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ABSTRACT 

HARNESSING THE COLLECTIVE INTELLIGENCE OF STAKEHOLDERS TO 

UNDERSTAND SOCIAL-ECOLOGICAL SYSTEMS 

By 

Payam Aminpour Mohammadabadi 

Collective Intelligence (CI) is an amplified, meta-intelligence that emerges when a 

distributed collective of individuals aggregate their inputs in order to solve a problem, often with 

the help of communication or knowledge pooling. Importantly, CI outcomes (e.g., solutions, 

decisions, judgments, wisdom and knowledge) are generally more problem-adequate and 

therefore seem more “intelligent” than the contribution of any solitary member. CI in human 

societies can therefore solve key and pressing problems that no individual can resolve alone. 

Importantly, with recent advances in digital technologies, we now have more potential to harness 

the full power of human collectives to better address fast-evolving, complex problems facing 

human societies, many of which are complex issues that are resulted from the interactions 

between humans and natural ecosystems.   

Problems like anthropogenic environmental changes, biodiversity loss, and over-

consumption of natural resources, which often take place in so called social-ecological systems 

(SESs), require adequate knowledge and complete understandings about complex relationships 

between intertwined social and environmental dimensions. Such understandings are difficult to 

achieve in many contexts due to data scarcity and scientific knowledge limitations. This 

dissertation explores the potentials of using CI approaches to leverage the local knowledge of 

environmental and natural resources stakeholders to better understand SESs, develop adequate 

knowledge of complex human-environment interactions, and inform sustainability decisions. 



 

 

First, this dissertation synthetizes key insights from biological, cognitive, behavioral, and 

management sciences literature to develop a framework that guides the design and generation of 

CI in human groups. This framework organizes fundamental design elements of CI and thus can 

help researchers, communities, and policymakers, especially in data-poor situations, design 

crowd-based approaches to aggregating knowledge of local people and stakeholders in order to 

achieve accurate and reliable understandings of complex human-environment interactions.  

Additionally, this dissertation empirically tests CI approaches using three real-world 

fisheries case studies. The first empirical study uses an example of inland freshwater pike 

fisheries to explore how CI of local stakeholders can be harnessed through aggregation of their 

mental models about human-environment interactions. This study shows that the aggregated 

model can provide scientifically sound insights about how the ecosystem and humans are 

coupled, and how their interactions are influenced by various management strategies. The second 

empirical study uses an example of striped bass fisheries in Massachusetts, to explore the impact 

of knowledge diversity on the CI of local stakeholders while pooling their local knowledge about 

the complex human-environment interactions. The final study uses an example of U.S. Atlantic 

coasts to scale up these CI approaches by crowdsourcing inputs from a very large population of 

local fishing communities to predict people’s perception of, and behavioral responses to climate 

change impacts on ocean fisheries across a large social and ecological gradient. This study 

demonstrates perfect match among stakeholder-driven perceptions, their mental models’ 

predictions of behavioral changes, and empirical patterns of climate change disturbances. 

In conclusion, this work demonstrates that CI approaches to utilizing stakeholders’ local 

knowledge for understanding the complexity of SESs have considerable implications for dealing 

with scientific and management uncertainties, while many untapped potentials still remain.
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INTRODUCTION 

OVERVIEW OF THE PROBLEM  

 Many of the world’s most pressing issues such as massive climate change, 

unprecedented biodiversity loss, widespread overexploitation of natural resources, and extensive 

environmental degradation highlight the substantial scale of human influence on the earth. These 

far-reaching environmental consequences of anthropogenic disturbances often take place in so 

called social-ecological systems (SESs) 1,2, wherein humans and the nature interact reciprocally 

3. These couplings between human and natural components typically lead to the emergence of 

complexity in different contexts and different scales 3,4. Managing such complexity, however, 

requires adequate understanding about multiple social and environmental components, their two-

sided interrelationships, and their resulting dynamics 4. This understanding can therefore help us 

better predict the impacts of environmental and social perturbations on coupled systems, and 

how these systems respond to various management decisions and environmental changes. 

Immediate consequences of such predictions would be an improvement in the sustainability of 

ecosystems and human societies 5.  

Notwithstanding, in many cases, adequate understanding about complex SESs is difficult 

to achieve due to widespread limitations and shortages in scientific data, knowledge, tools, and 

methods to model these complex systems 4,6,7. To fill this gap, study of SES has faced an 

increased interest in the use of local knowledge of stakeholders 6,8,9—environmental and natural 

resource users who hold valuable knowledge about social-ecological dynamics, sample the 

natural environment from their routine interactions with SESs through activities like fishing or 

hunting 10, and may share information about environmental, policy or social changes across their 

social networks and generations 11. These human-nature interactions allow stakeholders to 
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accumulate and refine knowledge and observations across years and locations (e.g., anglers 

moving among lakes) 12. This local knowledge (LK), also known as local ecological or 

traditional knowledge, is considered a rich source of information 13,14, especially in data-poor and 

data-scare situations where data-driven scientific assessments are very limited, and therefore 

researchers often attempt to incorporate LK into environmental models and resource 

management 15,16. 

Incorporating relevant stakeholder input into SES modeling, however, remains 

fundamentally challenging due to methodological insufficiencies 17,18. One key challenges 

associated with this process is the inability to quantify and address uncertainty in LK that leads 

scientific community to question the quality and validity of information provided by non-

scientist stakeholders 14. Although stakeholders represent a free and widespread source of 

information, almost always, knowledge held by stakeholders represents different levels of 

expertise and reflects diverse perspectives 19. Yet, the unknown accuracy and the wide range of 

variation in stakeholders’ inputs considerably rise concerns about the validity and reliability of 

using this source of information in scientific processes 20. 

To overcome these challenges, it is necessary to advance the formal use of LK in the 

study of SES through development of innovative approaches that incorporate stakeholders’ 

inputs and, at the same time, enhance the reliability and accuracy of these stakeholder-driven 

inputs. Therefore, it is of utmost relevance to foster methodological developments that allow 

researchers to harness the LK of nonscientist stakeholders and achieve robust understandings 

about complex human-environment interdependences while meeting a scientifically acceptable 

accuracy and reliability. 
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OVERVIEW OF THE METHODOLOGY 

This dissertation explores the potential for harnessing the collective intelligence (CI) of 

resource stakeholders to advance the formal use of LK in developing better understandings about 

complex human-environment interdependencies and their resulting dynamics. CI is a term used 

to describe a group phenomenon that emerges from the interactions of various individuals such 

that the group ends up being more intelligent, i.e., more capable of solving problems, making 

decisions, or answering questions than any individual within the group. CI methods rely on the 

problem-solving efforts of groups, often based on a proper aggregation of their individual 

opinions, judgments and knowledge, which can potentially lead to a superior intelligence (aka. a 

collectively intelligent system). This property of the collective may enable the group to solve 

complex problems in a way no individual can accomplish 21–23. 

According to this definition, CI can first thought to be a natural phenomenon, common to 

many species like ants, honeybees, birds, and fish. For examples, groups of army ants foraging 

for food can collectively form complex organizations (i.e., assemblages), such as bridges out of 

their bodies to reach disconnected areas 24; and schools of fish can collectively form gigantic 

masses of fish, while escaping from predators, to become less vulnerable to predator’s attack and 

increase the chances of survival 25. CI is also a common phenomenon among human societies. At 

the simplest level, highly synchronized human groups can achieve physical capabilities above 

and beyond what individual humans can do (e.g., a group can simply lift heavier objects than 

what individuals can do). In a more sophisticated manner, human societies practice democracy 

and incorporate public opinions into important decisions to thrive culturally and economically 26 

and organizations practice collaborative problem-solving to integrate diverse knowledge and 

expertise 27. Importantly, however, in modern days, online interactions among millions of people 
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contribute to shape the public, and yet smart, discourse on health, social, environmental, and 

political issues: millions of online web users contribute their customized, anecdotal knowledge to 

the world’s biggest encyclopedia (i.e., Wikipedia) 28; and globally distributed citizen scientists 

work together collectively to expand the scale of data collection and contribute to better 

environmental conservation 29.  

By looking at these examples from the nature and human societies, one important 

question that needs to be addressed is “under what conditions, a group’s collective intelligence 

surpasses individual intelligence or problem-solving capabilities?” This has long been a 

fundamental question for researchers from a range of disciplines to study collectives and has led 

many theoreticians to explain the underlying factors that make collectives smarter than 

individuals: For example, the Condorcet’s jury theorem (1785) 30 explains the power of 

collective decision making and has been a fundamental theoretical assumption for epistemic 

democracy and other democratic theories of decision-making characterized by majority voting. 

In the context of estimation, Francis Galton’s observation of 800 people accurately estimating 

the weight of a dead ox in 1907 introduced the “wisdom of crowds” phenomenon 31. About a 

century later, James Surowiecki pushed the term “wisdom of crowds” into spotlight in his 2004 

book 23 with a series of examples where the average response from a large crowd of independent 

individuals accurately estimated various quantities while outperforming the majority of 

individuals. 

Scott Page offers a theoretical explanation for this phenomenon in his 2007 book 32. He 

explains that there is noise associated with each individual judgment, and taking the average over 

a large number of responses filters out the noise of over- and under-estimates, and therefore 

moving the aggregated response closer to the truth. Based on this theoretical explanation, the 
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crowd error is equal to the mean of individual errors, minus their variance. Consequently, as 

diversity of judgments increases the variance of individual errors increases, and thus the crowd 

collective error decreases. For that reason, Page calls it a “Diversity Theorem.” 

Another form of CI frequently observable in socially interacting animal species is known 

as “swarm intelligence.” 33 Swarm intelligence emerges from the ability of a network of 

individuals to work together synchronously to accomplish complex tasks. This is therefore a 

common source of CI among social species like ants and honeybees. However, in 2017, Louis 

Rosenberg proposed that, once connected into real-time systems with synchronous social 

interactions among members, humans can also amplify their group intelligence by forming 

“human swarms,” which can outperform the vast majority of individuals when solving problems 

and making decisions 34. Even though humans did not evolve the natural ability to form a swarm 

intelligence, with the aim of networking technologies, humans can also connect with each other 

to form artificial swarm intelligence. “We just need the right technology to turn those 

connections into real-time systems.” 34 

In the 21st century, by leveraging the power of emerging online technologies, we should 

be able to more efficiently harness humans’ CI to address our complex problems we face today. 

Internet-based technologies like online surveys, artificial swarming platforms, cyber-enabled 

micro markets such as Amazon Mechanical Turk, and prediction market tools can help us more 

conveniently, and at an unprecedented scale, aggregate the knowledge, wisdom, and insights of 

diverse groups of people distributed all around the world into a single intelligent solution to our 

complex problems. As a result, CI has been shown as a powerful tool for wide-spread application 

in a range of areas such as innovation management, democratizing policies, medical diagnostics. 

Despite promising findings scattered in various fields, there lacks an overarching framework that 
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can reconcile these findings and guide the generation of new forms of CI. Considerably less 

attention has been paid to CI applications in natural resource management and understanding 

coupled social and environmental changes beyond citizen science. As a result, the degree to 

which a group of local stakeholders can collectively arrive at an amplified intelligence that 

provides adequate and reliable understanding of complex human-environment relationships 

remains a largely unexplored (and potentially underutilized) area. This dissertation aims to 

reconcile theoretical and empirical findings scattered in various fields, develop a general CI 

framework, and eventually design and implement new forms of CI to fill these gaps. 

DISSERTATION OUTLINE 

Firstly, in chapter 1, the past and current states of CI theoretical and empirical research 

from social sciences, biological sciences, and managerial and political sciences are synthesized 

to develop an overarching, state-of-the-art framework that guides the generation of new 

collectively intelligent systems. Based on this framework, new approaches to harness the CI of 

local stakeholders were designed with the aim of developing robust understandings about 

complex human-environment interactions in SESs. To empirically test these approaches, three 

real-world case studies were implemented with fisheries examples.  

In chapter 2, the potential for harnessing the CI of local stakeholders in recreational pike 

fisheries in Germany is explored. This study empirically demonstrates how the knowledge of a 

crowd of local stakeholders, once aggregated through cognitive mapping techniques, can 

adequately model social-ecological relationships and predict how the inland freshwater lake 

ecosystems may respond to different management strategies. This study offers methodological 

guidance for aggregating the input of crowds of resource users to generate high-quality system 

models. 
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In chapter 3, using a case of striped bass fisheries in Massachusetts, the benefits of 

pooling local knowledge from a diverse group of stakeholders are explored. Using a novel online 

mental-modeling experiment, based on theoretical work about “wisdom of crowds,” 31 and more 

recent theoretical assumptions about “diversity bonus,” 35 this study tests the ideas about how 

pooling informal knowledge from local people, who interact with the natural resources and may 

not necessarily hold formal scientific knowledge about their environment, may produce accurate 

and reliable scientific understandings that can inform sustainability decisions. Results 

demonstrate that the crowdsourced knowledge, once aggregated from a diverse pool of 

stakeholders as opposed to heterogeneous pools, can generate useful information about complex 

social-ecological interdependencies, thereby filling in knowledge gaps in light of unavoidable 

uncertainty.  

Finally, in chapter 4, an example of U.S. Atlantic coasts is used to scale up the CI 

approaches by crowdsourcing inputs from a very large population of stakeholders to predict 

climate change impacts on ocean fisheries and approximate their behavioral responses to these 

changes. This study empirically demonstrates that internet-based crowdsourcing approaches can 

produce accurate patterns of collective perceptions and behavioral responses which are highly 

aligned with empirical biogeographic patterns of climate change across east coast. These 

findings, and particularly that human responses to climate change varies regionally and is linked 

with ecosystem changes, are especially important as society continues developing scientific and 

management plans that consider climate change. Moreover, this work represents one of the 

largest studies involving stakeholder mental models and overcomes many of the common 

logistical constraints (e.g., time and effort of in-person interviews) that have typically limited the 

scale and spatial coverage of past studies.
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CHAPTER 1 

1 BECOMING INTELLIGENT ABOUT COLLECTIVE INTELLIGENCE AND 

PUBLIC POLICY 

 

 

ABSTRACT 

Twenty-four centuries ago, Protagoras is generally credited for first taking seriously the 

idea that “two heads are better than one,” 1 an idea echoed in Proverbs 11:14 centuries after: 

“Where there is no counsel, the people fall; but in the multitude of counselors there is safety.” 

(King James Version of the Bible). Today, thanks to 21st Century technologies, two heads and 

the counsel of the multitude are possible at the scale of thousands, millions, and beyond. 

Paradoxically, however, even with these technologies in place, the vast potential of collective 

counsel is widely underused by policy-makers. Additionally, significant fragmentation across the 

academic fields that study collectives in humans and non-human animals limits the cross-

disciplinary advancements that have far-reaching implications for policy-making.  So how can 

researchers and policy-makers work together to harness the power of collectives to address 

society’s most pressing health and environmental problems? A vast increase in the study of 

“Collective Intelligence” may provide some insight into these questions but, ironically, it will 

first require defining “Collective Intelligence” as a collective. Here we present an overarching, 

state-of-the-art framework for CI that provides guidance for policymakers, communities and 

researchers in developing new forms of CI for better addressing problems that societies face.   
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1.1 THE POWER OF THE COLLECTIVE 

Collective intelligence (CI) is a term used to describe a group property that emerges from 

the interactions of various individuals such that the group ends up being more intelligent, i.e., 

more capable of solving problems, making decisions, or answering questions than any individual 

within the group. Under the bridge of this definition, CI can be first thought to be a natural 

phenomenon, common to many species like ants and honeybees but also increasingly as a key 

form of success in human communities 2. In many ways, this philosophy acknowledged a natural 

precursor to modern civilizations leading human societies to thrive culturally and economically. 

This type of outcome is frequently achieved in human groups through processes ranging from 

face-to-face deliberation to large-scale judgment aggregation to decentralized problem-solving. 

Based on CI observations from nature, various forms of human organization, and 

theoretical and experimental advances, our knowledge about successful CI conditions is fast 

expanding in the biological sciences, cognitive and behavioral sciences, political and 

management sciences. Each of these fields offers a different stream of insight into how 

collectives navigate both simple and complex problems leading to better outcomes. For example, 

biologists have demonstrated how groups of modestly capable individuals can collectively 

succeed in highly complex tasks such as nest construction, navigation of an unfamiliar 

environment, and cohesive migration, e.g., see ref. 3, or social scientists have demonstrated how 

humans, once formed into a collective, can amplify their cognitive capability, e.g., see ref. 4.  

At the same time, studies specific to computer and information science have offered 

several opportunities to deliberately design social or cyber-infrastructures to allow collectives to 

address a particular problem. This enormous potential, however, is not yet fully accessible to 

policy-makers because of the lack of an overarching framework to inform the generation of new 
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collectively intelligent systems given a specific objective. Structuring such an overarching 

framework requires responding to several questions: What types of public-policy questions can 

CI support? What is the nature of the collective and what knowledge is appropriate for different 

types of questions? How should this knowledge of the collective be integrated to ensure CI 

emerges and we avoid the madness of mobs? 

Here we present (outline) a framework that can guide the design of new collectively 

intelligent systems and thereby harness collective counsel that can be considered ‘intelligent.’ 

Our outline focuses on three primary components: the nature of the policy problem or challenge, 

the nature of the collective, and the nature of the aggregation mechanism. 

1.2 COLLECTIVE INTELLIGENCE FRAMEWORK 

1.2.1 The problem 

Defining the public need or challenge with clarity (i.e., the purpose) is fundamental to 

designing a CI system. Such a system can be aimed at addressing a wide range of problems for 

which individuals have to accomplish various tasks such as data collection, observation, labor 

services or cognitive tasks such as processing new information (i.e., acquire and organize 

knowledge), retrieving that information from memory, and use that information at a later time 

(e.g., for estimation and prediction, making a decision, conducting an analysis, etc.) (Figure 

1.1).   

In addition, the complexity of the problem should be taken into account. Here we use a 

three-point continuum of complexity (i.e., simple, complex, and wicked) to classify problems: 

Simple problems are clearly defined with an ideal solution that can be obtained in a linear 

fashion using straightforward techniques. In such cases, there is a clear “correct” solution and 

participants only have to decide on a single variable value (e.g., numerical estimate of a 
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quantity). Complex problems can eventually be clearly defined, but unlike simple problems, 

solutions to complex problems are not well-understood.  Such problems are not solvable by 

reductionist or sequential techniques, and solutions to them are often adaptive and can lead to 

other problems and unintended consequences. Finally, wicked problems are complex problems 

which are neither clearly defined nor well-understood. These types of problems involve multiple 

stakeholders with different values and beliefs. Intelligent systems typically seek to manage 

wicked problems rather than definitively solve them 5.  

1.2.2 The collective 

Theorists have suggested various characteristics by which collectives may effectively 

construct a CI system: The diversity of members of a collective, for example, has been 

demonstrated to serve a critical role in collective problem-solving 6. Especially for more complex 

problems, cognitive diversity is a critical driver of collective performance. Here we use Hong 

and Page (2004) method 6 to classify diversity: “identity diversity” refers to differences in 

demographic characteristics, cultural identities and ethnicity; and “functional diversity” refers to 

differences in people’s representation of a problem and how they solve it.  

Further, the skills/expertise of individual participants are of importance to the collective 

outcome. Three categories can be used to classify the level of expertise people have in CI 

systems: lay public (individuals who do not necessarily have intimate knowledge, experience, 

and professional training in the subject of the problem); local stakeholders/communities 

(individuals likely to be affected by a management decision, action, or a problem); and subject-

matter experts (individuals who possess specialized or professional knowledge of a subject).  

Additionally, one important group characteristic is the group size which has been 

hypothesized to influence group CI. While some traditional models of collective decision-



16 

 

making, e.g., Condorcet’s Jury Theorem (1785) and Galton’s wisdom of crowds (1907), 

proposed that collective accuracy should increase monotonically with group size 7, more recent 

studies have demonstrated that group size differently impacts the accuracy of collective decision-

making given the complexity of environmental cues and the correlation of information driving 

individual decisions 8.  

Participants’ engagement, or their level of effort and motivation to solve the problem at 

hand 9, can influence the design and implementation of a CI system. Here we expand on Malone 

et al. (2010)’s CI framework 10 and classify engagement into four overarching categories: (1) 

Monetary incentives; (2) Social responsibility, concerns, and civic duty; (3) Enjoyment, 

satisfaction and recognition; and (4) Legitimate right, ownership, and liability. A final relevant 

factor is the task management process, which explains how a collective manages the distribution 

of labor or intellectual contributions. A collective is either self-governed (decentralized) with 

autonomous agents or hierarchically controlled (centralized). 

1.2.3 The aggregation mechanism 

Group formation can take place once a collective of individuals are either sampled or 

self-selected. The mechanisms by which individuals’ information is aggregated, however, 

depends largely on two factors. First, the level of social influence among individuals, which 

ranges from highly influenced with collaborative and synchronous interactions to highly 

independent with no social interactions.  In this case, social influence can take various forms: 

individuals can either communicate through face-to-face dialogue or through online platforms, 

referred to as artificial Swarm platforms 11, which allow users to interact concurrently to make 

collective decisions. These interactions are synchronous, meaning that users can explore 

decision-spaces together in real-time. On the other hand, social interactions can occur 
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asynchronously, meaning that individuals are independently exposed to information about 

others’ and/or their collective responses, or they receive correlated environmental cues 8 (e.g., 

people are exposed to the same social media outlets). 

Given the type of policy problem, social influence may undermine or improve collective 

performance. In simple estimation tasks, for example, a dominating belief is that social influence 

may drive out beneficial diversity 12. Those upholding this belief contend that connected 

individuals are likely to copy their peer’s solutions and this tendency to copy results in a smaller 

range of individual judgments 12. While this can be problematic in more centralized networks, 

recent studies, e.g., refs. 4,13 have demonstrated that, in decentralized networks, connected 

individuals outperform disconnected ones due to the benefits of collective learning. In addition, 

and especially for complex and uncertain problems, innovation entails social interactions 

whereby ideas need to be recombined.   

Second, a CI solution requires an aggregation method by which individual inputs are 

combined. We have identified five general aggregation rules: average rule (i.e., using a central 

tendency measure); addition rule (i.e., pooling or crowdsourcing information); majority rule (i.e., 

using voting mechanisms); convergence rule (i.e., reaching a consensus by deliberation or 

convergence of opinions); and emergence rule (i.e., self-organized recombination of individual 

inputs emerges to innovations or better outcomes). 
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Figure 1.1. Collective intelligence framework for policy-making. This framework provides insights into new hypothetical pathways to 

aggregate information (i.e., units of knowledge) from a group of individuals and thereby offer solutions that are more optimal than 

how any single individual could have addressed a particular problem (examples are provided in the Appendix, Figure 1.S1). 
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1.3 POLICY IMPLICATIONS 

While we are only at the beginning of exploring the potential impact of CI methods on 

public policy, we envision at least three important areas of impact. The first is interdisciplinarity. 

Choosing the right CI intervention for a given policy challenge will require engaging with fields 

of knowledge that did not traditionally intersect. The design of a citizen consultation at the level 

of a large city may benefit from cognitive science and social psychology in question formulation; 

network science to identify the right diffusion channels; data science and machine learning in the 

treatment of open-text citizen contributions; and design thinking with behavioral economics to 

redesign a public service. 

And while the field of CI has long been allied with quantitative disciplines such as 

computer science 14, the next wave of experiments will benefit from the insights of social science 

disciplines such as participatory democracy, social psychology, management, peacebuilding, and 

complex mediation. To this end, we see a natural convergence between the framework for CI 

studies presented here and the closely related discourses of crowdlaw and public 

entrepreneurship 15, epistemic democracy, complex systems, organizational change, and 

behavioral insights or nudge theory 16. 

Second, a common CI framework should allow policymakers to eliminate many of the 

false choices that dominate current political debates. Harnessing the CI of a community or 

country does not necessarily mean calling a referendum or overturning a government. On the 

contrary, the field of CI provides a multitude of methods and techniques at the disposal of 

policymakers: some relevant to decision-making, but others to collective observation, 

interpretation, prediction, or preservation of common knowledge. Practitioners of CI may include 

those seeking radical changes in existing institutions, but so too can they be faithful stewards of 
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them. In all cases, institutionalizing CI methods will require an understanding of how to 

supplement and not necessarily replace existing representatives and intermediaries.  

Finally, a common CI framework can serve as a basis for new coalitions of scientists, 

policymakers and citizens that will be necessary to take the most promising CI methods to scale. 

Many promising CI pilots never achieve the necessary institutional buy-in to create a long-term 

impact. As such, an increasing amount of attention is being given to the conditions for 

institutionalizing CI processes, including the need to link new participatory channels to 

performance indicators of managers and public servants 17. To name only a few, the work of the 

NYU GovLab, NESTA Centre for Collective Intelligence Design, OECD Future of Democracy 

Network, World Bank Open Government Unit, Democracy R&D Network, and EU Horizon 

2020 CI fund seek to develop the link between scientific research into what works and a hard-

nosed understanding of what lasts. 

As this research agenda expands, the network of researchers exploring CI principles 

should itself embody those principles. This means creating more diverse data-gathering channels, 

including Africa’s first cognitive science lab being created at the UM6P School of Collective 

Intelligence in Morocco. It means more opportunities to pool knowledge in innovative ways, 

such as the virtual CI conference in June 2020 hosted by Northeastern University and 

Copenhagen Business School, and it means the epistemic humility practiced by researchers and 

dialogue facilitators alike: in shaping this new discipline for policy-making, we must be vigilant 

against our own biases and ever-ready to overturn our presumptions if new evidence comes to 

light. 

What is the future of CI? At a minimum, these methods have already shown the promise 

of a more agile and inclusive policy-making framework, in which current priorities are more 
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easily achieved and existing institutions reap the benefit of higher effectiveness and greater trust. 

Conversely, it may entail a more profound paradigm shift in which existing models give way to 

more radically decentralized or distributed systems. But whether we are able to define, study and 

implement the field of CI will determine if we can collectively address our shared problems or 

not. 
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APPENDIX 

SUPPLEMENTARY INFORMATION 

S1 Collective Intelligence Examples 

Here we have identified 21 unique approaches that exemplify most of the CI systems that 

have been implemented to address societies’ real-world problems. These examples include 

citizen science 18, micro-task markets 19 (e.g., Amazon Mechanical Turk), human swarm 

intelligence 20 (e.g., Swarm AI technology), traditional wisdom of crowds 7, wisdom of 

decentralized networked crowds 13, knowledge co-production 21, distributed governance 22 

(Blockchains technology), epistemic democracy 23, social bookmarking 24 (Folksonomy), Delphi 

methods 25, prediction markets 26, adaptive co-management and community engaged studies 27, 

open innovation and broadcast search 28 (e.g., idea competitions), open problem-solving 29 (e.g., 

MIT Climate CoLab), commons-based peer production 30, deliberative democracy 31, mass 

collaboration 32 (e.g., Linux), collective memory 33 (e.g., Wikipedia), wisdom of stakeholder 

crowds in complex problems 34 (e.g., social-ecological modeling), wisdom of crowds in 

combinatorial problem-solving 35 (e.g., traveling salesperson problem and minimum spanning 

tree problem), and diversity trumps ability theorem 6. These examples are shown in Figure 1.S1, 

each demonstrates a unique array of sub-components from three main CI components: the 

problem, the collective, and the aggregation mechanism. In addition, the Sankey diagram 

displayed in Figure 1.S2 is a flow diagram, in which the width of the arrows represents 

proportionally the flow quantity between two sub-components of the CI framework, based on 21 

aforementioned examples. 
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S2   Supplementary Figures 

 

Figure 1.S1. Examples of collective intelligence (CI). Each example demonstrates a unique approach to harness the CI of a collective 

by aggregating individual inputs to solve a particular problem. See Figure 1.1 for more information about sub-categories (i.e., PU, CX, 

DV, EX, GS, EN, TM, GF, SI, and AG). 
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Figure 1.S2. The Sankey diagram showing the flow between sub-components of CI framework.  Considering examples from Figure 

1.S1, the diagram shows where a CI can come from and where it can end up, with possible intermediate steps, where the width of the 

connections between two nodes visualizes the quantity of examples used these pairs of nodes (i.e., sub-components). 
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CHAPTER 2 

2 WISDOM OF STAKEHOLDER CROWDS IN COMPLEX SOCIAL-ECOLOGICAL 

SYSTEMS 

 

This chapter is a reprint of an original peer-reviewed article published in Nature 

Sustainability in 2020, volume 3, on pages 191-199. The original article can be found at: 

https://doi.org/10.1038/s41893-019-0467-z.  

ABSTRACT 

Sustainable management of natural resources requires adequate scientific knowledge 

about complex relationships between human and natural systems. Such understanding is difficult 

to achieve in many contexts due to data scarcity and knowledge limitations. We explore the 

potential of harnessing the collective intelligence of resource stakeholders to overcome this 

challenge. Using a fisheries example, we show that by aggregating the system knowledge held 

by stakeholders through graphical mental models, a crowd of diverse resource users produces a 

system model of social-ecological relationships that is comparable to the best scientific 

understanding. We show that the averaged model from a crowd of diverse resource users 

outperforms those of more homogeneous groups. Importantly, however, we find that the 

averaged model from a larger sample of individuals can perform worse than one constructed 

from a smaller sample. However, when averaging mental models within stakeholder-specific 

subgroups and subsequently aggregating across subgroup models, the effect is reversed. Our 

work identifies an inexpensive, yet robust way to develop scientific understanding of complex 

social-ecological systems by leveraging the collective wisdom of nonscientist stakeholders. 
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2.1 INTRODUCTION 

Many environmental problems that influence human well-being, such as climate change, 

biodiversity loss, and overexploitation of natural resources, are caused by a combination of 

social and ecological factors that occur in coupled systems across scales1. Managing resources 

under such complexity requires adequate system representation (i.e., models) 2, so that the 

system’s response to management decisions can be anticipated before action is taking. However, 

the sheer number of intimately linked social-ecological systems that require management, limited 

knowledge and resources, and the difficulty to enumerate many system elements cause scientific 

model creation to lag behind decision-making needs in most natural resource contexts 3,4. This 

limits the effectiveness of natural resource management and contributes to the inevitable collapse 

of many exploited systems, such as fisheries 5.  

To address knowledge limitations and data gaps, resource managers frequently receive 

input and decision-making support from resource stakeholders 6,7. Resource users sample the 

natural environment through their routine interactions with social-ecological systems (e.g., while 

fishing or hunting) 4 and thus accumulate and refine knowledge and observations over years and, 

frequently, in different locations (e.g., anglers moving among lakes) 8. Therefore, monitoring and 

assessment of natural resource dynamics may be improved by leaning on the knowledge of 

diverse resource stakeholders (e.g., fishers) 7 in ways that harness their collective intelligence 

(CI) 9 —the ability of a group to solve problems effectively. For example, natural resource 

management increasingly uses citizen scientists 10 to collect and aggregate observational data 

(e.g., by observing bird distribution and abundance) 11. 

Importantly, the CI held by a group can also be harnessed by pooling judgments, rather 

than observations, from large, loosely organized collectives or “crowds”. The so-called wisdom-
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of-crowds (WOC) phenomenon was discovered more than a hundred years ago, when the 

average judgment of the crowd of observers accurately estimated the weight of a dead ox 12. This 

phenomenon frequently leads to surprisingly accurate point estimates by averaging the 

judgments of a large collective 13. In addition to simple estimation tasks, a WOC effect has also 

been researched in cases of higher solution complexity, such as combinatorial problems 14,15. 

Understanding the complex social-ecological interactions in natural resource ecosystems, 

however, constitutes a considerably more difficult problem than counting the number of birds 10, 

guessing the weight of an animal 12, or solving a Euclidean traveling salesperson problem 15. 

Natural resource managers frequently have to predict future system states (e.g., in response to a 

planned management intervention), which requires more complex knowledge about the structure, 

connection, and dynamic behavior of natural resource systems, often associated with high 

uncertainty and with no clear “correct or optimum” solution. It is currently unclear if the WOC 

approach can harness CI for such complex problem-solving conditions. 

In this work, we explore if the WOC can be leveraged to provide accurate system 

knowledge about natural resources. Specifically, using a case from fisheries, we ask: can crowds 

of non-scientist resource users provide representations of the ecological and social cause-and-

effect relationships that drive resource stock dynamics and mirror the best scientific 

understanding of the same social-ecological context? Given the urgent need to effectively 

manage globally declining fish stocks 16,17, this is a question of utmost relevance: if stakeholder 

crowds can provide accurate representations of complex social-ecological relationships, then by 

using the CI of stakeholders we could create a more complete coverage of localized social-

ecological processes than any team of scientists can ever achieve when traditional scientifically-
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driven assessments are limited and cannot cover the universe of local environmental and social 

interactions. 

One way to elicit system representations from stakeholders is through cognitive maps. 

These are graphical models of system elements (concepts) and their causal connections 

(represented as signed arrows). They represent an individual’s internal perception of external 

reality, referred to as mental models 18. Mental models of complex systems can be represented in 

special semi-quantitative forms of cognitive maps called Fuzzy Cognitive Maps (FCM) 19,20. 

Importantly, individual mental models elicited by FCMs can be aggregated mathematically to 

create a model that represents the insights of all subjects 19,20. However, there is a lack of 

empirical evidence to explicitly demonstrate a WOC effect in averaging a crowd’s mental 

models about complex social-ecological relationships, such as human interactions with natural 

fish populations 21. 

In this study, we explore using WOC principles to establish a presumably accurate 

understanding of natural resource dynamics by proposing and testing a novel approach for 

aggregating individual mental models collected from non-scientist stakeholders. We use an 

example of a recreational fishery ecosystem and independently generated mental models, 

represented by FCMs, from diverse resource users, composed of individuals who interact with 

fishery resources in different ways, either through exploiting fish populations (anglers), 

managing resources (fisheries managers) or governing communities of resource users (angling 

club managers).   

In general, and especially for complex problems with many interrelated components, 

incorporating diverse knowledge and expertise into collective problem-solving improves the 

group’s performance 22–24. Similarly, diversity of perspectives has been identified as a critical 
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driver of WOC13. Building on earlier theoretical reasoning 22–24, we hypothesize, first, that, a 

system model generated by aggregating the mental models of a crowd of diverse resource users 

outperforms the models of more homogeneous groups (H1). 

Yet, it is realistic to assume that users of the same social-ecological system are most 

likely to be socially influenced by their peers in real life, especially by those from the same 

stakeholder category (e.g., anglers, club managers, and fisheries managers), due to similarities in 

the ways they use and interact with the natural resources. Such interactions can be direct through 

face-to-face communications or indirect through sharing knowledge, information and 

assumptions over media and through being exposed to a similar set of information sources (e.g., 

educational material codified in books). Socially influenced subgroups of individuals, however, 

tend to accumulate and represent correlated knowledge. Despite potentials for social learning and 

improving the accuracy of the collective judgments, prior WOC studies 25–27 have shown that 

under such conditions, averaging data points from a larger crowd of individuals increases the risk 

of amplifying biased knowledge that drives from direct or indirect exposure to social influences, 

thereby potentially diminishing the WOC effect 25–27. Therefore, we hypothesize, second, that, 

when arithmetically averaging mental models of stakeholders with plausible real-life social 

influence, larger samples of mental models may amplify the negative effect social influence can 

have on WOC, thereby deteriorating collective performance as crowd size increases (H2).  

To deal with the latter issue, past theoretical and empirical WOC studies 26,28 have 

suggested that, once there are multiple “modules” within a large crowd (i.e., smaller subgroups 

of individuals whose opinions are more likely to be directly or indirectly influenced by their 

subgroup peers), the WOC can be enhanced by averaging responses across modules 26,28. 

Assuming that the crowd is suffering from the possible negative effect social influence can have 
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on WOC 27 and building on prior theoretical work 26, we hypothesize, third, that a multi-level 

aggregation method that averages mental models within modules (i.e., subgroups of stakeholders 

from the same user type category), followed by a subsequent aggregation across modules, can 

dampen the negative effect of social influence (H3). This multi-level aggregation approach may 

compensate for the possibly harmful biases as a result of social influence, thereby allowing 

larger crowds to demonstrate an improved WOC effect. 

Our work tests the above mentioned three hypotheses and thereby establishes that WOC 

can be leveraged to crowdsource system knowledge of social-ecological and other complex 

systems, while also offering methodological guidance for aggregating the input of crowds of 

resource users to generate high-quality system models similar to those developed by trained 

scientists. Our findings provide the basis for managing and planning interventions in complex 

social-ecological systems that are data-poor or even data-deficient, but that have an abundance of 

local knowledge from resource users. 

2.2 EXPERIMENTAL DESIGN 

We collected graphical mental models of 218 stakeholders characterized as recreational 

anglers, angling club managers, and fisheries managers through a fuzzy cognitive mapping task 

in a series of workshops in angling clubs recruited from north-western Germany. The FCMs 

represented participant understanding of the fish ecology and fishery management regarding the 

northern pike (Esox lucius) fishery (see a previous publication for more details) 21. The 

individually collected mental models graphically displayed the perceived cause-and-effect 

relationships of ecological and social concepts affecting each other (see Appendix, Figure 2.S1). 

Additionally, we ran two FCM workshops with 17 fishery scientists, each of whom had formal 

training and scientific knowledge in fishery resource dynamics and pike ecology, to create a 
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scientific reference mental model representing the best scientific understanding about the same 

ecosystem. 

We experimented on various ways to draw and aggregate mental models from a 

population of stakeholders to explore the impact of diversity, possible biases raised because of 

real-life social influences, and aggregation methods on the WOC. The effects were quantified by 

comparing the aggregated mental models against the scientific reference mental model (i.e., 

experts’ group mental model).  

We used two aggregation methods: (a) Single-level that is accomplished by arithmetically 

averaging the weights of all individually contributed links in FCMs of group members (see 

previous publications for more details) 19,20, and (b) Multi-level that first divides the stakeholders 

into separate modules (i.e., smaller subgroups) and arithmetically averages the edge weights of 

all contributing maps within each module, and then in the second level, it uses the median to 

aggregate the maps across the modules (see Methods). We proposed to use median in the second 

level of aggregation because the median has been shown to outperform the arithmetic mean in 

likely skewed distributions 12,29,30. 

We used the single-level aggregation method to form the averaged mental models of 

stakeholder-specific groups with members only from one stakeholder category (i.e., 

homogeneous groups of anglers, club managers, and fisheries managers). We also aggregated all 

218 individual mental models using the multi-level aggregation method to construct a crowd 

mental model composed of diverse stakeholders. To create the scientific reference model we 

aggregated the mental models generated by 17 scientists (i.e., experts) using single-level 

aggregation method. We compared stakeholder-derived models against the experts’ group mental 

model (i.e., reference model) in terms of their (a) centrality of concepts representing pike 
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ecology and management, (b) strong cause-and-effect relationships, (c) network geometric 

structures, and (d) dynamic behavior (see Methods).  

In addition, we built a “null-unwise” model by aggregating a set of artificial mental 

models made by a random graph generator using the probability distribution of edge weights 

drawn from the population of all participants’ mental models. We used this null-unwise model to 

test that any observed WOC is not simply an artifact of averaging mental models, and is 

attributed to stakeholders’ real-world relevant knowledge.   

Finally, to test the impact of accumulated biases of socially influenced individuals on the 

WOC effect and the success of different aggregation methods in filtering out these biases, we 

formed numerous samples of individuals randomly drawn from the entire population of 218 

stakeholders with different sample sizes. For each random sample of individuals we aggregated 

their mental models using two aggregation methods: single-level and multi-level. We then 

computed an overall performance error by comparing the aggregated mental model against the 

expert’s mental model (see Methods for details). 

2.3 RESULTS 

We find that the structural properties of the crowd mental model match scientific 

understanding about the social-ecological relationships driving pike fisheries, This was 

evidenced by evaluating agreement between the crowd model and the scientific model using 

three metrics: (a) centrality index (which represents the relative importance of a concept in the 

mental model), (b) strong causal patterns (which represents the arrangement of strong cause-and-

effect relationships), and (c) graph eigenvalues (which represent hidden fundamental patterns of 

geometric structure that has implications for the networked functionality of a mental model). The 

centrality measures (see Methods) indicated that the three stakeholder-specific groups were 
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biased toward specific management strategies (e.g., anglers were biased toward angling pressure 

being particularly impactful for pike, and fisheries and club managers were biased toward 

enhancement of habitat quality promoting pike) (Figure 2.1). However, in support of our first 

hypothesis (H1), when the mental models of all diverse stakeholders were aggregated, the crowd 

model demonstrated remarkable similarity to the experts (i.e., the reference model) regarding the 

centrality of six important concepts for possible impacts of fishery management decisions on 

pike population (Figure 2.1).  

 

Figure 2.1. Centrality profiles of different groups (in color) and the expert reference model (in 

black/grey). Axes in the radar charts show the centrality of system elements that are important 

for fishery management decisions. Katz index is used to measure the centrality (see Methods). 

The crowd also showed the highest agreement with the reference model regarding the 

strongest cause-and-effect relationships in pike ecology and management (Figure 2.2). 

Additionally, the eigenvalue similarity index (see Methods) also indicated that the structure of 

the crowd mental model had the most similar fundamental characteristics to the experts, 
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suggesting yet again significant structural agreement (Figure 2.3). We, therefore, conclude that 

the structure of the mental model of the crowd is very similar to the one produced by experts and 

thus, a WOC effect is demonstrated. 

 

Figure 2.2. Agreement on strong causal patterns in the FCM of stakeholder-specific groups, the 

crowd and the experts. The crowd map has the highest degree of matched patterns (~70% 

matched) with experts; the stakeholder-specific groups perform substantially better (among 53% 

to 63% of correct matches) than the null-unwise model (only ~30% correct matches). Weak 

relationships with an edge weight less than 0.33 (the first tertile in zero to one continuum, 

corresponding to the weak interval) were removed from the maps to get the strong causal 

patterns (see Appendix, Figure 2.S2). Error bars display standard errors. 
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Figure 2.3. Eigenvalue similarity index. Within each group (x axis), each point represents one 

individual and is placed according to the eigenvalue similarity index (y axis). The similarity 

index represents the structural mismatch with the experts mental model. The swarm plots reflect 

the density of points around any distance value, while black squares represent the aggregated 

mental models for each group. The crowd model has the smallest distance from (highest 

similarity with) the experts model. Interestingly, for all stakeholder groups, aggregated model is 

located below the densest area of the plot, illustrating the WOC effect (the average model 

outperforms most individuals). Yet, this effect is notably higher in the crowd. 

Structure does not necessarily provide insights into how the fishery might react under 

changing social-ecological conditions. We, therefore, assessed the dynamic (i.e., functional) 

behavior of the FCMs by simulating how changes in one or more system elements of the mental 

models impacted the state of all system elements (see Methods). We find again in support of H1 

that the functional properties of the crowd mental model accurately match scientific 

understanding about pike ecology (Figure 2.4). We revealed this agreement using a measure of 

dynamic distance, which represents the mismatch between two models in terms of the outcomes 

they produce as a result of changes in the state of one or more concepts. The functional 

properties of the mental models generated by the crowd and experts aligned, where the mean of 
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the dynamic distance between experts and the crowd was the lowest compared to all stakeholder-

specific groups (Figure 2.4). 

 

Figure 2.4. The dynamic distance between the experts model and the stakeholder-derived 

models based on 10,000 randomly generated scenarios (experiments). Each experiment randomly 

selects a set of concepts (nodes in the FCMs) and changes their values to produce outputs 

(see Methods). (a) Each cell in the color-bar graph represents a random scenario with colors 

denoting the dynamic distance. (b) Boxplots illustrate the distribution of these dynamic distances 

for each group in 10,000 experiments. The mean of dynamic distances from the reference model 

is the smallest in the crowd. 

We also find that the impact of biases deriving from real-life social influences exhibited 

two distinct behaviors across different aggregation methods affecting WOC performance (Figure 

2.5). For the models built by single-level aggregation larger samples of stakeholders amplify the 
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accumulation of biases, and thus group performance error increases at larger sizes in agreement 

with H2 (Figure 2.5 a). By contrast, confirming H3, for the models built by multi-level 

aggregation larger samples of stakeholders cancel out the biases, and therefore group 

performance error decreases monotonically as more data points are drawn from the population of 

mental models (Figure 2.5 b). Consistent with prior theoretical and empirical works 26,28, we 

collectively show that the WOC effect is indeed observed for the large crowds, which consist of 

multiple socially influenced subgroups of stakeholders (i.e., modules), but only if multi-level 

aggregation, as opposed to single-level aggregation, is used (Figure 2.5). This result supports 

previous experimental studies 15,27, implying that social influences and their resulting biases, if 

not appropriately harnessed 31, will undermine the WOC effect in large crowds when averaging 

individually collected mental models about natural resource dynamics, at least under the 

conditions of our study context. 

 

Figure 2.5. The sampling and averaging effect on performance error in crowds built by drawing 

and aggregating mental models using two aggregation methods. (a) Single level aggregation. (b) 

Multi-level aggregation. Samples were formed by randomly drawing individuals from all 218 

participants. Data are shown for 100 repeats per sample size. (Test of > 100 random crowd 

assignment show no significant difference). 
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2.4 DISCUSSION 

This study advances the science of CI by examining how the WOC can be leveraged to 

crowdsource mental models of social-ecological systems. We demonstrate that a large-enough 

group of diverse and informed stakeholders, who pool their mental models, can provide system 

descriptions that mirror the representations of system knowledge by scientific experts (Figures 

2.1-2.3). This is an important finding because there is a widespread lack of monitoring data and 

scientific models in many freshwater and small-scale coastal fisheries and other exploited 

ecosystems with which resource users regularly interact 5. Our work supports an earlier 

hypothesis4 that the knowledge of these local resource stakeholders can be mined to provide the 

insights necessary for sustainably managing exploited ecosystems and preventing their collapse.   

Consistent with Page’s (2007) diversity theorem 22, we found that the system model 

generated by a crowd of diverse individuals could potentially outperform the models of 

stakeholder-specific groups. However, assuming that the crowd is suffering from the negative 

effect social influence can have on WOC, and consistent with recent theoretical work 25,26, we 

also demonstrate that larger crowds do not necessarily perform better. Instead, aggregating more 

data points (i.e., individual mental models) in larger crowds may decrease performance under 

certain conditions (Figure 2.5 a). Our work thus extends prior theoretical work 25,26 by providing 

empirical evidence that shows the importance of knowledge distribution and aggregation 

methods in WOC tasks where correlated information could decrease performance with 

increasing group size.  

The multi-level aggregation method that we present offers a solution: it first creates 

subgroup-level models for user groups assumed to be under group-specific social influences, 

based on the arithmetic mean (i.e., filtering out system aspects the subgroups did not agree on, 
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thus reducing variance). It subsequently aggregates those initially formed subgroup models, 

using the median of the mean values (i.e., reintroducing variance). This approach benefits from 

both modularity that creates a situation of optimum knowledge variation 26 and compensates for 

a skewed distribution of opinions through using the median rather than mean, thereby enabling 

improved performance in larger crowds (Figure 2.5 b). This is a very important finding for 

guiding the application of the methods we present in a natural resource context. Even though 

simple aggregation can provide accurate models with an optimal (small) sample size (Figure 2.5 

a), in our case, this optimal sample size that minimizes the group performance error 25 is not 

theoretically quantifiable due to the unknown correlation between individual beliefs. Our multi-

level aggregation method addresses this issue by triggering a WOC effect that monotonically 

improves with relatively larger sample sizes. This is of practical relevance for sustainable natural 

resources management, where often no robust criterion exists for exclusion of some stakeholders, 

and contrarily, an unbounded inclusion of all stakeholders’ perspectives is highly encouraged for 

democratic reasons 32 (see Appendix, Supplementary Discussion and Figure 2.S3).      

A few limitations are worth outlining. First, we used a particular format, namely FCM 33, 

to capture, represent, and aggregate mental models, as well as to explore the structure and 

dynamic behavior of the system these models represent. Other system formats may lead to 

different results. Also, while great care went into the selection of experts, knowledge elicitation, 

modeling, and model testing, we cannot claim that the reference model is the best possible 

representation of the participating scientists’ knowledge of pike ecology, nor does it necessarily 

represent the best known science. However, because any existing limitation of the reference 

model equally applies to the other models in this study, our conclusions regarding the WOC for 

obtaining system knowledge from stakeholders remain robust. A further limitation is that our 
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findings were generated from a specific natural resource management context with a unique 

governance system: in Germany, local level-angling clubs are self-managing their privately 

owned fishery resources 34, and both managers and anglers have to pass training that exposes 

them to concepts of aquatic ecology, fisheries management and conservation and fisheries 

legislation 35,36. This, in addition to the workshop settings for data collection, which likely 

attracted more avid and experienced anglers, means that our sample likely included ecologically 

interested and rather educated anglers. It is therefore uncertain whether our results translate one-

to-one to other natural resource systems, where resource users are less heavily engaged in the 

local management of resource systems. Also, in our experiments, all participants were provided 

with a standardized list of system components (see Methods) in favor of model comparability 37. 

Therefore, the extent to which our findings would apply to situations where there are 

considerable debates concerning the constituents of a system is unknown. Finally, while our 

findings demonstrate that WOC can be leveraged to provide accurate system representations, it is 

unknown whether the crowd has the ability to quantify the status of natural resources, assess 

human pressures on them, and derive sustainable harvest rates – all of which are critical 

components of sustainable management 4,5. These are important directions for future research. 

When looking at possible applications of our findings, importantly, the crowd’s model 

not only approximated the structure, but also the dynamic behavior of the scientist-provided 

model in response to changes (Figure 2.4). This is very relevant for designing inclusive processes 

and adaptive co-management practices that require stakeholders, managers, and scientists first 

model likely outcome scenarios and then jointly agree on possible management actions for 

uncertain ecosystems 6,38. While frequently proposed to manage uncertainty in social-ecological 

systems, such adaptive management approaches often suffer from a lack of readily available 
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simulation models 6,39. Based on our work, we instead recommend proactively involving local 

stakeholders in system simulation by aggregating individual mental models resulting from online 

or other survey means. 

To conclude, we found that robust scientific information of complex ecosystem dynamics 

can be generated from a group of informed stakeholders. In fact, when done at the right scale and 

for the appropriate problem, leveraging the CI of stakeholders through a crowd-sourcing 

approach can be a stepping-stone for fostering institutional fit 40 and accommodating nested 

governance in environmental decision-making 41,42. For example, certain natural resource 

problems are local in orientation (e.g., overfishing of a coastal fishery for non-migratory fish, 

such as coastal pike), but are still data-deficient and in need of urgent conservation action that is 

agreed-upon by local communities of resource users. Here, harnessing local stakeholder 

knowledge through a systematic approach, as proposed in our study, can provide much-needed 

information for sustainability. When this information is paired with also granting local users 

sovereignty for making local conservation decisions, we can anticipate increased legitimacy of 

the resulting management actions 17. Management authorities at larger scales (e.g., regional, 

national, or international) can, in turn, focus on environmental problems operating at those 

scales, yet their decisions might also be influenced by harnessing the CI of regionally operating 

stakeholders. Ultimately, collecting system understanding may operate in a nested fashion by 

first organizing understanding at lower levels through user group-specific mental models, with 

ultimate decisions being coordinated at higher levels through across-group models (see 

Supplementary Discussion).  

Despite its promise, our work also clearly shows the importance of carefully designing 

WOC approaches in natural resource contexts. In particular, if the wrong aggregation method is 
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chosen, increasing sample size can produce a solution worse than one produced by intermediate 

sample sizes, and because the size for optimum performance is not known, the crowd’s response 

may become unreliable. Fortunately, perhaps, when using the right aggregation method, as we 

show, a large enough crowd of diverse stakeholders can produce a science-like understanding of 

even complex social-ecological dynamics. While further research is needed to confirm the 

application of WOC to natural resource contexts, it has considerable potential for addressing 

pertinent problems of unsustainable natural resource use and biodiversity loss. 

2.5 METHODS 

2.5.1 Description of study system and context 

Many global fisheries are in trouble 5,43. Harvest regulations and stocking practices have 

been promoted as a common management response in inland and marine fisheries 44. While 

stocking is a common management practice for freshwater fisheries around the world, 

researchers have recently begun questioning the sustainability of these decisions, given their 

negative consequences and the highly uncertain context in which many of these decisions are 

made 45. Alternative and complementary management options to stocking include social 

wellbeing-oriented measures (e.g., decreasing angling pressure through input controls) and 

habitat rehabilitation policies (e.g., increasing spawning habitat, increasing refuge, and 

increasing riparian vegetation) 46. The degree to which different fishery decision-makers 

understand the ecological and social tradeoffs of management decisions is currently not well 

understood 47, and there is abundant documentation that fisheries stakeholders and managers find 

themselves in disagreement about which policy to follow 48. Moreover, it is notoriously difficult 

to understand social-ecological interactions and how various ecological factors affect the 

productive capacity of renewable natural resources striving in the natural ecosystem. The 



47 

 

problem is elevated in inland fisheries given the multitude of ecosystems that exist in water-rich 

landscapes. The multifaceted origin of the fisheries system gives rise to a complex social-

ecological problem with substantial data-deficiencies, which lends itself for an investigation of 

WOC effect for complex system modeling: stakeholders who either use or manage the fisheries 

interact with the system in different ways and thus accumulate diverse system knowledge that 

results in different mental models of the structure and function of the system 21. These different 

mental models could be mined in WOC applications to harness their CI.  

Germany offers a compelling case for application of WOC as many local recreational 

fisheries are managed by angler communities, organized in angling clubs 34. As opposed to open 

access systems in the USA and other regions of the world, in Germany as in much of central 

Europe, angler communities own or lease fishing rights from water owners and in this position 

have sovereignty to engage in certain management actions (e.g., stocking, increasing harvest 

regulations). Angling clubs range in the number of 10,000 in Germany alone, meaning that there 

are 10.000 or more individual decision makers born out the natural resource user community 

themselves. Roles in angling clubs differ with some anglers becoming elected as club managers, 

mainly tasked with running the voluntary body. On the other hand, selected anglers take training 

courses in fisheries management and become fisheries managers or water bailiffs taking over the 

management tasks. A further group entails ordinary anglers who in Germany also have to pass a 

30 hour training course to acquire a fishing license and be allowed to join angling clubs. The 

content of the angling course is mainly directed to legal and practical issues 35,36. Participants’ 

fisheries knowledge and education metrics assessed using questionnaires after the mental model 

exercises (see Appendix, Table 2.S3). 
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2.5.2 Mental models 

Mental models about social-ecological systems, and in fact any type of system, can be 

elicited and represented as Fuzzy Cognitive Maps (FCM) 33. These can be analyzed with regard 

to structure and dynamic behavior of the system 49. Moreover, FCMs from individuals can be 

aggregated into a larger FCM that represents the collective knowledge of all contributors 20 and 

thus provide a tool for WOC. In this study we used the FCM format to collect data from a crowd 

of 218 stakeholders who manage their own lake and river section fisheries in Germany 34:  

recreational anglers, who are organized in clubs, fishery club managers, and fisheries managers, 

who are responsible for the entire ecosystem. In addition, we collected the system models from 

17 fishery scientist and used their model for comparison. 

Between 10 and 20 anglers, managers and club heads of Lower Saxony, Germany, were 

invited to one of our 17 workshops (for details see a previous publication) 36, where graphic 

mental model representations of the ecology and fishery management of the model species 

“pike” were individually collected through Fuzzy Cognitive Mapping technique. We used pike 

populations as an example case because it is a valuable species in the study region in high 

demand by anglers 21. To standardize the collection of FCMs for this study, all participants 

received the same set of ecological concepts, which represented key factors affecting pike 

population dynamics. These factors were derived from independent focus groups with anglers 

and mental model pre-tests with both anglers and experts to identify key concepts relevant to the 

pike fishery. We also completed a thorough review of the pike literature to identify key aspects 

of their life history and what determines population dynamics (e.g., macrophyte abundance) 50. 

We added human-centered concepts represented angling impacts (e.g., fishing pressure) to 

outline a social-ecological, rather than merely an ecological, system. The task was to arrange the 
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concepts and draw connections between them based on their own understanding and knowledge 

(“please indicate the factors of importance to the pike population biology and their relationships 

in terms of direction of influence and strength of influence”). The participants were given 

freedom to add additional concepts (participants received blank cards to be able to outline 

concepts not mentioned so far) and instructed that not all concepts had to be used in their model 

(see Appendix, Table 2.S1 for a complete list of concepts). The final drawings were 

photographed for further analyses (Appendix, Figure 2.S1). It is worth noting that the mental 

models were obtained at the beginning of the workshops before any influence could have 

happened by the team of researchers and workshop organizers and before any other type of 

information was exchanged with the stakeholders. 

The visualizations that result from FCM modeling (see Appendix, Fig. 2.S1) are similar to 

so-called causal maps, which can be structurally explored in terms of network characteristics. 

Furthermore, FCM models are also quantitative simulation models that can be used to assess the 

dynamic behavior of the system under study. FCM computation shows the changes in the state of 

system’s elements given a particular input or combination of inputs (i.e., input scenario) 51: when 

one concept increases (or decreases) this triggers a cascade of changes to other system elements 

until the system converges to a so-called “steady state” 52. FCM can thus answer “what if” 

questions, such as how an increase in one concept (e.g., angling pressure) affects all other 

elements in the system 52.  

In a nutshell, FCMs are directed graphs, and therefore, using graph theory, they can be 

analyzed structurally to represent system knowledge regarding the elements and connections of 

the system. Also, to represent how the system behaves in response to input changes, FCM can be 

analyzed dynamically (i.e., functionally), based on fuzzy causal algebra for simulating causal 
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propagation 33 (see Methods, Dynamic analysis and Inferences). Moreover, FCM from different 

participants can be mathematically aggregated if their matrices are brought to the same size and 

thus include information about every system element that is mentioned in any of the contributing 

maps. 

2.5.3 Mental model aggregation 

Individual FCMs can be aggregated mathematically to create a model that represents the 

insights of all study participants and thus provide a tool for testing WOC. There are two 

aggregation methods used in this study to build the crowd model: (a) Single-Level aggregation; 

aggregation is obtained in one step:   

𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 = ∑ 𝐴

𝑖𝑗

𝐹𝐶𝑀𝑝

𝑁

𝑝=1

/ ∑(1 | 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝
≠ 0)

𝑁

𝑝=1

 (𝟐. 𝟏) 

where 𝐴𝐹𝐶𝑀𝑝 is the adjacency matrix used to represent the FCM of participant p, N is the total 

number of participants, and 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝
 indicates the element of this matrix with the value equals to 

the weight of the edge between node i and j.  𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 represents the crowd’s FCM with the 

corresponding adjacency matrix 𝐴𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 . 

And (b) Multi-level aggregation; aggregation is obtained in two steps: Step (1) is 

computing the mean FCM of each subgroup:  

𝐴𝑖𝑗
𝐹𝐶𝑀𝐺  = ∑ 𝐴

𝑖𝑗

𝐹𝐶𝑀𝑝

𝑝∈𝐺

 / ∑(1 | 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝 ≠ 0)

𝑝∈𝐺

 (𝟐. 𝟐) 

Where 𝐹𝐶𝑀𝐺 represents the aggregated FCM of subgroup G and 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝
 indicates the element of 

adjacency matrix with the value equals to the weight of the edge between node i and j. 
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And step (2) is averaging subgroup means. We can use the arithmetic mean of subgroup 

means to average them; however, forming subgroups which consist of individuals with the same 

role in the fishery club carries the risk of amplifying stakeholder-specific biases in each subgroup 

and can be expected to increase the skewness of subgroup models distribution. Biases are likely 

to exist in our sample as prior work has shown that there is considerable bias in anglers’ 

understanding of fishery management 53,54, which is the largest group in our dataset. Most 

importantly, to further remove the effect of biases, to form collective solutions, rather than using 

the arithmetic mean of subgroup means, we propose to aggregate subgroup means using the 

median. Earlier studies, in which the crowd is asked to provide single variable estimates, and in 

which there are significant biases in individual judgments, show that the median outperforms the 

arithmetic mean 12,29,30. Thus we used the median to combine group means in the second level of 

the aggregation.  

𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝐴𝑖𝑗

𝐹𝐶𝑀𝐺1 , 𝐴𝑖𝑗
𝐹𝐶𝑀𝐺2 , …  , 𝐴𝑖𝑗

𝐹𝐶𝑀𝐺𝑛) (𝟐. 𝟑) 

Additionally, to remove the effect of subgroup biases, we can also use weighted-mean 

and geometric mean in the second level of aggregation based on prior theoretical and empirical 

studies 27,55–57. We measured the performance of the crowd model built by different averaging 

methods in the second level of aggregation, and our result showed that the median had the best 

performance amongst other aggregation methods (see Appendix, Table 2.S2).  

2.5.4 FCM analyses 

FCM concepts (nodes) represent the qualitative characteristics of the system with an 

absolute value between 0 and 1, characterizing their so-called “activation level” in the model 52. 

Arrows (edges) are characterized by a number in the interval of [-1, +1], corresponding to the 
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strength, direction, and sign of causal relationships between concepts. The steady state that an 

FCM reaches in response to an input change (i.e., a forced change in the activation of one or 

more of its concepts), depends on how the activated concept(s) is connected to other concepts in 

the system. How nodes and edges are arranged is thus of great importance and frequently used to 

analyze FCM. A common measure to investigate this connectivity is centrality: A concept’s 

centrality shows the contribution of this concept in a cognitive map which is determined by 

accumulating the strength of causal relationships linking this node to the other nodes 52. One 

individual considers concepts with higher centrality more important since they are more strongly 

linked to the other system elements and consequently play more important roles in the dynamic 

of the system. Comparing the centrality of particular sets of concepts in different cognitive maps 

translates the differences in the system definition and its important components. In this study, we 

used Katz centrality index 58, since it is expected to provide the most appropriate centrality 

measurement for comparing aggregated maps with higher density and presumably higher 

abundance of feedbacks 59. 

2.5.4.1 Structural analysis 

In this study, we compared the structure of FCMs using three approaches: The first 

approach is to compare the centrality of six concepts of central relevance to fishery management 

decisions, namely “Stocking”, “Spawning ground development”, “Angling pressure 

management”, “Enhancement of hiding places and refuges”, “Enhancement of riparian 

vegetation”, and “Enhancement of submerged aquatic plants” by making the centrality profiles. 

Each centrality profile displays the Katz centrality of these six concepts in a radar chart (Figure 

2.1). We calculate the Katz centrality of each node i with:    
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𝑋𝑖 = 𝛼 ∑ 𝐴𝑖𝑗𝑋𝑗 +  𝛽

𝑗

    (𝟐. 𝟒) 

where 𝑋𝑖 is the Katz centrality of node i, 𝐴 is the adjacency matrix of FCM, 𝛼 is the Attenuation 

factor, and 𝛽 is the extra weight attributed to the immediate neighborhood. What Katz centrality 

measures is the relative influence of a node within the FCM by taking into account the weight of 

the immediate neighbors and also all other nodes in the FCM that connect to the node through 

these immediate neighbors. Extra weight would be given to the nodes located in the immediate 

neighborhood through parameter 𝛽 (in our case 𝛽 = 0.5). Connections made with distant 

neighbors are penalized by the attenuation factor 𝛼 (in our case 𝛼 = 0.3). The Katz centrality of 

each node is a function of the Katz centrality of other nodes. Thus, this centrality computation is 

an iterative process (in our case maximum number of iterations is 10𝑒4, and the error tolerance 

used to check convergence is 10𝑒−6).  

The second approach to analyzing and comparing the structure of FCMs is an 

investigation of agreement of strong causal patterns. This patterns emerge when we remove weak 

edges with absolute weights less than 0.33 from aggregated FCMs (Figure 2.2). The remaining 

edges illustrate the strong causal patterns used for model description.   

𝑈𝑔 = {𝐸𝐷𝐺𝑔
0.33}  ∪  {𝐸𝐷𝐺𝐸𝑥𝑝

0.33}    (2. 𝟓) 

𝑀𝑔 = {𝐸𝐷𝐺𝑔
0.33}  ∩  {𝐸𝐷𝐺𝐸𝑥𝑝

0.33}   (2. 𝟔) 

𝑃𝑀𝑔 =  
𝑆𝑖𝑧𝑒(𝑀𝑔)

𝑆𝑖𝑧𝑒(𝑈𝑔)
     (𝟐. 𝟕) 

where {𝐸𝐷𝐺𝑔
0.33} is the set of strong edges with 𝑊𝑒𝑖𝑔ℎ𝑡 ≥ 0.33 in the FCM of group 𝑔, 

{𝐸𝐷𝐺𝐸𝑥𝑝
0.33} is the set of strong edges with 𝑊𝑒𝑖𝑔ℎ𝑡 ≥ 0.33 in the FCM of experts, 𝑀𝑔 is the 
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intersection of strong edges in FCMs of the group g and experts (i.e., set of matched edges), 𝑈𝑔 

is the union of strong edges in FCMs of the group g and experts, and 𝑃𝑀𝑔 is the proportion of 

matched edges between group g and experts.  

Furthermore, we can compare the network structure of FCMs with regards to the 

quantitative aspects of their graph geometric shapes. In this study, we evaluate combinatorial and 

geometric properties of FCM graphs using a graph similarity index, namely “Eigenvalue graph 

similarity” 60,61 . Given two graphs, this index evaluates how similar they are in terms of the 

important features of their structures. Therefore, it provides a comparison between each FCM 

and the expert FCM regarding their fundamental structure. In fact, eigenvalue similarity index 

measures the Euclidean distance between two graphs in a new coordinate system wherein 

coordinates represent eigenvalues. In this coordinate system, each graph is determined by a point 

and the distance between two points demonstrates the structural similarity between these two 

graphs. The shorter the distance, the more similar the graphs are in terms of the essential 

components of their structures (Figure 2.3). To measure eigenvalues similarity index, we first 

calculate the eigenvalues of Laplacian of adjacency matrices of both FCMs. For each FCM the 

Laplacian matrix is calculated by.  

𝐿 = 𝐷 −  𝐴    (𝟐. 𝟖) 

where L is the Laplacian matrix, D is the diagonal matrix, and A is the adjacency matrix.  

Then, for each Laplacian matrix, we find the smallest k such that the sum of the k largest 

eigenvalues constitutes at least 90% of the sum of all of the eigenvalues 60. If the values of k are 

different between the two graphs, we use the smaller one. Thus, the eigenvalues similarity index 

is the sum of the squared differences between the largest k eigenvalues of the group g and 
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experts FCMs. This gives us a number in the range [0,∞), where values closer to zero are more 

similar: 

𝑠𝑖𝑚𝑔 = ∑ (𝜆𝑖𝐿𝐸𝑥𝑝
− 𝜆𝑖𝐿𝑔

)
2

 

𝑘

𝑖=1

  (𝟐. 𝟗) 

where 𝑠𝑖𝑚𝑔 is the eigenvalue graph similarity index, 𝜆𝑖𝐿𝐸𝑥𝑝
, is the 𝑖𝑡ℎ eigenvalue of the 

Laplacian matrix of experts FCM, 𝜆𝑖𝐿𝑔
, is the 𝑖𝑡ℎ eigenvalue of the Laplacian matrix of group g 

FCM.  

2.5.4.2 Dynamic analysis and inferences 

In addition to network structure, we analyze the dynamic behavior of FCMs. As prior 

studies suggested, the dynamic behavior of FCMs can be assessed through analyzing their 

responses to several “what if” scenarios 49,62. To do so, in each scenario, we change the value of 

one or more concepts (i.e., nodes) in a map and record the alterations of the system state from the 

“steady state”52. The value of each concept in the steady state is calculated using: 

𝑐𝑖
(𝑘+1)

= 𝑓 (𝑐𝑖
(𝑘)

+ ∑ 𝑐𝑗
(𝑘)

. 𝐴𝑗𝑖

𝑗

)  (𝟐. 𝟏𝟎) 

where 𝑐𝑖
(𝑘+1)

 is the value of concept 𝐶𝑖 at iteration step k+1, 𝑐𝑖
(𝑘)

 is the value of concept 𝐶𝑖 at 

iteration step k, 𝑐𝑗
(𝑘)

 is the value of concept 𝐶𝑗 at iteration step k, and 𝐴𝑗𝑖 is the weight of the edge 

relationship between 𝐶𝑗 and 𝐶𝑖. Function 𝑓(𝑥) is the “threshold function” used to squash the 

values at each step 49. Our threshold function is a sigmoidal function: 

𝑓(𝑥) =  
1

1 +  𝑒−𝜆𝑥
     (𝟐. 𝟏𝟏) 
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where 𝜆 is a real positive number (in our case 𝜆 = 1) which determines the steepness of the 

function 𝑓. 

To run a “what if” scenario, we force the system to take fixed activation value in one or 

multiple concepts and use (Eq. 2.10) to compute the value of other concepts. The scenario results 

are the differences between the values of the system’s concepts when the system is self-

administered (i.e., steady state) and when it is bounded by fixed manipulations in the state of 

some concepts (i.e., scenario). For each concept 𝐶𝑖 the change in its value as a result of running a 

scenario is:  

𝑑𝑖
𝑠𝑐 = 𝑐𝑖

𝑠𝑠 − 𝑐𝑖
𝑠𝑐       (𝟐. 𝟏𝟐) 

where 𝑑𝑖
𝑠𝑐 is the change in the value of concept 𝐶𝑖, 𝑐𝑖

𝑠𝑠 is the value of concept 𝐶𝑖 in the steady 

state, and 𝑐𝑖
𝑠𝑐 is the value of concept 𝐶𝑖 after converging into a new steady state while scenario 

concepts are clamped on fixed values. 

Comparing the scenario outcomes in different FCMs gives us a clear picture of how 

differently the system dynamic behavior is perceived by different mental models. To compare 

dynamic behavior of each group mental model with experts (i.e., reference model), we compute 

the Euclidean distance between their outputs of a scenario (Figure 2.4). The mean of these 

distances in all of the scenarios (i.e., 10,000 random scenarios in our case) represents the degree 

of agreement on simulation outcomes and therefore compare their dynamic behavior: 

𝐷𝐷𝑔 =  
1

𝑁
∑ √∑ (𝑑

𝑖

𝑠𝑐𝑗𝐸𝑥𝑝 − 𝑑
𝑖

𝑠𝑐𝑗𝐺 )
2

𝑖

𝑁

𝑗=1

   (𝟐. 𝟏𝟑) 
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where 𝐷𝐷𝑔 is the dynamic distance between group G and experts, 𝑑
𝑖

𝑠𝑐𝑗𝐸𝑥𝑝
 is the result of 

scenario j in concept 𝐶𝑖 in experts map, 𝑑
𝑖

𝑠𝑐𝑗𝐺  is the result of scenario j in concept 𝐶𝑖 in the group 

map, and N is the total number of scenarios. 

2.5.4.3 Normalized error and performance 

The normalized dynamic and structure errors are respectively the standardized dynamic 

and structure distances between the crowd and expert models: 

𝐸𝑆𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑆𝑖𝑚𝑐𝑟𝑜𝑤𝑑

max
𝑔

(𝑆𝑖𝑚𝑔)
    (𝟐. 𝟏𝟒) 

𝐸𝐷𝑛𝑜𝑟𝑚𝑎𝑙 =
𝐷𝐷𝑐𝑟𝑜𝑤𝑑

max
𝑔

(𝐷𝐷𝑔)
     (𝟐. 𝟏𝟓) 

where 𝐸𝑆𝑛𝑜𝑟𝑚𝑎𝑙 is the normalized structure error, and 𝐸𝐷𝑛𝑜𝑟𝑚𝑎𝑙  is the normalized dynamic 

error. The normalized total error is the mean of normalized dynamic and structure error: 

𝐸𝑇𝑛𝑜𝑟𝑚𝑎𝑙 =
1

2
(𝐸𝑆𝑛𝑜𝑟𝑚𝑎𝑙 + 𝐸𝐷𝑛𝑜𝑟𝑚𝑎𝑙)  (𝟐. 𝟏𝟔) 

Finally, the Normalized Performance is calculated by subtracting the normalized total 

error from one: 

𝑃𝑛𝑜𝑟𝑚𝑎𝑙 = 1 −  𝐸𝑇𝑛𝑜𝑟𝑚𝑎𝑙      (𝟐. 𝟏𝟕) 
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APPENDIX 

SUPPLEMENTARY INFORMATION 

S1 Supplementary Methods 

S1.1 Alternative multi-level aggregation methods 

In Multi-level method the aggregated model is obtained in two steps: (1) Computing the 

mean FCM of each subgroup, 

𝐴𝑖𝑗
𝐹𝐶𝑀𝐺  = ∑ 𝐴

𝑖𝑗

𝐹𝐶𝑀𝑝

𝑝∈𝐺

 / ∑(1 | 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝 ≠ 0)

𝑝∈𝐺

 (𝟐. 𝑺𝟏)  

where 𝐴𝐹𝐶𝑀𝑝 is the adjacency matrix used to represent the FCM of participant p, 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝
 indicates 

the element of this matrix with the value equals to the weight of the edge between node i and j, 

and G is the set of individuals in the subgroup. And (2) combining subgroup means: The 

simplest way to combine subgroup means is to use the arithmetic mean, which is called 

“Multilevel Mean-Mean” 

S1.1.1 Multilevel Mean-Mean  

This method uses the arithmetic mean of subgroup means to aggregate the maps. 

𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 =

1

𝑁𝐺
∑ 𝐴𝑖𝑗

𝐹𝐶𝑀𝐺

𝑁𝐺

𝐺=1

 (𝟐. 𝑺𝟐) 

Most importantly, to further remove the effect of biases, to form collective solutions, 

rather than using the arithmetic mean of subgroup means, we can  aggregate subgroup means by 

alternative aggregation techniques in the second level. 
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S1.1.2 Multilevel Mean-W Mean 

Firstly, we can weigh subgroup means, resulting in “Multilevel Mean- W Mean”. This 

approach builds on the works of Mannes et al. 55 and Budescu and Chen 56. However, we were 

not able to identify justifiably reliable criterion to calculate contribution weights, instead, and 

based on Kao and Couzin’s 26 suggestion, we simply weighted the subgroups by the reverse 

order of their proportional size. It uses the weighted mean of subgroup means to aggregate the 

maps. 

𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 = ∑ 𝑊𝐺 . 𝐴𝑖𝑗

𝐹𝐶𝑀𝐺

𝑁𝐺

𝐺=1

        𝑎𝑛𝑑            ∑ 𝑊𝐺

𝑁𝐺

𝐺=1

= 1.0    (𝟐. 𝑺𝟑) 

S.1.1.3 Multilevel Mean-Geo Mean: 

Secondly, to account for the fact that estimates of edge weights are not necessarily 

normally distributed, we can calculate “Multilevel Mean- Geo Mean” building on the works of 

Lorenz et al. 27 and van Dolder & van den Assem 57. This can be expected to perform better than 

the arithmetic mean when the data is right skewed because most people estimate small causal 

strengths and a few estimate very strong effects. It uses the geometric mean of subgroup means 

to aggregate the maps. 

𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 = (∏ 𝐴𝑖𝑗

𝐹𝐶𝑀𝐺

𝑁𝐺

𝐺=1

)

1
𝑁𝐺

 (𝟐. 𝑺𝟒) 

where N is the total number of participants, and 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝
 indicates the element of this matrix with 

the value equals to the weight of the edge between node i and j.  𝐹𝐶𝑀𝐺  represents the aggregated 

FCM of group G. 𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 represents the crowd FCM. 𝑁𝐺  is the number of different subgroups 
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and 𝑊𝐺 is the contribution weight of group G used in weighted mean calculation (in our case 

𝑊𝐴𝑛𝑔𝑙𝑒𝑟𝑠 = 0.1, 𝑊𝐶𝑙𝑢𝑏𝑀𝑎𝑛𝑎𝑔𝑒𝑟𝑠 = 0.3, 𝑊𝐹𝑖𝑠ℎ𝑀𝑎𝑛𝑎𝑔𝑒𝑟𝑠 = 0.6). There is no quantitative criterion to 

compute contribution weights, and the weights are qualitatively chosen in the opposite order of 

proportional group sizes. 

We measured the performance of the crowd model built by different aggregation 

methods, and our result showed that the Multilevel Mean-Med had the best performance amongst 

other aggregation methods (see Appendix, Table 2.S2). 

S1.2 Participants’ demographics and education 

The three stakeholder groups (anglers, club managers and fisheries managers) as well as 

the fisheries experts’ knowledge metrics assessed using identical questionnaires after the mental 

model exercises. The educational variables that were measured included three levels of 

formation: (1) school-level education (secondary education), (2) work-related education (tertiary 

education), and (3), in Germany, anglers are legally obliged to take a 30-hour training course in 

principles of aquatic ecology, legal conditions and how to treat fish from a welfare perspective 

(fisheries related education and training). Fisheries managers elected from angling clubs are 

further obliged to receive specific training in principles of fisheries management, usually offered 

by angler associations and assisted by fisheries agencies in each of the 16 German states. In 

addition, anglers, managers and club heads can also self-teach themselves in ecological 

principles. We therefore specifically assessed the degree of ecology-related training outside 

formal educational formation through schools or professional training for the job market. 

In addition to assessing education at three levels, in the three angler groups (anglers, club 

managers, fisheries managers), we also measured the self-rated knowledge over a range of fish 
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ecological and fisheries management topics to measure self-perception of ecological knowledge. 

We asked about participants’ self-perception of their knowledge about aquatic ecology, fish 

stocking in general, Pike (Esox lucius) stocking practices, Carp (Cyprinus carpio) stocking 

practices, and measures for the sustainable care and management of water-bodies. 

To describe the differences among the four surveyed groups, we conducted statistical 

tests using ANOVA on metrical variables and Chi²-test for distributional variables. Importantly, 

in addition to examining mean values we were interested in the within group heterogeneity of 

variables to index the degree of diversity present in each of the four groups we surveyed. 

S1.2.1 Demographics 

The four groups did not statistically differ in average age, and all four samples were 

heavily biased towards males (>94% of all surveyed people, which is the default in the study 

population). However, there was substantial more within group variation in age in the angler 

sample (as indexed by SD), and age variation was also higher in club managers relative to the 

more homogenous groups of fisheries managers and fisheries scientists. 

S1.2.2 Education  

The angler group revealed the largest heterogeneity in the distribution of the highest 

school education degree compared to the other three groups. On the other extreme, the scientists 

were the most homogenous sample with over 94% of the respondents holding a university-

entrance qualification (Abitur) – the highest school degree possible in Germany. Fisheries 

managers were more homogenous compared to club managers in terms of school education. A 

similar pattern was revealed in terms of the distribution of the highest degree of professional 

training. While the fisheries scientists were most homogenous (predominantly having either a 
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university degree or a PhD), the anglers exhibiting the most spread in tertiary degrees compared 

to club managers or fisheries managers. Finally, in terms of specific official or voluntary 

education in natural scientific and ecological topics related to aquatic systems and fisheries, 

fisheries managers showed the largest and most homogenous degree of ecological training, 

followed by club managers and then the angler group. For example, while only 7% of anglers 

had completed a one-week fisheries management training course, 18% of club managers and 

85% of fisheries managers that responded to our survey completed this training. Similarly, 21% 

of anglers regularly attended public seminars on fish biology topics, while 32% of club managers 

and 64% of fisheries managers acknowledged such training. Overall, the degree of ecological 

training in fish ecology question thus was most homogenous and more pronounced in fisheries 

managers, followed by club managers and lastly anglers. 

S1.2.3 Self-rated ecological knowledge on fisheries topics  

Following the training in fish biological topics, the mean self-rating index of ecological 

knowledge was significantly highest among fisheries scientists, followed by fisheries managers, 

club managers and anglers. Importantly, however, the variation in self-rated knowledge (as 

indexed by SD) was higher in the angler group than in the fisheries manager group. Interestingly, 

also the scientists showed quite high variation in the self-rated knowledge, most likely because 

the self-rated knowledge with very specific domains (such as stocking the species of carp or 

pike) was assessed, which is unlikely to be something fisheries scientists regularly engage with 

in their practical world. Overall, a picture emerged that the angler group was the most 

heterogeneous of all three stakeholder groups and the fisheries manager group was the most 

homogenous in relation to education, with club managers ranging in between. On the other 

extreme, fisheries scientists overall were mainly academically trained (Appendix, Table 2.S3). 
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S2 Supplementary Discussion: 

S2.1 Distinct impact of different aggregation methods on WOC 

The distinct impact of different aggregation methods on WOC can be explained with 

biases resulting from real-life social influences. Despite potentials for learning from others and 

thus developing more integrated understanding of the system, in our study, participants were 

socially influenced only through their real-life interactions, where we had no control on the 

social network structure to avoid accumulation of biases. Becker et al. 31 theoretically and 

experimentally demonstrated that under certain conditions, and in highly decentralized networks, 

social influence may produce learning dynamics that potentially improves the WOC; however, 

we cannot assert that real-life social network structure is decentralized. Thus, we hypothesized 

that social processes may undermine the WOC effect, and the negative impact can be aggravated 

in larger crowds where the accumulation of biases magnifies the skewness of the distribution of 

individual data points. In a crowd built by single-level aggregation, as we draw and average 

more mental models, the group performance initially approaches its optimal point owing to the 

benefits of information pooling, but drawing more mental models undermines the crowd 

performance because knowledge that is shared by many members of the group (i.e., commonly 

agreed upon knowledge that relates to easily observable system elements) is downplaying the 

specialized mental models that deviate from this common knowledge (see Appendix, Figure 

2.S3). By contrast, we show that in a crowd built by multi-level aggregation, the group 

performance improves monotonically as more mental models are drawn and averaged because 

the specialized knowledge is not downplayed in favor of commonly agreed upon knowledge (see 

Appendix, Figure 2.S3). The multilevel process first acknowledges group-specific knowledge 

using the mean (i.e., it reduces within-group variability). Then, in the second level of 
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aggregation, it reintroduces some levels of variability by aggregating maps across different 

stakeholder groups; however, it uses median which reduces the negative influence of group-

specific biases that deviate too much from the “norm” (i.e., the collective knowledge all 

stakeholder groups agreed upon).  

S2.2 Fostering institutional fit and nested governance 

Our WOC approach has potential implications for operationalizing local institutions to fit 

the complex social and ecological aspects of large-scale coupled human-natural systems by 

suggesting a novel structure for a nested governance system. This nested governance system 

integrates actions at local levels (i.e., aggregating local knowledge of stakeholders to create role-

based subgroups) and coordinates decisions at higher levels with larger scales management 

authorities (i.e., aggregating across sub-groups). This application can be supported by findings of 

the recent works of Bodin and Nohrstedt 63 on collaborative management networks and 

McGlashan et al. 64, demonstrating how actions in complex system components could be directly 

related to how a multitude of actors collaborate to collectively represent a complex system by 

identifying parts of the system on which they can intervene.          
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S3   Supplementary Figures 

 

Figure 2.S1. An example of pike ecology and management fuzzy cognitive map generated by 

one participant in the workshops: The individually collected mental models graphically display 

the perceived cause-and-effect relationships of ecological and social concepts affecting each 

other (e.g., how habitat quality affects juvenile pike that later grow into harvestable size, or how 

fish-eating birds, stocking, or angling pressure affect the pike population). Note that the 

concepts’ names are in German. 
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Figure 2.S2. The aggregated fuzzy cognitive maps of pike ecology and management in different 

groups of stakeholders: (a) Map generated by aggregating anglers’ models, (b) Map generated by 

aggregating club managers’ models, (c) Map generated by aggregating fisheries managers’ 

models, (d) Map generated by aggregating all 218 individual models using multi-level 

aggregation method, and (e) Map generated by aggregating 17 scientists’ models used as the 

reference model. Red arrows represent negative relationships, and blue arrows represent positive 

relationships between concepts. Weak relationships with a weight less than 0.33 were removed 

from the maps for a more clear illustration. 
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Figure 2.S3. Distribution of group emphasis on different concepts and its variation with group 

size: The graphs show the boxplots of all concepts’ degree centrality in a crowd aggregated 

model. Given each specific group size 𝑁, we randomly sampled 100 groups by drawing 𝑁 

individual mental models. Each chart has 19 box plots (one for each concept in the model), each 

shows the distribution of degree centrality of a concept in 100 random samples. Degree centrality 

represents the perceived importance of the concept, based on its connections to other concepts 



69 

 

(i.e., the number of inward and outward facing arrows). The x-axis shows the 19 concepts coded 

from 0 to 18 (see Appendix, Table 2.S1 for the name of the concepts). The y-axis indicates the 

degree centrality of each concept.  

As group size increases, initially high and low-centrality concepts move further apart in 

the bottom row (single-level aggregation), but much less so in the top row (multi-level 

aggregation). In the case of single-level aggregation, initially highly central concepts become 

relatively much more emphasized than other concepts, thus crowding out more specialized 

knowledge. These emphasized concepts are easily-observable and more correlated knowledge, 

such as node 3 = baitfish/prey fish, node 7 = spawning, node 9 = riparian plants like reeds, node 

11 = zooplankton, node 17 = hiding places and refuges, and node 18 = surface area of a body of 

water. These concepts (i.e., nodes) can be expected to be part of all or most contributing models. 

However, their centrality is outsized in comparison to other concepts as group size increases. By 

contrast, in multi-level aggregation, the larger groups do not intensively overemphasize common 

knowledge shared by the majority, nor do they underemphasize specialized, and yet important, 

concepts. In this case, as crowd size increases, it quickly achieves a stable, and yet 

approximately unbiased, distribution of emphasis on different concepts, and this stable pattern 

does not significantly change in relatively larger sizes. 
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S4 Supplementary Tables 

Table 2.S1. The list of all concepts used to build fuzzy cognitive maps. The list of factors were 

derived from independent focus groups with anglers and mental model pre-tests with both 

anglers and experts, to identify key concepts relevant to the pike fishery. Participants were given 

the freedom to add additional concepts and the final list of all identified concepts was 19 

concepts coded from node 0 to node 18 in all fuzzy cognitive maps. 

Node number Concept’s Name 

0 pike population (adult, over the legal size limit) 

1 stocked pike (adult, over the legal size limit) 

2 stocked pike, young fish (under the legal size 

limit) 

3 baitfish, prey fish 

4 other predatory fish 

5 Algae 

6 depth of a body of water 

7 spawning grounds 

8 wild pike, young fish (under the legal size limit) 

9 emergent riparian plants (e.g., reeds and other 

bank vegetation) 

10 Benthic invertebrates (snails, crustaceans etc.) 

11 zooplankton 

12 submerged aquatic plants 

13 cormorant 

14 plant nutrients 

15 turbidity of water 

16 angling pressure 

17 hiding places, refuges 

18 surface area of a body of water 
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Table 2.S2. The performance of the crowd model generated by different aggregation methods. 

The last column shows the overall performance of the crowd models generated by different 

aggregation methods. The overall performance is calculated by subtracting the normalized total 

error from one. The normalized total error itself is the mean of normalized dynamic and structure 

errors. The normalized dynamic and structure errors are respectively the standardized Euclidian 

dynamic and structure distances between the crowd and expert models as described in Methods 

section. Therefore, the normalized performance serves as an interpretive criterion to rank the 

accuracy of aggregated models in approximating the structure and dynamic behavior of the 

scientific expert model.  

 

Aggregation method Method details Normalized 

Structure 

Error 

Normalized 

Dynamic 

Error 

Normalized 

Total Error 

Overall 

Performance 

Single-level  The arithmetic 

mean of all 

individuals 

0.337 

 

0.94 0.64 0.36 

Multilevel Mean-Mean The arithmetic 

mean of subgroup 

means 

0.164 

 

0.721 0.44 0.56 

Multilevel Mean-W Mean The weighted 

mean of subgroup 

means 

0.124 0.687 0.41 0.59 

Multilevel Mean-Geo 

Mean 

The geometric 

mean of subgroup 

means 

0.093 0.667 0.38 0.62 

Multilevel Mean-Med The median of 

subgroup means 

0.084 0.623 0.35 0.65 
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Table 2.S3. Fisheries knowledge and education metrics assessed using questionnaires after the 

mental model exercises. Ecological Knowledge index is based on Chronbach’s Alpha reliability 

of 0.84. Statistical test on mean differences is based on ANOVA, with Post-hoc test Tukey B for 

homogenous variances, and Dunnett-T-3 for heterogeneous variances. 

 

 
Anglers Club 

Managers 

Fishery 

Managers 

Scientists 

Age (years) 48.5(14.13) 47.8(13.28) 46.3(11.6) 40(9.8) 

Gender 98% Male 

2 % Female 

96% Male 

4% Female 

97% Male 

3% Female 

94% Male 

6% Female 

Self-rated Ecological Knowledge  Mean(SD) 

N=135 

Mean(SD) 

N=52 

Mean(SD) 

N=31 

Mean(SD) 

N=17 

Ecological Knowledge index  13.6(3.2)a*** 15.2(3.0)ab*** 17.7(2.1)b*** 19.7(4.2)c*** 

Aquatic ecology 2.9(0.8)a*** 3.1(0.7)b*** 3.7(0.5)c*** 4.2(0.7)d*** 

Fish stocking in general 2.7(0.7)a** 3.2(0.7)b** 3.7(0.5)c*** 4.35(0.6)d*** 

Pike (Esox lucius) stocking practices 2.5(0.8)a*** 2.8(0.8)b** 3.2(0.7)c*** 3.9(1.1)d*** 

Carp (Cyprinus carpio) stocking practices 2.6(0.8)a*** 2.9(0.8)b** 3.4(0.5)c** 3.3(1.4)c** 

management of water-bodies 3.0(0.7)a*** 3.3(0.9)b** 3.8(0.6)c** 4.0(0.9)c** 

Fisheries Related Education and Training     

Educational course in preparation for the state 

angling exam 

 

89% 

 

94% 

 

85% 

 

NA 

Training as a fisheries manager 7%a*** 18%b*** 85%c*** NA 

University degree in biology or ecology  0% 0% 5% NA 

Attendance of fisheries biology presentations, or 

other natural science presentations 

 

21%a*** 

 

32%b*** 

 

64%*c*** 

 

NA 

Self-education by means of technical literature 

(books, magazines, internet) 

 

50% 

 

69% 

 

100% 

 

NA 

Secondary Education     

Certificate of secondary education  24.8%a*** 23.8%a*** 37.5%*** 0.0%b*** 

General Certificate of secondary education 24.8%a*** 23.8%a*** 18.8%a*** 0.0%b*** 

Advanced technical college certificate  10%a** 16.3%a** 3.1%b** 5.9%b** 

University entrance qualification (Abitur) 7.8%a*** 2.5%a*** 6.3%a*** 94.1%b*** 

Did not complete school degree 0.7% 0% 0% 0.0% 

Tertiary Education     

Apprenticeship 33.3% 35.0% 37.5% 0.0% 

University degree of technical degree of higher 

education 

7.8%a*** 6.3%a*** 3.1%a*** 41.2%b*** 

No tertiary education 0.7% 0.0% 0.0% 0.0% 

Master Craftsman 10.6%a*** 15.0%*** 9.4%*** 0.0%b*** 

Technician 6.4%a*** 8.8%a*** 12.5%a*** 0.0%b*** 

PhD 0.0%a*** 0.0%a*** 3.1%a*** 58.8%b*** 

Still studying 1.4% 1.3% 0.0% 0.0% 
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CHAPTER 3 

3 THE DIVERSITY BONUS IN POOLING LOCAL KNOWLEDGE ABOUT 

COMPLEX PROBLEMS 

 

A revised version of this chapter is in press for publication in Proceedings of the National 

Academy of Sciences (PNAS) (https://www.pnas.org/).   

ABSTRACT 

Recently, theoreticians have hypothesized that diverse groups, as opposed to groups that 

are homogeneous, produce several assets— all of which lead to better performance in solving 

complex problems. As such, understanding complex environmental or social issues, for which 

scientific information is typically limited, would likely benefit from the integration of diverse 

types of local expertise. Yet, capturing knowledge distributed across diverse types of local 

experts is not straightforward and consequently rarely evaluated, which often hinders applying 

knowledge-pooling to sustainability decision-making. To address these challenges, here we show 

how emerging internet technologies, semi-quantitative cognitive mapping techniques, and 

principles of collective intelligence theory can merge into a novel crowdsourcing approach to 

aggregate diverse expertise. Using a case of striped bass fisheries in Massachusetts, we show 

how our approach can be used to pool local knowledge of resource stakeholders to produce a 

model of complex social-ecological interdependencies. First, subjective evaluation of 

stakeholder models revealed improved performance of the diverse group compared to more 

homogeneous ones, as evidenced by blind reviews conducted by an expert panel. Second, 

objective evaluation of stakeholder models using a stochastic network analysis indicated that a 

diverse group more adequately modeled complex interdependencies and feedbacks where 

homogeneous groups were more likely to fail. Our work empirically validates the previous 

https://www.pnas.org/
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theoretical assumption that knowledge diversity and pooling are important for understanding 

complex problems, while also highlighting that diversity must be moderated through an 

aggregation process leading to more complex yet parsimonious models. 

3.1 INTRODUCTION 

Determining which management strategies lead to sustainable outcomes in social-

ecological systems (SES) is challenging, and are often made based on the best available sciences 

1. Specifically, in natural resource management, a number of laws and regulations mandate the 

use of best scientific information available (BSIA) in decision-making (e.g., the Magnuson-

Stevens Fishery Conservation and Management Act of 1976; and the 2012 Forest Service 

Planning Rule). In many cases, BSIA is comprised of empirical data, peer-reviewed information, 

expert knowledge, and local and traditional knowledge. This scientific information can be used 

to implement management strategy evaluation (MSE) 2—a decision-support tool (e.g., 

computational models) to examine the implications of alternative management and policy 

scenarios before any action is taken. However, in data-poor cases across a wide range of local 

sustainability contexts, scientific information is frequently inadequate for effective decision-

making 3,4. In such cases, traditional or local knowledge (LK) of people who interact with local 

ecosystems can constitute a rich source of scientific information and plays a key role in decision-

making 5–8. However, there are two primary challenges associated with pooling LK from local 

stakeholders that need to be addressed: 

First, it is often difficult to quantify the scientific or management uncertainties associated 

with utilizing LK, which limits its formal or even legal use in environmental assessments and 

decision-making 6,9. This is in part because the information embedded in stakeholders’ LK is 

predominantly qualitative and may be considered “anecdotal” 1 and thus cannot be easily 



80 

 

integrated with scientific assessments, which are often quantitative 6,10,11. This limitation 

undermines the potential use of LK to develop statistically rigorous inferences or 

computationally executable simulations with the ability to represent the true condition of the 

system and “accurately” predict system responses to various management strategies or natural 

and anthropogenic perturbations. 

Second, LK held by stakeholders demonstrates considerable variations across different 

groups that represent biased and sometimes conflicting perceptions of complex social-ecological 

interdependencies. These variations may be linked to differences in preferred adaptation 

strategies 12,13; diverging beliefs and values 14; disparate experiences and interactions with 

ecosystems 15; and are thought to undermine the “reliability” 9 of integrating LK into 

management strategies 16–18.  

In this article, we draw on collective intelligence (CI) theory 19 to test if LK—once 

aggregated from diverse stakeholders— produces accurate and reliable scientific information for 

complex problem-solving. CI is typically defined as a group phenomenon, enabling a group to 

accomplish complex tasks where individuals or any subset within it fail 20. This group 

phenomenon may emerge when a collective of individuals either collaborate or independently 

pool their knowledge to address a problem 19,21,22. The group may therefore benefit from a larger, 

more refined, or recombined body of knowledge, whereas the aggregation mechanism filters out 

errors and biases, compensates individuals’ insufficiencies, or allows for recombining the pool of 

knowledge in new ways that can result in innovative solutions, which is unlikely that any of the 

individual members would be able to come up with (e.g., ref. 23–25). CI has been a growing area 

of investigation with implications for improving decision-making in different fields. Importantly, 

new information technologies have substantially increased human capacities to pool knowledge 



81 

 

and participate in decision-making 20. For example, online crowdsourcing technologies such as 

Human DX and Sermo facilitate medical collaboration by building partnerships between medical 

societies and the public to improve medical training and clinical decision-making 26,27. Prediction 

Markets, as another example, leverage internet technologies to harness the CI of online crowds 

and accurately predict the probabilities of various events occurring 21. 

A growing body of literature now suggests that diversity of knowledge, once properly 

harnessed, is of utmost importance to improve CI in a group, thereby helping a group achieve 

better performance at the aggregate level 21,23,28–32. In general, and especially for complex 

problem-solving such as those related to the sustainability of local SESs, theoretical and 

empirical evidence has demonstrated that knowledge diversity is a critical driver of collective 

performance 4,33–35. But, how can we harness the CI of natural resource stakeholders via pooling 

LK to model social-ecological interdependencies? How does the factor ‘diversity’ impact the 

group’s collective performance in modeling a complex system?              

Here we explore how emerging internet technologies, semi-quantitative cognitive 

mapping techniques, and CI theoretical principles can be integrated into a novel crowdsourcing 

approach to address the challenges associated with using LK as an accurate and reliable source 

of information to understand local sustainability issues. Our approach results in the aggregation 

of LK that is elicited from diverse groups of natural resource stakeholders through mental 

modeling. This knowledge elicitation and aggregation mechanism can yield a computationally 

executable representation (i.e., model) of social-ecological dynamics that combines local 

stakeholders’ perceptions. To implement this approach, we used an example of striped bass 

(Morone saxatilis) population dynamics in Massachusetts (MA), U.S.A. The striped bass fishery 

is an important component of coastal economies throughout the east coast and is composed of 
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commercial and recreational fishers. While various stakeholder groups interact differently with 

the fishery, they each construct diverse knowledge about resource dynamics including both 

ecological dimensions (e.g., predator-prey relationships) and human dimensions (e.g., 

commercial and recreational fishing pressures), as well as their interrelationships.  

We crowdsourced mental models using a semi-quantitative technique called Fuzzy 

Cognitive Mapping (FCM) 36 to represent each individual’s LK about social-ecological 

relationships that influence striped bass populations and fisheries. We collected these FCMs 

using an online mental modeling technology (www.mentalmodeler.com), in the form of 

digitalized graph drawings from a diverse crowd of local stakeholders, including recreational 

fishers, commercial fishers, and fisheries managers (see Appendix, Figures 3.S1 and 3.S2). The 

individuals’ drawings were then mathematically combined into a collective model representing 

the aggregated knowledge of stakeholders. These aggregated models can be analyzed in terms of 

their qualitative compositions (i.e., what concepts are represented), network structure of causal 

relationships (i.e., how concepts are connected), and dynamic behavior (i.e., how changes in the 

state of one or multiple concepts initiate a cascade of changes in other concepts) (see Materials 

and Methods).  

Given the numerous social and ecological concepts potentially influencing the striped 

bass population and the likely differences in stakeholders’ perceptions, we explored how this 

diversity impacts the accuracy and reliability of stakeholders’ aggregated knowledge. 

Aggregation took place once all individual mental models were transformed into adjacency 

matrices—a mathematical representation of a directed graph 37. We first combined individual 

mental models by stakeholder types to form homogeneous, stakeholder-specific models using the 

arithmetic mean of their adjacency matrices elements 38 (see Materials and Methods). 
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Subsequently, the more diverse crowd model (including all stakeholder types) was created 

through aggregating stakeholder-specific models using the median of their adjacency matrices 

elements. This “multi-level aggregation” mechanism (see Appendix, Figure 3.S3) has been 

previously identified as the most reliable and effective method for combining the mental models 

of stakeholders to mediate the diversity of models and cancel out group specific biases 33.  

We evaluated the performance of stakeholder-driven models, both homogeneous and 

diverse by (i) acquiring subjective judgments from scientific experts, and (ii) analyzing the 

network structure of their aggregated mental models (see Materials and Methods). Our findings 

demonstrate that aggregating knowledge from a diverse group of stakeholders produces a CI 

model of social-ecological interdependencies that can generate outcomes similar to scientific 

methods in anticipating the structure of natural resource systems and their response to 

management strategies and external perturbations, and these outcomes in general, outperform 

those of more homogeneous groups. Our study, therefore, provides tools and methods for 

synthesizing the knowledge held by diverse groups of local stakeholders, which can advance the 

formal use of LK in understanding and making decisions about integrated environmental, health, 

and social issues and can potentially enhance our ability to resolve local sustainability problems. 

3.2 RESULTS 

A total of 32 individuals completed the online mental modeling survey including 13 

recreational fishers, 11 commercial fishers, and 8 fisheries managers. To allow for 

standardization, but also capture knowledge diversity, participants were asked to include 5 

concepts in their models (recreational fishing, commercial fishing, striped bass population, prey 

abundance, and water temperature) while other components in their concept maps could be freely 

associated based on their perceptions (see Appendix, Table 3.S1).  
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Aggregation of individual mental models by stakeholder types resulted in three averaged 

FCMs representing the overall perception of each homogeneous group (see Appendix, Figure 

3.S4-3.S6). Group aggregated FCMs varied widely in the number of nodes and connections, as 

well as the qualitative composition of concepts used to represent social-ecological relationships. 

For example, recreational fishers focused on social concepts influencing fish populations, while 

commercial fishers tended to incorporate biological concepts, and managers emphasized 

management aspects (see Appendix, Figure S8).  

Aggregation across diverse stakeholder groups using the median of group means yielded 

a “crowd model” with a parsimonious set of concepts and connections (23 concepts and 59 

connections) (see Appendix, Figure 3.S7). This “crowd model” reflected the different expertise 

of all three stakeholder-specific groups by preserving a moderated level of information presented 

from each of them, blended knowledge diversity, and represented the overall understanding of 

the whole community about striped bass dynamics. 

The review of concepts in three stakeholder-specific models and the diverse crowd model 

revealed that there were 15 overlapping core concepts shared by all 4 models; however, these 

concepts were connected to each other differently in different models (Figure 3.1). Expert 

evaluations of model structure were conducted by a panel of fisheries scientists based on the 

patterns of causal relationships among those 15 concepts to examine and compare the 

performance of four models. This evaluation was conducted in five steps: examining 1) striped 

bass predator-prey relationships, 2) the effect of fishing pressures on striped bass, 3) striped bass 

connection to ecology and habitat, 4) social drivers affecting the striped bass population, and 5) 

environmental drivers affecting the striped bass population.  
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Figure 3.1. The representation of cause-and-effect relationships between 15 overlapping 

concepts shared by all stakeholder groups and the diverse crowd. Ecological components are 

green and social components are purple. The aggregated graphs of (a) commercial fishers, (b) 

recreational fishers, (c) fisheries managers, and (d) the diverse crowd were evaluated by 

scientific experts to assess their accuracy in terms of causal relationships and feedback loops. 

Evaluations were conducted in 5 steps as shown in (d). 

In addition, the four aggregated models were computationally manipulated to determine 

how perceived social-ecological dynamics vary for each model (see Appendix). We computed 
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the models’ prediction of changes under six scenarios: increased inclement weather for fishing, 

increased water temperature, decreased water quality, increased price of fish, increased demand, 

and increased poaching and illegal activities (Figure 3.2).  

 

Figure 3.2. Fishery response (i.e., relative normalized changes in value of concepts) to six 

different scenarios simulating (a) increased inclement weather for fishing, (b) increased water 

temperature, (c) decreased water quality, (d) increased price of fish, (e) increased demand, and 

(f) increased poaching and illegal activities. 

Expert evaluations of model functionality were conducted to examine and compare 

models’ dynamic behavior under these six scenarios. Expert evaluation of models’ structure and 
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dynamic behavior revealed that the diverse crowd model outperformed stakeholder-specific 

models of homogeneous groups (i.e., recreational fishers, commercial fishers, and fisheries 

managers). Experts, on average, rated the crowd model as the most accurate map among the four 

models because it most adequately represented the causal relationships and feedback loops in 

striped bass fishery SES. Overall, scientific experts assessed that the structural performance of 

the crowd model was 65% accurate, followed by 55% accuracy for fisheries managers, 48% for 

recreational fishers, and 43% for commercial fishers (Figure 3.3 a). For the models’ dynamics, 

experts rated the crowd model as the most accurate map among four blinded models owing to 

models’ prediction of changes. On average, scientific experts determined that the crowd model’s 

dynamic performance was most accurate (75%), while the fisheries managers’ model ranked 

second in this category with 50% accuracy. The models of commercial fishers and recreational 

fishers were assigned 39% accuracy by experts according to the model's dynamic performance 

(Figure 3.3 b). This implies that aggregating diverse knowledge of different stakeholder groups 

may improve the overall accuracy of their combined LK and can potentially lead to higher 

scientific alignment (Figure 3.3 c). 
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Figure 3.3. Expert evaluation of aggregated models. The box plots represent the distribution of 

experts’ opinions regarding models’ (a) structure and (b) dynamic performance. The 

performance was measured using a 7 point Likert scale for each item of interview sheets (see 

Appendix). The assigned accuracies of structural items (i.e., five sub-structures illustrated in 

Figure 3.1) were averaged and normalized to a scale between 0 and 1. Similarly, the assigned 

accuracies of dynamic items (six scenarios illustrated in Figure 3.2) were averaged and 

normalized to a scale between 0 and 1. The 2D scatter plot in (c) shows the overall score given to 

four models by each expert, where x-axis is the accuracy regarding models’ dynamics and y-axis 

is the accuracy regarding models’ structure. 

In addition to 15 overlapping concepts that appeared in all four aggregated models, we 

asked experts to examine the other concepts that did not appear in all 4 models. Expert 
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qualitative evaluation of models’ composition revealed the number of false negatives or false 

positives (i.e., not including necessary system components and including unnecessary ones, 

respectively). An evaluation was conducted based on experts’ scientific knowledge of the 

system’s fundamental components versus trivial or redundant components which were 

considered superfluous in modeling the striped bass population. This qualitative assessment of 

the model composition determined “false” errors in four aggregated models revealing that, on 

average, expert panel identified 20% of the crowd model’s composition as false positive or false 

negative, which is the smallest among all other stakeholder-specific models with overall false 

errors ranging from 32% to 55% (see Appendix, Figure 3.S9). 

The stochastic network analysis of model structures revealed the prevalence of complex 

motifs (i.e., bi-directionality, indirect effect, multiple effects, and feedback loop micro-

structures) in a model (see ref. 39). We quantified the expected value of counts for complex 

motifs given the size and density of networks of each group FCM (see Materials and Methods). 

Deviations of motif counts from their expected value were used as measures of motifs’ 

prevalence (Figure 3.4). Our results demonstrate that the FCM of the diverse crowd has a higher 

prevalence for all complex motifs compared to the expectation, thereby representing a higher 

perception of complex causality. 
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Figure 3.4. Deviation of the prevalence of complex causal motifs in aggregated models relative 

to uniform random graphs for (a) bi-directionality, (b) indirect effect, (c) multiple effects, and 

(d) feedback loops. Black dots represent 10,000 random graphs and the blue line shows the 

expected value of motif counts. Red dashes represent the deviation of each model from the 

expected value. 

3.3 DISCUSSION 

This study advances the use of LK for understanding complex problems by leveraging 

the assets of knowledge diversity (i.e., “diversity bonus”) 29. We draw on CI theoretical 

principles to combine diverse stakeholders’ LK and produce comprehensive models of complex 

interrelationships in social and environmental problems that human societies face. Our study 
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offers a novel approach to collect and aggregate knowledge diversity across various groups of 

individuals to provide an improved understanding of complex problems. We used an example of 

striped bass fisheries in MA to empirically test our approach. Our results demonstrate that once 

harnessed properly, pooling diverse LK would likely yield accurate representations of complex 

interdependencies between humans and the environment that govern a natural resource system. 

The resulting aggregated model can also generate reliable and accurate predictions of system 

responses to natural and anthropogenic perturbations (Figure 3.3). This study, therefore, adds to 

a growing body of literature that investigates the use of LK in scientific assessments and the 

management of natural resources 8,10,11,40,41. 

Stakeholders interact with natural resources differently, and this may lead them to 

construct diverse perceptions about social-ecological interdependencies. The semi-quantitative 

FCM approach we used here enables us to highlight these variations in stakeholders’ LK in terms 

of perceived system composition, structure of interdependencies, and dynamic behavior 42,43. 

Even though a large body of literature has been dedicated to measuring these variations using 

FCMs (e.g., ref. 44), few studies have explored the benefits of knowledge aggregation 33,38,45,46. 

Here we focused on how diversity impacts stakeholders' collective perception of a complex 

problem. 

Consistent with past theoretical studies (e.g., “diversity trumps ability” theorem) 28, we 

found that the aggregation of LK obtained from a diverse group of stakeholders produces a 

system representation that outperforms those of homogeneous groups. However, to be 

successful, the aggregation needs to be mediated, filtering out the biases associated with each 

group’s LK. We used the principles of CI, and specifically, the wisdom of crowds (WOC) 

ideology to aggregate mental models and operationalize the diversity “bonuses” 29. As such, the 
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aggregation method we used here is based on a two-step averaging mechanism (Figure 3.S3) to 

let stakeholder-specific biases cancel each other out and also knowledge insufficiencies be 

complemented by pooling diverse expertise (see ref. 33 for more details about the aggregation 

method). 

In this study, we used both subjective and objective evaluations to measure the 

performance of aggregated FCMs. We asked a group of experts with a wide range of scientific 

knowledge and expertise to assess the performance of the stakeholder-driven models based on 

their personal opinions and knowledge. Even though experts represented a wide range of 

academic disciplines (e.g., fisheries ecology, economics, etc.) and professional expertise, a clear 

majority of experts rated the diverse crowd model as the most accurate one, compared to 

stakeholder-specific, homogeneous models. Additionally, stochastic network analysis provided 

an objective evaluation of the model's performance in representing complex causalities driving 

the system. The FCM of diverse crowd demonstrated a higher prevalence for all complex motifs 

compared to the expectation. The aggregated map of recreational fishers also demonstrated high 

prevalence for all tested motifs while managers demonstrated low prevalence of motif “indirect 

effects”, which represents a lower appreciation of cascading impacts 45. The aggregated map of 

commercial fishers, on the other hand, demonstrated low prevalence for all tested complex 

motifs indicating that commercial fishers tend to perceive the system as more linear with 

hierarchal casual structures (Figure 3.4). 

Additionally, managing uncertainty is a key challenge for policy and decision-making. In 

natural resources management, two common types of uncertainties include scientific uncertainty 

(related to data sources) and management uncertainty (related to the ability to predict 

management success/outcomes). To address the former, laws and regulations frequently mandate 
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the use of BSIA (e.g., Magnuson-Stevens Fishery Conservation and Management Act of 1976). 

However, the interpretation of such laws has led natural resource management to overvalue 

minimizing scientific uncertainty, often to the detriment of properly handling management 

uncertainty. Similarly, researchers have suggested that managing the latter requires that 

stakeholders, managers, and scientists first predict how systems respond to management 

strategies through scenario analysis and then collectively achieve a shared understanding about 

possible management actions 47. Such adaptive co-management practices, however, often suffer 

from a lack of ready-to-use simulation models, in addition to the high amount of time and 

resources necessary to elicit diverse knowledge. Here we demonstrate that the use of internet 

technology to crowdsource LK through an online mental modeling platform can help achieve 

efforts to manage both types of uncertainties.  

Even though these mental modeling practices are commonly organized through 

workshops (e.g., ref. 43) and interviews (e.g., ref. 44), we demonstrated that once provided with 

simple instructions (e.g., short videos and written directions) (see Appendix), participants can 

comfortably interact and familiarize themselves with the online platform, and thus knowledge 

elicitation process can be automated. Our study demonstrates a novel CI approach for 

aggregating and integrating stakeholders’ LK to produce reliable, computationally executable 

modeling systems for understanding and promoting the sustainability of complex social-

ecological systems. 

3.4 METHODS 

3.4.1 Mental models and fuzzy cognitive maps 

In this study, we used FCMs to represent stakeholders’ mental models about striped bass 

fisheries in MA. To understand stakeholders’ perceptions and knowledge about natural resources 
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many researchers have suggested the importance of eliciting and measuring mental models 

18,38,44,48,49. However, many mental model elicitation techniques often yield qualitative 

representations of associative rules between concepts/ideas and logical chains of reasoning, with 

few standardized methods to analyze them as computational simulations of the system they 

represent 38. Here we used FCM—a semi-quantitative technique— to bridge the divide between 

highly computational system modeling and easy-to-construct qualitative cognitive or concept 

mapping. FCMs are graphical representations of an individual’s perception showing a network of 

cause and effect relationships (edges) among different concepts (nodes) and, yet, can be 

computationally manipulated due to the numerical parametrization of the strength of causal 

relationships. These models are therefore simulation tools that can be used to assess individuals’ 

knowledge about dynamics of the system they represent 37. By increasing or decreasing a 

concept in the map (e.g., water temperature or predator abundance), “what-if” scenarios can be 

simulated using the auto-associative neural network method 50 (see Appendix). 

3.4.2 Online crowdsourcing implementation 

We collected mental models from diverse groups of stakeholders including commercial 

fishers, recreational fishers, and fisheries managers. We used a contact list of recreational and 

commercial fishers including all MA licensed fishers. In addition, we used a contact list of 

fisheries managers including individuals from NOAA, Massachusetts Division of Marine 

Fisheries, and Atlantic States Marine Fisheries Commission - striped bass board. Random 

sampling methods were used to select 100 individuals from each list. Individuals who indicated 

their willingness to participate were received instructions through email. Each individual 

participated independently in an online mental modeling survey, where they used an online 
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mental modeling technology (www.mentalmodeler.org) to make an FCM about striped bass 

population dynamics and social-ecological factors that impact fish population and fishery. 

Participants were given a written step-by-step manual (see Appendix) and a series of short 

videos instructing them how to brainstorm, identify, and add components via an online graphical 

interface, representing all concepts that they believe impact either their fishing effort and/or the 

striped bass population. Participants were then asked to use this modeling technology to draw 

lines between concepts and assign a relative value between 0 and 1 (either positive or negative) 

to each link based upon the degree to which one component affects another. This exercise was 

completed when the participant could no longer think of additional relevant concepts or linkages 

among concepts. Participants had to save their mental model contributions and send them to the 

project’s email address. 

3.4.3 Collective intelligence and knowledge pooling 

To harness the CI of local stakeholders for natural resource system modeling we 

expanded a well-documented method called the “wisdom of crowds” (WOC) 21,51. WOC refers to 

the finding that groups of people, under certain conditions, are collectively smarter than 

individuals in problem-solving, decision making, innovating, and predicting. For example, in 

simple estimation, the average of individual judgments often outperforms the judgment of the 

majority of the contributing individuals and sometimes even the best individual judge 21. WOC 

has been applied to many situations from people contributing to medical diagnostics 52 to 

predicting the winners of major sporting events 53, often with high rates of success. A theoretical 

explanation for this phenomenon is that there is an error associated with each individual 

judgment, and taking the average over a large number of responses filters out the noise of gross 

over- and under-estimates, thus moving the aggregate response closer to the ground truth 21,54.  
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We used WOC principles to aggregate mental models of stakeholders about the striped 

bass SES. According to Surowiecki 21, crowd-based solutions, can be reliable when (a) the study 

participants represent diverse opinions, (b) make their judgments independent of each other and 

without outside influences, (c) are able to draw on their local knowledge, and (d) there exist 

some aggregation mechanisms to combine individual contributions into a collective response. 

We similarly aggregated individuals’ graphical mental models from a diverse group of 

stakeholders whose LK and perceptions were elicited independently using an online mental 

modeling technology in the form of FCMs. Once the individual FCMs were standardized (i.e., 

using unique terminologies for similar concepts) (see ref. 55), models were combined using their 

adjacency matrices and matrix algebra to create a model that represented the collective 

knowledge of stakeholder groups and thus provided a tool for leveraging WOC (see Appendix).  

3.4.4 Expert evaluation of models’ performance 

To evaluate the accuracy and overall performance of the stakeholder-driven models we 

conducted in-depth interviews with fisheries experts. Experts were recruited from the National 

Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, 

Massachusetts Division of Marine Fisheries, and an academic institution. A purposeful sampling 

method was used to select a sample of fisheries scientists with diverse scientific expertise and 

educational background—also being involved in management, assessment, and conservation of 

striped bass fish stocks in MA. Eight experts participated with academic background in 

environmental sciences; natural resource management; ecology, evolution and marine biology; 

environmental conservation; environmental and natural resource economics; marine sciences and 

fisheries biology; and social sciences. Interviews with experts were semi-structured with a 

combination of pre-established questions and a series of interactive model evaluation practices 
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requiring scientific experts to examine the accuracy of four aggregated models: three models 

from homogeneous groups (recreational fishers, commercial fishers, and managers), and one 

diverse crowd model. Models were blinded (i.e., experts had no information about which model 

represented which group). Each expert independently interacted with the stakeholder-driven 

models and expressed their opinion about the accuracy of models’ composition, structure, and 

dynamics using a 7 point Likert scale (1 = very inaccurate, 7 = very accurate) as a proxy 

measurement for models’ performance. 

3.4.5 Network analysis of stakeholder-driven models 

To identify the extent to which each aggregated model represented complex causal 

processes we used stochastic network analysis of causal micro-structures. Building on network 

theory and cognitive map analyses of complex causal structures developed by Levy et al. 39, we 

compared the aggregated FCMs according to their network motifs (i.e., micro-structures that are 

constructed by two or three nodes and some unique patterns of connections between them, which 

shape the underlying elements of perceived causation in a cognitive map). The extent to which 

one cognitive map can represent complex interdependencies among social and ecological 

components of a natural resource system is thus linked to the distribution of complex micro 

motifs within its network. Theoretical and empirical studies have frequently suggested that four 

particular motifs exemplify more complex patterns of causation 39,45,46,49,56–58; therefore, their 

prevalence in a cognitive map indicates higher perception of complex interdependencies: bi-

directionality, multiple effects, indirect effect, and feedback loop (see Figure 3.4 and ref. 39). 

The prevalence of each motif was measured using uniform random graph tests, which compared 

the count of motifs in a network with the expected value of counts in randomly generated 

networks of the same size and density with uniform distribution of edges 59. We measured the 
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count of motifs in the model’s network and how this count compared to the expected value of 

counts in 10,000 randomly generated networks of the same size and density with uniform 

distribution of edges. 
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APPENDIX 

SUPPLEMENTARY INFORMATION 

S1 Supplementary Methods 

S1.1 Mental Models and Fuzzy Cognitive Maps (FCM) 

Mental models 60 are simplified internal representations of reality that allow humans to 

perceive patterns of cause-and-effect relationships through reasoning and to make decisions. 

Mental models consist of beliefs and subjective knowledge that are constructed as individuals 

observe, interact with, and experience the world around them and concurrently develop an 

internal model to understand and predict how it functions 61.  As such, they synthesize 

knowledge that is acquired through experiential, social, and formal learning. 

Mental models that represent causal knowledge (e.g., how social and ecological 

components are interconnected in a natural resource system) can be elicited through cognitive 

mapping 62. Cognitive maps are representations of mental models in the form of directed graphs. 

Nodes represent concepts that are part of the mental model and edges (arrows) are used to show 

the causal relationship between the concepts.  

Fuzzy Cognitive Maps (FCM) 36 extend causal cognitive maps in order to add a dynamic 

component to their analysis. These are graphical models of system components (nodes) and their 

causal relationships (edges), forming a weighted directed graph (Figure 3.S1). Relationships 

(edges) are characterized by a number in the interval of [-1, +1], corresponding to the strength 

and sign of causal relationships between nodes. They, therefore, provide a semi-quantitative 

system modeling technique, based on auto-associative neural networks and fuzzy set theory that 

make cognitive maps computable (see FCM computation section of this Appendix).  
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A total of 32 individuals completed the online mental modeling survey including 

recreational fishers, commercial fishers, and fisheries managers, each creating their own FCM 

(Figure 3.S2). Table S1 shows the number of participants from each stakeholder type. In 

addition, the mean and standard deviation of number of concepts (i.e., nodes) and connections 

(i.e., edges) used by individuals to construct FCM representing their mental models about striped 

bass population dynamics are shown in Table S1. 

S1.2 Mental Models Aggregation 

S1.2.1 Stakeholder-specific models (homogenous groups) 

Individual mental models represented as FCMs can be aggregated mathematically using 

matrix algebra operations on their adjacency matrices. These aggregated models—also referred 

to as “community maps”—can be used to represent the knowledge and perception of a group of 

participants and thus provide a tool for knowledge-pooling 63. To combine mental models of a 

homogenous group with individuals from a specific stakeholder type (e.g., recreational fishers, 

commercial fishers, or managers) we calculated the arithmetic mean (i.e., simple average) of 

edge weights that are shared in all FCMs (see also ref. 64 for more details):    

𝐴
𝑖𝑗

𝐹𝐶𝑀𝑔 = ∑ 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝

𝑁

𝑝=1

/ ∑(1 | 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝 ≠ 0)

𝑁

𝑝=1

 (𝟑. 𝑺𝟏) 

where 𝐴𝐹𝐶𝑀𝑝 is the adjacency matrix of the FCM of participant p, N is the total number of 

participants in a group, and 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑝
 indicates the element of this matrix with the value equals to 

the weight of the edge between node i and j.  𝐹𝐶𝑀𝑔 represents the aggregated FCM of a group 

with the corresponding adjacency matrix 𝐴𝐹𝐶𝑀𝑔 . 
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We used the above aggregation method to create stakeholder-specific (homogenous) 

models of recreational fishers (Figure 3.S4), commercial fishers (Figure 3.S5), and fisheries 

managers (Figure 3.S6). 

S1.2.2 Crowd model (diverse group) 

To build an aggregated mental model of diverse stakeholders (i.e., the crowd model), we 

used a multi-level aggregation technique (Figure 3.S3). The first level of aggregation was 

achieved by adding mental models of individuals from the same stakeholder type and averaging 

the weights of shared edges (see Eq. S1).  At the second level, we aggregated the averaged 

stakeholder-specific models. At this level, we could have used the arithmetic mean of averaged 

maps to aggregate across the stakeholders; however, forming stakeholder-specific models that 

consist of same-type individuals could likely amplify the accumulation of stakeholder-specific 

biases. To address this issue, and similar to what described in Aminpour et al. (2020), here we 

used the median of stakeholder-specific averaged models to further remove the effect of biases: 

𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑 = 𝑀𝑒𝑑𝑖𝑎𝑛 (𝐴

𝑖𝑗

𝐹𝐶𝑀𝑔1 , 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑔2 , …  , 𝐴
𝑖𝑗

𝐹𝐶𝑀𝑔𝑛 ) (𝟑. 𝑺𝟐) 

where 𝐴𝑖𝑗
𝐹𝐶𝑀𝑐𝑟𝑜𝑤𝑑  indicates the element of the adjacency matrix of crowd model with the value 

equals to the weight of the edge between node i and j. In our case, there are three types of 

stakeholders: recreational fishers, commercial fishers and fisheries managers. Thus, we used the 

median of edge-weights across three arithmetically averaged stakeholder-specific maps (i.e. 

𝐹𝐶𝑀𝑔1, 𝐹𝐶𝑀𝑔2, and 𝐹𝐶𝑀𝑔3) to build the diverse crowd model (Figure 3.S7). 
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S1.3 Concept Categorization 

We categorized concepts used by participants into two main categories: (1) Ecological-

dimension and (2) Human-dimension. The ecological-dimension was divided into two sub 

categories of biological concepts and habitat related concepts. In addition, the human-dimension 

was divided into two sub categories of social concepts and management related concepts. We 

measured the frequency and relative percentage of each sub-category across stakeholder types to 

determine stakeholder-specific biases (Figure 3.S8). 

S1.4  FCM computation 

FCM models are semi-quantitative simulation models 65 that can be used to assess the 

perceived dynamic behavior of the system they represent 63,66,67. Here, we used FCM 

computational analysis to demonstrate how stakeholders, based on their collective perceptions 

and knowledge, predicted the changes in the state of system’s elements (e.g., striped bass 

population) given an initial change in one or combination of concepts (i.e., scenario inputs) (e.g., 

water quality or water temperature) (also see ref. 68 for details about scenario analysis). An 

increase (or a decrease) in a concept initiates a cascade of changes to other system concepts 

(typically normalized between 0 and 1), and this iterative propagation of the initial change 

evolves into a so-called new “system state” 69. By comparing the system states (i.e., the value of 

concepts) before and after initiation of a change, FCM can be used to implement “what if” 

scenario analysis, and therefore represent perceived dynamic behavior of the system (in this case, 

striped bass fisheries). 

To run a scenario, the value of one or more concepts (i.e., scenario nodes) in a FCM was 

changed and forced to stay at either +1 (an increase) or -1 (a decrease). This initial change passes 
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through the network of nodes and connections including feedback loops until the system reaches 

a new state. The consequent alterations in the state of other system concepts were calculated by 

subtracting their initial values from their values after the scenario was introduced and system 

evolved into a new state. The initial value of each concept—also known as steady state—is 

calculated using the following formula: 

𝑐𝑖
(𝑘+1)

= 𝑓 (𝑐𝑖
(𝑘)

+  ∑ 𝑐𝑗
(𝑘)

. 𝐴𝑗𝑖

𝑗

)  (𝟑. 𝑺𝟑) 

where 𝑐𝑖
(𝑘+1)

 is the value of concept 𝐶𝑖 at iteration step k+1, 𝑐𝑖
(𝑘)

 is the value of concept 𝐶𝑖 at 

iteration step k, 𝑐𝑗
(𝑘)

 is the value of concept 𝐶𝑗 at iteration step k, and 𝐴𝑗𝑖 is the weight of the edge 

relationship between 𝐶𝑗 and 𝐶𝑖. Function 𝑓(𝑥) is the “threshold function” that was used to squash 

the concept values at each step to a normalized interval between -1 and 1. In this study, we used 

a hyperbolic tangent function (see ref. 70 for more details about hyperbolic tangent function): 

𝑓(𝑥) =  𝑇𝑎𝑛ℎ (𝜆𝑥) =  
𝑒𝜆𝑥 − 𝑒−𝜆𝑥

𝑒𝜆𝑥 +  𝑒−𝜆𝑥
     (3. 𝑺𝟒) 

where 𝜆 is a real positive number (in our case 𝜆 = 1) which determines the steepness of the 

function 𝑓. 

The value of each concept under a scenario was computed using the same formula (Eq. 

S3), but this time scenario nodes were forced to take fixed values (either +1 or -1). The scenario 

outcomes were then calculated as the differences between the values of the system’s concepts 

when the system was self-administered and when it was forced by fixed manipulations in the 

state of scenario concepts 63,69. For each concept 𝐶𝑖 the change in its value as a result of running 

a scenario is:  
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𝐷𝑖
𝑠𝑐 = 𝑐𝑖

𝑠𝑠 − 𝑐𝑖
𝑠𝑐       (3. 𝑺𝟓) 

where 𝐷𝑖
𝑠𝑐 is the change in the value of concept 𝐶𝑖, 𝑐𝑖

𝑠𝑠 is the value of concept 𝐶𝑖 in the steady 

state, and 𝑐𝑖
𝑠𝑐 is the value of concept 𝐶𝑖 after converging into a new state while scenario concepts 

are clamped on fixed values. 

S1.5  Online mental modeling instructions 

The individuals who participated in online mental modeling survey were given a step-by-

step instruction how to build a FCM model using the online mental modeling technology. Mental 

Modeler online tool is modeling software that helps individuals and communities capture their 

knowledge in a standardized format that can be used for scenario analysis. Based in FCM, users 

can develop semi-quantitative models of complex social and environmental issues by defining 

the important components of a system and also the relationships between these components 71. 

The step-by-step direction showing in Figure 3.S10 was used to instruct participants. 
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S2   Supplementary Figures 

 

Figure 3.S1. An example of a fuzzy cognitive map (FCM) representing a mental model about 

striped bass fishery. The FCM was created using Mental Modeler online platform at 

www.mentalmodeler.org. Boxes demonstrate system concepts defined by the individual modeler 

and arrows indicate causal relationships between concepts. 
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Figure 3.S2. All individual fuzzy cognitive maps (FCM) representing the mental models of 32 

participants about striped bass fishery in Massachusetts. 
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Figure 3.S3. Multi-level aggregation method. At the first level, individual maps are aggregated 

by stakeholder groups using the arithmetic mean of their fuzzy cognitive maps’ edge weights. In 

the second level, the resulting group means are aggregated using the median of their edge 

weights to produce the crowd model. 
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Figure 3.S4. Aggregated mental model of recreational fishers. Circles demonstrate unique 

system concepts mentioned by the individuals of type recreational fisher. Ecological-dimension 

concepts are green and human-dimension components are purple. Weighted blue/red arrows 

indicate positive/negative causal relationships between concepts. The arrows thickness represents 

the strength of the causal relationships ranged from -1 to +1. The weight of the arrows are 

computed using equation 3.S1.   
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Figure 3.S5. Aggregated mental model of commercial fishers. Circles demonstrate unique 

system concepts mentioned by the individuals of type commercial fisher. Ecological-dimension 

concepts are green and human-dimension components are purple. Weighted blue/red arrows 

indicate positive/negative causal relationships between concepts. The arrows thickness represents 

the strength of the causal relationships ranged from -1 to +1. The weight of the arrows are 

computed using equation 3.S1.    
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Figure 3.S6. Aggregated mental model of fisheries managers. Circles demonstrate unique 

system concepts mentioned by the individuals of type manager. Ecological-dimension concepts 

are green and human-dimension components are purple. Weighted blue/red arrows indicate 

positive/negative causal relationships between concepts. The arrows thickness represents the 

strength of the causal relationships ranged from -1 to +1. The weight of the arrows are computed 

using equation 3.S1. 
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Figure 3.S7. Aggregated mental model of the diverse crowd. Circles demonstrate a 

parsimonious list of system concepts mentioned by all individuals of all stakeholder types. This 

parsimonious list of system concepts is obtained by a multi-level aggregation method. 

Ecological-dimension concepts are green and human-dimension components are purple. 

Weighted blue/red arrows indicate positive/negative causal relationships between concepts. The 

arrows thickness represents the strength of the causal relationships ranged from -1 to +1. The 

weight of the arrows are computed using equation 3.S1. 
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Figure 3.S8. The frequency and the relative percentage of each category of system concepts 

across three stakeholder groups. The numbers on bar-graphs indicate the frequency of concepts 

under each specific category. x-axis shows the relative percentage.  

 

Figure 3.S9. Expert evaluation of models’ components (i.e., nodes). Evaluated concepts were 

those appeared in more than one model, but not all models. The opinion table in (a) shows 

experts’ majority opinion about whether a component is necessary (black), superfluous (white) 

or there is no consensus among experts (half-black, half-white). The percent of false errors 

according to the experts’ majority opinion is shown in (b). 
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Figure 3.S10. Step-by-step written instructions for participants to direct them how to use online 

mental modeling tool and create fuzzy cognitive maps repressing their perception of striped bass 

fisheries in MA and social-ecological relationships driving this system. 
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S3 Supplementary Tables 

Table 3.S1. The number of participants from each stakeholder type and the number of nodes and 

connections used in their mental models. The mean and standard deviation of number of 

concepts (i.e., nodes) and connections (i.e., edges) are shown by stakeholder types. 

Stakeholder group Number of 

Participants 

Number of Nodes  

 

Mean (SD) 

Number of 

Connections  

Mean (SD) 

Recreational fishers 13 11.54 (4.01) 29.85 (20.53) 

Commercial fishers 11 11.45 (2.84) 23.45 (12.41) 

Fisheries managers 8 12.00 (3.21) 27.25 (7.87) 

Total 32 11.63 (3.35) 27.00 (15.32) 
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CHAPTER 4 

4 CROWDSOURCING MENTAL MODELS FOR PREDICTING BEHAVIORAL 

RESPONSES TO CLIMATE CHANGE 

 

This chapter is in review for publication in Global Environmental Change 

(https://www.journals.elsevier.com/global-environmental-change).   

ABSTRACT 

Understanding and modeling human behavioral responses to changing environmental 

conditions is difficult, especially at large social and environmental scales. This is due less to 

scientific understanding of how environmental conditions are predicted to change, and more of 

an issue of how environmental change is perceived by humans and how these perceptions are 

integrated with intended behavioral responses. We developed a method for utilizing the 

collective knowledge and perceptions of stakeholders to predict local scale responses to climate 

change. Specifically, by crowdsourcing mental models of 1,464 recreational fishers across a 

large social-ecological gradient along the U.S. Atlantic coast, we show that simulations of 

warming waters and increased storminess reveal mental model predictions about environmental 

change that explain divergent behavioral responses across regions, measured as the number of 

intended days fishing. Importantly, these diverging responses align with empirical patterns of 

environmental change. More broadly, our approach could be applied to predict human behavioral 

responses to environmental or even social changes across biogeographic scales and social-

ecological contexts. 
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4.1 INTRODUCTION 

Climate change is projected to impact oceans through a wide range of environmental 

changes and pulses of disturbance which vary widely at local scales 1,2. While the environmental 

impacts of climate change have received significant attention, there is considerable uncertainty 

regarding the social impacts resulting from climate change, especially in understanding how 

environmental change will impact peoples’ perceptions and behavior across large social and 

ecological gradients 3–6. Here, we show that crowdsourcing mental models of 1,464 recreational 

fishers distributed across a large social-ecological gradient from U.S. north to south Atlantic 

reveals latitudinal patterns of perceptions and intended behavioral responses (i.e., fishing days) 

to climate change (e.g., increased storminess and warming water temperatures). Harnessing 

local-scale knowledge or “wisdom” of a large network of resource stakeholders who interact 

with ecosystems may provide considerable insight, decreasing uncertainty on how society and 

ecosystems may react to climate change.  

Predicting how individual fishers and fishing communities may be impacted or are able 

to adapt to the consequences of climate change has been an increasingly high priority for 

fisheries social scientists 7,8. For instance, warming ocean waters are expected to induce 

biogeographic shifts for many fish species 9–11, which may impact fishing communities through 

the decline or disappearance of traditionally predominant species, as well as the increasing 

prevalence of formerly rare or novel species 7. In addition, sea level rise and increased 

storminess may directly impact fishing communities by decreasing the number of fishing trips 

and damaging facilities. However, such complex scenarios could promote a multitude of social 

and economic outcomes for fishing communities that are difficult to predict and may therefore 

increase uncertainty regarding climate change. 
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Many studies have increasingly demonstrated that the behaviors and responses of 

stakeholders to environmental and management changes are often complex and can be strongly 

influenced by a number of factors including knowledge, perceptions, and concerns about these 

changes 12. Likewise, understanding the dynamics of human institutions is often essential for 

predicting outcomes of coupled systems such as fisheries, as stakeholders’ behaviors can 

strongly influence ecosystem structure and function 13. Understanding climate-influenced 

changes and creating appropriate adaptive management strategies to optimize trade-offs will 

require integrated modeling of numerous ecological and social variables. However, uncertainties 

associated with human behavioral responses to climate-driven changes, such as storms and 

ecosystem changes, are compounded by inadequate tools and methods to quantify them 14. 

We developed an online survey method with fuzzy-cognitive mapping (FCM) to 

crowdsource mental models of climate change among 1,464 recreational fishers across the states 

of Massachusetts (MA), North Carolina (NC), and Florida (FL). By defining positive or negative 

pairwise relationships between components in a networked structure, individual FCMs represent 

individual-level perceptions about the social and ecological impacts of climate change, as well as 

intended behavioral responses 15 (see Methods). Additionally, once mathematically aggregated, 

these individual mental model representations can be scaled up to represent community beliefs, 

referred to as a “community map” 16 (see Methods--mental model aggregation). Importantly, 

causal connections in FCMs are numerically parameterized using fuzzy logic 17. These mental 

models are therefore quantitative simulation tools that can be used to assess individual or 

community level predictions about changes in the state of a system’s components given a 

scenario (i.e., an activation vector that makes changes in one or a set of components, which 
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triggers a cascade of changes in other system components until the system reaches a new 

attractor) (see Methods).  

We used mental models to explore stakeholders’ perceptions of how climate change may 

impact coastal recreational fisheries across three states representing higher to lower latitudes of 

the U.S. Atlantic Coast (Figure 4.1). Specifically, this paper focuses on three questions: 1) to 

what extent do survey responses regarding fishers’ concerns about climate-influenced ecological 

changes align with empirical patterns of climate change disturbances?, 2) how do recreational 

anglers perceive the individual and combined effects of warming coastal waters and increased 

storminess on their primary target species?, and 3) how might fishing behaviors change under 

these same scenarios? 

4.2 RESULTS 

4.2.1 Overall Climate Concern 

We compared the individual responses regarding the concerns of recreational fishers in 

MA, NC, and FL about (1) ocean warming, (2) severe storms, and (3) fish declines. Across the 

three states, respondents in MA demonstrated significantly higher concerns about global 

warming and increased ocean temperature (Figure 4.2 a), while NC respondents were most 

concerned about increased severe storms (Figure 4.2 b). In terms of the fish decline and the 

status of fisheries, FL respondents demonstrated the lowest concerns, while inter-state 

comparisons revealed a latitudinal gradient in concern that increased from south to north (Figure 

4.2 c). 

In addition, we used empirical data for changing ocean patterns over the past 20 years at 

the regional ecosystem scales to obtain latitudinal patterns of (1) sea surface temperature (SST) 

trends, (2) the trends of frequency of stormy days in coastal regions, and (3) the proportion of 
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fish stocks that are overfished/experiencing overfishing as a proxy measure for fish declines 

(Figure 4.2 d-f). All of these data support the differential angler perceptions that we measured. In 

particular, water temperature increases have been greatest in MA (Figure 4.2 d), while NC has 

experienced the highest increase in frequency of stormy days (Figure 4.2 e), and MA is in the 

federal fisheries management region (New England) that has experienced the highest percentage 

of overfished stocks. In general, survey responses largely aligned with observed empirical 

patterns, suggesting a strong conformity between subjective stakeholder perceptions and 

objective measures of environmental changes. 

 

Figure 4.1. Community maps of three study regions representing Florida (FL), North Carolina 

(NC), and Massachusetts (MA) built by aggregating individual FCMs from each region. The 

inset shows the NC community model with details (see Appendix, Figure 4.S1 for details about 

other states). Blue/red arrows indicate positive/negative causal relationships between concepts. 

Edge weights represent perceived strength of the causal links.  



127 

 

 

Figure 4.2. Anglers’ concern for warming oceans (a), storminess (b), and fish decline (c) 

alongside patterns of empirical data on water temperature (d), storminess (e), and fisheries stock 

status (f) trends. Levels of significance are illustrated in (a-c) by asterisks (p-value< 0.05, p-

value< 0.01, and p-value< 0.001 are shown by one, two, and three asterisks respectively). (Note: 

stock status trends are missing 1997-98 data points due to the unavailability of information for 

the number of overfishing stocks. In addition, stock status data are classified based on NOAA 

fisheries regions: MA is included in New England; NC is partially included in the mid and south 

Atlantic; and FL is partially included in the south Atlantic and Gulf). 
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4.2.2 Fishing Characteristics 

One question of the online survey documented the primary target species of respondents, 

which was later used as a concept in the mental model section of the survey. Primary target 

species varied considerably across our study regions. As shown in (Figure 4.3 a), in the 

Northeast (i.e., MA), Striped Bass dominates recreational fisheries with 63.2% of respondents 

listing it as their primary target species. The next closest fish species, Bluefish, represents 4.5% 

of primary target species. In the Mid-Atlantic (i.e., NC), the most targeted species of Red Drum 

represents 23% of all target species. The next closest fish species, Summer Flounder and Spotted 

Seatrout, represent 10.9% and 10.1% respectively. In the Southeast (i.e., FL), where empirical 

measures of fish diversity demonstrate higher species richness, the most targeted species of 

Snook, Red Drum, Red Snapper, and Spotted Seatrout respectively represent 15.4%, 13.3%, 

10.7%, and 10.3% of all target species. To quantitatively measure diversity of target species in 

each state, we used Shannon diversity index (𝐻) by accounting for both the number of unique 

species and the evenness of their distribution across participants’ responses (Figure 4.3 b). 

Quantification of 𝐻 index indicates that the diversity of primary target species increases from 

North to South Atlantic, which aligns with the biogeographical patterns increasing species 

richness with decreasing latitude. 

4.2.3 Simulating Climate Change in Mental Models 

We aggregated mental models by states to build regional fishing community maps. 

Arrays of scenario analyses with various activations of water temperature and water storminess 

were carried out to show the mental model predictions of changes in target species abundance 

(Figure 4.4) and intended fishing days (Figure 4.5) under a range of climate change scenarios. 

We find simulations of warming waters on the community map of FL recreational fishers 
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generally produce favorable perceived outcomes of increased abundances of target species. In 

contrast, warming water scenarios on community maps of MA and NC yield more negative 

perceptions with decreasing abundance of target species. Moreover, simulations of increased 

water storminess on the community mental model of NC produce negative outcomes of drastic 

declines in target species abundances, while these undesirable outcomes are smoother in FL and 

are completely flattened in MA (Figure 4.4). 

 

Figure 4.3. Diversity of target species across regions. (a) Species accumulation curves shows the 

cumulative percentage of total primary target species reached by a given number of unique 

species.  (b) Circular chart for each region shows the target species and their percentage. Only 

target species with more than 10% are labeled for each region: Striped Bass (SB), Red Drum 

(RD), Summer Flounder (SF), Spotted Seatrout (SS), Snook (SK), and Red Snapper (RS). The 

horizontal bar charts show the calculated Shannon diversity index (H). 
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Figure 4.4. Results of scenario analyses showing the community maps’ perceived changes in 

target species abundance. For each state results are shown for various combinations of water 

temperature and storminess jointly (a-c); water temperature individually (d-f); and water 

storminess individually (g-i). Axes show the normalized changes in variables’ perceived values 

from high decrease (-1) to high increase (+1). Heat map shows the perceived changes in target 

species abundance from high decrease (dark red) to high increase (dark blue). 

In addition, patterns of behavioral responses to climate change vary across regions. 

Specifically, increased water temperature is predicted to variably alter intended fishing days 

across all three states, with the NC map indicating a stronger positive relationship and the FL 

map having almost no sensitivity to warming water temperature. However, decreased water 
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temperature is perceived to slightly raise intended fishing days in MA, while the NC and FL 

community maps predict declines in fishing days, and these declines are more abrupt in FL when 

water temperature drops considerably. Moreover, simulation of increased water storminess is 

likely to lead to decreased fishing days across all three states, with these changes being smoother 

in FL and more intense in NC (Figure 4.5). 

 

Figure 4.5. Results of scenario analyses showing the community maps’ behavioral responses 

regarding the intended fishing days. For each state results are shown for various combinations of 

water temperature and storminess jointly (a-c); water temperature individually (d-f); and water 

storminess individually (g-i). Axes show the normalized changes in variables’ perceived values 

from high decrease (-1) to high increase (+1). Heat map shows the intended number of days 

fished from high decrease (dark red) to high increase (dark blue). 
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4.3 DISCUSSION 

Predicting how people respond to climate change across spatial scales is extremely 

challenging and faces both conceptual and methodological barriers 6,7,9. Our approach of using 

online surveys to crowdsource mental models provides a powerful tool for studying human 

behavior in complex social-ecological systems and therefore overcome these barriers. However, 

it should be noted that online surveys may limit the representation of all perceived important 

concepts for SESs due to the lack of freedom given to participants to include additional 

customized concepts 16. Although our fixed-concept approach to represent mental models may 

not capture the full complexity of the system, it provides a standardized way to collect variation 

across how stakeholders perceive socially and environmentally relevant interdependencies that 

influence their local-scale understanding of system dynamics and how they behaviorally respond 

to scenarios of environmental change. Yet, the high level of alignment between stakeholder 

concerns, mental model variations, and empirical patterns adds confidence on the validity of the 

survey data collected to construct mental models.  

Our study demonstrates the power of harnessing local knowledge for both understanding 

the changing dynamics of fisheries and other resources, as well as predicting the individual and 

collective behavioral responses of groups of stakeholders to environmental changes. More 

broadly, our study demonstrates a novel online approach for crowdsourcing the mental models of 

stakeholders to predict diverging patterns of how humans respond to climate change across 

scales, but also has implications for understanding disparate behavioral responses given other 

large-scale social changes (e.g., globalization, massive political changes, or large-scale 

pandemics). From a methodological standpoint, our study demonstrates an approach to greatly 

increase the scale of data collection including mental models. This approach allowed us compare 
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mental models across largely distributed biogeographic regions with broad implications for other 

desired contexts that are typically infeasible or limited by the labor intensive traditional 

approaches for representing mental models 15,16.   

In the specific context of fisheries science and management, a key finding of the models 

and simulations in our study is that perceptions and intended behavioral responses to 

environmental change (i.e., water temperature, storminess) align with empirical patterns. In 

particular, we found that stakeholders in Florida seem more resilient to environmental change, 

with the exception of very cold conditions, than stakeholders in the mid-to-north Atlantic 

regions. In addition, stakeholders in the northeast perceived more negative impacts on fisheries 

as a result of increased water temperature (Figure 4.5). We hypothesize that varying patterns of 

environmental change and disturbances, as well as biogeographical patterns of increasing species 

richness with decreasing latitudes, drive these regional differences in stakeholder perceptions and 

intended behavioral responses. For instance, along the U.S. Atlantic coast, ocean waters off 

northeastern New England have experienced the greatest warming, up to 3°F, while ocean 

warming along the Florida Gulf coastal waters is about 0.5°F over the past century 18,19. 

Meanwhile, the diversity of fish species is the highest in the southeast compared to mid and 

north Atlantic.  

In addition, the implications of increased storminess for fisheries have multiple 

dimensions. Numerous studies have suggested that climate change is likely to increase the 

intensity of tropical cyclones 20 and may also increase their frequency 21. In the wake of these 

extreme events, fishing communities, as well as fishing infrastructure and opportunities, may be 

severely disrupted. Coastal and marine fisheries are also often constrained by wind and weather 

patterns of much lesser intensities as studies have shown that wind speed is an effective predictor 
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of fishing effort, particularly for offshore recreational fisheries 22.  In our study, concern for 

storms was greatest in North Carolina (Figure 4.2 b), which aligns with empirical patterns of 

having the highest increase in the frequency of stormy days reported by the National Weather 

Service between 1997 and 2017 (Figure 4.2 e). Moreover, our results indicate that concern for 

fisheries declines was greatest in New England, a region with a considerably higher proportion 

of fisheries stocks categorized as overfished or experiencing overfishing 23.  

While there is a wealth of growing physical evidence for changing ocean patterns at the 

global and regional ecosystem scales 24, the social impacts and behavioral responses are often not 

well-understood at local to regional scales. Our study may fill this gap by demonstrating 

relationships among empirical patterns, stakeholders’ perceptions, and their mental model 

predictions of behavioral responses to environmental changes and conditions. This study thus 

supports the idea that crowdsourced mental models can provide robust and valuable tools for 

predicting societal or stakeholder behavioral responses to climate change and other scenarios. 

Such approaches to leveraging local knowledge, therefore, may be particularly valuable when 

empirical data is scarce or unavailable 25. 

As climate change continues to reshape the dynamics of fisheries and other social-

ecological systems, our study provides a methodology for understanding complex stakeholder 

perceptions and predicting human behavioral responses. Notably, fisheries stock assessments and 

management plans routinely highlight fishing behavior as among the largest contributors to 

management uncertainty 26,27. Others have argued that participatory modeling and scenario 

analyses of mental models offer valuable tools for understanding the human dimension of 

fisheries, including behavioral intentions, as well as decreasing overall uncertainty 28,29. 

However, historically, the complexity and spatial coverage of these studies has been limited by 



135 

 

logistical constraints of conducting in-person interviews to elicit mental models. Our study 

demonstrates an internet-based approach to overcome these limitations and collect robust mental 

model data for understanding complex social-ecological systems. Such internet-based 

approaches may provide a way to understand how perceptions of environmental dynamics vary 

across social or ecological scales not previously possible. 

4.4 METHODS 

4.4.1 Ethics Statement 

This study was conducted with approval of Northeastern University’s Institutional 

Review Board (IRB #13-07-16) and electronic consent was acquired from all survey participants. 

4.4.2 Survey Instrument 

4.4.2.1 Overview 

The survey instrument was designed and administered using Qualtrics Survey Research 

Suite. The full survey instrument included 66 questions, and the data described in this paper 

represent the following core sections: Fishing Characteristics, Climate and Hazard Concerns, 

Mental Models, and Demographics (e.g., education, income, gender, race, birth year). 

4.4.2.2 Survey items for eliciting mental models  

A primary section of the survey was designed to collect data necessary to assemble 

individual fuzzy-logic cognitive maps to represent variation in fishers’ mental models of climate 

impacts on marine ecosystems. Mental models are simplified internal representations of the 

external world that allow individuals to perceive patterns of cause-and-effect relationships and 

associations. These internal mental models, therefore, enable humans to make decisions through 

internal processes of reasoning 30. Mental models that represent causal knowledge (e.g., how 
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social and ecological components are interconnected in a fishery ecosystem) can be graphically 

obtained through cognitive mapping techniques 31 in the form of directed graphs. Graph nodes 

represent concepts (i.e., system components) and graph edges (arrows) represent the causal 

relationships between the concepts. In addition, Fuzzy Cognitive Maps (FCM) are augmented 

forms of conventional qualitative cognitive maps 32, which are computationally executable and 

can thus perform dynamic simulations of the complex system they represent. These are semi-

quantitative graphical models of system components and their causal relationships in the form of 

weighted directed graphs 33. In FCMs, causal connections (i.e., edges) are assigned a numerical 

value in the interval of [-1, +1], corresponding to the magnitude and sign of the relationships. In 

our case, responses to Likert-scale questions were mapped into numerical values to determine 

edge weights. These numerical parametrizations of causal relationships enable FCM 

computations to represent system dynamics based on neural networks and fuzzy set theory 15. 

Our survey instrument involved a series of questions designed to select FCM concepts 

and assign edge weights. First, we used a two-question series to assess the relative importance of 

individual target species. The first question asked participants: “What fisheries species do you 

consider to be the most important for your fishing? (Select one)” (see Appendix, Figure 4.S3). 

Next, we asked “Are there any other fish that you consider important for your fishing? (Select 

All that Apply)”. To assign edge weights, we asked a series of pairwise questions for all 

concepts, with an example being: “How would you expect an increase in water temperature to 

influence <Selected Target Species> populations?” (See Appendix, Figure 4.S4). 

4.4.3 Survey Data Collection  

We conducted email surveys of licensed recreational anglers in Florida, North Carolina, 

and Massachusetts. The data presented in this paper represent 1,464 responses from a split-
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sample design of 3,000 total respondents across the coastal states of Florida, North Carolina, and 

Massachusetts (1,000 each). Email addresses were acquired from state managed license 

databases. Data collection occurred through an online survey of licensed anglers over an 8 week 

period in October and November 2017. We used an iterative sampling (4 waves) approach, 

involving an initial email contact and two reminder emails 34, until we reached a desired sample 

size of 1,000 complete responses. We used a three stage process to assure data quality and 

validity including filtering out participants who completed the survey in less than ⅓ of the 

average completion time, failed to accurately complete attention check questions, or would not 

“thoughtfully confirm that they would give their best answers” in an initial screening question. 

The adjusted response rate for the survey was 14.9% after adjusting for bounced, blocked, and 

unopened emails.  

4.4.4 Empirical Data 

4.4.4.1 Ocean Warming Data 

To visualize recent changes in ocean temperature, we mapped mean sea surface 

temperature (SST) and SST trends from 1997-2017. Daily mean sea surface temperature data 

were acquired from the NOAA OI SST V2 High Resolution Dataset. 

(https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) SST trends for the three study 

states were determined from 1997-2017 using the annual mean SST for the area from the state’s 

coastline to the edge of the Exclusive Economic Zone (EEZ) (Appendix, Figure 4.S2). Simple 

linear regression models were fitted on annual data points to determine the trends in SST over 

the 20-year period. 
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4.4.4.2 Storminess Data 

For the purposes of our study, we estimated storminess as the annual number of days with 

a designated severe weather event in a coastal county from 1997-2017. Severe weather events 

were determined using NOAA’s Severe Weather Data Inventory; non relevant items such as 

drought and wildfire events were excluded from analysis. Coastal counties were determined 

through NOAA Economics: Ocean Watch Now (ENOW). Simple linear regressions were 

performed through the annual mean data to determine annual trend.  

4.4.4.3 Fisheries Stock Status Data  

We gathered data from NOAA Fisheries’ Annual Status of U.S. Fisheries Reports to 

Congress to visualize stock status from years 1997 to 2017 

(https://www.fisheries.noaa.gov/national/population-assessments/fishery-stock-status-updates). 

The data was assembled from the following fisheries management regions: New England 

Fisheries Management Council (NEFMC), Mid-Atlantic Fisheries Management Council 

(MAFMC), South Atlantic Fisheries Management Council (SAFMC) and the Gulf of Mexico 

Fisheries Management Council (GMFMC). For each region, we quantified the total number of 

stocks assessed, the total number of stocks overfished, and the total number of stocks 

experiencing overfishing. Percent overfished and percent overfishing were calculated by dividing 

the respective stock numbers by the total number of stocks assessed in that region.  

4.4.5 Analyses 

We used the PyFCM package (https://github.com/payamaminpour/PyFCM/wiki) to 

conduct FCM aggregation and computational analyses. We conducted sensitivity analyses by 

simulating 10,000 scenarios of climate change on the community models across states. These 

scenario analyses were conducted to simulate the perceived impacts of climate changes 
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(individual and joint impacts of perturbations in water temperature and water storminess) on fish 

abundance and consequent behavioral responses regarding the intended number of days fishing. 

4.4.5.1 FCM aggregation  

Individual mental models elicited by FCMs can be aggregated mathematically by 

averaging the elements of their adjacency matrices— a square matrix used to represent the FCM 

graph where elements of the matrix indicate the numerical values of connections (i.e., edge 

weight) between pairs of nodes that are adjacent in the graph (see Appendix, Figure 4.S5). These 

aggregated models, which are referred to as “community maps,” represent the collective mental 

models (i.e., as a tool for harnessing the collective wisdom) from a group of individuals 16 and 

therefore can be used to model a group’s aggregated knowledge and perception 17. To build 

aggregated maps of different states, we calculated the median of edge weights that are shared in 

all FCMs of individuals who belong to the same state. In contrast to conventional aggregation 

mechanisms that use arithmetic mean (i.e., simple average) of edge weights to combine FCMs 

35,36, we use median here as an alternative measure of central tendency to avoid outliers (i.e., 

maps with extreme deviations from the mean of the group). One main advantage of this 

aggregation method is that the community maps built by the median more precisely represent 

group-specific biases, and therefore better highlight inter-group variations in comparisons. The 

adjacency matrix of aggregated FCM of each state was obtained as follows: 

[
𝑊0,0 ⋯ 𝑊0,𝑛

⋮ ⋱ ⋮

𝑊𝑛,0 ⋯ 𝑊𝑛,𝑛

] = 𝑀𝑒𝑑𝑖𝑎𝑛 ( [

𝜔0,0
(1)

⋯ 𝜔0,𝑛
(1)

⋮ ⋱ ⋮

𝜔𝑛,0
(1)

⋯ 𝜔𝑛,𝑛
(1)

] , [

𝑎0,0
(2)

⋯ 𝑎0,𝑛
(2)

⋮ ⋱ ⋮

𝑎𝑛,0
(2)

⋯ 𝑎𝑛,𝑛
(2)

] … , [

𝑎0,0
(𝑚)

⋯ 𝑎0,𝑛
(𝑚)

⋮ ⋱ ⋮

𝑎𝑛,0
(𝑚)

⋯ 𝑎𝑛,𝑛
(𝑚)

]) (𝟒. 𝟏) 

Therefore: 

𝑓𝑜𝑟 ∀ 𝑖, 𝑗 ∈ {𝑁}, 𝑊𝑖,𝑗 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝜔𝑖,𝑗
(1)

, 𝜔𝑖,𝑗
(2)

, …  𝜔𝑖,𝑗
(𝑚)

) (𝟒. 𝟐) 
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where {𝑁} is the set of nodes (i.e., concepts) used to build FCMs with 𝑛 unique concepts, 𝑊 is 

the adjacency matrix of the aggregated FCM, and 𝜔(𝑖) is the adjacency matrix of the individual 

𝑖𝑡ℎ in the set of 𝑚 individuals who belong to the same state.  

4.4.5.2 FCM Computation 

FCM models can be computationally manipulated to assess the perceived dynamic 

behavior of the system they represent. We used FCM computational analysis to demonstrate how 

fishers of a state, collectively, perceive/predict the changes in the abundance of their target 

species and the number of days they intend to fish, given an initial change in one or combination 

of climate change concepts (i.e., water temperature and water storminess). In FCM formulation, 

each concept has a state known as its “activation”. A change in the climate change scenario 

concepts initiates a cascade of changes to other system concepts based on how they are 

connected, and thus alters their so called “activation”. This iterative propagation of the initial 

change continues until the system evolves into a new “system state” 15. By comparing the system 

states before and after implementing a scenario, FCM can represent perceived dynamic behavior 

of the system. 

The initial activation of each concept—also known as the activation of concepts in the 

“steady state”—is calculated using the following activation rule, namely Kosko rule 32: 

𝐴𝑖
(𝑘+1)

= 𝑓 ( ∑ 𝑐𝑗
(𝑘)

. 𝑤𝑗𝑖

𝑗

)  (𝟒. 𝟑) 

where 𝐴𝑖
(𝑘+1)

 is the activation of concept 𝐶𝑖 at iteration step 𝑘 + 1, 𝐴𝑖
(𝑘)

 is the activation of 

concept 𝐶𝑖 at iteration step 𝑘, 𝐴𝑗
(𝑘)

 is the value of concept 𝐶𝑗 at iteration step 𝑘, and 𝑤𝑗𝑖 is the 

weight of the edge relationship from 𝐶𝑗 to 𝐶𝑖. Function 𝑓(𝑥) is the “threshold function” that was 
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used to squash the concept activations at each step to a normalized interval between 0 and 1. In 

this study, we used a sigmoid function as the most common squashing function used in FCM 

studies: 

𝑓(𝑥) =   
1

1 +  𝑒−𝜆𝑥
     (𝟒. 𝟒) 

where 𝜆 is a real positive number (in our case 𝜆 = 5) which determines the steepness of the 

function 𝑓. The value of parameter 𝜆 was determined such that the system dynamics were 

optimally represented 37,38. 

To run a scenario, the value of scenario concepts (i.e., water temperature and/or water 

storminess) was forced to a fixed activation value, and the activation of other concepts were 

computed using equation (4.3). The scenario outcomes were then calculated as the differences 

between the activation of the system’s concepts at the steady state and their activations in the 

new state the system evolved to as the result of forced manipulation of scenario concepts. For 

each concept 𝐶𝑖, the change in its value as a result of running a scenario is:  

𝐷𝑖
𝑠𝑐 = 𝐴𝑖

𝑠𝑠 − 𝐴𝑖
𝑠𝑐        (𝟒. 𝟓) 

where 𝐷𝑖
𝑠𝑐 is the change in the value of concept 𝐶𝑖, 𝐴𝑖

𝑠𝑠 is the value (i.e., activation) of concept 𝐶𝑖 

in the steady state, and 𝐴𝑖
𝑠𝑐 is the value of concept 𝐶𝑖 after converging into a new state while 

scenario concepts are clamped on fixed values. 
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APPENDIX 

SUPPLEMENTARY INFORMATION 

S1 Code availability 

Codes for mental model aggregation and FCM analyses are publically available and can 

be obtained on GitHub at https://github.com/payamaminpour/PyFCM/wiki. 
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S2   Supplementary Figures 

(a) 

 

(b) 

 

Figure 4.S1. Community maps of study regions representing (a) Florida (FL) and (b) 

Massachusetts (MA) built by aggregating individual FCMs from each region. 
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(a) 

 

(b) 

 

Figure 4.S2. (a) Mean sea surface temperature for 2017. (b) Trends in monthly mean sea surface 

temperature from 1997-2017. 
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Figure 4.S3.  Screenshot of survey question used to determine survey respondents target species. 

The answer to this survey question was then populated into the subsequent mental model survey 

questions.  
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Figure 4.S4. Screenshot of survey question used to ascribe edge weight relationships among 

concepts.  
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Figure 4.S5. Adjacency matrix showing the corresponding relationships among model concepts 

derived from the online survey. 
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S3 Supplementary Tables 

Table 4.S1. Survey sample demographics and fishing characteristics of respondents within each 

state.  

  FL NC MA 

  Frequency Percent Frequency Percent Frequency Percent 

Education       

Less than high school 8 1.1% 4 0.5% 5 1.1% 

High school diploma or GED 97 12.8% 77 10.2% 62 13.1% 

Some college or 2 year degree 255 33.7% 245 32.4% 116 24.6% 

Bachelor's degree 253 33.5% 256 33.9% 165 35.0% 

Master's degree 95 12.6% 121 16.0% 78 16.5% 

Law or MD 31 4.1% 24 3.2% 23 4.9% 

Doctorate (PhD) 17 2.2% 29 3.8% 23 4.9% 

Income       

$25k or less 29 3.8% 18 2.4% 7 1.5% 

$25,001 to $35k 29 3.8% 17 2.2% 8 1.7% 

$35,001 to $50k 47 6.2% 47 6.2% 27 5.7% 

$50,001 to $75k 85 11.2% 86 11.4% 35 7.4% 

$75,001 to $100k 130 17.2% 128 16.9% 71 15.0% 

$100,001 to $150k 134 17.7% 186 24.6% 98 20.8% 

$150,000 to $250k 106 14.0% 102 13.5% 87 18.4% 

More than $250k 81 10.7% 60 7.9% 54 11.4% 

Prefer not to answer 115 15.2% 112 14.8% 85 18.0% 
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Gender       

Male 635 84.0% 658 87.0% 438 92.8% 

Female 109 14.4% 80 10.6% 25 5.3% 

Other 1 0.1% 2 0.3% 0 0.0% 

Prefer not to answer 

11 1.5% 16 2.1% 9 1.9% 

Race       

White 659 87.2% 688 91.0% 408 86.4% 

Black or African American 1 0.1% 17 2.2% 8 1.7% 

American Indian or Alaska Native 11 1.5% 11 1.5% 2 0.4% 

Asian 10 1.3% 7 0.9% 12 2.5% 

Native Hawaiian or other Pacific Islander 2 0.3% 3 0.4% 1 0.2% 

Hispanic or Latino 34 4.5% 6 0.8% 9 1.9% 

Prefer not to answer 

48 6.3% 37 4.9% 41 8.7% 

Age       

less than 21 6 0.8% 7 0.9% 9 1.9% 

22-30 49 6.5% 38 5.0% 31 6.6% 

31-40 108 14.2% 95 12.6% 67 14.2% 

41-50 162 21.4% 170 22.5% 80 16.9% 

51-64 379 50.1% 314 41.5% 192 40.7% 

65+ 52 6.9% 132 17.5% 93 19.7% 
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