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ABSTRACT 

EVALUATING THE ECOGEOGRAPHICAL EFFECTS OF EARTH’S LARGEST 

TERRESTRIAL HERBIVORE 

By 

Ryan Lee Nagelkirk 

 

Savannas cover a fifth of Earth’s land surface, are home to over a half billion people, and 

disproportionately affect interannual variability of the global carbon cycle. In Africa, these open, 

grassy and sparsely wooded habitats support pastoralist cultures, the world’s largest array of 

megafauna and thriving tourist economies. However, savannas and their uses are under threat: 

woody plant encroachment linked to increases in atmospheric CO2 concentrations is reducing 

grassy cover required by both domestic livestock and wildlife, while also encroaching on the open 

views of wildlife critical to tourism. Yet, understanding of the determinants of savanna woody 

cover (bushes and trees) is limited. To this end, a growing number of site-specific studies have 

found that tree mortality rates in protected areas are principally controlled by African savanna 

elephants (Loxodonta africana). However, it is not known whether these impacts significantly 

affect the total woody cover of the larger landscapes and region.  

This dissertation focuses on quantifying the relationship between elephant densities and 

savanna woody cover in protected areas across elephants’ Eastern African range. Research 

questions are addressed in three self-contained chapters. Chapter 1 tests multiple approaches to 

mapping savanna woody cover fractions across 12 protected areas (PAs) using Landsat imagery, 

and presents a novel approach to reference data generation. The results show a machine learning 

approach, Random Forests, produces the most accurate maps and demonstrates that accurate maps 



do not require more than a single annual image – which is advantageous given the general image 

scarcity in these areas.  

In Chapter 2, the most accurate mapping approach from Chapter 1 is used to produce over 30 

years of savanna woody cover data. These data are then used to assess whether there is a 

relationship between woody cover and elephant densities across the 12 PAs, as well as for specific 

landscapes within the PAs. Results point toward climate, principally wet season precipitation, 

being the major determinant of woody cover across the PAs (R
2
 = 0.38, p = 0.03), though elephants 

were linked to increased woody cover on hill slopes far from permanent water bodies (R
2
 = 0.41, 

p = 0.03). In addition, areas near water contain consistently low levels of woody cover unexplained 

by any of the variables considered. Last, Chapter 3 presents a meta-analysis of the literature 

comparing the relative impacts of elephants and fire on woody cover. The majority of studies 

(80.3%) find elephants to be the primary disturbance, with the relative dominance of the two 

disturbances linked to climate. The coolest and wettest savannas are more likely to be dominated 

by fire, while elephants are most likely to dominate across a comparatively broad set of 

environmental conditions.  

Overall, the evidence presented here suggests (1) both overall woody cover and the relative 

impacts of elephants and fire are principally regulated by climate; (2) elephants, perhaps through 

the dispersal of seeds and nutrients, increase woody cover on hillslopes far from permanent water 

bodies; (3) areas near water are in a long-term state of low woody cover, potentially driven by 

disturbances, and (4) given the dominant role of elephants as a disturbance in the majority of sites 

and climates, conservationists should consider increasing elephant populations as a means of 

mitigating the woody encroachment threatening Africa’s savannas, wildlife and pastoralist 

cultures.  
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INTRODUCTION 
 

Research Context 

Savannas cover a fifth of Earth’s land surface (Channan et al., 2014), are home to over a 

half billion people (Nagelkirk and Dahlin, 2020), and disproportionately affect interannual 

variability of the global carbon cycle (Ahlström et al., 2015). In Africa, the open, grassy and 

sparsely wooded habitats that define savannas (Scholes and Archer, 1997) support local 

pastoralists (Reid, 2012), burgeoning tourism industries (Balmford et al., 2015; Naidoo et al., 

2016) and the world’s largest array of megafauna (Malhi et al., 2016). Over the past several 

centuries most savannas have been converted to agriculture, and the savannas that remain are under 

threat: woody plant encroachment linked to increases in atmospheric CO2 concentrations (Stevens 

et al., 2017, 2016) is reducing grassy cover required by both domestic livestock and wildlife (Smit 

and Prins, 2015), while also encroaching on the open views of wildlife critical to tourism (Gray 

and Bond, 2013). Yet, our understanding of the determinants of savanna woody cover is limited 

(Staver, 2018). To this end, researchers are finding that megaherbivores (>1,000 kg), whose 

numbers are falling across the continent (Ripple et al., 2015), might play a significant role in 

regulating woody cover dynamics (e.g., Guldemond & van Aarde, 2008). In particular, a growing 

number of site-specific studies have found that tree mortality rates in protected areas are principally 

controlled by African savanna elephants (Loxodonta africana; Figure 1), who ring-bark, delimb 

and knock over trees up to 12 meters tall to consume the bark and leaves (Asner et al., 2016; Malhi 

et al., 2016; Shannon et al., 2008). However, whether these impacts translate to the total woody 

cover of the larger landscapes and region is unknown.  
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Figure 1. Conceptual Model of the Controls of Woody Cover in African Savannas. Abiotic 
factors provide the resources necessary for savannas and/or wooded landscapes, while humans, 
fire and elephants prevent establishment of woodlands, maintaining a savanna state. In 
unprotected areas (left), humans are the chief disturbance of woody cover (denoted by arrow size). 
In protected savannas, where human impacts are restricted, elephants dominate. In both, fire – 
whether set by humans or lightning – plays a secondary role. 

The Impacts of Megafauna: A Changing Perspective 

Understanding the geographic distribution of plants has been a focus of geographers since the 

days of von Humboldt and Bonpland’s explorations of South America (von Humboldt and 

Bonpland, 1807). While much of the focus of Humboldt’s work, and others, has been on the 

relationship between vegetation distributions and climate, recent work, particularly in savanna-

type ecosystems, has offered a new focus. In 2005, Bond (2005) challenged the widely-accepted 

idea that climate alone determined vegetation distributions on land (Polis, 1999), arguing that 

herbivores and fire suppress woody biomass across large parts of the world, including savannas 

(Figure 2). In particular, Bond (2005) found it “puzzling that large mammals, especially the 

megafauna, have not been more central in the trophic control literature.” 

Savanna Woody Cover

Abiotic Factors:
Climate

Soil Texture and Nutrients
Topography

Humans Fire Elephants Humans Fire Elephants

Unprotected Areas Protected Areas

Abiotic Factors:
Climate

Soil Texture and Nutrients
Topography

Savanna Woody Cover
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Figure 2. Areas of the World with Woody Cover Unexplained by Temperature and Precipitation. 
Termed “ecosystems uncertain” by Whittaker (1975), the black areas represent those where 
disturbances such as herbivores and fire are thought to reduce woody cover below its potential 
levels. Figure from Bond (2005). 

Since Bond (2005), ecogeographic studies have demonstrated how megafauna alter regional 

vegetation distributions through nutrient dispersal (Doughty, 2017; Doughty et al., 2015, 2013; 

Wolf et al., 2013) and/or woody cover suppression (Bakker et al., 2016; Barnosky et al., 2015; 

Doughty et al., 2016; Jia et al., 2018; Malhi et al., 2016). Others have taken this work a step further, 

demonstrating how megafauna’s impacts might have played a significant role in regional-to-global 

climate (Doughty et al., 2010). However, studies of large-scale impacts tend to focus on extinct 

megafauna (Doughty et al., 2010, 2013, 2015; Barnosky et al., 2015; Doughty, 2017). Meanwhile, 

small-scale studies (Jia et al., 2018) and local extinctions (Daskin et al., 2016; Stevens et al., 2016) 

of extant species demonstrate that these species also suppress local vegetative biomass, but the 

large-scale consequences – particularly for woody cover – remain unclear (Staver, 2018). This 

dissertation attempts to quantify the relationship between Earth’s largest terrestrial megaherbivore 

– the African savanna elephant – and savanna woody cover in protected areas across Eastern 

Africa.  
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Dissertation Focus and Organization 

The central objective of this dissertation is to establish where elephants rank with respect to 

other factors influencing woody cover (e.g., precipitation, humans and fire) through the 

compilation and analysis of remote sensing data, elephant census counts and existing literature. 

Chapters 1 through 3 are self-contained studies respectively addressing three interrelated research 

questions: 

(1) What is an accurate approach to mapping savanna woody cover through the use of satellite 

imagery, and what amount and timing of imagery best serves this purpose? 

(2) Across African protected savannas, what is the relationship between elephant densities and 

woody cover?  

(3) Of the two major disturbances in protected savannas – elephants and fire – which is the 

primary disturbance related to woody cover? 

Chapter 1 addresses a key deficiency in savanna research to this point: the lack of accurate 

maps of savanna woody cover. While there are instances of individual protected areas being 

mapped, the data are rarely comparable across sites due to the use of different units describing 

woody cover. Chapter 1 develops a semi-automated approach capable of accurately mapping 

woody cover fractions at 30-meter resolution across protected areas. The chapter also outlines the 

development of a particularly helpful index describing an area’s brightness in the context of its 

surroundings; the importance of imagery captured between the wet and dry season, during the 

senescence of grasses; and the development of a new method to quickly map reference data using 

red-green-blue (RGB) imagery.  

Chapter 2 uses the approach developed in Chapter 1 to map woody cover from the years 1984 

to 2016 in 12 protected areas. The data is then used to analyze the relationship between average 
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levels of woody cover and elephant densities, along with climate, fire and human population 

densities. The chapter assesses woody cover at the level of the protected areas, along with areas 

within the protected areas related to their proximity to permanent water sources and hill 

topography. At all levels, climate variables have the strongest relationships with woody cover. 

However, unexplainedly low woody cover near permanent water sources, along with unexpected 

positive relationships between elephant densities and woody cover on hill slopes far from 

permanent water sources, indicate elephants might be affecting woody cover across major portions 

of the landscape.  

Chapter 3 analyses the existing literature in a meta-analysis seeking to establish whether, 

amongst each other, elephants or fire are the primary disturbance of woody cover. The results 

reveal elephants are the primary disturbance across a broad swath of environmental conditions, 

with fire dominating in wetter and cooler areas. The results also reveal a regional bias in the 

literature, pointing toward deficiencies in central and western Africa, as well as an overall lack of 

research objectively comparing the impacts of elephants and fire. Overall, these findings imply 

that woody encroachment – currently a primary concern in savanna management – might be 

partially addressed by increasing elephant numbers, while also suggesting that the wide-scale loss 

of elephant populations partially enabled woody encroachment.   
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CHAPTER 1. WOODY COVER FRACTIONS IN AFRICAN SAVANNAS FROM 
LANDSAT AND HIGH-RESOLUTION IMAGERY  

 
Citation: Nagelkirk, R.L. & Dahlin, K.M. (2020). Woody cover fractions in African savannas 

from Landsat and high-resolution imagery. Remote Sensing. DOI: 10.3390/rs12050813. 

 

Introduction 

Savannas cover a fifth of Earth’s land surface (Channan et al., 2014) and are home to over 

500 million people (estimate derived by intersecting The Nature Conservancy’s savanna and 

shrubland ecoregions (Olson et al., 2001) with population estimates for 2015 (CIESIN, 2016)). 

Defined as mixed tree-grass communities (Scholes and Archer, 1997), savannas support pastoralist 

cultures (Reid, 2012), the world’s largest, functionally complete set of terrestrial megafauna 

(Malhi et al., 2016) and thriving tourist economies (Balmford et al., 2015; Naidoo et al., 2016). 

Savannas also play a disproportionate role in the interannual variability of the global carbon cycle 

(Ahlström et al., 2015; Poulter et al., 2014). In all of these, the woody cover of savannas plays an 

important role: pastoralism, tourism and grazing wildlife all rely on sparse woody cover and are 

threatened by woody encroachment (Gray and Bond, 2013; Reid, 2012; Smit and Prins, 2015), 

while savanna carbon dynamics are disproportionately affected by woody vegetation (Belsky et 

al., 1989; Scholes and Archer, 1997). Yet, our understanding of the factors controlling savanna 

woody cover, in comparison to other biomes (i.e. grasslands and forests), is relatively limited.  

Unlike the climate-determined woody cover of forests and grasslands, savanna woody cover 
exists in a climate-indeterminate state (Bond, 2005). In savannas, disturbances work individually 

or synergistically to maintain low woody cover in areas that might otherwise transition to forest 

or grassland (Sankaran et al., 2008, 2005), a characteristic termed “multiple stable states” (Holling, 

1973; May, 1976). Chief among the disturbances are fire (Bond and Keeley, 2005; Hantson et al., 

2017; Smit et al., 2010), drought (Good and Caylor, 2011; Porensky et al., 2013b; Van Der Waal 
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et al., 2009) and herbivory (Asner et al., 2016; Holdo et al., 2009b; Staver and Bond, 2014; Traore 

et al., 2015). However, despite efforts to understand how disturbances interact with each other and 

climate across broad spatial scales (Lehmann et al., 2014; Sankaran et al., 2008), our ability to 

predict savanna woody cover to any significant degree is still limited (Staver, 2018).   

Part of the challenge of understanding savannas has likely come from the data used in prior 

studies. Several influential studies of savannas and/or multiple stable states (Favier et al., 2012; 

Hirota et al., 2011; Murphy and Bowman, 2012; Ratajczak and Nippert, 2012; Scheffer et al., 

2012; Staver et al., 2011) centered on analyses of Vegetation Continuous Fields (VCF) global tree 

cover data (Hansen et al., 2003) – data now known to have significant inaccuracies in savannas 

(Hanan et al., 2015, 2014; Staver and Hansen, 2015). Consequently, the producers of the dataset 

cautioned against the use of VCF in areas with less than 20-30% tree cover (Staver and Hansen, 

2015), effectively ruling out savannas given their characteristic ~20% mean VCF tree cover 

(Hirota et al., 2011). Additionally, VCF, which was primarily developed to monitor forests, not 

savannas, defines trees as woody vegetation > 5 meters tall (Hansen et al., 2003). While a fair 

threshold for forests, the majority of savanna woody vegetation likely falls below it (Levick et al., 

2009), thus under-representing the woody component of these systems. More importantly, 

disturbances predominately act upon woody vegetation recruits (< ~5-6 meters) (Asner et al., 2016, 

2009b; Asner and Levick, 2012; Levick et al., 2009; Levick and Asner, 2013; Smit et al., 2010), 

meaning VCF is unlikely to detect the direct impacts of disturbances, i.e. the major determinants 

of woody cover. Combined, these factors make the use of VCF in any savanna problematic, 

potentially undermining our ability to understand these ecosystems.  

In lieu of VCF, researchers often make maps of their own. However, making large-scale maps 

of savanna woody cover is a challenge because, unlike in forests, savanna imagery contains a high 



 8 

proportion of pixels with a combination of woody vegetation, herbaceous vegetation and bare soil 

– referred to as mixed pixels (Lawton and Sylvestre, 1971; Settle and Drake, 1993). Unmixing 

pixels requires knowledge of the spectral characteristics of all the materials within the pixel. 

Meeting that requirement across large areas has been a long-standing challenge (Choodarathnakara 

et al., 2012) because vegetation and soil spectral properties change across space and time, 

particularly in savannas (Dawelbait and Morari, 2008; Hansen et al., 2003; Ringrose et al., 1989; 

Staver and Hansen, 2015).  

To limit the spectral variability of cover types, researchers often produce small-scale, site-

specific maps using a range of approaches, including simple linear regressions (Poitras et al., 

2018), regression trees (Yang and Crews, 2019), cluster analysis (Marston et al., 2017) and spectral 

unmixing (Asner and Lobell, 2000). Meanwhile, some of those who have attempted to produce 

maps across larger areas or across several sites abandoned such approaches, instead manually 

classifying a high number small areas (~0.5 hectare) using very high-resolution (VHR; < 1 meter) 

imagery (Bastin et al., 2017; Messina et al., 2018) or, in an effort to lower VCF error, resampling 

the data to coarser resolutions, thereby abandoning fine scale analysis (Favier et al., 2012). Still 

others use commercially produced national landcover maps (Skowno et al., 2017). The different 

data sources and methodologies mean maps are rarely easily comparable across studies. That, 

combined with an overall shortage of these maps, limits large-scale studies of savanna dynamics, 

while also limiting our ability to compare the approaches used to generate them. Further, studies 

rarely map woody cover across time, despite the demonstrated insights from temporal data 

(Ratajczak and Nippert, 2012; Ward et al., 2014; Western and Maitumo, 2004).   

Here, we develop an accurate, replicable method for mapping total woody cover across 12 

protected areas in eastern Africa, from Uganda to South Africa, using Landsat 8 imagery. While 
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we recognize separate maps of shrub cover and tree cover would be ideal when studying savannas 

and could be possible using ancillary data (e.g. LiDAR-derived digital surface models), we sought 

a method that could be applied through time, back to the launch of Landsat 4 (1982) – a span that 

extends beyond most ancillary data. Further, we chose to not use ancillary data that could be 

assumed to be constant across the temporal record (e.g. topography) to avoid circularity in future 

studies of landscape-scale controls on savanna distributions and woody cover. Last, given the 

marked decline in Landsat image availability going back to the 1990s and 1980s, especially in 

rural Africa (Wulder et al., 2016), we limited ourselves to three images per site: one each from the 

wet and dry seasons, along with the transition between them. The result was the development of 

30-meter resolution maps of woody cover across all the sites; site-specific rankings of seasonal 

imagery; a novel approach for reference data generation; and a clear designation of the best 

mapping approach. 

Materials and Methods 

Study Sites 

We mapped woody cover in 12 sites across eastern and southern Africa (Figure 3; Table 1). All 

of our sites are protected areas (International Union for Conservation of Nature protected status II-

IV). We selected protected areas (PAs) because, as part of a larger project studying the drivers of 

savanna processes, we sought to avoid modern anthropogenic impacts to the extent possible, though 

we recognize that humans have long played a role in savannas (Archibald et al., 2013, 2012; 

Bowman et al., 2011). The PAs cover a broad range of mean annual precipitation (MAP) (~500-

1250 mm) and size (~200-44,800 km
2
). Initial inspection using satellite imagery suggested the PAs 

also cover a broad range of woody cover, with wetter PAs appearing significantly woodier than drier 

PAs. 
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Figure 3. The Twelve Protected Areas Used in this Study. Protected areas are shown in gray. Red 
boxes denote inset map borders. The background represents the mean annual precipitation from 
1988-2017 (Climate Hazards Infrared Precipitation with Stations (CHIRPS); Funk et al., 2015). See 
Table 1 for corresponding protected area names and attributes. Mpala Research Center (2) is ~11 
km at its widest point (no scale in inset).  
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Table 1. Protected Area Names, Abbreviations and Attributes. PA numbering corresponds to 
Figure 3. 

PA # Name & Country Abbr. Latitude 
(degrees) 

Elev.    
(m) 

MAP 
(mm) 

Area 
(km2) 

 1 Murchison Falls National Park, Uganda MUR 2.27 846 1262 3877 

 2 Mpala Research Center, Kenya MPA 0.40 1694 601 194 

 3 Queen Elizabeth National Park, Uganda QUE -0.25 977 998 7395 

 4 Maasai Mara National Reserve, Kenya MAR -1.50 1624 950 1510 

 5 Serengeti National Park, Tanzania SER -2.27 1546 850 14763 

 6 Ruaha National Park, Tanzania RUA -7.80 1168 700 20226 

 7 Selous Game Reserve, Tanzania SEL -8.86 396 1121 44800 

 8 North Luangwa National Park, Zambia NLU -11.88 752 904 4636 

 9 South Luangwa National Park, Zambia SLU -13.09 623 917 9050 

 10 Chobe National Park, Botswana CHO -18.56 968 532 11000 

 11 Limpopo National Park, Mozambique LIM -23.32 246 534 10000 

 12 Kruger National Park, South Africa KRU -23.93 342 511 19175 

Reference Data 

To train our approaches and assess the accuracy of the resulting maps, we generated woody 

cover reference data using VHR imagery available through Google Earth (Figure 4) – a practice that 

is increasingly common in broad-scale studies (Bastin et al., 2017; Hansen et al., 2013; Messina et 

al., 2018; Michishita et al., 2012; Pengra et al., 2015; Skowno et al., 2017). We note that in our maps 

and reference data, we mapped crown cover (the vertically projected area occupied by a tree crown), 

not canopy cover (crown cover minus intra-canopy skylight). We assume the globally derived 

relationship between canopy cover and crown cover (canopy cover = 0.8*crown cover) (Hansen et 

al., 2003) holds in our study sites, allowing us to convert when necessary (e.g., VCF uses canopy 

cover instead of crown cover).  

Previous studies mapped reference point landcover using a range of techniques, such as visual 

estimation (Michishita et al., 2012; Skowno et al., 2017), decision tree algorithms (Pengra et al., 
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2015) and augmented visual interpretation using software such as CollectEarth (Bastin et al., 2017; 

Bey et al., 2016; Messina et al., 2018). In particular, CollectEarth uses VHR imagery from Google 

Earth and Bing Maps to compute helpful metrics such as the Normalized Difference Vegetation 

Index (NDVI), then uses tens of user-classified sampling points within the reference image to 

estimate the spatial extent of each cover type.  

 
Figure 4. Example of Reference Data Generation. For each reference point, we downloaded a 
180x180-meter scene from Google Earth imagery (a) centered on the 30x30-meter Landsat pixel 
(inset of a; b). We then mapped the woody cover (green), grass (yellow) and soil (white) of the pixel 
(c). The percent woody cover was then extracted to generate the reference data. All reference data 
is available online: (Nagelkirk and Dahlin, 2019).  

Similar to CollectEarth, we developed a fast, semi-automated approach using VHR imagery 

from Google Earth. However, our approach mapped, rather than sampled, the complete extent of 

each cover type (code available in the online dataset: (Nagelkirk and Dahlin, 2019). We 

downloaded VHR true color imagery from Google Earth using the RgoogleMaps package 

(Loecher and Ropkins, 2015) in R (R Core Team, 2018), retrieving 180x180-meter areas centered 

on one 30x30-meter Landsat pixel (the reference point). We then mapped our perceived extent of 

woody cover, herbaceous cover (simply “grass”, hereafter) and soil cover of the 30x30-meter 

reference point by manually thresholding image-derived metrics.  
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In our mapping, we took advantage of the fact that woody cover is predominantly darker than 

both soil and grass, thresholding pixel brightness (the sum of RGB values) to classify woody cover. 

When necessary, we adjusted thresholds to account for shadows that would have otherwise inflated 

woody cover values. In addition, when visually distinguishing woody cover from grass was a 

challenge, we assumed that objects with shadows were woody cover. We also used any on-the-

ground photographs available through Google Earth, along with our own on-the-ground 

experience in African savannas, to further inform our mapping. If we could not confidently 

distinguish a reference point’s woody cover, or if brightness thresholding failed to do the same – 

both of which were common when defoliated woody cover was present – a new reference point in 

a different location was automatically generated.  

After woody cover, the remaining grass and soil were classified using pixel brightness in 

conjunction with the Green-Red Vegetation Index (GRVI; Table 2) (Motohka et al., 2010), an 

index that exploits the red and green spectral differences between green vegetation and soil. 

However, we found that the GRVI threshold could often be left static (ca. -0.1), with only 

brightness threshold adjustment needed. We mapped a minimum of 100 reference points in each 

PA, increasing the number when densities fell below one point per 200 km
2
, altogether mapping 

1,330 reference points. All the points were in cloud-free positions in the Landsat imagery. We then 

randomly subset the data, splitting it into PA-specific training (70% of points) and testing data 

(30%).  
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Table 2. Index Equations. Color names refer to the corresponding image band. 

Index Equation* 
Green-Red Vegetation Index (GRVI) !"##$ − &#'

!"##$ + &#' 

Normalized Difference Vegetation Index (NDVI) )*& − &#'
)*& + &#' 

Soil Normalized Difference Index (SNDI) &#' − ()*& + ,-*&1)
&#' + ()*& + ,-*&1) 

Soil Adjusted Total Vegetation Index (SATVI) ,-*&1 − &#'
,-*&1 + &#' + 0 (1 + 0) −

,-*&2
2  

Modified Soil Adjusted Vegetation Index 
(MSAVI2) 

2)*& + 1 −	3(2)*& + 1)! − 8()*& − &#')	
2  

* Spectra names (Red, Green, NIR etc.): Landsat reflectance bands. L: the soil adjustment 

factor – a constant set at 0.5 (Marsett et al., 2006; Qi et al., 1994). 

Landsat Image Collection and Processing 

We collected Landsat 8 Tier 1 Surface Reflectance imagery for 2016 using Google Earth 

Engine (GEE; Figure 5) (Gorelick et al., 2017). GEE utilizes the computational capabilities of 

Google to enable researchers to access and process the Landsat archive. We used GEE to select, 

preprocess and download imagery, as well as carry out a subset of our mapping approaches 

(described below). However, we limited our exposure to any potential change or loss of services 

from GEE, such as Google’s 2018 decision to phase out their “Fusion Table” data type (Google 

Fusion Tables Team, 2019), by carrying out most of our mapping outside of GEE. We selected 

relatively cloud-free imagery (< 30% cloud cover over PAs in wetter regions (SEL, SER, MAR, 

RUA, MUR, QUE); < 10% in drier regions (CHO, MPA, KRU, LIM, NLU, SLU) (Table 1)), and 

required all PA images within the same Landsat path to be from the same date. We then cloud 

masked the imagery and selected images we estimated to correspond with the wet, dry and 

transition seasons. For each PA, the wet season image (Wet) was characterized as that with the 

highest mean NDVI (Table 2) (Tucker, 1979); the dry season image (Dry) as that with the lowest 
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NDVI; and the transition (Tran) as that with its mean NDVI closest to the midpoint between the 

Wet and Dry NDVIs, falling chronologically after the wet season and before the dry season. If no 

image met our requirements for the Tran image, we took the image closest to the NDVI midpoint, 

regardless of where it fell in the year.  

The purpose of using three images was three-fold. First, by using the images individually, we 

aimed to identify the time of year that led to the best maps of woody cover. Past studies attempting 

to map woody cover and/or biomass have used the dry season (Brandt et al., 2017; Marston et al., 

2017), while others have used the transition (Bucini et al., 2009; Gizachew et al., 2016) – 

sometimes at the same sites (Bucini et al., 2009; Marston et al., 2017) – with no consensus on the 

most accurate approach. The dry season is often selected because many woody species remain 

green, enhancing the difference between their spectral signatures and that of brown, senesced 

herbaceous plants, thereby aiding mapping (De Bie et al., 1998; Horion et al., 2014; Wagenseil 

and Samimi, 2007). However, drier tropical and subtropical sites generally have more trees that 

drop all or a fraction of their leaves during the peak of the dry season (drought deciduous or 

raingreen) (Murphy and Lugo, 1986; Santiago et al., 2004). Therefore, we expected Tran images 

to outperform Dry images in the drier of our sites. Finally, we expected the Wet images, captured 

when both woody and herbaceous plants are photosynthetically active and therefore most 

spectrally similar, to yield the least accurate maps. The second reason we used three images was 

that, when stacked together into a single image or used to create summative statistics (see Section 

2.2.3), we expected to increase map accuracies by capturing the phenological differences of woody 

and herbaceous vegetation, as done in similar work (Brandt et al., 2016; Gasparri et al., 2010; 

Hansen and Loveland, 2012; Skowno et al., 2017). Third, we limited ourselves to three images to 

simulate the shortage we would likely encounter when mapping historical imagery.  
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Because many of the PAs spanned multiple Landsat paths and each additional path added 

significant time investment, paths that covered less than 10% of a PA were excluded. Adjacent 

PAs in the same path with imagery from the same dates were treated as a single PA (requirements 

only met by SER and MAR, hereafter together referred to as ‘SMR’).  

In all, 105 individual Landsat scenes were selected. Images in the same path were 

subsequently mosaicked, yielding 45 images. We then masked all the images within each PA using 

the same PA-specific mask. Each PAs mask was generated using the “pixel_qa” band provided 

with the Landsat data, and all but the pixels marked as “clear” were removed by the masks. The 

masks were combined across seasonal images, meaning masked areas in one image were masked 

in the others. This meant that sometimes large image fractions (approx. 15-20%) were removed, 

which is not ideal when creating a map. However, our objective was not to create contiguous 

images but was to produce images with identical data to test which seasons and approaches best 

predicted woody cover.  

Finally, we clipped the images to 20-km buffers around each PA boundary, with the exception 

of the smallest PA, MPA, which we clipped to a 50-km buffer. The buffers allowed us to capture 

areas with 100% crown cover – areas often only available outside PAs and required in a subset of 

our approaches. All images were then downloaded from GEE (code available in the online dataset:                                 

Nagelkirk and Dahlin, 2019) 
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Figure 5. Conceptual Diagram of Methodology. For each PA, we collected, processed and then 
downloaded Landsat imagery from the dry, wet and transition seasons using GEE (a). We then 
extracted band and index values at reference points throughout each PA and used very high-
resolution (VHR) imagery available through Google Earth to map the woody cover at each point 
(b). These data, which varied across single and combined season imagery, were used to create 
woody cover maps of the individual PAs using regression, spectral unmixing and regression trees 
(c-e). In addition, the reference data from all the PAs (ALL) were pooled to generate another series 
of Random Forests- and regression-derived maps. We assessed the accuracy of the maps using VEcv, 
E1, R2 and RMSE (f). SMA: Spectral Mixture Analysis; MESMA: Multiple Endmember Spectral 
Mixture Analysis; MCU: Monte Carlo Unmixing.  

For the 70% of reference points serving as training data, we extracted Landsat reflectance 

values to serve as predictors of woody cover. For each point, we supplemented reflectance values 

with indices known or likely to have relationships with vegetation in semi-arid environments 

(Poitras et al., 2018): the Soil Normalized Difference Index (SNDI) (Poitras et al., 2018), Soil 

Adjusted Total Vegetation Index (SATVI) (Marsett et al., 2006), and the updated Modified Soil 
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Adjusted Vegetation Index (MSAVI2) (Qi et al., 1994) and NDVI (Tucker, 1979) (Table 2). We 

also computed the visual brightness (mean of red, green and blue bands; hereafter simply 

“brightness”) of each reference point. We chose brightness because of the strong relationship it 

had with woody cover during reference point generation, as mentioned in Section 2.2.2 above. We 

then created an additional variable to contextualize the brightness within the landscape because, 

when we were creating the reference data, views of the larger landscape helped the user distinguish 

between grass and woody cover. In particular, a completely wooded pixel was often only 

distinguishable from a grass-dominated pixel when we viewed the larger landscape and saw all the 

brighter, grass-dominated pixels. To generate the contextualized variable, we computed the 

normalized difference between reference point brightness and PA mean reference point brightness. 

We refer to this as the brightness context (BC; Table A.1).  

In addition to the variables generated from single images, we created multi-image composite 

variables to incorporate phenology – a practice not novel to vegetation mapping (Hansen et al., 

2003). The specific image composites were: Dry, Tran and Wet (DTW); Dry and Wet (DW); Tran 

and Dry (TD) and Wet and Tran (WT). The values for each composite’s variables were calculated 

by taking the mean and normalized difference of each single-image variable across images (testing 

showed the normalized difference had stronger relationships with woody cover than the simple 

difference). This doubled the number of variables in the composites compared to the single images. 

For example, while the Dry and Wet images each generated a single NDVI variable, the DW 

composite had two NDVI variables: the 1) mean and 2) normalized difference of the Dry and Wet 

NDVIs. However, the DTW composite presented a unique challenge: calculating the difference of 

three values (e.g., Dry NDVI, Wet NDVI and Tran NDVI). We therefore computed the DTW 

differences by subtracting the normalized differences of the WT composite from the DW (Table 
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A.1). This metric had a distinct phenological meaning. Assuming the date of the Tran image was 

between the Wet and Dry, a value of zero meant all changes in the variable occurred early (between 

the Wet and Tran images) – likely representative of the early senescence of a grass-dominated 

pixel. As more of the total change occurred after the Tran image (i.e. the late season senescence of 

woody cover), the value exponentially approached 1 or -1, depending on the direction of variable 

change moving from the wet to the dry season (e.g., for NDVI, which decreases across the seasons, 

the DTW difference metric approaches -1). For simplicity, we use “difference” to describe the 

difference metrics of all the composite images, even though all but DTW use the normalized 

difference.  

Across the single images and composites, these steps generated 132 variables (Table A.1). 

Hereafter, we refer to these data collectively as the “reflectance data”.  

Mapping Woody Cover 

We mapped woody cover using seven techniques falling under three general approaches: 

linear regression, spectral unmixing, and regression trees (Figure 5). To incorporate their nested 

structure, we refer to these as “sub-approaches” and “approaches”, respectively. Because all the 

approaches were not available in a single software package, we worked across multiple programs. 

Further, not all approaches used all the possible variables when those variables did not improve 

results and/or caused inputs to exceed the capacity of most modern computer systems, thereby 

limiting their adoption (see Spectral Unmixing). The programs and approaches are described 

below, with detailed procedures and code provided in the online dataset (see Nagelkirk and Dahlin, 

2019).  
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Linear Regression 

We used linear regressions (Neter and Wasserman, 1974) to identify any consistent 

relationships between the reflectance data and woody cover. All regressions were carried out in R 

(R Core Team, 2018). We expected maps generated using linear regression would form baseline 

accuracies compared to the other, more complex, approaches.  

We conducted regressions using three sub-approaches. In the first, all 132 reflectance data 

variables were regressed independently against woody cover (simple linear regression). In the 

second, we used the red, near infrared (NIR) and first short-wave infrared (SWIR1) bands together 

in multiple regression (for the composite images, we did separate regressions using the means (1) 

and differences (2) of the red, NIR and SWIR bands). We refer to these as the “RNS” 

bands/regressions. We chose the RNS bands because they capture the spectral signature of 

vegetation, hence their widespread use in vegetation indices (Marsett et al., 2006; Poitras et al., 

2018; Qi et al., 1994; Tucker, 1979). Third, we conducted forward stepwise regressions (STEP) to 

identify novel relationships that might warrant further investigation. To avoid overfitting the 

models and multicollinearity between variables, we only added variables with high levels of 

significance within the new model (p-values below 0.05) and low collinearity (R
2
 < 0.6).  

We carried out the regressions in individual PAs to derive PA-specific relationships, then with 

all PAs combined (“ALL”) to derive regional relationships. Altogether, the simple, RNS and STEP 

regressions yielded 1,800 regression models. We applied the models to their respective PAs, then 

applied the ALL-derived, regional models to the individual PAs to quantify the local accuracy of 

the regional models.  
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Spectral Unmixing 

Spectral unmixing, which some have shown outperforms linear regression in savanna woody 

cover mapping (Yang et al., 2012), is based on the premise that pixel reflectance is an area-

weighted, linear combination of the landcovers within each pixel (Adams et al., 1986; Smith et al., 

1985). Spectral unmixing, then, uses the reflectance values of each individual cover type – values 

referred to as “endmembers” – to unmix, or back-calculate, the fractional coverage of each land 

cover type within a pixel. A unique feature of this approach, compared to other approaches used 

here, is that field-based measurements are not required – all values can come from the image being 

unmixed (Roberts et al., 2007). This means unmixing can be done on historical imagery where no 

ground truth or reference data is available, which made it particularly attractive for our goals. The 

challenge, however, is selecting endmembers that 1) have only the target land cover in the pixel 

and 2) best summarize a land cover’s spectral variability.  

Multiple unmixing sub-approaches have been developed with their own method of 

endmember selection. We selected three common sub-approaches and used each to unmix woody 

cover, grass and soil fractions in each image. The first sub-approach, spectral mixture analysis 

(SMA) (Adams et al., 1986; Roberts et al., 1993; Settle and Drake, 1993; Smith et al., 1985), relies 

entirely on the user to identify the best endmembers. We selected endmembers with the minimum, 

maximum, mean, and median brightness values (sum of all bands). Separate SMAs were run for 

each endmember in GEE using the ‘unmix’ function (Gorelick et al., 2017).  

The second sub-approach, Multiple Endmember SMA (MESMA) (Roberts et al., 1998), 

builds upon SMA by allowing multiple endmembers within a single class, instead of only one, 

affording the classifier more flexibility and greater mapping accuracies (Fernández-Manso et al., 

2012). MESMA selects endmembers by running individual SMAs with every possible 
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combination of endmembers, while also allowing the number of classes to vary (Roberts et al., 

1998). It then retains, on a per-pixel basis, only those results from the best-fit model. In other 

words, a MESMA result is a mosaic of the best-fit SMAs. The MESMAs were run in ENVI (Harris 

Geospatial Solutions, Boulder, CO) using the ViperTools add-on (Roberts et al., 2007).  

Even though MESMA can take as input all potential endmembers, the evaluation of all the 

models (>200,000 in many cases) required significant processing time. To minimize this, Roberts 

et al. (Roberts et al., 2007) recommends screening out spectrally similar endmembers by 

examining whether the endmembers formed clusters, then selecting the endmembers that best 

represented each cluster. To do this, we used metrics built into VIPER Tools: Endmember Average 

Root Mean Square Error (EAR) (Dennison and Roberts, 2003), Count-based Endmember 

Selection (COB) (Roberts et al., 2003) and Minimum Average Spectral Angle (MASA) (Dennison 

et al., 2004). We used the metrics according to the methodology suggested by Roberts et al. 

(Roberts et al., 2007) (p.44), selecting endmembers with the lowest EAR within each COB-

identified cluster, or the lowest MASA when COB failed to identify any clusters. We referred to 

this as the EMC (EAR-MASA-COB) selection method. The EMC method yielded 1-5 

endmembers for each class.  

In a separate method, after testing multiple selection criteria, we found selecting endmembers 

from each class using the minimum, maximum and mean brightness values (sum of all bands) 

yielded the best results. We referred to this as the HML (high-middle-low) selection method.  

Altogether, these endmember selection methods yielded ca. 20-40 models per MESMA – a 

significant reduction from the thousands the full suite of endmembers generated. To ensure the 

reduction in models was not having a detrimental effect on the accuracy of the MESMA results, 
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we ran preliminarily tests using the full suite of endmembers versus our subsets and found no 

significant difference.  

The third unmixing sub-approach, Monte Carlo Unmixing (MCU) (Asner et al., 2003; Asner 

and Lobell, 2000), is similar to MESMA in that it allows multiple endmembers within a class. 

However, whereas MESMA selects results based on best-fit models, MCU iteratively draws 

random selections from the pool of endmembers, running an SMA for each. MCU then reports the 

mean and standard deviation of all the results as the final result. However, the final result is 

sensitive to the number of iterations; with too few iterations, different MCUs can yield very 

different results. Therefore, the stability of the final result depends on the number of iterations. 

Others achieved stability after 30 iterations (Asner et al., 2009a). Because we had several sites 

with multiple images per site, all of which might achieve stability at a different number of 

iterations, we set the number of iterations at 300 – a number we assumed would achieve stability 

in all locations. We wrote and ran our own MCU function in GEE utilizing the ‘unmix’ function. 

The code for the MCU function is available in the online dataset (Nagelkirk and Dahlin, 2019).  

Unlike the regressions, which used the reflectance data described in Section 2.2.3 (i.e., point data) 

to train and test models, unmixing used entire Landsat images. This, in combination with the fact 

that MESMA was not automatable, led to marked increases in user input and computational 

demands. Consequently, we limited the number of images we unmixed, along with the number of 

bands/variables in each image. We created DW composites with the Dry and Wet image bands 

stacked into a single image without any of the additional bands/variables described in Section 

2.2.3. The same applied to the Dry, Wet and Tran images: they only contained the original Landsat 

bands. However, unlike the regressions, the unmixing approaches utilized the full suite of bands 

available from Landsat 8: bands 1-7 (visible, near infrared and short-wave infrared bands) & 10-
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11 (thermal bands). While earlier Landsat satellites do not have bands 1, 10 & 11 we found that 

including these bands substantially increased accuracies, while bands representing the vegetation 

indices did not. We did not test all the possible additional bands and combinations due to the 

amount of time this would have required. 

Because linear mixture models can produce results outside the range of 0-1, all the unmixing 

methods allow the user to constrain the results to stay within the 0-1 range. Depending on the 

software, we found that constraining the results caused pixels to be removed (ViperTools) or 

forced to zero or one (GEE) – something we could do independently in post-processing. Therefore, 

we chose not to constrain the values. In addition, ViperTools had the option to constrain candidate 

models based on their RMSE and residuals, and GEE to constrain the unmixed values to sum to 

one. We set the RMSE constraint to 0.1 (effectively unconstrained) and left the other two 

unconstrained to avoid differences across unmixing methods.  

As an alternative to constraining results in the individual software, we extracted mean mapped 

woody cover values from the woody cover (WC!!!!!WC ) and grass (WC!!!!!grass) endmember pixel 

locations, which were meant to have 100% and 0% woody cover, respectively. We then normalized 

the unmixed values (WCi ) following Eq. (1): 

WCnormalized = 
WCi - WC!!!!!grass

WC!!!!!WC - WC!!!!!grass
,               (1) 

This was meant to preserve more of the relationship between the unmixed values and the reference 

data – a relationship that was lost using the software constraints described above if all unmixed 

values were negative or over 1, which was not uncommon. However, normalization still left some 

mapped values outside the 0-1 range, and it was at this point that we set negative values to zero 

and high values (>1) to one.  
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For each approach, in addition to unmixing woody cover, grass and soil, we also unmixed 

only woody cover and grass to test if accuracies improved when unmixing only these, the two 

most similar cover types. As in the regressions, we also ran a subset of approaches using only the 

RNS bands. However, unlike the regressions, we did not combine all the PAs and unmix them as 

a single PA, nor use such a model to map individual PAs.  

Regression Trees 

Regression trees, unlike the other methods used here, are capable of handling non-linear 

relationships between landcover types and their reflectance – a situation which is particularly 

common when mapping at regional to global scales (Staver and Hansen, 2015). Accordingly, 

during the development of VCF, which used a coupled, regression tree and linear regression 

approach, Hansen et al. (Hansen et al., 2002) found their approach outperformed spectral mixture 

analysis. We expected our regression tree approach to do the same.  

However, we did not attempt to replicate the VCF approach, which used stepwise regressions 

at the regression tree nodes to smooth the outputs, along with variables derived from MODIS bands 

not available in Landsat imagery. Instead, we used another regression tree approach, Random 

Forest (RF) (Breiman, 2001). RF has become a popular and effective procedure for mapping 

woody cover in savannas (Gessner et al., 2013; Naidoo et al., 2012; Symeonakis et al., 2016), 

along with regional-to-global scale land cover (Rodriguez-Galiano et al., 2012; Vogeler et al., 

2016; Wulder et al., 2018; Zhang and Roy, 2017). RF draws random samples from a dataset of 

predictor and response variables using bootstrap aggregation to initiate a regression tree. RF then 

divides the data based on variance, creating branches with the smallest possible intra-subset 

variance at each split. However, instead of considering the entire subset at each split, RF uses a 

random selection of predictor variables to determine the split. This process is repeated to generate 
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a “forest” of different regression trees. Once all trees are grown, a predicted value is calculated as 

the mean prediction of all the regression trees.  

We performed the RFs in R using the randomForest package (Liaw and Wiener, 2002) and 

the reflectance data described in Section 2.2.3. The RFs used the entire set of predictor variables 

available for each image. Each RF was set to grow 500 trees and a set number of variables were 

randomly selected at each split: seven (out of 12 available variables) for the single-season images 

and seven (out of 24) for the composite images. We set the number of variables after we ran an 

optimization process across all the PAs that showed including more variables did not significantly 

improve accuracy – a threshold we sought in order to avoid overfitting the models. Like the linear 

regressions, the RFs were trained and applied to their respective PAs (including ALL), with the 

ALL-derived models also applied to the individual PAs.  

Accuracy Assessment  

We assessed the accuracy of the woody cover results from each mapping method using the 

variance explained by predictive models based on cross-validation (VEcv; Table 3) (Li, 2017). 

VEcv and equivalent measures such as the G-statistic (Schloeder and Jacobs, 2001) and Nash-

Sutcliffe efficiency (Nash and Sutcliffe, 1970) closely resemble the coefficient of determination 

(R
2
; Table 3). R

2
 measures the proportion of the observed variance that is predictable from an 

independent variable (in this case the predicted values). However, in model validation, we are not 

interested in the ability of predicted values to predict observed values; we are interested in how 

well predicted values match observed values. VEcv was developed for the latter case. It does this 

by directly comparing observed values to predicted values, i.e., a 1:1 line; rather than compare 

values to a fitted regression line, as R
2
 does. In this way, VEcv is also similar to root mean square 

error (RMSE; Table 3). Beyond combining the utilities of R
2
 or RMSE, VEcv values below or 
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equal to zero correspond to instances where the mean of the observed values better predicts the 

observed values than the model being evaluated – something demarcated by neither R
2
 nor RMSE. 

This means that while VEcv generates negative values that can appear meaningless, it is important 

to remember that the model producing a negative score could have a R
2
 of 1.0 if it exhibits errors 

that can be perfectly predicted using the observed data. In such a case, RMSE would be required 

to show the model was flawed.  Therefore, when a single metric is needed to rank performance 

across models, VEcv is superior and we use it for that reason. However, we recognize that most 

studies have used R
2
 and RMSE and we include R

2
 and RMSE values where we felt it would aid 

comparisons with other studies.  

Table 3. Names and Equations of Accuracy Measures. 
Accuracy measure Equation* 
Variance Explained (VEcv) 

!1- 
∑ (Oi	- %i)2n
1

∑ (Oi	- O' )
2n

1

( 100 (%) 

Coefficient of Determination (R2) 
!1- 

∑ (Oi	- )i)2n
1

∑ (Oi	- O' )
2n

1

( 100 (%) 

Legates and McCabe’s (E1) *1- 
∑ |Oi	- %i|n
1

∑ |(Oi	- O'|n
1

+ 100 (%) 

Root Mean Square Error (RMSE) 
,∑ (Oi	- %i) 2n

1
-  

* Oi: the observed value; Pi: the predicted value; Fi: the fitted value from regressing predicted 

and observed values; n: the number of observations.  

 
In addition to VEcv, we used Legates and McCabe’s efficiency (E1; Table 3) (Legates and 

McCabe, 2013) as a secondary measure of model accuracy. Whereas model errors are squared in 

the VEcv equation, E1 takes their absolute value, thereby quantifying the percentage of the sum 

of absolute differences explained by the model. Like VEcv, E1 reports accuracy as percentages, 

with 100% corresponding to an exact match and values < 0% denoting situations where the mean 

of the observed values is a better predictor of the observed values than the model. However, 
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because VEcv uses squared errors, it is the more sensitive measure. For this reason, we primarily 

used VEcv and only utilized E1 if we needed to differentiate models with similar VEcv scores, as 

suggested by Li (Li, 2017).  

We assessed the accuracy of the maps using the withheld testing data/points (30% of reference 

points). The same PA-respective testing points were used across all maps. We compared accuracies 

across approaches and sub-approaches, then across seasons and variables, and finally present the 

best approaches both overall and for each PA. We used ANOVAs and post-hoc Tukey honest 

significant different (HSD) tests to compare accuracies across approaches and sub-approaches. To 

compare seasons and variables, we used repeated measures ANOVAs and HSD. Throughout, we 

also evaluate the relationship between the Landsat-rescaled VCF tree cover dataset (Sexton et al., 

2013) and woody cover. We refer to both VCF (Hansen et al., 2003) and the Landsat-rescaled VCF 

(Sexton et al., 2013) as “VCF” and assume that for our purposes there are no meaningful 

differences between the two.  This is not an accuracy assessment of VCF, which monitors woody 

vegetation >5 meters, while our reference data monitor all woody vegetation, regardless of height. 

However, we included VCF to demonstrate the amount of woody vegetation excluded by VCF in 

these systems and assess whether VCF might be used to predict woody cover (i.e. whether an 

adjustment factor can convert VCF tree cover to woody cover). 

Post-processing  

Some post-processing of the accuracy assessment data was necessary. Overall, models trained 

and applied to individual PAs and all the PAs pooled together created 4842 woody cover maps 

with accuracies ranging from a high VEcv of 91.1% down to scores below -1000%. While negative 

VEcv scores are to be expected, some appeared so low they might bias our final results. Normal 

outlier analysis removed more points than we felt appropriate, so instead we ranked and plotted all 
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4842 map accuracies in search of an inflection point, i.e., where gains in accuracies from map to 

map become relatively consistent. We found this point around a VEcv of -500% (Figure A.1). We 

removed maps below this threshold from further analysis, eliminating 157 maps (~ 3% of the total 

number of maps). The majority (147) of these were produced using spectral unmixing. The 

remaining were from regressions.  

Results and Discussion 

Evaluation of accuracy measures 

Because VEcv is not a commonly used measure, we first compared approach accuracies using 

VEcv, E1, RMSE and R
2
 (Figure 6a-d). While all the measures found RF significantly 

outperformed the others, R
2
 gave VCF scores significantly higher than the regressions and 

unmixing approaches, while VEcv, E1, and RMSE did not (Figure 6d). As outlined in Section 2.4, 

this is likely due to the fact that R
2
 is not a measure of model accuracy while the other measures 

are, including RMSE (Table 3) (Li, 2017). Because VEcv produced results similar to those using 

E1 and RMSE, and is the most sensitive measure of accuracy, we used it for the remaining analyses. 

Best approaches and sub-approaches 

Across both the approaches and sub-approaches, RF significantly (p < 0.001) outperformed 

the others, rarely scoring below zero, with a VEcv mean and standard deviation of 49.0 ± 30.8% 

(Figure 6a,e).  

Spectral unmixing underperformed the other approaches (VEcv mean and standard deviation 

of -148.8 ± 123.0%; Figure 6a). We expect spectral unmixing was limited due to the fundamental 

challenge of choosing endmembers. While it might be possible to accurately define endmembers 

across a relatively small area, when the study area expands, so does the spectral variability within 

each landcover type, making endmember definition more of a challenge. For this reason, 
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successful applications of spectral unmixing often include a regional component in endmember 

selection (Powell et al., 2007). We decided adding a regional component to our endmembers was 

infeasible: candidate endmembers were often scarce within the PAs, let alone areas within the PA. 

Others successful applications of spectral unmixing have been aided by additional data, such as 

the increased number of bands and finer spectral resolution of hyperspectral imagery and/or 

airborne lidar which help differentiate cover types (Degerickx et al., 2019). Here we were limited 

to Landsat’s relatively coarse spectral resolution (9 bands). Though including variables identical 

to those available to RF and the regressions might have improved accuracies, this was not possible 

due to computational limitations. Further, this would have required the removal of bands 1, 10 and 

11 – bands whose testing showed improved results while the vegetation indices did not. 

Among the unmixing sub-approaches, MESMA significantly outperformed MCU and SMA. 

We attributed this to the fact that MESMA uses a more advanced approach to selecting the best 

endmembers for each pixel. Because of the overall poor performance of the spectral unmixing 

approach, we did not evaluate the effects of the different settings within the models (e.g., unmixing 

woody cover and grass versus unmixing woody cover, grass and soil).  

Regressions significantly (p < 0.05) outperformed the spectral unmixing sub-approaches 

(Figure 6a). While no regression sub-approach significantly outperformed the others, stepwise 

regression, with its ability to add significant predictor variables, performed better on average 

(Figure 6e). The regressions did not significantly outperform VCF in an HSD test, likely due to 

the limited number of VCF data points (n = 11). 
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Figure 6. Approach and Sub-Approach Accuracies. Across all accuracy measures, RF 
significantly outperformed the other approaches (a-d). However, we note that of the accuracy 
measures, R2 was the only one to give VCF a median score higher than the regressions (REG), 
demonstrating the discrepancies created when using R2 as a measure of accuracy. Among the sub-
approaches (e), RF remained the best performer, significantly outperforming the others. In all 
plots, letters signify approaches whose accuracies were not significantly different (p < 0.05). We 
tested for significance using ANOVAs and post-hoc Tukey honest significant different tests. In the 
boxplots, the bold centerline represents the median score, the box encompasses the 2nd and 3rd 
quartiles, and the top and bottom whiskers respectively represent the largest and smallest values 
within 1.5 times the interquartile range. Values outside that range are marked as outliers. In the 
sub-approach plot (e), to the left of the boxplots, points representing the accuracies of individual 
maps are scattered horizontally to limit overlap. The points illustrate both the number and 
distribution of map scores. To the right of the boxplots, smoothed histograms further illustrate the 
distribution of each sub-approach’s scores. The gray line separates VCF from the other results as 
a reminder that this was not a true accuracy assessment of VCF (VCF does not incorporate all 
woody cover as our maps do). 
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Evaluation of seasonal images 

Unlike the approaches and sub-approaches, both within and across PAs, no season 

significantly outperformed all the others (Figure 7; Table 4). DTW did the best on average (VEcv 

mean and SD of 16.6 ± 23.8%) and significantly outperformed the Dry, Wet and DW images, with 

the Wet image performing the worst (6.5 ± 24.9%). DTW did not significantly outperform TD, 

WT or Tran. This confirmed our expectation that the image with the most information (DTW) 

would do the best, while the Wet season image, captured when woody cover and grass are most 

spectrally similar, would do the worst. Meanwhile, the Tran image was included in all the best 

performing images (DTW, TD, WT and Tran). We also found that Tran was the best image when 

all PAs were combined (see “ALL” in Table 4). These findings suggest the Tran image is critical 

to mapping woody cover. Indeed, all the images with the lowest scores did not contain Tran (Dry, 

Wet and DW) and Tran significantly outperformed both Dry and Wet, making Tran the best option 

if a user were going to use only a single image in a new site.  

The best image for each PA varied and, like above, no image significantly outperformed all 

the others within a single PA (Table 4). However, unlike above, most of the best images in the 

PAs were something other than DTW (Table 4). Instead, Tran was most often selected as the best 

image and was included in the majority (9 of 12) of the PAs’ best images (i.e. DTW includes Tran). 

This provided further evidence that the Tran image is critical to mapping savanna woody cover, 

likely capturing woody cover and grass at their most spectrally dissimilar point, when woody cover 
is still green and grasses have senesced.  

We tested whether we could generalize the best image for a PA based on the PA’s average 

woody cover, MAP or precipitation seasonality (WorldClim bioclimatic variables #12 & 15, 

respectively (Fick and Hijmans, 2017)). For instance, we expected one image might do best in 
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drier PAs and another in wetter PAs. However, MAP and precipitation seasonality had no 

relationship with accuracies. Meanwhile, woody cover had a positive relationship with accuracies, 

but the relationship existed across all the images (Figure A.2). While this meant woodier PAs are 

likely to have the most accurate maps, it also meant that, like MAP and seasonality, the woody 

cover of a PA cannot be used to determine the best image.  

While no image across or within PAs significantly outperformed the others and the PA 

characteristics we tested could not be used to predict a best image, it was also encouraging, the 

findings also suggest one could use any of the seasonal images – whichever available. The notable 

exception to this was the Wet image. The Wet image had the lowest average score across the PAs, 

never appeared as a PA’s best image, nor was it ever used alone in any of the best models (more 

on models in Section 3.7; Table 4).  

 

Figure 7. Heat Map of Models that Performed Best Across PAs, Seasons and Approaches. To 
produce this figure, we took up to three model types from each approach (RF and VCF only had 
two and one, respectively) with the highest average VEcv scores across all the data. We then 
separated model performances by season and PA. Because the unmixing approach did not use the 
DTW, TD or WT composites, those spaces are not shown. Higher scores are darker and colors 
with no green coloring representing accuracies below zero. The contrast between approaches is 
apparent, as are the lack of any clear improvement in accuracy across the images and the 
consistently high scores of MUR. For display purposes only, scores less than -100 were set to -
100 and VCF results were repeated across seasons.  
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Evaluation of protected area accuracies 

Among the individual PAs, MUR had significantly (p < 0.05) higher scores than all the other 

PAs (VEcv mean and SD of 41.7 ± 23.6%; Figure 7). RUA, KRU and QUE all produced the least 

accurate maps (average accuracies amongst the three were not significantly different). Of them, 

QUE had the lowest average score (-9.1 ± 33.7%). Like the images, we tested for relationships 

between PA accuracies and MAP, precipitation seasonality or average woody cover. Like before, 

we found a positive relationship (significant) with PA woody cover (Figure A.3) but no 

relationship with MAP or seasonality. Again, this suggests woodier PAs are easier to map while a 

similar relationship does not extend to MAP or seasonality.  

Evaluation of variables  

Across PAs and seasons, we found that regression models using RNS, NDVI and BC 

performed the best (average accuracies amongst the three were not significantly different), with 

VEcv means and standard deviations of 23.7 ± 20.5%, 22.9 ± 23.9% and 21.5 ± 21.5%, 

respectively. The variables significantly outperformed all the other variables, except Band 4 (red), 

which NDVI and BC did not significantly outperform. The variables with the lowest scores were 

SNDI, SATVI and Band 5 (-4.7 ± 12.1%, -0.6 ± 32.5% and -0.4 ± 12.4%, respectively).  

We also tested for the image-specific variable that best predicted woody cover across all PAs. 

We found this to be the mean NDVI of the TD composite (Figure A.4; VEcv: 29.1 ± 25%). While 

it did not have an average score significantly higher than all the other variables, it was the only 

variable to significantly outperform some of the other variables (47 out of 143). Most of these (37 

of 47) were composite image variables derived using the normalized difference, suggesting the 

mean was the better statistic to use for these images. We tested this and found the mean 

significantly (p < 0.001) outperformed the variables derived using the normalized difference, with 
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respective scores of 13.0 ± 23.3% and -5.2 ± 22.7%. Therefore, while the variables using the 

normalized difference might add some explanatory power to woody cover models, it is likely 

minimal.  

Stepwise regression revealed no novel, consistently strong (VEcv > 50%) relationships 

between any combination of variables and woody cover across the PAs. However, NDVI and BC 

were the most commonly selected variables across all 84 total stepwise regressions: NDVI was 

selected in 29, and BC in 17. When we pooled all PA data together as if they were single PA, 

NDVI was not selected in any of the regressions. Instead, the stepwise regressions selected BC 

alone or in combination with other variables in five of the seven regressions (one regression per 

image). Accuracies ranged from 18.2 to 24.9%. These findings suggest that as the mapped area 

expands, relationships between NDVI and woody cover break down, while for BC, which simply 

quantifies how bright the pixel is in relation to its surroundings, they remain relatively robust. 

Best models  

The main objective of our work was to develop a single, accurate model for mapping woody 

cover. We first evaluated the best models trained and tested within the individual PAs (‘Best 

Locally Derived Model’ in Table 4). Across the 12 PAs (including ALL), most of the best models 

(11 of 12) were either regression- or RF-based, and several utilized NDVI. However, there was no 

clear pattern between the models. We then expanded the pool of models to include those trained 

using data from all the PAs combined (‘Best Overall Model’ in Table 4). Only one of the locally 

derived models was the best overall model for the PA: the SMR-derived MESMA that unmixed 

only woody cover and grass (TG) using the EMC endmember selection method and the Dry image 

(MESMA EMC TG – Dry). For all the other PAs besides SMR, the best overall models were RF 

models trained using data from all the PAs combined. When we expanded the comparison to 
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include all RF models (not just the best), those trained using data from all the PAs and tested in 

the individual PAs significantly (p < 0.001) outperformed those trained and tested in a single PA 

(VEcv: 67.7 ± 23.3% versus 30.5 ± 27.4%; R
2
: 0.76 ± 0.16 versus 0.42 ± 0.19; RMSE: 12.5 ± 

2.6% woody cover versus 19.5 ± 5.2% woody cover). This implies researchers can use training 

data from many savanna sites, even those hundreds of kilometers away, to improve models for a 

single site. This might be particularly helpful for researchers with limited data for their site. This 

finding also suggests that PAs share woody cover-reflectance relationships that a single model 

could use to accurately map woody cover across space and time.  

We also tested for the model that produced the highest average accuracy across PAs (‘Best 

General Model’ in Table 4). This model was RF-ALL-DW: an RF model using training data from 

all the parks (ALL) combined and the DW image. Compared to the best overall models for each 

PA, RF-ALL-DW did not cause a significant decrease in accuracy: average accuracy across the 

parks fell 4.9 percentage points, from VEcv values of 76.5 ± 15.4% to 71.6 ± 20.8% (p = 0.063). 

We note that when all the PAs were combined (i.e. the testing data from the different PAs was 

combined) and mapped as a single PA (‘ALL’ – last row of Table 4), the RF-ALL-DW model did 

not produce the best results – instead, the best model was RF-ALL-DTW. The difference is 

attributable to the fact that we ranked each candidate model based on its average accuracy across 

all the PAs, not based on its ability to map all PAs as one. (Like R
2
, the average VEcv of different 

datasets will not equal the VEcv when those data are pooled and evaluated as one.)  

Last, we tested which model performed best on average across all the PAs when only using 

training data from the individual PAs. In other words, we wanted to know the model that was most 

likely to perform well when mapping woody cover somewhere outside our list of sites using only 
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training data from the new site. Like above, this model proved to be a RF using the DW image 

(RF-DW).  

Both within and across PAs, while the best models did significantly outperform many of the 

other models, they did not significantly outperform them all (Table 4). This, in combination with 

the similar finding for the images, suggests that when attempting to map woody cover through the 

Landsat archive, researchers can be flexible in their year-to-year image and model selections. For 

example, if a researcher wanted to produce a map for SEL, the best model to use would be the RF-

ALL-DTW (VEcv of 86.2%). But if the Wet image was not available, then the next best model, 

RF-ALL-TD (VEcv of 85.4%), would result in what is still an accurate map with an accuracy that 

is not significantly lower than RF-ALL-DTW. The same would apply if only the Tran image were 

available: RF-ALL-Tran would produce an accuracy of 84.5% (see the online dataset for a 

complete list of model accuracies). Besides providing flexibility year-to-year, these findings 

suggest areas with cloud cover in one image could be filled using woody cover values derived 

from the next best cloud-free image – something we did not attempt to do here. 
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Table 4. Best Seasons, Approaches & Models as Measured by VEcv (%). The best locally derived model refers to those trained using 
reference data from the respective PA only. The best overall model is that with the absolute highest accuracy, regardless of the source 
of the training data. The best general model is the single model that did best on average across all the PAs. Model naming structure: 
Approach - source of training data - image season - variables used in model. We list the source of the training data only when it was 
ALL – the combination of all the PAs in this study – otherwise the source is the PA itself. Similarly, only models that used individual 
variables (i.e., regressions; “REG”) list those variables. Standard deviations are given where accuracies are mean values; otherwise, 
values are the accuracy of the single map produced by the model. Because we did not apply the unmixing approach to all image 
combinations (only DW), we excluded unmixing results from the best season evaluation, resulting in higher than otherwise expected 
mean accuracies.  
PA 
abbr. 

Best Season  Best Approach  Best Locally Derived Model  Best Overall Model  Best General 
Model† 

 VCF 

Season VEcv  Approach VEcv  Model VEcv   Model VEcv   VEcv  VEcv 

MUR DTW 46.8 ± 24.5  RF* 79.3 ± 8.6  RF - WT 78.4  RF - ALL - DW 88.6  88.6  60.0  

MPA Dry 15.6 ± 16.6  RF* 55.7 ± 21  RF - WT 50.1  RF - ALL - TD 78.1  76.5  -120.7 

QUE Dry -1.7 ± 20.3  RF* 55.4 ± 27.6  RF - DW 52.0  RF - ALL - DW 91.1  91.1  63.6 

SMR DTW 10.8 ± 18.5  RF* -2.8 ± 21.7  MESMA EMC TG - Dry 42.1  MESMA EMC TG - Dry 42.1  15.9  12.7 

RUA WT 1.2 ± 23.9  RF* 46.1 ± 25.4  RF - DW 35.6  RF - ALL - DW 76.3  76.3  -0.2 

SEL Tran 37.1 ± 19.5  RF* 67.3 ± 16.3  REG - TD - Mean NDVI & Band 5 
Normalized Difference 

58.3  RF - ALL - DTW 86.2  80.2  -32.1 

NLU Tran 20.6 ± 10.4  RF* 53.7 ± 30.1  REG - TD - Mean NDVI 40.1  RF - ALL - DTW 87.1  79.7  -2.1 

SLU Tran 35.5 ± 19.6  RF* 67.3 ± 18.6  RF - WT 65.8  RF - ALL - DTW 86.6  77.6  -15.6 

CHO Tran 29.9 ± 14.1  RF* 56.2 ± 18.5  REG - DTW - Mean NDVI 46.1  RF - ALL - DW 76.8  76.8  -260.6 

LIM TD 23.2 ± 11  RF* 41 ± 27.2  REG - Dry - Brightness & NDVI 40.8  RF - ALL - Dry 75.4  71.5  -275.1 

KRU Dry 0.7 ± 18.9  RF* 21.1 ± 31.2  REG - Dry - MSAVI2 29.4  RF - ALL - DW 53.4  53.4  -41.6 

ALL Tran 15.3 ± 10.5  RF* 46.2 ± 4.7  RF - ALL - DTW 51.1  RF - ALL - DTW 51.1  49.5  -7.9 

* Seasons, approaches and models that significantly (p < 0.05) outperformed their counterparts. Significance testing was carried out 
using two different measures depending on the comparison: Repeated Measures ANOVA (best season) and simple ANOVA (all others). 
† RF - ALL - DW was the best general model. 
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Map comparisons  

We compared the accuracies of both the maps produced by the best overall models (‘Best 

Overall Model’ in Table 4; Figures A.5-A.13) and VCF (Figures 6 & 7). For VCF, in one respect 

this was a simple demonstration of the difference between tree cover and woody cover, but it was 

also a true measure of VCF error where VCF exceeded woody cover (woody cover includes tree 

cover, therefore VCF values that exceed woody cover are true overestimates).  

Overall, our maps had a significant (p < 0.001) and strong relationship with woody cover 
(combined VEcv = 87.0%, R2 = 0.881; Figure 8b), while VCF had a significant (p < 0.001) but 

relatively weak relationship with woody cover (combined VEcv = 1.36%, R2 = 0.324; Figure 8d). 

Our maps overpredicted woody cover in areas of sparse woody cover and underpredicted in 

woodier areas (Figure 8b), while VCF was mostly below woody cover but exceeded woody cover 
(true errors) at 139 of 421 testing points, mostly in sparsely wooded areas (< ~10% woody cover; 

Figure 8d). Wald tests showed these biases were significant (the regressions between woody cover 
and our maps and VCF differed significantly from 1:1 lines). However, when we used one-sample 

t-tests to test for overall biases, i.e., whether errors were significantly different than zero, we found 

our maps combined did not have a significant bias (mean and SD of errors: 0.95 ± 10.9% woody 

cover; p = 0.074;), while VCF did (mean and SD: -16.7 ± 25.1% woody cover; p = 2.5e-35). The 

size and significance of VCF’s bias presented a potential adjustment factor. However, adding 16.7 

percentage points (the mean error across PAs) to VCF was not enough to move the average 

accuracy across PAs above a VEcv of 0% (average accuracy increased from a VEcv of -57.1% to 

-12.8%). Further, when looking at PA-specific errors, our maps’ errors generally center around 

zero (Figure 8a), while VCF’s did not (Figure 8c). Combined, we interpreted these to mean VCF 

cannot be used to represent woody cover generally, nor can it be easily adjusted for that purpose 
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at the scale of a single PA. Visual assessment of our maps and VCF underscored these findings. 

Our maps accurately represented woody cover, even along ecotones and gradients, while VCF, 

whether due to error or chance (tree cover and woody cover might have no relationship), did not 

represent any of these well (Figure 9). 

 
Figure 8. Our Best Maps and VCF Compared to Testing Data. Using the testing data 
(‘Reference’) from each PA, we plotted the errors of our best maps (‘Best Overall Model’ in Table 
4) and the differences of VCF tree cover (a & c, respectively). We then pooled the PAs and 
compared the reference data to our best maps (‘Predicted’) and VCF (b & d, respectively). 
Overall, our best maps have errors that are not significantly different than zero (a) and a strong 
relationship with the reference data (R2 = 0.881, VEcv = 87.0%) (b). Meanwhile, differences 
between VCF and woody cover are significantly different than zero (c) and VCF has a weak 
relationship with woody cover (R2 = 0.324, VEcv = 1.36%) (d). Both regression lines (red) are 
significant (p < 0.001). Individual PA maps, scatter plots and accuracy metrics (VEcv & R2) are 
available in Figures A.5-A.13.  
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Figure 9. Comparison of the Best Woody Cover Maps, VCF and VHR Satellite Imagery. Maps 
correspond to those produced using the respective ‘Best Overall Model’ in Table 4. All inset 
maps have diameters of 275 meters. Our maps (‘WC’) for KRU & LIM (a), SMR (b) and CHO 
(c) capture gradients in woody cover (KRU/LIM inset), the complete absence of woody cover 
(SMR inset) and ecotones (CHO inset) better than VCF. CHO and LIM both show data missing 
at their eastern and western boundaries, respectively, from excluded Landsat paths that did not 
cover >10% of the PA. LIM, SMR and CHO also all show some areas where cloud masks 
removed data. Our maps and VCF have a resolution of 30m. The VHR imagery has a resolution 
< 1m. This figure was produced using Esri ArcGIS. Satellite imagery from ArcGIS base map. 
Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 
AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.  
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Caveats & Concerns 

Because our best maps use RF, they are susceptible to the same criticism as VCF when it 

comes to detecting multiple stable states: the regression tree approach might create artificial 

discontinuities in the woody cover data that could be misinterpreted as support for multiple stable 

states (Hanan et al., 2014). However, we argue that by taking the average prediction of hundreds 

of separate regression trees, RF should minimize the risk of any artificial discontinuities in the 

data. Further, the sheer inaccuracy of the other approaches would also be a barrier to such studies. 

However, to be cautious, we advise duplicate analyses – one using the RF-based maps and the 

other using the best regression-based. Any significant difference in the results should be 

investigated accordingly.  

Of our study areas, SMR was an unusual challenge to map. While SMR did not have the 

lowest average scores across all the PAs, its best model had the lowest score and even VCF nearly 

outperformed our best general model (‘Best General Model’ in Table 4). However, VCF also had 

its largest proportion of true errors in SMR, with overpredictions at 76% of its testing points, 

making it appear the PA is a challenge to map in general. The fact that VCF overestimated the tree 

cover of SMR, when it appears to have mostly underestimated it in the other PAs, suggests to us 

that the unusually fertile plains of SMR might make woody cover and grass spectral differences 

less distinct, thereby confounding models. This was further supported by the fact that, in addition 

to the VCF overpredictions, the largest underpredictions (and largest errors overall) of our maps 

were also in SMR (Figure 7). However, like the other PAs, RF models trained using data from all 

the PAs did better in SMR than RF models only using SMR’s training data, suggesting additional 

training data is likely to improve results. 
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Conclusions 

The main objective of this study was to find a procedure we could use to accurately map 

woody cover in both current and historical imagery using a limited number of images per year. 

We found that RF clearly outperformed the other approaches, while no season or specific model 

significantly outperformed all the others. This suggests that having limited historical imagery 

available should not significantly affect map accuracies. However, special consideration should be 

given to the Tran image, which appeared in all the best image composites and significantly 

outperformed the Wet and Dry images. Further, NDVI, BC and the RNS bands had the strongest 

relationships with woody cover, suggesting they should be included in future mapping efforts. 

Using training data from all the sites led to the models that performed best in all but one of the 

PAs, suggesting mapping efforts at one site can be aided by training data from other sites. Finally, 

while the best models varied by PA, the best general model across all the PAs did not significantly 

decrease accuracies.  

Savanna ecosystems play a significant role in the global carbon cycle (Ahlström et al., 2015; 

Poulter et al., 2014), are critically important wildlife habitat (Malhi et al., 2016), and support a 

large fraction of the global human population (Dahlin et al., 2017). As such, it is essential that we 

develop and refine tools for mapping and understanding the spatiotemporal patterns of vegetation 

change in these systems. The high accuracies of our general model across our sites suggest that 

with proper sampling of heterogeneity, a single model could accurately map woody cover across 

space and time, opening the door to critical discoveries in these crucial ecosystems.



 44 

CHAPTER 2. PRECIPITATION, NOT ELEPHANTS, BEST EXPLAINS SAVANNA 

WOODY COVER ACROSS EASTERN AFRICAN PROTECTED AREAS 

 

Introduction 

Plants play a fundamental role in our planet’s climate and biogeochemical processes (Frei et 

al., 2009; Kopp et al., 2005; Planavsky et al., 2014). Understanding the factors that affect the 

geographic distribution of plants is therefore critical to our ability to predict future changes in the 

Earth system. For centuries, studies have focused on the bottom-up control (i.e. nutrients and 

climate) of plant distributions (Forster, 1778; Holdridge, 1947; Polis, 1999; von Humboldt and 

Bonpland, 1807). However, recent work has offered a new focus on top-down controls, indicating 

that disturbances maintain woody cover below its climate-regulated potential across broad swaths 

of Earth – particularly in the open, grassy and sparsely wooded habitats of savannas (Bond, 2005; 

Good and Caylor, 2011; Sankaran et al., 2008; Scholes and Archer, 1997; Staver et al., 2011). 

Understanding the processes that drive savanna vegetation patterns is important because 

savannas cover a fifth of Earth’s land surface (Channan et al., 2014), are home to over a half billion 

people (Nagelkirk and Dahlin, 2020), and disproportionately affect interannual variability of the 

global carbon cycle (Ahlström et al., 2015). However, understanding savannas is a challenge 

because they appear to have multiple stable states (Hirota et al., 2011; Holling, 1973), meaning 

they can transition to grassland or forest states when environmental conditions or disturbance 

regimes are altered, making the study of disturbances critical to predicting the future of these 

systems. 

The primary disturbances in savannas are fire (Bond and Keeley, 2005; Devine et al., 2015; 

Smit et al., 2010), drought (Porensky et al., 2013b; Skarpe, 1992), herbivores (Asner et al., 2016; 

Bond, 2008; Sankaran et al., 2013a) and humans (Bolognesi et al., 2015; Reid, 2012). Of these, 
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the large-scale effects of herbivores, especially megaherbivores (>100 kg), have received 

increasing attention. Recent findings suggest megaherbivores are capable of altering both regional 

vegetation distributions and biogeochemical cycles through myriad processes (Ripple et al., 2015; 

Schmitz et al., 2018), including nutrient and seed dispersal (Doughty, 2017; Doughty et al., 2015; 

Ripple et al., 2015; Wolf et al., 2013) and woody cover suppression (Bakker et al., 2016; Daskin 

et al., 2016; Guldemond and van Aarde, 2008; Jia et al., 2018; Malhi et al., 2016). The continued 

loss of megaherbivores is expected to have major impacts on ecosystem function (Enquist et al., 

2020; Malhi et al., 2016; Ripple et al., 2015). Of the megaherbivores, the largest and that with 

perhaps the most dramatic local effects on vegetation is the African savanna elephant (Loxodonta 

africana). 

Savanna elephants, as part of their normal browsing behavior, ring-bark, delimb and topple 

bushes and trees up to 12 m tall (Asner et al., 2016; Malhi et al., 2016; Shannon et al., 2008). 

Capable of increasing background treefall rates 6-fold (Asner and Levick, 2012), elephants fell 

trees at twice the rate of some local human communities (Mograbi et al., 2017). Further, elephants 

limit aboveground carbon accumulation (Davies and Asner, 2019) and the survival of woody 

species across all size classes (Asner et al., 2016; Dublin et al., 1990), helping to maintain areas 

of low tree cover while also limiting woody encroachment (Daskin et al., 2016; Stevens et al., 

2016). These findings suggest that elephants could be a regional top-down control responsible for 

both the creation and maintenance of savannas. If they are, this would have implications not only 

for megaherbivore and savanna conservation, but also for global vegetation models and 

understanding the consequences of prior megafauna extinctions.  

However, regional studies examining relationships between elephants and vegetation 

abundance and/or woody cover lack consensus, likely due to methodologies that rely on coarse 
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satellite imagery (km resolution), gross estimates of vegetation greenness, relatively short records 

(~10 years) and/or small-scale field plots (Duffy and Pettorelli, 2012; Hayward and Zawadzka, 

2010; Sankaran et al., 2008). Meanwhile, meta-analyses largely agree, finding that elephants are 

related to reductions in the abundance and structural homogeneity of woody cover (Guldemond 

and van Aarde, 2008; Guldemond et al., 2017). This contradiction between regional studies and 

meta-analyses is likely due to both site selection and scale. Elephants generally stay and browse 

within 10 km of water during the dry season (Loarie et al., 2009a; Roever et al., 2012), when 

browsing rates on woody cover are highest (Codron et al., 2013; Loarie et al., 2009b), and avoid 

slopes greater than ~4° (Edkins et al., 2008; Roever et al., 2012). Therefore, elephant impacts on 

woody cover should be greatest in relatively flat areas near permanent water and we would expect 

disparate results between small scale studies that are likely restricted to these areas and regional 

studies that extend beyond them.  

We tested for these landscape-level impacts of elephants across 12 protected areas (PAs) from 

Uganda to South Africa using a 33-year record of satellite-derived, 30-m resolution maps of woody 

cover. We evaluated relationships across protected areas with respect to 1) PA-wide woody cover, 

2) woody cover heterogeneity, 3) proximity to water and 4) slope. By looking across a broad 

climatic gradient and including other variables known to affect woody cover (e.g., climate, humans 

and fire), we rank elephant impacts relative to these other variables. Our results have direct 

implications for the understanding and conservation of elephant populations, savanna ecosystems 

and human livelihoods. 
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Materials and Methods 

Study sites  

We selected 12 PAs located in eastern and southern Africa (Figure 10). We used PAs because 

most elephant populations are currently limited to PAs in eastern and southern Africa (Thouless et 

al., 2016). In addition, elephant census data are largely restricted to PAs. We selected PAs with a 

range of elephant densities and precipitation (Table 5). Further, to help ensure changes in woody 

cover were not the direct result of human activity, we avoided PAs known to have large amounts 

of charcoal production or other human activities within their borders.  

 

Figure 10. The Twelve Protected Areas Used in this Study. Site numbers align with those in 
Table 5. 
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Table 5. Protected Area Names and Attributes. Elephant densities are averages based on 
elephant census data since 1980. Mean annual precipitation (MAP) was calculated using the 
Climate Hazards Group Infrared Precipitation with Station Data (Funk et al., 2015) from 1986-
2015. PA numbering corresponds to Figure 10. 

PA # Name & Country Abbr. Elephants 
per km2 

MAP 
(mm) 

Area 
(km2) 

 1 Murchison Falls National Park, Uganda MUR 0.14 1262 3877 

 2 Mpala Research Center, Kenya MPA 0.36 601 194 

 3 Queen Elizabeth National Park, Uganda QUE 1.30 998 7395 

 4 Maasai Mara National Reserve, Kenya MAR 0.98 950 1510 

 5 Serengeti National Park, Tanzania SER 0.13 850 14763 

 6 Ruaha National Park, Tanzania RUA 0.47 700 20226 

 7 Selous Game Reserve, Tanzania SEL 0.41 1121 44800 

 8 North Luangwa National Park, Zambia NLU 0.74 904 4636 

 9 South Luangwa National Park, Zambia SLU 0.52 917 9050 

 10 Chobe National Park, Botswana CHO 2.44 532 11000 

 11 Limpopo National Park, Mozambique LIM 0.07 534 10000 

 12 Kruger National Park, South Africa KRU 0.60 511 19175 

Data sources   

For our analysis, we compared mapped woody cover to 17 variables describing climate, fire 

and elephant and human population densities. The sources and methodologies for these variables 

are addressed in the subsequent sections.   

Woody Cover 

We generated 30 m resolution maps of woody cover fractions spanning 1984-2016 using 

Landsat TM, ETM+ and OLI surface reflectance data downloaded from GEE (Gorelick et al., 

2017). All imagery was harmonized across satellites using the coefficients provided by Roy et al. 

(2016). We used imagery from three times of year: the wet (W) and dry (D) seasons, and the 
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transition (T) between the two, going from wet to dry. The images were used separately and 

together as composite images, yielding seven images per year: D, W, T, DW, TD, WT & DTW. 

To select the seasonal images (D, W and T), we first used GEE to export the dates and average 

Normalized Difference Vegetation Index (NDVI) values of all available Landsat images 

overlaying the PAs. Each PA’s area included a 20 km buffer. We then used the NDVI values to 

identify the dates of the D, W and T images. If fewer than three images were available in a given 

year, we took those images while ensuring they represented the season they had been assigned. 

We did this by comparing a given image’s NDVI values to those of the 2016 season, along with 

the standard deviation of the NDVI values for each season within the respective PA. We then 

determined the breaks between the data using the formulae: 

!"#2016 − !"#)!	+,	 !"#$%&'()"*+$%&'$ = !"#	)./0,1	2!34	"/15.  (1) 

!"#$%&'()"*+$%&'
$ 	+,	 )"*+$%&'(,-.$%&'

$ = 6"/1	)./0,1	2!34	"/15.  (2) 

)"*+$%&'(,-.$%&'
$ 	+,	7.+2016 +7.+)! = 7.+	)./0,1	2!34	"/15.	  (3) 

where Dry2016, Tran2016 and Wet2016 represent the NDVI value of the 2016 Dry, Tran and 

Wet season images, respectively, and DrySD and WetSD represent the NDVI standard deviation 

of the seasonal images before filtering. Filtering the data this way still allowed some variation in 

the definition of the seasons while also ensuring, for example, that a dry season image from 1984 

was similar – at least in terms of its NDVI – to the dry season image from 2016. This was critical, 

given that the RF models used to generate the maps were developed (i.e., “trained”) using the 2016 

imagery. If a seasonal image did not fall within its range, the image was either discarded, or 

assigned to a different season if it both fell within that season’s range and no other image had 

already been selected for the season. 
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For each PA, we then used the most accurate Random Forest (RF; Breiman, 2001) models 

developed by Nagelkirk and Dahlin (2020) to create an initial series of maps spanning 1984-2016. 

The models used the visible, NIR and SWIR bands shared across Landsat satellites as input (i.e., 

the coastal aerosol band of OLI was not used). All of the models were trained using reference data 

from 2016 sourced from all the PAs. When tested using separate testing data from 2016, these 

models had R2 values of 0.829 ± 0.103.  

Like others who have used models developed using a single year of data to map back through 

time (Vogeler et al., 2018), we adopted a “space-for-time” design (Pickett, 1989). That is, since 

the models were developed using data from all the PAs and were consistently accurate across PAs, 

which each cover hundreds to thousands of square kilometers, are up to ~2700 km apart and use 

imagery from different dates within the year 2016, the models should incorporate enough spatial 

(along with some temporal) variation in their relationships to hold through time as well as space.  

We used the most accurate models to create an initial series of maps spanning 1984-2016. 

Clouded areas in these maps were sequentially filled using the next best RF models (Table B.1). 

For example, a map generated using a dry season image could have its clouded areas filled using 

a wet season image, each using their own season-specific RF model. This was repeated to fill as 

many clouded areas as possible. Overall, when tested using data from 2016, the combined models 

had R2 values of 0.748 ± 0.157.  

In addition to data missing due to clouds, no single PA had imagery available every season or 

year of the entire 1984-2016 record (Table B.2), which limited the total images available for cloud 

filling, along with the final number of maps. Even with these limitations, enough data were 

available to produce 250 maps of woody cover across the 12 PAs, or an average of ~20 woody 

cover maps per PA. 
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Elephant Density 

We compiled elephant census data from multiple sources, most made available by the African 

Elephant Database (AED). Since 1987, the AED has periodically (4-6 years) published the best 

available, PA-specific elephant census data for the African continent (Blanc et al., 2007, 2003; 

Burrill and Douglas-Hamilton, 1987; Said et al., 1999, 1995; Thouless et al., 2016). We also 

collected census data not reported by the AED (e.g., Dublin & Douglas-Hamilton, 1987; Chase et 

al., 2016), resulting in a record spanning 1984-2016, with individual census record lengths varying 

by PA (CHO had the shortest record: 1994-2014; Figure B.1). 

The quality of census data varies across sites and years. The majority of censuses are high 

quality, i.e., aerial surveys covering a portion or all of a PA. The lowest quality data, and the least 

common (<2% since 1984), represent informed estimates from park wardens. Further, censuses 

represent a short-term assessment (collected over a few days) of the elephant population in a park. 

In an attempt to account for uncertainties, 95% confidence intervals are often reported by census 

teams, though they are less common in older censuses.  

Elephant census teams typically conduct counts during the dry season, when elephants are 

most visible and, incidentally, most likely to be browsing and felling woody vegetation (Birkett 

and Stevens-Wood, 2005; Codron et al., 2011). Elephant ranges also constrict during the dry 

season (Western and Lindsay, 1984; Young et al., 2009), hence surveys should be a reasonably 

accurate representation of elephant populations and their browsing pressure within each PA.   

Precipitation 

We derived yearly annual, wet- and dry-season precipitation for each PA using the 0.05° 

(~5.5km) resolution Climate Hazards Group Infrared Precipitation with Station Data daily dataset 
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(CHIRPS; Funk et al., 2015)  available in GEE. All pixels with centroids within the PA boundary 

were included.   

We also calculated the mean number of days with precipitation (DWP). Previous work 

demonstrated that mean wet season precipitation (WSP) and mean depth of wet season rainfall 

events (MDE) together affect the woody cover of African savannas (Good and Caylor, 2011). We 

combined these variables into a single metric, DWP, by dividing WSP by MDE (DWP = WSP / 

MDE). In doing so, we assumed that no more than one rainfall event occurred per day. We 

computed DWP for each year, wet season and dry season of our study in GEE using CHIRPS daily 

data. Because we needed to describe DWP at the PA level, we defined DWP as days where more 

than half of the PA received rain.  

Temperature  

We used 0.05° (~5.5km) resolution TerraClimate mean monthly minimum and maximum 

temperature data (Abatzoglou et al., 2018) available in GEE to calculate mean annual temperature, 

along with average minimum and maximum temperatures.  

Drought 

We quantified drought conditions in the PAs using the 0.5° spatial resolution Standardized 

Precipitation-Evapotranspiration Index (SPEI; Beguería et al., 2010). SPEI calculates water 

balance (precipitation minus potential evapotranspiration) over 1 to 48-month time periods, then 

uses a standardized Gaussian variate with mean and standard deviation of zero and one, 

respectively, to compare the values to those across a record spanning the years 1901-2015. The 

use of a long-term climate record helps place drought events in context, while the multi-scalar 

nature allows users to assess droughts across varying time scales. Because our analysis used 

variables with annual timesteps, we used the 12-month SPEI data. 
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Fire 

To assess the various spatial and temporal aspects of fire and associated effects on woody 

cover, we calculated three metrics using the MODIS Collection 6 MCD64A1 global burned area 

product (Giglio et al., 2015) in GEE: the average annual burned fraction of each PA (‘burned 

fraction’), the average annual fraction of each PA burned multiple times (burnmult) and the total 

number of years >25% of the PA burned (burn25). We generated the latter two variables as 

estimates of fire return intervals, which are known to have strong relationships with woody cover 
(Sankaran et al., 2008). The MCD64A1 product used to generate these variables uses 1km MODIS 

active fire observations coupled with a burn sensitive vegetation index based on 500m MODIS 

Surface Reflectance data to estimate the burn dates. These data are then compiled to produce 

monthly, 500m resolution maps of burned area available from November 2000 to near-present 

(continuously updated). 

Human Population Density 

We used GEE to calculate the mean estimated human population density within a 20 km buffer 

around each PA for years 1975, 1990, 2000 and 2015 (the only years available) using the 250m 

resolution Global Human Settlement Layers (JRC and CIESIN, 2015). In addition to direct impacts 

on woody cover, human population densities over 15.2 persons/km2 deter elephants (Hoare and 

Du Toit, 1999). Therefore, relatively high human population densities in areas surrounding PAs 

might confine elephants to the PAs, thereby increasing elephant impacts on woody cover and 

creating an additional, indirect, negative relationship between human population densities and 

woody cover. 
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Latitude 

We included latitude (PA centroid) as an independent variable because it has a significant 

relationship with many global and regional processes, including climate, day length, and 

biodiversity (e.g., Kerkhoff et al., 2014). However, we did not expect latitude to have a significant 

relationship with woody cover in savannas because climate, especially precipitation, varies even 

along similar lines of latitude in eastern Africa (Nicholson, 2017), where most of the PAs are 

located. However, in any regional study of vegetation, latitude could play a larger role than 

anticipated (e.g., Dahlin et al., 2017) and should be tested rather than ignored.  

Elevation 

We included PA mean elevation from the Shuttle Range and Topography Mission Version 3 

dataset (SRTM; 30-m resolution) in our analysis because, like latitude, elevation has long been 

recognized as a major determinant of plant and biome distributions (von Humboldt and Bonpland, 

1807).   

Data processing 

In addition to quantifying woody cover at the level of the PA, we divided each PA into four 

areas based on slope and distance from water: flat areas (£ 4°) near water (<10km); flat areas far 

from water (10-40km); hilly (>4°) areas near water; and hilly areas far from water.  To delineate 

these areas, we first calculated slope using 30-m resolution SRTM v3 data (Farr et al., 2007) in 

GEE. We then calculated distance to water using the 30-meter resolution Global Surface Water 

dataset (Pekel et al., 2016). The dataset maps monthly surface water presence across the globe. We 

downloaded the data for each PA, including a 50km buffer, from GEE and defined water bodies 

as those with water present year-round from 1984-2015.  
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We then calculated PA-specific annual values for both mean woody cover and the 

semivariance of woody cover at the level of the entire PA and within each of the four areas. 

Semivariance quantifies the heterogeneity of a surface, calculated as half the variance of the 

differences between all point values a given distance apart. We calculated semivariance at 100-

meter intervals, starting at 50 meters and going to 950. This allowed us to assess woody cover 
heterogeneity at small (50 m) to large (950 m) distances. Hereafter, we use semivariance and 

heterogeneity interchangeably. 

Average woody cover in 10 of our 12 sites did not show a significant trend over time, while 

seven did not show significant elephant density trends (Figure 11, Figure B.1). In addition, the 

producers of elephant census data caution against using the data in temporal analyses given that 

changes between years could be due to changed methodologies as well as actual changes in 

elephant populations, with only more recent reports attempting to account for these changes (Blanc 

et al., 2007). These factors, combined with gaps in the timeseries (e.g., Figure 11), led us to conduct 

an analysis using the temporally weighted timeseries mean of the annual values for both woody 

cover and elephant density, along with all other variables. In practice this consisted of a gap-filling 

procedure interpolating values between measured data points (Figure B.2), followed by taking the 

timeseries’ mean, creating a single value per PA for all the variables considered.  
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Figure 11. Woody Cover Fractions and Elephant Densities. Woody cover fraction (black) and 
elephant density (red) data from three of the 12 PAs used in this study (a-c). Dashed lines denote 
a significant trend (p £ 0.05) in the data. Error bars on the woody cover data denote the 
spatially weighted RMSE of the models used to generate the woody cover maps (multiple models 
were used to generate each year’s map). Error bars for the elephant data denote 95% confidence 
intervals. In cases where confidence intervals are absent, it is either due to values not being 
reported, or values were reported as zero – a common practice when an aerial census covered 
the entire PA. For data from all PAs, see Figure B.1.  

Analysis 

Our analysis consisted of two main components. In the first, we analyzed mean woody cover 
across all the areas using simple linear regression. For each regression, we used PA-specific means 

(n=12) from across the data record, as described above. However, for variables that did not span 

the dates of the full woody cover record (1984-2016), the means for both the woody cover and the 

variable were calculated using data from overlapping years only. For example, given that fire data 

was only available from 2001-2016, we calculated the mean using fire and woody cover values 

from 2001-2016.  

In the second, at each of the ranges used to calculate semivariance, we regressed the PA-

specific semivariance values (n=12) against the individual variables. This allowed us to assess the 

relationship between each variable and woody cover heterogeneity at each range. Like above, we 

matched the temporal record of the datasets before calculating the mean PA-specific semivariance 

and variable values used in each regression.  
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Given the limited number of data points (n=12) used in all the regressions, we were careful to 

attend to the effects of outliers. To detect potential outliers, we utilized Tukey’s rule, designating 

values outside of 1.5 times the interquartile range as outliers. However, we did not remove all 

outliers, particularly when they made regression relationships weaker. Instead, we took two 

different approaches to removing outliers for the mean woody cover and heterogeneity regressions. 

For the mean woody cover regressions, we kept all woody cover values and only assessed 

independent variable outliers. Because we favored a conservative approach that reduced the 

chances of a type I error and relationships that applied for all the data, not a subset, we removed 

groups of outliers (two or more) that made relationships stronger while keeping those that made 

relationships weaker. However, we did remove lone outliers, given the disproportionate leverage 

they exerted on the regressions. For the heterogeneity regressions, we did remove all outliers in 

both the woody cover data and independent variables. We did this to generate plots using the same 

number of PAs in the regressions at each range, something not achieved when removing 

independent variable outliers only.  

Results 

PA-wide woody cover  

Of the 17 possible variables to explain woody cover that we considered, wet season 

precipitation (R2 = 0.38, p = 0.03; Pwet) and mean monthly minimum temperature (R2 = 0.43, p = 

0.02; Tmin) had the strongest relationships with the average woody cover of the PAs (Figure 12), 

followed by the number of days with precipitation in the wet season (R2 = 0.36, p = 0.04; DWPwet) 

and mean annual precipitation (R2 = 0.36, p = 0.04; MAP). Meanwhile, mean annual temperature 

(MAT) had a near significant relationship with woody cover (R2 = 0.31, p = 0.06) (Figure B.3). 

However, Tmin and Pwet were correlated (r = 0.62, p = 0.03; Table B.3), meaning their effects are 
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unlikely additive. Meanwhile, Tmin was not correlated with MAP (r = 0.51, p = 0.09) nor DWPwet 

(r = 0.46, p = 0.13), while Pwet was not correlated with MAT (r = 0.47, p = 0.12), suggesting these 

variable pairs could have additive effects.  

All other variables, including those describing elephant densities, fire, drought and human 

population densities, did not have significant relationships with woody cover (Figure 12, Figure 

B.3).  

Across subsequent sections analyzing areas in relation to slope and proximity to water 

(below), variables describing precipitation had the strongest relationships with woody cover except 

in a singular case where elephants had the stronger relationship. Of the precipitation variables, Pwet 

had the highest number of significant relationships (though not always the strongest) with woody 

cover. We therefore only show results for Pwet and elephant densities in the majority of the 

remaining sections (for all results, see Figures B.3-B.11). 
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Figure 12. Relationship between PA Mean Woody Cover and a Subset of Variables. Variables 
related to precipitation and temperature were related to woody cover, with wet season 
precipitation (a) and mean monthly minimum temperatures (d) having the strongest 
relationships. All variables outside of precipitation and temperatures did not have a relationship 
with woody cover, including elephant densities (b,c,e,f). Gray text denotes non-significant R2 
values. Significant relationships have dashed regression lines with shading indicating the 95% 
CI. Outliers are labeled with asterisks. Relationships for all variables used in this study are 
available in Figure B.3. See Table 5 for PA names corresponding to legend abbreviations. 

Analyzing woody cover based on slope and proximity to water 

Near water, in flat and hilly areas, none of the variables had significant relationships with 

woody cover (Figure 13a,b,e,f; Figures B.4 & B.5).  

Far from water, woody cover in flat areas was related to Pwet (R2 = 0.37, p = 0.036), MAP (R2 

= 0.36, p = 0.038), DWPwet (R2 = 0.46, p = 0.016) and Tmin (R2 = 0.38, p = 0.033) (Figure 13c,d; 

Figure B.6). On hills far from water, woody cover was related to Pwet (R2 = 0.53, p = 0.008), 

DWPwet (R2 = 0.57, p = 0.005), MAP (R2 = 0.42, p = 0.02) and Tmin (R2 = 0.40, p = 0.03) (Fig 4g,h; 

Appendex B.10). However, elephant densities also had a significant, positive relationship with 
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woody cover on hills far from water (R2 = 0.41, p = 0.03). None of the other variables had 

significant relationships with woody cover in these areas (Figures B.4-B.7).  

 

Figure 13. Relationships in the Four Within-PA Areas Analyzed. Relationships between both 
elephant densities and wet season precipitation (Pwet) and mean woody cover (WC) in the four 
within-PA areas analyzed: flat areas near (a,b) and far from water (c,d), and hilly areas near 
(e,f) and far from water (g,h). Gray text denotes non-significant R2 values. Significant 
relationships have dashed regression lines with shading indicating the 95% CI. Outliers are 
labeled with asterisks. Relationships for all variables used in this study are available in Figures 
B.4-B.7. See Table 5 for PA names corresponding to legend abbreviations.  

To highlight differences between sloped and flat areas near and far from water, not just 

absolute values, we also tested relationships between predictor variables and these differences. 

Overall, hilly areas had higher levels of woody cover than flat areas (Figure 14a-d). The only 

exception to this was Limpopo National Park (LIM), which also had the lowest elephant densities 

of the PAs. Near water, the difference in woody cover between flat and hilly areas was not 

attributable to any of the variables tested (Figure 14a,b; Figure B.8). Far from water, the 

differences between hills and flat areas were explained by only two variables: elephant densities 

(R2 = 0.59, p = 0.006) and Pwet (R2 = 0.36, p = 0.038) (Figure 14c,d; Figure B.9). 
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When comparing areas near and far from water, relationships were more complex. Differences 

between flat areas were explained by Pwet (R2 = 0.44, p = 0.019), MAP (R2 = 0.36, p = 0.039) and 

DWPwet (R2 = 0.47, p = 0.015) (Fig 5f, Figure B.10). However, drier PAs had higher woody cover 

in flat areas near water, while wetter PAs were woodier in flat areas far from water. The transition 

occurred near Pwet values of ~600 mm, MAP values of ~650 mm and DWPwet values of ~50 days 

(Figure 14f, see Figure B.10).   

Differences between hilly areas near and far from water were related to elephant density (R2 

= 0.38, p = 0.043), DWPwet (R2 = 0.50, p = 0.01) and Pwet (R2 = 0.48, p = 0.013) (Figure 14g,h; 

Figure B.11). Once again, no other variables were colinear with elephant densities, but the two 

precipitation-related variables were colinear (r = 0.84, < 0.005; Table B.3). Like the flat areas, hills 

near water in drier PAs had more woody cover than those farther from water, while wetter PAs 

had the opposite. Also like the flat areas, the transition happened at Pwet values of ~600 mm and 

DWPwet values of ~50 days.  

Unlike the flat areas, elephant densities also had a relationship with the woody cover 

differences between hilly areas (R2 = 0.38, p = 0.043). In PAs with lower elephant densities, hills 

near water had higher levels of woody cover than those far from water, while PAs with higher 

elephant densities displayed the opposite (Figure 14g). The transition occurred at elephant 

densities of ~0.25 elephants km-2.  

These positive relationships with precipitation and elephant densities were driven by increases 

in woody cover far from water, while woody cover near water remained relatively constant 

regardless of precipitation and elephant densities (Figure 13e-h).  
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Figure 14. Relationships between Hill Slopes and Flat Areas. Relationships between both 
elephant densities and wet season precipitation (Pwet) and woody cover (WC) differences 
between areas. Gray text denotes non-significant R2 values. Significant relationships have gray 
dashed regression lines with shading indicating the 95% CI. Black dashed lines indicate zero on 
the y-axis. Outliers are labeled with asterisks.  Relationships for all variables used in this study 
are available in Figures B.8-B.11. See Table 5 for PA names corresponding to legend 
abbreviations. 

Heterogeneity 

To assess whether variables had a relationship with the heterogeneity of woody cover within 

and among the PAs, we calculated the semivariance of woody cover across multiple ranges using 

the mean woody cover maps for each PA. As before, we assessed woody cover both at the level 

of the PA and within areas related to slope and proximity to water. However, for areas within PAs, 

we only assessed woody cover heterogeneity in flat areas because hilly areas were not generally 

contiguous, nor large enough to assess heterogeneity at large scales.  

We found that in all areas of the PAs elephant densities had no significant relationships with 

woody cover heterogeneity (Figure 15f,h; Figures B.12-B.14). Instead, like with average woody 

cover, in all areas the majority of the strongest relationships with woody cover heterogeneity were 

attributable to Pwet (Figure 15a,c; Figures B.12-B.14). Pwet was also the only variable to have 
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significant relationships with heterogeneity in all areas and at all distances measured. Similarly, 

MAP and DWPwet had some of the strongest relationships with heterogeneity, with significant 

relationships at all ranges but one (50 meters). Meanwhile the number of days with precipitation 

in the dry season (DWPdry), MAT, Tmin, latitude, elevation and burnmult also had significant 

relationships at a smaller number of ranges (Figure 15b,e; Figures B.12-B.14).  

The strength of the relationships between variables and woody cover heterogeneity were not 

uniform across ranges, nor in relation to water proximity, though all relationships were positive. 

In areas near water, Pwet and burnmult had their strongest relationships with woody cover 

heterogeneity at larger ranges, while Tmin had the opposite relationship (Figure 15a,b,e). In areas 

far from water, Pwet had its strongest relationships at shorter ranges (Figure 15c). Tmin and burnmult 

had no significant relationships with heterogeneity in areas far from water (Figure 15g,h). The 

only other variables to have relationships in areas far from water were other precipitation-related 

variables: DWPwet and MAP (Figure B.14).   
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Figure 15. Relationships with Woody Cover Heterogeneity Near and Far from Water. 
Relationships between Pwet, Tmin, burnmult, and elephant densities and woody cover heterogeneity 
in areas near and far from water. Filled circles denote significant relationships (p £ 0.05) 
between variables and the semivariance (i.e., heterogeneity) of woody cover at each range from 
50 to 950 meters. Pwet was the only variable to have significant relationships with heterogeneity 
at all ranges, while the other variables had some or none depending on the area’s proximity to 
water. Relationships for all variables used in this study are available in Figures B.12-B.14. 

Discussion 

Primary and secondary roles of precipitation and elephants 

Decades of research into the relative importance of climate versus disturbance in maintaining 

savanna ecosystems has led to conflicting results across spatial resolutions and extents (e.g., 

Sankaran et al., 2008; Asner et al., 2016). Here we asked whether landscape-scale patterns differed 

across a regional extent. Our results demonstrate that total woody cover and heterogeneity at the 

landscape scale across a large latitudinal gradient are predominantly controlled by climatological 

variables – principally precipitation – not elephants. Specifically, our findings emphasize the 

importance of wet season precipitation: Pwet and DWPwet were repeatedly among the best 

predictors of woody cover and heterogeneity. Consequently, these findings suggest that it should 

be possible to model savanna woody cover at coarse spatial resolutions without including the 

impacts of herbivores and fire, despite calls for their inclusion (Bond, 2005).  
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Precipitation is not, however, the only factor shaping woody cover within these landscapes. 

When we divided the landscape by slope and distance to water, our results suggest elephants are 

shaping woody cover in novel, unexpected ways.  

While elephant densities did not have our hypothesized relationship with woody cover in flat 

areas near water, they did have a positive relationship with woody cover on hills far from water 

(Figure 13g). We propose two possible explanations for this relationship. First, previous studies 

have shown elephants and other megaherbivores transport nutrients and seeds upslope (Doughty, 

2017; Doughty et al., 2015; Ripple et al., 2015; Wolf et al., 2013), which could be aiding the 

establishment of woody cover on hills in PAs with higher elephant densities. Second, because 

elephants switch from browsing to primarily grazing in the wet season, the same time of year they 

are known to range farther from water (Codron et al., 2012; Loarie et al., 2009b), they may 

increasingly reduce fire occurrence on slopes by reducing fuel loads (grasses) in areas near water 

overall – a known impact of grazers on savanna landscapes more generally (Ripple et al., 2015). 

Indeed, elephant density had a near significant negative relationship with burnmult (r = -0.52, p = 

0.1; Table B.3). However, none of the variables quantifying fire had relationships with woody 

cover in any of the areas tested, which supports other studies finding fire impacts to be less than 

those of elephants and precipitation (Asner et al., 2016; Morrison et al., 2016; Shannon et al., 

2011). Untangling the relationship between elephant densities, fire and woody cover would require 

high spatial resolution information about fire frequency and extent. This could be estimated from 

Landsat, however, Landsat’s 16-day revisit rate and lack of data collected in Africa in the 20th 

century (Wulder et al., 2016) make fire frequency and extent difficult to assess across the temporal 

extent of this study (Hawbaker et al., 2017). 



 66 

Our within-landscape results also suggest areas near water may be in a stable state. Both flat 

and hilly areas near water had no relationship with any of the 17 variables we tested. Instead, 

woody cover near water remained largely unchanged between the PAs (Figure 13a,b,e,f and Figure 

16). Further, while woody cover near permanent water was highest in drier PAs - potentially due 

to groundwater supporting the woody cover nearer to surface water – wetter PAs displayed the 

opposite (higher woody cover far from water). Instead of increasing alongside the areas far from 

water, areas near water showed no change in woody cover. This suggests that in wetter PAs 

something limits woody cover near water – potentially the top down control of disturbances such 

as fire and elephants, much like proposed by Bond (Bond, 2005) and supported by others (Asner 

et al., 2016; Axelsson and Hanan, 2018; Dublin et al., 1990; Stevens et al., 2016). This could also 

explain why neither elephants nor fire had relationships with woody cover in these areas: the areas 

are in a state that does not change with relatively small fluxes in either disturbance levels or climate 

variables – a central tenant of multiple stable states theory (Holling, 1973). If these areas are in 

fact in a stable state, then disturbance regimes would need to be substantially altered to detect their 

impacts. Indeed, experiments using elephant exclosures or studying the effects of local extinctions 

find significant increases in woody cover after elephant removal (Asner et al., 2016; Stevens et al., 

2016). Our work shows something similar: in PAs with sufficient rainfall to support high levels of 

woody cover, areas with less browsing pressure from elephants (areas far from water) have higher 

woody cover than areas that experience high levels of browsing pressure (areas near water; Figure 

16b,d).  
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Figure 16. Conceptual Diagram of Changes in Woody Cover in Relation to Elephant Densities 
and Precipitation. Both flat and hilly areas near water do not change with elephant densities nor 
precipitation, leading us to conclude these areas are in a stable state (left side of a-d). However, 
in areas far from water (right side of a-d), woody cover on hills increased with respect to both 
elephant densities and precipitation. Flat areas far from water also had a positive relationship 
with precipitation, but no relationship with elephant densities. 

Effects on woody cover heterogeneity 

Like overall woody cover, heterogeneity was primarily associated with precipitation, 

principally Pwet (Figure 15, Figures B.12-B.14). Further, Pwet was highly correlated with 

heterogeneity at all scales, suggesting it is the major driver of the spatial patterns of woody cover 

at both large and small scales. Meanwhile, we found no relationship between elephants and woody 

cover heterogeneity at any range or in any area. In addition to precipitation, fire was related to 

heterogeneity at larger ranges, similar to other studies (Holdo et al., 2009a; Smit et al., 2010). 

However, fire first became a significant predictor of heterogeneity after a range of 500 meters, 

which matches the resolution of the MODIS fire product. This likely means that the relationship 

between fires and heterogeneity at large scales is due to the fire product predominately detecting 

large-scale fires (i.e. ³500 m2). Therefore, again, the use of a higher resolution fire product might 

find relationships at a smaller scale, if one were available. Last, temperatures (Tmin and MAT; 
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Figure 15b, Figure B.12) were only related to heterogeneity at the smallest scales in areas near 

water, suggesting increased temperatures cause relatively uniform increases in landscape-level 

woody cover but increased small-scale patchiness in these areas. 

Habitat degradation by elephants 

Elephants do not appear to degrade landscapes via the unsustainable removal of woody cover 

or a reduction in heterogeneity. This finding corroborates other work focused on single PAs or 

smaller regions (Kalwij et al., 2010; Owen-Smith et al., 2006; Skarpe et al., 2004). This does not 

mean elephants are not suppressing woody cover, particularly in areas near water; rather, any 

potential effects are uniform across the elephant densities considered here. However, the different 

components of woody cover could be changing while woody cover itself is not; many savannas 

are undergoing high levels of bush encroachment while losing their mature trees (Owen-Smith et 

al., 2006). Differentiating between bushes and trees, however, was not possible using our methods 

(Nagelkirk & Dahlin 2020). 

The PA that has been central to the debate of whether elephants degrade ecosystems is Chobe 

National Park, Botswana (CHO). CHO has some of the highest elephant densities of any PA in 

Africa (Thouless et al., 2016), along with relatively low woody cover levels and heterogeneity. 

Our results highlight these characteristics, while also providing a climatological context that helps 

explain its low woody cover and heterogeneity: both CHO’s woody cover and heterogeneity fall 

in line with values predicted by Pwet (Figure 12a, Figure 13d,h and Figure 15a,c). Therefore, while 

CHO’s elephant population is an anomaly, its woody cover is near that expected based on its 

precipitation levels, demonstrating the importance of including climate in any assessment of 

savanna woody cover. 
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Conclusion 

The overall amount and heterogeneity of woody cover in our sites was principally controlled 

by precipitation, not elephants or fire. This suggests that current modeling frameworks that exclude 

the impacts of fire and herbivores should be able to accurately predict regional woody cover at 

coarse spatial and temporal extents. However, our analysis did not include the different 

components of woody cover, which might not be individually predictable. Within PAs, elephants 

do appear to significantly increase woody cover on slopes far from water, perhaps through fire 

suppression and/or nutrient and seed dispersal, suggesting that within landscapes elephants are 

impacting the distribution of woody cover. In addition, across our study extent, areas near 

permanent water appear to be in a stable state potentially maintained by disturbances. Yet, our 

work provides no compelling evidence of elephants degrading landscapes, even at high densities, 

suggesting elephant culling is an unnecessary measure in most PAs while reinforcing the 

importance of bottom-up controls in savannas. 
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CHAPTER 3. FIRE OR FORCE: A META-ANALYSIS OF THE RELATIVE IMPACTS 

OF FIRE AND ELEPHANTS ON WOODY VEGETATION IN AFRICAN SAVANNAS  
 

Introduction 

Despite covering over a fifth of the Earth’s surface (Channan et al., 2014), being home to an 

estimated 500 million people (Nagelkirk and Dahlin, 2020) and driving intra-annual variability in 

global carbon cycle (Ahlström et al., 2015), the factors shaping the woody cover of the world’s 

savannas are not well understood, contributing to the challenges of predicting changes in these 

ecosystems (Baudena et al., 2015; Dahlin et al., 2015). At the same time, widespread woody 

encroachment is threatening savannas and human livelihoods by reducing the grassy cover 

required by both domestic livestock and wildlife (Smit and Prins, 2015), while also encroaching 

on the open views of wildlife critical to the tourist industry (Gray and Bond, 2013).  

Understanding the factors that shape savannas has been a challenge because many savannas 

exist in a climate-indeterminate state, containing woody cover below their potential (Hirota et al., 

2011; Sankaran et al., 2005; Staver et al., 2011). A growing consensus has identified fire and 

herbivory as the primary disturbances responsible for the characteristically low woody cover of 

savannas (Bond, 2005; Lehmann et al., 2014; Sankaran et al., 2005; Staver et al., 2009), with 

megaherbivores (>100 kg) playing an outsized role among herbivores (Ripple et al., 2015).  

Globally, the impact of megaherbivores on savannas and other biomes is thought to have been 

especially significant in the past. In the Cretaceous period (145-66 million years ago), for example, 

terrestrial megaherbivores appear to have increased regional nutrient availability and dispersal 

(Doughty, 2017). More recently, in the Pleistocene (2.6 ma to 11,700 years ago) it is thought that 

megaherbivores performed a similar role, with megafaunal extinctions reducing global nutrient 

transport by animals by over 90% (Doughty et al., 2015). The extinctions also likely led to 
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increases in regional woody cover as high as 40% in South America and Europe (Doughty et al., 

2016; Sandom et al., 2014), with similar changes in Siberia and Beringia causing decreases in 

albedo and subsequent regional warming near 1°C (Doughty et al., 2010). Meanwhile, extant 

megafauna are still thought to significantly influence the global carbon cycle (Schmitz et al., 2018) 

and suppress local vegetative biomass in several regions (Daskin et al., 2016; Jia et al., 2018; 

Stevens et al., 2016), but the large-scale consequences – particularly for woody vegetation – 

remain unclear (Staver, 2018).  

Some of the last relics of the Pleistocene are in Africa (Malhi et al., 2016; Ripple et al., 2015), 

where the world’s largest terrestrial megaherbivore, the savanna elephant (Loxodonta africana), 

de-limbs, ring-barks and topples woody cover up to 12 meters tall (Shannon et al., 2008). Elephants 

can drive landscape-level annual woody vegetation mortality rates of nearly 8% (Asner et al., 2016; 

Birkett, 2002; Mograbi et al., 2017), thereby limiting woody cover and its encroachment into 

grasslands (Marston et al., 2017; Skowno et al., 2017; Stevens et al., 2016).  

In addition to elephants, fire limits the survival of savanna woody vegetation, but unlike 

elephants, fire principally limits woody cover recruitment (Higgins et al., 2007; Smit et al., 2010). 

However, intense fires can still kill mature woody vegetation (Bond and Keeley, 2005; Cochard 

and Edwards, 2011; Smit et al., 2016). Fire intensity depends on the amount and condition of 

grassy biomass (fuel) available, which is in turn controlled by season (dry season fires are hotter), 

annual rainfall (increases fuel loads), grazing herbivores (decrease fuel loads) and management 

(prescribed burns lead to fewer high-intensity fires) (Bond and Keeley, 2005; Govender et al., 

2006; Midgley et al., 2010; Pachzelt et al., 2015; Smit et al., 2010; Van Langevelde et al., 2003).  

Together, elephants and fire control woody cover in many savanna ecosystems (Sankaran et 

al., 2008; Shannon et al., 2011; Vanak et al., 2012). However, our ability to model and conserve 
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savannas relies on our understanding of the relative impacts of elephants and fire. This has led to 

decades of work aimed at determining whether elephants or fire play the primary role in controlling 

savanna woody cover (e.g., Buechner and Dawkins, 1961; Pellegrini et al., 2017; Smart et al., 

1985).  

Determining the relative impacts of fire and elephants is a challenge because of their complex 

interactions. For example, by knocking over or damaging the bark of trees, elephants make them 

more susceptible to fire (Moncrieff et al., 2008; Smit et al., 2016; van Wilgen et al., 2008; Vanak 

et al., 2012). Further, by opening up otherwise impenetrable stands of woody cover, elephants 

allow grasses – and therefore fire – to invade (Buechner and Dawkins, 1961; Dublin et al., 1990; 

Eltringham, 1979; Van Langevelde et al., 2003). Complicating the issue, elephants also contribute 

to the fire-limiting effects of other grazing herbivores (Bond and Keeley, 2005; Smit and 

Archibald, 2019) given grasses comprise ~50% of the their diet (Codron et al., 2006). Meanwhile, 

fire-damaged trees are more likely to be toppled by elephants (Chafota and Owen-Smith, 2009). 

Elephants and fire also interact with drought which can exacerbate the impacts of both disturbances 

(Allen et al., 2010; Birkett and Stevens-Wood, 2005). For example, when droughts kill trees, they 

add to the fire fuel load. Droughts also cause grasses to senesce early, which causes elephants to 

switch to browsing woody cover for more of the year (Birkett and Stevens-Wood, 2005; Chafota 

and Owen-Smith, 2009), increasing the trees felled by elephants while once again creating 

additional fuel for fires.  

Here, we build upon prior meta-analyses focused on the impacts of elephants (Guldemond and 

van Aarde, 2008; Guldemond et al., 2017), fire (Archibald et al., 2010; Pellegrini et al., 2018) and 

global changes in savanna woody cover (Stevens et al., 2017) by focusing on studies that 

specifically test the relative impacts of fire and elephants on woody cover, while accounting for 
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the abiotic factors that lead to their dominance. The results affect our understanding of the forces 

shaping today’s savannas, along with the potential consequences of megafaunal extinctions in the 

past.  

Methods 

Literature search 

We searched the literature for all peer-reviewed articles comparing the impacts of fire and 

elephants on woody vegetation using Google Scholar and Web of Science. In each, we performed 

keyword searches using “elephants” and “fire” together in combination with “savanna”, 

“savannah”, “tree cover”, “woody cover” and “woody vegetation” individually (i.e. five total 

combinations). We also limited articles to those published in English and available online, making 

our search a lower bound of the available literature. The last search was conducted on July 23rd, 

2020. We used titles and abstracts to select 167 articles appearing to compare the impacts of 

elephants and fire. We reviewed these articles, along with relevant citations within their text, 

bringing the total article count to 227. All records were entered into a shared spreadsheet, then 

downloaded and kept in CSV format for analysis.  

From the 227 articles, we recorded only those articles with findings on the relative impacts of 

elephants and fire, classifying the findings as either quantified or descriptive. We defined 

“quantified” findings as those that explicitly measured the effects of elephants and fire, making 

comparisons possible, even if the study itself was not explicitly designed to test the relative impacts 

of fire and elephants. Articles that drew their conclusions primarily based on anecdotal evidence 

and/or quantified the effects of only one disturbance while making assumptions about the effects 

of the other were categorized as descriptive.  



 74 

Given that both elephant populations and fire regimes have been heavily managed throughout 

Africa (Reid, 2012; Thouless et al., 2016), we did not exclude studies conducted within areas under 

such management, so long at the management was not responsible for the complete removal of 

either disturbance at the time of the study (unless the removal itself was part of the experiment, 

such as in exclosure experiments). We also included studies whose sites naturally had little to no 

fire but we required the presence of elephants in all studies. This means that our results only apply 

to elephant-inhabited savannas, which today, due to habitat loss, hunting and poaching, are only a 

fraction of Africa’s savannas (Thouless et al., 2016).  

When we encountered studies where fire and elephants were interacting, we designated the 

disturbance that facilitated the other disturbance as primary. For example, unless otherwise 

concluded by the authors of the study, if elephant damage was causing fire-tolerant trees to become 

susceptible to fire (e.g., Okula & Sise, 1986), we identified elephants as the primary disturbance. 

When authors reported findings from multiple sites in the same general area, the disturbance that 

was dominant in the majority of sites was recorded as the dominant disturbance for the study. Last, 

we did not include studies that inextricably grouped the impacts of elephants with those of other 

herbivores. For example, Staver et al. (2009) used exclosures that removed all herbivores from 

small plots of land, meaning any potential effects of elephant removal could not be separated from 

those of the other excluded herbivores.  

Analysis   

Given that all of the studies recorded had some or all of their field sites within PAs, combined 

with the challenge of integrating studies with various spatial extents, units of measure and 

methodologies, we chose to generalize the study locations and findings to the PAs. To test for the 

abiotic and biotic differences between fire-dominated and elephant-dominated protected areas 



 75 

(PAs), we collected PA-specific variables describing climate, fire occurrence, elephant densities 

and human population densities (Table 6), all of which are known to affect the extent and degree 

of elephant and/or fire impacts (Bond et al., 2005; Guldemond et al., 2017; Hoare and Du Toit, 

1999).  

Table 6. Descriptions of Variables Used in Analysis.   
Variable(s) Descriptions 

ELE The number of elephants km-2 in the study site, when reported by the authors. Otherwise, we 
calculated elephant density of the PA based on census data collected nearest the study’s 
publication date.  

MAP & Pwet The average annual precipitation (MAP) and wet season precipitation (Pwet) from 1990-2019 
calculated using the 0.05° (~5.5km) resolution Climate Hazards Infrared Precipitation with 
Stations daily data (CHIRPS; Funk et al., 2015).  

MAT, Tmin & 
Tmax 

The average annual temperature (MAT), minimum and maximum temperatures (Tmin & Tmax) 
from 1990-2019 calculated using the monthly, 0.05° (~5.5km) resolution TerraClimate 
dataset (Abatzoglou et al., 2018). 

BurnFrac The average fraction of the PA burned annually from 2001-2019 calculated using the 500 m 
resolution MODIS Collection 6 MCD64A1 global burned area product (data available from 
2001-2019; Giglio et al., 2015). 

POP The average human population density within a 20-km buffer of each PA from 1990-2015 
using the 250m resolution Global Human Settlement Layers product (data available to 2015; 
JRC & CIESIN, 2015).  

PET The average annual potential evapotranspiration from 1990-2019 calculated using the 
monthly, 0.05° (~5.5km) resolution TerraClimate dataset (Abatzoglou et al., 2018).  

PDSI The average annual Palmer Drought Severity Index from 1990-2019 calculated using the 
monthly, 0.05° (~5.5km) resolution TerraClimate dataset (Abatzoglou et al., 2018). 

 

We used Google Earth Engine (Gorelick et al., 2017) to compile all data except the elephant 

densities, which we compiled from the individual studies. When elephant densities were not 

reported in the studies themselves, we used census data published by the African Elephant 

Database  (Blanc et al., 2007, 2003; Burrill and Douglas-Hamilton, 1987; Said et al., 1999, 1995; 

Thouless et al., 2016) and other sources (e.g., Dublin & Douglas-Hamilton, 1987; Chase et al., 

2016).  

To avoid pseudo-replication, we filtered the results in the same PA to the dominant finding. 

For example, if four studies were conducted within the same PA with three identifying elephants 
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as dominant, then elephants were recorded as dominant. When this resulted in a tie, we recorded 

it as such.  

To test for abiotic and biotic differences between elephant- and fire-dominated PAs, we used 

Welch’s t-test, which is more reliable than Student’s t-test when using small sample sizes with 

unequal variances and/or unequal within-class sample sizes (Ruxton, 2006). To test for differences 

between all PA types (elephant dominated, fire dominated and ties), we used ANOVA with post-

hoc Tukey honest significant difference (HSD) tests. We then used multinomial logistic regression 

(MLR) to assess potential relationships between variables and the dominant disturbances. MLR 

models the relationship between categorical dependent variables and categorical and/or continuous 

independent variables (Campling et al., 2002). We tested both single-variable relationships, along 

with all possible paired variable combinations, excluding pairs with significant correlations (p < 

0.05). We then assessed the models using the Akaike information criterion (AIC), accuracy, 

Cohen’s kappa statistic (kappa) and their significance. Like accuracy, kappa assesses the fraction 

of observations correctly classified, but then penalizes for the number of correct classifications 

that could be due to random chance (MacGarigal et al., 2000), making it a better measure of 

accuracy when the proportion of observations in each class varies significantly, such as in our case. 

Unlike accuracy and kappa, the AIC assesses the relative amount of information not included in a 

model, making lower scores more desirable (Chatterjee and Hadi, 2012). Models were deemed 

significant if all variable coefficients had p-values less than or equal to 0.05. Using the most 

accurate model, we then constructed probability surfaces illustrating the probability of dominance 

the model would assign to each disturbance across the range of observed inputs. All analyses were 

carried out in R (R Core Team, 2018), with the MLR conducted using the nnet package (Venables 

and Ripley, 2002).  
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Results 

In all, from our original 227 studies we recorded 66 studies comparing the impacts of 

elephants and fire. The studies spanned 13 countries and 25 PAs (Figure 17a). Of the 66 studies, 

53 (80.3%) reported elephants as the dominant disturbance and 13 reported fire. However, only 39 

of the studies made quantified comparisons, reducing the findings to 8 countries and 16 PAs 

(Figure 17b). Of these studies, 30 (76.9%) found elephants to be dominant. Filtering the data to a 

single finding per PA further reduced the data to 16 data points (one per PA). Of these, 12 (75%) 

were dominated by elephants, two by fire and two produced a tie (Figure 17c).  
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Figure 17. Maps of the Studies Comparing Elephant and Fire Disturbances. Descriptive and 
quantified comparisons were found in 66 studies (a), 39 of which were quantified (b). Filtering 
the data to the dominant findings in each PA resulted in 16 data points to be used in analysis (c).  

The final set of 16 PAs covered a broad range of variable values, with MAP ranging from ca. 

300 to 1,300 mm, ELE from 0.14 to 2.84 elephants/km2 and burned fraction from ca. 0% to 48% 

of the PA burned annually (Figure 18). Welch’s t-tests revealed elephant- and fire-dominated sites 

varied significantly in their levels of potential evapotranspiration (PET; p = 0.045) and MAP (p = 
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0.015), with elephant-dominated sites having higher average PET (1323 vs. 1227 mm) and lower 

average MAP (730 vs. 1014 mm). No other variables had significant differences between the sites. 

However, when the two sites with ties between elephant- and fire-dominant findings were 

included, ANOVA using Tukey HSD post-hoc tests revealed no significant differences in variable 

values across the sites (Figure 18).  

 

Figure 18. Boxplots of the Variables Used in Analysis by Disturbance Class. While elephant 
and fire classes did significantly vary in their mean annual precipitation (d) and potential 
evapotranspiration (j) values when evaluated using Welch’s t-test, ANOVA using Tukey’s honest 
significant different post-hoc tests showed no difference between all three classes (elephants, fire 
and tie). Bold centerlines in the boxes represent the median scores, with the boxes encompassing 
the 2nd and 3rd quartiles and the top and bottom whiskers representing 1.5 times the interquartile 
range (IQR). Outliers are labeled with asterisks. In classes where only two values existed (i.e. 
fire and ties), the whiskers represent the minimum and maximum values. Points to the left of each 
represent individual data values.  

Using all 16 locations (including ties), we quantified the importance of variables and their 

combinations to the primary disturbances in a site using MLR.  When we used single variables in 

MLR, only PET yielded a model with a significant coefficient (Table 7). We then tested all possible 

two-variable combinations. We limited the models to two variables because, with only 16 sites, 

we felt that using additional variables in combination would overfit the models. Correlated 
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variables were not used in combination. The variable combinations produced 14 models that tested 

significant (p < 0.05). Of these, we identified the best model as that using PET and maximum 

temperatures (Tmax). The model had the single lowest AIC (26.24) and matched both the second 

highest Kappa (0.35) and the maximum accuracy achieved by the models (0.81; Table 7). 

We calculated and plotted probability surfaces produced using the PET+Tmax model (Figure 

19). Across the range of PET and Tmax values observed, elephants had the highest probabilities of 

dominance across the largest area within the two-variable space. This area spanned from PET and 

Tmax values over 1250 mm and 26°C, respectively. Ties were most likely for temperatures above 

28°C and PET below 1250 mm. Meanwhile, fire occupied the smallest space, being most probable 

when temperatures and PET were below approximately 28°C and 1250 mm, respectively (Figure 

19).  
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Table 7. Results of Univariate and Bivariate Models Produced Using MLR. Only significant 
bivariable models are shown. The fraction of correctly classified sites in each class (Elephants, 
Fire and Tie) is also listed.  

Model AIC Accuracy Kappa Elephants Fire Tie Significance 
ELE 28.886 0.75 0 1 0 0 NS 

BurnFrac 31.167 0.75 0 1 0 0 NS 
POP 31.379 0.75 0 1 0 0 NS 
MAP 29.631 0.75 0 1 0 0 NS 
Pwet 30.798 0.75 0 1 0 0 NS 
MAT 27.993 0.8125 0.4285 1 0 0.5 NS 
Tmin 28.396 0.75 0.1351 1 0 0 NS 
Tmax 28.962 0.8125 0.3513 1 0 0.5 NS 
PDSI 30.304 0.75 0 1 0 0 NS 
PET 29.839 0.75 0 1 0 0 S 

Tmax + PET 26.236 0.8125 0.3513 1 0 0.5 S 

MAT + PET 28.845 0.75 0.1351 1 0 0  S 
ELE + MAP 28.935 0.75 0.2380 0.9167 0.5 0  S 
MAT + MAP 29.197 0.8125 0.4286 1 0 0.5  S 
Tmin + MAP 29.253 0.6875 0.0476 0.9167 0 0  S 
Tmin + PET 30.496 0.75 0.1351 1 0 0  S 
Tmax + MAP 30.690 0.8125 0.3513 1 0 0.5  S 
ELE + PET 30.817 0.75 0 1 0 0  S 
MAT + Pwet 30.953 0.8125 0.4286 1 0 0.5  S 
Tmax + Pwet 32.129 0.8125 0.3513 1 0 0.5  S 

MAP + PET 32.300 0.75 0 1 0 0  S 
POP + PET 32.395 0.75 0 1 0 0  S 
PET + Pwet 33.366 0.75 0 1 0 0  S 

BurnFrac + PET 33.597 0.75 0 1 0 0 S 
Notes: MLR, multinomial logistic regression; AIC, Akaike information criterion. Models whose variable 
coefficients have p-values less than 0.05 are classified as significant (S).  
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Figure 19. Probability Surfaces Generated in Multinomial Logistic Regression. Surfaces 
generated using PET and Tmax in multinomial logistic regression. Each surface depicts the 
model’s assigned probability of dominance for each disturbance (or tie) at each PET and Tmax 

combination. Probabilities range from 0.0 (purple) to 1.0 (yellow). Elephants were predicted to 
be dominant in the largest portion of the variable space, while fire was only dominant at low 
values of both PET and Tmax. Plots (a) and (b) depict the same surfaces from different viewing 
angles to aid interpretation. 
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Discussion 

The dominance of elephants 

Our literature search found elephants to be the dominant disturbance across the majority of 

studies and sites. Our analysis suggests that elephants dominate across a broad swath of 

environmental conditions (Figure 19), while fire dominates in cooler, wetter savannas (high MAP, 

low PET, low Tmax; Figures 18 & 19). Further, differences between elephant- and fire-dominated 

PAs were best explained by climate variables, not those describing elephant density (ELE) or the 

average fraction of the PA burned annually (BurnFrac), suggesting climate predisposes savannas 

to be more or less susceptible to a particular disturbance, regardless of the actual density of 

elephants or prevalence of fire (Table 7).  

These findings are in line with the work of others who have suggested mesic savannas are 

more likely to produce the fuel loads and the subsequent high-intensity fires required to affect 

larger woody vegetation (Cochard and Edwards, 2011; Smit et al., 2016; Staver et al., 2011). In 

more arid savannas, fires predominantly affect trees in the understory (Higgins et al., 2007; Smit 

et al., 2010), while elephants limit the survivorship of trees and bushes across all height classes 

(Asner et al., 2016; Guldemond and van Aarde, 2008; Shannon et al., 2011, 2008).  

The finding that climate plays a larger role than the amount of fire and elephant density in 

determining the dominant disturbance is partially supported by other work finding that increases 

in elephant densities do not lead to significant changes in the total woody cover and/or degradation 

of the landscape (Guldemond et al., 2017; Owen-Smith et al., 2006). The more likely explanation, 

however, is that the impacts of elephants and fires are themselves climate-dependent: elephants 

browse more during the dry season and droughts (Birkett and Stevens-Wood, 2005; Chafota and 

Owen-Smith, 2009; Laws, 1970), while fires, as mentioned above, burn most intensely in areas 

with enough precipitation to support high grass biomass. In this way, two PAs with the same levels 
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of elephants and fire, at least as defined here, would be affected by each differently depending on 

climate.  

Our analysis also showed that elephants are most likely to be dominant across a much broader 

swath of the environmental gradient than fire (Figure 19). This could be due to the fact that, unlike 

fire, elephants are capable of adjusting to changes in climate to remain abundant on a landscape. 

At the same time, protected areas generally promote wildlife while limiting the severity of fires 

(Reid, 2012), and while elephants were previously thought to enhance fires by opening up 

bushland (Buechner and Dawkins, 1961; Eltringham, 1979), new evidence suggests they, like 

other grazing herbivores, overall limit fire through the reduction of grassy fuels (Smit and 

Archibald, 2019). Compounding these effects, other browsers such as reticulated giraffes (Giraffa 

camelopardalis reticulata) enable elephants by limiting the growth of taller trees and keeping them 

in height classes more vulnerable to elephant damage, while shorter browsers such as black 

rhinoceroses (Diceros bicornis) compete with elephants for the shorter woody vegetation, likely 

encouraging them to feed on larger trees and bushes (Birkett, 2002). Altogether, these factors likely 

contribute to elephants being the dominant disturbance of woody cover (compared to fire) in many 

of todays protected savannas.   

Our findings were similar to those of Sankaran et al. (2008), an influential study that used data 

from 161 field sites across Africa to assess the determinants savanna woody cover. They also found 

climate played the central role in the myriad factors shaping savanna woody cover. However, 

unlike us, they found that between elephants and fire, fire had the stronger relationship with woody 

cover. Unfortunately, because the field sites themselves were not comparing elephant and fire 

impacts at the level of each site, they could not be included in our analysis. That methodological 

difference, or their use of a more comprehensive dataset (161 versus 16 data points), might account 
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for the differences between their results and ours. It could also be that individual field studies 

comparing the impacts of elephants and fire are not adequately capturing the number of woody 

cover recruits suppressed by fires. However, it is also possible that fire is the main disturbance 

across most areas of savanna, except in those areas with sufficiently high elephant populations – 

areas that may have been disproportionately selected for in the studies we analyze here. These 

concerns could be addressed by increasing the number and longevity of exclosure experiments that 

directly manipulate the presence of elephants and fires (e.g., Young et al., 1998; Kraaij & Milton, 

2006; Levick et al., 2009).  

Management Implications 

The sometimes startling impacts of elephants became a central focus of savanna 

conservationists in the 1960s when many protected areas were experiencing increased elephant 

populations accompanied by marked declines in woodlands (e.g., Croze, 1974; Lamprey et al., 

1967; Napier Bax and Sheldrick, 1963). Concerns of habitat degradation led to annual elephant 

culls (Bell, 1983; Cumming, 1981, 1983; Owen-Smith et al., 2006; Rodgers & Lobo, 1980; Whyte 

et al., 1998). For example, management at Kruger National Park in South Africa culled over 16,000 

elephants between 1967 and 1994 (Owen-Smith et al., 2006). However, culling was halted in 1994 

when there was no strong evidence showing elephants, and not fires, were responsible for the 

marked changes in woody cover, or that the changes in woody cover qualified as habitat 

degradation (Owen-Smith et al., 2006). 

Our results indicate that elephants likely were responsible for the widespread loss of 

woodlands, though whether those changes should be considered habitat degradation is likely to 

remain contentious. However, today, woody encroachment appears to be the bigger threat to 

savanna habitats (e.g., Gray & Bond, 2013; Smit & Prins, 2015), presenting a potential need for 
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more elephants, not fewer. Indeed, areas with elephants have already been found to experience 

reduced rates of encroachment compared to those without (Marston et al., 2017; Skowno et al., 

2017; Stevens et al., 2016). This also suggests that prior culling likely made savannas more 

susceptible to woody encroachment. Therefore, we suggest that in arid to semi-arid savannas – 

where elephants are more likely to be the dominant disturbance – elephants might be a more 

effective control of woody encroachment than prescribed burns, providing incentive to elephant 

conservation efforts. In mesic savannas, fire is likely to be the best control. In neither scenario 

does there appear to be a need to reduce or eliminate either disturbance, though we acknowledge 

that the preservation of some woodlands might require the exclusion of fire, elephants, or both. 

Though not studied here, these results are likely to extend to other herbivores, both wild and 

domestic, given their similar ability to limit woody cover recruitment and growth rates (Porensky 

et al., 2013a; Sankaran et al., 2013b, 2008; Styles and Skinner, 2000). 

Caveats and concerns 

Our meta-analysis, like others (Guldemond and van Aarde, 2008; Guldemond et al., 2017), 

was limited by the lack of studies, the generally limited data provided by relevant studies, and the 

unavoidable challenge of comparing studies with different methodologies. Our approach of 

generalizing findings to the PA might be improved upon by treating each study’s field sites as 

individual data points. For example, Ben-Shahar (1993) provided 16 analyzable points in a single 

study. However, most studies lacked one or more of the explanatory variables we used here, 

particularly elephant densities. Filling these gaps in the data using coarser resolution data would 

likely cause pseudo-replication. For example, if PA-wide elephant densities were used to fill gaps 

in the data, all points within the same PA using those values would become pseudo-replicates and 

would need to be reduced to a single point in analysis, similar to what we did here. Further, studies 
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like Ben-Shahar (1993) are generally confined to a relatively small geographic area and would 

likely count for a disproportionate amount of the data, thereby biasing the results.  

A substantial regional bias also existed in the data. While our initial set of 66 studies included 

sites in western and central Africa (Figure 17a), the majority of studies, and all the quantified 

studies, were in eastern and southern Africa. This is likely largely due to the region being home to 

many of the last major populations of elephants occurring in Africa (Thouless et al., 2016), but 

there is a clear need for more research outside the region. For example, both Waza National Park 

in Cameroon and the Nazinga Ecosystem in Burkina Faso are located outside the region and are 

already the sites of descriptive comparisons between elephant and fire impacts (Hema et al., 2017; 

Okula and Sise, 1986). Further, both PAs appear to be undergoing changes in their elephant 

populations that could present natural experiments: the Nazinga Ecosystem’s population increased 

by an estimated 53% from the years 2003 to 2012, while Waza NP likely lost many of its elephants 

while, from 2014-2016, it was occupied by Boko Haram – a terrorist organization who has been 

known to use ivory sales to fund its activities (Thouless et al., 2016).  

In addition to the regional bias, much of the research on disturbances is likely to be biased 

toward selecting sites in areas where elephants are known to be active or where there are significant 

management concerns of complete tree cover removal by elephants (e.g., Rodgers & Lobo, 1980; 

Bell, 1983; Whyte et al., 1998). Meanwhile, areas with more precipitation and less risk of losing 

their tree cover – areas also more likely to be dominated by fire – might have attracted less research. 

The influence of site selection was demonstrated by Ben-Shahar (1993), who found that within the 

same protected area the dominant disturbance can switch from elephants to fire across relatively 

short distances, the maximum of which was 40 km. Their work demonstrates the problematic 
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nature of assuming site-specific findings can be generalized to an entire PA, as we do here due to 

the constraints of comparing multiple studies employing different methodologies.  

Despite these limitations, our analysis yielded results that are in line with much of the previous 

research of savanna disturbances, demonstrating a growing consensus that in drier savannas 

without the high vegetative biomass needed to support high-intensity fires, elephants are the 

primary disturbance to woody vegetation. However, contradictions with studies such as Sankaran 

et al. (2008) will likely require similarly large-scale studies that manipulate elephant and fire 

occurrence (i.e. exclosures), or remote sensing studies that adequately capture both the spatial 

resource use of elephants (i.e. through the use of GPS collars) and high spatial and temporal 

resolution fire and woody cover data – data that is likely to become increasingly available via a 

growing number of very high-resolution satellites. Such data could also differentiate the impacts 

to bushes and trees – something we did not account for given the limited number of studies 

available for analysis. 

Conclusion 

Savannas and the factors shaping them have significant impacts on the global carbon cycle 

(Ahlström et al., 2015), along with the millions of people and wildlife that rely on them (Reid, 

2012; Ripple et al., 2015). The goal of this meta-analysis was to compare the relative impacts of 

elephants and fire on the woody cover of Africa’s savannas. We found elephants to be the dominant 

disturbance in the majority of quantified studies (30 of 39; 76.9%) and sites (12 of 16; 75.0%). 

Further, rather than being driven by elephant densities or the extent of fires, dominance was most 

closely linked to climate, with cooler and wetter sites more likely to be dominated by fire. Our 

findings indicate that the management of woody encroachment should be based on climate, with 

fire likely being the most effective control agent in mesic savannas and elephants in semi-arid to 
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arid savannas. However, our work was significantly hampered by the low number of quantified 

comparisons of elephant and fire disturbances, and future research should focus on increasing the 

use and number of exclosure experiments, particularly in central and western Africa. By untangling 

the relative roles of elephants and fire, while also better understanding the variables that impact 

them individually, we will be able to both better manage and predict changes in these globally 

relevant, dynamic ecosystems while also gaining insight into the potential consequences of the 

continued loss of the world’s megaherbivores.  
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CONCLUSIONS 

 

Summary and Opportunities for Future Research 

For decades, researchers have clearly documented the local effects of elephants on woody 

cover (Asner et al., 2016; Malhi et al., 2016; Shannon et al., 2008), while the large-scale effects 

have remained unclear (Duffy and Pettorelli, 2012; Guldemond et al., 2017; Hayward and 

Zawadzka, 2010; Sankaran et al., 2008). This dissertation presents several new findings that 

advance both the methods used to study savannas and our understanding of the factors that shape 

them.  

Chapter 1 presents an advance in our ability to map savanna woody cover, finding that 

approaches using Random Forests outperform those using simple linear regression or spectral 

unmixing. The chapter also demonstrates that while the use of multiple Landsat images per year 

is ideal, even single images can be used to produce accurate maps – a key finding in an area of the 

world where cloud cover and limited data availability often limit the amount of imagery available 

to mapping efforts. Chapter 1 also establishes the transition between the wet and dry season as the 

ideal time of year for imagery used in mapping woody cover, while strong relationships with 

woody cover demonstrate that NDVI, BC and the RNS bands should be included in any additional 

mapping efforts. Last, given that the use of training data from all the sites created the most accurate 

models and the best general model across all the PAs did not significantly decrease accuracies, it 

is likely that our approach and training data can be applied to accurately map woody cover in 

additional sites. However, ideally an approach would be able to map all of Africa’s savannas and 

future work should focus on the logistical and technical challenges to this effort.   

Chapter 2 uses the methodology developed in Chapter 1 to get at the crux of this dissertation, 

directly assessing whether elephant densities relate to woody cover across the PAs. Instead of 
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elephants, the findings largely support the argument that climate is the primary determinant of a 

biome’s woody cover (Polis, 1999): wet season precipitation had the strongest relationship with 

woody cover in all areas studied. However, the unexplained low woody cover near permanent 

water sources, along with relationships between elephant densities and increased woody cover on 

slopes far from water sources, suggest further research might reveal elephants, or other 

disturbances, determine the woody cover in these still expansive areas. Further, because the 

analysis did not include areas without elephants, it is possible that the woody cover of the PAs 

studied, while having a strong relationship with climate, nonetheless had woody cover universally 

lower woody cover than areas free of disturbances – one of the key arguments made by Bond 

(2005). This could be addressed by including disturbance-free sites in a similar analysis, or perhaps 

through the analysis of errors from an uncalibrated Earth systems model (ESM), with the 

assumption that the ESM will overpredict woody cover in savannas.  

Chapter 3 reveals that while climate appears to be the main determinant of woody cover in 

savannas, elephants are the primary disturbance across a broad swath of environmental conditions, 

while fire dominates in wetter and cooler climates. This suggests that if disturbances are creating 

the areas of low woody cover near water found in Chapter 2, elephants would likely be the 

responsible disturbance under most climate conditions. The findings also imply that woody 

encroachment might be partially addressed by increasing elephant numbers, while the continued 

wide-scale loss of elephant populations enables woody encroachment. However, the analysis was 

limited by the overall lack of quantitative studies, particularly outside of eastern and southern 

Africa – gaps that might be best addressed through the additional use of exclosure experiments or 

future remote sensing studies using detailed information describing the locations of both fires and 

elephants – data which is especially lacking for elephants. 
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Broader Impacts 

The world’s megafauna are disappearing (Ripple et al., 2015).  As they do, the ecosystems, 

national revenues and local livelihoods they support face detrimental consequences (Gray and 

Bond, 2013; Ripple et al., 2015; Smit and Prins, 2015). In the case of elephants, the consequences 

are especially dire due to a potential positive feedback loop: as elephants disappear, increasingly 

woody PAs will become less suitable for wildlife viewing, reducing the tourism revenue that helps 

fund elephant conservation. That, in turn, may exacerbate the decline in elephants, causing 

increased declines in open savanna and savanna-dependent wildlife. Accordingly, the decline and 

potential extinction of elephants might precipitate the extinction of dependent species – much like 

what is thought to have happened when the Pleistocene megafauna went extinct (Owen-Smith, 

1987). This dissertation suggests that while elephants are the dominant disturbance across many 

of todays protected savannas and likely play key roles in limiting woody cover, particularly near 

water sources, climate is the primary determinate of both woody cover and the relative roles of 

disturbances in African savannas. If true, then the woody cover of savannas and other climatically 

determined ecosystems might be more resilient to the impacts of megafauna than previously 

thought. In turn, this suggests megafauna are unlikely to mitigate habitat loss due to a changing 

climate. 
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Table A.1. Variables input to random forests and regression models. Each variable name and 
the respective equation used in the models. All equations used bands from Landsat imagery.   

Variable Definition 

dryB2 Dry season's Landsat 8 Band 2 value / 10,000 

dryB3 Dry season's Landsat 8 Band 3 value / 10,000 

dryB4 Dry season's Landsat 8 Band 4 value / 10,000 

dryB5 Dry season's Landsat 8 Band 5 value / 10,000 

dryB6 Dry season's Landsat 8 Band 6 value / 10,000 

dryB7 Dry season's Landsat 8 Band 7 value / 10,000 

wetB2 Wet season's Landsat 8 Band 2 value / 10,000 

wetB3 Wet season's Landsat 8 Band 3 value / 10,000 

wetB4 Wet season's Landsat 8 Band 4 value / 10,000 

wetB5 Wet season's Landsat 8 Band 5 value / 10,000 

wetB6 Wet season's Landsat 8 Band 6 value / 10,000 

wetB7 Wet season's Landsat 8 Band 7 value / 10,000 

tranB2 Transition season's Landsat 8 Band 2 value / 10,000 

tranB3 Transition season's Landsat 8 Band 3 value / 10,000 

tranB4 Transition season's Landsat 8 Band 4 value / 10,000 

tranB5 Transition season's Landsat 8 Band 5 value / 10,000 

tranB6 Transition season's Landsat 8 Band 6 value / 10,000 

tranB7 Transition season's Landsat 8 Band 7 value / 10,000 

dwtB2mean (dryB2 + wetB2 + tranB2) / 3 

dwB2mean (dryB2 + wetB2) / 2 

wtB2mean (wetB2 + tranB2) / 2 

tdB2mean (dryB2 + tranB2) / 2 

dwtB3mean (dryB3 + wetB3 + tranB3) / 3 

dwB3mean (dryB3 + wetB3) / 2 

wtB3mean (wetB3 + tranB3) / 2 

tdB3mean (dryB3 + tranB3) / 2 

dwtB4mean (dryB4 + wetB4 + tranB4) / 3 

dwB4mean (dryB4 + wetB4) / 2 

wtB4mean (wetB4 + tranB4) / 2 

tdB4mean (dryB4 + tranB4) / 2 

dwtB5mean (dryB5 + wetB5 + tranB5) / 3 

dwB5mean (dryB5 + wetB5) / 2 

wtB5mean (wetB5 + tranB5) / 2 

tdB5mean (dryB5 + tranB5) / 2 

dwtB6mean (dryB6 + wetB6 + tranB6) / 3 

dwB6mean (dryB6 + wetB6) / 2 

wtB6mean (wetB6 + tranB6) / 2  
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Table A.1. (cont’d)  

tdB6mean (dryB6 + tranB6) / 2 

dwtB7mean (dryB7 + wetB7 + tranB7) / 3 

dwB7mean (dryB7 + wetB7) / 2 

wtB7mean (wetB7 + tranB7) / 2 

tdB7mean (dryB7 + tranB7) / 2 

dwB2diff (dryB2 – wetB2) / (dryB2 + wetB2) 

wtB2diff (tranB2 – wetB2) / (tranB2 + wetB2) 

tdB2diff (dryB2 – tranB2) / (dryB2 + tranB2) 

dtwB2diff dwB2diff - wtB2diff 

dwB3diff (dryB3 – wetB3) / (dryB3 + wetB3) 

wtB3diff (tranB3 – wetB3) / (tranB3 + wetB3) 

tdB3diff (dryB3 – tranB3) / (dryB3 + tranB3) 

dtwB3diff dwB3diff - wtB3diff 

dwB4diff (dryB4 – wetB4) / (dryB4 + wetB4) 

wtB4diff (tranB4 – wetB4) / (tranB4 + wetB4) 

tdB4diff (dryB4 – tranB4) / (dryB4 + tranB4) 

dtwB4diff dwB4diff - wtB4diff 

dwB5diff (dryB5 – wetB5) / (dryB5 + wetB5) 

wtB5diff (tranB5 – wetB5) / (tranB5 + wetB5) 

tdB5diff (dryB5 – tranB5) / (dryB5 + tranB5) 

dtwB5diff dwB5diff - wtB5diff 

dwB6diff (dryB6 – wetB6) / (dryB6 + wetB6) 

wtB6diff (tranB6 – wetB6) / (tranB6 + wetB6) 

tdB6diff (dryB6 – tranB6) / (dryB6 + tranB6) 

dtwB6diff dwB6diff - wtB6diff 

dwB7diff (dryB7 – wetB7) / (dryB7 + wetB7) 

wtB7diff (tranB7 – wetB7) / (tranB7 + wetB7) 

tdB7diff (dryB7 – tranB7) / (dryB7 + tranB7) 

dtwB7diff dwB7diff - wtB7diff 

dryNDVI Dry season image's NDVI* 

wetNDVI Wet season image's NDVI* 

tranNDVI Transition season's NDVI* 

dryMSAVI2 Dry season image's MSAVI2* 

wetMSAVI2 Wet season image's MSAVI2* 

tranMSAVI2 Transition season's MSAVI2* 

drySNDI Dry season image's SNDI* 

wetSNDI Wet season image's SNDI* 

tranSNDI Transition season's SNDI* 

drySATVI Dry season image's SATVI* 
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Table A.1. (cont’d)   

wetSATVI Wet season image's SATVI* 

tranSATVI Transition season's SATVI* 

dtwNDVImean (dryNDVI + wetNDVI + tranNDVI) / 3 

dwNDVImean (dryNDVI + wetNDVI) / 2 

wtNDVImean (wetNDVI + tranNDVI) / 2 

tdNDVImean (dryNDVI + tranNDVI) / 2 

dtwMSAVI2mean (dryMSAVI2 + wetMSAVI2 + tranMSAVI2) / 3 

dwMSAVI2mean (dryMSAVI2 + wetMSAVI2) / 2 

wtMSAVI2mean (wetMSAVI2 + tranMSAVI2) / 2 

tdMSAVI2mean (dryMSAVI2 + tranMSAVI2) / 2 

dtwSNDImean (drySNDI + wetSNDI + tranSNDI) / 3 

dwSNDImean (drySNDI + wetSNDI) / 2 

wtSNDImean (wetSNDI + tranSNDI) / 2 

tdSNDImean (drySNDI + tranSNDI) / 2 

dtwSATVImean (drySATVI + wetSATVI + tranSATVI) / 3 

dwSATVImean (drySATVI + wetSATVI) / 2 

wtSATVImean (wetSATVI + tranSATVI) / 2 

tdSATVImean (drySATVI + tranSATVI) / 2 

dwNDVIdiff (wetNDVI – dryNDVI) / (wetNDVI + dryNDVI) 

wtNDVIdiff (wetNDVI – tranNDVI) / (wetNDVI + tranNDVI) 

tdNDVIdiff (tranNDVI – dryNDVI) / (tranNDVI + dryNDVI) 

dtwNDVIdiff dwNDVIdiff - wtNDVIdiff 

dwMSAVI2diff (wetMSAVI2 – dryMSAVI2) / (wetMSAVI2 + dryMSAVI2) 

wtMSAVI2diff (wetMSAVI2 – tranMSAVI2) / (wetMSAVI2 + tranMSAVI2) 

tdMSAVI2diff (tranMSAVI2 – dryMSAVI2) / (tranMSAVI2 + dryMSAVI2) 

dtwMSAVI2diff dwMSAVI2diff - wtMSAVI2diff 

dwSNDIdiff (wetSNDI – drySNDI) / (wetSNDI + drySNDI) 

wtSNDIdiff (wetSNDI – tranSNDI) / (wetSNDI + tranSNDI) 

tdSNDIdiff (tranSNDI – drySNDI) / (tranSNDI + drySNDI) 

dtwSNDIdiff dwSNDIdiff - wtSNDIdiff 

dwSATVIdiff (wetSATVI – drySATVI) / (wetSATVI + drySATVI) 

wtSATVIdiff (wetSATVI – tranSATVI) / (wetSATVI + tranSATVI) 

tdSATVIdiff (tranSATVI – drySATVI) / (tranSATVI + drySATVI) 

dtwSATVIdiff dwSATVIdiff - wtSATVIdiff 

dryBright (dryB2 + dryB3 + dryB4) / 3  

wetBright (wetB2 + wetB3 + wetB4) / 3 

tranBright (tranB2 + tranB3 + tranB4) / 3 

dtwBrightmean (dryBright + wetBright + tranBright) / 3 

dwBrightmean (dryBright + wetBright) / 2  
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Table A.1. (cont’d)   

wtBrightmean (wetBright + tranBright) / 2 

tdBrightmean (dryBright + tranBright) / 2 

dwBrightdiff (dryBright – wetBright) / (dryBright + wetBright) 

wtBrightdiff (tranBright – wetBright) / (tranBright + wetBright) 

tdBrightdiff (dryBright – tranBright) / (dryBright + tranBright) 

dtwBrightdiff dwBrightdiff - wtBrightdiff 

dryBC (mean(dryBrightall) – dryBrighti) / (mean(dryBrightall) + dryBrighti)  

wetBC (mean(wetBrightall) – wetBrighti) / (mean(wetBrightall) + wetBrighti)  

tranBC (mean(tranBrightall) – tranBrighti) / (mean(tranBrightall) + tranBrighti)  

dtwBCmean (dryBC + wetBC + tranBC) / 3 

dwBCmean (dryBC + wetBC) / 2  

wtBCmean (wetBC + tranBC) / 2 

tdBCmean (dryBC + tranBC) / 2 

dwBCdiff (wetBC – dryBC) / (wetBC + dryBC)  

wtBCdiff (wetBC – tranBC) / (wetBC + tranBC)  

tdBCdiff (tranBC – dryBC) / (tranBC + dryBC)  

dtwBCdiff dwBCdiff - wtBCdiff 

* Index formulas are listed in Table 2. 

 

Figure A.1. Ranked map accuracies. We ranked and plotted all 4842 map accuracies in search 
of an inflection point, i.e., where gains in accuracies from map to map become relatively 
consistent. We found this point around a VEcv of -500% and removed all the maps with 
accuracies below that value from the analysis. 
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Figure A.2. Relationship across seasons between best PA map accuracies and PA average woody cover, mean annual precipitation 
(MAP) and precipitation seasonality. Rather than one season’s image doing well in woodier, drier or more seasonal of PAs and 
another season doing the opposite, we found that nearly universally woodier PAs yielded the more accurate maps. More generally, 
neither of the three variables predict which seasonal image will produce the best maps in a PA. Only significant relationships have 
regression lines plotted. Numbers in the plots correspond to the PA order in Table 1: MUR (1), MPA (2), QUE (3), SMR (4), RUA (5), 
SEL (6), NLU (7), SLU (8), CHO (9), LIM (10), KRU (11).   
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Figure A.3. Relationship between best PA map accuracies and PA average woody cover, mean 
annual precipitation, and precipitation seasonality. Only woody cover was a significant 
predictor of accuracy (p < 0.05), meaning woodier PAs are generally easier to map. Numbers in 
the plots correspond to the PA order in Table 1: MUR (1), MPA (2), QUE (3), SMR (4), RUA 
(5), SEL (6), NLU (7), SLU (8), CHO (9), LIM (10), KRU (11).   
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Figure A.4. Accuracy of maps produced using each of 143 variables in regression. The scores are from maps of all the protected 
areas (PAs), including the PA formed by combining all the other PAs into one. This means that each box represents 12 scores, one for 
each of the PAs.  The mean NDVI of the Tran and Dry composite (TD mean NDVI) performed the best and was the only variable to 
significantly (p < 0.05) outperform some (58) of the 143 total variables. In the plot, the bold centerline represents the median score, 
the box encompasses the 2nd and 3rd quartiles, and the top and bottom whiskers respectively represent the largest and smallest values 
within 1.5 times the interquartile range. Values outside that range are marked as outliers. RNS = multiple regression using bands 4, 5 
and 6 (red, near infrared, first shortwave infrared band). 
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Figure A.5. The best map produced for Chobe National Park. The map was produced using a 
random forest model trained using training data from all the PAs and variables from the dry and 
wet season composite (RF-ALL-DW; “Best Overall Model” column in Table 4 in Chapter 1). 
The map had a VEcv of 76.8%. The TIFF file of this map can be found in the online dataset (see 
Nagelkirk and Dahlin, 2019). Gray areas are clouds (top) and sections of the PA not mapped 
because they fell within a path that did not cover more than 10% of the PA (eastern edge). The 
scatterplot shows the regression line (solid red line) and equation relating the training data 
(“Reference”) to the mapped values (“Predicted”), along with R2 and VEcv metrics. The dashed 
line represents the 1:1 line. 
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Figure A.6. The best maps produced for Kruger and Limpopo National Parks. The maps of 
Kruger (left) and Limpopo (right) were produced using random forest models trained using 
training data from all the PAs and variables from the dry and wet season composite (Kruger) 
and the dry season (Limpopo) (RF-ALL-DW and RF-ALL-Dry, respectively; “Best Overall 
Model” column in Table 4 in Chapter 1). The maps had a VEcv of 53.4% and 75.4%, 
respectively. The TIFF files of these maps can be found in the online dataset (see Nagelkirk and 
Dahlin, 2019). Gray areas are clouds. The scatterplots show the regression lines (solid red lines) 
and equations relating the training data (“Reference”) to the mapped values (“Predicted”), 
along with R2 and VEcv metrics. The dashed lines represent the 1:1 line. 

 

KRU 

LIM 
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Figure A.7. The best map produced for Mpala Research Center. The map was produced using 
a random forest model trained using training data from all the PAs and variables from the 
transition and dry season composite (RF-ALL-TD; “Best Overall Model” column in Table 4 in 
Chapter 1). The map had a VEcv of 78.1%. The TIFF file of this map can be found in the online 
dataset (see Nagelkirk and Dahlin, 2019). Gray areas are clouds. The scatterplot shows the 
regression line (solid red line) and equation relating the training data (“Reference”) to the 
mapped values (“Predicted”), along with R2 and VEcv metrics. The dashed line represents the 
1:1 line. 
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Figure A.8. The best maps produced for North and South Luangwa National Parks. Both 
maps were produced using random forest models trained using training data from all the PAs 
and variables from the dry, transition and wet season composite (RF-ALL-DTW; “Best Overall 
Model” column in Table 4 in Chapter 1). The maps had a VEcv of 87.1% and 86.6%, 
respectively. The TIFF files of these maps can be found in the online dataset (see Nagelkirk and 
Dahlin, 2019). Gray areas are clouds. The scatterplots show the regression lines (solid red lines) 
and equations relating the training data (“Reference”) to the mapped values (“Predicted”), 
along with R2 and VEcv metrics. The dashed lines represent the 1:1 line.  

 

NLU 

SLU 
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Figure A.9. The best map produced for Queen Elizabeth National Park. The map was 
produced using a random forest model trained using training data from all the PAs and 
variables from the dry and wet season composite (RF-ALL-DW; “Best Overall Model” column 
in Table 4 in Chapter 1). The map had a VEcv of 91.1%. The TIFF file of this map can be found 
in the online dataset (see Nagelkirk and Dahlin, 2019). Gray areas are clouds. The scatterplot 
shows the regression line (solid red line) and equation relating the training data (“Reference”) 
to the mapped values (“Predicted”), along with R2 and VEcv metrics. The dashed line represents 
the 1:1 line.  
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Figure A.10. The best map produced for Ruaha National Park. The map was produced using a 
random forest model trained using training data from all the PAs and variables from the dry and 
wet season composite (RF-ALL-DW; “Best Overall Model” column in Table 4 in Chapter 1). 
The map had a VEcv of 76.3%. The TIFF file of this map can be found in the online dataset (see 
Nagelkirk and Dahlin, 2019). Gray areas are clouds. The scatterplot shows the regression line 
(solid red line) and equation relating the training data (“Reference”) to the mapped values 
(“Predicted”), along with R2 and VEcv metrics. The dashed line represents the 1:1 line. 
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Figure A.11. The best map produced for Selous Game Reserve. The map was produced using a 
random forest model trained using training data from all the PAs and variables from the dry, 
transition and wet season composite (RF-ALL-DTW; “Best Overall Model” column in Table 4 in 
Chapter 1). The map had a VEcv of 86.2%. The TIFF file of this map can be found in the online 
dataset (see Nagelkirk and Dahlin, 2019). Gray areas are clouds. The scatterplot shows the 
regression line (solid red line) and equation relating the training data (“Reference”) to the 
mapped values (“Predicted”), along with R2 and VEcv metrics. The dashed line represents the 
1:1 line. 
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Figure A.12. The best map produced for the combined Serengeti National Park and Maasai 
Mara National Reserve. The map was produced using a Multiple Endmember Spectral Mixture 
Analysis model that unmixed only woody cover and grass and was trained using the dry season 
image and the EMC endmember selection method (MESMA EMC TG - Dry; “Best Overall 
Model” column in Table 4 in Chapter 1). The map had a VEcv of 38.9%. The TIFF file of this 
map can be found in the online dataset (see Nagelkirk and Dahlin, 2019). Gray areas are clouds. 
The scatterplot shows the regression line (solid red line) and equation relating the training data 
(“Reference”) to the mapped values (“Predicted”), along with R2 and VEcv metrics. The dashed 
line represents the 1:1 line. 
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Figure A.13: The best map produced for Murchison Falls National Park. The map was 
produced using a random forest model trained using training data from all the PAs and 
variables from the dry and wet season composite (RF-ALL-DW; “Best Overall Model” column 
in Table 4 in Chapter 1). The map had a VEcv of 88.6%. The TIFF file of this map can be found 
in the online dataset (see Nagelkirk and Dahlin, 2019). Gray areas are clouds. The scatterplot 
shows the regression line (solid red line) and equation relating the training data (“Reference”) 
to the mapped values (“Predicted”), along with R2 and VEcv metrics. The dashed line represents 
the 1:1 line. 

 



 111 

APPENDIX B 

 

Chapter 2 Supplementary Material



 

 

 112 

Table B.1. Ranked accuracies of models listed by the individual and composite images 
used to produce woody cover maps. In the parentheses, “ALL” denotes that training 
data from all the PAs was used in developing the model – otherwise only training data 
from the PA itself was used. While all possible combinations of images and training data 
sources yield 14 combinations, we list only the first seven here because subsequent 
listings most likely use a repeated image or image composite, meaning they would not be 
capable of filling any cloud gaps (this was the case for the two models using SMR 
training data). 

PA 1st 2nd 3rd 4th 5th 6th 7th 

CHO DW (ALL) TD (ALL) D (ALL) DTW (ALL) W (ALL) T (ALL) WT (ALL) 

KRU DW (ALL) WT (ALL) D (ALL) TD (ALL) T (ALL) DTW (ALL) W (ALL) 

LIM D (ALL) DW (ALL) DTW (ALL) TD (ALL) W (ALL) WT (ALL) T (ALL) 

MPA TD (ALL) WT (ALL) D (ALL) DW (ALL) DTW (ALL) T (ALL) W (ALL) 

MUR DW (ALL) D (ALL) DTW (ALL) W (ALL) WT (ALL) TD (ALL) T (ALL) 

NLU DTW (ALL) TD (ALL) T (ALL) D (ALL) WT (ALL) DW (ALL) W (ALL) 

QUE DW (ALL) W (ALL) D (ALL) DTW (ALL) TD (ALL) WT (ALL) T (ALL) 

RUA DW (ALL) DTW (ALL) W (ALL) WT (ALL) T (ALL) TD (ALL) D (ALL) 

SEL DTW (ALL) TD (ALL) T (ALL) WT (ALL) DW (ALL) W (ALL) D (ALL) 

SMR WT (ALL) W (ALL) DTW (ALL) DW (ALL) DTW (SMR) T (ALL) T (SMR) 

SLU DTW (ALL) T (ALL) TD (ALL) WT (ALL) DW (ALL) D (ALL) W (ALL) 
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Table B.2. Seasonal imagery available for woody cover mapping. Image names are listed in the order they were used in mapping (i.e. 
the first image and corresponding model were used to generate the base woody cover map whose clouded areas were filled using the 
subsequent images). D = dry season; W = wet season and T = transition season. Seasonal combinations (e.g. DTW) represent 
composite images. 
Year CHO KRU LIM MPA MUR NLU QUE RUA SEL SER SLU MAR 
1984 D 

 
D TD, D, T T TD, T, D D, TD, T 

  
D T, TD, D D 

1985 
   

D 
        

1986 T 
 

T WT, T, W T TD, T, D D, TD, T 
  

T, TD, D DW, D, W T, TD, D 
1987 T 

 
T TD, WT, D, DW, T, W  

 
D, TD, T 

     

1988 
   

T 
        

1989 TD, D, T D D 
  

D T 
   

T, TD, D 
 

1990 DW, D, W D, TD, T D, TD, T 
 

T D, DW, W T T, TD, D T T DTW, T, TD, WT, 
DW, D, W 

T 

1991 DW, D, W DW, WT, D, TD, T, W D, TD, T 
  

TD, T, D 
 

T 
  

T, TD, D 
 

1992 D D D D 
      

D 
 

1993 TD, D, T D D, TD, T 
  

T 
    

T 
 

1994 TD, D, T D, TD, T D, TD, T TD, D, T T T 
 

T 
 

D T, TD, D D 
1995 TD, D, T DW, WT, D, TD, T, W D, DW, TD, W, WT, T TD, D, T T TD, T, D D W T 

 
D 

 

1996 DW, D, W T T 
  

T 
 

T D 
 

T, TD, D 
 

1997 DW, TD, D, W, T D 
   

D 
  

T 
 

T 
 

1998 TD, D, T D D 
  

TD, T, D 
 

T, TD, D D 
 

DTW, T, TD, WT, 
DW, D, W 

 

1999 D DW, D, W W D T D W, WT, T T T D D D 
2000 TD, D, T DW, D, W D, DW, W 

 
T TD, T, D D, TD, T W T, WT, W T, TD, D DTW, T, TD, WT, 

DW, D, W 
T, TD, D 

2001 DW, TD, D, W, T D D T W D, DW, W DW, W, D, TD, WT, T  D W DW, D, W W 
2002 TD, D, T D, TD, T D, TD, T D, DW, W T TD, T, D DW, W, D, TD, WT, T  W W, DW, D DTW, T, TD, WT, 

DW, D, W 
W, DW, D 

2003 TD, D, T 
 

T D, DW, W D 
 

D, TD, T 
  

WT, W, T W WT, W, T 
2004 T 

 
W 

  
TD, T, D 

 
D 

  
DTW, T, TD, WT, 
DW, D, W 

 

2005 D D D 
  

D 
 

W, WT, T 
  

T, TD, D 
 

2006 DW, TD, D, W, T D D, DW, TD, W, WT, T  
 

TD, T, D 
  

W 
 

DTW, T, TD, WT, 
DW, D, W 

 

2007 TD, D, T WT, T, W D 
  

T 
 

DW, W, D 
  

T 
 

2008 DW, TD, D, W, T D D, TD, T D T TD, T, D D, TD, T 
 

W 
 

T, TD, D 
 

2009 T 
   

T T T T 
 

T T T 
2010 W, T W W TD, D, T D 

 
T 

  
T 

 
T 

2011 W 
  

TD, D, T D, TD, T 
 

D 
  

T, TD, D W T, TD, D 
2012 

            

2013 TD, D, T DW, WT, D, TD, T, W D, DW, TD, W, WT, T WT, T, W W, WT, T TD, T, D DW, W, D, TD, WT, T DW, W, WT, T, TD, D  WT, W, DW, T, TD, D DTW, T, TD, WT, 
DW, D, W 

WT, W, DW, T, TD, D 

2014 DW, D, W D D, DW, TD, W, WT, T TD, WT, D, DW, T, W DW, D, W, WT, TD, T DTW, TD, T, D, WT, 
DW, W 

DW, W, D DW, W, WT, T, TD, D DW, W, D WT, W, T DTW, T, TD, WT, 
DW, D, W 

WT, W, T 

2015 DW, TD, D, W, T DW, D, W T WT, T, W DW, D, W, WT, TD, T DTW, TD, T, D, WT, 
DW, W 

DW, W, D, TD, WT, T DW, W, WT, T, TD, D TD, T, D WT, W, DW, T, TD, D DTW, T, TD, WT, 
DW, D, W 

WT, W, DW, T, TD, D 

2016 TD, D, T DW, WT, D, TD, T, W D, DW, TD, W, WT, T TD, WT, D, DW, T, W DW, D, W, WT, TD, T DTW, TD, T, D, WT, 
DW, W 

DW, W, D, TD, WT, T DW, W, WT, T, TD, D DTW, TD, T, WT, 
DW, W, D 

WT, W, DW, T, TD, D DTW, T, TD, WT, 
DW, D, W 

WT, W, DW, T, TD, D 
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Figure B.1. Woody cover fraction (black) and elephant density (red) data from the 12 
PAs used in this study. Dashed lines denote a significant trend (p £ 0.05) in the data. 
Error bars on the woody cover data denote the spatially weighted RMSE of the models 
used to generate the maps (multiple models were used to generate each year’s map). 
Error bars for the elephant data denote 95% confidence intervals. In cases where 
confidence intervals are absent, it is either due to the values not being reported, or the 
values were reported as zero – a common practice when an aerial census covered the 
entire PA. PA acronyms correspond to Table 5 in the main text. Consistent declines in 
elephant densities across census years, such as in SEL and RUA, are often the result of 
poaching, whereas marked declines such as that in CHO are more often the result of 
methodological changes between census years.  
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Figure B.2. Temporal extents of the different data used in this study. These seven 
variables were used to generate the full set of 17 variables. Gray points represent values 
interpolated using the original data (black). Some of the original data was from before 
1984 and is not shown (e.g. the earliest human population density data is from 1975).   
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Figure B.3. Relationship between PA mean woody cover and the 17 variables used in 
this study. Significant relationships have dashed regression lines with shading indicating 
the 95% CI. Outliers are labeled with asterisks (see Methods for outlier analysis).  
Symbols correspond to those used in the main text (Figures 9-11). 
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Table B.3. Pearson’s correlation matrix of independent variables used in study. Correlation coefficients are reported with p-values 
in parentheses. 
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DW
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DW
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SP
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El
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n 

La
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e 

Bu
rn

m
ul

t 

Bu
rn

25
 

Elephant 
density 1 (0) -0.08 

(0.82) 
-0.28 
(0.42) 

0.18 
(0.59) 

0.16 
(0.64) 

0.18 
(0.59) 

0.19 
(0.57) 

0.29 
(0.39) 

-0.26 
(0.44) 

0.3 
(0.37) 

0.38 
(0.24) 

-0.14 
(0.68) 

-0.25 
(0.46) 

-0.1 
(0.77) 

-0.02 
(0.96) 

-0.52 
(0.1) 

-0.07 
(0.83) 

Burned 
fraction 

-0.08 
(0.82) 1 (0) 0.35 

(0.29) 
0.49 

(0.11) 
0.61 

(0.04) 
0.2 

(0.54) 
0.58 

(0.05) 
0.7 

(0.01) 
-0.18 
(0.58) 

0.35 
(0.26) 

0.45 
(0.15) 

-0.13 
(0.68) 

0.06 
(0.86) 

-0.22 
(0.48) 

0.12 
(0.7) 

0.58 
(0.05) 

0.96 
(0) 

Human 
density 

-0.28 
(0.42) 

0.35 
(0.29) 1 (0) 0.01 

(0.97) 
0.09 

(0.79) 
-0.09 
(0.79) 

0.35 
(0.3) 

0.26 
(0.43) 

0.37 
(0.26) 

0.44 
(0.18) 

0.32 
(0.34) 

0.63 
(0.04) 

0.55 
(0.08) 

0.03 
(0.93) 

0.28 
(0.41) 

0.74 
(0.01) 

0.21 
(0.55) 

MAT 0.18 
(0.59) 

0.49 
(0.11) 

0.01 
(0.97) 1 (0) 0.92 

(0) 
0.85 
(0) 

0.32 
(0.32) 

0.47 
(0.12) 

-0.38 
(0.23) 

0.39 
(0.21) 

0.47 
(0.12) 

-0.04 
(0.9) 

-0.56 
(0.06) 

-0.81 
(0) 

-0.4 
(0.2) 

0.12 
(0.72) 

0.37 
(0.23) 

Tmin 
0.16 

(0.64) 
0.61 

(0.04) 
0.09 

(0.79) 
0.92 
(0) 

1 (0) 0.58 
(0.05) 

0.51 
(0.09) 

0.62 
(0.03) 

-0.19 
(0.56) 

0.4 
(0.2) 

0.46 
(0.13) 

-0.01 
(0.97) 

-0.39 
(0.21) 

-0.73 
(0.01) 

-0.22 
(0.49) 

0.21 
(0.51) 

0.53 
(0.07) 

Tmax 
0.18 

(0.59) 
0.2 

(0.54) 
-0.09 
(0.79) 

0.85 
(0) 

0.58 
(0.05) 1 (0) -0.02 

(0.95) 
0.15 

(0.65) 
-0.54 
(0.07) 

0.29 
(0.36) 

0.36 
(0.25) 

-0.07 
(0.84) 

-0.63 
(0.03) 

-0.7 
(0.01) 

-0.52 
(0.08) 

-0.04 
(0.91) 

0.06 
(0.85) 

MAP 0.19 
(0.57) 

0.58 
(0.05) 

0.35 
(0.3) 

0.32 
(0.32) 

0.51 
(0.09) 

-0.02 
(0.95) 1 (0) 0.96 

(0) 
0.47 

(0.12) 
0.78 
(0) 

0.76 
(0) 

0.54 
(0.07) 

0.44 
(0.15) 

0.03 
(0.92) 

0.65 
(0.02) 

0.58 
(0.05) 

0.47 
(0.13) 

Pwet 
0.29 

(0.39) 
0.7 

(0.01) 
0.26 

(0.43) 
0.47 

(0.12) 
0.62 

(0.03) 
0.15 

(0.65) 
0.96 
(0) 1 (0) 0.21 

(0.51) 
0.81 
(0) 

0.84 
(0) 

0.38 
(0.23) 

0.28 
(0.37) 

-0.08 
(0.8) 

0.53 
(0.07) 

0.53 
(0.08) 

0.6 
(0.04) 

Pdry 
-0.26 
(0.44) 

-0.18 
(0.58) 

0.37 
(0.26) 

-0.38 
(0.23) 

-0.19 
(0.56) 

-0.54 
(0.07) 

0.47 
(0.12) 

0.21 
(0.51) 1 (0) 0.18 

(0.59) 
0.01 

(0.97) 
0.7 

(0.01) 
0.67 

(0.02) 
0.38 

(0.23) 
0.62 

(0.03) 
0.35 

(0.26) 
-0.27 
(0.4) 

DWPann 
0.3 

(0.37) 
0.35 

(0.26) 
0.44 

(0.18) 
0.39 

(0.21) 
0.4 

(0.2) 
0.29 

(0.36) 
0.78 
(0) 

0.81 
(0) 

0.18 
(0.59) 1 (0) 0.98 

(0) 
0.67 

(0.02) 
0.4 

(0.2) 
0.04 
(0.9) 

0.57 
(0.05) 

0.54 
(0.07) 

0.2 
(0.52) 

DWPwet 
0.38 

(0.24) 
0.45 

(0.15) 
0.32 

(0.34) 
0.47 

(0.12) 
0.46 

(0.13) 
0.36 

(0.25) 
0.76 
(0) 

0.84 
(0) 

0.01 
(0.97) 

0.98 
(0) 1 (0) 0.51 

(0.09) 
0.28 

(0.38) 
0 

(0.99) 
0.49 
(0.1) 

0.48 
(0.11) 

0.32 
(0.31) 

DWPdry 
-0.14 
(0.68) 

-0.13 
(0.68) 

0.63 
(0.04) 

-0.04 
(0.9) 

-0.01 
(0.97) 

-0.07 
(0.84) 

0.54 
(0.07) 

0.38 
(0.23) 

0.7 
(0.01) 

0.67 
(0.02) 

0.51 
(0.09) 1 (0) 0.67 

(0.02) 
0.18 

(0.57) 
0.61 

(0.04) 
0.54 

(0.07) 
-0.29 
(0.36) 

SPEI -0.25 
(0.46) 

0.06 
(0.86) 

0.55 
(0.08) 

-0.56 
(0.06) 

-0.39 
(0.21) 

-0.63 
(0.03) 
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Figure B.4. Relationship between mean woody cover in flat areas near water and the 17 
variables used in this study. None of these relationships were significant. Outliers are labeled 
with asterisks (see Methods for outlier analysis).  Symbols correspond to those used in the main 
text (Figures 9-11). 
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Figure B.5. Relationship between mean woody cover in hilly areas near water and the 17 
variables used in this study. None of these relationships were significant. Outliers are labeled 
with asterisks (see Methods for outlier analysis).  Symbols correspond to those used in the main 
text (Figures 9-11). 
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Figure B.6. Relationship between mean woody cover in flat areas far from water and the 17 
variables used in this study. Significant relationships have dashed regression lines with shading 
indicating the 95% CI. Outliers are labeled with asterisks (see Methods for outlier analysis).  
Symbols correspond to those used in the main text (Figures 9-11). 
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Figure B.7. Relationship between mean woody cover in hilly areas far from water and the 17 
variables used in this study. Significant relationships have dashed regression lines with shading 
indicating the 95% CI. Outliers are labeled with asterisks (see Methods for outlier analysis).  
Symbols correspond to those used in the main text (Figures 9-11). 
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Figure B.8. Relationship between woody cover differences between hills and flat areas near 
water and the 17 variables used in this study. None of these relationships were significant. 
Outliers are labeled with asterisks (see Methods for outlier analysis).  Symbols correspond to 
those used in the main text (Figures 9-11). 
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Figure B.9. Relationship between woody cover differences between hills and flat areas far 
from water and the 17 variables used in this study. Significant relationships have dashed 
regression lines with shading indicating the 95% CI. Outliers are labeled with asterisks (see 
Methods for outlier analysis).  Symbols correspond to those used in the main text (Figures 9-11). 
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Figure B.10. Relationship between woody cover differences between flat areas far from water 
and those near water and the 17 variables used in this study. Significant relationships have 
dashed regression lines with shading indicating the 95% CI. Outliers are labeled with asterisks 
(see Methods for outlier analysis).  Symbols correspond to those used in the main text (Figures 
9-11). 
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Figure B.11. Relationship between woody cover differences between hilly areas far from water 
and those near water and the 17 variables used in this study. Significant relationships have 
dashed regression lines with shading indicating the 95% CI. Outliers are labeled with asterisks 
(see Methods for outlier analysis).  Symbols correspond to those used in the main text (Figures 
9-11). 
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Figure B.12. Relationships between all variables used in this study and whole-PA woody cover 
heterogeneity. Filled circles denote significant relationships (p £ 0.05) between variables and 
the semivariance (i.e., heterogeneity) of woody cover at each range from 50 to 950 meters.  
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Figure B.13. Relationships between all variables used in this study and woody cover 
heterogeneity in flat areas near water. Filled circles denote significant relationships (p £ 0.05) 
between variables and the semivariance (i.e., heterogeneity) of woody cover at each range from 
50 to 950 meters. 
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Figure B.14. Relationships between all variables used in this study and woody cover 
heterogeneity in flat areas far from water. Filled circles denote significant relationships (p £ 
0.05) between variables and the semivariance (i.e., heterogeneity) of woody cover at each range 
from 50 to 950 meters. 
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