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ABSTRACT 

THE EFFECT OF MISSING TWO-MODE TIE DATA ON PARAMETER ESTIMATION 
WHEN THE INFLUENCE MODEL IS USED 

 
By 

Tingqiao Chen 

Missing data is a phenomenon that cannot be ignored in network analysis, especially due 

to the complex nature of network data and the plethora of models in this field. This dissertation 

studies the effect of missing two-mode tie data on coefficient estimates of the influence mode in 

two-mode network analysis. A new imputation method based on the log odds of attending events 

within- vs. outside- cluster is proposed. The new imputation method is compared with the 

multiple imputation method under the missing at random mechanism. Network data are 

simulated based on different parameter values, including the network density, number of actors, 

number of events, and the odds ratio (i.e., clustering effect). Fifty-four unique network settings 

are examined, and 2000 replicates are generated for each unique setting. The multiple imputation 

method performs the best in terms of bias, empirical standard error, and root mean square error, 

partly because the missing data generation mechanism favors the multiple imputation method. 

The proposed imputation method performs well when there are medium to strong clustering 

effect in the network.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction  

Missing data in statistical analyses have long been a popular research topic. Ignoring 

missing data or using inappropriate methods to handle missing data usually creates biased 

parameter estimates and underestimated standard errors. Missing data in network analysis could 

make the situation more complicated. For instance, the presence of missing network ties hampers 

not only the ability to describe the network context of actors with missing ties but also the 

context of the neighboring actors (Huisman, 2014). Most research about missing data in network 

analyses focus on the effect of missing data on the network's structural properties, for example, 

indegree/outdegree, reciprocity, transitivity, geodesic distance, etc. Sometimes, besides structural 

properties themselves, we need to use network data to build statistical models to study how 

network structures and other attributes affect an actor's behavior or belief. For instance, in two-

mode network analysis, the influence model examines how exposure to information on events 

affected actors' behavior. In the influence model, the network data of who attended which events 

within or outside one's cluster is used to construct an independent variable, i.e., the exposure 

term. When there is missing information about who attended which events, it is not a 

straightforward problem of how missing data on an independent variable affects parameter 

estimation. It is about how missing information, which, if not missing, is supposed to construct 

the independent variable, affects parameter estimation.  

1.2 Introduction of Network Analysis 

1.2.1 Two-Mode Network 
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 Networks are categorized by the number of modes they have, one or two. When the 

network is one-mode, the data represents a single set of actors and relationships among them. 

The actors can be of different types, for example, people, organizations, etc. The relationships 

can be various, such as friendship, co-authorship, lending or borrowing, marriage, etc. When the 

network is two-mode, there are two sets of actors (dyadic two-mode networks) or one set of 

actors and one set of events. The 'one set of actors and one set of events' type is of concern in 

this dissertation. It is also called an affiliation network or bi-partite network. Actors are measured 

for attendance at or affiliation with a set of events/activities or organizations/groups. Examples 

include memberships in a fitness club, people attending meetings, students taking classes, etc. 

(Lazega et al., 1995).  

1.2.2 Clustering for Two-Mode Network Data 

We do clustering in network analysis to understand the overall structure of the network, 

which can then be linked to the specific research question. According to Pesantez-Carera and 

Kalyanaraman (2016), the idea of clustering/community detection in a two-mode network is that 

nodes (regardless of its mode, e.g., person vs. event) are partitioned into different clusters such 

that nodes assigned to the same cluster have a higher density of ties among them than to the 

nodes from other clusters. In other words, in a network of people and events, people are more 

likely to attend events in the cluster they belong to than events in the rest of the network. That 

means people in the same cluster are exposed to similar information because they have a higher 

probability of attending common events than people from different clusters. Then their behaviors 

are likely to be affected by the information that they are exposed to. Therefore, the phenomenon 

of clustering is essential for studying behavior change. The graph below shows high school 

students' course-taking behavior in a given period. Each big circle represents a cluster; dots 
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represent students and squares represent courses; a line from a dot to a square indicates that the 

student took a particular course. From the graph, we can see that students took courses outside 

their clusters, but they mostly took courses in the clusters they belong to. Students' behaviors are 

most affected by the courses they took and other students' behavior in their clusters. 

 

 

Figure 1 Course-taking pattern in Miller high school (Frank et al., 2008) 

1.2.3 Influence Model 

With two-mode data, we can use the influence model to explore the relationship between 

cluster membership and actors' behavior or attitudes. In general, the hypotheses are (1) Actors' 

behavior or attitudes are related to other actors' behavior or attitudes in the same cluster, and (2) 

Actors' behavior or attitudes are related to the information presented at events in the same 

cluster. Two examples of two-mode network analysis using the influence model will be given 

below. 
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One example of a two-mode network analysis is to study the dissemination of lake level 

knowledge in the Great Lakes region. We collected two types of two-mode data, attendance lists 

of related conferences/meetings and author lists of related documents (e.g., white papers, 

academic papers, etc.). All conferences, meetings, and documents in our data set are related to 

climate change. The academic papers could study how lake levels are likely to change in 50 

years, etc. At a conference, an actor could be exposed to two types of information, information 

from the conference itself (e.g., presentation) and information or norms from other actors who 

attend the conference (e.g., people talking to each other).  When several actors co-author a paper, 

an actor could be exposed to two types of information, the content of the paper itself and 

information directly from interacting with other co-authors in the process of discussing, editing, 

etc. The goal is to study how people's opinions change through attending conferences/meetings 

and co-authoring papers with others.

 

Figure 2 Example of two-mode network analysis 

  Another example of two-mode network analysis is to examine the course-taking behavior 

of high school students (Frank et al., 2008). The two-mode data used in the study are transcripts 

data. It was assumed that students who took the same course had a higher probability of 
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interacting with/being exposed to each other; for example, they had a higher probability of being 

classmates, etc. When a student takes a course, he or she could be exposed to two types of 

information, the course itself (e.g., the instructor, the common course materials used, etc.), and 

other students who take the same course (e.g., discussing homework together, reviewing for 

exams together, etc.). The research objective was to study whether other students' math level at 

time t-1 would influence a student's decision to advance in math or not in the same cluster. 

The influence model that will be studied in this dissertation is equation (1).  

 
𝑦!,# = 𝛼 + 𝜌$𝑦!,#%& + 𝛽&

1
ℎ!&
)𝑣!,'& 𝑧',#%&

(

')&

+ 𝜖!#  

 
(1) 

 
𝑦!,# is the dependent variable, representing actor 𝑖′𝑠 behavior at time 𝑡. 𝑦!,#%& is the prior, 

representing actor 𝑖′𝑠 behavior at time 𝑡 − 1. The term 𝑣!,'&  indicates whether actor 𝑖	attended 

event 𝑞 given actor 𝑖 and event 𝑞 have the same cluster membership. 𝑧',#%& represents 

information presented at event 𝑞 which happened over the time interval from 𝑡 − 1 to 𝑡. ℎ!& is the 

number of events actor 𝑖 attended given that actor 𝑖 and events are in the same cluster. Therefore, 

&
*!
"∑ 𝑣!,'& 𝑧',#%&

(
')&  is actor 𝑖′𝑠 exposure to events he/she attended in the cluster he/she belongs to. 

For explanations of the notation, please look at the appendix A.  

1.3 Introduction of Missing Data  

Graham (2012) defined missingness as the state of being missing. A convenient 

representation of the state of missingness is a binary variable, R, which takes the value 1 if the 

variable of concern is observed, and 0 if it is missing. For example, 𝑧',#%&is the information 

presented on event 𝑞. If 𝑧',#%& is missing, then 𝑅+#,%&" = 0; if 𝑧',#%& is observed, then 𝑅+#,%&" = 1. 

R is treated as a set of random variables having a joint probability distribution. The distribution 

of R is referred to as the missing mechanism. It is the process by which some data are collected, 
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while others are missed (Rubin, 1987). Other researchers refer to the missing mechanism as the 

process causing the missing data (Graham, 2012). The mechanisms of missingness generally fall 

into three categories: Missing Completely At Random (MCAR), Missing At Random 

(MAR), and Missing Not At Random (MNAR).  

In a statistical model, either the dependent variable(s) or the independent variable(s) 

could be missing. This dissertation studies the effect of missing information, which, if not 

missing, is supposed to construct the independent variable on parameter estimations in the 

influence model.  

1.3.1 Missing at Random 

Rubin (1976) defined missing data as MAR if the distribution of missingness (i.e., 

distribution of R) does not depend on 𝑌,!-. In other words, under MAR, the distribution of 

missingness could depend on 𝑌./-, but not on 𝑌,!- (Schafer 1997; Schafer and Graham, 2002). 

This definition is based on the assumption that there is only one variable Y in the data set. When 

there are other measured variables (X) in the data set and Y is the only variable with missing data, 

under MAR, the distribution of missingness could depend on any measured variable (X or 𝑌./-), 

but not on 𝑌,!-. Schafer (1997) stated that despite its name, MAR does not mean that missing 

data values are a simple random sample of all data values. Instead, MAR implies that a 

systematic relationship exists between one or more measured variables and the distribution of 

missingness. (Enders, 2010) Practically, the notion of MAR is that we have information on an 

individual's records of observed responses, plus any other information that we gathered on that 

person, which reduces the uncertainty about what the missing value is.  

1.3.2 Missing Completely at Random 
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 MCAR indicates that the values of missing data are a simple random sample of all data 

values. According to Little and Rubin (2002), under MCAR, the distribution of missingness 

depends on neither the missing data nor the observed data. MCAR is considered a special and 

more restricted case of MAR. (Enders, 2010) 

1.3.3 Missing Not at Random  

 The missing data mechanism is defined as MNAR when the missing data distribution 

depends on the missing data itself. MNAR is also said to be nonignorable nonresponse (Schafer 

and Graham, 2002). The association between the distribution of missingness and missing data 

itself could happen in two scenarios: (1) when there is a direct relationship between the 

distribution of missingness and the missing data itself, and (2) when the distribution of 

missingness and the missing data itself are mutually correlated with an unmeasured variable. 

(Enders, 2010) 

1.3.4 Missing Two-Mode Tie Data in Network Analysis 

In this dissertation, the focus is on missing person-to-event ties 𝑣!,'& . This section will 

discuss the definition of missing person-to-event tie and what it means under different missing 

mechanisms.   

Assume that there are N actors and K events in the network. That is, there are N*K 

potential two-mode ties. Let 𝑣!,' = 1 if actor 𝑖 attended event 𝑞; 𝑣!,' = 0 otherwise. For those 

actor-and-event pairs that we have information about whether there is a tie or not, they are 

considered observed tie data.  

Assume that we can get the person-to-event tie from two sources: attendance lists and 

surveys. In a survey, two-mode network data can be collected by asking questions such as "in the 

past year, what related events (e.g., meeting, conference, discussion group, etc.) did you attend, 
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and what was the frequency of attendance if it was a re-occurring event?" Attendance lists and 

surveys can be complements of each other when collecting two-mode network data. Table 1 

below contains examples of each missing mechanism. The content in each cell will be explained 

in detail. Note that table 1 only listed examples for each scenario. It is NOT a comprehensive list 

of all possible situations for each missing mechanism.  

Table 1 

Examples of missing mechanism in practical situation 

 Attendance List 
(complete list) 

Attendance List 
(single entry) 

Survey 

MCAR • Lost 
• Did not keep on file.  

• The event attendant forgot to 
sign in.  
 

• The survey respondent 
did not see the item.  

MAR • Not available for a particular 
reason, AND we know what 
the reason is. (e.g., An 
organization did not keep 
attendance lists on file for a 
particular period.) 

• The event attendant did not 
sign in for a particular reason, 
AND we know what the 
reason is. (e.g., Some people 
attended a conference from 
the 2nd day, but the sign-in 
table was there only on the 1st 
day.) 

• The survey respondent 
did not answer the item 
for a particular reason, 
AND we know what the 
reason is. It is better to 
ask about the reason in 
the survey directly.  

MNAR • Confidential 
 

• The event attendant did not 
sign in intentionally, AND we 
do not know the reason. 

• The survey respondent 
did not answer the item 
for a particular reason, 
AND we do not know the 
reason. 

 

When 𝑣!,'&  is MCAR. MCAR means that the missingness depends neither on the missing 

data itself nor on any other measured variables. Examples of an attendance list being MCAR 

include (1) it got lost, (2) the organizer of the event did not keep the attendance list on file 

initially for no particular reason. In both examples, the attendance list is missing neither because 

of the attendance list itself nor because of anything measured. Examples of a single entry of an 

attendance list being MCAR can be the event/meeting attendant forgot to sign in. Again, in this 

situation, the missingness is neither due to the missing entry itself nor due to anything else 

measured. If the person-to-event tie was collected from a survey, an example of MCAR could be 
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that the survey respondent did not see the item or forgot to answer it. It is missing neither 

because the respondent did not want to answer that particular item nor because of anything 

measured.  

When 𝑣!,'&  is MAR. MAR means that the missingness does not depend on the missing data 

itself but could (but not necessarily) depend on other measured variables. Say that there are ten 

organizations in the Chicago area which manage ravines, and we want to collect two-mode data 

of events/meetings about managing ravines in the past year. Out of these ten organizations, 

organization A never kept any attendance list due to management failure. That is, whenever 

organization A held an event, the attendance list was missing. In this case, it is not anything 

related to the attendance list itself that causes it to be missing. It is missing because of the poor 

management in organization A. We know the reason for missingness, and we have the data; for 

example, there can be a binary variable management_failure = 1 when the event was held by 

organization A, = 0 otherwise. This is an example that the entire attendance list is MAR. 

Assume that at a conference, the registration table was there for only the first day. However, 

some people attended the conference from the second day or even the third day. Therefore, all 

the conference attendants who did not show up on the first day were not on the attendance list. 

We know why the data were missing in this situation, and we had a record for it. For instance, 

there can be a variable 1st_day_missing = 1 for all people who registered but did not show up on 

the 1st day, = 0 otherwise. This is an example that a single entry of the attendance list is MAR. If 

we collected the person-to-event tie from surveys, it is MAR when the survey respondent did not 

answer that item for a reason, and we know what that reason is and have data on it. Although it 

might be challenging to know why people do not want to answer a particular question, we can 

design the survey in a better way to make it MAR.  For instance, following the network question, 
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we can ask a question such that 'if you did not respond to the previous network question, what is 

the reason for not answering it?'. Research shows that by designing a survey like this, we make 

the missingness MAR, which will make the parameter estimation much more manageable. 

When 𝑣!,'&  is MNAR. The missing data is MNAR when the missingness depends on the 

missing value itself. No matter if it is an entire attendance list, a single entry of the attendance 

list, or a survey item collecting person-to-event tie, they are MNAR if the missingness is due to 

the data itself. A typical example is that the organization does not want to share an attendance list 

since it should be kept confidential. Another example of MNAR is that respondents did not 

answer a survey item because they wanted to keep the information private. 

1.3.5 Diagnosis of Missing Mechanism  

The diagnoses for missing mechanisms are scarce. Little (1988) developed a global test 

for MCAR. The test's null hypothesis is that all variables with missing values in the data set are 

MCAR. A statistically significant test statistic provides evidence against the MCAR mechanism. 

However, we will not be able to identify a specific variable that is MCAR if there is more than 

one variable in the dataset with missing values. Besides, the MCAR test is criticized because 

simulation studies show that it has low power, especially when the number of variables violating 

MCAR is small (Thoemmes & Enders, 2007).  Therefore, this test is likely to produce type II 

errors (i.e., fail to reject the null hypothesis when the null hypothesis is false). It may lead to a 

misleading sense of security about the missing mechanism (Enders, 2010).  

For the MAR mechanism, it is impossible to confirm that the missingness is exclusively a 

function of other measured variables. That is, the MAR mechanism is not testable (Enders, 

2010). The two mainstream approaches to handle missing data (FIML and MI) are MAR-based.  
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Researchers believe that we should always expect departures from MAR (Schafer & Graham, 

2002).  

1.3.6 Missing Data Scenarios Considered in this Dissertation  

Recall the influence model equation (1).  

 
𝑦!,# = 𝛼 + 𝜌$𝑦!,#%& + 𝛽&

1
ℎ!&
)𝑣!,'& 𝑧',#%&

(

')&

+ 𝜖!# 
 

(1) 

In this dissertation, it is assumed that 𝑦!,#, 𝑦!,#%&, and 𝑧',#%& have complete data. There will be 

missing values on 𝑣!,'&  (the two-mode network tie data), and it is assumed MAR.  

1.3.7 Missing Data Estimation Methods  
 

Complete-case analysis (CC) is also called listwise deletion. It deals with missing data 

such that cases with any missing value are removed (Little, 1992). It gives unbiased parameter 

estimation when the missingness is MCAR, a strict condition. One common pitfall of the CC 

approach is that when there are several independent variables, even a sparse pattern of missing 

independent variables could result in a considerable number of incomplete cases (Enders, 2010; 

Little, 1992). Therefore, CC is often criticized for being an inefficient way to handle missing 

data. We should always consider that subjects with missing value on one independent variable 

may also have information on other variables. Despite this, the CC approach outperforms other 

methods in some particular situations. In regression analysis, if a covariate is MNAR (i.e., the 

covariate's missingness depends on the value of the covariate itself) and conditionally 

independent of the dependent variable (conditioning on all independent variables in the model), 

CC gives consistent parameter estimates. (Glynn and Laird, 1986; Little and Zhang, 2010; White 

and Carlin, 2010; Bartlett et al., 2014)    Bartlett et al. (2014) developed the augmented complete 

case analysis estimation method to address the CC approach's inefficiency.     
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Available-Case Analysis (AC) uses the biggest possible set of data to estimate each 

parameter. For instance, for regression model 𝑌 = 𝛽$ + 𝛽&𝑋& + 𝛽0𝑋0 +⋯+ 𝛽1𝑋1 + 𝜖, when we 

estimate the first two moments of ;𝑋&, … , 𝑋1, 𝑌>, 𝜇2' 	𝑎𝑛𝑑	𝜎2'
0  are estimated using 𝑛(4) cases, 

i.e., the number of cases with 𝑋4 observed. Note that 𝑗 is an index for 𝑋6𝑠, with 𝑗 = 1,… , 𝑝. 

𝜎2',2( 	(𝑗 ≠ 𝑘) is estimated using 𝑛(47) cases, i.e., the number of cases with 𝑋4 	𝑎𝑛𝑑	𝑋7 	observed 

(Glasser, 1964). There are different versions of AC analysis based on different choices of 

parameterization. AC has the advantage of using information from incomplete cases. However, it 

works well only when independent variables (X's) are not highly correlated (relative to degrees 

of freedom). When independent variables are highly correlated, the estimated covariance matrix 

of X's is likely to be not positive definite, which is a major disadvantage of AC. In the context of 

regression analysis, in general, AC gives unbiased (or consistent in the context of asymptotic 

analysis) coefficient estimate when independent variables are not highly correlated and when the 

missingness is MCAR (Haitovsky, 1968; Kim & Curry, 1977). Recall that MCAR is a stringent 

condition. In general, AC does not give unbiased (or consistent) estimates for standard errors 

Praag et al., 1985). There are simulation studies that compare AC regression estimates with 

Maximum Likelihood (ML) estimates under the normality assumption. It suggests that ML 

estimation performs better even when normality assumptions are violated (Azen et al., 1989; 

Little 1988; Muthén et al., 1987).  

Single imputation techniques with Ordinary Least Square (LS) or Weighted Least Square 

(WLS) estimation. The idea of Single Imputation is to replace the missing values with a single 

set of imputed values. Then OLS or WLS estimation is used on the dataset with filled-in imputed 

values. When WLS is used, usually, less weight is put on imputed values. (Little, 1992). There is 

an extensive collection of single imputation methods including Unconditional Mean Imputation 
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(arithmetic mean), Conditional Mean Imputation (predicted values from a regression equation), 

Hot Deck/Similar Response Pattern Imputation (observed scores from a subject with similar 

background characteristics), Person Mean Imputation (a subject's average score across a set of 

observed item responses), Last Observation Carried Forward (scores from a previous wave in a 

longitudinal study), etc. (Baraldi and Enders, 2010). In the context of regression 

analysis, Unconditional Mean Imputation replaces missing X's by its unconditional sample mean. 

This method produces biased (or inconsistent) estimates for X’s variance-covariance matrix, 

even when assuming MCAR. Estimated regression coefficients based on this method are biased 

(or inconsistent), and standard errors are under-estimated. In general, unconditional mean 

imputation is not recommended (Little and Rubin, 2002). The idea of Conditional Mean 

Imputation is to regress the missing variables on other variables without missing values using 

complete cases. Then use the estimated regression equation to estimate missing values for 

incomplete cases. The primary concern about this approach is that standard errors of the 

regression coefficients from OLS or WLS on the filled-in data are, in general, underestimated 

since the uncertainty of imputed values is not considered. Formulas for standard errors are 

difficult to derive for general missing data patterns (Little, 1992).  

Stochastic regression imputation is the only single imputation method that has some 

merit. It gives unbiased parameter estimates under MAR, and its estimates are very similar to 

those from full information maximum likelihood (FIML) and multiple imputation 

(MI) approaches (Enders, 2010; Gold & Bentler, 2000; Newman, 2003). The idea of this method 

is very similar to the Conditional Mean Imputation. It also uses the regression equation to predict 

the missing values from the complete data. However, it goes one step further. It adds a normally 

distributed residual term to the predicted score to restore the variability of the data. This 
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approach's main disadvantage is that it underestimates the standard errors because it uses only 

one set of imputed values for missing data. It does not take into consideration the uncertainty of 

imputed values. The bias of standard errors can be corrected using the bootstrap resampling 

approach. However, implementing bootstrap resampling typically requires more effort than the 

FIML and MI approaches (Enders, 2010). What is worth knowing is that stochastic regression 

and the imputation stage of the MI approach share the same imputation routine. Enders (2010) 

indicated that the multiple imputation approach is conceptually an iterative version of stochastic 

regression imputation.  

Despite the advantages of stochastic regression imputation, among missing data 

estimation methods, single imputation techniques generally produce biased estimates under any 

missing data mechanisms. Their shortcomings are widely documented (Enders, 2010; Little & 

Rubin, 2002; Schafer & Graham, 2002; Widaman, 2006).  

Full Information Maximum Likelihood. The maximum likelihood-based approach to 

handling missing data is referred to as full information maximum likelihood (FIML). To identify 

the set of parameter estimates that most likely produce the sample data, Anderson (1957) 

proposed the important idea of factored likelihood methods. It obtains explicit ML estimates 

for special patterns of missing data. Iterative methods are needed to find ML estimates for the 

general pattern of missing data with few exceptions. Trawinski and Bargmann (1964) and 

Hartley and Hocking (1971) developed scoring algorithms for the normal model. Orchard and 

Woodbury (1972) proposed an alternative approach, and it was later called the EM algorithm by 

Dempster et al. (1977). The E stands for expectation, and the M stands for maximization. The 

EM procedure has E and M steps. In the context of regression analysis with missing data, the EM 

process starts with an initial set of estimates of parameters. The E step constructs a unique set of 
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regression equations that predict the incomplete variables given the observed data and current 

parameter estimates for each missing data pattern. Specifically, it replaces the missing parts of 

the sufficient statistics with conditional expectations. An algorithm named sweep operator can 

automate constructing a set of regression equations for each missing data pattern. The M step 

uses standard complete-data formulas to produce updated parameter estimates, which are carried 

forward to the next E step. The process stops when parameter estimates in two consecutive M 

steps do not change, i.e., when the algorithm converges to ML estimates.   

Researchers compared the ML approach with listwise deletion under MCAR, MAR, and 

MNAR. When the data was MCAR, both ML and listwise deletion yielded unbiased estimates. 

The standard errors under listwise deletion are 7% to 40% larger than those under the ML 

approach. The ML approach maximizes the statistical power by borrowing information from the 

observed data (Enders, 2010).  What does 'borrowing information' mean? For instance, in a 

multiple regression context, we have 𝑋&, 𝑋0 and 𝑋8 in the data set. Person A has data on  𝑋&, 𝑋0, 

but has missing data on 𝑋8. With ML missing data handling approach, person A’s log-likelihood 

is calculated using A's information on 𝑋& and	𝑋0. Although person A has missing data on 𝑋8, the 

data entry for person A is not deleted (unlike the listwise deletion method). Instead, it is 

approximated in the E step. When the data is MAR, the listwise deletion method produces biased 

estimates, while the ML approach gives unbiased estimates. Additionally, the confidence interval 

coverage when using ML is close to 95%, which indicates that standard errors are almost 

unbiased. When the data is MNAR, both listwise deletion and ML approach yield biased 

estimates. However, for the ML approach, the biases are restricted to a subset of the parameter 

estimates. In addition to listwise deletion, traditional missing data handling approaches generally 

yield biased parameter estimates for all parameters under MNAR (Enders, 2010). 
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ML approach is regarded as one state-of-art missing data handling approach (Shafer & 

Graham, 2002).  In general, it is considered a better approach than traditional missing data 

handling approaches.  

Multiple imputation (MI) is another state-of-the-art missing data handling technique, in 

addition to FIML (Schafer & Graham, 2002). Rubin (1987) proposed this approach within the 

Bayesian framework. There are, in general, three phases in MI: imputation, analysis, and 

pooling. The imputation phase produces numerous copies of the data set, each of which consists 

of different estimates of the missing values. In the analysis phase, it analyses all data sets created 

in the imputation phase. Finally, it combines all sets of parameter estimates and standard errors 

from the analysis phase in the pooling phase. Different algorithms can be used in the imputation 

phase. Data augmentation is one of the most popular algorithms, which assumes multivariate 

normal distribution (Schafer, 1997; Tanner & Wong, 1987). It is an iterative algorithm that 

repeatedly performs an imputation step (I-step) and a posterior step (P-step). In the I-step, it uses 

the stochastic regression procedure to impute the missing values. The P-step uses imputed data 

from the previous I-step to construct posterior distribution for parameters of interest and then 

produces new parameter estimates based on the posterior distribution. The MI approach has 

several inviting features. First, it allows researchers to analyze the data using estimation methods 

for complete data. Second, the approach does not distinguish whether the missing values are on 

the dependent variable or independent variables. Third, it can generate unbiased estimates with 

correct confidence interval with a small number of imputations. (Rubin, 1987 and van Buuren, 

2018). The most important advantage of the MI approach is that it gives unbiased estimates when 

the missingness is MAR.  
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Number of Imputations in Multiple Imputation. The classical advice is to set the number 

of imputations between 3 and 5. This suggestion originated from the relationship between 𝑇9 

(the estimate’s total variance when there is an infinite number of imputations) and 𝑇,(the 

estimate’s total variance when there are m imputations). 𝑚 is the number of imputations. Note 

that ‘estimate’ refers to the estimate for the parameter of interest. Rubin (1987) showed that 

𝑇, = L1 + :)
,
M𝑇9 where 𝛾$ is the true population fraction of missing information. For 𝛾$ =	 .3 

(e.g., a single variable with 30% missing) and m = 5, 𝑇, = 1.06𝑇9. That is, when the there are 

five imputations, and the fraction of missing information is 30%, the total variance of the 

estimate is 1.06 times the ideal variance 𝑇9. There is little advantage to use more imputations. 

(Schafer 1997, Schafer and Olsen, 1998). There are different perspectives regarding the number 

of imputations in the multiple imputation procedure, where researchers suggested to use a larger 

number of imputations (Royston, 2004; Graham, Olchowski, and Gilreath, 2007; Bonder, 2008; 

Von Hippel, 2018; White, Royston, and Wood, 2011). These researchers have different opinions 

because they based the calculation of m on different criteria.  

1.3.8 Handling Missing Network Tie Data in Latent Variable Models 

In this section, first, the latent space/factor model for network analysis will be 

introduced. Second, the idea of controlling for distance in latent space/latent positions/cluster 

membership in network analysis models will be reviewed. Last but not least, how researchers 

handle missing tie data in latent variable models will be described.  

Latent space/factor model for network analysis. In network analysis, the probability of 

forming a tie is one thing that researchers are interested in modeling. In the latent space/factor 

model, the probability of forming a tie between two actors depends on the distance between them 

in the latent space or individuals' latent positions (i.e., an unobserved vector of characteristics). 



 

 18 

In some networks, individuals who have similar characteristics have higher probabilities of 

forming ties between them. Then the situation that a subset of individuals with a large number of 

ties between them may be suggestive that these individuals have nearby positions in the space of 

characteristics or social space (Hoff et al., 2002). This social space is called latent space, and an 

individual's position in this latent space is called a latent position. When distance is mentioned in 

this context, it means distance between two individuals in the latent space. In addition to the 

individual characteristics controlled in the model, the latent space, or the unknown individual 

characteristics which constitute the latent space are unobserved. When building models based on 

the collected data, it is probable that not all relevant individual attributes are included in the 

model. Some attributes may not be measured/observed. Including distance or latent positions in 

the model counts for those unmeasured/unknown nodal effects, and therefore decreases the 

residual variance (Hoff, 2018). This is one motivation of the latent space/factor model. Figure 3 

below is a circle plot of estimated two-dimensional latent factors for a trading network between 

different countries. Estimated directions of the sender effect (countries who export) and the 

receiver effect (countries who import) are shown in red and blue. The country names' sizes 

represent the magnitude of the latent sender vector and the latent receiver vector. Dashed lines 

between countries indicate higher than expected trade after controlling for the additive sender 

and receiver effects and other covariates. From this plot, we can identify countries similar to 

each other in terms of trading behaviors after controlling for latent factors and other covariates. 

For instance, on the lower right side of the graph, it is shown that countries on the Pacific rim, 

such as the USA, China, Japan, etc. have high trade volume between them. 
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Figure 3 Circle plot of estimated latent factors for trading network (Hoff, 2015) 

Another important motivation is that the distance or latent positions can account 

for third-order dependencies, which are ubiquitous phenomena in social networks. Third-order 

dependency is defined as dependency between triads, which can emanate from common 

characteristics among actors, which affects the probability of tie formation. Another example of 

third-order dependency is stochastic equivalence; it is defined such that "a pair of actors 𝑖𝑗 are 

stochastically equivalent if the probability of i relating to, and being related to, by every other 

actor is the same as the probability for j" (Minhas et al., 2019). The second motivation is for 

completeness of the literature review, but not of concern of this dissertation. 

Recall that earlier in the previous paragraph, it was mentioned that in latent variable 

models, the probability of forming a tie depends on the distance between two actors or 

individual latent positions. While underlying individual characteristics constitute the latent 

space, and individuals with many ties between them tend to be close to each other in the latent 

space, it is more straightforward to understand the situation in this way: the probability of 
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forming a tie depends on the presence of other ties (Hoff et al., 2002). This is the intuition of 

controlling for latent features or network cluster memberships in network models, which will be 

reviewed next.  

Control for latent features/cluster membership in network analysis models. The intuition 

of controlling for latent features/cluster membership in network models is not novel. For 

networks in which individuals belonging to prespecified groups, Wang and Wong (1987) 

introduced the stochastic blockmodel, where parameters representing differential probabilities of 

between-group and within-group ties are included. For networks in which group membership is 

not prespecified, Snijder and Nowicki (2001) proposed a model in which the probability of 

forming a tie depends on latent class membership. Individuals within the same latent class are 

treated as stochastically equivalent. Hoff et al. (2002) introduced the distance model, in which 

the probability of tie formation depends on the Euclidean distance between two actors and 

characteristics of dyads. Here the Euclidean space represents the latent space. Later in 2009, 

Hoff proposed the latent factor model where the probability of forming a tie depends on 

individuals' latent positions, i.e., individual-specific unobserved vectors of characteristics. 

Whether the probability of tie formation depends on latent class membership, distance in latent 

space, or individual latent positions, researchers are essentially controlling for dependency 

among a subgroup of individuals. The dependency originates from similarities among these 

individuals, and the similarities encourage tie formation. In other words, the formation of ties 

depends on the presence of other ties. Similarly, we may be able to achieve the same thing by 

controlling for cluster membership. Clustering is when a subset of actors have a large number of 

within-group ties and relatively few between-group ties (Hoff, 2009). In this dissertation, a 
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continuous latent factor approach will not be employed. Instead, cluster memberships will be 

used to represent a discrete latent space.  

Handling missing tie data in the latent variable model. Hoff (2009) described how he 

handled missing tie data with the multiplicative latent factor model. In the multiplicative latent 

factor model, 𝑙𝑜𝑔𝑜𝑑𝑑𝑠;𝑦!,4 = 1> = 𝛽6𝑥!,4 + 𝑢!6𝐷𝑣4 + 𝜖!,4, where 𝑦!,4 = 1 if there is a tie from i 

to j. 𝑥!,4 represents observed predictor variables. 𝑢! is a vector of latent sender-specific factors, 

and 𝑣4 is a vector of latent receiver-specific factors. A fuller version of this model is 

𝑙𝑜𝑔𝑜𝑑𝑑𝑠;𝑦!,4 = 1> = 𝛽6𝑥!,4 + 𝑎! + 𝑏4 + 𝑢!6𝐷𝑣4 + 𝜖!,4, where 𝑎! is the sender effect and 𝑏4 is the 

receiver effect. The difference between model versions does not affect the way of handling 

missing data. Let's focus on 𝑙𝑜𝑔𝑜𝑑𝑑𝑠;𝑦!,4 = 1> = 𝛽6𝑥!,4 + 𝑢!6𝐷𝑣4 + 𝜖!,4 .	 Assume that there are n 

actors in the network. The researcher divided all n(n-1) directed ties into two parts, a training set 

and a test set. Then he assumed that the training set has complete data and removed some tie 

data from the test set so that the test set has missing tie data, 𝑦!,4. The researcher first used data 

from the training set and estimated model parameters with the MCMC algorithm. Based on the 

results, the researcher estimated probability of forming a tie for each missing tie in the test set 

such that �̂�!,4 = 𝑝;𝑦!,4 = 1Z𝑦!,4	./-<=><?> = 𝐸 \ @ABCD!,'E
&F@ABCD!,'E

]𝑦!,4	./-<=><?^, where �̀�!,4 = 𝛽a 6𝑥!,4 +

𝑢b!6𝐷c𝑣b4 . Then, the researcher compared �̂�!,4 with a threshold 𝑝. If �̂�!,4 > 𝑝, the estimated missing 

tie 𝑦!,4 = 1. The threshold 𝑝 is set up by researchers based on their preference of making a 

balance between 𝑃(𝑦!,4 = 1|𝑦b!,4 = 1) and 𝑃;𝑦b!,4 = 1|𝑦!,4 = 1>. 𝑃(𝑦!,4 = 1|𝑦b!,4 = 1) is the 

percentage of predicted ties that truly exist.  𝑃;𝑦b!,4 = 1|𝑦!,4 = 1>	is the percentage of existing 

ties that are being predicted correctly. Notice how the latent feature plays a role in this process of 

handling missing data. First, complete data is used to estimate parameters and unknown 
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quantities in the model including 𝑢! (the vector of latent sender-specific factors) and 𝑣4 (the 

vector of latent receiver-specific factors). Then, estimated parameters and quantities are used on 

missing entries (missing on 𝑦!,4, but have complete information on other variables) to predict 

𝑝!,4. Then, according to the value of predicted 𝑝!,4 (i.e., �̂�!,4), the researcher decides whether the 

missing tie 𝑦!,4 equals to 1 or 0. This approach assumes that missing ties are MAR.  

Sewell and Chen (2015) also talked about handling missing tie data in the dynamic latent 

space model (a latent space model with time dimension), 𝑙𝑜𝑔𝑜𝑑𝑑𝑠;𝑦!,4,# = 1> =

𝛽GH g1 −
?!,',%
='
h + 𝛽IJK L1 −

?!,',%
=!
M . In this model, 𝑦!,4,# = 1 if there is a tie from i to j at time t. 

𝑑!,4,# is the distance between i and j at time t. Specifically, 𝑑!,4,# =∥ 𝑋!# − 𝑋4# ∥ where 𝑋!# is the p 

dimensional vector of the ith actor's latent position. 𝑟! 's are actor-specific parameters that 

represent each actor's social reach. The researchers imputed missing value by drawing from a 

Bernoulli distribution with probability determined by parameter estimates for complete data from 

the model stated above. MH Gibbs sampling was used in the estimation procedure. The most 

updated imputed missing tie values were used in the next sampling procedure. This approach 

also assumes that missing ties are MAR. 
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CHAPTER 2: METHODOLOGY 

 

2.1 Proposed Imputation Method for Missing Two-Mode Tie Data 

In this dissertation, a new method is proposed to impute person-to-event ties' probability. If 

the imputed probability is greater or equal to a threshold, the imputed tie is 1. That is, the tie 

exists, and the person attended the event.  If the imputed probability is smaller than the threshold, 

the imputed tie is 0. That is, the person did not attend the event. The next paragraph will discuss 

the model for imputing the probability, and an example will be given.  

The probability of tie formation for missing actor-to-event ties will be imputed using 

equation (2).  

 
𝑙𝑜𝑔𝚤𝑡lm𝑝;𝑣!,' = 1>n = 𝑙𝑛 o

𝑝;𝑣!,' = 1>
1 − 𝑝;𝑣!,' = 1>

p = (1 − 𝑥)𝛼L + 𝑥𝛾L 
 

(2) 

 

𝑣!,' = 1 if actor 𝑖 attended event 𝑞. ln \ 1M>!,#)&N
&%1M>!,#)&N

^ is the log odds of attending an event. 

Consequently, the two main terms on the right side of the equation are on a log-odds scale. 𝛼L is 

the log odds of attending events outside one's cluster for actors in cluster 𝑐. It is also the log odds 

that an actor outside cluster 𝑐 attending events in cluster 𝑐.  𝛾L is the log odds of attending events 

within one's cluster for actors in cluster 𝑐. 𝛼L and 𝛾L are cluster specific to reflect the effect that 

people in the same cluster tend to have similar characteristics, and therefore tend to have similar 

behavior regarding events attendance. 𝑋 is a dummy variable, where 𝑋 = 1 if actor 𝑖 and event 𝑞 

are in the same cluster, = 0 otherwise.  

There are four categories for the relationship between an actor and an event: an actor 

attended the event given that the actor and the event are in the same cluster (A), an actor attended 

the event given that the actor and the event are in different clusters (B), an actor did not attend 
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the event given that the actor and the event are in the same cluster (C), and an actor did not 

attend the event given that the actor and the event are in different clusters (D). These categories 

will be used in the example below, which shows how to impute missing two-mode ties.  

 
Figure 4 A simplified example of event-attendance network  

Table 2 

A simple example of event-attendance network 
 

  Actors in Cluster 1 
Person 1 1 1 1 2 2 2 2 3 3 3 3 
Event ① ② ③ ④ ① ② ③ ④ ① ② ③ ④ 

Situation . A C D A A D D C A D B 
  Actors in Cluster 2 

Person 4 4 4 4 5 5 5 5         
Event ① ② ③ ④ ① ② ③ ④         

Situation C D A A D B A A         
 

Figure 4 and table 2 above depict a simple example of a two-mode event attendance 

network. There are five people and four events in the network. On the graph, round dots 

represent actors, and squares represent events; An arrow from a round dot to a square indicates 

that the actor attended the event. The dark blue color indicates cluster membership. The light 

blue color indicates membership in cluster 2. In table 2, A, B, C, and D correspond to the four 

categories of actor-and-event relationship defined in the last paragraph. There is a dot in the 
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'Situation' row of person 1 and event ①, which means that we do not know whether person 1 

attended event ① or not. This information is missing. The information in figure 4 and table 2 are 

summarized in tables 3 and 4. In cluster 1, four ties belong to category A, two ties belong to 

category B, one tie belongs to category C, and four ties belong to category D. Table 3 and 4 can 

be interpreted in the same way. 

Table 3 

Count of event attendance for actors in cluster 1 

Cluster 1 Same Cluster 
Yes No 

Attended Yes A (4) B (1) 
No C (2) D (4) 

Marginal Sum 6 5 
 

Table 4 

Count of event attendance for actors in cluster 2 

 

 

 

 

Recall the model for imputing the probability of event attendance in equation (2).  

 
𝑙𝑜𝑔𝚤𝑡lm𝑝;𝑣!,' = 1>n = 𝑙𝑛 o

𝑝;𝑣!,' = 1>
1 − 𝑝;𝑣!,' = 1>

p = (1 − 𝑥)𝛼L + 𝑥𝛾L 
 

(3) 

 
𝛼L is the log odds of attending events outside one's cluster for actors in cluster 𝑐. In this example, 

𝛼& = ln	(&/P
Q/P
) for people in cluster 1 and 𝛼0 = ln	(&/8

0/8
) for people in cluster 2.  𝛾L is the log odds 

of attending events within one's cluster for actors in cluster 𝑐. Here, 𝛾& = ln	(Q/R
0/R
) for people in 

Cluster 2 Same Cluster 
Yes No 

Attended 
Yes A (4) B (1) 
No C (1) D (2) 

Marginal Sum 5 3 
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cluster 1 and 𝛾0 = ln	(Q/P
&/P
) for people in cluster 2. Back to figure 4 and table 2, from table 2 we 

know that the information between actor 1 and event ① is missing. Using the model proposed in 

this section, the log odds that actor 1 attended event ① is  

 𝑙𝑜𝑔𝚤𝑡*+𝑝-𝑣!,! = 112 = ln 5 #$%!,#&!'
!(#$%!,#&!'

6 = (1 − 1)𝛼! + 1 × 𝛾! = 0 + ln	()/+
,/+
) (4) 

 
Note that X = 1 in this case because both actor 1 and event ① belong to cluster 1. Solving 

equation (4), we get 𝑝;𝑣&,& = 1> = .67, which is the imputed probability of having a tie between 

actor 1 and event ①. Then, we need to compare .67 to a threshold. If .67 is greater or equal to 

that threshold, it indicates a tie; otherwise, it indicates the absence of a tie. The next session will 

discuss how to decide the value of the threshold.  

The threshold value is decided by considering two indices: precision and recall. 

Precision is defined as 𝑝;𝑣!,' = 1Z𝑣b!,' = 1>. It is the probability of having a tie between actor 𝑖 

and event 𝑞, given that we predict there is a tie between 𝑖 and 𝑞, that is, the probability of 

correctly identifying the presence of a tie.  Recall is defined as 𝑝;𝑣b!,' = 1Z𝑣!,' = 1>; it is the 

probability of predicting a tie between 𝑖 and 𝑞, given that there is indeed a tie between them. It 

tells us among all existing ties, what proportion we correctly identified as having a tie.  We aim 

for high values of precision and recall while making predictions. Recall is monotonically 

decreasing as the classification threshold increases. In most cases, precision is monotonically 

increasing as the classification threshold increases.  Therefore, when we try to decide the 

threshold and classify data into one class or the other (e.g., whether a person attended an event or 

not), we usually need to balance precision and recall. For example, in the context of COVID-19, 

we have incomplete information about whether people attended certain events. If the recall index 

𝑝;𝑣b!,' = 1Z𝑣!,' = 1> is low, it means that in some situations, we fail to recover the information 
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that people attended certain events. This is a severe mistake in the context of COVID-19 because 

we may not be able to track potentially infected people accurately. If the precision index 

𝑝;𝑣!,' = 1Z𝑣b!,' = 1> is low, it means that in some cases, we predict that people attended certain 

events, but actually, they did not. In the context of COVID-19, this is not a very serious mistake 

compared to the situation when recall is low. How to choose the classification threshold depends 

on the specific research context. In this dissertation, a threshold which maximizes precision and 

recall and a threshold of .5 are used. Figure 5 shows an example of how to find the threshold 

which maximizes precision and recall at the same time. The horizontal axis represents the values 

of the threshold. The vertical axis is the probability, which represents the values of precision and 

recall. The orange curve is the recall curve, and the blue curve is the precision curve. The x-

coordinate of these two curves’ intersection is the threshold maximizing the precision and recall 

at the same time. A threshold of .5 is also chosen because .5 is the median of the interval [0, 1], 

containing all possible values of a probability.  

 
Figure 5: Precision and recall curves to find the threshold of the probability of having a tie 
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2.2 Use Multiple Imputation Method for Missing Two-Mode Tie Data 

There are two general approaches in multiple imputation, Joint Modeling (JM) and Fully 

Conditional Specification (FCS), also known as Multivariate Imputation by Chained Equations. 

The JM approach (Schafer, 1997) specifies a multivariate distribution for the missing data and 

draws imputation from conditional distributions by the Markov chain Monte Carlo technique. It 

is often used when we can use the multivariate distribution to describe the data. The FCS 

approach (van Buuren et al., 2006) does not assume a joint distribution for the data. Instead, it 

uses a separate conditional distribution for each variable with missing data and specifies the 

imputation model on a variable-by-variable basis. It is often used when the variable with missing 

data must only take specific values, for example, a binary variable for a logistic model or a count 

variable for a Poisson model.  

The FCS is used in this dissertation to impute missing person-to-event tie data. The two-

mode network data contains four columns: person_id, event_id, attended, and formal. Attended = 

1 if the person attended the event, = 0 otherwise. Formal = 1 if the event was a formal event, = 0 

otherwise. There are missing values in the variable attended and no missing information in other 

variables. The conditional density P(Attended |Formal, model parameter) is used to impute 

missing values in Attended. The variable Formal is in the imputation model. Recall that the 

missing person-to-event tie data are MAR, and the missingness depends on whether the event 

was formal or not. Note that the variable 𝐹𝑜𝑟𝑚𝑎𝑙 only appears in the imputation model, but not 

in the influence model (model for analyzing the data). Therefore, 𝐹𝑜𝑟𝑚𝑎𝑙 is an auxiliary 

variable. See the ‘generate missing data’ section for how the missing data were generated. Note 

that the cluster membership is not in the network tie data directly, but it is embedded. See the 

‘assign two-mode (actor-to-event) ties’ section for details. The number of imputations is set to be 
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five. The ordinary least square method is used on the imputed datasets to estimate coefficients in 

the influence model. After obtaining the coefficient estimates from the imputed datasets, Rubin’s 

formulas are used to combine these estimates as the final coefficient estimate. In particular, the 

multiple imputation point estimate is �̅�& =	
&
,
∑ 𝛽a&,#,
#)& , where 𝛽a&,# is the estimated coefficient of 

the exposure term for the 𝑡#* imputation, and 𝑚	is the number of imputations. The estimated 

variance for �̅�& is 𝑉K = 𝑉S + 𝑉T +
U*
,

.  𝑉S is the within-imputation variance. 𝑉S =	 &
,
∑ 𝑆𝐸#0,
#)& , 

where 𝑆𝐸# is the standard error of the estimate from the 𝑡#* imputation. 𝑉T is the between-

imputation variance. 𝑉T =
&
,
∑ ;𝛽a&,# − �̅�&>

0,
#)& , which quantifies the variability of estimates from 

different imputed datasets.  U*
,

 is a correcting factor for using finite number of imputations.  

2.3 Data Simulation 

2.3.1 Simulate Complete Data 

To generate complete two-mode networks, we need to consider network density, the total 

number of actors, the total number of events, distribution of first-mode degree, number of 

clusters, number of actors per cluster, and number of events per cluster.  

Density. There are a few pieces of literature studying densities of real-world two-mode 

networks. Valente (2010) states that there are many redundant ties for one-mode networks with 

density values above 50%. For such networks, removing ties or even nodes will not affect overall 

network properties. Such networks do not contain much structural information, and often 

researchers are not interested in them or need to "prune" the network to find the hidden structure. 

Researchers think that there is a practical limit to the number of relationships that one actor can 

establish with other actors in a network (Valente, 2010). A reasonable range for density in 

typical one-mode networks is [0, 0.5]. In one-mode networks, actors only have limited time and 
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energy to interact with a certain number of other actors. The same reasoning applies to two-mode 

networks. It is assumed that participation in events is proportional to the interaction with people 

in the network. That is, actors have limited energy to attend events in a particular period. In this 

dissertation, it is assumed that the density ∆𝐴 ∈ {0.25, 0.45}  representing networks with low 

and high densities for social networks. Say that we have a two-mode network with N actors and 

K events. Let L be the total number of ties present. Then the density of this two-mode network is 

#.#VW	XY,/<=	.Z	#!<-
1.--!/W<	XY,/<=	.Z	#!<-

= [
H×]

= [/H
]
= ^

]
 , where 𝜆 is the expected outdegree (per actor).  We are 

borrowing information about outdegree in the one-mode network and graphing it to the two-

mode network.  

The total number of actors in the network. Literature about network size for two-mode 

networks (including the number of actors in the network and the number of events in the 

network) is rare. Nevertheless, researchers have different opinions about reasonable network size 

for one-mode networks. According to Valente (2010), some researchers studied organizations 

with 100 to 250 employees; some evidence showed that the optimal size for a human group is 

100 (Dunbar, 1993); some other researchers estimated that the average size of acquaintance 

network in the U.S. is about 280 (Killworth et al., 2006). Even though actors may know several 

thousand other people, the number of names they can give on any topic is usually much smaller 

(Valente, 2010). For the same reason, in two-mode networks, actors have limited energy and 

time to attend events and could only be exposed to a certain number of other actors. The number 

of actors in the network is set to be 𝑁 ∈ {20, 50, 200} to represent small, medium and large 

social networks.  
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Total number of events. A two-mode network's size is decided by the number of actors 

and the number of events. The number of events is set to be 𝐾 ∈ {10, 50, 100} to represent 

scenarios where there is small, medium and large number of events.  

Distribution of first-mode degree. Next, the decision needs to be made regarding the 

distribution of the first-mode degree. Say that we are studying a network of people and events. 

Then the first mode is people; the second mode is events. The first-mode degree for a particular 

actor is the number of events that this actor attended. One assumption is that the distribution of 

the first-mode degree is homogenous, i.e., actors are similar in terms of the number of events 

participated, which implies "normal and expected behavior when taking an actor at random" 

(Fujimoto et al., 2011; Latapy et al., 2008). Another reasoning for assuming homogeneous first-

mode degrees is that actors have limited energy to attend events in a given period. The 

distribution of first-mode degrees will be generated using Poisson distribution. Let 𝐴 = {𝐴!4} 

represent the two-mode social matrix, where 𝐴!4 = 1 indicates that actor i participated in event j. 

Let Δ𝐴 represent density of the two-mode network A. By definition, Δ𝐴 =

#.#VW	XY,/<=	.Z	#!<-
1.--!/W<	XY,/<=	.Z	#!<-

= [
H×]

= [/H
]
= ^

]
, where 𝜆 is the expected one-mode degree. Earlier it was 

decided that ∆𝐴 ∈ {. 25, .45} and 𝐾 ∈ {5, 50, 100}. Therefore, 𝜆 = ∆𝐴 × 𝐾 has 2 × 3 = 6 

potential values. Earlier the number of events was set to be 𝑁 ∈ {20, 50, 200}. The first-mode 

degrees will be obtained by drawing random numbers from Poisson (𝜆) for N times. The draws 

represent the number of events participated by each actor. Note that for now it has not been 

assigned exactly which events each actor attended. Before that, actors and events need to be 

assigned to different clusters. There are 2 × 3 × 3 = 18 different networks (in terms of different 

density levels, number of events, and number of actors). Also note that ∆𝐴 ∈ {	.25, .45} will not 
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be the exact densities for generated networks. Those are expected densities. Drawing from 

Poisson distribution will introduce some randomness.  

Number of Clusters. Next, the number of clusters and corresponding cluster size (i.e., 

the number of actors and the number of events in each cluster) for each simulated network need 

to be decided. There are few guidelines or literature about the number of clusters or cluster sizes 

for two-mode networks. The number of clusters presented in a two-mode network may depend 

on the network density, local densities for subsets of the network, etc. A densely connected 

network is more likely to have clusters compared to a very sparse network. However, there is no 

clear rule about the relationship between the number of clusters/cluster size and network-level 

properties. For an event participation network, how it is clustered depends on how actors 

participated in different events, which means every network is unique. In this dissertation, it is 

assumed that there are two clusters. Defining the system allows the exploration of how the 

presence of clustering affects estimation. Systems with more clusters can be explored in further 

research. 

Number of actors in each cluster. Earlier it was decided that there are 𝑁 actors and 2 

clusters in the network where 𝑁 ∈ {20, 50, 200}. Random numbers will be drawn from Uniform 

(5, N-5), Uniform(12.5, N-12.5), and Uniform(50, N-50) to decide the number of actors in each 

cluster for different settings of N. The reason to set lower bounds for the range of uniform 

distributions to be 5, 12.5, and 50 is to make sure that clusters generated are not extreme cases. 

For instance, if drawn from Uniform (1, 50-1) for a network containing 50 actors, there may be 

two actors in one cluster and 48 actors in the other cluster, which is a very extreme case. 5, 12.5, 

and 50 are 25% of the total number of actors for different settings of N. Say that we get 𝑁_& from 
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one draw. That is, one cluster has 𝑁_& actors. Then the other cluster has 𝑁 − 𝑁_& actors. Next, 

assign actors 1 to 𝑁_& to cluster 1, and actors 𝑁_& + 1 to N to cluster 2.  

Number of events per cluster. Earlier, it was decided that there are K events in the 

network, where 𝐾 ∈ {10, 50, 100}. Random numbers will be drawn from Uniform(2.5, K-2.5), 

Uniform(12.5, K-12.5), and Uniform(25, K-25) to decide the number of events in each cluster 

for different settings of K. The reason to set lower bounds for the range of uniform distributions 

to be 2.5, 12.5, and 25 is to avoid extreme cases. For example, if drawn from Uniform (1, 50-1) 

for a network containing 50 events, one cluster may have 1 event and the other cluster may have 

49 events, which is an extreme situation.  2.5, 12.5, and 25 are 25% of the total number of events 

for different settings of K. Say that we get 𝐾_& from one draw. That is, one cluster has 𝐾_& 

events. Then the other cluster has 𝐾 − 𝐾_& events. Next, assign events 1 to 𝐾_& to cluster 1, and 

events 𝐾_& + 1 to K to cluster 2. 

Assign two-mode (actor-to-event) ties. When 'pair' is mentioned in this dissertation, it 

refers to the actor-to-event pair. By this stage of data simulation, we already know the number of 

actors, the number of events, and their corresponding cluster memberships. We know how many 

within-cluster pairs there are and how many outside-cluster pairs there are at both cluster and 

individual levels. Note that 'pair' is used here instead of 'tie,' indicating that all possible pairs are 

considered in the network. There is not necessarily a tie between each possible pair. We do not 

know how many events each actor attended within vs. outside their cluster yet. This is decided 

by the odds ratio of attending an event within vs. outside one's cluster. The odds ratio is set to be 

1, 2, and 5. A value of 1 indicates no clustering; 2 indicates low clustering; 5 indicates high 

clustering. Next, an example of how to calculate the number of within-cluster ties and outside-

cluster ties will be given.  Table 5 below describes an actor's event attendance information.  
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Table 5 

An actor’s event attendance 

 Same Cluster 
Yes No 

Attended 
Yes a b 
No c d 

 
Assume that there are 𝑘 events in the network, then for any actor, there are 𝑘 possible 

actor-to-event pairs. The actor attended some events (a + b) and did not attend others (c + d). 

Some events are in the actor's cluster (a + c), while other events are outside the actor's cluster (b 

+ d). For each actor a + b + c + d = 𝑘, the total number of events in the network. Note that a + b 

is the actor's outdegree, i.e., the number of events the actor attended. a + c is the number of 

events within the actor's cluster, despite whether the actor attended it or not. The odds of 

attending events within-cluster is a/c; the odds of attending events outside-cluster is b/d. 

Therefore, the odds ratio of attending events within-cluster vs. attending events outside-cluster is 

V?
/L
. Summarizing the above information, we have the following four equations for each actor.  

𝑎 + 𝑏 = 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 

𝑎 + 𝑐 = 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑝𝑎𝑖𝑟𝑠 

𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑣𝑒𝑛𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝑎𝑑
𝑏𝑐 = 1, 2	𝑜𝑟	5 

There are four equations and four unknowns (a, b, c and d). So, for each individual, we 

will be able to calculate 𝑎, the number of within-cluster ties and 𝑏, the number of outside-cluster 

ties. Once a and b are known for each actor, a simple random sample of size 𝑎 is taken from all 

possible within-cluster pairs, and a simple random sample of size 𝑏	is taken from all possible 

outside-cluster ties. That is how specific actor-to-event tie is assigned.  
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Recall the influence model in equation (1).  

 
𝑦!,# = 𝛼 + 𝜌$𝑦!,#%& + 𝛽&

1
ℎ!&
)𝑣!,'& 𝑧',#%&

(

')&

+ 𝜖!#  

 
(5) 

 
The values for 𝑣!,'&  and ℎ!& will be from generated network data. The next session will discuss 

how to generate other variables.  

Generate 𝑌!,#%&, 𝛼, 𝑎𝑛𝑑 𝜌$. 𝑌!,# represents people's behavior at time 𝑡, and 𝑌!,#%& 

represents people's behavior at time 𝑡 − 1. 𝑌!,#%& will be generated from N(0, 1). People's 

behaviors at time 𝑡, i.e., 𝑌!,#, should have a fairly strong positive correlation with their behaviors 

at time 𝑡 − 1, i.e., 𝑌!,#%&. Therefore, 𝜌$ should be between 0 and 1. 𝜌$ will be generated from a 

Beta distribution with parameters 𝛼 = 5 and 𝛽 = 2.  

 

Figure 6 Beta distribution for generating coefficients for the prior  

 
In the influence model 𝑦!,# = 𝛼 + 𝜌$𝑦!,#%& + 𝛽&

&
*!
"∑ 𝑣!,'& 𝑧',#%& + 𝜖!,#

(
')& , 𝛼 is 𝑌!,#’s 

expected value when holding all independent variables zero. That is, when holding the exposure 

term  &
*!
"∑ 𝑣!,'& 𝑧',#%&

(
')& 	zero, 𝑦!,# = 𝛼 when 𝑦!,#%& = 0. Therefore, 𝛼 is the average change in 𝑦! 
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from time 𝑡 − 1 to time 𝑡 when holding the exposure term zero. 𝛼 is set to be 2. The value of 𝛼 is 

not the focus of this dissertation. A small positive value is set to reflect the fact that behavior 

change is gradual. The key is to ensure that the conditional means of 𝑦!,# and 𝑦!,#%& are different 

because we expect people's behavior to change from time 𝑡 − 1 to time 𝑡. One example is a study 

about people's perceptions of lake levels in the Great Lakes. At time one, people believed that 

lake levels would decrease in 50 years; at time two, people realized that lake levels would 

decrease but not as much as they thought. Between time one and time two, these people attended 

conferences, meetings, workshops, etc. related to lake levels. All these events they attended 

affected their beliefs about lake levels. 

Generate 𝑍',#%&. Recall that 𝑍',#%& is the information presented on event 𝑞. The whole 

term  &
*!
"∑ 𝑉!,'& 𝑍',#%&

(
')&  describes the effects of attending events on people. 𝑉!,'& = 1 if actor 𝑖 

participated in event 𝑞, = 0 otherwise.  The term &
*!
"∑ 𝑉!,'& 𝑍',#%&

(
')&  takes the average of all 

information presented on events that an individual attended within cluster. For instance, Bill 

participated in events 1, 4, and 5 in his cluster. The information presented on events 1, 4, and 5 is 

9, 10, and 11. Therefore, for Bill, the term &
*!
"∑ 𝑉!,'& 𝑍',#%&

(
')&  is (9+10+11)/3 = 10. Data for 𝑉!,'&  

and ℎ!& are from generated network data. ℎ!& is the number of events the actor attended within-

cluster.  &
*!
"∑ 𝑉!,'& 𝑍',#%&

(
')&  is Bill’s exposure term because he was exposed to all the information 

presented on these events and his behavior might be influenced. 𝑍',#%& will be generated from 

𝑁(0, 2). We want to make sure that the variance of 𝑍',#%& is different from the variance of 𝑌!,#%& 

(i.e., people's behaviors/beliefs at time 𝑡 − 1). 

Generate 𝛽&. 𝛽&	is the regression coefficient for the exposure term. The coefficient for the 

exposure term is often positive, falling between 0 and 1. On the other hand, the exposure term’s 



 

 37 

effect is usually not as strong as the effect of the prior (𝑌!,#%&). 𝛽& will be generated from a Beta 

distribution with parameters 𝛼 = 2 and 𝛽 = 5. The graph below shows the distribution for 𝛽&.  

 

Figure 7 Beta distribution for generating coefficients for the exposure term  

Generate 𝜖!,#. 𝜖!,# is the random error term from the model. It will be generated from 

𝑁(0, 1).  

Compute 𝑦!,#. Recall the influence model 𝑦!,# = 𝛼 + 𝜌$𝑦!,#%& + 𝛽&
&
*!
"∑ 𝑣!,'& 𝑧',#%& +

(
')&

𝜖!,#. The above paragraphs described how to generate 𝛼, 𝜌$	, 𝛽&, 	𝑦!,#%&, 𝜖!,#, 𝑣!,'&  and ℎ!&. We 

have everything on the right side of the influence model. The dependent variable 𝑦!,# will be 

computed using the generated values.  

Covariance structure of the influence model. The influence model is essentially a linear 

regression model with two independent variables: 	𝑦!,#%& and the exposure term 

&
*!
"∑ 𝑣!,'& 𝑧',#%&

(
')& . It is assumed that 𝑦!,# 's are independent. Therefore, the variables do not have 

a special covariance structure.  The covariance structure of the influence model is the variance 



 

 38 

covariance matrix of 𝑦!,#, 𝑦!,#%& and &
*!
"∑ 𝑣!,'& 𝑧',#%&

(
')& . The coefficients 𝜌$ and 𝛽& guarantee that 

there is correlation between 𝑦!,# and 𝑦!,#%&, as well as 𝑦!,# and &
*!
"∑ 𝑣!,'& 𝑧',#%&

(
')& . Recall that the 

coefficient of 𝑦!,#%&,  𝜌$, is generated using the Beta(5, 2) distribution to ensure that 𝑦!,# and 

𝑦!,#%& are highly correlated.  

2.3.2 Simulate Missing Data 

Recall the definition of missing person-to-event tie in this dissertation. All possible actor-

to-event pairs are considered. Those pairs that we have information about whether there is a tie 

or not are considered observed data. An observed tie can be 1 or 0. Those pairs that we do not 

have information about whether there is a tie or not are considered missing data. A missing tie 

can be 1 or 0.  

 Proportion of missing data. The proportion of missing data is the proportion of actor-

and-event pairs that we do not have information about whether there is a tie or not. It is assumed 

that there is 50% missing data. It is easy to have a large proportion of missing tie data in two-

mode network studies because it could be challenging to know a comprehensive list of events 

and get all attendance lists. 50% is a starting point for the research. Other proportions of missing 

tie data could be tried in the future. 

Missing mechanism. Missing data are assumed to be Missing at Random (MAR). The 

missingness depends on whether the event is formal or informal. It is assumed that 50% of 

events are formal events, and 50% events are informal events. Let 𝑥' = 1 if event 𝑞 is formal; 

𝑥' = 0 if event 𝑞 is informal. When 𝑥' = 1, the probability of missing in 𝑣!,' is 20%; when 

𝑥' = 0, the probability of missing in 𝑣!,' is 80%. Therefore, the proportion of missing is 

20% × &
0
+ 80% × &

0
= 50%.  
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2.3.3 Number of Replications 

When simulating the network data, there are two settings for the network density, three 

settings for the number of actors in the network, and three settings for the number of events in 

the networks. Therefore, there are 2 × 3 × 3 = 18 unique network settings. 2000 replicates were 

generated for each setting. According to Morris, White and Crowther (2018), coverage refers to 

the confidence interval coverage for the parameter of interest: 𝑃(𝜃W.` ≤ 𝜃 ≤ �̀�Y11). The 

estimate of coverage is equation (6).  

 
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒� =

1
𝑛-!,

) 1(θ̀abc,d ≤ 𝜃 ≤ �̀�Y11,!)
X+!,

!)&

 
 

(6) 

 
The Monte Carlo standard error of the coverage estimate is equation (7). 

 
√
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒� × (1 − 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒� )

𝑛-!,
 

 
(7) 

 
𝑛-!, is the number of replications. Rearranging equation (7), we have equation (8). 

 
𝑛-!, =

𝐸(𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒) × (1 − 𝐸(𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒))
(𝑀𝑜𝑛𝑡𝑒	𝐶𝑎𝑟𝑙𝑜	𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐸𝑟𝑟𝑜𝑟)0  

 
(8) 

 
Therefore, if we want to keep the Monte Carlo standard error below 0.5% for a coverage of 95%, 

we need at least 𝑛-!, =	 eP×P
$.P-

= 1900 replications. That's why the number of replications is set 

to be 2000 in this dissertation. 
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CHAPTER 3: RESULTS 

 

Recall the influence model: 𝑦!,# = 𝛼 + 𝜌$𝑦!,#%& + 𝛽&
&
*!
"∑ 𝑣!,'& 𝑧',#%& + 𝜖!,#

(
')& . The second 

independent variable with coefficient 𝛽& is the exposure term. The influence model was run in 

the following situation: 1) when the data was complete, 2) when there were missing data, but no 

imputation was used, 3) when there were missing data, and the proposed imputation method was 

used with thresholds maximizing Recall and Precision indices, 4) when there were missing data, 

and the proposed imputation method was used with the threshold of .5, and 5) when there were 

missing data, and the multiple imputation method was used. The ordinary least square 

estimation method was used in all situations. Bias, empirical standard error and the Root Mean 

Square Error (RMSE) for the coefficient estimate of the exposure term are examined.  

3.1 Bias 

 Bias for the Coefficient Estimate of the Exposure Term. The coefficient estimates of the 

exposure term's biases were calculated for each of the five situations described above. When 

‘bias’ is mentioned in this dissertation, it refers to the coefficient estimate of the exposure term’s 

bias. The formula for the bias is  1
nsim

∑ β"1,i−β1
nsim
i=1 . Recall that there are 54 network settings in 

terms of density, number of actors, number of events, and the clustering effect (i.e., odds ratio of 

attending events within- vs. outside- cluster). For each network setting, 2000 replicates (i.e., 

networks) were generated. For each replicate, the influence model was run in five situations. 

That is, there are 2000 coefficient estimates for each situation under different network settings: 

(1) when the data are complete (complete), (2) when there are missing data, but no imputation 

used (missing), (3) when using the proposed imputation method with thresholds maximizing 

precision and recall (imp), (4) when using the proposed imputation method with a threshold of .5 
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(imp_2), and (5) when using the multiple imputation method (multiple_imp). β̀&,d is the exposure 

term's coefficient estimate for each replicate. Initially, the exposure term's coefficient was 

generated from the distribution Beta(2, 5). The parameter value of β& used to calculate the bias is 

the mean of Beta(2, 5): 0
0FP

= 0.2857. nkdl = 2000. This explains why there are biases for 

complete data in the boxplot presented below.  

Figure 8 depicts coefficient estimates of the exposure term's biases for the five situations.  

 

Figure 8 Bias of the coefficient estimate for the exposure term 

 
The thick black line in the middle of each box represents the medium of the biases. The red dot 

represents the mean of the biases. When the data are complete, the average bias for the 2000 

replicates is -0.002, with a standard deviation of 0.010. It is very close to zero, which aligns with 
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the OLS estimator's property: mean-unbiased estimator when regressors are exogenous, errors 

are homoscedastic and serially uncorrelated, and errors have finite variances. The average bias 

when using the multiple imputation method is -0.005, with a standard deviation of 0.024. The 

average bias when using the proposed imputation method with thresholds maximizing precision 

and recall is 0.124, with a standard deviation of 0.104. The average bias when using the proposed 

imputation method with a threshold of .5 is 0.386, with a standard deviation of 0.321. When 

there are missing data but no imputation used, the average bias is -0.165 with a standard 

deviation of 0.019. The Kruskal-Wallis rank test was run to examine whether there are 

significant differences among the estimated coefficients' biases (exposure term) in the five 

situations. The p-value is 0 for this test, indicating that biases are significantly different for the 

five situations. The Kruskal-Wallis rank test is a non-parametric version of the one-way ANOVA 

test. It was used here because the normality assumption of the one-way ANOVA test was 

violated. The pairwise Wilcoxon signed test was then used to compare biases for each pair of the 

five situations. The results showed no significant difference between biases when the data were 

complete and when using the multiple imputation method to handle missing ties, which indicates 

that the multiple imputation method gave coefficient estimates with very small biases. Biases are 

significantly different when using the multiple imputation method and using the proposed 

imputation method with thresholds maximizing precision and recall. The multiple imputation 

method performed better than the proposed imputation method in terms of bias. One possible 

reason for this result is that the missing two-mode ties were generated as MAR depending on 

whether the event is formal or not. The multiple imputation method uses the variable Formal in 

the imputation model, which leverages the missing mechanism. On the other hand, the proposed 

imputation method does not use the variable Formal to impute the missing ties. Instead, it 
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utilizes the clustering effect in the imputation. Note that for the Kruskal-Wallis rank test and the 

pairwise Wilcoxon signed test described above, the sample size is 270 (54 network settings × 5 

situations). Next, the relationship between biases and network properties will be examined.  

 Bias vs. Clustering Effect. The clustering effect is represented by the odds ratio of 

attending events within- vs. outside- one’s cluster. The odds ratio is set to be 1, 2, and 5 

representing no clustering effect, low clustering effect, and high clustering effect. The 

relationship between bias and clustering effect are examined separately when using the proposed 

imputation method and the multiple imputation method.  

 

Figure 9 Relationship between bias and clustering effect (proposed imputation method)  

 
Figure 9 shows the relationship between bias and the clustering effect when using the proposed 

imputation method with thresholds maximizing precision and recall. The thick black bars 

represent the medium of biases. The red dots represent the mean of the biases. From the figure, 

we can see that the larger the clustering effect, the smaller the bias. The Kruskal-Wallis rank test 
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results show that biases are significantly different for networks with different clustering effects 

(p-value = 0). The pairwise Wilcoxon signed test results show that biases are significantly 

different for each pair of the three situations: odds ratio = 1 (no clustering), odds ratio = 2 (low 

clustering), and odds ratio = 5 (high clustering). The results confirm that the proposed imputation 

method leverages the clustering effect in the imputation process such that it gives smaller biases 

when the clustering effect is higher.  

 

Figure 10 Relationship between bias and clustering effect (multiple imputation) 

Figure 10 shows the relationship between the bias and the clustering effect when using the 

multiple imputation method. From this figure, we can see that there are positive and negative 

biases. Therefore, the relationship between the absolute bias and the clustering effect (figure 11 

is also examined to make it easier to see the biases' magnitude.  
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Figure 11 Relationship between absolute bias and clustering effect (multiple imputation) 

Figure 11 shows that the larger the clustering effect, the larger the absolute bias when using the 

multiple imputation method. The results are the opposite of those when using the proposed 

imputation method. The Kruskal-Wallis rank test result shows that there is no significant 

difference between biases for networks with different clustering effects when using the multiple 

imputation method. One possible reason is that the imputation model used for the multiple 

imputation method does not include the clustering effect. 

3.2 Empirical Standard Error 

 The estimated coefficients of the exposure term’s empirical standard errors are examined 

for the five situations described earlier under different network settings. When ‘empirical 



 

 46 

standard error’ is mentioned in this dissertation, it refers to the estimated coefficient of the 

exposure term’s empirical standard error. Figure 12 shows the results. The formula for the 

estimated empirical standard error is √ &
X+!,

∑ L𝛽a&,! − 𝛽a&̅M
0X+!,

!)& . For how 𝛽a&,! and 𝑛-!, are 

defined, please see the description in the ‘Bias for the Coefficient Estimate of the Exposure 

Term’ section. 𝛽a&̅ is the average of 𝛽a&,!’s for each 2000 replicates for a specific network setting.  

 

Figure 12 Empirical standard errors of the coefficient estimates for the exposure term 

When the data are complete, the average empirical standard error is 0.44, with a standard 

deviation of 0.25. When there are missing ties but no imputation used, the average empirical 

standard error is 0.28 with a standard deviation of 0.16. If we do nothing about the missing tie 

data, the empirical standard error will be under-estimated. When using the proposed imputation 

method with thresholds maximizing precision and recall, the average empirical standard error is 

1.30, with a standard deviation of 0.76. When using the multiple imputation method, the average 

empirical standard error is 1.03, with a standard deviation of 0.16. The multiple imputation 
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method gives a lower empirical standard error. However, these two results are not significantly 

different (pairwise Wilcoxon signed test, p-value = 0.19). Nevertheless, the multiple imputation 

method performed the best in terms of the empirical standard error.  

 The relationship between the empirical standard error and the network properties, 

including the clustering effect, network density, number of actors, and number of events, were 

examined. No significant relationship was found. 

3.3 Root Mean Square Error  

The root mean square error (RMSE) considers the bias and the empirical standard error at 

the same time. It was calculated for the five situations under different network settings. Figure 13 

shows the results. The formula for the RMSE is √ &
X+!,

∑ ;𝛽a&,! − 𝛽&>
0X+!,

!)& . For how 𝛽a&,!, 𝛽&, and 

𝑛-!, are defined, please see the description in the ‘Bias for the Coefficient Estimate of the 

Exposure Term’ section. 
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Figure 13 RMSEs of the coefficient estimates for the exposure term 

In figure 13, black bars represent the median of RMSEs, and red dots represent the mean of 

RMSEs. When using the proposed imputation method with threshold maximizing precision and 

recall, the average RMSE is 1.31, with a standard deviation of 0.76. When using the multiple 

imputation method, the average RMSE is 1.03, with a standard deviation of 0.59. The pairwise 

Wilcoxon signed test shows that these two results are not significantly different (p-value = 0.19). 

Nevertheless, the multiple imputation method gives a smaller RMSE.  

In summary, based on the influence model, when there are missing-at-random data 

in two-mode ties, the multiple imputation method performed the best in terms of absolute values 

of bias, empirical standard error, and RMSE. The multiple imputation method gives significantly 
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smaller biases than the proposed imputation method. This could be because the imputation model 

used in the multiple imputation method leverages the missing data mechanism used to generate 

the missing data. The proposed imputation method produced significantly smaller biases when 

the clustering effect is larger. This aligns with the fact that the proposed imputation method 

utilizes the clustering effect in the imputation process. The multiple imputation method and the 

proposed imputation method with thresholds maximizing precision and recall are not 

significantly different in terms of empirical standard error and RMSE. The proposed imputation 

method with a threshold of .5 performed the worst in terms of all criteria.
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CHAPTER 4: LIMITATIONS AND FUTURE WORK 

 

4.1 Limitations 

In this dissertation, the two-mode network's boundary was clearly defined in terms of the 

number of actors and the number of events.  In real life, it might be challenging to have such a 

clear boundary. For example, when we studied climate change knowledge dissemination in the 

Great Lakes region, actors were climate change researchers, and events were occasions that 

actors communicated with each other. The network data used were attendance lists of 

conferences, meetings, workshops, etc. related to climate change research. We collected the list 

of events by interviewing experts in this field. Nevertheless, it can't be guaranteed that all 

relevant events in that period were included. Climate change researchers might interact with each 

other in some circumstances, but we don't know. Consequently, the collected network data 

would not reflect all exposures that happened. Similarly, it was not easy to know every climate 

change researcher's name in the Great Lakes region.  

Additionally, the missing two-mode ties were assumed to be MAR. That is, the missingness 

depends on something that we measured, but not the missing data itself. In practical situations, 

the missingness could be MNAR. That is, the missingness depends on the values of the missing 

data. For instance, some event attendance lists might be confidential. Although we know that 

there was such an event where actors interacted with each other, we will not be able to use that 

information. MNAR is a more challenging situation.  

4.2 Future Work 

In other contexts of missing data, the multiple imputation method not only performs well 

when the missingness is MAR, it also performs better than other methods when the missingness 
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is MNAR. It is worth trying the multiple imputation method and the proposed imputation method 

when the missingness is MNAR and comparing the two methods’ results. At the same time, 

researchers need to be aware of the complexity of the MNAR mechanism. MNAR means that the 

missingness depends on the missing values themselves. To impute missing values under MNAR, 

one essential step is to break the dependency between the missingness and the missing values, 

which needs to be thoughtfully integrated into the methodology.  

Besides, when generating the outdegree of actors for the two-mode network, it was 

assumed that the outdegree is homogenous. That is, actors are similar in terms of the number of 

events participated. Another plausible assumption is that the outdegree is heterogeneous. In other 

words, some actors are more likely to attend events, while others are less likely. Researchers 

found that for some complex two-mode networks in the real world, the outdegree distribution for 

the first mode fits the Power Law distribution very well, with the exponent of the Power Law 

falls (Latapy et al., 2008). We could examine the effect of missing two-mode ties on parameter 

estimation in this situation. The proposed imputation method and the multiple imputation method 

could be used, and their results compared. 

Additionally, the influence mode in the context of two-mode network analysis could have 

different types of exposure terms: exposure to events, and exposure to other actors. See 

Appendix A for details. A more complicated influence model could be examined. 

Another idea is regarding variables used in the imputation model when using the multiple 

imputation method. In this dissertation, the only variable used in the imputation model is formal, 

with formal = 1 representing the event being a formal event. Either information about actors 

(e.g., actors’ characteristics, odds of attending events) or information about events (e.g., events’ 

characteristics, odds of being attended) could be used in the imputation model.  
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Finally, the proposed imputation method and the multiple imputation method could be 

used on one-mode network analysis when the influence model is used. 



 

 53 

APPENDICES
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APPENDIX A: INFLUENCE MODEL IDEAS AND NOTATIONS 

 

Person-to-Event Relationship. Let 𝑣!,'
1  be an indicator of person-to-event relationship, 

where 𝑖 is an index for actors with 𝑖 = 1,… . , 𝐼, 𝑞 is an index for events with 𝑞 = 1,… . , 𝑄 and 𝑝 

is an index for types of person-to-event relationship with 𝑝 = 1, 2, 3, 4. 𝐼 is the total number of 

actors in the sample. 𝑄 is the total number of events in the sample. Below is a table representing 

𝑣!,'
1 , where 𝑝 = 1, 2, 3, 4.	 

Table A1 

Two-mode event attendance network: person-to-event ties 

Person \ Event Same Cluster Different Cluster 

Attended 𝑣!,'&  𝑣!,'0  

Did not Attend 𝑣!,'8  𝑣!,'Q  
(no exposure) 

 

The term 𝑣!,'&  is an indicator of whether actor 𝑖	attended event 𝑞 given actor 𝑖 and event 𝑞 

have the same cluster membership; the term 𝑣!,'0 	is an indicator of whether actor 𝑖	attended event 

𝑞 given actor 𝑖 and event 𝑞 have different cluster memberships; the term 𝑣!,'8 	is an indicator of 

whether actor 𝑖 did not attend event 𝑞, given actor 𝑖 and event 𝑞 have the same cluster 

membership; the term 𝑣!,'Q 	is an indicator of whether actor 𝑖 did not attend event 𝑞 given actor 

𝑖	and event 𝑞 have different cluster memberships (no exposure). For every unique pair of actor 𝑖 

and event 𝑞, 𝑣!,'
& + 𝑣!,'0 + 𝑣!,'8 + 𝑣!,'Q = 1.	That is, each unique pair of actor and event can only be 

in one single situation listed in table A1. ℎ!
1 = ∑ 𝑣!,'

1(
')&  is the number of events of actor 𝑖 in cell 
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p (the four cells in table A1). For each actor 𝑖, ℎ!& + ℎ!0 + ℎ!8 + ℎ!Q = 𝑄. Q is the total number of 

events in the network. It is the same value for everyone.  

Person-to-Person Relationship. Let 𝑢!,!1
4 	(𝑖 ≠ 𝑖6) be an indicator of a person-to-person 

relationship, where 𝑖 and 𝑖6 are indexes for actors and 𝑗 is an index for types of person-to-person 

relationship with 𝑗 = 1, 2, 3, 4. Below is a table representing 𝑢!,!1
4 .  

Table A2 

Two-mode event attendance network: person-to-person ties 

Person \ Person Same Cluster Different Clusters 

Attended Event(s)  

Together 

𝑢!,!1
&  𝑢!,!1

0  

Did not Attend 

Event(s) Together 

𝑢!,!1
8  𝑢!,!1

Q  
(no exposure) 

 
The term 𝑢!,!1

&  is an indicator of whether actors 𝑖 and 𝑖6 attended common event(s) given 

that they have the same cluster membership; the term	𝑢!,!1	
0 is an indicator of whether actors 𝑖 and 

𝑖6 attended common event(s) given that they have different cluster memberships; the term	𝑢!,!1
8 	is 

an indicator of whether actors 𝑖 and 𝑖6 did not attend any event together, given that they have the 

same cluster membership; the term 𝑢!,!1
Q 	is an indicator of whether actors 𝑖 and 𝑖6 did not attend 

any event together given that they have different cluster memberships (no exposure). For every 

unique pair of actors 𝑖 and 𝑖6, 𝑢!,!1
& + 𝑢!,!1

0 + 𝑢!,!1
8 + 𝑢!,!1

Q = 1. That is, each unique pair of actors 

can only be in one situation listed in table A2. 𝑔!
4 = ∑ 𝑢!,!1

4G
!1)&  is number of other actors of actor 
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𝑖 in cell 𝑗 (the four cells in table A2). For each actor 𝑖, 𝑔!& + 𝑔!0 + 𝑔!8 + 𝑔!Q = 𝐼. I is the total 

number of actors in the network. The value is the same for everyone.  

Influence Model. Given the notation above, the influence model can be expressed as 

equation (A1).  

 
𝑦!,# = 𝛼 + 𝜌$𝑦!,#%& +)𝛽1

1
ℎ!
1

Q

1)&

)𝑣!,'
1 𝑧',#%& +)𝜌4

1
𝑔!
4

Q

4)&

(

')&

)𝑢!,!1
4 𝑦!1,#%& + 𝜖!#		

G

!1)&

 
 

(A1) 

 

 𝜖!#	~𝑖𝑖𝑑	𝑁(0, 𝜎0) 

 

 
 

 
𝑦!,# is the dependent variable, representing actor 𝑖′𝑠 behavior at time 𝑡. 𝑦!,#%& is the prior, 

representing actor 𝑖′𝑠 behavior at time 𝑡 − 1. 𝑦!1,#%& represents actor 	𝑖 − ′. ′𝑠s behavior at time 

𝑡 − 1. &
m!
'∑ 𝑢!,!1

4 𝑦!1,#%&		
G
!1)& represents exposure to other actors. 𝑧',#%& represents information 

presented at event 𝑞 which happened over the time interval from 𝑡 − 1 to 𝑡. 

&
*!
3∑ 𝑣!,'

1 𝑧',#%&
(
')& 	represents exposure to events. To make it clearer, the influence model could be 

re-written as equation (A2).  

 𝑦!,# = 𝛼 + 𝜌$𝑦!,#%& (A2) 

 
 

+𝛽&
1
ℎ!&
)𝑣!,'& 𝑧',#%&

(

')&

 
 
(exposure to events that the actor attended with the actor and 
events in the same cluster)  
 

 
+𝛽0

1
ℎ!0
)𝑣!,'0 𝑧',#%&

(

')&

	 
 
(exposure to events that the actor attended with the actor and 
events in different clusters)  
 

 
+𝛽8

1
ℎ!8
)𝑣!,'8 𝑧',#%&

(

')&

 
 
(exposure to events that the actor didn't attend with the actor 
and events in the same cluster) 
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+𝛽Q

1
ℎ!Q
)𝑣!,'Q 𝑧',#%&

(

')&

 
 
(expected zero exposure to events that the actor didn't attend 
with the actor and events in different clusters) 
 

 +𝜌&
&
m!
"∑ 𝑢!,!1

& 𝑦!1,#%&	
G
!1)&  (exposure to other actors who are in the same cluster and 

attended events together) 
 

 +𝜌0
&
m!
-∑ 𝑢!,!1

0 𝑦!1,#%&	
G
!1)&  (exposure to other actors who are in different clusters and 

attended events together) 
 

 +𝜌8
&
m!
4∑ 𝑢!,!1

8 𝑦!1,#%&	
G
!1)&  (exposure to other actors who are in the same cluster but 

didn't attend events together) 

 +𝜌Q
&
m!
5∑ 𝑢!,!1

Q 𝑦!1,#%&	
G
!1)&  (expected zero exposure to other actors who are in different 

clusters and didn't attend events together) 

 +𝜖!#					𝜖!#	~𝑖𝑖𝑑	𝑁(0, 𝜎0) 𝜖!#	~𝑖𝑖𝑑	𝑁(0, 𝜎0) 

 

In this dissertation, a simpler version of the influence model was be used. Instead of 

having eight exposure terms as stated in equation (A2), there was one exposure term, exposure to 

events that the actor attended with the actor and events in the same cluster. Please see equation 

(1) in the main text. 

 



 

 58 

APPENDIX B: DERIVATION: FORMULA FOR ASSIGNING TWO-MODE TIES 

 

An actor’s event-attendance information can be summarized in table B1. 

Table B1 

An actor’s event attendance  

 Same Cluster 
Yes No 

Attended 
Yes a b 
No c d 

 

Assume that there are 𝑘 events in the network, then for any actor, there are 𝑘 possible 

actor-to-event pairs. The actor attended some events (a + b) and did not attend others (c + d). 

Some events are in the actor's cluster (a + c), while other events are outside the actor's cluster (b 

+ d). For each actor a + b + c + d = 𝑘, the total number of events in the network. Note that a + b 

is the actor's outdegree, i.e., the number of events the actor attended. a + c is the number of 

events within the actor's cluster, despite whether the actor attended it or not. The odds of 

attending events within-cluster is a/c; the odds of attending events outside-cluster is b/d. 

Therefore, the odds ratio of attending events within-cluster vs. attending events outside-cluster is 

V?
/L
. Summarizing the above information, we have the following four equations for each actor.  

 𝑎 + 𝑏 = 𝛼	 = 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 (B1) 

 
 𝑎 + 𝑐 = 𝛽 = 	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑝𝑎𝑖𝑟𝑠 (B2) 

 
 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑘 = 	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑣𝑒𝑛𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

 

(B3) 

 
 𝑎𝑑

𝑏𝑐 = 𝑟 = 	1, 2	𝑜𝑟	5 

 

(B4) 

 From equation (11), 𝑏 = 𝛼 − 𝑎. From equation (12), 𝑐 = 𝛽 − 𝑎. From equation (13), 𝑑 = 𝑘 −

𝑎 − 𝑏 − 𝑐 = 𝑘 − 𝑎 − (𝛼 − 𝑎) − (𝛽 − 𝑎) = 𝑘 + 𝑎 − 𝛼 − 𝛽. From equation (14), 𝑟𝑏𝑐 − 𝑎𝑑 = 0. 
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Substitute 𝑏, 𝑐, and 𝑑, 𝑟(𝛼 − 𝑎)(𝛽 − 𝑎) − 𝑎(𝑘 + 𝑎 − 𝛼 − 𝛽) = 0.	Rearrange, we get 

(𝑟 − 1)𝑎0 − [𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]𝑎 + 𝑟𝛼𝛽 = 0. This is a quadratic equation with respect to 𝑎. 

The solutions are  

𝑎 = 	
𝑘 + (𝛼 + 𝛽)(𝑟 − 1) ± �[𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]0 − 4𝑟(𝑟 − 1)𝛼𝛽

2(𝑟 − 1)  

Then, 

𝑏 = 	
−𝑘 + (𝛼 − 𝛽)(𝑟 − 1) ∓ �[𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]0 − 4𝑟(𝑟 − 1)𝛼𝛽

2(𝑟 − 1)  

𝑐 = 	
−𝑘 + (𝛽 − 𝛼)(𝑟 − 1) ∓ �[𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]0 − 4𝑟(𝑟 − 1)𝛼𝛽

2(𝑟 − 1)  

𝑑 = 	
𝑘(2𝑟 − 1) − (𝛼 + 𝛽)(𝑟 − 1) ± �[𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]0 − 4𝑟(𝑟 − 1)𝛼𝛽

2(𝑟 − 1)  

For the first set of solutions (+, -, -, + before the square root), at least one of 𝑏 and c is smaller 

than zero. In the context of this dissertation, we need positive values for 𝑎, 𝑏, 𝑐, and 𝑑. 

Therefore, the correct set of solutions for the current context are 

𝑎 = 	
𝑘 + (𝛼 + 𝛽)(𝑟 − 1) − �[𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]0 − 4𝑟(𝑟 − 1)𝛼𝛽

2(𝑟 − 1)  

𝑏 = 	
−𝑘 + (𝛼 − 𝛽)(𝑟 − 1) + �[𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]0 − 4𝑟(𝑟 − 1)𝛼𝛽

2(𝑟 − 1)  

𝑐 = 	
−𝑘 + (𝛽 − 𝛼)(𝑟 − 1) + �[𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]0 − 4𝑟(𝑟 − 1)𝛼𝛽

2(𝑟 − 1)  

𝑑 = 	
𝑘(2𝑟 − 1) − (𝛼 + 𝛽)(𝑟 − 1) − �[𝑘 + (𝛼 + 𝛽)(𝑟 − 1)]0 − 4𝑟(𝑟 − 1)𝛼𝛽

2(𝑟 − 1)  



 

 60 

REFERENCES 



 
 
 

61 
 
 

REFERENCES 

 

Anderson, T. W. (1957). Maximum Likelihood Estimates for a Multivariate Normal Distribution 
when some Observations are Missing. Journal of the American Statistical Association. 
https://doi.org/10.2307/2280845 

 
Azen, S. P., van Guilder, M., & Hill, M. A. (1989). Estimation of parameters and missing values 

under a regression model with non‐normally distributed and non‐randomly incomplete data. 
Statistics in Medicine. https://doi.org/10.1002/sim.4780080208 

 
Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses. 

Journal of School Psychology. https://doi.org/10.1016/j.jsp.2009.10.001 
 
Bartlett, J. W., Carpenter, J. R., Tilling, K., & Vansteelandt, S. (2014). Improving upon the 

efficiency of complete case analysis when covariates are MNAR. Biostatistics. 
https://doi.org/10.1093/biostatistics/kxu023 

 
Bodner, T. E. (2008). What improves with increased missing data imputations? Structural 

Equation Modeling. https://doi.org/10.1080/10705510802339072 
 
Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive 

strategies in modern missing data procedures. Psychological Methods. 
https://doi.org/10.1037/1082-989X.6.4.330 

 
Dempster, A. P. P., Laird, N. M., D.B. Rubin, & Rubin, D. B. (1977). Maximum Likelihood 

from Incomplete Data via the EM Algorithm. In Journal of the Royal Statistical Society. 
Series B (Methodological). https://doi.org/10.1.1.133.4884 

 
Dunbar, R. I. M. (1993). Coevolution of neocortical size, group size and language in humans. 

Behavioral and Brain Sciences. https://doi.org/10.1017/S0140525X00032325 
 
Enders, C. K. (2010). Applied Missing Data Anlysis. New York, NY: The Guilford Press.  
 
Frank, K. A., Muller, C., Schiller, K. S., Riegle-Crumb, C., Mueller, A. S., Crosnoe, R., & 

Pearson, J. (2008). The social dynamics of mathematics coursetaking in high school. 
American Journal of Sociology. https://doi.org/10.1086/587153 

 
Fujimoto, K., Chou, C. P., & Valente, T. W. (2011). The network autocorrelation model using 

two-mode data: Affiliation exposure and potential bias in the autocorrelation parameter. 
Social Networks. https://doi.org/10.1016/j.socnet.2011.06.001 

 
Glasser, M. (1964). Linear Regression Analysis with Missing Observations among the 

Independent Variables. Journal of the American Statistical Association. 
https://doi.org/10.1080/01621459.1964.10480730 



 
 
 

62 
 
 

Glynn, R. J., Laird, N. M., & Rubin, D. B. (1993). Multiple imputation in mixture models for 
nonignorable nonresponse with follow-ups. Journal of the American Statistical Association. 
https://doi.org/10.1080/01621459.1993.10476366 

 
Gold, M. S., & Bentler, P. M. (2000). Treatments of missing data: A Monte carlo comparison of 

RBHDI, iterative stochastic regression imputation, and expectation-maximization. 
Structural Equation Modeling. https://doi.org/10.1207/S15328007SEM0703_1 

 
Graham, J. W. (2012). Missing data: Analysis and design. In Missing Data: Analysis and Design. 

https://doi.org/10.1007/978-1-4614-4018-5 
 
Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really 

needed? Some practical clarifications of multiple imputation theory. Prevention Science. 
https://doi.org/10.1007/s11121-007-0070-9 

 
Guillaume, J. L., & Latapy, M. (2004). Bipartite structure of all complex networks. Information 

Processing Letters. https://doi.org/10.1016/j.ipl.2004.03.007 
 
Haitovsky, Y. (1968). Missing Data in Regression Analysis. Journal of the Royal Statistical 

Society: Series B (Methodological). https://doi.org/10.1111/j.2517-6161.1968.tb01507.x 
 
Hartley, H. O., & Hocking, R. R. (1971). The Analysis of Incomplete Data. Biometrics. 

https://doi.org/10.2307/2528820 
 
Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social 

networks. Computational and Mathematical Organization Theory. 
https://doi.org/10.1007/s10588-008-9040-4 

 
Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social 

network analysis. Journal of the American Statistical Association. 
https://doi.org/10.1198/016214502388618906 

 
Huisman, M. (2014). Imputation of Missing Network Data: Some Simple Procedures. In 

Encyclopedia of Social Network Analysis and Mining. https://doi.org/10.1007/978-1-4614-
6170-8_394 

 
Killworth, P. D., McCarty, C., Johnsen, E. C., Bernard, H. R., & Shelley, G. A. (2006). 

Investigating the variation of personal network size under unknown error conditions. In 
Sociological Methods and Research. https://doi.org/10.1177/0049124106289160 

 
Kim, J. on, & Curry, J. (1977). The treatment of missing data in multivariate analysis. 

Sociological Methods & Research. https://doi.org/10.1177/004912417700600206 
 
Latapy, M., Magnien, C., & Vecchio, N. Del. (2008). Basic notions for the analysis of large two-

mode networks. Social Networks. https://doi.org/10.1016/j.socnet.2007.04.006 
 



 
 
 

63 
 
 

Lazega, E., Wasserman, S., & Faust, K. (1995). Social Network Analysis: Methods and 
Applications. Revue Française de Sociologie. https://doi.org/10.2307/3322457 

 
Little, R. J., & Zhang, N. (2011). Subsample ignorable likelihood for regression analysis with 

missing data. Journal of the Royal Statistical Society. Series C: Applied Statistics. 
https://doi.org/10.1111/j.1467-9876.2011.00763.x 

 
Little, R J A, & Rubin, D. B. (2002). Statistical Analysis with Missing Data: Second Edition. In 

Wiley Series in Probability and Statistics. https://doi.org/10.7710/2162-3309.1095 
 
Little, Roderick J.A. (1988). A test of missing completely at random for multivariate data with 

missing values. Journal of the American Statistical Association. 
https://doi.org/10.1080/01621459.1988.10478722 

 
Little, Roderick J.A. (1992). Regression with missing X's: A review. Journal of the American 

Statistical Association. https://doi.org/10.1080/01621459.1992.10476282 
 
Little, Roderick J.A., & Rubin, D. B. (1983). On jointly estimating parameters and missing data 

by maximizing the complete-data likelihood. American Statistician. 
https://doi.org/10.1080/00031305.1983.10483106 

 
Minhas, S., Hoff, P. D., & Ward, M. D. (2019). Inferential Approaches for Network Analysis: 

AMEN for Latent Factor Models. Political Analysis. https://doi.org/10.1017/pan.2018.50 
 
Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate 

statistical methods. Statistics in Medicine. https://doi.org/10.1002/sim.8086 
 
Muthén, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are 

not missing completely at random. Psychometrika. https://doi.org/10.1007/BF02294365 
 
Newman, D. A. (2003). Longitudinal Modeling with Randomly and Systematically Missing 

Data: A Simulation of Ad Hoc, Maximum Likelihood, and Multiple Imputation Techniques. 
Organizational Research Methods. https://doi.org/10.1177/1094428103254673 

 
Nowicki, K., & Snijders, T. A. B. (2001). Estimation and prediction for stochastic 

blockstructures. Journal of the American Statistical Association. 
https://doi.org/10.1198/016214501753208735 

 
Orchard, T., & Woodbury, M. A. (1972). A missing information principle: theory and 

applications. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and 
Probability. 

 
Pesantez-Cabrera, P., & Kalyanaraman, A. (2016). Detecting communities in biological bipartite 

networks. ACM-BCB 2016 - 7th ACM Conference on Bioinformatics, Computational 
Biology, and Health Informatics. https://doi.org/10.1145/2975167.2975177 

 



 
 
 

64 
 
 

Royston, P. (2004). Multiple Imputation of Missing Values. The Stata Journal: Promoting 
Communications on Statistics and Stata. https://doi.org/10.1177/1536867x0400400301 

 
Rubin, D. B. (1976). Inference and missing data. Biometrika. 

https://doi.org/10.1093/biomet/63.3.581 
 
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys Donald B. Rubin. In Wiley 

Series in Probability and Statistics. https://doi.org/10.1002/9780470316696 
 
Schafer, J. L. (1997). Analysis of incomplete multivariate data. Statistics in Medicine. 

https://doi.org/10.1002/(SICI)1097-0258(20000415)19:7<1006::AID-SIM384>3.0.CO;2-T 
 
Schafer, Josepn L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. 

Psychological Methods. https://doi.org/10.1037/1082-989X.7.2.147 
 
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data 

problems: A data analyst’s perspective. In Multivariate Behavioral Research. 
https://doi.org/10.1207/s15327906mbr3304_5 

 
Schouten, R. M., Lugtig, P., & Vink, G. (2018). Generating missing values for simulation 

purposes: a multivariate amputation procedure. Journal of Statistical Computation and 
Simulation. https://doi.org/10.1080/00949655.2018.1491577 

 
Sewell, D. K., & Chen, Y. (2015). Latent Space Models for Dynamic Networks. Journal of the 

American Statistical Association. https://doi.org/10.1080/01621459.2014.988214 
 
Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data 

augmentation. Journal of the American Statistical Association. 
https://doi.org/10.1080/01621459.1987.10478458 

 
Trawinski, I. M., & Bargmann, R. E. (1964). Maximum Likelihood Estimation with Incomplete 

Multivariate Data. The Annals of Mathematical Statistics. 
https://doi.org/10.1214/aoms/1177703562 

 
Valente, T. W. (2010). Social Networks and Health: Models, Methods, and Applications. In 

Social Networks and Health: Models, Methods, and Applications. 
https://doi.org/10.1093/acprof:oso/9780195301014.001.0001 

 
Van Buuren, S. (2018). Flexible Imputation of Missing Data, Second Edition. In Flexible 

Imputation of Missing Data, Second Edition. https://doi.org/10.1201/9780429492259 
 
Van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully 

conditional specification in multivariate imputation. Journal of Statistical Computation and 
Simulation. https://doi.org/10.1080/10629360600810434 

 
 



 
 
 

65 
 
 

Von Hippel, P. T. (2007). Regression with missing Ys: An improved strategy for analyzing 
multiply imputed data. Sociological Methodology. https://doi.org/10.1111/j.1467-
9531.2007.00180.x 

 
Van Praag, B. M. S., Dijkstra, T. K., & Van Velzen, J. (1985). Least-squares theory based on 

general distributional assumptions with an application to the incomplete observations 
problem. Psychometrika. https://doi.org/10.1007/BF02294145 

 
Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the 

American Statistical Association. https://doi.org/10.1080/01621459.1987.10478385 
 
White, I. R., & Carlin, J. B. (2010). Bias and efficiency of multiple imputation compared with 

complete-case analysis for missing covariate values. Statistics in Medicine. 
https://doi.org/10.1002/sim.3944 

 
White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: 

Issues and guidance for practice. Statistics in Medicine. https://doi.org/10.1002/sim.4067 
 
Widaman, K. F. (2006). III. Missing data: What to do with or without them. Monographs of the 

Society for Research in Child Development, 71(3), 42–64. https://doi.org/10.1111/j.1540-
5834.2006.00404.x 

 
Wilkinson, L. (1999). Statistical methods in psychology journals. American Psychologist.    
 
 


