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ABSTRACT

INTRODUCING SPARSITY INTO SELECTION INDEX METHODOLOGYWITH
APPLICATIONS TO HIGH-THROUGHPUT PHENOTYPING AND GENOMIC

PREDICTION

By

Marco Antonio Lopez Cruz

Research in plant and animal breeding has been largely focused on the development of methods

for a more efficient selection by altering the factors that affect genetic progress: selection intensity,

selection accuracy, genetic variance, and length of the breeding cycle. Most of the breeding efforts

have been primarily towards increasing selection accuracy and reducing the breeding cycle.

Genomic selection has been successfully adopted by many public and private breeding organi-

zations. Over years, these institutions have developed and accumulated large volumes of genomic

data linked to phenotypes from multiple populations and multiple generations. This data abun-

dance offers the opportunity to revolutionize genetic research. However, these data sets are also

increasingly heterogeneous, with many subpopulations and multiple generations represented in the

data. This translates into potentially heterogeneous allele frequencies and different LD patterns,

thus leading to SNP-effect heterogeneity.

Genomic selection methods were developed with reference to homogeneous populations in

which SNP-effects are assumed constant across the whole population. These methods are not

necessarily optimal for the contemporary available data sets for model training. Therefore, a first

focus of this dissertation is on developing novel methods that can leverage the large-scale of modern

data sets while coping with the heterogeneity and complexity of this type of data.

In recent years, there have also been important advances in high-throughput phenotyping

(HTP) technologies that can generate large volumes of data at multiple time-points of a crop.

Examples of this include hyper-spectral imaging technologies that can capture the reflectance of

electromagnetic power by crops at potentially thousands of wavelengths. The integration of HTP

in genetic evaluations represents a great opportunity to further advance plant breeding; however,



the high-dimensional nature of HTP data poses important challenges. Therefore, a second focus of

this dissertation is on the development of a novel approach to efficiently incorporate HTP data for

breeding values prediction.

Thus, this dissertation aims to contribute novel methods that can improve the accuracy of

genomic prediction by optimizing the use of large, potentially heterogeneous, genomic data sets

and by enabling the integration of HTP data. We present a novel statistical approach that combines

the standard selection index methodology with variable-selection methods commonly used in

machine learning and statistics, and developed software to implement the method. Our approach

offers solutions to both genomic selection with potentially highly heterogeneous genomic data sets,

and the integration of HTP in genetic evaluations.



Dedicated to my mother and to the memory of my father.

iv



ACKNOWLEDGEMENTS

I want to express my special gratitude to Dr. Gustavo de los Campos for his mentoring during the

curse of my doctorate, for all his valuable academic and personal advice, and for the constructive

suggestions during the planning and development of this research.

I want to thank my graduate committee, Dr. Eric Olson, Dr. Gustavo de los Campos, Dr. David

Douches, and Dr. Dechun Wang for accepting being part of my Ph.D. committee and for their

advice and assistance.

I want to express my gratitude to Dr. Jose Crossa and Dr. Susanne Dreisigacker from the

International Maize and Wheat Improvement Center (CIMMYT) to trust me and encourage me to

pursue a Ph.D., and for their support in getting funding for my studies.

I offer my special acknowledgment to Dr. Paulino Perez for being my first contact with the

field of Statistical Genetics and his support in the development of the software generated from this

research. I wish to thank lab members of the QuantGen group and other friends I met at MSU for

their support and for making an impact on my life during my journey at MSU.

I want to expressmy acknowledgments to theMonsanto’s Beachell-Borlaug International Schol-

arship Program (MBBISP) for sponsoring me during the first four years of my doctorate. Likewise,

I extend my gratitude to the MSU Graduate School for providing me the dissertation completion

fellowship in the last semester of my Ph.D. I would also like to thank Dr. Jason and Dr. Dana Lily,

and Mr. Chris and Mrs. Judith Rossman for granting me the graduate student funds.

Lastly, I would like to thank my family, my parents Amparo Cruz and Antonio Lopez, and my

siblings Juan, Vlady, and Luis, for all their unconditional support to make this dream possible.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Chapter 2: Incorporating hyper-spectral image data into selection indices for

breeding value prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Chapters 3 and 4: Improving the accuracy of genomic prediction using sparse

selection indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2 REGULARIZEDSELECTION INDICESFORBREEDINGVALUEPRE-
DICTION USING HYPER-SPECTRAL IMAGE DATA . . . . . . . . . . . 8

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Regularized selection indices . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1.1 Reduced-rank selection indices . . . . . . . . . . . . . . . . . . 12
2.3.1.2 Penalized selection indices . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Accuracy of indirect selection . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Regularized selection indices for wheat grain yield using hyper-spectral

image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Regularization improves the heritability and the accuracy of the index . . . 15
2.3.5 Using data from multiple time-points further improves selection accuracy . 18
2.3.6 L1-penalization leads to sparse selection indices . . . . . . . . . . . . . . . 18
2.3.7 Comparison with phenotypic prediction . . . . . . . . . . . . . . . . . . . 19

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Integration of PSI and PC-SI into genetic evaluations . . . . . . . . . . . . 22
2.4.2 Impact of the use of high-throughput phenotypes in breeding programs . . . 24
2.4.3 Regularized selection indices can also be a valuable tool in genetic research 24

2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Standard selection index . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Reduced-rank selection index . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.3 Penalized selection indices . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.5 Phenotype pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.6 Heritability estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.7 Training-testing partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.8 Estimation of phenotypic and genetic parameters . . . . . . . . . . . . . . 31
2.5.9 Estimation of the accuracy of indirect selection . . . . . . . . . . . . . . . 31
2.5.10 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.11 Materials and data availability . . . . . . . . . . . . . . . . . . . . . . . . 32

vi



2.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 3 OPTIMALBREEDINGVALUEPREDICTIONUSINGASPARSE“FAM-
ILY” INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Sparse Selection Index Methodology . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.5 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Sparsity improves prediction accuracy . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Using an internal cross-validation to achieve optimal sparsity . . . . . . . . 43
3.4.3 Sparse Selection Indices build subject-specific training sets . . . . . . . . . 45
3.4.4 Genomic relationships and weights in standard and sparse selection indices 47

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

CHAPTER 4 GENOMIC PREDICTION IN MULTI-GENERATIONAL MAIZE HY-
BRIDS USING SPARSE KERNEL MODELS . . . . . . . . . . . . . . . . 53

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Genotypes and phenotypic data . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Phenotypes pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.3 Genomic selection models . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.4 Variance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.5 Assessment of prediction accuracy . . . . . . . . . . . . . . . . . . . . . . 63
4.3.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Prediction accuracy comparison of G-BLUP and K-BLUP models . . . . . 65
4.4.2 Effect of sparsity on prediction accuracy . . . . . . . . . . . . . . . . . . . 66
4.4.3 Automatic training-sample selection . . . . . . . . . . . . . . . . . . . . . 70

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 5 CONCLUDING REMARKS AND FUTURE DIRECTIONS . . . . . . . . . 76

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
APPENDIX A SUPPLEMENTARY FIGURES AND TABLES FROM CHAP-

TER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
APPENDIX B SUPPLEMENTARY MATERIAL FROM CHAPTER 3 . . . . . . . 89
APPENDIX C SUPPLEMENTARY FIGURES AND TABLES FROM CHAP-

TER 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



LIST OF TABLES

Table 2.1: Average grain yield and heritability by environmental condition. . . . . . . . . . 15

Table 2.2: Accuracy and relative efficiency of indirect selection of an L1-penalized SI
using data from one and nine time-points. . . . . . . . . . . . . . . . . . . . . . 18

Table 3.1: Prediction accuracy (average across 100 partitions) achieved by sparse se-
lection indices (SSIs) and by the G-BLUP (standard SI), by data set and
environmental condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 4.1: Training set (TS) composition used in each prediction scenario. (The predic-
tion set was the same for all training scenarios and consisted of 612 randomly
chosen individuals from 2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 4.2: Heritability and accuracy of prediction for each training set (TS) composition
(including 15% of subjects from the 2019 cycle), GY-OPT trait-environment
combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 4.3: Heritability and accuracy of prediction for each training set (TS) composition
(including 15% of subjects from the 2019 cycle), PH-OPT trait-environment
combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table A.1: Accuracy of indirect selection (average over 100 training-testing partitions)
for best phenotypic prediction (principal components (PCR), L1-penalized
prediction (L1-Phen), RNDVI, and GNDVI) and for best genotypic prediction
(standard SI, optimal PC-SI, L1-PSI, and L2-PSI). . . . . . . . . . . . . . . . . 87

Table B.1: Number of available observations, average grain yield, and heritability by
environmental condition for the Wheat-large data set. . . . . . . . . . . . . . . . 96

Table B.2: Number of available observations, average grain yield, and heritability by
environmental condition for the Wheat-599 data set. . . . . . . . . . . . . . . . 96

Table B.3: Maximum prediction accuracy (average across 100 partitions) achieved by the
SSI for different values of the parameter α of an Elastic-Net-type SSI, by
environmental condition for the Wheat-large data set. . . . . . . . . . . . . . . . 97

Table B.4: Maximum prediction accuracy (average across 100 partitions) achieved by the
SSI for different values of the parameter α of an Elastic-Net-type SSI, by
environmental condition for the Wheat-599 data set. . . . . . . . . . . . . . . . 98

ix



Table C.1: Heritability and accuracy of prediction for each training set (TS) composition
(including 0%, 5%, and 10% of subjects from the 2019 cycle), trait GY,
environment OPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table C.2: Heritability and accuracy of prediction for each training set (TS) composition
(including 0%, 5%, 10%, and 15% of subjects from the 2019 cycle), trait GY,
environment DRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Table C.3: Heritability and accuracy of prediction for each training set (TS) composition
(including 0%, 5%, and 10% of subjects from the 2019 cycle), trait PH,
environment OPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table C.4: Heritability and accuracy of prediction for each training set (TS) composition
(including 0%, 5%, 10%, and 15% of subjects from the 2019 cycle), trait PH,
environment DRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

x



LIST OF FIGURES

Figure 2.1: Prediction of the genetic merit for grain yield using hyper-spectral crop image
data. (A) Data consists of hyper-spectral reflectance data (xi) and phenotypic
measurements of the target trait (yi, e.g., grain yield). (B) A subset of the data
(the training set) is used to derive the coefficients of a selection index. (C)
These coefficients are then applied to image data of individuals in the testing
set to derive the index (Ii) for each individual. The predictive ability of the
index is assessed by calculating the accuracy of indirect selection (Acc(I))
in the testing set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.2: Accuracy of indirect selection of regularized SIs and its components. Square
root heritability (green), genetic correlation (orange), and accuracy of indirect
selection (purple, all averaged over 100 training-testing partitions), versus the
number of predictors used to build the index: (A) number of active bands
in the case of the L1-PSI, or (B) number of PCs in the PC-SI. Each panel
represents one environment (latest time-point). . . . . . . . . . . . . . . . . . . 16

Figure 2.3: Accuracy of indirect selection achieved by a standard (SI) and by regularized
(PC-SI and L1-PSI) selection indices. The lines provide the average accuracy
over 100 training-testing partitions. Vertical lines represent a 95% confidence
interval for the average. The horizontal axis gives the time-point at which
images were collected and are expressed in both days after sowing (DAS) and
stages (VEG=vegetative, GF=grain filling, MAT=maturity). . . . . . . . . . . . 17

Figure 2.4: Heatmap of regression coefficients for L1-penalized selection indices. Sepa-
rate indices were derived for each environment using multi time-point data.
DAS=days after sowing, VEG, GF, MAT represent vegetative, grain-filling
and maturity stages, respectively. The bottom color-bar shows the light color
associated with each waveband in the visible spectrum (≤ 750 nm); black was
used to represent the near-infrared spectrum (wavelength > 750 nm). . . . . . . 19

Figure 3.1: Prediction accuracy (average across 100 trn-tst partitions) of the SSI versus
the (average) number of predictors in training set supporting the SSI of each
individual in testing set (x-axis). Genomic-BLUP (blue rightmost point)
appears as a special case of an SSI. Each panel represents one environment
within data set. (A) Wheat-large data set. (B) Wheat-599 data set. Vertical
bars represent a 95% confidence interval for the average. . . . . . . . . . . . . . 42

xi



Figure 3.2: Prediction accuracy of the optimal sparse selection index (SSI) versus that of
the G-BLUP. Each point represents a trn-tst partition (a total of 100 partitions
were implemented), the point shape and color represent environments. (A)
Wheat-large data set. (B) Wheat-599 data set. The value of λ in the SSI
was estimated using 10 5-fold cross-validations conducted within the training
data. In parenthesis, by the legend, is the p-value for the two-sided Sign
(binomial) test for within-environment differences in accuracy between the
SSI and the G-BLUP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.3: Distribution of the number of training support points (nsup) in optimal sparse
selection indices (results obtained over 100 trn-tst partitions; ntrn= size of the
training data set), by environmental condition, Wheat-large data set. . . . . . . . 45

Figure 3.4: First two principal components coordinates for prediction points (yellow) and
the corresponding support points (green). Grey points represent genotypes
that did not contribute to the prediction of the genetic value of the genotype in
yellow. All panels represent solutions for the environment EHT, Wheat-large
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.5: (A) Weights (βi j ) of a standard SI (G-BLUP) and of the optimal sparse
selection index (SSI) versus the genomic relationship (gi j). (B) Proportion of
weights in the SSI that were zero (non-active) and non-zero (support points);
Wheat-large data set, environment EHT. . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.1: (A) First 3 principal components of the additive genomic relationships matrix,
G. Points represent individuals that are color separated according to cycle
(2017, 2018, or 2019). (B) Heatmap of the genomic relationships matrix. . . . . 64

Figure 4.2: Prediction accuracy by model and training set (TS). TSs consisted on all the
data from the 2017, 2018, or 2017+2018 cycles alone (top-left panel), or in
combination with a proportion (5%, 10%, 15%) of the data from the 2019
cycle. The prediction set consisted of 612 genotypes from the 2019 cycle
that were not used for model training. Models with the same letter within
panel indicate no significant difference from each other (α = 0.05, ANOVA
followed by Tukey test). GY-OPT trait-environment combination. . . . . . . . . 66

Figure 4.3: (A) Prediction accuracy of the standard (non-sparse) G-BLUP model (hori-
zontal axis) versus the prediction accuracy of all other models (vertical axis
of each panel). (B) Prediction accuracy of the standard *-BLUP model (hori-
zontal axis) versus the prediction accuracy of its sparse version (vertical axis),
by type of kernel used in panels. Each point represent a training-testing par-
tition within each training set composition. Colored points above (below) the
45 degree line represent cases for which one model outperformed the other
model. P: p-value for the test (from ANOVA) for differences in accuracy
between the two models. Trait GY, environment OPT. . . . . . . . . . . . . . . 68

xii



Figure 4.4: Heatmap of the coefficients in the Hat matrix (B̃(λ)G) of the sparse G-
BLUPmodel for one training-prediction (TS-PS) partition in the prediction of
nPS = 612 individuals from 2019 using nTS = 2427 individuals (2017+2018
plus 15% of the 2019 set). Predicted individuals are presented in columns and
training individuals are presented in rows separated by cycle and number of
individuals in parentheses. The value of λ was obtained by cross-validation.
Each column represents values of the vector b̃(λ)iG = {b̃i j }, j = 1, ..., 2427
(Equation (4.6)). Individuals no contributing to the prediction have a coeffi-
cient b̃i j = 0 represented in grey color. Individuals with a non-zero coefficient
are shown in a yellow-blue logarithm scale (in the original scale, yellow indi-
cates large values and blue indicates small value). GY-OPT trait-environment
combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.5: Proportion of the training individuals from each cycle that contributed to the
prediction of the 612 testing genotypes from 2019, using sparse models with
different relationship matrices (horizontal axis): G, K1, K2, or KA. The
training set was composed by individuals from 2017 (n = 901) and 2018
(n = 1417) alone (top-left panel) or in combination with a proportion (5%,
10%, 15%) of the data from the 2019 cycle. GY-OPT trait-environment
combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure A.1: Box-plot of grain yield phenotypic records by environmental condition. n ≈
3200 observations within environment. SD: standard deviation. . . . . . . . . . 79

Figure A.2: Light reflectance patterns as function of the wavelength. Each line represents
the mean (across n ≈ 3200 observations) reflectance for each waveband,
within time-point (flight date). Within each environment, means were scaled
to lie within 0 and 1 by dividing them by the maximum average. . . . . . . . . . 80

Figure A.3: Accuracy of indirect selection of L1-PSI and its components. Square root
heritability, genetic correlation and accuracy of indirect selection, all averaged
over 100 training-testing partitions versus the number of bands entering in
the index; by time-point (DAS=days after sowing, Stage: VEG=vegetative,
GF=grain filling, or MAT=maturity) within environment. . . . . . . . . . . . . 81

Figure A.4: Accuracy of indirect selection of L2-PSI and its components. Square root
heritability, genetic correlation and accuracy of indirect selection, all aver-
aged over 100 training-testing partitions versus the penalization parameter
(λ, logarithm scale) used to build the index; by time-point (DAS=days after
sowing, Stage: VEG=vegetative, GF=grain filling, or MAT=maturity) within
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiii



Figure A.5: Accuracy of indirect selection of PC-SI and its components. Square root her-
itability, genetic correlation and accuracy of indirect selection, all averaged
over 100 training-testing partitions versus the number of principal compo-
nents used to build the index; by time-point (DAS=days after sowing, Stage:
VEG=vegetative, GF=grain filling, or MAT=maturity) within environment. . . . 83

Figure A.6: Square root of heritability of the standard (SI), of the regularized (PC-SI and
L1-PSI) selection indices, and of the RNDVI. The lines provide the average
square root heritability over 100 training-testing partitions. Vertical lines
represent a 95% CI for the average. The horizontal axis give the time-point
at which images were collected and are expressed in both days after sowing
(DAS) and stages (VEG=vegetative, GF=grain filling, MAT=maturity). . . . . . 84

Figure A.7: Genetic correlation between grain yield and all: the standard (SI), the reg-
ularized (PC-SI and L1-PSI) selection indices, and the RNDVI. The lines
provide the average genetic correlation over 100 training-testing partitions.
Vertical lines represent a 95% CI for the average. The horizontal axis give the
time-point at which images were collected and are expressed in both days after
sowing (DAS) and stages (VEG=vegetative, GF=grain filling, MAT=maturity). . 85

Figure A.8: Phenotypic, genetic, and environmental covariances (absolute value) between
wavebands and grain yield. ’D’: discrepancy between phenotypic and genetic
covariances as measured by the sum of the absolute differences; by time-
point (DAS: days after sowing, Stage: VEG=vegetative, GF=grain filling,
MAT=maturity) within environment. . . . . . . . . . . . . . . . . . . . . . . . 86

Figure B.1: Top two principal components of the genomic relationship matrix, G, for
each data set. Each point represent individuals. (A) Wheat-599 data set. (B)
Wheat-large data set. Individuals are color-grouped by the cycle (sowing-
harvest year). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure B.2: Boxplot of grain yield phenotypic records (in ton ha−1) by environmental
condition for both Wheat-599 and Wheat-large data sets. SD standard deviation. 91

Figure B.3: Distribution of the number of training support points (nsup) in optimal sparse
selection indices (results obtained over 100 trn-tst partitions; ntrn= size of the
training data set), by environmental condition, Wheat-599 data set. . . . . . . . 92

Figure B.4: First two principal components coordinates for prediction points (yellow) and
the corresponding support points (green). Grey points represent genotypes
that did not contribute to the prediction of the genetic value of the genotype
in yellow. All panels represent solutions for the environment 1, Wheat-599
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiv



Figure B.5: (left and center) Weights (βi j ) of a standard SI (G-BLUP) and of the optimal
sparse selection index (SSI) versus the genomic relationship (gi j ), and (right)
proportion of weights in the SSI that belonged to either the supporting or
non-active sets, by genomic-relationship; by environment, Wheat-large data set. 94

Figure B.6: (left and center) Weights (βi j ) of a standard SI (G-BLUP) and of the optimal
sparse selection index (SSI) versus the genomic relationship (gi j ), and (right)
proportion of weights in the SSI that belonged to either the supporting or
non-active sets, by genomic-relationship; by environment, Wheat-599 data set. . 95

Figure C.1: Genomic relationships (Gi j ) versus kernel relationships (Ki j ) of individuals
in cycle 2019 with those in cycles 2017 (left) and 2018 (right). Gi j and Ki j
are the i jth element of G and K(θ), respectively. (A) K1 = K(0.2). (B)
K2 = K(1). (C) K3 = K(5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure C.2: Prediction accuracy by model and training set (TS). TSs consisted on all the
data from the 2017, 2018, or 2017+2018 cycles alone (top-left panel), or in
combination with a proportion (5%, 10%, 15%) of the data from the 2019
cycle. The prediction set consisted of 612 genotypes from the 2019 cycle
that were not used for model training. Models with the same letter within
panel indicate no significant difference from each other (α = 0.05, ANOVA
followed by Tukey test). GY-DRT trait-environment combination. . . . . . . . . 108

Figure C.3: Prediction accuracy by model and training set (TS). TSs consisted on all the
data from the 2017, 2018, or 2017+2018 cycles alone (top-left panel), or in
combination with a proportion (5%, 10%, 15%) of the data from the 2019
cycle. The prediction set consisted of 612 genotypes from the 2019 cycle
that were not used for model training. Models with the same letter within
panel indicate no significant difference from each other (α = 0.05, ANOVA
followed by Tukey test). Trait PH (OPT and DRT environments). . . . . . . . . 109

Figure C.4: (A) Prediction accuracy of the standard (non-sparse) G-BLUP model (hori-
zontal axis) versus the prediction accuracy of all other models (vertical axis
of each panel). (B) Prediction accuracy of the standard *-BLUP model (hori-
zontal axis) versus the prediction accuracy of its sparse version (vertical axis),
by type of kernel used in panels. Each point represent a training-testing par-
tition within each training set composition. Colored points above (below) the
45 degree line represent cases for which one model outperformed the other
model. P: p-value for the test (from ANOVA) for differences in accuracy
between the two models. GY-DRT trait-environment combination. . . . . . . . 110

xv



Figure C.5: (left) Prediction accuracy of the standard (non-sparse) G-BLUP model (hor-
izontal axis) versus the prediction accuracy of all other models (vertical axis
of each panel). (right) Prediction accuracy of the standard *-BLUP model
(horizontal axis) versus the prediction accuracy of its sparse version (vertical
axis), by type of kernel used in panels. Each point represent a training-testing
partition within each training set composition. Colored points above (be-
low) the 45 degree line represent cases for which one model outperformed
the other model. P: p-value for the test (from ANOVA) for differences in
accuracy between the two models. Trait PH (OPT and DRT environments). . . . 111

Figure C.6: Heatmap of the coefficients in the Hat matrix (B̃(λ)K ) of the sparse KA-
BLUPmodel for one training-prediction (TS-PS) partition in the prediction of
nPS = 612 individuals from 2019 using nTS = 2427 individuals (2017+2018
plus 15% of the 2019 set). Predicted individuals are presented in columns and
training individuals are presented in rows separated by cycle and number of
individuals in parentheses. The value of λ was obtained by cross-validation.
Each column represents values of the vector b̃(λ)iK = {b̃i j }, j = 1, ..., 2427
(Equation (4.6)). Individuals no contributing to the prediction have a coeffi-
cient b̃i j = 0 represented in grey color. Individuals with a non-zero coefficient
are shown in a yellow-blue logarithm scale (in the original scale, yellow indi-
cates large values and blue indicates small value). GY-OPT trait-environment
combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure C.7: Proportion of the training individuals from each cycle that contributed to the
prediction of the 612 testing genotypes from 2019, using sparse models with
different relationship matrices (horizontal axis): G, K1, K2, or KA. The
training set was composed by individuals from 2017 (n = 901) and 2018
(n = 1417) alone (top-left panel) or in combination with a proportion (5%,
10%, 15%) of the data from the 2019 cycle. GY-DRT trait-environment
combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure C.8: Proportion of the training individuals from each cycle that contributed to
the prediction of the 612 testing genotypes from 2019, using sparse models
with different relationship matrices (horizontal axis): G, K1, K2, or KA.
The training set was composed by individuals from 2017 (n = 901) and
2018 (n = 1417) alone (top-left panels) or in combination with a proportion
(5%, 10%, 15%) of the data from the 2019 cycle. Trait PH (OPT and DRT
environments). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xvi



CHAPTER 1

INTRODUCTION

Plant breeding began thousands of years ago when humans started domesticating wild species

turning them into crops (Tang et al., 2010). Domestication occurredwhen themost preferable plants

were selected to be propagated for a purpose (e.g., food requirement). The transformation from

shattering to non-shattering cereals (e.g., rice and wheat) to facilitate harvest, and the developing

of the cultivated maize from its wild relative (teosinte) are two important examples of plants’

domestication. In the nineteenth century, hybridization experiments and the discovery of the

rules of inheritance by Gregor Mendel and Darwin’s theory of natural selection shed light on the

foundations of adaptation by means of natural or artificial selection.

Mass phenotypic selection has been extremely successful in producing modern cultivars and

hybrids of great agronomic potential (Jiang, 2013). These advances required not only selection for

yield potential but also for more robust plants; the development of the high-yielding semi-dwarf

wheat and rice varieties during the “Green Revolution” is a clear example of how plant architecture

and plan physiology needs to be adapted to improve agronomic performance.

The expected rate of genetic progress from selection is determined by the interplaying of four

factors: selection intensity, selection accuracy, genetic variance, and length of the breeding cycle.

Despite of the great progress achieved by means of direct phenotypic selection, this technology has

several limitations: (i) selection accuracy is bounded by trait heritability, (ii) extensive (and expen-

sive) phenotypic testing is required to achieve high selection intensity, and (iii) the opportunities

to shorten the breeding cycle are limited. In the last century, research in plant and animal breeding

has been largely focused on the development of technologies that can improve selection by altering

the four factors that affect genetic progress.

More accurate predictions of breeding values (BV) can be obtained using statistical methods

(e.g., selection indices, Best Linear Unbiased Prediction, BLUP) that smooth-out environmental

components of inter-individual differences in phenotypes and enable borrowing of information
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between related individuals.

Selection Index (SI) methodology began by predicting BVs obtained by combining individual

performance data and progeny evaluations (Lush, 1935). Smith (1936) andHazel (1943) generalized

ideas used in progeny testing to a more general framework (SI) which uses all informative data. A

phenotypic measurement is informative about the BV of a selection candidate if it is genetically

correlated with the BV. Informative phenotypic measurements include the records of the selection

goal on the selection candidate or in relatives of the selection candidate, and measurements of traits

genetically correlated with the selection objective. In a selection index, the total genetic value of

an individual is predicted using a weighted sum of the available phenotypic measurements. The

weights on each of the measured phenotypes depend on genetic and phenotypic (co)variances.

Henderson’s BLUP: By the middle of the twenty century, C.R. Henderson (1963) introduced

the concept of the Best Linear Unbiased Predictor (BLUP) of the breeding values. BLUPs of

BVs are obtained using mixed models that incorporate genetic relationships among all evaluated

individuals. Henderson’s BLUP can be shown to be equivalent to a SI; however, the BLUP

methodology provides an adequate framework for simultaneous modeling of genetic and non-

genetic effects (e.g., location, year, year-location, block). BLUP also provides a framework for the

estimation of genetic and environmental (co)variance parameters.

Selection index and pedigree BLUP become the method of choice for BV prediction in the

second half of the twenty century and the beginning of the current century. However, pedigree

information presents some limitations; for example, pedigree and ancestral data cannot predict

inter-individual differences in genetic values between members of a bi-parental family.

The development of molecular markers (e.g., DNA markers) has benefited plant science in

many aspects, including germplasm characterization, gene introgression, and the development of

DNA-assisted prediction/selection methods (Xu & Crouch, 2008).

Marker-assisted selection (MAS) relies on the identification and validation of DNA markers

predictive (i.e., tightly linked) of quantitative trait loci (QTL) genotypes. MAS can increase

selection accuracy and may enable early screening (e.g., at the seedling stage). MAS has been an
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efficient tool in the detection and validation in the improvement of qualitative traits (e.g., disease

resistance and grain quality) in various crops (e.g., William et al., 2007; Xu et al., 2009; Miah et al.,

2013). However, most of the traits of agronomic performance (e.g., grain yield, oil concentration)

are affected by a large number of small-effect loci. Detecting marker-QTL associations for complex

traits requires an exceedingly larger sample size (Melchinger et al., 1998) and specific designs

aiming to maximize power (e.g., Yu et al., 2008; Zhu et al., 2008). The difficulty of mapping

small-effect QTL limited the adoption of MAS for the improvement of traits affected by a large

number of QTLs.

Genomic Selection (GS): The continued development of genotyping and sequencing technolo-

gies has led to a steady decrease in genotyping costs. In the first decade of the 21st century,

arrays, including tens of thousands of SNPs, become available for most agricultural species. These

genotyping arrays offered the opportunity to track, via linkage disequilibrium with causal variants,

genetics signals distributed over the entire genomes. In a landmark publication, Meuwissen et al.

(2001) proposed using a large number of SNPs for breeding value prediction. Genomic selection

exploits multi-locus linkage disequilibrium (LD) with the causal variants; with enough marker

density, GS can potentially capture all genetic signals (Heffner et al., 2009).

Genomic selection has been successfully adopted by many public and private breeding organi-

zations. Sample size has been recognized as one of the main factors limiting the accuracy of GS

(Daetwyler et al., 2008; Goddard, 2009; de los Campos et al., 2013a). Early implementations of

GS in plant breeding were based on relatively small training data sets. However, over years, private

and public organizations have accumulated large volumes of genomic data linked to phenotypes

from multiple populations and multiple generations. The very large sample size of these data sets

implies that highly complex genomic predictionmodels can now be accurately calibrated. However,

these data sets are also increasingly heterogeneous, with many subpopulations and multiple gener-

ations represented in the data. This translates into potentially heterogeneous allele frequencies and

different LD patterns, thus leading to SNP-effect heterogeneity.

GS methods were developed with reference to homogeneous populations in which SNP-effects
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can be assumed constant across subsets of the data sets; thesemethods are not necessarily optimal for

the type of data sets available for model training. Therefore, an important focus of this dissertation

is on developing novel methods that can leverage the large sample size of modern genomic data

sets while coping with the challenges posed by the inherent heterogeneity and complexity of these

data sets.

The advent of high-throughput phenotyping (HTP): In recent years, there has been an impor-

tant improvement in HTP technologies. Modern phenotyping platforms can generate large volumes

of data at multiple time-points of a crop (Montes et al., 2007). Examples of this include the use of

hyper-spectral imaging technologies which can capture the absorbance of electromagnetic power

by crops at potentially thousands of wavelengths. The integration of HTP in genetic evaluations

represents a great opportunity to further advance plant breeding; however, the high-dimensional

nature of HTP data poses important challenges. Therefore, a second focus of this dissertation is on

the development of a novel approach for BV prediction using HTP data.

Thus, the overall aim of this dissertation is to contribute novel methods that can improve the

accuracy of genomic prediction by optimizing the use of large, potentially heterogeneous, genomic

data sets and by enabling the integration of HTP data. To achieve these goals, we developed a novel

statistical approach that combines the standard SI methodology with sparsity-inducing methods

commonly used in the field of statistics and machine learning. The procedure that we develop,

which we named as sparse selection index (SSI), offers solutions to both GS with potentially highly

heterogeneous genomic data sets, and the integration of HTP in genetic evaluations.

1.1 Chapter 2: Incorporating hyper-spectral image data into selection in-
dices for breeding value prediction

The use of HTP technologies can enable screening a larger number of genotypes over many

environments and locations, thus offering opportunities to increase selection intensity. Furthermore,

indirect selection based on phenotypes collected early in the growing cycle can lead to a reduction

in the length of the breeding cycle of perennials. Therefore, the integration of HTP in breeding
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evaluations can lead to an increase of genetic progress by either enabling a more intensive and/or

faster selection.

Most of the research efforts on crop imaging have focused on developing methods to predict

phenotypes from HTP data. For instance, vegetation indices (VI) derived from spectra data (e.g.,

NDVI; Tucker, 1979), have been used to predict green biomass, leaf area, chlorophyll content,

and yield in wheat and maize under field conditions (e.g., Babar et al., 2006; Garriga et al., 2017;

Haboudane et al., 2002; Rutkoski et al., 2016); and to detect abiotic (e.g., Roemer et al., 2012) and

abiotic stress (e.g., Mahlein et al., 2012) in crops. VIs using information from a reduced number

of wavelengths in the spectrum. More recently, researchers have considered developing methods

that use whole-spectra data. One approach consists of using dimension-reduction techniques (e.g.,

principal components, PC, and partial least squares, PLS regression) to predict agronomic traits,

e.g., biomass (e.g., Hansen & Schjoerring, 2003) or grain yield in wheat (e.g., Ferrio et al., 2005;

Hernandez et al., 2015) and in maize (e.g., Weber et al., 2012; Aguate et al., 2017). Another

approach consists of introducing whole-spectra data into Bayesian or penalized regression; this

approach has been used to predict milk components from milk-spectra data (Ferragina et al., 2015)

and grain yield in wheat (e.g., Montesinos-López et al., 2017) and in maize (e.g., Aguate et al.,

2017) from hyper-spectral crop imaging.

The approaches described in the preceding paragraph are well-suited for phenotypic prediction

but can be sub-optimal for selection because the best predictor of a phenotype is not necessarily

the best predictor of the genetic value.

Therefore, to address the limitations of existing methods, in Chapter 2 we present a novel

methodology to develop penalized and reduced-rank SIs using high-dimensional phenotypes. Our

approach integrates into a unified framework standard SI methodology with methods used in high-

dimensional regression that can prevent over-fitting. We evaluate the proposed methodology using

a multi-environment wheat data set (n ∼ 3, 200) containing hyper-spectral (p = 2, 250 wavebands)

and grain yield information. Our results show that penalized and reduced-rank SIs offer improved

selection accuracy (∼ 10 − 40% gain) relative to the standard (i.e., non-regularized) SI.
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1.2 Chapters 3 and 4: Improving the accuracy of genomic prediction using
sparse selection indices

These two chapters further develop the penalized selection index methodology introduced in

Chapter 2 to develop methods to improve the prediction accuracy of GS. The context that motivates

the development of these methods is that of large and potentially heterogeneous genomic data sets

for which the assumption of effect-homogeneity may not hold.

The challenges posed by the availability of large, potentially heterogeneous, data sets have been

recognized in recent years, and there have been several attempts to developmethods to confront these

challenges. A first line of research involves using models that include interactions between SNPs

and genetic groups. In these models, SNP-effects effects are represented as the sum of a main effect

plus a deviation that is group-specific (e.g., Schulz-Streeck et al., 2012; de los Campos et al., 2015;

Veturi et al., 2019). A similar (in some cases statistically equivalent) approach is to use multivariate

models in which the SNP effects are assumed to be different but correlated between different genetic

groups (e.g., Olson et al., 2012; Lehermeier et al., 2015). These methods are well-suited for data

sets in which individuals cluster into defined groups which may be known in advance (e.g., breeds,

families, pools) or may be inferred using statistical methods (e.g., STRUCTURE; Pritchard et al.,

2000). The methods just described have shown promise; however, they are not well suited for

data sets in which genetic heterogeneity exhibits more complex/cryptic patterns and thus cannot be

reduced to the clustering of individuals into well-defined distinct groups.

Another line of research consists of identifying, for a given prediction set a subset of the training

data that may be optimal to predict breeding values of the selection candidates. This approach is

motivated by the fact that genetic similarities (e.g., family relationships) have a great impact on

prediction accuracy (Habier et al., 2010). Indeed, several studies have shown that the accuracy

of GS can be very low when subjects in the training set are genetically distant to those in the

prediction set (Clark et al., 2012; Lorenz & Smith, 2015). Furthermore, some studies (de los

Campos et al., 2013b; Wolc et al., 2016) suggest that prediction accuracy can be reduced when

individuals distantly related to those of the prediction set are also used for model training. Based on
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these observations, several studies seek to develop methods for training set optimization/designing

(e.g., Clark et al., 2012; Jacobson et al., 2014; Lehermeier et al., 2014; Lorenz & Smith, 2015).

Research in this area has focused on comparing various optimization criteria (e.g., Rincent et al.,

2012; Akdemir & Isidro-Sanchez, 2019; Roth et al., 2020). However, all these approaches assume

that a single training set is optimal for all the subjects in the prediction set; this assumption may not

be true because each candidate of selection may draw useful information from different training

data points.

Therefore, to overcome the limitations of the existing methods, in Chapter 3 we present a

genomic prediction approach that identifies, for each individual in the prediction set, an optimal

training set (i.e., a set of support points). Our approach is based on a sparse selection index

(SSI) which integrates SI methodology with sparsity-inducing methods (i.e., an L1-penalization).

The SSI can be seen as a sparse version of the populate genomic-BLUP (G-BLUP, VanRaden,

2008). We developed software that implements SSI and evaluated the methodology using two

multi-environmental wheat data sets, a relatively small (n = 599) highly structured one and a very

large (n ∼ 29, 000) data set that has a relatively more cryptic structure. In both cases, we found

that, compared with the G-BLUP, the SSI can yield an improvement in prediction accuracy of about

5-10%.

Finally, Chapter 4 presents an application of the SSI methodology to a very large (n = 3, 039)

multi-generation double-haploid (DH) maize data set comprising genotype, grain yield, and plant

height records. Here, we applied the SSI methodology using additive genomic relationships and

also using a (non-linear) Gaussian kernel (K-BLUP). Like the SSI, the Gaussian kernel can be

tuned to maximize the borrowing of information between closely related individuals. The sparse

and non-sparse K-BLUP models performed similarly with up to 28% of gain in prediction accuracy

compared with G-BLUP based on additive relationships. In some cases, the sparse K-BLUP

outperformed the non-sparse K-BLUP.
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2.1 Abstract

High-throughput phenotyping (HTP) technologies can produce data on thousands of phenotypes

per unit being monitored. These data can be used to breed for economically and environmentally

relevant traits (e.g., drought tolerance); however, incorporating high-dimensional phenotypes in

genetic analyses and in breeding schemes poses important statistical and computational challenges.

To address this problem, we developed regularized selection indices; the methodology integrates

techniques commonly used in high-dimensional phenotypic regressions (including penalization

and rank-reduction approaches) into the selection index (SI) framework. Using extensive data from

CIMMYT’s (International Maize and Wheat Improvement Center) wheat breeding program we

show that regularized SIs derived from hyper-spectral data offer consistently higher accuracy for

grain yield than those achieved by standard SIs, and by vegetation indices commonly used to predict

agronomic traits. Regularized SIs offer an effective approach to leverage HTP data that is routinely

generated in agriculture; the methodology can also be used to conduct genetic studies using high-

dimensional phenotypes that are often collected in humans and model organisms including body

images and whole-genome gene expression profiles.

2.2 Introduction

High-throughput phenotyping (HTP) technologies have been adopted at a fast pace in agri-

culture; applications range from the use of HTP in highly controlled environments (e.g., growth

chambers (Nagel et al., 2012)) to extensive HTP using sensing devices mounted on aerial (e.g.,

hyper-spectral cameras mounted on aerial vehicles (Araus & Cairns, 2014)) and terrestrial equip-

ment such as tractors and combine harvesters (Montes et al., 2006). Modern agricultural production

systems use HTP data to optimize management practices (White et al., 2012), forecast agricultural

outputs (Ferrio et al., 2005) and to assess the quality (e.g., protein content) of agricultural com-

modities (Spielbauer et al., 2009). HTP data can also be a valuable input for breeding programs.

For instance, extensive HTP may enable an expansion of genetic testing that can lead to higher
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intensity of selection and faster genetic progress. Moreover, HTP data may offer opportunities to

improve traits such as drought tolerance that are otherwise difficult to measure and breed for.

Sensors can generate data on hundreds or thousands of phenotypes per unit being monitored.

For example, hyper-spectral cameras can generate reflectance of electromagnetic power at hundreds

of wavelengths in the visible and infrared spectrum. These measurements can be considered as

indicator phenotypes that can be used to predict other traits. An extensive body of research deals

with the use HTP data to predict phenotypes such as grain yield (Ferrio et al., 2005; Garriga

et al., 2017; Weber et al., 2012; Aguate et al., 2017), dry matter (Montes et al., 2006), oil and

protein content (Garnsworthy et al., 2000; Oblath et al., 2016). However, there has been much less

research on how to integrate HTP data in genetic studies and in breeding schemes. In genetics, the

problem of predicting the genetic merit of a target trait given a set of correlated phenotypes was

first addressed by Smith (1936) and Hazel (1943) who introduced the concept of selection index

(SI) in plant and animal breeding, respectively.

A SI seeks to improve a target trait yi (e.g., grain yield) using information from another set of

measured traits (e.g., hyper-spectral image data). A linear SI is a weighted sum of the measured

phenotypes with weights derived to maximize the correlation between the genetic merit for the

selection target and the SI. Thus, the SI methodology offers a natural framework for integrating

HTP data into breeding decisions. However, when the measured phenotype is high-dimensional,

the naïve application of the SI can lead to overfitting and sub-optimal accuracy of indirect selection.

To address this problem, we developed regularized selection indices (including penalized and

reduced-rank methods) that are tailored to achieve accurate prediction of genetic values using high-

dimensional phenotypes. The proposed methodology integrates into the SI framework methods

often used to prevent overfitting in high-dimensional phenotypic regressions (Hastie et al., 2009).

Using extensive multi-environment crop imaging data from CIMMYT’s wheat breeding program

we show that regularized SIs offer improved accuracy of indirect selection in both optimal and

stress environments.
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2.3 Results

A selection index is a linear combination of p measured phenotypes, xi = (xi1, . . . , xip)
′, of the

form Ii = x′iβ, where β = (β1..., βp)
′ is a vector of regression coefficients whose entries define the

weights of each of the measured phenotypes in the SI. In a standard SI the weights are derived by

minimizing the expected squared deviation between the genetic merit for the selection goal (gyi ,

e.g., the genetic merit for grain yield of the ith genotype) and the index, that is:

β̂ = arg min
β

1
2
E

(
gyi − x′iβ

)2
(2.1)

The solution to this optimization problem is (see Methods section):

β̂ = P−1
x Gx,y, (2.2)

where Gx,y = E(xi) is a vector containing the genetic covariances between the selection objective

(yi) and each of the measured traits (xi), and Px is the (population) phenotypic variance-covariance

matrix of the measured phenotypes, that is, Px = E(xix
′
i). Thus, a standard SI takes the form

Ii = x′iP
−1
x Gx,y. The theory underlying the derivation of SIs and response to indirect selection is

well established (Bulmer, 1985; Falconer & Mackay, 1996).

The SI is by construction the best linear predictor (BLP) of the genetic merit for the selection

goal; this property holds when Gx,y and Px are known. However, when the number of measured

phenotypes is large, errors in the estimation of Px andGx,y may lead to overfitting and sub-optimal

accuracy of indirect selection.

2.3.1 Regularized selection indices

Reduced-rank (e.g., principal components methods) and penalized regression (Hastie et al., 2009)

are two approaches commonly used to confront overfitting in high-dimensional regression problems.

These methodologies were developed for regression problems involving an observable phenotype

(yi). In the SI, the response (gyi ) is unobservable; however, the same principles that are applied in

phenotypic reduced-rank and penalized regressions can be integrated into the SI framework.
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2.3.1.1 Reduced-rank selection indices

In principal components (PC) regression, the response is regressed on a reduced number (q < p) of

PCs extracted from a set of predictors (xi); the same concept can be used to derive a reduced-rank

SI. For instance, one can extract a reduced number of PCs from a crop image and the resulting

PCs can be used as ’measured traits’ in Equation (2.1). The solution of Equation (2.1) will render

estimates of the regression coefficients for the PCs, which can be transformed back to coefficients

applicable to the measured traits (seeMethods). Thus, a reduced-rank SI (referred to as PC-SI) can

be derived following these steps: (i) extract, using the singular value decomposition, q PCs from

the matrix containing the measured phenotypes, (ii) estimate the genetic covariances between the

first q PCs and the selection objective, (iii) use these estimated (co)variances to derive coefficients

associated with the top q PCs; finally, (iv) transform these coefficients into coefficients for the

measured phenotypes. This process can be done using q = 1, 2, ..., p PCs (q = p renders the

standard SI). For the sequence of estimates (β̂(1), β̂(2), ..., β̂(p)), one can evaluate the accuracy of

indirect selection of the resulting SI and an optimal rank for the PC-SI can be chosen to maximize

the accuracy of indirect selection.

2.3.1.2 Penalized selection indices

In a penalized regression, regularization is achieved by including in the objective function a penalty

on model complexity. In the context of a SI, we have

β̂ = arg min
β

[
1
2
E

(
gyi − x′iβ

)2
+ λJ(β)

]
, (2.3)

where λ is a penalty parameter (λ = 0 yields the coefficients for the standard SI) and J(β) is a penalty

function. Commonly used penalties include the L2 (| |β | |22 =
∑p

j=1 β
2
j ) and L1 (| |β | |1 =

∑p
j=1 |β j |)

norms (Fu, 1998), or a weighted sum of the two (Zou & Hastie, 2005). Using J(β) = 1/2
∑p

j=1 β
2
j

in Equation (2.3) renders a Ridge-regression-type PSI (RR-PSI, see Methods):

β̂
L2
= (Px + λI)−1 Gx,y,
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where I is a p× p identity matrix. The RR-PSI (referred to as the L2-PSI) yields shrunken estimates

of the regression coefficients.

In many applications, variable selection (i.e., a SI that is a function of a subset of the measured

phenotypes) may be desirable. This property can be obtained using penalties involving the L1-

norm, either alone, J(β) =
∑p

j=1 |β j | (LASSO (Tibshirani, 1996)), or in combination with the

L2-norm, J(β) = 1/2(1− α)
∑p

j=1 β
2
j + α

∑p
j=1 |β j | (elastic-net (Zou & Hastie, 2005)). Unlike the

L2-PSI, the LASSO and elastic-net SIs (hereinafter referred to as L1-PSI and EN-PSI, respectively)

do not have a closed-form solution (Hastie et al., 2009). However, solutions for PSIs involving an

L1-penalty can be obtained using iterative procedures such as the coordinate descent (Friedman

et al., 2007) and the least angle regression (Efron et al., 2004) (LARS) algorithms (see Methods).

As with the PC-SI, an optimal PSI can be obtained by choosing the values of the regularizing

parameters (λ, α) that maximize the accuracy of indirect selection.
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Figure 2.1: Prediction of the genetic merit for grain yield using hyper-spectral crop image data. (A)
Data consists of hyper-spectral reflectance data (xi) and phenotypic measurements of the target trait
(yi, e.g., grain yield). (B) A subset of the data (the training set) is used to derive the coefficients of
a selection index. (C) These coefficients are then applied to image data of individuals in the testing
set to derive the index (Ii) for each individual. The predictive ability of the index is assessed by
calculating the accuracy of indirect selection (Acc(I)) in the testing set.
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2.3.2 Accuracy of indirect selection

Indirect selection accuracy is defined as the correlation between the index used to rank genotypes

and the genetic merit of the selection objective, that is, Acc(I) = cor(Ii, gyi ). This parameter is

equal to the product of the square root of the heritability of the SI (hI) times the genetic correlation

between the SI and the selection target, cor(gIi, gyi ) (Falconer & Mackay, 1996). To avoid

estimation bias Acc(I) must be estimated using data that was not used to derive the coefficients of

the index (Figure 2.1); therefore, in the application presented below we: (i) partitioned the data into

training and testing sets, (ii) derived the coefficients of the SI in the training set, (iii) applied these

coefficients to image data of the testing set (Ii = x′iβ), and (iv) estimated hI , cor(gIi, gyi ), and

Acc(I) in the testing set. Furthermore, we quantified the efficiency of indirect selection relative to

mass phenotypic selection (RE) using RE =
hI
hy

cor(gIi, gyi ) (Falconer & Mackay, 1996).

2.3.3 Regularized selection indices for wheat grain yield using hyper-spectral image data

We applied the methodology described in the previous section to data (n = 3, 276) from the

CIMMYT’s Global Wheat Program consisting of grain yield (ton ha−1) and hyper-spectral image

data. The data were collected at CIMMYT’s experimental station in Ciudad Obregon, Sonora,

Mexico (27◦20’ N, 109◦54’ W, 38 masl) from 39 yield trials in which a total of 1,092 genotypes

were tested. Rainfall in Obregon is very limited; therefore, four different environments were

generated representing a combination of planting methods (Flat or Bed), controlled irrigation

(minimal, 2 or 5 irrigations), and planting dates (optimum or early-heat). As expected, average

yield decreased as drought stress intensity increased (see Table 2.1 and Supplementary Figure A.1

for boxplots of yield by environment).

Image data was collected using an infrared and an hyper-spectral camera and consisted of re-

flectance of electromagnetic power at 250 wavebands within the visible and near-infrared spectrums

(392-850 nm). Separate images were collected at 9 time-points covering vegetative (VEG), grain

filling (GF), and maturity (MAT) stages of the crop (see Supplementary Figure A.2). Grain yield
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and image data were pre-adjusted using mixed-effects model that accounted for genotype, trial,

replicate, and sub-block (see Methods section).

Table 2.1: Average grain yield and heritability by environmental condition.

Planting conditions Number of Abbreviation Average (SD) Heritability (SD)Date System irrigations Yield

Optimum
Flat Minimal Flat-Drought 2.06 (0.58) 0.83 (0.016)

Bed
2 Bed-2IR 3.67 (0.43) 0.66 (0.032)
5 Bed-5IR 6.11 (0.61) 0.43 (0.025)

Early 5 Bed-EHeat 6.43 (0.73) 0.61 (0.018)
SD: standard deviation.

2.3.4 Regularization improves the heritability and the accuracy of the index

To assess the effect of regularization on the accuracy of indirect selection we fitted an L1-PSI over a

grid of values of the regularization parameter (λ(1) > λ(2) > ... > 0 in Equation (2.3), using λ = 0

renders a standard SI). For each of the solutions (β̂(λ(1)), β̂(λ(2)), ...) we estimated the heritability

of the resulting index and the genetic correlation between the index and the selection target, and

from those estimates we derived the accuracy of indirect selection. The same approach was used

to evaluate the accuracy of indirect selection of PC-SIs with a varying number (1, 2, ...) of PCs.

We first fitted PSIs and PC-SIs using data from a single time-point; the results from the latest

time-point (corresponding to MAT or late GF stages depending on the environment) are presented

in Figure 2.2 (see Supplementary Figures A.3 to A.5 for other time-points). The heritability of the

L1-PSI (Figure 2.2A) decreased asmore bands became active in the index. Likewise, the heritability

of PC-SI (Figure 2.2B) decreased with the number of PCs used. However, the genetic correlation

increased as either more bands become active in the L1-PSI or more PCs were used in the PC-SI.

Consequently, the maximum accuracy of indirect selection was achieved with a SI of intermediate

complexity (with anywhere between 20 and 60 of the 250 bands being active in the L1-PSI, and

between 20-60 PCs in the PC-SI). Results for other time-points and environments (Supplementary

Figures A.3 to A.5) exhibited similar patterns with some differences between environments. The
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accuracy of indirect selection of the optimal L1-PSI was always close to that of the optimal PC-SI

and that of the optimal L2-PSI (Supplementary Table A.1). Importantly, in all cases the accuracy of

indirect selection of the optimal regularized SIs was considerably higher than that of the standard

SI, which is the one corresponding to 250 active bands or 250 PCs (i.e., the right-most results in

the plots in Figure 2.2).
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Figure 2.2: Accuracy of indirect selection of regularized SIs and its components. Square root
heritability (green), genetic correlation (orange), and accuracy of indirect selection (purple, all
averaged over 100 training-testing partitions), versus the number of predictors used to build the
index: (A) number of active bands in the case of the L1-PSI, or (B) number of PCs in the PC-SI.
Each panel represents one environment (latest time-point).

Figure 2.3 displays the accuracy of indirect selection across time-points for the optimal (i.e.,

the one with the highest accuracy of indirect selection) L1-PSI and PC-SI. For comparison we

also display in the plot the accuracy of indirect selection achieved by a standard SI (in green).

The estimated 95% confidence intervals of the accuracy of the regularized SIs (either PC-SI or

L1-PSI) are all above (and do not overlap) with the confidence intervals for the accuracy of the

standard SI, except for a single time-point (57 DAS in environment Bed-2IR). Results from Tukey’s

Honest Significance Difference confirmed that the accuracy of the regularized SIs is statistically

different (higher) than the standard SI at a 5% of significance (Supplementary Table A.1) for all
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but one (57 DAS in environment Bed-2IR) time-point/environment. Regularization increased the

selection accuracy across time-points and environments. Regularized SIs (either PC-SI or L1-PSI)

had an accuracy of indirect selection that was in average 10-40% higher than the accuracy achieved

by a standard SI. These gains in accuracy were stronger in the optimal environment (Bed-5IR

with a median of 36%) and smaller in the stressed environments (Flat-Drought and Bed-EHeat

with a median of 16%). Interestingly, there were no sizable differences between the accuracy of

indirect selection achieved with the optimal L1-PSI and that of the optimal PC-SI. Compared with a

standard SI, regularized SIs had higher heritability (Supplementary Figure A.6); this was achieved

without compromising the genetic correlation (Supplementary Figure A.7), thus leading to a higher

accuracy of indirect selection achieved by either penalization or rank-reduction strategies.
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Figure 2.3: Accuracy of indirect selection achieved by a standard (SI) and by regularized (PC-SI
and L1-PSI) selection indices. The lines provide the average accuracy over 100 training-testing
partitions. Vertical lines represent a 95% confidence interval for the average. The horizontal axis
gives the time-point at which images were collected and are expressed in both days after sowing
(DAS) and stages (VEG=vegetative, GF=grain filling, MAT=maturity).
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2.3.5 Using data from multiple time-points further improves selection accuracy

The results presented above were based on data from a single time-point. We also generated

selection indices using data from multiple time-points (in this case, xi was a vector containing

2,250 traits, corresponding to 250 wavebands measured at each of 9 time-points). Integrating data

from multiple time-points further increased the accuracy of L1-PSI by a margin that ranged from 1

to 8 points on the correlation scale (Table 2.2). The gains in selection accuracy obtained using data

from multiple time-points were more evident in environments with lower accuracy; similar results

were obtained for the PC-SI and L2-PSI (Supplementary Table A.1).

Table 2.2: Accuracy and relative efficiency of indirect selection of an L1-penalized SI using data
from one and nine time-points.

Accuracy (SD) Relative Efficiency (SD)
Environment Best single Nine time-points Best single Nine time-points

time-point* combined time-point* combined
Flat-Drought 0.69 (0.05) 0.70 (0.05) 0.74 (0.05) 0.75 (0.05)
Bed-2IR 0.46 (0.04) 0.54 (0.03) 0.57 (0.05) 0.67 (0.04)
Bed-5IR 0.47 (0.06) 0.55 (0.05) 0.72 (0.08) 0.83 (0.08)
Bed-EHeat 0.68 (0.04) 0.71 (0.04) 0.88 (0.05) 0.91 (0.04)

Values are presented as an average across 100 training-testing partitions. SD: standard deviation. *For each
environment we include the time-point that gave the highest accuracy of selection (see Figure 2.3 for other
time-points).

2.3.6 L1-penalization leads to sparse selection indices

Figure 2.4 shows a heatmap for the solutions of the optimal L1-PSI that integrated data from

the 9 time-points. Each panel represents an environment, horizontal bands represent time-points.

Within each time-point wavebands not entering in the solution are in grey and non-zero coefficients

are represented in a yellow-red scale (red indicates large absolute-value coefficients). The well-

irrigated environments (Bed-5IR and Bed-EHeat) had considerably sparser indices with only a

reduced number of wavebands in the solutions; these were mostly located in the violet, blue and

red regions of the spectrum. In stressed environments (Flat-Drought and Bed-2IR) there were also
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a few wavebands in the green and infrared regions that were active. In all the indices, there were

wavebands from several time-points that were active in the optimal solution, suggesting that data

from both early and late phenological stages are informative about the genetic merit for grain yield.

Figure 2.4: Heatmap of regression coefficients for L1-penalized selection indices. Separate indices
were derived for each environment using multi time-point data. DAS=days after sowing, VEG, GF,
MAT represent vegetative, grain-filling and maturity stages, respectively. The bottom color-bar
shows the light color associated with each waveband in the visible spectrum (≤ 750 nm); black was
used to represent the near-infrared spectrum (wavelength > 750 nm).

2.3.7 Comparison with phenotypic prediction

We compared the accuracy of indirect selection of the PSI and PC-SI with vegetation indices

and penalized phenotypic prediction. Vegetation indices are often used to predict yield (Tattaris

et al., 2016), biomass, and chlorophyll content (Babar et al., 2006; Haboudane et al., 2002). We

considered two vegetation indices: the Red and Green Normalized Difference Vegetation Indices
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(RNDVI (Tucker, 1979) and GNDVI (Gitelson et al., 1996) respectively). For each of these indices

we estimated the genetic correlation with grain yield, as well as their heritability and accuracy

of indirect selection (Supplementary Table A.1). Overall, the accuracy of indirect selection of

the GNDVI and RNDVI was lower than the one achieved with a PSI (the average difference in

accuracy between RNDVI and the L1-PSI varied by environment from 0.02 to 0.14 points in

correlation, Supplementary Table A.1, in favor of the L1-PSI). The heritability of the GNDVI

and RNDVI was similar and superior in some cases to that of the L1-PSI (Supplementary Figure

A.6); however, the genetic correlation between the vegetation indices and grain yield was (in most

time-points and environments) lower than the genetic correlation between the L1-PSI and grain

yield (Supplementary Figure A.7). Thus, the main driver of the difference in accuracy between the

L1-PSI and the vegetation indices was the difference in genetic correlation.

We also fitted L1-penalized phenotypic prediction (L1-Phen) and compared the accuracy of

indirect selection of these phenotypic prediction methods with that of penalized SIs. Overall, the

L1-Phen achieved an accuracy of indirect selection very close to that of the L1-PSI (Supplementary

Table A.1); however, in a few environments at some time-points, the L1-PSI achieved a higher

accuracy of indirect selection than the phenotypic prediction.

2.4 Discussion

High-throughput phenotyping has been extensively adopted in agricultural research and com-

mercial production. Extracting interpretable information from HTP data poses important statistical

challenges. The clear majority of research in this area has focused on calibrating equations to

predict phenotypes (e.g., total biomass, grain yield) using HTP data as inputs. This approach is

well-suited for phenotypic prediction; however, the same approach can be sub-optimal for selection

because the best predictor of a phenotype is not always the best predictor of the genetic merit of

the same trait.

The best (linear) phenotypic predictor is the sum of the best linear predictor of the genetic merit

(gy) plus the best linear predictor of the environmental term (εy), that is,E(y |x) = E(gy |x)+E(εy |x).
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The first term, E(gy |x), is the SI and it is, by construction, maximally correlated with the genetic

merit. The second term, E(εy |x), is relevant for phenotypic prediction but represents noise when

the problem is that of selecting the best genotypes.

Selection indices exploit genetic covariances, while phenotypic prediction relies on phenotypic

covariances between the selection target and themeasured phenotype (e.g., crop imaging). Thus, the

two methods yield different results whenever the patterns of phenotypic correlations are sufficiently

different from the patterns of genetic correlations. In our data set, environmental conditions

were highly controlled, with relatively low un-controlled within-trial variability in environmental

conditions. Consequently, the patterns of phenotypic and genetic correlations were very similar

(see Supplementary Figure A.8). This was true for many time-points and environments but not in

others (e.g., 80, 85 and 93 DAS in Flat-Drought, and 90 and 98 DAS in Bed-2IR); it was exactly in

those time-points and environments that the L1-PSI achieved higher accuracy of indirect selection

than the L1-Phen method (Supplementary Table A.1).

A standard SI (Equation (2.1)) is, by construction, maximally correlated with the genetic

merit of the selection objective. This optimality property holds when the genetic and phenotypic

(co)variance matrices that are needed to derive the coefficients of the SI (see Equation (2.2)) are

known without error. However, when the measured phenotype is high-dimensional, estimation

errors in the phenotypic (co)variance matrix (Px), as well as in the genetic covariances (Gx,y), can

make the standard SI sub-optimal. Our empirical results confirm this: standard SIs over-fitted the

data; this leads to a SI with low heritability and low accuracy of indirect selection.

To prevent overfitting, we considered integrating ideas commonly used in high-dimensional

regression into the SI methodology. Our empirical results show that regularization consistently

improves the accuracy of indirect selection relative to standard SIs. We verified this for various

environmental conditions and for crop imaging data collected at 9 different time-points. The

optimal PSI and the optimal PC-SI achieved almost the same accuracy of indirect selection for all

the environments and time-points, suggesting that either type of regularization can be effective.

Reduced-rank selection indices are appealing because after dimension reduction the problem
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of deriving a SI is trivial and can be dealt with methods commonly used to derive standard SIs.

Moreover, after HTP has been reduced to a few derived-traits (say the top 10 PCs), these traits

can be integrated into genetic evaluations (either pedigree-based (Henderson & Quaas, 1976) or

genomic-enabled (Meuwissen et al., 2001)) using standard multi-trait models.

Principal components-based methods have been considered before in the analysis of Fourier-

transformed infrared (FTIR) spectra derived from milk samples. For instance, Soyeurt et al.

(2010) used a reduced number of FTIR-derived PCs to estimate variance components for selection

objectives (e.g., fat or protein content in milk). Building upon this idea, Dagnachew et al. (2013)

suggested predicting the genetic merit for milk fatty acids using FTIR-derived PCs as ’traits’ in a

genetic evaluation. However, when mapping from genetic predictions of PC-lodgings onto genetic

predictions for the selection objective the authors used coefficients derived from a phenotypic

(partial least squares) regression. This does not guarantee that the resulting index is maximally

correlated with the genetic merit of the selection target. The penalized and PC-SI presented in this

study address that problem by using coefficients that are derived using genetic (and not phenotypic)

covariances.

A disadvantage of the PC-SI is that the methodology does not naturally provide variable

selection, a feature that may be desirable when the measured phenotype is high-dimensional.

Penalized selection indices can perform variable selection based on genetic covariances. While

the derivation of a PSI is a bit more challenging than that of the PC-SI, the computational burden

involved in the derivation of a PSI is not extremely high.

2.4.1 Integration of PSI and PC-SI into genetic evaluations

The SIs considered here predict genetic merit for a selection target from a set of traits measured

on an individual (Ii = x′iβ); such indices exploit borrowing of information between traits within

an individual. Borrowing of information between individuals increases selection accuracy; we

envision two ways in which regularized SIs can be integrated into pedigree or genomic-based

genetic evaluations.
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One possibility is to use a two-steps approach whereas in the first step a PSI or a PC-SI is

used to predict the genetic merit using within-individual information. This step can be considered

as a task where patterns attributable to genetic covariances are extracted and those attributable

to environmental covariances are smoothed-out. Then, in a second step, the resulting index-data

{I1, ...,In} could be used as a trait in a genetic evaluation.

Our study shows that the use of a regularized SI leads to a derived-phenotype that has higher

genetic accuracy than standard SIs, and that of best phenotypic prediction. In principle, using a

more accurate phenotype should lead to a higher accuracy of the predicted breeding values in the

second step. However, further studies are needed to determine whether the gains in accuracy at

the level of the HTP-derived phenotype will fully translate into a higher accuracy of the predicted

breeding values in a two-steps procedure.

A one-step approach is conceptually feasible and statistically more efficient as it offers the

possibility of considering correlations between traits, relationships between genotypes, and the

effects of non-genetic factors jointly; however, the implementation of the one-step approach using

high-dimensional phenotypes can be computationally challenging. To implement a one-step ap-

proach, the optimization problem of Equation (2.3) can be modified by replacing xi, the vector with

the measured phenotypes on the ith individual, with a vector x = (x′1, x
′
2, ..., x

′
n)
′ that contains all

the available HTP data (measured on all n individuals); after expanding the squared error loss and

taking expectations we get

β̂i = arg min
βi

[
1
2
E

(
g2
yi

)
− β′iGgx +

1
2
β′iPxβi + λJ(βi)

]
where Ggx is a pn × 1 vector of genetic covariances including between-traits-within-individual

(co)variances and between-subjects covariances. In standard geneticmodels,Ggx takes aKronecker

formGgx = Ai◦Gx,y, whereAi are genetic (eitherDNA- or pedigree-derived) relationships between

the candidate for selection and each of the individuals in the training set, and Gx,y is, as before, a

vector of genetic covariances between the selection objective and the measured traits (x). Likewise,

Px is a pn × pn phenotypic (co)variance matrix. Estimating Px would require estimating all the

genetic and environmental covariances among the measured traits.
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2.4.2 Impact of the use of high-throughput phenotypes in breeding programs

According to breeders’ equation (Falconer & Mackay, 1996; Lush, 1937), the rate of genetic gain

from selection is directly proportional to selection accuracy and selection intensity. Thus, relative to

the use of standard SIs, the use of regularized SIs is expected to increase selection gains by a factor

equal to the gains observed in accuracy, that is between 10% and 40%. Relative to mass phenotypic

selection, the PSIs had efficiencies, RE, ranging from 60% to 90%; therefore, relative to direct

phenotypic selection, selection decisions based on PSI derived from images are expected to yield

lower genetic gains than the ones that could be achieved via direct mass selection. However, the

use of HTP technologies (e.g., crop monitoring using hyper-spectral cameras mounted in drones)

may enable the expansion of the number of genotypes tested/measured as well as the number of

locations where those genotypes are tested. This could lead to an increase in selection intensity

which will in turn increase selection gains. For instance, if the use of HTP enables doubling the

number of genotypes tested, the increase in selection gains that could be achieved with HTP may

range from 20% (in the case where the PSI has RE of 60%) to 80% (for the traits/environments

with RE of 90%).

The discussion in the preceding paragraph is entirely based on breeders’ equation, which does

not contemplate the long-term impacts of selection in genetic diversity. A more accurate and

more intensive selection may affect diversity and long-term response to selection. To address this

problem, attention to diversity will be needed with regularized SIs as with any other selection

criteria.

2.4.3 Regularized selection indices can also be a valuable tool in genetic research

High-dimensional phenotypes are also becoming increasingly available in genetic studies involving

human subjects and model organisms. Performing genetic studies (e.g., genome-wide association

analyses) on high-dimensional phenotypes is challenging and the burden of multiple testing across

hundreds or thousands of phenotypes (e.g., RNA-abundance across thousands of genes) may

critically compromise power. The PSI and PC-SI presented in this study could be used to extract
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genetic patterns from high-dimensional phenotype data such as brain imaging or whole-genome

gene expression profiles and these patterns can then be used as traits in genetic studies.

Conclusion. We proposed two novel methods for predicting the genetic merit for selection ob-

jectives from high-dimensional phenotypes. These phenotypes are becoming increasingly available

as the adoption of HTP in crop and animal production increases. The proposed methods integrate

regularization procedures commonly used in high-dimensional regressions into the SImethodology.

Regularization prevents overfitting and increases the accuracy of the index. The methods proposed

here can be used to extract genetic patterns from almost any kind of high-dimensional phenotype,

including not only HTP data emerging in agriculture but also high-dimensional phenotypes that

emerge in genetic studies involving human subjects and model organisms.

2.5 Methods

2.5.1 Standard selection index

The weights on a SI are derived as the solution to the optimization problem of Equation (2.1):

β̂ = arg min
β

1
2
E

(
gyi − x′iβ

)2

The right-hand side can be expressed as E(gyi − x′iβ)
2 = E(g2

yi
) − 2E(gyi xi)

′β + β′E(xix
′
i)β.

The first term, E(g2
yi
), does not involve β; therefore, it can be dropped from the objective function.

Furthermore, if xi has null mean, and assuming that the environmental effects on xi are orthogonal

to gyi , then E(gyi xi) = Gx,y is a vector containing the genetic covariances between the selection

target and each of the measured phenotypes. Likewise, E(xix
′
i) = Px is the phenotypic (co)variance

matrix of xi. Therefore, the problem in Equation (2.1) can be written as

β̂ = arg min
β

[
−G′x,yβ +

1
2
β′Pxβ

]
.

Differentiating the right-hand side with respect to vector β and setting the derivatives equal to

zero leads to the first order conditions: Px β̂ = Gx,y; therefore,

β̂ = P−1
x Gx,y .
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2.5.2 Reduced-rank selection index

Recall that the singular value decomposition of a real-valued matrix, X = [x1, x2, ..., xn]
′ (indi-

viduals in rows, phenotypes in columns) takes the form X = UDV′, where U = [u1, ..., up] is the

matrix containing the left-singular vectors that span the row-space of X, V = [v1, ..., vp] is the

matrix with the right-singular vectors, and D = diag(d1, ..., dp) is a diagonal matrix with positive

or zero elements. The PCsW = XV = UD are linear combinations of the measured phenotypes. A

reduced-rank regression uses the first q PCs (W̃ = [w1, ..., wq], q ≤ p) as "measured phenotypes"

in the SI:

γ̂(q) = arg min
γ

1
2
E

(
gyi − w̃′iγ

(q)
)2
,

where w̃i is a vector containing the scores for the ith observation on the first q PCs. The solution to

the optimization problem takes the form γ̂(q) = P−1
w̃ Gw̃,y, where Pw̃ is the phenotypic (co)variance

matrix of the first q PCs and Gw̃,y is a vector containing the genetic covariances between each of

the top q PCs and the selection objective. Since the left-singular vectors are orthonormal (i.e.,

u′ju j = 1 and u′juk = 0, for j , k), then W′W = D2 = diag(d2
1, . . . , d

2
p). Hence, a method-of-

moments estimate of the phenotypic (co)variance matrix of W̃ contains only the first q elements

D̃2
= diag(d2

1, . . . , d
2
q); this is

P̂w̃ =
1

n − 1
D̃2

Using P̂w̃ makes the coefficients of the PCs to be proportional to the genetic covariance between

each of the PCs and the selection objective: γ̂(q) = (n−1)(D̃2
)−1Gw̃,y. This solution can bemapped

to coefficients for the measured traits using β̂(q) = (n − 1)Ṽ(D̃2
)−1Gw̃,y, where Ṽ is the matrix

containing only the first q right-singular vectors.

2.5.3 Penalized selection indices

The objective function of the penalized SI is given by Equation (2.3). Here we considered PSIs

using either L1 or L2-norms or a combination of the two.

26



L2-PSI. Using an L2-norm as penalty, J(β) = 1/2
∑p

j=1 β
2
j = 1/2β′β, in Equation (2.3) leads

to the following optimization problem:

β̂
L2
= arg min

β

[
1
2
E

(
gyi − x′iβ

)2
+ λ

1
2
β′β

]
Therefore:

β̂
L2
= arg min

β

[
−G′x,yβ +

1
2
β′Pxβ + λ

1
2
β′β

]
The second and third right-hand side terms can be combined to obtain:

β̂
L2
= arg min

β

[
−G′x,yβ +

1
2
β′ (Px + λI) β

]
,

where I is a p× p identity matrix. Differentiating with respect to β and setting the derivatives equal

to zero, we obtain the first-order conditions: (Px + λI)β̂
L2
= Gx,y; therefore:

β̂
L2
= (Px + λI)−1 Gx,y

EN-PSI. The coefficients for the elastic-net family are obtained by considering an objective

function as in Equation (2.3), with J(β) = 1/2(1 − α)
∑p

j=1 β
2
j + α

∑p
j=1 |β j |; therefore,

β̂
EN
= arg min

β

−G′x,yβ +
1
2
β′Pxβ + λ

1
2
β′β + λ

1
2
(1 − α)

p∑
j=1

β2
j + λα

p∑
j=1
|β j |

 .
The L1-PSI and L2-PSI are particular cases corresponding to α = 1 and α = 0, respectively.

When α = 0 the solution has a closed-form (see L2-PSI above). If α > 0, no closed-form solution

exists; however, a solution can be obtained using the same iterative algorithms that are used to solve

elastic-net regressions (e.g., LARS and coordinate descent (Hastie et al., 2009)). These algorithms

can be implemented either by "partial residuals" or using "covariance updates" (Friedman et al.,

2010). In our case, the objective function is entirely based on (co)variance terms. The objects Px

and Gx,y enter in the objective function of the PSI in the same way that X′X and X′y enter in a

standard elastic-net regression. Therefore, to obtain solutions, we implemented the standard LARS

algorithm (e.g., Hastie et al., 2009) entirely based on covariance updates.
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2.5.4 Data

The data set consists of 1, 092 inbred wheat lines grouped into 39 trials and grown during the 2013-

2014 season at the Norman Borlaug experimental research station in Ciudad Obregon, Sonora,

Mexico. Each trial consisted of 28 breeding lines that were arranged in an alpha-lattice design

with three replicates and six sub-blocks. The trials were grown in four different environments:

Flat-Drought (sowing in flat with irrigation of 180 mm through drip system), Bed-2IR (sowing in

bed with 2 irrigations approximately 250 mm), Bed-EHeat (bed sowing 30 days before optimal

planting date with 5 normal irrigations approximately 500 mm), and Bed-5IR (bed sowing with 5

normal irrigations). In 2013, all the trials were planted by mid-November (optimal planting date),

on the 21st (Bed-2IR and Bed-5IR) and on the 26th for Flat-Drought. Trials for Bed-EHeat were

planted on October 30th. Grain yield (ton ha−1, total plot yield after maturity) was recorded.

Reflectance data were collected from the fields using both infrared (A600 series Infrared

camera, FLIR, Wilsonville, OR) and hyper-spectral (A-series, Micro-Hyperspec, VNIR Headwall

Photonics, Fitchburg, MA) cameras mounted on a Piper PA-16 Clipper aircraft on 9 different dates

(time-points) between January 10th and March 27th, 2014. During each flight, data from p = 250

wavebands ranging from 392 to 850 nmwere collected for each pixel in the pictures. Using ArcMap

software (ESRI, CA), the average reflectance of all the pixels within each geo-referenced trial plot

was calculated and reported as a single data-point for each genotype for each band. Days to heading

were recorded as the number of days from the date of sowing/first irrigation until 50% of spike

emergence in each plot. Heading of about 50-80% of the total number of plots was used as criterion

to distinguish between vegetative (VEG) and grain filling (GF) stages. The crop was considered to

be at maturity (MAT) stage when the average RNDVI decreased to ∼ 0.4.

2.5.5 Phenotype pre-processing

Within each environment, grain yield phenotypic records were pre-adjusted by fitting the following

mixed model,

y j klm = µ + g j + tk + rl(k) + bm(kl) + ε j klm
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where y j klm is the grain yield phenotype value for the jth genotype, kth trial, lth replicate (within

trial), mth sub-block (within trial and replicate), µ is the overall mean and g j , tk , rl(k), and bm(kl)

are the genotype, trial, replicate, and sub-block effects, respectively (all assumed to be random)

and ε j klm is an error term. Random effects were assumed to be independently and identically

distributed (iid) normal with null mean and effect-specific variances. Likewise, the error terms

were assumed to be iid with null mean and common error variance.

Grain yield data were pre-adjusted by subtracting from the phenotypic record (y j klm) the mean

(µ̂) plus BLUPs of trial, replicate, and sub-block effects; this is

y∗j klm = y j klm − µ̂ − t̂k − r̂l(k) − b̂m(kl) = ĝ j + ε̂ j klm (2.4)

Reflectance data was pre-adjusted by fitting the above model, using reflectance at individual

bands as phenotype expanded with the inclusion of a time-point effect. Separate models were fitted

to each of the wavebands. As with grain yield, reflectance data were pre-adjusted by subtracting

from the measured reflectance the estimated mean and predicted time-point, trial, replicate, and

sub-block effects.

For quality control, pre-adjusted grain yield and reflectance phenotypes were removed for those

grain yield scores lying beyond 3 times the inter-quantile region from the 0.25 and 0.75 quantiles.

After pre-adjusting, all phenotypes were standardized (to have unit variance); for ease of exposition,

hereinafter we refer to the adjusted-scaled phenotypes (including grain yield and the image data)

simply as phenotypes.

2.5.6 Heritability estimation

After pre-adjusting standardization, we analyzed phenotypes using a mixed model of the form

yi j = g j + εi j (2.5)

where yi j is the phenotype for the ith observation (i here is a single index for indices k, l, and m

in Equation (2.4)) of the jth genotype; the genetic values are g j
iid
∼ N(0, σ2

gy ), where σ
2
gy is the
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genetic variance; and the environmental terms are εi j
iid
∼ N(0, σ2

εy ). Plot-basis heritability was

calculated from variance components estimates using

h2
y =

σ2
gy

σ2
gy + σ

2
εy

.

2.5.7 Training-testing partitions

The data set contains information from 39 trials with 84 observations each. To assess the accuracy of

indirect selection, we randomly assigned complete trials to testing sets. The training set comprised

all the data from the trials not assigned to the testing set. This approach guarantees that no data

from a single trial is present in both training and testing sets. This approach aims at representing

a situation where one has calibrated the coefficients of the index using historical trials and apply

these coefficients to image data of future trials. A similar validation scheme has been used (using

herd-year-season groups instead of trials) in validation problems in previous studies involving milk

spectra data (Ferragina et al., 2015). In each training-testing partition, out of the 29 trials available,

26 trials (ntrn ≈ 2, 184 observations) were randomly assigned to the training set, and the data

from the remaining 13 trials (ntst ≈ 1, 092) was used for testing set. The regression coefficients

of the indices (the β’s for the standard SI, PSI, and PC-SI) were calculated using grain yield and

reflectance data of the training set. Estimates of the coefficients and reflectance data were then

used to calculate the SI, Ii j = x′i j β̂, for each observation i in the testing set (i = 1, ..., ntst). The

heritability of the index and the genetic correlation between the index and the selection goal were

estimated in the testing set.

The training-testing procedure described above was repeated 100 times by randomly assigning

trials to training and testing sets. From these analyses, we reported the mean of heritability, genetic

correlation, and selection accuracy; and their standard deviation across training-testing partitions.
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2.5.8 Estimation of phenotypic and genetic parameters

The population phenotypic (co)variance matrix Px was estimated within the training set using the

unbiased sample (co)variance matrix given by P̂x =
1

n−1
∑ntrn

i=1 (xi − x)(xi − x)′, where x is the

vector containing the sample mean of each waveband. Since reflectance data are centered and

standardized, this reduces to P̂x =
1

n−1X
′X, where X = [x1, x2, ..., xn]

′ is the matrix containing all

measured traits in the training set.

The genetic covariance (Gx j,y) between grain yield and the jth measured trait ( j = 1, ..., p) was

estimated using a sequence of univariate genetic models as in Equation (2.5). We fitted that model

with grain yield phenotypes as response, then for each of the reflectance bands and then for the sum

of grain yield and each of the bands. The genetic covariances between the bands and grain yield

were then estimated using

Ĝy,x j =
1
2

(
σ̂2
gy+x j

− σ̂2
gy − σ̂

2
gx j

)
where σ̂2

gy , σ̂
2
gx j

and σ̂2
gy+x j

are the estimated genetic variances for grain yield, the jth band, and

the sum of grain yield and the jth band, respectively.

2.5.9 Estimation of the accuracy of indirect selection

To assess the accuracy of indirect selection we applied the regression coefficients derived in the

training set to image data from the testing set to derive Ii j = x′i j β̂. Then, using a mixed model

analysis like that described in the previous section we estimated the heritability of the SI (h2
I
),

the heritability of grain yield (h2
y), and the genetic correlation between the SI and grain yield

(cor(gIi, gyi )). From these estimates, we derived the accuracy of indirect selection, Acc(I) =

hIcor(gIi, gyi ), and the relative efficiency, RE =
hI
hy

cor(gIi, gyi ).

2.5.10 Software

All the aforementioned analyses were implemented in the R software environment (R Core Team,

2019), version 3.5.1. Linear mixed models were implemented using the "lmer" function from the
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LME4 (Bates et al., 2015) R-package. The software that implements the LARS and coordinate

descent algorithms are available through the SFSI R-package (https://github.com/MarcooLopez/

SFSI).

2.5.11 Materials and data availability

The data used in this study are publicly available by CIMMYT (https://www.cimmyt.org/) who

owns all rights in the data. The data is also included in the SFSI R-package. The R-scripts needed

to perform the analyses presented in this study can be found in the documentation of the SFSI

R-package.
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3.1 Abstract

Genomic prediction uses DNA sequences and phenotypes to predict genetic values. In ho-

mogeneous populations, theory indicates that the accuracy of genomic prediction increases with

sample size. However, differences in allele frequencies and in linkage disequilibrium patterns

can lead to heterogeneity in SNP effects. In this context, calibrating genomic predictions using a

large, potentially heterogeneous, training data may not lead to optimal prediction accuracy. Some

studies tried to address this sample size/homogeneity trade-off by designing algorithms to identify

an optimal training set; however, this approach assumes that a single training data set is optimum

for all individuals in the prediction set. Here, we propose an approach that identifies, for each

individual in the prediction set, a subset from the training data (i.e., a set of support points) from

which predictions are derived. The methodology that we propose (which we label Sparse Selection

Index, SSI) integrates traditional Selection Index methodology with sparsity-inducing techniques

commonly used in high-dimensional regression settings. The sparsity of the resulting index is con-

trolled by a regularization parameter (λ); the G-BLUP (the prediction method most commonly used

in plant and animal breeding) appears as a special case which happen when λ = 0. In this study, we

present the methodology and demonstrate, using two wheat data sets (a very large multi-generation

breeding panel and a smaller, highly-structured, data set) with phenotypes collected in ten different

environments, that the SSI can achieve significant (anywhere between 5-10%) gains in prediction

accuracy relative to the G-BLUP.

3.2 Introduction

Selection decisions in plant and animal breeding rely on the predicted genetic merit of selection

candidates. Early prediction methods were based either on phenotypes measured in the same

selection candidates or on progeny testing (e.g., Lush, 1935). These methods were later extended

into selection indices (Hazel, 1943; Smith, 1936) that can use information from various sources

of correlated data, including secondary traits measured on the same individual, measurements of
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the same phenotype collected from relatives, and combinations thereof (Lush, 1948). Henderson

(1950) further extended the methodology by developing mixed-models that can include fixed and

random effects.

The Best Linear Unbiased Predictor (BLUP) predicts breeding values by borrowing (i.e., aver-

aging) information from multiple sources of correlated data. Pedigrees often trace back a limited

number of generations (e.g., 5); therefore, in most animal and plant breeding data sets, pedigree

relationships often define “families” and borrowing of information span within the scope of each

family. However, this is not the case in genomic-BLUP (G-BLUP; VanRaden, 2008) because

genomic relationships are not sparse as pedigree-derived relationships.

In the last two decades, genomic prediction (i.e., genomic selection, GS; Meuwissen et al.,

2001) has become the method of choice for breeding value prediction. GS models predict breeding

values using genome-wide markers and rely in the multi-locus linkage disequilibrium (LD) between

SNPs and quantitative trait loci (QTL). However, it is also well-established that family relationships

and population structure contribute to the accuracy of genomic prediction (Habier et al., 2007). In a

Genomic relationship matrix (VanRaden, 2007) all individuals are related to some extent; therefore,

every training data point contributes to the prediction of each individual in the testing set.

Genomic prediction models were originally developed with reference to a homogeneous popu-

lation in which marker effects are assumed to be the same across subgroups of the data. However,

several factors, including imperfect LD between markers and QTL and non-additive effects cou-

pled with population structure and admixture can make marker effects vary across subgroups in

the sample (de los Campos et al., 2015; Pritchard & Donnelly, 2001). All these factors can make

the genomic relationships derived from markers inaccurate predictors of the genomic relationships

realized at causal loci (e.g., de los Campos et al., 2013b). Therefore, the accuracy of G-BLUP may

be sub-optimal when the training data consists of heterogeneous groups (e.g., multiple families or

multiple strains or breeds) or even multi-generation data in which LD patterns may vary across

distant generations.

Several authors have recognized the need to model heterogeneous SNP-effects in the context of
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multi-breed (e.g., Hayes et al., 2009) and structured (e.g., de los Campos et al., 2015) data. Most of

the existing methods model group-specific effects using either multivariate Gaussian models (e.g.,

Olson et al., 2012; Schulz-Streeck et al., 2012) or interaction models (e.g., de los Campos et al.,

2015; Isidro et al., 2015; Veturi et al., 2019). However, these approaches can be difficult to use in

the presence of cryptic genetic-heterogeneity patterns where no clear groups can be discerned.

Another line of research seeks to identify an optimal training set for a given prediction set.

These optimal training sets often consist of individuals that are closely related to the individuals in

the prediction set, i.e., the candidates of selection (Rincent et al., 2012; Akdemir et al., 2015; Isidro

et al., 2015; Pszczola & Calus, 2016; Akdemir & Isidro-Sanchez, 2019). However, these methods

assume that a single training set is optimal for all the individuals in the prediction set which is not

necessarily the case. Therefore, in this study, we focus on developing a genomic prediction method

that will identify, for each individual in a prediction set an optimal training set (i.e., a set of support

points). Our approach achieves this goal by integrating sparsity (by adding an L1-penalty) into a

selection index (SI) problem, we refer to the method as a sparse selection index (SSI).

3.3 Materials and Methods

A standard selection index (Ii) predicts the breeding value of an individual (ui) using a linear

combination of the training phenotypes (y = (y1, ..., yn)
′): Ii = β′i y =

∑n
j=1 βi j y j . Here, pheno-

types are assumed to be centered and corrected by non-genetic effects (e.g., experiment and block

effects), and βi = (βi1, ..., βin)
′ is a vector of weights which are obtained as the solution to the

following optimization problem:

β̂i = arg min
βi

1
2
E

(
ui − β

′
i y

)2
The right-hand side of the above problem expands to E(u2

i ) + β
′
iE(y y

′)βi − 2E(y × ui)
′βi.

Assuming that genetic (ui) and non-genetic effects (εi) are independent, each with mean zero and

(co)variance matrices var(u) = σ2
uG and var(ε) = σ2

ε I, we have that E(ui − β
′
i y)

2 = σ2
u + β

′
iPβi −

2σ2
uG′iβi, where σ2

u is a genetic variance parameter, P = σ2
uG+σ2

ε I is the phenotypic (co)variance
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matrix of the training phenotypes, and Gi is a vector containing the genetic relationships between

the ith subject of the prediction set and each of the subjects in the training data. Since σ2
u does not

depend on βi, the aforementioned optimization problem can be reduced to

β̂i = arg min
βi

[
1
2
β′i(G + λ0I)βi −G′iβ

]
(3.1)

where λ0 =
σ2
ε

σ2
u
= 1−h2

h2 is the ratio of the error to the genetic variance, which can be expressed in

terms of the heritability, h2. The solution to the above problem can be shown to be

β̂i = (G + λ0I)−1 Gi (3.2)

The vector β̂i can be shown to be the ith row of the Hat matrix of the BLUPs of the genetic

values of the individuals in the prediction set (see Appendix B.1 for a proof), thus, depending on

whether G is a pedigree- or genomic-derived relationship matrix, the standard SI is equivalent to a

pedigree- (Henderson, 1963) or genomic-BLUP, respectively.

WhenG is a pedigree-based relationship matrix the off-diagonal entries corresponding to pairs

of subjects not connected through the pedigree are equal to zero. In that case, some of the entries

of β̂i can also be equal to zero which implies that the corresponding predicted breeding value

(Îi = β̂
′
i y) draws information from a subset of the training data. However, when G is a genomic

relationship typically none of the off-diagonals are equal to zero; therefore, none of the entries of

β̂i will be exactly equal to zero. This implies that all the observations in the training set contribute

to some extent to predict the breeding values of all the individuals in the prediction set.

3.3.1 Sparse Selection Index Methodology

As noted earlier, there are several reasons (e.g., imperfect LD, effect heterogeneity) why borrowing

of information between distantly related individuals may have a detrimental effect on prediction ac-

curacy. Therefore, to achieve sparsity (and possibly differential shrinkage on the β̂i) we considered

adding an L1-penalty to the objective function in Equation (3.1); therefore,

β̃i = arg min
βi


1
2
β′i(G + λ0I)βi −G′iβ + λ

n∑
j=1
|βi j |

 (3.3)
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The above optimization problem does not have a closed-form solution; however, solutions can

be obtained using a Coordinate Descent algorithm very similar to the one used to solve LASSO

problems (see Lopez-Cruz et al., 2020). The regularization parameter λ controls how sparse β̃i

will be; this parameter is also expected to affect the accuracy of the index. Therefore, an optimal

value of λ can be found by maximizing the accuracy of the resulting index.

3.3.2 Data

We used two wheat breeding data sets to evaluate and to compare the prediction performance of

standard and sparse selection indices. The first data set (Wheat-large) is a multi-generation wheat

breeding data set of a very large sample size (n ∼ 29, 000). The second one is (Wheat-599) is a

small, structured data (see Supplementary Figure B.1).

TheWheat-large data set is from CIMMYT’s Global Wheat Program and it includes phenotype

data from 58, 798 wheat lines that were evaluated during five years (2009-2013) at the CIMMYT’s

experimental station in Ciudad Obregon, Mexico. Lines were evaluated under six environmental

conditions (B2I, B5I, MEL, LHT, DRB, EHT) representing a combination of planting system (bed

vs flat, the later referred to as melgas), number of irrigations (2, 5 irrigations or drip irrigation),

and sowing date (optimum, late or early planting). Each year, grain yield trials were established in

an α-lattice design with three replicates into incomplete blocks. Moisture-standardized grain yield

(ton ha−1) was measured at each plot. We used mixed-effects models with a (‘fixed’) intercept and

the random effects of the trial, block (within trial) and replicate (within trial) to derive least-square

means by line and environmental condition. Separate mixed models were fitted to data from each

of the simulated environments. The average grain yield in this data set varied from 2.72 to 7.12 ton

ha−1 (see Supplementary Figure B.2B for boxplots of grain yield) and the heritability of single-

plot records varied between 0.23 and 0.57 (see Supplementary Table B.1 for a summary of the

data). Only a subset of 29, 484 genotypes was genotyped using a GBS (Genotyping-by-sequencing)

technology that yielded 42, 706 SNPs. We removed SNPs with more than 70% of missing values

and those with minor allele frequency lower than 5%. After applying these filters, we retained
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9,045 SNPs. The missing values at each SNP were imputed as the mean of the observed SNP data

across genotypes. The data set has been previously described and analyzed by Pérez-Rodríguez

et al. (2017).

The Wheat-599 data set is also from CIMMYT’s Global Wheat Program and it is comprised

of grain yield and genotype data for 599 historical inbred lines derived along 25 years. Lines were

evaluated in the Elite Spring Wheat Yield Trials (ESWYT) that were grouped into four different

mega-environments (Env1, . . . , Env4). The available phenotypic values are least-square means

from two replicates. The average grain yield in this data set ranged from 3.23 to 5.14 ton ha−1

(see Supplementary Figure B.2A for boxplots of grain yield data) with heritability estimates for

the least-square means ranging between 0.43 to 0.50 (see Supplementary Table B.2). Each of the

lines was genotyped for 1, 279 diversity array technology (DArT) markers. The data set is available

with the BGLR R-package (Perez & de los Campos, 2014) and has been described and analyzed by

previous authors (e.g., de los Campos et al., 2009b; Crossa et al., 2010).

3.3.3 Analyses

For each data set, we computed a genomic relationship matrixG using (centered and standardized)

marker information, X = {xim}, as G = ZZ′/p, where p is the number of markers and Z =

{(xim − xm)/sdxm)} is the matrix of centered and standardized markers obtained by subtracting

from each marker entry the mean of each column (xm) followed by scaling by the standard deviation

of the column (sdxm). The resulting matrix has an average of the diagonal elements equal to 1.

To quantify the prediction accuracy of each of the indices, we divided each data set into training

(trn) and testing (tst) sets by randomly assigning 30% (70%) of the data points to testing (training).

Predictions were derived by first using Equation (3.2):

β̂i = (G + λ0I)−1 Gi

(for the standard SI) and Equation (3.3):

β̃(λ)i = arg min
βi


1
2
β′i(G + λ0I)βi −G′iβ + λ

n∑
j=1
|βi j |
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(for the SSI), with G = Gtrn representing the genomic matrix of the training data points (i.e., with

dimensions ntrn × ntrn, where ntrn = 0.7n), and Gi = Gtrn,tst(i) being the vector containing the

genomic relationships between the ith data-point of the testing set, with each of the individuals

assigned to the training set (i.e., the dimensions of Gi are ntrn × 1). This was repeated for each

individual in the testing set (i = 1, . . . , ntst , where ntst = 0.3n). Subsequently, predictions for each

individual were obtained using Îi = β̂
′
i ytrn (for the standard SI) and Îi = β̃(λ)′i ytrn (for the SSI)

where ytrn is a ntrn × 1 vector with the adjusted-centered phenotypes of the training set.

The implementation of the SI requires heritability estimates. We derived those by fitting a

G-BLUP model of the form yi = µ + ui + εi with εi
iid
∼ N(0, σ2

ε ) and u ∼ N(0, σ2
uG). The

model was fitted using the rrBLUP R-package, separate models were fitted to grain yield within

each environment in each data set within the training set. We then used the variance parameters

estimates to derive h2 = σ2
u /(σ

2
u + σ

2
ε ) for grain yield.

Prediction accuracy (ρ) was measured with the correlation between the phenotype and the

index, divided by the square-root of the trait heritability of the trait, ρ = Acc(Î) = cor(Îi, yi)/h

(Dekkers, 2007).

For the SSI, we estimated accuracy over a grid of values of the regularization parameter

(λ = 0 < λ(1) < λ(2) < · · · < λmax) where λmax = max
i
{

|Gi |
diag(G)+λ0

}. Here λmax is the minimum

value of λ that yields an SSI with no active predictors, and λ = 0 gives the weights of the standard

SI. Following Friedman et al. (2010) we used a grid of values evenly spaced in the logarithm scale

with a total of 100 values. Thus, for each value of λ in the grid, we had an estimate of the resulting

accuracy of the SSI. This was used to profile accuracy as a function of the regularization parameter

and also to choose an optimal value of λ.

To determine an optimal value of λ we implemented a calibration analysis using data from the

training data only. Specifically, for each training set, we conducted an internal cross-validation

(CV) as follows: (i) The training data set was partitioned into k subsets. (ii) SSIs were derived

over a grid of values of λ using data from k − 1 folds for training and the data in the kth fold as

testing (i.e., for the estimation of accuracy, see the previous paragraph). (iii) The resulting curves
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profiling accuracy (ρ) by values of λ were used to identify the value of λ (λ̂cv) that maximized

accuracy. (iv) Finally, we used all the data from the training set to derive Ii(λ̂cv) and evaluated the

accuracy (ρ) of the resulting index in the left-out data from the testing set.

3.3.4 Software

All the analyses were performed in the R environment-language (R Core Team, 2019) version

3.5. The heritability of each of the traits was estimated using the rrBLUP R-package (Endelman,

2011). Sparse SIs were derived using the SSI function from the SFSI R-package that implements

the Coordinate Descent algorithm described in Lopez-Cruz et al. (2020). The package is aided

by ggplot2 (Hadley, 2016) and parallel (R Core Team, 2019) packages to visualize results and to

speed computation. This package is available through the GitHub repository at https://github.com/

MarcooLopez/SFSI. Scripts illustrating the use of this package using the Wheat-599 data set are

presented in the Appendix B.2.

3.3.5 Data availability

Both phenotypic and marker data for the Wheat-large data set can be downloaded from CIM-

MYT’s repository at http://genomics.cimmyt.org/wheat_50k/PG/ (accessed Sep 14th, 2020). The

Wheat-599 data set can be downloaded from the BGLR R-package by calling “data(wheat)”. All

supplemental figures and tables are contained in theAppendixB.All supplemental files are available

at Figshare at https://figshare.com/s/ce2258d168b16a86454d.

3.4 Results

3.4.1 Sparsity improves prediction accuracy

We assessed the effect of sparsity on the accuracy, by fitting the SSI for 100 values of λ (0 < λ(1) <

λ(2) < · · · < λmax; the value λ = 0 produces the coefficients of the standard SI or G-BLUP). The

results (averaged over 100 trn-tst partitions) are shown in Figure 3.1. The number of support points
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(i.e., the number of training data points contributing to the prediction) was, as expected, inversely

proportional to λ; therefore, to facilitate interpretation, the x-axis of Figure 3.1 is displayed as the

average number of support points, which is more meaningful than the λ values. The accuracy of

the G-BLUP is also shown at the rightmost side of the plot whose number of support points is equal

to the size of the training data set. Intermediate values of λ led to sparse indices that, in most cases,

achieved higher prediction accuracy than that of the G-BLUP (shaded “belly” area in Figure 3.1).

Figure 3.1: Prediction accuracy (average across 100 trn-tst partitions) of the SSI versus the (average)
number of predictors in training set supporting the SSI of each individual in testing set (x-axis).
Genomic-BLUP (blue rightmost point) appears as a special case of an SSI. Each panel represents
one environment within data set. (A) Wheat-large data set. (B) Wheat-599 data set. Vertical bars
represent a 95% confidence interval for the average.
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The maximum accuracy in the environment EHT (see Figure 3.1A) was obtained with a

penalization that leads to a sparse index with an average of 120 support points (nsup). This

predictive set of individuals represents around 8% of the total training set (ntrn = 1, 428) available

for prediction.

For the small data set (Figure 3.1B), the same “belly” pattern can be observed in all environments,

except for environment 2. This case shows that the SSI does not always outperform the G-BLUP;

however, the SSI achieves the prediction accuracy of the G-BLUP with a smaller support set

(nsup ≈ 151 out of 419).
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Figure 3.2: Prediction accuracy of the optimal sparse selection index (SSI) versus that of the
G-BLUP. Each point represents a trn-tst partition (a total of 100 partitions were implemented), the
point shape and color represent environments. (A) Wheat-large data set. (B) Wheat-599 data set.
The value of λ in the SSI was estimated using 10 5-fold cross-validations conducted within the
training data. In parenthesis, by the legend, is the p-value for the two-sided Sign (binomial) test for
within-environment differences in accuracy between the SSI and the G-BLUP.

3.4.2 Using an internal cross-validation to achieve optimal sparsity

The results in Figure 3.1 suggest that one can find a value of λ that leads to an index with a

predictive performance as least as high (and in most cases higher) as the G-BLUP. However, to

obtain an unbiased estimate of the maximum accuracy that one could achieve with an SSI, one
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should not use data from the testing set to select the optimal value of λ. Therefore, we repeated

the analyses described above, this time performing the grid search for an optimal value of λ by

implementing 10 5-fold CVs within each training data set. This CV was used to choose an optimal

value of λ (λ̂cv). Then, we solved the SSI using λ̂cv and all the training genotypes, and evaluated

the accuracy of Ii(λ̂cv) in a testing set that was not used to choose λ̂cv . This was repeated for 100

trn-tst partitions. Figure 3.2 shows the accuracy of Ii(λ̂cv) versus that of the G-BLUP, each point

in the plot represents a trn-tst partition.

Table 3.1: Prediction accuracy (average across 100 partitions) achieved by sparse selection indices
(SSIs) and by the G-BLUP (standard SI), by data set and environmental condition.

Environment ntst ntrn Method λcv
a nsup

b Accuracy (SD)c Countsd

Wheat-large

B2I 1,120 2,612 G-BLUP 0.0000 2,612 0.617 (0.031) b 97SSI 0.0135 434 0.648 (0.031) a

B5I 8,842 20,631 G-BLUP 0.0000 20,631 0.555 (0.010) b 100SSI 0.0107 1,470 0.609 (0.009) a

MEL 1,321 3,082 G-BLUP 0.0000 3,082 0.600 (0.045) b 99SSI 0.0131 524 0.661 (0.046) a

LHT 1,322 3,082 G-BLUP 0.0000 3,082 0.669 (0.024) b 99SSI 0.0168 380 0.709 (0.025) a

DRB 1,129 2,634 G-BLUP 0.0000 2,634 0.629 (0.035) b 98SSI 0.0322 136 0.675 (0.037) a

EHT 612 1,428 G-BLUP 0.0000 1,428 0.614 (0.049) b 94SSI 0.0301 178 0.649 (0.047) a
Wheat-599

Env1 180 419 G-BLUP 0.0000 419 0.721 (0.070) b 87SSI 0.0413 78 0.760 (0.067) a

Env2 180 419 G-BLUP 0.0000 419 0.702 (0.087) a 41SSI 0.0123 254 0.692 (0.085) a

Env3 180 419 G-BLUP 0.0000 419 0.585 (0.101) a 53SSI 0.0613 84 0.586 (0.093) a

Env4 180 419 G-BLUP 0.0000 419 0.663 (0.082) b 87SSI 0.0617 54 0.714 (0.075) a
SD: Standard deviation across the 100 trn-tst partitions. G-BLUP model corresponds to an SSI where
λ = 0. aAverage value of λ estimated by cross-validating the training set. bAverage number of individuals
in training set supporting the prediction of individuals from testing set. cModels with the same letter are not
significantly different from others (ANOVA followed by Tukey’s HSD test, 5% significance level). dNumber
of times (out of the 100 partitions) that the SSI outperformed the G-BLUP in prediction accuracy.
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In the Wheat-large data set, the optimal SSI outperformed the G-BLUP in 94% of the cases

(Table 3.1). For this data set, the SSI offered significant (according to Tukey’s Honest Significance

Difference test, HSD) gains in accuracies across environments. These gains range from 5% (in the

environment B2I) to 10% (in the environment MELGAS) in the correlation metric.

Similar patterns were observed with the Wheat-599 data set. In Environments 1 and 4 the

SSI outperformed the G-BLUP in more than 80% of the trn-tst partitions (Table 3.1), with gains

in accuracy ranging from 5-7%. However, in Environments 2 and 3, there were no statistically

significant gains in accuracy (see Table 3.1).
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Figure 3.3: Distribution of the number of training support points (nsup) in optimal sparse selec-
tion indices (results obtained over 100 trn-tst partitions; ntrn= size of the training data set), by
environmental condition, Wheat-large data set.

3.4.3 Sparse Selection Indices build subject-specific training sets

For each individual in the prediction set, an SSI yields a set of support points in the training set

consisting of the index of all the non-zero entries of β̃(λ)i. Figure 3.3 shows the distribution (across

100 trn-tst partitions) of the number of support points (nsup) for λ̂cv for each of the environments
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of the Wheat-large data set. At λ̂cv , nsup ranges from 30 to ≈ 5, 000. In 3 of the environments (B2l,

MELGAS, and LHT) the average number of support points was nsup ≈ 450, that is ∼ 15 − 20% of

the size of the training set. In environment B5l, the proportion of active training support points was

∼ 5− 10%. On the other hand, in environment EHT predictions relied on an average of nsup ≈ 178

(of 1, 428) individuals from training (Figure 3.3). Similar patterns were also observed in theWheat-

599 data (Supplementary Figure B.3); for instance, testing phenotypes from environment 1 were

optimally predicted in average with nsup ≈ 78 (of 419); however, the relative sparsity (nsup/ntrn)

was smaller in the Wheat-large data set (5-17%) than in the Wheat-599 data set (12-60%).
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Figure 3.4: First two principal components coordinates for prediction points (yellow) and the
corresponding support points (green). Grey points represent genotypes that did not contribute to
the prediction of the genetic value of the genotype in yellow. All panels represent solutions for the
environment EHT, Wheat-large data set.

46



Figure 3.4 shows (for selected testing genotypes) the coordinates on the 1st and 2nd PC of

both the prediction point (yellow circle) and the training genotypes. Active training genotypes

are represented in a green circle, and those non-active (i.e., with zero weight in the index) are

represented in grey. In some cases, the support set includes training genotypes that are nearby

(according to the coordinates on the 1st 2 PCs) the prediction point. However, in other cases,

the support set spanned outside the “neighborhood” of where the prediction point resides. This

suggests that the SSI does not necessarily choose training points within the clusters. A similar plot

for the Wheat-599 data set is presented in Supplementary Figure B.4.

3.4.4 Genomic relationships and weights in standard and sparse selection indices

Figure 3.5A shows the coefficients of the G-BLUP and of the SSI (i.e., the βi j’s derived from

Equations (3.2) and (3.3), respectively) versus the genomic relationship (gi j , the i j entry of G).

In Figure 3.5A, the βi j’s were derived for a training-testing partition with fixed heritability and λ

chosen by CV conducted within the training set, for environment EHT from the Wheat-large data

set. The weights used by the G-BLUP are, as expected, all different from zero and are positively

associated with the genomic relationships (i.e., on average, training genotypes closely related to

genotypes in the prediction set receive higher weight on the index). However, the points do not fall

over a perfect line because the weight given to each of the training points depends not only on the

relationship between the training point and the prediction point but also on the relationships among

training points. On the other hand, as expected, the SSI zero-outs most of the weights. Interestingly,

the SSI seems to zero-out most of the weights that are in the top left and lower-right quadrants (i.e.,

points that had a negative (positive) relationship and in the G-BLUP got positive (negative) weight,

compare both plots in Figure 3.5A). Panel B in Figure 3.5 shows the proportion of coefficients

that are zeroed-out by level of genomic relationship. Most of the coefficients corresponding to

training genotypes with relationships with prediction points between -0.1 and 0.1 are zeroed-out;

the proportion of coefficients that are zeroed decreases rapidly as gi j increases; however, the

decrease seems to be faster for the Wheat-large data set than for the Wheat-599 (Supplementary
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Figure B.6). Interestingly, the proportion of coefficients zeroed-out also decreases for ‘negative’

genomic relationships, suggesting that the SSI does not use a ‘local’ support set; instead, the SSI

seems to use informative support points. At least in the context of a ‘linear’ kernel as the one used

here, a negative prior correlation (i.e., gi j < 0) can be informative. The patterns observed in other

environments of the Wheat-large data set and in the four environments of the Wheat-599 data set

were conceptually similar to the ones presented in Figure 3.5 (see Supplementary Figures B.5 and

B.6).

Figure 3.5: (A) Weights (βi j ) of a standard SI (G-BLUP) and of the optimal sparse selection index
(SSI) versus the genomic relationship (gi j). (B) Proportion of weights in the SSI that were zero
(non-active) and non-zero (support points); Wheat-large data set, environment EHT.

3.5 Discussion

Sample size has been recognized as one of the main factors limiting prediction accuracy

in genomic prediction (Lorenzana & Bernardo, 2009; de los Campos et al., 2013a; Habier et al.,

2013). In un-structured populations, SNP effects can be assumed to be homogeneous and, therefore,

genomic prediction accuracy increases with sample size (e.g., Daetwyler et al., 2008; de los Campos

et al., 2013a). However, this is not necessarily the case in structured and admixed populations, in

multi-family data (e.g., data from bi-parental families), or in multi-generation data. In those cases,

differences in allele frequencies and in LD-patterns across may make SNP effects heterogenous

across subgroups in the sample. In that context, a larger training data set may not translate into
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higher prediction accuracy. This phenomenon has been recognized in both plant and animal

breeding, as well as in complex trait prediction in humans.

For example, using data from a broiler breeding population,Wolc et al. (2016) showed that using

training sets that included data frommany generations led to slightly lower prediction accuracy than

the one achieved when models were trained with data from just the last 3 generations. Likewise,

Hayes et al. (2009) showed that the prediction accuracy for Holstein cattle was not improved by

adding to the training set data from Jersey cattle. In plant breeding, using data from bi-parental

families, Jacobson et al. (2014) reported that within family prediction accuracy could be increased

by training models using only data from families that share at least one of the parents. Finally, in

the context of human data, de los Campos et al. (2013b) noted that the accuracy of SNP-derived

genomic relationships could be very low for distantly related individuals. Thus, combining family

data with large volumes of data from distantly related individuals may not improve (or may even

reduce) prediction accuracy relative to models trained with family data only.

Thus, when data originates from heterogeneous sources there may be trade-offs between sample

size and the possibility of having a homogenous data set in which SNP can be conceived as

homogenous within the training data and between training and testing sets. The recognition that

in genomic prediction ’bigger is not always better’ led to the development of several models and

model-training strategies aiming to improve prediction accuracy. One line of research attempts to

model effect heterogeneity using group-specific effects (e.g., Veturi et al., 2019; Rio et al., 2020).

However, this approach is useful when individuals cluster in a small number (e.g., 2 or 3) of

well-defined clusters, and becomes less useful and difficult to apply when data is characterized

by either a large number of groups (e.g., bi-parental families) or when groups overlap in cryptic

manners (e.g., admixed populations or partially-overlapping-multi-generation data). Another line

of research seeks to identify an “optimal training set” by either selecting data from individuals

that are closely related to the prediction set (e.g., Rincent et al., 2012; Jacobson et al., 2014; Wolc

et al., 2016) or by using more sophisticated optimization algorithms (e.g., Akdemir et al., 2015).

However, these approaches assume that it is possible to build a training set that is optimal for all
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the genotypes in the prediction set. Our approach differs from these ones in that we developed a

methodology that builds subject-specific training sets. Indeed, the SSI selects, for each individual

in the prediction set, a custom training set (or support points) from which predictions are derived.

Our approach builds on selection index methodology by adding an L1- (sparsity-inducing-) penalty

into the optimization problem. The result is an index in which only a subset of the training points

contributes to prediction accuracy.

When the training data consists of disconnected families, pedigree BLUP equations can also

be sparse. However, this is not the case of the G-BLUP because genomic relationship matrices

are dense. The SSI brings back sparsity into genomic prediction. The level of sparsity is largely

controlled by the penalization parameter (λ). This parameter can be tuned using cross-validation

within the training data. As with any other parameter, the value of λ that maximizes accuracy

may change slightly between trn-tst partitions; however, in our experience, using a few (e.g., 10)

training-testing partitions are enough to obtain an accurate estimate of the value of the regularization

parameter that maximizes accuracy.

As noted, an SSI identifies, for each individual in the prediction set, a network of genotypes

in the training data set (see Figure 3.4 and Supplementary Figure B.4) that contribute to the

prediction. At first glance, this appears similar to the approach used in a k-nearest neighbor (KNN)

regression (Cover & Hart, 1967). In KNN, the k genetically closest individuals (neighbors) predict

each selection candidate, and predictions are derived using an average of the phenotypes in the

neighborhood. There are important differences between the KNN and the SSI. First, the KNN uses

only marginal similarities/distances between a prediction point and the points in the training data

to build a ’neighborhood’; the SSI, however, also considers the correlations (i.e., redundancies)

between points within the training data. As a consequence, the optimal support set of the SSI may

include some distantly related individuals (see Figure 3.4 and Supplementary Figure B.4). Second,

while in the standard KNN predictions are simply the arithmetic mean of the phenotypes in the

neighborhood, in the SSI each training point contributes differently with weights (the βi j’s) that

reflect both the correlation of the training point with the prediction point as well as correlations
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among points in the training set.

Best Linear Unbiased Prediction (BLUP) methods are equivalent to L2-penalized regressions.

In BLUP, shrinkage is controlled by the noise and signal variances (λ0 = σ2
ε /σ

2
u , see Equation

(3.2). We added to the optimization problem an L1-penality; thus, the SSI uses both L1 and L2

(which is intrinsically built in the SI) penalties. Therefore, the SSI can be seen as being a type of

Elastic-Net (Zou & Hastie, 2005) regression. However, in the SSI the weight on the L2-penalty

is determined by the ratio of variance components (λ0 = σ2
ε /σ

2
u ) which may or may not be an

optimal choice from a prediction perspective (particularly if the underlying assumptions of the

BLUP method, e.g., homogeneity of effects, do not hold). Therefore, to add flexibility to the SSI

we considered explicitly adding L1- and L2-penalties, and searching for an optimal combination,

using cross-validation, of the relative weights of the penalization parameters of the Elastic-Net (α

and λ) optimization problem:

β̃(α, λ)i = arg min
βi


1
2
β′i(G + λ0I)βi −G′iβ + λ

1
2
(1 − α)

n∑
j=1

β2
i j + λα

n∑
j=1
|βi j |


To avoid too-much penalization, we decreased the weight of the initial L2-penalty to 0.5λ0. We

found that this practice could increase prediction accuracy by a small factor (2-3.5%, see Supple-

mentary Table B.3 for theWheat-large data set) relative to the original SSI method (Equation (3.3)).

However, this practice did not provide any advantage over the original SSI in the Wheat-599 data

set (see Supplementary Table B.4).

In conclusion, we presented a novel prediction method that combines in a single framework,

selection index methodology with sparsity-inducing methods. The resulting SSI identifies optimal

training sets for each point in the prediction set. The method can be useful for multiple applications,

including the use in genomic prediction of data from structured populations, bi-parental families,

and the analyses of very large multi-generation data sets.
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GENOMIC PREDICTION IN MULTI-GENERATIONAL MAIZE HYBRIDS USING
SPARSE KERNEL MODELS

Marco Lopez-Cruz1, Yoseph Beyene2, Manje Gowda2, Jose Crossa3,

and Gustavo de los Campos4,5,6

1Department of Plant, Soil and Microbial Sciences, Michigan State University, USA
2Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Kenya
3Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT),

Mexico
4Department of Epidemiology and Biostatistics, Michigan State University, USA
5Institute for Quantitative Health Science and Engineering, Michigan State University, USA
6Department of Statistics and Probability, Michigan State University, USA

53



4.1 Abstract

There has been much interest in the use of large historical data to calibrate more accurate

prediction models to improve current breeding programs. However, multi-generational data often

comes with increased heterogeneity that might include complex admixture patterns, in which

genetic relationships are reduced as generations advance. It has been recognized that differences

in heterogeneity patterns between the training and the prediction set, or including in the training

set individuals that are distantly related to the prediction set can reduce the prediction accuracy.

Most of the research in this sense focuses on designing optimal training sets that include only a few

previous generations or a group of genotypes that are more closely related to the current prediction

set. However, some training individuals can be optimal for some, but not all individuals in the

prediction set. The sparse selection index (SSI) determines, for each individual in the prediction

set, a customized optimal training set. Using additive genomic relationships, the SSI can provide

an increased accuracy relative to the standard G-BLUP. Models with Gaussian kernels (K-BLUP)

have been shown to yield a higher accuracy by maximizing the covariance between closely related

genotypes. We studied whether the SSI using Gaussian kernels can provide increased accuracies.

Using a three-generation doubled haploid maize data set from the International Maize and Wheat

Improvement Center (CIMMYT), we show that the standard K-BLUP outperformed the G-BLUP.

Also, we found that using an SSI with additive genomic relationships (sparse G-BLUP) leads to

gains in accuracy between 5%-20%, relative to the standard G-BLUP. For the K-BLUP, the gains

obtained by adding sparsity were smaller and not always significant.

4.2 Introduction

Almost two decades have passed since Genomic Selection (GS) was first proposed by (Meuwis-

sen et al., 2001). This groundbreaking idea was quickly adopted for breeding dairy cattle (Hayes

et al., 2009), beef cattle (Garrick, 2011), broilers (Wolc et al., 2016), maize (Bernardo & Yu, 2007),

wheat (Poland et al., 2012), and many other animal species and crops (Xu et al., 2020). Over time,
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investments by public and private organizations led to the development of large genomic data sets

comprising DNA-sequences and phenotypes. The large sample size of modern genomic data sets

has increased our ability to train high-dimensional genomic prediction equations accurately.

However, the larger sample size often comes with an increased genetic heterogeneity, including

many generations of data and often complex admixture patterns. Moreover, there have been some

signs that in genomic prediction, ‘bigger may not always be better’. For example, Wolc et al. (2016)

reported that the accuracy of genomic prediction in a broiler breeding program was higher when

using data from the last three generations relative to prediction equations trained using data from the

last five generations. Likewise, Riedelsheimer et al. (2013) and Jacobson et al. (2014) reported that

the prediction accuracy was higher when models were trained using data from biparental families

that shared at least one parent relative to training using data from all the available biparental

families.

Early work by Habier et al. (2010) showed that family relationships have an important impact

on prediction accuracy, and many studies have demonstrated that distantly related individuals

make a small (sometimes negligible) contribution to the prediction accuracy. However, as noted

above, some evidence suggests that using training sets formed by individuals distantly related to the

genotypes of the prediction set may actually have a negative impact on the prediction accuracy (e.g.,

Lorenz & Smith, 2015). This may happen if, for example, heterogeneity in allele frequency and

in linkage disequilibrium (LD) patterns between the training and prediction set lead to SNP-effect

heterogeneity.

Issues related to data- and effect-heterogeneity have spawned multiple research efforts. One

line of research models effect-heterogeneity explicitly using SNP-by-group interaction models

or multivariate models (‘multi-breed genomic prediction’) in which effects are assumed to be

correlated among groups (e.g., Olson et al., 2012; Lehermeier et al., 2015; Rio et al., 2020). This

approach has shown promise, but it is only adequate when genotypes can be clustered into clearly

disjoint groups.

Another line of research seeks to increase prediction accuracy by optimal design of training
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data sets. The methods proposed and used to identify an optimal training set span from simple

threshold-based methods (e.g., Clark et al., 2012; Lorenz & Smith, 2015) to more sophisticated

algorithms that seek to minimize prediction error variance and functions thereof (Rincent et al.,

2012; Akdemir & Isidro-Sanchez, 2019; Roth et al., 2020). A main assumption of these training set

optimization methods is that a single training set is optimal for all individuals in the prediction set.

But this may not be the case if some genotypes in the training set can improve prediction accuracy

for some of the candidates of selection and reduce it for others.

To address the limitations of existing methods, in Chapter 3 of this dissertation, we developed a

prediction method (sparse selection index, SSI) that identifies, for each individual in the prediction

set, a customized training set. Our approach integrates into the selection indexmethodology (Smith,

1936; Hazel, 1943), a sparsity-inducing penalty that leads to sparse selection indices.

In Chapter 3, we used the SSI methodology to predict grain yield in two wheat data sets.

The application presented in that chapter used additive genomic relationships, and the results

showed that the SSI outperformed the genomic-BLUP (G-BLUP; VanRaden, 2008) by 5-10% in

the correlation scale.

Reproducing Kernel Hilbert Spaces (RKHS) regression has shown good predictive performance

in many genomic applications (e.g., de los Campos et al., 2010; González-Camacho et al., 2012).

The G-BLUP is a special case of RKHS regression in which a linear kernel (additive genomic

relationships) is used to describe the genetic similarity between genotypes. However, several

studies (e.g., Crossa et al., 2010; Morota & Gianola, 2014) have suggested that using non-linear

kernels (e.g., Gaussian kernels) may lead to a higher genomic prediction accuracy. In a Gaussian

kernel, the covariance between genetic values is higher for closely related individuals and drops

as two genotypes become increasingly distant. The rate at which the prior covariance between

genetic values drops is controlled by a bandwidth parameter. Large bandwidth parameter values

(that lead to highly local covariances) can be used to derive predictions which are largely dependent

on closely related individuals. Thus, there is a clear link between RKHS with Gaussian kernels and

the SSI methodology presented in Chapter 3. However, the Gaussian kernel does not yield strictly
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sparse prediction equations.

Therefore, to further advance our research in the use of SSIs, in this chapter, we study whether

the SSI can also improve the prediction performance of RKHS regressions with non-linear kernels.

In this chapter we evaluate the performance of the SSI using additive (sparse G-BLUP) and non-

additive (sparse K-BLUP) kernels using a three-generation DH (doubled haploid) maize data set

from the International Maize and Wheat Improvement Center (CIMMYT). For several scenarios

of training set composition, we show that the standard RKHS regression with a Gaussian kernel

outperformed the additive G-BLUP. In agreement with what we report in Chapter 3, we found that

the use of an SSI with additive genomic relationships (sparse G-BLUP) leads to gains in prediction

accuracy between 5%-20%, relative to the standard (non-sparse) G-BLUP. For the K-BLUP, the

gains obtained by adding sparsity were smaller and not always significant.

4.3 Materials and Methods

4.3.1 Genotypes and phenotypic data

The genotypes used in the study consist of 3068 DH lines derived from 54 biparental families.

The DH lines were developed in 2017, 2018, and 2019 at CIMMYT’s Maize DH facility at the

Agricultural & Livestock Research Organization (KALRO) in Kiboko, Kenya. The biparental

families were obtained by crossing elite inbred lines with drought-tolerant lines. Seeds from each

of the families were collected and submitted for DH induction. The 3068 DH lines were selected

from a larger population for stage I multi-location yield trials in 2017-2019, based on the results

of evaluating germination, good stand establishment, plant type, low ear placement, and well-filled

ears.

Each year, the selected DH lines were crossed with a single-cross tester from the complementary

heterotic group and evaluated under well-watered (denoted as OPT) and drought (denoted as DRT)

environmental conditions. The number of hybrids (trials) planted in 2017, 2018, and 2019 were

923 (14), 1423 (34), and 722 (17), respectively; trials were connected by a common check and three

57



to six commercial checks, planted in an alpha-lattice design with two replications, and evaluated in

two well-watered locations and one managed drought stress locations during the 2017, 2018, and

2019 growing seasons. The OPT experiments were conducted during the rainy season, applying

supplemental irrigation as needed. The DRT experiments were conducted during the dry (rain-

free) season and irrigation was suspended 2 weeks before flowering and until harvest. Entries were

planted in two-row plots, 5 m long, with 0.75 m spacing between rows and 0.25 m between hills.

Two seeds per hill were initially planted and then, three weeks after emergence, one plant per hill

was maintained to obtain a final plant density of 53333 plants/ha. Fertilizers were applied at the

rate of 60 kg N and 60 kg P2O5/ha, as recommended for the area. Nitrogen was applied twice: at

planting and 6 weeks after emergence. Fields were kept free of weeds by hand weeding. Grain

yield (GY, tons ha−1), anthesis date (AD, days), plant height (PH, cm) traits were recorded. Plots

were manually harvested and GY was corrected to a 12.5% moisture. AD was measured from

planting to when 50% of the plants shed pollen, and PH was measured from the soil surface to the

flag leaf collar on five representative plants within each plot.

Leaf samples were taken from each of the 3068 DH lines and sent to Intertek, Sweden, for DNA

extraction. The DNA sample plates were forwarded to the Institute for Genomic Diversity, Cornell

University, Ithaca, NY, USA, for genotyping with repetitive sequences (rAmpSeq) as described by

Buckler et al. (2016). A total of 5465 markers coded as 0 (absence) and 1 (presence) were filtered

by minor allele frequency (MAF<0.05) from which only 5173 were kept for analyses.

Further information about the 2017 and 2018 data can be found in Beyene et al. (2019) and

Atanda et al. (2020), who have previously described and analyzed these data sets.

4.3.2 Phenotypes pre-processing

Adjusted means of GY, PH, AD were obtained using mixed effects model fitted separately for each

trait-year-environmental-condition combination. The Best Linear Unbiased Estimates (BLUE) of

genotypes across locations for the OPT experiments were estimated using the META-R software
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(Alvarado et al., 2020) following the linear mixed:

Yi j kl = µ + gi + L j + Rk( j) + Bl(k j) + (g × L)i j + ei j kl

where Yi j kl is the phenotypic record of genotype i at location j in replicate k within the block l, µ

is the overall mean, L j is the fixed effect of the location j, Rk( j) is the fixed effect of the replicate

k within location j, Bl(k j) is the random effect of the incomplete block l within replicate k and

location j assumed to be independently and identically distributed (iid) normal with mean zero and

varianceσ2
b , gi is the fixed effect of genotype i, (g×L)i j is the fixed effect of the genotype× location

interaction, and ei j kl is the random error assumed to be iid normal with mean zero and variance

σ2
e . After fitting the model just described, adjusted phenotypes (yi) were obtained by subtracting

from phenotypic records (GY, PH, and AD), the estimated effects of location, replicate, incomplete

block, genotype × location interaction, and error. Likewise, within each year, the BLUE for each

trait for the single-location DRT experiment was obtained through the linear model

Yikl = µ + gi + Rk + Bl(k) + eikl

where Rk is the fixed effect of the replicate k, Bl(k) is the random effect of the incomplete block l

within replicate k assumed to be iid normal with mean zero and variance σ2
b , and the remaining

factors are as before. The adjusted phenotypes were obtained by subtracting from the phenotypic

records, the estimated effects of replicate, incomplete block, and error.

After phenotypes pre-processing, a total of n = 3039 lines containing marker information and

that were observed in all environments for all traits were kept for GS models. The final number of

lines in each year is as follows: n1 = 901 lines in 2017, n2 = 1417 in 2018, and n3 = 721 in 2019.

4.3.3 Genomic selection models

We considered four different models: genomic-BLUP (G-BLUP) using additive genomic relation-

ships (VanRaden, 2008), Reproducing Kernel Hilbert Spaces (RKHS) regression (Gianola et al.,

2006) which is equivalent to a G-BLUP with a non-linear kernel, and sparse selection indices (SSI)
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obtained by imposing an L1-penalty on the G-BLUP (sparse G-BLUP) and on the RKHS (sparse

K-BLUP). In what follows we describe each of these models; for simplicity, since all phenotypes

were centered, we present models without intercept nor fixed effects.

G-BLUP: In this model, the data-equation takes the form

y = u + ε (4.1)

where y = (y1, ..., yn)
′, u = (u1, ..., un)

′, and ε = (ε1, ..., εn)
′ are the vectors of adjusted phenotypes,

breeding values (BV), and environmental error terms, respectively. Breeding values and errors are

assumed to be normally distributed u ∼ N(0, σ2
uG) and ε ∼ N(0, σ2

ε I), where σ2
u and σ2

ε are the

genetic and error variances,G is the additive genetic relationship matrix (GRM), and I is an identity

matrix.

The genomic relationship matrix G = {Gi j } was derived from markers, X = {xim}, using

G = ZZ′/p, where p = 5173 is the number of markers and Z = {(xim − xm)/sdxm} is the matrix

of centered and scaled markers obtained by subtracting from each marker entry the mean of the

corresponding column followed by scaling by the standard deviation of the column. The resulting

matrix has an average of the diagonal elements equal to one.

The predicted BVs (ûPS) for the individuals in the prediction set (PS) are then linear combi-

nations of the phenotypes (yTS) of the subjects in the training set (TS), this is (e.g., Searle et al.,

1992)

ûPS = BG yTS (4.2)

where BG = GPS,TS(GTS + λ0I)−1 is a Hat matrix (i.e., coefficients of regression of BVs on

phenotypes), λ0 = σ
2
ε /σ

2
u is the ratio between residual and genetic variances, GPS,TS is a matrix

containing the additive genetic relationships between the data points in the prediction set with those

in the training set, and GTS represents the additive GRM of the training data points.

RKHS regression: In a RKHS regression, the vector of genomic predictions (u) in Equation

(4.1) are obtained as linear combinations on kernel evaluations as u = Kα, where K is an n × n

matrix of kernel evaluations on markers genotypes, and α is a vector of regression coefficients. As
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shown in de los Campos et al. (2009a), if the vector α is assumed to be distributed α ∼ N(0, σ2
aK−1),

it follows that

u ∼ N(0, σ2
aK). (4.3)

Therefore, the vector of genomic predictions for the individuals in the prediction set are

ûPS = BK yTS (4.4)

where the Hat matrix is now BK = KPS,TS(KTS + λ0I)−1, λ0 = σ2
ε /σ

2
a , KPS,TS is the matrix

containing the evaluation of the Gaussian kernel for pairs of training-prediction genotypes, and

KTS is the kernel GRM of the training data.

Finding the solution of an RKHS model is therefore equivalent to finding the solution for the

G-BLUP model but using K instead of the additive matrix G . In this sense, we refer to the RKHS

regression as to K-BLUP model.

We considered K-BLUPmodels using Gaussian kernel matricesK = {Ki j }, i, j = 1, ..., n, given

by Ki j (θ) = exp(−θ d̃2
i j), where θ is a bandwidth parameter and d̃2

i j is the scaled squared Euclidean

distance between individuals i and j given by their markers genotypes, obtained by dividing

the distance d2
i j =

∑p
m=1(xim − x jm)

2 by the average distance d = 1
n2

∑
i
∑

j d2
i j . Three extreme

Gaussian kernels were used as defined byGonzález-Camacho et al. (2012), namelyK1 = {Ki j(θ1)},

K2 = {Ki j (θ2)}, and K3 = {Ki j(θ3)}, where θ1 = 0.2, θ2 = 1, and θ3 = 5. See Supplementary

Figure C.1 for pairwise comparisons of kernel (Ki j ) versus additive (Gi j ) genomic relationships.

In addition, kernel averaging (KA) was also implemented as described in de los Campos et al.

(2010) using the three kernels Kk , k = 1, 2, 3. Briefly, the three kernels are considered to jointly

contribute to the prediction as u =
∑3

k=1 Kkαk , where each summand has its own distribution (as

in Equation (4.3)) as Kkαk = uk ∼ N(0, σ2
ak
Kk ). This KA-BLUP model is fitted in a Bayesian

fashion; however, it can be rewritten as a single random effect (as in Equation (4.1)) by making

u ∼ N(0, σ2
aKA), where σ2

a = σ
2
a1 + σ

2
a2 + σ

2
a3 is the total kernel variance and KA is an average

kernel GRM given by

KA =
σ2

a1
σ2

a
K1 +

σ2
a2
σ2

a
K2 +

σ2
a3
σ2

a
K3. (4.5)
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Sparse BLUP models: Sparsity was incorporated into the G-BLUP and K-BLUP models as

described in Chapter 3. Briefly, in a SSI, the weights of the selection index for the ith individual in

the prediction set was obtained from the following L1-penalized optimization problem

b̃(λ)i = arg min
bi


1
2
b′i(GTS + λ0I)bi −G′ibi + λ

n∑
j=1
|bi j |

 (4.6)

where G′i = GPS(i),TS is the vector containing the additive relationships between the ith subject

in the prediction set and each of the subjects in the training set, λ is a parameter controlling the

degree of sparsity of b̃(λ)i, and
∑n

j=1 |bi j | is a penalty on the L1-norm of bi. A (sparse) Hat matrix

for the SSI, B̃(λ)G, contains in each row the solutions to Equation (4.6), obtained for each testing

genotype. A value of λ = 0 yields the same (non-sparse) Hat matrix of the standard G-BLUP in

Equation (4.2). For the sparse K-BLUP models we used Equation (4.6) with the Gaussian kernel

(either K1, K2, K3, or KA) instead of additive relationship matrices (G). Although optimization

problem in Equation (4.6) does not have a closed-form, solutions for it can be derived using a

coordinate descent algorithm (see Chapter 3 for further details). Finally, an optimal value of λ can

be obtained using cross-validation within the training set (more details in Chapter 3).

4.3.4 Variance components

The implementation of G-BLUP, K-BLUP, and the corresponding sparse versions of these models

require estimates of variance components. We obtained these estimates by fitting Bayesian genomic

models within each trait-environment combination. These analyses were performed using the

BGLR R-package, with the default setting for hyper-parameters (Perez & de los Campos, 2014).

After fitting the models, posterior means of the variance components were obtained. For the

standard KA-BLUP, the model was fitted with the three kernels together to estimate the kernel-

specific variances and then used to derive σ2
a and the kernel KA (Equation (4.5)). A heritability

estimate for the G-BLUP model was derived as h2 = σ2
u /(σ

2
u + σ

2
ε ). For the K-BLUP models, the

heritability was obtained by replacing the estimate of σ2
u by the kernel genetic variance estimate

σ2
a . All these models were fitted using data from the training set only.
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4.3.5 Assessment of prediction accuracy

Variance components estimates and the corresponding GRM (G, K1, K2, K3, or KA) were used

to derive the non-sparse (BG or BK for the standard BLUP) and the sparse (B̃(λ)G = { b̃(λ)′iG }

or B̃(λ)K = { b̃(λ)′iK }) Hat matrices. (Note that in the SSI, the rows of the sparse Hat matrix

are simply the solutions to Equation (4.6), obtained for each testing genotype.) The predictions

(ûPS) were derived (as in Equation (4.2) and (4.4)) as the product of the (non-sparse or sparse) Hat

matrix times the vector of phenotypes in the training set. Prediction accuracy was measured as the

correlation between observed and predicted values in the prediction set, i.e., ρ = cor(yPS, ûPS).

Prediction accuracy was assessed for different prediction scenarios using cycle 2019 as the

prediction set with different training set compositions, as follows: (i) the data from the 2019

cycle was randomly partitioned into 85%-15% (i.e., 612 and 109 individuals), (ii) the 85%-

set (nPS = 612) from the year 2019 was predicted using data of the earlier generations 2017

(nTS = 901), 2018 (nTS = 1417), and 2017+2018 combined (nTS = 2318) as training set, (iii) the

prediction of the 612 individuals was also performed using the same training sets but augmented

by progressively including the remaining 15%-set from 2019, first 37 (5%), then 73 (10%), and

lastly 109 (15%) individuals. See Table 4.1 for a summary of all the training set compositions. All

predictions were performed 100 times using different random partitions of the 2019 data.

4.3.6 Software

All the aforementioned analyses were performed in the R environment-language (R Core Team,

2019). All standard Bayesian G-BLUP and K-BLUPmodels were fitted using the BGLRR-package

(Perez & de los Campos, 2014) to estimate variance components. The sparse Hat matrices (B̃(λ)G

or B̃(λ)K ) were obtained with the SFSI R-package (Lopez-Cruz et al., 2020). For each trait-

environment-partition, an optimal value of λ was obtained using 10-fold cross-validation within

the training set.
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Table 4.1: Training set (TS) composition used in each prediction scenario. (The prediction set was
the same for all training scenarios and consisted of 612 randomly chosen individuals from 2019).

Data from % of 2019 data used Total training
previous years (n) for training (n) size (nTS)

0 (0) 901
2017 5 (37) 938
(901) 10 (73) 978

15 (109) 1010
0 (0) 1417

2018 5 (37) 1454
(1417) 10 (73) 1490

15 (109) 1526
0 (0) 2318

2017+2018 5 (37) 2355
(2318) 10 (73) 2391

15 (109) 2427

A                                                                 B

Figure 4.1: (A) First 3 principal components of the additive genomic relationships matrix, G.
Points represent individuals that are color separated according to cycle (2017, 2018, or 2019). (B)
Heatmap of the genomic relationships matrix.
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4.4 Results

The germplasm used in this study is derived from different biparental families across years.

This richness of the data is reflected in a high population heterogeneity in which individuals

cluster into groups within and across generations (Figure 4.1). However, the crosses performed

prevented the formation of a clear structure (e.g., 2 clusters); instead the population shows a more

cryptic substructure with varying degrees of admixture between families. The intermixing between

generations that is observed in Figure 4.1 can be attributed to allele sharing as only alleles from the

selected elite parents in one generation are passed to the next generation.

4.4.1 Prediction accuracy comparison of G-BLUP and K-BLUP models

Figure 4.2 shows the accuracy of prediction (averaged across all 100 partitions) for GY-OPT using

all standard BLUP models for all different training set compositions representing a combination of

previous cycles (2017, 2018, or 2017+2018) plus the inclusion of 0, 5, 10, and 15% (i.e., 0, 37, 73,

and 109 subjects) of the total individuals from the same 2019 cycle (see Table 4.1). As expected,

the inclusion of individuals from the same cycle increases the prediction accuracy across all models

and training set composition. For instance, using the 2017 cycle as training set, the accuracy of the

G-BLUP was increased by 100% when adding 73 individuals; however, using 2018 as training set

showed a 60% increase, and when using 2017+2018, a gain of 27% was observed.

Likewise, prediction accuracy was higher when combining data from 2017+2018 as training

set compared with models using data from 2018 or 2017 alone for training (see top-left panel in

Figure 4.2). However, the accuracy was not always increased when the training set is augmented

to include 2017+2018 together (see bottom panels and top-right panel in Figure 4.2), and, in some

cases, was even lowered (see Supplementary Figure C.3 for trait PH). Contrastingly, the prediction

using individuals from 2017+2018 was sometimes equally performed (see the bottom-left panel

in Figure 4.2) and in some cases outperformed (see Supplementary Figure C.2 for GY-DRT and

Supplementary Figure C.3 for PH) when using only data from the 2017 cycle.
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In general, kernel-basedmodels achieved higher prediction accuracy than the standard G-BLUP.

Although the kernelsK1,K2, andK3 are ranked differently across training set compositions, models

with KA seems to be more stable across all scenarios performing similar to the best of the three

kernelsK1,K2, orK3. This result is in agreement with the findings in de los Campos et al. (2010).

Figure 4.2: Prediction accuracy by model and training set (TS). TSs consisted on all the data from
the 2017, 2018, or 2017+2018 cycles alone (top-left panel), or in combination with a proportion
(5%, 10%, 15%) of the data from the 2019 cycle. The prediction set consisted of 612 genotypes
from the 2019 cycle that were not used for model training. Models with the same letter within
panel indicate no significant difference from each other (α = 0.05, ANOVA followed by Tukey
test). GY-OPT trait-environment combination.

4.4.2 Effect of sparsity on prediction accuracy

The same partitions of training-prediction sets used to obtain the results for the standard models

were used to evaluate the prediction accuracy of SSIs (sparse models). A cross-validated value λCV

was found within the training set to calculate an optimal sparse BLUP model. Table 4.2 contains

the results of the predictions of the GY-OPT trait-environment combination for the scenario where

15% of data from 2019 is included in the training set (2017, 2018, or 2017+2018). Results for
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the cases when adding 0%, 5%, and 10% of the 2019 data are presented in Supplementary Table

C.1. With this training set composition, the accuracy of the standard G-BLUP models was between

0.46-0.48. K-BLUP (standard or sparse) and sparse G-BLUP models achieved higher prediction

accuracy than the standard G-BLUP, with gains in accuracy (relative to G-BLUP) ranging from

minimal (1%) to substantial (12%).

Table 4.2: Heritability and accuracy of prediction for each training set (TS) composition (including
15% of subjects from the 2019 cycle), GY-OPT trait-environment combination.

Accuracy (SD) % Gain
TS (nTS) GRM λCV

a nsup (RS)b h2 Standard Sparse Ic IId

G 0.0181 171 (17) 0.52 0.47 (0.031) 0.51 (0.030) - 9
K1 0.0037 188 (19) 0.87 0.48 (0.030) 0.50 (0.034) 3 4

2017 K2 0.0060 219 (22) 0.75 0.51 (0.028) 0.52 (0.027) 9 2
(1010) K3 0.0000 1007 (100) 0.92 0.50 (0.029) 0.50 (0.029) 7 0

KA 0.0041 240 (24) 0.84 0.51 (0.028) 0.52 (0.029) 9 2
G 0.0112 337 (22) 0.61 0.46 (0.026) 0.48 (0.028) - 5
K1 0.0016 480 (31) 0.91 0.48 (0.026) 0.49 (0.027) 3 3

2018 K2 0.0023 684 (45) 0.80 0.50 (0.026) 0.50 (0.027) 8 0
(1526) K3 0.0000 1526 (100) 0.90 0.46 (0.029) 0.46 (0.029) 0 0

KA 0.0015 683 (45) 0.87 0.49 (0.027) 0.49 (0.028) 7 0
G 0.0188 268 (11) 0.53 0.48 (0.025) 0.51 (0.027) - 7
K1 0.0033 350 (14) 0.88 0.50 (0.025) 0.51 (0.026) 4 2

2017+18 K2 0.0031 750 (31) 0.77 0.52 (0.025) 0.52 (0.026) 9 0
(2427) K3 0.0000 2427 (100) 0.87 0.50 (0.027) 0.50 (0.027) 4 0

KA 0.0020 922 (38) 0.83 0.52 (0.026) 0.52 (0.027) 8 0
GRM:Genetic relationshipmatrix. SD: standard deviation. aPenalization parameter in Equation (4.6) found
by cross-validating the TS. bnsup=average number of individuals from the TS with a non-zero coefficient
in the sparse Hat matrix (support set). RS: relative sparsity (100nTS/nsup). In the standard models λCV is
equal to zero and nsup is equal to the total TS size. Within each TS cycle, percentage of gain in accuracy
of the cstandard K-BLUP relative to the standard G-BLUP, and dsparse *-BLUP relative to the standard
*-BLUP (*=G- or K-).

The gains in prediction accuracy are more evident when the accuracy of the non-sparse G-BLUP

models was lower (i.e., when fewer individuals from the 2019 cycle are included in the training

set). For instance, when the accuracy of the G-BLUP is as low as 0.2 (the case where no data

from 2019 is included in the training set), SSIs yielded gains in accuracy (relative to the standard

G-BLUP) of up to 28% (Supplementary Table C.1). It was only in these low-accuracy situations
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that, in some cases, the use of a standard K-BLUP model withK3 resulted in ∼ 6% loss of accuracy

(relative to the standard G-BLUP) and that using sparse models, the accuracy lost was 3-10% (see

Supplementary Table C.1). The advantage in accuracy of a sparse model over its standard version

was more marked for the G-BLUP (i.e., when using additive relationships matrices, 23%); however,

the same gains were smaller for the RKHS regressions using Gaussian kernels. (∼ 2 − 8% gain

in accuracy, Supplementary Table C.1). No significant difference between sparse and non-sparse

model was observed when using the large-bandwidth kernel K3. Similar results can be found for

trait GY-DRT (see Supplementary Table C.2).

Figure 4.3: (A) Prediction accuracy of the standard (non-sparse) G-BLUP model (horizontal axis)
versus the prediction accuracy of all other models (vertical axis of each panel). (B) Prediction
accuracy of the standard *-BLUP model (horizontal axis) versus the prediction accuracy of its
sparse version (vertical axis), by type of kernel used in panels. Each point represent a training-
testing partition within each training set composition. Colored points above (below) the 45 degree
line represent cases for which one model outperformed the other model. P: p-value for the test
(from ANOVA) for differences in accuracy between the two models. Trait GY, environment OPT.

For the PH-OPT trait-environment combination, when models were trained using 15% of the

2019 data, the gains in accuracy obtained with the sparse G-BLUP, relative to the non-sparse

G-BLUP, were as high as 11%, and up to 18% with a sparse K-BLUP model (Table 4.3). These

gains in accuracy were very notable (> 100%) when adding to the training set 10% or fewer of
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the individuals from the 2019 cycle (see Supplementary Table C.3). Results for the PH-DRT

trait-environment are reported in Supplementary Table C.4 where similar patterns are observed.

Table 4.3: Heritability and accuracy of prediction for each training set (TS) composition (including
15% of subjects from the 2019 cycle), PH-OPT trait-environment combination.

Accuracy (SD) % Gain
TS (nTS) GRM λCV

a nsup (RS)b h2 Standard Sparse Ic IId

G 0.0112 506 (50) 0.56 0.49 (0.037) 0.51 (0.042) 0.0 3.4
K1 0.0008 726 (72) 0.89 0.51 (0.036) 0.51 (0.039) 3.1 1.2

2017 K2 0.0007 773 (77) 0.77 0.54 (0.034) 0.54 (0.034) 9.1 0.1
(1010) K3 0.0000 1010 (100) 0.92 0.51 (0.036) 0.50 (0.036) 2.4 -0.1

KA 0.0003 862 (85) 0.87 0.53 (0.035) 0.53 (0.035) 7.3 -0.7
G 0.0161 208 (14) 0.71 0.50 (0.038) 0.56 (0.033) 0.0 10.9
K1 0.0020 350 (23) 0.95 0.53 (0.036) 0.56 (0.035) 5.6 4.6

2018 K2 0.0021 627 (41) 0.88 0.56 (0.033) 0.57 (0.031) 11.3 1.4
(1526) K3 0.0000 1526 (100) 0.92 0.53 (0.032) 0.53 (0.032) 5.4 0.0

KA 0.0015 647 (42) 0.92 0.56 (0.033) 0.56 (0.033) 10.2 1.4
G 0.0132 356 (15) 0.64 0.47 (0.038) 0.52 (0.039) 0.0 10.8
K1 0.0015 696 (29) 0.93 0.52 (0.036) 0.54 (0.037) 9.3 4.2

2017+18 K2 0.0007 1728 (71) 0.85 0.56 (0.034) 0.56 (0.034) 17.7 -0.2
(2427) K3 0.0000 2427 (100) 0.92 0.51 (0.036) 0.51 (0.036) 8.3 0.1

KA 0.0004 1896 (78) 0.89 0.55 (0.034) 0.55 (0.035) 16.4 -0.8
GRM:Genetic relationshipmatrix. SD: standard deviation. aPenalization parameter in Equation (4.6) found
by cross-validating the TS. bnsup: average number of individuals from the TS with a non-zero coefficient
in the sparse Hat matrix (support set). RS: relative sparsity (100nTS/nsup). In the standard models λCV is
equal to zero and nsup is equal to the total TS size. Within each TS cycle, percentage of gain in accuracy
of the cstandard K-BLUP relative to the standard G-BLUP, and dsparse *-BLUP relative to the standard
*-BLUP (*=G- or K-).

Across all scenarios, the standard G-BLUP showed the lowest accuracy among all models (SSI

and standard K-BLUP, see Figure 4.3A for GY-OPT). This inferiority of the standard G-BLUP was

also observed for GY-DRT and PH (see Supplementary Figure C.4A and Supplementary Figure

C.5A). The addition of sparsity to the K-BLUP models resulted sometimes in an extra advantage

in accuracy when using a kernel with a small bandwidth (K1 with θ = 0.2, and K2 with θ = 1) or

averaged across extreme kernels (KA) for GY (Figure 4.3B and Supplementary Figure C.4B) and

PH (Supplementary Figure C.5B).

69



4.4.3 Automatic training-sample selection

Tables 4.2 and 4.3 (and Supplementary Tables C.1-C.4) show the optimal value of the penalization

parameter λ and the degree of sparsity of the resulting index, measured by the average number of

subjects from the training set in the support set (nsup, subjects with a non-zero coefficient in the

estimated Hat matrix) of each predicted genotype. The degree of sparsity varied across models.

For the GY-OPT trait-environment combination, across all training set compositions, the strongest

sparsity was achieved using the genomic matrix G with a relative sparsity (nsup/nTS) of 11-33%

(Table 4.2 and Supplementary Table C.1) while the relative sparsity with kernels increases as the

bandwidth parameter θ increases (relative sparsity of 14-47% for K1 and 22-59% for K2). The

relative sparsity achieved when using the KA kernel (25-62%) was similar to that of the K2 kernel

(see Table 4.2 and Supplementary Table C.1). The fact that no difference in accuracy was observed

between standard and sparseK3-BLUPmodel is due that the optimal λCV was zero; thus, the sparse

model was equivalent to the standard model.

Figure 4.4 displays a heatmap of the sparse Hat matrix (B̃(λ)G) of the sparse G-BLUP model.

Individuals in the training set (2017+2018 plus 15% from 2019) appear in columns and those in

the prediction set are shown in rows. Individuals from the training set that did not contribute to

each index (i.e., those with zero weight in the index) are displayed in grey. Those with a non-zero

coefficient (support set) are shown in a yellow-blue (logarithm) scale. The heatmap makes evident

how SSIs select custom training sets for each genotype in the prediction set. Individual genotypes

in the training set supports the prediction of some but not all the genotypes in the prediction set. The

solution for the Hat matrix in Figure 4.4 is very sparse, with varying number of support points by

testing genotype. Predictions of each of the 612 testing genotypes was performed using phenotypes

from, on average, 268 (out of 2427 training genotypes, i.e., 11%, see Table 4.2) training genotypes.

For the same prediction scenario, a heatmap for the sparse KA-BLUP model (showing a 38% of

sparsity) is provided in Supplementary Figure C.6.

Figure 4.5 shows, for each of the sparse models, the proportion of the training individuals from

each cycle (2017, 2018, or 2019) that contributed to the prediction (within cycle support set) of the
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testing individuals. Each panel represents the different training sets composed of 2017+2018 data

plus the addition of either 0%, 5%, 10%, or 15% of the 2019 data.

Figure 4.4: Heatmap of the coefficients in the Hat matrix (B̃(λ)G) of the sparse G-BLUP model
for one training-prediction (TS-PS) partition in the prediction of nPS = 612 individuals from 2019
using nTS = 2427 individuals (2017+2018 plus 15% of the 2019 set). Predicted individuals are
presented in columns and training individuals are presented in rows separated by cycle and number
of individuals in parentheses. The value of λ was obtained by cross-validation. Each column
represents values of the vector b̃(λ)iG = {b̃i j }, j = 1, ..., 2427 (Equation (4.6)). Individuals no
contributing to the prediction have a coefficient b̃i j = 0 represented in grey color. Individuals with
a non-zero coefficient are shown in a yellow-blue logarithm scale (in the original scale, yellow
indicates large values and blue indicates small value). GY-OPT trait-environment combination.
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As expected, training individuals that belong to the same group as the testing individuals are

more likely to be included in the support set. For example, using a sparse G-BLUP model trained

with 2017+2018 plus 5% from the 2019 data (see the top-right panel in Figure 4.5), on average,

41% of the 2019 genotypes of the 37 included in the training set contributed to the prediction of

the testing individuals. Although more abundant, a smaller portion of the total individuals from

previous cycles (19% of the 901 subjects from 2017 and 18% of the 1417 from 2018) are also

contributing to the prediction. With a smaller degree of sparsity, similar patterns were also observed

for the sparse K-BLUP models (see Figure 4.5) except with K3 that did not render sparsity at all

(not shown in the figure). Plots showing the within cycle sparsity patterns for GY-DRT and PH

(OPT and DRT) are shown in Supplementary Figures C.7 and C.8.

Figure 4.5: Proportion of the training individuals from each cycle that contributed to the prediction
of the 612 testing genotypes from 2019, using sparse models with different relationship matrices
(horizontal axis): G, K1, K2, or KA. The training set was composed by individuals from 2017
(n = 901) and 2018 (n = 1417) alone (top-left panel) or in combination with a proportion (5%,
10%, 15%) of the data from the 2019 cycle. GY-OPT trait-environment combination.
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As more individuals from the same cycle are added to the training set, fewer individuals

from previous generations become less frequent in the support set. For instance, performing the

prediction with a sparse G-BLUP using 2017+2018 data including 15% of the 2019 data (bottom-

right panel in Figure 4.5), yielded a smaller support set with only 10% (90 of 901) of the 2017 data

and 10% (142 of 1417) of the data from 2018.

4.5 Discussion

Multiple factors affect the predictive performance of GS models, including sample size, trait

heritability, the extent of linkage disequilibrium (LD) between markers and quantitative trait loci

(QTL), and the relationships between training and testing genotypes (Daetwyler et al., 2008; Heffner

et al., 2009; Lorenzana & Bernardo, 2009; Combs & Bernardo, 2013).

General guidelines suggest that prediction accuracy is maximized when the training set includes

a sufficient large number of individuals which are distantly related to each other (Rincent et al.,

2012) and are closely related to the subjects in the prediction set (Habier et al., 2010; Clark et al.,

2012). On the other hand, there is evidence suggesting that increasing the training set size by

including individuals that are genetically distant to those in the prediction set does not necessarily

increase and might even decrease the prediction accuracy (e.g., Lorenz & Smith, 2015).

Each cycle of a breeding program produces a new batch of genomic and phenotypic data;

therefore, after many years of adopting GS, the data available for model training is typically

multi-generational and may often include complex patterns of pedigree relationships within and

between generations. There is clear evidence that a GS model needs to be re-trained every cycle

(Wolc et al., 2011; Pszczola & Calus, 2016; Wientjes et al., 2013). When re-training models,

breeding organizations face many challenges. Should all the available data be used for model

training? Should instead one restrict the training data to only include genotype/phenotypes from

recent generations? Should one exclude data from genotypes distantly related to the current set of

candidates of selection?

Some evidence suggests that in genomic prediction, ‘bigger is not necessarily better’. For
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instance, using historic wheat data generated over 17 years, Dawson et al. (2013) observed that

the accuracy of year-to-year predictions using training sets composed of all previous years was

approximately the same as when considering only three years back. Likewise, in a broiler breeding

population, Wolc et al. (2016) found that the maximum accuracy was accomplished when the

training set was composed of the three most recent generations.

The SSI (sparse G-BLUP) methodology presented in Chapter 3 offers a framework to identify,

for each individual in the prediction set, a customized training set (or support points) fromwhich the

predictions are derived. This methodology considers both the relationships between the candidate

of selection and each training genotype as well as relationships among training genotypes (Equation

(4.6)). Therefore, in this chapter, we propose that the sparse selection indices presented in Chapter

3 can be used to address the problem of training set optimization with multi-generation data. We

used amulti-generation data originated frommore than 50 biparental families to measure the impact

of sparsity using SSIs formed using additive and non-additive kernels.

Our results confirmed that an SSI based on additive relationships yields a higher prediction

accuracy than the standard additive G-BLUP. When a non-additive kernel was used, we found that

sparsity improved prediction accuracy provided that the kernel used was not already a ‘local’ kernel,

that is, a kernel in which genetic covariances are positive only for closely related individuals. For

local kernels (K3), adding sparsity did not improve prediction accuracy in a clear and systematic

way. Therefore, our results confirm the benefit of ‘local predictions’, which can be obtained either

by using an RKHS with local kernels or with an SSI applied to additive genomic relationships.

Both the SSI and the Kernels regression require optimizing a parameter that controls how local

predictions are. The SSI requires optimizing the penalization parameter (λ), which can be done

by cross-validation within the training data set. On the other hand, the RKHS regression requires

tuning the bandwidth parameter which controls how fast covariances drop with genetic distance.

This can be done either by comparing multiple kernels using cross-validation or by using multiple

kernels with ’kernel averaging’ as discussed in de los Campos et al. (2010).

Standard training-optimization methods assume that a single training set is optimal for all
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candidates of selection. The SSI does not make this assumption. Our results show clearly that

each SSI picks a particular set of support points and that the optimal training set varies from

genotype to genotype. The inspection of the Hat matrix of the SSI makes it clear that in prediction,

one-size-does-not-fit-all candidates of selection. Likewise, the inspection of the Hat matrix shows

that optimizing training sets by restricting the training data to recent generations may also not

be optimal. Indeed, most of the SSIs picked information from all the generations available, with

varying levels of sparsity.

In conclusion: SSIs can be used to optimize prediction accuracy when the training data exhibit

complex relationship patterns. In this context, differences in allele frequencies and in LD-patters

may make SNP effect heterogenous across families and sub-families, thus making the standard

G-BLUP sub-optimal. Both local kernels and SSIs can be used to optimize prediction accuracy in

such data sets.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE DIRECTIONS

The core of this dissertation has a methodology point of view, presenting an innovative procedure

that combines two well-established approaches: selection index and penalized regression. The for-

mer was developed for breeding value prediction using different sources of correlated information.

The latter is commonly used in statistics and machine learning for variable selection to prevent over-

fitting in situations where there are more variables than observations. This novel approach, which

we named sparse selection index (SSI), offers opportunities such as integrating high-throughput

phenotypes in genetic evaluations and solutions for training set optimization in genomic selection

with highly heterogeneous data.

We made an effort to present our SSI methodology in deep detail, develop software for its

implementation, and empirically validate it (with cross-validation) with real data using several data

sets with genomic and phenotypic information. As a brand-new method, no exhaustive evaluation

of the SSI was possible to be presented in this dissertation at this stage; however, the results obtained

with these data sets are very promising, performing at least as good as the standard methods.

The SSI applications presented in this dissertation are of the type single-trait model; they

might be feasibly extended to multi-trait models allowing the borrowing of information within and

between individuals at the same time. Multi-trait models have the potential to increase prediction

accuracy; therefore, further research is required to investigate whether the use of a multi-trait SSI

can also be advantageous.

The scope of the SSI can go beyond the breeding values prediction only. This method leaves

the door open to other genetic research areas (e.g., genome-wide association analysis on high-

dimensional phenotypes and network analysis from gene expression). Therefore, more research is

needed to explore the full potential of the SSI procedure.
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APPENDIX A

SUPPLEMENTARY FIGURES AND TABLES FROM CHAPTER 2

78



●
●●
●
●●
●●

●●
●●
●
●
●●
●●
●
●●
●
●●
●●
●

●
●

●

●

●

●
●
●

●

●●

●
●●●
●

●
●

●●

●

●
●
●
●●

●

●

●●●●
●
●●
●●

●
●
●
●

●
●●●
●●●●
●
●

●

●●

●
●

●

●

●●●

●●●●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●
●

●
●

●●
●
●●●●

●

●●●●●●
●

●

●●●●

●●
●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●
●
●

●
●

●

●●

●

●

●
●●

●

●

●●●●

●

●
●●●

●

●

●

●
●●
●●

●

●
●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

2.06
0.58

3.67
0.43

6.11
0.61

6.43
0.73

Mean=
    SD=

0.0

2.5

5.0

7.5

10.0

Flat−Drought Bed−2IR Bed−5IR Bed−EHeat
Environment

G
ra

in
 y

ie
ld

 (
to

n 
ha

−1
)

Figure A.1: Box-plot of grain yield phenotypic records by environmental condition. n ≈ 3200
observations within environment. SD: standard deviation.
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Figure A.2: Light reflectance patterns as function of the wavelength. Each line represents the
mean (across n ≈ 3200 observations) reflectance for each waveband, within time-point (flight
date). Within each environment, means were scaled to lie within 0 and 1 by dividing them by the
maximum average.

80



Square root heritability Genetic correlation Accuracy of selection

93−GF 105−MAT 111−MAT

73−VEG 80−GF 85−GF

45−VEG 52−VEG 65−VEG

0.3

0.5

0.7

0.9

0.3

0.5

0.7

0.9

0.3

0.5

0.7

0.9

Flat−Drought

98−GF 110−MAT 116−MAT

78−VEG 85−GF 90−GF

50−VEG 57−VEG 70−VEG

0.0

0.2

0.5

0.8

0.0

0.2

0.5

0.8

0.0

0.2

0.5

0.8

Bed−2IR

98−GF 110−GF 116−GF

78−VEG 85−GF 90−GF

50−VEG 57−VEG 70−VEG

1 50 10
0

15
0

20
0

25
0 1 50 10
0

15
0

20
0

25
0 1 50 10
0

15
0

20
0

25
0

0.2

0.5

0.8

0.2

0.5

0.8

0.2

0.5

0.8

Bed−5IR

120−GF 132−GF 138−MAT

100−GF 107−GF 112−GF

72−VEG 79−VEG 92−GF
1 50 10
0

15
0

20
0

25
0 1 50 10
0

15
0

20
0

25
0 1 50 10
0

15
0

20
0

25
0

0.5
0.6
0.7
0.8
0.9

0.5
0.6
0.7
0.8
0.9

0.5
0.6
0.7
0.8
0.9

Bed−EHeat

Number of active bands

C
or

re
la

tio
n

Figure A.3: Accuracy of indirect selection of L1-PSI and its components. Square root heritability,
genetic correlation and accuracy of indirect selection, all averaged over 100 training-testing par-
titions versus the number of bands entering in the index; by time-point (DAS=days after sowing,
Stage: VEG=vegetative, GF=grain filling, or MAT=maturity) within environment.
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Figure A.4: Accuracy of indirect selection of L2-PSI and its components. Square root heritability,
genetic correlation and accuracy of indirect selection, all averaged over 100 training-testing parti-
tions versus the penalization parameter (λ, logarithm scale) used to build the index; by time-point
(DAS=days after sowing, Stage: VEG=vegetative, GF=grain filling, or MAT=maturity) within
environment.
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Figure A.5: Accuracy of indirect selection of PC-SI and its components. Square root heritability,
genetic correlation and accuracy of indirect selection, all averaged over 100 training-testing parti-
tions versus the number of principal components used to build the index; by time-point (DAS=days
after sowing, Stage: VEG=vegetative, GF=grain filling, or MAT=maturity) within environment.
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Figure A.6: Square root of heritability of the standard (SI), of the regularized (PC-SI and L1-PSI)
selection indices, and of the RNDVI. The lines provide the average square root heritability over
100 training-testing partitions. Vertical lines represent a 95% CI for the average. The horizontal
axis give the time-point at which images were collected and are expressed in both days after sowing
(DAS) and stages (VEG=vegetative, GF=grain filling, MAT=maturity).
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Figure A.7: Genetic correlation between grain yield and all: the standard (SI), the regularized
(PC-SI and L1-PSI) selection indices, and the RNDVI. The lines provide the average genetic
correlation over 100 training-testing partitions. Vertical lines represent a 95% CI for the average.
The horizontal axis give the time-point at which images were collected and are expressed in both
days after sowing (DAS) and stages (VEG=vegetative, GF=grain filling, MAT=maturity).
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Figure A.8: Phenotypic, genetic, and environmental covariances (absolute value) between wave-
bands and grain yield. ’D’: discrepancy between phenotypic and genetic covariances asmeasured by
the sum of the absolute differences; by time-point (DAS: days after sowing, Stage: VEG=vegetative,
GF=grain filling, MAT=maturity) within environment.
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Table A.1: Accuracy of indirect selection (average over 100 training-testing partitions) for best
phenotypic prediction (principal components (PCR), L1-penalized prediction (L1-Phen), RNDVI,
and GNDVI) and for best genotypic prediction (standard SI, optimal PC-SI, L1-PSI, and L2-PSI).

Phenotypic prediction Genotypic prediction
Env/TP∗ PCR L1-Phen RNDVI GNDVI SI PC-SI L1-PSI L2-PSI

Fl
at
-D

ro
ug

ht

45 0.24 a 0.23 a 0.23 a 0.21 b 0.18 c 0.24 a 0.23 a 0.24 a
52 0.27 ab 0.27 ab 0.27 ab 0.25 b 0.20 c 0.27 a 0.27 a 0.27 ab
65 0.42 a 0.42 a 0.35 b 0.35 b 0.35 b 0.43 a 0.43 a 0.42 a
73 0.45 ab 0.45 ab 0.41 cd 0.43 bc 0.39 d 0.46 a 0.46 a 0.46 a
80 0.44 bc 0.43 c 0.35 e 0.39 d 0.40 d 0.46 a 0.45 ab 0.46 a
85 0.41 abc 0.40 cd 0.32 f 0.39 d 0.35 e 0.43 a 0.43 ab 0.43 a
93 0.46 bc 0.47 abc 0.36 e 0.45 cd 0.44 d 0.48 ab 0.49 a 0.49 a
105 0.67 a 0.67 a 0.62 b 0.64 b 0.63 b 0.68 a 0.67 a 0.68 a
111 0.68 ab 0.68 ab 0.67 bc 0.64 d 0.65 cd 0.69 ab 0.69 ab 0.69 a
Multi 0.68 cd 0.68 bcd 0.68 d 0.65 e 0.00 f 0.70 ab 0.70 abc 0.70 a

Be
d-
2I
R

50 0.18 a 0.14 cd 0.00 f 0.12 d 0.09 e 0.18 a 0.15 bc 0.16 ab
57 0.19 a 0.19 a 0.00 c 0.03 b 0.19 a 0.20 a 0.20 a 0.20 a
70 0.37 a 0.36 a 0.20 c 0.21 c 0.31 b 0.37 a 0.36 a 0.38 a
78 0.35 a 0.35 a 0.25 c 0.30 b 0.28 b 0.36 a 0.36 a 0.36 a
85 0.37 a 0.36 a 0.22 c 0.30 b 0.29 b 0.38 a 0.37 a 0.38 a
90 0.30 abcd 0.29 cd 0.21 e 0.28 d 0.20 e 0.32 a 0.31 abc 0.32 ab
98 0.45 a 0.46 a 0.18 d 0.35 c 0.38 b 0.47 a 0.46 a 0.46 a
110 0.40 abc 0.39 bc 0.34 d 0.39 c 0.35 d 0.42 a 0.41 ab 0.42 a
116 0.44 a 0.44 a 0.44 a 0.39 b 0.38 b 0.45 a 0.44 a 0.45 a
Multi 0.53 cd 0.53 d 0.46 e 0.40 f 0.01 g 0.55 ab 0.54 bc 0.56 a

Be
d-
5I
R

50 0.18 a 0.17 ab 0.16 ab 0.15 b 0.08 c 0.17 ab 0.16 ab 0.16 ab
57 0.25 a 0.25 a 0.21 c 0.21 bc 0.14 d 0.25 a 0.24 a 0.24 ab
70 0.27 a 0.26 a 0.21 b 0.19 b 0.20 b 0.27 a 0.27 a 0.26 a
78 0.26 a 0.24 a 0.19 b 0.19 b 0.18 b 0.26 a 0.24 a 0.26 a
85 0.32 a 0.32 a 0.26 b 0.25 b 0.24 b 0.32 a 0.32 a 0.33 a
90 0.31 a 0.31 a 0.25 c 0.28 b 0.22 d 0.32 a 0.32 a 0.32 a
98 0.30 a 0.29 a 0.26 b 0.25 b 0.16 c 0.29 a 0.28 a 0.28 a
110 0.46 a 0.45 a 0.10 d 0.22 c 0.34 b 0.45 a 0.45 a 0.45 a
116 0.47 a 0.47 a 0.20 d 0.34 c 0.38 b 0.47 a 0.47 a 0.47 a
Multi 0.54 a 0.54 a 0.32 c 0.37 b 0.00 d 0.54 a 0.55 a 0.55 a

Be
d-
H
ea
t

72 0.57 a 0.57 a 0.54 b 0.53 b 0.50 c 0.57 a 0.57 a 0.57 a
79 0.61 a 0.61 a 0.60 a 0.58 b 0.51 c 0.61 a 0.61 a 0.61 a
92 0.64 a 0.64 a 0.65 a 0.63 a 0.55 b 0.64 a 0.64 a 0.64 a
100 0.66 a 0.66 a 0.67 a 0.65 a 0.57 b 0.66 a 0.66 a 0.66 a
107 0.66 a 0.66 a 0.67 a 0.66 a 0.56 b 0.66 a 0.67 a 0.66 a
112 0.68 ab 0.68 ab 0.69 a 0.66 b 0.62 c 0.68 a 0.68 a 0.69 a
120 0.69 a 0.68 a 0.69 a 0.66 b 0.59 c 0.69 a 0.68 a 0.68 a
132 0.62 a 0.61 a 0.55 b 0.54 b 0.54 b 0.62 a 0.61 a 0.61 a
138 0.54 a 0.53 a 0.47 b 0.46 b 0.46 b 0.54 a 0.53 a 0.54 a
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Table A.1 (cont’d)

Multi 0.71 a 0.70 a 0.70 a 0.67 b 0.00 c 0.71 a 0.71 a 0.72 a
*Each row contains results for each environment and time-point (DAS: days after sowing). Models with the
same letter (within each row) are not significantly different from each other (α = 0.05, ANOVA followed by
Tukey test).
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APPENDIX B

SUPPLEMENTARY MATERIAL FROM CHAPTER 3
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Figure B.1: Top two principal components of the genomic relationship matrix,G, for each data set.
Each point represent individuals. (A) Wheat-599 data set. (B) Wheat-large data set. Individuals
are color-grouped by the cycle (sowing-harvest year).
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Figure B.2: Boxplot of grain yield phenotypic records (in ton ha−1) by environmental condition
for both Wheat-599 and Wheat-large data sets. SD standard deviation.
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Figure B.3: Distribution of the number of training support points (nsup) in optimal sparse selec-
tion indices (results obtained over 100 trn-tst partitions; ntrn= size of the training data set), by
environmental condition, Wheat-599 data set.
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Figure B.4: First two principal components coordinates for prediction points (yellow) and the
corresponding support points (green). Grey points represent genotypes that did not contribute to
the prediction of the genetic value of the genotype in yellow. All panels represent solutions for the
environment 1, Wheat-599 data set.
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Figure B.5: (left and center) Weights (βi j ) of a standard SI (G-BLUP) and of the optimal sparse
selection index (SSI) versus the genomic relationship (gi j), and (right) proportion of weights in
the SSI that belonged to either the supporting or non-active sets, by genomic-relationship; by
environment, Wheat-large data set.
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Figure B.6: (left and center) Weights (βi j ) of a standard SI (G-BLUP) and of the optimal sparse
selection index (SSI) versus the genomic relationship (gi j), and (right) proportion of weights in
the SSI that belonged to either the supporting or non-active sets, by genomic-relationship; by
environment, Wheat-599 data set.
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Table B.1: Number of available observations, average grain yield, and heritability by environmental
condition for the Wheat-large data set.

Planting conditions Number of Name n Average Heritability
Date System irrigations (SD) Yield (SD)a

Optimum Bed 2 B2I 3,732 4.53 (0.261) 0.41 (0.029)
Optimum Bed 5 B5I 29,473 7.12 (0.372) 0.57 (0.025)
Optimum Flat 5 MEL 4,403 5.76 (0.305) 0.23 (0.025)

Late Bed 5 LHT 4,404 3.83 (0.375) 0.51 (0.025)
Optimum Bed Minimal DRB 3,763 2.74 (0.275) 0.38 (0.029)
Early Bed 5 EHT 2,040 6.16 (0.525) 0.41 (0.038)

SD. Standard deviation. aPosterior mean and SD obtained across 10,000 Monte Carlo replicates using
Gibbs sampling.

Table B.2: Number of available observations, average grain yield, and heritability by environmental
condition for the Wheat-599 data set.

Moisture regime Temperature Name n Average Heritability
(SD) Yield (SD)a

Optimal irrigation, low rainfall Optimal Env1 599 5.14 (0.614) 0.50 (0.054)
High rainfall Optimal Env2 599 4.51 (0.790) 0.46 (0.056)
Low rainfall High drought Env3 599 3.86 (0.592) 0.43 (0.062)

Irrigation or rainfall Hot, low humidity Env4 599 3.23 (0.636) 0.44 (0.061)
SD. Standard deviation. aPosterior mean and SD obtained across 10,000 Monte Carlo replicates using
Gibbs sampling.
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Table B.3: Maximum prediction accuracy (average across 100 partitions) achieved by the SSI for
different values of the parameter α of an Elastic-Net-type SSI, by environmental condition for the
Wheat-large data set.

Environment λ0
a α λopt

b nsup
c Accuracy (SD)d

B2I

1.5320 1.00 0.0141 395 0.649 (0.032) b

0.7660

0.25 0.0667 320 0.663 (0.032) a
0.50 0.0320 330 0.664 (0.032) a
0.75 0.0233 290 0.664 (0.032) a
1.00 0.0155 338 0.664 (0.032) a

B5I

1.8412 1.00 0.0119 1,226 0.610 (0.009) b

0.9215

0.25 0.0460 1,187 0.630 (0.009) a
0.50 0.0223 1,203 0.631 (0.009) a
0.75 0.0164 1,044 0.631 (0.009) a
1.00 0.0132 943 0.631 (0.009) a

MEL

3.7934 1.00 0.0116 561 0.665 (0.046) b

1.8967

0.25 0.0705 338 0.685 (0.045) a
0.50 0.0406 270 0.686 (0.045) a
0.75 0.0294 236 0.687 (0.045) a
1.00 0.0195 282 0.687 (0.045) a

LHT

0.9841 1.00 0.0218 237 0.712 (0.026) b

0.4921

0.25 0.0854 248 0.727 (0.025) a
0.50 0.0491 194 0.729 (0.025) a
0.75 0.0295 223 0.729 (0.025) a
1.00 0.0235 202 0.730 (0.025) a

DRB

1.7555 1.00 0.0344 103 0.679 (0.038) b

0.8778

0.25 0.1461 102 0.694 (0.039) a
0.50 0.0823 79 0.696 (0.039) a
0.75 0.0588 69 0.697 (0.040) a
1.00 0.0386 85 0.697 (0.040) a

EHT

1.5514 1.00 0.0284 120 0.657 (0.046) a

0.7757

0.25 0.0970 159 0.670 (0.048) a
0.50 0.0554 126 0.672 (0.048) a
0.75 0.0399 110 0.672 (0.048) a
1.00 0.0264 133 0.673 (0.048) a

SD: Standard deviation across the 100 trn-tst partitions. aShrinkage factor involved in the standard SI
(Equation (3.2)). Within environment, in the top row a value of λ0 was used as in the G-BLUP and in
rows below, λ0 was reduced to half. bOptimal value of λ that yielded an SSI with the maximum accuracy
among all indices obtained for a grid of 100 values of λ. cAverage number of individuals in supporting the
prediction of individuals from testing set. dModels with the same letter are not significantly different from
others (ANOVA followed by Tukey’s HSD test, 5% significance level.
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Table B.4: Maximum prediction accuracy (average across 100 partitions) achieved by the SSI for
different values of the parameter α of an Elastic-Net-type SSI, by environmental condition for the
Wheat-599 data set.

Environment λ0
a α λopt

b nsup
c Accuracy (SD)d

Env1

1.2101 1.00 0.0314 84 0.769 (0.062) a

0.5061

0.25 0.1042 99 0.772 (0.063) a
0.50 0.0492 101 0.773 (0.063) a
0.75 0.0296 110 0.773 (0.063) a
1.00 0.0236 103 0.773 (0.063) a

Env2

1.3034 1.00 0.0175 151 0.708 (0.085) a

0.6517

0.25 0.0686 147 0.711 (0.086) a
0.50 0.0397 126 0.710 (0.086) a
0.75 0.0240 136 0.710 (0.086) a
1.00 0.0192 129 0.710 (0.086) a

Env3

1.4084 1.00 0.0514 50 0.609 (0.090) a

0.7042

0.25 0.2213 48 0.611 (0.089) a
0.50 0.1017 48 0.610 (0.090) a
0.75 0.0601 54 0.609 (0.091) a
1.00 0.0474 50 0.609 (0.091) a

Env4

1.4380 1.00 0.0615 40 0.722 (0.073) a

0.7190

0.25 0.2689 39 0.727 (0.074) a
0.50 0.1483 31 0.727 (0.074) a
0.75 0.0870 35 0.728 (0.075) a
1.00 0.0681 32 0.728 (0.075) a

SD: Standard deviation across the 100 trn-tst partitions. aShrinkage factor involved in the standard SI
(Equation (3.2)). Within environment, in the top row a value of λ0 was used as in the G-BLUP and in
rows below, λ0 was reduced to half. bOptimal value of λ that yielded an SSI with the maximum accuracy
among all indices obtained for a grid of 100 values of λ. cAverage number of individuals in supporting the
prediction of individuals from testing set. dModels with the same letter are not significantly different from
others (ANOVA followed by Tukey’s HSD test, 5% significance level.
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B.1 Equivalence between Standard Selection Index and BLUP

Consider a standard single-trait model of the form

y = u + ε

where y = (y1, ..., yn)
′ , u = (u1, ..., un)

′, and ε = (ε1, ..., εn)
′ are vectors of phenotypes, genetic,

and environmental effects, respectively. Here, for simplicity we assume that all these vectors have

zero-mean.

In a standard G-BLUP model, u and ε are assumed to be independent (i.e., cov(u, ε′) = 0),

both have null means (i.e., E(u) = E(ε) = 0), and (co)variance matrices var(u) = σ2
uG and

var(ε) = σ2
ε I, respectively; here G is a relationship matrix that could be derived from a pedigree

or from DNA sequences.

Consider now a partition of each of the data in into a training (trn) and a testing (tst) set.

The objective is to predict the genetic values of the individuals in the testing set (utst) using the

phenotype data available from the training set (ytrn). The (co)variance matrix of the vector of

breeding values can be partitioned as follows

var
©«

utrn

utst


ª®®¬ = σ2

u


Gtrn Gtrn,tst

G′trn,tst Gtst


whereGtrn andGtst are the genetic relationship submatrices for the training and testing data points,

respectively, andGtrn,tst is the genetic relationship submatrix between training and testing subjects.

The Best Linear Predictor (BLP) of utst (ûtst) takes the form (e.g., Searle et al., 1992):

E(utst |ytrn) = E(utst) + cov(utst, y
′
trn)

[
var(ytrn)

]−1 (
ytrn − E(ytrn)

)
= G′trn,tst (Gtrn + λ0I)−1 ytrn.

Alternatively, one can write ûtst = H · ytrn, where H = G′trn,tst(Gtrn + λ0I)−1 is a “Hat”

matrix. Thus, the BLUP of the genetic value of the ith testing individual is ûtst(i) = H′i ytrn where

H′i is the ith row of H, that is H′i = G′i(Gtrn + λ0I)−1 which is equal to the weights of the standard

selection index, β̂′i = G′i(Gtrn + λ0I)−1 (see Equation (3.2) in the manuscript).
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B.2 Sparse Selection Indices (SSI) using the SFSI R-package

In this section, we use data from the Wheat-599 data set used in the manuscript to illustrate

how to fit Sparse Selection Indices using the SFSI R-package (Lopez-Cruz et al., 2020).

B.2.1 Installing the package from GitHub

The following snippet shows how to install the package from GitHub.

rm(list = ls())

# Install devtools package first
install.packages(’devtools’, repos=’https://cran.r-project.org/’)

# Install SFSI package from GitHub
devtools::install_git(’https://github.com/MarcooLopez/SFSI’)
library(SFSI) # Load the package

# Install BGLR package (needed to download the data)
install.packages(’BGLR’, repos=’https://cran.r-project.org/’)

B.2.2 Data preparation

To illustrate the use of the software we will use data from the Wheat-599 data set which is available

with the BGLR R-package (Perez & de los Campos, 2014). The following code shows how to

prepare data for environment 1; all the analyses hereinafter are based on this data.

data(wheat, package="BGLR") # Load data from the BGLR package

# Select the environment 1 to work with
y <- as.vector(scale(wheat.Y[,1]))

# Calculate G matrix
G <- tcrossprod(scale(wheat.X))/ncol(wheat.X)

# Create a directory and save data
dir.create("data", recursive=TRUE)
save(y, G, file="data/geno_pheno.RData")
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B.2.3 Heritability and variance components

Implementing the SSI requires an estimate of the heritability. We obtain this using a G-BLUP

model yi = µ + ui + εi with εi
iid
∼ N(0, σ2

ε ) and u ∼ N(0, σ2
uG). This model can be fitted with the

’fitBLUP’ function included in the SFSI R-package. The BGLR R-package can be also used to fit

a Bayesian version of the model. The code below illustrates how to estimate heritability using the

’fitBLUP’ function.

load("data/geno_pheno.RData") # Load data

# Fit model
fm0 <- fitBLUP(y, K=G)
fm0$h2 <- fm0$varU/(fm0$varU+fm0$varE) # Estimate heritability
c(fm0$varU,fm0$varE,fm0$h2) # Variance components (varU,varE,h2)

# Create a directory and save data
dir.create("output", recursive=TRUE)
save(fm0, file="output/varComps.RData")

B.2.4 Training-testing partitions

The code below produces training (trn, 70%) and testing (tst, 30%) partitions. The parameter

’nPart’ defines the number of partitions. The output is a matrix with ’nPart’ columns and 180 rows

containing indices representing the observations that are assigned to the testing sets. The object is

saved in the file ’partitions.RData’ and will be used in later analyses.

nPart <- 5 # Number of partitions
load("data/geno_pheno.RData") # Load data
nTST <- ceiling(0.3*length(y)) # Number of elements in TST set
partitions <- matrix(NA,nrow=nTST,ncol=nPart) # Matrix to store partitions
seeds <- round(seq(1E3, .Machine$integer.max, length=nPart))

for(k in 1:nPart)
{ set.seed(seeds[k])

partitions[,k] <- sample(1:length(y), nTST, replace=FALSE)
}
save(partitions, file="output/partitions.RData") # Save partitions
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B.2.5 Accuracy of the G-BLUP and of the Sparse SI

The following script shows how to derive SSIs using the partitions above created. Theweights of the

SSI are computed using the ’SSI’ function for ’nLambda=100’ values of λ. The G-BLUP model is

fitted for comparison using the ’fitBLUP’ function. Estimates of µ and h2 are computed internally

in the ’SSI’ function when these are not provided. These estimates obtained from the G-BLUP

model will be passed to the ’SSI’ function to save time. Indices denoting training and testing sets

are passed through the ’trn’ and ’tst’ parameters, respectively. The accuracy of the G-BLUP and

SSI models are stored in the object ’accSSI’, and saved in the file ’results_accuracy.RData’.

# Load data
load("data/geno_pheno.RData")
load("output/varComps.RData")
load("output/partitions.RData")

accSSI <- mu <- h2 <- c() # Objects to store results

for(k in 1:ncol(partitions))
{ cat(" partition = ",k,"\n")
tst <- partitions[,k]
trn <- (1:length(y))[-tst]
yNA <- y; yNA[tst] <- NA

# G-BLUP model
fm1 <- fitBLUP(yNA, K=G)
mu[k] <- fm1$b # Retrieve mu estimate
h2[k] <- fm1$h2 # Retrieve h2 estimate

# Sparse SI
fm2 <- SSI(y,K=G,b=mu[k],h2=h2[k],trn=trn,tst=tst,mc.cores=1,nLambda=100)
fm3 <- summary(fm2) # Useful function to get results

accuracy <- c(GBLUP=cor(fm1$u[tst],y[tst]), fm3$accuracy)/sqrt(fm0$h2)
lambda <- c(min(fm3$lambda),fm3$lambda)
df <- c(max(fm3$df),fm3$df)
accSSI <- rbind(accSSI,data.frame(rep=k,SSI=names(accuracy),accuracy,lambda,df))

}
save(mu,h2,accSSI,file="output/results_accuracy.RData")

102



B.2.6 Displaying Results

The following code creates a plot (as in Figure 3.1 in the manuscript) showing the estimated genetic

prediction accuracy by values of the penalty parameter (in logarithmic scale). The rightmost point

in the plot corresponds to the G-BLUPmodel (obtained when λ = 0). The point at the peak denotes

the maximum accuracy that was obtained by the SSI.

load("output/results_accuracy.RData")

dat <- data.frame(do.call(rbind,lapply(split(accSSI,accSSI$SSI),
function(x) apply(x[,-c(1:2)],2,mean))))

dat$Model <- unlist(lapply(strsplit(rownames(dat),"\\."),function(x)x[1]))

dat2 <- do.call(rbind,lapply(split(dat,dat$Mod),function(x)x[which.max(x$acc),]))
ggplot(dat[dat$df>1,],aes(-log(lambda),accuracy)) +
geom_hline(yintercept=dat["GBLUP",]$accuracy, linetype="dashed") +
geom_line(aes(color=Model),size=1.1) + theme_bw() +
geom_point(data=dat2,aes(color=Model),size=2.5)

B.2.7 Cross-validating to obtain an optimal penalization

The snippet below can be used to perform, within each trn-tst partition, k-folds CV to get an

’optimal’ value of λ within the training data, and then used to fit an SSI for the testing set. The CV

is implemented using the ’SSI_CV’ function from the SFSI R-package for one 5-folds CV, this can

be set by changing the ’nCV’ and ’nFolds’ parameters.
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load("data/geno_pheno.RData"); load("output/varComps.RData")
load("output/partitions.RData"); load("output/results_accuracy.RData")

lambdaCV <- accSSI_CV <- dfCV <- c() # Objects to store results

for(k in 1:ncol(partitions))
{ cat(" partition = ",k,"\n")

tst <- partitions[,k]
trn <- (1:length(y))[-tst]

# Cross-validating the training set
fm1 <- SSI_CV(y,K=G,trn.CV=trn,nLambda=100,mc.cores=1,nFolds=5,nCV=1)
lambdaCV[k] <- summary(fm1)$optCOR["mean","lambda"]

# Fit a SSI with the estimated lambda
fm2 <- SSI(y,K=G,b=mu[k],h2=h2[k],trn=trn,tst=tst,lambda=lambdaCV[k])

accSSI_CV[k] <- summary(fm2)$accuracy/sqrt(fm0$h2)
dfCV <- cbind(dfCV, fm2$df)

}
save(accSSI_CV,lambdaCV,dfCV,file="output/results_accuracyCV.RData")

After running the above analysis, the following snippet can be run to create a plot (as in Figure

3.2 in the manuscript) comparing partition-wise the accuracy of the optimal SSI with that of the

G-BLUP. The average accuracies are also shown in the plot.

load("output/results_accuracy.RData")
load("output/results_accuracyCV.RData")

dat <- data.frame(GBLUP=accSSI[accSSI$SSI=="GBLUP",]$acc,SSI=accSSI_CV)
rg <- range(dat)
tmp <- c(mean(rg),diff(rg)*0.4)

ggplot(dat,aes(GBLUP,SSI)) + geom_abline(slope=1,linetype="dotted") +
geom_point(shape=21,color="orange") + xlim(rg) + ylim(rg) +
annotate("text",tmp[1],tmp[1]-tmp[2],label=round(mean(dat$GBLUP),3)) +
annotate("text",tmp[1]-tmp[2],tmp[1],label=round(mean(dat$SSI),3))

The code below creates a plot (as in Figure 3.3 in the manuscript) showing the distribution of

the number of points in the support set for the SSI, across all partitions.
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load("output/results_accuracyCV.RData")

dat <- data.frame(df=as.vector(dfCV))

bw <- round(diff(range(dat$df))/40)
ggplot(data=dat,aes(df,stat(count)/length(dfCV))) + theme_bw() +

geom_histogram(color="gray20",fill="lightblue",binwidth=bw) +
labs(x=bquote("Support set size(" *n[sup]*")"),y="Frequency")

B.2.8 Subject-specific training sets

The next script can be used to create a plot (as in Figure 3.4 in the manuscript) showing (for a

single trn-tst partition) the subset of points in the support set, for each individual being predicted.

This plot can be made through the ’plotNet’ function from the SFSI package.

# Load data
load("data/geno_pheno.RData")
load("output/partitions.RData")
load("output/results_accuracyCV.RData")

part <- 1 # Choose any partition from 1,...,nPart
tst <- partitions[,part]
trn <- (1:length(y))[-tst]

# Fit SSI with lambda previously estimated using CV
fm <- SSI(y,K=G,trn=trn,tst=tst,lambda=lambdaCV[part])

plotNet(fm,K=G,tst=fm$tst[1:25],single=FALSE,title=NULL,bg.col="white")
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APPENDIX C

SUPPLEMENTARY FIGURES AND TABLES FROM CHAPTER 4
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Figure C.1: Genomic relationships (Gi j ) versus kernel relationships (Ki j) of individuals in cycle
2019 with those in cycles 2017 (left) and 2018 (right). Gi j and Ki j are the i jth element of G and
K(θ), respectively. (A) K1 = K(0.2). (B) K2 = K(1). (C) K3 = K(5).
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Figure C.2: Prediction accuracy by model and training set (TS). TSs consisted on all the data from
the 2017, 2018, or 2017+2018 cycles alone (top-left panel), or in combination with a proportion
(5%, 10%, 15%) of the data from the 2019 cycle. The prediction set consisted of 612 genotypes
from the 2019 cycle that were not used for model training. Models with the same letter within
panel indicate no significant difference from each other (α = 0.05, ANOVA followed by Tukey
test). GY-DRT trait-environment combination.
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Figure C.3: Prediction accuracy by model and training set (TS). TSs consisted on all the data from
the 2017, 2018, or 2017+2018 cycles alone (top-left panel), or in combination with a proportion
(5%, 10%, 15%) of the data from the 2019 cycle. The prediction set consisted of 612 genotypes
from the 2019 cycle that were not used for model training. Models with the same letter within
panel indicate no significant difference from each other (α = 0.05, ANOVA followed by Tukey
test). Trait PH (OPT and DRT environments).
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Figure C.4: (A) Prediction accuracy of the standard (non-sparse) G-BLUP model (horizontal axis)
versus the prediction accuracy of all other models (vertical axis of each panel). (B) Prediction
accuracy of the standard *-BLUP model (horizontal axis) versus the prediction accuracy of its
sparse version (vertical axis), by type of kernel used in panels. Each point represent a training-
testing partition within each training set composition. Colored points above (below) the 45 degree
line represent cases for which one model outperformed the other model. P: p-value for the test
(from ANOVA) for differences in accuracy between the two models. GY-DRT trait-environment
combination.
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Figure C.5: (left) Prediction accuracy of the standard (non-sparse) G-BLUPmodel (horizontal axis)
versus the prediction accuracy of all other models (vertical axis of each panel). (right) Prediction
accuracy of the standard *-BLUP model (horizontal axis) versus the prediction accuracy of its
sparse version (vertical axis), by type of kernel used in panels. Each point represent a training-
testing partition within each training set composition. Colored points above (below) the 45 degree
line represent cases for which one model outperformed the other model. P: p-value for the test
(from ANOVA) for differences in accuracy between the two models. Trait PH (OPT and DRT
environments).
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Figure C.6: Heatmap of the coefficients in the Hat matrix (B̃(λ)K ) of the sparse KA-BLUP model
for one training-prediction (TS-PS) partition in the prediction of nPS = 612 individuals from 2019
using nTS = 2427 individuals (2017+2018 plus 15% of the 2019 set). Predicted individuals are
presented in columns and training individuals are presented in rows separated by cycle and number
of individuals in parentheses. The value of λ was obtained by cross-validation. Each column
represents values of the vector b̃(λ)iK = {b̃i j }, j = 1, ..., 2427 (Equation (4.6)). Individuals no
contributing to the prediction have a coefficient b̃i j = 0 represented in grey color. Individuals with
a non-zero coefficient are shown in a yellow-blue logarithm scale (in the original scale, yellow
indicates large values and blue indicates small value). GY-OPT trait-environment combination.
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Figure C.7: Proportion of the training individuals from each cycle that contributed to the prediction
of the 612 testing genotypes from 2019, using sparse models with different relationship matrices
(horizontal axis): G, K1, K2, or KA. The training set was composed by individuals from 2017
(n = 901) and 2018 (n = 1417) alone (top-left panel) or in combination with a proportion (5%,
10%, 15%) of the data from the 2019 cycle. GY-DRT trait-environment combination.
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Figure C.8: Proportion of the training individuals from each cycle that contributed to the prediction
of the 612 testing genotypes from 2019, using sparse models with different relationship matrices
(horizontal axis): G, K1, K2, or KA. The training set was composed by individuals from 2017
(n = 901) and 2018 (n = 1417) alone (top-left panels) or in combination with a proportion (5%,
10%, 15%) of the data from the 2019 cycle. Trait PH (OPT and DRT environments).
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Table C.1: Heritability and accuracy of prediction for each training set (TS) composition
(including 0%, 5%, and 10% of subjects from the 2019 cycle), trait GY, environment OPT.

Accuracy (SD) % Gain
TS (nTS) GRM λCV

a nsup (RS)b h2 Standard Sparse Ic IId

TS
+0

%
(2
01

9)

G 0.0139 271 (30) 0.51 0.20 (0.017) 0.25 (0.018) 0 24
K1 0.0028 307 (34) 0.86 0.21 (0.017) 0.20 (0.017) 5 -9

2017 K2 0.0037 388 (43) 0.73 0.24 (0.017) 0.26 (0.017) 17 7
(901) K3 0.0000 901 (100) 0.96 0.26 (0.016) 0.26 (0.016) 28 0

KA 0.0023 435 (48) 0.86 0.24 (0.019) 0.26 (0.029) 19 6

G 0.0086 469 (33) 0.61 0.25 (0.015) 0.22 (0.015) 0 -11
K1 0.0011 664 (47) 0.91 0.25 (0.015) 0.22 (0.015) 2 -13

2018 K2 0.0019 743 (52) 0.79 0.26 (0.015) 0.24 (0.016) 5 -8
(1417) K3 0.0000 1417 (100) 0.92 0.23 (0.015) 0.23 (0.015) -7 0

KA 0.0015 680 (48) 0.88 0.26 (0.016) 0.24 (0.017) 4 -8

G 0.0120 569 (25) 0.52 0.33 (0.015) 0.33 (0.015) 0 2
K1 0.0028 484 (21) 0.88 0.33 (0.015) 0.31 (0.015) 2 -6

2017+18 K2 0.0013 1374 (59) 0.76 0.34 (0.015) 0.33 (0.015) 4 -2
(2318) K3 0.0000 2316 (100) 0.88 0.31 (0.015) 0.31 (0.015) -4 0

KA 0.0010 1446 (62) 0.83 0.33 (0.016) 0.33 (0.016) 3 -3

TS
+5

%
(2
01

9)

G 0.0149 241 (26) 0.50 0.32 (0.036) 0.36 (0.035) 0 12
K1 0.0027 292 (31) 0.86 0.34 (0.036) 0.36 (0.036) 5 8

2017 K2 0.0028 469 (50) 0.73 0.37 (0.037) 0.38 (0.038) 16 2
(938) K3 0.0000 938 (100) 0.93 0.34 (0.038) 0.34 (0.038) 7 0

KA 0.0015 550 (59) 0.84 0.36 (0.038) 0.37 (0.038) 14 1

G 0.0097 412 (28) 0.61 0.26 (0.021) 0.24 (0.020) 0 -7
K1 0.0014 563 (39) 0.91 0.27 (0.021) 0.26 (0.024) 2 -3

2018 K2 0.0015 835 (57) 0.79 0.28 (0.021) 0.27 (0.021) 7 -3
(1454) K3 0.0000 1454 (100) 0.92 0.28 (0.021) 0.28 (0.021) 6 0

KA 0.0012 749 (52) 0.89 0.28 (0.021) 0.26 (0.024) 6 -6

G 0.0142 441 (19) 0.53 0.34 (0.019) 0.36 (0.019) 0 4
K1 0.0025 534 (23) 0.88 0.35 (0.019) 0.34 (0.024) 3 -4

2017+18 K2 0.0018 1117 (47) 0.76 0.37 (0.021) 0.37 (0.021) 9 -1
(2355) K3 0.0000 2354 (100) 0.88 0.36 (0.022) 0.36 (0.022) 4 0

KA 0.0013 1235 (52) 0.83 0.37 (0.021) 0.37 (0.020) 8 -2

TS
+1

0%
(2
01

9)

G 0.0186 183 (19) 0.52 0.42 (0.029) 0.45 (0.030) 0 7
K1 0.0041 180 (18) 0.87 0.44 (0.029) 0.46 (0.030) 4 4

2017 K2 0.0067 218 (22) 0.75 0.47 (0.030) 0.47 (0.030) 12 1
(974) K3 0.0000 974 (100) 0.92 0.48 (0.032) 0.48 (0.032) 14 0

KA 0.0045 244 (25) 0.85 0.46 (0.030) 0.47 (0.032) 10 1

G 0.0111 349 (23) 0.61 0.40 (0.029) 0.41 (0.030) 0 2
K1 0.0017 480 (32) 0.91 0.41 (0.029) 0.42 (0.030) 3 2
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Table C.1 (cont’d)

2018 K2 0.0017 781 (52) 0.79 0.44 (0.029) 0.43 (0.029) 10 -1
(1490) K3 0.0000 1490 (100) 0.90 0.42 (0.028) 0.42 (0.028) 5 0

KA 0.0012 781 (52) 0.88 0.43 (0.029) 0.42 (0.029) 8 -1

G 0.0126 455 (19) 0.53 0.42 (0.021) 0.44 (0.021) 0 4
K1 0.0027 459 (19) 0.88 0.44 (0.021) 0.44 (0.026) 4 1

2017+18 K2 0.0021 1032 (43) 0.76 0.46 (0.023) 0.46 (0.023) 10 -1
(2391) K3 0.0000 2390 (100) 0.87 0.46 (0.025) 0.46 (0.025) 9 0

KA 0.0015 1153 (48) 0.83 0.46 (0.023) 0.46 (0.023) 9 -1
GRM: Genetic relationship matrix. SD: standard deviation. aPenalization parameter in Equation (4.6) found
by cross-validating the TS. bnsup=average number of individuals from the TS with a non-zero coefficient
in the sparse Hat matrix (support set). RS: relative sparsity (100nTS/nsup). In the standard models λCV is
equal to zero and nsup is equal to the total TS size. Within each TS cycle, percentage of gain in accuracy
of the cstandard K-BLUP relative to the standard G-BLUP, and dsparse *-BLUP relative to the standard
*-BLUP (*=G- or K-).
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Table C.2: Heritability and accuracy of prediction for each training set (TS) composition
(including 0%, 5%, 10%, and 15% of subjects from the 2019 cycle), trait GY, environment DRT.

Accuracy (SD) % Gain
TS (nTS) GRM λCV

a nsup (RS)b h2 Standard Sparse Ic IId

TS
+0

%
(2
01

9)

G 0.0071 418 (46) 0.57 0.27 (0.014) 0.29 (0.014) 0 6
K1 0.0012 522 (58) 0.89 0.28 (0.014) 0.20 (0.020) 4 -30

2017 K2 0.0015 597 (66) 0.77 0.31 (0.014) 0.33 (0.014) 15 4
(901) K3 0.0000 901 (100) 0.94 0.34 (0.013) 0.34 (0.013) 23 0

KA 0.0008 680 (75) 0.88 0.31 (0.018) 0.30 (0.033) 13 -2

G 0.0075 561 (40) 0.41 0.20 (0.018) 0.23 (0.018) 0 17
K1 0.0011 768 (54) 0.81 0.20 (0.018) 0.19 (0.017) 3 -8

2018 K2 0.0001 1387 (98) 0.60 0.23 (0.018) 0.24 (0.018) 18 2
(1417) K3 0.0000 1417 (100) 0.66 0.26 (0.013) 0.26 (0.014) 34 -2

KA 0.0000 1417 (100) 0.69 0.23 (0.020) 0.23 (0.021) 19 -3

G 0.0066 954 (41) 0.44 0.23 (0.018) 0.27 (0.018) 0 14
K1 0.0013 1013 (44) 0.84 0.24 (0.018) 0.25 (0.018) 2 5

2017+18 K2 0.0003 2049 (88) 0.65 0.28 (0.017) 0.29 (0.017) 21 1
(2318) K3 0.0000 2318 (100) 0.75 0.38 (0.013) 0.38 (0.013) 63 0

KA 0.0000 2318 (100) 0.73 0.29 (0.019) 0.29 (0.029) 22 2

TS
+5

%
(2
01

9)

G 0.0151 243 (26) 0.57 0.41 (0.028) 0.46 (0.027) 0 11
K1 0.0031 331 (35) 0.89 0.43 (0.028) 0.44 (0.053) 4 2

2017 K2 0.0035 484 (52) 0.77 0.46 (0.026) 0.46 (0.026) 12 -1
(938) K3 0.0000 938 (100) 0.92 0.45 (0.021) 0.45 (0.021) 9 0

KA 0.0010 659 (70) 0.87 0.46 (0.027) 0.45 (0.033) 10 -1

G 0.0126 373 (26) 0.41 0.39 (0.034) 0.43 (0.031) 0 10
K1 0.0013 678 (47) 0.82 0.41 (0.033) 0.42 (0.035) 4 4

2018 K2 0.0000 1453 (100) 0.61 0.45 (0.030) 0.45 (0.032) 15 0
(1454) K3 0.0000 1454 (100) 0.67 0.48 (0.026) 0.48 (0.026) 22 -1

KA 0.0000 1454 (100) 0.70 0.46 (0.029) 0.45 (0.031) 16 0

G 0.0163 387 (16) 0.44 0.40 (0.035) 0.46 (0.024) 0 16
K1 0.0020 728 (31) 0.84 0.41 (0.034) 0.46 (0.030) 3 11

2017+18 K2 0.0008 1696 (72) 0.65 0.46 (0.031) 0.45 (0.034) 15 -1
(2355) K3 0.0000 2355 (100) 0.76 0.49 (0.020) 0.49 (0.020) 24 0

KA 0.0006 1773 (75) 0.73 0.46 (0.031) 0.46 (0.038) 15 0

TS
+1

0%
(2
01

9)

G 0.0174 190 (19) 0.58 0.54 (0.033) 0.58 (0.030) 0 7
K1 0.0038 184 (19) 0.89 0.55 (0.032) 0.58 (0.028) 2 4

2017 K2 0.0064 229 (23) 0.78 0.57 (0.029) 0.59 (0.029) 6 2
(974) K3 0.0000 974 (100) 0.92 0.54 (0.031) 0.54 (0.031) 0 0

KA 0.0040 284 (29) 0.88 0.57 (0.029) 0.58 (0.031) 5 2

G 0.0124 354 (24) 0.41 0.49 (0.026) 0.53 (0.025) 0 9
K1 0.0020 488 (33) 0.82 0.50 (0.026) 0.53 (0.027) 3 6
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Table C.2 (cont’d)

2018 K2 0.0002 1416 (95) 0.61 0.54 (0.024) 0.54 (0.025) 11 0
(1490) K3 0.0000 1490 (100) 0.68 0.56 (0.021) 0.56 (0.022) 15 0

KA 0.0000 1482 (99) 0.70 0.54 (0.024) 0.54 (0.026) 11 0

G 0.0152 389 (16) 0.45 0.51 (0.030) 0.56 (0.028) 0 10
K1 0.0022 622 (26) 0.84 0.52 (0.029) 0.55 (0.028) 3 6

2017+18 K2 0.0005 1981 (83) 0.66 0.56 (0.026) 0.56 (0.027) 10 0
(2391) K3 0.0000 2391 (100) 0.76 0.58 (0.021) 0.58 (0.021) 14 0

KA 0.0001 2292 (96) 0.73 0.56 (0.026) 0.56 (0.027) 10 0

TS
+1

5%
(2
01

9)

G 0.0236 126 (12) 0.58 0.64 (0.029) 0.68 (0.025) 0 7
K1 0.0058 125 (12) 0.89 0.65 (0.028) 0.68 (0.025) 2 4

2017 K2 0.0097 125 (12) 0.79 0.67 (0.026) 0.68 (0.023) 5 2
(1010) K3 0.0000 1010 (100) 0.92 0.64 (0.025) 0.64 (0.025) 1 0

KA 0.0061 145 (14) 0.87 0.66 (0.026) 0.68 (0.024) 4 3

G 0.0126 343 (22) 0.42 0.60 (0.026) 0.65 (0.030) 0 8
K1 0.0013 705 (46) 0.83 0.62 (0.026) 0.64 (0.028) 3 3

2018 K2 0.0001 1491 (98) 0.62 0.65 (0.025) 0.65 (0.025) 8 0
(1526) K3 0.0000 1526 (100) 0.69 0.65 (0.024) 0.65 (0.024) 8 0

KA 0.0000 1518 (99) 0.71 0.65 (0.026) 0.65 (0.026) 8 0

G 0.0175 273 (11) 0.45 0.60 (0.030) 0.67 (0.026) 0 11
K1 0.0028 458 (19) 0.84 0.62 (0.029) 0.66 (0.026) 3 7

2017+18 K2 0.0011 1488 (61) 0.66 0.65 (0.027) 0.66 (0.026) 9 1
(2464) K3 0.0000 2427 (100) 0.76 0.65 (0.024) 0.65 (0.024) 8 0

KA 0.0007 1682 (69) 0.74 0.65 (0.027) 0.66 (0.026) 9 0
GRM: Genetic relationship matrix. SD: standard deviation. aPenalization parameter in Equation (4.6) found
by cross-validating the TS. bnsup=average number of individuals from the TS with a non-zero coefficient
in the sparse Hat matrix (support set). RS: relative sparsity (100nTS/nsup). In the standard models λCV is
equal to zero and nsup is equal to the total TS size. Within each TS cycle, percentage of gain in accuracy
of the cstandard K-BLUP relative to the standard G-BLUP, and dsparse *-BLUP relative to the standard
*-BLUP (*=G- or K-).
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Table C.3: Heritability and accuracy of prediction for each training set (TS) composition
(including 0%, 5%, and 10% of subjects from the 2019 cycle), trait PH, environment OPT.

Accuracy (SD) % Gain
TS (nTS) GRM λCV

a nsup (RS)b h2 Standard Sparse Ic IId

TS
+0

%
(2
01

9)

G 0.0024 670 (74) 0.55 0.14 (0.014) 0.12 (0.014) 0 -9
K1 0.0005 735 (82) 0.88 0.14 (0.014) 0.13 (0.015) 1 -8

2017 K2 0.0006 763 (85) 0.76 0.13 (0.014) 0.14 (0.014) -2 3
(901) K3 0.0000 901 (100) 0.96 0.04 (0.012) 0.04 (0.012) -73 -3

KA 0.0002 857 (95) 0.87 0.12 (0.019) 0.11 (0.028) -14 -3

G 0.0131 317 (22) 0.71 0.02 (0.015) 0.08 (0.015) 0 430
K1 0.0020 387 (27) 0.95 0.06 (0.015) 0.08 (0.015) 265 43

2018 K2 0.0024 615 (43) 0.87 0.10 (0.015) 0.12 (0.014) 564 22
(1417) K3 0.0000 1417 (100) 0.93 0.06 (0.013) 0.06 (0.013) 322 -1

KA 0.0019 545 (38) 0.93 0.09 (0.021) 0.13 (0.017) 517 33

G 0.0129 499 (22) 0.64 0.11 (0.013) 0.07 (0.014) 0 -38
K1 0.0014 835 (36) 0.93 0.15 (0.013) 0.07 (0.013) 39 -51

2017+18 K2 0.0008 1660 (72) 0.84 0.16 (0.013) 0.13 (0.014) 49 -19
(2318) K3 0.0000 2318 (100) 0.94 0.06 (0.013) 0.06 (0.013) -46 -1

KA 0.0005 1786 (77) 0.89 0.15 (0.018) 0.14 (0.024) 40 -8

TS
+5

%
(2
01

9)

G 0.0010 819 (87) 0.55 0.23 (0.031) 0.22 (0.031) 0 -1
K1 0.0002 859 (92) 0.88 0.23 (0.031) 0.23 (0.032) 3 -3

2017 K2 0.0003 860 (92) 0.75 0.25 (0.031) 0.24 (0.031) 9 -2
(938) K3 0.0000 938 (100) 0.92 0.20 (0.032) 0.20 (0.032) -10 0

KA 0.0002 882 (94) 0.87 0.24 (0.033) 0.22 (0.035) 5 -5

G 0.0103 373 (26) 0.70 0.10 (0.037) 0.18 (0.036) 0 76
K1 0.0016 458 (31) 0.94 0.16 (0.036) 0.19 (0.036) 59 17

2018 K2 0.0018 714 (49) 0.87 0.24 (0.032) 0.25 (0.032) 136 5
(1454) K3 0.0000 1454 (100) 0.92 0.24 (0.027) 0.24 (0.027) 138 0

KA 0.0013 682 (47) 0.92 0.23 (0.034) 0.24 (0.033) 121 5

G 0.0121 500 (21) 0.63 0.16 (0.024) 0.14 (0.028) 0 -11
K1 0.0006 1388 (59) 0.92 0.22 (0.025) 0.17 (0.027) 34 -19

2017+18 K2 0.0006 1815 (77) 0.84 0.26 (0.026) 0.25 (0.026) 61 -4
(2355) K3 0.0000 2355 (100) 0.92 0.21 (0.027) 0.21 (0.027) 28 0

KA 0.0004 1847 (78) 0.89 0.25 (0.028) 0.24 (0.026) 53 -5

TS
+1

0%
(2
01

9)

G 0.0026 706 (72) 0.55 0.28 (0.043) 0.28 (0.044) 0 -1
K1 0.0004 817 (84) 0.88 0.29 (0.042) 0.28 (0.044) 3 -2

2017 K2 0.0004 857 (88) 0.76 0.30 (0.043) 0.30 (0.043) 8 -1
(974) K3 0.0000 974 (100) 0.92 0.28 (0.046) 0.28 (0.046) -1 0

KA 0.0002 907 (93) 0.86 0.29 (0.042) 0.28 (0.043) 4 -2

G 0.0128 291 (20) 0.70 0.17 (0.072) 0.25 (0.065) 0 48
K1 0.0020 363 (24) 0.94 0.23 (0.066) 0.25 (0.066) 35 11
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Table C.3 (cont’d)

2018 K2 0.0022 624 (42) 0.87 0.30 (0.054) 0.31 (0.055) 79 2
(1490) K3 0.0000 1490 (100) 0.92 0.32 (0.043) 0.32 (0.043) 92 0

KA 0.0019 540 (36) 0.92 0.29 (0.057) 0.30 (0.055) 70 4

G 0.0117 468 (20) 0.63 0.22 (0.047) 0.22 (0.055) 0 0
K1 0.0013 798 (33) 0.92 0.28 (0.044) 0.25 (0.053) 26 -8

2017+18 K2 0.0005 1846 (77) 0.84 0.32 (0.042) 0.31 (0.042) 47 -3
(2391) K3 0.0000 2391 (100) 0.92 0.29 (0.042) 0.29 (0.042) 32 0

KA 0.0003 1982 (83) 0.89 0.31 (0.043) 0.30 (0.044) 43 -3
GRM: Genetic relationship matrix. SD: standard deviation. aPenalization parameter in Equation (4.6) found
by cross-validating the TS. bnsup=average number of individuals from the TS with a non-zero coefficient
in the sparse Hat matrix (support set). RS: relative sparsity (100nTS/nsup). In the standard models λCV is
equal to zero and nsup is equal to the total TS size. Within each TS cycle, percentage of gain in accuracy
of the cstandard K-BLUP relative to the standard G-BLUP, and dsparse *-BLUP relative to the standard
*-BLUP (*=G- or K-).
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Table C.4: Heritability and accuracy of prediction for each training set (TS) composition
(including 0%, 5%, 10%, and 15% of subjects from the 2019 cycle), trait PH, environment DRT.

Accuracy (SD) % Gain
TS (nTS) GRM λCV

a nsup (RS)b h2 Standard Sparse Ic IId

TS
+0

%
(2
01

9)

G 0.0025 658 (73) 0.64 0.18 (0.013) 0.17 (0.013) 0 -4
K1 0.0005 718 (80) 0.92 0.19 (0.013) 0.34 (0.012) 9 78

2017 K2 0.0003 842 (93) 0.84 0.24 (0.013) 0.25 (0.013) 34 4
(901) K3 0.0000 901 (100) 1.00 0.33 (0.012) 0.33 (0.012) 84 1

KA 0.0000 901 (100) 0.92 0.22 (0.024) 0.11 (0.063) 26 -51

G 0.0175 263 (19) 0.59 -0.15 (0.017) -0.11 (0.017) 0 -29
K1 0.0028 319 (23) 0.91 -0.15 (0.017) -0.13 (0.017) -3 -13

2018 K2 0.0027 589 (42) 0.81 -0.13 (0.018) -0.12 (0.018) -14 -9
(1417) K3 0.0000 1417 (100) 0.96 -0.06 (0.019) -0.06 (0.019) -63 0

KA 0.0017 675 (48) 0.87 -0.14 (0.021) -0.13 (0.018) -11 -8

G 0.0178 363 (16) 0.58 -0.05 (0.017) -0.04 (0.017) 0 -18
K1 0.0028 447 (19) 0.91 -0.05 (0.017) -0.11 (0.018) -3 115

2017+18 K2 0.0033 741 (32) 0.82 -0.04 (0.017) -0.05 (0.017) -28 36
(2318) K3 0.0000 2316 (100) 0.97 0.08 (0.019) 0.08 (0.019) -243 0

KA 0.0022 853 (37) 0.87 -0.04 (0.020) -0.05 (0.026) -30 39

TS
+5

%
(2
01

9)

G 0.0025 664 (71) 0.66 0.55 (0.024) 0.56 (0.025) 0 2
K1 0.0003 781 (83) 0.92 0.57 (0.023) 0.60 (0.021) 3 5

2017 K2 0.0001 907 (97) 0.86 0.61 (0.020) 0.60 (0.021) 9 0
(938) K3 0.0000 938 (100) 0.98 0.58 (0.030) 0.58 (0.029) 5 0

KA 0.0000 919 (98) 0.93 0.60 (0.022) 0.57 (0.039) 7 -5

G 0.0157 271 (19) 0.59 0.17 (0.040) 0.26 (0.044) 0 60
K1 0.0030 286 (20) 0.91 0.22 (0.043) 0.29 (0.044) 32 34

2018 K2 0.0024 625 (43) 0.82 0.31 (0.045) 0.33 (0.045) 87 7
(1454) K3 0.0000 1454 (100) 0.95 0.34 (0.037) 0.34 (0.037) 104 0

KA 0.0018 658 (45) 0.87 0.30 (0.046) 0.32 (0.047) 83 5

G 0.0214 261 (11) 0.58 0.21 (0.030) 0.34 (0.033) 0 59
K1 0.0034 344 (15) 0.91 0.27 (0.032) 0.32 (0.080) 24 20

2017+18 K2 0.0037 636 (27) 0.82 0.36 (0.034) 0.36 (0.035) 68 1
(2355) K3 0.0000 2355 (100) 0.96 0.43 (0.027) 0.43 (0.027) 102 0

KA 0.0028 699 (30) 0.87 0.35 (0.037) 0.36 (0.038) 65 2

TS
+1

0%
(2
01

9)

G 0.0050 625 (64) 0.67 0.63 (0.025) 0.64 (0.028) 0 1
K1 0.0006 769 (79) 0.93 0.65 (0.024) 0.65 (0.027) 2 0

2017 K2 0.0000 970 (99) 0.86 0.68 (0.023) 0.67 (0.025) 6 0
(974) K3 0.0000 974 (100) 0.96 0.67 (0.029) 0.67 (0.029) 5 0

KA 0.0001 947 (97) 0.93 0.67 (0.024) 0.66 (0.028) 5 -1

G 0.0184 211 (14) 0.59 0.51 (0.037) 0.62 (0.037) 0 23
K1 0.0030 260 (17) 0.91 0.58 (0.033) 0.64 (0.035) 13 10
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Table C.4 (cont’d)

2018 K2 0.0023 628 (42) 0.83 0.65 (0.028) 0.66 (0.028) 28 2
(1490) K3 0.0000 1490 (100) 0.94 0.60 (0.031) 0.60 (0.031) 17 0

KA 0.0018 653 (44) 0.87 0.64 (0.029) 0.66 (0.030) 27 2

G 0.0212 231 (10) 0.58 0.49 (0.030) 0.63 (0.027) 0 28
K1 0.0034 309 (13) 0.91 0.57 (0.028) 0.65 (0.027) 15 13

2017+18 K2 0.0040 559 (23) 0.82 0.65 (0.023) 0.67 (0.023) 33 2
(2391) K3 0.0000 2391 (100) 0.95 0.64 (0.022) 0.64 (0.022) 31 0

KA 0.0033 556 (23) 0.87 0.65 (0.024) 0.67 (0.025) 32 3

TS
+1

5%
(2
01

9)

G 0.0055 487 (48) 0.66 0.67 (0.023) 0.69 (0.025) 0 3
K1 0.0039 613 (61) 0.93 0.69 (0.022) 0.70 (0.020) 2 2

2017 K2 0.0006 804 (80) 0.86 0.71 (0.021) 0.72 (0.021) 6 0
(1010) K3 0.0000 1010 (100) 0.97 0.70 (0.027) 0.69 (0.027) 3 0

KA 0.0003 857 (85) 0.92 0.71 (0.022) 0.70 (0.025) 5 -1

G 0.0198 173 (11) 0.59 0.54 (0.032) 0.65 (0.031) 0 20
K1 0.0034 204 (13) 0.91 0.60 (0.029) 0.66 (0.027) 11 10

2018 K2 0.0025 567 (37) 0.83 0.67 (0.025) 0.68 (0.026) 23 2
(1526) K3 0.0000 1526 (100) 0.94 0.67 (0.027) 0.67 (0.027) 22 0

KA 0.0018 626 (41) 0.87 0.67 (0.025) 0.68 (0.026) 23 1

G 0.0213 193 (8) 0.58 0.51 (0.028) 0.65 (0.025) 0 27
K1 0.0038 253 (10) 0.91 0.59 (0.026) 0.66 (0.025) 14 13

2017+18 K2 0.0034 600 (25) 0.82 0.67 (0.023) 0.68 (0.023) 30 2
(2464) K3 0.0000 2427 (100) 0.95 0.67 (0.022) 0.67 (0.022) 32 0

KA 0.0028 618 (25) 0.87 0.66 (0.023) 0.67 (0.025) 29 2
GRM: Genetic relationship matrix. SD: standard deviation. aPenalization parameter in Equation (4.6) found
by cross-validating the TS. bnsup=average number of individuals from the TS with a non-zero coefficient
in the sparse Hat matrix (support set). RS: relative sparsity (100nTS/nsup). In the standard models λCV is
equal to zero and nsup is equal to the total TS size. Within each TS cycle, percentage of gain in accuracy
of the cstandard K-BLUP relative to the standard G-BLUP, and dsparse *-BLUP relative to the standard
*-BLUP (*=G- or K-).
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