HARNESSING THE COLLECTIVE INTELLIGENCE OF STAKEHOLDERS TO
UNDERSTAND SOCIAL-ECOLOGICAL SYSTEMS

By

Payam Aminpour Mohammadabadi

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Community Sustainability — Doctor of Philosophy

2020



ABSTRACT

HARNESSING THE COLLECTIVE INTELLIGENCE OF STAKEHOLDERS TO
UNDERSTAND SOCIAL-ECOLOGICAL SYSTEMS

By

Payam Aminpour Mohammadabadi

Collective Intelligence (CI) is an amplified, meta-intelligence that emerges when a
distributed collective of individuals aggregate their inputs in order to solve a problem, often with
the help of communication or knowledge pooling. Importantly, Cl outcomes (e.g., solutions,
decisions, judgments, wisdom and knowledge) are generally more problem-adequate and
therefore seem more “intelligent” than the contribution of any solitary member. CI in human
societies can therefore solve key and pressing problems that no individual can resolve alone.
Importantly, with recent advances in digital technologies, we now have more potential to harness
the full power of human collectives to better address fast-evolving, complex problems facing
human societies, many of which are complex issues that are resulted from the interactions
between humans and natural ecosystems.

Problems like anthropogenic environmental changes, biodiversity loss, and over-
consumption of natural resources, which often take place in so called social-ecological systems
(SESS), require adequate knowledge and complete understandings about complex relationships
between intertwined social and environmental dimensions. Such understandings are difficult to
achieve in many contexts due to data scarcity and scientific knowledge limitations. This
dissertation explores the potentials of using CI approaches to leverage the local knowledge of
environmental and natural resources stakeholders to better understand SESs, develop adequate

knowledge of complex human-environment interactions, and inform sustainability decisions.



First, this dissertation synthetizes key insights from biological, cognitive, behavioral, and
management sciences literature to develop a framework that guides the design and generation of
Cl in human groups. This framework organizes fundamental design elements of Cl and thus can
help researchers, communities, and policymakers, especially in data-poor situations, design
crowd-based approaches to aggregating knowledge of local people and stakeholders in order to
achieve accurate and reliable understandings of complex human-environment interactions.

Additionally, this dissertation empirically tests Cl approaches using three real-world
fisheries case studies. The first empirical study uses an example of inland freshwater pike
fisheries to explore how CI of local stakeholders can be harnessed through aggregation of their
mental models about human-environment interactions. This study shows that the aggregated
model can provide scientifically sound insights about how the ecosystem and humans are
coupled, and how their interactions are influenced by various management strategies. The second
empirical study uses an example of striped bass fisheries in Massachusetts, to explore the impact
of knowledge diversity on the CI of local stakeholders while pooling their local knowledge about
the complex human-environment interactions. The final study uses an example of U.S. Atlantic
coasts to scale up these CI approaches by crowdsourcing inputs from a very large population of
local fishing communities to predict people’s perception of, and behavioral responses to climate
change impacts on ocean fisheries across a large social and ecological gradient. This study
demonstrates perfect match among stakeholder-driven perceptions, their mental models’
predictions of behavioral changes, and empirical patterns of climate change disturbances.

In conclusion, this work demonstrates that CI approaches to utilizing stakeholders’ local
knowledge for understanding the complexity of SESs have considerable implications for dealing

with scientific and management uncertainties, while many untapped potentials still remain.
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INTRODUCTION
OVERVIEW OF THE PROBLEM

Many of the world’s most pressing issues such as massive climate change,
unprecedented biodiversity loss, widespread overexploitation of natural resources, and extensive
environmental degradation highlight the substantial scale of human influence on the earth. These
far-reaching environmental consequences of anthropogenic disturbances often take place in so
called social-ecological systems (SESs) 2, wherein humans and the nature interact reciprocally
3, These couplings between human and natural components typically lead to the emergence of
complexity in different contexts and different scales **. Managing such complexity, however,
requires adequate understanding about multiple social and environmental components, their two-
sided interrelationships, and their resulting dynamics #. This understanding can therefore help us
better predict the impacts of environmental and social perturbations on coupled systems, and
how these systems respond to various management decisions and environmental changes.
Immediate consequences of such predictions would be an improvement in the sustainability of

ecosystems and human societies °.

Notwithstanding, in many cases, adequate understanding about complex SESs is difficult
to achieve due to widespread limitations and shortages in scientific data, knowledge, tools, and
methods to model these complex systems 487, To fill this gap, study of SES has faced an
increased interest in the use of local knowledge of stakeholders ®®°—environmental and natural
resource users who hold valuable knowledge about social-ecological dynamics, sample the
natural environment from their routine interactions with SESs through activities like fishing or
hunting *°, and may share information about environmental, policy or social changes across their

social networks and generations 1. These human-nature interactions allow stakeholders to

1



accumulate and refine knowledge and observations across years and locations (e.g., anglers
moving among lakes) *2. This local knowledge (LK), also known as local ecological or
traditional knowledge, is considered a rich source of information 34, especially in data-poor and
data-scare situations where data-driven scientific assessments are very limited, and therefore
researchers often attempt to incorporate LK into environmental models and resource

management 1>16,

Incorporating relevant stakeholder input into SES modeling, however, remains
fundamentally challenging due to methodological insufficiencies 1”8, One key challenges
associated with this process is the inability to quantify and address uncertainty in LK that leads
scientific community to question the quality and validity of information provided by non-
scientist stakeholders 4. Although stakeholders represent a free and widespread source of
information, almost always, knowledge held by stakeholders represents different levels of
expertise and reflects diverse perspectives 1°. Yet, the unknown accuracy and the wide range of
variation in stakeholders’ inputs considerably rise concerns about the validity and reliability of

using this source of information in scientific processes .

To overcome these challenges, it is necessary to advance the formal use of LK in the
study of SES through development of innovative approaches that incorporate stakeholders’
inputs and, at the same time, enhance the reliability and accuracy of these stakeholder-driven
inputs. Therefore, it is of utmost relevance to foster methodological developments that allow
researchers to harness the LK of nonscientist stakeholders and achieve robust understandings
about complex human-environment interdependences while meeting a scientifically acceptable

accuracy and reliability.



OVERVIEW OF THE METHODOLOGY

This dissertation explores the potential for harnessing the collective intelligence (CI) of
resource stakeholders to advance the formal use of LK in developing better understandings about
complex human-environment interdependencies and their resulting dynamics. Cl is a term used
to describe a group phenomenon that emerges from the interactions of various individuals such
that the group ends up being more intelligent, i.e., more capable of solving problems, making
decisions, or answering questions than any individual within the group. CI methods rely on the
problem-solving efforts of groups, often based on a proper aggregation of their individual
opinions, judgments and knowledge, which can potentially lead to a superior intelligence (aka. a
collectively intelligent system). This property of the collective may enable the group to solve

complex problems in a way no individual can accomplish 2-2,

According to this definition, CI can first thought to be a natural phenomenon, common to
many species like ants, honeybees, birds, and fish. For examples, groups of army ants foraging
for food can collectively form complex organizations (i.e., assemblages), such as bridges out of
their bodies to reach disconnected areas 2*; and schools of fish can collectively form gigantic
masses of fish, while escaping from predators, to become less vulnerable to predator’s attack and
increase the chances of survival 2°. Cl is also a common phenomenon among human societies. At
the simplest level, highly synchronized human groups can achieve physical capabilities above
and beyond what individual humans can do (e.g., a group can simply lift heavier objects than
what individuals can do). In a more sophisticated manner, human societies practice democracy
and incorporate public opinions into important decisions to thrive culturally and economically 2
and organizations practice collaborative problem-solving to integrate diverse knowledge and

expertise 2’. Importantly, however, in modern days, online interactions among millions of people



contribute to shape the public, and yet smart, discourse on health, social, environmental, and
political issues: millions of online web users contribute their customized, anecdotal knowledge to
the world’s biggest encyclopedia (i.e., Wikipedia) 23; and globally distributed citizen scientists
work together collectively to expand the scale of data collection and contribute to better

environmental conservation %°.

By looking at these examples from the nature and human societies, one important
question that needs to be addressed is “under what conditions, a group’s collective intelligence
surpasses individual intelligence or problem-solving capabilities?”” This has long been a
fundamental question for researchers from a range of disciplines to study collectives and has led
many theoreticians to explain the underlying factors that make collectives smarter than
individuals: For example, the Condorcet’s jury theorem (1785) ° explains the power of
collective decision making and has been a fundamental theoretical assumption for epistemic
democracy and other democratic theories of decision-making characterized by majority voting.
In the context of estimation, Francis Galton’s observation of 800 people accurately estimating
the weight of a dead ox in 1907 introduced the “wisdom of crowds” phenomenon 3!. About a
century later, James Surowiecki pushed the term “wisdom of crowds” into spotlight in his 2004
book 23 with a series of examples where the average response from a large crowd of independent
individuals accurately estimated various quantities while outperforming the majority of

individuals.

Scott Page offers a theoretical explanation for this phenomenon in his 2007 book 2. He
explains that there is noise associated with each individual judgment, and taking the average over
a large number of responses filters out the noise of over- and under-estimates, and therefore

moving the aggregated response closer to the truth. Based on this theoretical explanation, the



crowd error is equal to the mean of individual errors, minus their variance. Consequently, as
diversity of judgments increases the variance of individual errors increases, and thus the crowd

collective error decreases. For that reason, Page calls it a “Diversity Theorem.”

Another form of CI frequently observable in socially interacting animal species is known
as “swarm intelligence.” 3 Swarm intelligence emerges from the ability of a network of
individuals to work together synchronously to accomplish complex tasks. This is therefore a
common source of Cl among social species like ants and honeybees. However, in 2017, Louis
Rosenberg proposed that, once connected into real-time systems with synchronous social
interactions among members, humans can also amplify their group intelligence by forming
“human swarms,” which can outperform the vast majority of individuals when solving problems
and making decisions 34, Even though humans did not evolve the natural ability to form a swarm
intelligence, with the aim of networking technologies, humans can also connect with each other
to form artificial swarm intelligence. “We just need the right technology to turn those

connections into real-time systems.” 34

In the 21% century, by leveraging the power of emerging online technologies, we should
be able to more efficiently harness humans’ CI to address our complex problems we face today.
Internet-based technologies like online surveys, artificial swarming platforms, cyber-enabled
micro markets such as Amazon Mechanical Turk, and prediction market tools can help us more
conveniently, and at an unprecedented scale, aggregate the knowledge, wisdom, and insights of
diverse groups of people distributed all around the world into a single intelligent solution to our
complex problems. As a result, Cl has been shown as a powerful tool for wide-spread application
in a range of areas such as innovation management, democratizing policies, medical diagnostics.

Despite promising findings scattered in various fields, there lacks an overarching framework that



can reconcile these findings and guide the generation of new forms of CI. Considerably less
attention has been paid to Cl applications in natural resource management and understanding
coupled social and environmental changes beyond citizen science. As a result, the degree to
which a group of local stakeholders can collectively arrive at an amplified intelligence that
provides adequate and reliable understanding of complex human-environment relationships
remains a largely unexplored (and potentially underutilized) area. This dissertation aims to
reconcile theoretical and empirical findings scattered in various fields, develop a general Cl

framework, and eventually design and implement new forms of CI to fill these gaps.

DISSERTATION OUTLINE

Firstly, in chapter 1, the past and current states of CI theoretical and empirical research
from social sciences, biological sciences, and managerial and political sciences are synthesized
to develop an overarching, state-of-the-art framework that guides the generation of new
collectively intelligent systems. Based on this framework, new approaches to harness the CI of
local stakeholders were designed with the aim of developing robust understandings about
complex human-environment interactions in SESs. To empirically test these approaches, three

real-world case studies were implemented with fisheries examples.

In chapter 2, the potential for harnessing the CI of local stakeholders in recreational pike
fisheries in Germany is explored. This study empirically demonstrates how the knowledge of a
crowd of local stakeholders, once aggregated through cognitive mapping techniques, can
adequately model social-ecological relationships and predict how the inland freshwater lake
ecosystems may respond to different management strategies. This study offers methodological
guidance for aggregating the input of crowds of resource users to generate high-quality system

models.



In chapter 3, using a case of striped bass fisheries in Massachusetts, the benefits of
pooling local knowledge from a diverse group of stakeholders are explored. Using a novel online
mental-modeling experiment, based on theoretical work about “wisdom of crowds,” 3! and more
recent theoretical assumptions about “diversity bonus,” * this study tests the ideas about how
pooling informal knowledge from local people, who interact with the natural resources and may
not necessarily hold formal scientific knowledge about their environment, may produce accurate
and reliable scientific understandings that can inform sustainability decisions. Results
demonstrate that the crowdsourced knowledge, once aggregated from a diverse pool of
stakeholders as opposed to heterogeneous pools, can generate useful information about complex
social-ecological interdependencies, thereby filling in knowledge gaps in light of unavoidable

uncertainty.

Finally, in chapter 4, an example of U.S. Atlantic coasts is used to scale up the CI
approaches by crowdsourcing inputs from a very large population of stakeholders to predict
climate change impacts on ocean fisheries and approximate their behavioral responses to these
changes. This study empirically demonstrates that internet-based crowdsourcing approaches can
produce accurate patterns of collective perceptions and behavioral responses which are highly
aligned with empirical biogeographic patterns of climate change across east coast. These
findings, and particularly that human responses to climate change varies regionally and is linked
with ecosystem changes, are especially important as society continues developing scientific and
management plans that consider climate change. Moreover, this work represents one of the
largest studies involving stakeholder mental models and overcomes many of the common
logistical constraints (e.g., time and effort of in-person interviews) that have typically limited the

scale and spatial coverage of past studies.
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CHAPTER 1

1 BECOMING INTELLIGENT ABOUT COLLECTIVE INTELLIGENCE AND
PUBLIC POLICY

ABSTRACT

Twenty-four centuries ago, Protagoras is generally credited for first taking seriously the
idea that “two heads are better than one,” * an idea echoed in Proverbs 11:14 centuries after:
“Where there is no counsel, the people fall; but in the multitude of counselors there is safety.”
(King James Version of the Bible). Today, thanks to 21% Century technologies, two heads and
the counsel of the multitude are possible at the scale of thousands, millions, and beyond.
Paradoxically, however, even with these technologies in place, the vast potential of collective
counsel is widely underused by policy-makers. Additionally, significant fragmentation across the
academic fields that study collectives in humans and non-human animals limits the cross-
disciplinary advancements that have far-reaching implications for policy-making. So how can
researchers and policy-makers work together to harness the power of collectives to address
society’s most pressing health and environmental problems? A vast increase in the study of
“Collective Intelligence” may provide some insight into these questions but, ironically, it will
first require defining “Collective Intelligence” as a collective. Here we present an overarching,
state-of-the-art framework for CI that provides guidance for policymakers, communities and

researchers in developing new forms of CI for better addressing problems that societies face.
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1.1 THE POWER OF THE COLLECTIVE

Collective intelligence (CI) is a term used to describe a group property that emerges from
the interactions of various individuals such that the group ends up being more intelligent, i.e.,
more capable of solving problems, making decisions, or answering questions than any individual
within the group. Under the bridge of this definition, CI can be first thought to be a natural
phenomenon, common to many species like ants and honeybees but also increasingly as a key
form of success in human communities 2. In many ways, this philosophy acknowledged a natural
precursor to modern civilizations leading human societies to thrive culturally and economically.
This type of outcome is frequently achieved in human groups through processes ranging from

face-to-face deliberation to large-scale judgment aggregation to decentralized problem-solving.

Based on CI observations from nature, various forms of human organization, and
theoretical and experimental advances, our knowledge about successful CI conditions is fast
expanding in the biological sciences, cognitive and behavioral sciences, political and
management sciences. Each of these fields offers a different stream of insight into how
collectives navigate both simple and complex problems leading to better outcomes. For example,
biologists have demonstrated how groups of modestly capable individuals can collectively
succeed in highly complex tasks such as nest construction, navigation of an unfamiliar
environment, and cohesive migration, e.g., see ref. 3, or social scientists have demonstrated how

humans, once formed into a collective, can amplify their cognitive capability, e.g., see ref. 4.

At the same time, studies specific to computer and information science have offered
several opportunities to deliberately design social or cyber-infrastructures to allow collectives to
address a particular problem. This enormous potential, however, is not yet fully accessible to

policy-makers because of the lack of an overarching framework to inform the generation of new
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collectively intelligent systems given a specific objective. Structuring such an overarching
framework requires responding to several questions: What types of public-policy questions can
Cl support? What is the nature of the collective and what knowledge is appropriate for different
types of questions? How should this knowledge of the collective be integrated to ensure Cl

emerges and we avoid the madness of mobs?

Here we present (outline) a framework that can guide the design of new collectively
intelligent systems and thereby harness collective counsel that can be considered ‘intelligent.’
Our outline focuses on three primary components: the nature of the policy problem or challenge,

the nature of the collective, and the nature of the aggregation mechanism.

1.2 COLLECTIVE INTELLIGENCE FRAMEWORK

1.2.1 The problem

Defining the public need or challenge with clarity (i.e., the purpose) is fundamental to
designing a CI system. Such a system can be aimed at addressing a wide range of problems for
which individuals have to accomplish various tasks such as data collection, observation, labor
services or cognitive tasks such as processing new information (i.e., acquire and organize
knowledge), retrieving that information from memory, and use that information at a later time
(e.g., for estimation and prediction, making a decision, conducting an analysis, etc.) (Figure

1.1).

In addition, the complexity of the problem should be taken into account. Here we use a
three-point continuum of complexity (i.e., simple, complex, and wicked) to classify problems:
Simple problems are clearly defined with an ideal solution that can be obtained in a linear
fashion using straightforward techniques. In such cases, there is a clear “correct” solution and

participants only have to decide on a single variable value (e.g., numerical estimate of a
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quantity). Complex problems can eventually be clearly defined, but unlike simple problems,
solutions to complex problems are not well-understood. Such problems are not solvable by
reductionist or sequential techniques, and solutions to them are often adaptive and can lead to
other problems and unintended consequences. Finally, wicked problems are complex problems
which are neither clearly defined nor well-understood. These types of problems involve multiple
stakeholders with different values and beliefs. Intelligent systems typically seek to manage

wicked problems rather than definitively solve them °.

1.2.2 The collective

Theorists have suggested various characteristics by which collectives may effectively
construct a Cl system: The diversity of members of a collective, for example, has been
demonstrated to serve a critical role in collective problem-solving . Especially for more complex
problems, cognitive diversity is a critical driver of collective performance. Here we use Hong
and Page (2004) method ° to classify diversity: “identity diversity” refers to differences in
demographic characteristics, cultural identities and ethnicity; and “functional diversity” refers to

differences in people’s representation of a problem and how they solve it.

Further, the skills/expertise of individual participants are of importance to the collective
outcome. Three categories can be used to classify the level of expertise people have in CI
systems: lay public (individuals who do not necessarily have intimate knowledge, experience,
and professional training in the subject of the problem); local stakeholders/communities
(individuals likely to be affected by a management decision, action, or a problem); and subject-

matter experts (individuals who possess specialized or professional knowledge of a subject).

Additionally, one important group characteristic is the group size which has been

hypothesized to influence group CI. While some traditional models of collective decision-
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making, e.g., Condorcet’s Jury Theorem (1785) and Galton’s wisdom of crowds (1907),
proposed that collective accuracy should increase monotonically with group size 7, more recent
studies have demonstrated that group size differently impacts the accuracy of collective decision-
making given the complexity of environmental cues and the correlation of information driving

individual decisions 8.

Participants’ engagement, or their level of effort and motivation to solve the problem at
hand °, can influence the design and implementation of a Cl system. Here we expand on Malone
et al. (2010)’s CI framework *° and classify engagement into four overarching categories: (1)
Monetary incentives; (2) Social responsibility, concerns, and civic duty; (3) Enjoyment,
satisfaction and recognition; and (4) Legitimate right, ownership, and liability. A final relevant
factor is the task management process, which explains how a collective manages the distribution
of labor or intellectual contributions. A collective is either self-governed (decentralized) with

autonomous agents or hierarchically controlled (centralized).

1.2.3 The aggregation mechanism

Group formation can take place once a collective of individuals are either sampled or
self-selected. The mechanisms by which individuals’ information is aggregated, however,
depends largely on two factors. First, the level of social influence among individuals, which
ranges from highly influenced with collaborative and synchronous interactions to highly
independent with no social interactions. In this case, social influence can take various forms:
individuals can either communicate through face-to-face dialogue or through online platforms,
referred to as artificial Swarm platforms !, which allow users to interact concurrently to make
collective decisions. These interactions are synchronous, meaning that users can explore

decision-spaces together in real-time. On the other hand, social interactions can occur
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asynchronously, meaning that individuals are independently exposed to information about
others’ and/or their collective responses, or they receive correlated environmental cues 8 (e.g.,

people are exposed to the same social media outlets).

Given the type of policy problem, social influence may undermine or improve collective
performance. In simple estimation tasks, for example, a dominating belief is that social influence
may drive out beneficial diversity 2. Those upholding this belief contend that connected
individuals are likely to copy their peer’s solutions and this tendency to copy results in a smaller
range of individual judgments 2. While this can be problematic in more centralized networks,
recent studies, e.g., refs. '3 have demonstrated that, in decentralized networks, connected
individuals outperform disconnected ones due to the benefits of collective learning. In addition,
and especially for complex and uncertain problems, innovation entails social interactions

whereby ideas need to be recombined.

Second, a Cl solution requires an aggregation method by which individual inputs are
combined. We have identified five general aggregation rules: average rule (i.e., using a central
tendency measure); addition rule (i.e., pooling or crowdsourcing information); majority rule (i.e.,
using voting mechanisms); convergence rule (i.e., reaching a consensus by deliberation or
convergence of opinions); and emergence rule (i.e., self-organized recombination of individual

inputs emerges to innovations or better outcomes).
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aggregate information (i.e., units of knowledge) from a group of individuals and thereby offer solutions that are more optimal than

how any single individual could have addressed a particular problem (examples are provided in the Appendix, Figure 1.S1).



1.3 POLICY IMPLICATIONS

While we are only at the beginning of exploring the potential impact of CI methods on
public policy, we envision at least three important areas of impact. The first is interdisciplinarity.
Choosing the right ClI intervention for a given policy challenge will require engaging with fields
of knowledge that did not traditionally intersect. The design of a citizen consultation at the level
of a large city may benefit from cognitive science and social psychology in question formulation;
network science to identify the right diffusion channels; data science and machine learning in the
treatment of open-text citizen contributions; and design thinking with behavioral economics to

redesign a public service.

And while the field of CI has long been allied with quantitative disciplines such as
computer science 4, the next wave of experiments will benefit from the insights of social science
disciplines such as participatory democracy, social psychology, management, peacebuilding, and
complex mediation. To this end, we see a natural convergence between the framework for CI
studies presented here and the closely related discourses of crowdlaw and public
entrepreneurship *°, epistemic democracy, complex systems, organizational change, and

behavioral insights or nudge theory 6.

Second, a common CI framework should allow policymakers to eliminate many of the
false choices that dominate current political debates. Harnessing the CI of a community or
country does not necessarily mean calling a referendum or overturning a government. On the
contrary, the field of CI provides a multitude of methods and techniques at the disposal of
policymakers: some relevant to decision-making, but others to collective observation,
interpretation, prediction, or preservation of common knowledge. Practitioners of CI may include

those seeking radical changes in existing institutions, but so too can they be faithful stewards of
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them. In all cases, institutionalizing CI methods will require an understanding of how to

supplement and not necessarily replace existing representatives and intermediaries.

Finally, a common CI framework can serve as a basis for new coalitions of scientists,
policymakers and citizens that will be necessary to take the most promising CI methods to scale.
Many promising CI pilots never achieve the necessary institutional buy-in to create a long-term
impact. As such, an increasing amount of attention is being given to the conditions for
institutionalizing CI processes, including the need to link new participatory channels to
performance indicators of managers and public servants . To name only a few, the work of the
NYU GovLab, NESTA Centre for Collective Intelligence Design, OECD Future of Democracy
Network, World Bank Open Government Unit, Democracy R&D Network, and EU Horizon
2020 CI fund seek to develop the link between scientific research into what works and a hard-

nosed understanding of what lasts.

As this research agenda expands, the network of researchers exploring CI principles
should itself embody those principles. This means creating more diverse data-gathering channels,
including Africa’s first cognitive science lab being created at the UM6P School of Collective
Intelligence in Morocco. It means more opportunities to pool knowledge in innovative ways,
such as the virtual CI conference in June 2020 hosted by Northeastern University and
Copenhagen Business School, and it means the epistemic humility practiced by researchers and
dialogue facilitators alike: in shaping this new discipline for policy-making, we must be vigilant
against our own biases and ever-ready to overturn our presumptions if new evidence comes to

light.

What is the future of CI? At a minimum, these methods have already shown the promise

of a more agile and inclusive policy-making framework, in which current priorities are more
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easily achieved and existing institutions reap the benefit of higher effectiveness and greater trust.
Conversely, it may entail a more profound paradigm shift in which existing models give way to
more radically decentralized or distributed systems. But whether we are able to define, study and
implement the field of CI will determine if we can collectively address our shared problems or

not.
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APPENDIX
SUPPLEMENTARY INFORMATION
S1 Collective Intelligence Examples

Here we have identified 21 unique approaches that exemplify most of the Cl systems that
have been implemented to address societies’ real-world problems. These examples include
citizen science 8, micro-task markets ° (e.g., Amazon Mechanical Turk), human swarm
intelligence %° (e.g., Swarm Al technology), traditional wisdom of crowds ’, wisdom of
decentralized networked crowds 3, knowledge co-production 2, distributed governance 2
(Blockchains technology), epistemic democracy 2, social bookmarking * (Folksonomy), Delphi
methods 2, prediction markets 26, adaptive co-management and community engaged studies 2/,
open innovation and broadcast search 2 (e.g., idea competitions), open problem-solving ?° (e.g.,
MIT Climate ColLab), commons-based peer production 3, deliberative democracy 3!, mass
collaboration % (e.g., Linux), collective memory * (e.g., Wikipedia), wisdom of stakeholder
crowds in complex problems 3 (e.g., social-ecological modeling), wisdom of crowds in
combinatorial problem-solving * (e.g., traveling salesperson problem and minimum spanning
tree problem), and diversity trumps ability theorem ®. These examples are shown in Figure 1.S1,
each demonstrates a unique array of sub-components from three main CI components: the
problem, the collective, and the aggregation mechanism. In addition, the Sankey diagram
displayed in Figure 1.S2 is a flow diagram, in which the width of the arrows represents
proportionally the flow quantity between two sub-components of the CI framework, based on 21

aforementioned examples.
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S2 Supplementary Figures
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Figure 1.S1. Examples of collective intelligence (Cl). Each example demonstrates a unique approach to harness the CI of a collective
by aggregating individual inputs to solve a particular problem. See Figure 1.1 for more information about sub-categories (i.e., PU, CX,
DV, EX, GS, EN, TM, GF, SI, and AG).
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Figure 1.S2. The Sankey diagram showing the flow between sub-components of ClI framework. Considering examples from Figure
1.S1, the diagram shows where a ClI can come from and where it can end up, with possible intermediate steps, where the width of the

connections between two nodes visualizes the quantity of examples used these pairs of nodes (i.e., sub-components).
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CHAPTER 2

2 WISDOM OF STAKEHOLDER CROWDS IN COMPLEX SOCIAL-ECOLOGICAL
SYSTEMS

This chapter is a reprint of an original peer-reviewed article published in Nature
Sustainability in 2020, volume 3, on pages 191-199. The original article can be found at:

https://doi.org/10.1038/s41893-019-0467-z.

ABSTRACT

Sustainable management of natural resources requires adequate scientific knowledge
about complex relationships between human and natural systems. Such understanding is difficult
to achieve in many contexts due to data scarcity and knowledge limitations. We explore the
potential of harnessing the collective intelligence of resource stakeholders to overcome this
challenge. Using a fisheries example, we show that by aggregating the system knowledge held
by stakeholders through graphical mental models, a crowd of diverse resource users produces a
system model of social-ecological relationships that is comparable to the best scientific
understanding. We show that the averaged model from a crowd of diverse resource users
outperforms those of more homogeneous groups. Importantly, however, we find that the
averaged model from a larger sample of individuals can perform worse than one constructed
from a smaller sample. However, when averaging mental models within stakeholder-specific
subgroups and subsequently aggregating across subgroup models, the effect is reversed. Our
work identifies an inexpensive, yet robust way to develop scientific understanding of complex

social-ecological systems by leveraging the collective wisdom of nonscientist stakeholders.
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2.1 INTRODUCTION

Many environmental problems that influence human well-being, such as climate change,
biodiversity loss, and overexploitation of natural resources, are caused by a combination of
social and ecological factors that occur in coupled systems across scales. Managing resources
under such complexity requires adequate system representation (i.e., models) 2, so that the
system’s response to management decisions can be anticipated before action is taking. However,
the sheer number of intimately linked social-ecological systems that require management, limited
knowledge and resources, and the difficulty to enumerate many system elements cause scientific
model creation to lag behind decision-making needs in most natural resource contexts 34, This
limits the effectiveness of natural resource management and contributes to the inevitable collapse

of many exploited systems, such as fisheries °.

To address knowledge limitations and data gaps, resource managers frequently receive
input and decision-making support from resource stakeholders ®7. Resource users sample the
natural environment through their routine interactions with social-ecological systems (e.g., while
fishing or hunting) 4 and thus accumulate and refine knowledge and observations over years and,
frequently, in different locations (e.g., anglers moving among lakes) 8. Therefore, monitoring and
assessment of natural resource dynamics may be improved by leaning on the knowledge of
diverse resource stakeholders (e.g., fishers) ” in ways that harness their collective intelligence
(CI) ®—the ability of a group to solve problems effectively. For example, natural resource
management increasingly uses citizen scientists 1 to collect and aggregate observational data

(e.g., by observing bird distribution and abundance) 1.

Importantly, the CI held by a group can also be harnessed by pooling judgments, rather

than observations, from large, loosely organized collectives or “crowds”. The so-called wisdom-
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of-crowds (WOC) phenomenon was discovered more than a hundred years ago, when the
average judgment of the crowd of observers accurately estimated the weight of a dead ox *2. This
phenomenon frequently leads to surprisingly accurate point estimates by averaging the
judgments of a large collective 2. In addition to simple estimation tasks, a WOC effect has also
been researched in cases of higher solution complexity, such as combinatorial problems 141°,
Understanding the complex social-ecological interactions in natural resource ecosystems,
however, constitutes a considerably more difficult problem than counting the number of birds 1°,
guessing the weight of an animal *2, or solving a Euclidean traveling salesperson problem *°.
Natural resource managers frequently have to predict future system states (e.g., in response to a
planned management intervention), which requires more complex knowledge about the structure,
connection, and dynamic behavior of natural resource systems, often associated with high
uncertainty and with no clear “correct or optimum” solution. It is currently unclear if the WOC

approach can harness CI for such complex problem-solving conditions.

In this work, we explore if the WOC can be leveraged to provide accurate system
knowledge about natural resources. Specifically, using a case from fisheries, we ask: can crowds
of non-scientist resource users provide representations of the ecological and social cause-and-
effect relationships that drive resource stock dynamics and mirror the best scientific
understanding of the same social-ecological context? Given the urgent need to effectively
manage globally declining fish stocks %17, this is a question of utmost relevance: if stakeholder
crowds can provide accurate representations of complex social-ecological relationships, then by
using the CI of stakeholders we could create a more complete coverage of localized social-

ecological processes than any team of scientists can ever achieve when traditional scientifically-
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driven assessments are limited and cannot cover the universe of local environmental and social

interactions.

One way to elicit system representations from stakeholders is through cognitive maps.
These are graphical models of system elements (concepts) and their causal connections
(represented as signed arrows). They represent an individual’s internal perception of external
reality, referred to as mental models *8. Mental models of complex systems can be represented in
special semi-quantitative forms of cognitive maps called Fuzzy Cognitive Maps (FCM) 1%,
Importantly, individual mental models elicited by FCMs can be aggregated mathematically to
create a model that represents the insights of all subjects 1*%°. However, there is a lack of
empirical evidence to explicitly demonstrate a WOC effect in averaging a crowd’s mental
models about complex social-ecological relationships, such as human interactions with natural

fish populations .

In this study, we explore using WOC principles to establish a presumably accurate
understanding of natural resource dynamics by proposing and testing a novel approach for
aggregating individual mental models collected from non-scientist stakeholders. We use an
example of a recreational fishery ecosystem and independently generated mental models,
represented by FCMs, from diverse resource users, composed of individuals who interact with
fishery resources in different ways, either through exploiting fish populations (anglers),
managing resources (fisheries managers) or governing communities of resource users (angling

club managers).

In general, and especially for complex problems with many interrelated components,
incorporating diverse knowledge and expertise into collective problem-solving improves the

group’s performance 22724, Similarly, diversity of perspectives has been identified as a critical
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driver of WOC?3. Building on earlier theoretical reasoning 2224, we hypothesize, first, that, a
system model generated by aggregating the mental models of a crowd of diverse resource users

outperforms the models of more homogeneous groups (Hq).

Yet, it is realistic to assume that users of the same social-ecological system are most
likely to be socially influenced by their peers in real life, especially by those from the same
stakeholder category (e.g., anglers, club managers, and fisheries managers), due to similarities in
the ways they use and interact with the natural resources. Such interactions can be direct through
face-to-face communications or indirect through sharing knowledge, information and
assumptions over media and through being exposed to a similar set of information sources (e.qg.,
educational material codified in books). Socially influenced subgroups of individuals, however,
tend to accumulate and represent correlated knowledge. Despite potentials for social learning and
improving the accuracy of the collective judgments, prior WOC studies % have shown that
under such conditions, averaging data points from a larger crowd of individuals increases the risk
of amplifying biased knowledge that drives from direct or indirect exposure to social influences,
thereby potentially diminishing the WOC effect 2-2’. Therefore, we hypothesize, second, that,
when arithmetically averaging mental models of stakeholders with plausible real-life social
influence, larger samples of mental models may amplify the negative effect social influence can

have on WOC, thereby deteriorating collective performance as crowd size increases (Hz).

To deal with the latter issue, past theoretical and empirical WOC studies 24?8 have
suggested that, once there are multiple “modules” within a large crowd (i.e., smaller subgroups
of individuals whose opinions are more likely to be directly or indirectly influenced by their
subgroup peers), the WOC can be enhanced by averaging responses across modules 2628,

Assuming that the crowd is suffering from the possible negative effect social influence can have
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on WOC 2" and building on prior theoretical work 2%, we hypothesize, third, that a multi-level
aggregation method that averages mental models within modules (i.e., subgroups of stakeholders
from the same user type category), followed by a subsequent aggregation across modules, can
dampen the negative effect of social influence (Hs). This multi-level aggregation approach may
compensate for the possibly harmful biases as a result of social influence, thereby allowing

larger crowds to demonstrate an improved WOC effect.

Our work tests the above mentioned three hypotheses and thereby establishes that WOC
can be leveraged to crowdsource system knowledge of social-ecological and other complex
systems, while also offering methodological guidance for aggregating the input of crowds of
resource users to generate high-quality system models similar to those developed by trained
scientists. Our findings provide the basis for managing and planning interventions in complex
social-ecological systems that are data-poor or even data-deficient, but that have an abundance of

local knowledge from resource users.

2.2 EXPERIMENTAL DESIGN

We collected graphical mental models of 218 stakeholders characterized as recreational
anglers, angling club managers, and fisheries managers through a fuzzy cognitive mapping task
in a series of workshops in angling clubs recruited from north-western Germany. The FCMs
represented participant understanding of the fish ecology and fishery management regarding the
northern pike (Esox lucius) fishery (see a previous publication for more details) 2. The
individually collected mental models graphically displayed the perceived cause-and-effect
relationships of ecological and social concepts affecting each other (see Appendix, Figure 2.S1).
Additionally, we ran two FCM workshops with 17 fishery scientists, each of whom had formal

training and scientific knowledge in fishery resource dynamics and pike ecology, to create a
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scientific reference mental model representing the best scientific understanding about the same

ecosystem.

We experimented on various ways to draw and aggregate mental models from a
population of stakeholders to explore the impact of diversity, possible biases raised because of
real-life social influences, and aggregation methods on the WOC. The effects were quantified by
comparing the aggregated mental models against the scientific reference mental model (i.e.,

experts’ group mental model).

We used two aggregation methods: (a) Single-level that is accomplished by arithmetically
averaging the weights of all individually contributed links in FCMs of group members (see
previous publications for more details) 1°*?°, and (b) Multi-level that first divides the stakeholders
into separate modules (i.e., smaller subgroups) and arithmetically averages the edge weights of
all contributing maps within each module, and then in the second level, it uses the median to
aggregate the maps across the modules (see Methods). We proposed to use median in the second
level of aggregation because the median has been shown to outperform the arithmetic mean in

likely skewed distributions 122930,

We used the single-level aggregation method to form the averaged mental models of
stakeholder-specific groups with members only from one stakeholder category (i.e.,
homogeneous groups of anglers, club managers, and fisheries managers). We also aggregated all
218 individual mental models using the multi-level aggregation method to construct a crowd
mental model composed of diverse stakeholders. To create the scientific reference model we
aggregated the mental models generated by 17 scientists (i.e., experts) using single-level
aggregation method. We compared stakeholder-derived models against the experts’ group mental

model (i.e., reference model) in terms of their (a) centrality of concepts representing pike
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ecology and management, (b) strong cause-and-effect relationships, (c) network geometric

structures, and (d) dynamic behavior (see Methods).

In addition, we built a “null-unwise” model by aggregating a set of artificial mental
models made by a random graph generator using the probability distribution of edge weights
drawn from the population of all participants’ mental models. We used this null-unwise model to
test that any observed WOC is not simply an artifact of averaging mental models, and is

attributed to stakeholders’ real-world relevant knowledge.

Finally, to test the impact of accumulated biases of socially influenced individuals on the
WOC effect and the success of different aggregation methods in filtering out these biases, we
formed numerous samples of individuals randomly drawn from the entire population of 218
stakeholders with different sample sizes. For each random sample of individuals we aggregated
their mental models using two aggregation methods: single-level and multi-level. We then
computed an overall performance error by comparing the aggregated mental model against the

expert’s mental model (see Methods for details).

2.3 RESULTS

We find that the structural properties of the crowd mental model match scientific
understanding about the social-ecological relationships driving pike fisheries, This was
evidenced by evaluating agreement between the crowd model and the scientific model using
three metrics: (a) centrality index (which represents the relative importance of a concept in the
mental model), (b) strong causal patterns (which represents the arrangement of strong cause-and-
effect relationships), and (c) graph eigenvalues (which represent hidden fundamental patterns of
geometric structure that has implications for the networked functionality of a mental model). The

centrality measures (see Methods) indicated that the three stakeholder-specific groups were
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biased toward specific management strategies (e.g., anglers were biased toward angling pressure
being particularly impactful for pike, and fisheries and club managers were biased toward
enhancement of habitat quality promoting pike) (Figure 2.1). However, in support of our first
hypothesis (H1), when the mental models of all diverse stakeholders were aggregated, the crowd
model demonstrated remarkable similarity to the experts (i.e., the reference model) regarding the
centrality of six important concepts for possible impacts of fishery management decisions on

pike population (Figure 2.1).
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Figure 2.1. Centrality profiles of different groups (in color) and the expert reference model (in
black/grey). Axes in the radar charts show the centrality of system elements that are important

for fishery management decisions. Katz index is used to measure the centrality (see Methods).

The crowd also showed the highest agreement with the reference model regarding the
strongest cause-and-effect relationships in pike ecology and management (Figure 2.2).
Additionally, the eigenvalue similarity index (see Methods) also indicated that the structure of

the crowd mental model had the most similar fundamental characteristics to the experts,
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suggesting yet again significant structural agreement (Figure 2.3). We, therefore, conclude that
the structure of the mental model of the crowd is very similar to the one produced by experts and

thus, a WOC effect is demonstrated.
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Figure 2.2. Agreement on strong causal patterns in the FCM of stakeholder-specific groups, the
crowd and the experts. The crowd map has the highest degree of matched patterns (~70%
matched) with experts; the stakeholder-specific groups perform substantially better (among 53%
to 63% of correct matches) than the null-unwise model (only ~30% correct matches). Weak
relationships with an edge weight less than 0.33 (the first tertile in zero to one continuum,
corresponding to the weak interval) were removed from the maps to get the strong causal

patterns (see Appendix, Figure 2.S2). Error bars display standard errors.
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Figure 2.3. Eigenvalue similarity index. Within each group (x axis), each point represents one
individual and is placed according to the eigenvalue similarity index (y axis). The similarity
index represents the structural mismatch with the experts mental model. The swarm plots reflect
the density of points around any distance value, while black squares represent the aggregated
mental models for each group. The crowd model has the smallest distance from (highest
similarity with) the experts model. Interestingly, for all stakeholder groups, aggregated model is
located below the densest area of the plot, illustrating the WOC effect (the average model

outperforms most individuals). Yet, this effect is notably higher in the crowd.

Structure does not necessarily provide insights into how the fishery might react under
changing social-ecological conditions. We, therefore, assessed the dynamic (i.e., functional)
behavior of the FCMs by simulating how changes in one or more system elements of the mental
models impacted the state of all system elements (see Methods). We find again in support of Hy
that the functional properties of the crowd mental model accurately match scientific
understanding about pike ecology (Figure 2.4). We revealed this agreement using a measure of
dynamic distance, which represents the mismatch between two models in terms of the outcomes
they produce as a result of changes in the state of one or more concepts. The functional

properties of the mental models generated by the crowd and experts aligned, where the mean of
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the dynamic distance between experts and the crowd was the lowest compared to all stakeholder-

specific groups (Figure 2.4).
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Figure 2.4. The dynamic distance between the experts model and the stakeholder-derived

models based on 10,000 randomly generated scenarios (experiments). Each experiment randomly
selects a set of concepts (nodes in the FCMs) and changes their values to produce outputs

(see Methods). (a) Each cell in the color-bar graph represents a random scenario with colors
denoting the dynamic distance. (b) Boxplots illustrate the distribution of these dynamic distances
for each group in 10,000 experiments. The mean of dynamic distances from the reference model

1s the smallest in the crowd.

We also find that the impact of biases deriving from real-life social influences exhibited
two distinct behaviors across different aggregation methods affecting WOC performance (Figure

2.5). For the models built by single-level aggregation larger samples of stakeholders amplify the

40



accumulation of biases, and thus group performance error increases at larger sizes in agreement
with Ha (Figure 2.5 a). By contrast, confirming Hs, for the models built by multi-level
aggregation larger samples of stakeholders cancel out the biases, and therefore group
performance error decreases monotonically as more data points are drawn from the population of
mental models (Figure 2.5 b). Consistent with prior theoretical and empirical works 2628 we
collectively show that the WOC effect is indeed observed for the large crowds, which consist of
multiple socially influenced subgroups of stakeholders (i.e., modules), but only if multi-level
aggregation, as opposed to single-level aggregation, is used (Figure 2.5). This result supports
previous experimental studies *>27, implying that social influences and their resulting biases, if
not appropriately harnessed 3!, will undermine the WOC effect in large crowds when averaging
individually collected mental models about natural resource dynamics, at least under the

conditions of our study context.
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Figure 2.5. The sampling and averaging effect on performance error in crowds built by drawing
and aggregating mental models using two aggregation methods. (a) Single level aggregation. (b)
Multi-level aggregation. Samples were formed by randomly drawing individuals from all 218
participants. Data are shown for 100 repeats per sample size. (Test of > 100 random crowd

assignment show no significant difference).
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24 DISCUSSION

This study advances the science of Cl by examining how the WOC can be leveraged to
crowdsource mental models of social-ecological systems. We demonstrate that a large-enough
group of diverse and informed stakeholders, who pool their mental models, can provide system
descriptions that mirror the representations of system knowledge by scientific experts (Figures
2.1-2.3). This is an important finding because there is a widespread lack of monitoring data and
scientific models in many freshwater and small-scale coastal fisheries and other exploited
ecosystems with which resource users regularly interact °. Our work supports an earlier
hypothesis* that the knowledge of these local resource stakeholders can be mined to provide the

insights necessary for sustainably managing exploited ecosystems and preventing their collapse.

Consistent with Page’s (2007) diversity theorem 22, we found that the system model
generated by a crowd of diverse individuals could potentially outperform the models of
stakeholder-specific groups. However, assuming that the crowd is suffering from the negative
effect social influence can have on WOC, and consistent with recent theoretical work 2°2%, we
also demonstrate that larger crowds do not necessarily perform better. Instead, aggregating more
data points (i.e., individual mental models) in larger crowds may decrease performance under
certain conditions (Figure 2.5 a). Our work thus extends prior theoretical work 2>2¢ by providing
empirical evidence that shows the importance of knowledge distribution and aggregation
methods in WOC tasks where correlated information could decrease performance with

increasing group size.

The multi-level aggregation method that we present offers a solution: it first creates
subgroup-level models for user groups assumed to be under group-specific social influences,

based on the arithmetic mean (i.e., filtering out system aspects the subgroups did not agree on,
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thus reducing variance). It subsequently aggregates those initially formed subgroup models,
using the median of the mean values (i.e., reintroducing variance). This approach benefits from
both modularity that creates a situation of optimum knowledge variation 2 and compensates for
a skewed distribution of opinions through using the median rather than mean, thereby enabling
improved performance in larger crowds (Figure 2.5 b). This is a very important finding for
guiding the application of the methods we present in a natural resource context. Even though
simple aggregation can provide accurate models with an optimal (small) sample size (Figure 2.5
a), in our case, this optimal sample size that minimizes the group performance error 2 is not
theoretically quantifiable due to the unknown correlation between individual beliefs. Our multi-
level aggregation method addresses this issue by triggering a WOC effect that monotonically
improves with relatively larger sample sizes. This is of practical relevance for sustainable natural
resources management, where often no robust criterion exists for exclusion of some stakeholders,
and contrarily, an unbounded inclusion of all stakeholders’ perspectives is highly encouraged for

democratic reasons 32 (see Appendix, Supplementary Discussion and Figure 2.S3).

A few limitations are worth outlining. First, we used a particular format, namely FCM %,
to capture, represent, and aggregate mental models, as well as to explore the structure and
dynamic behavior of the system these models represent. Other system formats may lead to
different results. Also, while great care went into the selection of experts, knowledge elicitation,
modeling, and model testing, we cannot claim that the reference model is the best possible
representation of the participating scientists’ knowledge of pike ecology, nor does it necessarily
represent the best known science. However, because any existing limitation of the reference
model equally applies to the other models in this study, our conclusions regarding the WOC for

obtaining system knowledge from stakeholders remain robust. A further limitation is that our
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findings were generated from a specific natural resource management context with a unique
governance system: in Germany, local level-angling clubs are self-managing their privately
owned fishery resources 3, and both managers and anglers have to pass training that exposes
them to concepts of aquatic ecology, fisheries management and conservation and fisheries
legislation %, This, in addition to the workshop settings for data collection, which likely
attracted more avid and experienced anglers, means that our sample likely included ecologically
interested and rather educated anglers. It is therefore uncertain whether our results translate one-
to-one to other natural resource systems, where resource users are less heavily engaged in the
local management of resource systems. Also, in our experiments, all participants were provided
with a standardized list of system components (see Methods) in favor of model comparability .
Therefore, the extent to which our findings would apply to situations where there are
considerable debates concerning the constituents of a system is unknown. Finally, while our
findings demonstrate that WOC can be leveraged to provide accurate system representations, it is
unknown whether the crowd has the ability to quantify the status of natural resources, assess
human pressures on them, and derive sustainable harvest rates — all of which are critical

components of sustainable management *°. These are important directions for future research.

When looking at possible applications of our findings, importantly, the crowd’s model
not only approximated the structure, but also the dynamic behavior of the scientist-provided
model in response to changes (Figure 2.4). This is very relevant for designing inclusive processes
and adaptive co-management practices that require stakeholders, managers, and scientists first
model likely outcome scenarios and then jointly agree on possible management actions for
uncertain ecosystems %, While frequently proposed to manage uncertainty in social-ecological

systems, such adaptive management approaches often suffer from a lack of readily available
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simulation models ®3°. Based on our work, we instead recommend proactively involving local
stakeholders in system simulation by aggregating individual mental models resulting from online

or other survey means.

To conclude, we found that robust scientific information of complex ecosystem dynamics
can be generated from a group of informed stakeholders. In fact, when done at the right scale and
for the appropriate problem, leveraging the CI of stakeholders through a crowd-sourcing
approach can be a stepping-stone for fostering institutional fit “°and accommodating nested
governance in environmental decision-making 442, For example, certain natural resource
problems are local in orientation (e.g., overfishing of a coastal fishery for non-migratory fish,
such as coastal pike), but are still data-deficient and in need of urgent conservation action that is
agreed-upon by local communities of resource users. Here, harnessing local stakeholder
knowledge through a systematic approach, as proposed in our study, can provide much-needed
information for sustainability. When this information is paired with also granting local users
sovereignty for making local conservation decisions, we can anticipate increased legitimacy of
the resulting management actions *’. Management authorities at larger scales (e.g., regional,
national, or international) can, in turn, focus on environmental problems operating at those
scales, yet their decisions might also be influenced by harnessing the CI of regionally operating
stakeholders. Ultimately, collecting system understanding may operate in a nested fashion by
first organizing understanding at lower levels through user group-specific mental models, with
ultimate decisions being coordinated at higher levels through across-group models (see

Supplementary Discussion).

Despite its promise, our work also clearly shows the importance of carefully designing

WOC approaches in natural resource contexts. In particular, if the wrong aggregation method is
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chosen, increasing sample size can produce a solution worse than one produced by intermediate
sample sizes, and because the size for optimum performance is not known, the crowd’s response
may become unreliable. Fortunately, perhaps, when using the right aggregation method, as we
show, a large enough crowd of diverse stakeholders can produce a science-like understanding of
even complex social-ecological dynamics. While further research is needed to confirm the
application of WOC to natural resource contexts, it has considerable potential for addressing

pertinent problems of unsustainable natural resource use and biodiversity loss.

2.5 METHODS

2.5.1 Description of study system and context

Many global fisheries are in trouble >3, Harvest regulations and stocking practices have
been promoted as a common management response in inland and marine fisheries #4. While
stocking is a common management practice for freshwater fisheries around the world,
researchers have recently begun questioning the sustainability of these decisions, given their
negative consequences and the highly uncertain context in which many of these decisions are
made *°. Alternative and complementary management options to stocking include social
wellbeing-oriented measures (e.g., decreasing angling pressure through input controls) and
habitat rehabilitation policies (e.g., increasing spawning habitat, increasing refuge, and
increasing riparian vegetation) . The degree to which different fishery decision-makers
understand the ecological and social tradeoffs of management decisions is currently not well
understood 47, and there is abundant documentation that fisheries stakeholders and managers find
themselves in disagreement about which policy to follow 8, Moreover, it is notoriously difficult
to understand social-ecological interactions and how various ecological factors affect the

productive capacity of renewable natural resources striving in the natural ecosystem. The
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problem is elevated in inland fisheries given the multitude of ecosystems that exist in water-rich
landscapes. The multifaceted origin of the fisheries system gives rise to a complex social-
ecological problem with substantial data-deficiencies, which lends itself for an investigation of
WOC effect for complex system modeling: stakeholders who either use or manage the fisheries
interact with the system in different ways and thus accumulate diverse system knowledge that
results in different mental models of the structure and function of the system .. These different

mental models could be mined in WOC applications to harness their CI.

Germany offers a compelling case for application of WOC as many local recreational
fisheries are managed by angler communities, organized in angling clubs 3. As opposed to open
access systems in the USA and other regions of the world, in Germany as in much of central
Europe, angler communities own or lease fishing rights from water owners and in this position
have sovereignty to engage in certain management actions (e.g., stocking, increasing harvest
regulations). Angling clubs range in the number of 10,000 in Germany alone, meaning that there
are 10.000 or more individual decision makers born out the natural resource user community
themselves. Roles in angling clubs differ with some anglers becoming elected as club managers,
mainly tasked with running the voluntary body. On the other hand, selected anglers take training
courses in fisheries management and become fisheries managers or water bailiffs taking over the
management tasks. A further group entails ordinary anglers who in Germany also have to pass a
30 hour training course to acquire a fishing license and be allowed to join angling clubs. The
content of the angling course is mainly directed to legal and practical issues 3. Participants’
fisheries knowledge and education metrics assessed using questionnaires after the mental model

exercises (see Appendix, Table 2.S3).
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2.5.2 Mental models

Mental models about social-ecological systems, and in fact any type of system, can be
elicited and represented as Fuzzy Cognitive Maps (FCM) *. These can be analyzed with regard
to structure and dynamic behavior of the system *°. Moreover, FCMs from individuals can be
aggregated into a larger FCM that represents the collective knowledge of all contributors 2 and
thus provide a tool for WOC. In this study we used the FCM format to collect data from a crowd
of 218 stakeholders who manage their own lake and river section fisheries in Germany *:
recreational anglers, who are organized in clubs, fishery club managers, and fisheries managers,
who are responsible for the entire ecosystem. In addition, we collected the system models from

17 fishery scientist and used their model for comparison.

Between 10 and 20 anglers, managers and club heads of Lower Saxony, Germany, were
invited to one of our 17 workshops (for details see a previous publication) ¢, where graphic
mental model representations of the ecology and fishery management of the model species
“pike” were individually collected through Fuzzy Cognitive Mapping technique. We used pike
populations as an example case because it is a valuable species in the study region in high
demand by anglers %. To standardize the collection of FCMs for this study, all participants
received the same set of ecological concepts, which represented key factors affecting pike
population dynamics. These factors were derived from independent focus groups with anglers
and mental model pre-tests with both anglers and experts to identify key concepts relevant to the
pike fishery. We also completed a thorough review of the pike literature to identify key aspects
of their life history and what determines population dynamics (e.g., macrophyte abundance) *°.
We added human-centered concepts represented angling impacts (e.qg., fishing pressure) to

outline a social-ecological, rather than merely an ecological, system. The task was to arrange the
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concepts and draw connections between them based on their own understanding and knowledge
(“please indicate the factors of importance to the pike population biology and their relationships
in terms of direction of influence and strength of influence”). The participants were given
freedom to add additional concepts (participants received blank cards to be able to outline
concepts not mentioned so far) and instructed that not all concepts had to be used in their model
(see Appendix, Table 2.S1 for a complete list of concepts). The final drawings were
photographed for further analyses (Appendix, Figure 2.S1). It is worth noting that the mental
models were obtained at the beginning of the workshops before any influence could have
happened by the team of researchers and workshop organizers and before any other type of

information was exchanged with the stakeholders.

The visualizations that result from FCM modeling (see Appendix, Fig. 2.S1) are similar to
so-called causal maps, which can be structurally explored in terms of network characteristics.
Furthermore, FCM models are also quantitative simulation models that can be used to assess the
dynamic behavior of the system under study. FCM computation shows the changes in the state of
system’s elements given a particular input or combination of inputs (i.e., input scenario) >*: when
one concept increases (or decreases) this triggers a cascade of changes to other system elements
until the system converges to a so-called “steady state” °>. FCM can thus answer “what if”
guestions, such as how an increase in one concept (e.g., angling pressure) affects all other

elements in the system %2,

In a nutshell, FCMs are directed graphs, and therefore, using graph theory, they can be
analyzed structurally to represent system knowledge regarding the elements and connections of
the system. Also, to represent how the system behaves in response to input changes, FCM can be

analyzed dynamically (i.e., functionally), based on fuzzy causal algebra for simulating causal
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propagation 3 (see Methods, Dynamic analysis and Inferences). Moreover, FCM from different
participants can be mathematically aggregated if their matrices are brought to the same size and
thus include information about every system element that is mentioned in any of the contributing

maps.

2.5.3 Mental model aggregation

Individual FCMs can be aggregated mathematically to create a model that represents the
insights of all study participants and thus provide a tool for testing WOC. There are two
aggregation methods used in this study to build the crowd model: (a) Single-Level aggregation;

aggregation is obtained in one step:
N N
FCM crow FCM FCM
af d=ZAij p/Z(1|AU P2 0) (2.1)
p=1 p=1

where AF¢Mp js the adjacency matrix used to represent the FCM of participant p, N is the total
number of participants, and AZ.CM” indicates the element of this matrix with the value equals to
the weight of the edge between node i and j. FCM_,,.,q represents the crowd’s FCM with the

corresponding adjacency matrix AF¢Mcrowa,

And (b) Multi-level aggregation; aggregation is obtained in two steps: Step (1) is

computing the mean FCM of each subgroup:

FCM FCM
arcMe :ZAU v /2(1 A" 0) (2.2)

PEG PEG

Where FC M, represents the aggregated FCM of subgroup G and AiF].CM” indicates the element of

adjacency matrix with the value equals to the weight of the edge between node i and j.

50



And step (2) is averaging subgroup means. We can use the arithmetic mean of subgroup
means to average them; however, forming subgroups which consist of individuals with the same
role in the fishery club carries the risk of amplifying stakeholder-specific biases in each subgroup
and can be expected to increase the skewness of subgroup models distribution. Biases are likely
to exist in our sample as prior work has shown that there is considerable bias in anglers’
understanding of fishery management %34 which is the largest group in our dataset. Most
importantly, to further remove the effect of biases, to form collective solutions, rather than using
the arithmetic mean of subgroup means, we propose to aggregate subgroup means using the
median. Earlier studies, in which the crowd is asked to provide single variable estimates, and in
which there are significant biases in individual judgments, show that the median outperforms the
arithmetic mean 122%3%, Thus we used the median to combine group means in the second level of

the aggregation.

FCMcrowd __ , FCMg, 4FCMg, FCMgn

Additionally, to remove the effect of subgroup biases, we can also use weighted-mean
and geometric mean in the second level of aggregation based on prior theoretical and empirical
studies 2"°°-%", We measured the performance of the crowd model built by different averaging
methods in the second level of aggregation, and our result showed that the median had the best

performance amongst other aggregation methods (see Appendix, Table 2.S2).

2.5.4 FCM analyses
FCM concepts (nodes) represent the qualitative characteristics of the system with an
absolute value between 0 and 1, characterizing their so-called “activation level” in the model 2.

Arrows (edges) are characterized by a number in the interval of [-1, +1], corresponding to the
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strength, direction, and sign of causal relationships between concepts. The steady state that an
FCM reaches in response to an input change (i.e., a forced change in the activation of one or
more of its concepts), depends on how the activated concept(s) is connected to other concepts in
the system. How nodes and edges are arranged is thus of great importance and frequently used to
analyze FCM. A common measure to investigate this connectivity is centrality: A concept’s
centrality shows the contribution of this concept in a cognitive map which is determined by
accumulating the strength of causal relationships linking this node to the other nodes 2. One
individual considers concepts with higher centrality more important since they are more strongly
linked to the other system elements and consequently play more important roles in the dynamic
of the system. Comparing the centrality of particular sets of concepts in different cognitive maps
translates the differences in the system definition and its important components. In this study, we
used Katz centrality index %8, since it is expected to provide the most appropriate centrality
measurement for comparing aggregated maps with higher density and presumably higher

abundance of feedbacks °.

2.5.4.1 Structural analysis

In this study, we compared the structure of FCMs using three approaches: The first
approach is to compare the centrality of six concepts of central relevance to fishery management
decisions, namely “Stocking”, “Spawning ground development”, “Angling pressure
management”, “Enhancement of hiding places and refuges”, “Enhancement of riparian
vegetation”, and “Enhancement of submerged aquatic plants” by making the centrality profiles.

Each centrality profile displays the Katz centrality of these six concepts in a radar chart (Figure

2.1). We calculate the Katz centrality of each node i with:
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where X; is the Katz centrality of node i, A is the adjacency matrix of FCM, a is the Attenuation
factor, and S is the extra weight attributed to the immediate neighborhood. What Katz centrality
measures is the relative influence of a node within the FCM by taking into account the weight of
the immediate neighbors and also all other nodes in the FCM that connect to the node through
these immediate neighbors. Extra weight would be given to the nodes located in the immediate
neighborhood through parameter g (in our case f = 0.5). Connections made with distant
neighbors are penalized by the attenuation factor « (in our case @ = 0.3). The Katz centrality of
each node is a function of the Katz centrality of other nodes. Thus, this centrality computation is
an iterative process (in our case maximum number of iterations is 10e*, and the error tolerance

used to check convergence is 10e7°).

The second approach to analyzing and comparing the structure of FCMs is an
investigation of agreement of strong causal patterns. This patterns emerge when we remove weak
edges with absolute weights less than 0.33 from aggregated FCMs (Figure 2.2). The remaining

edges illustrate the strong causal patterns used for model description.
U, = {EDGJ**} u {EDG2;3}} (2.5)
= {EDGY*} n {EDGYE} (2.6)

Size(M
PM ( g)

9= Size(U,) ) 2.7)

where {EDGJ*3} is the set of strong edges with Weight > 0.33 in the FCM of group g,
{EDG2;33} is the set of strong edges with Weight > 0.33 in the FCM of experts, M, is the
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intersection of strong edges in FCMs of the group g and experts (i.e., set of matched edges), U,
is the union of strong edges in FCMs of the group g and experts, and PM, is the proportion of

matched edges between group g and experts.

Furthermore, we can compare the network structure of FCMs with regards to the
quantitative aspects of their graph geometric shapes. In this study, we evaluate combinatorial and
geometric properties of FCM graphs using a graph similarity index, namely “Eigenvalue graph
similarity” %1 | Given two graphs, this index evaluates how similar they are in terms of the
important features of their structures. Therefore, it provides a comparison between each FCM
and the expert FCM regarding their fundamental structure. In fact, eigenvalue similarity index
measures the Euclidean distance between two graphs in a new coordinate system wherein
coordinates represent eigenvalues. In this coordinate system, each graph is determined by a point
and the distance between two points demonstrates the structural similarity between these two
graphs. The shorter the distance, the more similar the graphs are in terms of the essential
components of their structures (Figure 2.3). To measure eigenvalues similarity index, we first
calculate the eigenvalues of Laplacian of adjacency matrices of both FCMs. For each FCM the

Laplacian matrix is calculated by.
L=D- A (2.8)
where L is the Laplacian matrix, D is the diagonal matrix, and A is the adjacency matrix.

Then, for each Laplacian matrix, we find the smallest k such that the sum of the k largest
eigenvalues constitutes at least 90% of the sum of all of the eigenvalues . If the values of k are
different between the two graphs, we use the smaller one. Thus, the eigenvalues similarity index

is the sum of the squared differences between the largest k eigenvalues of the group g and
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experts FCMs. This gives us a number in the range [0,00), where values closer to zero are more
similar:
k

. . . 2
simg = z (ALLExp — /1ng) (2.9)

i=1
where sim, is the eigenvalue graph similarity index, Aiy,,, is the it" eigenvalue of the

Laplacian matrix of experts FCM, Ay, is the it" eigenvalue of the Laplacian matrix of group g

FCM.

2.5.4.2 Dynamic analysis and inferences

In addition to network structure, we analyze the dynamic behavior of FCMs. As prior
studies suggested, the dynamic behavior of FCMs can be assessed through analyzing their
responses to several “what if”” scenarios **®2, To do so, in each scenario, we change the value of
one or more concepts (i.e., nodes) in a map and record the alterations of the system state from the
“steady state”2. The value of each concept in the steady state is calculated using:

¢ = fl ¢ 4 Zc}").Aﬁ (2.10)

J

where cl.(k“) is the value of concept C; at iteration step k+1, cl.(k) is the value of concept C; at
iteration step Kk, cj(k) is the value of concept C; at iteration step k, and Aj; is the weight of the edge

relationship between C; and C;. Function f(x) is the “threshold function” used to squash the

values at each step “. Our threshold function is a sigmoidal function:
(x) = ! 2.11
160 = 1+ e (2.11)
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where A is a real positive number (in our case A = 1) which determines the steepness of the

function f.

To run a “what if” scenario, we force the system to take fixed activation value in one or
multiple concepts and use (Eq. 2.10) to compute the value of other concepts. The scenario results
are the differences between the values of the system’s concepts when the system is self-
administered (i.e., steady state) and when it is bounded by fixed manipulations in the state of
some concepts (i.e., scenario). For each concept C; the change in its value as a result of running a

scenario is:

d5C = 55 — 5 (2.12)

L

where d;¢ is the change in the value of concept C;, ¢;** is the value of concept C; in the steady
state, and ¢/ is the value of concept C; after converging into a new steady state while scenario

concepts are clamped on fixed values.

Comparing the scenario outcomes in different FCMs gives us a clear picture of how
differently the system dynamic behavior is perceived by different mental models. To compare
dynamic behavior of each group mental model with experts (i.e., reference model), we compute
the Euclidean distance between their outputs of a scenario (Figure 2.4). The mean of these
distances in all of the scenarios (i.e., 10,000 random scenarios in our case) represents the degree

of agreement on simulation outcomes and therefore compare their dynamic behavior:

N
1 ; N2
o= 33 [S (7 - ) ara
Jj=1

i

56



SCiExp
i

where DDY is the dynamic distance between group G and experts, d is the result of

scenario j in concept C; in experts map, diSCjG is the result of scenario j in concept C; in the group

map, and N is the total number of scenarios.

2.5.4.3 Normalized error and performance
The normalized dynamic and structure errors are respectively the standardized dynamic

and structure distances between the crowd and expert models:

Simcrowd
ES. =— (2.14
normal maX(Simg) ( )
g
DDcrowd (2 15)

EDnormar = max(DD9)
g

where ES,,ormai 1S the normalized structure error, and ED,,prma; 1S the normalized dynamic

error. The normalized total error is the mean of normalized dynamic and structure error:

1
ETnormal = E (ESnormal + EDnormal) (2- 16)

Finally, the Normalized Performance is calculated by subtracting the normalized total

error from one:

Poormat = 1= EThormar (2.17)
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APPENDIX

SUPPLEMENTARY INFORMATION

S1 Supplementary Methods

S1.1 Alternative multi-level aggregation methods

In Multi-level method the aggregated model is obtained in two steps: (1) Computing the

mean FCM of each subgroup,

AFMe ZAZCMP /2(1 A % 0) (2.51)

pPEG PEG

where AF¢™p s the adjacency matrix used to represent the FCM of participant p, AZCM” indicates

the element of this matrix with the value equals to the weight of the edge between node i and |,
and G is the set of individuals in the subgroup. And (2) combining subgroup means: The
simplest way to combine subgroup means is to use the arithmetic mean, which is called

“Multilevel Mean-Mean”
S1.1.1 Multilevel Mean-Mean

This method uses the arithmetic mean of subgroup means to aggregate the maps.
Ng

1
FCM¢row E FCM
G G=1

Most importantly, to further remove the effect of biases, to form collective solutions,
rather than using the arithmetic mean of subgroup means, we can aggregate subgroup means by

alternative aggregation techniques in the second level.
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S1.1.2 Multilevel Mean-W Mean

Firstly, we can weigh subgroup means, resulting in “Multilevel Mean- W Mean”. This
approach builds on the works of Mannes et al. > and Budescu and Chen °¢. However, we were
not able to identify justifiably reliable criterion to calculate contribution weights, instead, and
based on Kao and Couzin’s 2 suggestion, we simply weighted the subgroups by the reverse

order of their proportional size. It uses the weighted mean of subgroup means to aggregate the

maps.
Ng Ng
AZCMcrowd — Z WG_AE.CMG and z WG = 10 (253)
G=1 G=1

S.1.1.3 Multilevel Mean-Geo Mean:

Secondly, to account for the fact that estimates of edge weights are not necessarily
normally distributed, we can calculate “Multilevel Mean- Geo Mean” building on the works of
Lorenz et al. " and van Dolder & van den Assem °7. This can be expected to perform better than
the arithmetic mean when the data is right skewed because most people estimate small causal
strengths and a few estimate very strong effects. It uses the geometric mean of subgroup means

to aggregate the maps.
1

G

NG N

FCMcrowd __ FCM

AfMerowd = | |Aij ¢ (2.54)
G=1

where N is the total number of participants, and AZ.CM” indicates the element of this matrix with

the value equals to the weight of the edge between node i and j. FCM, represents the aggregated

FCM of group G. FCM_,.,,q represents the crowd FCM. N;; is the number of different subgroups
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and W, is the contribution weight of group G used in weighted mean calculation (in our case
Wangters = 0.1, Werubmanagers = 0.3, Wrishmanagers = 0.6). There is no quantitative criterion to
compute contribution weights, and the weights are qualitatively chosen in the opposite order of

proportional group sizes.

We measured the performance of the crowd model built by different aggregation
methods, and our result showed that the Multilevel Mean-Med had the best performance amongst

other aggregation methods (see Appendix, Table 2.S2).
S1.2 Participants’ demographics and education

The three stakeholder groups (anglers, club managers and fisheries managers) as well as
the fisheries experts’ knowledge metrics assessed using identical questionnaires after the mental
model exercises. The educational variables that were measured included three levels of
formation: (1) school-level education (secondary education), (2) work-related education (tertiary
education), and (3), in Germany, anglers are legally obliged to take a 30-hour training course in
principles of aquatic ecology, legal conditions and how to treat fish from a welfare perspective
(fisheries related education and training). Fisheries managers elected from angling clubs are
further obliged to receive specific training in principles of fisheries management, usually offered
by angler associations and assisted by fisheries agencies in each of the 16 German states. In
addition, anglers, managers and club heads can also self-teach themselves in ecological
principles. We therefore specifically assessed the degree of ecology-related training outside

formal educational formation through schools or professional training for the job market.

In addition to assessing education at three levels, in the three angler groups (anglers, club

managers, fisheries managers), we also measured the self-rated knowledge over a range of fish
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ecological and fisheries management topics to measure self-perception of ecological knowledge.
We asked about participants’ self-perception of their knowledge about aquatic ecology, fish
stocking in general, Pike (Esox lucius) stocking practices, Carp (Cyprinus carpio) stocking

practices, and measures for the sustainable care and management of water-bodies.

To describe the differences among the four surveyed groups, we conducted statistical
tests using ANOVA on metrical variables and Chi2-test for distributional variables. Importantly,
in addition to examining mean values we were interested in the within group heterogeneity of

variables to index the degree of diversity present in each of the four groups we surveyed.

S1.2.1 Demographics

The four groups did not statistically differ in average age, and all four samples were
heavily biased towards males (>94% of all surveyed people, which is the default in the study
population). However, there was substantial more within group variation in age in the angler
sample (as indexed by SD), and age variation was also higher in club managers relative to the

more homogenous groups of fisheries managers and fisheries scientists.

S1.2.2 Education

The angler group revealed the largest heterogeneity in the distribution of the highest
school education degree compared to the other three groups. On the other extreme, the scientists
were the most homogenous sample with over 94% of the respondents holding a university-
entrance qualification (Abitur) — the highest school degree possible in Germany. Fisheries
managers were more homogenous compared to club managers in terms of school education. A
similar pattern was revealed in terms of the distribution of the highest degree of professional

training. While the fisheries scientists were most homogenous (predominantly having either a
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university degree or a PhD), the anglers exhibiting the most spread in tertiary degrees compared
to club managers or fisheries managers. Finally, in terms of specific official or voluntary
education in natural scientific and ecological topics related to aquatic systems and fisheries,
fisheries managers showed the largest and most homogenous degree of ecological training,
followed by club managers and then the angler group. For example, while only 7% of anglers
had completed a one-week fisheries management training course, 18% of club managers and
85% of fisheries managers that responded to our survey completed this training. Similarly, 21%
of anglers regularly attended public seminars on fish biology topics, while 32% of club managers
and 64% of fisheries managers acknowledged such training. Overall, the degree of ecological
training in fish ecology question thus was most homogenous and more pronounced in fisheries

managers, followed by club managers and lastly anglers.

S1.2.3 Self-rated ecological knowledge on fisheries topics

Following the training in fish biological topics, the mean self-rating index of ecological
knowledge was significantly highest among fisheries scientists, followed by fisheries managers,
club managers and anglers. Importantly, however, the variation in self-rated knowledge (as
indexed by SD) was higher in the angler group than in the fisheries manager group. Interestingly,
also the scientists showed quite high variation in the self-rated knowledge, most likely because
the self-rated knowledge with very specific domains (such as stocking the species of carp or
pike) was assessed, which is unlikely to be something fisheries scientists regularly engage with
in their practical world. Overall, a picture emerged that the angler group was the most
heterogeneous of all three stakeholder groups and the fisheries manager group was the most
homogenous in relation to education, with club managers ranging in between. On the other

extreme, fisheries scientists overall were mainly academically trained (Appendix, Table 2.S3).
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S2 Supplementary Discussion:
S2.1 Distinct impact of different aggregation methods on WOC

The distinct impact of different aggregation methods on WOC can be explained with
biases resulting from real-life social influences. Despite potentials for learning from others and
thus developing more integrated understanding of the system, in our study, participants were
socially influenced only through their real-life interactions, where we had no control on the
social network structure to avoid accumulation of biases. Becker et al. 3! theoretically and
experimentally demonstrated that under certain conditions, and in highly decentralized networks,
social influence may produce learning dynamics that potentially improves the WOC; however,
we cannot assert that real-life social network structure is decentralized. Thus, we hypothesized
that social processes may undermine the WOC effect, and the negative impact can be aggravated
in larger crowds where the accumulation of biases magnifies the skewness of the distribution of
individual data points. In a crowd built by single-level aggregation, as we draw and average
more mental models, the group performance initially approaches its optimal point owing to the
benefits of information pooling, but drawing more mental models undermines the crowd
performance because knowledge that is shared by many members of the group (i.e., commonly
agreed upon knowledge that relates to easily observable system elements) is downplaying the
specialized mental models that deviate from this common knowledge (see Appendix, Figure
2.53). By contrast, we show that in a crowd built by multi-level aggregation, the group
performance improves monotonically as more mental models are drawn and averaged because
the specialized knowledge is not downplayed in favor of commonly agreed upon knowledge (see
Appendix, Figure 2.53). The multilevel process first acknowledges group-specific knowledge

using the mean (i.e., it reduces within-group variability). Then, in the second level of
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aggregation, it reintroduces some levels of variability by aggregating maps across different
stakeholder groups; however, it uses median which reduces the negative influence of group-
specific biases that deviate too much from the “norm” (i.e., the collective knowledge all

stakeholder groups agreed upon).
S2.2 Fostering institutional fit and nested governance

Our WOC approach has potential implications for operationalizing local institutions to fit
the complex social and ecological aspects of large-scale coupled human-natural systems by
suggesting a novel structure for a nested governance system. This nested governance system
integrates actions at local levels (i.e., aggregating local knowledge of stakeholders to create role-
based subgroups) and coordinates decisions at higher levels with larger scales management
authorities (i.e., aggregating across sub-groups). This application can be supported by findings of
the recent works of Bodin and Nohrstedt % on collaborative management networks and
McGlashan et al. 8, demonstrating how actions in complex system components could be directly
related to how a multitude of actors collaborate to collectively represent a complex system by

identifying parts of the system on which they can intervene.
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S3 Supplementary Figures

Figure 2.51. An example of pike ecology and management fuzzy cognitive map generated by
one participant in the workshops: The individually collected mental models graphically display
the perceived cause-and-effect relationships of ecological and social concepts affecting each
other (e.g., how habitat quality affects juvenile pike that later grow into harvestable size, or how
fish-eating birds, stocking, or angling pressure affect the pike population). Note that the

concepts’ names are in German.
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Figure 2.52. The aggregated fuzzy cognitive maps of pike ecology and management in different
groups of stakeholders: (a) Map generated by aggregating anglers’ models, (b) Map generated by
aggregating club managers’ models, (C) Map generated by aggregating fisheries managers’
models, (d) Map generated by aggregating all 218 individual models using multi-level
aggregation method, and (e) Map generated by aggregating 17 scientists’ models used as the
reference model. Red arrows represent negative relationships, and blue arrows represent positive
relationships between concepts. Weak relationships with a weight less than 0.33 were removed
from the maps for a more clear illustration.
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Figure 2.S3. Distribution of group emphasis on different concepts and its variation with group
size: The graphs show the boxplots of all concepts’ degree centrality in a crowd aggregated
model. Given each specific group size N, we randomly sampled 100 groups by drawing N
individual mental models. Each chart has 19 box plots (one for each concept in the model), each
shows the distribution of degree centrality of a concept in 100 random samples. Degree centrality

represents the perceived importance of the concept, based on its connections to other concepts
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(i.e., the number of inward and outward facing arrows). The x-axis shows the 19 concepts coded
from 0 to 18 (see Appendix, Table 2.S1 for the name of the concepts). The y-axis indicates the

degree centrality of each concept.

As group size increases, initially high and low-centrality concepts move further apart in
the bottom row (single-level aggregation), but much less so in the top row (multi-level
aggregation). In the case of single-level aggregation, initially highly central concepts become
relatively much more emphasized than other concepts, thus crowding out more specialized
knowledge. These emphasized concepts are easily-observable and more correlated knowledge,
such as node 3 = baitfish/prey fish, node 7 = spawning, node 9 = riparian plants like reeds, node
11 = zooplankton, node 17 = hiding places and refuges, and node 18 = surface area of a body of
water. These concepts (i.e., nodes) can be expected to be part of all or most contributing models.
However, their centrality is outsized in comparison to other concepts as group size increases. By
contrast, in multi-level aggregation, the larger groups do not intensively overemphasize common
knowledge shared by the majority, nor do they underemphasize specialized, and yet important,
concepts. In this case, as crowd size increases, it quickly achieves a stable, and yet
approximately unbiased, distribution of emphasis on different concepts, and this stable pattern

does not significantly change in relatively larger sizes.
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S4 Supplementary Tables

Table 2.S1. The list of all concepts used to build fuzzy cognitive maps. The list of factors were
derived from independent focus groups with anglers and mental model pre-tests with both
anglers and experts, to identify key concepts relevant to the pike fishery. Participants were given
the freedom to add additional concepts and the final list of all identified concepts was 19

concepts coded from node 0 to node 18 in all fuzzy cognitive maps.

Node number Concept’s Name
0 pike population (adult, over the legal size limit)
1 stocked pike (adult, over the legal size limit)
2 stocked pike, young fish (under the legal size
limit)
3 baitfish, prey fish
4 other predatory fish
5 Algae
6 depth of a body of water
7 spawning grounds
8 wild pike, young fish (under the legal size limit)
9 emergent riparian plants (e.g., reeds and other

bank vegetation)

10 Benthic invertebrates (snails, crustaceans etc.)
11 zooplankton

12 submerged aquatic plants

13 cormorant

14 plant nutrients

15 turbidity of water

16 angling pressure

17 hiding places, refuges

18 surface area of a body of water
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Table 2.S2. The performance of the crowd model generated by different aggregation methods.

The last column shows the overall performance of the crowd models generated by different

aggregation methods. The overall performance is calculated by subtracting the normalized total

error from one. The normalized total error itself is the mean of normalized dynamic and structure

errors. The normalized dynamic and structure errors are respectively the standardized Euclidian

dynamic and structure distances between the crowd and expert models as described in Methods

section. Therefore, the normalized performance serves as an interpretive criterion to rank the

accuracy of aggregated models in approximating the structure and dynamic behavior of the

scientific expert model.

Aggregation method Method details Normalized = Normalized Normalized Overall
Structure Dynamic Total Error Performance
Error Error
Single-level The arithmetic 0.337 0.94 0.64 0.36
mean of all
individuals
Multilevel Mean-Mean The arithmetic 0.164 0.721 0.44 0.56
mean of subgroup
means
Multilevel Mean-W Mean  The weighted 0.124 0.687 0.41 0.59
mean of subgroup
means
Multilevel Mean-Geo The geometric 0.093 0.667 0.38 0.62
Mean mean of subgroup
means
Multilevel Mean-Med The median of 0.084 0.623 0.35 0.65

subgroup means
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Table 2.S3. Fisheries knowledge and education metrics assessed using questionnaires after the
mental model exercises. Ecological Knowledge index is based on Chronbach’s Alpha reliability
of 0.84. Statistical test on mean differences is based on ANOVA, with Post-hoc test Tukey B for

homogenous variances, and Dunnett-T-3 for heterogeneous variances.

Anglers Club Fishery Scientists
Managers Managers

Age (years) 48.5(14.13) 47.8(13.28) 46.3(11.6) 40(9.8)
Gender 98% Male 96% Male 97% Male 94% Male

2 % Female 4% Female 3% Female 6% Female
Self-rated Ecological Knowledge Mean(SD) Mean(SD) Mean(SD) Mean(SD)

N=135 N=52 N=31 N=17

Ecological Knowledge index 13.6(3.2)a***  15.2(3.0)ab***  17.7(2.1)b*** 19.7(4.2)c***
Aquatic ecology 2.9(0.8)a*** 3.1(0.7)b*** 3.7(0.5)c*** 4.2(0.7)d***
Fish stocking in general 2.7(0.7)a** 3.2(0.7)b** 3.7(0.5)c*** 4.35(0.6)d***
Pike (Esox lucius) stocking practices 2.5(0.8)a*** 2.8(0.8)b** 3.2(0.7)c*** 3.9(1.1)d***
Carp (Cyprinus carpio) stocking practices 2.6(0.8)a*** 2.9(0.8)b** 3.4(0.5)c** 3.3(1.4)c**
management of water-bodies 3.0(0.7)a*** 3.3(0.9)b** 3.8(0.6)c** 4.0(0.9)c**
Fisheries Related Education and Training
Educational course in preparation for the state
angling exam 89% 94% 85% NA
Training as a fisheries manager T%a*** 18%b*** 85%cCc*** NA
University degree in biology or ecology 0% 0% 5% NA
Attendance of fisheries biology presentations, or
other natural science presentations 21%a*** 32%bh*** 64%*c*** NA
Self-education by means of technical literature
(books, magazines, internet) 50% 69% 100% NA
Secondary Education
Certificate of secondary education 24.8%a*** 23.8%a*** 37.5%*** 0.0%b***
General Certificate of secondary education 24.8%a*** 23.8%a*** 18.8%a*** 0.0%b***
Advanced technical college certificate 10%a** 16.3%a** 3.1%b** 5.9%b**
University entrance qualification (Abitur) 7.8%a*** 2.5%a*** 6.3%a*** 94.1%b***
Did not complete school degree 0.7% 0% 0% 0.0%
Tertiary Education
Apprenticeship 33.3% 35.0% 37.5% 0.0%
University degree of technical degree of higher 7.8%a*** 6.3%a*** 3.1%a*** 41.2%b***
education
No tertiary education 0.7% 0.0% 0.0% 0.0%
Master Craftsman 10.6%a*** 15.0%*** 9.49%p*** 0.0%b***
Technician 6.4%a*** 8.8%a*** 12.5%a*** 0.0%b***
PhD 0.0%a*** 0.0%a*** 3.1%a*** 58.8%b***
Still studying 1.4% 1.3% 0.0% 0.0%

72



REFERENCES

73



10.

11.

12.
13.

14.

15.

16.
17.

REFERENCES

Liu, J. et al. Complexity of coupled human and natural systems. Science vol. 317 1513—
1516 (2007).

Levin, S. et al. Social-ecological systems as complex adaptive systems: Modeling and
policy implications. Environ. Dev. Econ. 18, 111-132 (2013).

Johannes, R. E. The case for data-less marine resource management: Examples from
tropical nearshore finfisheries. Trends Ecol. Evol. 13, 243-246 (1998).

Arlinghaus, R. & Krause, J. Wisdom of the crowd and natural resource management.
Trends Ecol. Evol. 28, 8-11 (2013).

Post, J. Canada’s recreational fisheries: the invisible collapse? Fisheries 27, 6-17 (2002).

Walters, C. Adaptive Management of Revewable Resources. (Macmillan Publishing
Company, 1986).

Arlinghaus, R., Tillner, R. & Bork, M. Explaining participation rates in recreational
fishing across industrialised countries. Fish. Manag. Ecol. 22, 45-55 (2015).

Carruthers, T. R. et al. Landscape-scale social and ecological outcomes of dynamic angler
and fish behaviours: processes, data, and patterns. Can. J. Fish. Aquat. Sci. 76, 970-988
(2019).

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N. & Malone, T. W. Evidence for a
collective intelligence factor in the performance of human groups. Science (80-. ). 330,
686-688 (2010).

Irwin, A. Citizen science: A study of people, expertise and sustainable development.
(Psychology Press, 1995).

Bonney, R. et al. Citizen Science: A Developing Tool for Expanding Science Knowledge
and Scientific Literacy. Bioscience 59, 977-984 (2009).

Galton, F. Vox populi. Nature vol. 75 450-451 (1907).

Surowiecki, J. The wisdom of crowds: Why the many are smarter than the few and how
collective wisdom shapes business. Econ. Soc. Nations 296, (2004).

Yi, S. K. M., Steyvers, M., Lee, M. D. & Dry, M. J. The Wisdom of the Crowd in
Combinatorial Problems. Cogn. Sci. 36, 452-470 (2012).

Bernstein, E., Shore, J. & Lazer, D. How intermittent breaks in interaction improve
collective intelligence. Proc. Natl. Acad. Sci. 115, 8734-8739 (2018).

Worm, B. et al. Rebuilding Global Fisheries. Science (80-. ). 325, 578-585 (2009).

Arlinghaus, R. et al. Governing the recreational dimension of global fisheries.
Proceedings of the National Academy of Sciences of the United States of America vol. 116
5209-5213 (2019).

74



18.
19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.
31.

32.

33.

34.

35.

Craik, K. J. W. The nature of explanation. vol. 445 (CUP Archive, 1952).

Jetter, A. J. & Kok, K. Fuzzy Cognitive Maps for futures studies—A methodological
assessment of concepts and methods. Futures 61, 45-57 (2014).

Gray, S., Chan, A., Clark, D. & Jordan, R. Modeling the integration of stakeholder
knowledge in social--ecological decision-making: benefits and limitations to knowledge
diversity. Ecol. Modell. 229, 88-96 (2012).

Gray, S., Hilsberg, J., McFall, A. & Arlinghaus, R. The structure and function of angler
mental models about fish population ecology: The influence of specialization and target
species. J. Outdoor Recreat. Tour. 12, 1-13 (2015).

Page, S. E. Making the difference: Applying a logic of diversity. Acad. Manag. Perspect.
21, 6-20 (2007).

Hong, L. & Page, S. E. Groups of diverse problem solvers can outperform groups of high-
ability problem solvers. Proc. Natl. Acad. Sci. 101, 16385-16389 (2004).

Boudreau, K. J., Lacetera, N. & Lakhani, K. R. Incentives and problem uncertainty in
innovation contests: An empirical analysis. Manage. Sci. 57, 843-863 (2011).

Kao, A. B. & Couzin, I. D. Decision accuracy in complex environments is often
maximized by small group sizes. Proc. R. Soc. B Biol. Sci. 281, 20133305 (2014).

Kao, A. B. & Couzin, I. D. Modular structure within groups causes information loss but
can improve decision accuracy. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180378 (2019).

Lorenz, J., Rauhut, H., Schweitzer, F. & Helbing, D. How social influence can undermine
the wisdom of crowd effect. Proc. Natl. Acad. Sci. 108, 9020-9025 (2011).

Navajas, J., Niella, T., Garbulsky, G., Bahrami, B. & Sigman, M. Aggregated knowledge
from a small number of debates outperforms the wisdom of large crowds. Nat. Hum.
Behav. 2, 126-132 (2018).

Hooker, R. H. Mean or median [2]. Nature vol. 75 487-488 (1907).
Perry-Coste, F. H. The ballot-box [2]. Nature vol. 75 509 (1907).

Becker, J., Brackbill, D. & Centola, D. Network dynamics of social influence in the
wisdom of crowds. Proc. Natl. Acad. Sci. 114, E5070--E5076 (2017).

Jentoft, S. Fisheries co-management. Delegating government responsibility to fishermen’s
organizations. Mar. Policy 13, 137-154 (1989).

Kosko, B. Fuzzy cognitive maps. Int. J. Man. Mach. Stud. 24, 65-75 (1986).

Arlinghaus, R. A Property Rights-Based View on Management of Inland Recreational
Fisheries: Contrasting Common and Public Fishing Rights Regimes in Germany and the
United States. in American Fisheries Society Symposium vol. 75 13-38 (2011).

Hickley, P. & Tompkins, H. Recreational fisheries: social, economic, and management
aspects. (Fishing News Books Oxford, UK, 1998).

75



36.

37.

38.

39.
40.

41.

42,

43.

44,

45,

46.

47.

48.

49.

50.
51.

Fujitani, M., McFall, A., Randler, C. & Arlinghaus, R. Participatory adaptive management
leads to environmental learning outcomes extending beyond the sphere of science. Sci.
Adv. 3, 1602516 (2017).

Gray, S. A, Zanre, E. & Gray, S. R. J. Fuzzy cognitive maps as representations of mental
models and group beliefs. in Fuzzy cognitive maps for applied sciences and engineering
29-48 (Springer, 2014).

FAO Technical Guidelines for Responsible Fisheries. No. 13. Recreational Fisheries.
http://www.fao.org/3/i2708e/i2708e00.htm (2012).

Townsley, P. Social issues in Fisheries. FAO. Fish. Tech. Pap. 93 (1998).

Folke, C., Pritchard Jr, L., Berkes, F., Colding, J. & Svedin, U. The problem of fit
between ecosystems and institutions: ten years later. Ecol. Soc. 12, (2007).

Ostrom, E. Governing the commons: The evolution of institutions for collective action.
(Cambridge university press, 1990).

Ostrom, E. A diagnostic approach for going beyond panaceas. Proceedings of the
National Academy of Sciences of the United States of America vol. 104 15181-15187
(2007).

Worm, B. & Branch, T. A. The future of fish. Trends in Ecology and Evolution vol. 27
594-599 (2012).

Arlinghaus, R., Mehner, T. & Cowx, I. G. Reconciling traditional inland fisheries
management and sustainability in industrialized countries, with emphasis on Europe. Fish
Fish. 3, 261-316 (2002).

Lorenzen, K., Beveridge, M. C. M. & Mangel, M. Cultured fish: Integrative biology and
management of domestication and interactions with wild fish. Biological Reviews vol. 87
639-660 (2012).

Cooke, S. J., Arlinghaus, R., Johnson, B. M. & Cowx, I. G. Recreational fisheries in
inland waters. (Wiley-Blackwell Oxford, UK, 2016).

Sandstrom, A. Navigating a complex policy system-Explaining local divergences in
Swedish fish stocking policy. Mar. Policy 35, 419-425 (2011).

Dorow, M., Beardmore, B., Haider, W. & Arlinghaus, R. Using a novel survey technique
to predict fisheries stakeholders’ support for European eel (Anguilla anguilla L.)
conservation programs. Biol. Conserv. 142, 2973-2982 (2009).

Gray, S. A. et al. Using fuzzy cognitive mapping as a participatory approach to analyze
change, preferred states, and perceived resilience of social-ecological systems. Ecol. Soc.
20, (2015).

Craig, J. F. A short review of pike ecology. Hydrobiologia 601, 5-16 (2008).

Giabbanelli, P. J., Gray, S. A. & Aminpour, P. Combining fuzzy cognitive maps with
agent-based modeling: Frameworks and pitfalls of a powerful hybrid modeling approach
to understand human-environment interactions. Environ. Model. Softw. 95, 320-325

76



52.

53.

54,

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

(2017).

Ozesmi, U. & Ozesmi, S. L. Ecological models based on people’s knowledge: a multi-step
fuzzy cognitive mapping approach. Ecol. Modell. 176, 43-64 (2004).

Dorow, M. & Arlinghaus, R. The relationship between personal commitment to angling
and the opinions and attitudes of German anglers towards the conservation and
management of the European eel Anguilla anguilla. North Am. J. Fish. Manag. 32, 466—
479 (2012).

Baer, J., Blasel, K. & Diekmann, M. Benefits of repeated stocking with adult, hatchery-
reared brown trout, Salmo trutta, to recreational fisheries? Fish. Manag. Ecol. 14, 51-59
(2007).

Mannes, A. E., Soll, J. B. & Larrick, R. P. The wisdom of select crowds. J. Pers. Soc.
Psychol. 107, 276-299 (2014).

Budescu, D. V. & Chen, E. Identifying expertise to extract the wisdom of crowds.
Manage. Sci. 61, 267-280 (2015).

Van Dolder, D. & Van Den Assem, M. J. The wisdom of the inner crowd in three large
natural experiments. Nat. Hum. Behav. 2, 21-26 (2018).

Katz, L. A new status index derived from sociometric analysis. Psychometrika 18, 39-43
(1953).

Lavin, E. A., Giabbanelli, P. J., Stefanik, A. T., Gray, S. A. & Arlinghaus, R. Should we
simulate mental models to assess whether they agree? in Proceedings of the Annual
Simulation Symposium 6 (2018).

Koutra, D., Parikh, A., Ramdas, A. & Xiang, J. Algorithms for graph similarity and
subgraph matching. in Proc. Ecol. Inference Conf vol. 17 (2011).

Koutra, D., Shah, N., Vogelstein, J. T., Gallagher, B. & Faloutsos, C. DELTACON:
Principled massive-graph similarity function with attribution. ACM Trans. Knowl. Discov.
Data 10, 1-43 (2016).

Yoon, B. S. & Jetter, A. J. Comparative analysis for Fuzzy Cognitive Mapping. in
PICMET 2016 - Portland International Conference on Management of Engineering and
Technology: Technology Management For Social Innovation, Proceedings 1897-1908
(Institute of Electrical and Electronics Engineers Inc., 2017).
doi:10.1109/PICMET.2016.7806755.

Bodin, O. & Nohrstedt, D. Formation and performance of collaborative disaster
management networks: Evidence from a Swedish wildfire response. Glob. Environ.
Chang. 41, 183-194 (2016).

McGlashan, J., de la Haye, K., Wang, P. & Allender, S. collaboration in complex
Systems: Multilevel network Analysis for community-Based obesity prevention
interventions. Sci. Rep. 9, 1-10 (2019).

77



CHAPTER 3

3 THE DIVERSITY BONUS IN POOLING LOCAL KNOWLEDGE ABOUT
COMPLEX PROBLEMS

A revised version of this chapter is in press for publication in Proceedings of the National

Academy of Sciences (PNAS) (https://www.pnas.org/).

ABSTRACT

Recently, theoreticians have hypothesized that diverse groups, as opposed to groups that
are homogeneous, produce several assets— all of which lead to better performance in solving
complex problems. As such, understanding complex environmental or social issues, for which
scientific information is typically limited, would likely benefit from the integration of diverse
types of local expertise. Yet, capturing knowledge distributed across diverse types of local
experts is not straightforward and consequently rarely evaluated, which often hinders applying
knowledge-pooling to sustainability decision-making. To address these challenges, here we show
how emerging internet technologies, semi-quantitative cognitive mapping techniques, and
principles of collective intelligence theory can merge into a novel crowdsourcing approach to
aggregate diverse expertise. Using a case of striped bass fisheries in Massachusetts, we show
how our approach can be used to pool local knowledge of resource stakeholders to produce a
model of complex social-ecological interdependencies. First, subjective evaluation of
stakeholder models revealed improved performance of the diverse group compared to more
homogeneous ones, as evidenced by blind reviews conducted by an expert panel. Second,
objective evaluation of stakeholder models using a stochastic network analysis indicated that a
diverse group more adequately modeled complex interdependencies and feedbacks where
homogeneous groups were more likely to fail. Our work empirically validates the previous
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theoretical assumption that knowledge diversity and pooling are important for understanding
complex problems, while also highlighting that diversity must be moderated through an

aggregation process leading to more complex yet parsimonious models.

3.1 INTRODUCTION

Determining which management strategies lead to sustainable outcomes in social-
ecological systems (SES) is challenging, and are often made based on the best available sciences
! Specifically, in natural resource management, a number of laws and regulations mandate the
use of best scientific information available (BSIA) in decision-making (e.g., the Magnuson-
Stevens Fishery Conservation and Management Act of 1976; and the 2012 Forest Service
Planning Rule). In many cases, BSIA is comprised of empirical data, peer-reviewed information,
expert knowledge, and local and traditional knowledge. This scientific information can be used
to implement management strategy evaluation (MSE) >—a decision-support tool (e.g.,
computational models) to examine the implications of alternative management and policy
scenarios before any action is taken. However, in data-poor cases across a wide range of local
sustainability contexts, scientific information is frequently inadequate for effective decision-
making >*. In such cases, traditional or local knowledge (LK) of people who interact with local
ecosystems can constitute a rich source of scientific information and plays a key role in decision-
making >8. However, there are two primary challenges associated with pooling LK from local

stakeholders that need to be addressed:

First, it is often difficult to quantify the scientific or management uncertainties associated
with utilizing LK, which limits its formal or even legal use in environmental assessments and
decision-making ®°. This is in part because the information embedded in stakeholders’ LK is

predominantly qualitative and may be considered “anecdotal” ! and thus cannot be easily
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integrated with scientific assessments, which are often quantitative %%, This limitation
undermines the potential use of LK to develop statistically rigorous inferences or
computationally executable simulations with the ability to represent the true condition of the
system and ““accurately” predict system responses to various management strategies or natural

and anthropogenic perturbations.

Second, LK held by stakeholders demonstrates considerable variations across different
groups that represent biased and sometimes conflicting perceptions of complex social-ecological
interdependencies. These variations may be linked to differences in preferred adaptation
strategies '23; diverging beliefs and values '4; disparate experiences and interactions with
ecosystems °; and are thought to undermine the “reliability” ° of integrating LK into

management strategies 16-18,

In this article, we draw on collective intelligence (CI) theory *° to test if LK—once
aggregated from diverse stakeholders— produces accurate and reliable scientific information for
complex problem-solving. Cl is typically defined as a group phenomenon, enabling a group to
accomplish complex tasks where individuals or any subset within it fail 2°. This group
phenomenon may emerge when a collective of individuals either collaborate or independently
pool their knowledge to address a problem %2122, The group may therefore benefit from a larger,
more refined, or recombined body of knowledge, whereas the aggregation mechanism filters out
errors and biases, compensates individuals’ insufficiencies, or allows for recombining the pool of
knowledge in new ways that can result in innovative solutions, which is unlikely that any of the
individual members would be able to come up with (e.qg., ref. 23-25). CI has been a growing area
of investigation with implications for improving decision-making in different fields. Importantly,

new information technologies have substantially increased human capacities to pool knowledge
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and participate in decision-making %. For example, online crowdsourcing technologies such as
Human DX and Sermo facilitate medical collaboration by building partnerships between medical
societies and the public to improve medical training and clinical decision-making 2%%’. Prediction
Markets, as another example, leverage internet technologies to harness the CI of online crowds

and accurately predict the probabilities of various events occurring 2.

A growing body of literature now suggests that diversity of knowledge, once properly
harnessed, is of utmost importance to improve Cl in a group, thereby helping a group achieve
better performance at the aggregate level 22232832 In general, and especially for complex
problem-solving such as those related to the sustainability of local SESs, theoretical and
empirical evidence has demonstrated that knowledge diversity is a critical driver of collective
performance 333, But, how can we harness the CI of natural resource stakeholders via pooling
LK to model social-ecological interdependencies? How does the factor ‘diversity’ impact the

group’s collective performance in modeling a complex system?

Here we explore how emerging internet technologies, semi-quantitative cognitive
mapping techniques, and CI theoretical principles can be integrated into a novel crowdsourcing
approach to address the challenges associated with using LK as an accurate and reliable source
of information to understand local sustainability issues. Our approach results in the aggregation
of LK that is elicited from diverse groups of natural resource stakeholders through mental
modeling. This knowledge elicitation and aggregation mechanism can yield a computationally
executable representation (i.e., model) of social-ecological dynamics that combines local
stakeholders’ perceptions. To implement this approach, we used an example of striped bass
(Morone saxatilis) population dynamics in Massachusetts (MA), U.S.A. The striped bass fishery

IS an important component of coastal economies throughout the east coast and is composed of
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commercial and recreational fishers. While various stakeholder groups interact differently with
the fishery, they each construct diverse knowledge about resource dynamics including both
ecological dimensions (e.g., predator-prey relationships) and human dimensions (e.g.,

commercial and recreational fishing pressures), as well as their interrelationships.

We crowdsourced mental models using a semi-quantitative technique called Fuzzy
Cognitive Mapping (FCM) *® to represent each individual’s LK about social-ecological
relationships that influence striped bass populations and fisheries. We collected these FCMs
using an online mental modeling technology (www.mentalmodeler.com), in the form of
digitalized graph drawings from a diverse crowd of local stakeholders, including recreational
fishers, commercial fishers, and fisheries managers (see Appendix, Figures 3.S1 and 3.S2). The
individuals’ drawings were then mathematically combined into a collective model representing
the aggregated knowledge of stakeholders. These aggregated models can be analyzed in terms of
their qualitative compositions (i.e., what concepts are represented), network structure of causal
relationships (i.e., how concepts are connected), and dynamic behavior (i.e., how changes in the
state of one or multiple concepts initiate a cascade of changes in other concepts) (see Materials

and Methods).

Given the numerous social and ecological concepts potentially influencing the striped
bass population and the likely differences in stakeholders’ perceptions, we explored how this
diversity impacts the accuracy and reliability of stakeholders’ aggregated knowledge.
Aggregation took place once all individual mental models were transformed into adjacency
matrices—a mathematical representation of a directed graph *’. We first combined individual
mental models by stakeholder types to form homogeneous, stakeholder-specific models using the

arithmetic mean of their adjacency matrices elements 3 (see Materials and Methods).
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Subsequently, the more diverse crowd model (including all stakeholder types) was created
through aggregating stakeholder-specific models using the median of their adjacency matrices
elements. This “multi-level aggregation” mechanism (see Appendix, Figure 3.S3) has been
previously identified as the most reliable and effective method for combining the mental models

of stakeholders to mediate the diversity of models and cancel out group specific biases 3.

We evaluated the performance of stakeholder-driven models, both homogeneous and
diverse by (i) acquiring subjective judgments from scientific experts, and (ii) analyzing the
network structure of their aggregated mental models (see Materials and Methods). Our findings
demonstrate that aggregating knowledge from a diverse group of stakeholders produces a Cl
model of social-ecological interdependencies that can generate outcomes similar to scientific
methods in anticipating the structure of natural resource systems and their response to
management strategies and external perturbations, and these outcomes in general, outperform
those of more homogeneous groups. Our study, therefore, provides tools and methods for
synthesizing the knowledge held by diverse groups of local stakeholders, which can advance the
formal use of LK in understanding and making decisions about integrated environmental, health,

and social issues and can potentially enhance our ability to resolve local sustainability problems.

3.2 RESULTS

A total of 32 individuals completed the online mental modeling survey including 13
recreational fishers, 11 commercial fishers, and 8 fisheries managers. To allow for
standardization, but also capture knowledge diversity, participants were asked to include 5
concepts in their models (recreational fishing, commercial fishing, striped bass population, prey
abundance, and water temperature) while other components in their concept maps could be freely

associated based on their perceptions (see Appendix, Table 3.S1).
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Aggregation of individual mental models by stakeholder types resulted in three averaged
FCMs representing the overall perception of each homogeneous group (see Appendix, Figure
3.54-3.S6). Group aggregated FCMs varied widely in the number of nodes and connections, as
well as the qualitative composition of concepts used to represent social-ecological relationships.
For example, recreational fishers focused on social concepts influencing fish populations, while
commercial fishers tended to incorporate biological concepts, and managers emphasized

management aspects (see Appendix, Figure S8).

Aggregation across diverse stakeholder groups using the median of group means yielded
a “crowd model” with a parsimonious set of concepts and connections (23 concepts and 59
connections) (see Appendix, Figure 3.S7). This “crowd model” reflected the different expertise
of all three stakeholder-specific groups by preserving a moderated level of information presented
from each of them, blended knowledge diversity, and represented the overall understanding of

the whole community about striped bass dynamics.

The review of concepts in three stakeholder-specific models and the diverse crowd model
revealed that there were 15 overlapping core concepts shared by all 4 models; however, these
concepts were connected to each other differently in different models (Figure 3.1). Expert
evaluations of model structure were conducted by a panel of fisheries scientists based on the
patterns of causal relationships among those 15 concepts to examine and compare the
performance of four models. This evaluation was conducted in five steps: examining 1) striped
bass predator-prey relationships, 2) the effect of fishing pressures on striped bass, 3) striped bass
connection to ecology and habitat, 4) social drivers affecting the striped bass population, and 5)

environmental drivers affecting the striped bass population.
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Figure 3.1. The representation of cause-and-effect relationships between 15 overlapping
concepts shared by all stakeholder groups and the diverse crowd. Ecological components are
green and social components are purple. The aggregated graphs of (a) commercial fishers, (b)
recreational fishers, (c) fisheries managers, and (d) the diverse crowd were evaluated by
scientific experts to assess their accuracy in terms of causal relationships and feedback loops.

Evaluations were conducted in 5 steps as shown in (d).
In addition, the four aggregated models were computationally manipulated to determine

how perceived social-ecological dynamics vary for each model (see Appendix). We computed
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the models’ prediction of changes under six scenarios: increased inclement weather for fishing,

increased water temperature, decreased water quality, increased price of fish, increased demand,

and increased poaching and illegal activities (Figure 3.2).
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Figure 3.2. Fishery response (i.e., relative normalized changes in value of concepts) to six

different scenarios simulating (a) increased inclement weather for fishing, (b) increased water

temperature, (c) decreased water quality, (d) increased price of fish, (e) increased demand, and

(F) increased poaching and illegal activities.

Expert evaluations of model functionality were conducted to examine and compare

models’ dynamic behavior under these six scenarios. Expert evaluation of models’ structure and
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dynamic behavior revealed that the diverse crowd model outperformed stakeholder-specific
models of homogeneous groups (i.e., recreational fishers, commercial fishers, and fisheries
managers). Experts, on average, rated the crowd model as the most accurate map among the four
models because it most adequately represented the causal relationships and feedback loops in
striped bass fishery SES. Overall, scientific experts assessed that the structural performance of
the crowd model was 65% accurate, followed by 55% accuracy for fisheries managers, 48% for
recreational fishers, and 43% for commercial fishers (Figure 3.3 a). For the models’ dynamics,
experts rated the crowd model as the most accurate map among four blinded models owing to
models’ prediction of changes. On average, scientific experts determined that the crowd model’s
dynamic performance was most accurate (75%), while the fisheries managers’ model ranked
second in this category with 50% accuracy. The models of commercial fishers and recreational
fishers were assigned 39% accuracy by experts according to the model's dynamic performance
(Figure 3.3 b). This implies that aggregating diverse knowledge of different stakeholder groups
may improve the overall accuracy of their combined LK and can potentially lead to higher

scientific alignment (Figure 3.3 c).
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Figure 3.3. Expert evaluation of aggregated models. The box plots represent the distribution of
experts’ opinions regarding models’ (a) structure and (b) dynamic performance. The
performance was measured using a 7 point Likert scale for each item of interview sheets (see
Appendix). The assigned accuracies of structural items (i.e., five sub-structures illustrated in
Figure 3.1) were averaged and normalized to a scale between 0 and 1. Similarly, the assigned
accuracies of dynamic items (six scenarios illustrated in Figure 3.2) were averaged and
normalized to a scale between 0 and 1. The 2D scatter plot in (c) shows the overall score given to
four models by each expert, where x-axis is the accuracy regarding models’ dynamics and y-axis

is the accuracy regarding models’ structure.

In addition to 15 overlapping concepts that appeared in all four aggregated models, we

asked experts to examine the other concepts that did not appear in all 4 models. Expert
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qualitative evaluation of models’ composition revealed the number of false negatives or false
positives (i.e., not including necessary system components and including unnecessary ones,
respectively). An evaluation was conducted based on experts’ scientific knowledge of the
system’s fundamental components versus trivial or redundant components which were
considered superfluous in modeling the striped bass population. This qualitative assessment of
the model composition determined “false” errors in four aggregated models revealing that, on
average, expert panel identified 20% of the crowd model’s composition as false positive or false
negative, which is the smallest among all other stakeholder-specific models with overall false

errors ranging from 32% to 55% (see Appendix, Figure 3.S9).

The stochastic network analysis of model structures revealed the prevalence of complex
motifs (i.e., bi-directionality, indirect effect, multiple effects, and feedback loop micro-
structures) in a model (see ref. 39). We quantified the expected value of counts for complex
motifs given the size and density of networks of each group FCM (see Materials and Methods).
Deviations of motif counts from their expected value were used as measures of motifs’
prevalence (Figure 3.4). Our results demonstrate that the FCM of the diverse crowd has a higher
prevalence for all complex motifs compared to the expectation, thereby representing a higher

perception of complex causality.
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Figure 3.4. Deviation of the prevalence of complex causal motifs in aggregated models relative
to uniform random graphs for (a) bi-directionality, (b) indirect effect, (c) multiple effects, and
(d) feedback loops. Black dots represent 10,000 random graphs and the blue line shows the
expected value of motif counts. Red dashes represent the deviation of each model from the

expected value.
3.3 DISCUSSION

This study advances the use of LK for understanding complex problems by leveraging
the assets of knowledge diversity (i.e., “diversity bonus™) 2°. We draw on CI theoretical
principles to combine diverse stakeholders’ LK and produce comprehensive models of complex

interrelationships in social and environmental problems that human societies face. Our study
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offers a novel approach to collect and aggregate knowledge diversity across various groups of
individuals to provide an improved understanding of complex problems. We used an example of
striped bass fisheries in MA to empirically test our approach. Our results demonstrate that once
harnessed properly, pooling diverse LK would likely yield accurate representations of complex
interdependencies between humans and the environment that govern a natural resource system.
The resulting aggregated model can also generate reliable and accurate predictions of system
responses to natural and anthropogenic perturbations (Figure 3.3). This study, therefore, adds to
a growing body of literature that investigates the use of LK in scientific assessments and the

management of natural resources 810114041

Stakeholders interact with natural resources differently, and this may lead them to
construct diverse perceptions about social-ecological interdependencies. The semi-quantitative
FCM approach we used here enables us to highlight these variations in stakeholders’ LK in terms
of perceived system composition, structure of interdependencies, and dynamic behavior 424,
Even though a large body of literature has been dedicated to measuring these variations using
FCMs (e.g., ref. 44), few studies have explored the benefits of knowledge aggregation 33384546
Here we focused on how diversity impacts stakeholders' collective perception of a complex

problem.

Consistent with past theoretical studies (e.g., “diversity trumps ability” theorem) 28, we
found that the aggregation of LK obtained from a diverse group of stakeholders produces a
system representation that outperforms those of homogeneous groups. However, to be
successful, the aggregation needs to be mediated, filtering out the biases associated with each
group’s LK. We used the principles of CI, and specifically, the wisdom of crowds (WOC)

ideology to aggregate mental models and operationalize the diversity “bonuses” 2°. As such, the

91



aggregation method we used here is based on a two-step averaging mechanism (Figure 3.S3) to
let stakeholder-specific biases cancel each other out and also knowledge insufficiencies be
complemented by pooling diverse expertise (see ref. 33 for more details about the aggregation

method).

In this study, we used both subjective and objective evaluations to measure the
performance of aggregated FCMs. We asked a group of experts with a wide range of scientific
knowledge and expertise to assess the performance of the stakeholder-driven models based on
their personal opinions and knowledge. Even though experts represented a wide range of
academic disciplines (e.g., fisheries ecology, economics, etc.) and professional expertise, a clear
majority of experts rated the diverse crowd model as the most accurate one, compared to
stakeholder-specific, homogeneous models. Additionally, stochastic network analysis provided
an objective evaluation of the model's performance in representing complex causalities driving
the system. The FCM of diverse crowd demonstrated a higher prevalence for all complex motifs
compared to the expectation. The aggregated map of recreational fishers also demonstrated high
prevalence for all tested motifs while managers demonstrated low prevalence of motif “indirect
effects”, which represents a lower appreciation of cascading impacts *°. The aggregated map of
commercial fishers, on the other hand, demonstrated low prevalence for all tested complex
motifs indicating that commercial fishers tend to perceive the system as more linear with

hierarchal casual structures (Figure 3.4).

Additionally, managing uncertainty is a key challenge for policy and decision-making. In
natural resources management, two common types of uncertainties include scientific uncertainty
(related to data sources) and management uncertainty (related to the ability to predict

management success/outcomes). To address the former, laws and regulations frequently mandate
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the use of BSIA (e.g., Magnuson-Stevens Fishery Conservation and Management Act of 1976).
However, the interpretation of such laws has led natural resource management to overvalue
minimizing scientific uncertainty, often to the detriment of properly handling management
uncertainty. Similarly, researchers have suggested that managing the latter requires that
stakeholders, managers, and scientists first predict how systems respond to management
strategies through scenario analysis and then collectively achieve a shared understanding about
possible management actions #’. Such adaptive co-management practices, however, often suffer
from a lack of ready-to-use simulation models, in addition to the high amount of time and
resources necessary to elicit diverse knowledge. Here we demonstrate that the use of internet
technology to crowdsource LK through an online mental modeling platform can help achieve

efforts to manage both types of uncertainties.

Even though these mental modeling practices are commonly organized through
workshops (e.g., ref. 43) and interviews (e.g., ref. 44), we demonstrated that once provided with
simple instructions (e.g., short videos and written directions) (see Appendix), participants can
comfortably interact and familiarize themselves with the online platform, and thus knowledge
elicitation process can be automated. Our study demonstrates a novel Cl approach for
aggregating and integrating stakeholders’ LK to produce reliable, computationally executable
modeling systems for understanding and promoting the sustainability of complex social-

ecological systems.

3.4 METHODS

3.4.1 Mental models and fuzzy cognitive maps
In this study, we used FCMs to represent stakeholders’ mental models about striped bass

fisheries in MA. To understand stakeholders’ perceptions and knowledge about natural resources
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many researchers have suggested the importance of eliciting and measuring mental models
18,38.44.4849 However, many mental model elicitation techniques often yield qualitative
representations of associative rules between concepts/ideas and logical chains of reasoning, with
few standardized methods to analyze them as computational simulations of the system they
represent 3. Here we used FCM—a semi-quantitative technique— to bridge the divide between
highly computational system modeling and easy-to-construct qualitative cognitive or concept
mapping. FCMs are graphical representations of an individual’s perception showing a network of
cause and effect relationships (edges) among different concepts (nodes) and, yet, can be
computationally manipulated due to the numerical parametrization of the strength of causal
relationships. These models are therefore simulation tools that can be used to assess individuals’
knowledge about dynamics of the system they represent *’. By increasing or decreasing a
concept in the map (e.g., water temperature or predator abundance), “what-if” scenarios can be

simulated using the auto-associative neural network method *° (see Appendix).

3.4.2 Online crowdsourcing implementation

We collected mental models from diverse groups of stakeholders including commercial
fishers, recreational fishers, and fisheries managers. We used a contact list of recreational and
commercial fishers including all MA licensed fishers. In addition, we used a contact list of
fisheries managers including individuals from NOAA, Massachusetts Division of Marine
Fisheries, and Atlantic States Marine Fisheries Commission - striped bass board. Random
sampling methods were used to select 100 individuals from each list. Individuals who indicated
their willingness to participate were received instructions through email. Each individual

participated independently in an online mental modeling survey, where they used an online
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mental modeling technology (www.mentalmodeler.org) to make an FCM about striped bass

population dynamics and social-ecological factors that impact fish population and fishery.

Participants were given a written step-by-step manual (see Appendix) and a series of short
videos instructing them how to brainstorm, identify, and add components via an online graphical
interface, representing all concepts that they believe impact either their fishing effort and/or the
striped bass population. Participants were then asked to use this modeling technology to draw
lines between concepts and assign a relative value between 0 and 1 (either positive or negative)
to each link based upon the degree to which one component affects another. This exercise was
completed when the participant could no longer think of additional relevant concepts or linkages
among concepts. Participants had to save their mental model contributions and send them to the

project’s email address.

3.4.3 Collective intelligence and knowledge pooling

To harness the CI of local stakeholders for natural resource system modeling we
expanded a well-documented method called the “wisdom of crowds” (WOC) 2+%, WOC refers to
the finding that groups of people, under certain conditions, are collectively smarter than
individuals in problem-solving, decision making, innovating, and predicting. For example, in
simple estimation, the average of individual judgments often outperforms the judgment of the
majority of the contributing individuals and sometimes even the best individual judge 2. WOC
has been applied to many situations from people contributing to medical diagnostics °? to
predicting the winners of major sporting events 3, often with high rates of success. A theoretical
explanation for this phenomenon is that there is an error associated with each individual
judgment, and taking the average over a large number of responses filters out the noise of gross

over- and under-estimates, thus moving the aggregate response closer to the ground truth 2154,

95



We used WOC principles to aggregate mental models of stakeholders about the striped
bass SES. According to Surowiecki %, crowd-based solutions, can be reliable when (a) the study
participants represent diverse opinions, (b) make their judgments independent of each other and
without outside influences, (c) are able to draw on their local knowledge, and (d) there exist
some aggregation mechanisms to combine individual contributions into a collective response.
We similarly aggregated individuals’ graphical mental models from a diverse group of
stakeholders whose LK and perceptions were elicited independently using an online mental
modeling technology in the form of FCMs. Once the individual FCMs were standardized (i.e.,
using unique terminologies for similar concepts) (see ref. 55), models were combined using their
adjacency matrices and matrix algebra to create a model that represented the collective

knowledge of stakeholder groups and thus provided a tool for leveraging WOC (see Appendix).

3.4.4 Expert evaluation of models’ performance

To evaluate the accuracy and overall performance of the stakeholder-driven models we
conducted in-depth interviews with fisheries experts. Experts were recruited from the National
Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center,
Massachusetts Division of Marine Fisheries, and an academic institution. A purposeful sampling
method was used to select a sample of fisheries scientists with diverse scientific expertise and
educational background—also being involved in management, assessment, and conservation of
striped bass fish stocks in MA. Eight experts participated with academic background in
environmental sciences; natural resource management; ecology, evolution and marine biology;
environmental conservation; environmental and natural resource economics; marine sciences and
fisheries biology; and social sciences. Interviews with experts were semi-structured with a

combination of pre-established questions and a series of interactive model evaluation practices
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requiring scientific experts to examine the accuracy of four aggregated models: three models
from homogeneous groups (recreational fishers, commercial fishers, and managers), and one
diverse crowd model. Models were blinded (i.e., experts had no information about which model
represented which group). Each expert independently interacted with the stakeholder-driven
models and expressed their opinion about the accuracy of models’ composition, structure, and
dynamics using a 7 point Likert scale (1 = very inaccurate, 7 = very accurate) as a proxy

measurement for models’ performance.

3.4.5 Network analysis of stakeholder-driven models

To identify the extent to which each aggregated model represented complex causal
processes we used stochastic network analysis of causal micro-structures. Building on network
theory and cognitive map analyses of complex causal structures developed by Levy et al. *°, we
compared the aggregated FCMs according to their network motifs (i.e., micro-structures that are
constructed by two or three nodes and some unique patterns of connections between them, which
shape the underlying elements of perceived causation in a cognitive map). The extent to which
one cognitive map can represent complex interdependencies among social and ecological
components of a natural resource system is thus linked to the distribution of complex micro
motifs within its network. Theoretical and empirical studies have frequently suggested that four
particular motifs exemplify more complex patterns of causation 3°4°46:49.56-38- therefore, their
prevalence in a cognitive map indicates higher perception of complex interdependencies: bi-
directionality, multiple effects, indirect effect, and feedback loop (see Figure 3.4 and ref. 39).
The prevalence of each motif was measured using uniform random graph tests, which compared
the count of motifs in a network with the expected value of counts in randomly generated

networks of the same size and density with uniform distribution of edges >°. We measured the
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count of motifs in the model’s network and how this count compared to the expected value of
counts in 10,000 randomly generated networks of the same size and density with uniform

distribution of edges.
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APPENDIX

SUPPLEMENTARY INFORMATION

S1 Supplementary Methods

S1.1 Mental Models and Fuzzy Cognitive Maps (FCM)

Mental models ° are simplified internal representations of reality that allow humans to
perceive patterns of cause-and-effect relationships through reasoning and to make decisions.
Mental models consist of beliefs and subjective knowledge that are constructed as individuals
observe, interact with, and experience the world around them and concurrently develop an
internal model to understand and predict how it functions %% As such, they synthesize

knowledge that is acquired through experiential, social, and formal learning.

Mental models that represent causal knowledge (e.g., how social and ecological
components are interconnected in a natural resource system) can be elicited through cognitive
mapping 2. Cognitive maps are representations of mental models in the form of directed graphs.
Nodes represent concepts that are part of the mental model and edges (arrows) are used to show

the causal relationship between the concepts.

Fuzzy Cognitive Maps (FCM) 3¢ extend causal cognitive maps in order to add a dynamic
component to their analysis. These are graphical models of system components (nodes) and their
causal relationships (edges), forming a weighted directed graph (Figure 3.S1). Relationships
(edges) are characterized by a number in the interval of [-1, +1], corresponding to the strength
and sign of causal relationships between nodes. They, therefore, provide a semi-quantitative
system modeling technique, based on auto-associative neural networks and fuzzy set theory that
make cognitive maps computable (see FCM computation section of this Appendix).
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A total of 32 individuals completed the online mental modeling survey including
recreational fishers, commercial fishers, and fisheries managers, each creating their own FCM
(Figure 3.S2). Table S1 shows the number of participants from each stakeholder type. In
addition, the mean and standard deviation of number of concepts (i.e., nodes) and connections
(i.e., edges) used by individuals to construct FCM representing their mental models about striped

bass population dynamics are shown in Table S1.
S1.2 Mental Models Aggregation
S1.2.1 Stakeholder-specific models (homogenous groups)

Individual mental models represented as FCMs can be aggregated mathematically using
matrix algebra operations on their adjacency matrices. These aggregated models—also referred
to as “community maps”—can be used to represent the knowledge and perception of a group of
participants and thus provide a tool for knowledge-pooling 3. To combine mental models of a
homogenous group with individuals from a specific stakeholder type (e.g., recreational fishers,
commercial fishers, or managers) we calculated the arithmetic mean (i.e., simple average) of

edge weights that are shared in all FCMs (see also ref. 64 for more details):
N N
FCM, FCM. FCM.
A= A Y AL £ 0) (3.51)
p=1 p=1

where AP s the adjacency matrix of the FCM of participant p, N is the total number of
participants in a group, and AZCM” indicates the element of this matrix with the value equals to

the weight of the edge between node i and j. FCM, represents the aggregated FCM of a group

with the corresponding adjacency matrix A7¢Mg,

101



We used the above aggregation method to create stakeholder-specific (homogenous)
models of recreational fishers (Figure 3.S4), commercial fishers (Figure 3.S5), and fisheries

managers (Figure 3.S6).

S1.2.2 Crowd model (diverse group)

To build an aggregated mental model of diverse stakeholders (i.e., the crowd model), we
used a multi-level aggregation technique (Figure 3.S3). The first level of aggregation was
achieved by adding mental models of individuals from the same stakeholder type and averaging
the weights of shared edges (see Eqg. S1). At the second level, we aggregated the averaged
stakeholder-specific models. At this level, we could have used the arithmetic mean of averaged
maps to aggregate across the stakeholders; however, forming stakeholder-specific models that
consist of same-type individuals could likely amplify the accumulation of stakeholder-specific
biases. To address this issue, and similar to what described in Aminpour et al. (2020), here we

used the median of stakeholder-specific averaged models to further remove the effect of biases:

FCMerowd . FCMgy ,FCMg; FCMgn
AffMerovt = Median (47" A Ay ) (3.52)
where A‘;.CM""W indicates the element of the adjacency matrix of crowd model with the value

equals to the weight of the edge between node i and j. In our case, there are three types of
stakeholders: recreational fishers, commercial fishers and fisheries managers. Thus, we used the
median of edge-weights across three arithmetically averaged stakeholder-specific maps (i.e.

FCMgy,, FCMg,, and FCM_3) to build the diverse crowd model (Figure 3.57).
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S1.3 Concept Categorization

We categorized concepts used by participants into two main categories: (1) Ecological-
dimension and (2) Human-dimension. The ecological-dimension was divided into two sub
categories of biological concepts and habitat related concepts. In addition, the human-dimension
was divided into two sub categories of social concepts and management related concepts. We
measured the frequency and relative percentage of each sub-category across stakeholder types to

determine stakeholder-specific biases (Figure 3.S8).
S1.4 FCM computation

FCM models are semi-quantitative simulation models ® that can be used to assess the
perceived dynamic behavior of the system they represent 53667 Here, we used FCM
computational analysis to demonstrate how stakeholders, based on their collective perceptions
and knowledge, predicted the changes in the state of system’s elements (e.g., striped bass
population) given an initial change in one or combination of concepts (i.e., scenario inputs) (e.g.,
water quality or water temperature) (also see ref. 68 for details about scenario analysis). An
increase (or a decrease) in a concept initiates a cascade of changes to other system concepts
(typically normalized between 0 and 1), and this iterative propagation of the initial change
evolves into a so-called new “system state” ®°. By comparing the system states (i.e., the value of
concepts) before and after initiation of a change, FCM can be used to implement “what if”
scenario analysis, and therefore represent perceived dynamic behavior of the system (in this case,

striped bass fisheries).

To run a scenario, the value of one or more concepts (i.e., scenario nodes) in a FCM was

changed and forced to stay at either +1 (an increase) or -1 (a decrease). This initial change passes
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through the network of nodes and connections including feedback loops until the system reaches
a new state. The consequent alterations in the state of other system concepts were calculated by
subtracting their initial values from their values after the scenario was introduced and system
evolved into a new state. The initial value of each concept—also known as steady state—is

calculated using the following formula:

MV =fl e+ Zcf").Aﬁ (3.53)
7

where cl.(k“) is the value of concept C; at iteration step k+1, cl.(k) is the value of concept C; at

iteration step K, cj(k) is the value of concept C; at iteration step k, and Aj; is the weight of the edge
relationship between C; and C;. Function f(x) is the “threshold function” that was used to squash

the concept values at each step to a normalized interval between -1 and 1. In this study, we used

a hyperbolic tangent function (see ref. 70 for more details about hyperbolic tangent function):

e)Lx _ e—/lx

f(x) = Tanh (AX) = m

(3.54)

where A is a real positive number (in our case A = 1) which determines the steepness of the

function f.

The value of each concept under a scenario was computed using the same formula (Eq.
S3), but this time scenario nodes were forced to take fixed values (either +1 or -1). The scenario
outcomes were then calculated as the differences between the values of the system’s concepts
when the system was self-administered and when it was forced by fixed manipulations in the
state of scenario concepts 5%, For each concept C; the change in its value as a result of running

a scenario is:
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D¢ =¢*—c° (3.55)

where D;¢ is the change in the value of concept C;, ¢;** is the value of concept C; in the steady
state, and ¢}’ is the value of concept C; after converging into a new state while scenario concepts

are clamped on fixed values.
S1.5 Online mental modeling instructions

The individuals who participated in online mental modeling survey were given a step-by-
step instruction how to build a FCM model using the online mental modeling technology. Mental
Modeler online tool is modeling software that helps individuals and communities capture their
knowledge in a standardized format that can be used for scenario analysis. Based in FCM, users
can develop semi-quantitative models of complex social and environmental issues by defining
the important components of a system and also the relationships between these components 2.

The step-by-step direction showing in Figure 3.S10 was used to instruct participants.
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S2 Supplementary Figures
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Figure 3.51. An example of a fuzzy cognitive map (FCM) representing a mental model about
striped bass fishery. The FCM was created using Mental Modeler online platform at
www.mentalmodeler.org. Boxes demonstrate system concepts defined by the individual modeler

and arrows indicate causal relationships between concepts.
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Figure 3.S2. All individual fuzzy cognitive maps (FCM) representing the mental models of 32
participants about striped bass fishery in Massachusetts.
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Figure 3.S3. Multi-level aggregation method. At the first level, individual maps are aggregated
by stakeholder groups using the arithmetic mean of their fuzzy cognitive maps’ edge weights. In
the second level, the resulting group means are aggregated using the median of their edge

weights to produce the crowd model.
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Figure 3.54. Aggregated mental model of recreational fishers. Circles demonstrate unique
system concepts mentioned by the individuals of type recreational fisher. Ecological-dimension
concepts are green and human-dimension components are purple. Weighted blue/red arrows
indicate positive/negative causal relationships between concepts. The arrows thickness represents
the strength of the causal relationships ranged from -1 to +1. The weight of the arrows are

computed using equation 3.S1.
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Figure 3.S5. Aggregated mental model of commercial fishers. Circles demonstrate unique
system concepts mentioned by the individuals of type commercial fisher. Ecological-dimension
concepts are green and human-dimension components are purple. Weighted blue/red arrows
indicate positive/negative causal relationships between concepts. The arrows thickness represents
the strength of the causal relationships ranged from -1 to +1. The weight of the arrows are

computed using equation 3.S1.
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Figure 3.56. Aggregated mental model of fisheries managers. Circles demonstrate unique
system concepts mentioned by the individuals of type manager. Ecological-dimension concepts
are green and human-dimension components are purple. Weighted blue/red arrows indicate
positive/negative causal relationships between concepts. The arrows thickness represents the
strength of the causal relationships ranged from -1 to +1. The weight of the arrows are computed

using equation 3.S1.
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Figure 3.S7. Aggregated mental model of the diverse crowd. Circles demonstrate a
parsimonious list of system concepts mentioned by all individuals of all stakeholder types. This
parsimonious list of system concepts is obtained by a multi-level aggregation method.
Ecological-dimension concepts are green and human-dimension components are purple.
Weighted blue/red arrows indicate positive/negative causal relationships between concepts. The
arrows thickness represents the strength of the causal relationships ranged from -1 to +1. The

weight of the arrows are computed using equation 3.S1.
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Figure 3.S8. The frequency and the relative percentage of each category of system concepts
across three stakeholder groups. The numbers on bar-graphs indicate the frequency of concepts

under each specific category. x-axis shows the relative percentage.
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Figure 3.59. Expert evaluation of models’ components (i.e., nodes). Evaluated concepts were
those appeared in more than one model, but not all models. The opinion table in (a) shows
experts’ majority opinion about whether a component is necessary (black), superfluous (white)
or there is no consensus among experts (half-black, half-white). The percent of false errors

according to the experts’ majority opinion is shown in (b).
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Figure 3.510. Step-by-step written instructions for participants to direct them how to use online

mental modeling tool and create fuzzy cognitive maps repressing their perception of striped bass

fisheries in MA and social-ecological relationships driving this system.
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S3 Supplementary Tables

Table 3.S1. The number of participants from each stakeholder type and the number of nodes and

connections used in their mental models. The mean and standard deviation of number of

concepts (i.e., nodes) and connections (i.e., edges) are shown by stakeholder types.

Stakeholder group Number of Number of Nodes Number of
Participants Connections

Mean (SD) Mean (SD)
Recreational fishers 13 11.54 (4.01) 29.85 (20.53)
Commercial fishers 11 11.45 (2.84) 23.45 (12.41)
Fisheries managers 8 12.00 (3.21) 27.25 (7.87)
Total 32 11.63 (3.35) 27.00 (15.32)
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CHAPTER 4

4 CROWDSOURCING MENTAL MODELS FOR PREDICTING BEHAVIORAL
RESPONSES TO CLIMATE CHANGE

This chapter is in review for publication in Global Environmental Change

(https://www.journals.elsevier.com/global-environmental-change).

ABSTRACT

Understanding and modeling human behavioral responses to changing environmental
conditions is difficult, especially at large social and environmental scales. This is due less to
scientific understanding of how environmental conditions are predicted to change, and more of
an issue of how environmental change is perceived by humans and how these perceptions are
integrated with intended behavioral responses. We developed a method for utilizing the
collective knowledge and perceptions of stakeholders to predict local scale responses to climate
change. Specifically, by crowdsourcing mental models of 1,464 recreational fishers across a
large social-ecological gradient along the U.S. Atlantic coast, we show that simulations of
warming waters and increased storminess reveal mental model predictions about environmental
change that explain divergent behavioral responses across regions, measured as the number of
intended days fishing. Importantly, these diverging responses align with empirical patterns of
environmental change. More broadly, our approach could be applied to predict human behavioral
responses to environmental or even social changes across biogeographic scales and social-

ecological contexts.
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4.1 INTRODUCTION

Climate change is projected to impact oceans through a wide range of environmental
changes and pulses of disturbance which vary widely at local scales 1. While the environmental
impacts of climate change have received significant attention, there is considerable uncertainty
regarding the social impacts resulting from climate change, especially in understanding how
environmental change will impact peoples’ perceptions and behavior across large social and
ecological gradients >, Here, we show that crowdsourcing mental models of 1,464 recreational
fishers distributed across a large social-ecological gradient from U.S. north to south Atlantic
reveals latitudinal patterns of perceptions and intended behavioral responses (i.e., fishing days)
to climate change (e.g., increased storminess and warming water temperatures). Harnessing
local-scale knowledge or “wisdom” of a large network of resource stakeholders who interact
with ecosystems may provide considerable insight, decreasing uncertainty on how society and

ecosystems may react to climate change.

Predicting how individual fishers and fishing communities may be impacted or are able
to adapt to the consequences of climate change has been an increasingly high priority for
fisheries social scientists 8. For instance, warming ocean waters are expected to induce
biogeographic shifts for many fish species !, which may impact fishing communities through
the decline or disappearance of traditionally predominant species, as well as the increasing
prevalence of formerly rare or novel species ‘. In addition, sea level rise and increased
storminess may directly impact fishing communities by decreasing the number of fishing trips
and damaging facilities. However, such complex scenarios could promote a multitude of social
and economic outcomes for fishing communities that are difficult to predict and may therefore

increase uncertainty regarding climate change.
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Many studies have increasingly demonstrated that the behaviors and responses of
stakeholders to environmental and management changes are often complex and can be strongly
influenced by a number of factors including knowledge, perceptions, and concerns about these
changes 2. Likewise, understanding the dynamics of human institutions is often essential for
predicting outcomes of coupled systems such as fisheries, as stakeholders’ behaviors can
strongly influence ecosystem structure and function 3, Understanding climate-influenced
changes and creating appropriate adaptive management strategies to optimize trade-offs will
require integrated modeling of numerous ecological and social variables. However, uncertainties
associated with human behavioral responses to climate-driven changes, such as storms and

ecosystem changes, are compounded by inadequate tools and methods to quantify them 4,

We developed an online survey method with fuzzy-cognitive mapping (FCM) to
crowdsource mental models of climate change among 1,464 recreational fishers across the states
of Massachusetts (MA), North Carolina (NC), and Florida (FL). By defining positive or negative
pairwise relationships between components in a networked structure, individual FCMs represent
individual-level perceptions about the social and ecological impacts of climate change, as well as
intended behavioral responses *° (see Methods). Additionally, once mathematically aggregated,
these individual mental model representations can be scaled up to represent community beliefs,
referred to as a “community map” 1® (see Methods--mental model aggregation). Importantly,
causal connections in FCMs are numerically parameterized using fuzzy logic *’. These mental
models are therefore quantitative simulation tools that can be used to assess individual or
community level predictions about changes in the state of a system’s components given a

scenario (i.e., an activation vector that makes changes in one or a set of components, which
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triggers a cascade of changes in other system components until the system reaches a new

attractor) (see Methods).

We used mental models to explore stakeholders’ perceptions of how climate change may
impact coastal recreational fisheries across three states representing higher to lower latitudes of
the U.S. Atlantic Coast (Figure 4.1). Specifically, this paper focuses on three questions: 1) to
what extent do survey responses regarding fishers’ concerns about climate-influenced ecological
changes align with empirical patterns of climate change disturbances?, 2) how do recreational
anglers perceive the individual and combined effects of warming coastal waters and increased
storminess on their primary target species?, and 3) how might fishing behaviors change under

these same scenarios?

42 RESULTS
4.2.1 Overall Climate Concern

We compared the individual responses regarding the concerns of recreational fishers in
MA, NC, and FL about (1) ocean warming, (2) severe storms, and (3) fish declines. Across the
three states, respondents in MA demonstrated significantly higher concerns about global
warming and increased ocean temperature (Figure 4.2 a), while NC respondents were most
concerned about increased severe storms (Figure 4.2 b). In terms of the fish decline and the
status of fisheries, FL respondents demonstrated the lowest concerns, while inter-state
comparisons revealed a latitudinal gradient in concern that increased from south to north (Figure

4.2 c).

In addition, we used empirical data for changing ocean patterns over the past 20 years at
the regional ecosystem scales to obtain latitudinal patterns of (1) sea surface temperature (SST)

trends, (2) the trends of frequency of stormy days in coastal regions, and (3) the proportion of
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fish stocks that are overfished/experiencing overfishing as a proxy measure for fish declines
(Figure 4.2 d-f). All of these data support the differential angler perceptions that we measured. In
particular, water temperature increases have been greatest in MA (Figure 4.2 d), while NC has
experienced the highest increase in frequency of stormy days (Figure 4.2 €), and MA is in the
federal fisheries management region (New England) that has experienced the highest percentage
of overfished stocks. In general, survey responses largely aligned with observed empirical
patterns, suggesting a strong conformity between subjective stakeholder perceptions and

objective measures of environmental changes.

Figure 4.1. Community maps of three study regions representing Florida (FL), North Carolina
(NC), and Massachusetts (MA) built by aggregating individual FCMs from each region. The
inset shows the NC community model with details (see Appendix, Figure 4.S1 for details about
other states). Blue/red arrows indicate positive/negative causal relationships between concepts.
Edge weights represent perceived strength of the causal links.
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Figure 4.2. Anglers’ concern for warming oceans (&), storminess (b), and fish decline (c)
alongside patterns of empirical data on water temperature (d), storminess (e), and fisheries stock
status (f) trends. Levels of significance are illustrated in (a-c) by asterisks (p-value< 0.05, p-
value< 0.01, and p-value< 0.001 are shown by one, two, and three asterisks respectively). (Note:
stock status trends are missing 1997-98 data points due to the unavailability of information for
the number of overfishing stocks. In addition, stock status data are classified based on NOAA
fisheries regions: MA is included in New England; NC is partially included in the mid and south

Atlantic; and FL is partially included in the south Atlantic and Gulf).
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4.2.2 Fishing Characteristics

One question of the online survey documented the primary target species of respondents,
which was later used as a concept in the mental model section of the survey. Primary target
species varied considerably across our study regions. As shown in (Figure 4.3 a), in the
Northeast (i.e., MA), Striped Bass dominates recreational fisheries with 63.2% of respondents
listing it as their primary target species. The next closest fish species, Bluefish, represents 4.5%
of primary target species. In the Mid-Atlantic (i.e., NC), the most targeted species of Red Drum
represents 23% of all target species. The next closest fish species, Summer Flounder and Spotted
Seatrout, represent 10.9% and 10.1% respectively. In the Southeast (i.e., FL), where empirical
measures of fish diversity demonstrate higher species richness, the most targeted species of
Snook, Red Drum, Red Snapper, and Spotted Seatrout respectively represent 15.4%, 13.3%,
10.7%, and 10.3% of all target species. To quantitatively measure diversity of target species in
each state, we used Shannon diversity index (H) by accounting for both the number of unique
species and the evenness of their distribution across participants’ responses (Figure 4.3 b).
Quantification of H index indicates that the diversity of primary target species increases from
North to South Atlantic, which aligns with the biogeographical patterns increasing species

richness with decreasing latitude.

4.2.3 Simulating Climate Change in Mental Models

We aggregated mental models by states to build regional fishing community maps.
Arrays of scenario analyses with various activations of water temperature and water storminess
were carried out to show the mental model predictions of changes in target species abundance
(Figure 4.4) and intended fishing days (Figure 4.5) under a range of climate change scenarios.

We find simulations of warming waters on the community map of FL recreational fishers
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generally produce favorable perceived outcomes of increased abundances of target species. In
contrast, warming water scenarios on community maps of MA and NC yield more negative
perceptions with decreasing abundance of target species. Moreover, simulations of increased
water storminess on the community mental model of NC produce negative outcomes of drastic
declines in target species abundances, while these undesirable outcomes are smoother in FL and

are completely flattened in MA (Figure 4.4).
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Figure 4.3. Diversity of target species across regions. (a) Species accumulation curves shows the
cumulative percentage of total primary target species reached by a given number of unique
species. (b) Circular chart for each region shows the target species and their percentage. Only
target species with more than 10% are labeled for each region: Striped Bass (SB), Red Drum
(RD), Summer Flounder (SF), Spotted Seatrout (SS), Snook (SK), and Red Snapper (RS). The

horizontal bar charts show the calculated Shannon diversity index (H).
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Figure 4.4. Results of scenario analyses showing the community maps’ perceived changes in
target species abundance. For each state results are shown for various combinations of water
temperature and storminess jointly (a-c); water temperature individually (d-f); and water
storminess individually (g-i). Axes show the normalized changes in variables’ perceived values
from high decrease (-1) to high increase (+1). Heat map shows the perceived changes in target

species abundance from high decrease (dark red) to high increase (dark blue).

In addition, patterns of behavioral responses to climate change vary across regions.
Specifically, increased water temperature is predicted to variably alter intended fishing days
across all three states, with the NC map indicating a stronger positive relationship and the FL
map having almost no sensitivity to warming water temperature. However, decreased water
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temperature is perceived to slightly raise intended fishing days in MA, while the NC and FL
community maps predict declines in fishing days, and these declines are more abrupt in FL when
water temperature drops considerably. Moreover, simulation of increased water storminess is
likely to lead to decreased fishing days across all three states, with these changes being smoother

in FL and more intense in NC (Figure 4.5).
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Figure 4.5. Results of scenario analyses showing the community maps’ behavioral responses
regarding the intended fishing days. For each state results are shown for various combinations of
water temperature and storminess jointly (a-c); water temperature individually (d-f); and water
storminess individually (g-i). Axes show the normalized changes in variables’ perceived values
from high decrease (-1) to high increase (+1). Heat map shows the intended number of days

fished from high decrease (dark red) to high increase (dark blue).
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4.3 DISCUSSION

Predicting how people respond to climate change across spatial scales is extremely
challenging and faces both conceptual and methodological barriers ®7°. Our approach of using
online surveys to crowdsource mental models provides a powerful tool for studying human
behavior in complex social-ecological systems and therefore overcome these barriers. However,
it should be noted that online surveys may limit the representation of all perceived important
concepts for SESs due to the lack of freedom given to participants to include additional
customized concepts 6. Although our fixed-concept approach to represent mental models may
not capture the full complexity of the system, it provides a standardized way to collect variation
across how stakeholders perceive socially and environmentally relevant interdependencies that
influence their local-scale understanding of system dynamics and how they behaviorally respond
to scenarios of environmental change. Yet, the high level of alignment between stakeholder
concerns, mental model variations, and empirical patterns adds confidence on the validity of the

survey data collected to construct mental models.

Our study demonstrates the power of harnessing local knowledge for both understanding
the changing dynamics of fisheries and other resources, as well as predicting the individual and
collective behavioral responses of groups of stakeholders to environmental changes. More
broadly, our study demonstrates a novel online approach for crowdsourcing the mental models of
stakeholders to predict diverging patterns of how humans respond to climate change across
scales, but also has implications for understanding disparate behavioral responses given other
large-scale social changes (e.g., globalization, massive political changes, or large-scale
pandemics). From a methodological standpoint, our study demonstrates an approach to greatly

increase the scale of data collection including mental models. This approach allowed us compare
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mental models across largely distributed biogeographic regions with broad implications for other
desired contexts that are typically infeasible or limited by the labor intensive traditional

approaches for representing mental models 1>,

In the specific context of fisheries science and management, a key finding of the models
and simulations in our study is that perceptions and intended behavioral responses to
environmental change (i.e., water temperature, storminess) align with empirical patterns. In
particular, we found that stakeholders in Florida seem more resilient to environmental change,
with the exception of very cold conditions, than stakeholders in the mid-to-north Atlantic
regions. In addition, stakeholders in the northeast perceived more negative impacts on fisheries
as a result of increased water temperature (Figure 4.5). We hypothesize that varying patterns of
environmental change and disturbances, as well as biogeographical patterns of increasing species
richness with decreasing latitudes, drive these regional differences in stakeholder perceptions and
intended behavioral responses. For instance, along the U.S. Atlantic coast, ocean waters off
northeastern New England have experienced the greatest warming, up to 3°F, while ocean
warming along the Florida Gulf coastal waters is about 0.5°F over the past century 189,
Meanwhile, the diversity of fish species is the highest in the southeast compared to mid and

north Atlantic.

In addition, the implications of increased storminess for fisheries have multiple
dimensions. Numerous studies have suggested that climate change is likely to increase the
intensity of tropical cyclones 2° and may also increase their frequency 2. In the wake of these
extreme events, fishing communities, as well as fishing infrastructure and opportunities, may be
severely disrupted. Coastal and marine fisheries are also often constrained by wind and weather

patterns of much lesser intensities as studies have shown that wind speed is an effective predictor
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of fishing effort, particularly for offshore recreational fisheries 22. In our study, concern for
storms was greatest in North Carolina (Figure 4.2 b), which aligns with empirical patterns of
having the highest increase in the frequency of stormy days reported by the National Weather
Service between 1997 and 2017 (Figure 4.2 e). Moreover, our results indicate that concern for
fisheries declines was greatest in New England, a region with a considerably higher proportion

of fisheries stocks categorized as overfished or experiencing overfishing .

While there is a wealth of growing physical evidence for changing ocean patterns at the
global and regional ecosystem scales 24, the social impacts and behavioral responses are often not
well-understood at local to regional scales. Our study may fill this gap by demonstrating
relationships among empirical patterns, stakeholders’ perceptions, and their mental model
predictions of behavioral responses to environmental changes and conditions. This study thus
supports the idea that crowdsourced mental models can provide robust and valuable tools for
predicting societal or stakeholder behavioral responses to climate change and other scenarios.
Such approaches to leveraging local knowledge, therefore, may be particularly valuable when

empirical data is scarce or unavailable 2.

As climate change continues to reshape the dynamics of fisheries and other social-
ecological systems, our study provides a methodology for understanding complex stakeholder
perceptions and predicting human behavioral responses. Notably, fisheries stock assessments and
management plans routinely highlight fishing behavior as among the largest contributors to
management uncertainty 2527, Others have argued that participatory modeling and scenario
analyses of mental models offer valuable tools for understanding the human dimension of
fisheries, including behavioral intentions, as well as decreasing overall uncertainty 28:2°,

However, historically, the complexity and spatial coverage of these studies has been limited by
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logistical constraints of conducting in-person interviews to elicit mental models. Our study
demonstrates an internet-based approach to overcome these limitations and collect robust mental
model data for understanding complex social-ecological systems. Such internet-based
approaches may provide a way to understand how perceptions of environmental dynamics vary

across social or ecological scales not previously possible.

44 METHODS

4.41 Ethics Statement
This study was conducted with approval of Northeastern University’s Institutional

Review Board (IRB #13-07-16) and electronic consent was acquired from all survey participants.

4.4.2 Survey Instrument
4.4.2.1 Overview

The survey instrument was designed and administered using Qualtrics Survey Research
Suite. The full survey instrument included 66 questions, and the data described in this paper
represent the following core sections: Fishing Characteristics, Climate and Hazard Concerns,

Mental Models, and Demographics (e.g., education, income, gender, race, birth year).

4.4.2.2 Survey items for eliciting mental models

A primary section of the survey was designed to collect data necessary to assemble
individual fuzzy-logic cognitive maps to represent variation in fishers’ mental models of climate
impacts on marine ecosystems. Mental models are simplified internal representations of the
external world that allow individuals to perceive patterns of cause-and-effect relationships and
associations. These internal mental models, therefore, enable humans to make decisions through

internal processes of reasoning *°. Mental models that represent causal knowledge (e.g., how
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social and ecological components are interconnected in a fishery ecosystem) can be graphically
obtained through cognitive mapping techniques ! in the form of directed graphs. Graph nodes
represent concepts (i.e., system components) and graph edges (arrows) represent the causal
relationships between the concepts. In addition, Fuzzy Cognitive Maps (FCM) are augmented
forms of conventional qualitative cognitive maps 32, which are computationally executable and
can thus perform dynamic simulations of the complex system they represent. These are semi-
quantitative graphical models of system components and their causal relationships in the form of
weighted directed graphs 3. In FCMs, causal connections (i.e., edges) are assigned a numerical
value in the interval of [-1, +1], corresponding to the magnitude and sign of the relationships. In
our case, responses to Likert-scale questions were mapped into numerical values to determine
edge weights. These numerical parametrizations of causal relationships enable FCM

computations to represent system dynamics based on neural networks and fuzzy set theory °.

Our survey instrument involved a series of questions designed to select FCM concepts
and assign edge weights. First, we used a two-question series to assess the relative importance of
individual target species. The first question asked participants: “What fisheries species do you
consider to be the most important for your fishing? (Select one)” (see Appendix, Figure 4.S3).
Next, we asked “Are there any other fish that you consider important for your fishing? (Select
All that Apply)”. To assign edge weights, we asked a series of pairwise questions for all
concepts, with an example being: “How would you expect an increase in water temperature to

influence <Selected Target Species> populations?” (See Appendix, Figure 4.54).

4.4.3 Survey Data Collection
We conducted email surveys of licensed recreational anglers in Florida, North Carolina,

and Massachusetts. The data presented in this paper represent 1,464 responses from a split-
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sample design of 3,000 total respondents across the coastal states of Florida, North Carolina, and
Massachusetts (1,000 each). Email addresses were acquired from state managed license
databases. Data collection occurred through an online survey of licensed anglers over an 8 week
period in October and November 2017. We used an iterative sampling (4 waves) approach,
involving an initial email contact and two reminder emails 3, until we reached a desired sample
size of 1,000 complete responses. We used a three stage process to assure data quality and
validity including filtering out participants who completed the survey in less than Y5 of the
average completion time, failed to accurately complete attention check questions, or would not
“thoughtfully confirm that they would give their best answers” in an initial screening question.
The adjusted response rate for the survey was 14.9% after adjusting for bounced, blocked, and

unopened emails.

4.4.4 Empirical Data
4.4.4.1 Ocean Warming Data

To visualize recent changes in ocean temperature, we mapped mean sea surface
temperature (SST) and SST trends from 1997-2017. Daily mean sea surface temperature data
were acquired from the NOAA OI SST V2 High Resolution Dataset.

(https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.ntml) SST trends for the three study

states were determined from 1997-2017 using the annual mean SST for the area from the state’s
coastline to the edge of the Exclusive Economic Zone (EEZ) (Appendix, Figure 4.52). Simple
linear regression models were fitted on annual data points to determine the trends in SST over

the 20-year period.
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4.4.4.2 Storminess Data

For the purposes of our study, we estimated storminess as the annual number of days with
a designated severe weather event in a coastal county from 1997-2017. Severe weather events
were determined using NOAA’s Severe Weather Data Inventory; non relevant items such as
drought and wildfire events were excluded from analysis. Coastal counties were determined
through NOAA Economics: Ocean Watch Now (ENOW). Simple linear regressions were

performed through the annual mean data to determine annual trend.

4.4.4.3 Fisheries Stock Status Data
We gathered data from NOAA Fisheries’ Annual Status of U.S. Fisheries Reports to
Congress to visualize stock status from years 1997 to 2017

(https://www.fisheries.noaa.gov/national/population-assessments/fishery-stock-status-updates).

The data was assembled from the following fisheries management regions: New England
Fisheries Management Council (NEFMC), Mid-Atlantic Fisheries Management Council
(MAFMC), South Atlantic Fisheries Management Council (SAFMC) and the Gulf of Mexico
Fisheries Management Council (GMFMC). For each region, we quantified the total number of
stocks assessed, the total number of stocks overfished, and the total number of stocks
experiencing overfishing. Percent overfished and percent overfishing were calculated by dividing

the respective stock numbers by the total number of stocks assessed in that region.

445 Analyses

We used the PyFCM package (https://github.com/payamaminpour/PyFCM/wiki) to

conduct FCM aggregation and computational analyses. We conducted sensitivity analyses by
simulating 10,000 scenarios of climate change on the community models across states. These

scenario analyses were conducted to simulate the perceived impacts of climate changes
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(individual and joint impacts of perturbations in water temperature and water storminess) on fish

abundance and consequent behavioral responses regarding the intended number of days fishing.

4.45.1 FCM aggregation

Individual mental models elicited by FCMs can be aggregated mathematically by
averaging the elements of their adjacency matrices— a square matrix used to represent the FCM
graph where elements of the matrix indicate the numerical values of connections (i.e., edge
weight) between pairs of nodes that are adjacent in the graph (see Appendix, Figure 4.S5). These
aggregated models, which are referred to as “community maps,” represent the collective mental
models (i.e., as a tool for harnessing the collective wisdom) from a group of individuals ¢ and
therefore can be used to model a group’s aggregated knowledge and perception 7. To build
aggregated maps of different states, we calculated the median of edge weights that are shared in
all FCMs of individuals who belong to the same state. In contrast to conventional aggregation
mechanisms that use arithmetic mean (i.e., simple average) of edge weights to combine FCMs
.38 we use median here as an alternative measure of central tendency to avoid outliers (i.e.,
maps with extreme deviations from the mean of the group). One main advantage of this
aggregation method is that the community maps built by the median more precisely represent
group-specific biases, and therefore better highlight inter-group variations in comparisons. The

adjacency matrix of aggregated FCM of each state was obtained as follows:

7 Evva (1) (€9) () () (m) (m)
Woo -+ Won Woo ** Won| (G0 = Gom aofg aoTz
: : = Median : L O : : 4.1)
Wyo - Wan wr(:g - wr(llr)l 1(123 - agr)l a%) . a;’y’r‘l)
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where {N} is the set of nodes (i.e., concepts) used to build FCMs with n unique concepts, W is
the adjacency matrix of the aggregated FCM, and w® is the adjacency matrix of the individual

it" in the set of m individuals who belong to the same state.

4.45.2 FCM Computation

FCM models can be computationally manipulated to assess the perceived dynamic
behavior of the system they represent. We used FCM computational analysis to demonstrate how
fishers of a state, collectively, perceive/predict the changes in the abundance of their target
species and the number of days they intend to fish, given an initial change in one or combination
of climate change concepts (i.e., water temperature and water storminess). In FCM formulation,
each concept has a state known as its “activation”. A change in the climate change scenario
concepts initiates a cascade of changes to other system concepts based on how they are
connected, and thus alters their so called “activation”. This iterative propagation of the initial
change continues until the system evolves into a new “system state” 1>, By comparing the system
states before and after implementing a scenario, FCM can represent perceived dynamic behavior

of the system.

The initial activation of each concept—also known as the activation of concepts in the

“steady state”—is calculated using the following activation rule, namely Kosko rule 32
k k
AR — ¢ Z ;i | (4.3)
j
where A§k+1) is the activation of concept C; at iteration step k + 1, Agk) is the activation of

concept C; at iteration step k, A](k) is the value of concept C; at iteration step k, and wy; is the

weight of the edge relationship from C; to C;. Function f(x) is the “threshold function” that was
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used to squash the concept activations at each step to a normalized interval between 0 and 1. In
this study, we used a sigmoid function as the most common squashing function used in FCM

studies:

fGx) = (4.4)

1+ e M

where A is a real positive number (in our case A = 5) which determines the steepness of the
function f. The value of parameter A was determined such that the system dynamics were

optimally represented 373,

To run a scenario, the value of scenario concepts (i.e., water temperature and/or water
storminess) was forced to a fixed activation value, and the activation of other concepts were
computed using equation (4.3). The scenario outcomes were then calculated as the differences
between the activation of the system’s concepts at the steady state and their activations in the
new state the system evolved to as the result of forced manipulation of scenario concepts. For

each concept C;, the change in its value as a result of running a scenario is:

DS¢ = A — A (4.5)

l

where D;¢ is the change in the value of concept C;, A7* is the value (i.e., activation) of concept C;
in the steady state, and A4;° is the value of concept C; after converging into a new state while

scenario concepts are clamped on fixed values.

141



APPENDIX

142



APPENDIX
SUPPLEMENTARY INFORMATION
S1 Code availability

Codes for mental model aggregation and FCM analyses are publically available and can

be obtained on GitHub at https://github.com/payamaminpour/PyFCM/wiKi.
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S2 Supplementary Figures

Figure 4.S1. Community maps of study regions representing (a) Florida (FL) and (b)
Massachusetts (MA) built by aggregating individual FCMs from each region.
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What fisheries species do you consider to be the most important for your fishing? (Choose One)

Greater Amberjack Gag Grouper Spot

Alewife Goliath Grouper Spotted Seatrout
American Eel Massau Grouper Summer Flounder
American Shad Red Grouper Tarpon

Anchovies Haddock Tautog

Atlantic Cod Hardhead Catfish Tilefish

Atlantic Croaker Monkfish (Goosefish) Gray Triggerfish
Atlantic Halibut Gulf Kingfish Tripletail

Figure 4.S3. Screenshot of survey question used to determine survey respondents target species.
The answer to this survey question was then populated into the subsequent mental model survey

questions.
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How would you expect an increase in coastal water temperatures to influence...
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Figure 4.54. Screenshot of survey question used to ascribe edge weight relationships among

concepts.

147



Striped Bass
Populations

Squid Populations
Rock or Rubble

Warming Coastal
Waters

Mumber of Days You
Fish

Recreational
Fisheries

Commercial
Fisheries

Storminess

Striped Bass
Papulations

0.7

0.1

Squid Populations

0.5

-0.1

0.1

-

Warming Coastal
Rock or Rubble Waters

1

1

1

1

Number of Days You
Fish

0.7

1

1

1

Recreational Fisheries

-

-

-

Commercial Fisheries Starminess
03 -
1 -
01
0.1 - 0.08

Figure 4.S5. Adjacency matrix showing the corresponding relationships among model concepts

derived from the online survey.
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S3 Supplementary Tables

Table 4.S1. Survey sample demographics and fishing characteristics of respondents within each

state.
FL NC MA

Frequency Percent Frequency Percent Frequency Percent
Education
Less than high school 8 1.1% 4 0.5% 5 1.1%
High school diploma or GED 97 12.8% 77 10.2% 62 13.1%
Some college or 2 year degree 255 33.7% 245 32.4% 116 24.6%
Bachelor's degree 253 33.5% 256 33.9% 165 35.0%
Master's degree 95 12.6% 121 16.0% 78 16.5%
Law or MD 31 4.1% 24 3.2% 23 4.9%
Doctorate (PhD) 17 2.2% 29 3.8% 23 4.9%
Income
$25k or less 29 3.8% 18 2.4% 7 1.5%
$25,001 to $35k 29 3.8% 17 2.2% 8 1.7%
$35,001 to $50k 47 6.2% 47 6.2% 27 5.7%
$50,001 to $75k 85 11.2% 86 11.4% 35 7.4%
$75,001 to $100k 130 17.2% 128 16.9% 71 15.0%
$100,001 to $150k 134 17.7% 186 24.6% 98 20.8%
$150,000 to $250k 106 14.0% 102 13.5% 87 18.4%
More than $250k 81 10.7% 60 7.9% 54 11.4%
Prefer not to answer 115 15.2% 112 14.8% 85 18.0%
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Gender
Male
Female
Other

Prefer not to answer

Race

White

Black or African American

American Indian or Alaska Native

Asian

Native Hawaiian or other Pacific Islander
Hispanic or Latino

Prefer not to answer

Age

less than 21
22-30
31-40
41-50
51-64

65+

635

109

11

659

11

10

34

48

49

108

162

379

52

84.0%

14.4%

0.1%

1.5%

87.2%

0.1%

1.5%

1.3%

0.3%

4.5%

6.3%

0.8%

6.5%

14.2%

21.4%

50.1%

6.9%

658

80

16

688

17

11

37

38

95

170

314

132

87.0%

10.6%

0.3%

2.1%

91.0%

2.2%

1.5%

0.9%

0.4%

0.8%

4.9%

0.9%

5.0%

12.6%

22.5%

41.5%

17.5%

438

25

0

9

408

8

12

41

31

67

80

192

93

92.8%

5.3%

0.0%

1.9%

86.4%

1.7%

0.4%

2.5%

0.2%

1.9%

8.7%

1.9%

6.6%

14.2%

16.9%

40.7%

19.7%
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