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ABSTRACT

MULTI-PHYSICS MODELING AND SIMULATION OF PHOTOVOLTAIC DEVICES AND
SYSTEMS

By

Timofey Golubev

Physics-based computational modeling is an essential aspect of research and development of new

photovoltaic (PV) technologies. For example, PVmodeling allows us to improve our understanding

of device physics, evaluate the potential of new device architectures prior to experimentation, and

predict the energy production of PV systems. This dissertation describes the development of

improvements to PV modeling at both the device and system levels, as well as the application of

these models to obtain new insights into device physics and PV system performance.

The first half of this thesis focuses on solar cell modeling using the drift-diffusion approach.

Investigations into numerical instabilities of a drift-diffusionmodel for bilayer organic solar cells are

described, and techniques for improving convergence behavior are presented. The drift-diffusion

approach is then adapted for planar perovskite solar cells, validated against literature results, and

utilized to understand a new experimental result involving the impact of ultrathin fullerene layers on

device performance. The second half of this thesis expands our modeling to PV systems. Here, we

focus on the effects of temperature and soiling (accumulation of particulate matter on PV module

surfaces) on PV system energy production. A general semi-physical model for predicting annual PV

soiling losses is developed and integratedwith open-source PVperformancemodels and commercial

algorithms for PV system cleaning schedule optimization. Additionally, the potentials of machine

learning approaches to soiling modeling are discussed and a proof-of-concept is demonstrated.

In order to consider the impact of temperature on PV module performance, a coupled thermal-

electrical modeling approach is developed by combining temperature-dependent equivalent circuit

models with a commercial heat transfer solver. This approach also allows for predicting energy

production of PV modules or films installed on irregular surfaces, such as vehicles. Application of

the coupled thermal-electrical approach to simulation of residential rooftop and vehicle-integrated



PV systems is demonstrated. Overall, this work has resulted in an improved understanding of the

numerical methods necessary to ensure stability of drift-diffusion codes, insight into the role of

fullerenes in perovskite solar cells, and the development of modeling approaches than can aid in

PV system engineering and improve accuracy in PV system energy production forecasting.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Fossil fuel energy sources have been a fundamental driver of industrialization and the resulting

technological, economic, and social progress. However, fossil fuels are finite with predictions

expecting worldwide reserves of oil, natural gas, and coal to be depleted in 50, 51, and 132 years

respectively [1]. Additionally, fossil fuels are the dominant source of greenhouse gases, which are

causing climate change [2]. The Intergovernmental Panel on Climate Change (IPCC) predicts that

without significant emissions reductions, annual carbon dioxide emissions would rise to over 100%

above 2010 levels by 2050, which is likely to cause a rise in global temperatures of 4◦C from pre-

industrial levels. Such a temperature rise is expected to cause serious groundwater shortages, more

severe weather events, decreased agricultural production, and loss of critical ecosystem functions.

The IPCC predicts that it is possible to limit the global temperature increase to 2◦C if carbon dioxide

emissions drop to 66% below 2010 levels by 2050 [3]. A rapid transition to clean renewable energy

sources is essential to maintain the standard of living in developed countries, allow for the continued

development of the rest of the world, and reduce the effects of greenhouse gas emissions.

With the increasing concerns and education about fossil fuels, renewable energy usage has

been expanding worldwide. Sunlight is the most abundant renewable resource. There is more

energy in the sunlight striking the earth’s surface in two hours than the annual worldwide energy

consumption [4]. In 2018, increases in solar power production capacity accounted for over 53% of

the total new net capacity of all renewable sources [5]. The growth in photovoltaics (PV) energy has

been supported by improved technologies that have led to increasing efficiencies and rapidly falling

costs [6]. There is still an immense opportunity for growth since PV energy currently supplies

only 2.6% of the global electricity demand [7]. In order to effectively expand PV technologies, it

is necessary not just to install more solar panels, but also to continue to improve power generation
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efficiencies and reduce manufacturing costs. These improvements can be made in two different

categories. One area of potential improvement is to develop better solar cell materials and devices

that are more efficient and less expensive to produce. The second area where improvements can be

made is at the PV module and system level, by reducing losses due to the environmental conditions

such as high temperatures and reduction in absorbed irradiance due to soiling (i.e. particulate

matter) accumulation.

Physics and computational modeling are an essential part of the research and development of

PV devices and systems. Computational modeling allows us to explain experimental observations

and test new designs before investing time and financial resources into conducting experiments.

Developing models for solar cell devices that can explain experimental observations requires a

strong understanding of solar cell device physics. Consideration of semiconductor physics, optics,

heat transfer, weather, and soiling is necessary to realistically model solar modules that are outside

of controlled laboratory conditions. Therefore, accurate modeling of PV technologies in real-

world conditions is a complex multi-physics problem whose solution requires the combination of

electrical, thermal, and environmental models. This dissertation describes the development of

improvements to PV modeling at both the device and system levels, as well as the application of

these models to obtain new insights into device physics and PV system performance.

1.2 Solar Cell Devices

A solar cell is a two-terminal semiconductor device that generates current and voltage when

under illumination. The basic components of a solar cell are two electrodes (at least one of which

allows transmission of light) and a solar irradiance absorber (also known as the active layer), which

is made of a semiconductor. The working principle is based on the photovoltaic effect where

photons of energy greater than the bandgap of the absorber layer excite electrons from the valence

band (VB) to the conduction band (CB), leaving behind holes in the VB. Holes are the absence

of an electron and behave like a particle, which is positively charged and has an effective mass

that reflects its ability to move through a material. Due to an energy level difference between
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the cathode and anode work functions, a solar cell has a built-in electric potential. The electric

potential causes the photogenerated free electrons and holes (also known as charge carriers, or

simply carriers) to separate and move on-average in opposite directions to the positive and negative

contacts, thus generating a current. Charge carriers also move due to diffusion, which describes the

tendency of particles to move from higher to lower concentration. The net current in the device has

contributions from carrier drift due to the electric potential and carrier diffusion due to the particle

concentration gradient (Figure 1.1). The mechanism of separation of the carriers is dependent on

the materials and architecture of the cell. The accumulation of electrons and holes at the electrodes

results in the generation of a voltage, which counteracts the built-in potential. Once the voltage due

to charge accumulation at the contacts becomes high enough to cancel both the drift and diffusion

currents, there will be zero current in the solar cell. The voltage at which this occurs is called the

open-circuit voltage (Voc). Beyond Voc, current flows in the opposite direction, and the solar cell

no longer produces electrical energy.

Figure 1.1: Diagram of the energetics, and drift and diffusion currents at the p-n junction of a
solar cell. Adapted from [8].

The performance of a solar cell can be described in terms of a generated current density (J)

versus voltage (V) curve (commonly known as JV curve), as shown in Figure 1.2. The JV curve

has several parameters that are used to characterize a device’s performance: short-circuit current
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density (Jsc), open-circuit voltage (Voc), and fill factor (FF). The short-circuit current is the current

which flows when the voltage between the electrodes is zero, or equivalently when the device is

short-circuited. This current depends strongly on the photon absorption rate in the active layer.

In the ideal case, Jsc is equal to the photocurrent (Jph); in other words, all of the photogenerated

electrons and holes reach the electrodes. The open-circuit voltage is the maximum voltage that

a solar cell can produce or the voltage that develops inside the cell when the two electrodes are

isolated. Voc is the zero of the JV curve. A solar cell will have the highest efficiency if it is operated

at the J and V that gives maximum power output, where power is defined by P = JV . The fill

factor is defined as the ratio Pmax/JscVoc and represents the "squareness" of the JV curve. Power

conversion efficiency is the ratio between the maximum generated power and the incident power

PCE =
Pmax
Pinc

=
JscVocFF

Pinc
(1.1)

Figure 1.2: General JV curve showing the main parameters used to describe a solar cell’s
performance. Adapted from [9].

To maximize efficiency, the Jsc, Voc, and FF should be maximized. Qualitatively, this means

that an ideal solar cell will have a high absorption rate of photons with all of the generated charge

carriers reaching the electrodes without loss. In practice, we can describe four main criteria for an

efficient solar cell. First, the absorbing layer’s bandgap must be small enough so that the photons

from solar radiation have enough energy to excite the electrons. Simultaneously, the bandgap
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should be large enough to prevent carrier recombination. Second, the absorber layer should be

thick enough to absorb a significant amount of light. However, this thickness is limited to the

finite diffusion lengths of charge carriers in the material. Therefore, an active layer that has high

carrier mobilities is beneficial. Third, the cell’s layers should have suitable energy bands so that

both the electrons and holes encounter no energy barriers as they travel to their contacts. Finally,

the losses during transport of the generated carriers to the electrodes should be minimized. These

losses can occur due to carriers recombining with defects and impurities in the active layer and at

the interfaces between layers [10].

Solar cell technologies are often classified into three generations. First-generation solar cells

are silicon-based and dominate the market. Second-generation solar cells are based on thin-film

technologies such as cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and

thin-film amorphous silicon. Third-generation solar cells are based on semiconducting organic

molecules, inorganic nanoparticles, or organic-inorganic hybrid materials, and generally manu-

factured through solution-processing. Prominent examples are organic and perovskite solar cells.

Some advantages of third-generation solar cells are reduced manufacturing costs due to low tem-

perature and vacuum-free fabrication and the possibility of roll-to-roll printing. They are also light,

flexible, and can be made semi-transparent [11]. The commercial market is currently dominated by

first-generation solar cells, but this may soon change as third-generation PV technologies advance

to commercially-viable products. The device modeling portion of this dissertation focuses on the

emerging third-generation solar cells, while the system-level modeling portion concentrates mostly

on the first and second-generation solar cells that are commonly used today commercially.

1.3 Photovoltaic Device Modeling

As briefly described above, many aspects need to be optimized in order to design efficient

solar cells. Experimentally optimizing all of these aspects is time-consuming and can be costly.

Computational modeling can help rapidly test possible combinations of materials and device

architectures for ones that have the greatest potential of producing high-performance solar cells.
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Also, comparing experimental results to simulations based on the physics equations improves our

understanding of the mechanisms that affect the device performance. Computational modeling has

been used since the 1950s to study the physical properties of semiconductor devices, including solar

cells. Many PV device models are based on the fitting of experimental JV curves to an equivalent

circuit equation. More detailed and physics-based approaches are based on various simplifications

of the Boltzmann transport equation. One of the most popular and efficient approaches is the

drift-diffusion model, which involves numerically solving equations for the electric potential and

currents in the device in a self-consistent loop. The equivalent circuit and drift-diffusion approaches

are introduced in the next two sections.

1.3.1 Equivalent Circuit Approach

Equivalent circuit modeling is a widely used approach for describing the electrical behavior of solar

cell devices. This approach uses equivalent circuit equations based on the Shockley diode equation,

which describes the ideal recombination current from diffusion and recombination of carriers at

the p-n junction (a diode) [12]. The Shockley diode equation for current (I) in a diode as a function

of applied voltage (Va) is

I(Va) = Io

[
exp

(
eVa
kBT

)
− 1

]
(1.2)

where I0 is the saturation-current (thermal generation current at zero applied bias), e is the elemen-

tary charge, kB is the Boltzmann constant, and T is the device temperature. The thermal generation

current is the current due to drift of the minority carriers (electrons in the p-type region and holes

in the n-type region) across the junction.

The simplest model of a solar cell treats it as an equivalent circuit composed of an ideal diode

and a current source that are connected in parallel, as shown in Figure 1.3a. The relationship

between current and voltage is described by adding a photocurrent term to the Shockley diode

equation

I(Va) = Io

[
exp

(
eVa
kBT

)
− 1

]
− Iph (1.3)
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In practice, a solar cell has losses which can be described by adding a series resistance (Rs)

and a shunt (or parallel) resistance (Rp), as shown in Figure 1.3b. The series resistance describes

the losses related to non-infinite mobilities of the charge carriers and imperfect contacts between

the active layer and electrodes. The parallel resistance determines the leakage current, which is the

current that does not flow through the electrodes and can be due to pinholes between the layers in

the cell that provide an alternate path for the current. The charges that flow through the leakage

path will not contribute to the powering of the device or charging of the battery that the solar cell

is connected to.

Figure 1.3: Equivalent circuit of an ideal solar cell (a) and a solar cell with losses modeled with
series and shunt resistance (b). Adapted from [13].

A non-dimensional constant, a, called the ideality factor, is added to the Shockley diode term

to account for deviation of the diodes from Shockley diffusion theory [14]. Recognizing e/kBT as

the thermal voltage (VT ), this more realistic equivalent circuit can be described by

I(V) = Io

[
exp

(
(V − IRs)

aVT

)
− 1

]
+

V − IRs
Rp

− Iph (1.4)
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For a high-performance solar cell, Rs should be small, and Rp should be large. Other equivalent

circuit models have been developed, such as the ones for organic heterojunctions [15, 16]. The effect

of temperature on device performance can be included by considering its effect on the parameters

of the equivalent circuit equation. An advantage of equivalent circuit modeling is that it is a simple

approach with low computational expense and reasonable accuracy, as long as the equations are

fitted to experimental data. Equivalent circuit modeling of solar cells with consideration of the

effects of temperatures is described in Chapter 6.

1.3.2 Drift-Diffusion Approach

While using equivalent circuit equations allows for a quick fitting of experimental current-voltage

curves and some understanding of the physical parameters, it does not give a deep physical insight

into the mechanisms occurring inside the device. In order to understand the device physics, it is

necessary to perform simulations which explicitly treat the electrodynamics, charge generation,

separation, and recombination processes. The most general equation for transport in semiconduct-

ing devices is the semi-classical Boltzmann transport equation (BTE), which describes the time

evolution of a seven-dimensional particle distribution function f (®r,®t, t) [17].

∂ f
∂t
+ ®v · ∇r f + ®F · ∇p f =

(
∂ f
∂t

)
collisions

(1.5)

The distribution function represents the probability for a particle to occupy position ®r with mo-

mentum ®p at time t. By definition, integrating f over all momentums gives the particle density at

position ®r , and further integrating over all positions gives the total number of particles N in the

system. (Note that this equation is often written in terms of wavenumber ®k, which is related to

particle momentum through the de Broglie relation ®p = ~®k).

The collisions term on the right-hand side describes scattering in and out of a momentum state.

The probability of scattering of particles out of a momentum state ®p to a momentum ®p′ is defined

as S( ®p, ®p′). The total number of scattering events from ®p to ®p′ is given by the transition probability

multiplied by the probability distribution function. The net change in f ( ®p) due to scattering is the
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difference between scattering of particles into state ®p and scattering of particles out of state ®p. For

each state ®p, we sum the contributions to scattering from all other states ®p′.(
∂ f
∂t

)
collisions

=
∑
®p′

[
f ( ®p′)S( ®p′, ®p) − f ( ®p)S( ®p, ®p′)

]
(1.6)

However, we should correct for the Pauli Exclusion Principle which states that only one particle

can occupy a given state at a given time (ignoring spin). To account for exclusion, the transition

rate probability is multiplied by the probability that the state is not occupied (1 − f ), giving(
∂ f
∂t

)
collisions

=
∑
®p′

[
(1 − f ( ®p))S( ®p′, ®p) − f (®k)(1 − f ( ®p′))S( ®p, ®p′)

]
(1.7)

In the limit of small d ®p, the sum can be converted to an integral, making the BTE an integro-

differential equation

∂ f
∂t
+ ®v · ∇r f + ®F · ∇p f =

∫
®p′
[(1 − f ( ®p))S( ®p′, ®p) − f (®k)(1 − f ( ®p′))S( ®p, ®p′)]d ®p′ (1.8)

With seven partial derivatives of the distribution function on the left-hand side, and a scattering

integral on the right-hand side, the general BTE is very difficult and computationally expensive to

solve. Simplifications of the BTE can be derived through the Method of Moments, where the BTE

is multiplied by a moment generating function [18]. Moments of different orders can be taken,

with the order of the moment determined by the power of the momentum in the moment generating

function. Every moment of the BTE generates a new transport equation. A moment Mφ is defined

in terms of the moment-generating function φ( ®p) as

Mφ =
1
V

∫
φ( ®p) f (®r, ®p, t)d ®p (1.9)

where the 1/V is to cancel out the volume that arises from taking the three-dimensional integral.

The moment-generating functions for the zeroth, first, and second moments are

φ0 = 1, φ1 = ®p, φ2 = p2 (1.10)

Taking an nth order moment of the BTE, we have

∂

∂t

[
1
V

∫
φn f d ®p

]
+ ∇r ·

1
V

∫
®v f φnd ®p +

1
V

∫
φn ®F · ∇p f d ®p =

1
V

∫
φnQ( f )d ®p (1.11)
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where we used ®v · ∇r f = ∇r · (®v f ) and the scattering term of the BTE was denoted as Q( f ) for

brevity. The third term of the left-hand side can be simplified by integration by parts

®F
V
·

∫
φn · ∇p f dpd2p =

®F
V
·

[ ∫
φn f

����p=∞
p=−∞

d2p −
∫

f
∂φ

∂p
d ®p

]
(1.12)

The first term on the right-hand side equals zero since the distribution function must go to zero at

infinite momentum. Thus, we have the following equation for the nth moment of the BTE

∂

∂t

[
1
V

∫
φn f d ®p

]
+ ∇r ·

1
V

∫
®v f φnd ®p −

F
V
·

∫
f
∂φ

∂p
d ®p =

1
V

∫
φnQ( f )d ®p (1.13)

By taking the zeroth and first moments of the BTE, one can derive the continuity and drift-diffusion

equations (respectively) which are used for drift-diffusion modeling [17, 19].

To derive the continuity equation, we evaluate the first moment of the BTE by substituting φ = 1

into Equation 1.13 which yields

∂

∂t

[
1
V

∫
f d ®p

]
+ ∇r ·

1
V

∫
®v f d ®p =

1
V

∫
Q( f )d ®p (1.14)

Note that this is simply taking the mean of the BTE over momentum space. In semiconductors, the

mean effect of collisions results in generation and recombination of charge carriers. Therefore, the

zeroth moment of the collision term is the net carrier density generation rate Uρ. We recognize

the first term on the left-hand side as the time derivative of the density distribution of particles in

space. We recognize the integral in the second term on the left-hand side as a particle density flux∫
®v f d ®p = ρ®v ≡ ®Φρ (1.15)

Applying these simplifications, we have

∂ρ

∂t
= Uρ − ∇r · ®Φρ (1.16)

This is the continuity equation which describes a general conservation law, where ρ is some quantity

per unit volume, ®Φρ is the flux of that quantity, andUρ is the generation rate of that quantity per unit

time per unit volume. In the context of semiconductor device modeling, the continuity equation

is a carrier mass conservation law, stating that the rate of change in carrier density is equal to the
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net carrier generation rate minus the divergence of the particle flux. Rewriting the particle flux in

terms of an electrical current density divided by the charge of the carriers (where e denotes the

elementary charge), we get the continuity equations for electrons (n) and holes (p) that are used for

semiconductor device modeling

∂p
∂t
= Up −

1
e
∇r · ®Jp and

∂n
∂t
= Un +

1
e
∇r · ®Jn (1.17)

To derive the drift-diffusion equation, we evaluate the first moment of the BTE by substituting

φ = ®p = m®v into Equation 1.13 and dividing all terms by m

∂

∂t

[
1
V

∫
®v f d ®p

]
+ ∇r ·

1
V

∫
®v®v f d ®p −

®F
mV
·

∫
f d ®p =

1
V

∫
®vQ( f )d ®p (1.18)

We recognize the integrals in the first term and third terms on the left-hand side as a particle density

flux ®Φρ and particle density distribution ρ, respectively. Therefore, we have

∂ ®Φρ

∂t
+ ∇r ·

1
V

∫
®v®v f d ®p −

®F
m
ρ =

1
V

∫
®vQ( f )d ®p (1.19)

The second term can be simplified as follows.

∇r ·
1
V

∫
®v®v f d ®p =

1
V

[ ∫
∇r · ®v®v f d ®p

]
=

1
V

[ ∫
®v®v · ∇r f d ®p

]
=

1
V

[ ∫
v2

i ∇r f d ®p
]

=〈v2
i 〉∇r ρ

(1.20)

where we have assumed an isotropic velocity distribution (〈v2
x〉 = 〈v

2
y〉 = 〈v

2
z 〉 ≡ 〈v

2
i 〉). Next we

use the equipartition theorem for a single component of velocity

1
2

mv2
i =

1
2

kBT (1.21)

where kB is the Boltzmann constant and T is the temperature. Therefore,

〈v2
i 〉∇r ρ =

kBT
m
∇r ρ (1.22)
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The right-hand side collision term of Equation 1.19 can be simplified by using the relaxation

time approximation (RTA), where one replaces the scattering integral by ( f 0− f )/τ, where f 0 is the

equilibrium particle distribution, and τ is a time-constant called the relaxation time, which defines

the time it takes the system to relax to its equilibrium state after being perturbed by collisions [17].

Thus we have ∫
®vQ( f )d ®p =

∫
®v
( f 0 − f )

τ
d ®p = ρ

〈®v0〉 − 〈®v〉
τ

(1.23)

where 〈®v〉 represents the average velocity of the ensemble of particles. By definition, the average

velocity of the ensemble at equilibrium is zero, therefore∫
®vQ( f )d ®p = −ρ

〈®v〉

τ
= −
®Φρ

τ
(1.24)

Combining Equations 1.19, 1.22, and 1.24, we have

∂ ®Φρ

∂t
+

kBT
m
∇r ρ −

®F
m
ρ = −

®Φρ

τ
(1.25)

In the context of semiconductors, the particle density flux can be written in terms of an electrical

current density divided by the elementary charge. For holes (p) and electrons (n), we have

®Φp =
®Jp

e
and ®Φn = −

®Jn
e

(1.26)

The force is due to the electric field so we can use ®F = e ®E . Substituting these quantities and

rearranging Equation 1.25, we get

τ
∂ ®Jp

∂t
+ ®Jp =

e2τ
m
®E p − eτ

kBT
m
∇r p and τ

∂ ®Jn
∂t
+ ®Jn =

e2τ
m
®En + eτ

kBT
m
∇rn (1.27)

Now we substitute the definition of carrier mobility (µ = eτ/m) and the Einstein relation for the

diffusion coefficient (D = µkBT/e), yielding

τ
∂ ®Jp

∂t
+ ®Jp = eµp ®E p − eDp∇r p and τ

∂ ®Jn
∂t
+ ®Jn = eµn ®En + eDn∇rn (1.28)

For drift-diffusion modeling, the time derivative of the current density is usually neglected. The

final drift-diffusion equations for holes and electrons are

®Jp = epµp ®E − eDp∇r p and ®Jn = enµn ®E + eDn∇rn (1.29)
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These equations describe the contributions to electrical currents in the device. The first term

describes carrier drift due to the built-in electric field, and the second term describes carrier

diffusion due to the concentration gradient (see Figure 1.1). These equations are usually coupled

with Poisson’s equation to solve for the electric field.

Drift-diffusion modeling has been widely used for semiconductor device simulation due to

being computationally inexpensive and accurate for many situations. For solar cells, drift-diffusion

modeling allows us to understand the carrier dynamics (generation, transport, recombination, and

extraction) as well as simulate practical efficiency by accounting for various recombination losses

in multilayer devices. Recently, there has been work on developing models that are a more accurate

approximation of the BTE by taking higher-order moments (e.g. hydrodynamics and energy

transport equations), including quantum effects, or even directly solving the full BTE [18, 20, 21].

Some devices, such as nanoscale transistors where the carriers can behave ballistically and quantum

effects become important, need these more sophisticated and computationally expensive methods.

However, in most solar cells, the carriers experience enough resistance to make their motion

diffusive. Also, most solar cells have active layers that are thick enough that quantum confinement

effects are not significant. Therefore drift-diffusion modeling, while being one of the simplest

models in the hierarchy of semiconductor device models [19], remains accurate for most PV

devices. Chapters 2-4 of this dissertation are focused on drift-diffusion modeling.

1.4 Photovoltaic System Modeling

One of the main goals of PV system modeling is to predict annual energy production in order to

size a PV system to the energy demand and estimate return-on-investment. Unlike device models,

which are generally focused on device performance under standard laboratory test conditions,

models of PV systems must consider the realistic environmental conditions. For example, solar

modules in hot and sunny locations may have a significantly lower efficiency than whenmeasured in

the lab. Solar modules in locations with less directly normal irradiance will produce less power than

if a global average solar irradiance is assumed. Since weather cannot be reliably predicted a year in
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advance, such models use what is known as Typical Meteorological Year (TMY) weather data. The

TMY data represents the median weather conditions (based on a set of weather parameters) for a

location for a given historical time frame (30 years is the most common) and can be a combination

of measured and modeled data [22].

Solar irradiance, ambient temperature, and wind speed are the three most important parameters

from the TMY data for PV modeling. Incident irradiance is the main factor that determines energy

production. The combination of incident irradiance, ambient temperature, and wind speed allows

to estimate the module temperatures, and therefore, the associated thermal losses. The system’s

orientation with respect to the sun throughout the day is also important since device efficiency is

higher under directly normal irradiance. Even the impact of particulate matter (e.g. dust, dirt,

pollutants) accumulating on the panels must be considered, as it can lead to significant losses in

energy production. The process of particulate matter accumulating on PV modules is known as

soiling. Losses due to soiling (known as soiling losses) are significant enough in some areas of

the world that PV systems must be regularly cleaned to maintain their profitability. Such cleaning

should be optimized to balance the cost of cleaning with the cost of energy lost due to a certain level

of soiling. The importance of soiling on PV systems has only recently been realized, and the topic

is not yet well understood. Chapter 5 discusses the development of improvements to current soiling

loss estimation techniques. While not the focus of this dissertation, other losses affecting a PV

system’s performance are those due to mismatch (electrical loss due to slight differences between

connected modules), resistance in the wires, shading of solar irradiance (e.g. by nearby buildings,

trees, or hills/mountains), snow, light-induced degradation, and losses in the direct-current to

alternating-current inverter.

For standard PV installations (e.g. free-standing modules or rooftop systems), accounting for

the system’s orientation with respect to the sun is a relatively straightforward trigonometry problem,

and module temperature can be estimated through empirical equations. This is no longer the case

when modeling emerging PV system technologies such as the integration of PV modules or films

onto irregular surfaces such as vehicles. Estimation of incident irradiance and cell temperature for
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PVs integrated into irregular surfaces is discussed in Chapter 6.

1.5 Outline

The central focus of this dissertation is multi-physics modeling and simulation of PV devices

and systems. The first part (Chapters 2-4) focuses on electrical modeling of PV devices, which can

help our understanding of the physics of new solar cells and aid their development. The second part

(Chapters 5-6) focuses on the modeling of PV systems, such as rooftop modules and utility-scale

power plants.

In Chapter 2, I present an introduction to the numerical methods for solving the drift-diffusion

equations. I also demonstrate that the drift-diffusion results are consistent with the analytical

expression for current in single-carrier devices in the space-charge-limited current regime. In

Chapter 3, I describe investigations into the numerical properties of a drift-diffusion model for

bilayer organic solar cells (DD-BI model) that was developed by Non Thongprong and Kanokkorn

Pimcharoen, who are Ph.D. alumni from our research group. Initially, I investigated the numerical

instabilities which were often encountered when running the DD-BI. In order to further study

these stability issues and more effectively prototype improvements, I re-implemented the Fortran

code in Matlab, and then developed and investigated several variations of the iterative scheme,

some of which resulted in improved convergence. After acquiring an understanding of the drift-

diffusionmodeling techniques and their numerical properties, I developed a drift-diffusionmodel for

perovskite solar cells, which are one of the most promising emerging PV technologies. Chapter

4 focuses on drift-diffusion modeling of perovskite solar cells and analysis of the fundamental

physics to explain experimentally measured current-voltage curves. I describe the adaptation of

the drift-diffusion model for perovskites and validation of the model by comparison to literature

results. Finally, I converted the code into C++ for significantly improved performance and applied

the model to help explain a new experimental result where it was found that ultrathin fullerene

layers can have a drastic impact on a particular planar perovskite solar cell architecture. C++,
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Matlab, and Python examples of the drift-diffusion codes that I developed are available1.

Chapter 5 describes the development of PV energy production forecasting models that consider

environmental conditions and soiling losses. I propose improvements over existing soiling loss

models where several semi-physical models for soiling accumulation and a model for the angular

reflection due to soiling are combined. Additionally, I demonstrate the potential of using a machine

learning approach to soiling modeling. In a research and development collaboration with PV

startup Enlighten Energy Ltd., the semi-physics soiling models were combined with the PV system

performance models provided by the open-source Python package PVLIB to create PV SoilSayer,

a new commercial web-based software tool. PV SoilSayer predicts a power plant’s yearly energy

production, losses due to soiling, and calculates optimized cleaning schedules. The simulation

results were compared with experimental data collected at large solar power plants. Appendix A

describes PV SoilSayer in more detail.

Chapter 6 describes the development of coupled thermal-electrical PV models by integrating

temperature-dependent equivalent circuit solar cellmodelswith a commercial heat-transfer software

(TAITherm). I analyze the effects of temperature and irradiance on PV device performance.

Additionally, I describe the development of an improved algorithm for determining equivalent

circuit model parameters. Then I discuss several practical multi-physics PV applications that can

be simulatedwith themodels developed in this dissertation. These include residential roof-mounted

PV systems, vehicle-integrated transparent photovoltaics, and PV-battery systems.

Chapter 7 presents the conclusions of this dissertation and an outlook on potential future

research directions.

1https://github.com/tgolubev
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PART I

DRIFT-DIFFUSION MODELING OF SOLAR CELLS
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CHAPTER 2

IMPLEMENTING DRIFT-DIFFUSION MODELS

2.1 1D Drift-Diffusion Equations

Steady-state one-dimensional modeling along the thickness dimension is often sufficient to

represent a solar cell [17]. In the device, the electric potential (ψ) is due to the free electrons (n)

and free holes (p) and is described by the 1D Poisson equation

∂2

∂x2ψ(x) =
q
ε
[n(x) − p(x)] (2.1)

where q is the elementary charge (always positive) and ε is the dielectric constant. The above

equation assumes that ε is constant within each layer of the device. Defining x = 0 as the anode

and x = L as the cathode, the boundary conditions for the electric potential are

ψ(L) − ψ(0) + Vext = Vbi (2.2)

where Vext is the externally applied bias and Vbi is the built-in potential, which is defined as

(Wc −Wa)/q where Wc and Wa are the cathode and anode work functions respectively.

The current density is separated for electrons and holes (Jn and Jp, respectively) and related to

the net free carrier generation rate, U(x), by the continuity equations

∂Jn
∂x
(x) = −qU(x) and

∂Jp

∂x
(x) = qU(x) (2.3)

The equations to findU generally involve charge recombination and dissociation rates and will vary

depending on the solar cell device that is being modeled.

The current densities are also related to the electric potential and charge carrier densities through

the drift-diffusion equations

Jn = −qnµn
∂ψ

∂x
+ qDn

∂n
∂x

Jp = qpµp
∂ψ

∂x
− qDp

∂p
∂x

(2.4)
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where Dn(p) is the diffusion coefficient and µn(p) is the charge carrier mobility. Usually the Einstein

relation D = µVt is used, where Vt = kBT/q is called the thermal voltage.

The boundary conditions for the charge densities at the anode are

n(0) = Ncexp
(
−

Egap − φa

Vt

)
and p(0) = Nvexp

(
−
φa
Vt

)
(2.5)

where Nc and Nv are the density of states of the conduction and valence bands respectively, Egap

is the active layer bandgap, and φa is the injection barrier at the anode. Similarly, for the cathode

n(L) = Nvexp
(
−
φc
Vt

)
and p(L) = Ncexp

(
−

Egap − φc

Vt

)
(2.6)

where φc is the injection barrier at the cathode. The drift-diffusion and current continuity equations

are usually combined.

2.2 Discretization

In order to solve these equations numerically, we need to choose a discretization scheme.

For 1D simulations of solar cells, a square mesh can be used so finite-difference discretization

is appropriate. The Poisson equation is discretized in a straightforward way, using the central-

difference approximation for the second derivative

εi
ψi−1 − 2ψi + ψi+1

(δx)2
= q(ni − pi) (2.7)

where δx is the distance between mesh points. The variable ψ is many orders of magnitudes smaller

than n and p, which can lead to numerical issues such as rounding errors, overflow, and underflow.

This can be avoided by using dimensionless scaled variables ψ′i = ψ/Vt , n′i = ni/N , and p′i = pi/N

where N is of the same order as the density of states of charge carriers. The rescaled Poisson

equation is

εr,i(ψi−1 − 2ψi + ψi+1) =
qN(δx)2

ε0Vt
(n′i − p′i) (2.8)

where εr = ε/ε0 is the relative permittivity. For points i that are on the interface of two layers with

different relative permittivity (εr,1 and εr,2), we change the left-hand side of the equation to

εr,1ψ
′
i−1 − 2

(εr,1 + εr,2)

2
ψ′i + εr,2ψ

′
i+1 (2.9)
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To solve for the electric potential at all mesh points, Equation 2.8 is rewritten as a matrix equation

−2εr,1 εr,2 0 0 · · · 0

εr,1 −2εr,2 εr,3 0 · · · 0

...
...

...
...

. . .
...

...
...

...
...

. . . 0

0 · · · · · · 0 εr,L−2 −2εr,L−1





ψ′1

...

...

...

ψ′L−1



= CV



(n′1 − p′1) − εr,0ψ
′
0

...

...

...

(n′L−1 − p′L−1) − εr,Lψ
′
L



(2.10)

where CV = qN(δx)2/(ε0Vt). We keep the relative permittivity in the matrix to allow treatement

of devices with differing dielectric constants in different layers. At the interfaces, the elements will

need to be changed according to Equation 2.9. Note that we omit solving for the potential at the

endpoints (i = 0 and i = L) because it is already defined there by the boundary conditions, which

are enforced by moving the terms for the potentials at the endpoints to the right-hand side of the

matrix equation. Notice that the matrix is tridiagonal and therefore can be stored as a sparse matrix

(storing only the non-zero elements) and solved by using a matrix solving technique such as the

straightforward Thomas algorithm or the QR algorithm (available as functions in Matlab and also

in the LAPACK library, which can be used with Fortran or C++). One could also use the theorem

for inverting a tridiagonal matrix derived by R.A. Usmani [23].

For the continuity equations, one needs to approximate the current in between the mesh points

in order to have a result for the derivative of the current on the grid points. Scharfetter and Gummel

found that if one estimates the current betweenmesh points using a simple central-differencemethod

with a step size greater than 2Vt , numerical instabilitywill arise due to the exponential dependence of

the charge densities on the electric potential [24]. Since using such a small mesh is computationally

expensive, they introduced a method (now known as Scharfetter-Gummel discretization) that allows

for use of a courser mesh. It reduces numerical instabilities by assuming that Jn, Jp, and ∂ψ/∂x are

constant between mesh points. Then the drift-diffusion equations for n and p between mesh points

become differential equations of one variable (n or p respectively). For example for the electrons,

20



we have

Jn = qµnVt
∂n
∂x
− qµnn

∂ψ

∂x
(2.11)

The solution of this first-order differential equation is

n(x) = −
Jn

qµn
∂ψ
∂x

+ b exp
(
∂ψ/∂x

Vt
x
)

(2.12)

We now use the assumption that n and ∂ψ/∂x are the same at neighboring mesh points to write the

equation for n at neighboring points

ni = −
Jn,i+1/2

qµn(∂ψ/∂x)i+1/2
+ b exp

(
(∂ψ/∂x)i+1/2

Vt
xi

)
(2.13)

ni+1 = −
Jn,i+1/2

qµn(∂ψ/∂x)i+1/2
+ b exp

(
(∂ψ/∂x)i+1/2

Vt
xi+1/2

)
(2.14)

Combining these allows to solve for b

b =
ni+1 +

Jn,i+1/2
qµn(∂ψ/∂x)i+1/2

exp ((∂ψ/∂x)i+1/2/Vt)xi+1
(2.15)

Substituting back into Equation 2.13, we solve for Jn,i+1/2, and simplifying we get the Scharfetter-

Gummel discretized expression for current

Jn,i+1/2 =
qµn,i+1
δx

[
B
(
δψi+1

Vt

)
ni+1 − B

(
−
δψi+1

Vt

)
ni

]
(2.16)

where δψi+1 ≡ ψi+1 − ψi and B is the Bernoulli function B(x) = x/(ex − 1). Rewriting in terms of

the dimensionless scaled variables that were introduced earlier (ψ′i = ψ/Vt , n′i = ni/N), we have

Jn,i+1/2 =
qVt Nµn,i+1

δx
[B(δψ′i+1)n

′
i+1 − B(−δψ′i+1)n

′
i] (2.17)

The discretization proceeds in an analogous way for Jp,i+1/2, resulting in

Jp,i+1/2 = −
qVt Nµp,i+1

δx
[B(−δψ′i+1)p

′
i+1 − B(δψ′i+1)p

′
i] (2.18)

Then, the first order finite-difference approximation can be used to rewrite the continuity equations

as

∂Jn,i

∂x
=

Jn,i+1/2 − Jn,i−1/2
δx

= −qUn,i (2.19)

∂Jp,i

∂x
=

Jp,i+1/2 − Jp,i−1/2
δx

= qUp,i (2.20)
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Finally, the Scharfetter-Gummel discretized expressions for current (Equations 2.17 and 2.18) are

substituted into the above two equations to give

µn,i+1B(δψ′i+1)n
′
i+1 − [µn,i+1B(−δψ′i+1) + µn,iB(δψ

′
i )]n
′
i + µn,iB(−δψ

′
i )n
′
i−1 = −

(δx)2

Vt N
Un,i

(2.21)

µp,i+1B(−δψ′i+1)p
′
i+1 − [µp,i+1B(δψ′i+1) − µp,iB(−δψ

′
i )]p
′
i + µp,iB(δψ

′
i )p
′
i−1 =

(δx)2

Vt N
Up,i (2.22)

These equations are used to solve for carrier densities at all mesh points by rewriting them as matrix

equations, which are analogous to the matrix form of the Poisson equation.

2.3 Iteration Schemes

Two main types of iteration schemes are used to self-consistently solve the 1D drift-diffusion

equations [17]. One method is the Gummel iteration, where the equations are decoupled and

solved separately as three sets of matrix equations: one for the Poisson equation, and two for the

drift-diffusion/continuity equations (one for electrons and one for holes) [25]. The other is the

Newton-Raphson method (also known as simply Newton’s method), which is a general technique

used to solve non-linear systems of equations where all of the equations are solved simultaneously

using a single matrix.

2.3.1 Gummel Method

Flow charts of two general Gummel iteration schemes are shown in Figure 2.1. First, initial guesses

for the carrier densities and potential are entered and the discretized Poisson equation is solved.

There are two possible approaches: one is to solve for a correction δψ to the potential (Figure 2.1a);

the other is to solve for the new potential directly (Figure 2.1b). In this study, it was found that

the first approach does not give any advantage to stability and requires more CPU time due to the

additional loop for the Poisson equation. Therefore, the later approach was used in this work.
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Figure 2.1: Two Gummel iteration approaches. Approach b) is used in this study.

At each iteration, Equation 2.10 is solved first to compute the new value for the electric potential

(ψ′). Once ψ′ is found, it is used in the continuity/drift-diffusion equations (Equations 2.21 and

2.22) formulated as tridiagonal matrix equations. These equations are solved separately for n and

p, which are then substituted back into the Poisson equation for the next iteration. The iterations

are repeated until the change in n and p between two consecutive iterations (old and new) become

less than a set tolerance (e.g. 10−12). The convergence condition can be written as

max
(
|nnew,i − nold,i | + |pnew,i − pold,i |

nold,i + pold,i

)
< tolerance (2.23)

Depending on the specific problem, Gummel’s method as described above will not always converge.

The convergence can be improved by using a weighted average of the solutions from the last two

iterations for the initial guess of the following iteration. This technique is called mixing or under-

relaxation and has the effect of decreasing the possibility of solution estimates overshooting the

true solution, thus preventing divergence or oscillations in the solution. The simplest mixing is the
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linear one, given by

nnew = wnnew + (1 − w)nold (2.24)

pnew = wpnew + (1 − w)pold (2.25)

Vnew = wVnew + (1 − w)Vold (2.26)

where w is the mixing factor. Note that the method will also work without mixing of the voltage

values but requires more iterations to converge and lower mixing factors.

The Gummel method works well for initial guesses that are far from the true solution, and

saves computational power by decoupling the equations. Therefore, this scheme has become very

popular for drift-diffusion models. However, convergence is problematic at higher voltages. We

find that as the applied bias is increased, we must decrease w, in order to maintain convergence.

When Va approaches a solar cell’s built-in voltage, the Gummel scheme no longer converges, even

when very small w values are used (e.g. 10−5). This convergence issue at high biases is known in

the literature and is attributed to the strong coupling of the equations at high voltage [17]. If one

wants to study the devices at high bias, the suggested solution is to use the fully coupled Newton’s

method described in the next section.

2.3.2 Newton-Raphson Method

Newton’s method is based on first-order multivariate Taylor expansion. If we have a function

f (x1, x2, ..., xn) ≡ f (®x) = 0, let ®xm be an approximation to the exact solution ®x, and define

®h = ®x − ®xm (the error between the approximation and the exact solution), we can write [26].

f (®x) = 0 = f (®xm + ®h) = f (®xm) +
n∑

j=1
h j
∂ f
∂x j
(®xm) + ... (2.27)
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If we have a system of n coupled equations that are all dependent on the same set of n variables,

we can write an equivalent expression in matrix form

0 =



f1(®xm)

...

fn(®xm)


+



∂ f1
∂x1
(®xm) · · · · · ·

∂ f1
∂xn
(®xm)

...
...

∂ fn
∂x1
(®xm) · · · · · ·

∂ fn
∂xn
(®xm)





h1

...

hn


(2.28)

We call the matrix of partial derivatives the Jacobian (J) and can write the equation as J®hm =

− ®f (®xm). Since f (®xexact) = 0, the right-hand side of the matrix equation is the error between the

approximate and exact solution. An m + 1th iteration of Newton’s method proceeds as follows.

First, we compute the Jacobian matrix elements using the solution from the mth iteration, ®xm. Then,

we solve the matrix equation for the update vector ®hm. Finally, we update the solution by simply

adding the update vector to the mth solution: ®xm+1 = ®xm + ®hm. The iterations are repeated until

the maximum error ®f (®xm) is less than a desired tolerance condition.

For the drift-diffusion model, we will have a system of 3L coupled equations, where n is

the number of interior mesh points. The equations can be grouped as L Poisson equations and L

continuity equations for both electrons and holes. The only difference from the equations in Section

2.2 is that we must rearrange them so that one side equals zero as follows

FV,i ≡ ψ
′
i−1 − 2ψ′i + ψ

′
i+1 − CV [(n

′
i + nT′i ) − (p

′
i + pT′i )] = 0

Fn,i ≡ µn,iB(−δψ
′
i )n
′
i−1 − [µn,iB(δψ

′
i ) + µn,i+1B(−δψ′i+1)]n

′
i + ...

... + µn,i+1B(δψ′i+1)n
′
i+1 + CUn,i = 0

Fp,i ≡ µp,iB(δψ
′
i )p
′
i−1 − [µp,iB(−δψ

′
i ) + µp,i+1B(δψ′i+1)]p

′
i + ...

... + µp,i+1B(−δψ′i+1)p
′
i+1 − CUp,i = 0

(2.29)

where C = (δx)2/(Vt N).
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The Newton’s method matrix equation (Equation 2.28) becomes

∂FV,1
∂ψ′1

· · ·
∂FV,1
∂ψ′L

∂FV,1
∂n′1

· · ·
∂FV,1
∂n′L

∂FV,1
∂p′1

· · ·
∂FV,1
∂p′L

...
. . .

...
...

. . .
...

...
. . .

...

∂FV,L
∂ψ′1

· · ·
∂FV,L
∂ψ′L

∂FV,L
∂n′1

· · ·
∂FV,L
∂n′L

∂FV,L
∂p′1

· · ·
∂FV,L
∂p′L

∂Fn,1
∂ψ′1

· · ·
∂Fn,1
∂ψ′L

∂Fn,1
∂n′1

· · ·
∂Fn,1
∂n′L

∂Fn,1
∂p′1

· · ·
∂Fn,1
∂p′L

...
. . .

...
...

. . .
...

...
. . .

...

∂Fn,L
∂ψ′1

· · ·
∂Fn,L
∂ψ′L

∂Fn,L
∂n′1

· · ·
∂Fn,L
∂n′L

∂Fn,L
∂p′1

· · ·
∂Fn,L
∂p′L

∂Fp,1
∂ψ′1

· · ·
∂Fp,1
∂ψ′L

∂Fp,1
∂n′1

· · ·
∂Fp,1
∂n′L

∂Fp,1
∂p′1

· · ·
∂Fp,1
∂p′L

...
. . .

...
...

. . .
...

...
. . .

...

∂Fp,L
∂ψ′1

· · ·
∂Fp,L
∂ψ′L

∂Fp,L
∂n′1

· · ·
∂Fp,L
∂n′L

∂Fp,L
∂p′1

· · ·
∂Fp,L
∂p′L





∆ψ′1

...

∆ψ′L

∆n′1

...

∆n′L

∆p′1

...

∆p′L



= −



FV,1

...

FV,L

Fn,1

...

Fn,L

Fp,1

...

Fp,L



(2.30)

where Fv , Fn, and Fp label the Poisson, electron continuity, and hole continuity equations respec-

tively. Many of these derivatives equal zero because the equations for the ith mesh point depend

only on the other variables at the same mesh point and nearest neighbor mesh points (e.g. FV,2

has no dependence on n20). Therefore, the Jacobian consists of tridiagonal blocks. For example,

∂Fv/∂ψ′ results in the Laplacian operator, which can be written in matrix form as

−2 1 0 0 · · · · · · · · · · · · 0

1 −2 1 0 · · · · · · · · · 0

...
...

...
...

...
...

...
...

...
...

... 0

0 · · · · · · 0 · · · 1 −2



(2.31)

so this will be the upper-left block of the Jacobian. In order to minimize numerical error, where

possible, the derivatives should be taken analytically to yield equations that can be evaluated at
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each iteration’s solution values. In cases where an analytic expression for the derivative cannot be

found, numerical derivatives using central-differences are used as follows

∂F
∂xi
=

F(x1, ..., xi + ε, ..., xn) − F(x + 1, ...., xi − ε, ..., xn)

2ε
(2.32)

where ε is a small perturbation to the value of xi.

Each Newton iteration is more computationally expensive than a Gummel iteration since here

we solve a 3n × 3n matrix instead of an n × n matrix. Because Newton’s method requires initial

guesses relatively close to the real solution, one can use Gummel’s method first to establish a better

initial guess for input into Newton’s method. A flow chart of the main elements of a Newton

iteration for solar cell simulation is shown in Figure 2.2.

Figure 2.2: Flow chart of the main steps in the Newton-Raphson method.

For the first Newton iteration, at equilibrium conditions, we use the solutions from Gummel’s

method. First, we calculate the elements of the Jacobian using values of the three functions FV ,

Fn, and Fp from the previous iteration. Next, we solve the matrix equation (Equation 2.30) for

the update vector, which we use to update the solutions for ψ, n, and p. Next, we update the net

generation rate. Finally, we recalculate the values of FV , Fn, and Fp and check for convergence.
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Since these functions should equal zero at the exact solution, the convergence condition is that the

values of the functions are less than a tolerance (e.g. 10−12).

2.4 Model Verification

2.4.1 Single-Carrier Device in Space-Charge-Limited Current Regime

In order to verify the behavior of our implementations of the drift-diffusion model, the results for

a simulation of a single-carrier device in the space-charge-limited current (SCLC) regime were

compared with known analytical equations. For these simulations, the influence of carrier traps

was neglected. Additionally, since there is only one carrier and traps are ignored, there will be

no bimolecular or trap-assisted recombination. Thus, the recombination rate was set to zero in

these simulations. An analytical expression for the SCLC of a trap-free single-carrier device with

an Ohmic contact, negligible diffusion current, and no photogeneration can be derived from the

Poisson-drift-diffusion equations. We will next outline the derivation for a hole-only device (an

analogous derivation can be performed for an electron-only device) [27]. The Poisson equation is

∂2

∂x2ψ(x) = −
q
ε

p(x) (2.33)

Since diffusion current is negligible in the SCLC regime (also known as the drift regime), the total

hole current is determined solely by the drift contribution

J = qµp
∂ψ

∂x
(2.34)

Rearranging the Poisson equation in terms of p and substituting into the current equation, we have

J = qµ(−
∂2ψ

∂x2 )
ε

q
∂ψ

∂x
(2.35)

We can rewrite the above equation in terms of the electric field (E = −dψ/dx)

J = µεE
∂E

∂x
=
µε

2
∂(E2)
∂x

(2.36)

or
∂(E2)
∂x

=
2J
ε µ

(2.37)

28



The general solution is

[E(x)]2 = ax + b (2.38)

Since there is no injection barrier due to the Ohmic contact, the electric field must be zero at x = 0.

Therefore,

E(x) =
√

ax1/2 (2.39)

The potential across the device is given by the integral of the electric field

ψ(x) = −
∫ L

0
E(x)dx = −

2
3
√

ax3/2 + C (2.40)

The potential at x = 0 must be 0 due to the Ohmic contact. The potential at x = L is due to the

externally applied voltage, Va. Using these boundary conditions, one can find that C = 0 and

a =
9
8

V2
a

L3 (2.41)

Therefore, we have arrived at the Mott-Gurney equation

J =
9
8
ε µ

V2
a

L3 (2.42)

Note that the same equation applies for electron current in an electron-only device. The Mott-

Gurney equation represents the maximal possible current in a semiconductor device and is often

used to estimate the carrier mobility of semiconductor materials by fitting the equation to measured

JV curves [28]. Combining Equations 2.39 and 2.41, the electric field is

E =

√
2Jx
µε

(2.43)

Figure 2.3 shows a comparison of the current density and electric field results of the drift-diffusion

simulation of a device in the SCLC regime and the analytical Mott-Gurney equations. We see

excellent agreement between the simulation and the analytical expressions in this limit, therefore

verifying the correctness of our implementation of the drift-diffusion model. Note that the model

was simply set-up to ensure SCLC conditions, and no attempt was made to model a real material.

The modeling of real devices is described in the next two chapters.
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Figure 2.3: Comparison of results from drift-diffusion model of an arbitrary single-carrier device
under SCLC conditions with Mott-Gurney analytical equations. a) Current density versus voltage.
b) The electric field distribution through the thickness of a device under high voltage.

Figure 2.4 shows the effect of injection barriers (φa), which cause the JV behavior to diverge

from the SCLC regime. This demonstrates that the approach of fitting JV curves to determine

material mobilities will yield inaccurate mobility values if there is a significant injection barrier.

(The challenges of determining carrier mobility using analytical expressions for JV curves are

discussed in [28]).
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Figure 2.4: Drift-diffusion (DD) model results for JV curves of a hole-only device with varying
sizes of injection barriers compared with the Mott-Gurney equation.

2.4.2 Two-Carrier Device

A two-carrier (also known as bipolar) device supports the transport of both electrons and holes. In

a trap-free device, the recombination rate and the locations where it occurs are determined by the

probability of electrons and holes finding each other, which is influenced by the carrier mobilities.

Figure 2.5(a-d) shows the results of a drift-diffusion simulation of a bipolar device with balanced

hole and electron mobilities (µp/µn = 1) when there is no illumination. In this device, the balanced

mobilities cause the carrier densities, current densities, electric field, and recombination rate to

be distributed symmetrically across the thickness of the device. This symmetry is broken if the

mobilities are unbalanced, as shown in Figure 2.5(e-i), where µp/µn = 100. The higher hole

mobilities result in higher carrier density and current for holes than for electrons throughout most

of the device. There is a build-up of electrons near the electron-injecting contact due to their

low mobility. This causes a higher electric field and a higher recombination rate near the electron

contact. These simulation results are qualitatively consistent with previously published results [29].
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Figure 2.5: Results from drift-diffusion models of single-layer, two-carrier devices: one with
uniform mobilities (a-d) and another with 100x larger hole mobility than electron mobility (e-i).
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2.5 Conclusions

In this chapter, we presented the main numerical methods for solving the 1D drift-diffusion

equations. The primary aspect of these methods is to solve the coupled Poisson, drift-diffusion,

and continuity equations iteratively until the carrier density profiles converge. We presented two

iteration schemes: Gummel’s and Newton’s method. We also described verification of our imple-

mentation of the drift-diffusion model by comparing results from single-carrier device simulations

to the Mott-Gurney law. Additionally, we presented example results from simulations of single-

layer, two-carrier devices. The two-carrier device results are found to be consistent with our

expectations based on an understanding of the device physics. Example Matlab, C++, and Python

implementations of the drift-diffusion model are available at https://github.com/tgolubev.

While the focus of this work is on solar cells, the drift-diffusion model can be applied to a variety

of semiconductor devices, including light-emitting diodes (LEDs) and transistors. In the next

chapter, we investigate the sometimes problematic convergence behavior of drift-diffusion models

and compare the performance of Gummel’s and Newton’s iterative approaches.
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CHAPTER 3

IMPROVING CONVERGENCE OF A DRIFT-DIFFUSION MODEL FOR BILAYER
ORGANIC SOLAR CELLS

The general drift-diffusion model needs to be modified in order to properly describe the physics in

various thin-film solar cells. Here we present an example of this modification for a bilayer organic

solar cell (OSC). A bilayer (also known as planar heterojunction) solar cell consists of a donor

and acceptor material, charge transport layers, and the contacts (Figure 3.1a). When photons are

absorbed by the donor material, this produces excitons (bound excited electron-hole pairs). These

excitons can either recombine or dissociate to create free charge carriers, which cause a current in

the device. Exciton dissociation is usually described as a two-step process [30]. First, these excitons

can diffuse to the donor-acceptor interface where there is a high field due to the energy level offsets

between the donor and acceptor materials [31]. At the interface, the field causes the electrons to

be transferred from the donor’s lowest unoccupied molecular orbital (LUMO) to the acceptor’s

LUMO, while the holes remain in the donor’s highest occupied molecular orbital (HOMO) (Figure

3.1b). These paired charges at the interface are called polaron pairs (PPs) or geminate pairs or

charge transfer states. The second step of dissociation is when the charges migrate away from each

other due to the built-in field in the device to form free charge carriers. The newly-generated free

charge carriers will flow towards the electrodes due to the built-in field. There is also a chance that

the PPs recombine since there is a significant Coulomb attraction between the electron and hole in a

PP. The competition between recombination and dissociation of PPs is described by rate equations.
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Figure 3.1: Basic architecture (a) and energy level alignment (b) of a bilayer solar cell. Adapted
from [32].

3.1 DD-BI Model

Two former Ph.D. students in our group, Kanokkorn Pimcharoen and Non Thongprong, devel-

oped a 1D drift-diffusion bilayer (DD-BI) model [16, 27] based on the models by Anton Koster

[33] and Giebnik, Wiederrecht, Wasielewski, and Forrest (GWWF) [15]. The DD-BI model uses

the Gummel method (Figure 2.1b) to solve the Poisson-drift-diffusion system of equations with an

added step of recalculating the generation and recombination rates in each iteration.

For simplicity, the mesh size is chosen to be 1 nm, which matches the average separation

between electron and hole in PPs at the interface and defines the interface width a0. The mesh

endpoints are defined to be at 0 and L, and the interface is defined to be at mesh points l and l + 1.

Boundary conditions for the potential (ψ) and charge densities (n and p) are

ψL − φ0 = Vbi − Va (3.1)

p0 = NHOMO pL = NHOMO · exp
(
−

ELUMO,A − EHOMO,A

Vt

)
(3.2)

nL = NLUMO n0 = NLUMO · exp
(
−

ELUMO,D − EHOMO,D

Vt

)
(3.3)

where Vbi is the built-in field (difference between the cathode and anode work functions), NHOMO

and NLUMO is the density of states of the HOMO and LUMO levels, and E is the energy level (in

eV) of the molecular orbitals, with the subscripts A and D denoting the acceptor and donor levels

respectively. The smallest value from the boundary conditions is used for the initial values of n and
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p everywhere inside the device. A linear function from ψ0 to ψL is used for the initial potential.

The discretization and solution of the Poisson and drift-diffusion equations is done as described in

Sections 2.2 and 2.3.

We also need to consider the energy barriers for carriers crossing the donor-acceptor interface.

The energy barriers are simply equal to the energy offsets between the donor and acceptor conduction

bands (for electrons) and valence bands (for holes). This can be done by adding the energy barrier

height (in dimensionless units) to the numerical derivative of the potential at the interface (δψ′l+1)

inside of the Bernoulli functions in the continuity equations [34]. Note that since the energy barriers

for electrons and holes are different, the δψ′ for holes and electrons in Equations 2.17-2.18 will

be different at l + 1. At applied bias greater than the open-circuit voltage, current flows towards

the interface. Since the charge carriers cannot cross the barrier, this leads to an accumulation of

carriers of opposite charge at the opposing sides of the interface, which results in both a very high

field and a high recombination rate (due to high carrier densities).
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Figure 3.2: Carrier densities at short-circuit (a) and open-circuit (b) conditions for the bilayer
device.

Figure 3.2 shows the carrier densities inside the device at short-circuit and open-circuit condi-

tions. The densities at open-circuit conditions increase near the interface due to charge accumu-

lation. There is a larger drop in hole densities than electron densities over the interface since, for

this simulation, the energy barrier for holes (difference between the HOMO levels of donor and
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acceptor material) was set to be greater than the barrier for electrons (difference between LUMO

levels).

The treatment of net generation rate must consider the effects of the bilayer interface. GWWF

describe the possible competing processes that can occur at the interface (Figure 3.3) and use

detailed balance to derive an expression for the total PP density at the interface (ζ). An exciton

current density Jx/a0 flows to the interface, where a0 is the separation between the electron and

hole in a PP. At the interface, the excitons become PPs where they can either dissociate into free

charge carriers with the rate kPPdζ or recombine back into the ground state with the rate kPPr ζ .

The free charge carriers can recombine back into PPs at the rate R. Also the PPs can be regenerated

from the ground state at the rate kPPr ζeq where ζeq is the PP density in thermal equilibrium (in the

dark). Writing a detailed balance equation for these processes, we have

Jx
a0
− kPPr (ζ − ζeq) − kPPdζ + R = 0 (3.4)

Solving for ζ , yields

ζ =
Jx/a0 + kPPr ζeq + R

kPPd + kPPr
(3.5)

Once we calculate ζ , we can define the net carrier generation rate of electrons (Un) and holes (Up)

at the interface as the dissociation rate minus the free carrier recombination rate

Un = Up = kPPdζ − R (3.6)

Figure 3.3: Recombination and generation processes at the bilayer interface. Adapted from [15].
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In bilayer OSCs, the exciton binding energy is strong; and therefore, we can assume that the

thermal dissociation rate of free charge carriers is very small and can be neglected. This means that

free carriers are only generated at the interface where there is a strong field that separates the PPs.

In our discretization, we define the interface as the region from mesh point l to mesh point l + 1.

Therefore, our arrays Un(xi) ≡ Un,i and Up(xi) ≡ Up,i, which we use in the continuity equations,

only have one non-zero element in each: the element corresponding to mesh point l for the holes

(donor side) and the element corresponding to mesh point l + 1 for the electrons (acceptor side).

In order to calculate Un(p), we must have expressions for the various rates in Equation 3.5. In a

bilayer OSC, the PP dissociation rate is dependent on the electric field at the interface and can be

described by the Onsager-Braun equations [35]

kPPd =
3krec

4πa3
0

B1(2
√
−2b)

√
−2b

e−Eb/kBT , where b =
q3FI

8πεk2
BT2

(3.7)

where B1 is the first-order Bessel function of the first kind, FI = (ψl+1 − ψl)/a0 is the field at the

interface, and Eb = q2/(4πεa0) is the PP binding energy. Note that we define positive field as

the field that enhances the dissociation of PPs. krec is the Langevin bimolecular recombination

coefficient and is given by

krec =
q(µn + µp)

ε
(3.8)

where µn and µp are the electron and hole mobilities respectively. For purposes of numerical

calculation, the Bessel function is expanded up to the fourth order and Equation 3.7 becomes

kPPd =
3krec

4πa3
0

e−Eb/kBT

[
1 + b +

b2

3
+

b3

18
+

b4

180

]
(3.9)

The GWWF model improved on these equations by considering the case when the field acts as

a barrier to dissociation. When the field points towards the interface, it suppresses the dissociation,

and when the field points away from the interface, it enhances the dissociation. This can be

described by adding the additional energy FIrccosθ to Eb, where rc = q2/(4πεkBT) is the Onsager

radius and θ is the angle between the vector connecting the PP and the vector normal to the interface.

Then the dissociation rate expression is changed by adding this additional energy and integrating
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over all possible θ values

kPPd =
1
π

∫ π/2

−π/2

3krec

4πa3
0

exp
(
−Eb + FIrccosθ

Vt

)
dθ (3.10)

The integration is only over a semi-circle because, at the interface, the holes will always be on the

donor side and electrons on the acceptor side. Note that this equation is only used when the field

points in a direction that acts as a barrier to the dissociation. Otherwise, the original Onsager-Braun

equation (3.7) is used.

For the recombination of PPs, we use the empirical recombination coefficient equation from

paper II of GWWF [36]

kPPr = kPPr,0exp
(
−qFI d

kBT

)
(3.11)

where kPPr,0 is the coefficient in zero field.

Several models for free carrier recombination can be used. A widely-used model is Shockley-

Read-Hall (SRH), which in its simplest form is

RSRH =
CnCpNtrap(np − n1p1)

Cn(n + n1) + Cp(p + p1)
(3.12)

where n1 is the number of electrons in the LUMO band when the electron’s quasi-Fermi energy

equals the trap energy Et , and p1 is the number of holes in the HOMO band when the hole’s

quasi-Fermi energy equals Et . n1 and p1 are given by

n1 = NLUMOexp
(
−

ELUMO − Et
kBT

)
and p1 = NHOMOexp

(
−

Et − EHOMO
kBT

)
(3.13)

The quasi-Fermi level is the effective Fermi level for a charge carrier when a semiconductor is not

in thermal equilibrium, but the electron population is in equilibrium within the conduction band

and the hole population is in equilibrium in the valence band. The "regular" Fermi level is defined

as the HOMO level at the temperature of 0 K.

The net carrier generation rates are updated at each iteration as follows. The new voltage (from

the solution of the Poisson equation in the case of Gummel’s method or solution of the entire system

in the case of Newton’s method) is used to find the new field at the interface FI . The field is then
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used to recalculate the PP recombination and dissociation rates, kPPr and kPPd . The free carrier

recombination rate, R, is also calculated. Finally ζ and Un = Up are calculated using Equations

3.5 and 3.6. The Un and Up are used in the continuity equations.

3.2 Convergence Improvements

In the Fortran implementation of the DD-BI model by Pimcharoen and Thongprong, the solu-

tions for charge densities oscillate from iteration to iteration. The calculation is unable to converge

unless mixing (Equation 2.24) is used. With higher applied voltages, progressively smaller mixing

factors are required in order to achieve convergence. This is implemented by dividing the mixing

factor by two every time the convergence of the Gummel iterations stagnates. Figure 3.4a shows

the behavior of a converging solution for carrier density and Figure 3.4b shows the behavior of a

solution where the mixing factor is insufficient to achieve convergence. At voltages starting from

slightly above the built-in voltage, the algorithm cannot converge at all even with mixing factors

as small as 10−5. Another issue related to the instabilities is that at certain voltages, due to very

strong oscillations, negative carrier densities are computed.
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Figure 3.4: The hole density at a point close to the interface inside the device (which exact point
does not matter) is plotted verses the number of iterations of the Gummel loop. a) A converging
solution, which occurs when the mixing factor is sufficiently small for the applied voltage. b) A
solution that cannot converge.

In order to further study these convergence issues, in this work, a Matlab version of the
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DD-BI model was implemented. This allowed to take advantage of Matlab’s intrinsic matrix-

solving functions and confirm that the convergence issues are not due to a mistake in the Fortran

implementation. A few improvements to the Gummel iterative method were made and also a

version using the Newton-Raphson iterative method was implemented. An improvement to the

treatment of negative charge densities is to set each negative element of nnew and pnew to zero.

Note that when mixing is applied, the densities after mixing will no longer be zero. This allows for

the computation to continue without reducing the mixing factor and repeating the calculations each

time there are negatives carrier densities. However, at higher voltages, the convergence stagnates,

and the mixing factor still needs to be reduced.

3.2.1 Convergence Acceleration through Pulay Mixing

Convergence can be accelerated by applying the Pulay mixing method (also known as direct

inversion in the iterative subspace), which is widely used for quantum chemistry calculations [37].

Pulay mixing uses a weighted average of several of the previous iterations as the trial solution for

the next iteration. Let ®pi be the solution at the ith iteration. We can approximate the solution at

iteration m + 1 as a linear combination of the previous trial solutions

®pm+1 =
m∑

i=1
ci ®pi (3.14)

Now we expand each trial solution as the exact solution ®pexact plus the error between the trial and

exact solution ®ei, so ®pi = ®pexact + ®ei. Substituting into Equation 3.14, we have

®pm+1 = ®pexact

m∑
i=1

ci +
m∑

i=1
ci ®ei (3.15)

Therefore, in order for ®pm+1 to be close to the exact solution, we need
m∑

i=1
ci = 1 and

m∑
i=1

ci ®ei = 0 (3.16)

In other words, we would like to minimize
∑m

i=1 ci ®ei under the constraint
∑m

i=1 ci = 1. This can be

done using the Lagrange multiplier method with the Lagrangian

L = |

m∑
i

ci ®ei |
2 − λ

( m∑
i

ci − 1
)

(3.17)
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where λ is the multiplier. Taking the partial derivatives with respect to the coefficients ci and λ and

setting them to zero results in m + 1 equations, which can be written as a matrix equation

B11 B12 · · · · · · B1m −1

...
...

. . .
...

...

Bm1 Bm2 · · · · · · Bmm −1

−1 −1 · · · · · · −1 0





c1

...

cm

λ


=



0

...

0

−1


(3.18)

where Bi j =< ®ei | ®e j > is the scalar product of the error vectors. Now since we do not know the

actual error from exact solution, we approximate it as the change in the trial solution between

successive iterations ®ei = ®pi − ®pi−1. Solving the above matrix equation for the ci coefficients, we

then define the solution at the next iteration as pm+1 =
∑m

i ci ®pi. In practice, only a few previous

iterations are used in the sum.

With Pulay mixing, we found that the Gummel scheme requires about 20% fewer iterations to

converge than with linear mixing. However, the mixing factors still need to be reduced at higher

voltage, and the voltage at which the program no longer converges is the same as when linear

mixing is used.

3.2.2 Newton vs. Gummel Iterative Methods

Literature claims that the reason for the observed convergence difficulties in drift-diffusion models

at higher voltages is due to use of the Gummel method, which decouples the equations [25]. At

high voltages, the equations are strongly coupled. For example, a small change in the voltage

significantly changes the net generation rates and currents. In the literature, it is recommended to

use Newton’s method for cases of high applied bias [17]. Here, Newton’s method for drift-diffusion

was implemented as described in Section 2.3.2 and the convergence properties of the method were

investigated. Analytic expressions were used for all of the derivatives in the Jacobian (Equation

2.30), except for the derivatives of the net generation rates, which were found numerically by

Equation 2.32.
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For Newton’s method, a damping (also known as relaxation) factor needs to be used to achieve

convergence. The damping factor is simply a number less than one that scales the correction

vector in a Newton iteration to prevent oscillating solutions, which can happen when the correction

overshoots the value of the true solution. This is analogous to the mixing factors that we used for

Gummel’s method. For the P3HT:PCBM bilayer device we studied, the Voc is around 0.69 V, so

voltages above this are in a region where the device no longer produces any power. Above 0.69 V,

the current now flows into the interface, causing a large build-up of charge. This causes a highly

negative recombination rate at the interface, which rapidly becomes more negative with higher

voltage. At this point, the device is approaching the breakdown limit, with the current densities at

1.0 V becoming 1000 A/m2. Under these conditions, a physical device would most likely either

overheat or the built-up electrons and holes at the interface would have enough energy to overcome

the energetic step and spill over into the other half of the device.

Figure 3.5 shows an analysis of the convergence behaviors of the Gummel and Newton methods

when applied for the simulation of the bilayer device. We see that both Gummel’s and Newton’s

method can converge with a mixing factor of 60% for low voltages, but Gummel’s method requires

a reduction of the mixing factor at Va = 0.62 V. Comparing the number of iterations required for

convergence to a tolerance of 5 × 10−13, we see that the number of iterations is similar for lower

voltages, but at higher voltages, Gummel’s method requires many more iterations. This is related

to the lower mixing factor needed. The numerous spikes occur near the points where the solutions

are no longer converging, which are followed by a decrease in the mixing to allow for convergence.

Mixing was decreased once there were more than 1000 iterations where the error increased.
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Figure 3.5: Comparison of convergence behaviors between Gummel and Newton methods. a)
Mixing factor needed to achieve convergence. b) Number of iterations required to converge.

These models are not computationally expensive, and calculations can be easily done on a

standard personal computer (Windows 10 laptop with 8GB RAM and Intel i7-6820HQ CPU at 2.70

GHz base speed and overclocked up to 3.3 GHz). CPU times for theMatlab implementation of these

models are reported below. (Implementations in C, C++ or Fortran are expected to be significantly

faster). Each iteration of the Gummel method takes only 0.02 − 0.035 seconds. Therefore, even

with the large number of iterations required for convergence, an entire calculation of a JV curve

sweeping over applied voltages from 0 V to 0.8 V with 0.01 V steps takes only about 4 minutes.

For the Gummel method, most of the CPU time per iteration is spent on the recalculation of the net

generation rate because this requires evaluation of several non-trivial equations, including integrals

that are computed numerically.

Newton’s method requires significantly more CPU time per iteration. For the same bilayer

model, one Newton iteration takes about 0.25 − 0.65 seconds (lower time for lower voltages). This

ten-fold increase over the Gummel method is due to having to calculate all of the partial derivatives

for the Jacobian elements and also having to solve a 3n× 3n matrix instead of three n× n matrices.

The number of iterations required to converge depends on the damping factor that is used. The

same simulation from 0 V to 0.8 V with 0.01 V steps took 794 seconds with Newton’s method and

240 seconds with Gummel’s method. Thus, for the generation of JV curves within the operating

range of a solar cell, Gummel’s method is more efficient.
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3.2.3 Slotboom Variables Approach

During the process of designing ways to improve the algorithm, an alternative approach was investi-

gated which did not yield improved results. Nevertheless, it is overviewed here for completeness of

the analysis of possible variations in computational techniques.The Slotboom approach [38] was in-

troduced as an alternative to Scharfetter-Gummel discretization. In this approach, the drift-diffusion

equations are rewritten as

Jn = qNVtµn
dFn
dx

eψ/Vt and Jp = −qNVtµp
dFp

dx
e−ψ/Vt (3.19)

where

Fn = e−ϕn/Vt and Fp = eϕp/Vt (3.20)

and ϕn and ϕp are the electron and hole quasi-Fermi potentials given by

ϕn = ψ/Vt − ln(n/N) and ϕp = ψ/Vt + ln(p/N) (3.21)

Note that Equations 3.20 and 3.21 can be combined as

Fn =
n
N

e−ψ/Vt and Fp =
p
N

eψ/Vt (3.22)

When discretizing the continuity equations, we get

µn,i+1(Fn,i+1 − Fn,i)e
ψi+1/Vt − µn,i(Fn,i − Fn,i−1)e

ψi/Vt = −
(δx)2

Vt N
Un,i (3.23)

µp,i+1(Fp,i+1 − Fp,i)e
−ψi+1/Vt − µp,i(Fp,i − Fp,i−1)e

−ψi/Vt = −
(δx)2

Vt N
Up,i (3.24)

Therefore, the matrix equations will now be solved for Fn and Fp instead of n and p. A benefit

of this approach over Scharfetter-Gummel discretization is the removal of the approximation using

Bernoulli functions, yielding more elegant expressions for the equations. While this is useful

for analytical calculations, when attempting to solve these numerically, the eψ terms often cause

overflow or underflow errors. Note that in the Scharfetter-Gummel method this is avoided because

the exponentials are eδψ (using the difference in potential between neighboring mesh points),
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which, provided that the mesh is small enough, will result in a reasonable magnitude exponential.

An interesting observation is that if we substitute the expressions for Fn and Fp into Equations 3.23

and 3.24, we can get a matrix equation for n and p that, while appears similar to the ones from

Scharfetter-Gummel’s discretization, does not have any Bernoulli functions. The terms generating

the matrices will be

µn,ie
(ψ′i−ψ

′
i−1)n′i−1 −

(
µn,i+1e(ψ

′
i+1−ψ

′
i ) + µn,i

)
n′i + µn,i+1n′i+1 = −

(δx)2

Vt N
Un,i (3.25)

µp,ie
(ψ′i−1−ψ

′
i )p′i−1 −

(
µp,i+1e(ψ

′
i−ψ
′
i+1) + µp,i

)
p′i + µp,i+1p′i+1 = −

(δx)2

Vt N
Up,i (3.26)

Using these equations for the bilayer device simulation, gave almost identical results (to several

decimal places) to those from the Scharfetter-Gummel discretization. There was no significant dif-

ference in the convergence properties when compared to using Scharfetter-Gummel discretization.

It appears that the Slotboom variables approach is a valid and usable alternative to the discretization

as long as one substitutes back the definitions of Fn and Fp as done above.

3.3 Conclusions

In this chapter, we investigated the impact of several numerical techniques on the convergence

behavior of a 1D drift-diffusion model for bilayer organic solar cells. We found that Pulay mixing

accelerates the convergence ofGummel iterations by about 20%, but does not resolve the divergences

experienced at higher applied voltages. When the coupled Newton’s method was used, the model

could use higher mixing (relaxation) values and converge at higher applied voltages. This supports

the idea that the convergence difficulties are due to a strong coupling of the bilayer drift-diffusion

equations at higher applied voltages due to the build-up of space charge at the bilayer interface.

In this situation, the decoupled Gummel iteration approach leads to oscillations and instabilities,

while Newton’s method suppresses such oscillations by solving the entire system simultaneously.

The Slotboom variables discretization approach, which avoids the need to use Bernoulli functions,

was found to lead to overflow and underflow errors unless the equations are reformulated to solve

for the carrier densities. Using the Slotboom variables in this way, gave almost identical simulation

46



results to the more-traditional Scharfetter-Gummel discretization approach, but did not improve

convergence. The results of these investigations can help one select an appropriate discretization

and iteration scheme to use for each drift-diffusion problem. Pulay mixing can be used to improve

performance, Newton’s method is desirable for situations where the equations become highly

coupled, and Slotboom variables may be chosen as a way to simplify the implementation of the

matrix equations.
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CHAPTER 4

DRIFT DIFFUSION MODELING OF PEROVSKITE SOLAR CELLS

Perovskite solar cells are thin-film cells based on hybrid halide perovskites, the most common being

CH3NH3PbX3 where X is Cl, Br, I, or amixture of these. They have attracted great interest in recent

years [39–43] due to their lower material and production costs, as well as rapid improvements in

efficiencies to above 25% [44]. These materials have favorable properties such as a direct bandgap,

high absorption coefficients, and high charge mobilities [45, 46]. The devices can be made in both

planar heterojunction and bulk heterojunction (also known as mesoporous) architectures. This

chapter discusses the application of the drift-diffusion model to planar perovskite solar cells.

A typical planar perovskite solar cell has a perovskite absorber layer sandwiched between an

electron transport layer (ETL) and a hole transport layer (HTL). The perovskite layer absorbs light,

which results in the photogeneration of free electrons and holes. The charge carriers will diffuse

from higher to lower concentration and drift due to the device’s built-in electric field. Electrons

will, on average, move towards the ETL and holes towards the HTL. The ETL and HTL’s primary

role is to transport the respective carriers to the electrodes while blocking the opposite carrier type

with energy barriers. Holes are unlikely to pass into the ETL and electrons are unlikely to pass into

the HTL. This results in very low hole densities in the ETL and very low electron densities in the

HTL, which greatly reduces free carrier recombination. Therefore, in the model, we can assume

that there is no recombination in the transport layers.

4.1 Numerical Model

To model perovskite solar cell devices, we use a one-dimensional drift-diffusion (1D-DD)

approach based on the model reported in Sherkar et al. [47] to self-consistently solve the Poisson,

continuity, and drift-diffusion equations usingGummel iterations togetherwith Scharfetter-Gummel

discretization, as described in Chapters 2 and 3. The device is discretized into a one-dimensional

mesh with a grid size of 0.25 nm, with the anode and cathode located at x = 0 and x = L,
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respectively. When discretizing the Poisson equation, we use Equation 2.9 for mesh points located

at the boundaries between two layers. The dielectric constant of perovskite is generally much

higher than that of the transport layer materials, causing a smaller electric field in the perovskite

than in the transport layers. The implementation of the energy barriers between layers is done in

the same way as in the DD-BI model, namely, by modifying the derivative of the potential δψ′ at

the interfaces (see Section 3.1).

A significant difference between perovskites and organic bilayer devices (discussed in Chapter

3) is that perovskites have no donor-acceptor interface where polaron pair formation and separation

occurs. In perovskites, the exciton binding energy is on the order of the thermal energy of the

carriers [48]; therefore, excitons separate into free charge carriers throughout the device. This

means that in simulation, the free carrier generation rate can be treated as directly related to the

absorption density of photons without calculating any exciton densities.

Both radiative and non-radiative recombination of carriers decrease device performance. Ra-

diative recombination is the annihilation of an electron from the conduction band with a hole in

the valence band, which results in the emission of a photon. Non-radiative recombination (also

known as trap-assisted recombination) occurs through a defect or trap, which is an energy level in

the bandgap. The trap can capture either an electron or hole (depending on the trap’s energy level),

which can recombine with a hole in the valence band or an electron in the conduction band, respec-

tively. We include both radiative and non-radiative (trap-assisted) carrier recombination. Radiative

recombination is modeled by Langevin bimolecular recombination with the recombination rate

given by

Rb = kb(np − n2
i ) (4.1)

where kb is the bimolecular recombination constant and ni is the intrinsic carrier density. Bimolec-

ular recombination is assumed to occur only in the perovskite layer. It is not considered in the

transport layers because of the very low density of minority carriers in those layers which makes

the recombination rate many orders of magnitude less than in the perovskite. Non-radiative trap

assisted recombination is assumed to occur only in 5 nm thick regions inside the perovskite layer
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near the HTL and ETL interfaces and is described by the Shockley-Read-Hall equation (3.12).

The trap energies are assumed to be located in the middle of the bandgap since this energy gives

the most effective recombination [49]. As in Sherkar et al., the traps are assumed to have neutral

charge.

4.2 Model Validation

The 1D-DD model for planar perovskites was validated by comparing to the literature results

from Sherkar et al. The devices studied use gold as the cathode and poly(3,4-ethylenedioxy-

thiophene):poly(styrenesulfonic acid) (PEDOT:PSS) and indium tin oxide (ITO) as the anode. The

HTL is negatively doped poly[N,N-bis(4-butylphenyl)-N,N-bis(phenyl)benzidine (polyTPD) and

the ETL is positively doped [6,6]-phenyl C61-butyric acid methylester (PCBM). Figure 4.1 shows

the device architecture.

Figure 4.1: Device structure of planar heterojunction perovskite solar cell modeled by Sherkar et
al. [47].

The effects of various physical parameters on device performance can be studied with the help of

this drift-diffusion devicemodel. From simple physical arguments, we expect an efficient perovskite

solar cell to have high carrier mobility in the perovskite layer, low trap densities, good blocking of

the minority carrier at the transport layers, a high built-in field, and low injection barriers. High
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carrier mobility leads to faster extraction of carriers from the perovskite, which reduces the carrier

density and thus reduces recombination. We would also like to have materials with minimum trap

densities where trap-assisted recombination could occur. Good blocking of minority carriers by the

transport layers prevents recombination near the electrodes. A high built-in field creates a stronger

drift current for the separation of electrons and holes in the perovskite layer, which leads to faster

charge extraction. We can use our model to test these arguments with numerical experiments.

Figure 4.2 shows the effect of the perovskite mobility on the JV curve and the power conversion

efficiency η. The most considerable effect of lower mobility is the reduction of fill factor, which

reduces the maximum power output and thus efficiency. Jsc is also reduced with lower mobility

since fewer free carriers reach the electrodes. Notice that above a mobility of 0.5 cm2/Vs, further

increasing the mobility does not havemuch of an effect on the JV curve. This indicates the existence

of some mobility threshold that ensures that carriers are able to reach the electrodes.

Figure 4.2: Simulated JV curves for different carrier mobilities in perovskite layer from this work
(a), and Sherkar et al. (b).

Figure 4.3 shows the effect of trap densities at theHTL/perovskite and perovskite/ETL interfaces.

The interfaces are assumed to be 5 nm in width. Note that the surface trap density values are

converted to volume trap densities (by dividing by the 5 nm interface width) before use in the

Shockley-Read-Hall equation [50]. Higher trap densities reduce fill factor, Voc, and Jsc. Notice
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that the trap density at the perovskite/ETL interface (Ntrap) has a much smaller effect than the

traps at the HTL/perovskite interface. This is because the light is incident from the HTL side, and

therefore, there is a much higher photogenerated free carrier density near the HTL, so the traps

can significantly reduce the free carrier density. Therefore, when designing a perovskite solar cell,

choosing materials and manufacturing techniques that reduce traps at the HTL/perovskite interface

is important.

Figure 4.3: Simulated JV curves for different trap densities at HTL/perovskite interface (a, b) and
ETL/perovskite interface (c, d). Results from this work’s model (a, c) are compared with results
from Sherkar et al. (b, d).

The built-in voltage (Vbi) and electric field are determined by the work function difference

between the cathode and anode. Therefore, lowering the injection barriers at the electrodes will

increase Vbi. Figure 4.4 shows the effect of injection barriers on the JV curve. As expected, zero

injection barriers are predicted to give the best performance.
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Figure 4.4: Simulated JV curves for different injection barriers at the anode and cathode (φa and
φc respectively) on the JV curve from this work’s model (a), and from Sherkar et al. (b).

In this section, we have confirmed that our 1D-DDmodel can reproduce results from a validated

model in the literature. We have also shown an example of how such a model can be used to

understand the effects of carrier mobility, trap density, and injection barriers on device performance.

In the next section, we describe the application of this validated 1D-DD model to explain the

physics behind experimentally-observed drastic performance differences in perovskite devices with

and without fullerene layers.

4.3 Understanding the Impact of C60 at the Interface of Perovskite Solar
Cells

There is increasing interest in the application of fullerene compounds to perovskite photovoltaics

[51, 52]. Recently, Liu et al. [53] observed that an ultrathin fullerene (C60) layer could have a

drastic impact on the performance of planar perovskite solar cells. Through a combination of

fluorescence microscopy and impedance spectroscopy, they showed that the main role of the C60 is

to efficiently extract electrons from the perovskite film. They demonstrated that even an ultrathin

vapor-deposited 1 nm C60 layer works efficiently in the devices, while devices without C60 exhibit

poor performance.

The device architecture is as follows. The cells use PEDOT:PSS for the hole transport layer and
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bathocuproine (BCP) for the electron transport layer. The devices have a 1 nm, 20 nm, or no C60

layer between the perovskite and BCP layers. All devices have an 80 nm Ag cathode and 100 nm

indium tin oxide (ITO) anode. Figure 4.5 shows the interior layer thicknesses and electronic energy

levels of the devices, with the rectangles representing the bandgap of the materials. The energy

alignment allows electrons to flow from the perovskite to the cathode and holes to flow from the

perovskite to the anode. It has been reported that electrons travel through BCP via gap-states which

are thought to be caused by diffusion of the Ag into the BCP layer [54–56]. The energy levels of

the gap-states, as predicted by our numerical model, are shown within the BCP rectangle.
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Figure 4.5: Energy levels and thicknesses of the device layers with the rectangles representing the
bandgap of the material. The levels were found from a combination of literature values and fitting
of the numerical model (more details in Table 4.1). The levels within the BCP bandgap are
gap-states due to diffusion of Ag into BCP.

In this work, we provide an explanation for the observed effects of ultrathin C60 on device

performance by use of the drift-diffusion model. The differences in electron extraction with

C60 layer thickness are modeled by a reduced effective carrier mobility in the C60 layer or at

the perovskite/BCP interface (for the devices without C60). Our numerical results support the

conclusions of Liu et al. regarding the role of C60 as essential for efficient electron extraction. Based

on fitting of the model to the experimental results, the reason for the differences in performance
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between the devices with and without C60 is mostly due to a much lower electron mobility at a

perovskite/BCP interface than at a perovskite/C60 interface. These results help clarify the role of

the C60 layer as part of the ETL in a perovskite solar cell.

Table 4.1 provides the complete set of parameters used for the model with references for

parameters taken from literature listed. Less efficient electron transport at the perovskite/BCP

interface is modeled by a decreased electron mobility value in a 0.5 nm interface region. For the 1

nm C60, less efficient electron transport due to incomplete coverage of C60 is modeled by a reduced

effective mobility for C60.
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Table 4.1: Complete set of parameters used for the model. References for parameters obtained
from literature are listed.

Parameter Value Source
Anode (ITO) work function -4.8 eV Ref. [57]
HTL (PEDOT) HOMO Level -5.1 eV Ref. [58]
HTL (PEDOT) LUMO Level -3.5 eV Ref. [58]
Perovskite conduction band minimum -3.9 eV Ref. [47, 57, 58]
Perovskite valence band maximum -5.4 eV Ref. [47, 57, 58]
ETL (C60) HOMO level -5.9 eV Fit
ETL (C60) LUMO level -4.2 eV Fit
BCP gap-state levels -3.93 eV, -4.32 eV Fit/Ref. [54–56]
BCP HOMO -7.0 eV Ref. [59]
Cathode (Ag) work function -4.32 eV Ref. [59]/Fit
Density of states (DOS) 8.1 × 1024 m−3 Ref. [47]
Perovskite relative permitivity 24.1 Ref. [47]
PEDOT:PSS relative permitivity 3.0 Ref. [47]
C60 relative permitivity 4.25 Ref. [60]
BCP relative permitivity 4.25 Fit
Carrier mobility in perovskite 10−4 m2V−1s−1 Ref. [61]/Fit
Carrier mobility in PEDOT:PSS 4.5 × 10−6 m2V−1s−1 Ref[62]
Carrier mobility in 20 nm C60 1.6 × 10−4 m2V−1s−1 Ref. [58]
Hole mobility in 1 nm C60 1.6 × 10−4 m2V−1s−1 Ref. [58]
Electron mobility in 1 nm C60 1.6 × 10−5 m2V−1s−1 Fit
Carrier mobility in BCP bulk 2 × 10−9 m2V−1s−1 Fit
Electron mobility at perovskite/BCP interface 5 × 10−13 m2V−1s−1 Fit
Maximum charge generation rate 1.97 × 1028 m−3s−1 Fit
Electron and hole capture coefficients 10−13 m3s−1 Ref. [47]
Bimolecular recombination constant 6 × 10−17 m3s−1 Ref. [47]
HTL/perovskite interface trap density 5 × 1021 m−3 Ref. [47]
Perovskite/ETL interface trap density 6 × 1020 m−3 Ref. [47]/Fit
PEDOT:PSS thickness 1.5 nm Ref. [53]
Perovskite thickness 320 nm Ref. [53]
BCP thickness 7.5 nm Ref. [53]
Grid spacing 0.25 nm
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Charge generation profiles were determined using an open-source transfer-matrix optical model

[63]. A sample profile for the device without C60 is shown in Figure 4.6.
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Figure 4.6: Carrier photogeneration rate profile for the device without C60 as determined from the
transfer-matrix optical model using the sum over wavelengths 350-750 nm. Position is displayed
relative to the beginning of the HTL (PEDOT:PSS) layer.

We find a good agreement between the experimentally measured and numerically predicted

current-voltage (JV) curves (Figure 4.7). We see that the C60 layer is essential for good device

performance and that a 1 nm C60 layer is sufficient for good performance, with only a small

improvement achieved when the layer thickness is increased to 20 nm. The fit to experiment

suggests that the electron mobility at a perovskite/C60 interface is significantly higher than at a

perovskite/BCP interface (case of no C60). This higher mobility models a more efficient extraction

of electrons from the perovskite to the ETL.
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Figure 4.7: Comparison of the JV curve results from the experiment and numerical model.

To determine the reason for the experimentally observed performance loss in the 0 nm C60

devices, the influence of electron mobility and traps at the perovskite/BCP interface was compu-

tationally studied (Figure 4.8). For the mobility trials, we set all parameters as in Table 4.1 and

only vary the perovskite interface mobility. For testing the effects of the interface trap density,

we first raise the perovskite interface mobility to the same value as in the device with 20 nm C60

(2 × 10−9 m2/Vs) to remove the effect of lower mobility, and then vary the trap density. We

find that mobility mostly influences the short-circuit current, while trap density mostly influences

the open-circuit voltage and fill factor. Figure 4.8a shows how a decrease in perovskite interface

mobility significantly affects the short-circuit current and fill factor of the device. For the devices

without a C60 layer, fitting the model to the experimental results suggests an electron mobility of

5 × 10−13 m2/Vs. An increased trap density at the interface (Figure 4.8b) does not result in the

drastic short-circuit current loss that is experimentally observed; therefore, the dominant factor is

a low interface mobility.

These results support the fluorescence microscopy experiments of Liu et al. which showed
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that while adding thin C60 layers to perovskite cause a significant decrease in photoluminescence

(PL), placing BCP alone onto perovskite does not significantly change the PL efficiency (neat

perovskite films are as bright or brighter with BCP) [53]. A quenched PL intensity indicates a

smaller accumulation of electrons. If the improvement in performance due to C60 was due to small

molecules passivating defect states, we would expect the PL quenching with BCP to be similar

to that of C60. Since this is not the case, it was concluded that C60 acts to greatly improve the

efficiency of electron extraction from perovskite. Similar results were reported in the literature for

perovskite devices using TiO2 as the ETL, where the addition of fullerene compounds to the ETL

enhanced electron extraction at the perovskite/ETL interface [64, 65].
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Figure 4.8: JV curves showing the effects of perovskite/BCP interface carrier mobility (a) with
ETL trap density set to 6 × 1020 m−3 and trap density (b) on the 0 nm device with perovskite/BCP
interface mobility set to 2 × 10−9 m2/Vs (the same value as for the 20 nm C60 device). All other
parameters were kept the same as in Table 4.1.

We gain more insight into the space-charge effects in these devices by considering the charge

density profiles for devices with different C60 thicknesses at zero applied bias (Figure 4.9). In the

0 nm C60 device, due to the low mobility at the perovskite/BCP interface, the electron extraction

is poor and results in a lower extraction of electrons than holes from the device, as seen from

the low electron density in the BCP layer at the right-hand side of Figure 4.9. This can also be

understood as an imbalance in mobilities of the majority charge carrier through their corresponding
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transport layer, or equivalently as the addition of an extraction barrier for electrons. The poor

electron extraction causes a charge accumulation at the perovskite/BCP interface. In contrast,

the devices with C60 have no electron accumulation within the perovskite layer. This supports

the fluorescence microscopy measurements done on these devices, which show a much stronger

photoluminescence, indicating a larger electron accumulation for the devices without C60 than with

C60 [53]. In the devices with C60, due to the efficient electron extraction from the perovskite, there

is a high electron density in the C60 together with a very low hole density and an injection barrier

that prevents electrons from moving back into the perovskite. The high electron transfer efficiency

also reduces the loss of free carriers due to carrier recombination within the perovskite layer. This

means that more electrons can be extracted to the BCP than in the 0 nm C60 device, resulting in a

higher current.
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Figure 4.9: Charge carrier densities for the simulated devices with 0 nm, 1 nm, and 20 nm C60
under illumination at zero applied bias. The perovskite/C60 and C60/BCP interfaces are marked
by dotted black lines. The parameters used are listed in Table 4.1.

A possible reason for the reduction of mobility at the perovskite/BCP interface could be the

formation of a back-to-back Schottky barrier [66]. The charge transport through this barrier
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could be a tunneling process that is exponentially related to the height of the barrier. However,

using an energetic barrier for electron extraction instead of a low effective mobility region at the

perovskite/BCP interface yields current-voltage curves that are very different from the experimental

results (Figure 4.10). Therefore, the energy barrier approach cannot be used to model the poor

performance of the 0 nm C60 device. A more likely reason for the less efficient transport could be

related to a difference between the two interfaces at the molecular level, causing the perovskite/C60

interface to have a better electron transport pathway.
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Figure 4.10: The effect of using an energetic barrier for electron extraction instead of a low
effective mobility region at the perovskite/BCP interface of devices without C60. The fit to
experiment that was achieved when using a low mobility region is shown for comparison.

Next, we offer an explanation for the origin of the S-shaped JV curve observed in the 0 nm C60

device (Figure 4.7). Several groups have proposed explanations for the appearance of S-shaped JV

curves in solar cells. They have been attributed to various factors including interface dipoles [67],

charge accumulation [59, 68], injection or extraction barriers [69], imbalanced mobilities [70], and

poor extraction of electrons near the cathode due to a mobility drop-off [71]. In the device studied

here, the origin is likely a combination of several of the above, namely an injection barrier, mobility
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drop-off (equivalently imbalanced mobilities), charge accumulation, and interfacial dipole.

Figure 4.11 shows the 0 nm C60 device under 0.7 V and 0.9 V applied bias, which correspond

respectively to points before and after the onset of forward current in the device. At 0.7 V, we

see that there is no longer a dip in electron density within the BCP, which indicates that electrons

are being injected from the cathode into BCP. However, the electrons are not being injected into

the perovskite layer, as seen by the steep difference in electron density on opposite sides of the

perovskite/BCP interface. The electron accumulation in BCP is caused by a combination of the 0.42

eV injection barrier for electrons (Figure 4.5) and the low electron mobility at the perovskite/BCP

interface. The injection barrier and low interface electronmobility prevent an injection current from

flowing. As we further increase the applied voltage from 0.7 V, there is an even larger accumulation

of electrons within the BCP near the perovskite/BCP interface and now also an accumulation of

holes on the other side of the interface, forming a dipole. The dipole effectively decreases the

injection barrier for electrons; however, no injection current will flow as long as an injection barrier

is present. Therefore, the net current in the device is near zero until the applied voltage is sufficient

to overcome the injection barrier (i.e. about 0.9 V). Notice that the width of the flatter region in the

JV curve increases with decreasing interface mobility (Figure 4.8a) since a lower interface mobility

requires a stronger net field (and thus a higher applied voltage) to establish an injection current

across the interface.
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Figure 4.11: Charge carrier densities for device with 0 nm C60 under illumination at 0.7 V (a) and
0.9 V (b) applied bias. The parameters used are listed in Table 4.1.

To ensure the reliability of the simulations, we checked the effects of variation of the HO-

MO/LUMO levels of the HTL/ETL on the JV curve. In these devices, the most important energy

parameters are the relative energy offsets between adjacent layers that are used to compute the

gradient of the electric potential at the interfaces. Therefore, we checked the effects of changes

of ± 0.1 eV in the HOMO/LUMO of HTL/ETL, which corresponds to up to a 33% change in the

relative offsets between adjacent HOMO/LUMO levels. Even with these changes, which are large

relative to the offsets, the simulation is still comparable to the experimental results (Figure 4.12).

This demonstrates that even with significant variation of the energy level offsets, our arguments

regarding the role of C60 and the reason for the device’s poor performance without C60 still hold.
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Figure 4.12: The effect of variation of the HOMO/LUMO of the HTL/ETL on the JV curve of the
device with 0 nm C60. The fit to experiment is included for comparison.

4.4 Conclusions

A 1D drift-diffusion model for planar perovskite solar cells has been developed and validated by

comparison to reported literature results from an experimentally validated model. The model was

then used to describe recent experimental results for inverted planar structure perovskite devices

that use fullerene layers for electron transport. By systematically studying the effects of interface

mobility and trap density on the JV curves, we find that poor electron extraction at the perovskite

interface, modeled by a decreased carrier mobility, is the main cause of the severe decrease in

device performance when there is no C60 layer. We demonstrate that the decrease in performance

is not due to an increased trap density at the interface. We have also analyzed and provided an

explanation for the S-shaped JV curve of the 0 nm C60 device. The main origin of the S-shape is

likely due to the non-equal mobilities in the HTL and ETL, which results in charge accumulation

and the formation of an interface dipole. The modeling results support the conclusion that very

little C60 is needed to enhance carrier extraction. Ultimately, this work helps clarify the role of

fullerenes in perovskite solar cells.
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PART II

MODELING OF PHOTOVOLTAIC SYSTEMS
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Drift-diffusion modeling of solar cells can improve our understanding of fundamental device

physics and limitations of device performance, and help engineer better solar cell architectures.

However, most applications of photovoltaics involve multiple PV modules, where each module

is composed of many solar cells. Unlike individual solar cells, which are generally studied in

controlled laboratory conditions, PV systems are utilized outdoors where environmental conditions

such as irradiance, ambient temperature, and particulate matter affect their performance. Thus, to

accurately model PV systems, it is necessary to develop system-level models with consideration of

the appropriate physics and environmental boundary conditions.

Additionally, improving PV efficiencies at the individual solar cell scale is becoming increas-

ingly difficult and costly. Therefore, there is an increasing focus on optimizing energy production

at the PV module and system levels. PV systems are most effective in areas with abundant sunlight.

However, such areas are often in semi-arid and desert climates, causing the systems’ energy pro-

duction to be significantly reduced by two major environmental factors: high ambient temperature,

which causes thermal losses, and high concentration of atmospheric dust, which deposits on the

panels causing soiling losses [72]. The losses due to these environmental factors can cause even

the most efficient solar cells to perform poorly when deployed in the field. For example, energy

production losses due to soiling have been reported to be between 20-70% in some desert regions

[73, 74], and losses due to temperature are commonly 0.1-0.5% for each 1◦C increase in panel

temperature [75]. In order to design new systems, improve return-on-investment assessment, and

optimize system maintenance, PV system models need to accurately predict energy output, which

requires accounting for losses due to temperature and soiling. The next two chapters analyze

existing models and develop improved models for considering these losses.
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CHAPTER 5

IMPROVING PV SYSTEM SOILING LOSS PREDICTIONS

Soiling of PV panels is the process in which airborne particles deposit and accumulate on the panel

surface, reducing solar irradiance received by the panel by absorbing and reflecting a portion of the

incident light [74, 76]. In addition to reversible optical losses, soiling can cause permanent damage

to PV modules. In cases of omitted cleaning, cemented dust layers can be very difficult to remove,

whereas harsh cleaning with brushes can lead to scratching or abrasion of anti-reflective coatings

or panel glass. Non-uniform soiling causes partial shading, which can lead to the formation of

hot spots (areas of high temperature that result in localized decrease in efficiency and accelerated

material degradation). Even with regular cleaning, mechanical loads during cleaning or thermal

shocks when hot panels are cleaned with cold water can break solar cells or cause crack formation.

Soiling has been estimated to cause an average loss of 3-4% of the global annual energy yield

of photovoltaics [77]. Soiling also introduces additional maintenance costs and increases the

uncertainty in the estimation of PV performance, leading to higher financial risks and interest

rates charged to plant developers [78]. Improving soiling loss predictions will allow to both more-

accurately predict system energy production, which will lower financial risk and interest rates, and

form more optimal cleaning maintenance schedules to mitigate some of these losses.

5.1 Background

Soiling has been discussed in the literature for more than 70 years, and yet the fundamental

properties of aerosols and their effect on energy transfer are still not fully understood, nor is there

a clear solution to the problem [73]. Soiling has been commonly underestimated and overlooked

in the PV industry until it came to the forefront recently because of increased deployment of PV

systems in parts of the world where soiling is a major issue [79]. For example, in sunny, arid, and

dusty regions such as the Middle East, North Africa, and Asia, power losses due to soiling have

been reported to be between 20-70%, while in locations with frequent precipitation or low ambient
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particle concentration, the energy loss is typically less than 5% [73, 74]. The vast majority of

previous research into soiling has consisted of observations of the reduction in performance due

to dust accumulation as a function of exposure time at a particular location. Many researchers use

these observations to derive estimates for annual soiling loss (e.g. 5% per year loss) or constant daily

soiling rates (e.g. 0.1%/day). These rough estimates are then used in PV performance modeling

and for cleaning schedule guidance [79]. A large proportion of research studies use artificial dust

particles, which are not representative of natural dust composition [80]. The conclusions from

these studies are often contradictory, and much of the information available in the literature applies

only to the specific location where the experimental work was conducted due to numerous very

localized factors.

Annual PV soiling losses are generally computed by considering the soiling rate (typically the

increase in loss per day) for a site combined with rainfall patterns and manual cleaning events.

For example, in 2006, Kimber et al. [81] presented a new model for predicting soiling losses in

California as a function of rainfall data and the number of manual cleanings. Their empirical model

uses typical meteorological year (TMY) data and hourly soiling rates to predict energy production.

They suggested a linear model to represent daily system efficiency reduction due to soiling between

rainfalls. When daily rainfall exceeds a threshold value, the soiling loss is assumed to drop to a

minimum value. After a study of data frommany PV plants in California, they found that the soiling

rates are between 0.1-0.3% per day during dry periods, which corresponds to annual energy losses

between 1.5 and 6.2%, depending on system location. They found that their model is more accurate

than using a constant annual soiling loss factor, which is a common approach in the industry.

While more advanced approaches have been developed by academic researchers, the Kimber et

al. approach appears to be one of the most advanced soiling loss models used commercially.

Some of the proposed approaches require too many experimental measurements (e.g. particle

accumulation masses, particle diameters, etc.), making them impractical for commercial use at

this time. The goal of the work described in this chapter was to analyze some of the more

sophisticated approaches proposed by researchers, evaluate the practicality of their implementation
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for commercial applications, and encourage some of them to be utilized by the PV industry by

implementing more advanced soiling models in a commercial software tool, Enlighten Energy’s

PV SoilSayer.

In this work, we use Kimber et al.’s approach as a starting point and attempt to improve it by

addressing some of its limitations, which are listed below:

• The soiling rates were determined by comparing energy production data to predicted ideal

production from solar resource estimates. Any errors in the ideal energy production will

contribute to an error in the soiling rate. A better approach to determine soiling rates would

be to compare actual energy production data from a soiled module to one that is cleaned

regularly.

• They did not consider the effect of angle of incidence (AOI) on soiling losses, even though

multiple previous studies have shown a dependency. This dependency means that two PV

modules in the same location, but with different tilt angles or a fixed-tilt versus single-axis

tracker design, are expected to experience different soiling losses [82, 83].

• Their study monitored 250 PV systems, but all data with an R2 of less than 0.7 when fitting

a line to the dry periods was excluded from the analysis. As pointed out by another study

[84], this could have biased the data towards sites with higher soiling where more linear

relationships are likely. Sites with smaller losses tend to have smaller R2 because random

errors in solar resource estimates dominate. Another study in California analyzed 186 PV

sites and found that soiling losses averaged 0.051%/day, which is significantly less than the

0.2%/day found by Kimber et al. [85]. However, this study also had the flaw where measured

energy data was compared with predicted ideal data, so the discrepancy could be caused

by different prediction approaches of ideal energy production or different sources for solar

resource data. Such discrepancies between studies performed in the same region demonstrate

the lack of reliability in existing approaches to model and measure soiling losses.
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• Their model requires empirical measurements of soiling at the locations where soiling loss

predictions are desired. Often, especially when planning for new solar plant construction,

making such measurements over a long duration is not practical, yet an estimate of the soiling

losses is still needed. Such estimates could potentially be achieved by studying the impact of

environmental conditions such as particulate matter concentration, wind speed, and relative

humidity, then developing models that use historical or TMY weather data to predict soiling

losses based on these observed relationships.

When considering the approaches to address such soiling model limitations, some studies have

proposed that two independentmodels are required: one to correlate the amount of dust accumulated

with locally available weather or environmental conditions, and the second to correlate the amount

of dust deposited with energy production loss [80]. Most literature models further separate the

prediction of soiling accumulation based on weather into the soiling rate during dry periods and

the effects of rain. We take this approach of multiple submodels, with Section 5.2 focused on

the soiling rates during dry periods, Section 5.3 considering the effect of rain, and Section 5.4

correlating the dust deposition prediction with energy production loss.

5.2 Semi-Physical Modeling of Soiling Accumulation

Most of the reported soiling research consists of taking field measurements of the energy losses

due to soiling on particular PV modules in a particular location and deriving soiling rates (i.e.

percent loss per day) based on this data. These regression models typically only apply to the

specific location where the experimental work was conducted. It is often not feasible to perform

such measurements of soiling losses at each PV site due to lack of necessary equipment, labor

costs, or when an energy production prediction is desired for a PV plant that has not yet been built.

Therefore, it is desirable in some situations tomove beyond site-specific soiling loss studies and have

a predictive model for soiling losses in any location in the world that does not require taking new

measurements at that location [79]. However, we must note that a generalized model cannot capture

all localized effects and therefore can only provide estimates of soiling and is not a replacement
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for local experimental measurements. Nevertheless, an estimate based on local environmental

parameters is better than assuming a constant annual soiling loss or constant daily soiling rate.

This section discusses some of the existing research regarding the physical mechanisms of soiling

accumulation, explores existing semi-physical models, and proposes a general model that could be

used for such estimates, provided that the empirical parameters are tuned on a region-by-region

basis based on soiling observations.

5.2.1 Background

The physics of dust deposition and accumulation are complex due to many influencing factors,

ranging from weather, site, and system specifications to surface nano-characteristics as well as their

variation in time (Figure 5.1) [80]. Particle size, shape, and constituents, as well as deposition be-

havior and accumulation rates, can vary dramatically in different localities based on the geography,

climate, and urbanization of a region. Airborne dust concentration and rainfall are often considered

to be the major determinants of soiling. If sufficiently abundant, rain is effective at cleaning soiled

surfaces. However, rain can also increase soiling loss by depositing particles that have been washed

out of the atmosphere.

72



Figure 5.1: Soiling is a complex problem with many influencing factors over a large range of size
and time scales. Environmental parameters are shown in blue, microscopic soiling processes are
shown in green, and controllable influencing factors related to plant design and maintenance
strategies are in orange. Adapted from [86].

Wind speed also may have an important effect because it influences the particle deposition

mechanics. Wind speed determines the balance between deposition and resuspension since it

can increase both deposition of dust particles and their detachment from the surface. The bal-

ance between them is sensitive to many factors, such as the geometry of the PV system, airflow

characteristics, dust characteristics (size, shape, composition), and humidity. Multiple previous

reports demonstrated both net cleaning (wind-induced resuspension) and net soiling (additional

contribution from inertial deposition) effects of wind [87]. Some studies report that for conditions

where wind speed is less than 3 m/s, the particle deposition rate can be adequately accounted for

by sedimentation alone [76]. It has also been reported that wind is not very effective at removing

soiling for particles smaller than 50 microns because smaller particles have a larger adhesive force

and resist removal even at wind velocities greater than 50 m/s. Thus, higher wind velocity is

generally observed to deposit more dust on a PV module in a dusty environment [72]. Some have
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unsuccessfully attempted to enhance dust resuspension during windy periods by increasing the

panels’ tilt angle to achieve a higher detachment force exerted by the wind [88]. Furthermore,

relative humidity, dew, and light rain can strongly enhance dust adhesion to PV surfaces through

capillary forces, particle caking, and cementation. These moisture-related adhesion mechanisms

can be important even in deserts where while the humidity is low, radiative cooling of glass surfaces

at night allows them to cool below ambient air temperature and reach the dew point [77].

One of the most comprehensive studies on the influence of environmental parameters on soiling

was performed by Micheli et al. at the U.S. National Renewable Energy Laboratory (NREL), who

searched for correlations between soiling and 102 environmental parameters at 20 PV sites [73].

Out of all parameters investigated, they found that the annual average of daily mean particulate

matter (PM) and precipitation pattern (quantified by the average length of the dry period) recorded

by stations near the PV systems are the best soiling predictors. PM is defined as a mixture of solid

particles and liquid droplets suspended in air. There are two types of PM generally reported: PM10

and PM2.5, representing the concentrations of airborne PM less than 10 microns and less than 2.5

microns in diameter in a cubic meter of air, respectively. Note that PM2.5 is a subset of PM10, with

these smaller particles typically remaining airborne and traveling longer distances than the larger

particles included in PM10 because of their lower mass. PM2.5 is the main cause of haze, which is

periodically reduced visibility in urban areas, causing a reduction in solar intensity and alteration

of the solar spectrum reaching the ground [89]. The NREL study found no clear conclusion about

whether PM10 or PM2.5 was a better predictor of soiling. A separate study performed in the

Atacama Desert supports NREL’s conclusions, finding that soiling at various sites was strongly

correlated with aerosol optical depth, which is known to be correlated to PM [90]. While these

works have shown that PM concentration seems to be a good explanation for variation in soiling

rates over large distances (geographic location), it has been reported to be inadequate to explain day-

to-day variations in soiling rates at a particular location because of other weather conditions [76].

To predict soiling over shorter periods such as weeks, days, or even hours, additional parameters

such as wind, RH, and ambient temperatures are thought to be important [91, 92].
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The general approach of semi-physical dust accumulation models during the dry period is to

consider net dry deposition velocity. Dry deposition is defined as the exchange process of pollutants

from the earth’s atmosphere to surfaces in the absence of precipitation [74], and dry deposition

velocity (vd) is a way to express the rate at which particulate matter from the atmosphere encounter

a surface. Models predicting dry deposition are complex and require information that is difficult

to obtain; therefore, deposition fluxes are often estimated using PM and assumed dry deposition

velocities [93]. The simplest approach uses an empirically-derived net deposition velocity, assumed

to be a constant for each location. Then, mass flux accumulation rate (with dimensions mass per

area per time) is simply [94]

m = vdPM (5.1)

Some studies use a weighted average of PM2.5 and PM10 concentrations [95], while others use

only PM10, motivated by the fact that coarse particles are dominant in soiling mass accumulation

[94]. Accounting for different particle sizes can improve accuracy, but measuring size distribution

requires special equipment, and equipment for measuring particles greater than 10microns is scarce

[86]. More sophisticated approaches describe the dust accumulation as the net sum of competing

processes: dry deposition, rebound, and resuspension [76, 96]. Dry deposition, which is defined

in this context as the transport of particles to a surface regardless of whether they adhere, is often

further broken up into sedimentation (gravitational settling), and deposition due to turbulence and

boundary layer (quasi-laminar) effects, and expressed in terms of resistance analogs [74, 76, 86, 95–

99]. The total deposition velocity can be expressed as a sedimentation velocity in parallel with two

resistors that model the resistance to deposition of the turbulence (Ra) and resistance to deposition

in the boundary/surface layer (Rb)

vd = v
turb,bndry
d + vsed

d =
1

Ra + Rb
+ vs (5.2)

A diagram of the approach is shown in Figure 5.2. Next, we individually discuss the main

mechanisms that contribute to soiling accumulation.

75



Figure 5.2: Schematic of particle dry deposition model resistance analogy. Adapted from [97].

Sedimentation

In aerosol physics, sedimentation is described by the Stokes terminal settling velocity which is

valid when particle Reynolds number is less than one (true for small particles). Only a very small

fraction of soiling particles have Reynolds number greater than one, so Stokes velocity alone can

be used to estimate sedimentation. The Stokes terminal settling velocity is the velocity of a particle

when the gravitational force Fg, drag force FD, and buoyancy FB force experienced by the particle

are in equilibrium. To derive the expression for Stokes velocity, a spherical particles with diameter

d is assumed. The balance of forces for terminal velocity dictates [100]

FB + FD = Fg (5.3)

The buoyancy force is the product of air density ρair , particle volume V , and gravitational acceler-

ation g

FB = ρairVg =
4
3
π

(
d
2

)3
ρairg =

π

6
ρairgd3 (5.4)

The aerodynamic drag on the particle is given by Stokes law

FD = 3πµvgd (5.5)
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where vg is the Stokes velocity that we are solving for and µ is the kinematic viscosity of air. The

force of gravity on the particle is

Fg =
4
3
π

(
d
2

)3
ρpg =

π

6
ρpgd3 (5.6)

where ρp is the particle’s density. Substituting Equations 5.4-5.6 into Equation 5.3, we find

vg =
(ρp − ρair )gd3

18µ
≈
(ρp)gd3

18µ
(5.7)

where we have used the fact that ρair << ρp. To correct for the shape of real non-spherical

particles, two correction factors are often added: the Cunningham correction factor C (≈ 1 for

particles larger than one micron), and the dynamic shape factor k (reported to be between 1.0 and

1.2 for soiling particles). The general equation for sedimentation velocity in the Stokes regime

[86, 101] is

vg =
ρd2g
18µ

C
k

(5.8)

Many models for soiling set the correction for real particles shape C/k to one, which means they

assume that the spherical assumption is adequate, since often the proper particle shape correction

factor for a particular location’s soiling is not known. When considering the sedimentation of

soiling on PVmodules, only those particles that deposit on the optical surface of the module should

be considered. Therefore, the tilt angle (θt) of the PV panel influences the particle sedimentation

velocity as follows [72, 79, 86, 97, 102].

vs = vgcos(θt) =
ρd2g
18µ

C
k

cos(θt) (5.9)

Turbulence and Boundary Layer effects

To account for wind turbulence and boundary layer effects, the atmosphere can be separated into

two layers: an upper layer where particle transport is described by an atmospheric turbulence, and

a quasi-laminar layer (also known as the boundary or surface layer) where particle transport is

governed by Brownian diffusion and inertial impaction. The contribution of these effects to the net
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deposition velocity can be modeled by two resistors in series

v
turb,bndry
d =

1
Ra + Rb

(5.10)

where Ra = 1/(CDuwind) where CD is the surface drag coefficient and uwind is the mean wind

velocity. The product CDuwind represents the capability of wind to transfer kinetic energy to

particles in the air, with CD accounting for the turbulence when wind blows over rough surfaces

such as land and has a global yearly average value of 1.2 × 10−2 (dimensionless). Numerous

expressions exist in the literature for the boundary/surface layer resistance Rb [95, 97, 98]. The

expressions generally have the form

Rb =
1

u∗Pattach(Eb + Eim)
(5.11)

where Eb is the collection efficiency from Brownian deposition, Eim is the collection efficiency

from impaction, Pattach is the attachment probability, and u∗ is the friction velocity defined as

u∗ = uwind
κ

ln(zR/z0)
(5.12)

The logarithmic term accounts for the difference inwind speed at different heights, depending on the

roughness of the surface. zR is the reference height above ground where the wind speed is measured

(commonly 10 meters [97]), z0 is the surface roughness length (a length scale representation of the

roughness of a surface), and κ is the Von Karman constant that is widely agreed to have a unitless

value of 0.4. When wind hits a solar module, the number of particles that pass by the panel per

unit time increases proportionally to the wind speed. Therefore, resistance to wind-induced surface

deposition (Rb) is inversely proportional to wind speed.

Brownian deposition (quantified by Eb) describes the deposition of microscopic particles (less

than one micron) that diffuse in space due to random impacts with surrounding air molecules

and other aerosol particles and remain entrained in fluid streams [86]. Since such small particles

do not significantly contribute to the soiling mass accumulation, Brownian deposition can be

neglected. Very large particles only exhibit sedimentation, rapidly depositing from air regardless

of flow behavior. Medium-sized particles (about 10 micron in diameter, which is the upper limit
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for PM10 measurements) experience viscous forces comparable to their own inertia and thus can

exhibit inertial deposition in windy conditions. In calm conditions, medium-sized particles deposit

through sedimentation [86]. The dominant size of particles accumulating on outdoor surfaces

has been observed to be 10-30 micron. Overall, PV soiling’s dominant deposition mechanism is

sedimentation, with inertial deposition contributing during windy conditions. The concept that

sedimentation is the dominant mechanism is supported by studies that found that the amount of

soiling on tilted collectors simply follows the cosine of the tilt angle, which means it simply

corresponds to the horizontal component of the collector’s surface area as expected by Equation

5.9 [72, 86].

Soiling particles can be carried by an airstream (wind) where impacts from the air molecules

keep them traveling with the airstream. If the flow hits an obstacle, like a PV panel, the streamlines

deviate from their original path (Figure 5.3). The airflow direction change is transferred to the

particles in the airstream by the air molecules impacting them. If the transferred momentum is

sufficient to overcome the particles’ kinetic inertia, the particles will follow the direction of the

airstream. If not, the aerosol particles cannot follow the air and will eventually hit the PV panel’s

surface, which is referred to as impaction or inertial deposition. The impaction collection efficiency

Eim is a function between 0 and 1, describing the proportion of particles carried past the surface

by wind that deposit on the surface due to impaction.

Figure 5.3: Schematic of deposition due to particle impaction. Adapted from [98].
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Eim increases with increasing particle diameter since more massive particles have larger inertia,

which makes them more likely to leave the airstream at a bend in the flow. There are multiple

empirical-based step-like functions used for Eim such as

Eim =
St2

(1 + St) ∗ 2
(5.13)

was found for vegetative canopies [103], or some (e.g. [98, 102]) use a sigmoidal distribution

Eim =
1

1 + exp(− fim(St − 1))
(5.14)

where Fim is an empirical parameter that determines how steeply the function transitions from 0 to

1. Kim and Larson empirically found [104]

Eim = 10−2.8/St (5.15)

All of these Eim equations are expressed in terms of the Stokes number, which characterizes the

behavior of particles suspended in a fluid flow and is defined as

St =
vsu2
∗

gµ
(5.16)

Wolferststetter et al. [98] point out that only the component of the wind vector that points

perpendicular towards the panel should be considered, thus impaction velocity is multiplied by

the cosine of the difference in angle between the wind direction and the panel azimuth orientation

(∆θaz,w).

The attachment probability is the probability that a particle that hits a surface will attach to

the surface instead of rebounding. Attachment probability decreases with increasing wind speed

and particle size since particles will rebound if their kinetic energy is greater than the adhesion

force with the panel surface [86]. For example, some field studies reported that impacting particles

detached when wind speed reached just 4 m/s [87]. There are no widely adopted models that

quantitatively describe rebound in arbitrary conditions. Wolferststetter et al. propose a logistic

equation for attachment probability, expressed in terms of a threshold particle diameter for rebound,

drb

Pattach = 1 −
1

1 + exp[−Crb(dp − drb)]
(5.17)
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where Crb describes the steepness of the transition between attachment and rebound and

drb =
ζrb

uwind
+ wRH(RH)2 (5.18)

where RH is the relative humidity, and ζrb and wRH are constants determined during parameteri-

zation of the model. This model describes the physical effect of higher humidity causing particles

to adhere better to a surface, thus increasing the particle diameter threshold for rebound to larger

particles. The rebound threshold diameter decreases with increasing wind speed because particles

in higher wind speed have more kinetic energy, therefore reducing the mass required to give them

enough kinetic energy to overcome the surface adhesive forces.

Resuspension

Resuspension describes the process in which soiling that has already been present on the surface

of a PV panel for some time detaches from the panel due to wind overcoming the adhesion force.

Resuspension is very difficult to model because it varies greatly in natural conditions and is sensitive

to adhesion forces, particle and surface chemistry, and particle shapes [87]. One study found that

the wind velocity necessary for resuspension of particles from flat surfaces varied from 0.82 m/s

to 2219.8 m/s for different particles [105]. Fundamental chemistry studies of soiling adhesion

using atomic force microscopy found that particles with higher organic surface content have higher

adhesive force than particles with no organic surface content. They also found that cementation

occurs when high-organic particles are exposed to dew, high humidity, or light rain. They found

that soiling particles close to highways are contaminated with hydrocarbons from diesel fuel,

which tend to bind particles together and form cement-like films adhering to glass [106]. Such

localized effects make adhesion forces nearly impossible to predict in a generalized way, and thus

a generic resuspension equation that is empirically fitted to the observed resuspension may be the

best approach. A desert study in Qatar observed that resuspension strongly increases for wind

speeds above 4 m/s. They also observed a decrease in resuspension with increasing RH, with a

threshold of about 60%, above which almost no resuspension occurs [76].
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5.2.2 Limitations of Existing Models

When Enlighten Energy Ltd., as part of our research collaboration, came up with the idea of

implementing amodel that considers soiling based on environmental variables, the natural approach

was to start with a model from the literature. Guo et al.’s model [107] was chosen as one of the only

clearly explained and validated semi-physical soiling models in the literature. Here, we describe

the limitations which were found when trying to predict soiling using Guo et al.’s model.

For completeness, we will first outline the derivation of their model, which predicts soiling

losses due to particulate matter concentration (PM10), wind speed, and relative humidity. It

considers the non-linear effects of dust deposition, resuspension of deposited dust, and the effect of

relative humidity on resuspension. Guo et al. define a cleanness index, which is simply a measure

of the relative performance in terms of the DC power output of a soiled PV array relative to a clean

array operating under the same solar irradiance. This is similar to what other researchers call the

soiling ratio. The semi-physical model assumes that the daily change in a PV panel’s cleanness

index is proportional to the difference between the daily average deposition and resuspension flux.

Dust deposition flux is proportional to the ambient dust concentration (PM10), while resuspension

flux is a function of wind speed and relative humidity. The dry deposition model by Kim and Larson

[104] has been adopted. Dry deposition velocity is expressed as a combination of gravitational

settling Vg and turbulent deposition Vt

Vd = Vt + Vg = uηdI +
ρpgdp

18µ
(5.19)

where µ is the dynamic viscosity of air, ρp is the density of an aerosol particle, and dp is particle

diameter. The friction velocity, u, is assumed to be directly proportional to the scalar wind speed,

usc, with the proportionality coefficient α1 determined by empirical fitting

u = α1usc (5.20)

The term ηdI is defined by

ηdI = exp
(
−α0gv

Vgu2

)
(5.21)

82



where α0 is an empirical parameter which controls the effect of turbulence on dust deposition

velocity, g is gravitational acceleration (9.81 m/s2), and v is kinematic viscosity of air (1.5 × 10−5

m2/s).

Therefore, the full expression for deposition velocity in terms of scalar wind speed is

Vd = α1uscexp
(
−α0gv

Vgα2
1u2

sc

)
+ Vg (5.22)

Next, the dust deposition flux may be expressed as the product of deposition velocity and the

particulate matter concentration (PM10, which we label as P10 in the equations)

Fd = P10

[
α1uscexp

(
−α0gv

Vgα2
1u2

sc

)
+ Vg

]
(5.23)

Guo et al. use the following equation to model dust resuspension flux, taking into consideration

relative humidity (H), which has been reported to affect the threshold friction velocity for dust

resuspension.

Fr =
β2

[
α1usc − (uth,0 + β1H)

]
α2

1u2
sc

1 + exp
[
− 100

[
α1usc − (uth,0 + β1H)

] ] (5.24)

where the parameters β1 and uth,0 control the effect of relative humidity on dust resuspension. Note

that this is a logistic function (smoothed step-function). Due to the exponential in the denominator,

Fr approaches 0when the friction velocity is less than the resuspension threshold, ormathematically

α1usc < (uth,0 + β1H). When the friction velocity is significantly larger than the threshold, the

denominator goes to 1. When the friction velocity is near the threshold, the exponential ensures a

continuous, smooth transition.

The net deposition flux is the difference between dust deposition and dust resuspension flux.

Therefore, the change in cleanness index for a 24 hour period is

∆CI = γ(Fr − Fd) (5.25)

Table 5.1 lists the empirical parameters of the model.
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Table 5.1: Empirical parameters of the Guo et al. model.

Parameter Value
γ 2.64384 × 106 m2s/kg
α0 1.71 × 103 (unitless)
α1 0.375 (unitless)
β1 1.95 × 10−2 m/s/%RH

beta2 3.00 × 10−9 kgs2/m5

uth,0 0 m/s
Vg 0.0199 m/s

An attempt to run the as-is Guo et al. model usingweather and PMdata for Riverside, California,

was unsuccessful. The model predicted very low levels of soiling deposition and high resuspension

flux such that almost no net soiling accumulation was predicted to occur (Figure 5.4a). The cause

of this seems to be the highly empirical nature of the model, which was developed for a site in

Doha, Qatar, with a high PM of 120 µg/m3. Guo et al. tuned the resuspension flux equation’s

coefficients to be appropriate for this high PM, but the resuspension equation is independent of

PM. Therefore, when the model is used for Riverside, which has a much lower PM of 20 µg/m3

(typical of California), the resuspension flux overwhelms the deposition flux. In order to avoid this

issue, we tried simply setting the resuspension term to zero. However, without the resuspension

term to account for the fact that much of the wind-blown dust hitting a solar panel does not adhere,

the model overestimates wind-induced deposition, leading to unphysical spikes of several orders of

magnitude in the hourly soiling rate (Figure 5.4b).
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Figure 5.4: One year of hourly soiling rates predicted by the Guo et al. model with (a) and without
(b) the resuspension term.

A third limitation is that the model does not consider the effect of the tilt angle. As we described

in the literature review above, numerous studies have found that soiling accumulation decreases

with increasing tilt angle and follows approximately a cosine law. The development of a model that

addresses these limitations is described in the next section.

5.2.3 Developing a General Soiling Accumulation Model

This section describes the development of a general semi-physical model for soiling estimation that

yields correct trends for locations worldwide. Note that this model is only intended to be used for

rough estimates of the possible soiling that a location may experience when soiling measurements

are not available (e.g. for pre-construction site planning). We propose data-driven models that

would use soiling measurements to provide more accurate soiling predictions in Section 5.8. Our

soiling model is based on many of the same principles as in Guo et al. and other literature models

discussed in Section 5.2.1. Ideas from several models were combined in an attempt to develop

a more general model that does not include too many site-specific features or require too much

detailed information about the soiling (e.g. particle sizes and chemistry) that is not practical to

obtain. The model describes soiling accumulation as the net of three contributing mechanisms:

sedimentation, wind-induced deposition, and resuspension. The equations for the threemechanisms

are presented below.
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Sedimentation

Here we take the standard approach as described in Section 5.2.1 with the Cunningham and

dynamic shape correction factors set equal to one since it is impractical to determine these in many

situations. In contrast with the Guo et al. model, we include the influence of panel tilt angle (θt)

on sedimentation velocity. The velocity of sedimentation onto the tilted panel surface is

vs = vgcos(θt) =
ρd2g
18µ

cos(θt) (5.26)

where vg is the sedimentation velocity on a horizontal surface. In the initial implementation, the

particle density was assumed to be that of sand (1631 kg/m3) [108], and the particle diameter was

assumed to be 13 µm. The kinematic viscosity of air (µ) was taken at 25◦C, which is a reasonable

approximation of the average air temperature for a large portion of solar power stations and has a

value of 15.52 × 106 m2/s [109]. Kinematic viscosity varies by only about 0.6% per degree, so

using the constant temperature assumption is not expected to cause much error.

Wind-Induced Deposition

For considering additional deposition due to wind, we describe particle transport in terms of the

sum of an aerodynamic and surface resistance. Brownian diffusion is ignored since it is only

significant for very small particles. We use the expression for impaction collection efficiency from

Kim et al. [104], combined with the probability of attachment and azimuth orientation effect from

Wolfertstetter [98].

vd,wind =
cos(∆θaz,w)

Ra + Rb
=

cos(∆θaz,w)
1

CDuwind
+ 1

u∗EimPattach

(5.27)

where∆θaz,w is the difference between panel azimuth orientation andwind direction, and impaction

efficiency is given by

Eim = 10−2.8/St (5.28)

with

St =
vsu2
∗

gµ
(5.29)
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For the surface drag coefficient, CD, the global yearly average value of 0.012 (dimensionless) is

used [97].

The attachment probability is described by

Pattach = 1 −
1

1 + exp[−Crb(dp − drb)]
(5.30)

where the parameterization constantCrb = 8×104 describes the steepness of the transition between

attachment and rebound and

drb =
ζrb

uwind
+ wRH(RH)2 (5.31)

where ζrb = 1 × 10−5 and wRH = 4 × 10−4 are parameterization constants.

Figure 5.5 shows the attachment probability as a function of particle diameter and wind speed.

As expected, we see that the attachment probability is nearly one for small particles and zero for

large particles, which have higher kinetic energy that overcomes the surface adhesion energy.

Figure 5.5: Attachment probability as a function of a) particle diameter (with wind speed of 1 m/s
and relative humidity of 70%) and b) wind speed (with particle diameter of 15 µm and relative
humidity of 50%).

Overall, the aerodynamic contribution is linear with wind speed, and the surface contribution

rises to a step-like behavior, where a minimum wind speed and diameter are needed for particles to

have enough inertia to exit the fluid flow and deposit by impaction (Figure 5.6a). The relationship

between the wind-induced deposition and relative humidity is almost linear for typical soiling
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particle diameters of 10-20 µm. For larger particles (e.g. 50 µm), the effect of rebound (described

by Pattach) begins to have a non-linear effect (Figure 5.6b), with wind-induced deposition staying

close to zero for low RH and rising more rapidly for higher RH.

Figure 5.6: Wind-induced velocity as a function of a) wind speed (for 10 µm particles in 40%
relative humidity) and b) relative humidity (for 50 µm particles at 2 m/s wind speed).

Resuspension

Resuspension is modeled based on Guo et al.’s model and assumed to occur only when the friction

velocity is larger than a threshold friction velocity. The resuspension flux (kg/m2/s) of soiling is

given by

Fresusp = β2u2
∗(u∗ − u∗,th) (5.32)

with the threshold friction velocity for resuspension linearly increasing with RH. The slope of

increase is based on the report by Neuman et al. [110], who found that the threshold wind velocity

(uth) needed for resuspension is 0.24 m/s at 0% RH and 0.31 m/s at 90% RH. The threshold

friction velocity is given by

u∗,th =
κ(uth,RH=0 + β1RH)

ln(z/z0)
(5.33)

where β1 = 1.95 and β2 = 3.0 × 10−10 kgs2/m2. Note that RH is defined as a decimal value

(i.e. 60% is entered as 0.6 in the equation). Resuspension flux is zero for wind speeds less
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than the threshold velocity and increases rapidly for wind speeds above the threshold (Figure

5.7). It decreases linearly with increasing relative humidity. Unlike wind-induced deposition, the

resuspension equation here does not consider wind direction, mainly because this effect is not yet

understood [105]. Carefully designed experiments will be needed to improve our understanding of

resuspension.

Figure 5.7: Resuspension flux versus wind speed for RH 40%.

Net Accumulation

The net soiling accumulation rate is found by multiplying the total deposition velocity by PM10

and subtracting the resuspension flux

Ûmaccum = P10(vs + wvd,wind) − Fresusp (5.34)

where w = 0.1 is a dimensionless fitting parameter controlling the relative effect of wind-induced

deposition and sedimentation.

Figure 5.8 shows the dependence of net soiling accumulation flux on wind speed. At low wind

speed below the threshold for deposition due to impaction, the flux is only due to sedimentation

and, therefore, independent of wind speed. At moderate wind speeds, the flux increases linearly

with wind as more deposition due to impaction occurs. At high wind speeds, resuspension flux can
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be (depending on the RH) higher than deposition flux, resulting in a net cleaning effect. The curve

shifts to the right with increasing RH

Figure 5.8: Net soiling mass accumulation flux at 40% RH, 50 µg/m3 PM10 concentration, and
20◦ tilt angle.

Comparison with Guo et al. Model

Figure 5.9 shows a comparison of the hourly soiling rates over one year for a fictional PV plant

in Riverside, California. We see that our model gives a more physically realistic result, showing

significant positive soiling rates with occasional negative soiling rates due to resuspension during

high-wind events. The basic shape of the curve is determined by the average PM values, with

additional wind-induced soiling appearing as the smaller noisy spikes on top.

Figure 5.9: Comparison of hourly soiling mass accumulation rates for Riverside, CA as predicted
by the Guo et al. model (a) and the improved model proposed in this thesis (b).
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This model was developed with very limited soiling data from only several sites and therefore is

mostly intended as a proof-of-concept and to provide rough estimates and trends. All parameters of

the model are expected to be needing region-specific tuning once reliable soiling data for a diverse

range of locations becomes available. The initial implementation of the model was tuned to be

consistent with soiling observed in California. With the development and industry adaption of

fully autonomous, low-maintenance soiling measurement stations (e.g. [111–114]), the availability

of reliable soiling data is expected to increase significantly in the near future, which would allow

region-specific tuning of such a semi-physical model.

5.3 Effect of Rainfall

The net effect of soiling losses is strongly dependent on rainfall. There is a consensus in the

literature that rain often effectively cleans solar panels; however, aminimum amount of precipitation

is needed for effective cleaning. Reports vary regarding the rain threshold. Also, rain can hurt the

soiling problem if the duration is brief and the intensity is light by depositing high concentrations

of residue onto a PV (e.g. water spots induced by soluble salt contained in the rainwater) or

providing water for a cementation process where soiling strongly adheres to the PV surface [72, 79].

Cementation is reported to occur in regions with high dust and humidity (possibly leading to

heavy morning dews). At high humidity, water-soluble particles form microscopic droplets of salt

solutions, which also retain some insoluble particles. When dried by evaporation, the precipitated

salt acts as a cement to anchor insoluble particles to the surface [90]. Soiling that has cemented

to the surface often cannot be removed without mechanical detergent scrubbing, thus increasing

the cost of manual cleaning [72]. Some examples of empirical observations of rainfall effects at

different locations are listed below (this list is not intended to be comprehensive)

• Rain events were found to clean soiling on panels (with the exception of bird droppings)

panels to within 1% of the manually cleaned ones. Losses due to bird droppings were

recovered to only 3% loss after heavy rain (9 mm) (Phoenix, Arizona) [82].

• Rain effectively cleaned modules as long as daily rainfall surpassed about 4-5 mm (Southern
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Spain) [83].

• Cleaning action of rain generally only occurswhen rainfall ismore than 4-5mm/day (Arizona)

[102].

• Relatively modest rainfall events of as low as 2.8 mm were sufficient to clean panel to a level

that restored power output to within 1% of the manually cleaned panel. (Portland, Oregon)

[115].

• Even light rain below 1 mm is enough to clean cover glass, reducing losses to below 5%.

Note that this study defines the soiling loss of a "clean" panel at a higher value (5%) than

most other studies [116].

• When comparing locations, some sets of locations had the same soiling rates but different

soiling losses, mainly due to different rainfall amounts. Precipitation of 0.5 mm was enough

to clean systems that had less than 10% soiling loss. For systems with higher soiling losses,

higher precipitation amounts were needed. (Atacama desert) [90].

• Precipitation amounts of 5 mm or less have the effect of promoting soiling, but amounts of

> 15 mm have a cleaning effect (Zimbabwe) [117].

• The rainfall threshold needed for effective cleaning varies from 0.3 mm to 20 mm. Variation

in values can be attributed to the complexity of surface cleaning by falling droplets, where

surface wettability, dust type, impact velocity of the droplet, surface incline angle, dust

adhesion state (cemented, caked, aged) all affect the cleaning effectiveness. Dew could also

clean the surface but has been observed to do so rarely (Review paper describing multiple

locations) [76].

• Soiling loss was reduced by 0.5-1%/mm of rainfall when daily rainfall was > 2 mm. Some

increases in soiling loss were observed when daily rainfall was <2 mm (Arizona) [118].

Given the wide variability in the observed effectiveness of panel cleaning by rainfall, our model

requires a user input (named Rainfall Clean Amount) that specifies the amount of rainfall that
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results in a perfect or near-perfect clean. The quality of the cleaning effect of rainfall is specified

in terms of the soiling loss remaining after a rainfall event with precipitation amount reaching the

Rainfall Clean Amount. We assume that any rainfall less than the Rainfall Clean Amount results

in a partial cleaning that is proportional to the rainfall divided by the Rainfall Clean Amount. For

example, if 6 mm of rainfall is needed for a clean which leaves 5% soiling loss (Rainfall Clean

Quality = 5%), then 2 mm will result in a 0.33 · 0.95 = 31.35% reduction in the soiling amount.

Users can also specify a minimum hourly rainfall rate threshold needed to result in a cleaning effect.

Further details about the rainfall cleaning model parameters are described in Appendix A. Figure

5.10 shows an example of the reduction in soiling losses due to rain. Note that in contrast to the

soiling amount, the soiling losses, which are defined as an energy loss, are zero when there is no

sunlight.

Figure 5.10: Reduction in soiling losses due to rainfall. This plot is from Enlighten Energy’s PV
SoilSayer software, which contains an implementation of the soiling model described here.

The wetting of the ground due to rainfall has been observed in some studies to result in a slowing

or even temporary stopping of soiling accumulation for some time after the rainfall event. This can

be highly location-dependent and also dependent on the dominant source of soiling. For example,

if the source of soiling is dust from the ground, then it is likely that a wet ground will not result
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in any significant soiling. However, if the source of soiling is pollution from a nearby factory or

pollen from nearby trees, this concept may not apply. Some models assume a Grace Period, which

is the period of time after a rainfall event where there is no soiling accumulation [81, 85, 90]. The

length of the Grace Period varies depending on the model, with typical values ranging from 5 to 21

days. Due to this effect’s location-dependence, if the Grace Period due to precipitation was used in

our model, it would have to be provided by the user based on local measurements. Since the Grace

Period phenomenon was only observed in a few studies (and even these studies observed it on only

some of their sites) and none of our measured soiling data supports the concept of a Grace Period,

we have not incorporated this into the model.

5.4 Incidence Angle Modifier due to Soiling

The losses due to soiling are also influenced by the angle of incidence (AOI) of the incoming

solar radiation. Multiple studies [82, 83, 90, 102, 116, 119] have found that the losses due to

soiling are significantly increased at larger AOIs. The AOI of direct solar radiation depends on the

sun’s position in the sky and the solar panel tilt angle, which is variable for panels that track the

sun (single-axis trackers). It may not be cost-effective to clean modules that track the sun due to

the lower impact of soiling in these modules due to the lower AOIs that they experience [82]. On

sunny days, losses have been found to be symmetric about solar noon, where they reach a minimum

[90, 116]. Changes in angular response are likely due to changes in the optical path length (OPL) of

the direct radiation through absorbers and scatterers in the dust layers over the PVmodule; a shorter

OPL (e.g. at noon) leads to less attenuation of direct irradiance that reaches the module surface,

while longer OPL leads to more attenuation, enhancing soiling effects [90]. On cloudy days, where

global irradiance is mostly composed of diffuse radiation, losses appear to be mostly independent

of AOI, probably due to the isotropic nature of diffuse radiation [116]. Since the proportion of

diffuse to direct solar irradiance varies from day-to-day, models that attempt to describe the IAM

due to soiling need to consider separately diffuse and direct irradiance.

Martin and Ruiz developed an experimentally-validated analytic model (we will call this the
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MR model) that describes soiling-dependent losses due to incident light that is not perpendicular

to the solar panel surface [120–122]. These losses include angle of incidence effects and effects

due to the relative proportions of direct, diffuse, and ground-reflected solar irradiation. In this

section, we will describe this model, and in the next section, we will combine the MR model with

the soiling accumulation model to achieve a more comprehensive model for soiling losses.

The MR model was obtained from the optical analysis of commercial PV modules of different

technologies. In order to accurately describe the angular losses, the MR model considers the

following four solar radiation contributions: direct normal, diffuse horizontal-circumsolar, diffuse

horizontal-isotropic, and ground-reflected. Direct normal irradiance (DNI) is measured at the

Earth’s surface with a surface element perpendicular to the Sun and is equal to the extraterrestrial

irradiance above the atmosphere minus the atmospheric losses due to absorption and scattering.

Diffuse horizontal irradiance (DHI) is the radiation at the Earth’s surface from light scattered by

the atmosphere. Under the Hay and Davies diffuse model, DHI is divided into circumsolar and

isotropic components with circumsolar referring to the light that has the apparent origin in the

region of the sky around the sun, and isotropic referring to the remaining portion of diffuse that

is approximately isotropic across the sky. Ground-reflected irradiation is the irradiation received

from above a horizontal surface after it is reflected from the ground. It depends on the reflectivity

of the ground surface, known as albedo. Each of these irradiances can be further transposed to

calculate the plane-of-array (POA) irradiance, which is the portion of the radiation that hits a tilted

surface (in our case, the solar panel).

The short circuit current of a solar cell can be expressed in terms of the plane-of-array irradiance

from the four solar radiation contributions described above as

Isc =
˜Isc

G̃

[
EPOA

dir (1 − FB) + EPOA
di f ,circ(1 − FB) + EPOA

di f ,iso(1 − FD) + EPOA
alb (1 − FA)

]
(5.35)

where EPOA
dir , EPOA

di f ,circ, EPOA
di f ,iso, and EPOA

alb denotes POA direct, POA diffuse-circumsolar, POA

diffuse-isotropic, and POA ground-reflected irradiance, respectively. ˜Isc is the short-circuit current

under a direct irradiance of G̃, and the FB,FD, and FA are empirical angular loss factors that account

for soiling losses due to non-perpendicular incident light. To calculate the POA diffuse irradiance,
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the MR model uses the Hay-Davies transposition model [123]

EPOA
di f = EPOA

di f ,circ + EPOA
di f ,iso = Edi f

[
Edir
Eetr

cos(α)
cos(θz)

+

(
1 −

Edir
Eetr

)
1 + cos(θT )

2

]
(5.36)

where θz is the solar zenith, θT is the tilt angle of the solar panel, Eetr is extraterrestrial irradiance,

and α is the angle of incidence. Transposition of direct normal irradiance to POA irradiance is

given simply by

EPOA
direct = Edir cos(α) (5.37)

Ground-reflected irradiance can be expressed as

EPOA
alb = aG

1 − cos(θT )

2
(5.38)

where G is ground horizontal irradiance, which is the total amount of radiation received from above

by a surface horizontal on the ground, and a is the albedo coefficient.

Substituting Equations 5.36-5.38 into 5.35, we get the main equation of the MR model

Isc =
˜Isc

G̃

[
Edir cos(α)[1 − FB] + Edi f

Edir
Eetr

cos(α)
cos(θz)

[1 − FB]+ (5.39)

+Edi f

(
1 −

Edir
Eetr

)
1 + cos(θT )

2
[1 − FD] + aG

1 − cos(θT )

2
[1 − FA]

]
(5.40)

The angular loss factors are defined by

FB(α) =
exp(−cos(α)/ar ) − exp(−1/ar ))

1 − exp(−1/ar )
(5.41)

FA(θT ) ≈ exp
[
−

1
ar

(
c1

(
sinθT +

θT − sinθT
1 − cosθT

)
+ c2

(
sinθT +

θT − sinθT
1 − cosθT

)2)]
(5.42)

FD(θT ) ≈ exp
[
−

1
ar

(
c1

(
sinθT +

π − θT − sinθT
1 + cosθT

)
+ c2

(
sinθT +

π − θT − sinθT
1 + cosθT

)2)]
(5.43)

where FA and FD are approximations to the solutions of integrals that consider the contribution of

each solid angle from which light is incident on the PV module.
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The parameter ar is the angular losses empirical coefficient. The MR model was developed

such that a perfectly clean panel has ar = 0.16 − 0.17. A panel with "moderate dust quantity"

which is described as a 2% loss in short-circuit current, has ar = 0.20, and a panel with a "high"

amount of dust (8% loss in short-circuit current) has ar = 0.27. On clear days, angular losses are

dominated by the direct irradiance loss factor FB. Perfectly clean panels still have optical losses

at higher AOI due to the reflection of light by the panel surface. The losses significantly increase

with soiling. The diffuse and albedo angular loss factors only depend on ar and the panel tilt angle.

Since these describe losses due to scattered/reflected light, they are independent of the AOI. Figure

5.11 show these loss factors as a function of tilt angle for a clean and dirty panel. The albedo

angular loss function goes to one at zero tilt angles since there is no contribution to short-circuit

current from ground-reflected light when a panel is perfectly horizontal.

Figure 5.11: Empirical angular loss factors for direct (a), diffuse (b), and albedo (c) irradiance as
functions of angle of incidence for two angular loss coefficients (ar ).

5.5 Combining Incidence AngleModifier with Soiling AccumulationModels

The soiling accumulation models and MR soiling loss model can be combined to allow for

a predictive model of both soiling accumulation and its resulting energy production losses. We

realize that Martin and Ruiz’s soiling coefficient is approximately proportional to the amount of

soiling on the panel. Thus, while Martin and Ruiz use the soiling coefficient only to describe

angular reflection losses, we can also use it to describe the transmission losses due to surface area

coverage of soiling. We model the total hourly soiling losses (Lsoiling
tot ) in terms of a transmission
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loss (Lsoiling
trans ) and additional angular reflection losses due to soiling (Lsoiling

ang ). Percentage losses

are multiplicative, with the overall loss being

Lsoiling
tot = 1 − (1 − Lsoiling

trans )(1 − Lsoiling
ang ) (5.44)

For the angular losses, we want to isolate the additional losses due to soiling from the total

angular losses to properly calculate the impact of soiling on PV power production. Therefore,

angular losses that exist on perfectly clean panels are excluded from the calculation of the soiling

loss. The overall contribution to soiling losses due to increased angular losses is expressed as the

product of the relative percent increase in angular losses due to soiling and the percent angular

losses of a clean panel.

Lsoiling
ang =

(
Iclean
sc (α)/ ˜Isc − Idirty

sc (α)/ ˜Isc

Iclean
sc (α)/ ˜Isc

)
(5.45)

where Isc(α)/Ĩsc is found using the MR Equation 5.39. Note that by expressing the loss in terms of

the ratios of short-circuit current at an AOI to the nominal short-circuit current ( ˜Isc), the loss can

be calculated in terms of the irradiance components and angular loss factors, without knowledge

of the nominal short-circuit current. A value of 0.16 is used for the angular loss coefficient for the

clean panel’s Isc ratio. The dirty panel’s Isc ratio is calculated using an angular loss coefficient

estimated from the soiling mass accumulation model as described below.

We adapt our soiling accumulation model to calculate the daily accumulated soiling in terms of

anMR angular loss coefficient (we refer to this as the soiling coefficient) by scaling the accumulated

soiling mass to produce soiling coefficients that match with experimental angular soiling loss data.

The scaling coefficient is similar in concept to the γ parameter which is used to convert soiling

mass to clearness index change in Guo et al.’s model (see Section 5.2.2). A multiplicative scaling

of the soiling mass (in kg) by 28.5 was chosen. The scaling will likely need to be adjusted for some

geographic regions, due to different compositions of soiling. This adaptation can also be done with

other soiling mass accumulation models.

The hourly transmission loss is empirically related to the difference between dirty and clean

panel soiling coefficients. According to Martin and Ruiz, an angular loss coefficient of 0.27
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corresponds to a panel with 8% soiling loss at zero AOI, and a coefficient of 0.16 corresponds to

a perfectly clean panel. Therefore, an approximation can be made that for each 1% soiling loss

at zero AOI (this isolates the transmission portion of the soiling loss), the angular loss coefficient

must increase by c = (0.27− 0.16)/8 = 0.01375. The transmission loss due to soiling is defined as

Lsoiling
trans = c(adirty

r − aclean
r )/100 (5.46)

For soiling accumulation models that express soiling in terms of a percentage energy loss, the

percentage is approximately converted to a soiling coefficient, based on the soiling loss at solar

noon (equivalent to the transmission loss) using Equation 5.46. In this way, we can use hourly

or daily weather data (rainfall, wind speed, PM10, and relative humidity) to calculate the hourly

soiling coefficients for use in the MR equations that compute angular soiling losses.

Figure 5.12 shows the soiling loss profile on a clear day as predicted by our combined model.

We can see the characteristic shape of the curve as reported in experimental studies where losses

are highest close to the beginning and end of each day due to the higher angle of incidences at these

times [124].

Figure 5.12: Hourly soiling loss profile over a single day for two different panels: a "no clean"
panel that was never cleaned and a "clean" panel that is periodically cleaned according to a
cleaning cycle. This plot is from Enlighten Energy’s PV SoilSayer software, which contains an
implementation of the soiling model described here.
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5.6 Model Validation

The semi-physical soiling accumulation model was validated by comparing its predictions with

a soiling study published by NREL [125]. In this study, NREL monitored the soiling rate and

precipitation for 20 sites. For verification, we selected Site 3 (Calipatria, CA) and 11 (Lamont,

CA) from the study, which had less noisy data and more significant observed soiling (many of the

sites had yearly average soiling ratios that were greater than 99%). Site 3 is a single-axis tracker,

while Site 11 is a fixed tilt (20◦) system, so this site selection allowed testing the soiling models for

both types of systems. Inputs to the soiling model were daily precipitation data provided in NREL’s

publication, hourly weather data for the year when the soilingmeasurements were taken downloaded

from NSRDB [126], and monthly average particulate matter data taken from the US Environmental

Protection Agency’s (EPA) database [127]. The daily precipitation data was converted to an hourly

format by dividing by 24. We compared the yearly average soiling rates, which are computed by

taking the average of the soiling rates during the dry periods. For both sites, the model’s soiling

rates matched with NREL’s measured values to within 0.01%/day (Site 3 had 0.1%/day and Site 11

had 0.13%/day).

Additionally, we compared the soiling accumulation time-series. Figure 5.13a shows the

comparison for NREL Site 3 when using unmodified input data, as described above. The predicted

soiling rate during the dry period matches the measurements, but there are discrepancies in the

effect of rainfall. One possible reason for these discrepancies are that the daily rainfall data lacks

information about rain intensity (mm/hr), while the same amount of daily rain can be more or less

effective in cleaning depending on its intensity. Secondly, NREL’s publication provides rainfall

data from an online database (PRISM [128]), instead of measuring it directly at the sites. This could

mean that the off-site PRISM data measured a different amount of rain than occurred at the site.

For a proof of concept, we adjusted the rainfall amounts of a few rain events where the measured

effect of rain was different than predicted (Table 5.2). Note that we did not change the main rainfall

pattern (dates when significant rain of more than 1 mm occurred).
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Table 5.2: Daily rainfall adjustments needed to account for measured soiling ratio time-series for
NREL Site 3.

Date
Original Adjusted
Rainfall (mm) Rainfall (mm)

Apr 24 1.04 0.13
Jun 8 0.354 1
Jul 18 3.64 4.64
Sep 7 0.4 0
Oct 15 3.1 7

Figure 5.13 shows the forecast with these adjustments to the rainfall input data. Changes to

decrease rainfall can be justified as follows. The rainfall could have been very light and distributed

throughout the day, leading to almost no cleaning effect. For example, often rainfall of less than 0.5

mm/hr does not result in a cleaning effect [118]. However, the dataset does not contain information

about rainfall intensity. Changes to increase rainfall can be justified by the chance that the rainfall

could have been higher at the site than the PRISM database value or more effective at cleaning than

predicted.

Figure 5.13: Comparison of model predictions with NREL Site 3 (Calipatria, California) when
using precipitation data provided by NREL (a) and when using modified rainfall data (b).

We repeated the same validation approach for NREL Site 11 (Lamont, CA) with the results

without and with adjustment to the rainfall shown in Figure 5.14. With this site, we had to add a
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few partial rainfall clean events to account for the measured increases in the soiling ratio that did

not correspond to any recorded rainfall. The changes to rainfall are listed in Table 5.3.

Table 5.3: Daily rainfall adjustments needed to account for measured soiling ratio time-series for
NREL Site 11.

Date
Original Adjusted
Rainfall (mm) Rainfall (mm)

Apr 29 0 0.25
May 24 0 0.75
Aug 15 0 0.2
Oct 8 0.65 2.3

Figure 5.14: Comparison of model predictions with NREL Site 11 (Lamont, California) measured
data when using precipitation data provided by NREL (a) and when using modified rainfall data
(b).

In conclusion, model validation showed an excellent agreement betweenmeasured and predicted

dry period soiling rates but a difficulty in predicting the effectiveness of rainfall in cleaning the

panels. Modifying the rainfall to change its effectiveness in cleaning allowed to account for most

of the discrepancies between measured and predicted data. This demonstrates the need for reliable

hourly rainfall data measured on-site and further research into understanding rainfall’s effectiveness

in cleaning panels as a function of the rain intensity and amount.
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5.7 Integration into Commercial Software

The ultimate goal of PV soiling modeling is to evaluate the impact of soiling on a PV system’s

energy production and optimize panel cleaning schedules. Here we briefly describe the integration

of the soiling loss prediction models into a brand new commercial software, Enlighten Energy’s

PV SoilSayer. PV SoilSayer is a web application that provides users with soiling loss estimates

and optimal cleaning cycle forecasts in order to improve the accuracy of PV energy production

models, minimize operational costs, and maximize PV system performance [129]. It consists of

models from the open-source PV modeling Python package PVLIB (version 0.7.2) [130], soiling

models developed in this dissertation, and Enlighten Energy’s proprietary optimal cleaning cycle

algorithms, which find an optimal cleaning schedule for the power plant that will minimize financial

losses due to soiling, taking into account the cost of cleaning. PVLIB only has two soiling models:

the industry-standard Kimber model, which assumes a constant daily soiling rate and rainfall

cleaning threshold, and the newer HSU (Humboldt State University) model, which uses particulate

matter data and user-specified deposition velocity (or an assumed default value) to estimate the

effect of deposited mass on the soiling ratio through an empirical equation. Both of these models

have limitations. The Kimber model requires knowledge of the soiling rate, is not able to capture

seasonal changes in the soiling rate, and uses over-simplified assumptions about rainfall cleaning.

The HSU model does allow capturing local changes in soiling rates through the particulate matter

data, but requires knowledge of the deposition velocity (which can vary by location), does not

consider any effects of wind speed or humidity, and makes the over-simplified assumption that

panels are perfectly cleaned with each rainfall greater than 1 mm [95]. In an attempt to overcome

some of these limitations and gain better accuracy in predicting soiling losses and optimal cleaning

cycles on the daily resolution, the soiling loss models described in this chapter were integrated into

PV SoilSayer.

Figure 5.15 shows a flow-chart of the approach used to incorporate the soiling loss models that

were developed in this work into PV SoilSayer. The work-flow of using PV SoilSayer is as follows.

First, users select weather data (typical meteorological year, historical, or next year forecast) from
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one of several sources by entering the PV system’s location. Users then specify system design

parameters such as power ratings, tilt angle, module type, cell type, array type, and ground-reflection

coefficient (albedo). Users also specify the DC-to-AC inverter efficiency and other fixed losses

such as those due to wiring, age, light-induced degradation, shading, and snow. Next, users select

one of several soiling loss models with options including using the semi-physical model described

in this chapter, specifying constant daily soiling rates for each month, and uploading measured

weather and soiling data. Users also have control over the effects of rain, such as the amount of

rain necessary to significantly clean a panel, the minimum amount of rain needed to achieve a

partial reduction of soiling, and the amount of soiling left after non-perfect rain cleanings. These

inputs are expected to be determined from empirical observation. Finally, users can select one

of several cleaning cycle optimization algorithms. The soiling loss and cleaning cycle algorithms

predict a one year PV system performance forecast and an optimal cleaning schedule. The results

include a comparison (both through yearly values and dynamic yearly, monthly, and daily plots)

of the predicted losses when no panel cleaning is performed ("No Clean" case) and losses when

panel cleaning is performed according to the calculated cleaning schedule ("Clean" case). The

recommended calendar dates for cleaning are reported. Appendix A describes PV SoilSayer in

more detail.

Figure 5.15: Flow-chart of the approach used to incorporate the soiling loss models that were
developed in this work into PV SoilSayer.
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Figures 5.16-5.18 show an example results report fromPVSoilSayer for a fictional 300megawatt

solar power plant in Calexico, CA. In this sample forecast, the cleaning optimization predicts that

two manual clean events, on April 25 and June 13, results in the highest net revenue. We see from

the Total Value of Energy Gain that the first clean event is expected to save approximately $0.6

million and the second saves $1.1 million in soiling losses, before considering the cleaning cost of

$250,000 per clean. The Payoff Date shows the estimated date after which the gain in energy due to

cleaning will become greater than the cost of cleaning. The average daily and hourly soiling rates

during dry periods for each month are also shown. The daily soiling rates range from 0.16% to

0.33%, which is consistent with Kimber’s findings of daily dry period soiling rates of 0.1%− 0.3%

for California [81]. The average monthly soiling ratios for the plant if it is cleaned according to the

optimal cleaning schedule versus not cleaned are also shown.
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Figure 5.16: Beginning of PV SoilSayer results report, showing the forecast inputs and
comparison of the predicted annual energy production and soiling losses for a system that is never
cleaned ("No Clean" case) versus a system that is cleaned according to an optimized cleaning
schedule ("Clean" case).
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Figure 5.17: Optimal manual cleaning dates and soiling rates results page from a sample PV
SoilSayer forecast.
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The last portion of the report contains interactive plots for visually comparing the predicted

soiling losses, energy production, and energy losses for the plant with andwithoutmanual cleanings.

Figure 5.18 shows two of these plots.

Figure 5.18: Visualization of soiling losses and energy production from a sample PV SoilSayer
forecast. The sharp reductions in soiling loss correspond to manual and rainfall cleanings of the
panels.

One can also view plots that show the energy production and soiling losses for any month or

day in the year. Figure 5.19 visualizes the clean versus no clean system comparison for June. We

see the drop in soiling loss of the "Clean" panel starting on June 13, which is the recommended

cleaning date. The soiling loss drops over the course of ten days, since that is the user-specified
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time required to clean the entire power plant. Note that the clean panel soiling loss never drops

to zero because portions of the plant start accumulating soiling, while other portions of the plant

are still undergoing cleaning. This demonstrates the importance of considering the time required

to clean. After the cleaning event, we see a larger difference between the no-clean versus clean

panel’s energy production.

Figure 5.19: Visualization of soiling and energy production for a single month from a sample PV
SoilSayer forecast. A manual cleaning event occurs from June 13 to June 22, reducing the soiling
loss on the "Clean" panel and increasing the difference between "Clean" and "No Clean" panel
energy production.
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Effect of Inverter Clipping

Our model considers the reduction of absorbed irradiance due to soiling, instead of applying an

assumed soiling loss directly to the AC power output. Therefore, the model captures the impact

of inverter clipping (the situation where the DC power production is greater than the AC inverter

rating) on the AC power loss due to soiling. During times when inverter clipping occurs, meaning

that part of the DC power is not converted to AC power, any DC soiling loss that is lower than

the power loss due to clipping will not translate to an observable AC soiling loss. Thus on high

irradiance days when inverter clipping occurs, the daily total soiling loss will be lower than on

lower irradiance days. With alternating higher and lower irradiance days, the AC soiling losses will

oscillate, as seen in Figure 5.20.

Figure 5.20: AC soiling loss with oscillations caused by inverter clipping.

To confirm that these oscillations are, in fact, due to inverter clipping, we can rerun the same

forecast with the DC and AC system sizes set to be equal, thus removing the possibility of clipping.

We now see an approximately linear increase in soiling since now the AC soiling loss is equal to

the DC soiling loss (Figure 5.21).
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Figure 5.21: AC soiling loss for same forecast as Figure 5.20, but without inverter clipping.

Sensitivity to Weather Parameters

PV soiling is highly dependent on the weather; therefore, it is important to consider the variation in

soiling and optimized cleaning cycle predictions when weather predictions from different sources

are used. As an example, Table 5.4 compares the one-year soiling and optimal cleaning forecast for

a site in Lamont, California, when using four different weather resources available to users of PV

SoilSayer: Meteonorm 30 year TMY, AccuWeather last year, AccuWeather next year prediction,

and 10-year precipitation-based TMY generated from AccuWeather historical data.

Table 5.4: Variability of forecast for a site in Lamont, CA (NREL Site 11 from [125]) when using
different weather prediction resources.
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The different weather resources available for predicting next year’s weather vary significantly

(coefficient of variability 44%) in their precipitation prediction, which impacts the soiling forecasts.

For California, historical data suggests that the past ten years have on-average been drier than the

past 30 years, which explains the low precipitation value in the precipitation-based 10-year TMY

compared with the 30-year TMY. However, it seems like last year (2019) had significantly more

precipitation than the 10-year median. AccuWeather’s prediction for next year shows precipitation

that is more similar to last year than the 10-year TMY. The different weather resources also find

different lengths of the summer dry period, ranging from 4-7 months and differing in the start and

end month. As a result of these differences, the predicted soiling losses of a never cleaned panel are

5.5%-7.7%, and the expected revenue gain due to cleaning is 2.1%-4.4%. The average daily soiling

rate is nearly identical for all weather resources since it is defined during dry periods only and most

strongly dependent on particulate matter data that was taken from the same EPA data source for all

four forecasts. Figure 5.22 compares the one-year soiling loss time-series prediction when using

the four different weather resources. We see that the overall soiling pattern is consistent, but the

soiling loss amounts and start and end of the summer dry period vary.

Figure 5.22: Comparison of soiling time-series predictions for a site in Lamont, CA (NREL Site
11 from [125]) when using different weather prediction resources.
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While long-term weather prediction is outside the scope of this thesis, these results show that

soiling loss prediction accuracy is limited by the accuracy of the weather prediction (especially of

precipitation patterns). Even with a perfect soiling model, soiling forecasts may be very inaccurate

if the year’s precipitation pattern prediction is inaccurate. Therefore, future soiling models need

to be combined with advanced long-term weather forecasting. (AccuWeather claims to provide

this with their Next Year forecasts, but we could not find any peer-reviewed validation of their

predictions). Additionally, it is important to consider the potential error due to weather predictions

when interpreting soiling forecast results. Knowing the forecast’s uncertainty can be just as

important as the forecast itself since it allows investors, PV developers, and maintainers to make

decisions based on the relationships between probability, risk, or reward. For example, we cannot

be sure that a certain manual clean will save revenue (e.g. there could be a strong rainfall that cleans

the panels right after investing in the manual cleaning). However, if the probability that a cleaning

rainfall occurs during a traditionally dry period is very low and the soiling loss during this period

is high, the risk to reward comparison would suggest that the plant be cleaned. In future soiling

and cleaning optimization software, the forecasts should be rerun with 10th and 90th percentile

precipitation predictions to bound the soiling prediction and show the possible variations in the

optimal cleaning cycle.

5.8 Predicting Soiling with Machine Learning

Even with reliable soiling data, semi-physical models will likely need to be custom-tuned to

each region, and the equations that describe soiling in one region may not be fully applicable

to another region. While optimization packages for deriving equation parameters are readily

available, attempting to explain a very complicated process with a particular set of equations may

over-constrain the problem and limit the ability of the model to predict soiling at some locations

where non-typical processes may be occurring (e.g. additional soiling from a nearby factory, farm,

or highway). Additionally, it is difficult, costly, and time-consuming to conduct experiments that

isolate the coupled effects of particulate matter, wind speed, humidity, rainfall, and tilt angle, which
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would be needed for a careful empirical fit of the equations. Therefore, once soiling data becomes

widely available, data-driven machine learning (ML) approaches such as multiple linear regression

(MLR) and artificial neural networks (ANN), where the predictive models are trained on site-

specific historical data, will likely be preferable. Previous studies have employed MLR and ANN

for soiling modeling and were able to achieve good prediction accuracy [91, 107, 117, 131–134].

In this section, we explore two ideas for using ML for soiling modeling. The first approach is to

use ML for predicting a soiling mass accumulation rate from environmental variables, and then

use a semi-physical model (based on known/measured optical properties of soiling) to predict the

soiling loss based on the accumulated soiling mass. This approach could allow for the development

of ML-based soiling accumulation models on a regional level that can be used to calculate a

soiling loss based on each PV site’s configuration (considering properties such as PV panel type,

orientation, inverter efficiency). In the second approach, one would use ML to directly predict the

power production loss due to soiling based on environmental variables. This approach would likely

be site-specific since both environmental variables and site configuration influence the soiling loss.

In this section, we discuss the development of proof-of-concept MLR and ANN models using the

above two approaches.

5.8.1 Introduction to MLR and ANN

The multi-variable linear regression approach aims to build a simple linear equation that relates

a set of independent variables (i.e. predictors) to the dependent variable (i.e. response variable).

The response variable y is expressed as a linear function of environmental variables (x1, ..., xi)

y = a0 + a1x1 + a2x2 + ... + ai xi (5.47)

The values of coefficients resulting in the smallest least-squares difference between modeled and

measured results are found. A disadvantage of the MLR approach is that it assumes linear rela-

tionships between the independent variables and the response, which is not necessarily true for

soiling.

114



An artificial neural network model is a mathematical representation of an interconnected system

of neurons that interchange communication among themselves [132]. For curve fitting, ANNs are

used to capture the relationships between a set of numerical input data and a set of numerical

target data. An ANN consists of multiple layers of neurons: an input layer, one or more hidden

layers, and an output layer (Figure 5.23). The input layer receives the input data points. A hidden

layer manipulates the incoming data using an activation function, G, to define the output of each

ith hidden neuron based on the received inputs. Finally, the output layer receives the processed

information from the last hidden layer and computes the final prediction using

y =

Nhidden∑
i=1

®βiG( ®wi ®xi + bi) (5.48)

where ®wi is the input weights vector that connects inputs to each ith hidden neuron, bi is the input

bias of each hidden neuron, and ®βi is the output weights vector that connects the outcomes of each

hidden neuron to the output neuron.

Figure 5.23: Diagram of an ANN. From [135].

For evaluation of machine learning model predictions, three metrics are often used: coefficient

of determination (R2), mean squared error (MSE), and accuracy defined in terms of the mean

absolute percent error (MAPE). The R2 value describes the variability in the output based on the
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input variables as

R2 = 1 −

n∑
i=1
(ymeasured,i − ypredicted,i)

2

n∑
i=1
(ymeasured,i − ȳmeasured)

2
(5.49)

where the ȳmeasured is the average of all the measured values. A value of R2 = 100% means that

all variability of the data is explained by the input variables, while a value of R2 < 100% means

that other unaccounted factors are affecting the target data. The MSE is

MSE =
1
n

n∑
i=1
(ymeasured,i − ypredicted,i)

2 (5.50)

The accuracy is defined as

Accuracy = 1 −MAPE =
1
n

n∑
i=1

(
1 −

���� ymeasured,i − ypredicted,i

ymeasured,i

����) × 100% (5.51)

5.8.2 Soiling Mass Accumulation

Due to a lack of reliable experimental data of soiling mass accumulation, this approach was

tested on data generated from the semi-physical soiling model. Since the soiling model represents

realistic soiling patterns, if the data-driven approaches (which receive no knowledge of the physical

equations) are able to replicate the results of the soiling model, there is a reasonable chance that

they will also be able to replicate measured soiling data. To develop the machine learning approach

work-flow, we treat the soiling model’s results (from a forecast for Riverside, California) as real

measured data. The first step in developing a machine learning model is to analyze the correlations

between the dataset’s features. Here, we looked at both the Pearson Product-Moment and Spearman

Rank-Order correlation coefficients by using the open-source Python packages Pandas and Seaborn.

The Pearson correlation coefficient evaluates the linear correlation between two variables. Figure

5.24 visualizes the Pearson correlations between all of the input environmental variables used for

the soiling model and the predicted soiling rate.
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Figure 5.24: Heatmap of Pearson correlation coefficients between environmental variables and
predicted soiling rate.

This heat map can elucidate the interactions between variables in a dataset. For example, we

see a strong positive correlation between PM10 and air temperature. This could make sense since

California (where the weather data is from) has less rainfall in the summers, which results in higher

PM10 levels. Relative humidity is negatively correlated with air temperature and irradiance (GHI,

DNI, DHI), which can again be explained by the drier summers. It is important to remember that

the existence of a correlation between two variables does not necessarily mean there is a causality

relationship. For example, while air temperature could be causing lower humidity, it likely does

not directly cause a rise in PM10. Since our goal here is to develop an ML work-flow for predicting

the soiling rate, we treat the predicted soiling rate as if it was a measured quantity and observe

the correlations with other environmental variables. Looking at the correlation heat map, we see

that soiling has a significant positive correlation with PM10 and a negative correlation with wind

speed. Wind direction and relative humidity are found to have no linear correlation with the soiling

rate. However, we cannot assume that there is no relationship between soiling and environmental

parameters with near-zero Pearson correlations because the relationships may be non-linear. We
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should also evaluate the Spearman Rank-Order correlation coefficients, which measure how well

a relationship between two variables can be described by a monotonic function. Figure 5.25

visualizes the Spearman correlations in our dataset.

Figure 5.25: Heatmap of Spearman correlation coefficients between environmental variables and
predicted soiling rate.

As expected, the variables with strong Pearson correlations also have strong Spearman correla-

tions since a line is a simple form of a monotonic function. We also now see a significant negative

correlation between the soiling rate, relative humidity, and air temperature. Since the Pearson

correlation between RH and soiling is zero, but the Spearman coefficient is significant, we can

conclude that these two variables are non-linearly related. This is expected since the soiling model

that this data was generated with includes RH in non-linear terms only. Since air temperature and

humidity are also strongly correlated, we chose to use only humidity for training our models (it is

generally desirable to use independent variables for training an ML model).

The following approach was used for creating theMLR and ANNmodels. First, the soiling data

(generated from the semi-physical model) was normalized by dividing each variable by the mean

of that variable. ANN requires normalization to achieve good results. The same normalization
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was also done on MLR for consistency in data preprocessing, although it was found that using

normalization did not have any effect on the MLR prediction. Then, the data was split 80%:20%

into training and testing data. Four independent variables that are believed to be the dominant

predictors of soiling were chosen for the models: PM10, wind speed, RH, and the difference

in angle between panel azimuth and wind direction. The quantity to predict was the hourly

soiling accumulation rate. The MLR and ANN models were run using the LinearRegression

and MLPRegressor (Multi-Layer Perceptron) methods from the Python package Scikit-Learn. The

MLP Regressor used the default parameters except for changing to the L-BFGS solver (documented

to work better than the default for smaller datasets) and using three hidden layers of ten neurons

each. The numbers of hidden layers and neurons to use were determined through a series of

5-fold cross-validation trials performed on the training data (80% of the dataset), searching for the

values that gave the best prediction metrics (R2, MSE, and MAPE). K-fold cross-validation is the

procedure of further splitting up a training dataset into k groups, and repeating model training k

times, where each time a different group is used for testing and the rest of the groups are used for

training. By changing the parts of the dataset that are used for training and testing, cross-validation

calculates more representative model accuracy metrics than if only a single test:train split was used.

To evaluate the importance of PM10, wind speed, wind direction relative to the panel, and

relative humidity variables for the MLR and ANN predictions, the prediction accuracy was com-

pared when the models were trained with one, two, three, and all four of these variables. For the

single variable training, PM10 was chosen since it has the highest positive Pearson and Spearman

correlations to the soiling rate. Wind speed was added as the second variable since it is the only

other variable that has a strong linear correlation with the soiling rate. The Spearman correlations

show that relative humidity has a significant correlation with soiling, so it was added as the third

variable. While showing only small correlation coefficients, we added wind direction as the fourth

feature because we know that the soiling model attempts to include its effect.
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Table 5.5: Comparison of ANN and MLR performance when different numbers of features
(environmental variables) are used for model training.

Features Model R2 MSE 1-MAPE

PM10
MLR 0.119 1.03 × 10−6 59.5%
ANN 0.119 1.03 × 10−6 59.6%

PM10, wind speed,
MLR 0.379 7.24 × 10−7 69.3%
ANN 0.851 1.73 × 10−7 86.9%

PM10, wind speed, MLR 0.379 7.23 × 10−7 69.1%
RH ANN 0.986 1.63 × 10−8 93.7 %
PM10, wind speed, MLR 0.381 7.22 × 10−7 69.6%
RH, wind direction ANN 0.989 1.25 × 10−8 94.6 %

When just using PM10, the ANN does not perform any better than MLR. The accuracy of

MLR and ANN predictions both increase when including both PM10 and wind speed. As could be

expected, adding variables that have non-linear correlationswith soiling (relative humidity andwind

direction) result in no improvement for the MLR model, but do improve the ANN model, which is

capable of capturing non-linear relationships. The prediction accuracy had almost no significant

improvement when adding wind direction, which showed only a small Spearman correlation with

soiling. The lack of dependence of soiling on wind direction, even when the model which was used

to generate this data includes wind direction, can be understood by the fact that wind’s contribution

to resuspension is dominating over its contribution to deposition. We know this from the negative

Pearson correlation between soiling and wind speed. Since the model only includes wind direction

for wind-induced deposition, we do not see its effects. This exercise demonstrates that looking at

significant Spearman correlations allows choosing a set of features for an ANN model that results

in high prediction accuracy.

Figure 5.26 shows comparisons of predicted hourly soiling rates for Riverside, California when

all four environmental variables were used. With all four variables, the ANN model achieved a

much higher prediction accuracy, higher R2, and lower MSE than the MLR model. We see that the

MLR model struggles to predict many of the values because it attempts to find linear relationships
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between soiling and environmental variables when the real relationships are non-linear. MLR is

unable to capture the periodic spikes of large negative soiling rates due to resuspension at high

wind conditions. In attempting to capture these spikes, the MLR model found a negative linear

coefficient between wind speed and soiling, incorrectly implying that wind speed always gives rise

to a reduction in soiling. MLR also has a wide scattering of points missing the actual data when

trying to predict soiling at lower wind speeds. In contrast, ANN can reasonably capture the negative

soiling rate spikes and achieve a very good agreement with actual values at low wind speeds, as

seen by the thinner band of points that better match the actual values.

Figure 5.26: Comparison of hourly soiling rates predicted by MLR and ANN models to rates
predicted by the semi-physical model (with resuspension) that they were trained on. Only data
points from the testing set are shown.

The soiling data generated for the above ML exploration assumed that a strong resuspension

occurred at high wind speeds, resulting in a strong cleaning effect and spikes of negative hourly

soiling rates. The actual resuspension depends strongly on RH, particle chemistry and size, and PV

surface properties. It is possible that no significant resuspension occurs at many PV sites and many

soiling models neglect resuspension. Therefore, we retrained the ML models using simulated data

from a version of the semi-physical model without the resuspension term. Generating data without

resuspension allows us to test MLR and ANN on a different dataset that exhibits different trends.

The main difference is the lack of spikes, resulting in a smoother curve. In contrast with the last

test, we find that both MLR and ANN achieve similar prediction accuracies of about 98%.
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Figure 5.27: Comparison of hourly soiling rates predicted by MLR and ANN models to rates
predicted by the semi-physical model (without resuspension) that they were trained on. Only the
test data points are shown.

Table 5.6: Statistical metrics comparing MLR and ANN model performance when using a dataset
generated with the semi-physical soiling model without the resuspension term.

Model R2 MSE 1-MAPE
MLR 0.983 3.47 × 10−9 97.8%
ANN 0.982 3.49 × 10−9 97.8%

These results confirm that both ANN and MLR are promising approaches for predicting soiling

mass accumulation as a function of environmental variables. For sites where soiling phenomena

are highly non-linear (e.g. those experiencing non-linear resuspension due to wind), the ANN

approach is expected to achieve more accurate predictions than MLR. Additionally, we have shown

that analyzing statistical correlations of results from physical or semi-physical models can be a

method for verifying their qualitative behavior.

5.8.3 Soiling Loss

To investigate the possibility of using machine learning to directly predict future soiling loss from

historical soiling and environmental data, the approach was tested on approximately 1.5 years

(February 2019 to June 2020) of measured data from a PV power plant in California. Data from

2019 was used to predict soiling in 2020. The following environmental parameters were measured
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with an hourly resolution at the plant: PM10, relative humidity, wind speed, wind direction,

rainfall, and air temperature. Soiling loss was measured using a standard soiling measurement

station comprised of two panels, one of which is regularly manually cleaned, while the other is

allowed to accumulate soiling. The ratio of the short-circuit current of the cleaned and dirty

panels was measured every minute. Soiling loss measurement is most reliable when there is high

irradiance; therefore, only soiling measurements taken between 9 am and 3 pm (local time) were

used for the analysis. Additionally, unphysical outliers in the soiling andweather datawere removed.

Following previous literature studies of soiling data [73], rainfall data was used to generate a dry

period length time-series variable, which is simply equal to the number of days that have passed

since the last rainfall.

First, the Spearman Rank-Order correlation coefficients between the variables in the dataset

were calculated. The correlations between a ten-day moving average of all variables are stronger

than between hourly or daily values. This is likely because the daily fluctuations in the variables

make it more difficult to capture relationships between them. Since we are mostly interested in

long-term soiling loss trends (e.g. the soiling loss after a few weeks of exposure), ten-day moving

averages were used for the rest of the ML model development. Figure 5.28 shows a heat map of

Spearman correlation coefficients between ten-day moving averages of the variables.

Figure 5.28: Heatmap of Spearman correlation coefficients between ten-day moving averages of
soiling and environmental variables measured at a PV power plant in California.
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Next, the MLR and ANN models (from the previous section) were trained on measured data

from 2019 using dry period length, PM10, and relative humidity as the input variables. Wind

speed and wind direction were excluded since the correlations analysis above showed almost no

correlations of these variables to soiling loss in this dataset. The air temperature was also excluded

since a large period of missing temperature data in 2020 prevents using this variable to predict

soiling. Also, the correlation between air temperature and soiling is likely a side effect of more

soiling in the summer, and this effect is already captured by the dry period length and relative

humidity variables. As a baseline comparison, we also attempted to fit the soiling data using the

industry-standard model from Kimber et al. [81] (see Section 5.1), which uses a constant soiling

rate and assumes that the soiling drops to some minimum value at each significant rainfall event.

Figure 5.29 compares the attempt to fit the training data with the three different models. The MLR

and ANN models were able to fit the training data significantly better than the Kimber model.

Figure 5.29: Comparison of Kimber, MLR, and ANN models’ ability to fit the training data
(measured soiling and environmental parameters for 2019).
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Since the ability to fit existing data does not necessarily indicate any predictive ability, we tested

the models’ performance when predicting soiling in 2020 based on the measured environmental

parameters (Figure 5.30). Note that the models were trained solely on 2019 data; therefore, they

predict soiling in 2020 based only on the learned relationships from the previous year. The models

have trouble predicting soiling when it is low (e.g. in February and March), possibly due to the low

signal-to-noise ratio in those measurements. In practice, the PV industry is interested in predicting

significant soiling losses (those which will require manual cleaning). Therefore, we computed two

sets of prediction accuracy metrics: one for the entire 2020 region for which there was measured

data (February 25 through June 16) and one for the portion of the region where there is more

significant soiling loss (April 23 through June 16). The artificial neural network was found to have

the highest prediction accuracy.

Figure 5.30: Comparison of Kimber, MLR, and ANN models’ ability to predict soiling in 2020,
when trained on data from 2019. Statistical metrics for two different prediction periods are shown:
February 25 through June 16, and April 23 through June 16.
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These results suggest that it may be possible to predict future soiling loss at a given site based

on measurements of soiling and environmental parameters. However, we must remember that

the prediction of future soiling depends on our ability to predict future environmental parameters,

which can be challenging. While we may not know the exact values of next year’s environmental

parameters, we may be able to make reasonable estimates based on typical weather patterns or

anomalies (e.g. we may know that next year is expected to be wetter/drier than normal). Reliable

historical weather data and medium/long-term weather forecasting will be important to enable such

soiling predictions.

5.9 Conclusions

In this chapter, we explored both semi-physical and machine learning approaches to modeling

the soiling of PV panels. After reviewing the main physical mechanisms of soiling and limitations

of existing semi-physical soiling accumulation models, we developed a general model that is

expected to be reasonably applicable globally, provided that the empirical coefficients are fitted on

a region-by-region basis. Additionally, we developed a novel practical approach of integrating a

soiling accumulation prediction with an existing validated model for optical losses due to soiling

(the Martin and Ruiz model). The overall photovoltaic system soiling model was validated by

comparing with published soiling loss studies performed by NREL. We helped integrate the semi-

physical soiling models with a Python package for PV energy production prediction (PVLIB) and

cleaning cycle optimization algorithms, which resulted in the release of a brand new commercial

software (described further in Appendix A). Finally, considering the inherent limitations of semi-

physical modeling of highly coupled and complex environmental processes, we explored machine

learning approaches to soiling modeling. The feasibility of these approaches was demonstrated by

showing that MLR and ANN can replicate the results of semi-physical soiling models and predict

future soiling loss based on historical measurements of soiling and environmental parameters. This

motivates the need to install soiling, weather, and PM10 sensors at PV system sites where soiling

is a significant issue. The models and software that we developed are expected to help PV system
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developers, maintainers, engineers, and researchers have a better understanding of soiling losses at

their current and potential future sites, as well as have access to easier-to-use and more-accurate

soiling analysis tools.
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CHAPTER 6

COUPLED THERMAL-ELECTRICAL MODELING OF INTEGRATED PV SYSTEMS

Less than 20% of the solar irradiation incident on a typical PV system is converted into electricity,

with the rest being transformed into heat, causing an increase in solar cell temperatures. When

measuring and predicting solar cell performance, a standard value for cell temperature is often

used (e.g. 20◦C or 25◦C). However, the temperature of solar cells in operation are often 20-40◦C

higher than the standard value [136]. A solar cell’s efficiency generally decreases as the operating

temperature increases, primarily due to increased internal carrier recombination rates caused by

increased carrier concentrations [137]. Electrical PV models, which are often developed and fitted

to experimental data under standard test conditions, need to be corrected to consider the impact of

temperature on electrical performance. Therefore, to predict a PV system’s power generation in

realistic conditions, the cell temperature must be estimated. In this chapter, we compare empirical

and physical approaches for cell temperature predictions and describe the development of a PV

thermal-electrical modeling approach that makes use of a commercial general heat transfer solver.

Finally, we demonstrate example applications of the model to simulation of residential PV and

vehicle-integrated PV, as well as, coupling of the PV model to a thermal-electrical model for

batteries.

6.1 Empirical Models

A common approach to considering temperature-induced losses when calculating PV perfor-

mance is to first predict cell temperatures with empirical models, and then use these predicted

temperatures in equivalent circuit models. In this work, we tested six empirical models for cell

temperature, three of which (Faiman, PVsyst, and SAPM) are implemented in the open-source PV

simulation package PVLIB. These models are briefly introduced below.
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Basic NOCT Model

Most empirical cell temperature models use a PV characteristic called Normal Operating Cell

Temperature (NOCT). NOCT is the temperature of a free-standing cell under open-circuit condition

under plane-of-array (POA) irradiance of 800 W/m2, ambient air temperature of 20◦C, and 1 m/s

wind speed [138]. The most basic empirical model assumes that the cell temperature is simply the

ambient air temperature plus the difference between NOCT and 20◦C (reference temperature for

NOCT measurement) multiplied by the ratio of POA irradiance (E) to the NOCT irradiance of 800

W/m2 [139].

TC = Tair + (NOCT − 20)
E

800
(6.1)

Bizzarri et al.

Bizzari et al. proposed a model that takes into account any additional convection due to wind

speeds (WS) that are greater than the NOCT-specified 1 m/s [139]. The relationship between wind

speed and convection is controlled by a convection coefficient h.

TC = Tair +
(NOCT − 20)

800 + h(WS − 1)(NOCT − 20)
E (6.2)

Faiman

The Faiman model accounts for convection by assuming a simple two-coefficient (uc and uv) linear

convection expression [140].

TC = Tair +
E

uc + uv ×WS
(6.3)

PVsyst

The model implemented in the software PVsyst is the Faiman model with an additional explicit

consideration of absorption α and panel efficiency η [130].

TC = Tair +
αE(1 − η)

uc + uv ×WS
(6.4)
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The implemented model uses a default value of uv = 0.

Sandia Array Performance Model

This model accounts for potential differences between module and cell temperature. The module

temperature is expressed as the sum of the air temperature and an exponential term [130].

Tm = Ee(a+b×WS) + Tair (6.5)

The cell temperature is calculated from the module temperature by

TC = Tm +
E
E0
∆T (6.6)

where ∆T is the empirically-estimated difference between module back surface temperature and

cell temperature. Table 6.1 shows the empirical parameters used in the SAPM model.

Table 6.1: SAPM temperature model coefficients.

Module Type a b ∆T

Open-Rack Glass-Glass -3.47 -0.0594 3
Open-Rack Glass-Backsheet -3.56 -0.075 3
Rooftop Glass-Glass -2.98 -0.0471 1
Rooftop Glass-Backsheet -2.81 -0.0455 0

Dufffie and Beckman

TheDuffie and Beckmanmodel attempts to account for both wind convection andmodule efficiency

[141].

TC = Tair +
E

800
a

(uc + uvWS)
(NOCT − 20)(1 − η) (6.7)

Model Comparison

In order to evaluate the accuracy of the empiricalmodels, we compared their temperature predictions

with measured module temperatures from a solar power plant in California. This comparison was

130



first made using the original (default) coefficients that are specified by the empirical models, which

is a common way the models might be used by engineers who are looking for a quick estimate

of PV energy production. One exception to the use of default coefficients is that the NOCT and

efficiency values were taken from themanufacturer datasheet. Note that other model coefficients are

not generally available on manufacturer datasheets. The comparison of modeled versus measured

results for three days is shown in Figure 6.1 and Table 6.2.

Figure 6.1: Comparison of empirical models using default parameters.

Table 6.2: Errors of empirical models for results shown in Figure 6.1.

Model R2 RMSE MAE
Basic NOCT 0.782 6.33 5.02
Bizzarri et al. 0.926 3.69 2.78
Faiman 0.923 3.75 2.82
PVsyst 0.93 3.58 2.56
SAPM 0.912 4.03 2.94
Duffie and Beckman 0.852 5.22 4.03

For a better statistical comparison, the module temperatures were predicted for an entire year

and compared with measured data in Table 6.3. (The results plot is not shown because there are

too many data points to plot the data effectively).
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Table 6.3: Errors of empirical models for entire year using default parameters.

Model R2 RMSE MAE
Basic NOCT 0.908 5.18 3.97
Bizzarri et al. 0.953 3.70 2.38
Faiman 0.952 3.75 2.42
PVsyst 0.959 3.44 2.68
SAPM 0.955 3.63 2.60
Duffie and Beckman 0.915 5.00 3.60

Seeing that some of the model predictions appear to be simply shifted from the measured

data, for the second comparison, multivariable optimization was used to find empirical model

coefficients (including NOCT) that best fit the data. The optimization was done using the Python

SciPy package’s optimize.least_squares() function with bounds specified on parameters to

maintain physically realistic values. The comparison of modeled versus measured results for three

days is shown in Figure 6.2 and Table 6.4.

Figure 6.2: Comparison of empirical models with parameters fitted using least-squares
optimization.
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Table 6.4: Errors of empirical models’ results shown in Figure 6.2.

Model R2 RMSE MAE
Basic NOCT 0.981 2.51 2.06
Bizzarri et al. 0.986 2.15 1.86
Faiman 0.986 2.15 1.86
PVsyst 0.986 2.15 1.86
SAPM 0.986 2.15 1.86
Duffie and Beckman 0.986 2.15 1.86

The error between one-yearmodule temperatures predictions from the fittedmodel are compared

with measured values in Table 6.5.

Table 6.5: Errors for one year of module temperatures predicted by empirical models using fitted
parameters.

Model R2 RMSE MAE
Basic NOCT 0.977 2.80 2.16
Bizzarri et al. 0.980 2.62 1.93
Faiman 0.980 2.62 1.93
PVsyst 0.980 2.62 1.93
SAPM 0.980 2.61 1.92
Duffie and Beckman 0.980 2.62 1.93

When using optimization to fit the empirical coefficients to the data, all models except Basic

NOCT result in cell temperature predictions that are almost identical. In conclusion, multiple

empiricalmodels can accurately predict free-standing solarmodule temperatures if their coefficients

are fitted to measured data.

6.2 Physical Thermal-Electrical Model

6.2.1 Introduction and Motivation

In the last section, we have shown that empirical models can accurately predict free-standing solar

module temperatures, provided they are fitted to measured data. In cases where measured data
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is unavailable, the default values provided in PV modeling libraries/software are typically used.

However, using default empirical model coefficients can lead to significant errors in temperature

predictions. A validated physical model can allow to more-accurately estimate cell temperatures for

use in temperature-dependent solar cell performance models, such as those used within mainstream

PV modeling software. A physics-based approach to cell temperature and electrical performance

prediction is to couple an electrical PV model with a first-principles heat transfer solver.

Another application of a heat transfer solver could be to predict NOCT for modules, given the

module’s known thermal properties. This application is motivated by several limitations of NOCT

measurements listed below:

• Normal "operating temperature" is defined at open-circuit condition at which the device is

not producing any current. A device that produces current has an associated efficiency (e.g.

10-25%), which means that some of the solar energy is converted into electricity instead of

being absorbed as heat. Therefore, the NOCT temperature is expected to be higher than a

device which is producing power [138].

• NOCT does not apply to non-freestanding modules (e.g. roof mounted), where there is

generally less convective cooling, resulting in higher temperatures.

• NOCT measurement typically requires waiting for very specific outdoor conditions, which

in some locations may only occur on several days a year. An NREL study found that many

manufacturers may not be reliably measuring NOCT when performing a side-by-side test of

three modules of the same type with manufacturer-reported NOCT values that differ by 10◦C.

NREL found that the true NOCT of these modules varies by less than 0.2◦C, as would be

expected for modules of the same type. Running a heat transfer simulation, they concluded

that the variation in manufacturer reported values could be due to changing sky, ground, and

ambient temperatures during the measurements [142].

• NOCT provides no information about how temperature varies with wind or irradiance.
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Finally, a physical model based on heat transfer can be used to predict transient temperatures of

modules when they are integrated into various structures (e.g. on buildings, vehicles, or combined

with a heat exchanger as part of a PV-thermal system). Using an empirical approach would

likely require fitting the empirical model for each specific structure, with coefficients changing

depending on the design’s thermal properties. This approach requires many experiments to gather

cell temperature data. Utilizing a physical model can avoid the need for these experiments and

allow for rapid computational testing of PV system designs. Additionally, the heat transfer approach

allows one to predict not only the module temperature but also any effects of the solar panel on

the temperatures of the building or vehicle on which it is mounted. Such a model can allow

for computer-aided engineering of solar applications without the need to test every design idea

experimentally.

6.2.2 Methods

In this work, a coupled physical thermal-electrical model of a PV was developed using the com-

mercial heat transfer software TAITherm (ThermoAnalytics, Inc.) [143], which uses a numerical,

finite volume approach based on first principles physics. The PV model is based on the works of

Sommerfeldt and Schon [144, 145], who used TAITherm for modeling photovoltaic-thermal (PVT)

systems, with several significant differences. Sommerfeldt’s work was focused on reverse engineer-

ing heat transfer coefficients for the PVT system based on measured data, so the electrical portion

of the PV was not modeled, but instead, the measured power was used to set a negative imposed

heat on the PV layer. In Schon’s work, the electrical portion was modeled with a five-parameter

equivalent circuit, but the non-linear equation for current was solved in a brute force inefficient

way using two nested "while" loops. Schon reports that the simulation took 10-20 minutes per

time-step, and it is likely that the inefficient electrical solution implementation contributed to this

unsatisfactory performance. This performance limitation would make simulating a PV module

over the course of a 12 hour day with a time-step of 1 minute (typical for transient heat transfer

simulations) take 120 hours. Most users would desire a faster simulation time.
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This work developed a proof-of-concept extension to TAITherm for PV modeling. Improve-

ments over Schon’s work include a more efficient implementation for solving the equivalent circuit

equations, accounting for the dependence of power generation on the AOI of solar radiation, and

allowing to consider the effects of soiling. In some use-cases, one is only interested in approxi-

mating the potential power generation of a generic PV system, and the electrical parameters are

unknown (e.g. evaluating the potentials of future PV technologies). For these cases, an option was

implemented to estimate the power generation using the efficiency, incident solar radiation, and

AOI dependence. The following sections detail the calculations used to compute power, angular

dependence, and the effect of soiling losses.

Computing Power Using Equivalent Circuit Model

The five-parameter equivalent circuit describes a simple current balance where the current reaching

the module contacts (usable current) is the difference between photogenerated current, IL , and the

current lost inside the cells [146]

I = IL − ID − Ish (6.8)

where the current losses are referred to as the shunt current, ID, and the leakage current, Ish. The

current through the shunt diode (ID) describes the current lost due to radiative recombination of

minority carriers at the semiconductor junction under forward-bias voltage. The leakage current

describes current that is lost for reasons other than radiative recombination at the semiconductor

interface. This can be due to pinholes between the layers in the cell, allowing an alternate path

for the current. A series resistance, Rs, is used to describe the resistance related to finite carrier

mobilities and imperfect contacts between the active layer and electrodes. Figure 6.3 shows the

five-parameter equivalent circuit representation of a solar cell.
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Figure 6.3: Five-parameter equivalent circuit representation of a solar cell. Adapted from [147].

The current through the shunt diode is modeled by the Shockley diode equation

ID = I0e(V+IRs)/a − 1 (6.9)

where I0 is the reverse-bias saturation current and a is the modified diode ideality factor, which is

given by

a = NsnVt (6.10)

where n is the diode ideality factor, which takes into account the deviation of the diode from the

Shockley diffusion theory, Ns is the number of cells in series, and Vt = kBT/q is the thermal

voltage. Using Kirchoff’s loop law on the equivalent circuit in Figure 6.3, we see that

V + IRs − IshRsh = 0 (6.11)

so

Ish =
V + IRs

Rsh
(6.12)

Combining the above equations, the current-voltage relationship is

I(V) = IL − I0(e
(V+IRs)/a − 1) −

V + IRs
Rsh

(6.13)

where the five empirical circuit parameters are IL , I0, a, Rs, and Rsh. The temperature-dependence

of these parameters in terms of the reference values (denoted by the subscript ref ) is described by
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the equations below

a = are f
T

Tre f
(6.14)

IL =
S

Sre f

M
Mre f

[
IL,re f + αIsc(T − Tre f )

]
(6.15)

I0 = I0,re f

(
T

Tre f

)3
exp

[
1
k

(
Eg

T

����
Tre f

−
Eg

T

����
T

)]
(6.16)

Rs = Rs,re f (6.17)

Rsh =
Sre f

S
Rsh,re f (6.18)

where S is the plane-of-array irradiance, αIsc is the temperature coefficient of Isc (available

on manufacturer datasheets), M
Mre f

is the air mass modifier (taking into account deviations from

standard AM1.5 solar spectrum), Eg is the semiconductor bandgap, and kB is Boltzmann’s constant.

Note that the bandgap is also temperature-dependent with the relationship typically described

empirically. For example, the temperature-dependence of silicon’s bandgap can be described by

Eg

Eg,re f
= 1 − 0.0002677(T − Tre f ) (6.19)

The non-linear equation for current (6.13) can be solved efficiently by using the fsolve function

from SciPy. fsolve is a wrapper around the highly-optimized Fortran library MINPACK’s hy-

brd and hybrj non-linear equation root-finding routines. The current, voltage, and power at the

maximum power point (P′mp) are determined by simply finding the current and voltage in the IV

curve whose product is maximum. This power is scaled by area to account for any discrepancy

between the solar cell area that was used by the manufacturer to determine the empirical electrical

parameters (Amanu f ) and the area used in the TAITherm model (AT AI ).

Pmp = P′mp
AT AI

Amanu f
(6.20)

Since equivalent circuit parameters are measured for a perfectly clean module under normal (per-

pendicular to the surface) incidence of solar radiation, the power calculated here is also assuming

normal incidence and no soiling losses. Corrections for AOI-related losses and soiling losses can

be applied as described in Section 6.2.2.
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Equivalent Circuit Parameter Extraction

One potentially challenging aspect of using the five-parameter equivalent circuit approach is finding

the values of the five parameters. These parameters are not readily available from manufacturer

datasheets and are generally found with a combination of numerical solutions and fitting of IV

curves [148]. We did not have access to IV curve data for this work and therefore needed a solution

that could rely solely on the manufacturer datasheet. We used the method developed by Cubas et al.

[14], which is a mostly analytical approach, leaving just a single equation that needs to be solved

numerically.

This approach starts by evaluating the IV equation (6.13) at short-circuit current, open-circuit

voltage, and maximum power point conditions. At short-circuit current, we get

Isc = IL − I0(e
IscRs/a − 1) −

IscRs
Rsh

(6.21)

Cubas et al. neglects the second term (diode term) in this equation since at short-circuit condition,

it is much smaller than the other two terms. This allows to rewrite the expression as

IL =
Rsh + Rs

Rsh
Isc (6.22)

Evaluating Equation 6.13 at the open-circuit condition, we get

0 = IL − I0(e
Voc/a − 1) −

Voc
Rsh

(6.23)

Combining Equations 6.22 and 6.23, we can write the saturation current as

I0 =
(Rsh + Rs)Isc − Voc

RsheVoc/aVt
(6.24)

Evaluating Equation 6.13 at the maximum power point gives

Imp = IL − I0(e
(Vmp+ImpRs)/a) −

Vmp + ImpRs

Rsh
(6.25)

where Cubas et al. approximated e(Vmp+ImpRs)/a − 1 ≈ e(Vmp+ImpRs)/a because of the relative

magnitudes of the terms. Combining Equations 6.22, 6.24, and 6.25, an expression that does not

depend on IL or I0 can be derived

Imp = Isc −

(
Isc −

Voc − Rs Isc
Rsh

) [
exp

(
Vmp + ImpRs − Voc

aVT

)]
−

Vmp + ImpRs − IscRs

Rsh
(6.26)
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Another equation can be generated by applying that fact that the derivative of the power P = IV

is zero at the maximum power point. Differentiating by parts, we have

∂P
∂V

����
mp
= V

∂I
∂V

����
mp
+ Imp = 0 (6.27)

∂I
∂V

����
mp
= −

Imp

Vmp
(6.28)

Next, we differentiate Equation 6.13 with respect to V and combine with the above equation to

get
dI
dV
= −

I0
aVT

(
1 +

dI
dV

Rs

) [
exp

(
V + IRs

aVT

)]
−

1
Rsh

(
1 +

dI
dV

Rs

)
(6.29)

Combining this with Equations 6.22, 6.24, and 6.26, an implicit expression for the series resistance

Rs can be derived

aVTVmp(2Imp − Isc)

(VmpIsc + Voc(Imp − Isc))(Vmp − ImpRs) − aVT (VmpIsc − VocImp)

= exp
(
Vmp + ImpRs − Voc

aVT

) (6.30)

This expression is solved numerically for Rs using an iterative solver (in this work we usedMatlab’s

fsolve function). Next, Equations 6.26 and 6.30 are combined to find an expression for Rsh in

terms of known datasheet parameters and Rs

Rsh =
(Vmp − ImpRs)(Vmp − Rs(Isc − Imp) − aVT )

(Vmp − ImpRs)(Isc − Imp) − aVT Imp
(6.31)

Now that the two equivalent circuit resistances are known, the photocurrent and saturation current

are calculated using Equations 6.22 and 6.24. Figure 6.4 summarizes the procedure.

Figure 6.4: Flow chart of the Cubas et al. procedure to find the equivalent circuit parameters.
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Two limitations of this procedure are that it relies on an estimate for the modified ideality

factor and only uses the manufacturer values at STC from the datasheet. Since the goal of the

equivalent circuit model is to model the electrical performance of the solar cells at various operating

temperatures, we should use the data for both STC and NOCT conditions (which is almost always

available) when extracting the model parameters to ensure that the model can capture temperature-

dependent effects. In order to improve the fit of the equivalent circuit parameters to the datasheet,

we ran the Cubas et al. method iteratively through a sweep of estimates for the modified ideality

factor (a), finding the value of a that results in the least sum of relative errors between the calculated

values and measured values of eight parameters that are available on datasheets (Vmp, Imp, Voc, and

Isc for both STC and NOCT conditions). Figure 6.5 shows our modified method. The algorithm

was implemented in Matlab with all non-linear equations solved using the fsolve function.
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Figure 6.5: Flow chart of the improved equivalent circuit parameters extraction method.

Figure 6.6 shows sample results from the Matlab parameter extraction code. We see that the IV

curves at STC and NOCT change significantly during the iterative optimization process, with the

fill factor decreasing with increasing ideality factor.
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Figure 6.6: Example of results from our modified parameter extraction tool. a) Convergence
behavior as the ideality factor guess is incremented. b, c) IV curves generated during the iterative
process, with the optimized ones plotted in red. Fill factor decreases as ideality factor increases.
d) Values of optimal parameters for this run.

Estimating Power from a Nominal Efficiency

In some cases, the user may not have measured electrical parameters or simply is not interested in

that level of detail for their model. Therefore, we also allow the user to use a simplified option of

estimating power production from a nominal power conversion efficiency (η in%) and a temperature

coefficient (βη = ∆η/◦C). Power production of a perfectly clean module under normal irradiance

is estimated as

Pmp = (η + βη(T − Tre f ))Pinc (6.32)

As with the equivalent circuit approach, the estimated power production can be corrected to account

for angular dependence and soiling losses as described in the following sections.
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Correction due to Angular Dependence

Angular losses are described in terms of an incidence angle modifier (IAM), which is the ratio of

transmission of light into a PV module when the light is incident at an angle to the transmission

of light at normal incidence. We account for angular losses by using the empirical model for

IAM developed by Martin and Ruiz [120–122] (introduced in Section 5.4). We chose this model

because it can also consider the angular losses on soiled PV modules. The full MR model requires

knowledge of the diffuse, direct, and albedo components of solar irradiation. TAITherm’s API

currently does not allow retrieving the albedo (ground-reflected) component of radiation since

TAITherm combines ground-reflected radiation and diffuse radiation into one quantity. Therefore,

we use a simplification, following the approach from a previous study of PV angle-dependence

[149], where we estimate the incidence angle modifier for diffuse radiation as the average of the

IAMs for direct radiation for all angles of incidence.

The MR model defines the IAM for direct irradiance as

Kdir
α = 1 − FB(α) = 1 −

[
exp(−cos(α)/ar ) − exp(−1/ar )

1 − exp(−1/ar )

]
(6.33)

where FB is called the angular loss factor, α is the irradiance angle of incidence, and ar is the

empirical angular loss coefficient. Increasing the value of ar allows modeling larger angular losses,

like those occurring on soiled modules. For greater flexibility, we also implemented support for a

user-specified direct irradiance IAM vs. AOI curve that is spline-interpolated to find the IAM for

direct irradiance at any AOI. For both the empirical model and the user-defined direct irradiance

IAM curve, the overall IAM (Kα) is calculated by

Kα =
[
EPOA

dir Kdir
α +

(
EPOA

di f + EPOA
alb

)
Kdir
α

]
/EPOA

total (6.34)

=
[
EPOA

dir Kdir
α + EPOA

di f ,T AI Kdir
α

]
/EPOA

total (6.35)

where EPOA
dir , EPOA

di f , EPOA
alb and are the plane-of-array (POA) direct, diffuse, and albedo irradiance,

respectively. The average of Kα over all angles of incidence is denoted byKα. Note that the "diffuse

irradiance" in TAITherm (Edi f f ,T AI ) is defined as the sum of diffuse-sky and albedo irradiance.
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The IAM is always a value between zero and one and can be considered as an efficiency due

to incident angle. The power is scaled by the IAM at each time-step to account for the angular

dependence.

Pactual = PmpKα (6.36)

where Pmp is the PV power computed through Equation 6.20 or 6.32. Equivalently, the PV can be

thought of as having an effective efficiency

ηe f f = ηKα (6.37)

Correction due to Soiling

Soiling both blocks plane-of-array solar irradiation (transmission loss) and results in more severe

angular reflection losses. The Martin and Ruiz model (MR) accounts for the angular reflection

losses, including the influence of soiling, through an empirical angular loss coefficient. In our

thermal-electrical model, a correction for soiling losses can be applied by providing a set of

MR angular loss coefficients or soiling losses (in percents) for each time-step in the simulation. If

percent soiling losses are supplied, themodel expects that these losses already include the additional

angular losses due to soiling and applies the soiling losses directly to the power calculations, leaving

the angular loss coefficient at the clean panel value. If soiling is specified through angular loss

coefficients, the model estimates both the transmission losses due to soiling and the angular

reflection losses. The angular losses are calculated by the IAM equations described above. To

estimate a transmission loss due to soiling, the model uses an empirical correlation based on the

MR model. As discussed in Section 5.5, an approximation can be made that for each 1% soiling

loss at zero AOI (this corresponds to the transmission portion of the soiling loss), the angular loss

coefficient must increase by 0.01375. The transmission loss due to soiling is defined as

Lsoiling
trans = c(adirty

r − aclean
r )/100 (6.38)

where the loss is a percentage expressed as a decimal, adirty
r and aclean

r are the angular loss

coefficients of a dirty and clean panel, respectively, and c is an empirical relationship relating the
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coefficients to transmission loss (with a default value of 0.01375−1 = 72.7 based on the empirical

relationships mentioned above).

The overall losses due to soiling and incident angle dependence can be expressed as a multi-

plicative combination of the transmission loss and angular loss.

Ltot = Lsoiling
trans (1 − Kα) (6.39)

The PV power when accounting for angular and soiling effects becomes

Pactual = PmpKα(1 − Lsoiling
trans ) (6.40)

Equivalently, the PV can be thought of as having an effective efficiency

ηe f f = ηKα(1 − Lsoiling
trans ) (6.41)

Implementation

The thermal portion of the modeling simply involves creating the PV system geometry and spec-

ifying the material properties and boundary conditions in TAITherm. The calculations for power

production, angular dependence correction, and soiling loss correctionwere implemented in Python

and coupled with the thermal model through a TAITherm user routine. User routines allow the

user to interact with the heat transfer solver through an Application Programming Interface (API)

to enforce custom boundary conditions or implement custom calculations. User routines can be

coupled with the solver at various points in the solution (beginning or end of the solution, each

time-step, or each iteration within each time-step of the thermal simulation). The PV calculations

user routine is called at the end of each time-step of the transient thermal simulation. This user

routine computes the power production (either through solving equivalent circuit equations or from

nominal efficiency) at the current time-step, using the newly computed module temperature while

accounting for AOI dependence and any soiling losses. Then a negative heat is imposed on the

PV module(s) to account for the portion of solar radiation that is converted to electricity instead of

heat. The results of the power production calculations are appended to an output file at each time

step. A flow chart of the modeling approach is shown in Figure 6.7.
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Figure 6.7: Flow chart of the calculations at each time step of the coupled thermal-electric PV
model.

Using the equivalent circuit approach allowed a 5572 element TAITherm (2020.1.0) model of a

vehicle with a solar roof to solve (without parallel processing) both the heat transfer and electrical

models in under one second per time-step (on a Linux machine with a 3.7 GHz Intel i7-8700K

CPU). Running the simulation under natural weather conditions over a 12 hour day with one hour

time-steps took under two minutes.
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6.2.3 Model Validation

Thermal Model

The thermal PV model was first validated by comparing the temperature prediction of a free-

standing PLM260M-60-DG series monocrystalline silicon module under NOCT conditions to the

value reported by the manufacturer (see Appendix B for the datasheet). The thermal model

was made in TAITherm, following the approach from Sommerfeldt and Schon’s previous works

[144, 145]. These works represented the PV module by a flat plate with three layers: the PV

cells, plastic EVA encapsulate, and the rear glass. The front glass was omitted due to TAITherm’s

inability to model transparent and opaque layers together in a single part. Since the density of

glass and silicon are similar, a combined PV and glass layer was modeled by increasing the layer

thickness and adjusting the surface properties to account for the reflectivity, absorptivity, and

emissivity of the glass. McAdams linear wind convection [150] was used on the front and back

of the free-standing PV model. The layer properties are given in Table 6.6. Note that NOCT is

defined under open-circuit conditions; therefore, no electrical model was used for this validation

since no current is produced. TAITherm predicted a temperature of 43.9◦C, which is consistent

with the manufacturer-reported value of 44 ± 2◦C.

Table 6.6: Physical properties of the solar module.

Layer Thickness Density Conductivity Specific Heat
mm kg/m3 W/m − k J/kg − K

PV Front Glass and Silicon 0.225+2.5 2330 148 677
EVA 0.5 960 0.7 2090
Rear Glass 2.5 6000 1.8 500

Next, the qualitative relationships between cell temperature and irradiance, air temperature, and

wind speed were confirmed (Figure 6.8). TAITherm predicts that cell temperature varies linearly

with irradiance and air temperature, and inversely with wind speed, which is consistent with the

empirical models.
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Figure 6.8: TAITherm prediction of cell temperature variation with a) irradiance, b) air
temperature, and c) wind speed.

Equivalent Circuit Electrical Model

For initial verification of the electrical model, equivalent circuit parameters for the PLM260M-60-

DG series solar module were taken from Schon’s work (Table 6.7). (Note that these parameters

were derived in Schon’s work at the cell level and therefore Rs,re f and Rsh,re f are smaller than

what would be expected for the overall module value since the module is made up of 60 cells).

Table 6.7: Electrical parameters of the solar module.

Parameter Value
I0,re f 1.0888 × 10−8

IL,re f 9.0507
Rs,re f 0.004255
Rsh,re f 56.052
nI 1.2
αIsc -0.06 %/◦C

While measured data of the temperature-dependent electrical properties were not available, the

temperature-dependent effects were verified qualitatively. Figure 6.9 shows the simulation results

for the solar module under weather conditions representing a sunny day in Phoenix, Arizona. As

expected, the photocurrent plot shows a Gaussian-like shape, with the highest current production

occurring during the highest irradiance. Transient cell temperature lags behind the peak irradiance
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(and current) since it takes some time for the cell to heat up after peak solar loading is reached.

We see the efficiency of the cell decrease by several percent when its temperature increases. The

silicon bandgap decreaseswith increasing temperature, while the ideality factor and diode saturation

current increase.

Figure 6.9: One day simulation results for a) cell temperature, b) current, c) efficiency, d) silicon
bandgap, e) modified ideality factor, and f) diode saturation current.

Figure 6.10 shows the impact of cell temperature on the IV curve when using the equivalent

circuit parameters from Table 6.7. As expected, we see a lower Voc and fill factor with increasing

temperature, resulting in lower power conversion efficiency. In this example, maximum power at

65◦C is 29% lower than at 15◦C.
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Figure 6.10: Example of the effect of cell temperature on a) IV curve and b) power production.

Coupled Thermal-Electrical Model

Finally, the coupled PV thermal-electrical model was validated against measured data (provided by

Enlighten Energy, Ltd.) of First Solar Series 4 CdTe single-axis tracker module temperatures and

short-circuit currents. Since measured values of the components of solar radiation, tracking axis

orientation, and the precise sun-tracking path for these modules were not disclosed, the angular

dependence of power production was not modeled. However, the angular effects of clean modules

that track the sun are small (< 2%) [151] and, therefore, would only slightly affect the results. Since

we are interested in the overall module temperatures, and temperature gradients across such a thin

material are small, the module was modeled in TAITherm as a single element plate with thermal

properties shown in Table 6.8.

Table 6.8: Physical properties of the CdTe solar module.

Thickness Density Conductivity Specific Heat Emissivity
mm kg/m3 W/m − k J/kg − K dimensionless
6.8 2451 6.2 718 0.9

The density was calculated from the module area and thickness provided in the datasheet (see

Appendix B). The specific heat was estimated using a volume-weighted average of specific heat of

glass (750 J/kg-K [152]) and specific heat of CdTe (210 J/kg-K [153]). The thermal conductivity
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of CdTe (from [153]) was used. A sensitivity study showed that varying the specific heat between

500-2000 J/kg-K and conductivity between 3-150 W/m-k had a negligible impact on the results.

The specific heat affects only the relatively fast transient thermal behavior of a material, while here,

we are interested in panel temperatures on the hourly time-scale. Conductivity likely did not have a

significant effect because a free-standing panel’s thermal behavior is dominated by the convection

and radiation modes of heat transfer.

The measured dataset includes hourly measurements of POA total irradiance, GHI irradiance,

wind speed, ambient air temperature, module temperature, and short-circuit currents for four

nominally identical CdTe modules. The averages of the four modules’ POA irradiance, GHI

irradiance, wind speed, ambient air temperature were specified as boundary condition curves

for the following TAITherm user-inputs: imposed solar flux, fluid velocity for convection, fluid

temperature for convection, and environmental bounding box temperature. The equivalent circuit

parameters were derived using the parameter extraction method described in Section 6.2.2 with

the manufacturer nominal values for Vmpp, Impp, Voc, Isc, and temperature coefficient of Isc for

the FS-4122-3 module as inputs (see Appendix B for the datasheet). Table 6.9 shows the derived

equivalent circuit parameters.

Table 6.9: Derived equivalent circuit parameters of the First Solar 4 Series FS-4122-3 solar
module.

Parameter Value Units
are f 3.46 dimensionless
IL,re f 1.855 A
I0,re f 1.317 × 10−11 A
Rs 3.984 Ω

Rsh,re f 1.390 × 103 Ω

αIsc +0.04 %/◦C

The coupled thermal-electrical TAITherm simulation (as shown in Figure 6.7) was run using

0.1 hour time steps for a 15 hour summer day (June 27, 2019, was chosen arbitrarily). Figure 6.11

shows a comparison of the calculated andmeasured results for module temperature and short-circuit
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current. The error bars show one standard deviation of the measured values for the four modules.

(Note that module currents for the four cells were nearly identical for most of the day, causing

very small error bars). This validation shows that the approach of coupling a heat transfer solver

with an equivalent circuit model developed in this chapter can allow to accurately calculate module

temperatures and currents.

Figure 6.11: Comparison of one day of modeled and measured First Solar Series 4 CdTe module
temperature and short-circuit current.

6.2.4 Comparison with Empirical Models

Next, we present a comparison of cell temperature predictions from the popular empirical models

(described in Section 6.1) with those from the heat transfer physical model. For the empirical

models, we use the default coefficients that were derived by the developers of each model since

this is how PV engineers and technicians often use the models. Figure 6.12 shows the comparison

of cell temperature versus irradiance predictions under 1 m/s and 5 m/s wind. All models yield

similar temperature predictions under 1 m/s wind (NOCT conditions at which empirical models

are typically fitted), but diverge drastically under 5 m/s wind. As expected, the models that

do not include wind as an independent variable (basic NOCT and PVsyst) result in the highest

temperature predictions, showing the importance of considering variable wind convection if panels
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are installed at a location with varying wind speeds. Clearly, all of the empirical models cannot be

simultaneously accurate (at least when using default coefficients).

Figure 6.12: Comparison of cell temperature versus irradiance predictions under 1 m/s and 5 m/s
wind.

Figure 6.13 compares the cell temperature predictions as functions of air temperature and wind

speed (only the models that include wind speed as an independent variable were compared). Again,

we see a wide discrepancy between empirical models.

Figure 6.13: Comparison of cell temperature versus air temperature and wind speed predictions.

In order to check whether an empirical model can be fitted to match a heat transfer solver’s

results for a free-standing solar cell in operation, we modified coefficients in the PVsyst model and

compared predictions of cell temperature versus wind speed and irradiance to TAITherm results.

We see that excellent agreement between the heat transfer solver and the empirical model can
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be achieved, showing that it may not always be necessary to use a heat transfer solver. However,

benefits of the heat transfer approach remain for situations where measured data for empirical model

fitting may not be available and for rapid computational testing of different engineering designs

and panel integrations into structures.

Figure 6.14: Comparison of cell temperature predictions versus wind speed and irradiance made
with a fitted PVsyst model (ηm=18%, α = 0.9, uc = 23.2, uv = 7.4) and TAITherm.

6.3 Example Applications

Here, we present three proof-of-concept example applications of the thermal-electric PVmodel.

6.3.1 Building Rooftop PV Systems

The coupled thermal-electricmodelwas used to predict the temperature-corrected power production

of a 64.8 m2 residential rooftop PV system in Phoenix, Arizona. The starting point for this model

was a TAITherm tutorial model of a house (Figure 6.15). PV panels were added to the geometry

by adding three PV material layers, with properties described in Table 6.6, to a portion of the roof.

For this proof-of-concept model, the PV system is assumed to be made of the same monocrystalline

silicon modules (PLM260M-60-DG series) as in Section 6.2.3.
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Figure 6.15: TAITherm house model with roof-mounted solar panel.

We first ran the model for one typical hot and sunny summer day in Phoenix (high temperature

of 41◦C). Weather data for Phoenix was taken from July 15 in the typical meteorological year

(TMY) dataset from the National Solar Radiation Database (NSRDB). To evaluate the impact of

temperature on the system’s energy production, we compared the model’s results when module

temperatures are computed versus when a constant temperature of 25◦C (standard test conditions)

is assumed (Figure 6.16).

Figure 6.16: PV rooftop system simulation results for a typical day in July in Phoenix, Arizona.
Predicted power (a) and efficiency (b) with and without considering temperature-induced losses.
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Summing the power over one day, the total energy production with and without temperature

correction is predicted to be 99 kWh versus 107 kWh, showing that if panel temperature is not

considered, the power production would be overestimated by 8%. The average household electricity

usage in the U.S. is 900 kWh permonth or about 30 kWh per day [154]. Such a PV system producing

100 kWh on summer days would satisfy the household electricity needs, partially charge electric

vehicles that the residents may own (for example, a Tesla Model 3 uses about 26 kWh per 100 miles

[155]), and even have some energy remaining to sell back to the grid.

Additionally, the annual energy production was modeled using TMY weather data from the

NSRDB. TAITherm also needs cloud cover in order to estimate the sky temperature for the infrared

radiation exchange calculations. Cloud cover, which is not available in NSRDB TMY datasets,

was estimated as the ratio of DNI under realistic sky conditions to DNI under clear sky conditions

(provided in the NSRDB as part of its clear-sky model). Soiling loss coefficients for a typical year

in Phoenix for fixed tilt roof panels, with tilt angle equal to the roof’s tilt in the TAITherm house

model (40◦) were estimated by running the physical soiling model developed in Chapter 5 using

TMY data from Meteonorm [156]. (The NSRDB TMY data could not be used because it does not

include rainfall, which is essential for soiling prediction). The predicted DC energy production for

the rooftop PV system with and without a correction for soiling losses is shown in Figure 6.17.

Figure 6.17: Predicted PV energy production with and without including soiling losses. a) Daily
DC power. b) Monthly DC energy production.
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Figure 6.18 shows the soiling coefficients and the corresponding DC power production losses

due to soiling.

Figure 6.18: a) Soiling coefficients used as input. b) Transmission and angular losses due to
soiling calculated by the thermal-electrical model. Daily rainfall totals are shown with blue bars.

One could argue that similar results can be achieved with empirical-based temperature correc-

tions such as those in PVLIB. For simple energy production prediction of a typical rooftop PV

system, a heat and radiation transfer solver is not necessary. However, such an approach may be

useful for PV system engineering related to heat transfer, such as designing passive or active cooling

solutions to improve PV efficiency, designing PVT systems, or studying the rooftop system’s im-

pact on the temperature inside the house. Additionally, more complex integrations of solar panels

on irregular surfaces (e.g. vehicle-integrated solar panels, wearables, or solar-powered clothing)

cannot be modeled by standard PV modeling approaches such as those implemented in PVLIB.

To predict the energy production of such systems, a radiation transfer solver such as TAITherm is

almost essential.

6.3.2 Vehicle-Integrated Solar Panels

The inspiration for exploring this application was recent news on the development of prototypes of

electric vehicles with rooftop solar panels, which may extend the driving range or recharge the car’s
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auxiliary battery that powers secondary systems such as screens and climate control [157–160].

Currently, the amount of range extension is limited, but it still provides some benefits, and therefore,

there is active research in this area. Hyundai is also researching incorporating semi-transparent

solar panels into the panoramic sunroofs of internal combustion engine vehicles to directly charge

batteries and reduce the engine’s workload, which is claimed to be the first technology of this

type [158]. Vehicle-integrated solar panels (VISPs) could potentially provide a larger benefit on

commercial vehicles (e.g. trucks, buses, and trains) where there is more surface area available for

installing solar panels. Several variations of VISP systems were explored in this work. All of the

models were based on TAITherm’s tutorial model of a Jeep Grand Cherokee.

Conventional Rooftop PV

In the first version of themodel, the entire surface area of the Jeep’s roofwas covered by conventional

monocrystalline silicon solar panels (PLM260M-60-DG series) by adding the same three PV

material layers as in Section 6.2.3. Figure 6.19 shows the TAITherm model geometry.

Figure 6.19: TAITherm Jeep model with roof-mounted solar panel.

Like in the building rooftop PV modeling example, we first ran the model for one day (July 15

in the NSRDB TMY dataset for Phoenix). Figure 6.20 compares the results when different factors

affecting PV performance are included: irradiance-only, irradiance with angular dependency, and
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irradiance with both angular and temperature dependency. The AOI dependence in these results,

while having a significant impact on the efficiency near sunrise and sunset, decreases the day’s total

energy production by only 3%. This is because the sun stays high in the sky for most of the day

in the summer in Phoenix, and the PV panel is horizontal, leading to low AOIs that correspond to

almost no angular losses. The reduced efficiency due to angular dependence occurs when there is

low irradiance, so it has a low impact on overall energy production. Angular effects will be more

important in winter months, in Northern latitudes, and for PV installations where the PVs cannot

be mounted to minimize the AOI (e.g. building facades and pitched roofs that do not correspond

to an optimal panel tilt for that latitude). The effect of temperature dependence was explored by

comparing results when module temperatures are computed versus when a constant temperature of

25◦C is used. Like in the residential roof example, we again see a significant reduction in power

production due to temperature-induced losses during the peak sunlight hours. Summing the power

over an 8 hour period (9 am to 5 pm), the total energy production with and without temperature

correction is predicted to be 3.8 kWh versus 4.4 kWh, showing that if panel temperature was not

considered, the power production would have been overestimated by 17%.

Figure 6.20: Comparison of a single day of modeled vehicle-integrated solar panel power (a) and
efficiency (b) when different factors affecting PV performance are considered (irradiance
dependence only, irradiance and angle dependence, and irradiance, angle, and temperature
dependence).
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The VISP’s predicted energy production of 3.8 kWh during eight hours (e.g. a workday during

which the car is parked outside) could be used in several ways. A ventilation system could be run

while the car is parked in the sun to lower the cabin temperature and thus reduce AC use when the

occupants return to their car. Alternatively, the power could be used to charge an auxiliary battery

that powers secondary vehicle electronic systems (e.g. infotainment, interior lights, electrical

plugs) or to power the vehicle owner’s electronics. Such a PV battery could be especially useful if

one uses the Jeep for rustic camping, allowing campers to charge electronics without running the

engine and without potentially discharging the main battery. On a potential future electric-SUV

with a similar roof surface area, the panels could even be used to slightly supplement the charge

in the main battery. Assuming an EV energy efficiency of 26 kWh/100 miles [155], such a PV

system could give an additional 15 miles of range after the car is parked for 8 hours in the sun. This

could be enough to use the EV for short-distance commuting without ever having to plug it into a

charging station.

Assuming an idealized scenario where the Jeep is always located in an unshaded area and the

PV panel is kept perfectly clean, a total annual energy production of 963 kWh could be achieved

in a typical meteorological year in Phoenix, Arizona (weather data from NSRDB). Assuming 26

kWh/100 miles EV efficiency, this would provide 3700 miles of solar-powered range a year, which

is about 1/4 of the average driver’s annual mileage in the U.S. [161]. Of course, the actual amount

will likely be lower due to shading and soiling, but this simulation provides us an upper-bound

estimate of what is possible. The simulation shows that integrating a conventional PV in an SUV’s

roof is not sufficient for a fully solar-powered car for the average driver. A PV technology that

could allow using a greater surface area of the vehicle is explored in the next section.

Transparent PV

Transparent photovoltaics (TPVs), which selectively absorb ultraviolet and near-infrared light while

allowing high transmittance of visible light, could allow harvesting solar energy from the surfaces

of buildings, automobiles, and electronic device displays without impacting function or aesthetics.
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TPVs have caught the attention of the automotive industry, with some automakers looking at

incorporating TPVs, for example, for sunroofs where the energy could be used to power fans to

cool a car parked in the sun [162]. Transparent windows with TPVs with nearly 10% PCE are

already being commercialized [163]. In the future, TPVs could be incorporated into automobile

windows or even cover the entire surface area of vehicles for maximal energy production. Here

we use our thermal-electrical PV model to predict the potential energy production of a Jeep Grand

Cherokee for a windows-only (including a large sunroof) and entire surface area TPV system in

five U.S. cities: New York NY, Lansing MI, Honolulu HI, Los Angeles CA, and Phoenix AZ.

Since we are modeling an emerging technology, electrical parameters were not available.

Therefore, we used an estimated realistically achievable efficiency of 15% [164]. Angular effects

were considered by specifying measured IAM curves from a TPV angular effects study [149].

The capability of TAITherm to model transparent materials was used for the Jeep’s windows

with measured values of TPV spectral transmittance and reflectance [165] specified as curves.

TAITherm integrates the spectral values to determine overall transmissivity and reflectivity for use

in the transparent materials solver. To model the TPVs on the Jeep’s body panels, regular solid

materials were used due to TAITherm’s inability to model a transparent material on top of a non-

transparent one. Much of the light transmitted through the TPV film will be absorbed by the body

panel underneath, so the effect of neglecting to explicitly model the optics is likely small. However,

note that this neglects the potential additional energy production from light that is reflected from the

vehicle body panel surface back through the film. Figure 6.21 shows the spectral optical properties

and angular dependence used in the model.
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Figure 6.21: a) TPV UV-vis spectrum for front illumination. Data from [165]. b) Incident angle
modifier for a conventional thin film PV and one that is optimized for improved
angle-dependence. Data from [149].

TMY weather data for the five cities was obtained from the NSRDB. The Jeep was assumed

to be outside in an unshaded area (but under realistic weather patterns, including cloud cover)

for the entire year. The TAITherm built-in ground surface background of aged asphalt (infrared

emissivity of 0.94 and solar absorptivity of 0.85) was assumed for the thermal and radiation

modeling. Given the difficulty of predicting soiling on a vehicle that is in use, losses due to

soiling were not considered. Vehicles with PVs should be washed regularly to maximize energy

production. Predicted total yearly energy production and monthly energy production for the five

cities are shown in Figure 6.22. For angle of incidence corrections, the TPV models assumed the

conventional thin-film angular dependence from Figure 6.21b and the silicon PV model used the

empirical equations from Section 6.2.2.
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Figure 6.22: a) Predicted total annual energy production in five U.S. cities for three different
vehicle-integrated PV systems: TPVs covering entire surface of the vehicle, TPVs only used in
windows, and a conventional silicon PV roof module. b) Predicted monthly energy production for
the TPV system that covers the entire surface of the vehicle.

Assuming an EV energy efficiency of 26 kWh/100 miles [155], a Jeep Grand Cherokee that

is completely covered with 15% efficiency TPVs could drive 13,400 miles a year in Phoenix on

solar energy alone. Note that this assumes an idealized scenario where the car is always in non-

shaded areas (e.g. parked far away from other vehicles that would block sunlight from reaching the

side panels) and kept perfectly clean. If TPVs are only used for the Jeep’s windows (including a

sunroof), solar energy could provide up to 4,300 miles of range a year. A conventional silicon PV

roof could provide up to 3,700 miles. In locations with less solar irradiance, such as New York or

Lansing, the energy production is expected to be about 30% lower than in Phoenix. Rerunning the

model of the Jeep with full coverage of TPVs with an improved AOI dependence (the optimized

curve from Figure 6.21), results in an approximately 10% increase in predicted annual energy

production. This demonstrates the need to include an AOI correction in PV modeling and also

provides motivation to develop PV devices with optimized angular dependence. The TAITherm

model also predicts that TPVs that cover the entire vehicle’s surface will have an additional benefit

of causing a reduction of cabin air temperature by 1-2◦C, which would reduce cabin cooling costs

during the warm seasons. Of course, the actual driving range will also depend on the influence

of temperature on battery performance, HVAC use, and driving conditions (city vs. highway, flat

vs. mountainous). In future work, the PV thermal-electrical model could be coupled with electric
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vehicle battery, motor, HVAC, and drive-cycle models for more detailed analysis.

6.3.3 PV-Battery Systems

Batteries are often used to store energy produced by photovoltaics. When developing PV-battery

systems, it is necessary to appropriately select the capacity and type of battery that can store the

needed amount of energy and satisfy the charge and discharge rate requirements for the system’s

application. Batteries that are charged with currents that are a larger proportion of their maximum

capacity degrade faster. Additionally, the temperature of a battery during operation must be

considered for several reasons. One is to ensure that it stays within the safe operating range for the

battery and within any additional temperature restrictions due to the application (e.g. there may

be a narrower operating range for batteries installed together with other sensitive electronics). The

temperature of a battery also impacts its performance and, therefore, should be considered for an

accurate estimate of usable battery capacity and available discharge power. In some applications,

passive or active thermal management may be used to maintain the battery within its optimal

operating range. Understanding how batteries degrade as functions of time, charge/discharge

cycles, and temperature can help extend battery lifetime by optimizing charging and discharging

with "smarter" battery management systems (BMSs). This section outlines how one may combine

the PV thermal-electrical model presented in this chapter with battery performance and lifetime

models.

In this work, the performance and lifetime of a PV-system battery are modeled using a commer-

cial thermal-electrical battery lifetime prediction tool developed by ThermoAnalytics. The model

consists of two main parts: a thermal-electrical battery model and a battery lifetime model. The

lifetimemodel is an empirical model with physically justifiable formulas developed byNREL [166].

The NREL lifetime model separates battery degradation into calendar and cycling fade. Calendar

fade is degradation that occurs over time and is independent of cycling. Cycling fade is degradation

that occurs with the number of cycles and is independent of time. Since calendar and cycling fade

are due to internal chemical processes in the battery, their rates depend on battery temperature,
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thus requiring a thermal-electrical model, which is run in TAITherm to predict those temperatures.

The electrical model uses NREL’s equivalent circuit battery model to calculate the voltage, state

of charge (SOC), currents, and heat generation of individual cells within a battery. The calculated

heat generation is considered in the thermal model to calculate new temperatures. These temper-

atures affect the battery’s electrical behavior, which is modeled by temperature-dependence of the

resistors in the equivalent circuit model. Figure 6.23 shows a schematic of the thermal-electrical

battery model.

Figure 6.23: Schematic of the thermal-electrical battery model. Q is the heat generated by the
battery, calculated in terms of Joule heating (electrical losses) within the battery equivalent circuit
and entropic heating (heat from chemical reactions in the battery). Adapted from [167].

As batteries age, their resistance increases and capacity decreases, influencing the battery’s

temperatures and performance. Thus, the lifetime and thermal-electrical battery models are bi-

directionally coupled, forming a multi-timescale simulation. The lifetime model’s goal is to

describe a battery’s change in resistance and capacity over the course of months and years and

therefore uses a one-day time step. The thermal-electrical model’s goal is to describe a battery’s

performance at the minute and hour resolution and therefore uses a time step on the order of

minutes. ThermoAnalytics’ co-simulation software CoTherm controls the multiple time-scale

simulation. First, the thermal-electrical TAITherm model is run for a single day to compute the

battery’s temperatures and SOC over time. This information is provided to the lifetime model

(integrated into CoTherm), which is run with one-day time-steps for the period of a few months.
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After a few months of lifetime simulation, the currently predicted values of battery capacity and

resistance are used to update the equivalent circuit coefficients, and the thermal-electrical model is

rerun for a single day. This cycle repeats to simulate many years of the battery’s life. Figure 6.24

shows the battery lifetime simulation approach.

Figure 6.24: Flow diagram of the battery life prediction model. ("Eqc" stands for "equivalent
circuit".)

For proof-of-concept modeling, we specified a PV module’s photocurrent at maximum power

as the charging current of the battery. To compute the photocurrent, we used the validated PV

thermal-electrical model to model a single First Solar CdTe Series 4 module located in Phoenix,

Arizona. Irradiance and weather for one representative day in each of the four seasons was used to

generate four representative photocurrent profiles for input into the battery lifetime model. After

every three months of lifetime simulation, the TAITherm thermal-electrical model was rerun using

the representative photocurrent for that season. We modeled two PV-battery systems that both use

the same CdTe solar module but have different sized batteries for energy storage (30 Ah and 60

Ah). For simplicity, the batteries were assumed to start the day with 20% SOC, charge during the

day with the PV module, and be discharged each night back down to 20% SOC. Figure 6.25 shows

one such charge/discharge current profile and the corresponding battery SOC. For this simulation,

the batteries were assumed to be in a climate-controlled environment maintaining 22◦C (natural

weather environmental boundary conditions can be specified in the models if desired).
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Figure 6.25: a) Battery charge/discharge current over a single summer day. Positive current is
defined as charging. b) State of charge of the 30 Ah battery due to the current profile in a).

Figure 6.26 shows the results of the predictions of relative resistance and capacity of the 30 Ah

and 60 Ah batteries over their life. Both batteries are oversized for the system, meaning that they

are not fully charged/discharged over normal use. This oversizing reduces the cycling fade of the

battery, thus increasing the battery lifetime. We see that the larger 60 Ah battery degrades slower

than the smaller 30 Ah battery. The financial trade-off between a larger, more expensive battery

and longer battery lifetime, reducing the frequency of battery replacement, needs to be considered

when designing or purchasing a PV-battery system.

Figure 6.26: Relative resistance (a) and capacity (b) of the 30 Ah and 60 Ah batteries. Values are
relative to those of a brand-new battery.
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In future work, these simulation approaches could be used to design and model batteries which

are optimized for photovoltaic systems [168]. They could also be used to model battery packs

(multiple batteries connected in series or parallel to provide a higher energy storage capacity or

power) and smart battery management systems which optimize the charging/discharging of these

battery packs to extend usable capacity, power, and lifetime of the pack [169]. Figure 6.27 shows

one possible approach envisioned for PV-battery and battery management system modeling. The

equivalent circuit battery model could be replaced with an electrochemical model if a more detailed

and physics-based battery model is desired.

Figure 6.27: PV-battery and battery management system modeling approach.

6.3.4 Other Applications

In addition to reducing thermal losses, other photovoltaic applications where coupled thermal-

electrical PV models could be an effective simulation approach include:

• Solar cells in space under extreme (both high and low) temperature conditions [170, 171]

• Photovoltaic-thermal technology: a PV panel coupled with a thermal collector [172]

• Photovoltaic collectors and bifacial PV systems [173, 174]
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• Temperature-induced solar cell ageing [175]

• Battery management systems for efficient storage of photogenerated energy [176]

• IR imaging of PV-plants [177]

• Melting of snow on heated panels [178]

• Condensation on dusty PV modules and associated formation of mud [179]

6.4 Conclusions

In this chapter, we developed coupled thermal-electrical PV system models that consider the

effects of temperature on solar panel performance by implementing custom user routines in a

commercial heat transfer solver. After validating the modeling approach by comparison with

measured data, we developed proof-of-concept modeling examples for residential PV systems

and vehicle-integrated solar panels. Through these examples, we showed that consideration of

temperature-induced losses is important to avoid overestimating a PV system’s potential energy

production. Additionally, we developed the foundations for modeling the interactions between

solar panels and batteries used for energy storage by coupling the thermal-electrical PV model with

a commercial thermal-electrical battery temperature and performance model, and a commercial

battery aging model. These models can also be used together with the soiling models developed in

Chapter 5. The approaches developed in this chapter, which leverage the power and flexibility of

a commercial heat transfer solver, can be applied for computer-aided engineering of a wide range

of PV systems, such as vehicle and building-integrated PVs, PVs in space, PV-thermal technology,

and battery management systems for PV energy storage.
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CHAPTER 7

CONCLUSIONS AND OUTLOOK

7.1 Conclusions

In this dissertation, we described the development of computational multi-physics models

for photovoltaic devices and systems. We started our modeling with the smallest functional

unit in a PV system: a single solar cell. For this goal, we used the computationally efficient

yet accurate drift-diffusion approach. We introduced the numerical methods for drift-diffusion

modeling in Chapter 2. We also demonstrated that the drift-diffusion model is consistent with

the Mott-Gurney law for space-charge-limited currents. In Chapter 3, we investigated the impact

of the choice of discretization approach (Scharfetter-Gummel versus Slotboom), iterative solution

approach (Gummel versus Newton), and convergence improvement technique (linear versus Pulay

mixing) on the convergence behavior of a drift-diffusion model for bilayer organic solar cells. The

findings can help in selecting a suitable discretization and iteration approach for each device model.

Pulay mixing can be used to improve convergence speed, Newton’s method is superior to Gummel’s

method for situations where the equations become highly coupled, and Slotboom variables can be

used to simplify the implementation of the matrix equations.

In Chapter 4, the drift-diffusionmodel was adapted for planar perovskite solar cells and validated

by reproducing literature results. The model was then used to describe recent experimental results

for perovskite solar cells that use fullerene layers for electron transport. Through drift-diffusion

modeling, poor electron extraction at the perovskite interface was found to be the primary cause of

the severe decrease in device performance when there is no C60 layer. We have also found a possible

explanation for the S-shaped JV curve seen in the 0 nm C60 devices. The S-shape is likely due to

an imbalance of carrier mobilities in the HTL and ETL, which results in charge accumulation and

the formation of an interface dipole. The modeling results support the experimental observation

and conclusion that while the inclusion of a C60 layer is critical for achieving good performance of
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perovskite solar cells that use BCP as their ETL, an ultra-thin C60 is sufficient to improve device

performance by enhancing electron extraction.

In the second half of this dissertation, the modeling focus was shifted to the larger scale of

PV modules and systems, where each module is made up of many individual solar cells, and each

system can be composed of many modules. To improve return-on-investment assessment for solar

energy systems, PV models need to accurately predict energy output, including considering losses

due to temperature and soiling. In Chapter 5, we explored both semi-physical and machine learning

approaches to modeling the soiling of PV panels. We developed a general semi-physical model

which is expected to be reasonably applicable globally, provided that the empirical coefficients

are fitted on a region-by-region basis. We also developed the methodology for integrating the

soiling models with a Python package for PV energy production prediction (PVLIB) and cleaning

cycle optimization algorithms, which resulted in the release of a new commercial software tool

(PV SoilSayer). Preliminary model validation was performed by comparison to published soiling

measurements from an NREL study. Additionally, we demonstrated the feasibility of using multi-

linear regression and artificial neural networks for soiling predictions. These approacheswere found

to be able to both replicate the results of semi-physical soiling accumulation models and predict

future soiling losses based on historical measurements of soiling and environmental parameters.

The models and software that we developed are expected to provide the PV industry with improved

methods for predicting soiling losses and their financial impacts.

Finally, in Chapter 6, we developed coupled thermal-electrical PV system models by imple-

menting custom user routines in a commercial heat transfer solver. The modeling approach was

validated by comparison with measured data from a utility-scale PV system. We also developed

proof-of-concept modeling examples for residential PV systems and vehicle-integrated solar panels.

Additionally, we developed and demonstrated an approach for modeling PV-battery systems by cou-

pling the thermal-electrical PV model with a commercial thermal-electrical battery performance

model and a commercial battery aging model. These thermal-electrical PV models are expected to

be beneficial for the engineering of a variety of PV systems.
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7.2 Outlook

There are many possibilities to extend this research. The drift-diffusion model can be adapted

to various solar cell architectures to help improve our understanding of the physics in these devices

and perform computational experiments that explore the impact of different materials and cell

architectures on device efficiency. The models can be extended to consider transient effects and

field-dependent carrier mobilities. Additionally, the drift-diffusion model can be extended to

simulate light-emitting diodes (LEDs). LEDs that are made of organic materials (OLEDs) are a

promising technology for digital displays and lighting. The physics in LEDs is very similar to solar

cells, with the main difference being that in solar cells, photogenerated carriers are separated to

generate a current, while in LEDs, an external current forces carriers through the device where

they recombine and emit light. Two and three-dimensional extensions of the drift-diffusion model

can be applied to devices with asymmetry in the carrier transport in the in-plane directions.

(Example implementations of extending the drift-diffusion models presented here to 2D and 3D

are available1). Further fundamental understanding of materials for solar cells and LEDs can be

achieved through ab-initio quantum chemistry calculations (e.g. density functional theory). Ab-

initio calculations can also guide experimental efforts in developing new devices by helping to

select promising candidate materials (e.g. based on calculated bandgaps and carrier mobilities).

The convergence improvement methods discussed in Chapter 3 could also be applicable to other

systems of equations with similar mathematical properties to the drift-diffusion equations.

The PV soiling models and software developed in Chapter 5 can be applied to help PV system

developers, maintainers, engineers, and researchers have a better understanding of soiling losses.

With the growing realization of the impact of soiling, the installation of soiling monitoring stations

is becoming more widespread, which will lead to the availability of more soiling data. With this

soiling data, the correlations between environmental parameters (such as particulate matter, wind

speed, and rainfall) and soiling should be analyzed for numerous regions worldwide and used

to develop region-specific semi-physical or machine learning models for soiling loss prediction.

1https://github.com/tgolubev/Drift-Diffusion_models-Cpp_Matlab

173

https://github.com/tgolubev/Drift-Diffusion_models-Cpp_Matlab


Careful experiments should be conducted to clarify the cleaning effects of rain and attempt to

compile a database of regional rainfall thresholds required for effective cleaning. Experiments

should also be conducted to further study the influence of wind on soiling accumulation, especially

focusing on resuspension, which is currently not well understood. Additionally, the predictions of

optimal cleaning cycles should be validated by conducting experiments where panels are cleaned

according to different schedules.

In the last part of Chapter 5, we have demonstrated the potential of using MLR and ANN

for predicting soiling. However, MLR is unable to capture non-linear effects, and deep learning

(i.e. artificial neural networks) is not necessarily the best solution for all datasets since it has

many disadvantages such as requiring larger amounts of data and more computational resources to

train than other techniques, and being difficult to interpret. Therefore, it is important to explore

other ML solutions. Testing multiple ML models for a given dataset is tedious and requires

significant knowledge and experience with ML, which limits the ability of photovoltaic engineers

and researchers to use ML. The new field of automated machine learning (AutoML) provides

methods that automate the process of selecting a suitable ML model and its hyperparameters (user-

defined parameters that control the learning process) for a given dataset, thus greatly improving the

efficiency of developing an ML model and making ML accessible to non-ML-experts. In future

work, open-source AutoML packages such as TPOT (Tree-based Pipeline Optimization Tool),

Auto-sklearn, and AutoKeras can be used to select the best ML algorithms and hyperparameters

for PV soiling loss models.

The coupled thermal-electrical PV modeling approaches developed in Chapter 6 can be applied

for computer-aided engineering of a wide range of PV systems, such as vehicle and building-

integrated PVs, PVs in space, PV-thermal collectors, wearable PVs, and battery management

systems for PV energy storage. Further validation and refinement of the models should be done in

collaboration with experimental PV research. The models can also be improved by coupling with

more sophisticated system-level models. For example, a PVT collector can be modeled by coupling

the PV models developed here with a computational fluid dynamics software for modeling the fluid

174



flow in the heat exchanger. Another possible application of system-level modeling is predicting

the contribution of vehicle-integrated PVs to electric vehicle (EV) driving range. To develop such

a model, one could couple the thermal-electrical PV model with a model of EV batteries that

considers the impact of temperature on battery efficiency. One could further couple the PV and

battery models with a model of the vehicle’s HVAC system and a model of human thermal comfort

(such as in [180]) in order to estimate the power needed to preserve the comfort of the vehicle’s

occupants in different seasons and climate regions. Finally, ML-based reduced-order-modeling

where physical models are replaced with ML models that replicate the physical models’ behavior

should be explored as a way of reducing the computational expense of PV system-level modeling.
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APPENDIX A

PV SOILSAYER SOFTWARE DESCRIPTION

A significant portion of the photovoltaics soiling research completed for this dissertation involved

developing practical solutions for integrating the various soiling modeling approaches (described

in Chapter 5) with an open-source Python package for PV modeling (PVLIB) [130, 181] and the

PV cleaning cycle optimization algorithms of a PV startup company (Enlighten Energy, Ltd). The

results of this integration was Enlighten Energy’s release of PV SoilSayer, a commercial software

application for soiling loss calculations and optimal clean cycle forecasts. A description of the

software is presented here to illustrate how the soiling models developed in this dissertation were

incorporated into a broader PV simulation tool. After writing, this Appendix was adapted to create

the first version of the PV SoilSayer User Manual.

A.1 Weather

Prediction of a PV system’s energy production and soiling losses is dependent on the location-

specific weather patterns. PV SoilSayer utilizes annual weather files with an hourly resolution for

its predictions. Upon entering the location of their PV system, the user can choose from one of

several weather databases: 30-year typical meteorological year (TMY) from Meteonorm [156],

actual measured weather from last calendar year (from AccuWeather), next year weather forecast

(from AccuWeather), and an alternative precipitation-based TMY that we self-generated based on

10-year historical data (from AccuWeather). Two important parameters for energy and soiling

loss prediction, total GHI and total precipitation, are compared graphically to help select a weather

resource. The weather station locations relative to the plant locations are displayed on an embedded

Google Map (Figure A.1). Note that the Meteonorm TMY resource interpolates the weather for

particular coordinates from multiple nearby plants (all shown on the map), while the Accuweather

resources select only the closest plant. There are also options to update TMYweather datasets with

year-to-date weather and 90 day weather forecasts (from AccuWeather).
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Users also have the option of uploading their own weather data. Since precipitation is often

measured at a daily, instead of an hourly resolution, there is also an option to upload hourly weather

data with daily precipitation. In this case, the daily precipitation will be interpolated to hourly

values to use in the forecasting algorithms. Weather parameters used for forecasting are solar

irradiance components (GHI, DNI, DHI), relative humidity, wind speed, wind direction, ambient

air temperature, and precipitation. Any weather parameters that are not uploaded by the user are

taken from Meteonorm TMY.

Figure A.1: Weather Resource UI.
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Possible advantages of using the Meteonorm 30-year TMY datasets is that this approach is

the solar industry-standard for energy prediction. Additionally, their interpolation of weather from

multiple nearby stations could yield more representative weather datasets for locations that are

not near any weather stations. A potential disadvantage is that due to rapid climate change in

many global regions, a 30-year TMY is not necessarily representative of typical weather in the

current years. For example, many locations may be seeing higher temperatures and drier or wetter

conditions than 20-30 years ago. Therefore, weather resources based on Accuweather that rely on

the past ten years of historical data, last year data, or next year forecasts could be preferable. Future

versions of the software could allow rerunning the forecast for the same PV system with different

historical weather data and calculate a statistical average soiling forecast and uncertainties based

on weather variability.

A.2 PV System Design

The design parameters of a PV system can greatly impact its energy production. This section

provides an overview of the main design parameters considered in PV SoilSayer (Figure A.2).

Figure A.2: System Design UI.

DC and AC System Size

The nominal energy production capability of a PV system is defined by its direct current (DC) and

alternating current (AC) power rating (also known as system size). These are expressed in kilowatts
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peak (kWp) at standard test conditions (STC), meaning the peak kW power production under cell

temperature of 25◦C, irradiance of 1000 W/m2, and AM1.5 solar spectrum. PV systems produce

DC power that is then commonly inverted to AC for use in the electric grid. The AC system size

describes the peak power that the inverter is capable of outputting. The ratio between DC and AC

system size is called DC-to-AC ratio or Inverter Load Ratio and is often used to describe a PV

system [182]. PV systems are generally sized with DC-to-AC ratios of 1.1 − 1.3, meaning that the

inverter power output capability is lower than the maximum possible DC power production. This

leads to what is known as inverter clipping or clipping loss where during times of peak production

(e.g. sunny day at solar noon), the DC power feeding the inverter is greater than what the inverter

can handle, so the extra DC power potential is clipped and lost. The inverter clips by raising the

modules’ operating voltage to move the array off of its maximum power point and therefore reduce

the DC power. Such undersizing of inverters is done to improve project economics (less powerful

inverters are less expensive) and to match the AC power output with the grid connection point

design’s maximum power (e.g. a home’s AC panel has a power limit). The clipping losses due

to DC-to-AC ratios that are > 1 are small since full STC conditions are rare. STC conditions

describe noon on a clear summer day, but the cell temperature is assumed to be 25◦C. Actual cell

temperatures are commonly significantly higher, resulting in reduced efficiency (see Chapter 6).

Inverter Efficiency

The conversion of DC to AC by the inverter has an associated loss due to imperfect inverter

efficiency. PV SoilSayer implements the inverter model described in Version 5 of PVWatts, which

is based on an analysis of inverter performance data from the California Energy Commission (CEC)

[183]. The inverter performance curve is given in Figure A.1, which scales the efficiency curve to

the nominal rated efficiency specified by the user (ηnom). The default nominal efficiency is 0.96.

The reference inverter efficiency (ηre f = Pac0/Pdc0) from the CEC data for a typical inverter is

0.9637, and the AC nameplate rating (Pac0) is determined from the DC rating of the system and
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the DC-to-AC ratio.

η =
ηmon
ηre f

− 0.0162ζ −
0.0059
ζ
+ −.9858 (A.1)

where

ζ =
Pdc
Pdc0

(A.2)

and

Pdc0 =
Pac0
ηnom

(A.3)

When the predicted AC output exceeds the nameplate rating, the output is clipped to the

nameplate value. Figure A.3 shows the inverter efficiency curve as a function of load fraction (ratio

of power input to the inverter to the inverter’s AC rating) for different nominal inverter efficiencies.

Note the steep drop in inverter efficiency at very low load fractions, which may result in high

inverter losses during low light conditions (e.g. sunrise/sunset).

Figure A.3: Inverter partial-load efficiency curve. Adapted from [183].

Module Type

PV modules come in two main constructions called glass-glass and glass-backsheet. Glass-Glass

modules use glass on both the front and back sides of the module, while glass-backsheet modules

use a polymer sheet on the backside. Most PV modules use the glass-backsheet construction, but
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glass-glass modules can provide better reliability and durability. The module type impacts the

coefficients used in the cell temperature prediction model, which in turn impact the cell efficiency.

Temperature-induced losses are considered without any additional input from the user. Cur-

rently, PV SoilSayer uses the Sandia Array Performance Model (SAPM) [184] to calculate cell

temperature as implemented in PVLIB. The module temperature is given in terms of POA irradi-

ance (E), wind speed (WS), ambient air temperature (Ta), and two empirical coefficients (a and

b).

Tm = E × exp(a + b ×WS) + Ta (A.4)

The cell temperature is calculated from the module temperature by

TC = Tm +
E
E0
∆T (A.5)

with ∆T being the empirically-estimated difference between the temperatures of the module’s back

surface and the cell.

Table A.1 shows the empirical parameters used in the SAPM model.

Table A.1: SAPM temperature model coefficients.

Module Type a b ∆T

Open-Rack Glass-Glass -3.47 -0.0594 3
Open-Rack Glass-Backsheet -3.56 -0.075 3
Rooftop Glass-Glass -2.98 -0.0471 1
Rooftop Glass-Backsheet -2.81 -0.0455 0

The computed cell temperature impacts the DC power model as described in the section below.

Future development of PV SoilSayer could include allowing several temperature models with user-

input empirical coefficients, or uploading cell temperatures that were either modeled in an external

software or measured. (See Chapter 6 for a discussion of cell temperature modeling).
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DC Power Model

PV SoilSayer currently uses NREL’s PVWatts DC power model as implemented in PVLIB [130].

The empirical model predicts a PV module’s power output based on incident plane-of-array

(Gpoa,e f f ) irradiance and cell temperature

Pdc =
Gpoa,e f f

1000
Pdc0(1 + γpdc(Tcell − Tre f )) (A.6)

where Pdc0 is the DC power output of the modules at STC (DC System Size input). PV SoilSayer

currently assumes a temperature coefficient of γpdc = 0.004/◦C.

Cell Type

The cell type describes the active material of the PV module. The most common cell types used

commercially are monocrystalline and polycrystalline silicon, CIGS, and CdTe. The cell type

impacts the spectral mismatch model coefficients that are used by PVLIB. The spectral mismatch

modifier, M , is based on precipitable water, Pwat , and absolute (pressure corrected) airmass, Am

[130]. It describes the effect of variation in spectral irradiance on a module’s short-circuit current.

The following empirical equation is used

M = c1 + c2 Am + c3Pwat + c4 A5
m + c5P5

wat + c6 Am/P5
wat (A.7)

with coefficients given below.

Table A.2: Spectral mismatch modifier coefficients.

Cell Type c1 c2 c3 c4 c5 c6
CdTe 0.86273 -0.038948 -0.012506 0.098871 0.084658 -0.0042948
Mono-Si 0.85914 -0.020880 -0.0058853 0.12029 0.026814 -0.0017810
Poly Si 0.85914 -0.020880 -0.0058853 0.12029 0.026814 -0.0017810
CIGS 0.85252 -0.022314 -0.0047216 0.13666 0.013342 -0.0008945
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Array Type and Orientation

PV arrays can be free-standing (also known as open-rack) or roof-mounted. Roof-mounted arrays

are generally fixed in place. The choice between free-standing and roof-mounted arrays impacts

the empirical cell temperature models since free-standing systems have convection on both sides,

while roof-mounted systems have limited convection on the back, increasing cell temperatures.

Free-standing arrays can be either fixed in place or rotate around one or two axes to track the sun.

The rotating arrays are known as single-axis trackers and two-axis trackers. Figure A.4 shows the

three types of free-standing arrays.

Figure A.4: Array types. Adapted from [185].

The array’s orientation determines the amount of irradiance incident on the collector surface

and is described by a tilt (also known as elevation) angle and azimuth angle, as labeled in Figure

A.4. Fixed tilt free-standing array tilt angles are chosen to maximize the total incident irradiance. A

common recommendation is to set the tilt angle equal to the absolute value of the system’s latitude.

Higher tilt angle arrays, while increasing energy production in higher latitudes and during winter

months, can have a higher associated cost andmay increase the risk of wind damage. Roof-mounted

arrays typically have tilt angles equal to the roof pitch. For single-axis trackers, the tilt angle refers

to the angle from the horizontal of the tracking axis. Tilt angle does not apply to two-axis trackers

since they move to always maintain a normal incidence of the direct normal solar irradiation.

The azimuth angle is the angle clockwise from true north that describes the direction that the

array (or axis of rotation for single-axis trackers) faces. Often the azimuth angle is around 180◦
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(south-facing) for locations in the northern hemisphere and 0◦ (north-facing) for locations in the

southern hemisphere. The actual optimal azimuth angle can be slightly different based on local

weather patterns. For the northern hemisphere, increasing the azimuth angle favors afternoon

energy production, and decreasing the azimuth angle favors morning energy production. The

opposite is true for the southern hemisphere [185].

PVLIB allows modeling the motion of single-axis trackers as well as the effect of self-shading1.

Self-shading is a reduction in the array’s output caused by shading of neighboring rows of modules

at certain times of day and year when the sun is low on the horizon. Single-axis trackers often

use backtracking, which is a self-shading mitigation technique that rotates the array toward the

horizontal during early morning and late evening hours. The user can turn on/off backtracking

by selecting either a "True Tracking" or Backtracking" array type. The ground cover ratio (GCR)

specifies the ratio of module area to land area. Figure A.5 shows the relationship between self-

shading and GCR. In the figure, β is the tilt angle, z measures height along the array, and ψ(z) is

the screening angle, which represents a two-dimensional field-of-view reduction at height z [186].

Figure A.5: Ground cover ratio. Adapted from [185].

For single-axis trackers, an additional optional input is the Tracker Stow Angle, describing the

tilt angle of the SAT at night. This is needed only for the semi-physical soiling model, which

1For fixed-tilt and two-axis trackers, self-shading is not modeled, but its effects can be specified
as a percent loss in the Shading input in the PV System Losses UI.
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considers the effect of tilt angle on soiling accumulation. Higher stow angles result in lower soiling

losses (see Chapter 5).

Ground Reflection Albedo

The albedo coefficient determines the amount of solar irradiance reflected from the ground sur-

rounding the PV installation, which can contribute to the total irradiance incident on the module.

Note that PV SoilSayer currently uses albedo only for mono-facial panels. Common albedo values

are presented in Table A.3.

Table A.3: Sample albedo values. From [130].

Surface Type Albedo
Urban 0.18
Grass 0.20
Fresh Grass 0.26
Soil 0.17
Sand 0.40
Snow 0.65
Fresh Snow 0.75
Asphalt 0.12
Concrete 0.30
Aluminum 0.85
Copper 0.74
Fresh Steel 0.35
Dirty Steel 0.08
Sea 0.06

A.2.1 PV System Losses

PV systems have multiple sources of energy losses. Losses other than those due to temperature and

soiling, which are computed separately, are accounted for by requesting user-input of annual (and

monthly for shading and snow) loss percentage values (Figure A.6).

186



Figure A.6: PV System Losses UI.

The losses calculations follow the simple multiplicative approach of NREL’s free PVWatts

software [183] with the exception that PVWatts does not support entering monthly resolution

losses for snow and shading. For each month, the net losses percentage (except for temperature and

soiling losses) is

Lnet = 100
[
1 −

∏
i

(
1 −

Li
100

)]
(A.8)

Since snow and shading losses are highly seasonal, using monthly values gives a more accurate

estimate of the seasonal variability of panel losses. System losses that are considered by PV

SoilSayer are described briefly below.

Mismatch Loss is electrical loss due to slight differences caused by manufacturing imperfec-

tions between modules in the array that cause the modules to have slightly different current-voltage

characteristics.

Wiring Loss is the resistive loss in the DC and AC wires connecting modules, inverters, and

other parts of the system.

Connections Loss describes the resistive losses in electrical connectors in the system.

Light-Induced Degradation Loss accounts for the reduction of power output of a PV module

from the manufacturer rating because of light-induced degradation of the photovoltaic cells. A
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new PV module’s power output often decreases during the first few months of its operation. The

module’s power stabilizes after this initial period.

Nameplate Rating Loss accounts for any inaccuracies in the manufacturer’s nameplate rating.

Field measurements of the electrical characteristics of photovoltaic modules in the array may show

that they differ from their nameplate rating. For example, a nameplate rating loss of 5% would

indicate that testing yielded power measurements at Standard Test Conditions (STC) that were 5%

less than the manufacturer’s nameplate rating.

Age Loss accounts for the effect of weathering of the photovoltaic modules on the array’s

performance over time.

Availability Loss describes the reduction in the system’s output caused by scheduled and

unscheduled system shutdown for maintenance, grid outages, and other operational factors.

Shading Loss describes the reduction in the incident solar radiation from shadows caused by

faraway features such as large buildings or mountains, objects near the array such as trees, or

self-shading. The PVWatts default value of 3% only considers typical observed shading losses due

to faraway features. This value should be increased to account for any shading from nearby features

and self-shading. For accurate prediction of shading losses using an external shading software or

conducting an on-site survey is recommended. Note that PV SoilSayer automatically considers

self-shading losses for single-axis trackers; therefore, the self-shading contribution to the overall

shading loss should only be included for fixed tilt and two-axis tracker arrays.

Snow Loss describes the reduction in the system’s annual output due to snow covering the

array. The default value is zero, assuming that there is never any snow accumulating on the array

or that the array is kept clear of snow.

For reference, Table A.4 shows the default values of annual losses used in PVWatts.
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Table A.4: Default annual losses in PVWatts for reference.

Loss Mechanism Default Value
Mismatch 2%
Wiring 2%
Connections 0.5 %
Light-induced degradation 1.5%
Nameplate rating 1%
Age 0%
Availability 3%
Shading 3%
Snow 0%

A.2.2 Annual Energy Calculation

The first calculations occur when Calculate Annual Energy is clicked at the bottom of the PV

System Info tab. Here, the PV System Design and System Losses parameters are used with PVLIB

models to estimate the DC and AC energy production for a year for a panel with no soiling losses

(perfectly clean). The energy production is calculated with an hourly resolution, and a monthly

resolution chart is displayed to allow the user to verify that the production estimates are reasonable

before proceeding with the soiling calculations (Figure A.7).

Figure A.7: Monthly energy production chart example.
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A.3 Soiling Profile

A.3.1 Soiling Loss Calculation/Upload Options

Users have several options for calculating or uploading soiling loss data to be used for soiling loss

prediction and clean cycle calculations (Figure A.8). For calculated options, users can specify the

month at which to start the year-long forecast and the starting DC soiling ratio (the DC power loss

due to soiling).

Figure A.8: Soiling loss calculation/upload options.

Soiling Loss Calculator

The soiling loss calculator utilizes the semi-physical soiling model described in Chapter 5 to

estimate soiling losses. The user has an additional option to empirically increase the monthly

soiling rate in any month due to any localized soiling that they may observe from sources such

as local farming practices, mowing, sheep grazing, and roadways. The localized soiling increases

are arbitrary with moderate, heavy, very heavy, and extreme soiling corresponding to 50%, 100%,

150%, and 200% increases in the soiling rate. This feature was added at the request of prospective

users who were managing PV plants with abnormally high local soiling that is not representative
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of the region’s average air quality, but at the same time did not have daily soiling data available to

use the upload option.

Figure A.9: Soiling Loss Calculator UI.

DC Soiling Losses Over a Dry Period

DC soiling losses measured over a dry period can be used to calculate the hourly losses throughout

the year. Measurements over a dry period are correlated with weather resources and interpolated to

the hourly resolution to determine hourly soiling losses. The user should input the length (in days)

of the dry period and the change in soiling loss over its duration. For example, if one measures

that the first day of a dry period has 5% soiling at solar noon and the 30th day of the dry period

has 10% soiling loss at solar noon, then the Dry Measurement Duration is 30 days, and the Total

Change in DC Soiling Loss is 5%.

Figure A.10: DC Loss Over a Dry Period UI.
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Average Daily Soiling Rates

This option is most aligned with the way soiling is treated in other industry-standard software since

it treats soiling analogously to the Kimber et al. model with the exceptions that we do not include

a Grace Period and allow for different daily soiling rates in each month instead of one annual value

(see Section 5.1). Daily average soiling rates for each month should be calculated using data from

the longest dry period during each month as the change in soiling loss over the Dry Period divided

by the length of the Dry Period in days.

Figure A.11: Daily Soiling Rates UI.

Upload Measured DC Hourly Soiling Losses

In this option, the forecast uses hourly measured soiling losses throughout the year. The measured

soiling losses must exclude any manual cleaning events. The rainfall cleaning calculations (see

A.3.3) are not run when this option is used since all cleaning effects of rainfall are assumed to be

included in the measured soiling losses.

Upload Daily Soiling Losses Measured at Solar Noon

In this option, annual hourly soiling losses are estimated from daily soiling losses measured at

solar noon. The measured soiling losses must exclude any manual cleaning events. The rainfall

cleaning calculations (see A.3.3) are not run when this option is used since all cleaning effects of

rainfall are assumed to be included in the measured soiling losses. The algorithm treats the input

as a measurement at the hour closest to solar noon (where solar noon is not necessarily at 12 pm

but is the time at which the sun is at the highest position in the sky).
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If Calculate Soiling Losses due to Sun Angle is selected (see Angular Loss below), then the

angle of incidence effect on soiling losses will be taken into account as described in Chapter 5.

Possible Machine Learning Feature

Future releases may offer an optional feature where machine learning models are trained on user-

uploaded measured soiling loss and weather data, and applied to predict soiling loss based on TMY

or next-year forecast weather data. A proof-of-concept of this approach is presented in Section 5.8.

A.3.2 Angular Loss

PV SoilSayer utilizes semi-physical models to calculate hourly soiling losses as a function of sun

angle and direct and diffuse irradiance throughout the day. Users have the option to turn on/off

angle of incidence effects.

Figure A.12: Angular Losses UI.

A.3.3 Rainfall Cleaning Calculations

PV SoilSayer derates the soiling losses according to rainfall (unless measured soiling losses are

uploaded, in which case the effects of rainfall are assumed to be already included in the measure-

ments). Default values are standard based-on available research; however, these values may vary

from site to site. Users can configure Rainfall parameters to estimate the cleaning effects of rainfall

for a given site’s design and location.

The Minimum Rainfall Clean Amount and Maximum Rainfall Clean Amount specify the

amount of rain that is required to clean the panels during the wet season and dry season, respectively.

During periods with regular rain, the panels may be easier to clean than after a dry period where
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dust and debris have baked onto the panels. Any rainfall below the specified Rainfall Clean Amount

is proportioned as a ratio of the Rainfall Clean Amount.

Minimum Duration of the Dry Period to Set Max Rainfall Clean Amount is the amount

of time between rainfall events required before the Maximum Rainfall Clean Amount is used to

calculate a Rainfall Clean Event. The Minimum Rainfall Clean Amount is used until this minimum

duration without rainfall events occurs. Essentially, this defines what is considered as a "wet" and

"dry" period.

The Minimum Rainfall Resulting in Performance Recovery is the amount of rain within 1

hour that will result in a decreased Soiling Ratio (i.e. will result in higher performance of the

PV panels). Different values of this quantity can be specified for the dry and wet periods. In

some cases, especially with panels at very low tilt angles under approximately 10◦, small rainfall

amounts will not clean the panels (and may even have a reverse effect, resulting in an increased

Soiling Ratio). Panels installed at higher tilt angles and during the wet season may need minimal

rainfall to see a decrease in the Soiling Ratio.

It is often the case that while rainfall mostly cleans the panels, some residue remains. The

Rainfall Clean Quality specifies how clean the panels will be after receiving rainfall equal to the

Rainfall Clean Amount. For example, a 1% Rainfall Clean Quality says that an average daily loss of

1% remains directly after each Rainfall Clean Event (i.e. after the Rainfall Clean Amount threshold

has been exceeded).

Minimum Duration of the Soiling Ratio to Set Rainfall Clean Quality is the amount of

time required to maintain a soiling ratio greater than the Rainfall Clean Quality, in order to set the

Rainfall Clean Quality. If the Starting Soiling Ratio is less than the Rainfall Clean Quality, the

Rainfall Clean Quality will not be applied until the Soiling Ratio defined by the Rainfall Clean

Quality is exceeded for the specified number of days. In many cases, the soiling will adhere to the

surface of the glass over time, which results in higher rainfall needed to detach the soiling from the

panels. This depends on several factors, including the type of glass, the type of soiling, and the

weather conditions.
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Figure A.13: Rainfall Parameters UI.

A.3.4 Monthly Average Soiling Losses

After setting the Soiling Profile parameters, clickingCalculate Soiling Losseswill run a soiling loss

calculation and display a preview of the monthly results for a panel that is never manually cleaned.

Hovering the mouse over the plot data will display the numerical values for total precipitation and

DC and AC soiling loss. Here users can optionally adjust the monthly soiling values to better match

any known local conditions.

Figure A.14: Sample Monthly Average Soiling Losses Output.
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A.4 Clean Cycle Configuration

The Clean Cycle Configuration (Figure A.15) allows the user to specify which cleaning cycle

should be calculated and the parameters defining that cleaning cycle. One can calculate an optimal

clean cycle that minimizes cost andmaximizes performance, a cleaning cycle that records a cleaning

event when specific thresholds (average daily soiling loss, max financial loss, or soiling loss at solar

noon) are reached, or manually enter the cleaning dates. This page also contains the user inputs

for the Manual Clean Quality (for modeling non-perfect manual cleans) and the number of days

needed for cleaning.

Figure A.15: Clean Cycle Configuration UI.
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A.4.1 Optimal Clean Cycle

This option calculates the optimal time to clean based on the energy gain from cleaning versus

not cleaning the PV panels. The calculation of the optimal clean cycle considers three different

scenarios at each hour of the year:

No Soil: This scenario calculates the energy production assuming that the panels are always clean.

No Clean: This scenario calculates the energy production assuming that the panels are never

cleaned manually.

Clean: This scenario calculates the optimal days to clean the panels throughout the year in order

to maximize revenues.

The result of this calculation is an optimal clean cycle that is expected to yield the maximum

return-on-investment (i.e. revenue gain considering the cost of cleaning) over not cleaning the

system.

Figure A.16: Optimal Clean Cycle UI.

The Minimum Value of Energy Gain is calculated as the net revenue gain after subtracting the

cost of cleaning the PV plant. The Minimum Value of Energy Gain filters the results to ensure that

only the Manual Clean Events above a specified net revenue gain threshold are used. Setting the

value too high may result in no cleans. The default value is calculated at 100% of the cleaning cost.

Users have the option to run the Optimal Clean Cycle calculation with a weekly or daily

resolution. While both resolutions calculate soiling losses on an hourly resolution, this option

selects the precision to which the Manual Clean Events are optimized. The weekly resolution tries

to find the optimal weeks to clean the panels, while the daily resolution tries to find the optimal
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days.

Calculations at the weekly resolution (default) select the optimal cleaning day with a possible

error in the cleaning optimization (independent of soiling and weather prediction errors) of ±4

days. This calculation is typically returned within 1-3 minutes and provides users with reasonable

estimates of clean cycles and associated costs. Since it may be impractical to schedule cleaning

services on a precise day, and since large PV plants takemultiple days to clean, theweekly resolution

is expected to be sufficient for most applications. Additionally, the errors in soiling and weather

prediction may affect the optimal clean events by greater than ±4 days, and therefore the weekly

optimization provides a good balance between accuracy and computational effort. Calculations at

the daily resolution will attempt to find the exact days for manual cleanings. These may result in

slightly different calculated Manual Clean Events and resulting revenue. These calculations often

require significant additional processing times (e.g. 10-60 minutes); however, automated emails

can be configured to be sent upon calculation completion.
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A.4.2 Clean Based on Specific Thresholds

In these cleaning cycles,ManualCleanEvents are triggered by simple thresholds. This option allows

users to model common techniques used in the industry for cleaning scheduling and compare the

predicted results to results from PV SoilSayer’s optimal clean cycle. Users can choose one of

several options for triggering manual cleans in order to calculate the resulting clean cycle and

associated revenue gains/losses.

Figure A.17: Clean Based on Specific Thresholds UI.

Clean Based on Average Daily Soiling Loss: A Manual Clean Event is triggered when the

average daily soiling loss reaches the specified amount. A soiling loss threshold in terms of AC or

DC energy production can be specified.

CleanBased onMaxFinancialLoss: AManualCleanEvent is triggeredwhen the accumulated

loss of revenue due to soiling reaches the specified amount.

Clean Based on the AC Soiling Loss at Solar Noon: A Manual Clean Event is triggered when

the AC soiling loss at solar noon reaches the specified amount.

A.4.3 Clean Based on Specified Clean Cycle

In this option, users select the dates or cleaning frequency to clean the system and the resulting

energy loss and revenue loss due to the specified Clean Cycle are reported.
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Figure A.18: Clean Based on Specified Cycle UI.

A.4.4 Manual Clean Quality and Days Required to Clean

Often cleaning the panels does not remove 100% of the soiling. TheManual Clean Quality allows

specifying the quality of each manual cleaning in terms of the soiling loss (measured at solar noon)

remaining after the cleaning. The Number of Days Required to Clean allows to account for

extended cleaning procedures that take several days or weeks at larger PV systems. This assumes

that the cleaning process is evenly distributed among the days required to clean and accounts for

the combination of higher soiling losses experienced by portions of the system that have not been

cleaned with the lower soiling losses of portions of the system that have been cleaned.

A.4.5 Value of Energy and Cost of Cleaning

Finally, the financial parameters need to be specified. These are the value of energy that is produced

($/kWh), either as an annual constant rate or as monthly variable rates, and the cost of cleaning,

which can be input as a total dollar amount per clean or dollar amount per kilowatt-peak system

size rating.
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PD-5-401-04-3 | September 2018First Solar, Inc. | firstsolar.com | info@firstsolar.com

First Solar Series 4™  
PV Module 
ADVANCED THIN FILM SOLAR TECHNOLOGY

INDUSTRY BENCHMARK SOLAR MODULES
As a global leader in PV energy, First Solar’s advanced thin film solar modules 
have set the industry benchmark with over 17 gigawatts (GW) installed worldwide 
and a proven performance advantage over conventional crystalline silicon solar 
modules. Generating more energy than competing modules with the same power 
rating, First Solar’s Series 4™ and Series 4A™ PV Modules deliver superior 
performance and reliability to our customers.

CERTIFICATIONS & TESTS
•	 PID-Free, Thresher Test, Long-Term Sequential Test, and ATLAS 25+1

•	 IEC 61215/61646 1500V, IEC 61730 1500V, CE

•	 IEC 61701 Salt Mist Corrosion, IEC 60068-2-68 Dust and Sand Resistance

•	 ISO 9001:2015 and ISO 14001:2015

•	 UL 1703 Listed Fire Performance PV Module Type 102

•	 CSI Eligible, FSEC, MCS, CEC Listed (Australia), SII, InMetro

ADVANCED PERFORMANCE & RELIABILITY
•	 Compatible with advanced 1500V plant architectures

•	 Independently certified for reliable performance in high temperature, high 
humidity, extreme desert and coastal environments

•	 Visit PlantPredict.com - The only Energy Prediction Software designed for 
Utility Scale PV

PROVEN ENERGY YIELD ADVANTAGE
•	 Generates more energy than conventional crystalline silicon solar 

modules with the same power due to superior temperature coefficient and 
superior spectral response

•	 Anti-reflective coated glass (Series 4A™) enhances energy production

END-OF-LIFE RECYCLING
•	 Recycling services available through First Solar’s industry-leading 

recycling program or customer-selected third party.

MODULE WARRANTY3

•	 25-Year Linear 
Performance 
Warranty4

•	 10-Year Limited 
Product Warranty
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APPENDIX C

LIST OF PUBLICATIONS RESULTING FROM THIS WORK

Published

• Timofey Golubev, Dianyi Liu, Richard Lunt, and Phillip Duxbury. Understanding the impact

of C60 at the interface of perovskite solar cells via drift-diffusion modeling. AIP Advances,

9, 035026, 2019.

In-Progress

• TimofeyGolubev, RichardLunt, andPhillipDuxbury. Evaluating the electricity production of

electric vehicle integrated photovoltaics via a coupled modeling approach. Will be submitted

to 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC).

205



BIBLIOGRAPHY

206



BIBLIOGRAPHY

[1] BP p.l.c. Bp statistical review of world energy 68th edition. Technical report, 2019.

[2] 2013: Summary for Policymakers IPCC. Climate change 2013: The physical science basis.
contribution of working group i to the fifth assessment report of the intergovernmental panel
on climate change. Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA.

[3] Ipcc, 2014: Climate change 2014: Mitigation of climate change. In Contribution of Working
Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.

[4] George Crabtree Jeff Tsao, Nate Lewis. Solar faqs. US Depatrment of Energy, 2006.

[5] International Energy Agency. Renewables 2019: Analysis and forecast to 2024. Technical
report, 2019.

[6] Goksin Kavlak, James McNerney, and Jessika E. Trancik. Evaluating the causes of cost
reduction in photovoltaic modules. Energy Policy, 123:700–710, dec 2018.

[7] International Energy Agency. Pvps 2019 snapshot of global pv markets. Technical report,
2019.

[8] Electrical Engineering Students at University ofMassachusetts Dartmouth. The p-n junction.
https://rfphotonicslab.org/2020/01/04/the-p-n-junction/, 2020. Accessed:
2020-10-02.

[9] L. J. A. Koster. Device physics of donor/acceptor-blend solar cells. PhD thesis, University
of Groningen, 2007.

[10] Jenny Nelson. The Physics of Solar Cells. Imperial College Press, 2003.

[11] JunfengYan andBrian R. Saunders. Third-generation solar cells: a review and comparison of
polymer:fullerene, hybrid polymer and perovskite solar cells. RSCAdv., 4(82):43286–43314,
2014.

[12] W. Shockley. The theory of p-n junctions in semiconductors and p-n junction transistors.
Bell System Technical Journal, 28(3):435–489, 1949.

[13] Arno Smets. Solar energy: the physics and engineering of photovoltaic conversion, tech-
nologies and systems. UIT Cambridge Ltd, Cambridge, England, 2016.

[14] Javier Cubas, Santiago Pindado, andMarta Victoria. On the analytical approach formodeling
photovoltaic systems behavior. Journal of Power Sources, 247:467–474, 2014.

[15] N. C. Giebink, G. P. Wiederrecht, M. R.Wasielewski, and S. R. Forrest. Ideal diode equation
for organic heterojunctions. i. derivation and application. Physical Review B, 82(15), 2010.

207

https://rfphotonicslab.org/2020/01/04/the-p-n-junction/


[16] Non Thongprong. Modeling Emerging Solar Cell Materials and Devices. PhD thesis,
Michigan State University, 2017.

[17] Dragica Vasileska and StephenM. Goodnick. Computational electronics. Synthesis Lectures
on Computational Electromagnetics, 1(1):1–216, jan 2006.

[18] Tibor Grasser, Hans Kosina, Markus Gritsch, and Siegfried Selberherr. Using six mo-
ments of boltzmann’s transport equation for device simulation. Journal of Applied Physics,
90(5):2389–2396, sep 2001.

[19] A. Jungel. Mathematical modeling of semiconductor devices (preliminary version). https:
//www.asc.tuwien.ac.at/~juengel/scripts/semicond.pdf. Accessed: 2020-10-
31.

[20] KausarBanoo.Direct Solution of the BoltzmannTransport Equation inNanoscale SiDevices.
PhD thesis, Purdue University, 2000.

[21] Williams R. Calderón-Muñoz and Cristian Jara-Bravo. Hydrodynamic modeling of hot-
carrier effects in a PN junction solar cell. Acta Mechanica, 227(11):3247–3260, 2016.

[22] A Habte, M. Sengupta, and A. Lopez. Developing the next generation of gridded tmys.
Technical report, National Renewable Energy Laboratory, 2015.

[23] RiazA.Usmani. Inversion of a tridiagonal jacobimatrix. LinearAlgebra and its Applications,
212-213:413–414, 1994.

[24] D.L. Scharfetter and H.K. Gummel. Large-signal analysis of a silicon read diode oscillator.
IEEE Trans Electron Devices, 16(1):64–77, 1969.

[25] H.K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor
calculations. IEEE Transactions on Electron Devices, 11(10):455–465, 1964.

[26] P. Farrell, N. Rotundo, D.H. Doan, M. Kantner, J. Fuhrmann, T. Koprucki, and Weierstraß-
Institut für Angewandte Analysis und Stochastik. Numerical Methods for Drift-diffusion
Models. Preprint: Weierstraß-Institut für Angewandte Analysis und Stochastik. Weierstraß-
Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund
Berlin e.V., 2016.

[27] Kanokkorn Pimcharoen. Modeling of Charge Injection and Transport in Organic Semicon-
ductors with Applications to Conducting Atomic Force Microscopy. PhD thesis, Michigan
State University, 2018.

[28] Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qiu, and Z. H. Lu. Carrier mobility
of organic semiconductors based on current-voltage characteristics. Journal of Applied
Physics, 107(3):034506, feb 2010.

[29] HuiWang. Simulation of Organic Light-Emitting Diodes and Organic Photovoltaic Devices.
PhD thesis, University of Rochester, 2012.

208

https://www.asc.tuwien.ac.at/~juengel/scripts/semicond.pdf
https://www.asc.tuwien.ac.at/~juengel/scripts/semicond.pdf


[30] Michael C. Heiber and Ali Dhinojwala. Dynamic monte carlo modeling of exciton dissocia-
tion in organic donor-acceptor solar cells. The Journal of Chemical Physics, 137(1):014903,
2012.

[31] W Y Liang. Excitons. Physics Education, 5(4):226–228, 1970.

[32] Ala'a F. Eftaiha, Jon-Paul Sun, Ian G. Hill, and Gregory C. Welch. Recent advances of
non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar
cells. Journal of Materials Chemistry A, 2(5):1201–1213, 2014.

[33] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom. Device model for the
operation of polymer/fullerene bulk heterojunction solar cells. Physical Review B, 72(8),
2005.

[34] Christopher M. Snowden, editor. Semiconductor Device Modelling. Springer London, 1989.

[35] Charles L. Braun. Electric field assisted dissociation of charge transfer states as a mechanism
of photocarrier production. The Journal of Chemical Physics, 80(9):4157–4161, 1984.

[36] N. C. Giebink, B. E. Lassiter, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest.
Ideal diode equation for organic heterojunctions. II. the role of polaron pair recombination.
Physical Review B, 82(15), 2010.

[37] Péter Pulay. Convergence acceleration of iterative sequences. the case of scf iteration.
Chemical Physics Letters, 73(2):393–398, 1980.

[38] J.W. Slotboom. Computer-aided two-dimensional analysis of bipolar transistors. IEEE
Transactions on Electron Devices, 20(8):669–679, 1973.

[39] Martin A. Green, Anita Ho-Baillie, and Henry J. Snaith. The emergence of perovskite solar
cells. Nature Photonics, 8(7):506–514, 2014.

[40] Henry J. Snaith. Perovskites: The emergence of a new era for low-cost, high-efficiency solar
cells. The Journal of Physical Chemistry Letters, 4(21):3623–3630, 2013.

[41] Nam-Gyu Park. Perovskite solar cells: an emerging photovoltaic technology. Materials
Today, 18(2):65–72, 2015.

[42] Zhen Li, Talysa R. Klein, Dong Hoe Kim, Mengjin Yang, Joseph J. Berry, Maikel F. A. M.
van Hest, and Kai Zhu. Scalable fabrication of perovskite solar cells. Nature Reviews
Materials, 3(4):18017, 2018.

[43] Zhengqi Shi and Ahalapitiya Jayatissa. Perovskites-based solar cells: A review of recent
progress, materials and processing methods. Materials, 11(5):729, 2018.

[44] Nrel best research-cell efficiencies. https://www.nrel.gov/pv/assets/pdfs/pv-
efficiencies-07-17-2018.pdf. Accessed: 2018-10-12.

[45] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. Organometal
halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American
Chemical Society, 131(17):6050–6051, 2009.

209

https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf
https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf


[46] Eran Edri, Saar Kirmayer, Sabyasachi Mukhopadhyay, Konstantin Gartsman, Gary Hodes,
and David Cahen. Elucidating the charge carrier separation and working mechanism of
CH3nh3pbi3-xClx perovskite solar cells. Nature Communications, 5(1), 2014.

[47] Tejas S. Sherkar, Cristina Momblona, Lidón Gil-Escrig, Henk J. Bolink, and L. Jan Anton
Koster. Improving perovskite solar cells: Insights from a validated device model. Advanced
Energy Materials, 7(13):1602432, 2017.

[48] Atsuhiko Miyata, Anatolie Mitioglu, Paulina Plochocka, Oliver Portugall, Jacob Tse-Wei
Wang, Samuel D. Stranks, Henry J. Snaith, and Robin J. Nicholas. Direct measurement
of the exciton binding energy and effective masses for charge carriers in organic–inorganic
tri-halide perovskites. Nature Physics, 11(7):582–587, 2015.

[49] J. G. Simmons and G.W. Taylor. Nonequilibrium steady-state statistics and associated effects
for insulators and semiconductors containing an arbitrary distribution of traps. Physics
Review B, 4(2):502–511, 1971.

[50] L. Jan Anton Koster. personal communication.

[51] Yanjun Fang, Cheng Bi, Dong Wang, and Jinsong Huang. The functions of fullerenes in
hybrid perovskite solar cells. ACS Energy Letters, 2(4):782–794, 2017.

[52] Edison Castro, Jesse Murillo, Olivia Fernandez-Delgado, and Luis Echegoyen. Progress in
fullerene-based hybrid perovskite solar cells. Journal ofMaterials Chemistry C, 6(11):2635–
2651, 2018.

[53] Dianyi Liu, Qiong Wang, Christopher J. Traverse, Chenchen Yang, Margaret Young, Pad-
manaban S. Kuttipillai, Sophia Y. Lunt, Thomas W. Hamann, and Richard R. Lunt. Impact
of ultrathin c60 on perovskite photovoltaic devices. ACS Nano, 12(1):876–883, 2018.

[54] Takeaki Sakurai, Susumu Toyoshima, Hikaru Kitazume, Shigeru Masuda, Hiroo Kato, and
Katsuhiro Akimoto. Influence of gap states on electrical properties at interface between
bathocuproine and various types of metals. Journal of Applied Physics, 107(4):043707,
2010.

[55] Hiroyuki Yoshida. Electron transport in bathocuproine interlayer in organic semiconductor
devices. The Journal of Physical Chemistry C, 119(43):24459–24464, 2015.

[56] Jeihyun Lee, Soohyung Park, Younjoo Lee, Hyein Kim, Dongguen Shin, Junkyeong Jeong,
Kwangho Jeong, Sang Wan Cho, Hyunbok Lee, and Yeonjin Yi. Electron transport mecha-
nism of bathocuproine exciton blocking layer in organic photovoltaics. Physical Chemistry
Chemical Physics, 18(7):5444–5452, 2016.

[57] Olga Malinkiewicz, Aswani Yella, Yong Hui Lee, Guillermo Mínguez Espallargas, Michael
Graetzel, Mohammad K. Nazeeruddin, and Henk J. Bolink. Perovskite solar cells employing
organic charge-transport layers. Nature Photonics, 8(2):128–132, 2013.

[58] Po-Wei Liang, Chu-ChenChueh, Spencer T.Williams, andAlexK.-Y. Jen. Roles of fullerene-
based interlayers in enhancing the performance of organometal perovskite thin-film solar
cells. Advanced Energy Materials, 5(10):1402321, 2015.

210



[59] Chuanliang Chen, Shasha Zhang, Shaohang Wu, Wenjun Zhang, Hongmei Zhu, Zhen-
zhong Xiong, Yanjun Zhang, and Wei Chen. Effect of BCP buffer layer on eliminating
charge accumulation for high performance of inverted perovskite solar cells. RSC Advances,
7(57):35819–35826, 2017.

[60] Ses research: Properties of carbon 60. https://www.sesres.com/physical-
properties/. Accessed: 2018-03-07.

[61] Laura M. Herz. Charge-carrier mobilities in metal halide perovskites: Fundamental mecha-
nisms and limits. ACS Energy Letters, 2(7):1539–1548, 2017.

[62] Qingshuo Wei, Masakazu Mukaida, Yasuhisa Naitoh, and Takao Ishida. Morphological
change and mobility enhancement in PEDOT:PSS by adding co-solvents. Advanced Mate-
rials, 25(20):2831–2836, 2013.

[63] George F. Burkhard, Eric T. Hoke, and Michael D. McGehee. Accounting for interference,
scattering, and electrode absorption to make accurate internal quantum efficiency measure-
ments in organic and other thin solar cells. Advanced Materials, 22(30):3293–3297, 2010.

[64] Konrad Wojciechowski, Samuel D. Stranks, Antonio Abate, Golnaz Sadoughi, Aditya Sad-
hanala, Nikos Kopidakis, Garry Rumbles, Chang-Zhi Li, Richard H. Friend, Alex K.-Y.
Jen, and Henry J. Snaith. Heterojunction modification for highly efficient organic–inorganic
perovskite solar cells. ACS Nano, 8(12):12701–12709, 2014.

[65] Chen Tao, Stefanie Neutzner, Letizia Colella, Sergio Marras, Ajay Ram Srimath Kandada,
Marina Gandini, Michele De Bastiani, Giuseppina Pace, Liberato Manna, Mario Caironi,
Chiara Bertarelli, and Annamaria Petrozza. 17.6% stabilized efficiency in low-temperature
processed planar perovskite solar cells. Energy & Environmental Science, 8(8):2365–2370,
2015.

[66] G. Horowitz. Tunneling current in polycrystalline organic thin-film transistors. Advanced
Functional Materials, 13(1):53–60, 2003.

[67] Ankit Kumar, Srinivas Sista, and Yang Yang. Dipole induced anomalous s-shape i-v curves
in polymer solar cells. Journal of Applied Physics, 105(9):094512, 2009.

[68] J.C. Wang, X.C. Ren, S.Q. Shi, C.W. Leung, and Paddy K.L. Chan. Charge accumulation
induced s-shape j–v curves in bilayer heterojunction organic solar cells. Organic Electronics,
12(6):880–885, 2011.

[69] Wolfgang Tress, Karl Leo, and Moritz Riede. Influence of hole-transport layers and donor
materials on open-circuit voltage and shape of i-v curves of organic solar cells. Advanced
Functional Materials, 21(11):2140–2149, apr 2011.

[70] Wolfgang Tress, Annette Petrich, Markus Hummert, Moritz Hein, Karl Leo, and Moritz
Riede. Imbalanced mobilities causing s-shaped IV curves in planar heterojunction organic
solar cells. Applied Physics Letters, 98(6):063301, feb 2011.

211

https://www.sesres.com/physical-properties/
https://www.sesres.com/physical-properties/


[71] B. Y. Finck and B. J. Schwartz. Understanding the origin of the s-curve in conjugated
polymer/fullerene photovoltaics from drift-diffusion simulations. Applied Physics Letters,
103(5):053306, 2013.

[72] Arash Sayyah, Mark N. Horenstein, and Malay K. Mazumder. Energy yield loss caused by
dust deposition on photovoltaic panels. Solar Energy, 107:576–604, 2014.

[73] LeonardoMicheli andMatthewMuller. An investigation of the key parameters for predicting
PV soiling losses. Progress in Photovoltaics: Research and Applications, 25(4):291–307,
2017.

[74] Luxi Zhou, Donna B. Schwede, K. Wyat Appel, Michael J. Mangiante, David C. Wong,
Sergey L. Napelenok, Pai-Yei Whung, and Banglin Zhang. The impact of air pollutant
deposition on solar energy system efficiency: An approach to estimate PV soiling effects
with the communitymultiscale air quality (CMAQ)model. Science of The Total Environment,
651:456–465, 2019.

[75] Olivier Dupré, Rodolphe Vaillon, and Martin A. Green. Thermal Behavior of Photovoltaic
Devices. Springer, 2017.

[76] Klemens K. Ilse, Benjamin W. Figgis, Volker Naumann, Christian Hagendorf, and Jörg
Bagdahn. Fundamentals of soiling processes on photovoltaic modules. Renewable and
Sustainable Energy Reviews, 98:239 – 254, 2018.

[77] Klemens Ilse, Leonardo Micheli, Benjamin W. Figgis, Katja Lange, David Daßler, Hamed
Hanifi, Fabian Wolfertstetter, Volker Naumann, Christian Hagendorf, Ralph Gottschalg, and
Jörg Bagdahn. Techno-economic assessment of soiling losses and mitigation strategies for
solar power generation. Joule, 3(10):2303–2321, 2019.

[78] Greg P. Smestad, ThomasA. Germer, HameedAlrashidi, Eduardo F. Fernández, SumonDey,
Honey Brahma, Nabin Sarmah, Aritra Ghosh, Nazmi Sellami, Ibrahim A. I. Hassan, Mai
Desouky, Amal Kasry, Bala Pesala, Senthilarasu Sundaram, Florencia Almonacid, K. S.
Reddy, Tapas K. Mallick, and Leonardo Micheli. Modelling photovoltaic soiling losses
through optical characterization. Scientific Reports, 10(1), 2020.

[79] Travis Sarver, Ali Al-Qaraghuli, and Lawrence L. Kazmerski. A comprehensive review of
the impact of dust on the use of solar energy: History, investigations, results, literature, and
mitigation approaches. Renewable and Sustainable Energy Reviews, 22:698–733, 2013.

[80] Marek Jaszczur, Janusz Teneta, Katarzyna Styszko, Qusay Hassan, Paulina Burzyńska,
Ewelina Marcinek, and Natalia Łopian. The field experiments and model of the natural dust
deposition effects on photovoltaic module efficiency. Environmental Science and Pollution
Research, 26(9):8402–8417, 2018.

[81] A. Kimber, L. Mitchell, S. Nogradi, and H. Wenger. The effect of soiling on large grid-
connected photovoltaic systems in california and the southwest region of the united states.
In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. IEEE, 2006.

212



[82] R. Hammond, D. Srinivasan, A. Harris, K. Whitfield, and J. Wohlgemuth. Effects of soiling
on PV module and radiometer performance. In Conference Record of the Twenty Sixth IEEE
Photovoltaic Specialists Conference. IEEE, 1997.

[83] Miguel García, Luis Marroyo, Eduardo Lorenzo, and Miguel Pérez. Soiling and other
optical losses in solar-tracking PV plants in navarra. Progress in Photovoltaics: Research
and Applications, 19(2):211–217, 2010.

[84] F. Mejia, J. Kleissl, and J.L. Bosch. The effect of dust on solar photovoltaic systems. Energy
Procedia, 49:2370–2376, 2014.

[85] Felipe A. Mejia and Jan Kleissl. Soiling losses for solar photovoltaic systems in california.
Solar Energy, 95:357–363, 2013.

[86] Benjamin Figgis, Ahmed Ennaoui, Said Ahzi, and Yves Rémond. Review of PV soiling
particle mechanics in desert environments. Renewable and Sustainable Energy Reviews,
76:872–881, 2017.

[87] Benjamin Figgis, Dirk Goossens, Bing Guo, and Klemens Ilse. Effect of tilt angle on soiling
in perpendicular wind. Solar Energy, 194:294–301, 2019.

[88] B. Figgis andK. Ilse. Anti-soiling potential of 1-axis pv trackers. 36th European Photovoltaic
Solar Energy Conference and Exhibition; 1312-1316, 2019.

[89] I. M. Peters, S. Karthik, H. Liu, T. Buonassisi, and A. Nobre. Urban haze and photovoltaics.
Energy & Environmental Science, 11(10):3043–3054, 2018.

[90] R. R. Cordero, A. Damiani, D. Laroze, S. MacDonell, J. Jorquera, E. Sepúlveda, S. Feron,
P. Llanillo, F. Labbe, J. Carrasco, J. Ferrer, and G. Torres. Effects of soiling on photovoltaic
(PV) modules in the atacama desert. Scientific Reports, 8(1), 2018.

[91] Wasim Javed, Bing Guo, and Benjamin Figgis. Modeling of photovoltaic soiling loss as a
function of environmental variables. Solar Energy, 157:397–407, 2017.

[92] Klemens K. Ilse, Benjamin W. Figgis, Martina Werner, Volker Naumann, Christian Ha-
gendorf, Herbert Pöllmann, and Jörg Bagdahn. Comprehensive analysis of soiling and
cementation processes on PV modules in qatar. Solar Energy Materials and Solar Cells,
186:309–323, 2018.

[93] S. Mariraj Mohan. An overview of particulate dry deposition: measuring methods, depo-
sition velocity and controlling factors. International Journal of Environmental Science and
Technology, 13(1):387–402, 2015.

[94] Liza Boyle, Holly Flinchpaugh, and Michael Hannigan. Assessment of PM dry deposition
on solar energy harvesting systems: Measurement–model comparison. Aerosol Science and
Technology, 50(4):380–391, 2016.

[95] Merissa Coello and Liza Boyle. Simple model for predicting time series soiling of photo-
voltaic panels. IEEE Journal of Photovoltaics, 9(5):1382–1387, 2019.

213



[96] L Zhang. A size-segregated particle dry deposition scheme for an atmospheric aerosol
module. Atmospheric Environment, 35(3):549–560, 2001.

[97] Siming You, Yu Jie Lim, Yanjun Dai, and Chi-Hwa Wang. On the temporal modelling of
solar photovoltaic soiling: Energy and economic impacts in seven cities. Applied Energy,
228:1136–1146, 2018.

[98] FabianWolfertstetter, StefanWilbert, Felix Terhag, Natalie Hanrieder, Aranzazu Fernandez-
García, Christopher Sansom, Peter King, Luis Zarzalejo, and Abdellatif Ghennioui. Mod-
elling the soiling rate: Dependencies on meteorological parameters. In SOLARPACES 2018:
International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP
Publishing, 2019.

[99] G. Picotti, P. Borghesani, M.E. Cholette, and G. Manzolini. Soiling of solar collectors –
modelling approaches for airborne dust and its interactions with surfaces. Renewable and
Sustainable Energy Reviews, 81:2343–2357, 2018.

[100] Bernard Brown. The effect of settling harmattan dust on photovoltaic modules in walewale,
northern ghana. Master’s thesis, Kwame Nkrumah University of Science and Technology,
2016.

[101] Sergey Biryukov. An experimental study of the dry deposition mechanism for airborne dust.
Journal of Aerosol Science, 29(1-2):129–139, 1998.

[102] E. Suresh Kumar, Bijan Sarkar, and D.K. Behera. Soiling and dust impact on the effi-
ciency and the maximum power point in the photovoltaic modules. International Journal of
Engineering Research and Technology, 2(2), 2013.

[103] W.G.N Slinn. Predictions for particle deposition to vegetative canopies. Atmospheric
Environment (1967), 16(7):1785–1794, 1982.

[104] E Kim. Dry deposition of large, airborne particles onto a surrogate surface. Atmospheric
Environment, 34(15):2387–2397, 2000.

[105] Yu Jiang, Lin Lu, Andrea R. Ferro, and Goodarz Ahmadi. Analyzing wind cleaning process
on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces. Solar Energy,
159:1031–1036, 2018.

[106] LawrenceL.Kazmerski, Antonia SoniaA.C.Diniz, CristianaBrasilMaia,MarceloMachado
Viana, Suellen C. Costa, Pedro P. Brito, Claudio Dias Campos, Lauro V. Macheto Neto,
Sergio de Morais Hanriot, and Leila R. de Oliveira Cruz. Fundamental studies of adhesion
of dust to PV module surfaces: Chemical and physical relationships at the microscale. IEEE
Journal of Photovoltaics, 6(3):719–729, 2016.

[107] Bing Guo, Wasim Javed, Saadat Khan, Benjamin Figgis, and Talha Mirza. Models for
prediction of soiling-caused photovoltaic power output degradation based on environmental
variables in doha, qatar. In American Society of Mechanical Engineers 10th International
Conference on Energy Sustainability, 2016.

214



[108] AVCalc LLC. https://www.aqua-calc.com/page/density-table/substance/
sand-coma-and-blank-dry. Accessed: 2020-05-16.

[109] https://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-
d_601.html. Accessed: 2020-04-12.

[110] Cheryl McKenna Neuman and Steven Sanderson. Humidity control of particle emissions in
aeolian systems. Journal of Geophysical Research, 113(F2), 2008.

[111] Enlighten Energy, Ltd. https://www.enlighten-energy.net/pv-pss/. Accessed:
2020-10-02.

[112] Kipp and Zonen B.V. https://www.kippzonen.com/Product/419/DustIQ-Soiling-
Monitoring-System#.XrlxFmhKhaQ. Accessed: 2020-10-02.

[113] Atonometrics, Inc. http://www.atonometrics.com/products/soiling-
measurement-system-for-pv-modules/. Accessed: 2020-08-10.

[114] Arizona State University Photovoltaic Reliability Laboratory. https://pvreliability.
asu.edu/asms. Accessed: 2020-08-10.

[115] Matthew K. Smith, Carl C. Wamser, Keith E. James, Seth Moody, David J. Sailor, and
Todd N. Rosenstiel. Effects of natural and manual cleaning on photovoltaic output. Journal
of Solar Energy Engineering, 135(3), 2013.

[116] J. Zorrilla-Casanova, M. Piliougine, J. Carretero, P. Bernaola, P. Carpena, L. Mora-Lopez,
andM. Sidrach de Cardona. Analysis of dust losses in photovoltaic modules. In Proceedings
of the World Renewable Energy Congress Sweden, Linköping, Sweden. Linköping University
Electronic Press, 8-13 May, 2011.

[117] Kudzanayi Chiteka, Rajesh Arora, and S. N. Sridhara. Amethod to predict solar photovoltaic
soiling using artificial neural networks and multiple linear regression models. Energy
Systems, 11(4):981–1002, 2019.

[118] T. Mani G. Samy. Waterless web-monitored soiling monitoring station. In PV Reliability
Workshop, Lakewood, CO, 2018.

[119] J. John, V.Rajasekar, S.Boppana, S. Tatapudi, andG.Tamizhmani. Angle of incidence effects
on soiled PV modules. In Neelkanth G. Dhere, John H. Wohlgemuth, and Rebecca Jones-
Albertus, editors, Reliability of Photovoltaic Cells, Modules, Components, and Systems VII.
SPIE, 2014.

[120] N.Martín and J.M. Ruiz. A newmodel for PVmodules angular losses under field conditions.
International Journal of Solar Energy, 22(1):19–31, 2002.

[121] N.Martin and J.M. Ruiz. Calculation of the PVmodules angular losses under field conditions
by means of an analytical model. Solar Energy Materials and Solar Cells, 70(1):25–38,
2001.

215

https://www.aqua-calc.com/page/density-table/substance/sand-coma-and-blank-dry
https://www.aqua-calc.com/page/density-table/substance/sand-coma-and-blank-dry
https://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html
https://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html
https://www.enlighten-energy.net/pv-pss/
https://www.kippzonen.com/Product/419/DustIQ-Soiling-Monitoring-System#.XrlxFmhKhaQ
https://www.kippzonen.com/Product/419/DustIQ-Soiling-Monitoring-System#.XrlxFmhKhaQ
http://www.atonometrics.com/products/soiling-measurement-system-for-pv-modules/
http://www.atonometrics.com/products/soiling-measurement-system-for-pv-modules/
https://pvreliability.asu.edu/asms
https://pvreliability.asu.edu/asms


[122] N. Martín and J. M. Ruiz. Annual angular reflection losses in PV modules. Progress in
Photovoltaics: Research and Applications, 13(1):75–84, 2004.

[123] John E. Hay. Calculating solar radiation for inclined surfaces: Practical approaches. Renew-
able Energy, 3(4-5):373–380, 1993.

[124] José Zorrilla-Casanova, Michel Piliougine, Jesús Carretero, Pedro Bernaola-Galván, Pedro
Carpena, Llanos Mora-López, andMariano Sidrach de Cardona. Losses produced by soiling
in the incoming radiation to photovoltaic modules. Progress in Photovoltaics: Research and
Applications, 21(4):790–796, 2012.

[125] LeonardoMicheli, Daniel Ruth, Michael G Deceglie, andMatthewMuller. Time series anal-
ysis of photovoltaic soiling station data: Version 1.0. Technical report, National Renewable
Energy Laboratory, August 2017.

[126] Manajit Sengupta, Yu Xie, Anthony Lopez, Aron Habte, Galen Maclaurin, and James
Shelby. The national solar radiation data base (NSRDB). Renewable and Sustainable
Energy Reviews, 89:51–60, 2018.

[127] United States Environmental Protection Agency. https://www.epa.gov/outdoor-air-
quality-data/download-daily-data. Accessed: 2020-04-04.

[128] Oregon State University PRISM Climate Group. http://prism.oregonstate.edu. Ac-
cessed: 2020-06-07.

[129] Enlighten Energy, Ltd. https://www.enlighten-energy.net/pv-soilsayer/. Ac-
cessed: 2020-10-02.

[130] Will Holmgren, Calama-Consulting, Cliff Hansen, Mark Mikofski, Tony Lorenzo, Uwe
Krien, bmu, Cameron Stark, DaCoEx, Anton Driesse, Kevin Anderson, konstant_t,
mayudong, LelandBoeman, EdMiller, Heliolytics,Miguel Sánchez deLeónPeque, Veronica
Guo, Marc A. Anoma, tylunel, jforbess, Cedric Leroy, Alexander Morgan, Todd Hendricks,
Oscar Dowson, MLEEFS, Kevin Anderson, Johannes Dollinger, JPalakapillyKWH, and
Ahan M R. pvlib/pvlib-python: v0.7.2, 2020.

[131] Bing Guo, W. Javed, B. W. Figgis, and T. Mirza. Effect of dust and weather conditions
on photovoltaic performance in doha, qatar. In 2015 First Workshop on Smart Grid and
Renewable Energy (SGRE). IEEE, 2015.

[132] Bashar Hammad, Mohammad Al–Abed, Ahmed Al–Ghandoor, Ali Al–Sardeah, and Adnan
Al–Bashir. Modeling and analysis of dust and temperature effects on photovoltaic systems’
performance and optimal cleaning frequency: Jordan case study. Renewable and Sustainable
Energy Reviews, 82:2218–2234, 2018.

[133] JunGuo, XunjianXu,Weiwei Lian, andHonglu Zhu. A new approach for interval forecasting
of photovoltaic power based on generalizedweather classification. International Transactions
on Electrical Energy Systems, 29(4):e2802, 2018.

216

https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
http://prism.oregonstate.edu
https://www.enlighten-energy.net/pv-soilsayer/


[134] Salsabeel Shapsough, Rached Dhaouadi, and Imran Zualkernan. Using linear regression and
back propagation neural networks to predict performance of soiled PV modules. Procedia
Computer Science, 155:463–470, 2019.

[135] Stack Overflow. https://tex.stackexchange.com/questions/132444/diagram-
of-an-artificial-neural-network. Accessed: 2020-10-02.

[136] AndrewGlick, NaseemAli, Juliaan Bossuyt, Marc Calaf, and Raúl Bayoán Cal. Utility-scale
solar PV performance enhancements through system-level modifications. Scientific Reports,
10(1), jun 2020.

[137] Swapnil Dubey, Jatin Narotam Sarvaiya, and Bharath Seshadri. Temperature dependent
photovoltaic (PV) efficiency and its effect on PV production in the world – a review. Energy
Procedia, 33:311–321, 2013.

[138] PVSyst. https://www.pvsyst.com/help/noct_definition.htm. Accessed: 2020-
05-11.

[139] Luca Migliorini, Luca Molinaroli, Riccardo Simonetti, and Giampaolo Manzolini. Devel-
opment and experimental validation of a comprehensive thermoelectric dynamic model of
photovoltaic modules. Solar Energy, 144:489–501, 2017.

[140] David Faiman. Assessing the outdoor operating temperature of photovoltaic modules.
Progress in Photovoltaics: Research and Applications, 16(4):307–315, 2008.

[141] John Duffie. Solar engineering of thermal processes. Wiley, Hoboken, 2013.

[142] Mathew Muller. Measuring and modeling nominal operating cell temperature (noct). In PV
Performance Modeling Workshop, Albuquerque, NM, Sept 22-23, 2010.

[143] ThermoAnalytics, Inc. Taitherm 2020.1.0. https://www.thermoanalytics.com/
taitherm. Accessed: 2020-10-02.

[144] Gustav Schon. Numerical modelling of a novel pvt collector at cell resolution. Master’s
thesis, KTH School of Industrial Engineering and Management, 2017.

[145] Nelson Sommerfeldt and Patrik Ollas. Reverse engineering prototype solar PV/thermal
collector properties from empirical data for use in TRNSYS type 560. In Proceedings of
SWC2017/SHC2017. International Solar Energy Society, 2017.

[146] W. De Soto, S.A. Klein, and W.A. Beckman. Improvement and validation of a model for
photovoltaic array performance. Solar Energy, 80(1):78–88, 2006.

[147] Matthew T. Boyd, Sanford A. Klein, Douglas T. Reindl, and Brian P. Dougherty. Evaluation
and validation of equivalent circuit photovoltaic solar cell performance models. Journal of
Solar Energy Engineering, 133(2), 2011.

[148] Rabeh Abbassi, Abdelkader Abbassi, Mohamed Jemli, and Souad Chebbi. Identification
of unknown parameters of solar cell models: A comprehensive overview of available ap-
proaches. Renewable and Sustainable Energy Reviews, 90:453–474, 2018.

217

https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://www.pvsyst.com/help/noct_definition.htm
https://www.thermoanalytics.com/taitherm
https://www.thermoanalytics.com/taitherm


[149] Yunhua Ding, Margaret Young, Yimu Zhao, Christopher Traverse, Andre Benard, and
Richard R. Lunt. Influence of photovoltaic angle-dependence on overall power output for
fixed building integrated configurations. Solar Energy Materials and Solar Cells, 132:523–
527, 2015.

[150] W. H. McAdams. Heat Transmission. McGraw-Hill Kogakusha, Tokyo, Japan, 1954.

[151] Nuria Martin Chivelet, Jose M Ruiz Perez, and Jose Bionef. 25th European Photovoltaic
Solar Energy Conference and Exhibition. WIP-Renewable Energies, Munich, Germany, 6-9
September 2010.

[152] ThermoAnalytics, Inc. Taitherm 2020.1.0 materials database.

[153] https://solarfeeds.com/wiki/cadmium-telluride-photovoltaic. Accessed:
2020-06-09.

[154] U.S. Energy Information Administration. https://www.eia.gov/tools/faqs/faq.
php?id=97&t=3#:~:text=How\much\electricity\does\an,about\914\kWh\per\
month. Accessed: 2020-06-17.

[155] U.S. Department of Energy: Office of Energy Efficiency and Renewable Energy.
https://www.fueleconomy.gov/feg/bymodel/2019_Tesla_Model_3.shtml. Ac-
cessed: 2020-06-17.

[156] Meteotest AG. https://meteonorm.com/en/. Accessed: 2019-01-20.

[157] Toyota. toyota-europe.com/new-cars/prius-plugin/. Accessed: 2020-10-02.

[158] Hyundai Motor America. https://www.hyundainews.com/en-us/releases/2640.
Accessed: 2020-02-12.

[159] Lightyear. https://lightyear.one/. Accessed: 2020-02-12.

[160] Sono Motors GmbH. https://sonomotors.com/en/sion/. Accessed: 2020-02-12.

[161] United States Department of Transportation Federal Highway Administration. https:
//www.fhwa.dot.gov/ohim/onh00/bar8.htm. Accessed: 2020-06-17.

[162] Christopher J. Traverse, Richa Pandey, Miles C. Barr, and Richard R. Lunt. Emergence of
highly transparent photovoltaics for distributed applications. Nature Energy, 2(11):849–860,
2017.

[163] Ubiquitous, Inc. https://ubiquitous.energy/. Accessed: 2020-08-21.

[164] Richard R. Lunt. Theoretical limits for visibly transparent photovoltaics. Applied Physics
Letters, 101(4):043902, 2012.

[165] Annick Anctil, Eunsang Lee, and Richard R. Lunt. Net energy and cost benefit of transparent
organic solar cells in building-integrated applications. Applied Energy, 261:114429, 2020.

218

https://solarfeeds.com/wiki/cadmium-telluride-photovoltaic
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3#:~:text=How\ much\ electricity\ does\ an,about\ 914\ kWh\ per\ month
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3#:~:text=How\ much\ electricity\ does\ an,about\ 914\ kWh\ per\ month
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3#:~:text=How\ much\ electricity\ does\ an,about\ 914\ kWh\ per\ month
https://www.fueleconomy.gov/feg/bymodel/2019_Tesla_Model_3.shtml
https://meteonorm.com/en/
toyota-europe.com/new-cars/prius-plugin/
https://www.hyundainews.com/en-us/releases/2640
https://lightyear.one/
https://sonomotors.com/en/sion/
https://www.fhwa.dot.gov/ohim/onh00/bar8.htm
https://www.fhwa.dot.gov/ohim/onh00/bar8.htm
https://ubiquitous.energy/


[166] K. Smith, M. Earleywine, E. Wood, and A. Pesaran. Battery wear from disparate duty-
cycles: Opportunities for electric-drive vehicle battery health management. Technical report,
National Renewable Energy Laboratory, 2012.

[167] Scott Peck, Aditya Velivelli, and Wilko Jansen. Options for coupled thermal-electric mod-
eling of battery cells and packs. SAE International Journal of Passenger Cars - Electronic
and Electrical Systems, 7(1):273–284, 2014.

[168] Carl Johan Rydh and Björn A. Sandén. Energy analysis of batteries in photovoltaic systems.
part i: Performance and energy requirements. Energy Conversion and Management, 46(11-
12):1957–1979, 2005.

[169] Filippo Spertino, Alessandro Ciocia, Paolo Di Leo, Gabriele Malgaroli, and Angela Russo.
A smart battery management system for photovoltaic plants in households based on raw
production forecast. In Green Energy Advances. IntechOpen, 2019.

[170] Geoffrey A. Landis, Phillip Jenkins, David Scheiman, and Ryne Rafaelle. Extended tem-
perature solar cell technology development. In AIAA 2nd International Energy Conversion
Engineering Conference, Providence, RI, August 16-19, 2004. AIAA 2nd International
Energy Conversion Engineering Conferenc.

[171] Ilaria Cardinaletti, Tim Vangerven, Steven Nagels, Rob Cornelissen, Dieter Schreurs,
Jaroslav Hruby, Jelle Vodnik, Dries Devisscher, Jurgen Kesters, Jan D’Haen, Alexis Fran-
quet, Valentina Spampinato, Thierry Conard, Wouter Maes, Wim Deferme, and Jean V.
Manca. Organic and perovskite solar cells for space applications. Solar Energy Materials
and Solar Cells, 182:121–127, 2018.

[172] Sourav Diwania, Sanjay Agrawal, Anwar S. Siddiqui, and Sonveer Singh. Photo-
voltaic–thermal (PV/t) technology: a comprehensive review on applications and its ad-
vancement. International Journal of Energy and Environmental Engineering, 11(1):33–54,
2019.

[173] Marc Abou Anoma, David Jacob, Ben C. Bourne, Jonathan A. Scholl, Daniel M. Riley, and
Clifford W. Hansen. View factor model and validation for bifacial PV and diffuse shade on
single-axis trackers. In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC). IEEE,
2017.

[174] Bill Marion, Sara MacAlpine, Chris Deline, Amir Asgharzadeh, Fatima Toor, Daniel Riley,
Joshua Stein, and Clifford Hansen. A practical irradiance model for bifacial PV modules. In
2017 IEEE 44th Photovoltaic Specialist Conference (PVSC). IEEE, 2017.

[175] Todd Karin, C. Birk Jones, and Anubhav Jain. Photovoltaic degradation climate zones. In
2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019.

[176] P. Padmagirisan and V. Sankaranarayanan. Powertrain control of a solar photovoltaic-battery
powered hybrid electric vehicle. Frontiers in Energy, 13(2):296–306, 2019.

219



[177] Ulrike Jahn, Magnus Herz, Marc Kontges, David Parlevliet, and Marco Paggi. Review on
infrared andelectroluminescence imagingfor pv field applications. Technical report, IEA
International Energy Agency, 2018.

[178] Ali Rahmatmand, Stephen J. Harrison, and Patrick H. Oosthuizen. Numerical and experi-
mental study of an improved method for prediction of snow melting and snow sliding from
photovoltaic panels. Applied Thermal Engineering, 158:113773, 2019.

[179] Abdelhakim Hassabou, Ahmed Abotaleb, and Amir Abdallah. Passive thermal management
of photovoltaic modules—mathematical modeling and simulation of photovoltaic modules.
Journal of Solar Energy Engineering, 139(6), 2017.

[180] ThermoAnalytics, Inc. Cabin comfort + hvac. https://www.thermoanalytics.com/
cabin-comfort-modeling. Accessed: 2020-10-02.

[181] William F. Holmgren, Clifford W. Hansen, and Mark A. Mikofski. pvlib python: a python
package for modeling solar energy systems. Journal of Open Source Software, 3(29):884,
2018.

[182] Roberto Faranda, Hossein Hafezi, Sonia Leva, Marco Mussetta, and Emanuele Ogliari. The
optimum PV plant for a given solar DC/AC converter. Energies, 8(6):4853–4870, 2015.

[183] Aron P. Dobos. Pvwatts version 5 manual. Technical report, National Renewable Energy
Labaratory, 2014.

[184] J.A. Kratochvill D.L. King, W.E. Boyson. Photovoltaic array performance model. Technical
report, Sandia National Laboratories, 2004.

[185] Anco Blazev. Photovoltaics for commercial and utilities power generation. Fairmont Press
CRC Press, Lilburn, GA Boca Raton, FL, 2012.

[186] Matt Donovan Chris Deline, Jenya Meydbray. Photovoltaic shading testbed for module-level
power electronics: 2016 performance data update. Technical report, National Renewable
Energy Laboratory, 2016.

220

https://www.thermoanalytics.com/cabin-comfort-modeling
https://www.thermoanalytics.com/cabin-comfort-modeling

	List of Tables
	List of Figures
	Introduction
	Motivation
	Solar Cell Devices
	Photovoltaic Device Modeling
	Equivalent Circuit Approach
	Drift-Diffusion Approach

	Photovoltaic System Modeling
	Outline

	DRIFT-DIFFUSION MODELING OF SOLAR CELLS
	Implementing Drift-Diffusion Models
	1D Drift-Diffusion Equations
	Discretization
	Iteration Schemes
	Gummel Method
	Newton-Raphson Method

	Model Verification
	Single-Carrier Device in Space-Charge-Limited Current Regime
	Two-Carrier Device

	Conclusions

	Improving Convergence of a Drift-Diffusion Model for Bilayer Organic Solar Cells
	DD-BI Model
	Convergence Improvements
	Convergence Acceleration through Pulay Mixing
	Newton vs. Gummel Iterative Methods
	Slotboom Variables Approach

	Conclusions

	Drift Diffusion Modeling of Perovskite Solar Cells
	Numerical Model
	Model Validation
	Understanding the Impact of C60 at the Interface of Perovskite Solar Cells
	Conclusions


	MODELING OF PHOTOVOLTAIC SYSTEMS
	Improving PV System Soiling Loss Predictions
	Background
	Semi-Physical Modeling of Soiling Accumulation
	Background
	Limitations of Existing Models
	Developing a General Soiling Accumulation Model

	Effect of Rainfall
	Incidence Angle Modifier due to Soiling
	Combining Incidence Angle Modifier with Soiling Accumulation Models
	Model Validation
	Integration into Commercial Software
	Predicting Soiling with Machine Learning
	Introduction to MLR and ANN
	Soiling Mass Accumulation
	Soiling Loss

	Conclusions

	Coupled Thermal-Electrical Modeling of Integrated PV Systems
	Empirical Models
	Physical Thermal-Electrical Model
	Introduction and Motivation
	Methods
	Model Validation
	Comparison with Empirical Models

	Example Applications
	Building Rooftop PV Systems
	Vehicle-Integrated Solar Panels
	PV-Battery Systems
	Other Applications

	Conclusions


	Conclusions and Outlook
	Conclusions
	Outlook

	Appendices
	PV SoilSayer Software Description
	PV Module Datasheets
	List of Publications Resulting from this Work
	Bibliography

