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ABSTRACT 

THE EFFECT OF GROWTH-RESTRICTION ON THE MURINE GUT MICROBIOME 

 By  

 Melissa Quinn 

INTRODUCTION. Growth restriction induced by undernutrition in early life increases the risk of 

developing chronic diseases in adulthood. We hypothesized growth restriction would alter the gut 

microbiome and metabolome across the lifespan, impairing vital growth signaling processes necessary for 

proper development, with a primary focus on muscular and hepatic Insulin-like Growth Factor (IGF-1) 

expression. METHODS. A cross-fostering, protein-restricted nutritive model (8% protein) was used to 

induce undernutrition during gestation (GUN) or lactation (PUN). At 21 days of age (PN21), all mice 

were weaned to a control diet (CON; 20% protein), isolating undernutrition to specific windows of early 

life. Fecal samples were collected weekly to determine longitudinal programming effects of growth 

restriction on the gut microbiome (CON N=5, GUN N=6, PUN N=6) and metabolome. Liver samples 

were collected at PN21 (CON N=12, GUN N=6, PUN N=7) and PN80 (CON N=13, GUN N=9, PUN 

N=11) and analyzed along with the cecum for metabolomics via tandem mass spectrometry (LC-MS/MS) 

and analyzed with the Global Natural Products Social Molecular Networking (GNPS) bioinformatics 

software. Hepatic and gastrocnemius (GS) IGF-1 expression (CON N=15, GUN N=12, PUN N=13) was 

analyzed via a Total Protein NIR western blot. RESULTS. The fecal Beta-Diversity was separated by 

treatment group using Weighted UniFrac (PERMANOVA p=0.0001). Linear mixed model (LMM) 

analysis revealed PUN having higher abundance of specific bacteria compared to GUN and CON across 

the lifespan. Additionally, the PUN metabolome was significantly altered compared to GUN and CON. 

Western blot analysis revealed significantly lower hepatic IGF-1 expression at PN21 in GUN (p=0.0012) 

and PUN (p<0.001) and overall lower GS IGF-1 expression (PUN: p=0.037; GUN: p=0.007) compared to 

CON. CONCLUSION: The gut microbiome and metabolome are permanently altered by early life 

growth restriction. 
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INTRODUCTION 

 Growth restriction induced by undernutrition affects one in seven births worldwide1. Gestational 

growth restriction (GUN) results in lower birth weights and is high susceptibility to developing non-

communicable metabolic diseases in adulthood (i.e. cardiovascular disease2 and diabetes3). With optimal 

refeeding during postnatal development, catch-up growth is often achieved, although the susceptibility of 

chronic disease onset still remains4,5. Alternatively, postnatal growth restriction (PUN) results in lower 

body weights over the lifespan despite refeeding, indicating there is an underlying mechanism leading to a 

permanent reprogramming in normal growth and development processes6,7. In order to mitigate disease 

onset in the growth restricted population, mechanisms influencing growth and development must be 

characterized.  

Growth restriction is associated with B-Vitamin deficiencies (i.e. folate or B-12)8–11 that inhibit 

protein synthesis and growth9,10.  Recent findings show that B-Vitamins are synthesized by microbes 

(specifically Bifidobacterium and Lactobacillus) in the digestive system12.  These microbial strains are the 

greatest vitamin producers12, suggesting their crucial role during early life growth and development.  

Schwarzer et al. demonstrated that supplementation with Lactobacillus improved insulin-like 

growth factor (IGF-1) levels in liver and gastrocnemius (GS), subsequently improving physical growth in 

germ free mice (mice that lack a gut microbiome)13. Supplementation was given to the mice post-weaning 

(PN21) which leaves question to whether there would be stronger differences found during the 

developmental period (PN1-21). However, the study by Schwarzer lacked characterization of the gut 

microbial composition in the growth restricted mice. Therefore, we hypothesize that early life growth-

restriction causes gut dysbiosis and an altered metabolome highlighted by decreased B-Vitamin 

bioavailability, leading to decreased IGF-1 expression and subsequent growth restriction across the 

lifespan. 
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To test this hypothesis, we have developed the following aims:  

Aim 1: To determine the microbiome differences across the lifespan of mice subjected to 

undernutrition during gestation (GUN) or the postnatal period (PUN) compared to controls (CON). Fecal 

samples were collected once per week from PN18-PN80 to generate microbiome data in order to compare 

changes in microbial structure and diversity. Principle coordinate analysis plots (PCoA) were used to 

assess changes in microbial communities. We hypothesized both GUN and PUN mice would have an 

altered microbiome compared to controls across the lifespan characterized by a decrease in vitamin 

producing Bifidobacterium and Lactobacilli. 

Aim 2: To determine the effects of growth restriction on metabolites produced in GUN, PUN and 

CON mice.  Untargeted metabolomics were used to quantify molecules from cecum and liver samples at 

PN21 and PN80. Multivariate statistical approaches were used to determine the overall metabolomic 

changes as well as specific differences between those of interest (i.e. B-Vitamins). We hypothesized 

growth restriction will alter the metabolome. We also hypothesized the altered metabolome would be 

characterized by decreased levels of B-Vitamins in GUN and PUN mice. 

Aim 3: To determine the effects of growth-restriction on IGF-1 abundance in liver and 

gastrocnemius samples using western blots at PN21 and PN80 in CON, GUN, and PUN. We 

hypothesized that there would be decreased levels of IGF-1 in the PUN and GUN mice, which will 

correlate to decreased body and muscle weight.   

Completion of these aims will provide mechanistic insight regarding early life growth restriction  

and provide a foundation for interventions to restore microbiome dysbiosis, promote growth and reduce 

chronic disease development in adulthood. 
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LITERATURE REVIEW 

 The scope of this literature review is to demonstrate the significance of growth restriction in 

regards to public health relevance, discuss the use of animal models for growth restriction, highlight the 

importance of the gut microbiome in regards to growth restriction and introduce the principles of methods 

proposed for this thesis, thereby providing rationale for the hypothesis and aims proposed. 

Epidemiological Evidence for the DoHad Hypothesis 

The Developmental Origins of Health and Disease (DOHaD) hypothesis states that early life 

conditions, specific to the nutritive environment, can result in epigenetic programming that dictates 

susceptibility to disease state later in life4,5. Epidemiological studies, such as those from the Dutch 

famine, reveal early life growth restriction increases the susceptibility of developing coronary heart 

disease, atherogenic lipid profile, disturbed blood coagulation, hypertension, sarcopenia, obesity and even 

cancer14,15. Specifically, those exposed to the famine in late gestation exhibited impaired glucose 

tolerance which suggests a link to the development of diabetes later in life15.  

It is becoming apparent with increasing research on growth restriction in early life, that the actual 

timing of the nutritional insult is largely the determining factor in which organ system is affected15,16. 

According to the Helsinki Birth Cohort, humans that exhibited slow early fetal growth developed 

coronary heart disease, type 2 diabetes and had a higher incidence of stroke17. In addition, Sandboge et al. 

demonstrated that those who remained small in early childhood were highly likely to develop metabolic 

syndrome in adulthood and non-alcoholic fatty liver disease (NAFLD)18. On the other hand, those born 

growth restricted that exhibited rapid catch-up growth during postnatal life have been shown to 

accumulate more fat mass than muscle, creating a higher susceptibility to metabolic disease onset in 

adulthood17. The development of precise therapeutic methods is essential to preventing disease onset and 
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improve fetal and postnatal development around the globe however, the mechanisms must first be 

understood. 

Animal Models for Growth Restriction 

Animal models are vital to gaining better insight into environmental, genetic or epigenetic factors 

related to growth and development across the lifespan, due to the ease at which tissues can be collected. 

Unlike human studies, research involving animal models allows for a shorter evaluation of longitudinal 

data collection due to their condensed lifespans (on average 2 years). Additionally, animal models are 

beneficial in the ability to implement greater control over environmental variables compared to human 

studies19. Among all animal models commonly used, mice have a particular advantage over others, due to 

similar genetic features, anatomy, physiology, and metabolic function to humans19. The mice used in this 

study are also a genetically homozygous cohort, eliminating unwanted variables seen in human nutritional 

studies and allowing for testing pathophysiological mechanisms of human diseases19. 

Common methods to induce growth restriction in mice include protein or nutrient-restriction 

during gestation or postnatal life3,6,7,20–26, food-restricted dams27–31, timed separation of pups from 

suckling dams prior to weaning age32–34, and intrauterine tubal ligation (IUGR)35,36. It is thought that with 

the latter two methods, there may be confounding factors correlated with hypoxic or stressful 

environmental effects that can increase cortisol34,37 and glucocorticoid release27, affecting results and 

increasing risk of false-positive findings. Protein and nutrient-restrictive models, especially those that are 

isocaloric, are low-stress alternatives to achieving the same result: growth-restricted offspring3,20–23,26.  

In terms of using mouse models for gut microbiome research, mice are omnivorous like humans 

and have very similar gut anatomy and physiology to humans19,38. Mouse models have been used for 

many years to study human gastrointestinal diseases and treatments due to mice showing similar 

pathology to genetic, nutritional or environmental changes39–44. The intestinal tract of a mouse is 
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exponentially smaller compared to other animals allowing ease of testing the entire region. Mice and 

humans both have overall the same GI anatomy as well as similar intestinal mucosa, lamina propria, 

absorptive enterocytes, goblet cells, as well as many others19,38,39. One distinct difference between mouse 

and human intestinal tracts is that mice have the cecum as a separate compartment, while humans’ 

cecums are hardly separate from the colon; thus cecums of mice and humans serve very different 

functions39. The mouse cecum is usually known to be a place of bacterial fermentation and nutrient 

synthesis39,45, while in humans the cecum still contains bacterial fermentation but not to the capacity of 

the human large intestines46,47. It is thought that over time with evolution what was once the human cecum 

degenerated and became an unused section that simply connects the small intestine to the large intestine48–

50. However, further elucidating cecum functions in mice can still be translatable to human small intestine 

activity since it connects the small and large intestines. 

Development of the Gut Microbiome 

The gut microbiome, which is the consortium of thousands of microbial species residing in the 

mammalian gastrointestinal tract, has many functions in the host including enhancing nutrient absorption 

and digestion, regulating immune responses and maintaining enzymatic and cell signaling activity in the 

gut and liver51.  Microbiome diversity is affected by host genetics, environment, early microbial exposure 

and diet52.  The infant gut microbiome is more variable than adults53. The microbial community in the 

infant gut progressively changes through the first two years of life, due to alterations in diet and other 

environmental exposures54, but after this age, the gut microbiome is highly stable throughout the 

lifetime52. In early life, there are primarily three main bacterial phyla: Actinobacteria, Firmicutes, and 

Bacteriodetes52. It has been shown that an infant’s lack of overall diversity is most likely due to their diet 

being comprised of mainly breast milk or formula55–57. There is conflicting information as to the actual 

composition of phyla and species found, however the most commonly published microbes seen in infants 

are Actinobacteria and Firmicutes32,52,58, with varying levels of Lactobacillus and Bifidobacterium 
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species59,60. By the pre-toddler age of 9-18 months (approximately 14 days in mice)61, the bacteria present 

begin to diversify and the microbial taxa present changes. This can result in an increase in butyrate 

production, a vital metabolite in epithelial cell growth and renewal in the gut. A lack of butyrate-

producing microbes in early life is suggested to directly affect the integrity of the gut lining and optimal 

nutrient absorption62–64. At approximately 2 years of age (or 18 days in mice)65 the gut microbiome 

resembles that of an adult and establishes its stability52. Though much research has focused on 

development of the neonatal microbiome (described below), few studies have investigated how growth 

restriction alters this development and whether there are links between chronic diseases described above 

from growth restriction and gut microbiome alterations in early life.  

The Influence of Growth Restriction on the Gut Microbiome 

With the wide variety of external influences that shape the microbiome that occur in early life, it 

is likely a reduction in nutrient availability would also have lasting effects on the gut microbiome. It has 

been speculated that the gut microbiome, like other organs and cellular processes, may be stunted in 

growth restricted individuals66. A recent study by Schwarzer et al. elucidated potential mechanisms by 

which the gut microbiome can influence longitudinal growth. When germ-free mice were given a one-

time dose of a specific strain of Lactobacillus prior to mating, their offspring resulted in improved growth 

hormone and insulin-like growth factor (IGF-1) signaling despite being fed a restricted diet from PN21 

till PN56. This study by Schwarzer et al. suggests that certain gut microbes have not only the ability to 

induce growth by interacting with the GH-IGF1 axis but also have some protective effects against growth 

restriction.13  

There are two specific phyla, Bacteroidetes and Lactobacillus, that increase B-Vitamin 

bioavailability in the intestinal lumen. B-12 and folate are well-known for their growth promoting 

properties67. Folate is responsible for perinatal development and regulation via DNA methylation 
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processes9. DNA methylation is crucial for normal development in mammals9. Although there is little 

information in the literature connecting dietary folate deficiency during early life, growth restriction and 

the gut microbiome, it is feasible that if bacteria are unable to produce these vital molecules there would 

be alterations in the IGF-1 growth system. Similarly, vitamin B-12 is also known for its contribution to 

cellular growth and energy balance regulation68. A study by Chen et al. 2018 showed that intrauterine 

growth restriction (IUGR) led to significant reductions in folate uptake as well as folate transport capacity 

in the placenta via reduced expression of folate receptor-α and folate carrier protein69. There is, 

unfortunately, very limited literature testing the connection between B-Vitamin transporters and postnatal 

growth restriction. Future studies should further examine the connections between growth restriction, gut 

microbes and B-Vitamin biosynthesis and transport in early life. 

The impact of growth restriction on intestinal structural differences has mostly been shown in 

studies implementing IUGR growth restriction, which leads to significantly smaller intestinal villi70. 

Intestinal villi are not only important for nutrient absorption, but also for maintaining the mucus (mucin) 

layer which protects against pathogenic microbes and maintains integrity of the GI tract71–73. There is very 

limited literature available testing the effects of postnatal growth restriction on the villi or mucin layer in 

the intestinal tract. More information is necessary to establish a relationship between growth restriction 

that occurs during lactation and structural abnormalities in the intestinal tract in adulthood. 

Relationship Between the Liver and the Gut Microbiome 

Recent research has focused on determining the relationship between the digestive tract and the 

liver, better known as the gut-liver axis74,75. The liver and intestine are known to communicate extensively 

through the portal vein and biliary tract75. Pro-inflammatory changes in the liver and intestine due to 

environmental and/or genetic factors have been shown to influence the development of further disease 

states by increasing fibrosis, cirrhosis, and in some cases, carcinoma. There are distinct gut dysbiotic 
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phenotypes expressed in liver-related diseases (e.g. nonalcoholic fatty liver disease (NAFLD)), that lead 

to gut permeability and shifts in levels of certain key metabolites (e.g. butyrate) and leads to further 

disease progression, and even more serious conditions (e.g. Crohn’s Disease, Leaky Gut,  and Cancer)74. 

It has been shown in previous studies that addressing the health of the gut microbiome in this case can 

actually improve the subjects’ disease state and prevent further metabolic damage76.  

In the majority of mammalian species, growth in early life is modulated through growth hormone 

(GH) and insulin-like growth factor (IGF-1) activity by way of paracrine and endocrine cell signaling 

mechanisms, or the somatotropic axis (GH-IGF)26,77,78. In more recent studies, nutritional status and gut 

microbe supplementation alters IGF-1 expression and improves bone growth, suggesting an optimal diet 

and gut microbiome play a large role in early life growth and development79. Unfortunately, most of these 

studies focused mostly on longitudinal growth and ossification of bones, which while highly important, 

still leaves inquiry as to the status of organ, muscle and tissue development77,80. 

The Role of GH, IGF-1 and Perinatal Growth 

Previous studies have suggested a potential link between gestational and postnatal growth 

restriction and abnormal GH-IGF axis activity as a cause for low birth weight and a vital predictor of 

obesity, diabetes and cardiovascular disease in adulthood81–83. Abnormalities in the GH-IGF axis may 

consist of anything from decreased prevalence of certain IGF-1 receptors (IGFR) or binding proteins 

(IGFBP), lack of binding of IGF-1 receptors, or cellular resistance to GH in muscle and/or liver. In the 

case of GH tissue resistance, there is a resulting decrease in IGF-1 release, regardless of the amount of 

circulating GH84. GH is a known anabolic tissue regulator, primarily released by the pituitary gland and 

stimulates IGF-1 release in surrounding tissues. During gestation and postnatal life, insulin, IGF-1, and 

IGFBPs are main regulators of growth and development85–87. Additionally, in postnatal life, IGF-1 
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signaling may have more of an effect on protein, lipid and glucose metabolism87, thus placing it as a 

major focus of the present study. 

Principles of the Methods Used in this Thesis 

The nutritive model used to induce growth restriction is a previously verified protocol that has 

been used repeatedly in various studies in the Neonatal Nutrition and Exercise Research Lab 

(NNERL)6,7,88. This model has been shown to alter the amount of nutrients received from the LP-fed 

mother during gestation, resulting in pups that are significantly growth restricted at PN1 (GUN)6,7,88. 

Additionally, when growth restriction is induced from PN1-21 in previously CON milk fed pups (PUN) 

this results in overall growth restriction of body weight6,7,88, some organs7, as well as reduced skeletal 

muscle mass22,88. The nutritive model used in this thesis is ideal due to its unique ability to restrict nutrient 

availability while avoiding unnecessary stress as seen with intrauterine growth restriction inducing 

hypoxia or via timed separation of the pups from the mother89,90. 

The type of mouse used in this thesis is the Friend Leukemia Virus B NIH (FVB/N) which is a 

multipurpose inbred strain purchased from Charles Rivers Laboratory. FVB/N is well known for its 

ability to produce large litters (an average of 8 or more) and being highly accepting of donor pups from 

other dams compared to the commonly used C57BL/6J strain91–93. Both of these factors allow for ease in 

utilizing the cross-fostering nutritive model and the capability of reaching a significant sample size in a 

very short amount of time. Due to consistently using this strain in various projects there is now a large, 

reproducible index of phenotypic data on growth, body composition, metabolism, skeletal and 

cardiovascular muscle and function making this the ideal strain for this thesis6,7,22,88,94.  

Metabolomics allows for establishing a ‘metabolic profile’ of the collected tissue, organ or cell 

and identify biological markers of disease95–97. In this thesis we utilize the method of Liquid 

Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for our metabolomics platform, which 
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involves separation of molecules by their polarity and mass (more specifically, mass-to-charge ratio), to 

produce mass spectra. The tandem aspect of the method enables fragmentation of molecules into pieces 

and measurement of their ‘tandem mass spectra’ (MS/MS or MS2). These MS/MS patterns are searched 

against structure databases to help in their annotation as biological molecules. The LC-MS/MS data in 

this thesis are analyzed using the Global Natural Products Social Molecular Networking software 

(GNPS)95. Thousands of MS spectra are generated in one set of samples, which would be tedious to 

analyze and compare to data sets in published data, but the highly efficient algorithms of GNPS and its 

hosting on the San Diego Supercomputer (SDSC) greatly increases the speed of data analysis. The 

relative abundance of each metabolite is quantified using mzMine software98, which is linked to GNPS. 

Once the data are uploaded on GNPS, the metabolites are identified and labelled according to their signal 

frequency, molecular weight and chemical structure. Molecular networks are built that help visualize 

structure similarity in MS/MS fragmentation patters greatly aiding data visualization and analysis. The 

GNPS platform is used throughout this thesis as a means to detect unique metabolite features, annotate 

them by comparing to chemical structure databases and globally compare metabolomics profiles between 

samples. 

In summary, many studies have shown promising results towards uncovering mechanisms behind 

disease onset in the growth restricted population20,99–101. The gut microbiome regulates various dynamic 

metabolic processes in the body and has become an important area of study in understanding human 

disease102–104. There are a few studies showing that there could be a vital connection between the gut 

microbiome and the growth restricted population26,76,105, however this area of research is still in its early 

stages and leaves much to still be uncovered in future work. 
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INTRODUCTION (Manuscript) 

 According to the World Health Organization, as of 2018 growth restriction induced by poor 

nutrition in utero and postnatal life affected more than 151 million children globally under the age of 5 

years106. Growth restricted youth have an elevated risk for chronic disease in adulthood107–109. Even with 

implemented refeeding, the growth restricted population is predisposed to developing cardiovascular 

disease, type II diabetes, sarcopenia and metabolic syndrome in adulthood110–112. Growth restriction and 

chronic disease are common in poorer nations, making the need for cost-effective interventions a major 

need to improve global health. In order to develop those treatment strategies, the scientific community 

needs to better understand the mechanisms behind early life growth restriction and chronic disease in 

adulthood. 

The mammalian gut microbiome is composed of trillions of Bacteria, yeast, phage, and 

Archaea52,113–115. Bacteria that live in the gut contain many different phyla and a multitude of species, 

many of which are still unknown. Microbes in the gut have myriad functions, some of which are 

beneficial to the host including, but not limited to, enhancing nutrient absorption, improving digestion, 

regulating immune responses, as well as altering enzymatic and cell signaling activity in the gut and 

liver51,104,116,117. The gut microbiome has been studied for many years as a potential marker for disease 

onset as well as a way to prevent or treat certain diseases13,76,118. Some studies have even shown 

remarkable results from transplanting healthy microbes into diseased patients76,119,120; although these 

studies are still in their earlier stages, this sets a strong precedent that the microbiome is nearly another 

‘organ’ that should be continued to be explored to better understand human pathology and disease113.  

The microbiota’s fundamental role in human metabolism makes it especially important to the 

development of disease caused by early life growth restriction51,121,122. Microbiome diversity is affected by 

host genetics, environment, early microbial exposure and diet52.  The infant gut microbiome is more 
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variable than adults53. At birth, the microbiome is initially highly sensitive to environmental factors123,124, 

maternal diet125–127, gestational age128 and low birth weight129. At approximately 2-3 years of age, the gut 

microbiome becomes more stable and begins to resemble that of an adult52. With the wide variety of 

external influences that shape the microbiome that occur in early life, it is likely a reduction in nutrient 

availability would also have lasting effects on the gut microbiome. It has been speculated that the gut 

microbiome, like other organs and cellular processes, may be stunted in growth restricted individuals66. A 

recent study by Schwarzer et al. elucidated potential mechanisms by which the gut microbiome can 

influence longitudinal growth26. When germ free mice were given a specific strain of Lactobacillus, 

growth hormone and insulin-like growth factor (IGF-1) signaling improved, suggesting that certain gut 

microbes have the ability to induce growth by interacting with the GH-IGF1 axis13. Additionally, a 

separate study by Blanton et al in 2016 showed that when supplementing bacteria from a healthy subject 

into a growth-restricted subject, their health markers improved, which highlights the gut microbiome as a 

vital subject to study in this population76. Growth restriction induced via undernutrition is associated with 

various vitamin and nutrient deficiencies, especially B-Vitamins130–132. Recent studies suggest that B-

Vitamins that are produced by the gut microbiome126,130 may also play a key role in regulating the GH-

IGF-1 axis133. Thus, alterations to both the microbial community and the metabolites they produce may 

alter growth by reducing IGF-1 signaling as well as other potential downstream factors8–11.  

The purpose of this thesis was to determine the composition of the murine gut microbiome and 

metabolome in both healthy and growth restricted cohorts across the lifespan. We hypothesized that 

growth restriction induced via undernutrition will significantly alter the microbiome and metabolome 

across the lifespan compared to healthy controls (CON). Both gestational (GUN) and postnatally (PUN) 

undernourished mice will be used to elucidate how two different types of growth restriction might affect 

the microbiome compared to CON. Additionally, we hypothesized growth restriction will lead to 

decreased muscle and hepatic IGF-1 expression in PUN and GUN mice compared to CON. 
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METHODS 

 The present investigation was approved by the Institutional Animal Care and Use Committee at 

Michigan State University and conducted according to the guide for the care and use of laboratory 

animals. FVB strain mice were obtained from Charles Rivers Laboratories (Wilmington, MA), and had 

access to water and food ad libitum. Cages were kept in a vivarium maintained at 18-21°C with automatic 

12-hour light/dark cycles to minimize stress and optimize environmental conditions. 

Nutritive Model 

Females were placed onto either a low-protein (LP) diet (8% protein; Research Diets, New 

Brunswick, NJ, USA) or an isocaloric control diet (CON; 20% protein; Research Diets, New Brunswick, 

NJ, USA) two weeks prior to breeding. The male mice were then placed into to the female cages for a 24-

hour period, allowing all pups to be born at approximately the same time.  

At birth, (PN1) pups were pooled, sexed and then dispersed equally to one of three experimental 

litter groups (4 males, 4 females per litter). Pups were weighed to ensure even distribution and then given 

a small tattoo on their paw for identification. Control (CON) pups were born from dams fed a 20% 

protein diet and then reassigned (cross-fostered) to a different dam that was also fed the CON diet. 

Gestationally undernourished pups (GUN) were growth restricted through feeding the dam the LP diet, 

and then cross-fostered at PN1 to mothers fed the CON diet. Postnatally undernourished pups (PUN) 

were born from mothers fed the CON diet during gestation and then cross-fostered at PN1 to dams fed the 

LP diet. Due to natural occurrences, donor pups were added to maintain litter size, but were not used for 

further testing in this study.  At PN21, all three experimental diet groups were weaned onto the fully 

nourished CON diet (Fig. 1). Weights were taken twice per week until PN21, and once per week until 

PN80.  
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Figure 1: Cross-Fostering Nutritive Model A nutritive model was created to induce growth restriction 
during gestation and postnatal life (first 21 days of life, lactation). Females are placed on either a CON or 
LP diet prior to breeding. At birth (PN1) LP pups are cross-fostered or reassigned to a mother fed the 
CON diet and vice versa. The CON group is fed the same CON throughout gestation until adulthood 
(PN80). 
 

Sample Collection  

At PN21 and PN80, mice were anesthetized using 1% vaporized isoflurane followed by cervical 

dislocation. All hindlegs, gastrocnemius, cecum and livers were taken at PN21 and then again in 

littermates at PN80. The hindlegs were separated from the body and gastrocnemius muscles were 

surgically removed and placed on dry ice. The remaining tissue was removed from the tibia and then 

length was measured using Vernier calipers on each leg. Average tibia length was used as a surrogate for 

body composition and longitudinal growth134. After the hindlegs and gastrocnemius were removed, the 

liver and cecum were then taken out using tweezers sterilized with 70% ethanol and then placed on dry 

ice. All tissues after dissection were removed from dry ice and placed into the -80°C freezer for later use 

in western blotting and multi-omics analysis. 

Created with BioRender.com 
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Fecal samples were collected from the live mice weekly across the lifespan from PN18-PN80. To 

collect the sample, the mouse was first placed in a sterile container for up to 5 min. Once a pellet was left 

in the container, the mouse was returned to its respective cage. The samples were collected using tweezers 

sterilized with 70% ethanol and placed into a clean centrifuge tube directly on dry ice and stored in the -

80°C freezer.  

Microbiome Data Generation 

Cecum and fecal samples were first diluted with 300 uL of ultra-pure water. Three 2mm steel 

homogenization beads were added, and the mixture was placed into the Beadruptor at a frequency of 20 

Hz for 5 minutes. Then, DNA was isolated from the fecal and cecum samples using the Qiagen Powersoil 

DNAâ extraction kits according to the manufacturer’s instructions. Extracted DNA was subjected to 

PCR amplification of the bacterial 16S rRNA gene targeting the V4 region according to protocols 

outlined in the Earth Microbiome Project135. The amplified DNA were sequenced in the MSU RTSF 

genomics core on an Illumina® MiSeq® instrument according to their established 16S rRNA Illumina® 

sequencing pipeline. Quality controlled FASTQ files were demultiplexed and analyzed using the Qiita 

software136. Qiita is based on the Qiime bioinformatics pipeline and includes a deblurring step to identify 

unique sequences representing different bacterial amplicon sequence variants (ASVs). Microbial 

physiological functions were outlines for each significant metabolite via established literature in PubMed. 
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Fecal, Cecum and Liver Metabolomics 

Tissue homogenates were extracted in ice cold 70% methanol overnight at 4°C and then pelleted 

in a benchtop centrifuge at 10,000 x g. Methanol extracts were analyzed by LC-MS/MS mass 

spectrometry with data dependent fragmentation mode using a Thermo® QExactive mass spectrometer. 

Briefly, metabolites were separated on a Waters® Aquity® C18-Reverse phase column with a 12 min 

chromatography run using a LC-MS grade Water: Acetonitrile gradient from 2% to 100%. Eluent was 

then injected in the mass spectrometer with electrospray ionization and MS1 and MS2 spectra captured for 

10 mins of the run. During the LC-MS run an internal standard was infused with the extraction solvent 

(phenol red dye) and a quality control mix of 6 known compounds was injected after every 10 samples. 

The metabolomics data were converted to the .mzXML format and area-under-curve abundance of each 

feature was calculated using the mzMine 2 software98. The mass spec files were uploaded to GNPS, and 

library searching and molecular networking were performed using parameters as previously 

described95,137. Metabolic physiological functions were outlines for each significant metabolite via 

established literature in PubMed. 

Western Blot Procedure – Near-Infrared (NIR) Quantification 

To evaluate liver and GS for growth factors, a Near-Infrared (NIR) Western blot protocol was 

utilized, with IGF-1 as the primary target protein. Proteins were extracted with the application of a lysis 

buffer (composed of 9.9 mL H20; 0.4 g Chaps, 100 µL Tris 7.5, 1 protease inhibitor pellet) for 15 minutes 

on ice, followed by Beadruptor tissue homogenization and centrifugation. A Bradford assay138 was used 

to determine protein concentration and allow for equal loading of samples onto the SDS PAGE.   

Following SDS PAGE electrophoresis, proteins were transferred to PVDF membranes. After 

protein transfer, the membranes were dried on filter paper at room temperature and then re-wetted with 

Methanol, followed by the Revert Total Protein Stain reagent (Li-Cor Biosciences). Membranes were 
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then rinsed in Revert Wash reagent and imaged via ImageStudio software (Li-Cor Biosciences). Then, all 

membranes were de-stained and then blocked for 1 hour in Intercept Blocking Buffer (Li-Cor). Following 

the blocking stage, all membranes were incubated with an IGF-1 primary antibody at a 1:2500 ratio 

(Abcam, Cambridge, Ma) diluted in 5% BSA+TBST overnight at 4°C. 

Following overnight incubation, membranes were rinsed in Tris-buffered saline with tween 

(TBST), and then incubated in 800CW Goat Anti-Rabbit secondary antibody (Li-cor Biosciences) at a 

1:15000 ratio for one hour diluted in Intercept Blocking Buffer + 0.01% SDS and 0.02% Tween 20. The 

membranes were then rinsed again in TBST and then TBS to remove residual Tween 20. Near-Infrared 

(NIR) images are generated using ImageStudio (Li-cor Biosciences) and analyzed via Empiria (Li-cor 

Biosciences). Normalized signals for the target protein as well as its respective total protein lane were 

generated and calculated via Empiria138–141. 

Statistics 

For the purpose of this study, the primary hypotheses and aims were focused on determining 

differences in the microbiome, metabolome, growth markers and IGF-1 between diet groups (GUN, PUN 

and CON) over time (PN21-PN80). Due to there being no preliminary data on the effect size of growth 

restriction on -omics data using this mouse model, a reasonable sample size of 5 per diet group and age 

was chosen as per recommendations suggested in recent reviews of best practices of microbiome and 

metabolomic study design and analysis142,143. A total of 102 mice were generated for this investigation 

allowing for a cohort of mice evaluated at PN21 (CON Female N=9, CON Male N=9, GUN Female N=7, 

GUN Male N=7, PUN Female N=7, PUN Male N=5) and PN80 (CON Female N=13, CON Male N=7, 

GUN Female N=12, GUN Male N=7, PUN Female N=7, PUN Male N=12.  Initially, data analysis 

indicated atypical growth responses for one batch of mice and as such was removed from the analysis. 

The atypical batch consisted of 37 mice reducing total sample size to 67 mice. Additionally, due to the 
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unforeseen loss in sample, sexes were pooled in order to yield appropriate sample size for each diet 

group. The resulting sample size was as follows: 

Measurements Across the lifespan (PN18-80): 
- Fecal Microbiome/Metabolome: CON N=5, GUN N=6, PUN N=6 
 
PN21 Measurements: 

- Growth: CON N=12, GUN N=9, PUN N=7 
- IGF-1: CON N=6, GUN N=7, PUN N=5 
- Cecum Microbiome/Metabolome: CON N=4, GUN N=6, PUN N=5 
- Liver Metabolome: CON N=12, GUN N=6, PUN N=7 

PN80 Measurements: 
- Growth: CON N=13, GUN N=10, PUN  N=12 
- IGF-1: CON N=9, GUN N=5, PUN N=8  
- Cecum Microbiome/Metabolome: CON N=5, GUN N=6, PUN N=6 
- Liver Metabolome: CON N=13, GUN N=9, PUN N=11 

 
 

Microbiome and metabolome data were both normalized to relative abundance of either total 

microbial reads (microbiome) or total ion current (metabolome). Microbiome analysis was first performed 

by analyzing the overall diversity (alpha-diversity) between diet groups in Qiita. Faith’s Index of 

Phylogenetic Diversity (FD) was used to test the alpha-diversity of the microbiome between GUN, PUN 

and CON groups using a Kruskal-Wallis and post-hoc Wilcoxon Rank-Sum Test in Qiita. Beta-diversity 

was evaluated using data from taxonomic level 7 (ASV-7). The weighted UniFrac distance was calculated 

between all samples and Permutational Multivariate Analysis of Variance (PERMANOVA) was used to 

test for statistically significant clustering by treatment group using the microbial 16S rRNA gene 

sequences of each sample at each time point. Beta-diversity was visualized by projecting the distance 

matrix in 3 dimensions using Principal Coordinate Analysis Plots (PCoA plot) in Emperor. The 

dissimilarity and distance matrices used to create the PCoA plot allow one to see similarities (clustering) 

and differences (separation) between each sample. To further identify and evaluate the taxonomic profile 

of the microbiome between treatment groups, the data was extracted from Qiita and a Random Forest 

(RF) machine learning classification algorithm was run in R-Studio with the randomForest package to 

determine the strength of different sample characteristics on the overall microbiome data. This model was 
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run with 5000 trees and no set seed. Out-of-bag error rates were used to assess overall model 

classification strength and Variable Importance Plots (VIP) were generated to identify the strongest 

classifiers. The VIP, in this case, is a list of microbes that are assigned a score of Mean Decrease 

Accuracy (MDA) for its contribution to the classification. The VIP is then sorted from highest to lowest 

in excel and a raw metadata list of the microbes is created. There are currently no foundational guidelines 

set for how low of an MDA score is worth analyzing, however, for the purposes of this thesis and to 

eliminate false positives, a minimum MDA of 5.0 was used. The microbial relative abundances were then 

subjected to linear mixed model analysis (LMM) in SAS comparing treatment groups with time as a 

covariate. A Bonferroni’s Correction for p-value was used to lower false discovery rate and any 

remaining microbes were then used for further analysis (fecal alpha level <0.0015; cecum alpha level 

<0.0005). Further longitudinal analysis was performed on the statistically significant microbes via linear 

regression and Analysis of Covariance (ANCOVA) of slope differences between treatment groups with 

time (in weeks) as a covariate (alpha 0.05).  

Metabolomics statistical analysis was performed using a Bray-Curtis distance metric instead of 

the UniFrac distance since it is solely a phylogenetic-based metric. Once the metadata list of metabolites 

from the VIP was generated, the data was then normalized to total abundance for each metabolite and ran 

in SAS, where it was log transformed then subjected to LMM testing (alpha 0.05). For the liver data, that 

did not contain a linear time component, differences between treatment groups were tested with a 

Kruskal-Wallis test and post-hoc Wilcoxon-rank sum tests at either PN21 or PN80. 

Phenotypic growth markers (body weight, muscle weight, tibia length) were standardized to total 

body weight and analyzed using repeated measures ANOVA to analyze differences between treatment 

groups in JMP Pro 14.0 (alpha 0.05) and a 2-way ANOVA and subsequent post-hoc Tukey's to examine 

differences at each time point. 
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RESULTS 

Evaluation of Phenotypic Markers of Growth 

 

Longitudinal Growth Rate Analysis 

 
 

Longitudinal body weight analyses (Fig. 2) was performed via a repeated measures ANOVA 

showing an overall diet effect (p<0.001). Post-hoc Tukey’s analysis revealed that PUN mice were overall 

significantly lower in body weight over time compared to GUN and CON (p<0.001). GUN was not 

overall significantly smaller over time compared to CON, however, a secondary 2-way ANOVA and 

post-hoc Tukey’s revealed significant changes in body weight at specific timepoints. GUN was initially 

 

 
 
Figure 2: Growth of PUN, GUN and CON mice from birth (PN1) to adulthood (PN80). 
Longitudinal body weight analysis from PN1-PN80 of CON (n=25), GUN (n=19), and PUN (n=19) 
mice via a repeated measures ANOVA resulted in an overall diet effect (p<0.001). Post-hoc Tukey’s 
analysis revealed that PUN mice were significantly lower in body weight across the lifespan 
(p<0.001). There was no overall difference between GUN and CON over time, however, a 2-way 
ANOVA and post-hoc Tukey’s was also performed to examine differences at each time point, which 
revealed a distinct decrease in weight of PUN from GUN and CON at PN4, which remained lower 
until adulthood (PN80). GUN mice remained similar in weight to CON from PN1-PN14, decreases in 
weight from PN18-28, and then subsequently spikes in weight from PN35-42 (2-fold increase), and 
finally normalizes to CON weights until PN80. 
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similar to CON from PN1-PN14, and then significantly decreased from PN18-PN28 (p=0.029). After 

PN28, GUN experienced an increase in weight gain (2-fold increase from PN35 to PN42) which then 

normalized to similar weights to CON from PN35-PN80. Additionally, PUN was initially a similar 

weight at PN1 to the other diet groups, but then was significantly lower than GUN (p=0.001) and CON 

(p=0.0002) at PN4 and continued to stay significantly lower until PN80.  

Gastrocnemius (GS) weights were also analyzed with a 2-way ANOVA and post-hoc Tukey's 

(fig. 3), revealing a significant diet effect (p=0.0008), showing CON GS were overall larger than GUN 

(p=0.007) and PUN (p=0.037) over time. Tibia lengths and liver weights were also analyzed and resulted 

in overall age effects (p<0.001) with tibias (p<0.001) and livers (<0.001) at PN21 being significantly 

smaller than at PN80. Tibias and livers were not significantly different between diet groups. There were 

no other diet or diet*age effects found.   

 
 
 

Figure 3: Overall Comparison of GS weights between PUN, GUN and CON mice at PN21 
and PN80. Gastrocnemius (GS) weights were also analyzed with a 2-way ANOVA and post-hoc 
Tukey's (PN21: CON n=12, GUN n=9, PUN n=7; PN80: CON n=13, GUN n=10, PUN n=12) 
revealing a significant overall diet effect (p=0.0008) with CON GS being primarily overall larger 
than GUN (p=0.0014) and PUN (p=0.0061). There was a significant age effect found (p<0.0001) 
showing that GS were overall larger at PN80 within treatment groups, however this is to be 
expected. There were no significant age*diet effects found. 
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Western Blot Analyses of Hepatic and Muscular IGF-1 Expression 
 

 
 
NIR Total Protein Stain Western blot (WB) data, analyzed via a 2-way ANOVA, revealed an 

overall diet*age effect (p=0.0005) in liver IGF-1, further analyzed via a post-hoc Tukey’s test, which 

showed significantly low expression of PUN (p<0.001) and GUN (p=0.0012) at PN21 compared to CON 

(Fig. 4). PUN trended lower in hepatic IGF-1 expression in comparison to GUN at PN21 but the values 

were not significantly different (p>0.05). Additionally, there was a significant overall age effect showing 

liver IGF-1 was expressed less at PN80 versus PN21 (p=0.0002). There were no differences found 

between diet groups at PN80. 

In addition to testing liver samples, IGF-1 was also tested via WB in the gastrocnemius muscle 

(GS) between diet groups over time, which revealed an overall deficit of expression in PUN (p=0.037) 

and GUN (p=0.007) compared to CON. There was no significant age effect found in the GS (Fig. 5). 

 

Figure 4: Hepatic IGF-1 Expression in PUN, GUN and CON mice at PN21 and PN80. Hepatic IGF-1 
was analyzed via a 2-way ANOVA and post-hoc Tukey's test at PN21 (CON n=6, GUN n=7, PUN n=5) 
and PN80 (CON n=9, GUN n=5, PUN n=8). The ANOVA resulted in an overall significant difference 
between diet groups over time (p=0.0005). Post-hoc test results revealed a significant decrease in PUN 
(p<0.001) and GUN (p=0.0012) Liver IGF-1 expression compared to CON at PN21. Signals were 
quantified from a sum of two IGF-1 isoforms: IGF-1A (17 kDa) and IGF-1B (23 kDa) to represent total 
IGF-1 expression. There was a significant overall age effect showing liver IGF-1 was expressed less at 
PN80 versus PN21 (p=0.0002). There were no significant diet effects found at PN80, thus the represented 
blot shown above is from PN21. The histogram (right) represents the overall normalized signal expression 
in each diet group. The error bars are representative of standard error. 
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Fecal Microbiome – Alpha-Diversity 

Analysis of Multi-Omics Data from Fecal Samples 

Using a linear mixed-effects model with time (in weeks) as a covariate, the overall phylogenetic 

alpha-diversity of the microbiome of the fecal samples was highest in the PUN group (p=0.011) 

compared to GUN and CON from weeks 1 through 5 (Fig. 6). The GUN group had the second highest 

alpha-diversity but was not significantly different compared to CON (p=0.07). To determine alterations in 

alpha-diversity over the lifespan, a linear regression was used, and slopes were calculated, resulting in 

CON (m=0.83) having the largest increase in alpha-diversity over time, followed by PUN (m=0.31) and 

GUN (m=0.29). A secondary ANCOVA test, which compares slopes, confirmed PUN was significantly 

Figure 5: IGF-1 Expression in GS muscle in PUN, GUN and CON mice. IGF-1 signal was 
analyzed via a 2-way ANOVA (PN21: CON n=6, GUN n=7, PUN n=5; PN80: CON n=9, 
GUN n=5, PUN n=8) which revealed an overall diet effect (p=0.0061). Post-hoc Tukey's 
analysis showed a significant decrease in IGF-1 expression in PUN (p=0.037) and GUN 
(p=0.007) GS compared to CON. There was no significant diet*age effect found, thus PN21 
and PN80 were combined in the graph and blot shown above. Additionally, only one isoform 
of IGF-1 was found in the GS samples as compared to the liver (IGF-1A; kDa 17). The 
histogram (right) represents the overall normalized signal expression in each diet group. The 
error bars are representative of standard error. 



 24 

different from CON (ANCOVA p=0.0028, Tukey’s HSD PUN-CON p=0.036). There was no significant 

difference found in slopes between PUN and GUN. 

 

Fecal Microbiome – Beta Diversity 

Beta-diversity analysis compared microbiome profile differences between CON, GUN and PUN 

from weeks 1 through 5 by calculating the UniFrac distances and testing for clustering by groups using a 

PERMANOVA test. All three diet groups were found to be significantly different from each other (Fig. 4: 

p=0.001). The pseudo-F for the pairwise comparison of PUN and CON was shown to be the highest 

(20.39) was the highest compared to other pairwise comparisons tested followed by PUN and GUN 

Figure 6: Alpha-Diversity of Fecal Samples from weeks 1-5. Linear regression analysis of the 
Faith’s Phylogenetic diversity (FD) through weeks 1-5 with LMM (overall treatment group 
differences) and ANCOVA test results (slope differences). PUN had the highest alpha-diversity over 
time (p=0.011) and the PUN and CON slopes were different from each other (p=0.036). Shaded colors 
in the plot represent the 95% confidence intervals with the main colored line being the mean FD for 
each diet group. The slope for each group is as follows: PUN (m=0.31), GUN (m=0.29), CON 
(m=0.83), which shows there is the strongest increase in diversity over time in CON compared to 
GUN and PUN, which changed little through time. 
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(18.86). The low pseudo-F value between CON and GUN (2.84) indicates there are very few differences 

between their beta-diversities. The beta-diversity relationships were visualized using a PCoA plot (Fig. 7).  

 

To further identify bacterial OTUs that contribute most to between treatment groups, a random 

forests (RF) machine-learning classification was run on the treatment group variable, testing how closely 

the microbiome data reflected the treatment categories category (PUN, GUN, or CON). The out-of-bag 

error rate (OOB) of the RF model found strong classification between treatment groups (OOB: 14.1%; 

Fig. 5) indicating robust grouping of treatment groups based on the microbial profiles. The classification 

was especially strong for the PUN group, with 0% error rate, while CON and GUN had higher error rates 

(CON: 0.32%; GUN: 0.13%; Table within Fig. 7). The variable Importance Plot (VIP; Fig. 8) listed the 

most significantly different microbes between diet groups, as denoted by mean decrease accuracy (MDA; 

higher indicates stronger level of differences). To eliminate false discovery rate, the minimum MDA used 

Figure 7: Weighted UniFrac PCoA Plot of Fecal Microbiome. PCoA analysis of the Weighted 
UniFrac distances between CON (n=25), GUN (n=30), and PUN (n=30) from weeks 1-5 displayed 
significant differences, via separation and subsequent clustering of samples between all three diet 
groups (PERMANOVA; p=0.001) over time. The table shows the pairwise statistical comparisons. 
The pseudo-F value between PUN and CON (20.39) was the highest compared to other pairwise 
comparisons tested, indicating these two groups having the strongest differences. 
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for further analysis was set to a minimum score of 5.0. A Bonferroni’s Correction for p-value (alpha 

<0.0015) was used to filter the LMM results from this list, leading to the top 6 microbes (Fig. 9)  

 

 

 

 

 

 

 

Figure 8: Microbiome Taxonomic Analysis – Variable Importance Plot. The taxonomic analysis 
via RF revealed the top 45 most diverse fecal microbes in fecal samples collected in CON (n=25), 
GUN (n=30), and PUN (n=30) mice from weeks 1 through 5 (sample size in mice: CON (n=5), GUN 
(n=6), and PUN (n=6) mice with 5 samples collected per mouse). In order to limit false discovery rate, 
the minimum MDA used for further analysis was set to 5.0. A Bonferroni’s Correction for p-value 
(alpha <0.0015) was used to filter the LMM results from this list, leading to the top 6 microbes (Fig. 6). 
An OOB error classification is shown in the confusion matrix in the lower right (14.12%). 
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Individual Microbe Changes Between Treatment Groups and Through Time 

 

LMM analysis of fecal samples across the lifespan revealed PUN having a significantly higher 

abundance of specific bacteria compared to GUN and CON over time including: Bacteroides uniformis 

(p=2.46 e-14), B. acidifaciens (p=2e-16), B. ovatus (p=2.81e-14), Bifidobacterium sp. (p=4.81e-05), and 

Clostridium sacchrogumia (p=1.96e-05). An amplified sequence variant belonging to the family 

Rikenellaceae (f_Rikenellaceae, p=8.21e-13) was the only microbe that was significantly lower in 

abundance in the PUN group over time compared to GUN and CON. These microbes were not significant 

between GUN and CON over time (Fig. 9). Additionally, there were no microbes present that were 

 

Figure 9: Linear regression analysis of normalized abundance of bacterial operational 
taxonomic units (OTUs). Bacterial abundances were analyzed using a linear regression over time 
(weeks 1-5) in CON (n=5), GUN (n=6), and PUN (n=6) mice. The PUN diet group had a 
significantly higher abundance of Bacteroides uniformis (A, p=2.46 e-14), Bacteroides ovatus (B, 
p=2.81 e-14), Bacteroides acidifaciens (D, p<2.0 e-16), Bifidobacterium sp. (E, p=4.81 e-05) and 
Clostridium saccharogumia (F, p=1.96 e-05) as compared  to CON and GUN. Rikenellaceae was the 
only microbe that showed a significantly low abundance in the PUN group vs. CON and GUN (C, 
p=8.21 e-13). No significant differences were found between GUN and CON over time. Shaded colors 
in the plot represent the 95% confidence intervals with the main colored line being the mean 
microbial abundance for each diet group.  
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significantly different between the CON group only compared to PUN and GUN and vise versa. The 

majority of bacterial species found were carbohydrate fermenters and did not recover in adulthood (Table 

1).  

 

Table 1: Fecal Microbial Analysis between PUN, GUN, and CON over weeks 1 through 5. 

Fecal Microbe data was further analyzed to determine the recovery rate of microbial abundance into 
adulthood (week 5), which revealed undernutrition induced growth restriction caused permanent 
disruption to the PUN gut microbiome from young adolescence (week 1) into adulthood.  
 

 

 

 

 

 

Microbes Recovered(Y/N) Physiological Relevance 

B. uniformis N Degrades flavonoids; highest glycolytic fermenting 
capacity compared to other Bacteroides species; Has been 
shown to improve insulin sensitivity; Bile-resistant; 
produces acetic, lactic, and propionic acids; produces bile 
salt hydrolase 
 

B. acidifaciens N Carbohydrate fermenter; Degrades flavonoids; Bile-
resistant; produces acetic, lactic, and propionic acids; 
produces bile salt hydrolase 
 

B. ovatus N Carbohydrate fermenter; Degrades flavonoids; Bile-
resistant; produces acetic, lactic, and propionic acids; 
produces bile salt hydrolase 
 

Bifidobacterium sp. N Carbohydrate fermenter – primarily sugars in breastmilk; 
Most abundant in postnatal life; Seen in low but static 
abundance in adult healthy subjects 
 

C. saccharogumia N Converts plant ligands via fermentation into 
phytoestrogens: Enterodiol and Enterolactone 
 

f_Rikenellaceae N Related to Bacteroides but is bile-resistant; associated with 
leptin-resistance, obesity and type 2 diabetes  
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Cecum Microbiome – Alpha-Diversity 

 

A LMM of the cecum samples revealed a significantly lower alpha-diversity at PN21 in each diet 

group which recovered at PN80 (p=0.0112; Fig. 10), this was only observed within the treatment group 

itself (i.e. PUN at PN21 vs. PUN at PN80) between each diet group over time. 

 

 

Cecum Microbiome – Beta-diversity 

 

A PERMANOVA test on treatment group was run against the weighted UniFrac distances 

between samples collected at PN21 and PN80, due to the significant changes in the microbiome observed 

between these dates. The PUN group had significantly different beta-diversity at PN21 (p=0.005; pseudo-

F=10.65) and PN80 (p=0.012; pseudo-F=2.69) compared to CON and GUN (p=0.005; pseudo-F=10.65) 

and also at PN80 (p=0.012; pseudo-F=2.69). PUN had significantly different beta-diversity from GUN at 

 

Figure 10: Cecum Alpha-Diversity Faith’s Phylogenetic Diversity Metric. LMM testing 
of the cecum samples in each diet at PN21 (CON n=4, GUN n=6 and PUN n=5) and PN80 
(CON n=5, GUN n=6 and PUN n=6) revealed significantly lower alpha-diversity at PN21 in 
each treatment group that increases at PN80 (*PN21 vs. PN80: p=0.0112). No significant 
differences were found between diet groups over time. 
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PN80 (p=0.002; pseudo-F=5.871). No significant differences were found between GUN and CON over 

time (Fig. 11). A RF model was then generated on PN21 and PN80 separately, and a VIP was created of 

microbes with an MDA of 5.0 or higher with a Bonferoni correction for alpha level set at 0.001 to 

eliminate possibility of false discovery, leaving three primary microbes seen in Fig. 11 below.  

 

 

 

 
 
Figure 11: Cecum Microbiome Beta-diversity - Weighted UniFrac. This PCoA is displaying 
the entire cecum data set over two time points, at PN21 [11A; PUN (n=5), GUN (n=6), CON 
(n=4)] and then at PN80 [11B; PUN (n=6), GUN (n=6), CON (n=5)]. Significant differences in 
Beta-diversity were found between CON and PUN at PN21 (p=0.005) and also at PN80 (p=0.012) 
as well as between PUN and GUN at PN80 (p=0.002). No significant differences were found 
between GUN and CON over time.  

 



 31 

Individual Cecal Microbe Changes Between Treatment Groups Over Time 

Cecum taxonomic analysis showed significantly decreased abundance in Rikenellaceae in PUN 

(p=0.004) at PN21 compared to CON. Rikenellaceae remained lower in PUN compared to GUN and 

CON at PN80, although this finding was not statistically significant. At PN80, B. acidifaciens (p=0.0003), 

and B. uniformis (p=0.0005) were significantly higher in abundance compared to CON (Fig. 13/Table 2). 

All statistically significant microbes found in the cecum taxonomic analysis reflected those found in the 

fecal samples, in that there was higher sugar-fermenting Bacteroides and lower Rikenellaceae in PUN 

compared to GUN and CON. These microbes aside from Rikenellaceae remained different from CON 

through adulthood (Table 2).

 

 

 

 

Figure 12: VarImp Plot of Cecum Samples at PN21. Taxonomic analysis for the cecum 
samples followed the same protocol as mentioned prior but instead only tested timepoints 
PN21 (Fig. 9A), and PN80 (Fig. 9B) to avoid euthanizing more than necessary in order to 
collect samples. The majority of microbes listed in the cecum samples were replicates from the 
ones found in the fecal samples denoting interesting similarities between fecal and cecum 
microbial abundances. 
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Table 2: Cecum Microbes between PUN, GUN, and CON at PN21 and PN80. 

Analysis of this data set revealed microbes that were overall significantly affected by undernutrition 
across the lifespan and did not recover in adulthood: B. acidifaciens (PUN p=5.32 E-05), and B. 
uniformis (PUN p=0.0016) compared to CON. Rikenellaceae was significantly decreased in PUN 
(p=0.0036) compared to CON. 
 
 
 

 

 

 

 

 

Cecum 
Microbes 

Recovered(Y/N) Physiological Relevance 

B. acidifaciens N Ferments carbohydrate into SCFAs; Bile-resistant; 
produces bile salt hydrolase 
 

B. uniformis N Ferments carbohydrate into SCFAs; Bile-resistant; 
produces bile salt hydrolase 
 

f_Rikenellaceae Y Related to Bacteroides but is bile-resistant; associated 
with leptin-resistance, obesity and type 2 diabetes 
 

 
Figure 13: Microbial Boxplots of Cecum Samples between CON, GUN and PUN from PN21 
and PN80. Postnatal undernutrition caused significantly increased abundance of B. acidifaciens 
(p=0.0003), and B. uniformis (p=0.0005) compared to CON at PN80. The primary microbial 
difference observed at PN21 that recovered at PN80 was a significant decrease in Rikenellaceae in 
PUN (p=0.004) compared to CON. (p-value notation: *<0.05, **<0.01, ***<0.0001. 
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Liver Metabolomics 

 

A random forest classification model was built on treatment group for both the PN21 and PN80 

metabolomic data separately. Neither dataset showed strong overall signatures by treatment group (error 

rate PN21=41.38%, error rate PN80 = 51.43%). However, the VIP plots from these models still identified 

known metabolites separating the two groups.  

Majority of liver metabolites were significantly affected by postnatal growth restriction (PUN) as 

compared to gestational growth restriction (GUN). PUN had abnormal deficits compared to CON at PN21 

in Cholic Acid (p=0.001), Muricholic Acid (p<0.001), Glycocholic Acid (p=0.03), Taurocholic Acid 

(p=0.0079), Riboflavin (p=0.003), and Total EAAs: Methionine (p=0.0018), Phenylalanine (p=0.0015), 

and Tyrosine (p=0.0041). Two other EAAs, Histidine and Tryptophan were notably low in PUN at PN21, 

but the differences were not significant between treatment groups (p>0.05).  

Alternatively, PUN had abnormally high levels of Oleoyl L-Carnitine (also known as Oleoyl 

carnitine; p=0.0038), Palmitoyl carnitine (p=0.0096)  and Biliverdin (p=0.020), but these recovered at 

PN80. Corticosterone was the only metabolite to be significantly increased in abundance in GUN 

compared to PUN and CON at PN21 (p=0.043). Dehydroepiandrosterone (DHEA) abundance was not 

present in any diet groups at PN21 due to it not being endogenously produced yet. DHEA remained 

significantly low in PUN at PN80 compared to GUN and CON (p=0.018); (Fig. 14; Table 3). In light of 

the strong bile acid signatures, the total bile acids in the entire dataset were summed and compared, 

showing that PUN and GUN had decreased total bile acids in the liver (p=0.0064, p=0.034, respectively). 
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Table 3: Liver Metabolites between PUN, GUN, and CON at PN21 and PN80. 

Majority of liver metabolites were significantly affected by postnatal growth restriction (PUN) as 
compared to gestational growth restriction (GUN). PUN had abnormal deficits compared to CON at PN21 
in Cholic Acid (p=0.001), Muricholic Acid (p<0.001), Glycocholic Acid (p=0.03), Taurocholic Acid 
(p=0.0079), Total Bile Acids (sum of primary and secondary; p=0.0064), Riboflavin (p=0.003), and Total 
EAAs: Methionine (p=0.0018), Phenylalanine (p=0.0015), and Tyrosine (p=0.0041). Two other EAAs, 
Histidine and Tryptophan were notably low in PUN at PN21, but the differences were not significant 
between treatment groups (p>0.05). Alternatively, PUN had abnormally high levels of Oleoyl L-Carnitine 
(p=0.0038) and Palmitoyl carnitine (p=0.0096)  and Biliverdin (p=0.020), but these recovered at PN80. 
GUN at PN21 had abnormally low total bile acids (p=0.0384) compared to CON and abnormally high 
Corticosterone compared to PUN (p=0.04) and CON (p=0.043). DHEA remained significantly low in 
PUN at PN80 compared to GUN and CON (p=0.018). 

Metabolite Recovered(Y/N) Physiological Relevance 

Cholic Acid Y Energy homeostasis – regulator of glucose and fat metabolism 
through Farnesoid X Receptor (FXR) and G-protein-coupled 
bile acid receptor (TRG5) activity 

Muricholic Acid Y Regulates fat and glucose metabolic activity through FXR and 
TRG5 receptors; Can also bind to taurine to inhibit FXR 
activity 

Glycocholic Acid Y Glycine conjugated form of cholic acid; Downregulation 
results in inability to digest and absorb fat into the cell for 
storage/energy resulting in digestive abnormalities; 

Taurocholic Acid Y Taurine conjugated form of cholic acid;  Downregulation 
results in inability to digest and absorb fat into the cell for 
storage/energy resulting in digestive abnormalities; 

Corticosterone Y Induces premature differentiation of GH releasing cells and 
IGF1-BP; Overabundance leads to protein degradation 

Biliverdin N Precursor metabolite of Bilirubin, which was also notably high 
in PUN (p>0.05) compared to GUN and CON; Abnormally 
high biliverdin and bilirubin signifies liver inflammation and 
liver disease development due to its injurious effects on 
hepatocytes 

L-Kynurenine Y Tryptophan metabolite;  

Total Methionine Y Start codon for tissue growth and protein synthesis; regulates 
metabolism and mitochondrial ROS production; 

Total 
Phenylalanine 

Y EAA necessary for protein synthesis; Precursor to tyrosine; 
plays an integral role in the structure and function of proteins 
and enzymes and the production of other amino acids 

Total Tyrosine Y Non-essential amino acid;  synthesized from phenylalanine; 
necessary for protein synthesis 

Oleoyl L-
Carnitine 

Y Oleoyl carnitine is a long-chain acylcarnitine that accumulates 
during certain metabolic conditions, such as fasting; 

Palmitoyl 
carnitine 

Y Ester derivative of carnitine (long-chain acylcarnitine) involved 
in the metabolism of fatty acids;  

DHEA N Endogenous adrenal androgen hormone that regulates IGF-1 
circulation and muscle hypertrophy; has protective effects 
against insulin resistance, cardiovascular disease and cancer 
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Figure 14: Liver Metabolites Between Treatment Groups at PN21 and PN80. Liver metabolite 
abundance was analyzed using a LMM in control (CON), gestationally undernourished (GUN), and 
postnatally undernourished (PUN) mice during young adolescent (PN21; CON n=12; GUN n=10; PUN 
n=8) and adulthood (PN80; CON n=12; GUN n=9; PUN n=12). PUN had abnormally low abundance 
compared to CON at PN21 in Cholic Acid (p=0.001), Muricholic Acid (p<0.001), Glycocholic Acid 
(p=0.03), Taurocholic Acid (p=0.0079), Total Bile Acids (sum of primary and secondary; p=0.0064), 
Riboflavin (p=0.003), and Total EAAs: Methionine (p=0.0018), Phenylalanine (p=0.0015), and Tyrosine 
(p=0.0041). In contrast, PUN had abnormally high levels of Oleoyl L-Carnitine (p=0.0038) and Palmitoyl 
carnitine (p=0.0096)  and Biliverdin (p=0.020), but these recovered at PN80. Corticosterone was 
significantly overexpressed in GUN compared to PUN and CON at PN21 (p=0.043) and did not recover 
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at PN80. DHEA was the only metabolite to remain significantly low in PUN at PN80 compared to GUN 
and CON (p=0.018). The box portion of the boxplots represents the mean and interquartile ranges, lines 
on the boxplots are the standard deviations, and the dots represent the actual data points in the data set 
(WX=Wilcoxon Pairwise Comparison; p-value notation: *<0.05, **<0.01, ***<0.0001.) 
 
 
Figure 14 (cont’d)

 
 
 
 

Fecal Metabolomics 

 
The RF analysis of the fecal metabolome showed strong overall classification by treatment group 

(OOB error = 15.4%). The VIP of the RF classification showed that the strongest classifiers above a 

MDA of 5.0 were unknown molecules except for small peptides. Thus, the peptides were analyzed 

individually and collectively through time (weeks 1-5). Individual peptides were found with varied trends 

between the treatment groups, however most resulted in higher levels in GUN and PUN compared to 

CON. In light of this, all known peptides in the dataset were summed and compared to their overall 

abundances through the experiment. Total summed peptides were significantly higher in PUN compared 
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to CON (LMM p=0.0064; Tukey’s: p=0.017), with slopes of m=-7 e-05 for PUN, m=-0.0003 for GUN and 

m=0.0016 for CON (Fig.15). ANCOVA slope comparison analysis revealed Serine-Valine (Ser-Val) was 

significantly higher in PUN (p=0.001) and GUN (p<0.0001) compared to CON. Serine-Isoleucine-Serine 

(Ser-Ile-Ser) was significantly higher in PUN (p=0.0008) compared to GUN and CON. Asparagine-

Valine (Asn-Val; p<0.0001) and Glutamine-Methionine (Gln-Met; p=0.0029) were significantly higher in 

GUN compared to CON. 

After the peptide analysis, LMM were performed on other metabolites in the VIP, revealing 

significant differences in various carnitines, reflecting altered end-products of lipid metabolism. (Table 3; 

Fig. 14) At PN21, PUN had significantly higher Hydroxybutyrylcarnitine (p≤0.0001) compared to CON 

Figure 15: Fecal Peptide Linear Regression Analysis of GUN, PUN and CON from Week 1 
through 5. Fecal peptides measured from fecal samples taken once per week for 5 weeks in CON 
(n=9), GUN (n=12), and PUN (n=11) mice analyzed via linear regression revealed an overall 
higher abundance of total peptides in PUN (overall: LMM p=0.0064) compared to CON across the 
lifespan (top-left). ANCOVA analysis revealed Serine-Valine (Ser-Val) was significantly higher in 
PUN (p=0.001) and GUN (p<0.0001) compared to CON. Serine-Isoleucine-Serine (Ser-Ile-Ser) 
was significantly higher in PUN (p=0.0008) compared to GUN and CON. Asparagine-Valine (Asn-
Val; p<0.0001) and Glutamine-Methionine (Gln-Met; p=0.0029) were significantly higher in GUN 
compared to CON. The covariate used in this analysis was time (week number). 



 38 

and higher Arachidonylcarnitine (p≤0.0001) compared to GUN. GUN also had significantly higher 

Hydroxybutyrylcarnitine p=0.0095) compared to CON over the 5-week duration. Alternatively, GUN had 

significantly lower hydroxyhexadecanoylcarnitine (p=0.0005) compared to CON over weeks 1-5 (Fig. 

16). 

 

Figure 16: Fecal Metabolites Between Treatment Groups from Weeks 1 through 5. Linear regression 
and LMM Analysis resulted in PUN having overall higher Hydroxybutyrylcarnitine (p≤0.0001) and 
compared to CON and higher Arachidonylcarnitine (p≤0.0001) compared to GUN. GUN also had 
significantly higher Hydroxybutyrylcarnitine compared to CON (p=0.0095) and alternatively, 
significantly lower Hydroxyhexadecanoylcarnitine (p=0.0005) compared to CON over the 5-week 
duration. 
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Table 4: Fecal Metabolites between PUN, GUN, and CON at PN21 and PN80. 
 

 

 

 

 

 
 
 
 

LMM analysis of fecal metabolites revealed most significant differences were in PUN and GUN compared to 
CON in various acylcarnitines, reflecting altered metabolic end-products of lipid metabolism. All fecal 
carnitines recovered to levels similar to CON by adulthood (PN80). 

 

Cecum Metabolomics 

The cecum metabolomes were first analyzed via RF resulting in an OOB error rate of 100% for 

PN21 and 93% for PN80, indicating very poor level of classification into respective treatment groups and 

an abnormally high rate of false discovery. Thus, no further metabolomic analysis was performed on the 

cecum samples. 

 

 

 

Metabolite Recovered(Y/N) Physiological Relevance 

Hydroxybutyrlcarnitine Y Ketocarnitine; During fasting causes metabolic 
switch from glucose to fatty acid ß-oxidation 
for energy production 
 

Arachidonylcarnitine Y Acylcarnitine; Abnormally high levels can 
indicate onset of insulin resistance 

Hydroxyhexadecanoylcarnitine 
 

Y Acylcarnitine; Transports long-chain fatty 
acids into the matrix of the mitochondrion for 
β-oxidation 
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DISCUSSION 

The objective of the present study was to characterize the effects of undernutrition-induced 

growth restriction during two separate windows of development: gestation and postnatal life. 

Additionally, a primary focus was to highlight strong alterations in the metabolome, thus elucidating 

potential future directions in creating therapeutic measures to alleviate or prevent disease onset in 

adulthood and influence full growth and development in the undernourished population.  

The overarching hypothesis of this study was that early life growth-restriction causes gut 

dysbiosis and an altered metabolome characterized by decreased B-Vitamin bioavailability, leading to 

impaired hepatic and muscle IGF-1 expression and growth restriction across the lifespan. The majority of 

the overarching hypothesis has been validated in the present study, as the microbiome and metabolome 

were both disrupted, IGF-1 expression was reduced and vitamin B2 was lower in the growth restricted 

PUN group. However, not all B-vitamins were detected in the untargeted metabolomics data, somewhat 

limiting the B-vitamin bioavailability hypothesis. Despite this limitation, the untargeted metabolomics 

approach allowed for detection of thousands of other molecules that had not be previously measured. For 

example, there was a lower DHEA in adulthood, significant reductions in EAAs (i.e. Methionine) and 

disruptions in bile acid and carnitine metabolism. All of this corresponded to decreased IGF-1 expression 

in the liver and muscle of the PUN group.  

Examining Longitudinal Microbial Differences between Treatment Groups 

One of the main focuses of the present study was to determine the longitudinal microbial differences 

between growth restriction induced during gestation and during lactation. Fecal samples were collected 

weekly from PN18-PN80. Microbial structure and diversity were compared between diet groups over 
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time. We hypothesized that GUN and PUN mice will have microbiome dysbiosis compared to CON 

across the lifespan and the dysbiosis will be represented by decreased Bifidobacterium and Lactobacilli. 

The present study characterized the effects of growth restriction on the gut microbiome, with the largest 

differences seen in undernourishment during the postnatal window. Alpha-Diversity, or microbial 

complexity, remained significantly higher in PUN compared to CON into adulthood and increased 

slightly over time which is expected during gut microbiome development55,144,145. While diversity is 

generally considered a benefit to gut health146, having a greater number of species in early life could be 

detrimental to the specific role the microbiome plays during development. It is possible that increased 

presence of unfavorable, unknown species and potential lack of some vital microbes from CON mice may 

contribute to the health disparities that manifests later in life in the PUN group. Additionally, GUN 

initially had a similar level of diversity to PUN, but recovered in adulthood, indicating the maturity or 

imprinting of the gut microbiome occurs during a key window of development (PN1-21) also found in 

various studies using this mouse model6,7,88. 

In order to determine specific microbial differences between the treatment groups beta diversity and 

phylogenetic analysis was performed. Phylogenetic analysis lead to the confirmation that a stunting effect 

occurred in the microbiome in PUN mice, which was exhibited by the majority of microbes present 

throughout the lifespan were reflective of those found mostly in infants. The Bacteroides and 

Bifidobacterium genera were higher in the PUN microbiome compared to GUN and CON and are well 

known for their complex and simple sugar fermentations for their own energy and growth needs147–150. 

Thus, initial abundance of these organisms in PUN in early life may be due to the mother’s milk 

composition having a lower relative protein concentration and higher relative concentration of 

carbohydrates151. However, as seen in healthy normal guts, Bifidobacterium is highest in abundance at 

birth and during the breastfeeding stages and then begins to decrease in abundance into adulthood where 

it then maintains in much lower levels152. While these microbes may have potential benefits in early life, 
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their presence at abnormally high levels in adulthood could lead to a multitude of detrimental effects due 

to their production of unfavorable short-chain fatty acids (SCFAs)153–156.  

Many studies have shown that Bifidobacterium and Bacteroides make other byproducts in addition to 

SCFAs that in much higher quantity, actually degrade specific gut physiology that aid in regulating 

nutrient absorption and can progress to severe malnutrition and disease development. Belenguer et al. 

2007, showed that when Bifidobacterium colonization increases beyond normal levels, fermentative 

byproducts acetate and lactate increase, decreasing the amount of available butyrate154. Additionally, high 

abundance of Bacteroides is also linked to decreased butyrate concentrations157 which can induce 

degradation of the gut’s mucin layer and compromise the condition of the tight junctions between 

epithelial cells involved in nutrient absorption and immune protection157. 

Potential evidence of altered nutrient absorption in PUN mice was exhibited by abnormally high 

levels of excreted peptides in the fecal samples. Additionally, high levels of excreted peptides in the PUN 

mice lasted throughout the lifespan despite refeeding of the CON diet, indicating there is potential 

programming occurring in the intestinal tract. Generally, larger amino acids are broken down in the 

stomach and smaller di- and tripeptides are absorbed into the small intestine epithelium via peptide 

transporters (PepT1)158. PepT1 transports peptides into the enterocyte, and then cytoplasmic peptidases 

break them down into amino acids and export them out of the cell and into the bloodstream158. Since the 

di- and tripeptides are found in the fecal samples, this signifies an inability to absorb/transport them from 

the lumen into the enterocytes. It is possible that this transport capability in PUN mice may be altered 

during early life programming. Further research is necessary to determine the effects of postnatal growth 

restriction on PepT1. 

Examining Effects of Growth Restriction on the Liver and Fecal Metabolome 
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The primary focus of Aim 2 was to determine the effects of growth restriction on the metabolome in 

GUN, PUN and CON mice. Cecum and livers were collected at two timepoints: PN21 and PN80 and 

fecal samples were collected through the lifespan. Cecums were collected due to their function as a 

reservoir of metabolites produced from the mouse as well as their intestinal microbes. We hypothesized 

that growth restriction would negatively alter the metabolome in PUN and GUN mice with B-Vitamins, 

such as folate and B-12, primarily shaping the differences. Unfortunately, due to the untargeted nature of 

the metabolomics methods used, we did not detect all B-vitamins. Folate and B-12 were not found in the 

sample set, either due inefficient extraction of the compounds in the methanol solvent or them being 

below the detection limit. Riboflavin (B2), however, was found to be significantly reduced in PUN livers 

at PN21, as hypothesized. B2 deficiencies can also lead to various developmental abnormalities including 

growth restriction and cardiovascular disease159. Without adequate amounts of B2, carbohydrates, fat and 

protein are not able to be digested appropriately, leading to disparities in energy balance and potentially 

elucidating the abnormally high excretion of fecal peptides in PUN mice found in this study160.  

Other impairments in the PUN mice were in protein synthesis/growth-regulating metabolites: 

methionine, phenylalanine, tyrosine and DHEA as well as metabolism-regulating metabolites: decreased 

primary bile acids and increased acylcarnitines.  

Protein-Synthesis and Growth-Regulating Metabolites 

This study confirmed that growth restriction during postnatal life leads to decreased methionine 

which is vital in the synthesis of all subsequent proteins in addition to DNA and cellular 

methylation161,162. There was a significant reduction in methionine, phenylalanine, tyrosine and a trending 

lower expression of tryptophan, which are all vital to the absorption, utilization and synthesis of 

subsequent proteins163. Methionine is a sulfur-containing EAA that is not produced endogenously and 

must be received in the diet. Methionine is a precursor to a variety of other vital components of 
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metabolism such as succinyl-coA, homocysteine, cysteine and carnitine161. Methionine is also a precursor 

to cellular methylation and may have an essential role in gene regulation due to its upstream role in cell 

proliferation130,162,164. B2 is a cofactor for methionine activation164 which may elucidate why both were 

significantly low in PUN at PN21. B2 and methionine are both vital to regulating sulfur and one-carbon 

metabolism in gut microbes for survival164–166. Since both B2 and methionine were significantly low, this 

increases the possibility of a competition for resources between the gut microbes and the host, altering the 

bacterial species that are able to survive and leaving the host with B2 and subsequently methionine and B3 

(niacin) deficiencies further increasing risk of disease onset167,168. 

Methionine & Cellular Stress 

Methionine also has an important role in regulating reactive oxygen species (ROS) production 

and glutathione biosynthesis which mainly act as antioxidants and help to prevent oxidative damage in 

tissues like the liver and heart mitochondria161. Mitochondria are organelles within cells that are essential 

for cell proliferation and survival169. They produce energy to fuel countless processes (adenosine 

triphosphate; ATP), control intracellular calcium (Ca2+) and cell differentiation169. In the present study, 

glutathione was not significantly different among treatment groups however it trended lower in PUN mice 

at PN21. Many studies have shown correlations between early life growth restriction and impaired 

mitochondrial function170,171. Gomez et al. in 2015 showed that methionine can potentially reverse the 

effects of oxidative damage involving complex I of the electron transport chain172. Additionally, cysteine, 

which is another sulfur-containing amino acid, showed improvement in reversing mitochondrial oxidative 

damage in complex I172. Cystathionine, a precursor to cysteine, trended very low in PUN mice at PN21, 

suggesting that both sources for sulfur-containing amino acids are stunted in the growth restricted mice 

and the capacity to overcome oxidative stress and cellular damage is also impaired. 

Metabolism-Regulating Metabolites: Liver Bile Acids and AcylCarnitines 
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One of the more unexpected findings in this study was the substantial decrease in primary bile 

acid production and increases in liver acylcarnitines, both of which recovered in adulthood. These 

alterations may be a direct result of the diet differences between the treatment groups but may too have an 

imprint on disease pathways related to fat metabolism in the liver into adulthood173–175. Moreover, there is 

a potential connection between bile acid synthesis and reduced methionine at PN21 in PUN mice. A study 

by Hasek et al. 2013 showed that methionine restriction, via gene regulation, decreases liver triglyceride 

synthesis, deposition, exportation and increases beta oxidation and fat utilization176. Since bile acids are 

made from cholesterol177–179, when liver triglycerides are reduced, there will be a subsequent reduction in 

bile acid synthesis. PUN mice had a significant reduction in all primary bile acids: taurocholic acid 

(TCA), glycocholic acid (GCA), cholic acid (CA) and muricholic acid (MCA) at PN21. At PN80, the bile 

acid abundances normalized, indicating their abundance is influenced primarily by suckling from low 

protein fed dams and not indicative of permanent metabolic reprogramming. 

Determining Longitudinal Effects of Growth Restriction on Growth Parameters & Regulators 

In order to determine the longitudinal effects of growth-restriction on IGF-1 expression in liver 

and muscle (GS) in Aim 3, western blots were completed comparing diet groups (CON, GUN, and PUN) 

at PN21 and PN80. The overall hypothesis for Aim 3 was that there would be decreased levels of IGF-1 

in the PUN and GUN mice, resulting in decreased overall body weight and muscle mass. The present 

study confirmed that growth restriction during the postnatal window leads to a significant reduction in 

growth markers including overall bodyweight, muscle mass, hepatic Dehydroepiandrosterone (DHEA) 

and muscular IGF-1 expression. Hepatic IGF-1 expression at was significantly lower at PN21 in GUN 

and PUN mice compared to control, and GS was also overall lower over time.  

DHEA & IGF-1 Expression 
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A study by Bieswal et al. 2006, showed that protein- or calorie-restriction during postnatal 

development of life leads to permanent longitudinal growth stunting and reduced body weight23. The 

findings by Bieswal et al. correlate well with this study since GUN did experience catch-up growth but 

PUN did not despite refeeding. Refeeding involved increasing protein by ~12% at PN21 (4% more than 

in Bieswal’s study) and levels of EAAs recovered, the postnatal programming effects permanently 

reduced body weights and muscle mass into adulthood compared to CON. Additionally, after refeeding 

for approximately 59 days, there was an extremely low abundance of DHEA in PUN at PN80, signifying 

another trend of permanent programming lasting into adulthood. DHEA is an endogenous adrenal 

androgen synthesized from cholesterol and is a precursor to estrogen and testosterone. DHEA increases 

muscle hypertrophy180, IGF-1 bioavailability181 and has protective effects against insulin resistance182 

cardiovascular disease183, and cancer184.  

A study by Fiorotto et al. 2014, established that postnatally-restricted mice had low expression of 

mammalian target of rapamycin (mTOR) and phosphorylated mTOR22. The present study confirmed that 

IGF-1 was significantly decreased in the liver at PN21 and overall lower in muscle in PUN and GUN 

compared to CON, which correlates well to the reflecting low expression of liver DHEA in adulthood. 

DHEA increases IGF-1 bioavailability, facilitating activation of the mTOR pathway181,185. Thus, not only 

was the ability to grow initially stunted via a significant reduction in growth-dependent amino acids (i.e. 

Methionine, Phenylalanine, Tyrosine, Tryptophan) and IGF-1 expression, but also continually reduced via 

an inability to produce DHEA in adulthood. 

Limitations and Future Directions 

A main caveat to this study is that the LC-MS/MS metabolomics approach used is an untargeted 

exploratory method which primarily identifies more non-polar, larger molecules. Thousands of molecules 

are profiled in a single experiment, which greatly aids in power for discovery, however since the method 
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is untargeted LC-MS/MS, certain compounds like SCFAs and certain B-Vitamins are impossible to find 

in the sample set. Gas chromatography-mass spectrometry (GC/MS-MS) is better suited for analysis of 

SCFAs that are known to be produced by Bacteroides spp. and targeted measurements of each B-Vitamin 

will be required to assay this metabolite group. Additionally, future studies should look deeper into the 

mechanistic impact SCFAs have in the undernourished and growth restricted populations. Future studies 

should also measure FXR and TGR5 to determine if undernutrition and alteration of the gut microbiome 

via growth restriction reduces their expression and/or signaling activity via either GLP-1 or the mTOR 

pathway. Lastly, a final caveat of this project is to ensure larger sample sizes are generated for each sex 

and diet group regardless of examining sex effects in order to account for natural occurrences that may 

lead to eliminating mice from the study in future research and to lower variability that may occur in 

uneven sex samples. Although there was no preliminary data showing effect size with growth restriction 

and the microbiome and metabolome, hopefully this data can act as a baseline or preliminary basis to 

build upon in forthcoming research. 
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CONCLUSION 

The present study showed that the gut microbiome and metabolome are significantly altered by early-

life growth restriction, particularly in those mice that are undernourished during the PN1-21 

developmental window. The microbiome dysbiosis observed was likely primarily due to an elevated 

abundance of Bacteroides spp., a group of sugar fermenters common in the mammalian gut. There may 

be mechanisms to manipulate the microbiome by reducing the abundance of Bacteroides spp. through 

probiotic or prebiotic means, to help reduce the effects of undernutrition, but future work is needed to 

understand how this bacterial group contributes to the disease manifestations seen in adulthood.  

Metabolites in the liver, such as the significant deficits in methionine and an increase in excretion of 

peptides strongly signifying detrimental metabolic alterations that could contribute to the onset of various 

disease states. Additionally, the metabolic mechanism significantly reducing DHEA abundance in PUN 

may be a crucial area to continue to explore as this metabolite has various roles in early life growth and 

development in addition to regulation of hormones and normal physiological processes in adulthood. 
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Figure 17: Proposed Effects of Global Caloric Restriction During Postnatal Development 
 
The overarching hypothesis of this study was that gestational and postnatal growth-restriction leads to 
gut dysbiosis, decreased B-Vitamin bioavailability, impaired hepatic and muscle IGF-1 expression and 
across the lifespan. Metabolic impairments resulting from growth restriction are evident by an altered 
gut microbiome which leads to impaired gut permeability, impaired nutrient absorption and increased 
peptide excretion. Postnatal growth restriction is caused by downregulation of methionine, B2, IGF-1 
and DHEA which are necessary for proper growth and development. Other potential correlations 
include methionine reduction and an associated impairment in controlling oxidative stress (or Reactive 
Oxygen Species; ROS) and cellular damage in the mitochondria. 

Created with BioRender.com 
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