn and wheat from Paraguay to Uruguay (Figure 11), suggesting 

Uruguay’s pericoupled imports were enhanced during the post period.  

Paraguay 

In contrast to Argentina and Uruguay, Paraguay showed a consistent pattern across soybean, 

corn and wheat exports to Brazil. Paraguay is the only country that is completely restricted from 

accessing the Chinese market and experienced increases in exports to Brazil of all three crops. 

Specifically, since the pre-period (average of 1991-1995) exports of soybeans, corn and wheat to 

Brazil have increased by 114%, 1,712% and 6,474% , respectively (Table 1). The observed values 

for soybean, corn and wheat exports from Paraguay to Brazil, during the pre period were all lower 

than the ARIMA hindcast values (Figure 7, C1, C2 & C3). The consistent pattern across crops 

indicates that pericoupled trade between Paraguay and Brazil was enhanced during the post period. 

Paraguay’s wheat exports to Brazil had a statistically significant relationship with Brazil’s soybean 

exports to China (Table 2). Further, in supplemental Figures 10 and 11, the hindcast values are 

higher than the observed soybean exports from Paraguay to Argentina and soybean and corn 

exports from Paraguay to Uruguay.  
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Figure 8. Summary of ARIMA results for all bilateral trade relationships. Black lines are cases where trade flows were 

enhanced (hindcast values were higher than the observed trade) and red lines indicate situations where trade was offset 

(hindcast values were lower than the observed trade) during the pre period. Solid lines are soybean flows, dashed are 

corn flows and dotted are wheat flows. 

 Discussion 

This study highlights a complex web of interactions that have been shaped by China’s soybean 

demand, domestic policies and international geo-political relationships (Figure 8). First, Brazil’s 

imports of wheat substantially increased from Argentina, Uruguay and Paraguay during the study 

period. The ARIMA models confirm that wheat trade during the post period was enhanced 

compared to the pre period. Interestingly, Argentina’s exports of wheat to Uruguay and Paraguay 

were also enhanced. Second, while there was a significant relationship between Brazil’s soybean 

exports to China and Brazil’s pericoupled soybean imports, the pattern across Argentina, Uruguay 

and Paraguay varied and may be related to the respective government strategies used to facilitate 

or inhibit trade. Soybean exports from Argentina to Brazil decreased in the first half of the study 

period (e.g., 1995-2005) and increased in the second half (e.g., 2006-2016), corresponding with 

the reduction of China’s soybean tariff and the start of a domestic export tariff. Further, while corn 
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exports from Argentina to Brazil increased during the study period, differences between the 

observed and hindcast values suggest that pericoupled corn trade was offset in the post period. 

Direct and indirect competition from European and U.S. ethanol mandates and China’s soybean 

demand may have interacted to offset and enhance pericoupled soybean and corn trade between 

Argentina and Brazil during the post period. Uruguay did not start exporting soybeans to China 

until 2005, but since then has increased exports. Both soybean and corn exports from Uruguay to 

Brazil declined after the pre period and only occur intermittently. Additionally, Uruguay increased 

imports of corn from Argentina and Paraguay. The ARIMA models indicate differences in the 

trend between the pre and post period which supports the observation that pericoupled trade was 

offset in the post period. Third, soybean and corn exports from Paraguay to Brazil increased 

throughout the study period and Paraguay’s wheat exports to Brazil had a significant relationship 

with Brazil’s soybean exports to China. The ARIMA models confirm differences between the pre 

and post period trends and suggest pericoupled trade was enhanced during the post period. The 

inability to access the Chinese market directly may have contributed to increased pericoupled trade 

with Brazil as well as Argentina and Uruguay, which offer convenient export routes [89, 93]. 

Paraguay’s strengthening trade relationships with Russia and Turkey, top exporters of soybeans 

and soybean products, may compete with pericoupled exports and provide further evidence that 

Paraguay is indirectly influenced by the Chinese market. 

In the meta- and telecoupling literature there are no studies that specifically address the 

synergy between telecoupling and pericoupling processes. However, a number of studies 

document spillover effects of Brazilian soybean expansion. For example, Bicudo da Silva et al. 

found that as a result of increased soybean production in Brazil, farmers increased operations from 

growing 1 to 2 crops each year which increases risk of precipitation anomalies. Soybeans are 
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planted first, followed by corn, most of which is for domestic consumption rather than export [24]. 

Further, Dou et al. found that conservation efforts (i.e., Soy Moratorium and zero-deforestation 

beef agreement) meant to contain deforestation in the Amazon biome displaced deforestation to 

the Cerrado region [55]. In the respective cases, soybean expansion temporally displaced corn 

production and spatially displaced deforestation within Brazil’s system boundary. The results of 

the present study indicate that similar interactions may occur across system boundaries where 

telecouplings interact with pericouplings to enhance or offset one another. On the other hand, a 

network analysis of global soybean trade [50] identified Brazil, China and the USA as the key 

players but did not find regional or continental geography to be predictor of trade patterns. The 

present findings suggest that pericoupled relationships are important in global trade patterns and 

may be dwarfed, contextually and computationally, by the massive flows among Brazil, China and 

the USA. Therefore, analyses that only consider direct trade routes or bilateral exchanges could 

mask the true value of the flow and therefore underrepresent the land-use impact of production. 

Because soybean expansion has already threatened ecosystems and displaced land-use in Brazil 

[24], Argentina [56] and Uruguay [69], stakeholders should consider pericoupled trade when 

designing policy interventions. 

This study explored the impact of China’s tariff reduction and subsequent increases in soybean 

demand on pericoupled trade relationships between Brazil, the largest soybean exporter, and the 

adjacent soybean-sending systems of Paraguay, Uruguay and Argentina. We note that this analysis 

lacks systematic consideration of other factors that could have driven differences between the pre 

and post period. For example, population growth and income level have been shown to be 

significant factors for food trade [43] and were not explicitly considered in this analysis. While the 

lack of other consideration is valid, ARIMA models accurately capture time-series trends by 
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endogenizing the impact of major drivers through accounting for non-stationarity, seasonality and 

auto-correlation. ARIMA models use lags of the dependent variable or lags of errors as 

independent variables to capture the underlying systematic patterns in the data [76, 94]. Additional 

independent variables can be added to ARIMA-X models, however those factors should not have 

been affected by the intervention in question, i.e. China acceding to the WTO, and can result in 

over-specification. Further, ARIMA models have been shown to capture the same trend with only 

slight differences from ARIMA-X models [76]. Therefore, the ARIMA models can determine if 

the trends between the pre and post periods differ, however, those differences cannot be casually 

attributed to China’s soybean demand. Rather, the multitude of academic and government 

literature support this hypothesis [95]. One possible future research direction is to consider the 

impact of telecouplings on pericoupled trade among receiving systems.    

 Conclusions 

The present research highlights the importance of pericoupled relationships in global trade 

and provides insights on how commodities flow in a metacoupled world. Despite government (e.g., 

Argentina and Paraguay) policies that inhibited soybean exports and expansion, China’s distant 

demand affected intracoupling and trade both directly, via telecouplings, and indirectly through 

pericouplings. This suggests that in a metacoupled world commodities flow from areas of supply 

to areas of demand using the most cost-effective route [96]. If that route is restricted, the 

commodity will likely still flow to the area of demand, but via a different route. These results 

should be considered by and may stimulate future studies on metacoupled systems (e.g., beyond 

soybean trade, such as migration, tourism, species invasion) and provide insights for governing 

metacoupling systems.  
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Figure 9. Full ARIMA results for China’s soybean, corn and wheat imports from Argentina, Brazil, Uruguay and 

Paraguay. The solid line represents the natural log of imports in metric tons and the dashed line represents the natural 

log of the trend derived from the ARIMA models. The shaded grey area is the 95% CI. Trade values below 25,000 

MT per year were excluded. Blank graphs indicate no or very little trade occurred. 
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Figure 10. Full ARIMA results for Argentina’s soybean, corn and wheat imports from Brazil, Uruguay and Paraguay. 

The solid line represents the natural log of imports in metric tons and the dashed line represents the natural log of the 

trend derived from the ARIMA models. The shaded grey area is the 95% CI. Trade values below 25,000 MT per year 

were excluded. Blank graphs indicate no or very little trade occurred. 
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Figure 11. Full ARIMA results for Uruguay’s soybean, corn and wheat imports from Argentina, Brazil and Paraguay. 

The solid line represents the natural log of imports in metric tons and the dashed line represents the natural log of the 

trend derived from the ARIMA models. The shaded grey area is the 95% CI. Trade values below 25,000 MT per year 

were excluded. Blank graphs indicate no or very little trade occurred. 
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Figure 12.  Full ARIMA results for Paraguay’s soybean, corn and wheat imports from Argentina, Brazil and Uruguay. 

The solid line represents the natural log of imports in metric tons and the dashed line represents the natural log of the 

trend derived from the ARIMA models. The shaded grey area is the 95% CI. Trade values below 25,000 MT per year 

were excluded. Blank graphs indicate no or very little trade occurred. 
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Table 2. Description of final ARIMA models including p (# of lags), d (# of differences), q (# of error terms). Followed 

by parameter descriptions and p-values, (***p < 0.001, **p< 0.05 and *p < 0.01). AR and MA parameters refer to the 

autoregressive and moving average model terms. The pericoupled parameters are relative to the country in the 

dependent variable and are the aggregated imports from the adjacent countries. For example, if Y = Soybean exports 

from Argentina to China, then pericoupled soybean imports are equal to Argentina’s soybean imports from Brazil, 

Uruguay and Paraguay. The fourth column includes the sum of the differences between the observed and predicted 

values for 1991-1995 in MT. Positive numbers can be interpreted as a predicted increase in trade during the pre period 

of X MT compared to the observed values; negative numbers indicate a predicted decrease of X MT during the pre 

period relative to the observed values. Finally, normalized root mean squared error (NRMSE) and mean absolute 

scaled error (MASE) were included as measures of model validity. NRMSE was normalized by dividing the RMSE 

by the standard deviations of the dependent variable. In both cases, values close to zero indicate a high performing 

model that captures the variation in the data. Values around 1 indicate the model is explaining some of the variation 

in the data, while values beyond 1 indicated noise and a low-performing model.   

ARIMA Model 

(p, d, q) 
Parameter p-value 

Σ(Observed- 

Predicted 

values) 

NRMSE MASE 

Soybean exports 

from Argentina 

to China (0, 1, 1) 

MA1 0.00*** 21,065,499 0.55 0.82 

Pericoupled soybean imports 0.27 

Pericoupled corn imports 0.63 

Pericoupled wheat imports 0.69 

Soybean exports 

from Brazil to 

China (0, 2, 1) 

MA1 0.00*** 12,115,029 0.11 0.71 

Pericoupled soybean imports 0.05* 

Pericoupled corn imports 0.7 

Pericoupled wheat imports 0.1 

Soybean exports 

from Uruguay to 

China (1, 1, 0) 

AR1 0.00*** 174,735 0.06 0.4 

Pericoupled soybean imports 0.05* 

Pericoupled corn imports 0.9 

Pericoupled wheat imports 0.69 

Soybean exports 

from Argentina 

to Brazil (0, 1, 1) 

MA1 0.00*** -515,895 0.78 0.7 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.8 

Soybean exports 

from Uruguay to 

Brazil (0, 2, 1) 

MA1 0.00*** -180,406 0.37 1.1 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.8 

Soybean exports 

from Paraguay 

to Brazil (0, 2, 1) 

MA1 0.00*** 2,217,646 0.71 0.92 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.3 

Corn exports 

from Argentina 

to Brazil (0, 1, 0) 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.38 -2,054,664 0.63 0.9 

Corn exports 

from Uruguay to 

Brazil (0, 1, 0) 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.9 -18,305 0.4 0.97 

Corn exports 

from Paraguay 

to Brazil (0, 1, 1) 

MA1 0.05* 423,823 0.51 1 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.34 

Wheat exports 

from Argentina 

to Brazil (0, 1, 0) 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.58 12,012,323 0.6 0.94 
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Table 2 (cont’d) 

Wheat exports 

from Uruguay to 

Brazil (1, 2, 1) 

AR1 0.00*** 911,268 0.3 0.7 

MA1 0.00*** 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.46 

Wheat exports 

from Paraguay 

to Brazil (3, 1, 1) 

AR1 0.00*** 505,229 0.45 0.63 

AR2 0.00*** 

AR3 0.00*** 

MA1 0.00*** 

Telecouping (e.g., Brazil’s 

soybean exports to China) 
0.00*** 

Soybean exports 

from Paraguay 

to Argentina (1, 

1, 0) 

AR1 0.00*** 248,227 0.12 0.8 

Soybean exports 

from Paraguay 

to Uruguay (2, 0, 

1) 

AR1 0.00*** 417,083 0.23 0.79 

AR2 0.06 

MA1 0.00*** 

Corn exports 

from Argentina 

to Uruguay (1, 0, 

0) 

AR1 0.00*** 37,552 0.48 0.89 

Corn exports 

from Paraguay 

to Uruguay (0, 1, 

0) 

  1,565 0.47 0.9 

Wheat exports 

from Argentina 

to Uruguay (1, 0, 

0) 

AR1 0.00*** 65,416 0.37 0.9 

Wheat exports 

from Argentina 

to Paraguay (0, 

1, 0) 

  271,462 0.45 0.96 
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 INTERNATIONAL FOOD TRADE LED TO AIR POLLUTION IN NON-TRADING 

COUNTRY 

 Overview  

Almost all places around the world are interconnected via food trade [1]. Over the past three 

decades, global food production has doubled [2], with producing countries increasingly cultivating 

for exports rather than domestic consumption, resulting in a rise in food exports by an order of 

magnitude [3]. The increased global trade of agriculture products have numerous, well-

documented socioeconomic and environmental impacts affecting both exporting and importing 

regions [4]. However, little is known about the spillover effects that influence other regions outside 

the trading partners [5-7].  

To explore spillover effects of international trade, we choose international soybean trade as 

an example because it has been rapidly growing in recent decades. Several studies have analyzed 

the impact of soybean trade with China, the top soybean consumer, on Brazil, the top soybean 

producer. In addition to prosperous economic growth, soybean expansion in Brazil competes with 

production of other crops and land for conservation efforts[8, 9]. Further, changes in crop 

production and trade relationships with countries bordering Brazil indicate soybean expansion has 

displaced other crops production to neighboring countries[10]. On the other side of the world, 

increased soybean imports have prompted many farmers in China, particularly in Heilongjiang 

province (the most important soybean producing region in the country), to switch soybeans to 

alternative crops such as maize. 

In this study, we explore the underlying regional cultivation and management shifts that 

resulted in air pollution locally and across the China-Russia border. We quantified the spatial and 

temporal patterns of PM 2.5 in Heilongjiang and in the nearby Russia Provinces. To confirm air 

pollutant transport, we used NASA Worldview images to capture smoke from the fires. Finally, 
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we analyzed the spatiotemporal patterns of agricultural fires and crop conversion patterns and 

evaluated the household mechanisms behind the patterns.  

 Results  

In this study, through a combination of remotely sensed data and household surveys, we found 

that air quality in Russia is unexpectedly affected by soybean trade between China and major 

soybean exporters such as Brazil and the USA. Specifically, the concentration of atmospheric fine 

particulate matter smaller than 2.5 microns in diameter (PM 2.5) [11] in several provinces of Russia 

next to China’s Heilongjiang Province are particularly elevated during spring (i.e., February-May), 

and with a conspicuous peak in late autumn (i.e., November; Fig. 13). During spring the PM 2.5 

concentrations are mostly associated with household heating (with coal) over the winter months[12, 

13]. The effects of pre-planting crop residue burning (Fig. 14) on PM 2.5 concentration in 

neighboring Russian provinces during spring seem to be lower than in November because they 

increased PM 2.5 concentration in Heilongjiang province but not in neighboring Russian provinces 

(Fig. 13). In contrast, the conspicuous increase in PM 2.5 in November across the entire region 

(including areas in Russia) is mostly associated with post-harvest residue burning in Heilongjiang 

(Figs. 13 and 14). This seasonal difference in the effects of crop residue burning may be explained 

by thermal inversions characteristic of autumn months, impeding the vertical movement of air 

(convection) thus reducing the dilution of PM 2.5 pollutants [11].  Using images from NASA 

Worldview [14](Fig. 15), we observed that smoke from agricultural fires in Heilongjiang was 

blowing into neighboring Russian provinces.  
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Figure 13. Temporal dynamics of AOT aggregated across Heilongjiang province, China and across neighboring 

provinces in Russia (Amur, Khabarovsk, Primorsky and Yevrey). Panel A shows multi-annual (2006-2016) monthly 

average AOT values and Panel B shows the average AOT values for the month of November of each year from 2006 

to 2016. 

 

Figure 14. Average seasonal dynamics of the areas where fires were detected in Heilongjiang province, Northeast 

China during the 2006-2016 period. Error bars correspond to 1 SEM. 
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Figure 15. Location of the study site, Heilongjiang, China (in yellow) and neighboring Russia Provinces (in grey) with 

inset snapshots of the China-Russia border from NASA worldview[14]. The inset image snapshot is from 10/14/16 

and captures smoke from agricultural fires blowing across the international border. Panel A shows 1:5000, Panel B 

shows 1:2500 and Panel C shows 1:1500. The red dots on the inset image map are satellite detections of fires, derived 

from MODIS and VIIRS instruments, in the area. https://go.nasa.gov/30UQllB. 

The liberalization of soybean importation in China has pushed farmers, particularly in 

Heilongjiang province (Fig. 15; the most important soybean producing area in the country), to 

switch soybeans to alternative crops such as maize [15]. During the household surveys, nearly 50% 

of the farmers reported that international soybean imports affect their decisions  compared to the 

24% which reported no impact (Table 3). The majority of farmers were against international 

soybean trade often citing price competition as support while 31% supported soybean trade due to 
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the availability of cheaper soy-based animal feed. In follow-up questions regarding the decision to 

abandon soybean production, 50% of the farmers mentioned decreasing soybean price as a reason. 

 

Figure 16. Spatio-temporal dynamics of agricultural land use (maize, soybean and mixed maize/soybean in 

Heilongjiang province, Northeast China. (A) Spatial distribution of agricultural land use classes during 2006. (B) 

Spatial distribution of agricultural land use classes during 2016. (C) Temporal dynamics of agricultural land use 

classes between 2006 and 2016. 

Table 3. Farmer Survey Responses 

1. Are you aware that 

most of the     soybeans in 

China are imported? 

57% Yes 43% No 

2. If yes, do you know 

which countries soybeans 

are imported from? 

43% U.S. >1% Brazil 56% Don’t Know 

3. Do imported soybeans 

affect your decisions? 

24% No 49% Yes  27% Don’t Know 

4. If it affects your 

decision, does it make 

you anxious? 

15% No 22%A little 31% A lot 32% 

Don't 

Know 

5. What is your attitude 

towards soybean trade? 

60% Against 9% Don’t Know   31% Support 

 

Concurrent with the reduction in areas under soybean and increases in areas under maize, 

there is a concomitant increase in the areal extent of fires in Heilongjiang (Fig. 16). While fires 

are not restricted to agricultural areas, the proportion of fires occurring in agricultural areas 

increased from 60% in 2006 to 77% in 2016 (Fig. 17). Further, the area exposed to fire and the 

area under maize cultivation between 2006 and 2016 are significantly positively correlated (r = 
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0.68, p = 0.02) and the area exposed to fire and the area under soybean cultivation are significantly 

negatively correlated (r = -0.59, p = 0.05). The increase in agricultural fires is explained by not 

only the increase in residual crop biomass, which is more than 4 times higher for maize than for 

soybeans [16] but also, the greater tendency to burn maize residue compared to soybean residue. 

For example, based on the average crop yields obtained during the farm interviews, soybeans 

produce  2,401 kg/ha of residual straw biomass, while maize produces 11,164 kg/ha of residual 

straw biomass[17]. Further, during the household surveys farmers revealed that they most often 

use soybean residue for household fuel, animal fodder or returning it to the soil (i.e., 92%) than 

burning it (i.e., 8%) (Table 4). Whereas over one-third of the farmers burned maize residue in the 

field which explains why the fires in Heilongjiang are concentrated seasonally in two periods 

corresponding to pre-planting (around day of the year 100) and post-harvesting (around day of the 

year 300) (Fig. 2). Due to a residue burn ban and monitoring agricultural fires by the local 

government [18], the percent of farmers burning their maize residue declined from 44% to 38% 

between 2005 and 2015 (Table 4). Despite this reduction, the area planted with maize increased 

by 83% (more than 30,000 km2) between 2006 and 2016 resulting in an increase in residual crop 

biomass. Cultivating maize (instead of soybeans) was found to be the most significant and 

influential factor affecting a farmer’s decision to burn crop residue (Table 5 & 6).   
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Figure 17. Spatio-temporal dynamics of fires in Heilongjiang province, Northeast China. (A) Spatial distribution of 

fires during 2006. (B) Spatial distribution of fires during 2016. (C) Temporal dynamics of the area exposed to fire 

(combining low, nominal and high confidence fires) between 2006 and 2016. 

Table 4. Crop residue management in Heilongjiang, China. 
 

Return Burn Household Fuel Livestock Fodder 

Maize 

2015 31% 38% 27% 4% 

2005 12% 44% 37% 7% 

Soybeans 
 

2015 28% 8% 62% 2% 

2005 26% 8% 67% 0% 

 

 Discussion 

Managing crop residue with fire is an emerging issue of concern, posing environmental and 

human health hazards not only locally, but also at regionally and international scales[19]. The 

particles released during the inefficient combustion of crop biomass can travel from the area of 

production to regions unassociated with the offending activity [20, 21], which makes identifying 

the underlying land-use drivers of air pollution is difficult [22]. In the present study, we combine 

remotely sensed data and farmer interviews to understand how international soybean trade 

increased crop residue fires in Heilongjiang and negatively affected air quality across the Russian 

border.  
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First, levels of PM 2.5 were elevated over Heilongjiang, China and the neighboring Russian 

provinces, seasonally, corresponding to pre-plant and post-harvest activities. Seasonal spikes were 

also observed in the area exposed to active fires over Heilongjiang and both the levels of PM 2.5 

and area exposed to active fires have increased over the past decade. Similar findings have been 

reported in the literature, where Northeastern China in general and Heilongjiang in particular, have 

been identified as one of the top contributing-regions to air pollution due to residue fires [23, 24]. 

Many studies have found patterns in emissions associated with crop residue fires in this region 

[23-26] and have documented an exponential increase in residue burning compared to other 

provinces [27-29]. Additionally, studies have documented air pollution spillovers from crop 

residue fires that reduce air quality and visibility in nearby urban areas. These fires and subsequent 

air pollution are seasonal, in the fall, after harvest, and the spring, before planting [21, 30, 31].  

Second, the pattern of active fires in Heilongjiang is significantly and positively correlated 

with the spatial and temporal increase in maize cultivation and significantly and negatively 

correlated with the decline of soybean production. Farmers in Heilongjiang more often use fire to 

management maize residue than soybean residue and are increasing the area planted to maize and 

reducing the area planted to soybeans. From the household survey, we also know that many 

farmers are choosing to covert rice production, the residue of which is most often burned. The 

increase in rice cultivation in the region, while not analyzed in this study, is likely also contributing 

to the levels of PM 2.5. Additionally, beyond the pollutants linked residue fires, emissions of 

ammonia from nitrogen fertilizer contribute to PM 2.5 levels[32]. Both maize and rice require 

nitrogen application whereas soybeans do not and previous studies have documented the increase 

used of nitrogen alongside the land-use change in Heilongjiang [33, 34]. In fact, the nutritional 

value of legume residue is a driver for leaving soybean residue on the field compared to the more 
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common practice of removing maize and rice residue[35, 36]. To manage the accumulating maize 

residue sustainable, farmer need access to crushing or mulching technology to ensure the straw 

breaks down on the field overwinter. Other uses for the residue include biochar or biomass 

gasification, however, this maybe limited by transportation costs to the nearest plant. 

Last, interviews with farmers confirmed that the reduction in soybean production is in 

response to low prices driven by international trade competition. The decline of soybean 

production in China is the result of several domestic policies that promoted the import of soybeans 

to support the domestic pork industry[37]. The dynamics observed in this study are illustrative of 

unexpected spillover effects that can arise from the international trade of an agricultural 

commodity. Because international trade will continue connecting producers and consumers around 

the globe, it is crucial that future studies consider the impact beyond trade partners[7, 38]. Similarly, 

in order to develop effective policy for a more sustainable future, the impact of international trade 

on the domestic environment as well as the impacts that spillover to other countries must be 

considered[39, 40]. 

 Materials and Methods  

3.4.1. Study Site 

To explore the patterns and mechanisms behind crop residue fires we chose Heilongjiang 

Province in Northeast China as our study area (Fig. 1). Heilongjiang is the top grain producing-

area in China, producing one-quarter to one-third of the nation’s grain over the past decade [41, 

42]. The farms in Heilongjiang average around 3.5 ha and typically lack mechanization. The 

growing season lasts from early May to mid-August [42]. While winters are harsh, the area has a 

humid continental climate with high temperatures and rainfall in the summer months.  Previous 

analyses conducted by members of our research team suggested the total amount of cropland 
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planted to soybeans decreased by 24% from 43,722 km2 in 2005 to 35,384 km2 in 2010 [42] and 

indicated that soy-planting proportion is decreasing while maize planting proportion in increasing 

as a response to competition from international soybean imports [17, 33, 34, 42].  

3.4.2. Land use change analysis  

To classify agricultural land use dynamics in Heilongjiang Province we used a bi-weekly 

composite image time series (250 m/pixel) of the Normalized Difference Vegetation Index derived 

from surface reflectance data acquired by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) on board the National Aeronautics and Space Administration (NASA) Terra satellite, 

between January 2006 and December 2016 (MOD13Q1 product).  The time series imagery for the 

year 2016, together with the geographic location of 76 soybean and 99 maize fields obtained during 

the summer of 2016, were input into MaxENT, a general-purpose algorithm that generates fuzzy 

inferences from an incomplete set of information. The field data were split into calibration (2/3) 

and validation (1/3) datasets, but to reduce the dependence on a single partition into calibration 

and validation datasets, we performed five different partitions. Through this algorithm we obtained 

continuous maps of the probability distribution of agricultural fields under soybean, maize and 

mixed soybean/maize (with an average area under the receiver operating characteristics (ROC) 

curve of 0.91). To change from continuous maps to a single choropleth output map, we used 

threshold values of 0.48 for maize and 0.43 for soybean. Values above these thresholds indicate 

that these crops are present, while below them, absent. Under a “mixed” pixel both maize and 

soybean are present. Model coefficients were then applied to the MODIS-NDVI image time series 

of 2006 through 2015 to obtain annual maps of agricultural land use. 

3.4.3. Household surveys 
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To gain insight on the mechanism behind crop residue fires, household surveys were 

conducted during the summer of 2016 in Heilongjiang Province, China. The questionnaire was 

designed to acquire information on farmer demographics, land use decisions and the influence of 

international soybean trade on cultivation and management practices (See Tables 3 and 4). The 

surveys were conducted face-to-face with 1,190 household heads in 42 villages. Farming in 

Heilongjiang is dominated by households, so the household survey is the main method to collect 

relevant management information, such as residue management practices across the province.  

3.4.4. Fire 

To assess spatio-temporal fire dynamics over the 2006-2016 period, we used the Terra-

MODIS eight-day summary fire product (MOD14A2).  This product is a 1 km/pixel composite of 

fire pixels detected in each grid cell over each 8-day compositing period, including measures of 

confidence (i.e., low, nominal, high). Fire occurrence was integrated annually, to obtain estimates 

of the areas showing evidence of fire along each year. Images of smoke from fires in Heilongjiang 

on 10/29/16 were captured using NASA worldview snapshot [14]. These photos provide evidence 

that smoke from the fires reject injection heights that allowed particulate transfer across the 

international border. 

3.4.5. Aerosol Optical Thickness 

To assess spatial-temporal dynamics in aerosol optical thickness (AOT, a surrogate of 

atmospheric fine particulate matter, PM2.5 [43]) in Heilongjiang Province and in neighboring 

provinces in Russia, we used the Terra-MODIS aerosol product (MOD04L2). This product 

provides information on the atmospheric aerosol loading in 1-km pixels, composited over a month. 

A value of 0.01 corresponds to a clean atmosphere, while values larger than 0.4 correspond to hazy 

atmospheric conditions.   
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3.4.6. Statistical Analysis  

Data processing and analysis was done in the R environment using packages lme4[44], 

ggplot2[45], reshape2[46].  To determine the factors that significantly influenced residue 

management, an ordinary least squares regression model was constructed and standards errors 

were clustered (1) to account for autocorrelation and heteroskedasticity that exists at the individual 

level [47].  Data processing and analysis were done in the R environment using packages plm[48], 

lmtest[49], car[50], reshape[46], ggplot2[45] and MASS[51]. We considered the decision to burn 

crop residue as a dichotomous dependent variable (Y) with ‘1’ indicating the residue was burned 

in field and ‘0’ indicting the residue was not burned in the field. During the household interview 

farmers reported what percent of their residue was returned to the soil, used on the farm for fuel 

or fodder and burned. In trying to determine the factors that led to increased residue burning, the 

data were simplified by combining the farmers that returned their residue to the soil with the 

farmers who used their residue on the farm for fuel or fodder. The regression analysis was 

conducted with 251 farmers (i) in 38 villages (v).  

Yi,v =  ln
Pi,v

1−Pi,v
 =  𝛽0 +  𝛽1𝑋1,𝑖,𝑣 … 𝛽𝑛𝑋𝑛,𝑖,𝑣  + 𝑈𝑖 (1) 

Where, P is the probability that Y = 1 for farmer i in village v and Y = residue burning (1=yes, 

0=no); 𝑋1 … 𝑋𝑛 are explanatory variables; and U is the error term.   
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In addition to cultivating soybeans, larger planted areas and family size had a significant, 

suppressing impact on burning crop residue while increases in nitrogen use and time spent off the 

farm had a significant positive relationship with crop residue burning. Farmers with larger planted 

areas are likely more financially established which may have allowed them allocate more time, 

access to additional rented land and invest in labor saving-machinery. Further, having larger 

families would provide additional labor capital that is needed to use or return their crop residue. 

This is in contrast with farmers who spend much of their time in urban areas and supplement their 

income with off-farm employment. Needing to migrate for work after planting crops in the spring 

and harvesting them in the fall competes for a farmer’s time and incentives the quickest residue 

management strategy.  Further, farmers in Heilongjiang are constrained by a lack of mechanization. 

Some villages communally owned a single tractor to be shared amongst the farmers, in other cases 

farmers would hire someone else for planting, spraying and harvest activities, but often the farmer 

would perform these tasks by hand. The lack of mechanization consumes time and results in crop 

residue that is intact (i.e., whole maize stalks). The large pieces of crop residue do not break down 

during the harsh winters and it is more feasible for the farmer to collect and burn the maize stalks 

rather than chop them fine enough to be returned to the soil.   
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Table 5. Logistic regression analysis with clustered SE at the village level. Includes factor names, coefficients, p 

values and VIF 

Variable Estimate SE p-value VIF 

(Intercept) 5.39 20.33 0.79 
 

Crop (Soybean) -0.31 0.06 0.00*** 1.4 

Planted Area -0.01 0.00 0.00** 1 

Nitrogen Use 0.00 0.00 0.00*** 1.3 

Family Size -0.08 0.02 0.00*** 1 

Time off-farm  0.02 0.01 0.05* 1 

Farmer Edu. -0.02 0.02 0.34 1 

Farmer Age 0.00 0.00 0.08 1 

Electricity Use 0.00 0.00 0.62 1 

Coal Use 0.01 0.02 0.82 1 

Maize Cob Use 0.00 0.00 0.63 1 

Gas Use  0.00 0.01 0.79 1 

Year 0.00 0.01 0.82 1 

R2 = 0.35 and adjusted R2 = 0.31. Coefficient and p value (***p < 0.001 and *p < 0.01) indicated that crop type, 

planted area, nitrogen use, family size and time spent off the farm are significant and exhibited strong influences on 

residue management, further farmer age had a p-value of 0.08 and was still considered to be an influential factor. 

 

To determine the factors that significantly influenced residue management, an ordinary least 

squares regression model was constructed and standards errors were clustered (1) to account for 

autocorrelation and heteroskedasticity that exists at the individual level [47].  Data processing and 

analysis were done in the R environment using packages plm[48], lmtest[49], car[50], reshape[46], 

ggplot2[45] and MASS[51]. We considered the decision to burn crop residue as a dichotomous 

dependent variable (Y) with ‘1’ indicating the residue was burned in field and ‘0’ indicting the 

residue was not burned in the field. During the household interview farmers reported what percent 

of their residue was returned to the soil, used on the farm for fuel or fodder and burned. In trying 

to determine the factors that led to increased residue burning, the data were simplified by 

combining the farmers that returned their residue to the soil with the farmers who used their residue 
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on the farm for fuel or fodder. The regression analysis was conducted with 251 farmers (i) in 38 

villages (v).  

Yi,v =  ln
Pi,v

1−Pi,v
 =  𝛽0 +  𝛽1𝑋1,𝑖,𝑣 … 𝛽𝑛𝑋𝑛,𝑖,𝑣  + 𝑈𝑖 (1) 

Where, P is the probability that Y = 1 for farmer i in village v and Y = residue burning (1=yes, 

0=no); 𝑋1 … 𝑋𝑛 are explanatory variables; and U is the error term.   

Table 6. Factor description. 

Variable Description Mean SD 

Y Residue (Burn = 1, Use = 0) 0.26 0.44 

X1 Crop Type (Soybean = 112, Maize = 138) 

X2 Planted Area (ha) 6.4 8.4 

X3 Nitrogen Use (kg/ha) 160 120 

X4 Family Size 3.4 1 

X5 Off-farm employment (months) 0.96 2.6 

X6 
Farmer Education (1=illiterate, 2=elementary, 

3=junior high, 4=high school) 
2.3 1.1 

X7 Farmer Age 49.5 10.7 

X8 Electricity (degrees) 1692 1525 

X9 Coal Use (MT) 2 1 

X10 Maize Cob Use (truckloads) 14 28.4 

X11 Gas Use (tanks) 1 3.6 

X12 Year (2010=80, 2015=170) 
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 TELECOUPLED MANAGEMENT DECSIONS DRIVE MICROBIAL COMMUNITY 

COMPOSITION 

 Overview  

Soil microbes are both economically and environmentally important in agriculture systems 

and many feedbacks exist between agriculture land management and microbial community 

composition1-4. Starting with crop choice, essentially every management decision has a cascading 

effect on the soil community that feedbacks to crop production via nutrient cycling processes and 

sometimes soil borne diseases. Understanding the factors impacting these decisions, as well as the 

potential synergies or trade-offs between different decision-making scenarios and their cascading 

impacts on microbial communities, can help researchers to better understand and promote 

environmentally sustainable and economically profitable practices.  

Farm cultivation and management decisions are shaped by endogenous socioeconomic and 

environmental factors as well as the exogenous market conditions (Figure S1). The literature 

identifies a variety of farmer demographics used to help inform cultivation decisions, such as age, 

education, phase in the family farm lifecycle, off-farm employment, crop diversification, and farm 

size5-10. Beyond household attributes, environmental conditions and variability heavily influence 

cultivation decisions. Climate, rainfall, soil type and quality all must be taken into consideration 

prior to cultivation. Decisions are also influenced by farmers’ beliefs, values, experience, and goals, 

which is another component of the strategic decision-making process11. Farmers also use the crop 

cultivation and management practices of their peers to inform their own decision-making, adding 

elements of cooperation and competition to the decision process. Further, farmers must decide on 

their cultivation strategy for the year months before actual crop prices are available, necessitating 

the use of current market information (e.g., crop prices, subsidy amounts) while considering both 

domestic and international markets to estimate future prices at harvest. This complex decision-
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making process plays out on the individual farm-scale, aggregates to regional cultivation 

patterns12,13 and is affected by national and international policies and markets, resulting in both 

bottom-up and top-down processes. 

The soil microbial community is a crucial component of agricultural systems that is affected 

by and feedbacks to farmer decision-making. Soil microbes play a substantial role in both carbon 

and nitrogen cycling, which are major determinants in crop productivity as well as nutrient 

losses1,4,14,15. The aboveground plant community supplies the belowground community with 

carbon and nitrogen inputs via root exudates and residual root and crop biomass which influences 

the microbial community by increasing the relative abundance of microbes that prefer nutrient rich 

environments (e.g., copiotrophs) and decreasing the relative abundance of microbes that prefer 

nutrient depleted environments (e.g., oligotrophs)16. The microbial community decomposes 

residual organic matter and mineralizes organic nitrogen and phosphorous into forms usable for 

plant and microbe uptake4, which improves nutrient cycling and reduces farmers dependences on 

nitrogen fertilizer16. Decomposition rates depend on the quality of the residual crop straw (e.g., 

C:N ratio, nitrogen concentration, cellulose and lignin content)16 as well as the existing edaphic 

and nutrient conditions17. Crop choice17,18, crop rotation3,19,20, residue management2,21, fertilizer 

inputs22 and tillage disturbance3,21 all affect the concentration of nutrients in the soil and therefore 

the microbial community. Furthermore, excess nutrients associated with agricultural management 

select for microbes that accelerate the production of greenhouse gases such as N2O 2,23-25.  

Many experimental studies2,3,15,18,19,21,26,27 have reduced the complexity in the relationships 

between agricultural land management and the soil microbial community by using long-term test 

plots to limit variation and isolate the relationships in question. Often located on research farms, 

under University management, these test plots offer a semi-controlled environment for measuring 
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the impact of different management strategies on the microbial community. These studies 

commonly use “recommended best practices” as a conventional agriculture baseline to compare 

the impact that alternative practices would have on the microbial community. While these studies 

provide a wealth of knowledge, in reality, only a fraction of farmers report using best management 

practices4,28, which limits the real world applicability of their findings. Given that over 80% of 

anthropogenic N2O comes from agriculture fields29 and the overwhelming majority of agriculture 

land is managed by farmers, there is a crucial need to understand the realized impact cultivation 

and management decisions have on the microbial community. 

To address this research gap and investigate the relationships between on-farm cultivation and 

management decisions and the soil microbial community, we assessed the results of 135 paired in-

person farm surveys and soil samples across China’s most important grain production region, 

Heilongjiang Province. Historically, the province was dominated by continuous soybean 

production, however starting in the early 2000s low soybean prices, driven by competition from 

international imports, lead to regional declines in soybean production and corn cultivation 

increased30-32. We ask: 1) How did changes in crop rotation practices shift regional cultivation 

patterns? 2) What were there cascading changes in management associated with the crop rotation 

practices? and 3) Did changes in crop rotation and management practices influence the soil 

microbial community’s structure, diversity and abundance? 

 Results  

4.2.1. Changes in crop rotation practices shift regional cultivation patterns 

The most pronounced response to competition from imported soybeans was a change in crop 

rotation practices among farmers that resulted in a regional cultivation shift away from a soybean-

dominated and toward a corn-dominate agricultural system in Heilongjiang (Figure 18). Using the 
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past five years of cultivation history reported by the farmer, we grouped farmers and soil samples 

by rotation strategy (Table 7). Among respondents, continuous cultivation (5 or more years of 

cultivating the same crop) was 4 times more common than rotating annually between crops. 

Continuous corn (C) cultivation was the most frequent strategy, followed by continuous soybean 

(S) cultivation. Continuous corn farmers were found across Heilongjiang while continuous 

soybean farmers were found mainly in the northern part of province. Existing between the two 

continuous crop rotations, a fifth of the farmers had diversified by including both corn and 

soybeans in their crop rotation. The most common mixed rotations (M) were simple annual corn-

soybean rotation (e.g., C-S-C-S-C) and bi-annual rotations (e.g., C-C-S-C-C; S-S-C-S-S) with a 

total of 10 unique rotation patterns recorded.  

 

Figure 18. Underlying cropscape map from 2010 showing farm survey and soil sample locations in Heilongjiang for 

2016. Green is soybean and yellows is corn. Point shape corresponds to crop rotation practice. 
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Table 7. Mean and (standard deviation) of influential variables grouped by crop rotation practice. The influential 

factors determined by PCA include: pH, Total organic carbon, silt, Nitrogen use, crop residue weight returned and 

yield. The lower case letters designated significant groups differences (p>0.05). 

   Farm Interviews Soil Samples 

Group Label N Definition 
N-Use 

kg/ha 

Yield 

kg/ha 

Residue 

kg/ha 
pH TOC Silt 

Continuous 

Corn 
C 60 

5+ years of 

corn 

cultivation 

234 

(119)a 

9930 

(2091)a 

42 

(27)a 

5.66 

(0.86)a 

2.15 

(0.79) 

0.28 

(0.5) 

Mixed 

Rotation 
M 27 

Any corn-

soybean 

rotation 

134 

(129)b 

5958 

(5415)b 

38 

(26)a 

5.43 

(0.53)a,b 

2.36 

(0.68) 

0.21 

(0.4) 

Continuous 

Soybean 
S 48 

5+ years of 

soybean 

cultivation 

64 

(27)c 

1971 

(363)c 

56 

(26)b 

5.29 

(0.50)b 

2.46 

(0.70) 

0.09 

(0.08) 

 

4.2.2. Changes in crop rotation practices have cascading impacts on management 

 Crop type and rotation practice significantly affected nitrogen inputs, yield, the amount of 

residue returned and soil pH (Table 7). Total organic carbon and the silt content did not differ 

significantly between rotation practices. Farmers cultivating C reported higher nitrogen use and 

higher yields, followed M and S cultivation. Despite soybeans having only 1/10th the residual 

biomass of corn, the amount of residue returned to the field was highest with S cultivation (> C > 

M). This is because farmers reported removing corn residue twice as often as soybean residue. The 

average soil pH significantly differed between C and S samples, but neither differed from M 

samples.  Regardless of rotation practice, most samples were slightly acidic compared to the 

optimal pH range of 5.8-6.2. In addition, to the absence of lime application in the region, low soil 

pH can result from removing crop residue (and the nutrients that control acidity) and heavy 

application of nitrogen fertilizer18,33.  

4.2.3. Changes in crop rotation practices influence microbial community structure, 

diversity, species abundance  
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Microbial community structure differed significantly between the three crop rotation practices 

(Figure 19, Table 8). The influential factors from the farmer interviews and the abiotic soil analysis 

explained 25.1% (dim 1) and 12.2% (dim 2) of the variation in community structure for a total of 

37.3%. Nitrogen use loads the highest on dimension 1 and is the most significant variable, likely 

capturing C, M, S management gradient. Additionally, the residue management factor loads on 

dimension 1 with removing residue on the negative side and returning residue on the positive side, 

which supports the C, M, S management gradient.  The remaining variables load on dimension 2, 

pH is the most significant and loads opposite of silt, as well as residue weight returned and TOC, 

which likely represent soil conditions along the C, M, S gradient. Temperature zone and sampling 

month were significant factors that explained regional variation within the soil community that 

may exist due to samples being collected across a large geographic extent.  
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Figure 19. Principle coordinates analysis based on Unifrac distances for soil microbial communities sampled from 

farm fields in Heilongjiang China. The samples are colored by rotation method - which include C, S and M. The 

distance of 3% was used to define operational taxonomic units. Significant variables are in red and significant factors 

are in black. The vector points toward the direction of increase for a given variable and the arrow length indicates the 

correlation between the variable and the ordination scores.   
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Table 8. The extracted PCoA components (e.g., Dim1 and 2) represent the major sources of variation 

in the data and determine the most influential variables and factors. 

Vector Dim 1 Dim 2  p-value Factors Dim 1 Dim 2  p-value 

pH -0.08 0.28 0.003** Temp Zone 1 

(warmest) 

-0.007 -0.007 0.001*** 

TOC 0.08 -0.13 0.2 Temp Zone 2 

(warmer) 

-0.01 -0.001 

Silt -0.13 -0.20 0.03* Temp Zone 3 

(colder) 

0.002 0.001 

Nitrogen 

use 

-0.36 -0.2 0.001*** Temp Zone 4 

(coldest) 

0.017 0.007 

Residue 

Weight 

0.13 -0.15 0.07 May sample 

collection 

-0.009 0.003 0.001*** 

    June sample 

collection 

-0.008 -0.007 

 July sample 

collection 

0.009 0.005 

Removing 

Residue 

-0.003 0.000 0.005** 

Returning 

Residue 

0.012 -0.000 

 

Across all indices of alpha diversity, soil communities from continuous soybean rotations 

were the most diverse (Figure 20, Table 9), followed by samples from mixed rotations and 

continuous corn rotations.  
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Figure 20. Box plots for alpha diversity analysis: (A) observed species, (B) Chao 1, (C) Shannon, (D) Simpson and 

(E) Pielou indexes of samples grouped by rotation type.   

Table 9. Mean and (standard deviation) for the alpha diversity analysis. 

Group Observed  Chao 1 Shannon Simpson Pielou 

C 1996 (229) 3314 (405) 6.3 (0.32) 0.988 (0) 0.83 (0.03) 

S 2167 (405) 3433 (725) 6.7 (0.33) 0.995 (0) 0.87 (0.02) 

M 2078 (194) 3382 (368) 6.4 (0.24) 0.991 (0) 0.84 (0.02) 

 

We recovered 23,315 operational taxonomic units (OTUs) from soil samples taken along a C, 

M and S management gradient. Across all rotation types 92% of the taxa were assigned to eight 

Phyla: Proteobacteria (36.3%), Acidobacteria (16.9 %), Bacteroidetes (12.4%), Actinobacteria 

(8.1%), Verrucomicrobia (8%), Chloroflexi (4.2%), Firmicutes (2.8%) and Gemmatimonadetes 

(2.6%). With the exception of Chloroflexi and Verrucomicrobia, which were the most abundant in 

S and M rotations respectively, the remaining phyla decreased in relative abundance from C > M > 

S rotations (Figure 21). The relative abundance of 9% of the sequences, representing 40 taxa or 

0.5% of the total taxa identified, differed between rotations practices. Notably, more than 20 
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families were significantly associated with C and M rotations, while 2 families were significantly 

associated with S and M rotations and 3 families were found to significantly associated with only 

S rotations (p < 0.01) (Table 10). 

 

 

Figure 21. Relative abundance for the top 8 most abundant phyla, representing 92% of the taxa across 3 rotation 

practices: continuous corn, mixed rotations and continuous soybean. 
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Table 10. Bacterial groups whose abundance differed significantly (p<0.001) between crop rotation practices. 

 Bacterial groups that significantly (p<0.001) associated with: 

Phyla/ 

(Family) 

C & M 

Rotations 

S & M 

Rotations 

S 

Rotations 
Type 

indicators/ 

associations 

Acidobacteria Oligotrophs 

Nutrient limited 

environments, 

negative correlation 

with C 

amendments18,34 

 Gp1, Gp3, Gp4, 

Gp6 
Gp 16    

Actinobacteria Oligotrophs 

Nutrient limited 

environments, 

negative correlation 

with C 

amendments35,36 

 Micromonosporaceae   High pH & N 

inputs14,37 

 Nocardioidaceae   Pesticide degrader, 

Polluted soils38 

 Streptomycetaceae   Residue degrader39 

   Micrococcaceae Residue degrader 

Armatimonadetes   

 Chthonomonadaceae    

Bacteroidetes  
Degradation of OM, 

pesticides, soil 

fatigue33,40,41,42 

 Chitinophagaceae    

Gemmatimonadetes   

 Gemmatimonadaceae   
Low moisture 

conditions43, high 

pH44 

Proteobacteria   

 Coxiellaceae     

 Oxalobacteraceae   Pesticide degrader40 

 Sphingomonadaceae   

Degradation of OM41, 

pesticides40,42,Corn 

cultivation20, Polluted 

soils44 

 Rhizobiaceae   Corn cultivation20 

 Sinobacteraceae   Polluted soils45 

 Xanthomonadaceae   Pesticide degrader40, 

 Xanthobacteraceae   Polluted soils44 
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Table 10 (cont’d) 

 Caulobacteraceae    

  Nitrosomonadaceae 
Nitrifying 

bacteria46 

High N inputs, 

Nitrification, polluted 

soil44 

      

Chloroflexi   

   Anaerolineaceae 

Intensified 

agriculture, High N 

inputs, root worm 

infestation, burned 

residues, soil 

fatigue30,47 

   Caldilineaceae 
Intensified 

agriculture 

Thaumarchaeota 

Ammonia 

oxidizing 

bacteria 

High N inputs,42 

Nitrification 

 Nitrososphaeraceae   Polluted soils44 

Verrucomicrobia Oligotrophs 

Nutrient limited 

environments, 

negative correlation 

with C 

amendments18,34 

 c_Spartobacteria    

 c_Subdivision3    

 Verrucomicrobiaceae    

 

 Discussion 

Conventional wisdom dictates that soil under continuous corn management should receive 

higher inputs of carbon and nitrogen than the soil under a continuous soybean managment31. This 

is because corn produces 10 times more residual crop biomass than soybeans, which is 

theoretically returned to the soil post-harvest31. Crop residues provides labile sources of carbon 

and nitrogen to the microbial community and are drivers of microbial community structure. 

Additionally, corn relies on external nitrogen inputs, whereas soybeans form associations with 

nitrogen fixing bacteria and do not require additional nitrogen fertilizer. However, the management 
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practices in the present study differ from previous research2,3,15,17-19,21,26,27,48 and result in 

unexpected impacts on the microbial community. In response to competition from international 

soybean imports31,32,49, farmers in the region decreased soybean production and shifted towards 

continuous corn cultivation. The shift towards continuous corn was accompanied by changes in 

residue management, where farmers commonly remove and burn corn residue after harvest. 

Additionally, farmers reported using the highest amount of nitrogen fertilizer with C cultivation, 

on average 30 kg/ha more than recommended by best management practices50. Farmers also 

reported using nitrogen fertilizer in S production, on average 64 kg/ha. Because soybeans do not 

require nitrogen inputs, nitrogen overuse was more than double in S cultivation than C cultivation. 

The crop rotation and management strategies observed in the field resulted in different abundances 

of bacteria that are frequently associated with sources of carbon and nitrogen in soil. 

Due to a lack of mechanization in the region, crop residue is often left whole which prevents 

the biomass from breaking down over the winter. Therefore, the farmer often collected and remove 

the crop stalks/straw from the field. This practice was twice as likely to occur when farmers 

cultivated corn compared to soybeans and may explain why, contrary to previous research in the 

study region31, TOC did not significantly differ between C and S samples. Further, the levels of 

TOC measured in the sampled soils were relatively high and may make changes, especially 

increases, in soil carbon hard to detect. The tendency for farmers to remove crop residue and 

overuse nitrogen may explain the acidic soil pH values and abundance of oligotrophic bacteria, 

which favor nutrient depleted environments16, in the soil community. Several of the most abundant 

phyla are found in intensified agricultural systems33,40. Within the most abundant phyla 

(Proteobacteria), several families were significantly associated with C & M (Table 10). Notably, 

the presence of Sphingomonadaceae, Oxalobacteraceae,  Xanthomonadaceae (Proteobacteria), as 
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well as Chitinophagaceae (Bacteroidetes) has been associated with the degradation of organic 

matter15,41 as well as pesticides40, and have been used as indicators of soil fatigue (caused by 

continuous monocultures and inputs33). The phyla’s Acidobacteria, Actinobacteria and 

Verrucomicrobia are commonly regarded as oligotrophs and have frequently been shown to prefer 

nutrient limited environments and to be negatively correlated with carbon amendments34,36,37. In 

the present study, acidobacterial subgroups 1, 3, 4 and 6 significantly associated with C and M 

while acidobacterial subgroup 16 was significantly associated with S and M. Additionally, 

Verrucomicrobia and Actinobacteria (Micromonosporaceae) were also significantly associated 

with C and M rotations (Table 10). Further, previous research suggests that additions of legume 

residue would increase the relative abundance of groups belonging to Actinobacteria while 

suppressing groups belonging to Proteobacteria, which may explain the significant associations 

between Micrococcaceae (Actinobacteria), a known residue degrader15,16, and S cultivation. 

Nitrogen inputs and pollution were found to increase in Heilongjiang when farmers across the 

province shifted from soybean to corn cultivation31,49. This pattern held true in a meta-analysis that 

measured nitrogen balance in areas that had undergone soybean-corn conversions49. The obvious 

explanation for increase nitrogen use is that corn requires additional inputs of nitrogen while 

soybeans fix nitrogen through microbial associations. Among the sampled farms, nitrogen 

application rates were highest in continuous corn rotations, however, many of the farmers 

unnecessarily apply nitrogen to soybeans as well. The presence of several groups of bacteria found 

in soils of all rotations may indicate that there is more nitrogen present than can be used by the 

crops. For example, groups within the phylum Actinobacteria are known to associate with high 

soil pH and nitrogen inputs26,37. Nocardioidaceae and Streptomycetaceae significantly associated 

with soil from C and M while Micrococcaceae significantly associated with samples from S. 
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Additionally, two subphyla of Chloroflexi, (Anaerolineaceae and Caldilineaceae) significantly 

associated with soil from S. This phylum is generally associated with intensified agriculture and 

can be associated with corn or soybean cultivation 20,47. High abundance of Anaerolineaceae has 

been found by the literature in association with excess N inputs26, root worm infestation20, burned 

crop residues26 and as an indicators for arable land fatigue26. Additionally ammonia oxidizing 

bacteria, which are key actors in the nitrogen cycle and indicate high levels of ammonia46, were 

found in soils from all rotations. In agricultural systems these bacteria are essential for nutrient 

uptake by crops but can also lead to losses of ammonia-based fertilizer as N₂O and NO3- nitrate 

pollution23,26,46,51. Nitrososphaeraceae (Thaumarchaeota) significantly associated with C and M 

rotations while Nitrosomonadaceae (Proteobacteria) significantly associated with S and M 

rotations (Table 10). The nitrification process is generally associated with continuous corn 

cultivation which requires high nitrogen inputs to maintain yields. Considering soybeans do not 

need external nitrogen inputs, the association of Nitrosomonadaceae with S rotations may indicate 

that there is more nitrogen present than can be used by the plant community52. 

 Conclusion 

Overtime, agriculture management could impact the microbial community to such an extent 

that the changes feedback to the management decision. Depriving the soil community of the 

valuable nutrients in crop residues, regardless of crop type, can lead to a nutrient depleted 

environment. It is possible that removing crop residue from the field could lower yields over time 

and that would feedback to management decisions. Some farmers may invest the time, labor and 

capital required to return the crop residue to the field. However, it is more likely that farmers may 

compensate for yield loss by increasing nitrogen fertilizer use 16,53.  Increased input cost could 

affect profitability, but given that nitrogen fertilizer is relatively cheap, widely available and easy 
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to apply, farmers may find it worth the cost14,17,19. Excess fertilizer that cannot be utilized by plants 

is lost as N₂O and NO3
- pollution and can even result in a microbial community that is more likely 

to release nitrogen rather than convert it into a form useable by plants25,54. Overtime, agriculture 

management could impact the microbial community to such an extent that the changes feedback 

to the management decision. 

 Materials & Methods 

4.5.1. Site Description 

The study area is Heilongjiang Province located in northeastern China, between 44° and 53° 

north and 121° to 135° east, and is bordered by Russia on the north and east sides.  Heilongjiang 

has an area of 454,800 km2 and is comprised of thirteen prefectures. While winters are harsh, the 

region has a humid continental climate with high temperatures and rainfall in the summer months. 

July temperatures reach 20° C [9], falling just short of the ideal temperature, 25° C [10], for 

soybean cultivation (e.g., Koppen’s classifications Dwa Dwb and Dwc). The growing season lasts 

from early May to mid-August which, in addition to a relatively low population and large 

contiguous land parcels, contributes to Heilongjiang producing one-third to one-quarter of the 

nation’s soybeans over the past decade. However, since 2009 the area planted to soybeans has 

continuously declined. Previous analyses indicate that on-farm soy-planting proportion is 

decreasing while corn planting proportion is increasing in response to competition from 

international soybean imports and fertilizer subsidies 30-32,55. 

4.5.2. Sampling Design 

Farm surveys and soil samples were collected in Heilongjiang Province, China between May 

and July of 2016. Interview questions covered farmer demographics such as education, age, 
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income, off-farm employment, land-ownership status and questions on the influence of policy and 

price fluctuations that may be used to help explain management decisions. Management decisions 

included in the survey were land level, crop type, inputs (fertilizers, herbicides and pesticides types 

and application rates), growth period, planting and harvest date, production costs, farm gate price, 

yield, mechanization, subsides, residue management, crop-rotation and planting history. At the 

conclusion of the survey, the interviewer would ask the farmer for permission to take a soil sample 

and the farmer would then identify their field boundaries.  The boundary was marked with field 

flags before 6 (10 cm deep cores, 1 cm wide) samples were collected from the root-influenced soil 

(layer where the majority of crop roots are located, 0-10 cm from soil surface) and mixed to 

generate one composite sample per field. One hundred and thirty-five unique soil samples were 

collected and the field composite was used to measure abiotic attributes of the soil including soil 

pH, total organic carbon and soil texture. Samples were processed with a 3 mm soil sieve and soil 

texture was determined each night, so that the soil was field moist. Soil texture classifications were 

checked against published values for the region56,57. The samples were then dried at ambient 

temperatures and stored in marked plastic bags58. Soil pH was measured using pH meter at the 

Chinese Academy of Sciences, Institute of Soil Sciences in Nanjing. Soil organic carbon was 

determined by Yingtan Red Soil Ecological Experimental Station. 

4.5.3. DNA extraction, PCR, and DNA sequencing  

From the processed samples, 5 grams of soil was separated into small plastic tubes, labeled 

and stored at -40 C upon returning to the research institute and prior to DNA extraction.  

DNA was extracted from 0.25 grams portions of the frozen soil samples at the Chinese 

Academy of Sciences, Institute of Soil Sciences in Nanjing, using an adapted protocol from 

PowerSoilTM DNA Isolation kit (MO BIO Laboratories, Inc.) [13]. A NanoDrop was used to make 
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sure all samples had A260/280 readings between 1.8 and 2.0. Aliquots of the extracted DNA were 

freeze-dried and transported to Michigan State University’s Center for Microbial Ecology for 

further analysis. The samples were rehydrated with PCR-grade water to reach the original 

concentration, vortexed and allowed time to re-suspend. Rehydrating dry samples improves the 

quantity and quality of extracted DNA [12]. The aliquots were used for amplification of a portion 

of the 16S rRNA genes (~250 nucleotides) using the Schloss primers F515 and R806 (respectively, 

5’-GTGCCAGCMGCCGCGGTAA-3’ and 5’-GGACTACVSGGGTATCTAAT-3’). Sequencing 

of the amplicons was done on Illumina’s MiSeq instrument at MSU’s Research and Technology 

Support Facility. Raw sequences were initially processed by pair-end assembled, chimeras 

removed and filtered for quality before being clustered into operational taxonomic units (OTUs)  

at 97% similarity. Raw paired-end sequences were merged and chimeras removed using 

UCHIME’s de novo mode. The quality of the merged reads for all samples was then checked using 

FastQC 59. A value above 30 indicates good quality and a value below 20 indicates poor quality. 

The average quality per read was 37, the minimum and maximum observed were 32 and 38, 

respectively for all samples. Furthermore, with almost 100% expected overlap, the merged reads 

have a high rate of accuracy identifying a nucleotide. Furthermore, with almost 100% expected 

overlap, the reads have a high rate of accuracy identifying a nucleotide. Processing was done via 

the UPARSE pipeline (i.e., usearch, cluster_otus), chimeras were automatically removed. 

Taxonomy was assigned using RDP’s Bayesian Classifier and Taxonomy. 

Merged reads were clustered using USEARCH version 8.1 with the usearch_global command 

and an id of 0.985 so that reads within a cluster differed by no more than 3%.  Representative 

sequences were classified using RDP’s Bayesian classifier60 with training set No.16. A 
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phylogenetic tree was constructed with FASTTREE 61 from the representative sequences aligned 

with INFERNAL62. 

4.5.4. Microbial Data Analysis  

A principle coordinates analysis (PCoA) based on Unifrac distances was used to depict 

distances (β-diversity) among samples from farm fields in Heilongjiang China. Environmental 

variables were fit to the ordination plot using vegan’s envfit function63. Additionally, Chao, 

Shannon, Simpson and Pielou diversity indices were calculated. Last, species relative abundance 

was calculated and compared between crop rotation types. Bacterial groups that differed 

significantly between rotation groups were identified and interpreted. All statistical analysis were 

performed in the R environment64, using packages phyloseq65, RDPutils66, ade467, ggplot268, 

ggrepel69, ggordiplots70, QsRutils71, RVAideMemoire72, tidyverse73, indicspecies74, vegan63, 

data.table75 and nlme76.  
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 USING AGENT-BASED MODELLING TO MEASURE THE IMPACT OF LAND 

MANAGEMENT ON EVIRONMNETAL HEALTH IN TELECOUPLED HUMAN 

AND NATURAL SYSTEMS 

 Overview 

One challenge of conducting interdisciplinary research is how to integrate the natural and 

social components of a system. Much of this complexity lies in how to characterize the 

environment and its relationship to human actions, which vary at different temporal and spatial 

scales1. One approach is to employ a systems dynamics model using the impact of human action 

as an aggregated effect. However, agricultural land-use patterns are formed from cultivation 

decisions made by individual actors. Aggregating the impact of human action on a landscape may 

overlook the importance of variations between actors and cause the researcher to miss key insights. 

This omission may result in a loss of predictive and explanatory power as well as a generalization 

of the underlying processes1. Agent-based models provide a key advantage for modeling an 

individual actor’s decisions based on specific social, economic, and environmental influences2. 

This allows for the integration and analysis of human action into the causes, effects, and processes 

of landscape use and cover change while incorporating individual actor variation2.  

 Model Description 

5.2.1. Purpose  

The present ABM is an adaption of TeleABM3,4, which simulates soybean trade and land-use 

change in the sending (e.g., Brazil) and receiving (e.g., China) systems. The TeleABM was written 

in Java using the Repast platform and designed to be easily adapted to other land systems. The 

model was calibrated with empirical land use data and farmer interviews for decision rules. Land 
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use and production patterns in each system are aggregated to the regional level to influence crop 

price in the trade model and, ultimately, land use is the telecoupled system.  

5.2.2. Study System 

The sending system, Mato Grosso, Brazil, was not modified from the original TeleABM3. The 

receiving system, Heilongjiang a, is the top grain producing region in China. Driven by 

competition from international imports, farmers in Heilongjiang are converting to rice and corn at 

the expense of soybean production3,5-7. The data that was used to calibrate the receiving system 

was collected during the summers of 2016 and 2017, which included ground-truth points, farmer 

surveys and soil samples.   

5.2.3. Agents 

There are 3 types of agents within the receiving system, farmer agents, government agent and 

trader agents. Each farmer agent is given a list of properties (e.g., labor, capital, property) and 

actions (e.g., land use decision; calculate profit). Information gathered from the farmer interviews 

was used for agent attributes. Government agents set domestic production quotas and subsidies in 

the receiving system and tariffs on imported soybeans from the sending system in the trade model. 

Local trade agents aggregate soybean production to the international trade agent where soybean 

price is determined from production in both systems. Soybean price is then passed from the 

international trade agent to the local trade agents and then to farmer agents for the next time step. 

Government and trader agents were not modified from the original3 in this model adaption and 

are used for scenario analysis.  

5.2.4. Environment 
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The environment is based on a grid of cells, representing 900 m2 or 0.0625 km2 based on 250m 

X 250m map resolution. Each cell is assigned biophysical properties (e.g., soil texture, pH, SOM, 

temperature, precipitation, elevation) based empirical data. Cells are assigned to a farmer agent, 

who determines cultivation and management decisions. Crop yield is a function of crop type, crop 

rotation, fertilizer inputs and residue management. Table 11 provides a details on the household 

and farm characteristics in the TeleABM. 
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Table 11. Household and farm characteristics of the TeleABM receiving system. Including variable names, variable 

description, variable distribution, parameters and independence.   *denotes variables selected for Uncertainty and 

Sensitivity Analysis. 

Household Characteristics 

Var_Name 
Var_Descripitio

n (units) 

Var_Distributio

n 
Parameters 

Independe

nt (yes/no) 
SA/UA 

familyPopulation 
Number of 

family members 
Normal 

M (sd) = 3.46 

(1.15) 
Yes * 

hhdHeadMale 

Gender Dummy 

for head of 

household (0 = 

M; 1 = F) 

Discrete 
0=0.073; 

1=0.027 
Yes  

age 
Head of 

Household Age 
Normal 

M (sd) = 28.5 

(10.8) 
Yes  

dependentRatio 

((kids + elders)/ 

total family 

num) 

Normal 
M (sd) = 0.21 

(0.1) 
No * 

genderRatio 

ratio of male to 

female (0 = M; 1 

= F) 

Normal 
M (sd) = 

0.1597 (0.18) 
No * 

hhdHeadunHealth 

Health Dummy 

for head of 

household 

(0=healthy; 

1=not healthy) 

Discrete 
0=0.716; 

1=0.284 
Yes  

occupation 

1 full time 

farmer; 2 part-

time farmers; 3 

non farmer 

Discrete 
1=0.82;2=0.1

4; 3=0.04 
Yes  

knowInternationalTrade 

0=don’t know; 

1=know of 

soybean trade 

Discrete 
0=0.46; 

1=0.54 
Yes  

whetherknow_soybean_ixYe

s 

0=don’t know; 

1=know of 

imported 

soybean 

competition 

Discrete 
0=0.28; 

1=0.72 
Yes * 

whetherknow_pericoupledper

i 

0=don’t know; 

1=know 
Discrete 

0=0.978; 

1=0.022 
Yes  

whetherknow_transgeneYes 
0=don’t know; 

1=know of GM 
Discrete 0=0.3; 1=0.7 Yes  

whether_know_import_gmo

Yes 

0=don’t know; 

1=know that 

imported 

soybeans are 

GM 

Discrete 
0=0.69; 

1=0.31 
Yes  
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Table 11 (cont’d) 

noOffFarmIncome 

Scale 1-5 (1 = 

no off farm 

income) 

Disrete 

0=0.664; 

1=0.23; 

2=0.08; 

3=0.007; 

4=0.007; 

5=0.002 

Yes * 

noBigMachine 
Number of 

machines (1-8) 
Discrete 

0=0.165; 

1=0.153; 

2=0.158; 

3=0.150; 

4=0.148; 

5=0.092; 

6=0.056; 

7=0.032; 

8=0.032 

Yes * 

Farm Characteristics      

Var_Name 
Var_Descripitio

n (units) 

Var_Distributio

n 
Parameters 

Independe

nt (yes/no) 

cellSize Farm size Normal   

totalFertilizerInput 
Fertilizer input 

for all crops 
Normal  No 

totalWaterInput 
Water input for 

all crops 
Normal  No 

totalExtraN 

Fertilizer input 

that exceeds 

crop 

requirements for 

all crops 

Normal  No 

totalExtraNsoy 

Fertilizer input 

that exceeds 

soybean 

requirements 

Normal  No 

totalExtraNcorn 

Fertilizer input 

that exceeds 

corn 

requirements 

Normal  No 

totalExtraNrice 

Fertilizer input 

that exceeds rice 

requirements 

Normal  No 

farmPM25 
PM 2.5 

emissions 
Normal  No 

farmNOX NOx emissions Normal  No 

farmCO2 CO2 emissions Normal  No 

cornProportion 
Corn cells/ total 

cells 
Normal  No 

riceProportion 
rice cells/ total 

cells 
Normal  No 

soyProportion 
soybean cells/ 

total cells 
Normal  No 

meanTemp Soil temperature Uniform 2.6 Yes 

meanSoila Soil texture Uniform 22.02 Yes 
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Table 11 (cont’d) 

meanSoilb Soil texture Uniform 57.14 Yes 

meanSoilc Soil texture Uniform 20.83 Yes 

farmpH 
Average farm 

soil pH 
Uniform  No 

farmSOC 

Average farm 

soil organic 

carbon 

Uniform  No 

elevation cell elevation from a map  Yes 

soc 
farm soil organic 

carbon 
from a map  Yes 

toc 

farm soill 

organic carbon/ 

cellSize 

Normal  No 

soilpH cell soil pH Normal  No 

soyYield 
Farm soybean 

yield 
Uniform 

2000  + 

(0.141* Soc - 

0.703) + 

planting area 

No 

cornYield Farm corn yield Uniform 

9597 + 

(0.141* Soc - 

0.703) + 

(1.195* 

Fertilizer) + 

planting area 

No 

riceYield Farm corn yield Uniform 

8112  + 

(0.141* Soc - 

0.703) + (1.1* 

Fertilizer) + 

planting area 

No 

burnRatecorn 
0=nothing; 

1=burn 
Discrete 

0=0.45; 

1=0.55 
Yes 

returnRatecorn 
0=nothing; 1 = 

return 
Discrete 

0=0.55; 

1=0.45 
Yes 

burnRatesoy 
0=nothing; 

1=burn 
Discrete 

0=0.94; 

1=0.06 
Yes 

returnRatesoy 
0=nothing; 1 = 

return 
Discrete 

0=0.06; 

1=0.94 
Yes 

burnRaterice 
0=nothing; 

1=burn 
Discrete 

0=0.26; 

1=0.74 
Yes 

returnRaterice 
0=nothing; 1 = 

return 
Discrete 

0=0.74; 

1=0.26 
Yes 

5.2.5. Process Overview 

To initialization the TeleABM the user must first set the global parameters by determining 

which systems to simulate (e.g., sending, receiving or both) and setting crop price as either static, 
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empirical or trade scenario. When only one system is initialized, crop price is either set as a static 

price or read in as a dynamic price from file. 

Next, land use and suitability maps must be read in before initializing the agents, allocating 

land cells and setting up agent properties (Table 11). Farmer agents determine their land use 

decision by deciding how much land to allocate to rice production and then by deciding the 

proportion of corn and soybeans from what land is left. This is because rice price is the highest but 

also requires suitable land (e.g., next to existing water) and investment capital to convert from dry 

to paddy land production. Farmer agents then pass their land use decision (e.g., corn, soybeans, 

rice) and inputs (e.g., fertilizer, crop residue) to the land cell and update land use in the current 

step. The previous land uses are recorded to the land cell property and undergo ecological 

processes to generate new crop yield, soil pH and SOM – in response to management decisions. 

When all agents and land cells have been updated the model moves to the annual accounting step, 

where profit and environmental impacts are stored (e.g., crop production, GHG emissions and 

nutrient runoff) (Figure 22). Information on crop production is passed to the trade agent then to 

the trade model which returns the next year’s crop price. Soil pH and SOM are used to measure 

soil degradation, soil quality feedback to cultivation and management decisions through the yield 

and profit functions. After the annual accounting step, the model moves to the next time step.  

5.2.6. Design Concepts  

To extend this model, management decisions were added after cultivation decisions.  

Residue Management & GHG Emissions. Residue management starts by setting each farmer agents 

decision to burn or return the residual crop biomass post-harvest. The decision to burn/return is set 

randomly, per crop type, in proportion to the values observed by farmers in the field (Table 11). If 

the residue management decision is to burn, then GHG emissions i,t  are calculated, which include 
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g/kg of CO2, NOx and PM 2.5 released from burning straw biomass for crop type c by farmer 

agent  i  at time t (equation 1)8-12. Alternatively, if the residue management decision is to return, 

the residual biomass is added to the soil as carbon(equation 4)6.  

 

𝐺𝐻𝐺 𝐸𝑚𝑚𝑖𝑠𝑖𝑜𝑛𝑠𝑖,𝑡 = 𝐸𝑚𝑚𝑖𝑠𝑜𝑛𝑠 𝐹𝑎𝑐𝑡𝑜𝑟𝑐  ×  𝑆𝑡𝑟𝑎𝑤 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑖,𝑡 

 

Nitrogen Fertilizer Use & Overuse. For each crop nitrogen fertilizer input for farmer agent i at time 

t is set as the average input observed in the field for crop type c random deviation for crop type c 

(equation 2). Excess nitrogen fertilizer use for farmer agent i at time t is then calculated by 

subtracting the recommended fertilizer rate for crop type c from the fertilizer input for farmer agent 

i at time t (equation 3).  

𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝐼𝑛𝑝𝑢𝑡 𝑖,𝑡 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐼𝑛𝑝𝑢𝑡 𝑐 + 𝑢𝑐 

 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛𝑖.𝑡 = 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝐼𝑛𝑝𝑢𝑡𝑖,𝑡 −  𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝐼𝑛𝑝𝑢𝑡𝑐 

 

SOC. SOC is the model component that connects agent management decision to the quality of the 

cell which in turn feeds back to cultivations decisions. SOC for land cell l at time t is equal to SOC 

for land cell l at time t-1 plus the residual biomass, root biomass and seed carbon of crop type c 

for farmer agent I at time t, plus fertilizer use at land cell l, plus rhizodeposition, temperature and 

perception in region r (equation 4).  

𝑆𝑂𝐶 𝑙,𝑡 = 𝑆𝑂𝐶𝑙,𝑡−1 + ((𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑐 × 𝑆𝑡𝑟𝑎𝑤 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑖,𝑡) + 𝑅𝑜𝑜𝑡 𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑐 +

 𝑆𝑒𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛𝑐 + 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝐼𝑛𝑝𝑢𝑡𝑙  + 𝑅ℎ𝑖𝑧𝑜𝑑𝑒𝑝𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑟 ) ×  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑟 ×

𝑃𝑒𝑟𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑟  

1 

4 

2 

3 
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Yield. Yield is the cumulating model step and is used to feedback to cultivation decisions between 

model ticks. Yield for farmer agent i at time t, is based off the observed yield for crop type c plus 

the nitrogen fertilizer input for farmer agent iat time t response for crop type c plus SOC for land 

cell l at time t (equation 5).  

𝑌𝑖𝑒𝑙𝑑 𝑖,𝑡 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑌𝑖𝑒𝑙𝑑𝑐 + (𝑌𝑖𝑒𝑙𝑑 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑐 × 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝐼𝑛𝑝𝑢𝑡𝑖,𝑐,𝑡)

+ (0.414 × 𝑆𝑂𝐶𝑖,𝑙,𝑡 − 0.703) + 𝑢𝑐 

  

5 
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Figure 22. Adapted from Dou et al. Figure 63, the decision-making process making process in the receiving system 

of teleABM. The dotted lines represent linkages to the sending system which can be turned on or off to simulate 

different trade scenarios. The present version of the model extends beyond the cultivation decisions and adds 

management decision which decisions affect soil properties that then feedback to the cultivation decisions via a profit 

function (i.e., yield * price).  
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5.2.7.  Validation 

The land use decision has been validated by Dou et al.3,4 Validation of the Management 

Decisions sub model was done by ensuring that simulated soil carbon values fell between the 

maximum and minimum value measured from the field (Figure 27).    

 Results  

Based on the empirical data, model initialization starts with 50% of the simulated area in 

Heilongjiang planted to corn, 35% to soybeans and 15% planted to rice (Figure 23 & 24). The area 

planted to corn increases at the expense of soybeans rice until model tick 7. Then Rice begins to 

increase the expense of corn and soybeans. From Figure 24 we can see the spatial hot spots of 

soybean decline on the east and west sides of Heilongjiang. Rice and corn expansion are somewhat 

clustered. Rice can only expand near water and when adjacent to other rice cells which creates the 

blocks of white (Figure 24).  

 

Figure 23. The area planted to corn, soybean and rice overtime. 
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Figure 24. Simulated land use maps showing the initial and final model tick.  Soybeans are green, corn is yellow and 

rice is white. 

The pattern of greenhouse gas emissions as a result of crop residue burning is closely tied to 

the area planted to each crop (Figure 25). Emissions of CO2, NOx and PM2.5 all increase over the 

model simulation. In the first few ticks the levels of CO2 increase rapidly but slow around tick 7, 

following the increase in the area planted to corn (Figure 23). Emissions of PM2.5 also increase 

quickly in the first 7 ticks but do not slow as much as the emissions of CO2. At tick 13 the emission 

of PM2.5surpasse the emissions of CO2. This pattern is because burning rice residue produces more 

PM2.5 while burning corn residue produces relatively more CO2.  

soybeans 

corn 

rice 

Final year Initial year 
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Figure 25. (A) total emissions from all farms over time (b) change in total emissions from all farms over time. PM2.5 

is red, CO2 is black and NOx is grey. 

Additionally, the emissions can be viewed based on the area planted to each crop (Figure 26). 

The emissions of PM2.5 are highest from farms planting high proportions of rice. The PM2.5 

emissions factor for rice is 14.73 while the PM 2.5 emissions factor for corn is 11.7 and soybeans 

is 5.6. CO2 and NOx emissions were highest from farms planting high proportions of corn. Farms 

planting high proportion of soybeans had the lowest emissions because soybean residue is 

seldomly burnt. 

A B 
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Figure 26. Average emissions of CO2 (left column), NOx (center column), and PM2.5 (right column) from farms 

shown by crop planting proportion.  Corn is yellow, soybeans green and rice blue. 

The level of toc was empirically measured using soil samples and input maps, toc was higher 

in samples from corn and rice than samples taken from soybean fields (Figure 26 & 27). When 

simulated using the residue return rates, the level of toc in corn and soybeans cells was higher than 

rice, however, the level of toc in rice cells increased over the simulation while the level of toc in 

corn and soybeans cells decreased. The spatial pattern of TOC is similar to the pattern of land use 

change (Figure 24). Areas planted to rice experienced the most rapid soil TOC decline followed 

by areas planted to corn (Figure 27). 
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Figure 27. Average total organic carbon by crop type overtime. Corn is yellow, soybeans green and rice blue. 

 

Figure 28. Simulated land use maps showing the initial and final model tick.  Green indicates high levels of total 

organic carbon, followed by yellow, orange and finally red. Red indicates degraded soil. 
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On average, yield slightly decreased over the model simulation for all crops (Figure 29). This 

is likely due to the small decrease in toc overtime which was driven by the removal of crop residue 

from fields. 

 

Figure 29. Yield by crop type over time. Corn is shown in the left panel followed by soybean and rice.  The grey 

shaded area represents standard deviation. 

Nitrogen overuse was highest from farms with high planting proportions of corn and lowest 

from farms with high planting proportions of soybeans (Figure 30). Excess nitrogen use 

contributes to the emissions of NOx (Figure 25 & 26). 

 

Figure 30. Average nitrogen overuse on farms shown by planting proportion. Corn is yellow, soybeans green and rice 

blue. 

 Discussion  

The presented extension advances the TeleABM, which represents two different land systems 

that our connected through trade flows, by going beyond land use changes to assess the biophysical 

impact of international trade on soil properties and greenhouse gas emissions. The sub-model 
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builds relationships between nitrogen use, residue management, soil TOC and greenhouse gas 

emissions. Notably, a surprising land use pattern emerged from the parametrized cultivation and 

management decisions. Initially, across all farms the area planted to corn increased before 

decreasing while the area planted to rice increased. This land use pattern indicates that a threshold 

of rice conversion must of first been reached before rice expansion became notable. This is likely 

because rice expansion can only occur near existing rice production based on access to water. 

Therefore, early rice expansion feedbacks through the TeleABM and facilitates further rice 

expansion clearly indicating a network effect. The shift from corn expansion early in the model to 

rice expansion in the second half of the model can be seen in the simulated greenhouse gas 

emissions. Where corn cultivation contributes more heavily to CO2 emissions and rice production 

to PM2.5 emission. Lastly, the area planted to soybeans and the average soybean yield experienced 

a consistent decline throughout the model run. Soybean production does not benefit from nitrogen 

fertilizer as do rice and corn cultivation but would be subject to the same level of soil carbon loss 

as the cells that grew corn and rice. Therefore, farmers could compensate for low soil carbon by 

adding nitrogen fertilizer to corn and rice but not soybeans. This mechanism lead to a negative 

feedback in farmer-decision making and may partially explain the decline in soybean production. 

 Future Work 

Sensitivity analysis (SA) and uncertainty (UA) analysis are important steps to complete an 

ABM. SA is used to evaluate the variability of model outputs due to uncertainty in input variables. 

UA is done before SA to quantify the outcome variability of in model inputs13. These next steps 

will be used to determine which model inputs are most responsible for outcome results. To do so, 

seven potentially influential variables have been selected (Table 11). These variables will change 
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through multiple model runs while the rest of the model parameters are held constant. This allows 

us to assess the influence of the potentially influential variables on model outcomes. 
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 SYNTHESIS 

This dissertation is part of a Belmont Forum- and NSF-funded Telecoupling Consortium, 

which brings scholars from four continents (Brazil, China, UK and US) together to study the 

dynamics of international soybean production and trade using the telecoupling framework.  This 

dissertation contributes to the larger NSF project by integrating network analysis, genomic 

sequencing and agent-based modeling to explore the environmental and socioeconomic impact of 

international trade in the receiving country. This dissertation was grounded in the telecoupling 

framework and quantitatively addresses all the components (e.g., systems, flows, causes, effects 

and agents). Furthermore, this is a cross-scale study addressing the impacts of international 

soybean trade at the macro, meso and micro-scale. 

For chapter 2, the influence of China’s large soybean demand on trade networks among 

soybean-producing countries was analyzed. Using 15 years of global trade data, autoregressive 

integrated moving average models (ARIMA) were developed to measure the impact of China’s 

demand on production and bilateral trade of corn, soybeans and wheat. The results reveal that 

China’s large soybean demand increased export-driven soybean production in Brazil and displaced 

production of corn and wheat to nearby countries (e.g., Argentina, Paraguay and Uruguay). 

Additionally, when restrictions were placed on the direct export of soybeans to China, Argentina 

and Paraguay increased soybean exports to Brazil as an indirect export route to China. The results 

were published in Sustainability and presented at the Global Land Programme meeting in Taiwan 

– where it also won the Best Paper award. The research results hold implications for the true extent 

of production driven by distant demands as well as the impact of the geo-politics on trade networks.  

Chapter 3 analyzed how soybean imports to China compete with domestic production and 

have altered domestic cultivation and management practices. Satellite-imagery and farmer 

interviews were used to quantify the regional cultivation shift from soybean to corn production. 
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To determine if the change in cultivation was influenced by international soybean trade an 

interrupted comparative time-series (ICTS) model was used. Interestingly, farmers in the region 

are causing air pollution to spill across the China-Russia border by using fire to manage the residual 

biomass that is left after harvesting corn. This was confirmed by measuring the amount of carbon 

in the soils of farmers and level of particulate matter (PM 2.5) in the air. Last, a multivariate 

regression determined which factors significantly influenced residue management decisions. The 

results have been presented at the AAAS Annual Meeting and submitted to Science Advances. 

This research highlights the impact of distant trade on production in the often overlooked 

importing country.  

Chapter 4 of my dissertation furthered the above analysis by considering the impacts of 

farmer cultivation and management decisions on soil properties. Soil texture, pH, total organic 

carbon and 16s rRNA sequencing were used in combination with detailed farmer management 

surveys to understand how changes in residue management effect efficiency, productivity, 

profitability and sustainability of the system. The results indicated that the accumulation of 

residual corn biomass has increased the use of residue fires and decreased the amount of crop 

residue being returned to the soil. However, crop choice, planting history and nitrogen use has 

more noticeable effects on the microbial community than the amount of residue returned. Samples 

from continuous soybeans fields were the most diverse followed by mixed rotations and then 

continuous corn samples. The results of chapter are under internal review at MSU and plan to be 

published due to the uniqueness of the dataset. 

The culminating chapter of this dissertation uses agent-based modeling (ABM) to integrate 

the above chapters into a TeleABM. The teleABM models land use change in Brazil and China 

based on global soybean demand. Land-use change decisions are made by farmer agents which 
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have parametrized using the farmer interviews. Next, the farmer agent cultivation and management 

decisions have environmental impacts that were determined by analyzing the soil samples under 

the context of management decisions. Finally, production and the impact of farmer agent decisions 

on the soil properties feedback to the farmer’s future cultivation and management decisions. The 

results of chapter 5 highlight both a positive and negative feedback. First, rice expansion started 

off slow but quickly increased once a threshold of rice production had been met and allowed for 

conversion on adjacent land.  Second, soybean production decreased in response to soybean yield 

declines that feedback to a farmer’s cultivation decision. Future work is needed to determine which 

model inputs most effect the model outcome. 


