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ABSTRACT 

QUANTIFYING THE BIAS OF STANDARD ERROR ESTIMATES DUE TO OMITTED 

CLUSTER LEVELS IN COMPLEX MULTILEVEL DATA: A SENSITIVITY ANALYSIS 

FOR EMPIRICAL RESEARCHERS 

By 

Zixi Chen 

Educational phenomena occur in multilevel contexts, such as students nested within 

classrooms and classrooms nested within schools. This multilevel structure is also reflected in 

the multi-stage sampling design and randomized experimental design by clusters in educational 

data collection and research design. The consequential challenge of dependent observations 

within clusters of each nesting layer is prevalently dealt with by Hierarchical Linear Modeling 

(HLM) in education studies. However, in many cases, the observed data’s multilevel structure 

can be unidentified or misspecified that the complex multilevel data structure is partially 

presented. Thus, even with the advanced statistical tools, the estimated models with omitted 

clustering levels will still produce erroneous standard error estimates and result in either Type I 

or Type II errors that compromise and even undistort interpretations of educational mechanisms. 

Practical guidance is urgently needed for empirical research confronting this issue to judge and 

detect whether the estimated models are adequate in taking account of the clustering dependency.  

 This paper contributes to investigate when a cluster level should be explicitly modeled 

but omitted and how much the standard error estimates would be biased. This paper examines 

these questions in settings of a true three-level clustered data structure, while a cluster level, 

either at the highest, middle, or the lowest level, is omitted in the estimated two-level models. 

The theoretical discussion of essential clustering levels in modeling due to multi-stage sampling 

design and randomized experiments by clusters is drawn on insights from Abadie et al. (2017)



and Hedges and Rhoads (2011). The current study then derives corresponding mathematical 

formulas to quantify the standard error estimation bias for each level’s predictors’ estimated 

effect. These derived formulas are functions of the intraclass correlation coefficients and cluster 

sizes of the estimated and omitted cluster levels. Further, build on Frank, Maroulis, Duong, and 

Kelcey (2013), the current paper develops a sensitivity analysis framework with a scientific 

language to quantify the degree of statistical inferences robustness based on the clustering 

characteristics of the omitted levels of clusters. In each omitted clustering scenario at the lowest, 

middle, and highest level, empirical studies are provided as implication examples of the 

sensitivity analysis to demonstrate the potential inference robustness risks due to omitted 

clustering. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

    Educational phenomena occur in a nested context, such as students nested within classes 

within schools (Barr & Dreeben, 1983). In this multilevel schooling system, higher-level school 

actors, such as administrators and principals, as well as school social context, shape and respond 

to educational activities of the lower-level actors, such as teachers and students, through flows of 

resource allocations and routine organizational designs (Gamoran & Dreeben,1986; Goddard et 

al., 2007; Hallinger, & Murphy, 1986; Heck et al., 1990; Seashore Louis & Lee, 2016; Spillane 

et al., 2011). These units, such as schools, classrooms, and students, are inherent (or innate) 

levels in the formed organizational system of schooling (Krull & MacKinnon, 2001).  

  The multi-stage sampling design of education data collection corresponds to the 

multilevel structure of schooling system (Konstantopoulos, 2008a, 2008b; Snijders & Bosker, 

2011; Hedges & Rhoads, 2011). Larger units, such as schools from the population of interest, are 

randomly selected in the first stage and are referred to as Primary Sampling Units (PSUs) 

(Leeuw & Meijer, 2008). In the second stage, researchers sample smaller units, such as 

classrooms, from PSUs. The sampled students are thus Secondary Sampling Units (SSUs), which 

are nested within school clusters. Stages of sampling can continue until the Ultimate Sampling 

Units (USUs), which are normally the targeted research units, such as students, are reached 

(Battaglia,2008). These sampling stages define the deliberate cluster levels by design in analysis.  
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  The multilevel nesting structure results in dependencies between individual actors within 

clusters, challenging the independent observation assumption of the conventional regression 

analysis using Ordinary Least Squares (OLS) estimation. For instance, students who are similar 

in motivation, achievement, and family background are more likely to be grouped in the same 

classrooms and schools (Goldstein, 2011; Snijders & Bosker, 2011). It is also possible that 

students become more similar after they are assigned to the same classes and schools, as they 

share similar learning experiences and social contexts (see empirical examples in Frank, Muller, 

et al, 2008, and Rhoads, 2011). Teachers could become similar in instructions through 

professional training, collaboration and social interactions which will ultimately expose to their 

students learning activities, form within-school shared culture, and collectively react to policy 

enactment (see empirical examples in Coburn et al., 2012; Goddard et al., 2007; Penuel et al., 

2009, and a survey in Voogt et al., 2016). With the clustering dependency, the independent error 

assumption treating the data as a simple random sample is thus violated. It is well-documented 

that the standard error estimates of coefficients from OLS estimation are underestimated though 

the coefficient estimates are unbiased, which leads to Type I errors (McNeish, 2014; Mundfrom 

& Schults, 2002; Musca et al., 2011).  

  The research interest of multilevel-structured educational and social phenomena and the 

methodological needs of dealing with the clustering dependency lead to the prevalent use of 

Hierarchical Linear Model (HLM) (Raudenbush & Bryk, 2002; Frank, 1998; Musca et al., 2011; 

Niehaus et al., 2014; Snijders & Bosker, 2011). HLM explicitly models the multilevel clustering 

dependency by including the corresponding level’s  random effects that capture the between-

cluster variation and identify the cluster-specific effects beyond the population-averaged 

estimates (McNeish et al., 2017; Snijders & Bosker, 2011). In a three-stage sampled data 
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structure, a three-level HLM model can account for dependencies of USUs nested within SUSs 

within PSUs. This structure aligns well with the conventional schooling system mentioned 

above, that students are nested within classes, and classes are nested within schools.  

  The advantages of using HLM to make robust statistical inferences with clustered data 

could easily vanish if the imperative modeling assumptions relevant to random effects do not 

hold true (Dedrick, et al., 2009; Huang, 2018; McNeish et al., 2017; Snijders & Berkhof, 2008). 

Since the random effects variance is taken into account in estimating the standard errors of the 

regression coefficients (Raudenbush & Bryk, 2002; Snijders & Bosker, 2011), an essential 

assumption is that the modeled cluster levels as random effects are sufficient and the 

corresponding random effects are correctly specified. For example, in practice, researchers may 

purposively exclude a cluster level, such as the classrooms, in modeling for parsimony, 

regardless of testing whether this omission would result in ignoring clustering dependency and 

false inferences.   

1.2 Problem Statement 

  The omission of cluster levels or misspecified random effects masks some true sources of 

the clustering dependency, which misguides the confirmation of the tested hypothesis and the 

deduction of theories. A substantial body of methodological studies in the early 2000s has 

highlighted this issue (e.g., Luo & Kowk, 2009; Moerbeek, 2004; Van den Noortgate et al., 

2005; Opdenakker & Van Damme, 2000; Tranmer & Steel, 2001). In general, the variances from 

an omitted level are redistributed into the adjacent levels if the intermediate level is omitted. For 

example, if the lowest or the highest level is omitted, the variances are distributed to the adjacent 

higher and lower levels respectively. As the omitted dependencies redistribute to the wrong 
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cluster levels, the variance estimates of random effects (i.e., variance components) and the 

standard error estimates of fixed effects (i.e., regression coefficients) are still biased even if the 

estimated model captures some clustering effects. Also, critical dependencies within the modeled 

clusters must be represented and accounted for in the model. In other words, all crucial 

dependencies of clustering should not be falsely left-out or over-specified. The debate of this 

condition has been mostly around the misspecifications of the error variance-covariance structure 

of repeated measures in longitudinal data analysis (e.g., in Baek & Ferron, 2013; Ferron et al., 

2010; LeBeau, 2018; Murphy & Pituch, 2009).  

  Ideally, empirical researchers are encouraged to provide the strongest models that are 

best fit for their data, theories, and research design. On one hand, if any cluster levels are 

necessary, the corresponding clustering dependencies should be modeled for robust inferences. 

On the other hand, we do not want to model the unnecessary clustering and fall into the opposite 

extreme of overcorrection  (Abadie et al., 2017; MacKinnon & Webb, 2019).  

  The first practice is often considered by several conventional criteria for clustering 

specification (Opdenakker & Van Damme, 2000). A basic one inheres in the conceptualization. 

To address the substantive research interests relevant to different levels’ mechanisms, 

researchers usually split models into the corresponding multiple levels (Cheong et al., 2001). 

However, this criterion alone often fails if a cluster level of the mechanism is historically 

overlooked (Martínez, 2012). Other criteria of defining cluster levels based on the stages of a 

sampling design and treatment assigned levels in experiment design have been considered 

(Abadie et al., 2017, 2020; Hedges & Rhoads, 2011; MacKinnon & Webb, 2020; Opdenakker & 

Van Damme, 2000, Raudenbush, & Schwartz, 2020). However, a researcher may inadvertently 

omit a cluster level if she ignores the complex sampling structure (Niehaus et al., 2014; Wang et 
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al., 2019; Zhu et al., 2012; Skinner & Wakefield, 2017). In some cases, the omission of a cluster 

level is obliged due to data restrictions. For example, many public-available datasets do not 

provide linkable identification numbers across cluster levels (e.g., classrooms) due to data ethic 

concerns (Conaway, et al., 2015). Also, it is not surprising that many published studies do not 

fully illustrate the sampling designs or provide original data. Readers could have reasonable 

questions of whether the clustering dependencies are modeled correctly. 

  Conventionally, researchers may also model a cluster level if the size of the clustering 

dependency measured by the intraclass correlation coefficient  (ICC) is considerable. Earlier 

research suggests a rule of thumb of larger than 0.05 to include a cluster level in modeling. 

Noticeably, since there are no statistical tests or definite thresholds of ICCs to make a modeling 

decision, researchers may judge the ICCs based on evidence from previous research. However, 

evidence from prior research could have different contexts than the current one, thus leading to 

an inaccurate judgment of the empirical ICCs. Nonetheless, Musca et al. (2011) found that the 

Type I error rate is always higher than the conventional 5% when clustering is ignored even with 

an ICC value is as low as 0.01 across many conditions of group size. Therefore, the ICC may not 

be sufficient for deciding whether a level should be included in analysis. In modeling with more 

than one level of clustering, judgments based on multiple ICCs may become even more 

complicated. Alternatively, power analysis of the experiment designs cannot solve the question 

of how many levels there are in modeling, either. Designed to determine the sample size needed 

to achieve the power of the statistical hypothesis tests, a power analysis is conducted with a 

presumption of levels of clustering in design (Berger & Wong, 2009; Cohen, 1992; van 

Breukelen & Moerbeek, 2016). If a level of clustering matters but is omitted in the design, a 
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detected educational mechanism or effective intervention may have adequate power, but for an 

incorrect inference (see Konstantopoulos, 2008a)  

  The assumptions associated with the second practice of not modeling unnecessary 

clustering are also often unsatisfied since the current guidelines on when to account for 

clustering remain vague. For example, analytical guidance would state that a clustering of 

interest should be accounted for as the estimates change compared with the models without 

including the cluster level (e.g., Van den Noortgate et al. 2005; Cameron & Miller, 2015). This 

kind of statement does not explain the rationale of why the cluster gives rise to clustering or 

when to cluster. This gap causes two major misconceptions. One is that whenever there is a level 

of cluster that can be defined, regardless of -inherently or by design, a clustering dependency is 

possible and thus needs to be modeled.  Another misconception is that a cluster level needed to 

be modeled since adding it would change the standard error estimates.  It is often the case that 

empirical researchers choose the larger standard error estimates accounting for clustering 

dependency to avoid committing a Type I error,  without justifying whether the clustering is true 

and must be adjusted (Robinson, 2020). To dispel these misconceptions, a theoretical framework 

of when a cluster level is necessary and thus should be controlled is pivotal. This argument has 

been highlighted in Abadie et al. (2017). Along with Hedges and Rhoads (2011),  these studies 

clarify that the standard error estimates should be corrected if the clustering is due to multi-stage 

sampling design and randomized experimental by clusters.  

1.3 Research Questions and Goals 

  Despite strong analytical evidence of the risks of omitting levels of clustering and the 

urgent need for practical guidance to judge whether the estimated model adequately accounts for 
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clustering, it is still unclear what misspecification of the random effects of the cluster levels may 

or may not lead to incorrect results. The above discussion motivates the current study to ask the 

following questions:  

1) When should a cluster level and the corresponding clustering dependency to be explicitly 

modeled, and when could they be omitted? 

2) And, if an essential level is omitted in modeling, whether and how much of the omitted 

clustering dependency would affect the robustness of inference? 

  This study investigates these questions in settings of a true three-level clustered data 

structure, while a cluster level, either at the highest, middle, or the lowest level, is omitted in the 

estimated two-level models. Applying insights from Abadie et al. (2017) and Hedges and Rhoads 

(2011), the first research question is answered by building a theoretical framework of when a 

middle or highest cluster level is produced by sampling and experimental designs, but is omitted 

in modeling. In the omitted lowest cluster level case, the theoretical argument switches to the 

serial correlation dependency due to the chronologically ordered nature of repeated measures. 

Answering the first question aids in clarifying empirical decisions of whether a cluster level 

should or should not be modeled to avoid either Type I or Type II errors and improve the 

analytical identification of the consequences of an omitted cluster level.   

  The second question is answered through analytically quantifying the magnitude of the 

standard error estimates bias of the slope estimates of predictors at each level. Previous studies of 

examining the issues of omitting a cluster level commonly use simulations to show empirical 

evidence of bias in estimates and threats to robust inferences. The simulation approach, assuming 

a known correct model to compare with the other false ones, has advantages in setting extensive 
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ranges for parameters and models. Nonetheless, though those simulations reveal valuable general 

patterns, how the bias is produced mathematically is still in a black box. This study complements 

those simulation-based evidence through closed forms of standard error correction formulas. 

These formulas, showing the relationship between the bias and the clustering parameters (i.e., 

ICCs and cluster sample size) of the omitted cluster level, can identify where the omitted 

clustering is hidden or distributed to other levels and how statistical inferences are affected. In 

other words, aligning with the theoretical framework already established, the sources of 

clustering dependency are also clarified. The explanation of the approach is soon introduced in 

the following Section 1.4. 

  Finally, with the development of such formulas for standard errors and bias as a function 

of clustering, this study is further able to develop a sensitivity analysis framework for researchers 

to quantify the robustness of inferences (or effect size) and the risk of making a false hypothesis 

decision based on the clustering degree of the suspected omitted cluster level. This sensitivity 

analysis framework contributes to filling the gaps in current methodological research and to 

bridging with empirical studies that require guidance in making decisions on modeling specific 

cluster levels. Particularly, this sensitivity analysis framework is desired in practice when the 

omitted cluster level is not able to be included in the modeling.  

1.4 Combining the Benefits of the Model-Based and the Design-Based Approaches 

  While the model-based approach HLM explicitly models the multilevel clustering 

dependency with random effects, the design-based approach provides statistical corrections to 

the standard error estimates (Cameron & Miller, 2015; Cheong et al., 2001; McNeish & Wentzel, 

2017). The design-based approach is prevalent in the fields of survey studies and economics, 
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where the corrections are called Design Effect (DEFF) and Cluster Robust Standard Errors 

(CRSE). In a two-level sampling data structure, DEFF is derived from the ratio of the variance of 

an estimate that takes into account the clustering and the variance that ignores the clustering 

(Kish, 1995; Snijders, 2005), which is 𝐷𝐸𝐹𝐹 = 1 + 𝜌𝑖𝑐𝑐 ∗ (𝑁̅𝐾 − 1).  𝜌𝑖𝑐𝑐 is the ICC and 𝑁̅𝐾 is 

the average cluster size of clusters k.  

  In the field of economics, CRSE is widely applied to many structures of clustering (see a 

detailed survey in Cameron & Miller, 2015). Generally, CRSE provides a mathematical 

expression of the variance-covariance structure with an index measuring the error variance 

(Snijders & Bokser, 2011). In a simplified approximation CRSE case when the homoscedasticity 

assumption holds1 (as set in the current study), this index is derived as Moulton Factor (MF) 

(Angrist & Pischke, 2009; Moulton, 1986, 1990). Moulton Factor is essentially close to DEFF 

since it is also derived from the ratio of the variance of an estimate with the clustering effect and 

the variance without the clustering effect2. The standard error estimates are corrected by the 

square root of DEFF or MF, which are equivalent to the model-based two-level HLM (Cheong et 

 
1 The correlated-within-cluster error terms require a covariance matrix estimator that is robust to arbitrary patterns of 

both heteroskedasticity and intra-cluster correlation (MacKinnon & Webb, 2020). The current work dealing with 

omitted clustering focuses on the omission of the latter one and assumes homoskedasticity. The setting of 

homoscedasticity implies that any heteroskedastic patterns in the specified and modeled clustering have been 

already corrected, and the assumption still hold after included the omitted cluster level. In later chapters of model 

settings, the cluster sizes of the omitted cluster level are set to be relatively equal, and there are no heterogeneous 

across clusters. A discussion of modeling heterogeneous random effect variance within an empirical education 

setting can be seen in Leckie, French, Charlton, and Browne (2014). 

 
2 Moulton factor is 𝑀𝐹 = 1 + 𝜌𝑧,𝑘 ∗ 𝜌𝑖𝑐𝑐 ∗ (

𝑉𝑎𝑟(𝑁𝐾)

𝑁𝐾
+ 𝑁𝐾 − 1). Moulton factor uses 

𝑉𝑎𝑟(𝑁𝐾)

𝑁𝐾
 (i.e., average variance 

of the cluster size deviation) to account into the variation of unequal cluster sizes. This is equivalent to the Skinner 

(1986)’s development of Kish’s DEFF. Additionally, compared with the DEFF, Moulton factor also has 𝜌𝑧,𝑘, which 

is the within-cluster correlation of the predictor Z . When the predictor Z is at the aggregated level, this 𝜌𝑧,𝑘 is 

perfectly correlated and equals to 1, and , thus, 𝑀𝐹 approaches to DEFF. Abadie et al. (2017) argues that 𝜌𝑧,𝑘 ∗ 𝜌𝑖𝑐𝑐 

may not be sufficient to decide the adjustment, but the “within cluster correlation of the product of the residuals and 

the regressor” (p.5) (i.e., 𝜌𝑧,𝑘∗𝑒𝑟𝑟𝑜𝑟) is. In the current study, the uncertainty due to 𝜌𝑧,𝑘 is less of a research interest as 

𝜌𝑧,𝑘 = 1 for cluster-level predictors.  
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al., 2001; Huang, 2018; Niehaus et al., 2014). An empirical example showing this equivalency 

can be seen in Claessens (2012).  

  The current study considers a three-level clustered data where two layers of clustering are 

observed while one clustering is omitted in a two-level model, and innovatively applies the 

method of DEFF to correct for the standard error bias due to the omitted layer of clustering 

dependency in the estimated two-level HLM model. In this way, closed forms of formulas of 

quantifying the bias of the standard error estimates can be derived the same as the DEFF. The 

only difference from the DEFF is that the denominator of the formulas here are the variance 

estimates from the two-level models, where partial clustering dependency were captured albeit 

not fully. Cheong et al. (2001) have shown the potential of this idea. Employing a national 

representative survey data, they compared the standard error estimates from a three-level model 

with the ones from a two-level model omitting the middle cluster level while having been 

corrected by CRSE  for the two-level HLM estimated model. Those standard error estimates of 

the later approach that combined model- and design-based approaches are found to be 

comparable to the empirical standard errors and the ones from the true three-level model. 

  Current literature has provided other developed approaches to deal with the same issue of 

omitting a cluster level. For example, Raykov et al. (2016) addresses the question of omitting a 

middle cluster level through considering the potential size of the middle cluster level variance in 

the estimation of the confidence intervals of testing the cluster level variances. In Hedges and 

Rhodes (2011), corrections were made to F-test statistics in two-level data while the clustering is 

omitted. Comparing with these studies, the approach developed in the current study is beneficial 

in ways of expressing the different sources of clustering dependency as functions of the 

clustering parameters of random effects variance and sample size of clusters. Further, plugging 
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in plausible values of the clustering parameters, empirical research can use the sensitivity 

analysis to evaluate the estimated model and transparently show their analytic decisions (Abe & 

Gee, 2014)  

1.5 Summary of Findings  

  This study presents closed forms of formulas that quantify the standard error estimation 

bias due to omitted clustering dependency. A general pattern found is that, if a cluster-level 

predictor of interest is falsely disaggregated to the lower levels since it is not explicitly modeled, 

its standard error estimate of the coefficient estimate is underestimated. Specifically, if the 

middle cluster level is omitted, the middle-level cluster predictor that is disaggregated at the 

lowest individual level has an underestimated standard error estimate of its coefficient. If the 

highest cluster level is omitted, the standard error estimate of the coefficient of the highest-

cluster level predictor (which is falsely disaggregated at the middle level) is underestimated. 

Similar patterns apply when the single level OLS are the estimated models.  

  If the upper adjacent cluster level is omitted, the standard error estimates are 

overestimated. This pattern is found in the cases where the highest cluster level is omitted, and 

the standard error estimate of the coefficient defined at the middle cluster level is upward biased, 

leading to Type II error. In the same vein, though the lowest cluster level predictor is not of the 

current study’s interest, findings show that the corresponding standard error estimates are 

overestimated if the adjacent higher cluster level is omitted. 

  An exceptional pattern is that, if the middle cluster level is omitted in the estimated two-

level model, the standard error estimate of the highest-level predictor’s coefficient is not biased. 

This is because the overall dependency is captured in the estimated two-level model though the 
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sources of clustering are entangled. At last, if the omitted level is not adjacent to the level of the 

predictor of interest, such as when the lowest level predictor is the predictor of interest and the 

highest cluster level is omitted, the corresponding standard error estimate remains unbiased.  

  The magnitude of the standard error estimates bias can be calculated by the derived 

formulas. Furthermore, combined with empirical studies as examples, this study encourages 

empirical researchers to utilize the developed sensitivity analysis framework to diagnose whether 

the hypothesized omitted clustering would result in considerable estimation bias that would 

invalidate any inferences. The sensitivity analysis is of the best usage when the researchers or 

readers suspect a potential issue of omitting cluster level due to design while there are data 

restrictions or other reasons that using the model-based approach of modeling that level is not 

plausible. 

1.6 Structure of this Study 

  This study follows with four chapters, where three chapters (i.e., Chapters 2, 4, and 5) 

discuss the scenarios of cluster omission respectively at the middle, highest, and lowest level, 

and one chapter (i.e., Chapter 3) develops the sensitivity analysis framework. In Chapter2, the 

discussion of omitting the middle cluster levels in the two-level HLM models are based on a 

theoretical framework of omitted cluster levels due to sampling and experimental designs. For 

better implication significance, the current study takes the prevalently used national presentative 

survey datasets initiated by the National Center for Education Statistics (NCES) as examples.  In 

Chapter 3, the sensitivity analysis framework provides three measures of quantifying the 

inference robustness. An empirical example is provided to demonstrate the sensitivity analysis in 

testing the inference robustness when a middle cluster level is omitted. The structure of Chapter 
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4 of discussing the omission of the highest cluster level in the two-level models is identical to 

that of Chapter 2, including the theoretical framework and the variance inflation factor derivation 

process, though the specific scenarios and examples of omitting the highest cluster level in 

sampling and experimental designs are given. Also, an empirical study using the sensitivity 

analysis framework is presented. Finally, Chapter 5 discusses the case of omitting the lowest 

cluster level, where the error variance-covariance is misspecified (i.e., omitting the serial 

correlation in the repeated measures) in the two-level growth modeling. 
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CHAPTER 2 

OMITTED THE MIDDLE CLUSTER LEVEL 

 

2.1 Introduction 

  The intermediate level reflects important social activities. For example, in educational 

research, classrooms and teachers, lying between students and schools, contain rich educational 

activities that largely influence students’ daily educational experience within schools (Martínez, 

2012; Raudenbush, 2008; Raudenbush & Sadoff, 2008). Empirical studies often employ three-

level HLM models to fully reveal the relationships among predictors at the students, classrooms, 

and school levels (such as Bryk & Raudenbush, 1989; H. C. Hill et al., 2005; Nye et al., 2004). 

Empirical studies may also choose not to model the middle classroom level, theoretically and 

methodologically, and conduct two-level models. For example, Martínez (2012) argued that the 

research field’s historical foci on school-level effects might overlook the within-school dynamics 

of classrooms. In the estimated two-level model, the omitted between-classroom variation is 

repartitioned into the school- and student-level. The repartition of random effects largely impacts 

the conclusions drawn for schools since the classrooms often explain a significant proportion of 

variances that are also far more than what the schools can explain (Martínez, 2012; Beaton & 

O’Dwyer, 2002). A similar discussion extends to other fields of studies with multilevel social 

structures as well. For example, Vaezghasemi et al. (2016) found that households, which are 

between individual and residential communities, are rarely considered when examining the 

contextual effects on individuals’ body mass index.  
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  Still, current literature lacks a practical guide to inform under what circumstances the 

middle cluster level is necessary to be modeled to represent a complete and accurate educational 

and social mechanism. This chapter intends to fill this gap by investigating scenarios of omitting 

a middle cluster level in two-level HLM analyses due to research design. In Section 2.1 and 2.2, 

those scenarios are classified into mechanisms of two- or three-stage sampling designs and CRT. 

This classification helps to clarify when the middle clustering dependency matters in modeling. 

Furthermore, this chapter aims to answer how the estimates of predictors at each level would be 

impacted if the middle cluster level is essential due to design but omitted in modeling. Previous 

research mainly analyzed the impacts on random effects in unconditional models; this chapter 

extends the settings to conventional empirical models with predictors and covariates. Section 2.3 

details the settings of two- and three-level HLM models with predictors of interest at each level 

based on the two mechanisms discussed.  

  To answer the question of how much the omitted cluster level matters, this chapter 

derives mathematical formulas to quantify the estimation bias of random effects and standard 

errors. The developed formulas adjust the standard error estimates of coefficients defined as 

variance correction due to omitted clustering (VOC). In a similar format of design effect, VOC is 

a function of the intraclass correlation coefficient and sample size of the omitted cluster level. It 

further informs the later sensitivity analysis framework with implications for empirical examples 

in Chapter 3. A simulation study in Section 2.4 is designed to examine the performance of the 

bias quantification formulas. Empirically meaningful VOC parameters are selected for the 

simulation study. Finally, Section 2.5 gives a conclusion.  
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2.2 Omitted Middle Level Due to Sampling Design 

  Table 2.1 summarizes when the middle cluster level is omitted in two-level HLM due to 

sampling design. One scenario is when the SSUs as the middle cluster level is excluded from 

modeling in a three-stage sampling design; the other scenario is when the omitted middle cluster 

level appears as incidental instead of being deliberated in a two-stage sampling design. The 

following considers these two scenarios in a typical educational setting where students are nested 

within classrooms and classrooms are nested within schools, and a treatment is randomly 

assigned to schools. The omitted middle level is hypothesized as classrooms and teachers. The 

current study examines empirical findings that aim to generalize to a broader population of the 

sampled schools and classrooms, rather than those fixed for the sampled schools and classrooms. 

In this case, the clustering effects of schools and classrooms matter and need to be considered in 

modeling (Schochet, 2008; Abadie et al., 2017).   

Table 2.1 𝑘-stage sampling design with 𝑘 − 1or 𝑘 + 1 estimated models. 

             Sampling Design 

 

Estimated Model 

Three-stage Sampling 

(e.g., Students – Classroom – 

Schools) 

Two-stage Sampling 

(e.g., Students – Schools) 

Two-level Model 
Omits the middle classroom 

cluster level. 

Corresponds with the 

sampling design, while 

omitting the incidental cluster 

level.  

Three-level Model 
Corresponds with the sampling 

design. 

Counts into the incidental  

cluster levels. 

2.2.1 Omitting SSUs in a Three-stage Sampling Structure Data  

 Consider a dataset that has a three-stage sampling design where schools are PSUs, 

classrooms are SSUs, and students are USUs. The three-stage design effect accounts for these 
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two sources of clustering to adjust the standard error estimates (Chen & Rust, 2017; Skinner et 

al., 1989; Valliant et al., 2013)3 

𝐷𝐸𝐹𝐹3𝐿 = 1 + (𝑛(s2) − 1)𝜌(s2) + 𝑛(s2)(𝑛(s1) − 1)𝜌(s1), 

where 𝜌(s1), 𝜌(s2), 𝑛(s1), and 𝑛(s2) are correspondingly the first-stage and second-stage intraclass 

correlation coefficients and average cluster size. Equivalently, a model-based approach, i.e., a 

three-level HLM model, explicitly analyzes the clustering dependency of students within 

classrooms and clustering dependency of classrooms within schools.  

 In practice,  the second stage of sampling may be purposively omitted for model 

simplicity, especially when the substantive research question is not directly related to the middle 

level (Stapleton & Kang, 2018; Konstantopoulos, 2008a). In the case of omitting the middle 

cluster level, adapting from the original two-stage sampling design effect in Kish (1995), the 

design effect of a simplified structure with PSUs of schools and USUs of students disregarding 

the SSUs of classrooms is 𝐷𝐸𝐹𝐹2𝐿
∗ = 1 + (𝑛(s1)

∗ − 1)𝜌(s1)
∗ . 

 The superscript ∗ notes for the setting of SSUs omission. 𝑛(s1)
∗  is the average number of 

students within a school and equals to the product of 𝑛(s1) and 𝑛(s2). 𝜌(s1)
∗  measures the 

similarity of students within schools. Figure 2.1 visualizes the intraclass correlation structure of 

the three-stage sampled data in the upper panel and the one with the omitted SSUs in the lower 

panel. In the complete structure of a three-stage sampling, 𝜌(s1) and 𝜌(s2) capture the within- 

 
3 The current study assumes no stratification in the sampling design for simplification purposes. However, 

stratification is commonly used in educational sampling design. For example, schools, as PSUs, are firstly stratified 

by census units. If the stratification is ignored, Type II error occurs, but is less of a concern when studies prefer 

conservative results. In Chen and Rust (2017), design effects formulas incorporate stratification with multiple stages. 
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Figure 2.1 Data correlation structures of three-stage sampling designs when the secondary 

sampling stage is included and omitted 

classroom-within-school and between-classroom-within-school clustering dependency within a 

school PSU as presented in a dashed box. As schools are the randomly sampled PSUs, 

correlations across schools are zero. When the SSUs are omitted in modeling, as shadowed in the 

lower panel figure, the within-school dependency is captured by 𝜌(s1)
∗ , regardless of classrooms. 

Between-school independency assumption still holds. Intuitively, since the overall clustering 

dependency remains the same as 𝐷𝐸𝐹𝐹3𝐿 = 𝐷𝐸𝐹𝐹2𝐿
∗ , 𝜌(s1)

∗  is a function of 𝜌(s1), 𝜌(s2), 𝑛(s1) and 

𝑛(s2).  

 The existing design effect literature has not been extended to define the mathematical 

relationship between 𝐷𝐸𝐹𝐹3𝐿 and 𝐷𝐸𝐹𝐹2𝐿
∗ , and the consequences on parameter estimates 

precision are less known. This unknown relationship can be solved through the model-based 
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HLM approach through quantifying the relationship of the variance-covariance or intraclass 

correlation structure of the three-level HLM model and the one of the two-level model. Section 

2.3 will detail the solution. 

2.2.2 Incidental Middle Level between PSUs and SSUs (or USUs) 

 Educational datasets commonly provide additional survey data beyond the designed 

sampling units. For example, NCES datasets, including Early Childhood Longitudinal Study 

(ECLS), National Assessment of Educational Progress (NAEP), and Education Longitudinal 

Study (ELS), collected classroom- and teacher surveys to facilitate research to understand the 

within-school dynamics, even though the sampling designs did not present a known probability 

sample from classrooms. Wang et al. (2019) defined this scenario as emerging incidental middle 

cluster level in sampling. The cluster levels corresponding to sampling designs, such as the PSUs 

of schools and SSUs of students, are called deliberate levels (McNeish & Wentzel, 2017).  

When the sampling design is two-staged structure, such as in NAEP, a two-level model is 

analytically sufficient to take into account the clustering dependency of students nesting within 

schools and provides unbiased standard error estimates of the school-level predictors (Cheong et 

al., 2001; Moerbeek, 2004; Wang et al., 2019). However, the two-level model does not explicitly 

model the between-classroom variance and does not satisfy research interests that focus on 

between-classroom variance. Further, the two-level model could completely disregard any 

potential classroom-level effects or falsely disaggregate the classroom-level predictors at the 

lower student level. This case may be comparable to the well-documented issue of omitting a 

single level clustering dependency in a single-level model of OLS estimation. In the setting of 

disaggregated classroom-level predictors, an artificial homogeneity is introduced at the student 

level, which produces overestimated standard error estimates of the student-level predictors and 
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underestimated the standard errors for the classroom-level disaggregated predictors (Korendijk, 

Hox, et al., 2011). Wang et al. (2019) showed simulation evidence that the standard error 

estimates of the student-level predictors are unbiased. Section 2.4.3 of the current study further 

shows that the inconsistency evidence in Wang et al. (2019) is not valid, but due to their 

parameter setting restrictions.  

When the research interests include between-cluster variations at different levels, 

conducting a three-level model is beneficial since it simultaneously incorporates the sampling 

stages and the incidental middle cluster level mechanisms. Even in an extreme situation where 

the between-classroom variations are nearly zero, the estimated variance of the student- and 

school-level random effects from the three-level model would not be biased (Raykov et al., 

2016), though the sampling variance estimates would change slightly due to the changes of 

degrees of freedom by the added cluster sample size and predictors of classrooms. Nevertheless, 

Wang et al. (2019) and McNeish et al. (2017) summarized the pitfalls of conducting a three-level 

model, which are mainly (1) increased complexity of modeling assumptions and the increased 

risks of violating the assumptions, and (2) the sparseness of the cluster number of the incidental 

middle level may lead to biased estimates of the variance components. With these concerns and 

when the research interests only focus on the school-level predictors, a two-level model is 

preferred4.  

 
4 Many studies have provided several solutions to address the second concern of small cluster numbers. McNeish 

and Stapleton (2014) provided a review of such methods, including restricted maximum likelihood with Kenward–

Roger adjustment (see Kenward & Roger, 1997, 2009) and, alternative to maximum likelihood based approaches, 

Bayesian Markov Chain Monte Carlo (MCMC) (see Baldwin, & Fellingham ,2013; Hox, van de Schoot, & 

Matthijsse, 2012). However, these discussions mainly focused on addressing the issue within a two-level cluster data 

structure setting. More studies are needed to extend the discussion in a three-level clustering data structure and 

examine the methods when the middle cluster level sample size is small. In the current discussion of whether to 

include an incidental middle cluster level in modeling, the above-mentioned limitations could still affect empirical 

researchers’ modeling decision-making. 
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Wang et al.(2019) provided modeling guidelines depending on the parameter of interest 

and listed a few empirical examples which employed the same ECLS data while made different 

modeling decisions of the incidental cluster level (p. 575).  For instance, Jennings and DiPrete 

(2010) explicitly modeled the incidental teacher-level cluster since their research goal is to 

examine teacher effects on students' social and behavioral skills. While in Adelson, McCoach, 

and Gavin (2012), which studied school-level gifted programs' population average effect on 

student's achievement, the incidental classroom level is not modeled. Their modeling approach is 

legit since it corresponds to the sampling design that the classroom level is not a sampling stage, 

and the classroom-level effect is not the focus of the study. Their study also avoided the pitfall of 

overcorrection if model any unnecessary clustering.  

Yet, practical guidelines of modeling choice with incidental middle cluster level have not 

been widely explored except in Cheong et al. (2001) and Wang et al.(2019). This led to 

conflicting modeling decisions in empirical research using the same data for similar research 

questions. For example, Fitchett and Heafner (2017) examined the teacher's professional 

characteristics and classroom instructions on students' history achievement using the NAEP data. 

Therefore, even though teachers are not a deliberate sampling stage in NAEP, the authors 

explicitly modeled the teacher cluster level. However, Heafner, VanFossen, and Fitchett (2019), 

which employed NAEP as well, conducted a two-level model to examine student characteristics, 

courses and instructional variables, as well as demographic variables' effects on students' 

economics content knowledge. The incidental classroom level is suspected to be omitted, and a 

key predictor of classroom instruction could be a classroom-level variable but falsely aggregated 

at the student level. Though the school-level predictors' standard error estimates are not biased, 

the standard error estimates of the key predictors of classroom-level instructions could be 



 

 

22 

 

underestimated and the ones of the student-level characteristics could be overestimated. That 

study will be soon introduced in Chapter 3 to demonstrate the sensitivity analysis. 

2.3 Omitted Middle Level in Cluster Randomized Trial   

Many CRT design a three-level structure with cluster levels of students, classrooms and 

teachers, as well as schools, where the randomization happens at the schools and the outcomes 

are at the student level (Spybrook, Kelcey, et al., 2016; Westine et al., 2013). Two sources of 

clustering exist in CRT (Schochet, 2008; Abadie et al., 2017): one is the random assignment of 

units to the control and treatment groups, and the other is the sampling of two-level of clusters 

from a broader population as discussed in 2.1. In many cases, two-level models with students and 

schools are conducted, where the clustering due to assignment is captured while clustering due to 

sampling could be only partially captured. The omission of modeling the classroom level 

clustering effect could be the result of the two scenarios from sampling design that are discussed 

above.  

Consistent with the previous review, the point estimates of the school-level intervention 

effect and standard error, as well as the minimum detectable effect size, which are of the most 

research interest in CRT, are nearly identical in three- and two-level models, regardless of the 

size of the teacher-level variance, size of clusters, and number of student- and school-level 

covariates, as evidenced in Murray et al. (1996) and Zhu et al. (2012). Equivalently, the 

corresponding design effect for the treatment group of schools is the same as the above 𝐷𝐸𝐹𝐹2
∗, 

where the overall clustering dependency within schools is captured (Hedges & Rhoads, 2011). 

However, the potential classroom-level effects and cross-level moderation effects of the 

intervention are ignored, which are pivot in CRT studies that aims to detect heterogeneous 
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treatment effects and answer questions of how and under what conditions the intervention works 

beyond what works (Spybrook et al., 2016; Spybrook, Zhang, et al., 2020). 

Recently, scholars call for advancing the understanding of the implementation process of 

interventions in school settings, such as how teachers deliver the treatment to students (Lendrum 

& Humphrey, 2012). For example, teachers may be influenced by the local contexts and adapt 

the intervention process, and students could be assigned to teachers based on certain attributes of 

teachers, such as the experience of teaching or class schedule(Weiss, 2010; Weiss et al., 2016). 

Also, it is not uncommon that teachers are often trained as groups for the intervention (such as in 

Jayanthi et al., 2018) that groups of teachers may conduct the intervention similarly. These 

situations result in students who have the same teacher or are exposed to a teacher group could 

receive the treatment in a similar manner. Therefore, if the CRT design considers the role of 

teachers, the correlation of treatment and clustering in CRT would be a composition of treatment 

correlating within teachers (or teacher groups) and schools.  

In the work of Abadie et al. (2017), potential treatment provider variation is mentioned 

while considering the classroom and teacher level effects as fixed rather than intending to 

generalize the effects to the superpopulation of classrooms and teachers. The current study, on 

the contrary, considers the classrooms as SSUs in a three-stage sampling design or as an 

incidental cluster level that is not in a sampling stage. The current work also explores the 

influence on coefficients associated with students and teacher level predictors when the between-

teacher variance is omitted in a two-level model, which is not studied in Zhu et al. (2012).  
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2.4 Quantification of Standard Error Bias  

This section formulates the potential bias of the standard error estimates of predictors 

when a middle cluster level is omitted. The process of quantifying the bias is, in essence, a 

design-based approach, which compares the variance estimates from a satisfactory three-level 

random intercept model and an estimated two-level random intercept model. The models are set 

to cover the previously discussed scenarios of omitting the middle clusters due to sampling and 

experimental designs. Meanwhile, the notation used throughout the whole study is explained.  

2.4.1 Model Setting 

Two-level random intercept model 

Consider first a two-level random intercept model with a continuous dependent variable 

𝑌𝑖𝑘, which indicates the outcome of a student i in a school k. The model is: 

Student-level: 𝑌𝑖𝑘 = 𝛽0𝑘 + 𝛽1𝑘𝑋𝑖𝑘 + 𝛽2𝑘𝑊𝑖𝑘 + 𝜀𝑖̃𝑘, 

School-level: 𝛽0𝑘 = 𝛾00 + 𝛾01 𝑍𝑘 + 𝑢̃0𝑘, 

𝛽1𝑘 = 𝛾10, 

𝛽2𝑘 = 𝛾20, 

Mixed model: 𝑌𝑖𝑘 = 𝛾00 + 𝛾10𝑋𝑖𝑘 + 𝛾20𝑊𝑖𝑘 + 𝛾01 𝑍𝑘 + 𝑢̃0𝑘 + 𝜀𝑖̃𝑘. 

𝑋𝑖𝑘 and 𝑊𝑖𝑘 are treated as student-level predictors. 𝑋𝑖𝑘, for instance, can be the prior 

scores of students, which is a commonly used student-level covariate (e.g., Bloom et al., 2007). 

However, 𝑊𝑖𝑘 is actually a classroom-level measure, such as an attribute of teacher, so that all 

students in the same class have the same value of 𝑊𝑖𝑘. This setting is to satisfy the falsely 



 

 

25 

 

disaggregated incidental cluster level predictor case. The random intercept 𝛽0𝑘 is predicted by a 

school-level predictor 𝑍𝑘 to capture the variability between schools. The setting of 𝑍𝑘 being 

either a continuous variable or a binary treatment predictor as in CRT does not affect the later 

quantification process of the potential bias of variance estimates. The latter section soon 

confirms this note. Additionally, the predictors are assumed to be orthogonal to the random 

effects at any level for the exogeneity assumption because 𝑋𝑖𝑘 and 𝑊𝑖𝑘 are group-mean centered 

(Antonakis et al., 2019). To keep the simplicity of the conceptual example, I only present each 

level with the minimum number of predictors, albeit many other covariates can be added. As 

long as the assumptions hold, the following algebraic expressions of the variance estimation and 

the quantification procedure of bias remain the same.  

Conventionally, the random effects are assumed to be normally distributed with means of 

zero and constant variances conditioning on the predictors and have zero covariance, which 

are𝜀𝑖̃𝑘~𝑁(0, 𝜎̃(𝑖)), 𝑢̃0𝑘~𝑁(0, 𝜎̃(𝑘)), and 𝑐𝑜𝑣(𝜀𝑖̃𝑘, 𝑢̃0𝑘) = 0. Tildes over the parameters are used 

to distinguish the current two-level model from the later three-level model. The total sample size 

of students is 𝑀𝐾 ∗  𝑛0, where 𝑀𝐾 is the number of schools, and 𝑛0 is the average number of 

students within schools5.  

For each school k, the error variance-covariance matrix of 𝑌𝑘, denoted as 𝝍̃𝐾, is 

composed of a residual variance matrix 𝑹̃ and a random intercept variance matrix 𝑮̃:  

𝝍̃𝐾 = 𝑣𝑎𝑟(𝑌𝑘) = 𝑹̃ + 𝒍𝑛0
𝑮̃𝒍’𝑛0

, 

 
5 The current study considers balanced design as a starting point, where the cluster size is assumed to be the same 

(or almost identical) across cluster units. This setting provides closed forms of maximum likelihood estimates . 

Thus, I can make comparisons of the estimates across two- and three-level models and the OLS models in later 

chapters, when fixing the coefficient estimates of the HLM and OLS to be equal (Nezlek & Zyzniewski, 1998). Van 

den Noortgate et al. (2005) has provided simulation evidence of omitting a cluster level in unbalanced settings. They 

found similar patterns of the variance-covariance repartition as in balanced settings.  
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where the dimension of 𝝍̃𝐾 is 𝑛0 by 𝑛0, and 𝒍𝑛0
 is a column vector of 𝑛0 ones.  

Further, 

𝑹̃ = 𝜎
~(𝑖)𝑰 =

[
 
 
 𝜎
~(𝑖) 0 ⋯ 0

0 𝜎
~(𝑖) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜎
~(𝑖)]

 
 
 
 

and 

𝒍𝑛0
𝑮̃𝒍𝑛0

′ =

[
 
 
 𝜎
~(𝑘) 𝜎

~(𝑘) ⋯ 𝜎
~(𝑘)

𝜎
~(𝑘) 𝜎

~(𝑘) ⋯ 𝜎
~(𝑘)

⋮ ⋮ ⋱ ⋮

𝜎
~(𝑘) 𝜎

~(𝑘) ⋯ 𝜎
~(𝑘)]

 
 
 
. 

Also, 𝝍̃𝐾 can be write as: 

𝝍̃𝐾 = 𝑹̃ + 𝒍𝑛0
𝑮̃𝒍’𝑛0

=

[
 
 
 𝜎
~(𝑖) + 𝜎

~(𝑘) 𝜎
~(𝑘) ⋯ 𝜎

~(𝑘)

𝜎
~(𝑘) 𝜎

~(𝑖) + 𝜎
~(𝑘) ⋯ 𝜎

~(𝑘)

⋮ ⋮ ⋱ ⋮

𝜎
~(𝑘) 𝜎

~(𝑘) ⋯ 𝜎
~(𝑖) + 𝜎

~(𝑘)]
 
 
 

 

= 𝜎2 [

1 𝜌 ⋯ 𝜌
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

] 

= 𝜎2[(1 − 𝜌)𝑰 + 𝜌 𝒍𝑛0
𝒍′𝑛0

],   (2.1) 
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where 𝜎2 = 𝜎
~(𝑖) + 𝜎

~(𝑘) is the total error variance, and 𝜌 =
𝜎̃(𝐾)

𝜎2 = 𝑐𝑜𝑟𝑟(𝑦𝑖𝑘, 𝑦𝑖′𝑘) is the 

proportion of variance at the school level6 or the intraclass correlation coefficient indicating the 

expected correlation of any two randomly drawn students in a school. The structure of 𝝍̃𝐾 is 

consistent with the purple dashed boxes in the lower panel of Figure 2.1. With new notations of 

ICCs, Figure 2.2 below modifies Figure 2.1 to show the correlation structure of 𝝍̃𝐾 (as shown in 

the lower panel) and 𝝍𝐾 of the three-level model(as shown in the upper panel) in the following 

discussion.  

 

Figure 2.2 Correlation structures of 𝝍𝐾 of the three-level model and 𝝍̃𝐾 of the two-level model 

omitting the middle cluster level.  

  

 
6 The intraclass correlation coefficient can be conditioned on the predictors. For simpler notation, I do not put 

additional subscript (such as 𝜎
~

𝑎𝑑𝑗.
(𝑖)

 or 𝜌𝑎𝑑𝑗.) to indicate this essence. 
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Three-level Random Intercept Model 

If there emerges a necessary classroom-level middle cluster, a three-level model for 

students i within classroom j within school k should be conducted as: 

Student-level: 𝑌𝑖𝑗𝑘 = 𝜋0𝑗𝑘 + 𝜋1𝑗𝑘𝑋𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘, 

Classroom-level: 𝜋0𝑗𝑘 = 𝛽00𝑘 + 𝛽01𝑘𝑊𝑗𝑘 + 𝛾0𝑗𝑘, 

𝜋1𝑗𝑘 = 𝛽10𝑘, 

School-level: 𝛽00𝑘 = 𝛾000 + 𝛾001 𝑍𝑘 + 𝑢00𝑘, 

𝛽01𝑘 = 𝛾010, 

𝛽10𝑘 = 𝛾100, 

Mixed model: 𝑌𝑖𝑗𝑘 = 𝛾000 + 𝛾100𝑋𝑖𝑗𝑘 + 𝛾010𝑊𝑗𝑘 + 𝛾001 𝑍𝑘 + 𝑢00𝑘 + 𝛾0𝑗𝑘 + 𝜀𝑖𝑗𝑘. 

Compared with the above two-level model, the three-level model has an additional 

classroom-level random effect 𝛾0𝑗𝑘 which indicates variability across teachers within schools. 

The predictor 𝑊𝑗𝑘 is now correctly specified at the middle cluster level to explain the outcome 

mean differences across teachers within schools. The random effects are assumed to be normally 

distributed with means of zero and constant variances, which are 𝜀𝑖𝑗𝑘~𝑁(0, 𝜎(𝑖)), 

𝑟0𝑗𝑘~𝑁(0, 𝜎(𝑗)), and 𝑢00𝑘~𝑁(0, 𝜎(𝑘)). Also, the random effects have zero covariance with each 

other. 

The sample size of schools 𝑀𝐾 and the total sample size of students (i.e., 𝑀𝐾 ∗  𝑛0) 

remain the same, regardless of adding or omitting the middle classroom cluster level. In the 
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three-level model,  𝑛𝐿 is the cluster size of the lower nesting level (i.e., the average class size or 

the number of students taught by each teacher), and 𝑛𝐻 is the cluster size of the higher nesting 

level (i.e.,  the average number of teachers within each school). Also, 𝑛0 is the average school 

size or the average number of students within a school. 

The following 𝝍𝐾 is the error variance-covariance matrix of a school k, which has a 

consistent structure as shown in the purple dashed boxes of the upper panel in Figures 2.1 and 

2.2. As shown, 𝝍𝐾 and 𝝍̃𝐾 have the same dimensionality of 𝑛0 by 𝑛0, while, since the single 

nesting structure in the two-level model is now extended to two levels of nesting, the dimension 

of 𝝍𝐾 in the three-level model becomes (𝑛𝐿 ∗ 𝑛𝐻) ∗ (𝑛𝐿 ∗ 𝑛𝐻) as 𝑛0 = 𝑛𝐿 ∗ 𝑛𝐻. And, 

𝝍𝐾 = 𝜎2 [

𝝎𝐽 𝝆𝟐 ⋯ 𝝆𝟐

⋮ ⋱ ⋮ ⋮
𝝆𝟐 𝝆𝟐 𝝎𝐽 𝝆𝟐

𝝆𝟐 𝝆𝟐 ⋯ 𝝎𝐽

]. 

Its diagonal element 𝝎𝐽 is 𝑛𝐿 ∗ 𝑛𝐿in dimension and is the highlighted area within each purple 

dashed box in the upper panel of Figure 2.2.  

𝝎𝐽 = [

1 𝜌1 ⋯ 𝜌1

𝜌1 1 ⋯ 𝜌1

⋮ ⋮ ⋱ ⋮
𝜌1 𝜌1 ⋯ 1

] = [

1 𝜌2 + 𝜌0 ⋯ 𝜌2 + 𝜌0

𝜌2 + 𝜌0 1 ⋯ 𝜌2 + 𝜌0

⋮ ⋮ ⋱ ⋮
𝜌2 + 𝜌0 𝜌2 + 𝜌0 ⋯ 1

]. 

The off-diagonal element 𝜌1 in 𝝎𝐽 is the intraclass correlation coefficient of any two 

students from the same classroom j in a school k, and 𝜌1 =
𝜎(𝑘)+𝜎(𝑗)

𝜎2 =
𝜎(𝑘)

𝜎2 +
𝜎(𝑗)

𝜎2 = 𝜌2 + 𝜌0. 

Intuitively, 𝜌1 combines the similarity of students exposed by being in the same school k and the 

similarity of students exposed by being in the same classroom j. Specifically, within the school k 

between classrooms, students’ similarities are measured by 𝜌2. And the average correlation of 
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any two students from the same classroom is 𝜌0. Other ways of defining the intraclass correlation 

coefficient exists;  and Appendix 2.A compares these approaches and presents the derivation of 

𝜌1.  

𝝆𝟐 in 𝝍𝐾 shows the proportion of between-classroom-within-school variation, which is 

the unhighlighted parts within any purple dashed boxes in the upper panel of Figure 2.2. 𝝆𝟐 has a 

dimension of (𝑛0 − 𝑛𝐿) ∗ (𝑛0 − 𝑛𝐿) = 𝑛𝐿(𝑛𝐻 − 1) ∗ 𝑛𝐿(𝑛𝐻 − 1), and 

𝝆𝟐 = [

𝜌2 𝜌2 ⋯ 𝜌2

𝜌2 𝜌2 ⋯ 𝜌2

⋮ ⋮ ⋱ ⋮
𝜌2 𝜌2 ⋯ 𝜌2

]. 

As shown, the expected correlation among students coming from the same classroom (i.e., 𝜌1) is 

larger than the expected correlation among students coming from the same school but different 

classrooms (i.e., 𝜌2); and this difference is measured by 𝜌0. In the estimated two-level models, 

this similarity difference among different cluster levels is ignored. Finally, since the schools as 

PSUs are the highest cluster level and are independent to each other, the correlations among 

students from different schools are set to be 0, as shown in the cells outside of all dashed purple 

boxes in Figure 2.2. 

With some algebraic operations, 𝝍𝐾 can be written as: 

𝝍𝐾 = 𝜎2{𝑰𝑲 ⊗ [(1 − 𝜌1)𝑰𝐽 + (𝜌1 − 𝜌2)𝒍𝐽𝒍’𝐽 ] + 𝜌2 𝒍𝑛0
𝒍′𝑛0

},   (2.2) 

where 𝑰𝑲 is an 𝑛𝐻 by 𝑛𝐻 diagonal matrix, and 𝑰𝑱 is an 𝑛𝐿 by 𝑛𝐿 diagonal matrix. Additionally, 𝒍𝐽 

and 𝒍𝑛0
 are vector columns of 𝑛𝐿 and 𝑛0 ones, respectively.  
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Evidenced in Moerbeek (2004), Tranmer and Steel (2001), and Konstantopoulos 

(2007), the random effects’ variances of the three-level model can be approximately 

repartitioned by the ones of the two-level models. Specifically, the omitted teacher-level 

variance in the two-level model is partially distributed to the flanking student and school 

levels as: 

𝜎̃(𝑖) ≅ 𝜎(𝑖) + (1 − 𝜂)𝜎(𝑗), (2.3) 

𝜎̃(𝑘) ≅ 𝜎(𝑘) + 𝜂𝜎(𝑗) ,   (2.4) 

and 

𝜂 =
𝑛𝐿 − 1

𝑛𝐿 ∗ 𝑛𝐻 − 1
=

𝑛𝐿 − 1

𝑛0 − 1
.  (2.5) 

Thus, the ratio of classroom size to the school size (i.e., 𝜂) decides the extent of 

repartition of the omitted classroom-level variance into the student- and school-level variance. 

𝜂 =
𝑛𝐿−1

𝑛0−1
 is restricted to [0, 1] since 𝑛𝐿 ≤ 𝑛0 and 𝑛𝐻 is an integer that is larger than or equal to 1. 

When 𝜂 = 0, 𝑛𝐿 = 1 and 𝑛𝐻 = 𝑛0 ≠ 𝑛𝐿, each classroom SSU has only one sampled student, 

then the between-classroom variance 𝜎(𝑗) is dominated by the estimated student-level variance 

𝜎̃(𝑖) in the two-level model. When 𝜂 = 1, 𝑛𝐿 = 𝑛0 and 𝑛𝐻 = 1, all sampled students come from 

the only classroom SSU in a school PSU, then the between-classroom-within-school 𝜎(𝑗) is 

actually 0 that the estimated two-level model is appropriate.  

Figure 2.3 below shows the range of 𝜂 in an example setting of class size 𝑛𝐿 ∈ [1, 50] 

and the school size 𝑛0 ∈ [100, 500]. This restriction is due to 𝜎̃(𝑘) ≅ 𝜎(𝑘) + 𝜂𝜎(𝑗), where 𝜎(𝑗) >

0, 𝜎(𝑘) > 0, and 𝜂 ≥ 0. In practice, defining the value of 𝜂 needs to consider this restriction in 

setting empirical meaningful random effects variance. For example, the value of 𝜂 decides the 
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maximum value of 𝜎(𝑗) that a researcher can set to satisfy the conditions of 𝜎(𝑘) ∈ [0, 𝜎̃(𝑘)] and 

𝜎(𝑗) > 0, when fixing 𝑛𝑜, 𝑛𝐿, and 𝜎̃(𝑘)(or 𝜌). This discussion will be further shown in the 

empirical study example of implementing the sensitivity analysis in Chapter 3. 

Figure 2.3 Relationship among 𝜂, 𝑛0, and 𝑛𝐿 

The original 𝜌 in the two-level model now turns into a function of the two intraclass 

correlation coefficients of the three-level model, which is 𝜌 =
𝜎̃(𝑘)

𝜎2 =
𝜎(𝑘)+𝜂𝜎(𝑗)

𝜎2 = 𝜌2 + 𝜂𝜌0. 

Further, 𝜌2 = 𝜌 − 𝜂𝜌0, and 𝜌1 = 𝜌2 + 𝜌0 = 𝜌 + (1 − 𝜂)𝜌0
7. Thus, if the classroom-level cluster 

is omitted, the estimated within-classroom student correlation is upwardly biased by 𝜌1 − 𝜌 =

(1 − 𝜂)𝜌0, and the between-classroom-within-school student correlation is downwardly biased 

by 𝜌2 − 𝜌 = −𝜂𝜌0.  

 
7 The current paper assumes that homogeneity assumption still holds when the teacher cluster level is included in the 

three-level model. Particularly, when the cluster sizes are equal (or at least has relatively small variances across 

clusters), the repartitioned variances, though their values depend on the size of 𝜂, remain constant across groups. 
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Throughout the whole study, I use the term satisfactory model to refer to the three-level 

model stated above as it satisfies the specifications of three clustering levels and corresponding 

random effects. I then name the two-level model omitting a necessary cluster level as the 

estimated model. Table 2B.1 in Appendix 2B summarizes and compares the model specification, 

assumption, and estimation considerations and settings of the two-level estimated model omitting 

the middle cluster level and the three-level satisfactory model. As shown, the only distinctions 

between the two-level and three-level models occur at the random effect specifications of cluster 

levels and the allocation of the omitted cluster level's predictor. These distinctions due to 

omitting cluster levels are the research focus of the current study. Other model assumptions and 

specifications are conventional settings. Discussions of how to deal with violations of those 

conventional assumptions in practice are out of the current study's scope. Some techniques to 

correct for violations of those conventional assumptions (such as small cluster size) are noted in 

footnotes. In the later section of Discussion, some assumptions (such as balanced design and no 

random slope) that are closely related to the random effect specifications are considered as 

limitations and directs for future studies. 

2.4.2 Quantifying the Standard Error Estimate Bias 

Bias of the Standard Error Estimates of the Coefficients of 𝒁(𝒋)𝒌 and 𝒁𝒊(𝒋𝒌)  

In the two-level model, the estimated variance of the coefficient of 𝒁(𝒋)𝒌 is:  

𝑉𝑎𝑟2𝐿(𝛾01) = {∑(𝑍(𝑗)𝑘
′

𝑀𝐾

𝑘=1

𝝍̃𝑲𝑍(𝑗)𝑘)}

−1

= 𝜎2𝜏̃𝑍(𝑗)𝑘
{∑(𝑍(𝑗)𝑘

′

𝑀𝐾

𝑘=1

𝑍(𝑗)𝑘)}

−1

, 
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where 𝜏̃𝑍(𝑗)𝑘
 =1 + (𝑛𝑜 − 1)𝜌. In the CRT setting, 𝑉𝑎𝑟2𝐿(𝛾01) is the variance of the intervention 

effect or, in other words, the variance of the group mean difference in outcome such that 

𝑉𝑎𝑟2𝐿(𝛾01) = 𝑉𝑎𝑟(𝑌̅𝑖𝑘,1 − 𝑌̅𝑖𝑘,0). The standard error estimate is the square root of the diagonal of 

the variance matrix 𝑉𝑎𝑟2𝐿(𝛾01). The subscript 2𝐿 indicates the two-level model. In a single-level 

analysis with OLS estimation, the variance estimate is 𝑉𝑎𝑟𝑂𝐿𝑆(𝛾𝑍) = 𝜎2(𝑍(k)
′𝑍(k))

−1.  

Compared with 𝑉𝑎𝑟2𝐿(𝛾01), 𝑉𝑎𝑟𝑂𝐿𝑆(𝛾𝑍) is smaller and thus leads to Type I error. The 

ratio of 𝑉𝑎𝑟(𝛾01) and 𝑉𝑎𝑟𝑂𝐿𝑆(𝛾𝑍) is 𝜏̃𝑍(𝑗)𝑘
 , which is known as the design effect of a two-stage 

sampling design in survey studies. It quantifies the variance inflation or the over-estimated 

precision of the effect of 𝑍(𝑗)𝑘 as if the sampling scheme is a simple random sample. Or in 

economics, 𝜏̃𝑍(𝑗)𝑘
 is the MF that is robust to clustering but assumes homoskedasticity. The 

detailed derivation procedure of 𝜏̃𝑍(𝑗)𝑘
 can be found in Angrist and Pischke (2008) and Cameron 

and Miller (2015). 

Similarly, when 𝑍𝑘 is modeled in the three-level model, the variance estimate yields to: 

𝑉𝑎𝑟3𝐿(𝛾001) = {∑(𝑍𝐾
′𝝍𝑲

𝑀𝐾

𝑘=1

𝑍𝐾)}

−1

= 𝜎2𝜏𝑍𝑘
{∑(𝑍𝑘

′

𝑀𝐾

𝑘=1

𝑍𝑘)}

−1

, 

where 𝜏𝑍𝑘
= 1 + (𝑛𝐿 − 1)𝜌1 + 𝑛𝐿(𝑛𝐻 − 1)𝜌2. Again, in CRT, 𝑉𝑎𝑟3𝐿(𝛾001) = 𝑉𝑎𝑟(𝑌̅𝑖𝑗𝑘,1 −

𝑌̅𝑖𝑗𝑘,0). The index 𝜏𝑍𝑘
 is derived from the error variance-covariance matrix 𝝍𝐾 of the three-level 

model (i.e., Eq. 2.2), which is identical to the three-stage sampling design effect formulas shown 

in Chen and Rust (2017), and an earlier three-level clinical CRT design work in Heo and Leon 

(2008). Algebraically, the derivation of the weighting indices of 𝜏𝑍𝑘
 and 𝜏̃𝑍(𝑗)𝑘

 is straightforward 
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that 𝜏𝑍𝑘
 and 𝜏̃𝑍(𝑗)𝑘

 are equal to the summation of all the intraclass correlation coefficients in the 

brackets of 𝝍𝐾 and 𝝍̃𝐾, respectively. This procedure implies that 𝜏𝑍𝑘
= 𝜏̃𝑍(𝑗)𝑘

 since all between-

cluster variance is captured. However, one must still determine in which cluster levels of the 

between-cluster variance exists. In essence, 𝜏𝑍𝑘
 takes into account the inflation due to the 

dependency of two levels of nesting (i.e., students nested within teachers, and teachers nested 

within schools), compared with 𝜏̃𝑍(𝑗)𝑘
 which quantifies the variance inflation due to the 

dependency of a single level nesting (i.e., students nested within schools). The following 

provides additional algebraic proofs. 

The index quantifies the bias of the variance estimate of 𝑍k’s coefficient due to the 

omitted middle cluster level is the ratio of 𝑉𝑎𝑟3𝐿(𝛾001) and 𝑉𝑎𝑟2𝐿(𝛾01):  

𝑉𝑂𝐶𝑀
(3−2,2𝐿)

=
𝑉𝑎𝑟3𝐿(𝛾001)

𝑉𝑎𝑟2𝐿(𝛾01)
=

 𝜏𝑍𝑘

𝜏̃𝑍(𝑗)𝑘

 . 

VOC stands for the Variance bias due to the Omitted Cluster level. The superscript (3-2, 

2L) indicates that the predictor of interest is at level-3 but modeled as level-2 in a two-level 

cluster structure. The subscript M stands for the omitting of the middle cluster level case. The 

construction of 𝑉𝑂𝐶𝑀
(3−2,2𝐿)

 follows the same logic of DEFF and MF, which is comparing the 

variance estimates with and without the omitted cluster level.  

In practice, researchers can compute the variance inflation magnitude by filling the 

possible values of class size 𝑛𝐿  , and the average correlation of students from the same class 𝜌1. 

Therefore, I re-express all the variance inflation factors by the known 𝜌 from the estimated two-

level model and the assumed omitted level clustering parameters of 𝜌1 and 𝑛𝐿.  Further, since 
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𝜏𝑍𝑘
= 1 + (𝑛𝐿 − 1)𝜌1 + 𝑛𝐿(𝑛𝐻 − 1)𝜌2 

= 1 + (𝑛𝐿 − 1)[𝜌 + (1 − 𝜂)𝜌0] + 𝑛𝐿(𝑛𝐻 − 1)(𝜌 − 𝜂𝜌0) 

= 1 + (𝑛𝑜 − 1)𝜌 = 𝜏̃𝑍(𝑗)𝑘
, 

then, 

𝑉𝑂𝐶𝑀
(3−2,2𝐿)

=
 𝜏𝑍𝑘

 𝜏̃𝑘
= 1.  (2.6) 

𝑉𝑂𝐶𝑀
(3−2,2𝐿)

= 1 suggests that the estimated variance of the fixed effect of school-level 

predictor 𝑍𝑘 does not need any bias correction when the teacher-level cluster is omitted. Since 

the omitted teacher-level variance is redistributed to the school- and student- level, 𝝍̃𝑲 from the 

two-level model still takes into account the between-teacher variance.  

Equivalently showing in the CRT settings, assuming half schools are randomly assigned 

to the treatment and control groups (i.e., the sample size of the treatment and control groups is 

𝑀𝐾/2) , the standard error estimates of  𝛾001 and 𝛾01 equations in the three- and two-level CRT 

balanced design (Konstantopoulos, 2008a; Spybrook et al., 2016 ) are respectively defined as: 

𝑆𝐸(𝑌̅𝑖𝑗𝑘,1 − 𝑌̅𝑖𝑗𝑘,0) = √
4

𝑀𝐾𝑛𝐻𝑛𝐿
√𝑛𝐻𝑛𝐿𝜎

(𝑘) + 𝑛𝐿𝜎
(𝑗) + 𝜎(𝑖), 

and  

𝑆𝐸(𝑌̅𝑖𝑘,1 − 𝑌̅𝑖𝑘,0) = √
4

𝑀𝐾𝑛0
√𝑛0𝜎̃

(𝑘) + 𝜎̃(𝑖). 

Plugin Eqs. 2.3 – 2.5 of the algebraic relationships between 𝜎(𝑘) and 𝜎̃(𝑘), and 𝜎(𝑖) 

between 𝜎̃(𝑖), the standard error estimates of  𝛾001 and 𝛾01 are equal as shown below:  
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𝑆𝐸(𝑌̅𝑖𝑗𝑘,1 − 𝑌̅𝑖𝑗𝑘,0) = √
4

𝑀𝐾𝑛𝐻𝑛𝐿

√𝑛𝐻𝑛𝐿(𝜎̃
(𝑘) − 𝜂𝜎(𝑗)) + 𝑛𝐿𝜎

(𝑗) + (𝜎̃(𝑖) − (1 − 𝜂)𝜎(𝑗)) 

= √
4

𝑀𝐾𝑛0
√𝑛0𝜎̃

(𝑘) + 𝜎̃(𝑖) = 𝑆𝐸(𝑌̅𝑖𝑘,1 − 𝑌̅𝑖𝑘,0). 

Therefore, if the predictor of interest is at the highest school level, either a binary 

treatment or a continuous variable, the corresponding fix effect’s standard error estimate is 

unbiased even if the teacher-level variance is omitted, assuming there are no even higher cluster 

levels than schools. This finding is consistent with Wang, et al. (2019), Zhu et al. (2012), and 

Cheong et al. (2001).  

Extending to an extreme case where the clustering structure is completely ignored as in a 

single-level analysis with OLS estimation, the variance estimates of 𝑍𝑖(𝑗𝑘)’s coefficient needs an 

adjustment of:  

𝑉𝑂𝐶𝑀
(3−1,𝑂𝐿𝑆)

= 𝜏𝑍𝑘
= 1 + (𝑛𝐿 − 1)𝜌1 + 𝑛𝐿(𝑛𝐻 − 1)𝜌2 

= 𝜏̃𝑍(𝑗)𝑘
= 1 + (𝑛𝑜 − 1)𝜌.  (2.7) 

Constructed by dividing 𝑉𝑎𝑟3𝐿(𝛾01) by 𝑉𝑎𝑟𝑂𝐿𝑆(𝛾𝑍) = 𝜎2(𝑍(k)
′𝑍(k))

−1, 𝑉𝐼𝐹𝑀
(3−1,𝑂𝐿𝑆)

 

reflects the two-layer nesting structure of 𝝍𝑲. The magnitude of adjustment depends on the 

clustering parameters of intraclass correlation coefficients and cluster sizes. Further, 𝑉𝐼𝐹𝑀
(3−1)

 is 

also equivalent to 𝜏̃𝑍(𝑗)𝑘
, which captures the total between-cluster variance, while blurring the 

levels of clustering structure.  
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Bias of the Standard Error Estimates of the Coefficients of 𝑾𝒊(𝒋)𝒌 and 𝑾𝒊(𝒋𝒌) 

The following discussion switches to the teacher-level predictor 𝑊𝑗𝑘 which is falsely 

aggregated at the lowest level of students as 𝑊𝑖(𝑗)𝑘, omitting the teacher-level variance 𝜎(𝑗) in an 

estimated two-level model. The inflation of the variance estimate of 𝑊𝑗𝑘’s coefficient 𝛾010 is 

quantified similarly as above, though the focus shifts from the two-layer clustering to the single-

layer omitted clustering of students nested within teachers. In this simplification, the true error 

variance-covariance structure only needs to consider 𝝎𝐽 from 𝝍𝐾 of the three-level model 

instead of the whole structure of 𝝍𝐾. This true variance estimate of 𝑊𝑗𝑘’s coefficient 𝛾010, 

denoted as 𝑉𝑎𝑟̌3𝐿(𝛾010), produces a variance weighting index 𝜏𝑊𝑗𝑘
= 1 + (𝑛𝐿 − 1)𝜌1.  

Further, dividing 𝑉𝑎𝑟̌3𝐿(𝛾010) by the variance estimate 𝑉𝑎𝑟𝑂𝐿𝑆(𝛾𝑊) = 𝜎2𝑰 of the single-

level analysis with OLS estimation which falsely assuming students are independent within 

classrooms and schools, the variance inflation measure yields to 

𝑉𝑂𝐶𝑀
(2−1,2𝐿)

=
𝑉𝑎𝑟̌3𝐿(𝛾010) 

𝑉𝑎𝑟𝑂𝐿𝑆(𝛾𝑊)
= 𝜏𝑊𝑗𝑘

= 1 + (𝑛𝐿 − 1)𝜌1 = 1 + (𝑛𝐿 − 1) ∗ (𝜌2 + 𝜌0),  (2.8.1) 

which contains the between-school variance (𝜎(𝑘)) and between-classroom variance (𝜎(𝑗)) in a 

correctly specified three-level model. Further, 𝑉𝑂𝐶𝑀
(2−1,2𝐿)

 can be rewritten as a function of the 

known 𝜌 from the estimated two-level model and the unknown 𝑛𝐿 and 𝜌0 that researchers can 

specify as 

𝑉𝑂𝐶𝑀
(2−1,2𝐿)

= 1 + (𝑛𝐿 − 1) ∗ [𝜌 + (1 − 𝜂)𝜌0].  (2.8.2) 



 

 

39 

 

Intuitively, the bracket quantifies the omitted clustering dependency, which consists of 

(1) the overestimated school-level variance, as presented by 𝜌 =
𝜎̃(𝐾)

𝜎2 ,  from the estimated two-

level model, and (2) the uncaptured classroom-level variance 𝜌0 =
𝜎(𝑗)

𝜎2
. Noticeably, these two 

components are weighted by 𝑛𝐿, and relevantly, 𝜂. When 𝑛𝐿 = 1 that each sampled classroom 

within a school has only one sampled student, no adjustment is needed for the coefficients’ 

standard error estimates since the classroom-level predictor actually measures the singleton 

sampled student, which thus can be disaggregated at the student level. When 𝜌0 = 0, the school-

level variance estimate 𝜎̃(𝐾) is not overestimated and equals to 𝜎(𝑘). In this case, the estimated 

two-level model is satisfactory since the classroom cluster level does not need to be specifically 

modeled to produce the unbiased random effects estimates of students and schools. However, if 

the classroom-level predictor 𝑊𝑗𝑘 is still of research interest and is modeled as a disaggregated at 

the student-level 𝑊𝑖(𝑗)𝑘, then the standard error estimates of its’ coefficient still need to be 

adjusted by the square root of 1 + (𝑛𝐿 − 1)𝜌, as the clustering of higher school level still exists. 

Further, if 𝜌 = 0, the cluster-level predictors 𝑊𝑖(𝑗𝑘) and 𝑍𝑖(𝑗𝑘) (as shown in Eq. 2.7) do not need 

any clustering adjustments anymore. On this occasion, a single-level analysis using OLS 

estimation is sufficient as the data has a simple random sampling design. 

When the estimated model is single-level OLS estimation, the variance inflation issue of 

the disaggregated classroom-level predictor 𝑊𝑖(𝑗𝑘)  is equivalent to the well-documented simple 

two-level clustering modeling situation where the teacher-level predictor 𝑊𝑗 is modeled as 𝑊𝑖(𝑗). 

Consequently, the variance adjustment is constructed by the variance of the satisfactory two-

level analysis which accounts for the clustering of students nested within classrooms, dividing 
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the variance of the single-level analysis. The variance estimates of the satisfactory two-level 

model is 

𝑉𝑎𝑟̌2𝐿(𝛾01) = {∑(𝑊𝑗
′

𝐽

𝑗=1

𝝍𝑱𝑊𝑗)}

−1

= 𝜎2𝜏̌𝑊𝑗
{∑(𝑊𝑗

′

𝐽

𝑗=1

𝑊𝑗)}

−1

, 

and 𝝍𝑱 is the error variance-covariance structure 

𝝍𝑱 = 𝜎2 [

1 𝜌0 ⋯ 𝜌0

𝜌0 1 ⋯ 𝜌0

⋮ ⋮ ⋱ ⋮
𝜌0 𝜌0 ⋯ 1

]. 

Similarly, the variance weighting index 𝜏̌𝑊𝑗
= 1 + (𝑛𝐿 − 1)𝜌0. Finally, the variance 

inflation adjustment index 𝑉𝑂𝐶𝑀
(2−1,𝑂𝐿𝑆)

 for 𝑊𝑖(𝑗) in the single-level analysis using OLS 

estimation is the same as the two-stage DEFF (or MF). That is 

𝑉𝑂𝐶𝑀
(2−1,𝑂𝐿𝑆)

=
𝑉𝑎𝑟̌2𝐿(𝛾01)

𝑉𝑎𝑟𝑂𝐿𝑆(𝛾𝑊)
= 𝜏̌𝑊𝑗

= 1 + (𝑛𝐿 − 1)𝜌0.  (2.9) 

Obviously, fixing the teacher-level variance, 𝑉𝑂𝐶𝑀
(2−1,2𝐿)

 and 𝑉𝑂𝐶𝑀
(2−1,𝑂𝐿𝑆)

 increase as 

the average class size 𝑛𝐿 increases. Therefore, the variance adjustment is more in need of models 

that are conducted for large class size contexts than the ones with small class size. Meanwhile, 

the number of classrooms in a sampled school (i.e., 𝑛𝐻) constraints in the practice setting of the 

potential value of  𝑛𝐿 and 𝜌0. This point is relevant in Chapter 3, in which an empirical example 

of omitting the middle cluster level is used to demonstrate the sensitivity analysis framework. 
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Furthermore, 𝑉𝑂𝐶𝑀
(2−1,𝑂𝐿𝑆)

 is smaller than  𝑉𝑂𝐶𝑀
(3−1,𝑂𝐿𝑆)

 by (𝑛0 − 1)𝜌2, which is intuitive as 

two sources of clustering dependency affect the estimation of the standard error estimate of the 

𝑍𝑖(𝑗𝑘) coefficient estimate, while a single middle-level clustering affect the one of 𝑊𝑖(𝑗𝑘). In 

other words, in the single-level analysis using OLS estimation, a Type I error issue could be 

more pronounced for the highest-level predictor than the middle level one.  

Bias of the Standard Error Estimates of the Coefficients of 𝑿𝒊(𝒋)𝒌 and 𝑿𝒊(𝒋𝒌) 

Finally, although the student-level predictor 𝑋𝑖𝑗𝑘 is not the focus of the current study; its 

standard error estimate is upwardly biased when the clustering structure is omitted8. As 

evidenced in Moerbeek (2004)and Snijders (2005), the regression coefficient of an individual-

level predictor 𝑋𝑖𝑗 in a two-level random intercept-only model tends to be upwardly biased when 

the adjacent upper cluster level is omitted in either the two- or single-level models. Type II error 

is also undesired since important individual-level predictor effects could be masked as 

insignificant. In a satisfactory random intercept two-level HLM model, the design effect formula 

of the standard error estimate of 𝑋𝑖𝑗’s coefficient is 𝐷𝐸𝐹𝐹2

𝑋𝑖𝑗 = 1 − 𝜌0, which is less than 1 

when 𝜌0 > 0, indicating that the multi-stage sampling design is more efficient than the simple 

random sampling in this setting (Snijders, 2005). It is easy to extend to a three-level case for the 

variance estimate adjustment of the coefficient of 𝑋𝑖(𝑗𝑘) from the OLS estimation case, which is: 

𝑉𝑂𝐶𝑀
(1−1,𝑂𝐿𝑆)

= 1 − 𝜌1 = 1 − 𝜌0 − 𝜌2.   (2.10) 

 
8 When 𝑋𝑖𝑗𝑘 is the predictor of interest while the cluster-level predictors and the random effects are not the foci, 

researchers could employ the fixed effect framework to account for the overall clustering dependency. However, 

when the cluster-level predictors are of the research interest, the fixed effect approach is less optimal. In the current 

setting of when the omitted cluster level data is not available, the shown design-based approach with the sensitivity 

analysis framework (in Chapter 3) could be preferred.  
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For the estimated two-level model case, 

𝑉𝑂𝐶𝑀
(1−1,2𝐿)

=
1 − 𝜌0 − 𝜌2

1 − 𝜌
= 1 −

𝜌0

1 − 𝜌
,   (2.11) 

which is the ratio of the design effects of the satisfactory three-level model and the false two-

level model. In Chapter 4, the main predictor of interest 𝑊𝑗(𝑘) encounters the same issue, in 

which a detailed derivation procedure is provided. Lastly, Table 2.3 below summarizes the 

VOCs of cluster-level predictors when omitting the teacher-level cluster only and omitting the 

clustering structure completely. 

Table 2.2 A summary of VOCs when the middle cluster level is omitted in a three-level 

structured clustering data. 

Three-level HLM Two-level HLM Single-level OLS Estimation 

Level Predictor Level Predictor 
Variance 

adjustment 
Level Predictor 

Variance 

adjustment 

Student 𝑋𝑖𝑗𝑘 

Student 

𝑋𝑖(𝑗)𝑘 𝑉𝑂𝐶𝑀
(1−1,2𝐿)

< 1 

Student 

𝑋𝑖(𝑗𝑘) 
𝑉𝑂𝐶𝑀

(1−1,𝑂𝐿𝑆)

< 1 

Teacher 𝑊𝑗𝑘 𝑊𝑖(𝑗)𝑘 𝑉𝑂𝐶𝑀
(2−1,2𝐿)

> 1 
𝑊𝑖(𝑗𝑘) 

𝑉𝑂𝐶𝑀
(2−1,𝑂𝐿𝑆)

> 1 

School 𝑍𝑘 School 𝑍(𝑗)𝑘 𝑉𝑂𝐶𝑀
(3−2,2𝐿)

= 1 
𝑍𝑖(𝑗𝑘) 

𝑉𝑂𝐶𝑀
(3−1,𝑂𝐿𝑆)

> 1 

Note. The letters in the parentheses of predictors’ subscripts indicate the corresponding cluster 

levels that are omitted.  

2.4.3 Simulation Results  

A simulation study is designed to test the estimation bias when the middle cluster is 

omitted and the performance of the derived VOC formulas. In total, 12 conditions of random 

effect standardized variances and cluster sizes are set, and 500 replications are generated for each 

condition. The total sample size of students (𝑀𝐼) and schools (𝑀𝐾) are 5000 and 100, 

respectively, which fixes an average school size (i.e., the average number of sampled students 
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within a school) 𝑛0 of 50. The setting of  the average class size (i.e., the average number of 

sampled students within a class) 𝑛𝐿 is set to be 5, 10, and 25. The corresponding average 

numbers of sampled classrooms or teachers in a school 𝑛𝐿 10, 5, and 2, and the ratio measure of 

the class and school sizes 𝜂 are 0.08, 0.18, and 0.49.  

Hedges and Hedberg (2007) provided a comprehensive list of ICCs for planning CRT 

based on the commonly used multi-stage sampled educational data sets, such as ECLSK and 

National Educational Longitudinal Study (NELS). They found that the ICCs are around 0.2 

across all grades of all sample schools. Therefore, with setting 𝜎𝑇𝑜𝑡𝑎𝑙
2 = 1, the values of random 

effects variance in the current study cover the conventional situations when the school-level 

random effects are relatively small (i.e., 𝜎𝑘 = 𝜌2 = 0.2) and large (i.e., 𝜎𝑘 = 𝜌2 = 0.7). Then, 

the teacher-level random effects of 𝜎𝑗  (= 𝜌0) are 0.2, 0.5, and 0.7 to meet the conditions of 

equaling to, larger than, and smaller than the school-level random effects. Finally, the simulation 

study employed R package lme4 (Bates et al., 2015), where Restricted Maximum Likelihood 

(REML) is specified for estimating the variance component to accommodate the cases with small 

cluster samples. 

The index of relative bias is computed to measure the magnitude of the estimation bias 

R. B.𝑒𝑠𝑡 =
𝜃̃ − 𝜃

𝜃
=

𝜃̃

𝜃
− 1, 

where 𝜃 represents the true parameters from the three-level model, including the random effects 

variances, standard errors of the teacher-level predictor 𝑊𝑗𝑘  , and the school-level predictor 𝑍𝑘. 

Correspondingly, 𝜃̃ represents the estimates from the estimated two-level model or the 

disaggregated OLS estimation. Falsely estimated models lead R. B.𝑒𝑠𝑡 to deviate from zero.  
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Furthermore, a negative R. B.𝑒𝑠𝑡 represents underestimation and a positive R. B.𝑒𝑠𝑡 

represents overestimation. Similarly, a relative bias index of R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 is provided to show the 

need and performance of adjustments of estimates, in which 𝜃̃ becomes the ones that are adjusted 

by 𝑉𝑂𝐶s or the repartitioned variance-covariance formulas. The better performance of the 

adjustment of estimates, the closer to zero R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 is. The simulation outputs are summarized 

in the following, and Appendix 2.C lists the parameter settings and provides detailed simulation 

results. 

Bias of the Random Effects and the Adjustment Performance 

The estimated two-level models overestimated the individual-level residual variance and 

school-level random effects variance, where the mean R. B.𝑒𝑠𝑡 are all positive and increasing with 

the increased  𝜎𝑗  or 𝜌0. With increasing n𝐿 and 𝜂, the magnitude of the overestimation  

of 𝜎̃(𝑘) increases while decreasing in 𝜎̃(𝑖). When the omitted between-classroom-within-school 

and the between-school variation only take 20% of the total variance respectively (i.e., 𝜎𝑗 =

𝜎𝑘 = 0.2) and the individual residual takes the most of the total variance, the overestimation of 

𝜎̃(𝑘) is small, particularly when the average classroom size is relatively small (i.e., 𝑛𝐿 = 5 𝑜𝑟 10) 

and the mean R. B.𝑒𝑠𝑡 of 𝜎̃(𝑘) is less than 0.01. Under the same conditions, however, the 

overestimation of the residual variance 𝜎̃(𝑖) is large, with 𝜎̃(𝑖) capables of being around three 

times as large as the true parameter. In an extreme converse case where the omitted between-

classroom-within-school variation is considerably large (i.e., 𝜎𝑗 = 𝜌0 = 0.7) and the individual 

variance and the between-school variation are small (i.e., 𝜎𝑖 = 0.1 and 𝜎𝑘 = 0.2), 𝜎̃(𝑘) can be as 

twice as large as the true parameter 𝜎𝑘. The overestimation of 𝜎̃(𝑖) is extreme that 𝜎̃(𝑖) can be 

over seven times larger than the true parameter 𝜎𝑖 .  
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These patterns are consistent with the Eqs. 2.3–2.5 that 𝜎̃(𝑖) has a higher degree of 

overestimation compared with 𝜎̃(𝑘) under the same conditions of 𝜎𝑗  and 𝑛𝐿. Moreover, the 

adjusted variances performed considerably well, as the mean R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 are close to 0 across all 

conditions.  

Bias of the Standard Error Estimates of the Coefficients of 𝒁(𝒋)𝒌 and 𝒁𝒊(𝒋𝒌) and the 

Adjustment Performance 

The absolute mean R. B.𝑒𝑠𝑡 of the standard error estimates of 𝑍(𝑗)𝑘 in the two-level 

models are all highly close to 0 (less than 0.01), which supports the previous derivation of 

𝑉𝐼𝐹𝑀
(3−2)

=1.In the single-level model using OLS estimation, the standard error estimates of 𝑍𝑖(𝑗𝑘) 

are consistently underestimated since the mean of R. B.𝑒𝑠𝑡 are all negative, and the standard 

deviations of R. B.𝑒𝑠𝑡 are nearly zero. The standard error estimates are only around 20 to 30 

percent of the true parameter, which is relatively stable across all the conditions. This is because 

OLS estimation ignored the overall error clustering dependency so that distinguishing the 

sources of clustering matters less.  

Bias of the Standard Error Estimates of the Coefficients of 𝑾𝒊(𝒋)𝒌 and 𝑾𝒊(𝒋𝒌) and the 

Adjustment Performance 

As shown by the negative value of the mean R. B.𝑒𝑠𝑡 and the nearly zero standard deviation of 

R. B.𝑒𝑠𝑡, the standard error estimates of the 𝑊𝑖(𝑗)𝑘 coefficient in the estimated two-level models 

and the 𝑊𝑖(𝑗𝑘) coefficient in the OLS estimated single-level models is downwardly biased in all 

conditions. 
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In the two-level models, the standard error estimates are mostly underestimated when the 

omitted 𝜎𝑗  and 𝑛𝐿 are large, and when 𝜎𝑖  is small. When 𝜎𝑗 = 0.7 and 𝜎𝑘 = 0.2, the standard 

error estimates can be a half and even only 20 percent of the parameter. When 𝜎𝑗 = 0.2 and 

𝜎𝑘 = 0.2, the standard error estimates can still be only 40 to 70 percent of the parameter, which 

is non-trivial. Further, in the extreme case of when the individual residual variance is 

considerably small (e.g., 𝜎𝑖 = 0.1), the underestimation of standard error estimates is 

comparable in cases of either the majority clustering dependency coming from the school-level 

(i.e., when 𝜎𝑗 = 0.2 and 𝜎𝑘 = 0.7) or from the classroom-level (i.e., when 𝜎𝑗 = 0.7and 𝜎𝑘 =

0.2). This is intuitive from 𝑉𝐼𝐹𝑀
(2−1,2𝐿)

= 1 + (𝑛𝐿 − 1)𝜌1.  These patterns are also found in the 

single-level models where the underestimation is positively related to the size of  𝜎𝑗  and 𝑛𝐿.  

The performance of 𝑉𝐼𝐹𝑀
(2−1)

 is generally good in almost all cases since R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 has 

absolute mean and standard deviation values less than or around 0.1. However, one exception in 

the two-level models is when 𝑛𝐿 = 25, 𝜎𝑗 = 0.7 and 𝜎𝑘 = 0.2 and the underestimation 

adjustment is not enough. The adjusted standard error estimate is around 75 percent of the true 

parameter, though having improved largely as compared with the unadjusted one of being 20 

percent of the true parameter. In single-level models when 𝑛𝐿 = 5, 𝜎𝑗 = 0.2 and 𝜎𝑘 = 0.7, the 

standard error estimates are over-corrected that the adjusted estimates are, on average, 20% 

larger than the parameter. In this case, the underestimation bias from the single-level model is 

close to zero (i.e., -0.05) that no adjustment is required in the first place.   
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Bias of the Standard Error Estimates of the Coefficients of 𝑿𝒊(𝒋)𝒌 and 𝑿𝒊(𝒋𝒌) and the 

Adjustment Performance 

Finally, the simulation found evidence of the overestimation bias of the standard error 

estimates of the coefficients of 𝑋𝑖(𝑗)𝑘 and 𝑋𝑖(𝑗𝑘). This finding is consistent with Moerbeek 

(2004). Particularly in cases where 𝜎𝑗  and 𝜎𝑘 are large, the bias is substantial. When 𝜎𝑗 and 𝜎𝑘 

are small as in 𝜎𝑗 = 0.2 and 𝜎𝑘 = 0.2, the R. B.𝑒𝑠𝑡 of the two-level HLM are less than 0.1. This 

resonates in Wang et al. (2019)’s simulation setting with small 𝜎𝑗 , 𝜎𝑘, and corresponding 

evidence that shows that the standard error estimates of 𝑋𝑖(𝑗)𝑘 is unbiased.  

2.5 Discussion and Conclusion  

Extending an emerging body of research debating whether a middle cluster level matters 

in making the decision of using a two- or three-level model, this chapter summarizes and 

clarifies when a two-level model omitting the middle cluster level would impact the standard 

error estimate of a certain level predictors’ regression coefficient in the settings of multi-stage 

sampling and CRT design. In previous studies, the relevant evidence is often shown through 

simulation and empirical analyses as examples. The current study complements those evidence 

by producing critical formulations of quantifying the standard error estimation bias (i.e., the 

correction index of VOCs), which are functions of the clustering parameters of the omitted 

middle cluster level. Simulation evidence is provided with settings of the practical K-12 

education to aid for empirical implications.  

Also, the findings shown by the VOCs formulas provide a general conclusion of the 

statistical mechanisms causing the bias and to what degree. The VOCs are specifically listed in 
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the above Table 2.2. For recommendations of modeling three- and two-level models, if the 

middle cluster level is a deliberate stage in sampling, even if this level is not directly related to 

the research questions, this cluster level should be explicitly modeled to correctly reflect the 

complete picture of the study designs of sampling stages and the levels of experimental 

mechanisms. An estimated two-level model omitting the middle cluster level should be corrected 

with the variance estimates of the random effects, whereas it would not produce biased standard 

error estimates of the coefficients of the third level predictors.  

If the middle cluster level is incidental instead of being a deliberate sampling stage or 

receive treatment assignment, whether to model this level as random effects largely depend on 

whether the research interests relate to the predictors at this middle level. Many times, the middle 

cluster level conveys important mechanisms that researchers would prefer to include this middle 

level and corresponding predictors in the three-level models. Particularly, a two-level model in 

this situation would easily falsely disaggregate the middle-level predictors at the lowest level. In 

this case, the standard error estimates of the disaggregated middle-level predictors’ coefficients 

need to be corrected to avoid Type I error.  

This study also extends omitting the single middle cluster level to completely omitting 

the clustering of both the middle and highest levels. This extension contributes to the 

conventional design-based robust standard error studies, which do not distinguish the sources of 

dependencies in multilevel data structures while capturing the overall dependency. This point is 

best supported by the VOC derivation of the highest cluster level predictor. Additional to the 

omitted one cluster level scenario, this chapter also extends to the omitting the overall clustering 

dependency case 
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as the estimated model is a single-level model. Then, the cluster-level predictors estimates would 

have Type I error issues and the individual level predictor would have a Type II error. Moreover, 

the Type I error issue is more pronounced in the highest-level predictor than the middle-level 

one. 

The above finding is empirical guidelines for researchers to decide whether the middle 

cluster level should be modeled. Further, combining with the sensitivity analysis framework and 

empirical examples presented in the following Chapter 3, researchers would further benefit from 

testing the magnitude of the robustness inference if a potential middle cluster level is not 

modeled. The current model-based design sets the basic random intercept model as the 

satisfactory model. If the random-slope model is the satisfactory model, the error variance-

covariance matrix of 𝑌𝑘 and the standard error estimate expressions should be accommodated 

(see Snijders and Bosker, 1993). However, the random intercept model is a widely used model in 

education empirical research and an ideal starting point for more complex models in future 

research. Another limitation of this study is that the modeling setting assumes balanced designs, 

which is not always plausible in practice. Future work needs to develop VOCs, particularly in the 

CRT designs (Konstantopoulos, 2010), to accommodate unbalanced situations, such as when 

including the ratio of cluster sizes. 
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CHAPTER 3 

SENSITIVITY ANALYSIS FRAMEWORK OF OMITTED CLUSTERING 

 

3.1 Introduction 

Good scientific research is expected to present the best design and models that can 

answer the research questions and satisfy the model assumptions. However, as argued earlier, the 

issue of omitting a cluster level in two-level HLM cannot be solved by a model-based approach 

(i.e., three-level HLM) in many practical situations, such as data restrictions and unidentifiable 

error variance-covariance structures. Given these concerns about omitted clustering, Chapter 2 

(and later Chapters 4 and 5) provided formulas to quantify the standard error estimation bias of 

the coefficients, which are functions of the clustering parameters (i.e., ICCs and cluster sample 

size) of the omitted cluster levels. Further, the current chapter builds a sensitivity analysis using 

the VOCs to test the magnitude of the inference robustness when the model-based approach is 

not feasible. In practice, if empirical researchers aim to know how robust the inference they 

made from the estimated model with a potentially omitted cluster level, they may hypothesize 

the clustering parameters of the omitted cluster and utilize the this sensitivity analysis 

framework. .  

In essence, the proposed sensitivity analysis evaluates the deviations of the estimated 

models from the ideal case of when all crucial random effects are correctly modeled and 

specified. Simply stated, the larger deviations from the assumption there are, the higher bias of 

the standard error estimates due to the omitted clustering, and the less robustness of the statistical 

inference. Panel (a) of Figure 3.1 demonstrates this idea. As defined earlier in Chapter 2, the 

satisfactory model is the ideal model that meets all the clustering assumptions, which is unknown 
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in practice and thus outlined with dashed lines in the figure on the right end. The estimated 

model is the actual conducted model and hypothesized with an omitted necessary cluster level, 

which could produce biased estimates. The more the estimated model deviates from the 

satisfactory model due to the omitted clustering, the less robust it is. The size of the deviation is 

then quantified by the hypothesized clustering effect via setting parameters of ICCs and cluster 

sizes of the omitted cluster level. Consequently, even if the satisfactory model is unknown, it can 

be hypothesized to test how far the estimated model deviates. In Figure 3.1, Model A and Model 

B are such two hypothesized satisfactory models. Specifically, the estimated model deviates 

from Model B farther than Model A, since Model B sets with larger clustering parameters.  

The size of the deviation from the estimated model to a hypothesized satisfactory model 

can be represented in terms of the size of the bias of standard error estimates. Thus, if the 

deviation is considerable, the bias of the standard error estimates can be large enough to generate 

a false inference with either a Type I or Type II error. Therefore, a threshold satisfactory model 

defining the minimal deviation size to invalidate an inference is added in panel (b) of Figure 3.1. 

This idea is built on the “switch point” framework of Frank, Maroulis, et al. (2013), which 

defines a lower threshold of a non-zero effect study switches to a no effect one.  

The clustering setting of the threshold satisfactory model is then the threshold clustering 

of the omitted cluster, which can help researchers quantify the robustness of their inferences to 

omitted clusters. For example, if researchers think Model A fundamentally represents the omitted 

clustering, then the estimated model does not produce a false null hypothesis decision since the 

threshold model is on the right of Model A. In this case, the estimated model would be 

acceptable, although its interpretations and implications should not be overstated. On the 

contrary, if Model B’s clustering setting is also reasonable, the magnitude of the standard error 
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estimate bias of the estimated model is large enough that the estimated model generates a false 

decision of null hypotheses.  

In Frank, Maroulis, et al. (2013),  the robustness of inference is defined as “the 

evaluation of the estimate against the threshold (p. 439)”. This definition constructs the amount 

of bias in an estimate to invalidate the inference. The threshold estimate is often specified as the 

one for statistical significance associated with an exact p-value of 0.05. Switch to the current 

study, the magnitude of the robustness of inference is evaluated by the deviation of the estimated 

model from the hypothesized satisfactory models. The larger the deviation, the less robust the 

inference regarding modeling specification on clustering dependency. Unlike a fixed threshold 

estimate in Frank, Maroulis, et al. (2013), the position of the hypothesized satisfactory model 

defined in the current study is flexible as shown in Figure 3.1, which changes along with the 

sizes of the omitted clustering degree (i.e., VOCs). The current study constructs a sensitivity 

measure accordingly: the percentage of reduced robustness of inference. This measure quantifies 

the magnitude of threats to the robustness of inference due to an omitted cluster level. The initial 

robustness of the estimated model should be considered 100% when the estimated model and the 

hypothesized satisfactory model has no distance (i.e., no omitted clustering issue). If the 

estimated model has an omitted clustering issue that a deviation between the estimated and the 

hypothesized satisfactory model exists, its initial robustness magnitude should be smaller than 

100%. Thus, as the deviation increases, the robustness decreases.  

Extend the sensitivity analysis application to treatment evaluation studies, the percentage 

of reduced effect size as a second sensitivity measure is developed. Further, when the 

hypothesized satisfactory model is on the right of the threshold model (such as the standard error 

associated with an exact p-value 0.05), a measure evaluates the risk of making a false null 
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hypothesis decision is provided. For example, in the panel (b) of Figure 3.1, a red line presents 

the distance between the threshold satisfactory model and Model B. As the distance increases, 

the risk of making a Type I error (or a Type II error) increases. Further, the risk of having an 

invalid inference can be compared across hypothesized satisfactory models. The following 

discussion focuses on the scenarios of making Type I error, while Appendix 3.1 further provides 

the Type II error discussions. 

Section 3.2 starts with the simple scenario of conducting a false single-level analysis 

which omits a higher cluster level and leads to underestimated standard error estimates. The 

developed measures and formulas are easily applied to the false two-level HLM with omitting a 

cluster level cases, and can also accommodate to the Type II error cases when the standard error 

estimates are upwardly biased (such as in the omitting highest cluster level case in Chapter 4). 

Section 3.3 provides an empirical example of employing the developed sensitivity analysis. The 

empirical example serves the discussion in Chapter 2, where a two-level HLM model is 

estimated while an incidental middle cluster level is potentially omitted.   

3.2 Constructing the Sensitivity Measures for Inference Robustness of Clustering 

In Frank, Maroulis, et al. (2013), the magnitude of the inference robustness was 

quantified by constructing a ratio of a coefficient estimate with a threshold coefficient. Since the 

standard error estimate is of the focus of the current study in evaluating the impacts of the 

omitted clustering dependency, the current study construct the ratio of the t statistics from the 

estimated and hypothesized satisfactory models and the t critical value with an alpha level of 

0.05, fixing the coefficient estimates if a cluster level is omitted (McNeish,2014). For example, 

consider an estimated single-level analysis with a continuous dependent variable 𝑌𝑖(𝑘), which 
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indicates the outcome of a student i in a school k though the school-level is omitted as shown in 

parenthesis:  𝑌𝑖(𝑘) = 𝛽0(𝑘) + 𝛽1(𝑘)𝑋𝑖(𝑘) + 𝜀𝑖(𝑘).  The coefficient estimate 𝛽̂1(𝑘)of the predictor of 

interest 𝑋𝑖(𝑘) has a corresponding standard error estimate 𝑆𝑡𝐸𝑜𝑙𝑠.  

 

(a) Deviation of the estimated model from the unknown satisfactory model 

 

 

(b) Deviations of the estimated model from the hypothesized satisfactory models of A and B 

 

 

(c) Deviations of the estimated model from the hypothesized satisfactory models of B and C 

 

Figure 3. 1 Graphic demonstrations of the conceptualizing the sensitivity analysis framework 

With the omission of the higher cluster level of schools, the standard error estimate is 

downwardly biased and needs adjustment, which turns to be 𝑆𝑡𝐸𝑣𝑜𝑐 = 𝑆𝑡𝐸𝑜𝑙𝑠 ∗ √𝑉𝑂𝐶 , while the 



 

 

55 

 

point estimate 𝛽̂1(𝑘) remains the same. The 𝑉𝑂𝐶 here is the design effect 1 + 𝜌𝑖𝑐𝑐 ∗ (𝑁̅𝑘 − 1), 

where the expected intraclass correlation 𝜌𝑖𝑐𝑐 and the average cluster size 𝑁̅𝑘 are the clustering 

parameters. Further, setting the common 0.05 alpha level, the threshold model has the t critical 

value of 𝑡# = 1.96 and the standard error of 𝑆𝑡𝐸# = 𝛽̂1(𝑘)/1.96 ≅ 𝛽̂1(𝑘)/2. The following uses a 

general coefficient estimates notation 𝛽̂ replacing 𝛽̂1(𝑘). 

3.2.1 Scenario of No Type I error  

This scenario presents the case of the estimated model (i.e., the single-level model using 

OLS estimation) deviating from the hypothesized satisfactory Model A with reduced inference 

robustness and effect size. However, the deviation is not large enough to result in a Type I error, 

as Model A is on the left of the threshold model. After transforming into the t statistic robustness 

framework as shown in Panel (a) Figure 3.2, this scenario yields 𝑡𝑜𝑙𝑠 > 𝑡𝑣𝑜𝑐 > 𝑡#, in which  the t 

statistic from the estimated model is larger than the threshold 𝑡# by ∆2 (i.e., ∆2= 𝑡𝑜𝑙𝑠 − 𝑡#), and  

the t statistic from Model A is larger than the threshold 𝑡# by ∆1 (i.e., ∆1= 𝑡𝑣𝑜𝑐 − 𝑡#). The 

deviation of the estimated model and Model A is thus equivalent to the distance ∆ between those 

two differences of t statistics against 𝑡# (i.e., ∆= ∆2 − ∆1≥ 0).  

The larger the distance ∆, the larger inflation the t statistic of the estimated model is, and 

the stronger evidence of the reduced magnitude of robustness. Scaling  ∆ by 𝑡𝑜𝑙𝑠 as quantifying 

the size of inflation relatively to the t-statistic,  the percentage of the reduced robustness is 

formulated as  

𝑊𝑂𝐶 =
∆

𝑡𝑜𝑙𝑠
=

∆2 − ∆1

𝑡𝑜𝑙𝑠
=

𝑡𝑜𝑙𝑠 − 𝑡𝑣𝑜𝑐

𝑡𝑜𝑙𝑠
= 1 −

𝑆𝑡𝐸𝑜𝑙𝑠

𝑆𝑡𝐸𝑣𝑜𝑐
= 1 −

1

√𝑉𝑂𝐶
. (3.1) 
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Consider Figure 3.2 Panel (a) below, when ∆= 0 that  𝑊𝐶 = 0, there is no bias in the 

standard error estimates due to potential omitted clustering. This is the case of the estimated 

model is the best practice model which initial robustness regarding with modeling clustering can 

be considered as 100%. With the increase of ∆, the initial robustness decreases by 𝑊𝐶.  

 

(a) Scenario of No Type I error  

 

(b) Scenario of having Type I error  

Figure 3.2 Two Scenarios of Comparing t Statistics of the Estimated Model and the 

Hypothesized Models (𝑡𝑜𝑙𝑠 > 𝑡#) 

Further, I propose a measure of the changes in effect size. In educational research, 

particular in the experimental design research, the generic idea of effect size is the standardized 
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mean differences, which is the ratio of the treatment effect to a standard deviation (Hedges, 

2007b). Then, the effect size of the predictor of interest 𝑋𝑖(𝑘) from the estimated single-level 

model is 𝐸𝑆𝑂𝐿𝑆 =
𝛽̂1(𝑘) 

𝜎𝑜𝑙𝑠
 , where the numerator is the fixed coefficient 𝛽̂1(𝑘) and the denominator 

is the standard deviation 𝜎𝑜𝑙𝑠 = 𝑆𝑡𝐸𝑜𝑙𝑠 ∗ √𝑁. And 𝑁 is the total sample size. This definition of 

effect size is the adapted from Cohen’s d (Cohen, 1962, 2009). Correspondingly, the effect size 

from the hypothesized satisfactory model9 is 𝐸𝑆𝑉𝐼𝐹 =
𝛽̂1(𝑘) 

𝜎𝑣𝑜𝑐
=

𝛽̂1(𝑘) 

𝑆𝑡𝐸𝑣𝑜𝑐∗√𝑁
. Then, the percentage of 

the reduced effect size due to an omitted cluster level can be calculated using 

𝐸𝑆𝑂𝐶 =
𝐸𝑆𝑂𝐿𝑆 − 𝐸𝑆𝑉𝑂𝐶

𝐸𝑆𝑂𝐿𝑆
= 1 −

𝑆𝑡𝐸𝑜𝑙𝑠

𝑆𝑡𝐸𝑣𝑜𝑐
= 1 −

1

√𝑉𝑂𝐶
, (3.2) 

which is identical to 𝑊𝐶. As specified by the scenario setting, √𝑉𝑂𝐶 here is smaller than the 

threshold √𝑉𝑂𝐶0 that the estimated model is acceptable as it does not lead to a false decision on 

a non-effective intervention or mechanism. However, the decisions made on the estimated effect 

size need to be cautious as the satisfactory effect size can be smaller.  

In the context of education interventions and policy evaluations, there are several 

commonly used measures of interpreting effect size, such as the magnitude, cost of a program, 

and scalability of programs (Kraft, 2020). As a complement, 𝐸𝑆𝐶 can be considered as a 

sensitivity measure serving to quantify the uncertainty of effect size due to the omitted clustering 

effect. Noticeable, 𝐸𝑆𝐶 is different from the conventional sampling uncertainty measures of 

effect size, such as the standard error and confidence interval (see Cooper et al., 2019).  

 
9 The current effect size formula is constructed based on Cohen’s d, while other definitions of effect size that satisfy 

specific research interest exist. A summary and comparison of commonly used effect size measures can be found in 

Fritz, Morris, & Richler (2012), and the ones developed for multilevel analysis can be seen in Hedges (2007).   
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Obviously, the size of 𝐸𝑆𝐶 depends on the values of the hypothesized clustering degree 

VOC and the original effect size estimate of the tested study. By hypothesizing meaningful 

settings of clustering degree (i.e., VOC and its parameters of ICC and cluster size) within the 

context of a certain study10, 𝐸𝑆𝐶 constructs an interval as well. Then, multiplying the original 

effect size estimate with the range of 𝐸𝑆𝐶, researchers gain an interval of effect size due to 

plausible omitted clustering settings. The larger the VOC, the larger reduction of effect size 

when fixing the original effect size. The wider range of the VOC, the more uncertainty of a study 

due to the omitted clustering.    

When fixing the VOC, the same value 𝐸𝑆𝐶 could lead to different meanings with respect 

to different original effect size.  For example, when 𝐸𝑆𝐶 = 0.3, a large effect size estimate of 0.3 

only reduces to 0.2, which is still considerably large to indicate an effective and significant 

program. However, a medium effect size estimate of 0.1 reduces to 0.07, which would lead to a 

consideration of less strength of the detected effect. As shown, though a 3% reduction of a small 

effect size (i.e., 0.03 in the example) is much smaller than a 3% reduction of a larger effect (i.e., 

0.1 in the example), the judgments on the reduced effect size realize on the magnitude of the 

original effect size. It is an advantage of  𝐸𝑆𝐶 measuring the percentage of reduction against the 

original effect size instead of being an arbitrary value of reduction. The interpretation of effect 

size depends largely on the research context (Hedges, 2008; C. J. Hill et al., 2008; Kraft, 2020). 

Though it is beyond the scope of this study to discuss the benchmarks of interpreting the 

magnitude of effect size, the current study suggests employing a summarized schema for 

 
10 See Korendijk, Moerbeek , et al. (2010)’s suggestions in assessing the ICC setting in educational research designs.  
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interpreting effect size along with the cost and scalability of programs from Kraft (2020, p. 20) 

when interpreting the magnitude of the reduced effect size of 𝐸𝑆𝐶. 

Researchers need to make decisions on setting plausible values of the clustering 

parameters of the omitted cluster when applying the above sensitivity analysis. In the setting of 

no Type I error, √𝑉𝑂𝐶 is always smaller than the threshold √𝑉𝑂𝐶0. While, if √𝑉𝑂𝐶 is possible 

to  be larger than the threshold √𝑉𝑂𝐶0, the estimated model needs to further consider a Type I 

error issue discussed as following.   

3.2.2 Scenario of Having a Type I error  

A Type I error issue occurs when the estimated model is on the left of the threshold 

model while the hypothesized satisfactory model (i.e., Model B) is on the right, as shown in 

panel (b) of Figure 3.2, 𝑡𝑜𝑙𝑠 > 𝑡# > 𝑡𝑣𝑜𝑐 when 𝑡𝑉𝑂𝐶 is smaller than the threshold 1.96 by ∆1 (i.e., 

∆1= 𝑡# − 𝑡𝑣𝑜𝑐)while 𝑡𝑜𝑙𝑠 is larger than the threshold by ∆2 (i.e., ∆2= 𝑡𝑜𝑙𝑠 − 𝑡#). The estimated 

model deviates from Model B by ∆= ∆1 + ∆2. The quantification process of the reduced 

robustness of inference and effect size is identical to the above scenario of no Type I error 

𝑊𝑂𝐶 =
∆

𝑡𝑜𝑙𝑠
=

∆2 + ∆1

𝑡𝑜𝑙𝑠
=

𝑡𝑜𝑙𝑠 − 𝑡𝑣𝑖𝑓

𝑡𝑜𝑙𝑠
= 1 −

𝑆𝑡𝐸𝑜𝑙𝑠

𝑆𝑡𝐸𝑣𝑜𝑐
= 1 −

1

√𝑉𝑂𝐶
, (3.3) 

𝐸𝑆𝑂𝐶 =
𝐸𝑆𝑂𝐿𝑆 − 𝐸𝑆𝑉𝑂𝐶

𝐸𝑆𝑂𝐿𝑆
= 1 −

𝑆𝑡𝐸𝑜𝑙𝑠

𝑆𝑡𝐸𝑣𝑜𝑐
= 1 −

1

√𝑉𝑂𝐶
. (3.4) 

Further, as introduced earlier, a large distance between the threshold model and Model B 

suggests that the estimated model has a high possibility of making a Type I error. This Type I 

error risk can thus be quantified by the relative size of ∆1 in ∆ while fixing ∆2  
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𝑅𝑂𝐶 =
∆1

∆
=

∆1

∆1 + ∆2
=

1

1 + ∆2/∆1
=

1

1 + 𝑟
, (3.5) 

and  

𝑟 = ∆2/∆1=
𝑡𝑜𝑙𝑠 − 𝑡#

𝑡# − 𝑡𝑣𝑜𝑐
=

𝛽̂
𝑆𝑡𝐸𝑜𝑙𝑠

−
𝛽̂

𝑆𝑡𝐸#

𝛽̂
𝑆𝑡𝐸# −

𝛽̂
𝑆𝑡𝐸𝑣𝑜𝑐

 

=
(𝑆𝑡𝐸# − 𝑆𝑡𝐸𝑜𝑙𝑠)𝑆𝑡𝐸𝑣𝑜𝑐

𝑆𝑡𝐸𝑜𝑙𝑠(𝑆𝑡𝐸𝑣𝑜𝑐 − 𝑆𝑡𝐸#)
 

=
(𝑆𝑡𝐸# − 𝑆𝑡𝐸𝑜𝑙𝑠)√𝑉𝑂𝐶

𝑆𝑡𝐸𝑜𝑙𝑠√𝑉𝐼𝐹 − 𝑆𝑡𝐸#
,                   (3.6) 

where 𝑟 is positive and 0 < 𝑅𝑂𝐶 < 1 since Type I error only happens when 𝑆𝑡𝐸𝑣𝑖𝑓 > 𝑆𝑡𝐸# >

𝑆𝑡𝐸𝑜𝑙𝑠. In Panel (b) of Figure 3.2, fixing ∆1 of the satisfactory model, a larger ∆2 leads to larger 

risk of making the Type I error. This relationship is quantified through 𝑅𝑂𝐶 that the higher the 

omitted clustering effect or correspondingly the √𝑉𝑂𝐶 is, the higher the risk it is of the estimated 

model for making a Type I error. Further, the value of 𝑅𝑂𝐶 makes comparisons with the 

threshold case of when 𝑆𝑡𝐸# = 𝑆𝑡𝐸𝑜𝑙𝑠. This is because it is intuitive that when the satisfactory 

model has a t statistic that equals to the t threshold (that is √𝑉𝑂𝐶 = √𝑉𝑂𝐶0), the Type I error 

issue arises.  

Back to Panel (c) of Figure 3.1, it further demonstrates how the risk index can be utilized 

for comparing hypothesized satisfactory models. A hypothesized satisfactory Model C has a 

higher clustering setting than Model B, and thus being located on the farther right of the 

threshold model than Model B, thus  ∆1,𝐶> ∆1,𝐵. Also, fixing ∆2, 𝑅𝑂𝐶
𝐶 > 𝑅𝑂𝐶

𝐵 . That is, if Model C 

is the satisfactory model, the estimated model has a higher risk of having a Type I error issue 
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than if Model B is satisfactory. Noticeably, since the relative size of ∆2 in ∆ is considered in the 

formulation, the ratio of 𝑅𝑂𝐶
𝐶  and 𝑅𝑂𝐶

𝐵  is not as simple as ∆1,𝐶> ∆1,𝐵. Researchers who intend to 

know the relative risks of having Type I errors across different clustering settings of VOC can 

further utilize a relative risk index of   

𝑅𝑑 = |
𝑅𝑂𝐶

𝐶 − 𝑅𝑂𝐶
𝐵

𝑅𝑂𝐶
𝐵 | = |

𝑅𝑂𝐶
𝐶

𝑅𝑂𝐶
𝐵  − 1| . (3.7) 

In this manner, the risk of making Type I error increases by a percentage of 𝑅𝑑, if the 

omitted clustering setting of Model C is preferred than the one of Model B based on the research 

context.  Finally, the above discussions focused on the Type I error issue. In Appendix 3.A, 

measures of robustness inferences are extended to the Type II error issue.   

3.2.3 Heuristics Diagram and Interpretations of the Sensitivity Analysis  

The heuristics diagram in Figure 3.3 depicts a possible flow of conducting the sensitivity 

analysis. Starting from the top of the diagram, researchers may first find the threshold √𝑉𝐼𝐹𝑡. 

Solving ∆1=0 (i.e., 𝑡𝑣𝑖𝑓 = 𝑡#), √𝑉𝑂𝐶𝑡 yields  

√𝑉𝑂𝐶𝑡 =
𝛽̂

1.96𝑆𝑡𝐸𝑜𝑙𝑠
≅

𝛽̂

2𝑆𝑡𝐸𝑜𝑙𝑠
=

1

2
𝑡𝑜𝑙𝑠. (3.8) 

The use of this threshold √𝑉𝑂𝐶𝑡 is straightforward, and it is of great use when empirical 

researchers need to anchor the threshold clustering parameters of the omitted cluster level. 

Further, researchers may set an empirical √𝑉𝑂𝐶0 with meaningful clustering parameter values of 

what best satisfies their prior knowledge about the suspected omitted cluster level. If the 

scientific √𝑉𝑂𝐶0 is unlikely to be exceeded at the threshold √𝑉𝑂𝐶𝑡, then researchers may worry 
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less about the Type I error but focus on the magnitude of reduced robustness of inferences and 

effect size. If √𝑉𝑂𝐶0 exceeds the switch point value, then researchers need to further take into 

account the risk of having a Type I error. Setting a reasonable √𝑉𝑂𝐶0 value, researchers can 

manipulate the implications of an omitted cluster by exploring many possible values of the 

clustering parameters.  

 

Figure 3. 3 Heuristics diagram of sensitivity analysis when the predictor of interest in the original 

single-level model is statistically significant. 

Researchers can also conduct sensitivity analysis in the opposite direction. They may 

start with setting the clustering parameters to gain a √𝑉𝑂𝐶0, then judge with the √𝑉𝑂𝐶𝑡. 

Enlightened by the work of Frank, Maroulis, et al. (2013), a sensitivity analysis can be of the 

most practical use by empirical research when it is equipped with a scientific language for 

interpretations. Here are the suggested interpretations of the above sensitivity analysis:  

1) The robustness of inference (or effect size) reduces by x % (i.e., the values of 𝑊𝑂𝐶 or 𝐸𝐹𝑂𝐶) if 

the omitted cluster level has a clustering degree of y (i.e., the √𝑉𝑂𝐶 value). The clustering 

degree is characterized by 𝜌𝑖𝑐𝑐 = 𝑏 and 𝑁𝑔 = 𝑐.  
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2) The risk of making Type I error increases by x % (i.e., the value of 𝑅𝑂𝐶) if the omitted cluster 

level has a clustering degree of y.  

3.3 Implication of the Sensitivity Analysis: Using an Empirical Example  

This section provides an empirical study example to show how to use the sensitivity 

analysis in defining the robustness of inference when an incidental middle cluster level is 

omitted. The selected study is from Heafner et al. (2019), which examined demographic and 

course instruction related variables’ impact on students’ economics content knowledge. The 

employed data is the National Assessment of Educational Progress Economics Assessment 

(NAEP-E), which has a two-stage sampling design (with PSUs being schools and USUs being 

students). In that work, a two-level random intercept model is constructed, where the first and 

second levels are students and schools, because the authors mentioned that NAEP-E has data 

constraints to link students to teachers causing a three-level model to be prohibited (as seen in p. 

331). In the final estimated model (see their Table 2 in p. 336), each level has corresponding 

demographic measures. Moreover, course type (such as AP course), curricular and instructional 

exposure (such as internet use in a class) measures are assigned at the student level.  

It is reasonable to argue that some student-level predictors that are relevant to courses and 

instructions may be classroom-level predictors. For example, instructional exposure of reading in 

class and internet use for economic data may be uniform for students within the same classroom 

and teacher. Also, variations in the between-classrooms-within-schools cluster may be random. 

Therefore, the classroom level, as an incidental middle cluster level, is assumed to matter to be 

explicitly modeled.  
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The below sensitivity analysis, shown in Table 3.1,  is performed to calculate the 

robustness of the inference of the student-level predictor of internet use for economic data. The 

statistics from the estimated models are presented in the section of estimated two-level HLM in 

the table, including the regression coefficient 𝛽̂ = −1.44 (I used the absolute value in the 

sensitivity analysis for simplicity reasons which does not affect the results), standard error 

estimates 𝑆𝑡𝐸2𝐿 = 0.4, the random effects variance of 𝜎̃(𝑖) = 22.62 and 𝜎̃(𝑘) = 8.58 conditioned 

on the predictors, the total number of the sample schools  𝑀𝐾 = 560, and the average number of 

students within a school 𝑛0 = 20. Meanwhile, the hypothesized average number of students 

within a classroom 𝑛𝐿 and the between-classroom variance 𝜎(𝑗) need special attention since they 

together affect whether the VOCs and the corresponding calculated statistics of the three-level 

model (such as the random effects variance 𝜎(𝑖) and 𝜎(𝑘)) are plausible. In Table 3.1, three 

values of 𝑛𝐿 are hypothesized to provide cases of extreme small cluster size of classrooms and 

the regular ones.  

Following the steps shown in the heuristics diagram of Figure 3.3, I first find the 

threshold √𝑉𝑂𝐶𝑡 = 1.837. This threshold is then used to calculate the corresponding 𝜌0 and 

𝜎(𝑗). In the cases of when 𝑛𝐿 are 2 and 10, the threshold-based 𝜌0 is not plausible since they 

exceed the boundary of (0,1). In these two cases, it is more meaningful to find the possible 

maximum and minimum 𝜌0. For example, when 𝑛𝐿 = 2, the maximum value of a 𝜌0 is 0.665 to 

make the regression estimates in the hypothesized three-level HLM feasible. Further, even when 

𝜌0 is large, the corresponding √𝑉𝑂𝐶𝑚𝑎𝑥 would not lead to a 𝑆𝑡𝐸𝑣𝑖𝑓 that is larger than 𝑆𝑡𝐸#. 

Thus, there is no need to concern about potential Type I error issue when the average classroom 

size is extremely small. However, the robustness of inference (or effect size) reduces by around 
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50 % (i.e., the values of 𝑊𝑂𝐶 or 𝐸𝐹𝑂𝐶), which is not trivial. These settings reflect the earlier 

discussion of no Type I error scenario in Section 3.1.1. The following shows the having Type I 

error scenario.  

In the setting of 𝑛𝐿 = 10, a minimum 𝜌0 is needed to specify eligible regression 

estimates in the hypothesized three-level HLM. This 𝜌0,𝑚𝑖𝑛 is extremely small, being 0.01, 

which still can lead to a Type I error since the corresponding 𝑆𝑡𝐸𝑣𝑖𝑓 is larger than 𝑆𝑡𝐸#. The risk 

of making a Type I error (i.e., 𝑅𝑂𝐶) increases by 0.02, compared with the threshold setting with 

the t statistic at the switch point of 1.96. Also, when 𝑛𝐿 = 10, the feasible 𝜌0,𝑚𝑎𝑥 is 0.58 with a 

𝑅𝑂𝐶 the maximum value of 0.24. Finally, when 𝑛𝐿 = 7, the threshold-based 𝜌0 is plausible for 

being 0.176, which means that any 𝜌0 that is larger than 0.176 could result in Type I error or not 

if 𝜌0 is smaller than 0.176. Two values of 𝜌0 being 0.5 and 0.1 are used to demonstrate this 

point.  

This section went through the implication of the sensitivity analysis framework. As 

shown by the above example that inferring the magnitude of the robustness inference largely 

depends on the selection of the clustering parameters of the omitted cluster level. In practice, 

researchers may require meaningful clustering parameters from the previous research evidence to 

make the best argument for the inference robustness. As shown in the above specific example, 

the calculated between-classroom variation as measured by 𝜎(𝑗) and  𝜌0 are regulated by VOC 

formulas and empirical evidence. This evidence encourages researchers to be cautious about 

excluding the classroom-level in modeling and assign the classroom-level predictors to other 

levels.  
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 Table 3.1 Sensitivity analysis of the student-level predictor: Internet-use for economic data 

Estimated Two-level HLM Hypothesized Three-level HLM 

    𝑀𝐾 560 𝑛𝐿 2 7 10 

    𝑛0 20 𝜂 0.053 0.316 0.474 

𝛽̂ 
|-

1.44| 
  𝜎̃(𝑖) 22.62 𝜎(𝑖) 20.748 19.812 5.499 15.600 19.500 0.312 4.524 

𝑆𝑡𝐸# 0.735 𝑡# 1.96 / / 𝜎(𝑗) 2.964 2.964 17.121 11.946 3.120 22.308 18.096 

𝑆𝑡𝐸2𝐿 0.400 𝑡2𝐿 3.60 𝜎̃(𝑘) 8.58 𝜎(𝑘) 7.488 8.424 8.580 3.654 8.580 8.580 0.008 

    𝜌 0.275 𝜌2 0.240 0.270 0.219 0.117 0.275 0.270 <0.001 

 𝜌0 0.665 0.095 0.176 0.500 0.1 0.010 0.580 
 

𝜼 𝒏𝑳 𝝆𝟎 

√𝑽𝑶𝑪 𝑺𝒕𝑬𝒗𝒐𝒄 
𝑾𝑶𝑪 

& 𝑬𝑺𝑶𝑪 
𝑹𝑶𝑪 

Threshold 

√𝑉𝑂𝐶𝑡 
1.837 0.735 0.456 Switch Point 

0.053 2 

√𝑉𝑂𝐶𝑡 based 𝜌0 2.215  NA NA NA NA 

𝜌0,𝑚𝑎𝑥 0.665 √𝑉𝑂𝐶𝑚𝑎𝑥 1.380 0.552 0.275 NA 

𝜌0,𝑚𝑖𝑛 0.095 √𝑉𝑂𝐶𝑚𝑖𝑛 1.168 0.467 0.144 NA 

0.316 7 

√𝑉𝑂𝐶𝑡 based 𝜌0 0.176 √𝑉𝑂𝐶𝑡 1.837 0.735 0.456 Switch Point 

𝜌0 0.5 √𝑉𝑂𝐶 2.169 0.867 0.539 0.15 

𝜌0 0.1 √𝑉𝑂𝐶 1.749 0.700 0.428 NA 

0.474 10 

√𝑉𝑂𝐶𝑡 based 𝜌0 -0.021  NA NA NA NA 

𝜌0,𝑚𝑖𝑛 0.01 √𝑉𝑂𝐶𝑚𝑖𝑛 1.877 0.751 0.467 0.02 

𝜌0,𝑚𝑎𝑥 0.58 √𝑉𝑂𝐶𝑚𝑎𝑥 2.494 0.998 0.599 0.24 
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CHAPTER 4 

OMITTED HIGHEST CLUSTER LEVEL 

 

4.1 Introduction 

The context of schools and districts play important roles in many aspects of education, 

which has been a major topic in educational effectiveness studies since the renowned “Coleman 

report” of the 1960s (Gamoran et al., 2000; Rumberger & Palardy, 2004). In many aspects, 

schools and districts provide particular social contexts, physical resources, and leadership 

distributions and provoke varying students learning outcomes (Akerlof & Kranton, 2002; Fahle 

& Reardon, 2018; Muijs, 2020; Muller, 2015; Xia et al., 2020). Current educational database, 

such as the NCES-initiated survey programs, provide many significant instruments measuring 

the contexts of schools and districts, as well as within-school and -district variations (Muller, 

2015). Methodologically, if this rich contextual information is omitted in modeling, studies may 

give spurious conclusions since the satisfactory but omitted between-school (or district) variation 

would be trapped into the lower levels of classrooms and teachers, whose impacts would thus be 

falsely enlarged on students’ learning (see Moerbeek, 2004, and other studies mentioned in 

Chapter 1).  

This chapter intends to address the analytical issues of omitting a highest cluster level 

(such as schools and districts) in a two-level HLM model. Specifically, this chapter sets a 

conceptual two-level random intercept model examining students’ learning outcome with school 

level predictors and assuming that an even higher cluster level of districts is omitted. Following 

Chapter 2’s discussion on omitting the middle cluster level, this chapter also applies the 

mechanisms of sampling and experimental designs to the discussion of omitting a necessary 
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highest cluster level, which facilitate to answer when the highest clustering dependency matters 

in modeling. Popular educational survey data sets are used as examples for empirical concerns.  

Then, the question of how much the omitted cluster level matters in making a robust inference is 

answered by the derived VOC formulas and evidenced by a simulation study. Further, an 

empirical study example using two-level model is provided to implement the VOCs within the 

sensitivity analysis framework developed in Chapter 3.  

4.2 Omitted Highest Cluster Level in Sampling and Experimental Design 

4.2.1 Omitting PSUs in a Three-Stage Sampling Structure Data  

PSUs could be omitted in empirical analysis with data that has a three-stage sampling design. For 

instance, the public available version date sets (e.g., ECLSK) are often do not provide linkable 

ID of SSUs of schools to PSUs of districts or counties11. In this case, two-level HLM models 

leave out the clustering of schools within districts or counties, although the clustering 

dependency due to students-nesting-within-schools is modeled explicitly. The design effect of 

the true three-stage sampling is 

𝐷𝐸𝐹𝐹𝐿3 = 1 + 𝑛(s2)(𝑛(s1) − 1)𝜌(s1) + (𝑛(s2) − 1)𝜌(s2), 

where 𝜌(s1) is the expected correlation among SSUs within a PSU, and  𝑛(s1) is the sample 

number of SSUs within a PSU. Also, 𝜌(s2) is the expected correlation among FSUs within an 

 
11 Sometimes, ignoring a sampling stage could happen to when the sampling scheme is not universal in a large 

survey study. For example, in some international survey programs, countries may vary in sampling scheme to 

accommodate local context. Researchers may easily use the general sampling scheme as the universal design while 

ignore certain exceptions. Chen and Rust (2017) introduced such a scenario in the Programme for International 

Student Assessment (PISA) 2015, which used a general two-stage sampling design where the two stages are schools 

and students (OECD, 2015). While PISA of Russia used a three-stage sampling design, where geographical areas are 

PSUs, schools are SSUs, and students are USUs (OECD, 2015). The PSUs of geographical areas maybe easily 

ignored if a two-stage sampling scheme is taken as universal when the research data employed is PISA of Russia.   
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SSU, and 𝑛(s2) is the sample number of FSUs within an SSU. With only one layer of clustering 

accounted from the second stage sampling, the corresponding design effect is measured by 𝜌(s2)
∗  

and 𝑛(s2)
∗  as 𝐷𝐸𝐹𝐹2𝐿

∗ = 1 + (𝑛(s2)
∗ − 1)𝜌(s2)

∗ . 

Figure 4.1 below visualizes the structures of these two design effects. Obviously, when 

the first-stage sampling is omitted, 𝜌(s1) turns to be 0, since SSUs are now falsely assumed to be 

independent to each other even if they are in the same PSU. Therefore, 𝐷𝐸𝐹𝐹2𝐿
∗  is not sufficient 

in two ways. One is that the two distinct sources of clustering measured by 𝜌(s1) and 𝜌(s2) are 

now absorbed by a single clustering dependency (i.e., 𝜌(s2)
∗ ). The other one is that the sampling 

structure is reduced from 𝑛(s1) + 𝑛(s2) to 𝑛(s2). Immediately, the 𝐷𝐸𝐹𝐹2𝐿
∗  overestimate the 

standard error of the estimate. This is because the effective sample size calculated based on 

𝐷𝐸𝐹𝐹2𝐿
∗   is smaller than the true effective sample size given by 𝐷𝐸𝐹𝐹3𝐿. Equivalent to the 

design-based approach, conducting a two-level HLM model with a three-stage sampling design, 

the omitted highest cluster level results in the repartitioned random effects and a shrinking error 

variance structure. The comparison of the design effects resonates with Moerbeek (2004) and 

Opdenakker and Van Damme (2000) which provided simulation evidence that omitting the 

highest cluster level results in inflated standard errors of the adjacent lower-level predictors’ 

coefficient standard error estimates, and thus Type II errors. Later sections provide detailed 

mathematical procedures of formulating the biased standard error estimates.  
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Figure 4.1 Data correlation structures of three-stage sampling designs when the first sampling 

stage in is included and omitted. 

4.2.2 Incidental Highest Level above PSUs  

Many times, a higher cluster level emerges even if it is not designed in sampling but 

matters to answer the research questions. McNeish and Wentzel (2016) defined such highest 

cluster level as incidental level to distinguish from the deliberate levels of the sampling stages; 

they also provided several example scenarios of when such incidental highest cluster level would 

occur. One is that individual two-level data are integrated into a single data set to invest the 

studies’ generalizability and power. This scenario applies to meta-analysis where individual 

studies’ effect size estimates are combined to obtain a summary statistic in which effect sizes are 

nested within studies. Further, the studies are nested within investigators. Thus, the investigators 
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form an incidental highest cluster level, and the between-investigator variation could be relevant 

to the research question (Konstantopoulos, 2011).  

Another scenario is that when certain large sample size of PSUs of schools is required, a 

relatively large sample size of districts will be incidentally presented as a higher cluster level, 

though it may not directly relate to the research questions. For example, the Education 

Longitudinal Study of 2002 (ELS:2002) has a two-stage sampling design where schools are 

PSUs and students are USUs (Stapleton & Kang, 2018). With 16,197 sampled schools 

nationwide in ELS, the districts level, with a considerably large sample size, is introduced 

naturally while the linked ID of schools and districts is not accessible in the public-use file. 

Hence, the district cluster level is omitted due to data restrictions.  

The above examples require three-level models to account for the random variation at the 

incidental highest cluster level, particularly when the highest-level units are samples and the 

inferences are made to the population. Conversely, the incidental cluster level does not need to 

be included with random effect when they are population units. Take the study of Wong and Li 

(2008) as an example, which utilized a two-level model to examine school-level contextual 

factors’ impacts on teachers’ information and communication technology implementation 

effectiveness. As they stated that the sampled schools are from all 18 districts in the studied area, 

the districts are not required to be modeled as random. Similarly, the two-stage design approach 

with sampling design effect 𝐷𝐸𝐹𝐹2𝐿 = 1 + (𝑛(s1) − 1)𝜌(s1) is adequate for the clustering 

dependency due to sampling. In this case, based on the estimated two-level model, a fixed effect 

framework can be further utilized for the higher-level districts (i.e., add dummy variables 

indicating memberships of districts) (McNeish & Kelley, 2019).   
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4.2.3 Omitted PSUs above the Level of Treatment Assignment 

Consider a two-level model being conducted in a study where the outcome is at the 

individual student level and the assignment of treatment is at the higher school level. If the 

utilized data is a two-stage sampling design where PSUs and USUs are schools and students 

respectively, and the statistical inference aims to the population of schools, the estimated two-

level model is appropriate to capture the clustering with the school-level random effect. This 

model is a typical CRT that has shown in Chapter 2.  

Now consider a three-stage sampling structure data where PSUs are districts, SSUs are 

schools, and USUs are students. The above two-level  model is no longer sufficient because the 

random effects of the highest cluster level is omitted. Furthermore, the CRT model turns to be a 

Block Randomized Trial (BRT) since the schools within districts are randomly assigned with 

treatments. The conceptual differences of these two designs are depicted in Figure 4.2. If the true 

PSUs of districts are omitted or hidden (as shown by the dashed ovals below the dashed line), the 

experimental design can be falsely interpretated as the treatments being assigned to the schools 

randomly and all students in each school received with the same treatment. With the presence of 

districts, schools within the blocks of districts are randomly assigned with treatments. Schools 

remain as clusters since students in each school received with the same treatment. See Hedges 

and Rhoads (2010) for a summary of the relationships between BRT and CRT.  

Since the inference targets the population of districts and schools, the three-level BRT 

model explicitly models the between-district variation with the random effect of districts. 

Conceptually, the clustering dependency due to sampling is now sufficiently captured in addition 

to the clustering of assignment, whereas the (false) two-level CRT only models the latter source 
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of clustering dependency12. This argument is consistent with Abadie et al. (2017) that clustering 

is due to the distinct rationales of sampling and assignment.   

Figure 4.2 Omitted highest cluster level in a two-level CRT design 

In the experimental design planning work of Hedges and Hedberg (2014), defining 

design parameters, such as ICCs, need to consider the omission of the districts as blocks while 

only keeping the schools as clusters. In such cases, the between-district variation is pooled into 

the between-school variation and the school-level ICCs are larger than they should be (Hedges & 

Hedberg, 2014, p. 455). Still, the effects on standard error estimates when omitting the highest 

cluster level in experimental design has not yet been extensively studied. Particularly, practical 

guidelines lack for empirical studies.   

  

 
12 Often, a three-level BRT model includes the random effect of the interaction term of treatment by district since 

the treatment effects’ variation could depend on schools (see Konstantopoulos, 2008a, 2008b). The current paper 

does not include the random slope of the treatment and the corresponding interaction term in the later modeling 

settings in Section 4.2 to keep consistent with the setting of random intercept model of the whole study.   
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4.3 Quantification of Standard Error Bias 

4.3.1 Model Setting 

Follow the examples made above that the district cluster level is omitted, I first consider 

an estimated two-level random intercept model which only captures the clustering dependency of 

students (denoted as i) nested within a school j: 

Student-level:  𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋𝑖𝑗 + 𝜀𝑖̃𝑗, 

School-level: 𝛽0𝑗 = 𝛾00 + 𝛾01𝑊𝑗  + 𝛾02𝑍𝑗 + 𝑟̃0𝑗, 

𝛽1𝑗 = 𝛾10, 

Mixed model: 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾01𝑊𝑗 + 𝛾02 𝑍𝑗 + 𝑟̃0𝑗 + 𝜀𝑖̃𝑗, 

where 𝑋𝑖𝑗 and 𝑊𝑗 are student- and school-level predictors, and 𝑍𝑗 is modeled at the school level  

whereas it is truly a district-level measure. Also, predictors are group-mean centered so that the 

exogeneity assumption holds. In the setting of a two-level CRT design, 𝑊𝑗 can be the binary 

treatment variable. The random effects of 𝜀𝑖̃𝑗 and 𝑟̃0𝑗 are assumed to be normally distributed with 

zero means, and variances of 𝜎
~(𝑖) and 𝜎

~(𝑗) respectively: 𝜀𝑖̃𝑗~𝑁(0, 𝜎
~(𝑖)), 𝑟̃0𝑗~𝑁(0, 𝜎

~(𝑗) ), and 

𝑐𝑜𝑣(𝜀𝑖̃𝑗, 𝑟̃0𝑗) = 0. 

Identical to Chapter 2, for each school j from the total 𝑀𝐽 sample schools, the error 

variance-covariance matrix of 𝑌𝑗, denoted as 𝝍̃𝑱, is  

𝝍̃𝑱 = 𝑣𝑎𝑟(𝑌𝑗) = 𝑹̃ + 𝒍𝑛𝐿
𝑮̃𝒍’𝑛𝐿

, 
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where 𝑛𝐿 is the average school size (i.e., the average number of students within a school) and 𝒍𝑛𝐿
 

is a column vector of 𝑛𝐿 ones. There are 𝑀𝐽 sample schools and the total sample size of students 

is thus 𝑀𝐽 ∗ 𝑛𝐿. The matrix 𝑹̃ and 𝑮̃ reflect the composition of variance components at the 

student- and school level respectively: 

𝑹̃ = 𝜎
~(𝑖)𝑰 =

[
 
 
 𝜎
~(𝑖) 0 ⋯ 0

0 𝜎
~(𝑖) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜎
~(𝑖)]

 
 
 

 

and 

𝒍𝑛𝐿
𝑮̃𝒍’𝑛𝐿

=

[
 
 
 𝜎
~(𝑗) 𝜎

~(𝑗) ⋯ 𝜎
~(𝑗)

𝜎
~(𝑗) 𝜎

~(𝑗) ⋯ 𝜎
~(𝑗)

⋮ ⋮ ⋱ ⋮

𝜎
~(𝑗) 𝜎

~(𝑗) ⋯ 𝜎
~(𝑗)]

 
 
 
. 

Then, 

𝝍̃𝑱 = 𝜎2 [

1 𝜌 ⋯ 𝜌
𝜌 1 ⋯ 𝜌
⋮ ⋮ ⋱ ⋮
𝜌 𝜌 ⋯ 1

] = 𝜎2[(1 − 𝜌)𝑰 + 𝜌 𝒍𝑛𝐿
𝒍′𝑛𝐿

]. (4.1) 

The ICC 𝜌 =
𝜎
~(𝑗)

𝜎2
= 𝑐𝑜𝑟𝑟(𝑦𝑖𝑗 , 𝑦𝑖′𝑗)  measures the expected correlations among any two 

randomly selected students from the same school. Now consider the satisfactory three-level 

random intercept model which includes the omitted highest level of districts (noted as k): 

Student-level: 𝑌𝑖𝑗𝑘 = 𝜋0𝑗𝑘 + 𝜋1𝑗𝑘𝑋𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘, 

School-level: 𝜋0𝑗𝑘 = 𝛽00𝑘 + 𝛽01𝑘𝑊𝑗𝑘 + 𝑟0𝑗𝑘, 

𝜋1𝑗𝑘 = 𝛽10𝑘, 
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District-level: 𝛽00𝑘 = 𝛾000 + 𝛾001 𝑍𝑘 + 𝑢00𝑘, 

𝛽01𝑘 = 𝛾010, 

𝛽10𝑘 = 𝛾100, 

Mixed model: 𝑌𝑖𝑗𝑘 = 𝛾000 + 𝛾100𝑋𝑖𝑗𝑘 + 𝛾010𝑊𝑗𝑘 + 𝛾001 𝑍𝑘 + 𝑢00𝑘 + 𝑟0𝑗𝑘 + 𝜀𝑖𝑗𝑘. 

The previously disaggregated predictor 𝑍𝑗 is now defined at the correct level of district as 

𝑍𝑘. Further, the random effect of the district-level is explicitly modeled and is assumed to be 

normally distributed with mean zero and variance of 𝜎(𝑘). Also, the random effects of the 

student- and school-level are assumed to have  normal distributions, which have means of zero 

and variance of 𝜎(𝑖) and 𝜎(𝑗), respectively as 𝜀𝑖𝑗𝑘~𝑁(0, 𝜎(𝑖)),  𝑟0𝑗𝑘~𝑁(0, 𝜎(𝑗)), and 

𝑢00𝑘~𝑁(0, 𝜎(𝑘)). These random effects are independent to each other. 

 The three-level model has two ICCs, including the expected correlation among students 

within the same school and the same district 𝜌1 =
𝜎(𝑗)+𝜎(𝑘)

𝜎2  , and the expected correlation among 

students within the same district while from different schools 𝜌2 =
𝜎(𝑘)

𝜎2 . The average district 

sample size (i.e., average number of schools in a district) is 𝑛𝐻. Also, the total sample districts 

𝑀𝐾 =
𝑀𝐽

𝑛𝐻
, and the average number of students in a district is 𝑛𝐻 ∗ 𝑛𝐿.  

The error variance covariance matrix 𝝍𝐾 of a district k is  

𝝍𝐾 = 𝜎2{𝑰𝑛𝐻
⊗ [(1 − 𝜌1)𝑰𝑛𝐿

+ (𝜌1 − 𝜌2)𝒍𝑛𝐿
𝒍𝑛𝐿

′ ] + 𝜌2 𝒍𝑛𝐻∗𝑛𝐿
𝒍𝑛𝐻∗𝑛𝐿

′}, (4.2) 

where 𝑰𝑛𝐻
 is a diagonal matrix with a dimension of the average cluster size of level-3 (K) 𝑛𝐻 ∗

𝑛𝐻 , 𝑰𝑛𝐿
 is a diagonal matrix with a dimension of the average cluster size of level- 2 (J) 𝑛𝐿 ∗ 𝑛𝐿 , 
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 𝒍𝑛𝐿
 is a vector column of 𝑛𝐿 ones, and 𝒍𝑛𝐻∗𝑛𝐿

 is a vector column of 𝑛𝐻 ∗ 𝑛𝐿 ones. Conceptually, 

0 ≤ 𝜌2 ≤ 𝜌 and 1 ≤ 𝑛𝐻 ≤ 𝑀𝐽.  I also define 𝜌0 =
𝜎(𝑗)

𝜎2  , which is the proportion of the true 

between-school variance in the total error variance, and 𝜌0 is smaller than 𝜌 by 𝜌2. The detailed 

definition rationales of these ICCs have already been given in Chapter 2. 

 Figure 4.3 demonstrates the error variance-covariance structure of 𝝍𝐾 from the three-

level model and 𝝍̃𝑱 from the two-level model omitting the highest cluster level of districts. 

Noticeably, compared with 𝝍𝐾, the error correlation structure of 𝝍̃𝑱 shrank from the (𝑛𝐻 ∗ 𝑛𝐿) ∗

(𝑛𝐻 ∗ 𝑛𝐿)  block diagonal matrices (i.e., the purple dashed boxes) to the 𝑛𝐿 ∗ 𝑛𝐿 diagonal 

matrices (i.e., the orange highlighted squares). The shadowed areas represent the shrank 

segments due to falsely assumed independence among schools within districts.  

When the highest cluster level is omitted, the between-district variation is fully 

redistributed to the between-school variation while the between-student variation remains the 

same, which are 

𝜎̃(𝑖) ≅ 𝜎(𝑖), (4.3) 

and  

𝜎̃(𝑗) ≅ 𝜎(𝑗) + 𝜎(𝑘). (4.4) 

Then, 𝜌 =
𝜎̃(𝑗)

𝜎2
=

𝜎(𝑗)+𝜎(𝑘)

𝜎2
= 𝜌0 + 𝜌2 = 𝜌1. The shrank parts in 𝝍̃𝑱 are 𝜌0, which are 

falsely captured by 𝜌 in the estimated two-level model. Unlike the omitted middle cluster case in 

Chapter 2, the omitted between-cluster variance repartition here is not weighted by the cluster 

size.  
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Figure 4.3 Correlation structures of 𝝍𝐾 of the three-level model, and 𝝍̃𝑱 of the two-level model 

omitting the highest cluster level.  

4.3.2 Quantifying the Standard Error Estimate Bias 

Bias of the Standard Error Estimates of the Coefficients of 𝒁𝒋(𝒌) and 𝒁𝒊(𝒋𝒌) 

Predictor 𝑍𝑗(𝑘), though a measure of the districts, is falsely disaggregated at the school level. The 

letters in the parentheses (i.e., (𝑘) and (𝑗𝑘)) indicate the corresponding omitted cluster levels. 

The estimated variance of the coefficient parameter of 𝑍𝑗(𝑘) in the two-level model is: 

𝑉𝑎𝑟2𝐿(𝛾02) = {∑(𝑍𝑗(𝑘)
′

𝑀𝐽

𝑗=1

𝝍̃𝑲𝑍𝑗(𝑘))}

−1

= 𝜎2𝜏̃𝑍𝑗(𝑘)
{∑(𝑍𝑗(𝑘)

′

𝑀𝐽

𝑗=1

𝑍𝑗(𝑘))}

−1

, 

where 𝜏̃𝑘 =1 + (𝑛𝐿 − 1)𝜌. In the three-level model which correctly models the predictor 𝑍𝑗(𝑘) as 

𝑍𝑘, the variance estimate of the coefficient parameter is 
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𝑉𝑎𝑟3𝐿(𝛾001) = {∑(𝑍𝐾
′𝝍𝑲

𝐾

𝑘=1

𝑍𝐾)}

−1

= 𝜎2𝜏𝑍𝑘
{∑(𝑍𝑘

′

𝐾

𝑘=1

𝑍𝑘)}

−1

, 

where 𝜏𝑍𝑘
= 1 + (𝑛𝐿 − 1)𝜌1 + 𝑛𝐿(𝑛𝐻 − 1)𝜌2. The inflation of 𝑉𝑎𝑟2𝐿(𝛾02) is then quantified by  

the division of 𝑉𝑎𝑟3𝐿(𝛾001) and 𝑉𝑎𝑟2𝐿(𝛾02), which yields to 

𝑉𝑂𝐶𝐻
(3−2,2𝐿)

=
 𝑉𝑎𝑟3𝐿(𝛾001)

𝑉𝑎𝑟2𝐿(𝛾02)
=

 𝜏𝑍𝑘

𝜏̃𝑍𝑗(𝑘)

=
1 + (𝑛𝐿 − 1)𝜌1 + 𝑛𝐿(𝑛𝐻 − 1)𝜌2

1 + (𝑛𝐿 − 1)𝜌
 

= 1 +
𝑛𝐿(𝑛𝐻 − 1)𝜌2

1 + (𝑛𝐿 − 1)𝜌
.                                              (4.5) 

Noticeably, 𝑉𝑂𝐶𝐻
(3−1)

 is identical to 𝑉𝑂𝐶𝑀
(3−1)

 in Chapter 2 since both of them solve the 

same issue of adjusting the standard error estimates of the highest-level predictor coefficients 

when the two layers of clustering are omitted.   

Bias of the Standard Error Estimates of the Coefficients of 𝑾𝒋(𝒌) and 𝑾𝒊(𝒋𝒌) 

The school-level predictor 𝑊𝑗(𝑘) is the main predictor of interest13. Its coefficient’s 

variance estimate inflation is quantified via comparing the variance estimate from a satisfactory 

two-level model where no higher cluster level exists and a false two-level model where a higher 

level exists but is omitted. The satisfactory two-level model is identical to the case that has been 

illustrated in Chapter 2 in deriving for 𝑉𝑂𝐶𝑀
(2−1,𝑂𝐿𝑆)

.  The corresponding variance estimate of 

𝑊𝑗’s coefficient 𝛾01 is 

 
13 The following derivation process applies to both cases of 𝑊𝑗(𝑘) as a continuous measure or binary treatment 

assignment indicator. The latter applies to the previous theoretical discussion of when the estimated model is a two-

level random intercept CRT omitting the highest cluster level and the true model is a three-level random intercept 

BRT. When the true three-level BRT model has no random slope of 𝑊𝑗(𝑘), the standard error estimate of the 

difference between means is the same as the one from the three-level random intercept CRT model (see 

Konstantopoulos, 2008a and Konstantopoulos, 2008b). The equivalence of the standard error estimates of the 

continuous and binary predictors’ coefficients has been shown in Section 2.3, Chapter 2. 
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𝑉𝑎𝑟̌2𝐿(𝛾01) = {∑(𝑊𝑗
′

𝐽

𝑗=1

𝝍𝑱𝑊𝑗)}

−1

= 𝜎2𝜏̌𝑊𝑗
{∑(𝑊𝑗

′

𝐽

𝑗=1

𝑊𝑗)}

−1

, 

where 𝝍𝑱 is the error variance-covariance matrix 

𝝍𝑱 = 𝜎2 [

1 𝜌0 ⋯ 𝜌0

𝜌0 1 ⋯ 𝜌0

⋮ ⋮ ⋱ ⋮
𝜌0 𝜌0 ⋯ 1

] = 𝜎2[(1 − 𝜌0)𝑰 + 𝜌0 𝒍𝑛𝐿
𝒍′𝑛𝐿

].  

The corresponding variance weighting index is 𝜏̌𝑊𝑗
= 1 + (𝑛𝐿 − 1)𝜌0, where the only 

intraclass correlation is 𝜌0 =
𝜎(𝑗)

𝜎2 , when the district-level does truly not exist. In the false two-

level model, the error variance-covariance matrix is 𝝍̃𝑱, which gives the variance estimate of 

𝑊𝑗(𝑘)’s coefficient 𝛾01: 

𝑉𝑎𝑟2𝐿(𝛾01) = {∑(𝑊𝑗(𝑘)
′

𝐽

𝑗=1

𝝍̃𝑱𝑊𝑗(𝑘))}

−1

= 𝜎2𝜏̃𝑊𝑗(𝑘)
{∑(𝑊𝑗(𝑘)

′

𝐽

𝑗=1

𝑊𝑗(𝑘))}

−1

,  

where 𝜏̃𝐽 = 1 + (𝑛𝐿 − 1)𝜌. Finally, the variance inflation factor yields to 

𝑉𝐼𝐹𝐻
(2−2,2𝐿)

=
 𝑉𝑎𝑟̌2𝐿(𝛾01)

 𝑉𝑎𝑟2𝐿(𝛾01)
=

 𝜏̌𝑊𝑗

 𝜏̃𝑊𝑗(𝑘)

=
1 + (𝑛𝐿 − 1)𝜌0

1 + (𝑛𝐿 − 1)𝜌
= 1 −

(𝑛𝐿 − 1)𝜌2

1 + (𝑛𝐿 − 1)𝜌
. (4.6)  

As shown, when the district level cluster should be modeled as random effects but is 

omitted, the standard error estimates of 𝑊𝑗(𝑘)’s fixed effect is overestimated and lead to Type II 

error. This finding is similar to 𝑉𝐼𝐹𝑀
(1−1,2𝐿)

 that was developed for the individual-level predictor 

𝑋𝑖(𝑗)𝑘 in Chapter 2. The common idea is that, if the satisfactory model is a two-level, then the 

artificial between-group variance of the untrue highest level should be taken out. 
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Further, when both sources and layers of the clustering dependency are completely 

omitted in a single-level analysis using OLS estimation and 𝑊𝑗𝑘 is disaggregated at the student 

level as 𝑊𝑖(𝑗𝑘), the corresponding variance inflation factor is 

𝑉𝑂𝐶𝐻
(2−1,𝑂𝐿𝑆)

= 𝜏𝑗 = 1 + (𝑛𝐿 − 1)𝜌0, (4.7) 

which is identical to 𝑉𝑂𝐶𝑀
(2−1,𝑂𝐿𝑆)

 in Chapter 2 and is smaller 𝑉𝑂𝐶𝐻
(3−1,𝑂𝐿𝑆)

 by (𝑛0 − 1)𝜌2.  

Bias of the Standard Error Estimates of the Coefficients of 𝑿𝒊𝒋(𝒌) and 𝑿𝒊(𝒋𝒌) 

Finally, since the individual-level variance is not affected by the omitted highest cluster 

level, the standard error estimate of 𝑋𝑖𝑗(𝑘)’s coefficient 𝛾10 remains unbiased. This can be shown 

by 

𝑉𝑂𝐶𝐻
(1−1,2𝐿)

=
1 − 𝜌0 − 𝜌2

1 − 𝜌1
=

1 − 𝜌1

1 − 𝜌1
= 1.  (4.8) 

In terms of OLS estimation, the 𝑉𝑂𝐶𝐻
(1−1,𝑂𝐿𝑆)

 is identical to the 𝑉𝑂𝐶𝑀
(2−1,𝑂𝐿𝑆)

 in Chapter 

2 (see Eq. 2.9) that 

𝑉𝑂𝐶𝐻
(1−1,𝑂𝐿𝑆)

= 1 − 𝜌0 − 𝜌2. (4.9) 

Table 4.1 below summarizes the above derived variance inflation factors corresponding 

to the predictors of each level in the estimated two-level HLM and single-level OLS models.  
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Table 4.1 A summary of VOCs when the highest cluster level is omitted in a three-level 

structured clustering data. 

Three-level HLM Two-level HLM Single-level OLS Estimation 

Level Predictor Level Predictor 
Variance 

adjustment 
Level Predictor 

Variance 

adjustment 

Student 𝑋𝑖𝑗𝑘 Student 𝑋𝑖𝑗(𝑘) 
𝑉𝑂𝐶𝐻

(1−1,2𝐿)

= 1 

Student 

𝑋𝑖(𝑗𝑘) 
𝑉𝑂𝐶𝐻

(1−1,𝑂𝐿𝑆)

< 1 

School 𝑊𝑗𝑘 

School 

𝑊𝑗(𝑘) 
𝑉𝑂𝐶𝐻

(2−2,2𝐿)

< 1 
𝑊𝑖(𝑗𝑘) 

𝑉𝑂𝐶𝐻
(2−1,𝑂𝐿𝑆)

> 1 

Districts 𝑍𝑘 𝑍𝑗(𝑘) 
𝑉𝑂𝐶𝐻

(3−2,2𝐿)

> 1 
𝑍𝑖(𝑗𝑘) 

𝑉𝑂𝐶𝐻
(3−1,𝑂𝐿𝑆)

> 1 

Note. The letters in the parentheses indicate the corresponding cluster levels that are omitted.  

4.3.3 Simulation Results  

Similar to Chapter 2, a simulation study is designed to test the variance estimation bias 

when the highest cluster level is omitted as well as the performance of the derived VOC 

formulas. The total sample size of students (𝑀𝐼) and number of schools (𝑀𝐽) are fixed to be 2000 

and 100, which lead to a conventional school size 𝑛𝐿 = 20. Four conditions of number of 

districts (𝑀𝑘) are set to be 5, 10, 25, and 50, which covers a plausible range of sample size of the 

highest cluster level.  

In each condition of  𝑀𝑘, the residual variance (𝜎̃(𝑖)) and school-level random effect 

variance (𝜎̃(𝑗)) of the estimated two-level models are set with two pairs: 0.5 and 0.5, and 0.8 and 

0.2. The latter pair setting satisfies the empirical evidence where between-school variance could 

reach to 0.2 (Hedges & Hedberg, 2014; Konstantopoulos, 2009; Westine et al., 2013). In Fahle 

and Reardon (2018), the between-districts variance 𝜎(𝑘) of U.S. public school for Grades 3-8 

students in Math and English Language Arts ranges from 0.05 to 0.24. Then, the setting of the 
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omitted district-level random effect variance (𝜎(𝑘)) in this current study includes the evidence 

found in Fahle and Reardon (2018) and a hypothetical extreme large value, which are 0.1, 0.4, 

and 0.6. Setting 𝜎𝑇𝑜𝑡𝑎𝑙
2 = 1, the values of random effects variance 𝜎̃(𝑗), 𝜎(𝑘), and 𝜎(𝑗) are 

equivalent to the ICCs of 𝜌 (or 𝜌1), 𝜌2, and 𝜌0, respectively. Again, the magnitude of the 

estimation bias and the performance of VOCs’ adjustment of estimates are measured by the 

index of relative bias R. B.𝑒𝑠𝑡 and R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 correspondingly. See Appendix 4.A for the 

parameter settings and simulation results.  

Bias of the Random Effects and the Adjustment Performance 

Previous research had found that the omitted 𝜎(𝑘) is taken by 𝜎̃(𝑗), while 𝜎̃(𝑖) remains the 

same. The simulation results support this finding. In all conditions, the mean R. B.𝑒𝑠𝑡 of 𝜎̃(𝑖) are 

all zero. With larger setting of 𝜎(𝑘) (or 𝜌2) and 𝑀𝑘, the overestimated 𝜎̃(𝑗) has larger positive 

R. B.𝑒𝑠𝑡. In the extreme condition of 𝜎(𝑘)  = 𝜌2 = 0.6, 𝜎̃(𝑗) can be more than twice and even four 

times larger than 𝜎(𝑗) as the number of schools increases. Even in the cases where 𝜎(𝑘) is 

extremely small of being 0.1, between-school variation can be overestimated by at least around 

15%. With adjustment, the mean R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 of 𝜎̃(𝑗) are close to 0 across all conditions.  

Bias of the Standard Error Estimates of the Coefficients of 𝑾𝒋(𝒌) and 𝑾𝒊(𝒋𝒌) and the 

Adjustment Performance 

When the district-level cluster is omitted in the estimated two-level model, the positive 

values of mean R. B.𝑒𝑠𝑡 indicates that the standard error estimates of 𝑊𝑗(𝑘) is overestimated 

which lead to Type II error. The magnitude of the overestimation increases with the increase of 

𝜎(𝑘) and 𝑀𝑘. When 𝜎(𝑘) is considerably large as 0.6, the standard error estimates of the two-level 
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model are 1.5 to 2 times larger than the parameter. When the omitted 𝜎(𝑘) is trivial as 0.1, the 

magnitude of the overestimation is minimal. 

When both school- and district-level clusters are not modeled as in the single-level 

model, the standard error estimates of 𝑊𝑗(𝑘) are underestimated as the mean R. B.𝑒𝑠𝑡 are all 

negative. The value of R. B.𝑒𝑠𝑡 are relatively stable, around -0.6 across all conditions. This is 

because the setting of the overall omitted clustering dependency 𝜎(𝑗) are relatively similar of 

being 0.5 and 0.8, and the sample size of students is fixed.   

Finally, for the adjustment performance, both 𝑉𝑂𝐶𝐻
(2)

 and 𝑉𝑂𝐶𝐻
(2−1)

 for the two- model 

and single-level model are desirable since the mean R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 are consistently smaller than 0.1. 

Bias of the Standard Error Estimates of the Coefficients of 𝒁𝒋(𝒌) and 𝒁𝒊𝒋(𝒌) and the 

Adjustment Performance 

When the district-level predictor 𝑍𝑘  is falsely disaggregated, either at the school-level in 

the two-level model or at the student- in the single-level model, the standard error estimates of 

the coefficient of 𝑍𝑘 are underestimated. In the two-level model, the underestimation bias 

increases with the increase of 𝜎(𝑘) and the decrease of 𝑀𝑘. With the maximal 𝜎(𝑘)or 𝜌2 = 0.6, 

the standard error estimates can be around 60% larger than the parameter. With the OLS 

estimation, the underestimation magnitude is relatively stable as the mean R. B.𝑒𝑠𝑡 are around -

0.8 across all conditions. Again, this is due to the omission of the overall clustering dependency 

in the single-level analysis, regardless of the proportion of each cluster level’s variance. Further, 

the underestimation magnitude in the OLS estimation is always higher than the two-level model 

in each condition. This is because 𝜎̃(𝑗) in the two-level models have captured the omitted  𝜎(𝑘). 
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The performance of the VOCs is ideal across all settings and models, where the mean R. B.𝑒𝑠𝑡 are 

close to or smaller than 0.1.  

Bias of the Standard Error Estimates of the Coefficients of 𝑿𝒊𝒋(𝒌) and 𝑿𝒊(𝒋𝒌) and the 

Adjustment Performance 

As shown, the standard error estimates of the coefficients of 𝑋𝑖𝑗(𝑘) is not biased in the 

two-level model. However, the standard error estimates of the coefficients of 𝑋𝑖(𝑗𝑘) it is 

overestimated using OLS estimation. This pattern is consistent with the previous findings in 

Chapter 2 that omitting the adjacent higher cluster level leads to Type II error issue. The 

overestimation is large when 𝜌2 and 𝑀𝑘 are large. For example, when the omitted  𝜎(𝑘) or 𝜌2 is 

0.6 and 𝑀𝑘 is 50, the standard error estimates of the coefficients of 𝑋𝑖(𝑗𝑘) are two times larger 

than the parameters. When the omitted  𝜎(𝑘) or 𝜌2 is 0.1, the estimates can still be 40% larger 

than the parameters. 𝑉𝑂𝐶𝐻
(1−1,OLS)

 performed relatively well that in most of the cases, the mean 

R. B.𝑒𝑠𝑡 are around or smaller than 0.1, though in two cases of when 𝑀𝑘 = 5 and 𝜎(𝑘) are large 

(i.e., 0.6 and 0.4), the mean R. B.𝑒𝑠𝑡 are around 0.2.  

4.4. Empirical Example and Sensitivity Analysis 

This section employs the same study of Heafner et al. (2019) seen in Chapter 3 for 

example. As shown earlier, their employed data NAEP-E has a two-stage sampling design where 

schools are PSUs and students are SSUs, and the empirical model is a two-level random intercept 

HLM model. With a large sample size of schools 𝑀𝐽 = 56, an incidental highest cluster level of 

districts could emerge. Further, as stated by the authors, state and district level policy predictors, 

including required economics education for graduation and economics testing, are modeled at the 
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school level (see Heafner et al., 2019, p. 334). In this case, these variables are falsely aggregated 

at the school level and produced with underestimated standard errors, though no significant 

evidence were found. Since Chapter 3 has already demonstrated examples of making Type I 

error, this section provides example of Type II errors of the middle-level predictors when a 

higher cluster level is omitted. The example predictor used here is the requirement of economics 

education for graduation, which I consider as a true school-level predictor for example-making 

reason.  

The procedure of conducting the sensitivity analysis follows the steps shown in heuristics 

diagram of Figure 3.3, and the results are shown in Table 4.2. The regression coefficient and 

random effects estimates from the estimated two-level model are presented at the left upper 

corner in the table, where 𝑡2𝐿 < 𝑡# satisfies the requirements of conducting the Type II error 

sensitivity analysis. Since the omitted between-district variance (𝜎(𝑘))  is completely captured by 

the estimated between-school variance of the two-level model (𝜎̃(𝑗)) with no weights of cluster 

sizes, the sensitivity analysis here is straightforward and starts with calculating the threshold 

√𝑉𝑂𝐶𝑡 = 0.432 and the corresponding 𝜌2 = 0.267.  

For any settings of 𝜌2 that is larger than 0.267 and √𝑉𝐼𝐹0 that is smaller than 0.432, the 

risk of having Type II error is larger than 0. For example, the maximum 𝜌2 found is 0.275 with a 

corresponding √𝑉𝑂𝐶𝑚𝑎𝑥 = 0.401. That is, when the hypothesized district-level ICC 𝜌2 is 0.275 

or the estimated between-school variance are completely between-district variance, the 

magnitude of inference robustness (or effect size) reduces by 60% and the risk of making Type II 

error increases by 12% when compared with the threshold setting. In the current example, the 

maximum 𝜌2 does not exceeded 𝜌 of the estimated two-level model.  
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Table 4.2 Sensitivity analysis of the school-level predictor: economics required for graduation 

Estimated Two-level HLM Hypothesized Three-level HLM 

    𝑀𝐽 560 
 

    𝑛𝐿 20 

𝛽̂ 1.820   𝜎̃(𝑖) 22.62 𝜎(𝑖) 22.620 22.620 22.620 22.620 22.620 

𝑆𝑡𝐸# 0.929 𝑡# 1.96 𝜎̃(𝑗) 8.58 𝜎(𝑗) 0.265 2.340 8.268 0.000 -0.780 

𝑆𝑡𝐸2𝐿 2.150 𝑡2𝐿 0.85 / / 𝜎(𝑘) 8.315 6.240 0.312 8.580 9.360 

𝛽̂ 1.820   𝜌 0.275 𝜌0 0.008 0.075 0.265 0.000 -0.025 

 𝜌2 0.267 0.200 0.010 0.275 0.300 

𝝆𝟐 

√𝑽𝑶𝑪 𝑺𝒕𝑬𝒗𝒐𝒄 
𝑾𝑶𝑪 

& 𝑬𝑺𝑶𝑪 
𝑹𝑶𝑪 

Threshold 

√𝑉𝑂𝐶𝑡 
0.432 0.929 0.568 Switch Point 

√𝑉𝑂𝐶𝑡 based 𝜌2 0.267 √𝑉𝑂𝐶0 0.432 0.929 0.568 Switch Point 

𝜌2 0.200 √𝑉𝑂𝐶0 0.624 1.342 0.376 NA 

𝜌2,𝑚𝑖𝑛 0.010 √𝑉𝑂𝐶𝑚𝑖𝑛 0.985 2.117 0.015 NA 

𝜌2,𝑚𝑎𝑥 0.275 √𝑉𝑂𝐶𝑚𝑎𝑥 0.401 0.862 0.599 0.121 

Not plausible 0.300 NA 0.290 0.624 0.710 0.462 

  

An implausible example of 𝜌2 = 0.3 is thus demonstrated that if 𝜌2 > 𝜌, the between-

school variance from the three-level models turns to be negative, though the corresponding 

robustness measures are producible and larger than the above ones. Also, 𝜌2,𝑚𝑖𝑛 is provided to 

show the lower boundary of the variance adjustment. In this case, the reduced robustness and 

effect size is small (i.e., 1.5%) , thus no concerns for making Type II error. The above 

hypothesized 𝜌2 are in a comparable range of around 0.05 to 0.24 and are of the empirical values 

summarized in previous literature across nations, grade level, and subjects (e.g., Fahle &  

Reardon, 2017). This evidence heightens the significance of conducting this sensitivity analysis 

to test the estimation bias due to an omitted but empirically possible district cluster level. 
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4.5 Discussion and Conclusion  

This chapter clarifies the risky practice in two-level models omitting the highest cluster 

level that is legitimate in sampling and experimental designs. The harmful ramifications of 

omitting the clustering dependency of the highest level need particular caution from researchers 

when their research questions relate to the cluster-level predictors effect, and to explaining the 

clusters’ capability in demonstrating the error variance of the individual variance, since the 

estimated two-level model would generate biased standard error estimates of the middle and 

highest level coefficients estimates and random effect variance of the middle cluster level. 

Similar to Chapter 2, the VOCs derived in this chapter quantify the potential magnitude of the 

estimation bias of each cluster levels’ predictors that can be applied to general modeling settings.  

The decision on whether to explicitly model the highest cluster level depends on the 

research design of sampling and experimental schemes, as well as the rationales of whether to 

generalize the reference to the studied sample groups only or to the population of interest. When 

the main predictor of interest is at the middle level and the highest level of clusters are the 

population groups, a fixed effect modeling framework is genuine. In contrast, if the predictors of 

interest also include the highest-level ones and the clusters are sample units, the highest cluster 

level needs to be modeled as a random effect. As listed in Table 4.1, the estimated two-level 

model omitting the highest cluster level would lead to a Type I error of the middle-level 

predictor estimate and a Type II error of the disaggregated highest-level predictor. However, the 

individual level inferences would not be affected. The extended single-level model scenario of 

omitting the overall clustering dependency has been shown in Chapter 2 where Type I error 

emerges for the cluster-level predictors estimates and Type II errors for the individual level 

predictor.  
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Another particularity of making decisions on modeling the highest cluster level relates to 

the sample size. Frequently, the small sample size issue happens at the highest cluster levels, 

particularly when the highest cluster level is not in the initial sampling design. In this case, the 

fixed-effect approach is optimal (McNeish & Wentzel, 2016; McNeish & Kelley, 2019). The 

current study only tested when the middle level cluster size is relatively large (i.e., fixed the 

school size 𝑛𝐿 to be 20) and the cluster size of the highest cluster level is not extremely small 

(where the smallest district sample size 𝑀𝐾 is 5), the displayed simulation outputs did not 

evidence any exceptional performance of the VOCs relating to the sample size. In future studies, 

the small sample size occasions relevant to the assumption of random effects and performance of 

the estimation methods should be investigated in detail, whereas it is out of scope of the current 

study. Also, future studies are encouraged to develop extended VOCs in conditions of 

unbalanced design and random slopes. 

 

 

 

 

 

 

 

 

  



 

 

90 

 

CHAPTER 5 

OMITTED SERIAL CORRELATIONS IN LOWEST CLUSTER LEVEL 

 

5.1 Introduction 

Longitudinal data can be conceptualized as clustered data, since repeated measures 

are clustered within groups such as the yearly measured performance of students. A two-

level linear growth model is commonly utilized to describe students’ average performance 

change and the change variabilities, as well as examine the factors that can explain the 

growth patterns (Bryk & Raudenbush, 2002; Hoffman, 2015; Singer & Willett, 2003).  

In previous chapters, units within groups are exchangeable in conventional cluste red 

data that any pair of units within a cluster has an equal intraclass correlation as they are assumed 

to share common unobserved factors at the group level (Alejo et al., 2018; Cameron & Miller, 

2015; Hansen, 2007). Assuming homogeneity and independent two levels of random effects, the 

corresponding error variance-covariance of a two-level model is 𝛙i = var(Yi) = 𝐑 + 𝐥nc
𝐆𝐥’nc

, 

where 𝐑 = σ(i)𝐈 is the first-level error structure. The second-level error structure 𝐆 is a 𝐥nc
× 𝐥’nc

 

matrix of σ(j), where 𝐥nc
 is a column vector of one with a length of cluster size nc,  

A distinguished feature of longitudinal data is that repeated measures are 

chronologically ordered (Alejo, et al., 2018; Skrondal & Rabe-Hesketh, 2008). The ordering 

gives an additional source of dependency from the correlations of repeated measures within 

individuals of an outcome, other than the mean differences across individuals and the variations 

of growth across individuals (Hoffman, 2015). Unlike equicorrelated intraclass correlations, 

serial correlations between two successive time measures (i.e., corr(y(t−1)i, yti)) have certain 
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patterns. Generally, the correlations between two successive time measures are larger than the 

correlations between two non-successive ones14. As the gap between two occasion measures 

increases, the correlation decreases. That is, corr(y(t−k)i, yti) > corr(y(t−k)i, y(t+s)i). In this case, 

another form of intraclass correlation due to serial correlation emerges, in addition to the 

conventional one  due to random effects. The basic identity structure (ID) of 𝐑 = σ(i)𝐈, assuming 

independently and identically distributed within-individual-repeated-measure residuals, is then 

overly simplified in the multilevel longitudinal data analysis.  

In the field of Economics, the intraclass correlations due to clustering and serial 

correlation are explicitly defined to be closely related but distinct (Angrist & Pischke, 2008). 

Then corresponding statistical tests are proposed for evaluating the two forms of intraclass 

correlations in random effects longitudinal models. As surveyed in Alejo et al. (2018), earlier 

tests evaluating either random effects or serial correlation (i.e., Baltagi & Li, 1991; Breusch & 

Pagan, 1980) tend to produce inflated rejection rate if the other form of intraclass correlation 

exits and is ignored (Bera et al., 2001). Empirical research also presents this issue. In the 

influential study of Bertrand et al. (2004), a survey of 92 difference-in-difference (DD) studies 

found that only five of them had implemented serial correlation corrections. In that study, 

significant over-rejection is found for a null effect treatment, which is due to the omitted serial 

correlation. On the other hand, interclass correlation due to clustering alone is commonly taken 

care of by cluster-robust standard errors (Moulton, 1986, 1990), alternative estimators such as 

GLS (Liang & Zeger, 1986; White, 1980), and block bootstrap (Cameron et al., 2008). Later 

developed tests provide joint tests of both forms of intraclass correlation such as in Alejo et al. 

 
14 The current study focuses on positive serial correlations, which means the error terms have the same sign from 

one time-measure to the next. 
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(2018), Baltagi, Jung, and Song, (2002, 2010), and King and Roberts (2015), to name a few. 

These studies highlight the identification of the sources of the intraclass correlation (i.e., due to 

clustering effect or serial correlation), and appropriate strategies and models would be applied 

(Alejo et al., 2018). With both forms of intraclass correlations, corresponding strategies, such as 

feasible generalized least squares estimation (FGLS) (Hansen, 2007), are required to account for 

dependencies (Angrist & Pischke, 2008; Wooldridge, 2003).  

The above discussion alerts the critical need for detecting and distinguishing the two 

forms of intraclass correlation. Beyond the above-mentioned approaches that are popular in 

economics research, the model-based approach HLM account for the two forms of intraclass 

correlation simultaneously by specifying a correct error variance-covariance structure. However, 

it is not uncommon in empirical research that the serial correlations among the repeated 

measures are ignored in the time-level variance 𝑹, and all the expected correlations among the 

repeated measures are (false) due to the individual-level random effect variance 𝑮. 

Consequently, the tested theories and inferences made for the variance components and fixed 

effects could be erroneous (Ferron et al., 2002; Hoffman, 2015; LeBeau, 2016, 2018). Therefore, 

with recognition of serial correlation, a correctly specified 𝑹 structure is pivotal.  

As a start, the current study considers the ID structure of 𝑹 being a scenario of omitting 

serial correlations at the lowest level, and sets out to mathematically quantify the corresponding 

estimation bias for robust inference making. It begins in Section 5.1 with a review of the 

approaches to specify 𝑹, and a discussion of the bias in estimates due to the misspecified 𝑹 in 

empirical research. Then this article’s study motivation and goal is proposed. Section 5.2 follows 

the details of deriving generalized formulas to quantify the estimation bias of variances of the 

random effects and fixed effects, explore through an example of a two-level random intercept 
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linear growth model that misspecified the 𝑹 as ID from AR (1). A Monte Carlo simulation study 

presents the performances of the formulas. Section 5.4 provides an empirical study example. At 

last, Section 5.5 concludes and discusses the future research.    

5.2 Alternative R Structures with Serial Correlations  

The structure of the time-level residual variance matrix 𝑹 represents the serial correlation 

patterns. Besides the ID structure of 𝑹 = 𝜎(𝑖)𝑰, many alternative structures have been widely 

recognized in textbooks of multilevel analysis, including Bryk & Raudenbush (2002, Chapter 6), 

Hoffman (2015, Section 3), Singer & Willett (2003, Chapter 7), and Snijders & Bosker (2012, 

Chapter 15), to name a few. Commonly presented alternative 𝑹 structures include autoregression 

(AR (k)), autoregression and moving average (ARMA (p, q)), Toeplitz (TOEP(k)), and 

unstructured.  

In practice, the selection of 𝑹 largely depends on empirical and theoretical needs 

(Snijders & Bosker, 2012). Nevertheless, this approach is limited by prior experience and 

generalizability, which is prone to uncertainties in specifying 𝑹. Moreover, a misspecified 𝑹, in 

return, distorts the deduction of theories. Taking a simple example, which will be proved in later 

sections, when a relatively large serial correlation is completely omitted, the between-individual 

variance matrix 𝑮 is then considerably overestimated as 𝑹 is underestimated. Then, in modeling, 

individual-level predictors are added to explain the overstated between-individual variances, 

instead of the within-individual predictors (Hoffman, 2015). In this case, the true predictors and 

mechanisms of individual growth, particularly for the within-individual levels, are overlooked. 

This example applies well for research that is interested in examining the impacts of students’ 

time-varying psychological and cognitive factors on their learning. On the other hand, if the 
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serial correlation is overstated and the research is interested in students’ attributes, like ethnicity 

and family background, an overstated 𝑹 eliminates some between-individual variance due to 

those students’ attributes.  

In addition to deciding 𝑹 based on empirical experience and theory, a general statistical 

approach is through comparing the goodness of fit values among several models with different 

specified 𝑹 structures, and then selecting the best fit model. However, the arbitrary values of 

likelihood ratio tests and information fit criteria have been critiqued. The criteria of modeling 

performances depend on many factors, including the number of time measures, total sample size 

of individuals, estimation methods, and variance-covariance patterns. Therefore, no single 

criterion performs uniformly better than the others, and certain criteria perform better for 

selecting some 𝑹 structure models (Vallejo et al., 2011). Also, it is important to note that the best 

fit model is not necessarily the model with the correct 𝑹 (Murphy & Pituch, 2009). Researchers 

may turn to the general unstructured 𝑹 with no prior specifications to best fit the data (Littell et 

al., 2000). However, the unstructured 𝑹 is less interpretable to empirical studies that appreciate 

substantive theories. Further, as evidenced in Murphy and Pituch (2009), although the 

unstructured 𝑹 produces the least biased random effects, it inflates Type I error rate of fixed 

effects and has convergence problems as a large number of parameters needs to be estimated.  

The above presented selection methods of 𝑹 are not free from concerns. Empirical 

research is then still subject to the serious impacts on variance estimates if 𝑹 is misspecified. In 

Kwok et al. (2007) study, three scenarios of misspecifying 𝑹 are summarized: overspecification, 

underspecification, and general misspecification. That study develops a network of multiple 𝑹 by 

their nesting relationship of structures, including independent (ID), first-order autoregressive 

process (AR(1)), first-order moving average process ARMA (1,1), Toeplitz 2 bands (TOEP(2)), 
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and unstructured, as shown in Figure 1 and Table 1 (Kwok et al., 2007, p.565, 568). For 

example, an underspecification situation happens when the true 𝑹 is AR(1) while an ID is 

estimated, or the true one is ARMA(1,1) while an AR(1) is estimated. An overspecification 

happens when AR(1) is the true 𝑹 while ARMA(1,1) is modeled. TOEP(2), and unstructured are 

considered as general misspecification when the true 𝑹 is defined as the other ones. The general 

findings are that, if 𝑹 is underspecified or general-misspecified, the fixed effects coefficients’ 

estimates are unbiased, while the variances are found to be overestimated. The overspecifications 

lead to slightly underestimated variances.  

However, other studies found conflicting patterns. Murphy and Pituch (2009) detects 

smaller standard error estimates in the underspecified AR (1) model while the true 𝑹 is ARMA 

(1, 1). Also, Ferron et al. (2002) finds larger estimates of random effects’ variances from the 

estimated ID model when the true 𝑹 is AR (1), whereas the standard error estimates of the fixed 

effects are slightly smaller than they should be, as the Type I error rate inflates accordingly. 

These finding are consistent with a recent Monte Carlo study of LeBeau (2018), which also 

shows inflated Type I error rates of the fixed effects when the serial correlation is completely 

omitted in 𝑹 (i.e., underspecified as ID).  

The above simulation-based studies provide evidence of estimation bias due to the 

misspecified 𝑹, whereas the findings are not always consistent. Moreover, they are limited in 

generalizability as they are tested for certain range of parameters. Therefore, further analytic 

examinations are needed to further determine the underlying mechanisms of the estimation bias.  
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5.2.1 Study Motivation  

The above discussion demonstrates that the decision making of 𝑹 structure is complex. 

Besides the awareness of the negative impacts of misspecified 𝑹, empirical researchers can 

benefit more from a strategy that aids to evaluate whether the estimated 𝑹 is specified correctly, 

and to adjust the potential bias if the estimated 𝑹 is false.  

The current study intents to provide such a strategy that, instead of deciding the true 𝑹, it 

proposes to quantify the uncertainties that the specified 𝑹 in the estimated model can cause when 

an alternative 𝑹 is hypothesized to be true. Bertrand et al. (2002) provides variance estimate 

formulas to demonstrate the exact reason of omitting positive serial correlation in OLS 

estimation that understates the standard error estimates. However, no such efforts have been 

made with the presentation of clustering dependencies in multilevel longitudinal analysis. The 

current study therefore contributes to fill this gap by deriving formulas to determine the reason of 

estimation bias due to omitted serial correlation with multilevel longitudinal analysis. The 

detected bias, then, can be adjusted by those formulas. These formulas will be derived similarly 

with the VOCs from the previous chapters of the omitted middle and highest cluster levels. This 

quantification approach distinguishes the sources of the estimation bias (i.e., serial correlation 

and random effects’ variances), and the varying impacts of misspecified 𝑹 on different levels of 

predictors, including the growth parameters and the time-varying predictors at the time-level, and 

the time-invariant predictors at the individual-level. In this way, researchers in practice can 

benefit from model building with selecting predictors that best explain those corresponding 

variances, as well as deciding whether a predictor’s standard error estimates need adjustment or 

not.  
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Together with the sensitivity analysis developed in Chapter 3, this approach provides 

researchers with flexibilities to choose the best model that is statistically robust and appropriate 

for their theories. This approach also facilitates researchers and readers who do not have the 

original data to replicate the presented models while the original study does not provide much 

information on the selection criteria and decision rationale of 𝑹. For instance, the assumption of 

𝑹 is not explicitly given in the study of a five-year longitudinal study of student achievement and 

goal setting (i.e., Moeller et al., 2012), and the model results do not show serial correlation 

estimates. In this case, readers may suspect the estimated model is specified 𝑹 = 𝜎(𝑖)𝑰, and ask 

questions of, if any serial correlation is omitted, how much the estimation bias would be and how 

robust the inferences that were made.  

Since ID and AR(1) are the most widely used 𝑹 in empirical longitudinal research, the 

current study focuses on this underspecification case of estimated 𝑹 being ID while the true one 

being AR(1). However, the above described approach is suitable to test many other pairs of 

misspecification cases, such as between AR(1) and ARMA(1,1), as long as the structures are 

nested as shown in Figure 1 of Kowk, et al. (2007). The current study adapts this concept of 

nested 𝑹 structures for future work of building a full network of 𝑹 structure misspecification 

pairs. 

5.3 Quantification of Standard Error Bias 

5.3.1 Model Setting 

This section derives formulas to quantify the bias of variance estimates of both random 

effects and fixed effects, if the true 𝑹 structure is assumed to be AR (1) and the estimated 𝑹 is 
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ID. The following defines a two-level random intercept linear growth model to describe a mean 

pattern of students’ growth over time:  

Time-level: 𝑌𝑡𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝜀𝑡𝑖 , 

Student-level: 𝛽0𝑖 = 𝛾00 + 𝛾01𝑋𝑖 + 𝑟0𝑖, 

𝛽1𝑖 = 𝛾10, 

Mixed model: 𝑌𝑡𝑖 = 𝛾00 + 𝛾10𝑇𝑖𝑚𝑒𝑡𝑖 + 𝛾01𝑋𝑖 + 𝑟0𝑖 + 𝜀𝑡𝑖. 

For simplicity of notation and formula derivation, the model is a balanced design that any student 

i is measured at the same 𝑛𝑡 occasions. The intercept 𝛽0𝑖 varies at the student-level and is 

explained by a student-level measure 𝑋𝑖. The occasion measure is 𝑇𝑖𝑚𝑒𝑡𝑖 and its’ coefficient 

parameter 𝛾10 is the mean growth rate of students. Taking five-year measured age for example, 

𝑇𝑖𝑚𝑒𝑡𝑖 can be coded as 1, 2, 3, 4, 5, or -2, -1, 0, 1, 2, where the 0 point serves a meaningful start 

point for interpretation (Hoffman, 2015). In here and later simulation, 𝑇𝑖𝑚𝑒𝑡𝑖 is group-centered 

which helps avoid endogeneity issues where random effects correlate with predictors (Antonakis 

et al., 2019). Though a random slope is common in longitudinal data analysis, the growth rate 

𝛾10 in this study is not assumed to be random, as students grow at a same rate in a shared  

context, such as the same school.  Assuming the true serial correlation pattern is AR(1), the 

random effects are 𝜀𝑡𝑖~𝑁(0, 𝑹𝑨𝑹(𝟏)), 𝑟0𝑖~𝑁(0, 𝜎𝐴𝑅(1)
(𝑖)  ), and 𝑐𝑜𝑣(𝜀𝑡𝑖 , 𝑟0𝑖) = 0. 

Consistent with the modeling settings in Chapter 2 and 4, homogeneity assumption holds 

for both levels that random effects’ variances are constant conditioning on controlled variables. 

In the model above, covariates other than 𝑇𝑖𝑚𝑒𝑡𝑖 and 𝑋𝑖 are not shown for simplicity. In this 
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case, the fixed growth rate and serial correlation are also conditional. The model setting serves a 

presumption that the empirical model has no omitted confounding variable.  

5.3.2 Quantifying the Standard Error Estimate Bias 

The error variance-covariance structure is 𝝍𝒊,𝑨𝑹(𝟏) = 𝑣𝑎𝑟(𝑌𝑖) = 𝑹𝑨𝑹(𝟏) + 𝒍𝑛𝑡
𝑮𝒍’𝑛𝑡

, 

where the dimension of 𝝍𝒊,𝑨𝑹(𝟏) is 𝑛𝑡  ∗ 𝑛𝑡, and 𝒍𝑛𝑡
 is a column vector of 𝑛𝑡 ones. The difference 

of the error variance-covariance structure between the estimated ID model (noted as 𝝍̃𝑖,𝐼𝐷) and 

the AR (1) model is at the structure of 𝑹𝑨𝑹(𝟏). In the AR(1) model,  

𝑹𝑨𝑹(𝟏) = 𝜎𝐴𝑅(1)
(𝑡)

[
 
 
 
 
1 𝜌1 𝜌2 𝜌3

𝜌1 1 𝜌1 𝜌2

𝜌2 𝜌1 1 𝜌1

𝜌3 𝜌2 𝜌1 1 ]
 
 
 
 

 . 

That is, with an AR(1) serial correlation pattern, the variance of time-level residual is 

𝑣𝑎𝑟(𝜀𝑡𝑖) = 𝜎𝐴𝑅(1)
(𝑡)  and the covariance of two adjacent time measures is 𝑐𝑜𝑣(𝜀𝑡𝑖, 𝜀𝑠𝑖) =

𝜎𝐴𝑅(1)
(𝑡) 𝜌|𝑡−𝑠|, where 𝑡 = 1,2, . . . , 𝑛𝑡; 𝑠 = 𝑡 − 1, ∀𝑖, 𝑠 ≠ 𝑡, and 𝜌|𝑡−𝑠| = 𝜌|𝑠−𝑡| (Montes-Rojas, 

2016). I also assume that no measurement error and the lag-1 autocorrelation is positive (i.e., 0 ≤

𝜌|𝑡−𝑠| ≤ 1). The structure 𝒍𝑛𝑡
𝑮𝒍’𝑛𝑡

 does not differ in the true AR(1) model or in the estimated ID 

model, which captures the intraclass correlation due to the individual-level random effect 

variance. The complete extended form of 𝝍𝑖,𝐴𝑅(1) is 
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𝝍𝑖,𝐴𝑅(1) = 𝑹𝑨𝑹(𝟏)+𝒍𝑛𝑡
𝑮𝒍𝑛𝑡

′
=𝜎𝐴𝑅(1)

(𝑡)

[
 
 
 
 
1 𝜌1 𝜌2 𝜌3

𝜌1 1 𝜌1 𝜌2

𝜌2 𝜌1 1 𝜌1

𝜌3 𝜌2 𝜌1 1 ]
 
 
 
 

+ [

1
1
1
1

] [𝜎𝐴𝑅(1)
(𝑖) ][1 1 1 1] 

=

[
 
 
 
 
 𝜎𝐴𝑅(1)

(𝑡) + 𝜎𝐴𝑅(1)
(𝑖) 𝜎𝐴𝑅(1)

(𝑡) 𝜌1 + 𝜎𝐴𝑅(1)
(𝑖) 𝜎𝐴𝑅(1)

(𝑡) 𝜌2 + 𝜎𝐴𝑅(1)
(𝑖) 𝜎𝐴𝑅(1)

(𝑡) 𝜌3 + 𝜎𝐴𝑅(1)
(𝑖)

𝜎𝐴𝑅(1)
(𝑡) 𝜌1 + 𝜎𝐴𝑅(1)

(𝑖) 𝜎𝐴𝑅(1)
(𝑡) + 𝜎𝐴𝑅(1)

(𝑖) 𝜎𝐴𝑅(1)
(𝑡) 𝜌1 + 𝜎𝐴𝑅(1)

(𝑖) 𝜎𝐴𝑅(1)
(𝑡) 𝜌2 + 𝜎𝐴𝑅(1)

(𝑖)

𝜎𝐴𝑅(1)
(𝑡) 𝜌2 + 𝜎𝐴𝑅(1)

(𝑖) 𝜎𝐴𝑅(1)
(𝑡) 𝜌1 + 𝜎𝐴𝑅(1)

(𝑖) 𝜎𝐴𝑅(1)
(𝑡) + 𝜎𝐴𝑅(1)

(𝑖) 𝜎𝐴𝑅(1)
(𝑡) 𝜌1 + 𝜎𝐴𝑅(1)

(𝑖)

𝜎𝐴𝑅(1)
(𝑡)

𝜌3 + 𝜎𝐴𝑅(1)
(𝑖)

𝜎𝐴𝑅(1)
(𝑡)

𝜌2 + 𝜎𝐴𝑅(1)
(𝑖)

𝜎𝐴𝑅(1)
(𝑡)

𝜌1 + 𝜎𝐴𝑅(1)
(𝑖)

𝜎𝐴𝑅(1)
(𝑡)

+ 𝜎𝐴𝑅(1)
(𝑖)

]
 
 
 
 
 

. 

Unlike 𝝍𝑖,𝐼𝐷, the off-diagonal of 𝝍𝑖,𝐴𝑅(1) is no longer a single 𝜎𝐴𝑅(1)
(𝑖)

 but a function of 

𝜎𝐴𝑅(1)
(𝑡)

, 𝜌|𝑡−𝑠|, and 𝜎𝐴𝑅(1)
(𝑖)

. To achieve a simpler form of 𝝍𝑖,𝐴𝑅(1) that can be written into a general 

linear form like 𝝍𝑖,𝐼𝐷, and to achieve a general form of the column sum (such as 𝜏∗ in previous 

omitted middle and highest level cases), I construct an average term of 𝑐𝑜𝑣(𝜀𝑡𝑖, 𝜀𝑠𝑖) in the off-

diagonal as 

𝑐𝑜𝑣̅̅ ̅̅ ̅(𝜀𝑡𝑖 , 𝜀𝑠𝑖) = 𝜎𝐴𝑅(1)
(𝑡) 𝜌̅, 

where 

𝜌̅ =
∑ 𝜌|𝑡−𝑠|𝑛𝑡−1

|𝑡−𝑠|=1

𝑛𝑡 ∗ 𝑛𝑡 − 𝑛𝑡
=

2

𝑛𝑡(𝑛𝑡 − 1)
𝑺 

and 

𝑺 = ∑ ∑ 𝜌|𝑡−𝑠|

𝑛𝑡−1

𝑠=𝑡−1

𝑛𝑡

𝑡=𝟐

 

is the sum of all elements of either side off-diagonal of the 𝜌|𝑡−𝑠| symmetric correlation matrix. 

This averaging approach is also suggested by Montes-Rojas (2016). 
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Any elements in the off diagonal of 𝝍𝑖,𝐴𝑅(1) now turns to 𝜎𝐴𝑅(1)
(𝑡) 𝜌̅ + 𝜎𝐴𝑅(1)

(𝑖)
. Similar to the 

construction of the conventional ICC as shown in Appendix 2.1, the expected intraclass 

correlations of 𝜌𝐴𝑅(1) is defined by the ratio of 𝜎𝐴𝑅(1)
(𝑡) 𝜌̅ + 𝜎𝐴𝑅(1)

(𝑖)
 and the total error variance 

𝜌𝐴𝑅(1) =
𝑐𝑜𝑣(𝑌𝑡𝑖 − 𝑌̂𝑡𝑖, 𝑌𝑠𝑖 − 𝑌̂𝑠𝑖)

√𝑣𝑎𝑟(𝑌𝑡𝑖 − 𝑌̂𝑡𝑖)𝑣𝑎𝑟(𝑌𝑠𝑖 − 𝑌̂𝑠𝑖)

=
𝑐𝑜𝑣(𝜀𝑡𝑖 + 𝑟0𝑖, 𝜀𝑠𝑖 + 𝑟0𝑖)

√𝑣𝑎𝑟(𝜀𝑡𝑖 + 𝑟0𝑖)𝑣𝑎𝑟(𝜀𝑠𝑖 + 𝑟0𝑖)
 

=
𝑐𝑜𝑣(𝜀𝑡𝑖, 𝜀𝑠𝑖) + 𝑐𝑜𝑣(𝑟0𝑖 , 𝜀𝑠𝑖) + 𝑐𝑜𝑣(𝑟0𝑖, 𝜀𝑡𝑖) + 𝑣𝑎𝑟(𝑟0𝑖)

√𝑣𝑎𝑟(𝜀𝑡𝑖 + 𝑟0𝑖)𝑣𝑎𝑟(𝜀𝑠𝑖 + 𝑟0𝑖)
 

=
𝜎𝐴𝑅(1)

(𝑡) 𝜌̅ + 𝜎𝐴𝑅(1)
(𝑖)

𝜎
𝐴𝑅(1)
(𝑡) + 𝜎

𝐴𝑅(1)
(𝑖)

=
𝜎𝐴𝑅(1)

(𝑡) 𝜌̅ + 𝜎𝐴𝑅(1)
(𝑖)

𝜎𝑡𝑜𝑡𝑎𝑙
2                                      

= (1 − 𝜌1,𝐴𝑅(1))𝜌̅ + 𝜌1,𝐴𝑅(1).                                                   (5.1) 

Straightforwardly, 𝜌𝐴𝑅(1) is a function of the two forms of intraclass correlations from the 

time series and random effect, which emphasizes the legitimacy of the two forms of intraclass 

correlation coefficients. If we overlook the forms of the intraclass correlations, 𝜌𝐴𝑅(1) is 

simplified to an overall intraclass correlation coefficient, and functions equivalently to 𝜌1,𝐼𝐷.  

The average intraclass correlation of the repeated time measures per individual is 𝜌̅. The 

current study defines 𝜌̅ as intraclass autocorrelation coefficient (IAC) and 𝜌1,𝐴𝑅(1) as intraclass 

correlation coefficient of random effects (ICR). Unlike the ID model that has only one intraclass 

correlation coefficient (i.e., ICR), the AR(1) model has two forms of intraclass correlations of 

IAC and ICR, which highlights the serially correlated features of longitudinal data discussed at 

the beginning.  
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The ICR is the conventional intraclass correlation, which is 

𝜌1,𝐴𝑅(1) =
𝜎𝐴𝑅(1)

(𝑖)

𝜎𝑡𝑜𝑡𝑎𝑙
2 = 1 −

𝜎𝐴𝑅(1)
(𝑡)

𝜎𝑡𝑜𝑡𝑎𝑙
2  . 

Further, since 𝜌1,𝐼𝐷 =
𝜎𝐼𝐷

(𝑖)

𝜎𝑡𝑜𝑡𝑎𝑙
2 , the relationship between the individual-level random effects 

of two models is 

𝜎𝐼𝐷
(𝑖) = 𝜎𝐴𝑅(1)

(𝑡) 𝜌̅ + 𝜎𝐴𝑅(1)
(𝑖)

. 

Also, since the total error variance is fixed regardless of the model specification, 𝜎𝐴𝑅(1)
(𝑡) +

𝜎𝐴𝑅(1)
(𝑖) = 𝜎𝑡𝑜𝑡𝑎𝑙

2 = 𝜎𝐼𝐷
(𝑡) + 𝜎𝐼𝐷

(𝑖)
 gives that 

𝜎𝐼𝐷
(𝑡) = 𝜎𝐴𝑅(1)

(𝑡) (1 − 𝜌̅). 

That is, the estimated intercept random effect in the ID model is smaller than the one in 

the AR(1) model, while the estimated time-level random effect in the ID model is larger than the 

one in the AR(1) model. This formula testifies the patterns detected in Murphy and Pituch 

(2009). The size of the gaps between the random effects of the two models depends on the size 

of IAC 𝜌̅. Immediately, the random effects of AR(1) can be derived by the following formula:  

𝜎𝐴𝑅(1)
(𝑡) =

𝜎𝐼𝐷
(𝑡) 

1 − 𝜌̅
  

and 

𝜎𝐴𝑅(1)
(𝑖) = (𝜎𝐼𝐷

(𝑖) + 𝜎𝐼𝐷
(𝑡)) − 𝜎𝐴𝑅(1)

(𝑡)  . 
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Also,  

𝜌1,𝐴𝑅(1) =
𝜎𝐴𝑅(1)

(𝑖)

𝜎𝑡𝑜𝑡𝑎𝑙
2 =

𝜎𝐼𝐷
(𝑖) − 𝜎𝐴𝑅(1)

(𝑡) 𝜌̅

𝜎𝑡𝑜𝑡𝑎𝑙
2 =

𝜌1,𝐼𝐷 − 𝜌̅

1 − 𝜌̅
= 1 +

𝜌1,𝐼𝐷 − 1

1 − 𝜌̅
. (5.2) 

Consequently, 𝜌1,𝐴𝑅(1) is smaller than 𝜌1,𝐼𝐷. The degree of differences between these two 

ICRs is weighted by the IAC 𝜌̅. When 𝜌̅ is zero, the forms of intraclass correlation reduce to 

ICR-only as 𝜌𝐴𝑅(1) = 𝜌1,𝐴𝑅(1) = 𝜌1,𝐼𝐷. In this case, an estimated ID model is the true model. On 

the other hand, if 𝜌̅ = 1 that each of the time measures of the dependent variable of an individual 

are exactly the same, 𝜎𝐼𝐷
(𝑖) = 𝜎𝐴𝑅(1)

(𝑡) + 𝜎𝐴𝑅(1)
(𝑖) = 𝜎𝑡𝑜𝑡𝑎𝑙

2 = 𝜎𝐼𝐷
(𝑡)

, which is equivalent to a time-

individual aggregated or single time-point one level analysis.   

Finally, a simple form of the unified single column sum of 𝝍𝑖,𝐴𝑅(1) is 𝜏𝐴𝑅(1)
∗ , which is the 

variance estimate index of the coefficient estimate of 𝑇𝑖𝑚𝑒𝑡𝑖: 

𝑉𝑎𝑟𝐴𝑅(1)(𝛾10) = {∑(𝑇𝑖𝑚𝑒𝑡𝑖
′

𝑀𝐾

𝑘=1

𝝍𝑖,𝐴𝑅(1)𝑇𝑖𝑚𝑒𝑡𝑖)}

−1

= 𝜎2 𝜏𝐴𝑅(1)
∗ {∑(𝑇𝑖𝑚𝑒𝑡𝑖

′

𝑀𝐾

𝑘=1

𝑇𝑖𝑚𝑒𝑡𝑖)}

−1

, 

and   

𝜏𝐴𝑅(1)
∗ = 1 + (𝑛𝑡 − 1)𝜌𝐴𝑅(1) = 1 + (𝑛𝑡 − 1)[(1 − 𝜌1,𝐴𝑅(1))𝜌̅ + 𝜌1,𝐴𝑅(1)].   (5.3) 

Then, I construct the VOC to measure the variance inflation size of the estimated 

variance of the coefficient of the time-level predictor when the AR(1) model is underspecified as 

ID. The construction rationale is the same as in previous chapters and the conventional design 

effect that the VOC is the ratio of the variance estimate of the AR(1) model and the variance 

estimate of the ID model, which yields to 
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𝑉𝐼𝐹𝑇,𝑇𝑡𝑖 
(𝐴𝑅(1)−𝐼𝐷)

=
𝜏𝐴𝑅(1)

𝜏̃𝐼𝐷
=

1 + (𝑛𝑇 − 1)𝜌 𝐴𝑅(1)𝜌𝑇𝑡𝑖,𝐴𝑅(1)

1 + (𝑛𝑇 − 1)𝜌1,𝐴𝑅(1)𝜌 𝑇𝑡𝑖 
=

1 + (𝑛𝑇 − 1)𝜌1,𝐼𝐷𝜌𝑇𝑡𝑖,𝐴𝑅(1)

1 + (𝑛𝑇 − 1)𝜌1,𝐴𝑅(1)𝜌 𝑇𝑡𝑖 
, (5.4) 

where 𝜏̃𝐼𝐷 is the scaler weight of the variance estimate of the ID model, which only takes into 

account of the intraclass correlation due to the random effect. 𝜏𝐴𝑅(1) is the scaler weight of the 

variance of the AR(1) model, which takes into account of the two forms of the intraclass 

correlations. This equation holds the same idea as the ones in previous chapters of quantifying 

the variance estimate bias when the middle and highest cluster are omitted.  

Further, 𝜌 𝑇𝑡𝑖 ,𝐴𝑅(1) is the intraclass correlation of repeated time measure predictor in the 

form of an average lag-1 autocorrelation, while 𝜌 𝑇𝑀 is the average conventional correlation 

coefficient. Specifically,  

𝜌 𝑇𝑡𝑖 ,𝐴𝑅(1) =
1

𝑛𝐼
∑

1

𝑛𝑇 − 1
[
∑ (𝑇𝑀𝑖𝑡 − 𝑇𝑀̅̅̅̅

𝑖̅)(
𝑛𝑇
𝑡=2 𝑇𝑀𝑖(𝑡−1) − 𝑇𝑀̅̅̅̅

𝑖̅)

∑ (𝑇𝑀𝑖𝑡 − 𝑇𝑀̅̅̅̅
𝑖̅)2𝑛𝑡

𝑡=1

]

𝑛𝐼

𝑖=1

 

and  

𝜌 𝑇𝑡𝑖 
=

1

𝑛𝐼
∑

2

𝑛𝑇(𝑛𝑇 − 1)
[
∑ (𝑇𝑀𝑖𝑡 − 𝑇𝑀̅̅̅̅

𝑖̅)(
𝑛𝑇
𝑡≠𝑠 𝑇𝑀𝑖𝑠 − 𝑇𝑀̅̅̅̅

𝑖̅)

∑ (𝑇𝑀𝑖𝑡 − 𝑇𝑀̅̅̅̅
𝑖̅)2𝑛𝑡

𝑡=1

]

𝑛𝐼

𝑖=1

, 

where 𝑛𝐼 is the number of individuals, 𝑇𝑀𝑖𝑡 is a time occasion measure at time t of an individual 

i, and 𝑇𝑀̅̅̅̅
𝑖̅ is the individual-level mean of the occasion measures. Group-mean centering of the 

occasion measure in balanced studies does not produce different values of 𝜌 𝑇𝑀,𝐴𝑅(1) and 𝜌 𝑇𝑀.  

The above two intraclass correlation measures of predictors are adapted from the ones in 

Angrist and Pischke (2008) and Montes-Rojas (2016), which distinguish the difference between 

these two types of intraclass correlation coefficients of predictors. Specifically, the inclusion of 
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𝜌 𝑇𝑡𝑖 ,𝐴𝑅(1) is unique for the time-varying predictors in longitudinal data analysis, which specifies 

the autocorrelation among one time-measure with the one-time-point-later-measure within 

individuals. In contrast, the intraclass correlation of predictors 𝜌 𝑇𝑡𝑖 
 is a matter of clustering with 

equal correlation between any pairs of time-measure within an individual, due to the nature of 

the model specification of ID. Therefore, in general, 𝜌 𝑇𝑡𝑖 
 is 

2

𝑛𝑇
  times smaller than 𝜌 𝑇𝑡𝑖 ,𝐴𝑅(1) if 

there are more than two time-measure. If we ignore these two measures of time-varying 

predictors’ intraclass correlation coefficients, 𝑉𝑂𝐶𝑇,𝑇𝑡𝑖 
(𝐴𝑅(1)−𝐼𝐷)

 tends to be smaller than it should 

be. In Chapter 2 and 4 for omitted middle and higher cluster levels in non-longitudinal data 

cases, the intraclass correlation coefficients of a predictor in the denominator and numerator are 

canceled out since they both equal to the conventional correlation coefficient of the same 

predictor.  

As shown above, the standard error estimates of the time-varying predictors’ coefficient 

are downwardly estimated by the omitted autocorrelation. In contrast, the individual level time-

invariant predictor coefficient’s standard error is only affected by the overall dependencies, with 

no need of distinguishing serial correlation or random effects. In other words, the standard error 

of the individual level time-invariant predictors does not need adjustments in the estimated ID 

model. The following equation and further simulation results evidence this point. 

𝑉𝑂𝐶𝑇,𝑋𝑖 
(𝐴𝑅(1)−𝐼𝐷)

=
𝜏𝐴𝑅(1)

𝜏̃𝐼𝐷
=

1+(𝑛𝑇−1)𝜌 𝐴𝑅(1)𝜌𝑋𝑖

1+(𝑛𝑇−1)𝜌𝐼𝐷𝜌𝑋𝑖

= 1.  (5.5) 

Different from the previous 𝑉𝐼𝐹𝑇,𝑇𝑡𝑖 
(𝐴𝑅(1)−𝐼𝐷)

 as shown in Eq. 5.4, the denominator of 

𝑉𝐼𝐹𝑇,𝑋𝑖 
(𝐴𝑅(1)−𝐼𝐷)

 comes from the estimated model that captures all the dependencies, whereas the 

sources of dependencies are not recognized. Since the predictor of interest 𝑋𝑖 here is at the 
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cluster level and time-invariant, its’ forms of intraclass correlations does not need to be 

distinguished, as long as the overall error variance-covariance are captured.  The intraclass 

correlation of a cluster-level predictor is one (i.e., 𝜌𝑋𝑖
= 1) and canceled out.  

Table 5.1 A summary of VOCs when the serial correlation is omitted 

Two-level HLM 
𝑹 = 𝑰𝑫 

Single-level OLS Estimation 

Level Predictor 
Variance 

adjustment 
Level Predictor 

Variance 

adjustment 

Time 
Time-varying 

𝑇𝑡𝑖 

𝑉𝑂𝐶𝑇,𝑇𝑡𝑖 
(𝐴𝑅(1)−𝐼𝐷)

> 1 Time- 

Student 

Time-varying 

𝑇 
/ 

Individual 
Time-invariant 

𝑋𝑖 

𝑉𝑂𝐶𝑇,𝑋𝑖 
(𝐴𝑅(1)−𝐼𝐷)

= 1 

Time-invariant 

𝑋 

𝑉𝑂𝐶𝑇,𝑋𝑖

(𝐴𝑅(1)−𝑂𝐿𝑆)

> 1 

However, when the clustering structure is also omitted and a single-level analysis using 

OLS estimation is conducted, the standard error estimate of 𝑋𝑖’s coefficient 𝛾̃01 then needs to be 

adjusted by the square root of 

𝑉𝑂𝐶𝑇,𝑋𝑖

(𝐴𝑅(1)−𝑂𝐿𝑆)
= 𝜏𝐴𝑅(1) = 1 + (𝑛𝑡 − 1)𝜌 𝐴𝑅(1) = 1 + (𝑛𝑡 − 1)𝜌1,𝐼𝐷. (5.6)  

In essence, 𝑉𝑂𝐶𝑇,𝑋𝑖

(𝐴𝑅(1)−𝑂𝐿𝑆)
 shows the sources of the dependencies through 𝜌 𝐴𝑅(1), which 

is a function of 𝜌1,𝐴𝑅(1) and 𝜌̅ that have shown in Eq. 5.1. Moreover, if there is no clustering 

issue (i.e., random effect variance is null) but only autocorrelation, then  𝑉𝑂𝐶𝑇,𝑋𝑖

(𝐴𝑅(1)−𝑂𝐿𝑆)
 reduces 

to 1 + (𝑛𝑡 − 1)𝜌̅, which mimics the design-based approaches (e.g., DEFF and MF to solve the 

classic situation of omitting serial correlation in the OLS estimation. Table 5.1 shown above 

summarizes when and which predictor needs VOC adjustment.  
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5.3.3 Simulation results  

To show the magnitude and direction of estimation bias when R is misspecified, and to 

examine the performance of the derived VOC formulas, a simulation study is designed with 12 

condition sets for the three models of the true AR (1), estimated ID, and estimated single-level 

models. The conditions are set by the two parameters of the VOC formulas: the number of the 

time repeated measures 𝑛𝑡 of 6, 10, and 30, and the autocorrelation 𝜌 of 0.9, 0.7, 0.5, and 0.2. 

The total number of individuals 𝑛𝐼, and the true variances of random effects 𝜎𝐴𝑅 (1)
(𝑡)

 and 𝜎𝐴𝑅 (1)
(𝑖)

 

are fixed to be 500, 144, and 64 respectively, where the true ICR 𝜌1,𝐴𝑅(1) is 0.3.  

The numbers of the time repeated measures are chosen based on the representative cases 

in empirical research. For example, the periodicity of ECLS-K: 2011 survey measures are from 

the kindergarten to the fifth grade that 𝑛𝑡 = 6. In another example of a daily diary study, the 

occasion measures can be many more, such as 2 times a day for a half month that 𝑛𝑡 = 30 (e.g., 

Ilies & Judge, 2004). The combination of the extensive time measures and relatively smaller 

autocorrelation gives extremely small average autocorrelation 𝜌̅ values that can be null. These 

extreme cases serve to prove that, under such circumstances, variance adjustments are not 

necessary. For each condition, replications of 500 are generated.  

Like the earlier discussed simulation studies, the index of relative bias is computed to 

measure the magnitude of the estimation bias:  

R. B.𝑒𝑠𝑡 =
𝜃̃ − 𝜃

𝜃
=

𝜃̃

𝜃
− 1, 

where 𝜃 represents the true parameters from the AR (1) model, including the random effects 

variances, and standard errors of the repeated time measure 𝑇𝑖𝑚𝑒𝑡𝑖 and the individual-level 
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predictor 𝑋𝑖. Correspondingly, 𝜃̃ represents the estimates from the estimated ID models. Falsely 

estimated models lead R. B.𝑒𝑠𝑡 to deviate from zero.  

Similarly, a relative bias index of R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 is provided for the estimates adjusted by 

VOCs. The better performance is of the VOCs and less biased of the adjusted estimates, the 

closer to zero of R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 is. Further, a larger difference between R. B.𝑒𝑠𝑡 and R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 

proves that a biased estimate is more in need of a VOC adjustment. See Appendix 5.A for the 

simulation parameter setting and the detailed simulation results.   

Bias of the Random Effects and the Adjustment Performance 

R. B.𝑒𝑠𝑡 of the residual variance estimate 𝜎̃(𝑡) is consistently negative across all models, 

and the ones of the individual level random effect variance estimate 𝜎̃(𝑖) are positive. In other 

words, 𝜎̃(𝑡) is underestimated and 𝜎̃(𝑖) is overestimated. The robustness of 𝜎̃(𝑖) is commonly of 

interest in explaining the proportion of the between-individual variances of the total variance of 

the outcome. With larger IAC 𝜌̅ that is omitted, R. B.𝑒𝑠𝑡 of 𝜎̃(𝑖) deviates more from zero. For 

example, when 𝜌 = 0.9 and 𝑛𝑡 = 6, 𝜎̃𝐼𝐷
(𝑖)

 can be 2.77 times as large as the true 𝜎(𝑖). When 𝜌 =

0.2 and 𝑛𝑡 = 30, 𝜎̃𝐼𝐷
(𝑖)

 is almost identical to the 𝜎̃𝐴𝑅
(𝑖)

 since 𝜌̅ is close to zero (𝜌̅ = 0.017). 

Noticeable, when 𝑛𝑡 is small, a small 𝜌 could still result in considerable bias of the 

random effects estimation. For example, when 𝜌 = 0.2 and 𝑛𝑡 = 6, 𝜎̃𝐼𝐷
(𝑖)

 is 1.17 times larger than 

𝜎̃𝐴𝑅
(𝑖)

 (i.e.R. B.𝑒𝑠𝑡 = 0.17). Consequently, the estimated 𝜌1,𝐼𝐷 is always larger than the true 𝜌1,𝐴𝑅(1) 

as long as 𝜌̅ is not zero. The adjustments of both 𝜎̃𝐼𝐷
(𝑖)

 and 𝜎̃𝐼𝐷
(𝑡)

 are performed ideally across all 

conditions, where the relative bias are all close to zero (R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 ≤ 0.01) with minimum 

variances (var(R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 ) ≤ 0.01). The detected patterns prove that the omitted serial 
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correlation is falsely taken away by the individual-level random effect from the time-level 

residual, as well as confirming the previously formulated relationships between the random 

effects from the AR(1) and ID models.  

Bias of the Standard Error Estimate of the Coefficient of 𝑻𝒊𝒎𝒆𝒕𝒊 and the Adjustment 

Performance 

If the AR (1) structure is omitted, the estimated standard errors of 𝑇𝑖𝑚𝑒𝑡𝑖’s coefficient 

𝛾̃10 is underestimated, as R. B.𝑒𝑠𝑡 are negative across all models. The magnitude of the 

underestimation bias rises with the increase of 𝜌 and 𝑛𝑡. Fixing 𝜌 = 0.9, the estimated standard 

error of 𝛾̃10 is only one-fifth of the true parameter when 𝑛𝑡 = 30, and three-fifths of the true one 

when 𝑛𝑡 = 6. Moreover, the R. B.𝑒𝑠𝑡 values decreases to zero when 𝜌̅ are closing into zero, such 

as when 𝜌 = 0.2 across all 𝑛𝑡. However, the underestimation bias does not diminish. The 

estimated standard error of 𝛾̃10 can still be one-fifth less than the true one.  

In terms of the bias adjustment, when 𝜌̅ is larger than 0.1, 𝑉𝑂𝐶𝑇,𝑇𝑡𝑖 
(𝐴𝑅(1)−𝐼𝐷)

 performs well 

since |R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 | ≤ 0.05 and var(R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 ) ≤ 0.001, except for the case of when 𝜌 = 0.5 

and 𝑛𝑡 = 10 (𝜌̅ = 0.178). The performance of  𝑉𝑂𝐶𝑇,𝑇𝑡𝑖 
(𝐴𝑅(1)−𝐼𝐷)

 are also relatively better when the 

occasion measures are not extensive. When 𝜌 is moderate and small (i.e., 0.5 and 0.2), 

R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 tends to be positive, though smaller than 0.1 when 𝑛𝑡 is 6 and smaller than 0.3 when 

𝑛𝑡 is 10. If 𝑛𝑡 gets extensively large to be 30, 𝑉𝑂𝐶𝑇,𝑇𝑡𝑖 
(𝐴𝑅(1)−𝐼𝐷)

 tends to make undesired 

overcorrections that R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 is larger than 0.5, or even as large as 1. Type II error can thus be 

caused. In these cases, 𝜌̅ are around 0.05 and smaller. The undesired overcorrection pattern could 

also be related to the values of the intraclass correlations of predictors 𝜌 𝑇𝑖𝑚𝑒𝑡𝑖 ,𝐴𝑅(1) and 𝜌 𝑇𝑖𝑚𝑒𝑡𝑖
. 
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As shown in 𝑛𝑡 = 30, 𝜌 𝑇𝑡𝑖 ,𝐴𝑅(1) = 0.9 while 𝜌 𝑇𝑖𝑚𝑒𝑡𝑖
= 0.06, in which the extremely small 

 𝜌 𝑇𝑖𝑚𝑒𝑡𝑖
 produces an extremely small denominator of 𝑉𝑂𝐶𝑇,𝑇𝑡𝑖 

(𝐴𝑅(1)−𝐼𝐷)
. As a Result, the 

corresponding 𝑉𝑂𝐶𝑇.𝑇𝑡𝑖 
(𝐴𝑅(1)−𝐼𝐷)

 tends to be much larger than it should be.  

Bias of the Standard Error Estimate of the Coefficient of 𝑿𝒊 and the Adjustment Performance 

As expected, when the clustering structure is omitted, there are underestimation issues of 

the standard error estimates of the individual-level predictor 𝑋𝑖’s coefficient 𝛾̃01. Consistently 

across all conditions, R. B.𝑒𝑠𝑡 are negative and around from -0.5 to -0.7. Equivalently, the 

estimated standard error estimates from the single-level analyses are only half of or even smaller 

than the true parameter. 𝑉𝑂𝐶𝑇,𝑋𝑖

(𝐴𝑅(1)−𝑂𝐿𝑆)
 performs desirable in all models that R. B.𝑎𝑑𝑗.𝑒𝑠𝑡 are 

close to zero, except for one noticeable overcorrection case of when 𝑛𝑡 = 30 and 𝜌 = 0.7.  

5.4 Empirical Example and Sensitivity Analysis 

The selected empirical example is in Taylor et al. (2010), which applies two-level linear 

growth models to examine the impacts of between-student and within-student motivational 

regulations and psychological needs on three motivational outcome of effort, intentions, and 

physical activity growth. The 178 participant students come from an England school who are in 

grade-level 6 through 10. The three outcome variables are measured from three semesters’ 

surveys.  

The original study does not specify the time-level random effect variance structure, thus, 

assuming an AR (1) structure is underspecified as ID, the current study presents examples of 

utilizing the sensitivity analysis to test the robustness of the time-varying predictors. The 

employed models are the ones with outcome predictor of students’ intentions to exercise (see 
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Table 1 and 2 of Taylor et al., 2010 for the detailed model reports). In both models, the random 

slopes are not significant, and the variance estimates are close to 0 (i.e., 0.1 and 0.01 

respectively). Thus, I use the above VOC formulas that are initially constructed from the random 

intercept models as an elementary example. Following the suggested steps of conducting the 

sensitivity analysis in the heuristics diagram of Figure 3.3 of Chapter 3, the threshold VOC is 

calculated at first. Then examples that are minimum and maximum IAC values are presented to 

show the boundaries of robustness.  

Table 5.2 Sensitivity analysis of the time-varying predictor: competence 

 ID AR (1)  𝛽̂ 0.27   

𝜌 𝐶𝑡𝑖 
 0.53 0.79  𝑆𝑡𝐸# 0.14 𝑡# 1.96 

  IAC=0.10 IAC=0.51 IAC=0.30  𝑆𝑡𝐸𝐼𝐷 0.13 𝑡𝐼𝐷 2.08 

𝜎(𝑖) 1.20 1.08 0.02 0.72      

𝜎(𝑡) 1.12 1.24 2.30 1.60      

ICR: 𝜌1 0.52 0.46 0.01 0.31      

IAC: 𝝆̅ 𝑽𝑶𝑪 Index √𝑽𝑶𝑪 𝑺𝒕𝑬𝒗𝒐𝒄 
𝑾𝑶𝑪 

& 𝑬𝑺𝑶𝑪 
𝑹𝑶𝑪    

 0.00 
Threshold 

𝑉𝑂𝐶0 
1.060 0.138 NA NA    

𝜌̅𝑚𝑖𝑛 0.10 𝑉𝑂𝐶𝑚𝑖𝑛 1.105 0.144 0.095 0.265    

𝜌̅𝑚𝑎𝑥 0.51 𝑉𝑂𝐶𝑚𝑎𝑥 1.341 0.174 0.254 0.719    

 0.30  1.170 0.152 0.145 0.508    

Table 5.2 above presents the sensitivity analysis results of the time-varying predictor 

competence in the first model. The right upper corner shows that the robustness of the 

competence predictor is not desirable since the t statistic is 2.08, which is almost at the threshold 

𝑡# of 1.96. Therefore, any small serial correlation can lead to a Type I error. In this case, the 

threshold VOC is less useful. In the table, the grey cells are fixed values, including parameters 
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that are provided in the original study, and the ones that are set to achieve minimum and 

maximum IAC values. 

 

Setting a minimum IAC being 0.1, the corresponding square root of VOC is 1.105, and 

the ICR of the AR (1) model (i.e., ICRAR(1)) is close to the ICR of the ID model (i.e., ICRID). 

The original table provides the intraclass correlation of the predictor competition (𝜌 𝐶𝑡𝑖,𝐴𝑅(1)) 

being 0.79, and thus 𝜌 𝐶𝑡𝑖 
 turning to be 0.53. In this setting, the robustness of inference (i.e., 

𝑊𝑂𝐶) or the effect size (i.e., 𝐸𝐹𝑂𝐶) reduces by 1%, and the risk of making Type I error increases 

by 26.5%. When setting a minimum ICRAR(1) being 0.01, the corresponding square root of VOC 

is 1.341, and the IAC is 0.51. This setting offers the upper bound of the possible IAC and the 

magnitude of bias. The robustness of inference or the effect size reduces by 25.4 %, and the risk 

of making Type I error increases by 71.9 %. These two settings have correspondingly lag-1 

autocorrelation 𝜌 values of 0.15 and 0.7, which form a reasonable boundary of a potentially 

omitted serial correlation. 

Tables 5.3 and 5.4 show the sensitivity analysis examining the time-varying predictors of 

intrinsic regulation and external regulation in the second model. For both predictors, they have 

the same IAC values since they share the same random effects in the same model, while they 

have different VOCs due to the different intraclass correlation of predictors. Provided by the 

original study, 𝜌 𝐼𝑅𝑡𝑖,𝐴𝑅(1) = 0.73 and 𝜌 𝐸𝑅𝑡𝑖,𝐴𝑅(1) = 0.53. The estimated effects of these two 

predictors are relatively robust. Specifically, their threshold VOCs are larger than the upper 

bound of possible VOCs. Thus, no risk of Type I error issue emerges.  
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Table 5.3 Sensitivity analysis of the time-varying predictor: intrinsic regulation 

 ID AR (1)  𝛽̂ 0.36   

𝜌 𝐼𝑅𝑡𝑖 
 0.49 0.73  𝑆𝑡𝐸# 0.18 𝑡# 1.96 

  IAC=0.10 IAC=0.66 IAC=0.30  𝑆𝑡𝐸𝐼𝐷 0.10 𝑡𝐼𝐷 3.60 

𝜎(𝑖) 1.61 1.52 0.02 1.26      

𝜎(𝑡) 0.81 0.90 2.40 1.16      

ICR: 𝜌1 0.67 0.63 0.01 0.52      

IAC: 𝜌̅ 𝑉𝑂𝐶 Index √𝑉𝑂𝐶 𝑆𝑡𝐸𝑣𝑜𝑐 
𝑊𝑂𝐶 

& 𝐸𝑆𝑂𝐶 
𝑅𝑂𝐶    

 0.00 
Threshold 

𝑉𝑂𝐶0 
1.837 0.184 NA NA    

𝜌̅𝑚𝑖𝑛 0.10 𝑉𝑂𝐶𝑚𝑖𝑛 1.106 0.111 0.096 NA    

𝜌̅𝑚𝑎𝑥 0.66 𝑉𝑂𝐶𝑚𝑎𝑥 1.397 0.140 0.284 NA    

 0.30  1.143 0.114 0.125 NA    

 

Table 5. 4 Sensitivity analysis of the time-varying predictor: external regulation 

 ID AR (1)  𝛽̂ 0.35   

𝜌 𝐸𝑅𝑡𝑖 
 0.35 0.53  𝑆𝑡𝐸# 0.18 𝑡# 1.96 

  IAC=0.10 IAC=0.66 IAC=0.30  𝑆𝑡𝐸𝐼𝐷 0.08 𝑡𝐼𝐷 4.38 

𝜎(𝑖) 1.61 1.52 0.02 1.26      

𝜎(𝑡) 0.81 0.90 2.40 1.16      

ICR: 𝜌1 0.67 0.63 0.01 0.52      

IAC: 𝜌̅ 𝑉𝑂𝐶 Index √𝑉𝑂𝐶 𝑆𝑡𝐸𝑣𝑜𝑐 
𝑊𝑂𝐶 

& 𝐸𝑆𝑂𝐶 
𝑅𝑂𝐶    

 0.00 
Threshold 

𝑉𝑂𝐶0 
2.232 0.179 NA NA    

𝜌̅𝑚𝑖𝑛 0.10 𝑉𝑂𝐶𝑚𝑖𝑛 1.087 0.087 0.080 NA    

𝜌̅𝑚𝑎𝑥 0.66 𝑉𝑂𝐶𝑚𝑎𝑥 1.301 0.104 0.232 NA    

 0.30  1.116 0.089 0.104 NA    

 

However, the robustness of inference and effect size still needs attention. With a 

maximum IAC 𝜌̅𝑚𝑎𝑥 = 0.66, the robustness of inference and effect size reduces by 28 % and 

23 %, respectively, of the predictors of intrinsic regulation and external regulation. With a 

minimum IAC 𝜌̅𝑚𝑖𝑛 = 0.10, the robustness of inference and effect size reduces by around 1 % 

for both predictors.  
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In sum, the sensitivity analysis provides that the inferences made for the regulation 

predictors are relatively strong if the AR (1) structure is omitted. However, the inference made 

for competence needs attention because even a minimum omitted autocorrelation can lead to 

serious Type I error issue. This evidence is critical since the conclusion drawing on the within-

student level competence is the focus of the original study. 

5.5 Conclusion and Future Research  

Consistent with previous research (Alejo, et al., 2018; Betrand et al., 2004), the current 

study proves that when the chronological order structure within cluster units are omitted in 

multilevel analysis for longitudinal data, the intraclass correlation due to individual-level 

random effect variance takes over the serial correlation. To the author’s knowledge, the current 

study is the first that formulated this relationship of random effects and serial correlations when 

R is underspecified from AR (1) to ID. This study further determines that the magnitude of the 

overestimation of the individual-level random effect variance is weighed by the IAC 𝜌̅. The 

conceptualization of IAC and ICR provides new understandings of the conventional intraclass 

correlation coefficient, and evidence to decide which level’s predictors are essentially needed.   

Further, the derivations of VOCs are conducted separately for time-level and individual-

level predictors. These formulas produce consistent suggestions with the simulation-based 

findings from the earlier discussed prior research, such as Ferron et al. (2002) and LeBeau 

(2018). Specifically, when the true AR(1) is completely omitted, time-varying predictors need 

adjustments, while the time-invariant predictors do not. Noticeably, the current study does not 

recommend adjusting the standard error estimates of fixed effects when the occasion measures 

are extensive, and the hypothesized lag-1 autocorrelation is small such that the IAC is smaller 
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than 0.2. Employing the sensitivity analysis framework developed in Chapter 3, empirical 

researchers and readers are able to easily find evidence of the extent to which the inference is 

robust. The strategies are provided with an empirical research example (i.e., Taylor, et al., 2010).   

The current study sets models with only random intercept. However, random slopes are 

common in longitudinal data analysis. Particularly, if the random effect of slopes is ignored in 

modeling, Type I error rate inflates (LeBeau, 2018). Including the random slopes in the current 

study increases the complexity of the variance-covariance structure, since the covariance units 

depend on the occasion measures. This complexity can be addressed in future studies. For 

instance, with the experience of constructing an averaged autocorrelation parameter (i.e., IAC) 

for the descending serial correlation pattern, an average covariance parameter can be similarly 

constructed, as long as the overall error variance-covariance are captured correctly. However, the 

precision and consistence of the averaged autocorrelation and covariance parameters could be 

affected by the missing data and unbalanced design, which need further tests.  

Also, the current study only explored the relationship between the ID and AR (1) 

structures. In future studies, the interrelationship between other commonly used alternative R 

structures will be developed. For example, AR (1) is easily to relate to ARMA (1,1). Finally, 

future research may study the omitted serial correlation in three-level models. For instance, a 

higher cluster level of school could exist. Comparing with the current study, two additional 

intraclass correlations emerge: the ICR and IAC that are school specific (Alejo, et al., 2018). 

Then the quantification of estimation bias due to omitted serial correlation are complex as to 

distinguish the sources of the intraclass correlations.      
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APPENDIX 2A 

Intraclass Correlation Coefficients in A Three-Level Model 

 

In the current study, the intraclass correlation coefficients (ICCs) of classroom- and 

school-level are defined as 𝜌1 =
𝜎(𝑘)+𝜎(𝑗)

𝜎2  and 𝜌2 =
𝜎(𝑘)

𝜎2 . Another commonly used definition of 

ICCs is 𝜌1
∗ =

𝜎(𝑗)

𝜎2  and 𝜌2 =
𝜎(𝑘)

𝜎2 . The distinction of these two methods of ICCs occurs only at 𝜌1 

and 𝜌1
∗. Hox, Moerbeek, and Van de Schoot (2010) summarized that these two methods are both 

correct, though having slightly different focuses. The latter method has a focus on decomposing 

the variance from each level that 𝜌1
∗ identifies the unique classroom-level variance.  

  In the first method, 𝜌1 is derived as the following  

𝜌1 = 𝑐𝑜𝑟𝑟(𝑦𝑖𝑗𝑘, 𝑦𝑖′𝑗𝑘) =
𝑐𝑜𝑣(𝑦𝑖𝑗𝑘 − 𝑦̂𝑖𝑗𝑘, 𝑦𝑖′𝑗𝑘 − 𝑦̂𝑖′𝑗𝑘)

𝑠𝑑(𝑦𝑖𝑗𝑘 − 𝑦̂𝑖𝑗𝑘) ∗ 𝑠𝑑(𝑦𝑖′𝑗𝑘 − 𝑦̂𝑖′𝑗𝑘)
, 

where the denominator is the total error variance 𝜎2, and the numerator is: 

𝑐𝑜𝑣(𝑦𝑖𝑗𝑘 − 𝑦̂𝑖𝑗𝑘, 𝑦𝑖′𝑗𝑘 − 𝑦̂𝑖′𝑗𝑘) = 𝑐𝑜𝑣(𝑢00𝑘 + 𝑟0𝑗𝑘 + 𝜀𝑖𝑗𝑘, 𝑢00𝑘 + 𝑟0𝑗𝑘 + 𝜀𝑖′𝑗𝑘) 

= 𝑐𝑜𝑣(𝑢00𝑘 + 𝑟0𝑗𝑘, 𝑢00𝑘 + 𝑟0𝑗𝑘) + 𝑐𝑜𝑣(𝜀𝑖𝑗𝑘, 𝜀𝑖′𝑗𝑘) 

+𝑐𝑜𝑣(𝑢00𝑘 + 𝑟0𝑗𝑘, 𝑟0𝑗𝑘) + 𝑐𝑜𝑣(𝑢00𝑘 + 𝑟0𝑗𝑘 , 𝜀𝑖′𝑗𝑘). 

  With assumptions of random effects having zero covariance with each other,  

𝑐𝑜𝑣(𝑦𝑖𝑗𝑘 − 𝑦̂𝑖𝑗𝑘 , 𝑦𝑖′𝑗𝑘 − 𝑦̂𝑖′𝑗𝑘) = 𝑐𝑜𝑣(𝑢00𝑘, 𝑢00𝑘) + 𝑐𝑜𝑣(𝑟0𝑗𝑘, 𝑟0𝑗𝑘) + 2𝑐𝑜𝑣(𝑢00𝑘, 𝑟0𝑗𝑘) 

= 𝑣𝑎𝑟(𝑢00𝑘) + 𝑣𝑎𝑟(𝑟0𝑗𝑘) = 𝜎(𝑘) + 𝜎(𝑗). 
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  As shown, 𝜌1 =
𝜎(𝑘)+𝜎(𝑗)

𝜎2  measures the expected correlation between two students who 

are in the same class and, also, in the same school. Conversely, 𝜌2 =
𝜎(𝑘)

𝜎2  measures the expected 

correlation between two students who are in the same school but from different classes. 
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APPENDIX 2B 

A Summary of Model Specification, Assumption, and Estimation 

 

Table 2B.1 Summary of model specification, assumption, and estimation contrasting the two-

level estimated model omitting the middle cluster level and the three-level satisfactory model.  

Model 

Specification, 

Assumption, and 

Estimation 

Two-level Estimated Model Three-level Satisfactory Model 

1. Multi-stage 

Sampling Design 

and Experimental 

Design with 

Clusters. 

Multi-stage Sampling  

1) In a three-stage sampling where 

PSUs are schools, SSUs are 

classrooms, and USUs are 

students, the middle classroom 

deliberate cluster level is omitted 

in modeling.  

2) Or, in a two-stage sampling 

design where PSUs are schools 

and SSUs are students, the middle 

classroom incidental cluster level 

is omitted in modeling. 

Multi-stage Sampling 

1) The model corresponds with 

the three-stage sampling design 

that all the sampling stages as 

deliberate cluster levels are 

specified in modeling.  

2) Or, in a two-stage sampling 

design where PSUs are schools 

and SSUs are students, the middle 

classroom incidental cluster level 

is included in modeling.  

RCT: treatment is randomly 

assigned to schools.  

RCT: treatment is randomly 

assigned to schools. 

2. All relevant 

predictors are 

included in the 

model.  

Predictors of interest to answer 

research questions: 

1) 𝑋𝑖(𝑗)𝑘 is a student-level 

predictor. 

2) 𝑊𝑖(𝑗)𝑘 is a (falsely 

disaggregated) student-level 

predictor. 

3) 𝑍(𝑗)𝑘 is a school-level predictor. 

Predictors of interest to answer 

research questions: 

1) 𝑋𝑖𝑗𝑘 is a student-level 

predictor.  

2) 𝑊𝑗𝑘 is a classroom-level 

predictor. 

3) 𝑍𝑘 is a school-level predictor. 

Relevant covariates, such as 

contextual factors, at each level 

based on subject-matter 

knowledge.  

Relevant covariates, such as 

contextual factors, at each level 

based on subject-matter 

knowledge.  
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Table 2B.1 (cont’d)  

3. Random intercept 

only. 

1) Schools differ across the 

average value of outcomes. 

2) The slopes at all levels do not 

differ across schools.  

1) Schools and classrooms within 

schools differ across the average 

value of outcomes. 

2) The slopes at all levels do not 

differ across schools. 

4. The error variance 

covariance structure 

is properly specified.  

𝝍̃𝐾 = 𝜎2[(1 − 𝜌)𝑰 + 𝜌 𝒍𝑛0
𝒍′𝑛0

]. 𝝍𝐾 = 𝜎2{𝑰𝑲 ⊗ [(1 − 𝜌1)𝑰𝐽 +

(𝜌1 − 𝜌2)𝒍𝐽𝒍’𝐽 ] + 𝜌2 𝒍𝑛0
𝒍′𝑛0

}. 

Parameters:  

1) One ICC: 𝜌 measures the 

similarity of students within the 

same school k, regardless of 

classrooms. 

2) One cluster size: 𝑛0 is the 

average number of students within 

a school k.  

Parameters:  

1) Two ICCs: 𝜌1 is the expected 

correlation of two randomly 

drawn students from the same 

classroom j in a school k, and 

𝜌2 is the expected correlation of 

two randomly drawn students 

from the same school k.  

2) Two cluster size: 𝑛𝐿 is the 

average class size and  𝑛𝐻 is the 

average number of teachers within 

each school k.  

5. The within-cluster 

residuals follow a 

multivariate normal 

distribution.  

𝜀𝑖̃𝑘~𝑁(0, 𝜎̃(𝑖)), where 𝜎̃(𝑖) is 

conditioned on predictors and 

covariates. 

𝜀𝑖𝑗𝑘~𝑁(0, 𝜎(𝑖)), where 𝜎(𝑖) is 

conditioned on predictors and 

covariates. 

6. The random 

effects follow a 

multivariate normal 

distribution.  

𝑢̃0𝑘~𝑁(0, 𝜎̃(𝑘)), where 𝜎̃(𝑘) is 

conditioned on predictors and 

covariates. And, the group effects 

𝑢̃0𝑘 is independent and identically 

distributed that no higher cluster 

level exists.  

 

𝑟0𝑗𝑘~𝑁(0, 𝜎(𝑗)) and 

𝑢00𝑘~𝑁(0, 𝜎(𝑘)), where 𝜎(𝑗) and 

𝜎(𝑘) are conditioned on predictors 

and covariates. And, the group 

effects 𝑢0𝑘 is independent and 

identically distributed that no 

higher cluster level exists.  

7. Homoscedasticity.  

1) Constant error variance of all 

levels conditioned on predictors.  

2) Or corrected heteroskedastic 

patterns for the specified nesting 

structure. 

1) Constant error variance of all 

levels conditioned on predictors.  

2) Or corrected heterogeneity for 

the specified nesting structure. 

3) The assumptions still hold after 

including the omitted cluster 

level. 
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Table 2B.1 (cont’d) 

8. The within-cluster 

residuals and the 

random effects do 

not covary. 

𝑐𝑜𝑣(𝜀𝑖̃𝑘, 𝑢̃0𝑘) = 0. 𝑐𝑜𝑣(𝜀𝑖𝑗𝑘 , 𝑟0𝑗𝑘) = 0,  

𝑐𝑜𝑣(𝜀𝑖𝑗𝑘 , 𝑢00𝑘) = 0, and  

𝑐𝑜𝑣(𝑟0𝑗𝑘, 𝑢00𝑘) = 0. 

9. The predictors do 

not covary with the 

residuals and 

random effects at 

any other level.  

1) 𝑋𝑖𝑘 and 𝑊𝑖𝑘 are group-mean 

centered. 

2) Assume no omitted 

confounding variables at all 

levels. 

1) 𝑋𝑖𝑗𝑘 and 𝑊𝑗𝑘 are group-mean 

centered. 

2) Assume no omitted 

confounding variables at all 

levels. 

10. Sample size. 

A sufficient large sample size 

(both cluster numbers and cluster 

size) at all levels to satisfy the 

desired power and for the 

asymptotic inference.  

A sufficient large sample size 

(both cluster numbers and cluster 

size) at all levels to satisfy the 

desired power and for the 

asymptotic inference. 

Balanced design or at least almost 

equal sample size of clusters. 

Balanced design or at least almost 

equal sample size of clusters. 

11. Estimation.  

1) (Restricted) Maximum 

Likelihood.  

2) Design-based approach for the 

standard error bias correction. 

1) (Restricted) Maximum 

Likelihood. 

Note. The listed model specification, assumption, and estimation in the first column are 

summarized from McNeish and Kelley, (2019, p. 26), McNeish et al. (2016, p. 116), Snijders 

and Berkhof (2008) and Snijders & Bosker, (2012, p. 102). 
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APPENDIX 2C 

Simulation Parameter Settings and Result of VOCs of Omitting the Middle Cluster Level 

 

Table 2C.1 Simulation parameter settings. 

𝝈(𝒋) 

or 

𝝆𝟎 

𝝈(𝒌) 

or 

𝝆𝟐 

𝝈(𝒊) 

𝒏𝑳 

Avg. Class 

size 

𝒏𝑯 

Avg. No. of 

teachers/classrooms 

per school 

𝜼 

𝝈̃(𝒌) 

or 

𝝆 

𝝈̃(𝒊) 

0.2 0.2 0.6 

5 10 0.08 

0.22 0.78 

0.5 0.2 0.3 0.24 0.76 

0.7 0.2 0.1 0.26 0.74 

0.2 0.7 0.1 0.72 0.28 

0.2 0.2 0.6 

10 5 0.18 

0.24 0.76 

0.5 0.2 0.3 0.29 0.71 

0.7 0.2 0.1 0.33 0.67 

0.2 0.7 0.1 0.74 0.26 

0.2 0.2 0.6 

25 2 0.49 

0.30 0.70 

0.5 0.2 0.3 0.45 0.55 

0.7 0.2 0.1 0.54 0.46 

0.2 0.7 0.1 0.80 0.20 
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Table 2C.2 Relative bias of estimates of variances when 𝜎𝑗 = 𝜌0 = 0.2, 𝜎𝑘 = 𝜌2 = 0.2. 

Parameter 𝐧𝐿 𝜼 

𝐑.𝐁.𝒆𝒔𝒕 of HLM 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of HLM 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Residual 

variance 𝜎̃(𝑖) 

5 0.08 
0.30 

(0) 
[0.13, 0.47] 

0 

(0) 
[0, 0] 

10 0.18 
0.27 

(0) 
[0.13, 0.47] 

0 

(0) 
[0, 0] 

25 0.49 
0.17 

(0) 
[0.10, 0.26] 

0 

(0) 
[0, 0.07] 

School-level 

random effect 

variance 𝜎̃(𝑘) 

5 0.08 
0.11 

(0) 
[0.03, 0.45] 

0 

(0) 
[0, 0] 

10 0.18 
0.27 

(0.05) 
[0.06, 2.06] 

0 

(0) 
[0, 0] 

25 0.49 
0.39 

(0.19) 
[1.03, 0.12] 

0 

(0) 
[0, 0] 

Standard error of 

𝑋𝑖(𝑗)𝑘 coefficient 

𝛾̃10 

5 0.08 
0.08 

(0) 
[0.05, 0.10] 

-0.06 

(0) 
[-0.10, -0.04] 

10 0.18 
0.09 

(0) 
[0.06, 0.13] 

-0.03 

(0) 
[-0.05, -0.02] 

25 0.49 
0.07 

(0) 
[0.04, 0.11] 

-0.01 

(0) 
[-0.04, 0.00] 

Standard error of 

𝑊𝑖(𝑗)𝑘 coefficient 

𝛾̃20 

5 0.08 
-0.30 

(0) 
[-0.36, -0.18] 

0.13 

(0) 
[0.04, 0.24] 

10 0.18 
-0.45 

(0) 
[-0.53, -0.34] 

0.16 

(0) 
[0.06, 0.34] 

25 0.49 
-0.63 

(0) 
[-0.73, -0.44] 

0.15 

(0.01) 
[-0.05, 0.42] 

Standard error of 

𝑍(𝑗)𝑘 coefficient 

𝛾̃01 

5 0.08 
0 

(0) 
[0, 0] 

0 

(0) 
[0, 0] 

10 0.18 
0 

(0) 
[0, 0] 

0 

(0) 
[0, 0] 

25 0.49 
0 

(0) 
[-0.16, 0] 

0 

(0) 
[-0.01, 0] 
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Table 2C.2 (cont’d)  

Parameter 𝐧𝐿 𝜼 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖(𝑗𝑘) coefficient 

𝛾̃10 

5 0.08 
0.20 

(0) 
[0.14, 0.30] 

-0.07 

(0) 
[-0.13, -0.04] 

10 0.18 
0.24 

(0) 
[0.17, 0.31] 

-0.04 

(0) 
[-0.08, -0.01] 

25 0.49 
0.26 

(0) 
[0.17, 0.36] 

-0.02 

(0) 
[-0.10, 0.02] 

Standard error of 

𝑊𝑖(𝑗𝑘) coefficient 

𝛾̃20 

5 0.08 
-0.21 

(0) 
[-0.32, -0.10] 

0.06 

(0) 
[-0.01, 0.13] 

10 0.18 
-0.38 

(0) 
[-0.50, -0.23] 

0.04 

(0) 
[-0.01, 0.10] 

25 0.49 
-0.56 

(0) 
[-0.70, -0.36] 

0.01 

(0) 
[-0.06, 0.11] 

Standard error of 

𝑍(𝑗𝑘) coefficient 

𝛾̃01 

5 0.08 
-0.68 

(0) 
[-0.77, -0.49] 

-0.01 

(0) 
[-0.09, 0.12] 

10 0.18 
-0.70 

(0) 
[-0.78, -0.50] 

-0.01 

(0) 
[-0.09, 0.11] 

25 0.49 
-0.73 

(0) 
[-0.80, -0.58] 

-0.02 

(0) 
[-0.24, 0.12] 
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Table 2C.3 Relative bias of estimates of variances when 𝜎𝑗 = 𝜌0 = 0.5, 𝜎𝑘 = 𝜌2 = 0.2. 

Parameter 𝐧𝐿 𝜼 

𝐑.𝐁.𝒆𝒔𝒕 of HLM 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of HLM 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Residual 

variance 

𝜎̃(𝑖) 

5 0.08 
1.52 

(0.04) 
[0.95, 2.08] 

0 

(0) 
[0, 0] 

10 0.18 
1.36 

(0.07) 
[0.77, 2.16] 

0 

(0) 
[0, 0.04] 

25 0.49 
0.81 

(0.07) 
[0.28, 1.84] 

0.01 

(0) 
[-0.01, 0.37] 

School-level 

random effect 

variance 

𝜎̃(𝑘) 

5 0.08 
0.31 

(0.06) 
[0.09, 2.50] 

0 

(0) 
[0, 0] 

10 0.18 
0.39 

(0.13) 
[0.13, 0.82] 

0 

(0) 
[0, 0] 

25 0.49 
0.81 

(0.43) 
[0.13, 2.47] 

0 

(0) 
[0, 0] 

Standard error of 

𝑋𝑖(𝑗)𝑘 coefficient 

𝛾̃10 

5 0.08 
0.45 

(0) 
[0.38, 0.54] 

-0.09 

(0) 
[-0.35, 0.00] 

10 0.18 
0.47 

(0) 
[0.38, 0.59] 

-0.04 

(0) 
[-0.20, 0.06] 

25 0.49 
0.34 

(0) 
[0.22, 0.49] 

-0.01 

(0) 
[-0.32, 0.09] 

Standard error of 

𝑊𝑖(𝑗)𝑘 coefficient 

𝛾̃20 

5 0.08 
-0.48 

(0) 
[-0.50 -0.44] 

0.01 

(0) 
[-0.05, 0.08] 

10 0.18 
-0.63 

(0) 
[-0.66 -0.59] 

-0.01 

(0) 
[-0.09, 0.06] 

25 0.49 
-0.78 

(0) 
[-0.82 -0.71] 

-0.13 

(0.01) 
[-0.27 0.03] 

Standard error of 

𝑍(𝑗)𝑘 coefficient 

𝛾̃01 

5 0.08 
0 

(0) 
[0, 0] 

0 

(0) 
[0, 0] 

10 0.18 
0 

(0) 
[-0.07, 0] 

0 

(0) 
[0, 0] 

25 0.49 
-0.01 

(0) 
[-0.21, 0.01] 

0 

(0) 
[-0.01, 0] 
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Table 2C.3 (cont’d) 

Parameter 𝐧𝐿 𝜼 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖(𝑗𝑘) coefficient 

𝛾̃10 

5 0.08 
0.65 

(0) 
[0.54, 0.81] 

-0.09 

(0) 
[-0.39, 0.01] 

10 0.18 
0.73 

(0) 
[0.60, 0.85] 

-0.05 

(0) 
[-0.23, 0.08] 

25 0.49 
0.78 

(0) 
[0.59, 1.02] 

-0.01 

(0) 
[-0.44, 0.14] 

Standard error of 

𝑊𝑖(𝑗𝑘) coefficient 

𝛾̃20 

5 0.08 
-0.40 

(0) 
[-0.44, -0.37] 

0.03 

(0) 
[-0.03, 0.10] 

10 0.18 
-0.57 

(0) 
[-0.63, -0.46] 

<0.01 

(0) 
[-0.13, 0.17] 

25 0.49 
-0.71 

(0) 
[-0.77, -0.66] 

<0.01 

(0.01) 
[-0.09, 0.11] 

Standard error of 

𝑍(𝑗𝑘) coefficient 

𝛾̃01 

5 0.08 
-0.70 

(0) 
[-0.78, -0.51] 

-0.01 

(0) 
[-0.12, 0.12] 

10 0.18 
-0.73 

(0) 
[-0.80, -0.59] 

-0.01 

(0) 
[-0.19, 0.16] 

25 0.49 
-0.78 

(0) 
[-0.83, -0.72] 

-0.04 

(0.01) 
[-0.28, 0.19] 
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Table 2C.4 Relative bias of estimates of variances when 𝜎𝑗 = 𝜌0 = 0.7, 𝜎𝑘 = 𝜌2 = 0.2. 

Parameter 𝐧𝐿 𝜼 

𝐑.𝐁.𝒆𝒔𝒕 of HLM 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of HLM 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Residual 

variance 

𝜎̃(𝑖) 

5 0.08 
6.38 

(0.55) 
[4.19, 8.69] 

0 

(0) 
[0, 0] 

10 0.18 
5.76 

(0.87) 
[3.43, 8.74] 

0.01 

(0) 
[-0.01, 0.41] 

25 0.49 
3.36 

(1.17) 
[1.15, 8.13] 

0.10 

(0.08) 
[-0.37, 1.99] 

School-level 

random effect 

variance 

𝜎̃(𝑘) 

5 0.08 
0.46 

(0.22) 
[-1.00, 6.64] 

0 

(0) 
[-0.02, 0] 

10 0.18 
0.58 

(0.18) 
[1.07, 0.21] 

0 

(0) 
[0, 0] 

25 0.49 
1.00 

(0.50) 
[2.83, 0.20] 

0 

(0) 
[0, 0] 

Standard error of 

𝑋𝑖(𝑗)𝑘 coefficient 

𝛾̃10 

5 0.08 
1.47 

(0) 
[1.30, 1.66] 

-0.10 

(0.04) 
[-0.92, 0.28] 

10 0.18 
1.47 

(0.01) 
[1.26, 1.74] 

-0.03 

(0.06) 
[-0.99, 0.45] 

25 0.49 
1.09 

(0.01) 
[0.78, 1.46] 

0.03 

(0.08) 
[-0.94, 0.45] 

Standard error of 

𝑊𝑖(𝑗𝑘) coefficient 

𝛾̃20 

5 0.08 
-0.55 

(0) 
[-0.55, -0.53] 

0.02 

(0) 
[-0.03, 0.08] 

10 0.18 
-0.69 

(0) 
[-0.70, -0.68] 

-0.08 

(0) 
[-0.16, 0.01] 

25 0.49 
-0.83 

(0) 
[-0.85, -0.81] 

-0.24 

(0.01) 
[-0.34, -0.14] 

Standard error of 

𝑍(𝑗𝑘) coefficient 

𝛾̃01 

5 0.08 
0 

(0) 
[0, 0] 

0 

(0) 
[0, 0] 

10 0.18 
0 

(0) 
[-0.98, 0] 

0 

(0) 
[-0.01, 0] 

25 0.49 
-0.01 

(0) 
[-0.30, 0.04] 

0 

(0) 
[-0.01, 0] 
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Table 2C.4 (cont’d) 

Parameter 𝐧𝐿 𝜼 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖(𝑗𝑘) coefficient 

𝛾̃10 

5 0.08 
1.83 

(0.01) 
[1.61, 2.13] 

-0.11 

(0.04) 
[-0.93, 0.29] 

10 0.18 
1.99 

(0.01) 
[1.68, 2.24] 

-0.03 

(0.06) 
[-0.99, 0.50] 

25 0.49 
2.07 

(0.02) 
[1.65, 2.59] 

0.05 

(0.10) 
[-0.94, 0.58] 

Standard error of 

𝑊𝑖(𝑗𝑘) coefficient 

𝛾̃20 

5 0.08 
-0.48 

(0) 
[-0.53, -0.40] 

0.01 

(0) 
[-0.12, 0.16] 

10 0.18 
-0.63 

(0) 
[-0.67, -0.55] 

0.01 

(0) 
[-0.09, 0.08] 

25 0.49 
-0.75 

(0) 
[-0.79, -0.61] 

<0.01 

(0.01) 
[-0.14, 0.12] 

Standard error of 

𝑍(𝑗𝑘) coefficient 

𝛾̃01 

5 0.08 
-0.71 

(0) 
[-1.00, -0.55] 

-0.01 

(0) 
[-0.99, 0.15] 

10 0.18 
-0.74 

(0) 
[-0.99, -0.66] 

-0.02 

(0) 
[-0.97, 0.21] 

25 0.49 
-0.81 

(0) 
[-0.84, -0.78] 

-0.05 

(0.01) 
[-0.38, 0.21] 
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Table 2C.5 Relative bias of estimates of variances when 𝜎𝑗 = 𝜌0 = 0.2, 𝜎𝑘 = 𝜌2 = 0.7. 

Parameter 𝐧𝐿 𝜼 

𝐑.𝐁.𝒆𝒔𝒕 of HLM 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of HLM 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Residual 

variance 

𝜎̃(𝑖) 

5 0.08 
1.82 

(0.05) 
[1.16, 2.48] 

0 

(0) 
[0, 0] 

10 0.18 
1.63 

(0.09) 
[0.93, 2.58] 

0 

(0) 
[0, 0] 

25 0.49 
0.97 

(0.12) 
[0.24, 2.20] 

0 

(0) 
[0, 0.05] 

School-level 

random effect 

variance 

𝜎̃(𝑘) 

5 0.08 
0.03 

(0) 
[0.01, 0.09] 

0 

(0) 
[0, 0] 

10 0.18 
0.07 

(0) 
[0.02, 0.24] 

0 

(0) 
[0, 0] 

25 0.49 
0.18 

(0.01) 
[0.03, 0.76] 

0 

(0) 
[0, 0] 

Standard error of 

𝑋𝑖(𝑗)𝑘 coefficient 

𝛾̃10 

5 0.08 
0.54 

(0) 
[0.45, 0.63] 

-0.05 

(0.05) 
[-0.80, 0.28] 

10 0.18 
0.56 

(0) 
[0.45, 0.69] 

-0.02 

(0.05) 
[-0.82, 0.28] 

25 0.49 
0.40 

(0) 
[0.26, 0.57] 

0.01 

(0.04) 
[-0.77, 0.27] 

Standard error of 

𝑊𝑖(𝑗)𝑘 coefficient 

𝛾̃20 

5 0.08 
-0.49 

(0) 
[-0.51, -0.46] 

0.08 

(0) 
[-0.06, 0.29] 

10 0.18 
-0.64 

(0) 
[-0.67, -0.61] 

0.07 

(0) 
[-0.07, 0.24] 

25 0.49 
-0.79 

(0) 
[-0.83, -0.69] 

-0.06 

(0) 
[-0.23, 0.16] 

Standard error of 

𝑍(𝑗)𝑘 coefficient 

𝛾̃01 

5 0.08 
0 

(0) 
[0, 0] 

0 

(0) 
[0, 0] 

10 0.18 
0 

(0) 
[0, 0] 

0 

(0) 
[0, 0] 

25 0.49 
0 

(0) 
[-0.03, 0] 

0 

(0) 
[-0.01, 0] 
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Table 2C.5 (cont’d) 

Parameter 𝐧𝐿 𝜼 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖(𝑗𝑘) coefficient 

𝛾̃10 

5 0.08 
1.84 

(0.02) 
[1.45, 2.51] 

-0.01 

(0.08) 
[-0.83, 0.51] 

10 0.18 
2.00 

(0.03) 
[1.58, 2.46] 

0.03 

(0.09) 
[-0.85, 0.57] 

25 0.49 
2.06 

(0.03) 
[1.50, 2.66] 

0.09 

(0.11) 
[-0.83, 0.67] 

Standard error of 

𝑊𝑖(𝑗𝑘) coefficient 

𝛾̃20 

5 0.08 
-0.05 

(0.01) 
[-0.20, 0.15] 

0.27 

(0.00) 
[0.08, 0.55] 

10 0.18 
-0.33 

(0.01) 
[-0.55, -0.05] 

0.15 

(0.02) 
[0.01, 034] 

25 0.49 
-0.55 

(0.01) 
[-0.65, -0.43] 

0.06 

(0) 
[-0.13, 0.27] 

Standard error of 

𝑍(𝑗𝑘) coefficient 

𝛾̃01 

5 0.08 
-0.83 

(0) 
[-0.84, -0.78] 

-0.01 

(0.01) 
[-0.14, 0.09] 

10 0.18 
-0.83 

(0) 
[-0.85, -0.78] 

-0.04 

(0.01) 
[-0.34, 0.27] 

25 0.49 
-0.84 

(0) 
[-0.85, -0.83] 

-0.01 

(0.02) 
[-0.14, 0.11] 
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APPENDIX 3A 

Quantifying the Robustness of Inference with Type 2 Error 

 

In cases of when 𝑡𝑜𝑙𝑠 < 𝑡#, Type 2 error may occur. The discussion serves scenarios of when the 

adjacent higher cluster level is omitted, the lower level cluster’s predictors’ coefficients have 

overestimated standard error estimates. For example, Chapter 2 showed that VOCs of the 

individual level predictor 𝑋𝑖(𝑗)𝑘 (and 𝑋𝑖(𝑗𝑘)) are smaller than 1 when the upper middle cluster 

level is omitted. Further in Chapter 4, the standard error estimate of the middle cluster level 

predictor 𝑊𝑖𝑗(𝑘) coefficient  could also be overestimated when the highest cluster level is 

omitted. This scenario of having potential risks of making Type II error is demonstrated using an 

empirical study in Chapter 4 with implementing the below robustness inference measures.  

  Identical to the discussed rationale for comparing the deviation of the estimated models 

from the true models, Figure 3.A.1 shows the two possible scenarios of  having or not having 

Type II error when the t-statistic is smaller than the t critical value. Unlike Figure 3.2, ∆ turns to 

be deflation instead of inflation. The definitions of quantifying the deviations of the t statistics to 

the t critical value remain the same, while the formulas are reversed as in Type I error 

discussions that ∆1= 𝑡𝑣𝑖𝑓 − 𝑡# and ∆2= 𝑡# − 𝑡𝑜𝑙𝑠. In panel (a), Type II error does not occur since 

𝑡𝑜𝑙𝑠 < 𝑡𝑣𝑖𝑓 < 𝑡#; in Panel (b), Type II error occurs since 𝑡𝑜𝑙𝑠 < 𝑡# < 𝑡𝑣𝑖𝑓.  

  Following the ideas of constructing the measures of robustness of inference and effect 

size when 𝑡𝑜𝑙𝑠 > 𝑡# that have been discussed previously, these two measures are adapted for the 

current setting of 𝑡𝑜𝑙𝑠 < 𝑡𝑣𝑖𝑓 < 𝑡#  (i.e., no Type II error) :  
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𝑊𝑂𝐶 =
∆

𝑡𝑣𝑖𝑓
=

∆2 + ∆1

𝑡𝑣𝑖𝑓
=

𝑡𝑜𝑙𝑠 − 𝑡𝑣𝑖𝑓

𝑡𝑣𝑖𝑓
= 1 −

𝑆𝑡𝐸𝑣𝑖𝑓

𝑆𝑡𝐸𝑜𝑙𝑠
= 1 − √𝑉𝐼𝐹,  

 

and  

𝐸𝑆𝑂𝐶 =
𝐸𝑆𝑂𝐿𝑆 − 𝐸𝑆𝑉𝐼𝐹

𝐸𝑆𝑉𝐼𝐹
= 1 −

𝑆𝑡𝐸𝑣𝑖𝑓

𝑆𝑡𝐸𝑜𝑙𝑠
= 1 − √𝑉𝐼𝐹. 

  When 𝑡𝑜𝑙𝑠 < 𝑡# < 𝑡𝑣𝑖𝑓 , a Type II error occurs, and 𝑊𝑂𝐶 and 𝐸𝑆𝑂𝐶 are the same as above. 

Further, the risk of making a Type II error index is identical to the above Type I error one as:  

𝑅𝑂𝐶 =
∆1

∆
=

∆1

∆1 + ∆2
=

1

1 + ∆2/∆1
=

1

1 + 𝑟
, 

and 

𝑟 = ∆2/∆1=
𝑡# − 𝑡𝑜𝑙𝑠

𝑡𝑣𝑖𝑓 − 𝑡# 
=

𝑆𝑡𝐸# − 𝑆𝑡𝐸𝑜𝑙𝑠√𝑉𝐼𝐹

(𝑆𝑡𝐸𝑜𝑙𝑠 − 𝑆𝑡𝐸#)√𝑉𝐼𝐹
,  

where 𝑟 is positive and 0 < 𝑅𝑂𝐶 < 1, since 𝑆𝑡𝐸𝑜𝑙𝑠 > 𝑆𝑡𝐸# > 𝑆𝑡𝐸𝑣𝑖𝑓 .  
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(a) Scenario of no Type II error  

 

(b) Scenario of having Type II error  

Figure 3.A.1 Two scenarios of comparing t statistics of the estimated model and the 

hypothesized satisfactory models (𝑡𝑜𝑙𝑠 < 𝑡#). 
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APPENDIX 4A 

Simulation Parameter Settings and Results of VOCs of Omitting the Highest Cluster Level 

 

Table 4A.1 Simulation parameter settings. 

𝝈̃(𝒋) 

or 

𝝆 ≅ 𝝆𝟏 

𝝈(𝒌) 

or 

𝝆𝟐 

𝝈(𝒋) 

or 

𝝆𝟎 

𝒏𝑯 

Avg. No. of 

teachers per 

school 

𝑴𝒌 

No. of schools 
𝝈̃(𝒊) ≅ 𝝈(𝒊) 

0.5 0.1 0.4 

20 5 

0.5 

0.8 0.4 0.4 0.2 

0.8 0.6 0.2 0.2 

0.5 0.1 0.4 

10 10 

0.5 

0.8 0.4 0.4 0.2 

0.8 0.6 0.2 0.2 

0.5 0.1 0.4 

4 25 

0.5 

0.8 0.4 0.4 0.2 

0.8 0.6 0.2 0.2 

0.5 0.1 0.4 

2 50 

0.5 

0.8 0.4 0.4 0.2 

0.8 0.6 0.2 0.2 
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Table 4A.2 Relative bias of estimates of variances when 𝜌1 = 0.5, 𝜌2 = 0.1, 𝜌0 = 0.4. 

Parameter 𝐧𝐻 𝑀𝑘 

𝐑.𝐁.𝒆𝒔𝒕 of HLM 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of HLM 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Teacher-level 

random effect variance 

𝜎̃(𝑗) 

20 5 
0.14 

(0.02) 
[0, 1.14] 

0 

(0) 
[0, 0] 

10 10 
0.19 

(0.03) 
[0, 1.12] 

0 

(0) 
[0, 0] 

4 25 
0.24 

(0.03) 
[0, 1.06] 

0 

(0) 
[0, 0] 

2 50 
0.31 

(0.06) 
[0, 1.68] 

0 

(0) 
[0, 0] 

Standard error of 

𝑊𝑗(𝑘) coefficient 𝛾̃01 

20 5 
0.06 

(0) 
[0, 0.43] 

0 

(0) 
[0, 0.02] 

10 10 
0.08 

(0) 
[0, 0.42] 

0 

(0) 
[0, 0.02] 

4 25 
0.10 

(0.01) 
[0, 0.41] 

0.01 

(0) 
[0, 0.03] 

2 50 
0.13 

(0.01) 
[0, 0.58] 

0.01 

(0) 
[0, 0.04] 

Standard error of 

𝑍𝑘 coefficient 𝛾̃02 

20 5 
-0.33 

(0.04) 
[-0.69, 0] 

0 

(0) 

[-0.01, 

0.01] 

10 10 
-0.30 

(0.02) 
[-0.58, 0] 

0 

(0) 

[-0.01, 

0.01] 

4 25 
-0.17 

(0.01) 
[-0.37, 0] 

0 

(0) 
[0, 0] 

2 50 
-0.08 

(0) 
[-0.21, 0.00] 

0 

(0) 
[0, 0] 
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Table 4A.2 (cont’d) 

Parameter 𝐧𝐻 𝑀𝑘 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖(𝑗𝑘) coefficient 𝛾̃10 

20 5 
0.38 

(0) 
[0.24, 0.56] 

0.02 

(0) 
[-0.16, 0.07] 

10 10 
0.39 

(0) 
[0.24, 0.56] 

0.01 

(0) 
[-0.15, 0.08] 

4 25 
0.40 

(0) 
[0.27, 0.61] 

<0.01 

(0) 
[-0.22, 0.07] 

2 50 
0.40 

(0) 
[0.25, 0.57] 

<0.01 

(0) 
[-0.18, 0.07] 

Standard error of 

𝑊𝑖(𝑗𝑘) coefficient 𝛾̃01 

20 5 
-0.66 

(0) 
[-0.71, -0.58] 

-0.02 

(0) 
[-0.11, 0.10] 

10 10 
-0.66 

(0) 
[-0.70 -0.57] 

-0.01 

(0) 
[-0.11, 0.10] 

4 25 
-0.66 

(0) 
[-0.71 -0.55] 

<0.01 

(0) 
[-0.10, 0.11] 

2 50 
-0.65 

(0) 
[-0.71, -0.51] 

<0.01 

(0) 
[-0.10, 0.11] 

Standard error of 

𝑍𝑖(𝑗𝑘) coefficient 𝛾̃02 

20 5 
-0.79 

(0) 
[-0.91, -0.64] 

-0.03 

(0) 
[-0.12, 0.10] 

10 10 
-0.78 

(0) 
[-0.87, -0.65] 

-0.02 

(0) 
[-0.11, 0.10] 

4 25 
-0.74 

(0) 
[-0.82, -0.67] 

-0.01 

(0) 
[-0.11, 0.10] 

2 50 
-0.71 

(0) 
[-0.76, -0.65] 

<0.01 

(0) 
[-0.11, 0.11] 
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Table 4A.3 Relative bias of estimates of variances when 𝜌1 = 0.8, 𝜌2 = 0.4, 𝜌0 = 0.4. 

Parameter 𝒏𝑯 𝑴𝒌 

𝐑. 𝐁.𝒆𝒔𝒕 of HLM 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of HLM 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Teacher-level 

random effect 

variance 𝜎̃(𝑗) 

20 5 
0.59 

(0.26) 
[0, 3.79] 

0 

(0) 
[0, 0] 

10 10 
0.82 

(0.20) 
[0.00, 2.58] 

0 

(0) 
[0, 0] 

4 25 
0.95 

(0.17) 
[0.15, 3.38] 

0 

(0) 
[0, 0] 

2 50 
1.02 

(0.23) 
[0.00, 3.29] 

0 

(0) 
[0, 0] 

Standard error of 

𝑊𝑗(𝑘) coefficient 

𝛾̃01 

20 5 
0.24 

(0.03) 
[0, 1.16] 

0.02 

(0) 
[0, 0.05] 

10 10 
0.33 

(0.02) 
[0, 0.87] 

0.02 

(0) 
[-0.97, 0.06] 

4 25 
0.38 

(0.02) 
[0.07, 1.07] 

0.02 

(0) 
[0.01, 0.05] 

2 50 
0.40 

(0.03) 
[0.00, 1.04] 

0.03 

(0) 
[0.00, 0.09] 

Standard error of 

𝑍𝑘 coefficient 𝛾̃02 

20 5 
-0.57 

(0.03) 
[-0.75, 0] 

-0.01 

(0) 
[-0.02, 0.01] 

10 10 
-0.52 

(0.01) 
[-0.99, 0] 

-0.01 

(0) 
[-0.97, 0.01] 

4 25 
-0.35 

(0) 
[-0.45, -0.15] 

0 

(0) 
[-0.01, 0.01] 

2 50 
-0.17 

(0) 
[-0.25, 0.00] 

0 

(0) 
[0, 0] 
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Table 4A.3 (cont’d) 

Parameter 𝒏𝑯 𝑴𝒌 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖(𝑗𝑘) coefficient 

𝛾̃10 

20 5 
1.02 

(0.06) 
[0.62, 1.92] 

0.21 

(0.04) 
[-0.68, 0.37] 

10 10 
1.12 

(0.04) 
[0.63, 1.75] 

0.13 

(0.05) 
[-0.91, 0.38] 

4 25 
1.19 

(0.03) 
[0.68, 1.74] 

0.05 

(0.06) 
[-0.97, 0.36] 

2 50 
1.20 

(0.02) 
[0.71, 1.63] 

0.03 

(0.05) 
[-0.83, 0.35] 

Standard error of 

𝑊𝑖(𝑗𝑘) coefficient 

𝛾̃01 

20 5 
-0.68 

(0) 
[-0.74, -0.49] 

-0.07 

(0.01) 
[-0.25, 0.35] 

10 10 
-0.66 

(0) 
[-0.74, -0.54] 

-0.03 

(0.01) 
[-0.22, 0.25] 

4 25 
-0.65 

(0) 
[-0.72, -0.51] 

<0.01 

(0.01) 
[-0.19, 0.33] 

2 50 
-0.65 

(0) 
[-0.74, -0.49] 

0.01 

(0) 
[-0.16, 0.19] 

Standard error of 

𝑍𝑖(𝑗𝑘) coefficient 

𝛾̃02 

20 5 
-0.89 

(0) 
[-0.94, -0.72] 

-0.09 

(0.01) 
[-0.26, 0.32] 

10 10 
-0.88 

(0) 
[-1.00, -0.73] 

-0.05 

(0.01) 
[-0.24, 0.21] 

4 25 
-0.84 

(0) 
[-0.87, -0.78] 

-0.03 

(0.01) 
[-0.20, 0.28] 

2 50 
-0.79 

(0) 
[-0.82, -0.74] 

-0.01 

(0) 
[-0.18, 0.15] 
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Table 4A.4 Relative bias of estimates of variances when 𝜌1 = 0.8, 𝜌2 = 0.6, 𝜌0 = 0.2. 

Parameter 𝐧𝑯 𝑴𝒌 

𝐑.𝐁.𝒆𝒔𝒕 of HLM 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of HLM 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Teacher-level 

random effect 

variance 𝜎̃(𝑗) 

20 5 
1.69 

(1.97) 
[0.00, 0.39] 

<0.01 

(0) 
[-0.01, 0] 

10 10 
2.47 

(1.79) 
[0.11, 7.11] 

<0.01 

(0) 
[0, 0] 

4 25 
2.85 

(1.11) 
[0.70, 7.44] 

<0.01 

(0) 
[0, 0] 

2 50 
3.12 

(1.06) 
[1.06, 6.77] 

<0.01 

(0) 
[0, 0] 

Standard error of 

𝑊𝑗(𝑘) coefficient 𝛾̃01 

20 5 
0.57 

(0.14) 
[0.00, 2.28] 

0.05 

(0) 
[0.00, 0.12] 

10 10 
0.80 

(0.11) 
[0.05, 1.78] 

0.06 

(0) 
[0.01, 0.13] 

4 25 
0.91 

(0.06) 
[0.29, 1.85] 

0.07 

(0) 
[0.03, 0.13] 

2 50 
0.97 

(0.06) 
[0.42, 1.69] 

0.07 

(0) 
[0.03 0.17] 

Standard error of 

𝑍𝑘 coefficient 𝛾̃02 

20 5 
-0.67 

(0.01) 
[-0.77, 0.00] 

-0.02 

(0) 
[-0.06, 0.01] 

10 10 
-0.61 

(0) 
[-0.66, -0.27] 

-0.01 

(0) 
[-0.04, 0.01] 

4 25 
-0.43 

(0) 
[-0.48, -0.33] 

<0.01 

(0) 
[-0.02, 0.01] 

2 50 
-0.24 

(0) 
[-0.27, -0.18] 

<0.01 

(0) 
[-0.01, 0.00] 
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Table 4A.4 (cont’d) 

Parameter  𝐧𝐻 𝑴𝑘 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖(𝑗𝑘) coefficient 

𝛾̃10 

20 5 
0.91 

(0.12) 
[0.38, 2.26] 

0.23 

(0.04) 
[-0.89, 0.38] 

10 10 
1.07 

(0.08) 
[0.45, 1.88] 

0.18 

(0.05) 
[-0.87, 0.39] 

4 25 
1.18 

(0.04) 
[0.53, 1.93] 

0.09 

(0.06) 
[-0.93, 0.37] 

2 50 
1.20 

(0.03) 
[0.64, 1.67] 

0.04 

(0.06) 
[-0.89, 0.36] 

Standard error of 

𝑊𝑖(𝑗𝑘) coefficient 

𝛾̃01 

20 5 
-0.59 

(0.01) 
[-0.70, -0.23] 

-0.10 

(0.02) 
[-0.34, 0.57] 

10 10 
-0.54 

(0) 
[-0.69, -0.33] 

<0.01 

(0.02) 
[-0.31, 0.45] 

4 25 
-0.52 

(0) 
[-0.65, -0.33] 

0.04 

(0.01) 
[-0.21, 0.48] 

2 50 
-0.51 

(0) 
[-0.63, -0.33] 

0.06 

(0.01) 
[-0.16, 0.28] 

Standard error of 

𝑍𝑖(𝑗𝑘) coefficient 

𝛾̃02 

20 5 
-0.91 

(0) 
[-0.94, -0.68] 

-0.16 

(0.02) 
[-0.39, 0.44] 

10 10 
-0.90 

(0) 
[-0.92, -0.78] 

-0.07 

(0.02) 
[-0.33, 0.38] 

4 25 
-0.86 

(0) 
[-0.88, -0.82] 

-0.03 

(0.01) 
[-0.25, 0.38] 

2 50 
-0.81 

(0) 
[-0.82, -0.78] 

-0.01 

(0) 
[-0.22, 0.19] 
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APPENDIX 5A 

Simulation Parameter Settings and Results of VOCs of Omitting the Lowest Cluster Level 

 

Table 5A.1 Simulation parameter settings. 

𝒏𝒕 𝝆 𝝆̅ 𝝆 𝑻𝒊𝒎𝒆𝒕𝒊 ,𝑨𝑹(𝟏) 𝝆 𝑻𝒊𝒎𝒆𝒕𝒊  

6 

0.9 0.789 

0.5 0.167 
0.7 0.476 

0.5 0.269 

0.2 0.079 

10 

0.9 0.697 

0.7 0.140 
0.7 0.351 

0.5 0.178 

0.2 0.049 

30 

0.9 0.423 

0.9 0.06 
0.7 0.143 

0.5 0.064 

0.2 0.017 
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Table 5A.2 Relative bias of estimates of variances when lag-1 autocorrelation 𝜌 = 0.9 

Parameter 𝐧𝒕 

𝐑.𝐁.𝒆𝒔𝒕 of ID 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of ID 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Residual variance 

𝜎̃(𝑡) 

6 
-0.79 

(0.00) 

[-0.81, -

0.76] 

0.00 

(0.00) 
[-0.12, 0.12] 

10 
-0.70 

(0.00) 

[-0.73, -0.6

6] 

0.00 

(0.00) 
[-0.10, 0.11] 

30 
-0.42 

(0.00) 

[-0.47, -

0.36] 

0.00 

(0.00) 
[-0.07, 0.10] 

Individual level 

random effect variance 

𝜎̃(𝑖) 

6 
1.77 

(0.04) 
[1.24, 2.23] 

0.00 

(0.04) 
[-0.58, 0.56] 

10 
1.57 

(0.03) 
[1.11,2.09] 

0.01 

(0.03) 
[-0.54, 0.57] 

30 
0.95 

(0.02) 
[0.55, 1.32] 

0.00 

(0.02) 
[-0.38, 0.36] 

Standard error of 

𝑇𝑖𝑚𝑒𝑡𝑖 coefficient 𝛾̃10 

6 
-0.39 

(0.00) 

[-0.41, -

0.36] 

-0.04 

(0.00) 
[-0.12, 0.02] 

10 
-0.51 

(0.00) 

[-0.53, -

0.49] 

-0.03 

(0.00) 
[-0.11, -0.04] 

30 
-0.71 

(0.00) 

[-0.72, -

0.69] 

-0.03 

(0.00) 
[-0.08, 0.03] 

Parameter 𝐧𝒕 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖 coefficient 𝛾̃01 

 

6 
-0.56 

(0.00) 

[-0.57, -

0.55] 

0.01 

(0.00) 
[-0.01, 0.04] 

10 
-0.64 

(0.00) 

[-0.65, -

0.63] 

0.02 

(0.00) 
[-0.01, 0.05] 

30 
-0.74 

(0.00) 

[-0.75, -

0.73] 

0.12 

(0.00) 
[0.06, 0.17] 
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Table 5A.3 Relative bias of estimates of variances when lag-1 autocorrelation 𝜌 = 0.7 

 

 

 

 

 

  

Parameter 𝐧𝒕 

𝐑.𝐁.𝒆𝒔𝒕 of ID 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of ID 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Residual variance 

𝜎̃(𝑡) 

6 
-0.48 

(0.00) 
[-0.53, -0.42] 

0.00 

(0.00) 
[-0.10, 0.10] 

10 
-0.35 

(0.00) 
[-0.41, -0.29] 

0.00 

(0.00) 
[-0.09, 0.10] 

30 
-0.14 

(0.00) 
[-0.19, -0.09] 

0.00 

(0.00) 
[-0.06, 0.06] 

Individual level 

random effect variance 

𝜎̃(𝑖) 

6 
1.07 

(0.02) 
[0.58, 1.53] 

0.00 

(0.02) 
[-0.53, 0.51] 

10 
0.79 

(0.01) 
[0.46, 1.13] 

0.00 

(0.01) 
[-0.30, 0.37] 

30 
0.33 

(0.01) 
[0.09, 0.59] 

0.01 

(0.01) 
[-0.24, 0.28] 

Standard error of 

𝑇𝑖𝑚𝑒𝑡𝑖 coefficient 𝛾̃10 

6 
-0.33 

(0.00) 
[-0.40, -0.30] 

-0.04 

(0.00) 
[-0.15, 0.01] 

10 
-0.41 

(0.00) 
[-0.44, -0.39] 

0.05 

(0.00) 
[0.01, 0.09] 

30 
-0.63 

(0.00) 
[-0.65, -0.61] 

0.01 

(0.00) 
[-0.04, 0.04] 

Parameter 𝐧𝒕 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖 coefficient 𝛾̃01 

 

6 
-0.50 

(0.00) 
[-0.52, -0.48] 

0.02 

(0.00) 
[-0.01, 0.06] 

10 
-0.58 

(0.00) 
[-0.60, -0.57] 

0.02 

(0.00) 
[-0.01, 0.04] 

30 
-0.62 

(0.00) 
[-0.64, -0.61] 

0.36 

(0.00) 
[0.26, 0.41] 
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Table 5A.4 Relative bias of estimates of variances when lag-1 autocorrelation 𝜌 = 0.5. 

 

 

 

 

Parameter 𝐧𝒕 

𝐑.𝐁.𝒆𝒔𝒕 of ID 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of ID 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Residual variance 

𝜎̃(𝑡) 

6 
-0.27 

(0.00) 
[-0.34, -0.20] 

0.00 

(0.00) 
[-0.09, 0.09] 

10 
-0.18 

(0.00) 
[-0.24, -0.12] 

0.00 

(0.00) 
[-0.08, 0.07] 

30 
-0.07 

(0.00) 
[-0.11, -0.03] 

0.00 

(0.00) 
[-0.05, 0.04] 

Individual level 

random effect variance 

𝜎̃(𝑖) 

6 
0.61 

(0.01) 
[0.28, 0.95] 

0.01 

(0.01) 
[-0.33, 0.36] 

10 
0.40 

(0.01) 
[0.11, 0.67] 

0.00 

(0.01) 
[-0.29, 0.28] 

30 
0.15 

(0.01) 
[-0.07, 0.38] 

0.00 

(0.01) 
[-0.22, 0.23] 

Standard error of 

𝑇𝑖𝑚𝑒𝑡𝑖 coefficient 𝛾̃10 

6 
-0.27 

(0.00) 
[-0.36, -0.22] 

-0.03 

(0.00) 
[-0.15, 0.05] 

10 
-0.32 

(0.00) 
[-0.35, -0.29] 

0.12 

(0.00) 
[0.07, 0.17] 

30 
-0.38 

(0.00) 
[-0.40, -0.37] 

0.58 

(0.00) 
[0.51, 0.66] 

Parameter 𝐧𝒕 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖 coefficient 𝛾̃01 

 

6 
-0.45 

(0.00) 
[-0.48, -0.39] 

0.02 

(0.00) 
[-0.01, 0.10] 

10 
-0.54 

(0.00) 
[-0.57, -0.52] 

0.01 

(0.00) 
[-0.01, 0.03] 

30 
-0.70 

(0.00) 
[-0.72, -0.68] 

0.00 

(0.00) 
[-0.01, 0.01] 
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Table 5A.5  Relative bias of estimates of variances when lag-1 autocorrelation 𝜌 = 0.2. 

Parameter 𝐧𝒕 

𝐑.𝐁.𝒆𝒔𝒕 of ID 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of ID 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Residual variance 

𝜎̃(𝑡) 

6 
-0.08 

(0.00) 
[-0.15, 0.01] 

0.00 

(0.00) 
[-0.08, 0.10] 

10 
-0.05 

(0.00) 
[-0.12, 0.02] 

0.00 

(0.00) 
[-0.08, 0.07] 

30 
-0.02 

(0.00) 
[-0.06, 0.02] 

0.00 

(0.00) 
[-0.04, 0.04] 

Individual level 

random effect variance 

𝜎̃(𝑖) 

6 
0.17 

(0.01) 
[-0.11, 0.44] 

0.00 

(0.01) 
[-0.30, 0.27] 

10 
0.11 

(0.01) 
[-0.15, 0.40] 

0.00 

(0.01) 
[-0.26, 0.29] 

30 
0.04 

(0.00) 
[-0.18, 0.24] 

0.00 

(0.00) 
[-0.22, 0.20] 

Standard error of 

𝑇𝑖𝑚𝑒𝑡𝑖 coefficient 𝛾̃10 

6 
-0.12 

(0.00) 
[-0.16, -0.06] 

0.09 

(0.00) 
[0.02, 0.14] 

10 
-0.14 

(0.00) 
[-0.17, -0.10] 

0.29 

(0.00) 
[0.23, 0.35] 

30 
-0.17 

(0.00) 
[-0.19, -0.15] 

1.05 

(0.00) 
[0.93, 1.12] 

Parameter 𝐧𝒕 

𝐑.𝐁.𝒆𝒔𝒕 of OLS 𝐑.𝐁.𝒂𝒅𝒋.𝒆𝒔𝒕 of OLS 

Mean 

(Variance) 
Range 

Mean 

(Variance) 
Range 

Standard error of 

𝑋𝑖 coefficient 𝛾̃01 

 

6 
-0.40 

(0.00) 
[-0.43, -0.36] 

0.00 

(0.00) 
[-0.01, 0.01] 

10 
-0.50 

(0.00) 
[-0.53, -0.47] 

0.00 

(0.00) 
[-0.01, 0.01] 

30 
-0.69 

(0.00) 
[-0.70, -0.66] 

0.00 

(0.00) 
[0.00, 0.00] 
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