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ABSTRACT

QUANTIFYING THE BIAS OF STANDARD ERROR ESTIMATES DUE TO OMITTED
CLUSTER LEVELS IN COMPLEX MULTILEVEL DATA: A SENSITIVITY ANALYSIS
FOR EMPIRICAL RESEARCHERS

By
Zixi Chen

Educational phenomena occur in multilevel contexts, such as students nested within
classrooms and classrooms nested within schools. This multilevel structure is also reflected in
the multi-stage sampling design and randomized experimental design by clusters in educational
data collection and research design. The consequential challenge of dependent observations
within clusters of each nesting layer is prevalently dealt with by Hierarchical Linear Modeling
(HLM) in education studies. However, in many cases, the observed data’s multilevel structure
can be unidentified or misspecified that the complex multilevel data structure is partially
presented. Thus, even with the advanced statistical tools, the estimated models with omitted
clustering levels will still produce erroneous standard error estimates and result in either Type |
or Type Il errors that compromise and even undistort interpretations of educational mechanisms.
Practical guidance is urgently needed for empirical research confronting this issue to judge and

detect whether the estimated models are adequate in taking account of the clustering dependency.

This paper contributes to investigate when a cluster level should be explicitly modeled
but omitted and how much the standard error estimates would be biased. This paper examines
these questions in settings of a true three-level clustered data structure, while a cluster level,
either at the highest, middle, or the lowest level, is omitted in the estimated two-level models.
The theoretical discussion of essential clustering levels in modeling due to multi-stage sampling

design and randomized experiments by clusters is drawn on insights from Abadie et al. (2017)



and Hedges and Rhoads (2011). The current study then derives corresponding mathematical
formulas to quantify the standard error estimation bias for each level’s predictors’ estimated
effect. These derived formulas are functions of the intraclass correlation coefficients and cluster
sizes of the estimated and omitted cluster levels. Further, build on Frank, Maroulis, Duong, and
Kelcey (2013), the current paper develops a sensitivity analysis framework with a scientific
language to quantify the degree of statistical inferences robustness based on the clustering
characteristics of the omitted levels of clusters. In each omitted clustering scenario at the lowest,
middle, and highest level, empirical studies are provided as implication examples of the
sensitivity analysis to demonstrate the potential inference robustness risks due to omitted

clustering.
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CHAPTER 1

INTRODUCTION

1.1 Background

Educational phenomena occur in a nested context, such as students nested within classes
within schools (Barr & Dreeben, 1983). In this multilevel schooling system, higher-level school
actors, such as administrators and principals, as well as school social context, shape and respond
to educational activities of the lower-level actors, such as teachers and students, through flows of
resource allocations and routine organizational designs (Gamoran & Dreeben,1986; Goddard et
al., 2007; Hallinger, & Murphy, 1986; Heck et al., 1990; Seashore Louis & Lee, 2016; Spillane
et al., 2011). These units, such as schools, classrooms, and students, are inherent (or innate)

levels in the formed organizational system of schooling (Krull & MacKinnon, 2001).

The multi-stage sampling design of education data collection corresponds to the
multilevel structure of schooling system (Konstantopoulos, 2008a, 2008b; Snijders & Bosker,
2011; Hedges & Rhoads, 2011). Larger units, such as schools from the population of interest, are
randomly selected in the first stage and are referred to as Primary Sampling Units (PSUs)
(Leeuw & Meijer, 2008). In the second stage, researchers sample smaller units, such as
classrooms, from PSUs. The sampled students are thus Secondary Sampling Units (SSUs), which
are nested within school clusters. Stages of sampling can continue until the Ultimate Sampling
Units (USUs), which are normally the targeted research units, such as students, are reached

(Battaglia,2008). These sampling stages define the deliberate cluster levels by design in analysis.



The multilevel nesting structure results in dependencies between individual actors within
clusters, challenging the independent observation assumption of the conventional regression
analysis using Ordinary Least Squares (OLS) estimation. For instance, students who are similar
in motivation, achievement, and family background are more likely to be grouped in the same
classrooms and schools (Goldstein, 2011; Snijders & Bosker, 2011). It is also possible that
students become more similar after they are assigned to the same classes and schools, as they
share similar learning experiences and social contexts (see empirical examples in Frank, Muller,
et al, 2008, and Rhoads, 2011). Teachers could become similar in instructions through
professional training, collaboration and social interactions which will ultimately expose to their
students learning activities, form within-school shared culture, and collectively react to policy
enactment (see empirical examples in Coburn et al., 2012; Goddard et al., 2007; Penuel et al.,
2009, and a survey in Voogt et al., 2016). With the clustering dependency, the independent error
assumption treating the data as a simple random sample is thus violated. It is well-documented
that the standard error estimates of coefficients from OLS estimation are underestimated though
the coefficient estimates are unbiased, which leads to Type I errors (McNeish, 2014; Mundfrom

& Schults, 2002; Musca et al., 2011).

The research interest of multilevel-structured educational and social phenomena and the
methodological needs of dealing with the clustering dependency lead to the prevalent use of
Hierarchical Linear Model (HLM) (Raudenbush & Bryk, 2002; Frank, 1998; Musca et al., 2011;
Niehaus et al., 2014; Snijders & Bosker, 2011). HLM explicitly models the multilevel clustering
dependency by including the corresponding level’s random effects that capture the between-
cluster variation and identify the cluster-specific effects beyond the population-averaged

estimates (McNeish et al., 2017; Snijders & Bosker, 2011). In a three-stage sampled data



structure, a three-level HLM model can account for dependencies of USUs nested within SUSs
within PSUs. This structure aligns well with the conventional schooling system mentioned

above, that students are nested within classes, and classes are nested within schools.

The advantages of using HLM to make robust statistical inferences with clustered data
could easily vanish if the imperative modeling assumptions relevant to random effects do not
hold true (Dedrick, et al., 2009; Huang, 2018; McNeish et al., 2017; Snijders & Berkhof, 2008).
Since the random effects variance is taken into account in estimating the standard errors of the
regression coefficients (Raudenbush & Bryk, 2002; Snijders & Bosker, 2011), an essential
assumption is that the modeled cluster levels as random effects are sufficient and the
corresponding random effects are correctly specified. For example, in practice, researchers may
purposively exclude a cluster level, such as the classrooms, in modeling for parsimony,
regardless of testing whether this omission would result in ignoring clustering dependency and

false inferences.

1.2 Problem Statement

The omission of cluster levels or misspecified random effects masks some true sources of
the clustering dependency, which misguides the confirmation of the tested hypothesis and the
deduction of theories. A substantial body of methodological studies in the early 2000s has
highlighted this issue (e.g., Luo & Kowk, 2009; Moerbeek, 2004; Van den Noortgate et al.,
2005; Opdenakker & VVan Damme, 2000; Tranmer & Steel, 2001). In general, the variances from
an omitted level are redistributed into the adjacent levels if the intermediate level is omitted. For
example, if the lowest or the highest level is omitted, the variances are distributed to the adjacent

higher and lower levels respectively. As the omitted dependencies redistribute to the wrong



cluster levels, the variance estimates of random effects (i.e., variance components) and the
standard error estimates of fixed effects (i.e., regression coefficients) are still biased even if the
estimated model captures some clustering effects. Also, critical dependencies within the modeled
clusters must be represented and accounted for in the model. In other words, all crucial
dependencies of clustering should not be falsely left-out or over-specified. The debate of this
condition has been mostly around the misspecifications of the error variance-covariance structure
of repeated measures in longitudinal data analysis (e.g., in Baek & Ferron, 2013; Ferron et al.,

2010; LeBeau, 2018; Murphy & Pituch, 2009).

Ideally, empirical researchers are encouraged to provide the strongest models that are
best fit for their data, theories, and research design. On one hand, if any cluster levels are
necessary, the corresponding clustering dependencies should be modeled for robust inferences.
On the other hand, we do not want to model the unnecessary clustering and fall into the opposite

extreme of overcorrection (Abadie et al., 2017; MacKinnon & Webb, 2019).

The first practice is often considered by several conventional criteria for clustering
specification (Opdenakker & VVan Damme, 2000). A basic one inheres in the conceptualization.
To address the substantive research interests relevant to different levels’ mechanisms,
researchers usually split models into the corresponding multiple levels (Cheong et al., 2001).
However, this criterion alone often fails if a cluster level of the mechanism is historically
overlooked (Martinez, 2012). Other criteria of defining cluster levels based on the stages of a
sampling design and treatment assigned levels in experiment design have been considered
(Abadie et al., 2017, 2020; Hedges & Rhoads, 2011; MacKinnon & Webb, 2020; Opdenakker &
Van Damme, 2000, Raudenbush, & Schwartz, 2020). However, a researcher may inadvertently
omit a cluster level if she ignores the complex sampling structure (Niehaus et al., 2014; Wang et

4



al., 2019; Zhu et al., 2012; Skinner & Wakefield, 2017). In some cases, the omission of a cluster
level is obliged due to data restrictions. For example, many public-available datasets do not
provide linkable identification numbers across cluster levels (e.g., classrooms) due to data ethic
concerns (Conaway, et al., 2015). Also, it is not surprising that many published studies do not
fully illustrate the sampling designs or provide original data. Readers could have reasonable

questions of whether the clustering dependencies are modeled correctly.

Conventionally, researchers may also model a cluster level if the size of the clustering
dependency measured by the intraclass correlation coefficient (ICC) is considerable. Earlier
research suggests a rule of thumb of larger than 0.05 to include a cluster level in modeling.
Noticeably, since there are no statistical tests or definite thresholds of ICCs to make a modeling
decision, researchers may judge the ICCs based on evidence from previous research. However,
evidence from prior research could have different contexts than the current one, thus leading to
an inaccurate judgment of the empirical ICCs. Nonetheless, Musca et al. (2011) found that the
Type | error rate is always higher than the conventional 5% when clustering is ignored even with
an ICC value is as low as 0.01 across many conditions of group size. Therefore, the ICC may not
be sufficient for deciding whether a level should be included in analysis. In modeling with more
than one level of clustering, judgments based on multiple ICCs may become even more
complicated. Alternatively, power analysis of the experiment designs cannot solve the question
of how many levels there are in modeling, either. Designed to determine the sample size needed
to achieve the power of the statistical hypothesis tests, a power analysis is conducted with a
presumption of levels of clustering in design (Berger & Wong, 2009; Cohen, 1992; van

Breukelen & Moerbeek, 2016). If a level of clustering matters but is omitted in the design, a



detected educational mechanism or effective intervention may have adequate power, but for an

incorrect inference (see Konstantopoulos, 2008a)

The assumptions associated with the second practice of not modeling unnecessary
clustering are also often unsatisfied since the current guidelines on when to account for
clustering remain vague. For example, analytical guidance would state that a clustering of
interest should be accounted for as the estimates change compared with the models without
including the cluster level (e.g., Van den Noortgate et al. 2005; Cameron & Miller, 2015). This
kind of statement does not explain the rationale of why the cluster gives rise to clustering or
when to cluster. This gap causes two major misconceptions. One is that whenever there is a level
of cluster that can be defined, regardless of -inherently or by design, a clustering dependency is
possible and thus needs to be modeled. Another misconception is that a cluster level needed to
be modeled since adding it would change the standard error estimates. It is often the case that
empirical researchers choose the larger standard error estimates accounting for clustering
dependency to avoid committing a Type | error, without justifying whether the clustering is true
and must be adjusted (Robinson, 2020). To dispel these misconceptions, a theoretical framework
of when a cluster level is necessary and thus should be controlled is pivotal. This argument has
been highlighted in Abadie et al. (2017). Along with Hedges and Rhoads (2011), these studies
clarify that the standard error estimates should be corrected if the clustering is due to multi-stage

sampling design and randomized experimental by clusters.

1.3 Research Questions and Goals

Despite strong analytical evidence of the risks of omitting levels of clustering and the

urgent need for practical guidance to judge whether the estimated model adequately accounts for



clustering, it is still unclear what misspecification of the random effects of the cluster levels may
or may not lead to incorrect results. The above discussion motivates the current study to ask the

following questions:

1) When should a cluster level and the corresponding clustering dependency to be explicitly
modeled, and when could they be omitted?
2) And, if an essential level is omitted in modeling, whether and how much of the omitted

clustering dependency would affect the robustness of inference?

This study investigates these questions in settings of a true three-level clustered data
structure, while a cluster level, either at the highest, middle, or the lowest level, is omitted in the
estimated two-level models. Applying insights from Abadie et al. (2017) and Hedges and Rhoads
(2011), the first research question is answered by building a theoretical framework of when a
middle or highest cluster level is produced by sampling and experimental designs, but is omitted
in modeling. In the omitted lowest cluster level case, the theoretical argument switches to the
serial correlation dependency due to the chronologically ordered nature of repeated measures.
Answering the first question aids in clarifying empirical decisions of whether a cluster level
should or should not be modeled to avoid either Type | or Type Il errors and improve the

analytical identification of the consequences of an omitted cluster level.

The second question is answered through analytically quantifying the magnitude of the
standard error estimates bias of the slope estimates of predictors at each level. Previous studies of
examining the issues of omitting a cluster level commonly use simulations to show empirical
evidence of bias in estimates and threats to robust inferences. The simulation approach, assuming

a known correct model to compare with the other false ones, has advantages in setting extensive



ranges for parameters and models. Nonetheless, though those simulations reveal valuable general
patterns, how the bias is produced mathematically is still in a black box. This study complements
those simulation-based evidence through closed forms of standard error correction formulas.
These formulas, showing the relationship between the bias and the clustering parameters (i.e.,
ICCs and cluster sample size) of the omitted cluster level, can identify where the omitted
clustering is hidden or distributed to other levels and how statistical inferences are affected. In
other words, aligning with the theoretical framework already established, the sources of
clustering dependency are also clarified. The explanation of the approach is soon introduced in

the following Section 1.4.

Finally, with the development of such formulas for standard errors and bias as a function
of clustering, this study is further able to develop a sensitivity analysis framework for researchers
to quantify the robustness of inferences (or effect size) and the risk of making a false hypothesis
decision based on the clustering degree of the suspected omitted cluster level. This sensitivity
analysis framework contributes to filling the gaps in current methodological research and to
bridging with empirical studies that require guidance in making decisions on modeling specific
cluster levels. Particularly, this sensitivity analysis framework is desired in practice when the

omitted cluster level is not able to be included in the modeling.

1.4 Combining the Benefits of the Model-Based and the Design-Based Approaches

While the model-based approach HLM explicitly models the multilevel clustering
dependency with random effects, the design-based approach provides statistical corrections to
the standard error estimates (Cameron & Miller, 2015; Cheong et al., 2001; McNeish & Wentzel,

2017). The design-based approach is prevalent in the fields of survey studies and economics,



where the corrections are called Design Effect (DEFF) and Cluster Robust Standard Errors
(CRSE). In a two-level sampling data structure, DEFF is derived from the ratio of the variance of
an estimate that takes into account the clustering and the variance that ignores the clustering
(Kish, 1995; Snijders, 2005), which is DEFF = 1 + p;c. * (Ny — 1). pj.c is the ICC and N is

the average cluster size of clusters k.

In the field of economics, CRSE is widely applied to many structures of clustering (see a
detailed survey in Cameron & Miller, 2015). Generally, CRSE provides a mathematical
expression of the variance-covariance structure with an index measuring the error variance
(Snijders & Bokser, 2011). In a simplified approximation CRSE case when the homoscedasticity
assumption holds?® (as set in the current study), this index is derived as Moulton Factor (MF)
(Angrist & Pischke, 2009; Moulton, 1986, 1990). Moulton Factor is essentially close to DEFF

since it is also derived from the ratio of the variance of an estimate with the clustering effect and

the variance without the clustering effect2. The standard error estimates are corrected by the

square root of DEFF or MF, which are equivalent to the model-based two-level HLM (Cheong et

! The correlated-within-cluster error terms require a covariance matrix estimator that is robust to arbitrary patterns of
both heteroskedasticity and intra-cluster correlation (MacKinnon & Webb, 2020). The current work dealing with
omitted clustering focuses on the omission of the latter one and assumes homoskedasticity. The setting of
homoscedasticity implies that any heteroskedastic patterns in the specified and modeled clustering have been
already corrected, and the assumption still hold after included the omitted cluster level. In later chapters of model
settings, the cluster sizes of the omitted cluster level are set to be relatively equal, and there are no heterogeneous
across clusters. A discussion of modeling heterogeneous random effect variance within an empirical education
setting can be seen in Leckie, French, Charlton, and Browne (2014).

2 Moulton factor is MF = 1 + Pz * Pice * (Vajv_(NK) + Ny — 1). Moulton factor uses %NK)
K K

of the cluster size deviation) to account into the variation of unequal cluster sizes. This is equivalent to the Skinner
(1986)’s development of Kish’s DEFF. Additionally, compared with the DEFF, Moulton factor also has p, ;, which
is the within-cluster correlation of the predictor Z . When the predictor Z is at the aggregated level, this p, ; is
perfectly correlated and equals to 1, and , thus, MF approaches to DEFF. Abadie et al. (2017) argues that p, ; * ;..
may not be sufficient to decide the adjustment, but the “within cluster correlation of the product of the residuals and
the regressor” (p.5) (i-e., Pz kserror) iS. IN the current study, the uncertainty due to p, is less of a research interest as
Pz = 1 for cluster-level predictors.

(i.e., average variance



al., 2001; Huang, 2018; Niehaus et al., 2014). An empirical example showing this equivalency

can be seen in Claessens (2012).

The current study considers a three-level clustered data where two layers of clustering are
observed while one clustering is omitted in a two-level model, and innovatively applies the
method of DEFF to correct for the standard error bias due to the omitted layer of clustering
dependency in the estimated two-level HLM model. In this way, closed forms of formulas of
quantifying the bias of the standard error estimates can be derived the same as the DEFF. The
only difference from the DEFF is that the denominator of the formulas here are the variance
estimates from the two-level models, where partial clustering dependency were captured albeit
not fully. Cheong et al. (2001) have shown the potential of this idea. Employing a national
representative survey data, they compared the standard error estimates from a three-level model
with the ones from a two-level model omitting the middle cluster level while having been
corrected by CRSE for the two-level HLM estimated model. Those standard error estimates of
the later approach that combined model- and design-based approaches are found to be

comparable to the empirical standard errors and the ones from the true three-level model.

Current literature has provided other developed approaches to deal with the same issue of
omitting a cluster level. For example, Raykov et al. (2016) addresses the question of omitting a
middle cluster level through considering the potential size of the middle cluster level variance in
the estimation of the confidence intervals of testing the cluster level variances. In Hedges and
Rhodes (2011), corrections were made to F-test statistics in two-level data while the clustering is
omitted. Comparing with these studies, the approach developed in the current study is beneficial
in ways of expressing the different sources of clustering dependency as functions of the

clustering parameters of random effects variance and sample size of clusters. Further, plugging
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in plausible values of the clustering parameters, empirical research can use the sensitivity
analysis to evaluate the estimated model and transparently show their analytic decisions (Abe &

Gee, 2014)

1.5 Summary of Findings

This study presents closed forms of formulas that quantify the standard error estimation
bias due to omitted clustering dependency. A general pattern found is that, if a cluster-level
predictor of interest is falsely disaggregated to the lower levels since it is not explicitly modeled,
its standard error estimate of the coefficient estimate is underestimated. Specifically, if the
middle cluster level is omitted, the middle-level cluster predictor that is disaggregated at the
lowest individual level has an underestimated standard error estimate of its coefficient. If the
highest cluster level is omitted, the standard error estimate of the coefficient of the highest-
cluster level predictor (which is falsely disaggregated at the middle level) is underestimated.

Similar patterns apply when the single level OLS are the estimated models.

If the upper adjacent cluster level is omitted, the standard error estimates are
overestimated. This pattern is found in the cases where the highest cluster level is omitted, and
the standard error estimate of the coefficient defined at the middle cluster level is upward biased,
leading to Type Il error. In the same vein, though the lowest cluster level predictor is not of the
current study’s interest, findings show that the corresponding standard error estimates are

overestimated if the adjacent higher cluster level is omitted.

An exceptional pattern is that, if the middle cluster level is omitted in the estimated two-
level model, the standard error estimate of the highest-level predictor’s coefficient is not biased.

This is because the overall dependency is captured in the estimated two-level model though the
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sources of clustering are entangled. At last, if the omitted level is not adjacent to the level of the
predictor of interest, such as when the lowest level predictor is the predictor of interest and the

highest cluster level is omitted, the corresponding standard error estimate remains unbiased.

The magnitude of the standard error estimates bias can be calculated by the derived
formulas. Furthermore, combined with empirical studies as examples, this study encourages
empirical researchers to utilize the developed sensitivity analysis framework to diagnose whether
the hypothesized omitted clustering would result in considerable estimation bias that would
invalidate any inferences. The sensitivity analysis is of the best usage when the researchers or
readers suspect a potential issue of omitting cluster level due to design while there are data
restrictions or other reasons that using the model-based approach of modeling that level is not

plausible.

1.6 Structure of this Study

This study follows with four chapters, where three chapters (i.e., Chapters 2, 4, and 5)
discuss the scenarios of cluster omission respectively at the middle, highest, and lowest level,
and one chapter (i.e., Chapter 3) develops the sensitivity analysis framework. In Chapter2, the
discussion of omitting the middle cluster levels in the two-level HLM models are based on a
theoretical framework of omitted cluster levels due to sampling and experimental designs. For
better implication significance, the current study takes the prevalently used national presentative
survey datasets initiated by the National Center for Education Statistics (NCES) as examples. In
Chapter 3, the sensitivity analysis framework provides three measures of quantifying the
inference robustness. An empirical example is provided to demonstrate the sensitivity analysis in

testing the inference robustness when a middle cluster level is omitted. The structure of Chapter
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4 of discussing the omission of the highest cluster level in the two-level models is identical to
that of Chapter 2, including the theoretical framework and the variance inflation factor derivation
process, though the specific scenarios and examples of omitting the highest cluster level in
sampling and experimental designs are given. Also, an empirical study using the sensitivity
analysis framework is presented. Finally, Chapter 5 discusses the case of omitting the lowest
cluster level, where the error variance-covariance is misspecified (i.e., omitting the serial

correlation in the repeated measures) in the two-level growth modeling.
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CHAPTER 2

OMITTED THE MIDDLE CLUSTER LEVEL

2.1 Introduction

The intermediate level reflects important social activities. For example, in educational
research, classrooms and teachers, lying between students and schools, contain rich educational
activities that largely influence students’ daily educational experience within schools (Martinez,
2012; Raudenbush, 2008; Raudenbush & Sadoff, 2008). Empirical studies often employ three-
level HLM models to fully reveal the relationships among predictors at the students, classrooms,
and school levels (such as Bryk & Raudenbush, 1989; H. C. Hill et al., 2005; Nye et al., 2004).
Empirical studies may also choose not to model the middle classroom level, theoretically and
methodologically, and conduct two-level models. For example, Martinez (2012) argued that the
research field’s historical foci on school-level effects might overlook the within-school dynamics
of classrooms. In the estimated two-level model, the omitted between-classroom variation is
repartitioned into the school- and student-level. The repartition of random effects largely impacts
the conclusions drawn for schools since the classrooms often explain a significant proportion of
variances that are also far more than what the schools can explain (Martinez, 2012; Beaton &
O’Dwyer, 2002). A similar discussion extends to other fields of studies with multilevel social
structures as well. For example, Vaezghasemi et al. (2016) found that households, which are
between individual and residential communities, are rarely considered when examining the

contextual effects on individuals’ body mass index.

14



Still, current literature lacks a practical guide to inform under what circumstances the
middle cluster level is necessary to be modeled to represent a complete and accurate educational
and social mechanism. This chapter intends to fill this gap by investigating scenarios of omitting
a middle cluster level in two-level HLM analyses due to research design. In Section 2.1 and 2.2,
those scenarios are classified into mechanisms of two- or three-stage sampling designs and CRT.
This classification helps to clarify when the middle clustering dependency matters in modeling.
Furthermore, this chapter aims to answer how the estimates of predictors at each level would be
impacted if the middle cluster level is essential due to design but omitted in modeling. Previous
research mainly analyzed the impacts on random effects in unconditional models; this chapter
extends the settings to conventional empirical models with predictors and covariates. Section 2.3
details the settings of two- and three-level HLM models with predictors of interest at each level

based on the two mechanisms discussed.

To answer the question of how much the omitted cluster level matters, this chapter
derives mathematical formulas to quantify the estimation bias of random effects and standard
errors. The developed formulas adjust the standard error estimates of coefficients defined as
variance correction due to omitted clustering (VOC). In a similar format of design effect, VOC is
a function of the intraclass correlation coefficient and sample size of the omitted cluster level. It
further informs the later sensitivity analysis framework with implications for empirical examples
in Chapter 3. A simulation study in Section 2.4 is designed to examine the performance of the
bias quantification formulas. Empirically meaningful VOC parameters are selected for the

simulation study. Finally, Section 2.5 gives a conclusion.
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2.2 Omitted Middle Level Due to Sampling Design

Table 2.1 summarizes when the middle cluster level is omitted in two-level HLM due to
sampling design. One scenario is when the SSUs as the middle cluster level is excluded from
modeling in a three-stage sampling design; the other scenario is when the omitted middle cluster
level appears as incidental instead of being deliberated in a two-stage sampling design. The
following considers these two scenarios in a typical educational setting where students are nested
within classrooms and classrooms are nested within schools, and a treatment is randomly
assigned to schools. The omitted middle level is hypothesized as classrooms and teachers. The
current study examines empirical findings that aim to generalize to a broader population of the
sampled schools and classrooms, rather than those fixed for the sampled schools and classrooms.
In this case, the clustering effects of schools and classrooms matter and need to be considered in

modeling (Schochet, 2008; Abadie et al., 2017).

Table 2.1 k-stage sampling design with k — 1or k + 1 estimated models.

Sampling Design | Three-stage Sampling Two-stage Sampling

(e.g., Students — Classroom — (e.0., Students — Schools)

Estimated Model Schools)
Corresponds with the
Two-level Model Omits the middle classroom samp!lng des_lgn_, while
cluster level. omitting the incidental cluster
level.

Corresponds with the sampling | Counts into the incidental

Three-level Model desi
esign. cluster levels.

2.2.1 Omitting SSUs in a Three-stage Sampling Structure Data

Consider a dataset that has a three-stage sampling design where schools are PSUs,

classrooms are SSUs, and students are USUs. The three-stage design effect accounts for these
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two sources of clustering to adjust the standard error estimates (Chen & Rust, 2017; Skinner et

al., 1989; Valliant et al., 2013)3

DEFF3;, = 1+ (nszy — 1)p(s2) + sy (s — 1Pgs1),

where p(s1y, Ps2), Ns1), and nszy are correspondingly the first-stage and second-stage intraclass
correlation coefficients and average cluster size. Equivalently, a model-based approach, i.e., a
three-level HLM model, explicitly analyzes the clustering dependency of students within

classrooms and clustering dependency of classrooms within schools.

In practice, the second stage of sampling may be purposively omitted for model
simplicity, especially when the substantive research question is not directly related to the middle
level (Stapleton & Kang, 2018; Konstantopoulos, 2008a). In the case of omitting the middle
cluster level, adapting from the original two-stage sampling design effect in Kish (1995), the
design effect of a simplified structure with PSUs of schools and USUs of students disregarding

the SSUs of classrooms is DEFF;; = 1 + (nzsl) - 1)p2‘51).

The superscript * notes for the setting of SSUs omission. n(y, is the average number of
students within a school and equals to the product of n;y and nsyy. p(s;) Measures the

similarity of students within schools. Figure 2.1 visualizes the intraclass correlation structure of
the three-stage sampled data in the upper panel and the one with the omitted SSUs in the lower

panel. In the complete structure of a three-stage sampling, p(s1y and p(s,) capture the within-

3 The current study assumes no stratification in the sampling design for simplification purposes. However,
stratification is commonly used in educational sampling design. For example, schools, as PSUs, are firstly stratified
by census units. If the stratification is ignored, Type Il error occurs, but is less of a concern when studies prefer
conservative results. In Chen and Rust (2017), design effects formulas incorporate stratification with multiple stages.
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Figure 2.1 Data correlation structures of three-stage sampling designs when the secondary
sampling stage is included and omitted

classroom-within-school and between-classroom-within-school clustering dependency within a
school PSU as presented in a dashed box. As schools are the randomly sampled PSUs,
correlations across schools are zero. When the SSUs are omitted in modeling, as shadowed in the

lower panel figure, the within-school dependency is captured by p(4,, regardless of classrooms.

Between-school independency assumption still holds. Intuitively, since the overall clustering

dependency remains the same as DEFF5;, = DEFF;;, p(syy is a function of ps1y, p(s2), n(s1) and

n(sZ) .

The existing design effect literature has not been extended to define the mathematical
relationship between DEFF;; and DEFF;;, and the consequences on parameter estimates
precision are less known. This unknown relationship can be solved through the model-based
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HLM approach through quantifying the relationship of the variance-covariance or intraclass
correlation structure of the three-level HLM model and the one of the two-level model. Section

2.3 will detail the solution.

2.2.2 Incidental Middle Level between PSUs and SSUs (or USUs)

Educational datasets commonly provide additional survey data beyond the designed
sampling units. For example, NCES datasets, including Early Childhood Longitudinal Study
(ECLS), National Assessment of Educational Progress (NAEP), and Education Longitudinal
Study (ELS), collected classroom- and teacher surveys to facilitate research to understand the
within-school dynamics, even though the sampling designs did not present a known probability
sample from classrooms. Wang et al. (2019) defined this scenario as emerging incidental middle
cluster level in sampling. The cluster levels corresponding to sampling designs, such as the PSUs

of schools and SSUs of students, are called deliberate levels (McNeish & Wentzel, 2017).

When the sampling design is two-staged structure, such as in NAEP, a two-level model is
analytically sufficient to take into account the clustering dependency of students nesting within
schools and provides unbiased standard error estimates of the school-level predictors (Cheong et
al., 2001; Moerbeek, 2004; Wang et al., 2019). However, the two-level model does not explicitly
model the between-classroom variance and does not satisfy research interests that focus on
between-classroom variance. Further, the two-level model could completely disregard any
potential classroom-level effects or falsely disaggregate the classroom-level predictors at the
lower student level. This case may be comparable to the well-documented issue of omitting a
single level clustering dependency in a single-level model of OLS estimation. In the setting of
disaggregated classroom-level predictors, an artificial homogeneity is introduced at the student

level, which produces overestimated standard error estimates of the student-level predictors and
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underestimated the standard errors for the classroom-level disaggregated predictors (Korendijk,
Hox, et al., 2011). Wang et al. (2019) showed simulation evidence that the standard error
estimates of the student-level predictors are unbiased. Section 2.4.3 of the current study further
shows that the inconsistency evidence in Wang et al. (2019) is not valid, but due to their

parameter setting restrictions.

When the research interests include between-cluster variations at different levels,
conducting a three-level model is beneficial since it simultaneously incorporates the sampling
stages and the incidental middle cluster level mechanisms. Even in an extreme situation where
the between-classroom variations are nearly zero, the estimated variance of the student- and
school-level random effects from the three-level model would not be biased (Raykov et al.,
2016), though the sampling variance estimates would change slightly due to the changes of
degrees of freedom by the added cluster sample size and predictors of classrooms. Nevertheless,
Wang et al. (2019) and McNeish et al. (2017) summarized the pitfalls of conducting a three-level
model, which are mainly (1) increased complexity of modeling assumptions and the increased
risks of violating the assumptions, and (2) the sparseness of the cluster number of the incidental
middle level may lead to biased estimates of the variance components. With these concerns and
when the research interests only focus on the school-level predictors, a two-level model is

preferred®.

4 Many studies have provided several solutions to address the second concern of small cluster numbers. McNeish
and Stapleton (2014) provided a review of such methods, including restricted maximum likelihood with Kenward—
Roger adjustment (see Kenward & Roger, 1997, 2009) and, alternative to maximum likelihood based approaches,
Bayesian Markov Chain Monte Carlo (MCMC) (see Baldwin, & Fellingham ,2013; Hox, van de Schoot, &
Matthijsse, 2012). However, these discussions mainly focused on addressing the issue within a two-level cluster data
structure setting. More studies are needed to extend the discussion in a three-level clustering data structure and
examine the methods when the middle cluster level sample size is small. In the current discussion of whether to
include an incidental middle cluster level in modeling, the above-mentioned limitations could still affect empirical
researchers’ modeling decision-making.
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Wang et al.(2019) provided modeling guidelines depending on the parameter of interest
and listed a few empirical examples which employed the same ECLS data while made different
modeling decisions of the incidental cluster level (p. 575). For instance, Jennings and DiPrete
(2010) explicitly modeled the incidental teacher-level cluster since their research goal is to
examine teacher effects on students' social and behavioral skills. While in Adelson, McCoach,
and Gavin (2012), which studied school-level gifted programs' population average effect on
student's achievement, the incidental classroom level is not modeled. Their modeling approach is
legit since it corresponds to the sampling design that the classroom level is not a sampling stage,
and the classroom-level effect is not the focus of the study. Their study also avoided the pitfall of

overcorrection if model any unnecessary clustering.

Yet, practical guidelines of modeling choice with incidental middle cluster level have not
been widely explored except in Cheong et al. (2001) and Wang et al.(2019). This led to
conflicting modeling decisions in empirical research using the same data for similar research
questions. For example, Fitchett and Heafner (2017) examined the teacher's professional
characteristics and classroom instructions on students' history achievement using the NAEP data.
Therefore, even though teachers are not a deliberate sampling stage in NAEP, the authors
explicitly modeled the teacher cluster level. However, Heafner, VanFossen, and Fitchett (2019),
which employed NAEP as well, conducted a two-level model to examine student characteristics,
courses and instructional variables, as well as demographic variables' effects on students’
economics content knowledge. The incidental classroom level is suspected to be omitted, and a
key predictor of classroom instruction could be a classroom-level variable but falsely aggregated
at the student level. Though the school-level predictors' standard error estimates are not biased,

the standard error estimates of the key predictors of classroom-level instructions could be
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underestimated and the ones of the student-level characteristics could be overestimated. That

study will be soon introduced in Chapter 3 to demonstrate the sensitivity analysis.

2.3 Omitted Middle Level in Cluster Randomized Trial

Many CRT design a three-level structure with cluster levels of students, classrooms and
teachers, as well as schools, where the randomization happens at the schools and the outcomes
are at the student level (Spybrook, Kelcey, et al., 2016; Westine et al., 2013). Two sources of
clustering exist in CRT (Schochet, 2008; Abadie et al., 2017): one is the random assignment of
units to the control and treatment groups, and the other is the sampling of two-level of clusters
from a broader population as discussed in 2.1. In many cases, two-level models with students and
schools are conducted, where the clustering due to assignment is captured while clustering due to
sampling could be only partially captured. The omission of modeling the classroom level
clustering effect could be the result of the two scenarios from sampling design that are discussed

above.

Consistent with the previous review, the point estimates of the school-level intervention
effect and standard error, as well as the minimum detectable effect size, which are of the most
research interest in CRT, are nearly identical in three- and two-level models, regardless of the
size of the teacher-level variance, size of clusters, and number of student- and school-level
covariates, as evidenced in Murray et al. (1996) and Zhu et al. (2012). Equivalently, the
corresponding design effect for the treatment group of schools is the same as the above DEFF;,
where the overall clustering dependency within schools is captured (Hedges & Rhoads, 2011).
However, the potential classroom-level effects and cross-level moderation effects of the

intervention are ignored, which are pivot in CRT studies that aims to detect heterogeneous
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treatment effects and answer questions of how and under what conditions the intervention works

beyond what works (Spybrook et al., 2016; Spybrook, Zhang, et al., 2020).

Recently, scholars call for advancing the understanding of the implementation process of
interventions in school settings, such as how teachers deliver the treatment to students (Lendrum
& Humphrey, 2012). For example, teachers may be influenced by the local contexts and adapt
the intervention process, and students could be assigned to teachers based on certain attributes of
teachers, such as the experience of teaching or class schedule(Weiss, 2010; Weiss et al., 2016).
Also, it is not uncommon that teachers are often trained as groups for the intervention (such as in
Jayanthi et al., 2018) that groups of teachers may conduct the intervention similarly. These
situations result in students who have the same teacher or are exposed to a teacher group could
receive the treatment in a similar manner. Therefore, if the CRT design considers the role of
teachers, the correlation of treatment and clustering in CRT would be a composition of treatment

correlating within teachers (or teacher groups) and schools.

In the work of Abadie et al. (2017), potential treatment provider variation is mentioned
while considering the classroom and teacher level effects as fixed rather than intending to
generalize the effects to the superpopulation of classrooms and teachers. The current study, on
the contrary, considers the classrooms as SSUs in a three-stage sampling design or as an
incidental cluster level that is not in a sampling stage. The current work also explores the
influence on coefficients associated with students and teacher level predictors when the between-

teacher variance is omitted in a two-level model, which is not studied in Zhu et al. (2012).
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2.4 Quantification of Standard Error Bias

This section formulates the potential bias of the standard error estimates of predictors
when a middle cluster level is omitted. The process of quantifying the bias is, in essence, a
design-based approach, which compares the variance estimates from a satisfactory three-level
random intercept model and an estimated two-level random intercept model. The models are set
to cover the previously discussed scenarios of omitting the middle clusters due to sampling and

experimental designs. Meanwhile, the notation used throughout the whole study is explained.

2.4.1 Model Setting

Two-level random intercept model

Consider first a two-level random intercept model with a continuous dependent variable

Yix, which indicates the outcome of a student i in a school k. The model is:

Student-level: Yik = ,BOk + ﬁlkXik + ﬁZkWik + gik!

School-level: Box = Yoo + Yo1 Zk + Tok,

Bik = Y10

B2k = Y20,

Mixed model: Y = Yoo + V10Xik + V20Wik + Vo1 Zk + Tigx + &k

X; and Wy, are treated as student-level predictors. X, for instance, can be the prior
scores of students, which is a commonly used student-level covariate (e.g., Bloom et al., 2007).
However, W, is actually a classroom-level measure, such as an attribute of teacher, so that all

students in the same class have the same value of W;,. This setting is to satisfy the falsely
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disaggregated incidental cluster level predictor case. The random intercept S, is predicted by a
school-level predictor Zj, to capture the variability between schools. The setting of Z, being
either a continuous variable or a binary treatment predictor as in CRT does not affect the later
quantification process of the potential bias of variance estimates. The latter section soon
confirms this note. Additionally, the predictors are assumed to be orthogonal to the random
effects at any level for the exogeneity assumption because X;;, and W;;, are group-mean centered
(Antonakis et al., 2019). To keep the simplicity of the conceptual example, I only present each
level with the minimum number of predictors, albeit many other covariates can be added. As
long as the assumptions hold, the following algebraic expressions of the variance estimation and
the quantification procedure of bias remain the same.

Conventionally, the random effects are assumed to be normally distributed with means of
zero and constant variances conditioning on the predictors and have zero covariance, which
are&y ~N(0,6D), g ~N(0,6%), and cov (&, figx) = 0. Tildes over the parameters are used
to distinguish the current two-level model from the later three-level model. The total sample size
of students is My * n,, where M is the number of schools, and n, is the average number of
students within schools®.

For each school k, the error variance-covariance matrix of Y}, denoted as Py, is

composed of a residual variance matrix R and a random intercept variance matrix G:

Py =var(¥y) =R+ 1, Gl'y,,

®> The current study considers balanced design as a starting point, where the cluster size is assumed to be the same
(or almost identical) across cluster units. This setting provides closed forms of maximum likelihood estimates .
Thus, I can make comparisons of the estimates across two- and three-level models and the OLS models in later
chapters, when fixing the coefficient estimates of the HLM and OLS to be equal (Nezlek & Zyzniewski, 1998). Van
den Noortgate et al. (2005) has provided simulation evidence of omitting a cluster level in unbalanced settings. They
found similar patterns of the variance-covariance repartition as in balanced settings.
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where the dimension of ¥ is n, by n,, and L,,, is a column vector of n, ones.
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where 6% = 0@ + ¢ js the total error variance, and p = =— = corr(y;, v;7;.) is the

— =
proportion of variance at the school level® or the intraclass correlation coefficient indicating the
expected correlation of any two randomly drawn students in a school. The structure of ¥y is
consistent with the purple dashed boxes in the lower panel of Figure 2.1. With new notations of
ICCs, Figure 2.2 below modifies Figure 2.1 to show the correlation structure of ¥ (as shown in

the lower panel) and ¥ of the three-level model(as shown in the upper panel) in the following

discussion.
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Figure 2.2 Correlation structures of 1 of the three-level model and 1 of the two-level model
omitting the middle cluster level.

® The intraclass correlation coefficient can be conditioned on the predictors. For simpler notation, I do not put

additional subscript (such as 3;2]._ Or pqqj.) to indicate this essence.
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Three-level Random Intercept Model

If there emerges a necessary classroom-level middle cluster, a three-level model for

students i within classroom j within school k should be conducted as:
Student-level: Y, = moj + 71 Xijic + €ijis
Classroom-level: o jx = Book + Bo1kWjk + Yok
T1jk = Biok

School-level: Boox = Y000 + Yoo1 Zk + Uook:
Boik = Yo1o
Biok = Y100

Mixed model: Y;jx = Y000 + Y100Xijk + Yo10Wjk + Yoo1 Zk + Uook + Yojk T Eijk-

Compared with the above two-level model, the three-level model has an additional

classroom-level random effect y, ;, which indicates variability across teachers within schools.
The predictor Wy, is now correctly specified at the middle cluster level to explain the outcome
mean differences across teachers within schools. The random effects are assumed to be normally
distributed with means of zero and constant variances, which are &;;;,~N(0,5®),

10k ~N(0,09), and uger~N (0, ). Also, the random effects have zero covariance with each

other.

The sample size of schools My and the total sample size of students (i.e., Mg * ng)

remain the same, regardless of adding or omitting the middle classroom cluster level. In the
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three-level model, n; is the cluster size of the lower nesting level (i.e., the average class size or
the number of students taught by each teacher), and ny is the cluster size of the higher nesting
level (i.e., the average number of teachers within each school). Also, n, is the average school

size or the average number of students within a school.

The following ¥ is the error variance-covariance matrix of a school k, which has a
consistent structure as shown in the purple dashed boxes of the upper panel in Figures 2.1 and
2.2. As shown, ¥ and P, have the same dimensionality of n, by n,, while, since the single
nesting structure in the two-level model is now extended to two levels of nesting, the dimension

of Y in the three-level model becomes (n; * ny) * (n, * ny) as ny = n;, * ny. And,

w; P2 - P2

P T
V=0 P2 P2 w; p2f
p2 P2 W

Its diagonal element w; is n;, * n,in dimension and is the highlighted area within each purple

dashed box in the upper panel of Figure 2.2.

1 po - P 1 P2t po - P2t Po
w = |P1 1 - pi|_|P2+Po 1 Pzt po
]~ 1: : i : : : :
p1 p1 1 P2t po P2tpo - 1

The off-diagonal element p; in w; is the intraclass correlation coefficient of any two

. PO JG) B S )
students from the same classroom j in a school k, and p; = =—+—=p, + Po.

o2 o2 o2

Intuitively, p; combines the similarity of students exposed by being in the same school k and the
similarity of students exposed by being in the same classroom j. Specifically, within the school k

between classrooms, students’ similarities are measured by p,. And the average correlation of
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any two students from the same classroom is p,. Other ways of defining the intraclass correlation

coefficient exists; and Appendix 2.A compares these approaches and presents the derivation of

P1-

P2 in Py shows the proportion of between-classroom-within-school variation, which is
the unhighlighted parts within any purple dashed boxes in the upper panel of Figure 2.2. p, has a

dimension of (ny —n;) * (ng —n,) =n,(ny — 1) *n,(ny — 1), and

P2 P2 P2
_|P2 P2 P2
Pz=1: ¢ |

P2 P2 P2

As shown, the expected correlation among students coming from the same classroom (i.e., p;) is
larger than the expected correlation among students coming from the same school but different
classrooms (i.e., p,); and this difference is measured by p,. In the estimated two-level models,
this similarity difference among different cluster levels is ignored. Finally, since the schools as
PSUs are the highest cluster level and are independent to each other, the correlations among
students from different schools are set to be 0, as shown in the cells outside of all dashed purple

boxes in Figure 2.2.

With some algebraic operations, ¥ can be written as:

Yy = UZ{IK X [(1 —p)I; + (py — pIL T ] + P2 lnol,no}' (2.2)

where I is an ny by ny diagonal matrix, and I; is an n;, by n; diagonal matrix. Additionally, [,

and L, are vector columns of n;, and n, ones, respectively.
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Evidenced in Moerbeek (2004), Tranmer and Steel (2001), and Konstantopoulos
(2007), the random effects’ variances of the three-level model can be approximately
repartitioned by the ones of the two-level models. Specifically, the omitted teacher-level

variance in the two-level model is partially distributed to the flanking student and school

levels as:
50 = ¢® 4 (1= oW, (23)
0 = g 4 g, (2.4)
and
n,—1 n,—1
n= = (2.5)

nL*nH_l no—l.

Thus, the ratio of classroom size to the school size (i.e., ) decides the extent of

repartition of the omitted classroom-level variance into the student- and school-level variance.

n= Zri is restricted to [0, 1] since n; < n, and ny is an integer that is larger than or equal to 1.
o

Whenn = 0,n;, = 1 and ny = n, # n;, each classroom SSU has only one sampled student,
then the between-classroom variance o’ is dominated by the estimated student-level variance
&® in the two-level model. When = 1, n;, = n, and ny = 1, all sampled students come from
the only classroom SSU in a school PSU, then the between-classroom-within-school ¢ is

actually 0O that the estimated two-level model is appropriate.

Figure 2.3 below shows the range of n in an example setting of class size n; € [1,50]
and the school size n, € [100,500]. This restriction is due to %) = ¢®®) 4+ ng, where ¢’ >
0,0 > 0,and n > 0. In practice, defining the value of 1 needs to consider this restriction in

setting empirical meaningful random effects variance. For example, the value of n decides the
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maximum value of ¢) that a researcher can set to satisfy the conditions of ¢® € [0,5*] and

o > 0, when fixing n,, n;, and % (or p). This discussion will be further shown in the

empirical study example of implementing the sensitivity analysis in Chapter 3.

1)

1WND -

(NL-

Figure 2.3 Relationship among n, ny, and n;,

The original p in the two-level model now turns into a function of the two intraclass

: . e 50 G0 ne)
correlation coefficients of the three-level model, which is p = — = ——— = p, + np,.

o2 o2
Further, p, = p —npy, and p; = p, + pg = p + (1 —n)py’. Thus, if the classroom-level cluster
is omitted, the estimated within-classroom student correlation is upwardly biased by p; — p =
(1 —n)p,, and the between-classroom-within-school student correlation is downwardly biased

by p2 — p = —1po.

" The current paper assumes that homogeneity assumption still holds when the teacher cluster level is included in the
three-level model. Particularly, when the cluster sizes are equal (or at least has relatively small variances across
clusters), the repartitioned variances, though their values depend on the size of 5, remain constant across groups.
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Throughout the whole study, I use the term satisfactory model to refer to the three-level
model stated above as it satisfies the specifications of three clustering levels and corresponding
random effects. | then name the two-level model omitting a necessary cluster level as the
estimated model. Table 2B.1 in Appendix 2B summarizes and compares the model specification,
assumption, and estimation considerations and settings of the two-level estimated model omitting
the middle cluster level and the three-level satisfactory model. As shown, the only distinctions
between the two-level and three-level models occur at the random effect specifications of cluster
levels and the allocation of the omitted cluster level's predictor. These distinctions due to
omitting cluster levels are the research focus of the current study. Other model assumptions and
specifications are conventional settings. Discussions of how to deal with violations of those
conventional assumptions in practice are out of the current study's scope. Some technigues to
correct for violations of those conventional assumptions (such as small cluster size) are noted in
footnotes. In the later section of Discussion, some assumptions (such as balanced design and no
random slope) that are closely related to the random effect specifications are considered as

limitations and directs for future studies.

2.4.2 Quantifying the Standard Error Estimate Bias

Bias of the Standard Error Estimates of the Coefficients of Z ;) and Z;;y,

In the two-level model, the estimated variance of the coefficient of Z ;) is:

-1 -1

Mg Mg
Vary,(yo:) = Z(Z(j)k’ipKZ(j)k) = 0%z, Z(Z(j)k,Z(j)k) :
k=1 k=1
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where Tz =1+ (n, — 1p. Inthe CRT setting, Var,; (y,,) is the variance of the intervention
effect or, in other words, the variance of the group mean difference in outcome such that
Vary, (yo1) = Var(Yi1 — Yir o). The standard error estimate is the square root of the diagonal of

the variance matrix Var,; (yo1). The subscript 2L indicates the two-level model. In a single-level

analysis with OLS estimation, the variance estimate is Vary,s(vz) = 0*(Zao' Zao) ™"

Compared with Var,; (v01), Varg.s(yz) is smaller and thus leads to Type | error. The

ratio of Var(yy,) and Vary s(yz) is T2 which is known as the design effect of a two-stage

sampling design in survey studies. It quantifies the variance inflation or the over-estimated
precision of the effect of Z ), as if the sampling scheme is a simple random sample. Or in
economics, fZ(j)k is the MF that is robust to clustering but assumes homoskedasticity. The

detailed derivation procedure of fZ(j)k can be found in Angrist and Pischke (2008) and Cameron

and Miller (2015).

Similarly, when Z, is modeled in the three-level model, the variance estimate yields to:

-1 -1

Mg Mg
Vars; (Yoo1) = Z(ZK’VJK Zg) = UZTZk Z(Zk'Zk) )
k=1 k=1

where 7;, =1+ (n, — Dp; + ny(nyg — Dp,. Again, in CRT, Vars, (Yoo1) = Var(Yijr1 —
Y; jk0)- The index 7z, is derived from the error variance-covariance matrix ¥ of the three-level

model (i.e., Eq. 2.2), which is identical to the three-stage sampling design effect formulas shown
in Chen and Rust (2017), and an earlier three-level clinical CRT design work in Heo and Leon

(2008). Algebraically, the derivation of the weighting indices of 7, and fZ(j)k is straightforward
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that 75, and fZ(j)k are equal to the summation of all the intraclass correlation coefficients in the
brackets of ¥ and 1, respectively. This procedure implies that Tz, = fZ(j)k since all between-

cluster variance is captured. However, one must still determine in which cluster levels of the
between-cluster variance exists. In essence, 7, takes into account the inflation due to the
dependency of two levels of nesting (i.e., students nested within teachers, and teachers nested
within schools), compared with T2 which quantifies the variance inflation due to the

dependency of a single level nesting (i.e., students nested within schools). The following

provides additional algebraic proofs.

The index quantifies the bias of the variance estimate of Z,.’s coefficient due to the

omitted middle cluster level is the ratio of Var;; (yo01) and Var,; (¥o1):

_ Vars, (Yoo1) Tz
Vary,(yo1) fZ(j)k .

vocS Y

VVOC stands for the Variance bias due to the Omitted Cluster level. The superscript (3-2,
2L) indicates that the predictor of interest is at level-3 but modeled as level-2 in a two-level
cluster structure. The subscript M stands for the omitting of the middle cluster level case. The
construction of V0CS~>*" follows the same logic of DEFF and MF, which is comparing the

variance estimates with and without the omitted cluster level.

In practice, researchers can compute the variance inflation magnitude by filling the
possible values of class size n; , and the average correlation of students from the same class p;.
Therefore, | re-express all the variance inflation factors by the known p from the estimated two-

level model and the assumed omitted level clustering parameters of p, and n;. Further, since
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Tz, =1+, — Dp1 + ny(ng — Dp;
=1+, —Dlp+ A —=npel + ny(ny — 1)(p —npo)
=1 + (no - 1)p = fZ(j)kF

then,

TZk

vocE 2 = 2k - q, (2.6)

Tx

vocB 2% = 1 suggests that the estimated variance of the fixed effect of school-level
predictor Z, does not need any bias correction when the teacher-level cluster is omitted. Since
the omitted teacher-level variance is redistributed to the school- and student- level, ¥ from the

two-level model still takes into account the between-teacher variance.

Equivalently showing in the CRT settings, assuming half schools are randomly assigned
to the treatment and control groups (i.e., the sample size of the treatment and control groups is
My /2) , the standard error estimates of y,,, and y,, equations in the three- and two-level CRT

balanced design (Konstantopoulos, 2008a; Spybrook et al., 2016 ) are respectively defined as:

4
Mgngny,

SE(Yijia — Vijko) = Jnyn,o® +n00) + 6O,

and
= = 4 ~ ~(i
SE(Yika — Yiko) = /m\/ noG® + 0.

Plugin Eqs. 2.3 — 2.5 of the algebraic relationships between ¢® and 6, and ¢®

between @, the standard error estimates of y,,; and y,; are equal as shown below:
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_ _ , 4 _ —— .
SE(Yijiar — Vijio) = m\/anL(a-(k) —10W) +n,00 + (6O - (1 -n)aW)
K'*H''L

= [ e ® 150 = SETy s — Ticy).
Mgng ' ’

Therefore, if the predictor of interest is at the highest school level, either a binary
treatment or a continuous variable, the corresponding fix effect’s standard error estimate is
unbiased even if the teacher-level variance is omitted, assuming there are no even higher cluster
levels than schools. This finding is consistent with Wang, et al. (2019), Zhu et al. (2012), and

Cheong et al. (2001).

Extending to an extreme case where the clustering structure is completely ignored as in a

single-level analysis with OLS estimation, the variance estimates of Z;;x)’s coefficient needs an

adjustment of:
Vocy O =1, =14 (n, — Dpy + ny(ny — 1p,

=Tz, =1+ (n, — Dp. (2.7)

Constructed by dividing Vars, (yo1) by Vares(vz) = 0%(Zao Zay) ™, VIES 0
reflects the two-layer nesting structure of . The magnitude of adjustment depends on the

clustering parameters of intraclass correlation coefficients and cluster sizes. Further, VIF,S‘D is

also equivalent to fz(,-)k’ which captures the total between-cluster variance, while blurring the

levels of clustering structure.
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Bias of the Standard Error Estimates of the Coefficients of W;(;), and Wy,

The following discussion switches to the teacher-level predictor Wj, which is falsely
aggregated at the lowest level of students as W;(;y,, omitting the teacher-level variance o@ inan
estimated two-level model. The inflation of the variance estimate of W}, ’s coefficient yo, IS
quantified similarly as above, though the focus shifts from the two-layer clustering to the single-
layer omitted clustering of students nested within teachers. In this simplification, the true error
variance-covariance structure only needs to consider w; from ¥ of the three-level model

instead of the whole structure of ¥ This true variance estimate of W, ’s coefficient y 1o,

denoted as Vars, (yo10), produces a variance weighting index Twy, =1+ (n, — Dp;.

Further, dividing Vars;, (Yo10) by the variance estimate Var,,s(yy) = oI of the single-
level analysis with OLS estimation which falsely assuming students are independent within

classrooms and schools, the variance inflation measure yields to

_ Vars; (Yo10) _

(2-1,2L)
voc = =
M Vargrs(yw)

Tw, =1+ (n,—Dpr =1+ M, —1) =(p, +po), (2.81)

which contains the between-school variance (o®)) and between-classroom variance (¢) in a

correctly specified three-level model. Further, VOCA(f_l'ZL) can be rewritten as a function of the
known p from the estimated two-level model and the unknown n; and p, that researchers can

specify as

vocE 1 = 1 4 (n, — 1) * [p + (1 — M)pol. (2.8.2)
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Intuitively, the bracket quantifies the omitted clustering dependency, which consists of

Al

(1) the overestimated school-level variance, as presented by p = — from the estimated two-

) §) _
level model, and (2) the uncaptured classroom-level variance p, = ‘;—2 Noticeably, these two

components are weighted by n;, and relevantly, n. When n; = 1 that each sampled classroom
within a school has only one sampled student, no adjustment is needed for the coefficients’
standard error estimates since the classroom-level predictor actually measures the singleton
sampled student, which thus can be disaggregated at the student level. When p, = 0, the school-
level variance estimate %) is not overestimated and equals to ¢®). In this case, the estimated
two-level model is satisfactory since the classroom cluster level does not need to be specifically
modeled to produce the unbiased random effects estimates of students and schools. However, if
the classroom-level predictor W, is still of research interest and is modeled as a disaggregated at
the student-level W;;, then the standard error estimates of its’ coefficient still need to be
adjusted by the square root of 1 + (n, — 1)p, as the clustering of higher school level still exists.
Further, if p = 0, the cluster-level predictors W;(jy, and Z; ., (as shown in Eq. 2.7) do not need
any clustering adjustments anymore. On this occasion, a single-level analysis using OLS

estimation is sufficient as the data has a simple random sampling design.

When the estimated model is single-level OLS estimation, the variance inflation issue of

the disaggregated classroom-level predictor Wy, is equivalent to the well-documented simple
two-level clustering modeling situation where the teacher-level predictor W; is modeled as W;;y.

Consequently, the variance adjustment is constructed by the variance of the satisfactory two-

level analysis which accounts for the clustering of students nested within classrooms, dividing
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the variance of the single-level analysis. The variance estimates of the satisfactory two-level

model is

-1 -1

] J
V\arZL(VOI) = Z(W]"I’]Wj) = UZ'EW]- Z(W], VV]) )
j=1 j=1

and y; is the error variance-covariance structure

1 po Po
Py = o2 |Po 1 Po
Po  Po 1

Similarly, the variance weighting index ij =1+ (n, — 1)p,. Finally, the variance

inflation adjustment index VOC,(V,Z_LOLS) for W;(; in the single-level analysis using OLS

estimation is the same as the two-stage DEFF (or MF). That is

Var,,(Yo1) oy

(2-1,0LS)
voc = = =14+ —1)po. 2.9
M Vargrs w) Tw; (n, )Po (2.9)

Obviously, fixing the teacher-level variance, VOCZ™**" and VOCZ " increase as
the average class size n; increases. Therefore, the variance adjustment is more in need of models
that are conducted for large class size contexts than the ones with small class size. Meanwhile,
the number of classrooms in a sampled school (i.e., ny) constraints in the practice setting of the
potential value of n; and p,. This point is relevant in Chapter 3, in which an empirical example

of omitting the middle cluster level is used to demonstrate the sensitivity analysis framework.
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Furthermore, VOC 2% is smaller than VOC~°*5) by (ny — 1)p,, which is intuitive as
two sources of clustering dependency affect the estimation of the standard error estimate of the
Zi(jk coefficient estimate, while a single middle-level clustering affect the one of Wy In

other words, in the single-level analysis using OLS estimation, a Type | error issue could be

more pronounced for the highest-level predictor than the middle level one.

Bias of the Standard Error Estimates of the Coefficients of X;j), and X;jx,

Finally, although the student-level predictor X; ;. is not the focus of the current study; its
standard error estimate is upwardly biased when the clustering structure is omitted®. As
evidenced in Moerbeek (2004)and Snijders (2005), the regression coefficient of an individual-
level predictor X;; in a two-level random intercept-only model tends to be upwardly biased when
the adjacent upper cluster level is omitted in either the two- or single-level models. Type Il error
is also undesired since important individual-level predictor effects could be masked as

insignificant. In a satisfactory random intercept two-level HLM model, the design effect formula

of the standard error estimate of X;;’s coefficient is DEFFZX” =1 — py, which is less than 1

when p, > 0, indicating that the multi-stage sampling design is more efficient than the simple
random sampling in this setting (Snijders, 2005). It is easy to extend to a three-level case for the

variance estimate adjustment of the coefficient of X;;,, from the OLS estimation case, which is:

VOCA(/Il—l,OLS) =1—p, =1—py — p,. (2.10)

8 When X, is the predictor of interest while the cluster-level predictors and the random effects are not the foci,
researchers could employ the fixed effect framework to account for the overall clustering dependency. However,
when the cluster-level predictors are of the research interest, the fixed effect approach is less optimal. In the current
setting of when the omitted cluster level data is not available, the shown design-based approach with the sensitivity
analysis framework (in Chapter 3) could be preferred.
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For the estimated two-level model case,

1—pn —
VOCIE;_I'ZL) _ Po— P2 _ 1— Po ' 2.11)

1-p 1-p

which is the ratio of the design effects of the satisfactory three-level model and the false two-
level model. In Chapter 4, the main predictor of interest W, encounters the same issue, in
which a detailed derivation procedure is provided. Lastly, Table 2.3 below summarizes the
VOCs of cluster-level predictors when omitting the teacher-level cluster only and omitting the

clustering structure completely.

Table 2.2 A summary of VOCs when the middle cluster level is omitted in a three-level
structured clustering data.

Three-level HLM Two-level HLM Single-level OLS Estimation
) . Variance . Variance
Level Predictor | Level Predictor adjustment Level Predictor adjustment
(1-1,2L) (1-1,0LS)
Student Xiik Xitiyk vocy Xijk Vocy
j 6)) <1 Uk) <1
ot Y Student w VOCISIz—LZL) Student W VOC]EIZ_LOLS)
eacher ; i tuden i
Jk i(Hk >1 i(jk) >1
(3-2,2L) (3-1,0LS)
School Zk School Z(j)k Koch Zl(jk) Zach

Note. The letters in the parentheses of predictors’ subscripts indicate the corresponding cluster
levels that are omitted.

2.4.3 Simulation Results

A simulation study is designed to test the estimation bias when the middle cluster is
omitted and the performance of the derived VOC formulas. In total, 12 conditions of random
effect standardized variances and cluster sizes are set, and 500 replications are generated for each
condition. The total sample size of students (M;) and schools (M) are 5000 and 100,

respectively, which fixes an average school size (i.e., the average number of sampled students
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within a school) n, of 50. The setting of the average class size (i.e., the average number of
sampled students within a class) n; is set to be 5, 10, and 25. The corresponding average
numbers of sampled classrooms or teachers in a school n; 10, 5, and 2, and the ratio measure of

the class and school sizes n are 0.08, 0.18, and 0.49.

Hedges and Hedberg (2007) provided a comprehensive list of ICCs for planning CRT
based on the commonly used multi-stage sampled educational data sets, such as ECLSK and
National Educational Longitudinal Study (NELS). They found that the ICCs are around 0.2
across all grades of all sample schools. Therefore, with setting oZ,,,, = 1, the values of random
effects variance in the current study cover the conventional situations when the school-level
random effects are relatively small (i.e., ¥ = p, = 0.2) and large (i.e., % = p, = 0.7). Then,
the teacher-level random effects of ¢/ (= p,) are 0.2, 0.5, and 0.7 to meet the conditions of
equaling to, larger than, and smaller than the school-level random effects. Finally, the simulation
study employed R package Ime4 (Bates et al., 2015), where Restricted Maximum Likelihood
(REML) is specified for estimating the variance component to accommodate the cases with small

cluster samples.

The index of relative bias is computed to measure the magnitude of the estimation bias

]
RBes=—p—=2-1

where 6 represents the true parameters from the three-level model, including the random effects

variances, standard errors of the teacher-level predictor W, , and the school-level predictor Z.

Correspondingly, 8 represents the estimates from the estimated two-level model or the

disaggregated OLS estimation. Falsely estimated models lead R. B..; to deviate from zero.
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Furthermore, a negative R. B.; represents underestimation and a positive R. B.,s;
represents overestimation. Similarly, a relative bias index of R. B.44; ¢ is provided to show the
need and performance of adjustments of estimates, in which 8 becomes the ones that are adjusted
by VOCs or the repartitioned variance-covariance formulas. The better performance of the
adjustment of estimates, the closer to zero R. B.,4; ¢ 1. The simulation outputs are summarized
in the following, and Appendix 2.C lists the parameter settings and provides detailed simulation

results.

Bias of the Random Effects and the Adjustment Performance

The estimated two-level models overestimated the individual-level residual variance and
school-level random effects variance, where the mean R. B..,, are all positive and increasing with
the increased ¢/ or p,. With increasing n, and n, the magnitude of the overestimation
of ) increases while decreasing in . When the omitted between-classroom-within-school
and the between-school variation only take 20% of the total variance respectively (i.e., ¢/ =
o* = 0.2) and the individual residual takes the most of the total variance, the overestimation of
&) is small, particularly when the average classroom size is relatively small (i.e., n, = 5 or 10)
and the mean R. B.,; of % is less than 0.01. Under the same conditions, however, the
overestimation of the residual variance & is large, with ® capables of being around three
times as large as the true parameter. In an extreme converse case where the omitted between-
classroom-within-school variation is considerably large (i.e., 0/ = p, = 0.7) and the individual
variance and the between-school variation are small (i.e., o = 0.1 and o = 0.2), % can be as
twice as large as the true parameter o*. The overestimation of G is extreme that & can be

over seven times larger than the true parameter o".
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These patterns are consistent with the Eqgs. 2.3-2.5 that 5 has a higher degree of
overestimation compared with ¥ under the same conditions of ¢/ and n,. Moreover, the
adjusted variances performed considerably well, as the mean R. B.,4; .5 are close to 0 across all

conditions.

Bias of the Standard Error Estimates of the Coefficients of Z;), and Z;j;, and the

Adjustment Performance

The absolute mean R. B.; of the standard error estimates of Zj), in the two-level
models are all highly close to 0 (less than 0.01), which supports the previous derivation of
VIFAff"Z):l.In the single-level model using OLS estimation, the standard error estimates of Z;

are consistently underestimated since the mean of R. B.,; are all negative, and the standard
deviations of R. B.,,; are nearly zero. The standard error estimates are only around 20 to 30
percent of the true parameter, which is relatively stable across all the conditions. This is because
OLS estimation ignored the overall error clustering dependency so that distinguishing the

sources of clustering matters less.

Bias of the Standard Error Estimates of the Coefficients of W), and W, and the

Adjustment Performance

As shown by the negative value of the mean R. B..;; and the nearly zero standard deviation of

R.B..s:, the standard error estimates of the W;;, coefficient in the estimated two-level models
and the W,y coefficient in the OLS estimated single-level models is downwardly biased in all

conditions.
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In the two-level models, the standard error estimates are mostly underestimated when the
omitted ¢/ and n; are large, and when ¢ is small. When ¢’/ = 0.7 and ¢* = 0.2, the standard
error estimates can be a half and even only 20 percent of the parameter. When ¢’/ = 0.2 and
a® = 0.2, the standard error estimates can still be only 40 to 70 percent of the parameter, which
is non-trivial. Further, in the extreme case of when the individual residual variance is
considerably small (e.g., ¢* = 0.1), the underestimation of standard error estimates is
comparable in cases of either the majority clustering dependency coming from the school-level

(i.e., when ¢/ = 0.2 and o* = 0.7) or from the classroom-level (i.e., when ¢/ = 0.7and o* =
0.2). This is intuitive from VIE 2 = 1 4 (n, — 1)p,. These patterns are also found in the

single-level models where the underestimation is positively related to the size of ¢/ and n;.

The performance of VIFI&Z"D is generally good in almost all cases since R. B.4q; ¢s¢ Nas
absolute mean and standard deviation values less than or around 0.1. However, one exception in
the two-level models is when n;, = 25, ¢/ = 0.7 and ¢* = 0.2 and the underestimation
adjustment is not enough. The adjusted standard error estimate is around 75 percent of the true
parameter, though having improved largely as compared with the unadjusted one of being 20
percent of the true parameter. In single-level models when n;, = 5, ¢/ = 0.2 and o = 0.7, the
standard error estimates are over-corrected that the adjusted estimates are, on average, 20%
larger than the parameter. In this case, the underestimation bias from the single-level model is

close to zero (i.e., -0.05) that no adjustment is required in the first place.
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Bias of the Standard Error Estimates of the Coefficients of X;), and X;jx, and the

Adjustment Performance

Finally, the simulation found evidence of the overestimation bias of the standard error

estimates of the coefficients of X;(;), and X;x). This finding is consistent with Moerbeek

(2004). Particularly in cases where ¢/ and o* are large, the bias is substantial. When ¢/ and o*
are small as in 6/ = 0.2 and ¢* = 0.2, the R. B.,.; Of the two-level HLM are less than 0.1. This
resonates in Wang et al. (2019)’s simulation setting with small ¢/, o*, and corresponding

evidence that shows that the standard error estimates of X;(;y is unbiased.

2.5 Discussion and Conclusion

Extending an emerging body of research debating whether a middle cluster level matters
in making the decision of using a two- or three-level model, this chapter summarizes and
clarifies when a two-level model omitting the middle cluster level would impact the standard
error estimate of a certain level predictors’ regression coefficient in the settings of multi-stage
sampling and CRT design. In previous studies, the relevant evidence is often shown through
simulation and empirical analyses as examples. The current study complements those evidence
by producing critical formulations of quantifying the standard error estimation bias (i.e., the
correction index of VOCs), which are functions of the clustering parameters of the omitted
middle cluster level. Simulation evidence is provided with settings of the practical K-12

education to aid for empirical implications.

Also, the findings shown by the VOCs formulas provide a general conclusion of the

statistical mechanisms causing the bias and to what degree. The VOCs are specifically listed in
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the above Table 2.2. For recommendations of modeling three- and two-level models, if the
middle cluster level is a deliberate stage in sampling, even if this level is not directly related to
the research questions, this cluster level should be explicitly modeled to correctly reflect the
complete picture of the study designs of sampling stages and the levels of experimental
mechanisms. An estimated two-level model omitting the middle cluster level should be corrected
with the variance estimates of the random effects, whereas it would not produce biased standard

error estimates of the coefficients of the third level predictors.

If the middle cluster level is incidental instead of being a deliberate sampling stage or
receive treatment assignment, whether to model this level as random effects largely depend on
whether the research interests relate to the predictors at this middle level. Many times, the middle
cluster level conveys important mechanisms that researchers would prefer to include this middle
level and corresponding predictors in the three-level models. Particularly, a two-level model in
this situation would easily falsely disaggregate the middle-level predictors at the lowest level. In
this case, the standard error estimates of the disaggregated middle-level predictors’ coefficients

need to be corrected to avoid Type | error.

This study also extends omitting the single middle cluster level to completely omitting
the clustering of both the middle and highest levels. This extension contributes to the
conventional design-based robust standard error studies, which do not distinguish the sources of
dependencies in multilevel data structures while capturing the overall dependency. This point is
best supported by the VOC derivation of the highest cluster level predictor. Additional to the
omitted one cluster level scenario, this chapter also extends to the omitting the overall clustering

dependency case
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as the estimated model is a single-level model. Then, the cluster-level predictors estimates would
have Type | error issues and the individual level predictor would have a Type Il error. Moreover,
the Type I error issue is more pronounced in the highest-level predictor than the middle-level

one.

The above finding is empirical guidelines for researchers to decide whether the middle
cluster level should be modeled. Further, combining with the sensitivity analysis framework and
empirical examples presented in the following Chapter 3, researchers would further benefit from
testing the magnitude of the robustness inference if a potential middle cluster level is not
modeled. The current model-based design sets the basic random intercept model as the
satisfactory model. If the random-slope model is the satisfactory model, the error variance-
covariance matrix of Y}, and the standard error estimate expressions should be accommodated
(see Snijders and Bosker, 1993). However, the random intercept model is a widely used model in
education empirical research and an ideal starting point for more complex models in future
research. Another limitation of this study is that the modeling setting assumes balanced designs,
which is not always plausible in practice. Future work needs to develop VOCs, particularly in the
CRT designs (Konstantopoulos, 2010), to accommodate unbalanced situations, such as when

including the ratio of cluster sizes.

49



CHAPTER 3

SENSITIVITY ANALYSIS FRAMEWORK OF OMITTED CLUSTERING

3.1 Introduction

Good scientific research is expected to present the best design and models that can
answer the research questions and satisfy the model assumptions. However, as argued earlier, the
issue of omitting a cluster level in two-level HLM cannot be solved by a model-based approach
(i.e., three-level HLM) in many practical situations, such as data restrictions and unidentifiable
error variance-covariance structures. Given these concerns about omitted clustering, Chapter 2
(and later Chapters 4 and 5) provided formulas to quantify the standard error estimation bias of
the coefficients, which are functions of the clustering parameters (i.e., ICCs and cluster sample
size) of the omitted cluster levels. Further, the current chapter builds a sensitivity analysis using
the VOC:s to test the magnitude of the inference robustness when the model-based approach is
not feasible. In practice, if empirical researchers aim to know how robust the inference they
made from the estimated model with a potentially omitted cluster level, they may hypothesize
the clustering parameters of the omitted cluster and utilize the this sensitivity analysis

framework. .

In essence, the proposed sensitivity analysis evaluates the deviations of the estimated
models from the ideal case of when all crucial random effects are correctly modeled and
specified. Simply stated, the larger deviations from the assumption there are, the higher bias of
the standard error estimates due to the omitted clustering, and the less robustness of the statistical
inference. Panel (a) of Figure 3.1 demonstrates this idea. As defined earlier in Chapter 2, the

satisfactory model is the ideal model that meets all the clustering assumptions, which is unknown
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in practice and thus outlined with dashed lines in the figure on the right end. The estimated
model is the actual conducted model and hypothesized with an omitted necessary cluster level,
which could produce biased estimates. The more the estimated model deviates from the
satisfactory model due to the omitted clustering, the less robust it is. The size of the deviation is
then quantified by the hypothesized clustering effect via setting parameters of ICCs and cluster
sizes of the omitted cluster level. Consequently, even if the satisfactory model is unknown, it can
be hypothesized to test how far the estimated model deviates. In Figure 3.1, Model A and Model
B are such two hypothesized satisfactory models. Specifically, the estimated model deviates

from Model B farther than Model A, since Model B sets with larger clustering parameters.

The size of the deviation from the estimated model to a hypothesized satisfactory model
can be represented in terms of the size of the bias of standard error estimates. Thus, if the
deviation is considerable, the bias of the standard error estimates can be large enough to generate
a false inference with either a Type | or Type Il error. Therefore, a threshold satisfactory model
defining the minimal deviation size to invalidate an inference is added in panel (b) of Figure 3.1.
This idea is built on the “switch point” framework of Frank, Maroulis, et al. (2013), which

defines a lower threshold of a non-zero effect study switches to a no effect one.

The clustering setting of the threshold satisfactory model is then the threshold clustering
of the omitted cluster, which can help researchers quantify the robustness of their inferences to
omitted clusters. For example, if researchers think Model A fundamentally represents the omitted
clustering, then the estimated model does not produce a false null hypothesis decision since the
threshold model is on the right of Model A. In this case, the estimated model would be
acceptable, although its interpretations and implications should not be overstated. On the

contrary, if Model B’s clustering setting is also reasonable, the magnitude of the standard error
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estimate bias of the estimated model is large enough that the estimated model generates a false

decision of null hypotheses.

In Frank, Maroulis, et al. (2013), the robustness of inference is defined as “the
evaluation of the estimate against the threshold (p. 439)”. This definition constructs the amount
of bias in an estimate to invalidate the inference. The threshold estimate is often specified as the
one for statistical significance associated with an exact p-value of 0.05. Switch to the current
study, the magnitude of the robustness of inference is evaluated by the deviation of the estimated
model from the hypothesized satisfactory models. The larger the deviation, the less robust the
inference regarding modeling specification on clustering dependency. Unlike a fixed threshold
estimate in Frank, Maroulis, et al. (2013), the position of the hypothesized satisfactory model
defined in the current study is flexible as shown in Figure 3.1, which changes along with the
sizes of the omitted clustering degree (i.e., VOCSs). The current study constructs a sensitivity
measure accordingly: the percentage of reduced robustness of inference. This measure quantifies
the magnitude of threats to the robustness of inference due to an omitted cluster level. The initial
robustness of the estimated model should be considered 100% when the estimated model and the
hypothesized satisfactory model has no distance (i.e., no omitted clustering issue). If the
estimated model has an omitted clustering issue that a deviation between the estimated and the
hypothesized satisfactory model exists, its initial robustness magnitude should be smaller than

100%. Thus, as the deviation increases, the robustness decreases.

Extend the sensitivity analysis application to treatment evaluation studies, the percentage
of reduced effect size as a second sensitivity measure is developed. Further, when the
hypothesized satisfactory model is on the right of the threshold model (such as the standard error

associated with an exact p-value 0.05), a measure evaluates the risk of making a false null
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hypothesis decision is provided. For example, in the panel (b) of Figure 3.1, a red line presents
the distance between the threshold satisfactory model and Model B. As the distance increases,
the risk of making a Type I error (or a Type Il error) increases. Further, the risk of having an
invalid inference can be compared across hypothesized satisfactory models. The following
discussion focuses on the scenarios of making Type | error, while Appendix 3.1 further provides

the Type Il error discussions.

Section 3.2 starts with the simple scenario of conducting a false single-level analysis
which omits a higher cluster level and leads to underestimated standard error estimates. The
developed measures and formulas are easily applied to the false two-level HLM with omitting a
cluster level cases, and can also accommaodate to the Type Il error cases when the standard error
estimates are upwardly biased (such as in the omitting highest cluster level case in Chapter 4).
Section 3.3 provides an empirical example of employing the developed sensitivity analysis. The
empirical example serves the discussion in Chapter 2, where a two-level HLM model is

estimated while an incidental middle cluster level is potentially omitted.

3.2 Constructing the Sensitivity Measures for Inference Robustness of Clustering

In Frank, Maroulis, et al. (2013), the magnitude of the inference robustness was
quantified by constructing a ratio of a coefficient estimate with a threshold coefficient. Since the
standard error estimate is of the focus of the current study in evaluating the impacts of the
omitted clustering dependency, the current study construct the ratio of the t statistics from the
estimated and hypothesized satisfactory models and the t critical value with an alpha level of
0.05, fixing the coefficient estimates if a cluster level is omitted (McNeish,2014). For example,

consider an estimated single-level analysis with a continuous dependent variable Y;,, which
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indicates the outcome of a student i in a school k though the school-level is omitted as shown in
parenthesis: Yy = Bow) + BrgoXic) T Eiky- The coefficient estimate ﬁl(k)of the predictor of

interest X; ) has a corresponding standard error estimate StE, ;.

i Hypothesized | | Hypothesized |
I Satisfactory Model A | | Satisfactory Model B |
® »
Estimated Model i Satisfactory Model |

(a) Deviation of the estimated model from the unknown satisfactory model

I f
! Hypothesized ! i Hypothesized 1
| Satisfactory Model _A___J ‘ Threshold Model | | Satisfactory Model B !
. i : : >
Estimated Model

Risk of False Null Hyvpothesis Decision

Reduced Robustness & Effect Size

(b) Deviations of the estimated model from the hypothesized satisfactory models of A and B

______________________

! Hypothesized ol Hypothesized |
I Threshold Model | L Satisfactory Model B | L Satisfactory Model C |
bt I ! >
Estimated Model
AZ | AI,C
Az |- A g R
A=Ay + A,

(c) Deviations of the estimated model from the hypothesized satisfactory models of B and C

Figure 3. 1 Graphic demonstrations of the conceptualizing the sensitivity analysis framework

With the omission of the higher cluster level of schools, the standard error estimate is

downwardly biased and needs adjustment, which turns to be StE,,. = StE,;s * VVOC , while the
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point estimate Bl(k) remains the same. The VOC here is the design effect 1 + p;.. * (N, — 1),
where the expected intraclass correlation p;.. and the average cluster size N, are the clustering
parameters. Further, setting the common 0.05 alpha level, the threshold model has the t critical

value of t# = 1.96 and the standard error of StE# = ﬁl(k)/1.96 = ﬁl(k)/z. The following uses a

general coefficient estimates notation 3 replacing 31(1()-

3.2.1 Scenario of No Type I error

This scenario presents the case of the estimated model (i.e., the single-level model using
OLS estimation) deviating from the hypothesized satisfactory Model A with reduced inference
robustness and effect size. However, the deviation is not large enough to result in a Type | error,
as Model A is on the left of the threshold model. After transforming into the t statistic robustness
framework as shown in Panel (a) Figure 3.2, this scenario yields t,;s > t,,. > t¥, in which the t
statistic from the estimated model is larger than the threshold t* by A, (i.e., A,= t ;s — t¥), and
the t statistic from Model A is larger than the threshold t* by A, (i.e., A;= t,,. — t*). The
deviation of the estimated model and Model A is thus equivalent to the distance A between those

two differences of t statistics against t* (i.e., A= A, — A;> 0).

The larger the distance A, the larger inflation the t statistic of the estimated model is, and
the stronger evidence of the reduced magnitude of robustness. Scaling A by t,,;s as quantifying
the size of inflation relatively to the t-statistic, the percentage of the reduced robustness is

formulated as

=1 - —, (3.1)
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Consider Figure 3.2 Panel (a) below, when A= 0 that W, = 0, there is no bias in the
standard error estimates due to potential omitted clustering. This is the case of the estimated
model is the best practice model which initial robustness regarding with modeling clustering can

be considered as 100%. With the increase of A, the initial robustness decreases by W,.

] e
=i

A2 -

¢ statistic

Estimated Model Hypothesized True Model A

(@) Scenario of No Type I error

A2 / /// Inflation A
2 /// ~ =A2+Al
z Z
g . “ 2 1 tF =196
Al -
Estimated Model Hypothesized True Model B

(b) Scenario of having Type I error

Figure 3.2 Two Scenarios of Comparing t Statistics of the Estimated Model and the
Hypothesized Models (t,;s > t*)

Further, | propose a measure of the changes in effect size. In educational research,

particular in the experimental design research, the generic idea of effect size is the standardized
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mean differences, which is the ratio of the treatment effect to a standard deviation (Hedges,

2007D). Then, the effect size of the predictor of interest X, from the estimated single-level

Bic)
Ools ’

model is ESy; s = where the numerator is the fixed coefficient ﬁl(k) and the denominator

is the standard deviation o,;; = StE,;s * VN. And N is the total sample size. This definition of
effect size is the adapted from Cohen’s d (Cohen, 1962, 2009). Correspondingly, the effect size

_ B . B
Oyoc StEvoc*\/N.

from the hypothesized satisfactory model® is ESy;r Then, the percentage of

the reduced effect size due to an omitted cluster level can be calculated using

ESye = _ =1 =1-—, (3.2)

which is identical to W,. As specified by the scenario setting, vV OC here is smaller than the
threshold /VOC, that the estimated model is acceptable as it does not lead to a false decision on

a non-effective intervention or mechanism. However, the decisions made on the estimated effect

size need to be cautious as the satisfactory effect size can be smaller.

In the context of education interventions and policy evaluations, there are several
commonly used measures of interpreting effect size, such as the magnitude, cost of a program,
and scalability of programs (Kraft, 2020). As a complement, ES. can be considered as a
sensitivity measure serving to quantify the uncertainty of effect size due to the omitted clustering
effect. Noticeable, ES, is different from the conventional sampling uncertainty measures of

effect size, such as the standard error and confidence interval (see Cooper et al., 2019).

% The current effect size formula is constructed based on Cohen’s d, while other definitions of effect size that satisfy
specific research interest exist. A summary and comparison of commonly used effect size measures can be found in
Fritz, Morris, & Richler (2012), and the ones developed for multilevel analysis can be seen in Hedges (2007).
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Obviously, the size of ES. depends on the values of the hypothesized clustering degree
VOC and the original effect size estimate of the tested study. By hypothesizing meaningful
settings of clustering degree (i.e., VOC and its parameters of ICC and cluster size) within the
context of a certain study'®, ES. constructs an interval as well. Then, multiplying the original
effect size estimate with the range of ES., researchers gain an interval of effect size due to
plausible omitted clustering settings. The larger the VOC, the larger reduction of effect size
when fixing the original effect size. The wider range of the VOC, the more uncertainty of a study

due to the omitted clustering.

When fixing the VOC, the same value ES. could lead to different meanings with respect
to different original effect size. For example, when ES. = 0.3, a large effect size estimate of 0.3
only reduces to 0.2, which is still considerably large to indicate an effective and significant
program. However, a medium effect size estimate of 0.1 reduces to 0.07, which would lead to a
consideration of less strength of the detected effect. As shown, though a 3% reduction of a small
effect size (i.e., 0.03 in the example) is much smaller than a 3% reduction of a larger effect (i.e.,
0.1 in the example), the judgments on the reduced effect size realize on the magnitude of the
original effect size. It is an advantage of ES. measuring the percentage of reduction against the
original effect size instead of being an arbitrary value of reduction. The interpretation of effect
size depends largely on the research context (Hedges, 2008; C. J. Hill et al., 2008; Kraft, 2020).
Though it is beyond the scope of this study to discuss the benchmarks of interpreting the

magnitude of effect size, the current study suggests employing a summarized schema for

10 See Korendijk, Moerbeek , et al. (2010)’s suggestions in assessing the ICC setting in educational research designs.
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interpreting effect size along with the cost and scalability of programs from Kraft (2020, p. 20)

when interpreting the magnitude of the reduced effect size of ES,.

Researchers need to make decisions on setting plausible values of the clustering

parameters of the omitted cluster when applying the above sensitivity analysis. In the setting of
no Type | error, VVOC is always smaller than the threshold \/VOC,. While, if VVOC is possible

to be larger than the threshold ,/V0C,, the estimated model needs to further consider a Type |

error issue discussed as following.

3.2.2 Scenario of Having a Type | error

A Type | error issue occurs when the estimated model is on the left of the threshold
model while the hypothesized satisfactory model (i.e., Model B) is on the right, as shown in
panel (b) of Figure 3.2, t,;s > t* > t,,. When t,oc is smaller than the threshold 1.96 by A, (i.e.,
A= t* — t,,c)While t,, is larger than the threshold by A, (i.e., A,= t ;s — t¥). The estimated
model deviates from Model B by A= A; + A,. The quantification process of the reduced

robustness of inference and effect size is identical to the above scenario of no Type I error

A A, + A tois — tyi StE 1
Wy = — = 2 1_ ‘Cols vlf=1__015=1__, (3.3)
tols tols tols StEvoc voc
ESyc = =1-—=1——, (3.4)
ESOLS StEvoc voc

Further, as introduced earlier, a large distance between the threshold model and Model B
suggests that the estimated model has a high possibility of making a Type | error. This Type |

error risk can thus be quantified by the relative size of A; in A while fixing A,
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R = — = = = , 35
OCT AT A +A, T 14A/A T 14T 35
and
., BB
= A /A _ tois —t . StEols StE*
— A2/81— -7 5 5
th — tvoc ﬁ _ ﬁ
StE#  StEyoc
_ (StE* — StE5)StEyo.
 StE,s(StE o — StE#)
StE* — StE,,)\VVOC
— ( ols) (3.6)

StE, NVIF — StE*

where 7 is positive and 0 < Ry < 1 since Type | error only happens when StE,;r > StE# >
StE,;s. In Panel (b) of Figure 3.2, fixing A, of the satisfactory model, a larger A, leads to larger
risk of making the Type I error. This relationship is quantified through R, that the higher the
omitted clustering effect or correspondingly the v/VOC is, the higher the risk it is of the estimated
model for making a Type I error. Further, the value of R, makes comparisons with the

threshold case of when StE* = StE ;. This is because it is intuitive that when the satisfactory

model has a t statistic that equals to the t threshold (that is VVOC = ,/V0C,), the Type | error

issue arises.

Back to Panel (c) of Figure 3.1, it further demonstrates how the risk index can be utilized
for comparing hypothesized satisfactory models. A hypothesized satisfactory Model C has a
higher clustering setting than Model B, and thus being located on the farther right of the
threshold model than Model B, thus A, > A, 5. Also, fixing A,, R§: > R5. That is, if Model C

is the satisfactory model, the estimated model has a higher risk of having a Type I error issue
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than if Model B is satisfactory. Noticeably, since the relative size of A, in A is considered in the
formulation, the ratio of RS and R5 is not as simple as A, > A, 5. Researchers who intend to
know the relative risks of having Type | errors across different clustering settings of VOC can
further utilize a relative risk index of

C B
Roc — Roc
B
Roc

C
ROC

B
ROC

Rd:

_ 1‘_ (3.7)

In this manner, the risk of making Type | error increases by a percentage of Ry, if the
omitted clustering setting of Model C is preferred than the one of Model B based on the research
context. Finally, the above discussions focused on the Type I error issue. In Appendix 3.A,

measures of robustness inferences are extended to the Type Il error issue.

3.2.3 Heuristics Diagram and Interpretations of the Sensitivity Analysis

The heuristics diagram in Figure 3.3 depicts a possible flow of conducting the sensitivity

analysis. Starting from the top of the diagram, researchers may first find the threshold /VIF;.

Solving A, =0 (i.e., t,;y = t¥), \/VOC, yields

3 3 1
JVoc, = p ~ P _ —— (3.8)
1.96StE,;;  2StE, 2

The use of this threshold /VOC, is straightforward, and it is of great use when empirical
researchers need to anchor the threshold clustering parameters of the omitted cluster level.
Further, researchers may set an empirical \/Wco with meaningful clustering parameter values of
what best satisfies their prior knowledge about the suspected omitted cluster level. If the

scientific ,/VOC, is unlikely to be exceeded at the threshold \/VOC;, then researchers may worry

61



less about the Type | error but focus on the magnitude of reduced robustness of inferences and
effect size. If \/VOC, exceeds the switch point value, then researchers need to further take into

account the risk of having a Type | error. Setting a reasonable ,/VOC, value, researchers can

manipulate the implications of an omitted cluster by exploring many possible values of the

clustering parameters.

JVVOC; =§tu,s

‘-7-7_7_7_7_,_,.7-—-""' ‘
‘ If set ,/VOC, < /VOC; | T ’ If set,/VOCy > ,/VOC, ‘
| .
Scenario 1 I Scenario 2
¥ Reduced % of robustness of inference (W) : v Reduced % of robustness of inference (W)
¥" Reduced % of effect size (ESpc) | ¥" Reduced % of effect size (ESp¢)
|
| v Risk of Type I error (Ry()
L T J
JVoc,

Figure 3. 3 Heuristics diagram of sensitivity analysis when the predictor of interest in the original
single-level model is statistically significant.

Researchers can also conduct sensitivity analysis in the opposite direction. They may

start with setting the clustering parameters to gain a ,/VOC,, then judge with the ,/VOC;.
Enlightened by the work of Frank, Maroulis, et al. (2013), a sensitivity analysis can be of the
most practical use by empirical research when it is equipped with a scientific language for

interpretations. Here are the suggested interpretations of the above sensitivity analysis:

1) The robustness of inference (or effect size) reduces by x % (i.e., the values of W, or EF,.) if
the omitted cluster level has a clustering degree of y (i.e., the VVOC value). The clustering

degree is characterized by p;.. = b and Ng =c.
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2) The risk of making Type | error increases by x % (i.e., the value of R, ) if the omitted cluster

level has a clustering degree of y.

3.3 Implication of the Sensitivity Analysis: Using an Empirical Example

This section provides an empirical study example to show how to use the sensitivity
analysis in defining the robustness of inference when an incidental middle cluster level is
omitted. The selected study is from Heafner et al. (2019), which examined demographic and
course instruction related variables” impact on students’ economics content knowledge. The
employed data is the National Assessment of Educational Progress Economics Assessment
(NAEP-E), which has a two-stage sampling design (with PSUs being schools and USUs being
students). In that work, a two-level random intercept model is constructed, where the first and
second levels are students and schools, because the authors mentioned that NAEP-E has data
constraints to link students to teachers causing a three-level model to be prohibited (as seen in p.
331). In the final estimated model (see their Table 2 in p. 336), each level has corresponding
demographic measures. Moreover, course type (such as AP course), curricular and instructional

exposure (such as internet use in a class) measures are assigned at the student level.

It is reasonable to argue that some student-level predictors that are relevant to courses and
instructions may be classroom-level predictors. For example, instructional exposure of reading in
class and internet use for economic data may be uniform for students within the same classroom
and teacher. Also, variations in the between-classrooms-within-schools cluster may be random.
Therefore, the classroom level, as an incidental middle cluster level, is assumed to matter to be

explicitly modeled.
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The below sensitivity analysis, shown in Table 3.1, is performed to calculate the
robustness of the inference of the student-level predictor of internet use for economic data. The
statistics from the estimated models are presented in the section of estimated two-level HLM in
the table, including the regression coefficient # = —1.44 (I used the absolute value in the
sensitivity analysis for simplicity reasons which does not affect the results), standard error
estimates StE,; = 0.4, the random effects variance of ® = 22.62 and #®) = 8.58 conditioned
on the predictors, the total number of the sample schools My = 560, and the average number of
students within a school n, = 20. Meanwhile, the hypothesized average number of students
within a classroom n;, and the between-classroom variance o) need special attention since they
together affect whether the VOCs and the corresponding calculated statistics of the three-level
model (such as the random effects variance ¢© and o®) are plausible. In Table 3.1, three
values of n;, are hypothesized to provide cases of extreme small cluster size of classrooms and

the regular ones.

Following the steps shown in the heuristics diagram of Figure 3.3, I first find the
threshold m = 1.837. This threshold is then used to calculate the corresponding p, and
o In the cases of when n; are 2 and 10, the threshold-based p, is not plausible since they
exceed the boundary of (0,1). In these two cases, it is more meaningful to find the possible
maximum and minimum p,. For example, when n; = 2, the maximum value of a p, is 0.665 to
make the regression estimates in the hypothesized three-level HLM feasible. Further, even when
po is large, the corresponding /VOCpq, would not lead to a StE,;f that is larger than StE*.

Thus, there is no need to concern about potential Type I error issue when the average classroom

size is extremely small. However, the robustness of inference (or effect size) reduces by around
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50 % (i.e., the values of W, or EF,.), which is not trivial. These settings reflect the earlier
discussion of no Type | error scenario in Section 3.1.1. The following shows the having Type |

error scenario.

In the setting of n, = 10, a minimum p,, is needed to specify eligible regression
estimates in the hypothesized three-level HLM. This pg i, is extremely small, being 0.01,
which still can lead to a Type | error since the corresponding StE,; is larger than StE*. The risk
of making a Type | error (i.e., Ryc) increases by 0.02, compared with the threshold setting with
the t statistic at the switch point of 1.96. Also, when n;, = 10, the feasible pg 4, is 0.58 with a
R, the maximum value of 0.24. Finally, when n; = 7, the threshold-based p, is plausible for
being 0.176, which means that any p, that is larger than 0.176 could result in Type | error or not
if po is smaller than 0.176. Two values of p, being 0.5 and 0.1 are used to demonstrate this

point.

This section went through the implication of the sensitivity analysis framework. As
shown by the above example that inferring the magnitude of the robustness inference largely
depends on the selection of the clustering parameters of the omitted cluster level. In practice,
researchers may require meaningful clustering parameters from the previous research evidence to
make the best argument for the inference robustness. As shown in the above specific example,
the calculated between-classroom variation as measured by ¢? and p, are regulated by VOC
formulas and empirical evidence. This evidence encourages researchers to be cautious about
excluding the classroom-level in modeling and assign the classroom-level predictors to other

levels.
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Table 3.1 Sensitivity analysis of the student-level predictor: Internet-use for economic data

Estimated Two-level HLM Hypothesized Three-level HLM
My 560 ny 2 7 10
ng 20 n 0.053 0.316 0.474
B 1 E4| G0 | 2262 | o® 20.748 19.812 5.499 15.600 19.500 0.312 4524
StE*|1 0.735 | t* | 1.96 / / o) 2.964 2.964 17.121 | 11.946 3.120 22.308 | 18.096
StE,;| 0.400 | t,;, | 3.60 | 6 858 | o 7.488 8.424 8.580 3.654 8.580 8.580 0.008
p 0.275 P2 0.240 0.270 0.219 0.117 0.275 0.270 <0.001
Po 0.665 0.095 0.176 0.500 0.1 0.010 0.580
14
Jvoc StE yoc 2 ng)c Roc
n ng Po Threshold _ _
1.837 0.735 0.456 Switch Point
JVOC,
\JVOC; based p, 2.215 NA NA NA NA
0.053 2 Po,max 0.665 VOC,0x 1.380 0.552 0.275 NA
Po,min 0.095 VOChin 1.168 0.467 0.144 NA
\JVOC, based p, 0.176 JVOC, 1.837 0.735 0.456 Switch Point
0.316 7 Po 0.5 Vvvoc 2.169 0.867 0.539 0.15
Po 0.1 VvocC 1.749 0.700 0.428 NA
\JVOC, based p, -0.021 NA NA NA NA
0.474 10 Po min 0.01 VOCpin 1.877 0.751 0.467 0.02
Po,max 0.58 VOC,0x 2.494 0.998 0.599 0.24




CHAPTER 4
OMITTED HIGHEST CLUSTER LEVEL

4.1 Introduction

The context of schools and districts play important roles in many aspects of education,
which has been a major topic in educational effectiveness studies since the renowned “Coleman
report” of the 1960s (Gamoran et al., 2000; Rumberger & Palardy, 2004). In many aspects,
schools and districts provide particular social contexts, physical resources, and leadership
distributions and provoke varying students learning outcomes (Akerlof & Kranton, 2002; Fahle
& Reardon, 2018; Muijs, 2020; Muller, 2015; Xia et al., 2020). Current educational database,
such as the NCES-initiated survey programs, provide many significant instruments measuring
the contexts of schools and districts, as well as within-school and -district variations (Muller,
2015). Methodologically, if this rich contextual information is omitted in modeling, studies may
give spurious conclusions since the satisfactory but omitted between-school (or district) variation
would be trapped into the lower levels of classrooms and teachers, whose impacts would thus be
falsely enlarged on students’ learning (see Moerbeek, 2004, and other studies mentioned in

Chapter 1).

This chapter intends to address the analytical issues of omitting a highest cluster level
(such as schools and districts) in a two-level HLM model. Specifically, this chapter sets a
conceptual two-level random intercept model examining students’ learning outcome with school
level predictors and assuming that an even higher cluster level of districts is omitted. Following
Chapter 2’s discussion on omitting the middle cluster level, this chapter also applies the

mechanisms of sampling and experimental designs to the discussion of omitting a necessary
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highest cluster level, which facilitate to answer when the highest clustering dependency matters
in modeling. Popular educational survey data sets are used as examples for empirical concerns.
Then, the question of how much the omitted cluster level matters in making a robust inference is
answered by the derived VOC formulas and evidenced by a simulation study. Further, an
empirical study example using two-level model is provided to implement the VOCs within the

sensitivity analysis framework developed in Chapter 3.

4.2 Omitted Highest Cluster Level in Sampling and Experimental Design

4.2.1 Omitting PSUs in a Three-Stage Sampling Structure Data

PSUs could be omitted in empirical analysis with data that has a three-stage sampling design. For
instance, the public available version date sets (e.g., ECLSK) are often do not provide linkable
ID of SSUs of schools to PSUs of districts or counties'?. In this case, two-level HLM models
leave out the clustering of schools within districts or counties, although the clustering
dependency due to students-nesting-within-schools is modeled explicitly. The design effect of

the true three-stage sampling is

DEFFi3 =1+ ngy sy — Dpsy + (s — 1)pes2)s

where p(s1y is the expected correlation among SSUs within a PSU, and n;,, is the sample

number of SSUs within a PSU. Also, p ) is the expected correlation among FSUs within an

11 Sometimes, ignoring a sampling stage could happen to when the sampling scheme is not universal in a large
survey study. For example, in some international survey programs, countries may vary in sampling scheme to
accommodate local context. Researchers may easily use the general sampling scheme as the universal design while
ignore certain exceptions. Chen and Rust (2017) introduced such a scenario in the Programme for International
Student Assessment (PISA) 2015, which used a general two-stage sampling design where the two stages are schools
and students (OECD, 2015). While PISA of Russia used a three-stage sampling design, where geographical areas are
PSUs, schools are SSUs, and students are USUs (OECD, 2015). The PSUs of geographical areas maybe easily
ignored if a two-stage sampling scheme is taken as universal when the research data employed is PISA of Russia.
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SSU, and ns,) is the sample number of FSUs within an SSU. With only one layer of clustering
accounted from the second stage sampling, the corresponding design effect is measured by p(s,)

and nfy,) as DEFF;, = 1+ (n{s) — 1)p{sz)-

Figure 4.1 below visualizes the structures of these two design effects. Obviously, when

the first-stage sampling is omitted, p(s) turns to be 0, since SSUs are now falsely assumed to be

independent to each other even if they are in the same PSU. Therefore, DEFF;; is not sufficient
in two ways. One is that the two distinct sources of clustering measured by p(sqy and p(s) are
now absorbed by a single clustering dependency (i.e., p(s,))- The other one is that the sampling
structure is reduced from nsqy + ns2y 10 n(s2y. IMmediately, the DEFF;;, overestimate the
standard error of the estimate. This is because the effective sample size calculated based on
DEFF;; is smaller than the true effective sample size given by DEF F;; . Equivalent to the
design-based approach, conducting a two-level HLM model with a three-stage sampling design,
the omitted highest cluster level results in the repartitioned random effects and a shrinking error
variance structure. The comparison of the design effects resonates with Moerbeek (2004) and
Opdenakker and Van Damme (2000) which provided simulation evidence that omitting the
highest cluster level results in inflated standard errors of the adjacent lower-level predictors’
coefficient standard error estimates, and thus Type Il errors. Later sections provide detailed

mathematical procedures of formulating the biased standard error estimates.
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Figure 4.1 Data correlation structures of three-stage sampling designs when the first sampling
stage in is included and omitted.

4.2.2 Incidental Highest Level above PSUs

Many times, a higher cluster level emerges even if it is not designed in sampling but
matters to answer the research questions. McNeish and Wentzel (2016) defined such highest
cluster level as incidental level to distinguish from the deliberate levels of the sampling stages;
they also provided several example scenarios of when such incidental highest cluster level would
occur. One is that individual two-level data are integrated into a single data set to invest the
studies’ generalizability and power. This scenario applies to meta-analysis where individual
studies’ effect size estimates are combined to obtain a summary statistic in which effect sizes are

nested within studies. Further, the studies are nested within investigators. Thus, the investigators
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form an incidental highest cluster level, and the between-investigator variation could be relevant

to the research question (Konstantopoulos, 2011).

Another scenario is that when certain large sample size of PSUs of schools is required, a
relatively large sample size of districts will be incidentally presented as a higher cluster level,
though it may not directly relate to the research questions. For example, the Education
Longitudinal Study of 2002 (ELS:2002) has a two-stage sampling design where schools are
PSUs and students are USUs (Stapleton & Kang, 2018). With 16,197 sampled schools
nationwide in ELS, the districts level, with a considerably large sample size, is introduced
naturally while the linked ID of schools and districts is not accessible in the public-use file.

Hence, the district cluster level is omitted due to data restrictions.

The above examples require three-level models to account for the random variation at the
incidental highest cluster level, particularly when the highest-level units are samples and the
inferences are made to the population. Conversely, the incidental cluster level does not need to
be included with random effect when they are population units. Take the study of Wong and Li
(2008) as an example, which utilized a two-level model to examine school-level contextual
factors’ impacts on teachers’ information and communication technology implementation
effectiveness. As they stated that the sampled schools are from all 18 districts in the studied area,
the districts are not required to be modeled as random. Similarly, the two-stage design approach
with sampling design effect DEFF,; =1 + (n(sl) - 1)p(51) is adequate for the clustering
dependency due to sampling. In this case, based on the estimated two-level model, a fixed effect
framework can be further utilized for the higher-level districts (i.e., add dummy variables

indicating memberships of districts) (McNeish & Kelley, 2019).
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4.2.3 Omitted PSUs above the Level of Treatment Assignment

Consider a two-level model being conducted in a study where the outcome is at the
individual student level and the assignment of treatment is at the higher school level. If the
utilized data is a two-stage sampling design where PSUs and USUs are schools and students
respectively, and the statistical inference aims to the population of schools, the estimated two-
level model is appropriate to capture the clustering with the school-level random effect. This

model is a typical CRT that has shown in Chapter 2.

Now consider a three-stage sampling structure data where PSUs are districts, SSUs are
schools, and USUs are students. The above two-level model is no longer sufficient because the
random effects of the highest cluster level is omitted. Furthermore, the CRT model turns to be a
Block Randomized Trial (BRT) since the schools within districts are randomly assigned with
treatments. The conceptual differences of these two designs are depicted in Figure 4.2. If the true
PSUs of districts are omitted or hidden (as shown by the dashed ovals below the dashed line), the
experimental design can be falsely interpretated as the treatments being assigned to the schools
randomly and all students in each school received with the same treatment. With the presence of
districts, schools within the blocks of districts are randomly assigned with treatments. Schools
remain as clusters since students in each school received with the same treatment. See Hedges

and Rhoads (2010) for a summary of the relationships between BRT and CRT.

Since the inference targets the population of districts and schools, the three-level BRT
model explicitly models the between-district variation with the random effect of districts.
Conceptually, the clustering dependency due to sampling is now sufficiently captured in addition

to the clustering of assignment, whereas the (false) two-level CRT only models the latter source
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of clustering dependency*?. This argument is consistent with Abadie et al. (2017) that clustering

is due to the distinct rationales of sampling and assignment.

TRT at school-level

Omitted Districts (PSUs)

AN B ~ 1 Pt N T/ A

{ District1 ) ( Diswict2 ) Distriet3 ) ¢ District ™ { Districtk

o~ S k-1 .

Figure 4.2 Omitted highest cluster level in a two-level CRT design

In the experimental design planning work of Hedges and Hedberg (2014), defining
design parameters, such as ICCs, need to consider the omission of the districts as blocks while
only keeping the schools as clusters. In such cases, the between-district variation is pooled into
the between-school variation and the school-level ICCs are larger than they should be (Hedges &
Hedberg, 2014, p. 455). Still, the effects on standard error estimates when omitting the highest
cluster level in experimental design has not yet been extensively studied. Particularly, practical

guidelines lack for empirical studies.

12 Often, a three-level BRT model includes the random effect of the interaction term of treatment by district since
the treatment effects’ variation could depend on schools (see Konstantopoulos, 2008a, 2008b). The current paper
does not include the random slope of the treatment and the corresponding interaction term in the later modeling
settings in Section 4.2 to keep consistent with the setting of random intercept model of the whole study.
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4.3 Quantification of Standard Error Bias

4.3.1 Model Setting

Follow the examples made above that the district cluster level is omitted, I first consider
an estimated two-level random intercept model which only captures the clustering dependency of

students (denoted as i) nested within a school j:
Student-level: Y;; = Boj + B1jXij + &,
School-level: By; = vo0 + Vo1 W, + Yo2Z; + Toj,
ﬁ1j = Y1o0:
Mixed model: Y;; = yoo + Y10Xij + Yor W) + Yoz Zj + Foj + &),

where X;; and W; are student- and school-level predictors, and Z; is modeled at the school level

whereas it is truly a district-level measure. Also, predictors are group-mean centered so that the

exogeneity assumption holds. In the setting of a two-level CRT design, W; can be the binary

treatment variable. The random effects of &;; and 7, ; are assumed to be normally distributed with
zero means, and variances of ¢® and ¢ respectively: &;~N(0,0®), 7,;~N (0,69 ), and

CO'U(gl'j, 77'0]) =0.

Identical to Chapter 2, for each school j from the total M; sample schools, the error

variance-covariance matrix of Y;, denoted as 17),, §

Y, =var(¥;)) =R+1,,Gl'y,
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where n,, is the average school size (i.e., the average number of students within a school) and 1,,,
is a column vector of n, ones. There are M; sample schools and the total sample size of students
is thus M; * n;. The matrix R and G reflect the composition of variance components at the

student- and school level respectively:

[5-(1') 0 - 0]
§=5(i)1=| 0 o'fl) () |
I 0 0 g(i)J
and
PO I C) IR ())
~ BG) R0 ) U § )|
lnLGl'nL — o"] o"] O'.] .
SO0 N 0)
Then,
1 p p
~ 1 .
P, =o? p : p =a?[A—pI+ply,ly,] (4.1)
p P 1
)
TheICCp = UU—; = corr(yij,yi:j) measures the expected correlations among any two

randomly selected students from the same school. Now consider the satisfactory three-level

random intercept model which includes the omitted highest level of districts (noted as k):
Student-level: Yl]k = Tojk + nlijijk + Eijks
School-level: Tojk = .BOOR + .BOIRVij + Tojk:

Tk = B1ok
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DIStrICt-|eV6| BOOk == )/000 + ]/001 Zk + uOOk,

Boik = Yo10s

B1iok = Y100
Mixed model: Y;;x = Y000 + Y100Xijk + Yo10Wjk + Yoo1 Zk + Uook + Tojk T Eijk-

The previously disaggregated predictor Z; is now defined at the correct level of district as
Zy. Further, the random effect of the district-level is explicitly modeled and is assumed to be
normally distributed with mean zero and variance of ¢®). Also, the random effects of the
student- and school-level are assumed to have normal distributions, which have means of zero
and variance of ¢® and o, respectively as &;;;~N(0,6D), 1y;,~N(0,6%), and

Ugor~N (0, a(")). These random effects are independent to each other.

The three-level model has two ICCs, including the expected correlation among students

OIeS
o2 !

within the same school and the same district p; = and the expected correlation among

9
students within the same district while from different schools p, = 06—2 The average district

sample size (i.e., average number of schools in a district) is ny. Also, the total sample districts

My = ﬂ, and the average number of students in a district is ny * n;.
ng

The error variance covariance matrix Y of a district k is

Il)K = UZ{InH ® [(1 - pl)InL + (pl - pz)lnLlnL, ] + pZ lnH*nLlnH*nL’}' (4'2)

where I, is a diagonal matrix with a dimension of the average cluster size of level-3 (K) ny x

ny , I, is a diagonal matrix with a dimension of the average cluster size of level- 2 (J) n;, *n, ,
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l,,, is a vector column of n;, ones, and 1, .., is a vector column of ny * n; ones. Conceptually,

9)
0<p,<pand1<ny <M. lalsodefine p, = % , Which is the proportion of the true

between-school variance in the total error variance, and p, is smaller than p by p,. The detailed

definition rationales of these ICCs have already been given in Chapter 2.

Figure 4.3 demonstrates the error variance-covariance structure of ¥, from the three-
level model and 17;, from the two-level model omitting the highest cluster level of districts.
Noticeably, compared with ¥, the error correlation structure of 17), shrank from the (ny * n;) *

(ny * n;) block diagonal matrices (i.e., the purple dashed boxes) to the n; * n; diagonal
matrices (i.e., the orange highlighted squares). The shadowed areas represent the shrank

segments due to falsely assumed independence among schools within districts.

When the highest cluster level is omitted, the between-district variation is fully
redistributed to the between-school variation while the between-student variation remains the

same, which are

0 = g (4.3)
and
¢V =gl 4+ g0, (4.4)
70 sW4el .~ :
Then, p = — =z = Potp2=pr The shrank parts in ¥, are p,, which are

falsely captured by p in the estimated two-level model. Unlike the omitted middle cluster case in
Chapter 2, the omitted between-cluster variance repartition here is not weighted by the cluster

size.
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Figure 4.3 Correlation structures of ¥ of the three-level model, and 17), of the two-level model
omitting the highest cluster level.

4.3.2 Quantifying the Standard Error Estimate Bias

Bias of the Standard Error Estimates of the Coefficients of Z;, and Z;jy,

Predictor Z;, though a measure of the districts, is falsely disaggregated at the school level. The
letters in the parentheses (i.e., (k) and (jk)) indicate the corresponding omitted cluster levels.

The estimated variance of the coefficient parameter of Z; ;. in the two-level model is:

M -1 M -1
Vary,(Yoz) = Z(Zj(k)lqlkzj(k)) = 0%z, Z(Zj(k)lzj(k)) )
j=1 j=1

where 7, =1 + (n, — 1)p. In the three-level model which correctly models the predictor Z; ;. as

Zy, the variance estimate of the coefficient parameter is
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-1 -1

K
= GZTZk {Z (Zk, Zk)} ’
k=1

where 7;, =1+ (n, — Dp; + n (ny — 1)p,. The inflation of Var,, (y,,) is then quantified by

K
Vars,(Yoo1) = {Z(ZK"I’K ZK)}
k=1

the division of Var;; (vy01) and Var,, (y,2), which yields to

(3-2,2L) _ Vars, (Yoo1) Tz 1+ (n, — Dp; + ny(nyg — Dp,
Vocy = =

Vary, (vez2) T2 1+ —Dp
n,(ny — 1)p,
=1l+— . 4.5
" 14+, —Dp (45)

Noticeably, VOC ™" is identical to VOCS ™™ in Chapter 2 since both of them solve the
same issue of adjusting the standard error estimates of the highest-level predictor coefficients

when the two layers of clustering are omitted.

Bias of the Standard Error Estimates of the Coefficients of W, and Wy,

The school-level predictor W is the main predictor of interest!®. Its coefficient’s
variance estimate inflation is quantified via comparing the variance estimate from a satisfactory
two-level model where no higher cluster level exists and a false two-level model where a higher
level exists but is omitted. The satisfactory two-level model is identical to the case that has been
illustrated in Chapter 2 in deriving for VOC,\(,IZ_LOLS). The corresponding variance estimate of

W;’s coefficient yo is

13 The following derivation process applies to both cases of W; as a continuous measure or binary treatment
assignment indicator. The latter applies to the previous theoretical discussion of when the estimated model is a two-
level random intercept CRT omitting the highest cluster level and the true model is a three-level random intercept
BRT. When the true three-level BRT model has no random slope of W, the standard error estimate of the
difference between means is the same as the one from the three-level random intercept CRT model (see
Konstantopoulos, 2008a and Konstantopoulos, 2008b). The equivalence of the standard error estimates of the
continuous and binary predictors’ coefficients has been shown in Section 2.3, Chapter 2.
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-1 -1

] ]
VErZL(VOl) = Z(W]"I’]Wj) = UZ'EW]- Z(W], VV]) )
j=1 j=1

where v is the error variance-covariance matrix

1 po = po
1 .. ,
Py =02 |0 T P =0 — )T + po L, Un, -
Po Po - 1

The corresponding variance weighting index is 7y, = 1 + (n, — 1)po, where the only

. L €} L .
intraclass correlation is p, = 06—2 when the district-level does truly not exist. In the false two-

level model, the error variance-covariance matrix is flv,, which gives the variance estimate of

Wik’ coefficient yg4:
-1 J -1

J
Vary, (yo1) = Z(VV]'(R)I PYWi) = szwj(k) Z(ij(k), Wiw) ¢ >
=1 '

J=1

where 7; = 1 + (n, — 1)p. Finally, the variance inflation factor yields to

_ Var,,(Yo1) _ Tw; 1+ —1py 1 (n, — 1p,

(2-2,2L)
VIF = =" _q_ = Dp
H Vary, (Y1) Twi 1t (n, —Dp 1+, —Dp

(4.6)

As shown, when the district level cluster should be modeled as random effects but is

omitted, the standard error estimates of W;y’s fixed effect is overestimated and lead to Type II

error. This finding is similar to VIF,\fll_l'ZL) that was developed for the individual-level predictor
Xicjyr in Chapter 2. The common idea is that, if the satisfactory model is a two-level, then the

artificial between-group variance of the untrue highest level should be taken out.

80



Further, when both sources and layers of the clustering dependency are completely

omitted in a single-level analysis using OLS estimation and W, is disaggregated at the student

level as Wy, the corresponding variance inflation factor is
vocF M) = ¢, = 1+ (n, — Dpo, (4.7)
which is identical to VOCZ ™" in Chapter 2 and is smaller VOCS ™% by (ny — 1)p,.

Bias of the Standard Error Estimates of the Coefficients of X;;) and Xjjx,

Finally, since the individual-level variance is not affected by the omitted highest cluster

level, the standard error estimate of X;;,’s coefficient y;, remains unbiased. This can be shown
by

1_.00_,02=1—P1=
1-p4 1-ps

voci? = 1. (4.8)

In terms of OLS estimation, the VOC* ™" is identical to the VOC?~*°") in Chapter
2 (see Eq. 2.9) that
vocl 1) = 1 — py — p,. (4.9)

Table 4.1 below summarizes the above derived variance inflation factors corresponding

to the predictors of each level in the estimated two-level HLM and single-level OLS models.
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Table 4.1 A summary of VOCs when the highest cluster level is omitted in a three-level
structured clustering data.

Three-level HLM Two-level HLM Single-level OLS Estimation
Level | Predictor | Level | Predictor Vgrlance Level | Predictor Vgrlance
adjustment adjustment

VOC,SI_I‘ZL)
=1

VOClsl_l’OLS)

Student | Xy | Student | Xij) <1

Xi(jk)

VOCISZ_Z'ZL) VOCISZ—l,OLS)

School W W Student | W,
jk J(k) <1 i(jk) > 1
School ( ) ( )
L. VOC 3-2,2L voc 3—-1,0LS
Districts Z Z; H 7.0 H
k J (k) > 1 i(jk) > 1

Note. The letters in the parentheses indicate the corresponding cluster levels that are omitted.

4.3.3 Simulation Results

Similar to Chapter 2, a simulation study is designed to test the variance estimation bias
when the highest cluster level is omitted as well as the performance of the derived VOC
formulas. The total sample size of students (M;) and number of schools (M;) are fixed to be 2000
and 100, which lead to a conventional school size n;, = 20. Four conditions of number of
districts (M,,) are set to be 5, 10, 25, and 50, which covers a plausible range of sample size of the

highest cluster level.

In each condition of M,, the residual variance () and school-level random effect
variance (6¢) of the estimated two-level models are set with two pairs: 0.5 and 0.5, and 0.8 and
0.2. The latter pair setting satisfies the empirical evidence where between-school variance could
reach to 0.2 (Hedges & Hedberg, 2014; Konstantopoulos, 2009; Westine et al., 2013). In Fahle
and Reardon (2018), the between-districts variance ¢®) of U.S. public school for Grades 3-8

students in Math and English Language Arts ranges from 0.05 to 0.24. Then, the setting of the
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omitted district-level random effect variance (¢®) in this current study includes the evidence
found in Fahle and Reardon (2018) and a hypothetical extreme large value, which are 0.1, 0.4,
and 0.6. Setting 02,,,; = 1, the values of random effects variance 697, ¢, and ¢ are
equivalent to the ICCs of p (or p;), p,, and p,, respectively. Again, the magnitude of the
estimation bias and the performance of VOCs’ adjustment of estimates are measured by the
index of relative bias R. B..s; and R. B.q4; s COrrespondingly. See Appendix 4.A for the

parameter settings and simulation results.
Bias of the Random Effects and the Adjustment Performance

Previous research had found that the omitted o is taken by 7, while 6 remains the
same. The simulation results support this finding. In all conditions, the mean R. B..; of &% are
all zero. With larger setting of ¢ (or p,) and M,,, the overestimated ¥’ has larger positive
R.B..s. In the extreme condition of ¢ = p, = 0.6, Y can be more than twice and even four
times larger than ¢’ as the number of schools increases. Even in the cases where o ® is
extremely small of being 0.1, between-school variation can be overestimated by at least around

15%. With adjustment, the mean R. B.q4 ¢t Of &) are close to 0 across all conditions.

Bias of the Standard Error Estimates of the Coefficients of Wy and W, and the

Adjustment Performance

When the district-level cluster is omitted in the estimated two-level model, the positive

values of mean R. B..; indicates that the standard error estimates of W;, is overestimated
which lead to Type Il error. The magnitude of the overestimation increases with the increase of

o and M. When o® is considerably large as 0.6, the standard error estimates of the two-level

83



model are 1.5 to 2 times larger than the parameter. When the omitted ¢ is trivial as 0.1, the

magnitude of the overestimation is minimal.

When both school- and district-level clusters are not modeled as in the single-level
model, the standard error estimates of W, are underestimated as the mean R. B.; are all
negative. The value of R. B..; are relatively stable, around -0.6 across all conditions. This is

because the setting of the overall omitted clustering dependency ¢ are relatively similar of

being 0.5 and 0.8, and the sample size of students is fixed.

Finally, for the adjustment performance, both VOC? and VOC ™ for the two- model

and single-level model are desirable since the mean R. B.,4; ¢ are consistently smaller than 0.1.

Bias of the Standard Error Estimates of the Coefficients of Z;, and Z;;, and the

Adjustment Performance

When the district-level predictor Z, is falsely disaggregated, either at the school-level in
the two-level model or at the student- in the single-level model, the standard error estimates of
the coefficient of Z, are underestimated. In the two-level model, the underestimation bias
increases with the increase of a®) and the decrease of M,. With the maximal ¢ ®or p, = 0.6,
the standard error estimates can be around 60% larger than the parameter. With the OLS
estimation, the underestimation magnitude is relatively stable as the mean R. B..,; are around -
0.8 across all conditions. Again, this is due to the omission of the overall clustering dependency
in the single-level analysis, regardless of the proportion of each cluster level’s variance. Further,
the underestimation magnitude in the OLS estimation is always higher than the two-level model

in each condition. This is because 7 in the two-level models have captured the omitted o).
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The performance of the VOCs is ideal across all settings and models, where the mean R.B.,; are

close to or smaller than 0.1.

Bias of the Standard Error Estimates of the Coefficients of X;;) and X;jx, and the

Adjustment Performance

As shown, the standard error estimates of the coefficients of X is not biased in the
two-level model. However, the standard error estimates of the coefficients of X;y, itis
overestimated using OLS estimation. This pattern is consistent with the previous findings in
Chapter 2 that omitting the adjacent higher cluster level leads to Type Il error issue. The
overestimation is large when p, and M,, are large. For example, when the omitted ¢ or p, is
0.6 and M, is 50, the standard error estimates of the coefficients of X; ;. are two times larger

than the parameters. When the omitted ¢® or p, is 0.1, the estimates can still be 40% larger

than the parameters. VOC,Sl‘l'OLS) performed relatively well that in most of the cases, the mean

R.B..s are around or smaller than 0.1, though in two cases of when M, = 5 and ¢® are large

(i.e., 0.6 and 0.4), the mean R. B..4; are around 0.2.

4.4. Empirical Example and Sensitivity Analysis

This section employs the same study of Heafner et al. (2019) seen in Chapter 3 for
example. As shown earlier, their employed data NAEP-E has a two-stage sampling design where
schools are PSUs and students are SSUs, and the empirical model is a two-level random intercept
HLM model. With a large sample size of schools M; = 56, an incidental highest cluster level of
districts could emerge. Further, as stated by the authors, state and district level policy predictors,

including required economics education for graduation and economics testing, are modeled at the
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school level (see Heafner et al., 2019, p. 334). In this case, these variables are falsely aggregated
at the school level and produced with underestimated standard errors, though no significant
evidence were found. Since Chapter 3 has already demonstrated examples of making Type |
error, this section provides example of Type Il errors of the middle-level predictors when a
higher cluster level is omitted. The example predictor used here is the requirement of economics
education for graduation, which | consider as a true school-level predictor for example-making

reason.

The procedure of conducting the sensitivity analysis follows the steps shown in heuristics
diagram of Figure 3.3, and the results are shown in Table 4.2. The regression coefficient and
random effects estimates from the estimated two-level model are presented at the left upper
corner in the table, where t,, < t* satisfies the requirements of conducting the Type I1 error
sensitivity analysis. Since the omitted between-district variance (¢ ®) is completely captured by
the estimated between-school variance of the two-level model (69°) with no weights of cluster

sizes, the sensitivity analysis here is straightforward and starts with calculating the threshold

JVOC, = 0.432 and the corresponding p, = 0.267.

For any settings of p, that is larger than 0.267 and \/VI_FO that is smaller than 0.432, the
risk of having Type Il error is larger than 0. For example, the maximum p, found is 0.275 with a
corresponding /VOCynq, = 0.401. That is, when the hypothesized district-level ICC p, is 0.275
or the estimated between-school variance are completely between-district variance, the
magnitude of inference robustness (or effect size) reduces by 60% and the risk of making Type Il
error increases by 12% when compared with the threshold setting. In the current example, the

maximum p, does not exceeded p of the estimated two-level model.

86



Table 4.2 Sensitivity analysis of the school-level predictor: economics required for graduation

Estimated Two-level HLM Hypothesized Three-level HLM
M; | 560
ny 20
g | 1.820 M 12262 | ¢ | 22,620 | 22.620 | 22.620 | 22.620 | 22.620

StE* 10929 | t* [1.96 | U | 858 | ¢U) | 0.265 | 2.340 | 8.268 | 0.000 | -0.780
StE,;, |2.150 | t,, [0.85| / | | o® | 8315 | 6.240 | 0.312 | 8580 | 9.360

B 1.820 p 10275 | p, | 0.008 | 0.075 | 0.265 | 0.000 | -0.025
D> 0.267 | 0.200 | 0.010 | 0.275 0.300
Woc
vvoc StEvoc ROC
& ESyc
P2 Threshold

0.432 0.929 0.568 Switch Point

JVOC; based p, | 0.267 0.432 0.929 0.568 Switch Point

JVOC,
N
o 0.200 \/WCO 0.624 1.342 0.376 NA
VVO0Cnin
VVOCinax

P2min 0.010 0.985 2.117 0.015 NA

P2 max 0.275 0.401 0.862 0.599 0.121

Not plausible 0.300 NA 0.290 0.624 0.710 0.462

An implausible example of p, = 0.3 is thus demonstrated that if p, > p, the between-
school variance from the three-level models turns to be negative, though the corresponding
robustness measures are producible and larger than the above ones. Also, p, .y, IS provided to
show the lower boundary of the variance adjustment. In this case, the reduced robustness and
effect size is small (i.e., 1.5%) , thus no concerns for making Type Il error. The above
hypothesized p, are in a comparable range of around 0.05 to 0.24 and are of the empirical values

summarized in previous literature across nations, grade level, and subjects (e.g., Fahle &

Reardon, 2017). This evidence heightens the significance of conducting this sensitivity analysis

to test the estimation bias due to an omitted but empirically possible district cluster level.
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4.5 Discussion and Conclusion

This chapter clarifies the risky practice in two-level models omitting the highest cluster
level that is legitimate in sampling and experimental designs. The harmful ramifications of
omitting the clustering dependency of the highest level need particular caution from researchers
when their research questions relate to the cluster-level predictors effect, and to explaining the
clusters’ capability in demonstrating the error variance of the individual variance, since the
estimated two-level model would generate biased standard error estimates of the middle and
highest level coefficients estimates and random effect variance of the middle cluster level.
Similar to Chapter 2, the VOCs derived in this chapter quantify the potential magnitude of the

estimation bias of each cluster levels’ predictors that can be applied to general modeling settings.

The decision on whether to explicitly model the highest cluster level depends on the
research design of sampling and experimental schemes, as well as the rationales of whether to
generalize the reference to the studied sample groups only or to the population of interest. When
the main predictor of interest is at the middle level and the highest level of clusters are the
population groups, a fixed effect modeling framework is genuine. In contrast, if the predictors of
interest also include the highest-level ones and the clusters are sample units, the highest cluster
level needs to be modeled as a random effect. As listed in Table 4.1, the estimated two-level
model omitting the highest cluster level would lead to a Type | error of the middle-level
predictor estimate and a Type Il error of the disaggregated highest-level predictor. However, the
individual level inferences would not be affected. The extended single-level model scenario of
omitting the overall clustering dependency has been shown in Chapter 2 where Type I error
emerges for the cluster-level predictors estimates and Type 1l errors for the individual level

predictor.
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Another particularity of making decisions on modeling the highest cluster level relates to
the sample size. Frequently, the small sample size issue happens at the highest cluster levels,
particularly when the highest cluster level is not in the initial sampling design. In this case, the
fixed-effect approach is optimal (McNeish & Wentzel, 2016; McNeish & Kelley, 2019). The
current study only tested when the middle level cluster size is relatively large (i.e., fixed the
school size n;, to be 20) and the cluster size of the highest cluster level is not extremely small
(where the smallest district sample size My is 5), the displayed simulation outputs did not
evidence any exceptional performance of the VOCs relating to the sample size. In future studies,
the small sample size occasions relevant to the assumption of random effects and performance of
the estimation methods should be investigated in detail, whereas it is out of scope of the current
study. Also, future studies are encouraged to develop extended VOCs in conditions of

unbalanced design and random slopes.
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CHAPTER 5

OMITTED SERIAL CORRELATIONS IN LOWEST CLUSTER LEVEL

5.1 Introduction

Longitudinal data can be conceptualized as clustered data, since repeated measures
are clustered within groups such as the yearly measured performance of students. A two-
level linear growth model is commonly utilized to describe students’ average performance
change and the change variabilities, as well as examine the factors that can explain the

growth patterns (Bryk & Raudenbush, 2002; Hoffman, 2015; Singer & Willett, 2003).

In previous chapters, units within groups are exchangeable in conventional clustered
data that any pair of units within a cluster has an equal intraclass correlation as they are assumed
to share common unobserved factors at the group level (Alejo et al., 2018; Cameron & Miller,
2015; Hansen, 2007). Assuming homogeneity and independent two levels of random effects, the

corresponding error variance-covariance of a two-level model is {; = var(Y;) = R +1, Gl ,
where R = 6WI is the first-level error structure. The second-level error structure G is a I, X1y,

matrix of 6, where 1,_ is a column vector of one with a length of cluster size n,

A distinguished feature of longitudinal data is that repeated measures are
chronologically ordered (Alejo, et al., 2018; Skrondal & Rabe-Hesketh, 2008). The ordering
gives an additional source of dependency from the correlations of repeated measures within
individuals of an outcome, other than the mean differences across individuals and the variations
of growth across individuals (Hoffman, 2015). Unlike equicorrelated intraclass correlations,

serial correlations between two successive time measures (i.e., corr(y—1);, yi)) have certain
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patterns. Generally, the correlations between two successive time measures are larger than the
correlations between two non-successive ones**. As the gap between two occasion measures
increases, the correlation decreases. That is, corr(y—ki Yti) > Corr(y e—kyi» Ye+s)i)- In this case,
another form of intraclass correlation due to serial correlation emerges, in addition to the
conventional one due to random effects. The basic identity structure (ID) of R = ¢V, assuming
independently and identically distributed within-individual-repeated-measure residuals, is then

overly simplified in the multilevel longitudinal data analysis.

In the field of Economics, the intraclass correlations due to clustering and serial
correlation are explicitly defined to be closely related but distinct (Angrist & Pischke, 2008).
Then corresponding statistical tests are proposed for evaluating the two forms of intraclass
correlations in random effects longitudinal models. As surveyed in Alejo et al. (2018), earlier
tests evaluating either random effects or serial correlation (i.e., Baltagi & Li, 1991; Breusch &
Pagan, 1980) tend to produce inflated rejection rate if the other form of intraclass correlation
exits and is ignored (Bera et al., 2001). Empirical research also presents this issue. In the
influential study of Bertrand et al. (2004), a survey of 92 difference-in-difference (DD) studies
found that only five of them had implemented serial correlation corrections. In that study,
significant over-rejection is found for a null effect treatment, which is due to the omitted serial
correlation. On the other hand, interclass correlation due to clustering alone is commonly taken
care of by cluster-robust standard errors (Moulton, 1986, 1990), alternative estimators such as
GLS (Liang & Zeger, 1986; White, 1980), and block bootstrap (Cameron et al., 2008). Later

developed tests provide joint tests of both forms of intraclass correlation such as in Alejo et al.

14 The current study focuses on positive serial correlations, which means the error terms have the same sign from
one time-measure to the next.
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(2018), Baltagi, Jung, and Song, (2002, 2010), and King and Roberts (2015), to name a few.
These studies highlight the identification of the sources of the intraclass correlation (i.e., due to
clustering effect or serial correlation), and appropriate strategies and models would be applied
(Alejo et al., 2018). With both forms of intraclass correlations, corresponding strategies, such as
feasible generalized least squares estimation (FGLS) (Hansen, 2007), are required to account for

dependencies (Angrist & Pischke, 2008; Wooldridge, 2003).

The above discussion alerts the critical need for detecting and distinguishing the two
forms of intraclass correlation. Beyond the above-mentioned approaches that are popular in
economics research, the model-based approach HLM account for the two forms of intraclass
correlation simultaneously by specifying a correct error variance-covariance structure. However,
it is not uncommon in empirical research that the serial correlations among the repeated
measures are ignored in the time-level variance R, and all the expected correlations among the
repeated measures are (false) due to the individual-level random effect variance G.
Consequently, the tested theories and inferences made for the variance components and fixed
effects could be erroneous (Ferron et al., 2002; Hoffman, 2015; LeBeau, 2016, 2018). Therefore,

with recognition of serial correlation, a correctly specified R structure is pivotal.

As a start, the current study considers the 1D structure of R being a scenario of omitting
serial correlations at the lowest level, and sets out to mathematically quantify the corresponding
estimation bias for robust inference making. It begins in Section 5.1 with a review of the
approaches to specify R, and a discussion of the bias in estimates due to the misspecified R in
empirical research. Then this article’s study motivation and goal is proposed. Section 5.2 follows
the details of deriving generalized formulas to quantify the estimation bias of variances of the

random effects and fixed effects, explore through an example of a two-level random intercept
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linear growth model that misspecified the R as ID from AR (1). A Monte Carlo simulation study
presents the performances of the formulas. Section 5.4 provides an empirical study example. At

last, Section 5.5 concludes and discusses the future research.

5.2 Alternative R Structures with Serial Correlations

The structure of the time-level residual variance matrix R represents the serial correlation

patterns. Besides the ID structure of R = ¢ (P I, many alternative structures have been widely
recognized in textbooks of multilevel analysis, including Bryk & Raudenbush (2002, Chapter 6),
Hoffman (2015, Section 3), Singer & Willett (2003, Chapter 7), and Snijders & Bosker (2012,
Chapter 15), to name a few. Commonly presented alternative R structures include autoregression
(AR (Kk)), autoregression and moving average (ARMA (p, q)), Toeplitz (TOEP(k)), and

unstructured.

In practice, the selection of R largely depends on empirical and theoretical needs
(Snijders & Bosker, 2012). Nevertheless, this approach is limited by prior experience and
generalizability, which is prone to uncertainties in specifying R. Moreover, a misspecified R, in
return, distorts the deduction of theories. Taking a simple example, which will be proved in later
sections, when a relatively large serial correlation is completely omitted, the between-individual
variance matrix G is then considerably overestimated as R is underestimated. Then, in modeling,
individual-level predictors are added to explain the overstated between-individual variances,
instead of the within-individual predictors (Hoffman, 2015). In this case, the true predictors and
mechanisms of individual growth, particularly for the within-individual levels, are overlooked.
This example applies well for research that is interested in examining the impacts of students’

time-varying psychological and cognitive factors on their learning. On the other hand, if the
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serial correlation is overstated and the research is interested in students’ attributes, like ethnicity
and family background, an overstated R eliminates some between-individual variance due to

those students’ attributes.

In addition to deciding R based on empirical experience and theory, a general statistical
approach is through comparing the goodness of fit values among several models with different
specified R structures, and then selecting the best fit model. However, the arbitrary values of
likelihood ratio tests and information fit criteria have been critiqued. The criteria of modeling
performances depend on many factors, including the number of time measures, total sample size
of individuals, estimation methods, and variance-covariance patterns. Therefore, no single
criterion performs uniformly better than the others, and certain criteria perform better for
selecting some R structure models (Vallejo et al., 2011). Also, it is important to note that the best
fit model is not necessarily the model with the correct R (Murphy & Pituch, 2009). Researchers
may turn to the general unstructured R with no prior specifications to best fit the data (Littell et
al., 2000). However, the unstructured R is less interpretable to empirical studies that appreciate
substantive theories. Further, as evidenced in Murphy and Pituch (2009), although the
unstructured R produces the least biased random effects, it inflates Type I error rate of fixed

effects and has convergence problems as a large number of parameters needs to be estimated.

The above presented selection methods of R are not free from concerns. Empirical
research is then still subject to the serious impacts on variance estimates if R is misspecified. In
Kwok et al. (2007) study, three scenarios of misspecifying R are summarized: overspecification,
underspecification, and general misspecification. That study develops a network of multiple R by
their nesting relationship of structures, including independent (ID), first-order autoregressive
process (AR(1)), first-order moving average process ARMA (1,1), Toeplitz 2 bands (TOEP(2)),
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and unstructured, as shown in Figure 1 and Table 1 (Kwok et al., 2007, p.565, 568). For
example, an underspecification situation happens when the true R is AR(1) while an ID is
estimated, or the true one is ARMA(1,1) while an AR(1) is estimated. An overspecification
happens when AR(1) is the true R while ARMA(1,1) is modeled. TOEP(2), and unstructured are
considered as general misspecification when the true R is defined as the other ones. The general
findings are that, if R is underspecified or general-misspecified, the fixed effects coefficients’
estimates are unbiased, while the variances are found to be overestimated. The overspecifications

lead to slightly underestimated variances.

However, other studies found conflicting patterns. Murphy and Pituch (2009) detects
smaller standard error estimates in the underspecified AR (1) model while the true R is ARMA
(1, 1). Also, Ferron et al. (2002) finds larger estimates of random effects’ variances from the
estimated 1D model when the true R is AR (1), whereas the standard error estimates of the fixed
effects are slightly smaller than they should be, as the Type I error rate inflates accordingly.
These finding are consistent with a recent Monte Carlo study of LeBeau (2018), which also
shows inflated Type | error rates of the fixed effects when the serial correlation is completely

omitted in R (i.e., underspecified as ID).

The above simulation-based studies provide evidence of estimation bias due to the
misspecified R, whereas the findings are not always consistent. Moreover, they are limited in
generalizability as they are tested for certain range of parameters. Therefore, further analytic

examinations are needed to further determine the underlying mechanisms of the estimation bias.
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5.2.1 Study Motivation

The above discussion demonstrates that the decision making of R structure is complex.
Besides the awareness of the negative impacts of misspecified R, empirical researchers can
benefit more from a strategy that aids to evaluate whether the estimated R is specified correctly,

and to adjust the potential bias if the estimated R is false.

The current study intents to provide such a strategy that, instead of deciding the true R, it
proposes to quantify the uncertainties that the specified R in the estimated model can cause when
an alternative R is hypothesized to be true. Bertrand et al. (2002) provides variance estimate
formulas to demonstrate the exact reason of omitting positive serial correlation in OLS
estimation that understates the standard error estimates. However, no such efforts have been
made with the presentation of clustering dependencies in multilevel longitudinal analysis. The
current study therefore contributes to fill this gap by deriving formulas to determine the reason of
estimation bias due to omitted serial correlation with multilevel longitudinal analysis. The
detected bias, then, can be adjusted by those formulas. These formulas will be derived similarly
with the VOCs from the previous chapters of the omitted middle and highest cluster levels. This
quantification approach distinguishes the sources of the estimation bias (i.e., serial correlation
and random effects’ variances), and the varying impacts of misspecified R on different levels of
predictors, including the growth parameters and the time-varying predictors at the time-level, and
the time-invariant predictors at the individual-level. In this way, researchers in practice can
benefit from model building with selecting predictors that best explain those corresponding
variances, as well as deciding whether a predictor’s standard error estimates need adjustment or

not.
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Together with the sensitivity analysis developed in Chapter 3, this approach provides
researchers with flexibilities to choose the best model that is statistically robust and appropriate
for their theories. This approach also facilitates researchers and readers who do not have the
original data to replicate the presented models while the original study does not provide much
information on the selection criteria and decision rationale of R. For instance, the assumption of
R is not explicitly given in the study of a five-year longitudinal study of student achievement and
goal setting (i.e., Moeller et al., 2012), and the model results do not show serial correlation
estimates. In this case, readers may suspect the estimated model is specified R = 0PI, and ask
questions of, if any serial correlation is omitted, how much the estimation bias would be and how

robust the inferences that were made.

Since ID and AR(1) are the most widely used R in empirical longitudinal research, the
current study focuses on this underspecification case of estimated R being ID while the true one
being AR(1). However, the above described approach is suitable to test many other pairs of
misspecification cases, such as between AR(1) and ARMA(1,1), as long as the structures are
nested as shown in Figure 1 of Kowk, et al. (2007). The current study adapts this concept of
nested R structures for future work of building a full network of R structure misspecification

pairs.
5.3 Quantification of Standard Error Bias

5.3.1 Model Setting

This section derives formulas to quantify the bias of variance estimates of both random

effects and fixed effects, if the true R structure is assumed to be AR (1) and the estimated R is
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ID. The following defines a two-level random intercept linear growth model to describe a mean

pattern of students’ growth over time:
T|me'|eve| Yti = ﬁoi + ﬁliTimeti + Etir
Student-level: Bo; = Yoo + Yo1Xi + Tois

Bii = Y10,
Mlxed mOdel Yti = ]/00 + leTimeu- + )/01Xi + rol' + gti'

For simplicity of notation and formula derivation, the model is a balanced design that any student
I is measured at the same n; occasions. The intercept S,; varies at the student-level and is
explained by a student-level measure X;. The occasion measure is Time,; and its’ coefficient
parameter y;, is the mean growth rate of students. Taking five-year measured age for example,
Time;; canbe coded as 1, 2, 3, 4, 5, or -2, -1, 0, 1, 2, where the 0 point serves a meaningful start
point for interpretation (Hoffman, 2015). In here and later simulation, Time,; is group-centered
which helps avoid endogeneity issues where random effects correlate with predictors (Antonakis
et al., 2019). Though a random slope is common in longitudinal data analysis, the growth rate
Y10 In this study is not assumed to be random, as students grow at a same rate in a shared
context, such as the same school. Assuming the true serial correlation pattern is AR(1), the

random effects are &,;~N (0, Rar(1)), Toi~N (0, aj,?(l) ) and cov (&g, 1o;) = 0.

Consistent with the modeling settings in Chapter 2 and 4, homogeneity assumption holds
for both levels that random effects’ variances are constant conditioning on controlled variables.

In the model above, covariates other than Time,; and X; are not shown for simplicity. In this
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case, the fixed growth rate and serial correlation are also conditional. The model setting serves a

presumption that the empirical model has no omitted confounding variable.

5.3.2 Quantifying the Standard Error Estimate Bias

The error variance-covariance structure is ¥; 4g1) = var(¥;) = Rap(r) + 1y, Gy,
where the dimension of ¥; 4g(1) IS n; * n., and L, is a column vector of n, ones. The difference

of the error variance-covariance structure between the estimated ID model (noted as ¥; ;) and
the AR (1) model is at the structure of R 45(1). In the AR(1) model,
|' 1 pl pZ p3'|
pt 1 p' p |
p? p!

Rara1) = Gge)(1)| Pl
lp* o2 pt 1l

That is, with an AR(1) serial correlation pattern, the variance of time-level residual is

var(&;) = Uﬁe)@) and the covariance of two adjacent time measures is cov (&g, &) =

aj,?(l)p't‘“, wheret = 1,2,...,n,;s =t —1,Vi,s # t, and p!*=l = pIs=tI (Montes-Rojas,
2016). I also assume that no measurement error and the lag-1 autocorrelation is positive (i.e., 0 <
p!t=sl < 1). The structure L,,, GI',,, does not differ in the true AR(1) model or in the estimated ID

model, which captures the intraclass correlation due to the individual-level random effect

variance. The complete extended form of ¥; 4z (1) is
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11 o pz
Yiar@w) = Rary+ln,Gly,'= fgzta)(l) 22 p11 p1 Zl +1 ajg(l)][l 1 1 1]
lp* o2 pt 1l
ﬁe)(n"‘ (2(1) j;te)u)P + (R)(l) ,Se)(l)P + (R)(l) ,Sz)u)f’ + (;3)(1)_
_ 5;)(1)/) + (3(1) ,agzte)u)"‘ (3(1) /S?)(l)p + (R)(l) ,Sz)u)f’ + (;3)(1)
‘&gzte)(np +O_A(;?)(1) 051?(1)9 +‘&§g(1) aj}?(l)+a (2(1) O;gf?)(l)p "‘C&Se)u)
/32)(1)P + 52(1) jzte)u)P + ,ge)(n /gzte)u)P + ,ge)(n /(12(1)"' ;82)(1)

Unlike ¥; ;p, the off-diagonal of ¥; 4r(1) is no longer a single ajg(l) but a function of

j,?(l) plt=sl, and aj,?(l) To achieve a simpler form of ¥; 4z(1) that can be written into a general

linear form like ¥, ;p, and to achieve a general form of the column sum (such as t* in previous
omitted middle and highest level cases), | construct an average term of cov (e, €;) in the off-

diagonal as

— t 7)
cov (e, &5i) = Ung)(l)p’

where
-1 _
_ Zﬁt_s|=1p|t Sl _ 2
p Ny * Ny — Ny ng(n, — 1)
and
ng ng—1
DPNE
t=2 s=t—1

is the sum of all elements of either side off-diagonal of the p!t=5! symmetric correlation matrix.

This averaging approach is also suggested by Montes-Rojas (2016).
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Any elements in the off diagonal of ¥, 4z(;) now turns to aj,?(l)ﬁ + aj?(l). Similar to the

construction of the conventional ICC as shown in Appendix 2.1, the expected intraclass

® @

correlations of pr(y) is defined by the ratio of g, ;)0 + 0,5(,, and the total error variance

AR

A~

COU(Yti — Y, Yy — Ysi) _ cov(&y + 1o Esi + Toi)

Par(1) = =
\/VW(Yti — YV )var(Yy — V) Jvar(ey + ro)var(eg + 1o;)

_ cov(eg, &) + cov(ro £5i) + cov(ry;, €) + var (ro;)

\/var(eﬁ + rppvar(eg + 1o;)

® ® ® ®

_ Oar@P T 9ar) _ Tar@P T Oar(1)
® )] - 2
= (1 - pl,AR(l))ﬁ + P1,4R(1)- (5.1)

Straightforwardly, par(1) is a function of the two forms of intraclass correlations from the
time series and random effect, which emphasizes the legitimacy of the two forms of intraclass
correlation coefficients. If we overlook the forms of the intraclass correlations, pag(1) is

simplified to an overall intraclass correlation coefficient, and functions equivalently to p; ;p.

The average intraclass correlation of the repeated time measures per individual is p. The
current study defines p as intraclass autocorrelation coefficient (IAC) and p; 4g(1) as intraclass
correlation coefficient of random effects (ICR). Unlike the ID model that has only one intraclass
correlation coefficient (i.e., ICR), the AR(1) model has two forms of intraclass correlations of
IAC and ICR, which highlights the serially correlated features of longitudinal data discussed at

the beginning.
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The ICR is the conventional intraclass correlation, which is

@ ®

o o
AR(1) AR(1)

PLar() =7 —=1——F—.
( ) Ototal Ototal

@
Further, since p; ;p = D the relationship between the individual-level random effects

2
Ototal

of two models is

@ _ @ = @@
Oip = Oap)P + Tgr(1)-

Also, since the total error variance is fixed regardless of the model specification, aj,?(l) +

o _ ® )

2 _ .
O4r(1) = Ototal = Opp + 0y gives that

® _ _(@® =
Op = AR(I)(l_p)'

That is, the estimated intercept random effect in the ID model is smaller than the one in
the AR(1) model, while the estimated time-level random effect in the ID model is larger than the
one in the AR(1) model. This formula testifies the patterns detected in Murphy and Pituch
(2009). The size of the gaps between the random effects of the two models depends on the size
of IAC p. Immediately, the random effects of AR(1) can be derived by the following formula:

)
c®  — Oip

AR(1) — 1-p

and

o _ @ ® ®)
O-A;(l) = (O-Ié + o) — O4r(1) -
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Also,

® @ ® = _
_O4r(1) _ %> T 9ar)P _ P1ip — P
PLAR() = 3 = =

piip — 1
> — R E—
total Gtotal 1 p

=1
tS 5

(5.2)

Consequently, p; 4r(1) is smaller than p, ;5. The degree of differences between these two

ICRs is weighted by the IAC p. When p is zero, the forms of intraclass correlation reduce to

ICR-only as par(1) = P1,4r(1) = P1,1p- Inthis case, an estimated 1D model is the true model. On

the other hand, if p = 1 that each of the time measures of the dependent variable of an individual
@® _ © @ ®

are exactly the same, a,;' = 0,y + Gapy) = Oforar = Oy » Which is equivalent to a time-

individual aggregated or single time-point one level analysis.

Finally, a simple form of the unified single column sum of ¥; 4g(1) IS T4g(1), Which is the

variance estimate index of the coefficient estimate of Timey;:

Mg -1 Mg -1
Vararay(Y10) = Z(Timeti, YiaryTimey) ;= 0% Tapay Z(Timeti, Timey) ¢
k=1 k=1
and
TZR(Q =1+ - 1)pAR(1) =1+, —1 [(1 - P1,AR(1)),5 + pl,AR(l)]- (5.3)

Then, | construct the VOC to measure the variance inflation size of the estimated
variance of the coefficient of the time-level predictor when the AR(1) model is underspecified as
ID. The construction rationale is the same as in previous chapters and the conventional design
effect that the VOC is the ratio of the variance estimate of the AR(1) model and the variance

estimate of the ID model, which yields to
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(AR(1)-1D) _ TAR(1) _ 1+ (nr — 1),0AR(1)an-,AR(1) _ 1+ (nr— 1)p1,1DpT“',AR(1)
Vikrr, oy 1 -1 1 -1
Tip + (nr ),01,AR(1)P T + (nr )P1,AR(1)P T

, (54)

where 7, is the scaler weight of the variance estimate of the ID model, which only takes into
account of the intraclass correlation due to the random effect. 7,z 4y is the scaler weight of the
variance of the AR(1) model, which takes into account of the two forms of the intraclass

correlations. This equation holds the same idea as the ones in previous chapters of quantifying

the variance estimate bias when the middle and highest cluster are omitted.

Further, pr,; arc1) 1S the intraclass correlation of repeated time measure predictor in the

form of an average lag-1 autocorrelation, while p 1), is the average conventional correlation

coefficient. Specifically,

ny _ —_—
) B iz 1 [Z:Zz(TMit —TM;))(TM;e—1y — TMi)]
T ARD Ty Lang — 1 YL, (TMye — TM;)?
and
ny R R
p =L Z 2 ra(TMye — TM;) (TM;5 — ™),
M Lanp(ny — 1) YLy (TMy — TM;)? ’

where n; is the number of individuals, TM;; is a time occasion measure at time t of an individual
i, and TM; is the individual-level mean of the occasion measures. Group-mean centering of the

occasion measure in balanced studies does not produce different values of p 7y ag 1y aNd p -

The above two intraclass correlation measures of predictors are adapted from the ones in
Angrist and Pischke (2008) and Montes-Rojas (2016), which distinguish the difference between

these two types of intraclass correlation coefficients of predictors. Specifically, the inclusion of
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P, ,arc1) 1S Unique for the time-varying predictors in longitudinal data analysis, which specifies
the autocorrelation among one time-measure with the one-time-point-later-measure within
individuals. In contrast, the intraclass correlation of predictors p . is a matter of clustering with

equal correlation between any pairs of time-measure within an individual, due to the nature of

the model specification of ID. Therefore, in general, pr,, is ni times smaller than pr,, ar(1) if
T

there are more than two time-measure. If we ignore these two measures of time-varying
. 5 - . . (AR(1)-ID) :
predictors” intraclass correlation coefficients, VOCy . tends to be smaller than it should

be. In Chapter 2 and 4 for omitted middle and higher cluster levels in non-longitudinal data
cases, the intraclass correlation coefficients of a predictor in the denominator and numerator are
canceled out since they both equal to the conventional correlation coefficient of the same

predictor.

As shown above, the standard error estimates of the time-varying predictors’ coefficient
are downwardly estimated by the omitted autocorrelation. In contrast, the individual level time-
invariant predictor coefficient’s standard error is only affected by the overall dependencies, with
no need of distinguishing serial correlation or random effects. In other words, the standard error
of the individual level time-invariant predictors does not need adjustments in the estimated ID
model. The following equation and further simulation results evidence this point.

Tar) _ 1+(r=1)p ar1)Px;
Tip 1+(nr—-1)pippx;

vocl MW" =

= 1. (5.5)

Different from the previous VIFT("?;(D_’D) as shown in Eq. 5.4, the denominator of

VIFT(f(’f(l)"D ) comes from the estimated model that captures all the dependencies, whereas the

sources of dependencies are not recognized. Since the predictor of interest X; here is at the
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cluster level and time-invariant, its” forms of intraclass correlations does not need to be
distinguished, as long as the overall error variance-covariance are captured. The intraclass

correlation of a cluster-level predictor is one (i.e., py, = 1) and canceled out.

Table 5.1 A summary of VOCs when the serial correlation is omitted

Two-level HLM Single-level OLS Estimation
R=1ID
Level Predictor Vgrlance Level Predictor Vc_emance
adjustment adjustment
_ Time-varying | o c(AR(1)~ID) Time-varying
Time T'Tei _ /
Ty >1 Time- T
Time-invariant (AR()-ID) | Student | Time-invariant (AR(1)-0LS)
Individual VOCry, VoCry,
X; =1 X >1

However, when the clustering structure is also omitted and a single-level analysis using
OLS estimation is conducted, the standard error estimate of X;’s coefficient y,, then needs to be

adjusted by the square root of

VOC%Q(D_OLS) =Tur) = 1+ (e — Dpary = 1+ (e — Dpy,p- (5.6)

(AR(1)-0LS)
CT,Xi

In essence, VO shows the sources of the dependencies through p 4g(1), which

is a function of p; 4r(1) and p that have shown in Eq. 5.1. Moreover, if there is no clustering

(AR(1)-o0LS)
CT,Xl-

issue (i.e., random effect variance is null) but only autocorrelation, then V0 reduces

to 1+ (n; — 1)p, which mimics the design-based approaches (e.g., DEFF and MF to solve the
classic situation of omitting serial correlation in the OLS estimation. Table 5.1 shown above

summarizes when and which predictor needs VOC adjustment.
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5.3.3 Simulation results

To show the magnitude and direction of estimation bias when R is misspecified, and to
examine the performance of the derived VOC formulas, a simulation study is designed with 12
condition sets for the three models of the true AR (1), estimated 1D, and estimated single-level
models. The conditions are set by the two parameters of the VOC formulas: the number of the

time repeated measures n; of 6, 10, and 30, and the autocorrelation p of 0.9, 0.7, 0.5, and 0.2.

and o ¥

The total number of individuals n;, and the true variances of random effects g AR (1)

AR (1)

are fixed to be 500, 144, and 64 respectively, where the true ICR p; 4g(1) is 0.3.

The numbers of the time repeated measures are chosen based on the representative cases
in empirical research. For example, the periodicity of ECLS-K: 2011 survey measures are from
the kindergarten to the fifth grade that n, = 6. In another example of a daily diary study, the
occasion measures can be many more, such as 2 times a day for a half month that n, = 30 (e.g.,
Ilies & Judge, 2004). The combination of the extensive time measures and relatively smaller
autocorrelation gives extremely small average autocorrelation p values that can be null. These
extreme cases serve to prove that, under such circumstances, variance adjustments are not

necessary. For each condition, replications of 500 are generated.

Like the earlier discussed simulation studies, the index of relative bias is computed to

measure the magnitude of the estimation bias:
]
RBese=—p—=75-1

where 6 represents the true parameters from the AR (1) model, including the random effects

variances, and standard errors of the repeated time measure Time,; and the individual-level
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predictor X;. Correspondingly, 8 represents the estimates from the estimated ID models. Falsely

estimated models lead R. B..; to deviate from zero.

Similarly, a relative bias index of R. B.44; ¢s; is provided for the estimates adjusted by
VOCs. The better performance is of the VOCs and less biased of the adjusted estimates, the
closer to zero of R. B.q4; ¢ IS. Further, a larger difference between R.B..s; and R. B.g4; o5t
proves that a biased estimate is more in need of a VOC adjustment. See Appendix 5.A for the

simulation parameter setting and the detailed simulation results.
Bias of the Random Effects and the Adjustment Performance

R. B..s of the residual variance estimate 6 is consistently negative across all models,
and the ones of the individual level random effect variance estimate 6 are positive. In other
words, 6® is underestimated and ¥ is overestimated. The robustness of ® is commonly of
interest in explaining the proportion of the between-individual variances of the total variance of
the outcome. With larger IAC /5 that is omitted, R. B.,s, of 6 deviates more from zero. For
example, when p = 0.9 and n; = 6, 6,%) can be 2.77 times as large as the true ¢®. When p =

0.2 and n, = 30, &,%) is almost identical to the @E,? since p is close to zero (o = 0.017).

Noticeable, when n; is small, a small p could still result in considerable bias of the
random effects estimation. For example, when p = 0.2 and n; = 6, 6,%) is 1.17 times larger than

6/52 (i.e.R.B..s = 0.17). Consequently, the estimated p, ;p, is always larger than the true p; 4g(1)

as long as p is not zero. The adjustments of both 5,(,? and 5,(,? are performed ideally across all

conditions, where the relative bias are all close to zero (R.B.qgj ¢s¢ < 0.01) with minimum

variances (var(R.B.qqj st ) < 0.01). The detected patterns prove that the omitted serial
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correlation is falsely taken away by the individual-level random effect from the time-level
residual, as well as confirming the previously formulated relationships between the random

effects from the AR(1) and ID models.

Bias of the Standard Error Estimate of the Coefficient of Time,; and the Adjustment

Performance

If the AR (1) structure is omitted, the estimated standard errors of Time,;’s coefficient
710 is underestimated, as R. B..¢; are negative across all models. The magnitude of the
underestimation bias rises with the increase of p and n;. Fixing p = 0.9, the estimated standard
error of ¥, is only one-fifth of the true parameter when n, = 30, and three-fifths of the true one
when n; = 6. Moreover, the R. B..;; values decreases to zero when p are closing into zero, such
as when p = 0.2 across all n,. However, the underestimation bias does not diminish. The

estimated standard error of ¥, can still be one-fifth less than the true one.

In terms of the bias adjustment, when p is larger than 0.1, VOC%ATR_(D_ID) performs well

since |R.B.qqjest | < 0.05 and var(R. B.g4/.¢5¢ ) < 0.001, except for the case of when p = 0.5
and n, = 10 (p = 0.178). The performance of VOC%‘,“T’;(D"’D) are also relatively better when the
occasion measures are not extensive. When p is moderate and small (i.e., 0.5 and 0.2),
R.B.qq;.est tends to be positive, though smaller than 0.1 when n; is 6 and smaller than 0.3 when
n, is 10. If n, gets extensively large to be 30, VOC#T’;(”"D ) tends to make undesired
overcorrections that R. B.,4; s 1S larger than 0.5, or even as large as 1. Type Il error can thus be

caused. In these cases, p are around 0.05 and smaller. The undesired overcorrection pattern could

also be related to the values of the intraclass correlations of predictors p rime,; arc1) ad P rime,;-
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As shown inn; = 30, pr,; ar@r) = 0.9 While p 7., = 0.06, in which the extremely small

P rime,; Produces an extremely small denominator of VOC}‘,“TI;(D"’D). As a Result, the

corresponding VOC {4~ tends to be much larger than it should be.

Bias of the Standard Error Estimate of the Coefficient of X; and the Adjustment Performance

As expected, when the clustering structure is omitted, there are underestimation issues of
the standard error estimates of the individual-level predictor X;’s coefficient ¥,,. Consistently
across all conditions, R. B..,; are negative and around from -0.5 to -0.7. Equivalently, the

estimated standard error estimates from the single-level analyses are only half of or even smaller

than the true parameter. VOng(l)—OLS)

performs desirable in all models that R. B.,4; ¢ are

close to zero, except for one noticeable overcorrection case of when n, = 30 and p = 0.7.

5.4 Empirical Example and Sensitivity Analysis

The selected empirical example is in Taylor et al. (2010), which applies two-level linear
growth models to examine the impacts of between-student and within-student motivational
regulations and psychological needs on three motivational outcome of effort, intentions, and
physical activity growth. The 178 participant students come from an England school who are in
grade-level 6 through 10. The three outcome variables are measured from three semesters’

surveys.

The original study does not specify the time-level random effect variance structure, thus,
assuming an AR (1) structure is underspecified as ID, the current study presents examples of
utilizing the sensitivity analysis to test the robustness of the time-varying predictors. The

employed models are the ones with outcome predictor of students’ intentions to exercise (see
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Table 1 and 2 of Taylor et al., 2010 for the detailed model reports). In both models, the random
slopes are not significant, and the variance estimates are close to 0 (i.e., 0.1 and 0.01
respectively). Thus, I use the above VOC formulas that are initially constructed from the random
intercept models as an elementary example. Following the suggested steps of conducting the
sensitivity analysis in the heuristics diagram of Figure 3.3 of Chapter 3, the threshold VOC is
calculated at first. Then examples that are minimum and maximum IAC values are presented to

show the boundaries of robustness.

Table 5.2 Sensitivity analysis of the time-varying predictor: competence

ID |AR(1) g |0.27
pc, |053 |0.79 StE* | 0.14 | t* | 1.96
IAC=0.10 |IAC=0.51 | IAC=0.30 StE;, | 013 | t;, |2.08
c® 1120 |1.08 0.02 0.72
o® 1112 |1.24 2.30 1.60
ICR: p; | 0.52 |0.46 0.01 0.31
IAC: p VocC Index | Vvoc StE,,. &"ggﬁ Roc
oc
Threshold
0.00 1.060 0.138 NA NA
voc,
Pmin | 0.10 VoC,,;, |1.105 0.144 0.095 0.265
Pmax | 051 | VOCna |1.341 0.174 0.254 0.719
0.30 1.170 0.152 0.145 0.508

Table 5.2 above presents the sensitivity analysis results of the time-varying predictor
competence in the first model. The right upper corner shows that the robustness of the
competence predictor is not desirable since the t statistic is 2.08, which is almost at the threshold
t* of 1.96. Therefore, any small serial correlation can lead to a Type | error. In this case, the

threshold VOC is less useful. In the table, the grey cells are fixed values, including parameters
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that are provided in the original study, and the ones that are set to achieve minimum and

maximum IAC values.

Setting a minimum IAC being 0.1, the corresponding square root of VOC is 1.105, and
the ICR of the AR (1) model (i.e., ICRar(1)) is close to the ICR of the ID model (i.e., ICRp).
The original table provides the intraclass correlation of the predictor competition (p ¢,; ar(1))
being 0.79, and thus p ¢, turning to be 0.53. In this setting, the robustness of inference (i.e.,
Wyc) or the effect size (i.e., EF,¢) reduces by 1%, and the risk of making Type | error increases
by 26.5%. When setting a minimum ICR sg(q being 0.01, the corresponding square root of VOC
is 1.341, and the IAC is 0.51. This setting offers the upper bound of the possible IAC and the
magnitude of bias. The robustness of inference or the effect size reduces by 25.4 %, and the risk
of making Type I error increases by 71.9 %. These two settings have correspondingly lag-1
autocorrelation p values of 0.15 and 0.7, which form a reasonable boundary of a potentially

omitted serial correlation.

Tables 5.3 and 5.4 show the sensitivity analysis examining the time-varying predictors of
intrinsic regulation and external regulation in the second model. For both predictors, they have
the same IAC values since they share the same random effects in the same model, while they
have different VOCs due to the different intraclass correlation of predictors. Provided by the
original study, p g,; ar1) = 0.73 and p gg,, arc1) = 0.53. The estimated effects of these two
predictors are relatively robust. Specifically, their threshold VOCs are larger than the upper

bound of possible VOCs. Thus, no risk of Type | error issue emerges.
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Table 5.3 Sensitivity analysis of the time-varying predictor: intrinsic regulation

A~

ID AR (1) f |0.36
Pir,; |049 |0.73 StE* | 0.18 | t* | 1.96
IAC=0.10 | IAC=0.66 | IAC=0.30 StE;p | 010 | t,p, |3.60
o® 161 |152 0.02 1.26
c® 1081 |0.90 2.40 1.16
ICR: p, | 0.67 0.63 0.01 0.52
IAC: p VoC Index | VvocC StE,,¢ Woc Roc
& ESyc
Threshold
0.00 voc, 1.837 0.184 NA NA
Pmin | 0.10 VOCpiy | 1.106 0.111 0.096 | NA
Pmax | 0.66 VOCpae | 1.397 0.140 0.284 | NA
0.30 1.143 0.114 0.125 NA
Table 5. 4 Sensitivity analysis of the time-varying predictor: external regulation
ID |AR(1) g 1035
Per, |0.35 |0.53 StE* | 0.18 | t* |1.96
IAC=0.10 | IAC=0.66 | IAC=0.30 StE;p | 0.08 | t;p | 4.38
c® 161 |152 0.02 1.26
a® 10.81 |0.90 2.40 1.16
ICR: p; | 0.67 | 0.63 0.01 0.52
IAC: § VOC Index | vVOC | StE,. | .Voc | R,
& ESyc
Threshold
0.00 VoC, 2.232 0.179 NA NA
Pmin | 0.10 VOCpin | 1.087 0.087 0.080 NA
Pmax | 0.66 VOCpar | 1.301 0.104 0.232 NA
0.30 1.116 0.089 0.104 NA

However, the robustness of inference and effect size still needs attention. With a

maximum IAC p,,. = 0.66, the robustness of inference and effect size reduces by 28 % and

23 %, respectively, of the predictors of intrinsic regulation and external regulation. With a
minimum IAC p,,,;, = 0.10, the robustness of inference and effect size reduces by around

for both predictors.
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In sum, the sensitivity analysis provides that the inferences made for the regulation
predictors are relatively strong if the AR (1) structure is omitted. However, the inference made
for competence needs attention because even a minimum omitted autocorrelation can lead to
serious Type | error issue. This evidence is critical since the conclusion drawing on the within-

student level competence is the focus of the original study.

5.5 Conclusion and Future Research

Consistent with previous research (Alejo, et al., 2018; Betrand et al., 2004), the current
study proves that when the chronological order structure within cluster units are omitted in
multilevel analysis for longitudinal data, the intraclass correlation due to individual-level
random effect variance takes over the serial correlation. To the author’s knowledge, the current
study is the first that formulated this relationship of random effects and serial correlations when
R is underspecified from AR (1) to ID. This study further determines that the magnitude of the
overestimation of the individual-level random effect variance is weighed by the IAC p. The
conceptualization of IAC and ICR provides new understandings of the conventional intraclass

correlation coefficient, and evidence to decide which level’s predictors are essentially needed.

Further, the derivations of VOCs are conducted separately for time-level and individual-
level predictors. These formulas produce consistent suggestions with the simulation-based
findings from the earlier discussed prior research, such as Ferron et al. (2002) and LeBeau
(2018). Specifically, when the true AR(1) is completely omitted, time-varying predictors need
adjustments, while the time-invariant predictors do not. Noticeably, the current study does not
recommend adjusting the standard error estimates of fixed effects when the occasion measures

are extensive, and the hypothesized lag-1 autocorrelation is small such that the IAC is smaller
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than 0.2. Employing the sensitivity analysis framework developed in Chapter 3, empirical
researchers and readers are able to easily find evidence of the extent to which the inference is

robust. The strategies are provided with an empirical research example (i.e., Taylor, et al., 2010).

The current study sets models with only random intercept. However, random slopes are
common in longitudinal data analysis. Particularly, if the random effect of slopes is ignored in
modeling, Type | error rate inflates (LeBeau, 2018). Including the random slopes in the current
study increases the complexity of the variance-covariance structure, since the covariance units
depend on the occasion measures. This complexity can be addressed in future studies. For
instance, with the experience of constructing an averaged autocorrelation parameter (i.e., IAC)
for the descending serial correlation pattern, an average covariance parameter can be similarly
constructed, as long as the overall error variance-covariance are captured correctly. However, the
precision and consistence of the averaged autocorrelation and covariance parameters could be

affected by the missing data and unbalanced design, which need further tests.

Also, the current study only explored the relationship between the ID and AR (1)
structures. In future studies, the interrelationship between other commonly used alternative R
structures will be developed. For example, AR (1) is easily to relate to ARMA (1,1). Finally,
future research may study the omitted serial correlation in three-level models. For instance, a
higher cluster level of school could exist. Comparing with the current study, two additional
intraclass correlations emerge: the ICR and IAC that are school specific (Alejo, et al., 2018).
Then the quantification of estimation bias due to omitted serial correlation are complex as to

distinguish the sources of the intraclass correlations.
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APPENDIX 2A

Intraclass Correlation Coefficients in A Three-Level Model

In the current study, the intraclass correlation coefficients (ICCs) of classroom- and

. 0 4o o .
school-level are defined as p; = = and p, = — Another commonly used definition of

2

) )
ICCsis p; = ‘;—: and p, = UG—Z The distinction of these two methods of ICCs occurs only at p,

and p7. Hox, Moerbeek, and Van de Schoot (2010) summarized that these two methods are both
correct, though having slightly different focuses. The latter method has a focus on decomposing

the variance from each level that p; identifies the unique classroom-level variance.

In the first method, p, is derived as the following

COV(}’ijk - 37ijk' Vi'jk — fﬂ"jk)
Sd(yijk - }7ijk) * Sd(yi’jk - ?i’jk)'

p1= Corr(Yijk'Yi’jk) =

where the denominator is the total error variance o2, and the numerator is:
cov(yiji — Vijlo Vit jie — S}i’jk) = cov(ugox + Tojk T Eijk» Uook + Tojk t Si’jk)
= cov(u00k + 70k Uook + rojk) + cov(eijk, Ei’jk)
+c0v(u00k + rojk,rojk) + cov(uOOk + 7ok si,jk).
With assumptions of random effects having zero covariance with each other,
COV(J’ijk - yijk'yi’jk - yi’jk) = cov(Ugok, Ugok) + Cov(rojk'rojk) + ZCOU(uOOk;rOjk)

= var (ugox) + var(rx) = c® + o0,
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®) 4.0 :
As shown, p; = % measures the expected correlation between two students who

. . )
are in the same class and, also, in the same school. Conversely, p, = 60—2 measures the expected

correlation between two students who are in the same school but from different classes.
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APPENDIX 2B

A Summary of Model Specification, Assumption, and Estimation

Table 2B.1 Summary of model specification, assumption, and estimation contrasting the two-
level estimated model omitting the middle cluster level and the three-level satisfactory model.

Model
Specification,
Assumption, and

Two-level Estimated Model

Three-level Satisfactory Model

Estimation
Multi-stage Sampling Multi-stage Sampling
1) In a three-stage sampling where | 1) The model corresponds with
PSUs are schools, SSUs are the three-stage sampling design
classrooms, and USUs are that all the sampling stages as
students, the middle classroom deliberate cluster levels are

1. Multi-stage deliberate cluster level is omitted | specified in modeling.

Sampling Design
and Experimental
Design with
Clusters.

in modeling.

2) Or, in a two-stage sampling
design where PSUs are schools
and SSUs are students, the middle
classroom incidental cluster level
is omitted in modeling.

2) Or, in a two-stage sampling
design where PSUs are schools
and SSUs are students, the middle
classroom incidental cluster level
is included in modeling.

RCT: treatment is randomly
assigned to schools.

RCT: treatment is randomly
assigned to schools.

2. All relevant
predictors are
included in the
model.

Predictors of interest to answer
research questions:

1) Xi(jyk is a student-level
predictor.

2) Wl(})k isa (falsely

disaggregated) student-level
predictor.

3) Zjyk 1s a school-level predictor.

Predictors of interest to answer
research questions:

1) X;jy is a student-level
predictor.

2) Wjy is a classroom-level
predictor.

3) Z, is a school-level predictor.

Relevant covariates, such as
contextual factors, at each level
based on subject-matter
knowledge.

Relevant covariates, such as
contextual factors, at each level
based on subject-matter
knowledge.
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Table 2B.1 (cont’d)

3. Random intercept
only.

1) Schools differ across the
average value of outcomes.

2) The slopes at all levels do not
differ across schools.

1) Schools and classrooms within
schools differ across the average
value of outcomes.

2) The slopes at all levels do not
differ across schools.

4. The error variance
covariance structure
is properly specified.

i\I;K = 02[(1 - p)I +p lnol,no]-

Yy = UZ{IK by [(1 —p)l; +
(p1 = pILL) | + p2 L U, )

Parameters:

1) One ICC: p measures the
similarity of students within the
same school k, regardless of
classrooms.

2) One cluster size: nq is the
average number of students within
a school k.

Parameters:

1) Two ICCs: p, is the expected
correlation of two randomly
drawn students from the same
classroom j in a school k, and
p- is the expected correlation of
two randomly drawn students
from the same school k.

2) Two cluster size: n; is the
average class size and ny is the
average number of teachers within
each school k.

5. The within-cluster
residuals follow a
multivariate normal
distribution.

&1~N(0,6®), where O is
conditioned on predictors and
covariates.

&ijx~N(0,6W0), where o® is
conditioned on predictors and
covariates.

6. The random
effects follow a
multivariate normal
distribution.

figr~N(0,6%8)), where G is
conditioned on predictors and
covariates. And, the group effects
iy 1S independent and identically
distributed that no higher cluster
level exists.

rojx~N(0,069) and
Ugor~N(0,5%), where ¢ and
o are conditioned on predictors
and covariates. And, the group
effects uy, is independent and
identically distributed that no
higher cluster level exists.

7. Homoscedasticity.

1) Constant error variance of all
levels conditioned on predictors.

2) Or corrected heteroskedastic
patterns for the specified nesting
structure.

1) Constant error variance of all
levels conditioned on predictors.

2) Or corrected heterogeneity for
the specified nesting structure.

3) The assumptions still hold after
including the omitted cluster
level.
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Table 2B.1 (cont’d)

8. The within-cluster
residuals and the
random effects do
not covary.

cov (&g, tor) = 0.

cov(&ijk,Toji) = 0,
cov(&;jk, Ugok) = 0, and
cov(Tyjk, Ugok) = 0.

9. The predictors do
not covary with the
residuals and
random effects at
any other level.

1) X;, and W;;, are group-mean
centered.

2) Assume no omitted
confounding variables at all
levels.

1) X;ji and W, are group-mean
centered.
2) Assume no omitted

confounding variables at all
levels.

10. Sample size.

A sufficient large sample size
(both cluster numbers and cluster
size) at all levels to satisfy the
desired power and for the
asymptotic inference.

A sufficient large sample size
(both cluster numbers and cluster
size) at all levels to satisfy the
desired power and for the
asymptotic inference.

Balanced design or at least almost
equal sample size of clusters.

Balanced design or at least almost
equal sample size of clusters.

11. Estimation.

1) (Restricted) Maximum
Likelihood.

2) Design-based approach for the
standard error bias correction.

1) (Restricted) Maximum
Likelihood.

Note. The listed model specification, assumption, and estimation in the first column are
summarized from McNeish and Kelley, (2019, p. 26), McNeish et al. (2016, p. 116), Snijders

and Berkhof (2008) and Snijders & Bosker, (2012, p. 102).
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APPENDIX 2C

Simulation Parameter Settings and Result of VOCs of Omitting the Middle Cluster Level

Table 2C.1 Simulation parameter settings.

o o n, ny 7
or or o | Avg. Class Avg. No. of n or a®
) teachers/classrooms
size
Po p2 per school p
0.2 0.2 0.6 0.22 0.78
0.5 0.2 0.3 0.24 0.76
5 10 0.08
0.7 0.2 0.1 0.26 0.74
0.2 0.7 0.1 0.72 0.28
0.2 0.2 0.6 0.24 0.76
0.5 0.2 0.3 0.29 0.71
10 5 0.18
0.7 0.2 0.1 0.33 0.67
0.2 0.7 0.1 0.74 0.26
0.2 0.2 0.6 0.30 0.70
0.5 0.2 0.3 0.45 0.55
25 2 0.49
0.7 0.2 0.1 0.54 0.46
0.2 0.7 0.1 0.80 0.20
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Table 2C.2 Relative bias of estimates of variances when ¢/ = p, = 0.2, 6% = p, = 0.2.

R.B.,; of HLM

R. B.ggj.ese Of HLM

Parameter n, | n Mean Rande Mean Rande
(\Variance) g (Variance) g
0.30 0
- 5 | 0.08 0) [0.13, 0.47] ) [0, 0]
Residua 0.27 0
variance 5@ | 10| 0-18 0) [0.13, 0.47] ) [0, 0]
25| 0.49 0.17 [0.10, 0.26] 0 [0, 0.07]
' ©) R Q) L
5 |0.08 0('3)1 [0.03, 0.45] (8) [0, 0]
School-level 007 0
random effect | 10 | 0.18 ' [0.06, 2.06] [0, 0]
: ~ (k) (0.05) (0)
variance & 0.39 0
25| 0.49 0.19) [1.03,0.12] ) [0, 0]
5 10.08 0('8)8 [0.05, 0.10] '%86 [-0.10, -0.04]
Standard error of 0.09 003
Xij)x coefficient | 10 | 0.18 ('0) [0.06, 0.13] ((')) [-0.05, -0.02]
V10 0.07 0.01
25| 0.49 0) [0.04, 0.11] ) [-0.04, 0.00]
5 | 0.08 _(()6930 [-0.36, -0.18] 0(3)3 [0.04, 0.24]
Standard error of 0.45 016
Wi(jk coefficient | 10 | 0.18 i (6) [-0.53, -0.34] ('0) [0.06, 0.34]
V20 0.63 0.15
25| 0.49 0) [-0.73, -0.44] (0.01) [-0.05, 0.42]
5 |0.08 (8) [0, 0] (8) [0, 0]
Standard error of 0 0
Z(jy coefficient | 10 | 0.18 0) [0, 0] ©) [0, 0]
Yo1 0 0
25| 0.49 -0.16,0 -0.01,0
) [ ] ) [ ]

123




Table 2C.2 (cont’d)

Parameter

R.B.,,; of OLS

R. B.qgj.ese Of OLS

o Mean Range Mean Range
(Variance) g (Variance) g
5 |0.08 0('5)0 [0.14, 0.30] '%37 [-0.13, -0.04]
Standard error of 024 004
Xqjxo coefficient | 10 | 0.18 0 [0.17, 0.31] 0 [-0.08, -0.01]
]710 -
25 | 0.49 0('5)6 [0.17, 0.36] %)(;2 [-0.10, 0.02]
5 | 0.08 _(262)1 [-0.32, -0.10] ()('8)6 [-0.01, 0.13]
Standard error of 038 0.04
Wi coefficient | 10 | 0.18 0 [-0.50, -0.23] 0 [-0.01, 0.10]
)720 -
25 | 0.49 (265)6 [-0.70, -0.36] 0('8)1 [-0.06, 0.11]
5 | 0.08 '%;8 [-0.77, -0.49] '(()6‘;1 [-0.09, 0.12]
Standard error of 070 001
Z(j1 coefficient | 10 | 0.18 0 [-0.78, -0.50] s [-0.09, 0.11]
You 0.73 20.02
25 | 0.49 ' -0.80, -0.58 ' -0.24,0.12
0) [ ] 0) [ ]
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Table 2C.3 Relative bias of estimates of variances when ¢/ = p, = 0.5, 6% = p, = 0.2.

R.B.,; of HLM

R. B.ygj.ese Of HLM

Parameter n,| n Mean Range Mean Range
(Variance) g (Variance) g
1.52 0
N 5 | 0.08 0.04) [0.95, 2.08] ) [0, 0]
. 1.36 0
variance 10 | 0.18 0.77, 2.16 0, 0.04
ol (0.07) [ ] ) [0 0.04)
0.81 0.01
25| 0.49 0.07) [0.28, 1.84] ) [-0.01, 0.37]
0.31 0
school-level | ° | %08 | (0.06) [0.09,2.50] ) [0.0]
random effect 0.39 0
variance 10 | 0.18 0.13) [0.13, 0.82] ) [0, 0]
G &) 0.81 0
25| 0.49 (0.43) [0.13, 2.47] ) [0, 0]
5 [008| O [0.38, 0.54] 0091 1035 0.00]
Standard error of 0(3)7 - éog 1
Xi(j)x coefficient | 10 | 0.18 (b) [0.38, 0.59] ((')) [-0.20, 0.06]
Y10 0.34 -0.01
25 | 0.49 0) [0.22, 0.49] 0) [-0.32, 0.09]
-0.48 0.01
5 10.08 [-0.50 -0.44] [-0.05, 0.08]
Standard error of (()Oé3 (()03 1
Wi(jk coefficient | 10 | 0.18 ) ((')) [-0.66 -0.59] i (6) [-0.09, 0.06]
Y20 20.78 2013
25| 0.49 ) [-0.82-0.71] 0.01) [-0.27 0.03]
0 0
5 | 0.08 [0, 0] [0, 0]
Standard error of (8) (8)
Z(jyx coefficient | 10 | 0.18 0 [-0.07, 0] 0) [0, 0]
Yo1 -0.01 0
25| 0.49 ) [-0.21, 0.01] ) [-0.01, 0]
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Table 2C.3 (cont’d)

Parameter

R.B.,,, of OLS

R. B-adj.est of OLS

n,| n Mean Mean
(\VVariance) Range (Variance) Range
5 | 0.08 0('8)5 [0.54, 0.81] '%‘39 [-0.39, 0.01]
Standard error of 073 005
Xi(jx) coefficient | 10 | 0.18 ('0) [0.60, 0.85] (b) [-0.23, 0.08]
]710 -
25 | 0.49 0('5)8 [0.59, 1.02] (()b(;l [-0.44, 0.14]
5 |0.08 '%‘;0 [-0.44, -0.37] 0('8)3 [-0.03, 0.10]
Standard error of 057 <0.01
Wik coefficient | 10 | 0.18 (6) [-0.63, -0.46] ((')) [-0.13, 0.17]
)720 -
25 | 0.49 (267)1 [-0.77, -0.66] (<006011) [-0.09, 0.11]
5 | 0.08 _(267)0 [-0.78, -0.51] '(()&gl [-0.12, 0.12]
Standard error of 073 001
Zj) coefficient | 10 | 0.18 (6) [-0.80, -0.59] (6) [-0.19, 0.16]
Yo1 -0.78 -0.04
; - - -0.28, 0.19
25 | 0.49 0) [-0.83,-0.72] (0.01) [-0.28 ]
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Table 2C.4 Relative bias of estimates of variances when ¢/ = p, = 0.7, 6% = p, = 0.2.

Parameter

R.B.,; of HLM

R. B.ygj .05t Of HLM

n, | n Mean Range Mean Range
(Variance) g (Variance) g
6.38 0
5 10.08 [4.19, 8.69] [0, O]
Residual (g";)g) O(%)l
vag?ir)lce 10 | 0.18 (0:87) [3.43, 8.74] (b) [-0.01, 0.41]
3.36 0.10
251 0.49 (1.17) [1.15, 8.13] (0.08) [-0.37, 1.99]
0.46 0
School-level 5 10.08 (0.22) [-1.00, 6.64] ) [-0.02, 0]
random effect 0.58 0
variance 10 | 0.18 (0.18) [1.07,0.21] ) [0, O]
=(k)
o 1.00 0
251 0.49 (0.50) [2.83, 0.20] 0) [0, O]
5 |008| L4 [1.30, 1.66] 0101 092, 028]
Standard error of 1((21)7 (%%?
Xithk c];)effluent 10 | 0.18 (0.01) [1.26, 1.74] (0.06) [-0.99, 0.45]
10 1.09 0.03
251 0.49 (0.01) [0.78, 1.46] (0.08) [-0.94, 0.45]
5 10.08 (205)5 [-0.55, -0.53] 0('8)2 [-0.03, 0.08]
Standard error of 069 008
Wi(jx) coefficient | 10 | 0.18 ((')) [-0.70, -0.68] (6) [-0.16, 0.01]
V20 _ -
251 0.49 (20233 [-0.85, -0.81] (8_ 514) [-0.34, -0.14]
5 | 0.08 (8) [0, 0] (8) [0, O]
Standard error of 0 0
Z i coefficient | 10 | 0.18 (0) [-0.98, 0] 0) [-0.01, 0]
Yo 20.01 0
251 0.49 0) [-0.30, 0.04] 0) [-0.01, 0]
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Table 2C.4 (cont’d)

Parameter

R.B.,,, of OLS

R. B-adj.est of OLS

n, 1 n Mean Ranae Mean Range
(\Variance) g (Variance) g
5 | 0.08 (é'gf) [1.61, 2.13] ('8'0141) [-0.93, 0.29]
Standard error of 1'99 0 03
XiGjr) c;effluent 10 | 0.18 (0.01) [1.68, 2.24] (0.06) [-0.99, 0.50]
10 2.07 0.05
25 | 0.49 0.02) [1.65, 2.59] (0.10) [-0.94, 0.58]
5 |0.08 '?6‘;8 [-0.53, -0.40] 0('8)1 [-0.12, 0.16]
Standard error of 063 0.01
Wik coefficient | 10 | 0.18 ((')) [-0.67, -0.55] (0) [-0.09, 0.08]
V20 0.75 <0.01
25 | 0.49 0) [-0.79, -0.61] 0.01) [-0.14, 0.12]
5 | 0.08 '(2(')7)1 [-1.00, -0.55] '(()&gl [-0.99, 0.15]
Standard error of 074 002
Z(jx, coefficient | 10 | 0.18 ((')) [-0.99, -0.66] (6) [-0.97, 0.21]
You 081 20.05
25 | 0.49 ) [-0.84, -0.78] (0.01) [-0.38, 0.21]
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Table 2C.5 Relative bias of estimates of variances when ¢/ = p, = 0.2, 6% = p, = 0.7.

Parameter

R.B.,,; of HLM

R. B.ggj.ese Of HLM

n, n Mean Range Mean Range
ariance ariance
(Variance) J (Variance) J
1.82 0
N 5 | 0.08 (0.05) [1.16, 2.48] ) [0, 0]
; 1.63 0
variance 10 | 0.18 0.93, 2.58 0,0
gor) ©o9) | | : ©) [0, 9]
0.97 0
25| 0.49 0.12) [0.24, 2.20] ) [0, 0.05]
0.03 0
School-level 5 10.08 0) [0.01, 0.09] 0) [0, 0]
random effect 0.07 0
variance 10 | 0.18 (0) [0.02, 0.24] 0) [0, 0]
&) 0.18 0
25 | 0.49 (0.01) [0.03, 0.76] 0) [0, 0]
0.54 -0.05
5 10.08 0) [0.45, 0.63] (0.05) [-0.80, 0.28]
Standard error of 0.56 0,02
Xq(jyx coefficient | 10 | 0.18 (0) [0.45, 0.69] © '05) [-0.82, 0.28]
V10 0.40 0.01
25| 0.49 ) [0.26, 0.57] (0.04) [-0.77,0.27]
-0.49 0.08
5 | 0.08 [-0.51, -0.46] [-0.06, 0.29]
Standard error of éog 2 0((()))7
Wi(j)k coefficient | 10 | 0.18 '((')) [-0.67, -0.61] (.O) [-0.07, 0.24]
Y20 _ -
25| 0.49 (2(')7)9 [-0.83, -0.69] ?&36 [-0.23, 0.16]
0 0
5 | 0.08 [0, 0] [0, 0]
Standard error of (8) (8)
Z(j)k c;effmlent 10 | 0.18 0) [0, O] ) [0, O]
01
25| 0.49 (g) [-0.03, 0] (8) [-0.01, 0]
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Table 2C.5 (cont’d)

Parameter

R.B.,,, of OLS

R. B-adj.est of OLS

ey Mean Range Mean Range
(\Variance) g (\VVariance) g

5 008 % [1.45, 2.51] 001 | 083 051
Standard error of (g'gé) (8'8?

XiGjr) c;effluent 10 | 0.18 (0.03) [1.58, 2.46] (0.09) [-0.85, 0.57]
10 2.06 0.09

25| 0.49 (0.03) [1.50, 2.66] (0.11) [-0.83, 0.67]

5 008 99 [-0.20, 0.15] 0.27 [0.08, 0.55]
Standard error of ((())%13) (g'gg)

Wi c):?oefﬂCIent 10 | 0.18 (0.01) [-0.55, -0.05] (0.02) [0.01, 034]
20 -0.55 0.06

25| 0.49 (0.01) [-0.65, -0.43] 0) [-0.13,0.27]

5 | 0.08 -0.83 [-0.84, -0.78] “0.01 [-0.14, 0.09]
Standard error of - éog 3 (%%i)

Zjx coefficient | 10 | 0.18 (b) [-0.85, -0.78] (O.bl) [-0.34,0.27]
Vo1 10.84 -0.01

25| 0.49 ) [-0.85, -0.83] (0.02) [-0.14, 0.11]
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APPENDIX 3A

Quantifying the Robustness of Inference with Type 2 Error

In cases of when t,;; < t*, Type 2 error may occur. The discussion serves scenarios of when the
adjacent higher cluster level is omitted, the lower level cluster’s predictors’ coefficients have
overestimated standard error estimates. For example, Chapter 2 showed that VOCs of the
individual level predictor X; ;) (and X;(ji,) are smaller than 1 when the upper middle cluster
level is omitted. Further in Chapter 4, the standard error estimate of the middle cluster level
predictor W, coefficient could also be overestimated when the highest cluster level is
omitted. This scenario of having potential risks of making Type Il error is demonstrated using an

empirical study in Chapter 4 with implementing the below robustness inference measures.

Identical to the discussed rationale for comparing the deviation of the estimated models
from the true models, Figure 3.A.1 shows the two possible scenarios of having or not having
Type Il error when the t-statistic is smaller than the t critical value. Unlike Figure 3.2, A turns to
be deflation instead of inflation. The definitions of quantifying the deviations of the t statistics to
the t critical value remain the same, while the formulas are reversed as in Type | error

discussions that Ay = t,;r — t* and A,= t* — t,;5. In panel (a), Type Il error does not occur since

tors < tyip < t*;in Panel (b), Type Il error occurs since to;s < t* < ty;f.

Following the ideas of constructing the measures of robustness of inference and effect
size when t,;s > t* that have been discussed previously, these two measures are adapted for the

current setting of t,;s <t < t* (i.e., no Type Il error) :
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tmf tmf tvif StEols
and
ESOLS ESVIF StEmf
ESoc = - =1—-+VVIF.
o ESyi StEois

When t ;s < t* < tvir » a Type Il error occurs, and Wy and ESy are the same as above.

Further, the risk of making a Type Il error index is identical to the above Type | error one as:

A, A 1 1
ROC —_— — = = )
A~ A +A, T 14+A/A 147
and
th —t StE® — StE,, NVIF
r = Az/A1= ols = ols

toif —t"  (StE,;s — StEVVIF

where r is positive and 0 < Ry < 1, since StE,;s > StE* > StE,;;.
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t statistic

-

7Deﬂation A
=A2-Al

Estimated Model Hypothesized Satisfactory Model A

(a) Scenario of no Type Il error

Deflation A
=A2+Al ~ Al

t* = 1.96

t statistic

Estimated Model Hypothesized Satisfactory Model B

(b) Scenario of having Type Il error

Figure 3.A.1 Two scenarios of comparing t statistics of the estimated model and the
hypothesized satisfactory models (t,;s < t*).
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APPENDIX 4A

Simulation Parameter Settings and Results of VOCs of Omitting the Highest Cluster Level

Table 4A.1 Simulation parameter settings.

0 o® o M

M, . .
ol al al t’:\a\‘/gﬁel\'l’gpoefr No. of schools o0 =l

P =P P2 Po school

0.5 0.1 0.4 0.5
0.8 04 0.4 20 5 0.2
0.8 0.6 0.2 0.2
0.5 0.1 0.4 0.5
0.8 04 0.4 10 10 0.2
0.8 0.6 0.2 0.2
0.5 0.1 0.4 0.5
0.8 04 0.4 4 25 0.2
0.8 0.6 0.2 0.2
0.5 0.1 0.4 0.5
0.8 04 0.4 2 50 0.2
0.8 0.6 0.2 0.2
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Table 4A.2 Relative bias of estimates of variances when p; = 0.5, p, = 0.1, p, = 0.4.

Parameter

R.B.,; of HLM

R. B.ygj.ese Of HLM

ni | M Mean Range Mean Range
(\VVariance) g (\Variance) g
0.14 0
20 | 5 (0.02) [0, 1.14] ) [0, O]
Teacher-level 10 | 10 (8'82) [0, 1.12] (8) [0, 0]
random effect variance 0' 4 0
~( ) .
gl 4 |25 (0.03) [0, 1.06] 0) [0, 0]
0.31 0
2 | 50 (0.06) [0, 1.68] ) [0, 0]
0.06 0
20 | 5 0, 0.43 0, 0.02
) [ ] 0) [ ]
0.08 0
Standard error of 101 10 0 [0,042] 0) [0,002]
W coefficient ¥, 0.10 0.01
4 | 25 (0.01) [0, 0.41] 0) [0, 0.03]
0.13 0.01
2 | 50 (0.01) [0, 0.58] 0) [0, 0.04]
-0.33 0 [-0.01,
20051 904 [-0.69, 0] ) 0.01]
-0.30 0 [-0.01,
Standard error of 101 10 (0.02) [-0.58, 0] (0) 0.01]
Z,, coefficient 7, -0.17 3 0
4 | 25 (0.01) [-0.37, 0] (0) [0, 0]
-0.08 0
2 | 50 -0.21, 0.00 0,0
(0) [ ] ) [0, 0]
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Table 4A.2 (cont’d)

Parameter

R.B.,,, of OLS

R. B-adj.est of OLS

na | M Mean Range Mean Range
(\VVariance) g (\Variance) g
0.38 0.02
20| 5 ) [0.24, 0.56] (0) [-0.16, 0.07]
0.39 0.01
Standard error of 10 | 10 ) [0.24, 0.56] 0) [-0.15, 0.08]
Xi(jiey Coefficient 710 |, | 5o o(.g)o [0.27, 0.61] <(()6())1 [-0.22, 0.07]
0.40 <0.01
2 | 50 0) [0.25, 0.57] ) [-0.18, 0.07]
-0.66 -0.02
20| 5 0) [-0.71, -0.58] ) [-0.11, 0.10]
-0.66 -0.01
Standard erfor of 10 | 10 0) [-0.70 -0.57] ) [-0.11, 0.10]
Wiy coefficient o |, | 55 o | bo7ioss) | Se | [00,041]
-0.65 <0.01
2 | 50 0) [-0.71, -0.51] ) [-0.10, 0.11]
-0.79 -0.03
20| 5 0) [-0.91, -0.64] ) [-0.12, 0.10]
-0.78 -0.02
Standard error of 10 | 10 0) [-0.87, -0.65] ) [-0.11, 0.10]
Zi(jk) coefficient y,, 4 | 25 -0.74 [-0.82, -0.67] -0.01 [-0.11, 0.10]
) ©)
-0.71 <0.01
2 | 50 0) [-0.76, -0.65] ) [-0.11, 0.11]
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Table 4A.3 Relative bias of estimates of variances when p; = 0.8, p, = 0.4, p, = 0.4.

Parameter

R.B.,; of HLM

R. B.ggj.ese Of HLM

ny | My Mean Range Mean Rande
(\Variance) g (\Variance) g
0.59 0
20| 5 | 02 [0, 3.79] o [0, 0]
Teacher-level | 10 | 10 (8'23) [0.00, 2.58] (8) [0, 0]
ranQom eff?jc)t 0.95 0
variance & 4 | 25 (0.17) [0.15, 3.38] 0) [0, 0]
2 | 50 (é:gg) [0.00, 3.29] (8) [0, 0]
20 | 5 (8:(2);‘) [0, 1.16] 0('8)2 [0, 0.05]
Standard error of | 10 | 10 (8'82) [0, 0.87] 0('8)2 [-0.97, 0.06]
Wiy c?efficient 0.38 0.02
Jor s s | oo [0.07, 1.07] 0 [0.01, 0.05]
0.40 0.03
2 |50 | o0 [0.00, 1.04] 0 [0.00, 0.09]
057 20.01
20| 5| 0oy [-0.75, 0] 0 [-0.02, 0.01]
052 20.01
Standard error of | 0 | 19 (0.01) [-0.99, 0] (0) [-0.97, 0.01]
Zyc coefficient 7o, | 4 | 55 _(()6335 [-0.45, -0.15] (8) [-0.01, 0.01]
2 | 50| 0L [-0.25, 0.00] 0 [0, 0]
0) 0)
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Table 4A.3 (cont’d)

Parameter

R.B.,,, of OLS

R. B-adj.est of OLS

ny | My [ Mean Mean
(\Variance) Range (\Variance) Range

20 | 5 (é'gé) [0.62, 1.92] (8'(2)}1) [-0.68, 0.37]

Standard error of | 10 | 10 (é'éi) [0.63, 1.75] (8'32) [-0.91, 0.38]
Xi(jiy coefficient 1'19 0'05

F1o BN [0.68, 1.74] (0.06) [-0.97, 0.36]
1.20 0.03

2 [50 | (o) [0.71, 1.63] 0.05) [-0.83, 0.35]

20| 5 ‘%;8 [-0.74, -0.49] ('8'&7) [-0.25, 0.35]

Standard error of | 10 | 10 ‘%;6 [-0.74, -0.54] ('8'(())13) [-0.22, 0.25]
Wijk coefficient 065 <(') ol

Foy 4 | 25 0 [-0.72, -0.51] 0.01) [-0.19, 0.33]

2 | 50 '%;5 [-0.74, -0.49] 0('8)1 [-0.16, 0.19]

20 | 5 _(()62;9 [-0.94, -0.72] ('8'819) [-0.26, 0.32]

Standard error of | 10 | 10 _(()62;8 [-1.00, -0.73] ('g'gf) [-0.24, 0.21]
Zj(jk) coefficient 084 O 03

oz 4 | 25 O [-0.87, -0.78] 001) [-0.20, 0.28]
-0.79 -0.01

2 | 50 -0.82,-0.74 -0.18,0.15

(0) [ ] (0) [ ]
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Table 4A.4 Relative bias of estimates of variances when p; = 0.8, p, = 0.6, p, = 0.2.

Parameter

R.B.,; of HLM

R. B.ggj.ese Of HLM

| M Mean Range Mean Range
(\VVariance) g (Variance) g
1.69 <0.01
20| 5| (g7 | 000039 . [-0.01, 0]
Teacher-level 10 | 10 (i'%) [0.11, 7.11] <?(')§’1 [0, 0]
random eff?jc)t 2.85 <0.01
variance & 4 | 25 (1.11) [0.70, 7.44] 0) [0, 0]
2 | 50 (i’:ég) [1.06, 6.77] <?(')‘))1 [0, 0]
20 | 5 (g'ﬂ) [0.00, 2.28] 0('8)5 [0.00, 0.12]
0.80 0.06
Standard error of 101 10 (0.11) [0.05,1.78] 0) [001,0.13]
Wao coefficient 7o, |, | o (g'gé) [0.29, 1.85] 0('8)7 [0.03, 0.13]
2 | 50 (g'gg) [0.42, 1.69] 0('8)7 [0.030.17]
20 | 5 (8517) [-0.77, 0.00] '%32 [-0.06, 0.01]
061 20.01
Standard error of | 0 | 10 (0) [-0.66,-0.27] (0) [-0.04,0.01]
Zi coefficient 7oz | 4 | o5 '(26‘;3 [:0.48, -0.33] <(()6())1 [:0.02, 0.01]
2 |s0| 024 |ro27,-0181| <99 | 001 000
(0) (0)
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Table 4A.4 (cont’d)

R.B.,,; of OLS

R.B.qgj st OF OLS

Parameter ny | M, Mean Range Mean Range
(Variance) g (Variance) g

0.91 0.23

20 | 5 012 [0.38.226) | (os | 089,038

Standard errorof | 10 | 10 .07 [0.45, 1.88] 0.18 [-0.87, 0.39]
X i1y coefficient (0.08) (0.05)
ik 1.18 0.09

Fro 4125 o [053,193] | (Jog | [0.9037]
1.20 0.04

2 |50 | oo [0.64,167) | 0 0e | [089,036]
-0.59 20.10

20 | 5 oon | F070.-0281 | Gon | [034,057]

Standard error of | 10 | 10 _(265;4 [-0.69, -0.33] (<oobozl) [-0.31, 0.45]
Wijk coefficient 052 0'04

Fos sl | [065,-0.38] | (oh | (021,04

2 | 50 _(265;1 [-0.63, -0.33] (8:8615) [-0.16, 0.28]

20 | 5 '%;1 [-0.94, -0.68] (_c()).'0126) [-0.39, 0.44]

Standarderrorof | 10 | 10 | 00 | [.092,-078] | oor | [0.33,038]
Ziciry Coefficient ©) (0.02)
1k -0.86 -0.03

7o 4 | 25 0 [0.88,-082 | () | [0.25,038]
20.81 :0.01

2 | 50 -0.82,-0.78 -0.22,0.19

@ | I @ |t :
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APPENDIX 5A

Simulation Parameter Settings and Results of VOCs of Omitting the Lowest Cluster Level

Table 5A.1 Simulation parameter settings.

n, p p P Time,; AR(1) P Time,;
0.9 0.789
0.7 0.476

6 0.5 0.167
0.5 0.269
0.2 0.079
0.9 0.697
0.7 0.351

10 0.7 0.140
0.5 0.178
0.2 0.049
0.9 0.423
0.7 0.143

30 0.9 0.06
0.5 0.064
0.2 0.017
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Table 5A.2 Relative bias of estimates of variances when lag-1 autocorrelation p = 0.9

R.B.., of ID R.B.4gj st OF 1D
Parameter n; Mean Mean
(Variance) Range (\Variance) Range
-0.79 [-0.81, - 0.00
61 (0.00) 0.76] ©0.00) | [012.012]
Residual variance -0.70 [-0.73,-0.6 0.00
5® 10 (0.00) 6] (0.00) [-0.10, 0.11]
-0.42 [-0.47, - 0.00
30 (0.00) 0.36] (0.00) [-0.07, 0.10]
6| ~7 | 24223 | 2% | [058 056
- (0.04) (0.04)
Individual level 157 0.01
random e;f?gt variance 10 (0.03) [1.11,2.09] (0.03) [-0.54, 0.57]
0.95 0.00
30 (0.02) [0.55, 1.32] (0.02) [-0.38, 0.36]
-0.39 [-0.41, - -0.04
51 (00 0.36] (0.00) | [012002]
Standard error of -0.51 [-0.53, - -0.03
Time,; coefficient 7., | 2| (0.00) 0.49] (0.00) | [011,-0.04]
-0.71 [-0.72, - -0.03
301 0.00) 0.69] (0.00) | [0-08003]
R.B..,; of OLS R.B.qgjest Of OLS
Parameter n; Mean Mean
(\Variance) Range (\Variance) Range
5 -0.56 [-0.57, - 0.01 [:0.01, 0.04]
(0.00) 0.55] (0.00)
Standard error of
X; coefficient 10| ;964 [-0.65, - 0.02 | 1901, 0.05]
: 01 (0.00) 0.63] (0.00) T
-0.74 [-0.75, - 0.12
30 (0.00) 0.73] (0.00) [0.06, 0.17]
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Table 5A.3 Relative bias of estimates of variances when lag-1 autocorrelation p = 0.7

R. B'est of ID R. B-adj.est of ID
Parameter n; Mean Mean
(\Variance) Range (Variance) Range
-0.48 0.00
6 (0.00) [-0.53, -0.42] (0.00) [-0.10, 0.10]
Residual variance -0.35 0.00
5© 10 (0.00) [-0.41, -0.29] (0.00) [-0.09, 0.10]
-0.14 0.00
30 (0.00) [-0.19, -0.09] (0.00) [-0.06, 0.06]
6| 07 |oss 153 | 2% | 053051
. (0.02) (0.02)
Individual level 0.79 0.00
random ef;((aic)t variance 10 (0.01) [0.46, 1.13] (0.01) [-0.30, 0.37]
0.33 0.01
30 (0.01) [0.09, 0.59] (0.01) [-0.24, 0.28]
-0.33 -0.04
6 (0.00) [-0.40, -0.30] (0.00) [-0.15, 0.01]
Standard error of -0.41 0.05
Timey; coefficient 7,, | 0| (0.00) | [044-0391 | 54q | [0.01,0.09]
-0.63 0.01
30 (0.00) [-0.65, -0.61] (0.00) [-0.04, 0.04]
R.B..,; of OLS R.B.4gjest Of OLS
Parameter n; Mean Mean
(\Variance) Range (Variance) Range
6 “0.50 [-0.52, -0.48] 0.02 [-0.01, 0.06]
(0.00) (0.00)
Standard error of 20,58 0.02
X; coefficient ¥y, 10 (0.00) [-0.60, -0.57] (0.00) [-0.01, 0.04]
-0.62 0.36
30 (0.00) [-0.64, -0.61] (0.00) [0.26, 0.41]
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Table 5A.4 Relative bias of estimates of variances when lag-1 autocorrelation p = 0.5.

R.B., Of ID R.B.qgjes: Of ID
Parameter n; Mean Ranae Mean Range
(Variance) g (Variance) g
-0.27 0.00
6 (0.00) [-0.34, -0.20] (0.00) [-0.09, 0.09]
Residual variance -0.18 0.00
5® 10 (0.00) [-0.24,-0.12] (0.00) [-0.08, 0.07]
-0.07 0.00
30 (0.00) [-0.11, -0.03] (0.00) [-0.05, 0.04]
6 (8'81) [0.28, 0.95] (8'81) [-0.33, 0.36]
Individual level 0'40 0.00
random etf;gt variance 10 (0.01) [0.11, 0.67] (0.01) [-0.29, 0.28]
0.15 0.00
30 (0.01) [-0.07, 0.38] (0.01) [-0.22, 0.23]
-0.27 -0.03
6 (0.00) [-0.36, -0.22] (0.00) [-0.15, 0.05]
Standard error of -0.32 0.12
Time,; coefficient 7., | 0| (0.00) | [93%-029 | (yqq | [0.07,0.17]
-0.38 0.58
30 (0.00) [-0.40, -0.37] (0.00) [0.51, 0.66]
R.B.., of OLS R.B.4gjest Of OLS
Parameter n; Mean Range Mean Range
(\Variance) g (Variance) g
6 ('ggg) [-0.48, -0.39] (8'83) [-0.01, 0.10]
Standard error of 0 54 O. 0l
X; coefficient ¥y, 10 (0.00) [-0.57, -0.52] (0.00) [-0.01, 0.03]
-0.70 0.00
30 (0.00) [-0.72, -0.68] (0.00) [-0.01, 0.01]
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Table 5A.5 Relative bias of estimates of variances when lag-1 autocorrelation p = 0.2.

R. B'est of ID R. B-adj.est of ID
Parameter n, Mean Ran Mean Ran
ariance ariance
(Vari ) ange (Vari ) ange
-0.08 0.00
6 (0.00) [-0.15, 0.01] (0.00) [-0.08, 0.10]
Residual variance -0.05 0.00
5© 10 (0.00) [-0.12, 0.02] (0.00) [-0.08, 0.07]
-0.02 0.00
30 (0.00) [-0.06, 0.02] (0.00) [-0.04, 0.04]
0.17 0.00
dividual level 6 (8'21) [-0.11, 0.44] (8'8(1)) [-0.30, 0.27]
random effect variance 10 ' -0.15, 0.40 ' -0.26, 0.29
e oo | L 1 oy |1 ]
0.04 0.00
30 (0.00) [-0.18, 0.24] (0.00) [-0.22, 0.20]
-0.12 0.09
6 (0.00) [-0.16, -0.06] (0.00) [0.02, 0.14]
Standard error of -0.14 0.29
Time,; coefficient 7,, | 0| (0.00) | [O17-0100]  5qq) | [0.23,0.35]
30 ('8 0107) [-0.19, -0.15] (égg) [0.93, 1.12]
R.B.. ; of OLS R.B.qgjest 0f OLS
Parameter n; Mean Range Mean Ranae
(\Variance) g (Variance) g
6 'g'gg [-0.43, -0.36] 8'88 [-0.01, 0.01]
Standard error of (_0' 50) (0'00)
X; coefficient 7y, 10 (O.bO) [-0.53, -0.47] (O:OO) [-0.01, 0.01]
30 ('8 gg) [-0.70, -0.66] (888) [0.00, 0.00]
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