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ABSTRACT

SEQUENCE LEARNING WITH SIDE INFORMATION: MODELING AND
APPLICATIONS

By

Zhiwei Wang

Sequential data is ubiquitous and modeling sequential data has been one of the most

long-standing computer science problems. The goal of sequence modeling is to represent

a sequence with a low-dimensional dense vector that incorporates as much information

as possible. A fundamental type of information contained in sequences is the sequential

dependency and a large body of research has been devoted to designing effective ways to

capture it. Recently, sequence learning models such as recurrent neural networks (RNNs),

temporal convolutional networks, and Transformer have gained tremendous popularity in

modeling sequential data. Equipped with effective structures such as gating mechanisms,

large receptive fields, and attention mechanisms, these models have achieved great success in

many applications of a wide range of fields.

However, besides the sequential dependency, sequences also exhibit side information that

remains under-explored. Thus, in the thesis, we study the problem of sequence learning

with side information. Specifically, we present our efforts devoted to building sequence

learning models to effectively and efficiently capture side information that is commonly seen

in sequential data. In addition, we show that side information can play an important role

in sequence learning tasks as it can provide rich information that is complementary to the

sequential dependency. More importantly, we apply our proposed models in various real-world

applications and have achieved promising results.
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Chapter 1

Introduction

1.1 Motivation

Sequential data, which consists of a set of sequences presented by lists of events with particular

orders, are ubiquitous. For example, in genetics, a gene which is a sequence of four different

types of nucleotide is sequential data; in linguistics, sentences that are formed by words from

a certain vocabulary are considered as sequential data; in e-commerce, the behaviors of a

customer in a session are sequential data. Given its wide applications, modeling sequential

data has been one of the most long-standing computer science problems.

The goal of sequence modeling is to represent a sequence with a low-dimensional dense

vector that incorporates as much information as possible. A fundamental type of information

contained in sequences is the sequential dependency of events and a large body of research has

been devoted to capturing them. Recently, deep neural networks has gained great attention

for modeling sequential data. In particular, recurrent neural networks(RNNs) [101], temporal

convolutional networks [10, 26], and Transformer [117] are among the most popular neutral

sequence models. Equipped with gating mechanisms, large receptive field, and attention

mechanisms, these models are very effective in capturing long-term dependencies in sequences

and have led to great success in many applications of a wide range of fields, including

linguistics, e-commerce, and education [26, 56, 97].

1



:  Correct:  Incorrect

B A C

Exercise Sequence

x1 x2 x3

B

F

E

A

C

D

Problem Relation

(a) Student Exercise Sequence.

S4

S3

S2

S1

Papers with Citation Links

(b) Four papers with their cita-
tion links.

Figure 1.1: Examples of event and sequence relation information

However, besides long-term sequential dependency, sequences also exist side information

that remains under-explored. In particular, this dissertation focuses on the following five

types of side information that are commonly seen.

• Event relation. Most of the existing popular sequence models assume that events are

independent. However, this assumption is not true and events are related in many

scenarios. Figure 1.1a shows an example of student exercise sequence, where an event

involves one problem the student solves. In this figure, problems are inherently related

because of the underlying knowledge or skills that are required. Such problem relation

provides us essential information to model the student knowledge state [19].

• Sequence relation. Besides event relations, sequences can also be correlated. For

instance, figure 1.1b shows four published papers (denoted by S1, S2, S3, S4) that

are connected by their citation relations. In this case, each paper (Si) is a sequence

of English words. To understand the topic of one paper, both content (sequential

dependency) and citations (sequence relation) can play an important role.

2
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Figure 1.2: Examples of temporal and hierarchy information

• Temporal information. Sequences are also associated with temporal information. For

example, each event of a user behavior sequence in an e-commerce website is recorded

with a timestamp indicating when the behavior happens as shown in the figure 1.2a. In

this case, the events no longer evenly distributed along the timeline. Such temporal

information enables us to not only model user interest but also its dynamics.

• Hierarchy information. Events can exhibit hierarchical structures. One example is the

English language where a sentence consists of a sequence of words and a word consists

of a sequence of characters. Figure 1.2b gives a concrete example sentence as well as its

hierarchical structures.

• Multi-scale sequential dependency. The sequential dependency of events in a sequence

is often of multiple scales. Consider the example of anomalous sequence detection

problem shown in figure 1.3, where there are three user behavior sequences and two

of them are anomalous. Specifically, in the second sequence, the anomalous user tries

to hack an account but failed three times before success. In the third sequence, the

3
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Figure 1.3: Examples of event and sequence relation information

anomalous user adds several expensive identical items and changes the shipping address

before checking out. Thus, suspicious behaviors can be reflected by both local (second

sequence) and the global (third sequence) sequential dependencies.

In summary, the side information mentioned above can play an essential role in sequence

learning tasks as it could provide rich information of sequences that complements the

sequential dependency. Thus, in this dissertation, we study the problem of incorporating

side information for sequence modeling. In the next section, we give a summary of our

contribution.

1.2 Dissertation Contribution

This dissertation presents our efforts to design effective models to capture the side information

mentioned above for sequence learning and apply them in various real-world tasks. As a

summary, the major contribution of this thesis are listed below.

• We conduct pioneering research to explore event relations for sequence modeling .
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We design a neural model that is able to explicitly incorporate the event relation for

sequence modeling and empirically verify its effectiveness.

• We are among the first to identify the importance of sequence relation for learning

better representations of sequences. We develop an advanced framework that captures

the dependencies not only within sequences but also among sequences. We evaluate the

framework with extensive experiments and demonstrate the contribution of sequence

relation to sequence learning tasks.

• We provide a principled approach to model the temporal dynamics of a sequence and

build a novel recommender system that is able to recommend the right item at the

right time.

• We tackle the word recognition task where the computer system needs to recognize

the correct form of noised words. To achieve it, we design an effective neural sequence

model to capture the hierarchical structure of English languages. We believe such a

model can serve as a very important component in robust natural language processing

systems.

• We design a novel one-class classifier for sequences and it is aware of both global and

local scales of sequential dependencies. Moreover, we apply it in sequence anomaly

detection problem and show very promising results with comprehensive experiments.

In the next, we will give the outline of this dissertation.
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1.3 Dissertation Outline

Based on different types of side information, the rest of this dissertation is organized as

follows: Chapter 3 demonstrates our work on capturing event relation for sequence modeling;

In Chapter 4, we focus on incorporating relation among sequences; We discuss our work on

modeling temporal information in Chapter 5; Chapter 6 introduces our work on modeling

hierarchy information in sequences; We present a novel one-class sequence classifier that

captures multi-scale dependencies for anomaly detection problem in Chapter 7; Finally,

Chapter 8 concludes our works and identifies promising future directions.
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Chapter 2

Knowledge Background

In this chapter, we overview the knowledge background of sequence modeling. Specifically,

we firstly review sequence modeling techniques, which covers the basics of widely used deep

neural networks for sequence modeling. In the second part, we will introduce the typical

tasks for sequence modeling as well as their applications.

2.1 Sequence Modeling Techniques

2.1.1 Basic Notations And Definitions

Before we give detailed mathematic formulation of sequence models, we want firstly describe

the basic notations and definitions that will be used throughout this chapter. We denote

scalars by lower-case letters such as i and j, vectors are denoted by bold lower-case letters

such as x and h, and matrices are represented by bold upper case letters such as W and

U. For a matrix A, we denote the entry at the ith row and jth column of it as A(i, j), the

ith row as A(i, :) and jth column as A(:, j). In addition, We use (· · · ) to represent an event

sequence and subscripts are used to index the events in the sequence such as (x1, x2, x3).
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2.1.2 Recurrent Neural Networks

The most popular deep neural networks are arguably recurrent neural networks(RNNs) [101].

RNNs are fundamentally different to any other neural networks such feedforward networks

and convolutional neural networks and specialized for modeling sequential data. Most RNNs

process the events one by one according to their sequential order. During this procedure,

they maintain an internal state to encode the information that has already been processed.

Due to this specially designed process, they are able to scale to sequences of various length.

Concretely, let’s denote the internal state and the representation of event at step t as ht and

xt, respectively. To obtain the state, a vanilla RNN takes the previous state ht−1 and xt as

input and processes them with a neural cell defined as follows:

ht = f(Uht−1 + Wxt) (2.1)

Where U and W are the trainable parameters and f(·) is a activation function which

enables the non-linearity. The above described vanilla RNN naturally encodes the historical

information and enjoys many advantages. For example, the model size will not changes with

the size of the input sequence. However, there are two major drawbacks. One is that it

suffers from gradients vanishing or exploding issues, which fail the learning procedure as it

cannot capture the error signals during back-propagation process [13]. The other one is its

high computation time complexity which is linear to the size of input sequence. To overcome

its first drawback, more advanced variants have been proposed. The most successful ones are

gated recurrent unit(GRU) [20] and long short-term memory(LSTM) [57].

GRU GRU also utilize gating mechanism to control the information flow. Specifically, in the

GRU, current state ht is a linear interpolation between previous state ht−1 and a candidate
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state h̃t:

ht = zt � ht−1 + (1− zt)� h̃t (2.2)

where � is the element-wise multiplication and zt is called update gate which is introduced

to control how much current state should be updated. It is obtained through the following

equation:

zt = σ(Wzxt + Uzht−1) (2.3)

Where Wz and Uz are the parameters and σ(·) is the sigmoid function, that is, σ(x) = 1
1+e−x .

In addition, the newly introduced candidate state h̃t is computed by the Equation 2.4:

h̃t = g(Wxt + U(rt � ht−1)) (2.4)

where g(·) is the Tanh function that g(x) = ex−e−x
ex+e−x and W and U are model parameters. rt

is the reset gate which determines the contribution of previous state to the candidate state

and is obtained as follows:

rt = σ(Wrxt + Urht−1) (2.5)

LSTM. Similar to GRU, LSTM also utilize gating mechanism to control the information

flow. However, comparing to GRU, the structure of LSTM is more complex, which has four
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gates and an additional cell state. More concretely, the LSTM is defined as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (2.6)

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̃t = σc(Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σh(ct)

where ft, it and ot are the forget, input and output gate, respectively. W∗, U∗ and b∗

(∗ ∈ {f, i, o, c}) are trainable parameters. Despite that both LSTM and GRU alleviate the

problems of gradient exploding/vanishing, they still suffers from slow computation due to

the recurrent procedure. In the next subsections, sequence models without any recurrent

procedure are introduced.

2.1.3 Transformer Model

Since its first appearance, the Transformer model has grained great success in many fields [117].

The major building material of Transformer model is the attention mechanism that was

introduced to alleviate the bottleneck brought by a fixed-length context vector in machine

translation problem [8]. In a nutshell, Transformer consists of a encoder and a decoder. Since

only encoder is related to our works, we will mainly focus on it and encourage readers to

refer the original paper for details of decoder.

The input of the Transformer encoder are the event embeddings, to which positional
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encodings will be added. After this, the input will be passed through stacked identical blocks.

Each block consists a multi-head attention and a feedforward sublayers that are connected

with residual and layer norm operations [53, 7]. The multi-head attention sublayer is the

most important structure of encoder. Roughly speaking, the multi-head attention layer allows

every event to attend all events and refines the representation of each event as the weighted

sum of all events. Comparing to RNNs, there are two major advantages of Transformer

encoder. The first one is its effectiveness for long-term dependencies, which is attributed to

the direction connection between events in the multi-head attention sublayer. The second is

the ease of parallelization of computation. The computation for representations of each event

is independent of that of any others. Therefore, the time complexity will not changed by the

input size.

2.2 Sequence Modeling Problems

In this section, we will introduce sequence modeling problems which can be roughly grouped

into two categories, that is, sequence classification and next event prediction.

2.2.1 Sequence Classification

The goal of this problem is to learn a sequence model that can map unseen sequences to their

labels. Depending on the definitions of sequence and label, this problem corresponds to a

various of tasks. For example, if the sequences are sentences and the label is sentiment, i.e.,

positive/negative, then it is sentiment classification task [108]. Another example would be

the spam detection task where the sequence is a email and the label is whether the email is

spam or not [64].
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2.2.2 Next Event Prediction

In this problem, the model aims to predict the event in next step given the a sequence contains

all the events seen so far. One typical task is the language modeling where the sequence is a

prefix of a word/sentence, we want to predict the next immediately character/word [106].

Comparing to the sequence classification problem, next event prediction often relies more on

the model’s ability to preserve the historical information.

2.3 Summary

This chapter covers the knowledge background of sequence modeling including popular neural

networks and common tasks. It helps to lay the foundation for the next chapters which

present our effort to tackle new challenges in sequence modeling.
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Chapter 3

Modeling Event Relation

3.1 Introduction

Besides sequential dependencies, the real-world sequences of events often exhibit side relation

that may not fully reflected in the sequences. In the next, I will give a few examples. In

session-based recommendation [56], items involved in sessions can be related with each other

due to the factors such as their brands, the categories they belong to, and prices, etc. In the

knowledge tracing scenario [97] where we want to model the knowledge state of a student

based on her historic interactions with questions, questions can be related because they are

designed to examine similar knowledge or skills behind them. In the document modeling

task [133], words can have similar features such as their syntactic functions. The event

relations can be naturally captured by a side graph where nodes are events in the sequences

and there is an edge between two events if they are related. Figure 3.1 illustrate a toy

example about sequences with and without side relations in the knowledge tracing task. In

this example, there are total 6 questions ( {A,B,C,D,E, F}) in the database and a student

has 3 sequential events ({e1, e2, e3}) where each event includes the question the student

answered and the correctness of the answer. Compared to the sequence without event relation

in Figure 3.1 (1), the 6 questions are related by the skills required to solve them and the

relation is modeled by a question-question graph in Figure 3.1 (2). Given that the student
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Figure 3.1: A toy example of a sequence with and without side dependencies in the knowledge
tracing task. Note that each square indicates an interaction where the purple node denoting
the question, and cross and check marks denote the correctness of the student’s answer.

had correctly answered the question “A" in e2, it could be suggested that the student is

likely to correctly answer the question “C" since they require similar skills as indicated by

the question-question graph. Thus, incorporating the event relation in addition to sequential

dependencies has the great potential to advance the modeling of sequences.

While existing models are effective in capturing the sequential dependencies, the majority

of them cannot take advantage of the event relation that naturally exist among events of

sequences. Thus, dedicated efforts to develop more advanced sequence learning models are

needed. However, several obstacles make exploiting event relations for sequence learning a

challenging problem. First, sequential dependencies and event relations are inherently different

that sequential dependencies rely totally on the sequential data while event relations capture

intrinsic properties of events. Thus, it can be very difficult to incorporate them simultaneously.

Meanwhile, sequential dependencies and event relations can have varied contributions in
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sequence modeling tasks. Therefore, how to prevent one from being dominated by the other

one during learning process is another obstacle. One straightforward strategy to incorporate

the event relations in the sequence learning is to apply graph embedding algorithms on the side

graph such as LINE [109] and Node2vect [44] to obtain a low-dimension representation vector

for each event, which can be utilized as attributes of events in the existing sequence learning

models. However, this solution could be suboptimal since the network embedding space may

not align well with the sequence representation space. Thus, we investigate the problem of

modeling sequences with event relations. In an attempt to solve the aforementioned obstacles,

we propose a novel sequence learning framework that captures both sequential and event

relations simultaneously in an end-to-end approach.

3.2 Problem Statement

In this section, we will formally define the problem we aim to solve. Let E = {e1, e2, e3, · · · , en}

be a event set with n events in total and a sequence S be denoted as S = (x1, x2, · · · , xi · · · , xt, xt+1),

where xi is referred as the ith event. In addition, each event xi in a sequence S involves

one event from E , denoted as gi. In many real-world applications, events in E exhibit some

intrinsic relations that are captured as a weighted undirected graph G. Following the standard

way to represent graphs, G is denoted by an adjacent matrix A ∈ Rn×n, where Ai,j indicates

the strength of the relation between events ei and ej .

Most of sequence learning tasks follow the supervised learning settings that each sequence

Si in the sequence training set SL = {(Si, yi)}N1 is associated with a label yi. The sequence

learning aims to utilize information in SL = {(Si, yi)}K1 and predict the labels for sequences

without labels. Depending on the specific tasks, the definitions of labels are different. For
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example, in natural language process, labels can be the sentiment of a sentence [30]; in com-

puter vision, labels can be the content of images [119]; and in session-based recommendations,

labels can be the sentiment of users on items [56]. In this work, we focus on user behavior

modeling tasks where the labels are the user’s actions on a given event in E as shown in

Figure 3.1. In particular, for each sequence Si = [x1, x2, · · · , · · · , xt, xt+1] in the training

set, the event xj = (gj , yj) for j ∈ {1, 2, · · · , t} where yj denotes the action on gj and the

label yi = yt+1. In other words, given the actions on events in events from 1 to t, the task we

are investigating is to predict the action on the event gt+1 in the next event xt+1. This is an

essential task in a wide range of real-world applications. For instance, in recommendations,

this task is equivalent to predict the actions of users on the next recommended item; and

in Education, it is the task of knowledge tracing that aims to predict whether a user gives

correct or wrong answer to the next question. Note that given the generalization of the

sequence modeling component of the proposed framework in this work, it is straightforward

to extend the framework to other tasks and we will leave it as one future work.

With the above notations and definitions, the problem we aim to solve in this work is

formally defined as follows:

Given an event set E with event relations in A and a labeled sequence set SL = {(Si, yi)}K1 ,

where each sequence Si = [x1, x2, · · · , xt, xt+1] is generated by a specific user ui and each

event xt = (gt, yt) involves one event gt ∈ E and the action label yi, our goal is to build a

framework that is able to predict the labels of unlabeled sequences by capturing both sequential

and event relations.
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Figure 3.2: The overall structure of the proposed framework. It consists of two major
components: SeqBlock and SideBlock

3.3 The Proposed Framework

In real sequential data, events naturally exhibit intrinsic relations in addition to the sequential

dependencies. In this section, we propose a framework that is able to take advantage of event

relations for sequence learning. The overall structure of the framework is shown in Figure 3.2.

It consists of two major components: SeqBlock and SideBlock, which capture the sequential

dependencies and event relations, respectively. Specifically, the SeqBlock takes a sequence

as input and output a latent representation vector. In addition, the SideBlock will take the

event relations graph as the input and output event representation vectors, which will be

queried by event sequences. Finally, the framework will predict the user action label based

on the sequence representation and the queried event representation. In the next subsections,

we will describe each component in details.
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3.3.1 Learning Sequential Dependencies

Previously, sequence learning relies on Recurrent Neural Networks (RNN) as fundamental

modules. Many variants based on RNN have been proposed in order to solve the notoriously

difficult problem: capturing the long-term sequential dependencies. Among them, structures

with gated mechanism such as Long Term Short Memory [57] and Gated Recurrent Unit [20]

stand out due to their widely received success [23]. However, RNN based models suffer

from the inefficiency issue because of its sequential nature, which makes them very difficult

to parallel within-sequence computation. To overcome this issue, many efforts have been

devoted to developing models without recurrent structures, such as temporal convolutional

networks, which can have similar performance with RNN based models while having much

faster computation speed [10]. Recently, promising results for a wide range of sequence

learning tasks have been obtained by models that heavily relies on attention mechanism

including memory networks and Transformer [117, 105]. Inspired by aforementioned advances,

we develop the sequence dependency component, which we refer as SeqBlock.

3.3.1.1 The Input Layer

The input of the Seqblock is a sequence of events (x1, x2, · · · , xt). Each event xj is denoted by

three types of information – the corresponding event gj , the action label yj and the sequential

order information in the sequence. We use a vector gj ∈ Rd/2 to indicate the event. To

incorporate the action information, we define the event vector for xj as follows:

xj =


[gj‖0], yj = 1

[0‖gj ], yj = −1

(3.1)
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where ‖ is the concatenation operation, gj = ei if gj is the ith event in E and 0 ∈ Rd/2 is a

zero vector. ei is the embedding of the i-th event in E , which can be pre-trained or randomly

initialized. Note that in this work, we consider binary labels and it can be naturally extended

for the multiple labels scenario. In addition, we want to embed the order information in the

event vector. As suggested by the previous work [40, 117], we add the order information into

xj as:

xj(i) =


xj(i) + sin( j

10000i/d
), i%2 = 0

xj(i) + cos( j

10000(i−1)/d
), otherwise

(3.2)

3.3.1.2 The Sequential Layer

Inspired by previous works [117, 105], we utilize attention mechanism to capture the sequential

dependency among events. As shown in Figure 3.3, each sequential layer consists of two

sublayers – one attention sublayer and one feedforward sublayer and there could be multiple

sequential layers stacking together. The input of the first sequential layer is the output of the

event layer plus one special vector xt+1, which is randomly initialized and its corresponding

final state will be used as the representation of the whole sequence. Next, without the loss

of generality, we will illustrate the ith sequential layer and assume the input vectors of the

ith sequential layer are uij , j ∈ {1, 2, · · · , t + 1}. Since the output of the event layer is the

input of the first sequential layer, u1
j = xj . Next we introduce the attention sublayer and the

feedforward sublayer in the ith sequential layer.

Attention Sublayer: The attention sublayer is shown in right subfigure of the Figure 3.3.

The input of the attention sublayer are uij , j ∈ {1, 2, · · · , t+ 1}. For each input vector uij ,

the corresponding output vector of the attention layer is vij , which is obtained through
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Figure 3.3: The structure of SeqBlock is shown in the left subfigure. It consists of two
sublayers: one attention sublayer and one feedforward sublayer. The right subfigure shows
the structure of the attention sublayer.

multihead mechanism, which is design to capture the event sequential dependencies from

different aspects. Next, we will use vim to illustrate the multihead mechanism.

The overall structure of the multihead mechanism is demonstrated in Figure 3.4. Specif-

ically, we assume that there are na attention heads, each of which corresponds to a set of

query, key, and value spaces. In the headk, to obtain the attention score of each input vector

with respect to uim, the input vectors are projected into the key space and uim is projected

into the query space. Specifically, let αikj be the attention score of uij with respect to uim in

headk. Then αikj is calculated as follows:

αikj = softmax(
uimWQk · uijWKk

√
d
∑t+1
l=1 uimWQk · uilWKk

) (3.3)

where WQk ∈ Rd×d and WKk ∈ Rd×d are the query and key projection matrices in headk,

respectively. and · is the dot product operator. With the obtained attention scores, the new

presentation of uim in headk can be calculated as the weighed sum of all the input vectors in
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the value space. Let hikm be the new representation of uim in headk:

hikm =
t+1∑
l=1

αikl uilW
V k (3.4)

where WV i ∈ Rd×dv is the project matrix that maps the input vector into the value space.

In this way, we are able to obtain the new representation of uikm in each head. Thus, given

hikm, k ∈ {1, 2, · · · , na}, vim can be calculated as follows:

vim = [hi1m‖hi2m‖ · · · ‖hin
a

m ]WO (3.5)

where WO ∈ Rdvna×d is another projection matrix. The multihead attention mechanism

not only allows to learn sequential dependency of events effectively, but also enables the

calculations of Equation 3.4 be proceeded parallelly, which could considerably reduce the

time cost of the training procedure. As we previously mentioned that the sequential layer

can be stacked together to form a very deep structure. Thus, to reduce the training difficulty

when the structure goes deep, following previous work [53], we add a shortcut connection

for the attention sublayer followed by the layer normalization [7]. Specifically, given the

vij , j ∈ {1, 2, · · · , t+ 1}, the short connection and layer normalization operation output the

vector ṽij as follows:

ṽij = LayerNorm(vij + uij) (3.6)

where we define the LayerNorm(·) function similar to that in [7].

Feedward sublayer: The second sublayer consists of a fully connected feed-forward network

(FFN). Its input is ṽij , j ∈ {1, 2, · · · , t+ 1}. The output of the feedward sublayer for ṽij is
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v̂ij , that is calculated as follows:

v̂ij = FFN(ṽij) = ReLU(ṽijW1 + b1)W2 + b2 (3.7)

where W1 ∈ Rd×df , W2 ∈ Rdf×d, b1 ∈ Rdf , and b2 ∈ Rd are the learnable parameters

and RelU(cdot) is the non-linear activation function. Similarly, the short connection and

layer normalization operation are also applied to the feedward sublayer, which will produce

ui+1
j , j ∈ {1, 2, · · · , t+ 1} corresponding to ṽij . Assume that there are nsl sequential layers

stacking together, the t+ 1th output vector of the last layer un
sl+1
t+1 will be used as the

representation of the whole sequence.

In summary, the SeqBlock takes the event sequence S as the input and outputs a repre-

sentation of the sequence un
sl+1
t+1 . Although the SeqBlock effectively captures the sequential

dependency of the events, it completely ignores the side dependencies that are not reflected

in the sequences. Next, we will introduce the model component to incorporate the event

relations.

3.3.2 Capturing Event Relations

In this subsection, we introduce the model component SideBlock of the framework and it

aims to capture the event relations.

One straightforward solution to incorporate the relations of events is to apply graph

embedding algorithms to the event-event graph G to obtain an embedding vector that contains

the relation information for each event. For instance, the state-of-the-art network embedding

algorithms such as LINE [109] and Node2Vec [44], can map the nodes in a graph to a subspace

that preserves maximum neighborhood information of nodes. Thus, the event embedding
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Figure 3.4: The illustrative example of multihead attention mechanism.

obtained by such algorithm naturally carries their relation information. Then we can use event

graph embeddings to be the event representation vectors, which can be inputted in SeqBlock.

In fact, this solution is similar to one widely used approach in natural language processing

tasks where pre-trained word embeddings that capture the word relations through large

corpuses are utilized to improve the performance [18, 24, 68]. However, this solution may be

not sufficient to fully take advantage of event relations because: 1) as the sequential learning

block can go very deep and can completely focus on modeling the sequential dependencies, it

is likely that sequential dependency will dominate event relations; and 2) the embedding of

events is obtained by graph embedding algorithms that run in a separate procedure, thus

they may not be optimal for the specific task. Thus, we propose SideBlock to effectively

capture the event relations. Specifically, it consists of two layers: one linear projection layer

and one aggregation layer. Next we will describe each layer.

23



3.3.2.1 Linear Project Layer

The input of the linear projection layer is the event embedding vectors ej , j ∈ {1, 2, · · · , n}.

There are many ways to compute ej . For example, ej can be sampled from a normal

distribution N (0, I) and it only serves as the indicator of the ith event; while it can be also

obtained from the output of the graph embedding algorithms. Given ej , the linear projection

function in this layer is defined as:

êj = ejWP + bP (3.8)

where WP ∈ Rde×d and bP are the projection matrix and the bias term, respectively.

êj ∈ Rd is the projected vector of the jth event. As we stated previously, the embedding

space may not align well with the sequence representation space. Therefore, the linear project

layer will enable the model to learn to project the embedding vectors into a space where the

aggregation layer is designed to preserve the event relations as shown next.

3.3.2.2 Aggregation Layer

Intuitively, if an event is related to its neighbors in the graph G, it is desirable that its repre-

sentation is also close to that of its neighbors. For instance, in the knowledge tracing scenario,

questions requiring similar skills should be located in a similar spot in the representation

space. To impose this intuition, inspired by previous work [48, 71], we design 3 sublayers

in the aggregation layer – feedforward sublayer, neighbor sublayer and integration sublayer.

Note that, the aggregation layer can also be stacked to a deep structure. Without the loss of

generality, next we detail the ith aggregation layer. Let the input of the ith aggregation layer

is cij , j ∈ {1, 2, · · · , n}. Thus, c1j = êj .
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The input of the feedforward layer are cij , j ∈ {1, 2, · · · , n}. For each cij , the feedforward

will output a vector ĉij , which can be calculated as:

ĉij = ReLU(cijWa1 + ba1) (3.9)

where Wa1 ∈ Rd×d and ba1 ∈ Rdare learnable parameters. This feedforward layer aims to

learn better representation of events in the latent space. The second sublayer is to aggregate

the neighbors’ information. The input is ĉij , j ∈ {1, 2, · · · , n} and for each ĉij , this sublayer

will also output a vector c̃ij which is defined as:

c̃ij =
∑
l∈N j

Â(j, l)ĉil (3.10)

where N j is the neighborhood set of jth events and Â is the normalized adjacent matrix for

G, which is defined as:

Â = D−1/2AD−1/2 (3.11)

where D is the diagonal matrix and D(i, i) =
∑
j A(i, j). With the latent vector c̃ij that

captures neighborhood information of the jth event, the third sublayer is to integrate c̃ij and

ĉij to obtain the final representation of the event, which is defined as follows:

c(i+1)j = ReLU([c̃ij‖ĉij ]Wa2 + ba2) (3.12)

where Wa2 ∈ R2d×d and ba2 ∈ Rd are the model parameters. Let nag to be the total number

of aggregation layers. The output of the SideBlock will be cn
agj , j ∈ {1, 2, · · · , n}.
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3.3.3 The Objective Function and Training

With the previously described model components that are able to capture both sequential

dependencies and event relations, the proposed framework SEE is formulated as follows:

un
sl
t+1 = SeqBlock(S) (3.13)

{cnag1, cn
ag2, · · · , cnagn} = SideBlock({e1, e2, · · · , en}, A) (3.14)

z = query(S, {cnag1, cn
ag2, · · · , cnagn}) (3.15)

ŷ = f(un
sl
t+1, z) (3.16)

where S = (x1, x2, · · · , xt) is the input sequence and the SeqBlock will produce unslt+1 that

embeds the sequential information of the sequence. {e1, e2, · · · , en} are the initial event

embedding vectors and the SideBlock will produce a new set of representation vectors for

events in the latent space that align well with the sequence representation space. In addition,

S will query one event vector from {cnag1, cn
ag2, · · · , cnagn according to gt+1. Specifically,

z = cn
agj if gt+1 is the jth event in E . Finally, f(·) is the prediction layer and ŷ is the

predicted action on the next event gt+1. There are many choices for f(·) and in this work,

we define it as follows:

f(un
sl
t+1, z) = σ(un

sl
t+1 · z) (3.17)
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where σ(·) is the Sigmoid function. Then we define the following loss function to train the

framework:

L =
K∑
j=1

−yj log(ŷj)− (1− yj)log(1− ŷj) (3.18)

where K in the number of sequences in the training set, ŷj and yj are the predicted and true

labels for the jth sequence, respectively.

In order to effectively train the proposed framework SEE, we exploit the widely used

Truncated Back Propagation Trough Time (TBPTT) algorithm. Specifically, we firstly define

M to be the number of timesteps that are used for both forward and back-pass procedure.

Then, for each sequence, we take M consecutive samples (xk, yk)k+M
k=j . Then we apply the

forward-pass of the framework to these samples and obtain a error signal. Finally, according

to the error, the back-pass will update the parameters of the proposed framework.

3.4 Experiment

In this section, we evaluate the proposed framework SEE with real sequential data. In the

following subsections, we first describe the two tasks and the corresponding datasets to assess

the performance of sequence learning. Then we present and analyze the experimental results.

Finally, we conduct model component analysis to gain a deeper understanding of the proposed

framework SEE.
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3.4.1 Experimental Settings

In this work, we choose two tasks from two different domains to evaluate the performance of

the proposed framework, i.e., knowledge tracing and session-based recommendations.

3.4.1.1 Knowledge Tracing

In the education field, knowledge tracing is to monitor student knowledge states and skill

acquisition levels, which is highly important for personalized education [97, 19]. One of the

key tasks of knowledge tracing is to predict a student’s future interactions with questions in

the question database based on her past interactions, where an interaction denotes that the

student answers one question. Thus, it is easily to formulate this task as the user behavior

sequence modeling problem stated in Section 2. Specifically, we regard past interactions as

the event sequence, where each question is an event and the correctness of the student’s

answer is the action. Then the task is to predict whether the student gives correct or wrong

answer to the next question. To conduct experiment on this task, we collect a GMAT dataset

from a GMAT preparation mobile application 1, which is one of the most popular apps

in this kind in China. This dataset describes students’ interactions with GMAT questions

that are designed to improve students’ problem-solve skills. All the student identification

information is removed. Specifically, it contains 90831 students and their 16002324 records

with 8684 questions. Moreover, each interaction record consists of one student ID, one

question ID, correctness of the student answer, and the time stamp of this interaction. Thus,

for each student, a sequence of interactions can be formed according to the time stamp of

each interaction. We filter those students who have only few interactions since we are not

focusing on the “cold start" problem. In addition, we also remove the questions that are not

1http://www.kmf.com/
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in the interactions of the remaining students. After such filtering procedure, there are 20,251

sequences and 7,530 questions. We then construct a weighted question event relations graph

according to the knowledge and skills required by questions. We further randomly split the

sequences into training, validation and testing sets such that each interaction sequence will

be put in one and only one of the three sets. As results, the training, validation, and test

sets have 14,176, 3,038, 3,037 sequences, respectively.

3.4.1.2 Session-based Recommendation

Session-based recommendation is getting increasingly popular in recommender systems

community. It aims to recommend items by modeling user’s preference from their past

interactions. To achieve this goal, most of previous works[56, 127, 143], have chosen RNN

based models to build the recommender systems, which tend to ignore relations of items. In

this subsection, we easily apply the proposed framework SEE to solve the recommendation

task. The recommendation task can also be formulated as our previously defined problem

with items being the events and user rating being the action. To evaluate the proposed

framework on this task, we collect the MovieLens dataset, which is publicly available 2

and has been used for many recommendation related works [51, 141, 58, 78]. This dataset

describes user preferences for movies. Specifically, it contains 200 million ratings for movies

from 138,493 users. Each rating is a 10-scale score and in this work, we convert the rating

to a binary score indicating whether the user likes a movie or not. Specifically, score = 1 if

rating > 4, otherwise score = 0. Each rating is also associated with a time stamp, according

to which all of ratings given by one user can be arranged as one sequence. Moreover, it also

provides the additional information of the movies including their title, genre, release year,

2https://grouplens.org/datasets/movielens/
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Figure 3.5: Performance comparison for baselines and SEE. Results on knowledge tracing
and recommendation tasks are shown in the left and right subfigures, respectively. The
y-axis is the AUC score. Higher score means better prediction. For each task, models are
grouped by the input vectors – Gaussian indicates that models use vectors sampled from
Gaussian distribution to represent events while LINE suggests that the events are represented
by vectors obtained through LINE.

etc. We apply similar filtering procedure to this dataset that removes users who give few

ratings and movies that receive few ratings. In the end, there are 20,000 users and 8,270

movies left. We also construct a item relation graph for movies according to their shared

attributes. All the sequences are split into training, validation, and testing sets. The resulted

training, validation and test sets contain 14,000, 3,000, and 3,000 sequences, respectively.

Evaluation Metric: As we want to assess the performance on predicting the action on the

next event, we use Area under the curve (AUC) to measure the action prediction performance

since it is widely used and especially suitable for the unbalanced data. The higher value of

AUC indicates better performance.
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3.4.2 Representative Baselines

Recent years have witnessed great success of RNN-based models for sequence learning tasks.

Though they are effective in capturing the sequential dependencies, they tend to ignore event

relations. Thus, to demonstrate the importance of event relations and verify the effectiveness

of SEE, we compare it with the-state-of-art RNN-based models, which can be divided into

two groups. The first group only uses sequential information while the second group of models

utilize both sequential and event relations information by first performing graph embedding

and then taking the embedding of events as input to the sequence learning. The following

are details of baselines:

• RNN + Gaussian. This is the recurrent neural network with vanilla cells. At step j, it

will output a state hj = g(Wxj + Uhj−1 + b), where xj is the input vector, g(·) is

the activation function, hj is the output state, and W,U,b are the model parameters.

The last state ht is regarded as the final representation of the whole sequence and thus

is used to predict user action for each event by the following prediction function:

s = σ(htW
S + bS) (3.19)

, where WS ∈ Rd×n and bS ∈ Rn are the parameters of the prediction layer. Thus, if

the event in xt+1 is the ith event, the predicted label ŷj = s(i). The initial vectors for

events are sampled from Gaussian distribution.

• RNN + LINE. It is based on RNN. However, to incorporate the event relations, the

initial vectors are obtained by running the graph embedding algorithm LINE on the

event-event graph.

31



• LSTM + Gaussian [57]. LSTM is a variant of Vanilla RNN by introducing gating

mechanism that is essential for capturing the long-term dependencies. The initial

vectors for events are sampled from Gaussian distribution.

• LSTM + LINE. It uses LSTM to capture sequential information while performing the

graph embedding algorithm LINE as initial vectors to capture event relations.

• GRU+ Gaussian [20]. GRU is another popular recurrent network cell that adopts the

gating mechanism. We initialize its input from Gaussian distribution.

• GRU+ LINE. It uses LINE to learn embeddings from the event-event graph to initialize

the input of GRU. It incorporates sequential and side information in a separate way.

For a fair comparison, we use Equation 3.1 to incorporate the action information into the

event vectors for baseline models. Moreover, as all the baseline models process event vectors

with the sequential order, it is no need to add the positional embedding into the event vectors.

Implementation: The Gaussian vectors for events are sampled from Gaussian distribution

N (0, I). The embedding vectors are obtained by running the graph embedding algorithm

LINE using the code 3 provided by the authors. In particular, we choose the second order

proximity version of this algorithm as it consistently has better performance than the first

order [109]. Unless specified otherwise, all the models were implemented in Pytorch 4 and

mini-batch stochastic Adam optimizer was used during the training procedure [69]. To

prevent models from overfitting problem, dropout was used for all the methods [104]. In

addition, we applied the early stopping strategy that the training procedure was stopped

when there was no improvement in the performance on the validation set for next 10 epochs.

3https://github.com/tangjianpku/LINE
4https://pytorch.org/
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For each model, the hyperparameters including learning rate and dropout rate were chosen

according to the performance on the validation set.

3.4.3 Experimental Results

In this subsection, we present and compare the experimental results of baseline methods and

SEE on the aforementioned datasets.

The results for knowledge tracing and recommendation tasks are shown in the left and right

subsigures of Figure 3.5, respectively. From the figure, we make the following observations:

• In most of the cases, RNN has the worst performance among baseline methods. This is

because that LSTM and GRU have gating mechanism which enable them to capture

the long-term dependencies. The results are consistent with the findings of previous

works [23];

• For most methods, when representing events with embedding vectors obtained from

graph embedding algorithm, the performance increases consistently. This clearly shows

the contribution of event relations information to sequence modeling.

• It is very interesting to see that when we compare the improvement brought by the

graph embedding vectors, the performance gain of RNN-based baseline models in GMAT

dataset is more significant than that in the MovieLens dataset, while the improvement

for SEE is less significant in the GMAT dataset than in the Movielens dataset. The

reason is that the mechanism by which the graph embedding vectors improve the

performance is different for baseline RNN-based models and SEE. For baseline models,

the graph embeddings contain the sevent relations. Thus if the embedding space aligns

better with the sequential representation space as in the case of GMAT dataset, it is
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easy for RNN-based models to learn the event relations in the latent space. On the

contrary, when the embedding space of events does not align well with the sequence

representation space as indicated by the MovieLens case, the improvement brought by

the dependency information is limited. On the other hand, SEE is a unified framework

to incorporate both information where a latent embedding space which aligns well

with the sequence representation space. Thus, better initialization does not necessarily

lead to better performance of SEE as the optimization procedure could also play an

important role;

• In all the cases, SEE demonstrates performance gain over the baseline methods by

a large margin. We attribute such superior performance to its ability to effectively

capture both sequential dependencies and event relations. More details analysis of

the contributions of major framework components will be discussed in the following

subsection.

To sum up, the results for both knowledge tracing and recommendation tasks have clearly

demonstrated the advantage of exploiting event relations and verified the effectiveness of the

proposed framework SEE. Next, we will analyze the important components of SEE to gain

better understanding of its performance.

3.4.4 Component Analysis

The proposed framework SEE has shown significant performance gain over the baseline models.

To understand its effectiveness, in this subsection, we analyze two important components of

SEE that are the SeqBlock and SideBlock, which capture the sequential dependencies and

event relations, respectively. To do so, we define the following variants of SEE:

34



• SEE-SeqBlock-LINE: this is the variant that only has the SeqBlock. Thus it only

captures the sequential dependencies. In addition, it uses vectors sampled from Gaussian

distribution as the event representation;

• SEE-SeqBlock: this variant is similar to SEE-SeqBlock-LINE, but uses graph embedding

vectors as the event representation;

• SEE-SideBlock: this variant only has SideBlock. Due to the lack of SeqBlock, we samples

a random vector to represent the sequential information for avoiding further changes

on the framework. Thus, this variant only captures event relations.

The performance of the model variants on both datasets are shown in Figure 3.6. The

following can be observed:

• SEE-SeqBlock outperforms SEE-SeqBlock-LINE, which is consistent with previous

findings and suggests the contribution of event relations again;

• SEE-SideBlock-LINE has much better performance than the variant with only SideBlock

in both datasets. This is expected because the sequential information is no doubt

important in sequential learning tasks.

In summary, event relations are important for sequence modeling and can boost the perfor-

mance significantly if properly captured. In addition, the proposed framework has gained the

best performance because of its ability to learn both sequential and event relations effectively.

3.5 Discussion

Event relations contain important relation information of events, which have great potentials

to boost sequence modeling performance, but few current sequence learning models are
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Figure 3.6: Component analysis results

able to capture them. In addition, learning sequential dependencies and event relations

simultaneously is challenging because these two types of information are inherently different

and it is difficult to prevent one being dominated by the other. In this work, we have

exploited event relations for user behavior sequence modeling problem and demonstrated the

importance of taking advantage of them. Further, we propose a sequence modeling framework

SEE that is able to capture both sequential dependencies and event relations effectively.

Evaluating our framework on real data sets that come from totally different domains, we find

that the proposed framework outperforms the traditional state-of-the-art sequence learning

models significantly.

There are several meaningful future directions to explore. Firstly, our work has focused

on user behavior sequence modeling. Thus, one future work could attempt to exploit event

relations for other sequential learning tasks such as language modeling. In addition, we believe

that event relations information will be even more valuable when data sparsity problem

presents, e.g., very few training sequences are available. Therefore, it would be meaningful to
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utilize it to address cold-start and data sparsity problems. Moreover, our framework and most

current sequence learning models assume the events of a sequence is uniformly distributed,

which is not true in many cases. For example, in the GMAT data, the time intervals between

two consecutive interactions can be very different, which could play an important role in

understanding students’ knowledge states. Thus, how to incorporate such information in

our proposed framework is another meaningful future direction. Finally, in this chapter, we

assume the event relations given does not have any noise. However, this assumption may not

hold true. In such cases, the event representation obtained by the proposed framework is no

longer accurate. Thus, in the future, it is also important to extend our proposed framework

to deal with the noise in event relations.
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Chapter 4

Modeling Sequence Relation

4.1 Introduction

The majority of existing sequence models such as RNNs have been designed for traditional

sequences, which are assumed to be identically, independently distributed (i.i.d.). However,

many real-world applications generate linked sequences (sequences are related). For example,

web documents, sequences of words, are connected via hyperlinks; genes, sequences of DNA

or RNA, typically interact with each other. Figure 4.1 illustrates one toy example of linked

sequences where there are four sequences – S1, S2, S3 and S4. These four sequences are linked

via three links – S2 is connected with S1 and S3 and S3 is linked with S2 and S4. On the one

hand, these linked sequences are inherently related. For example, linked web documents are

likely to be similar [41] and interacted genes tend to share similar functionalities [11]. Hence,

linked sequences are not i.i.d., which presents immense challenges to traditional RNNs. On

the other hand, linked sequences offer additional sequence relational information in addition

to the sequential information. It is evident that sequence relation can be exploited to boost

various analytical tasks such as social recommendations [112] , sentiment analysis [121, 59]

and feature selection [113]. Thus, the availability of sequence relation information in linked

sequences has the great potential to enable us to develop advanced Recurrent Neural Networks.

Now we have established that – (1) traditional RNNs are insufficient and dedicated efforts
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Figure 4.1: An Illustration of Linked Sequences. S1, S2, S3 and S4 denote four sequences
and they are connected via four links.

are needed for linked sequences; and (2) the availability of sequence relations information

in linked sequences offer unprecedented opportunities to advance traditional RNNs. In this

chapter, we study the problem of modeling sequence relation via RNNs. In particular, we aim

to address the following challenges – (1) how to capture sequence relation mathematically

and (2) how to combine sequential and sequence relation information via Recurrent Neural

Networks. To address these two challenges, we propose a novel Linked Recurrent Neural

Network (LinkedRNN) for linked sequences.

4.2 Problem Statement

Let S = {S1, S2, · · · , SN} be the set of N sequences. For linked sequences, two types of

information are available. One is the sequential information for each sequence. We denote

the sequential information of Si as = (xi1, x
i
2, · · · , xiNi) where N i is the length of Si. The

other is the sequence relation. We use an adjacent matrix A ∈ RN×N to denote the sequence
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relation of linked sequences where A(i, j) = 1 if there is a link between the sequence Si and

Sj and A(i, j) = 0, otherwise. In this work, we following the transductive learning setting.

In detail, we assume that a part of the sequences from S1 to SK are labeled where K < N .

We denote the labeled sequences as SL = {S1, S2, . . . , SK}. For a sequence Sj ∈ SL, we use

yj to denote its label where yj is a continuous number for the regression problem and yj is

one symbol for the classification problem. Note that in this work, we focus on the unweighted

and undirected links among sequences. However, it is straightforward to extend the proposed

framework for weighted and directed links. We would like to leave it as one future work.

Although the proposed framework is designed for transductive learning, we also can use it for

inductive learning, which will be discussed when we introduce the proposed framework in the

following section.

With the above notations and definitions, we formally define the problem we target in

this work as follows:

Given a set of sequences S with sequential information Si = (xi1, x
i
2, · · · , xiNi) and

sequence relation A, and a subset of labeled sequences {SL, (yj)
K
j=1}, we aim to build a RNN

model by leveraging S, A and {SL, (yj)
K
j=1}, which can learn representations for sequences

to predict the labels of the unlabeled sequences in S .

4.3 The Proposed Framework

In addition to sequential information, sequence relation is available for linked sequences as

shown in Figure 4.1. As aforementioned, the major challenges to model linked sequences are

how to capture sequence relation and how to combine sequential and relation information

coherently. To tackle these two challenges, we propose a novel Recurrent Neural Networks
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Figure 4.2: An illustrate of the proposed framework LinkedRNN on the toy example as
shown in Figure 4.1. It consists of two major layers where RNN layer is to capture sequential
information and the link layer is to capture sequence relation.

LinkedRNN. An illustrate of the proposed framework on the toy example of Figure 4.1 is

demonstrated in Figure 4.2. It mainly consists of two layers. The RNN layer is to capture

the sequential information. The output of the RNN layer is the input of the link layer where

sequence relation is captured. Next, we first detail each layer and then present the overall

framework of LinkedRNN.

4.3.1 Capturing Sequential Information

Given a sequence Si = xi1, x
i
2, · · ·xiNi , the RNN layer aims to learn a representation vector

that can capture its complex sequential patterns via Recurrent Neural Networks.

In this work, due to its simplicity and effectiveness, we choose GRU as our RNN unit.

The details of GRU are described in Section 2. The output of the RNN layer will be the

input of the link layer. For a sequence Si, the RNN layer will learn a sequence of latent

representations (hi1,h
i
2, . . . ,h

i
Ni

). There are various ways to obtain the final output ĥi of Si
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from (hi1,h
i
2, . . . ,h

i
Ni

). In this work, we investigate two popular ways:

• As the last latent representation hi
Ni

is able to capture information from previous

states, we can just use it as the representation of the whole sequence. We denote this

way of aggregation as aggregation11. Specifically, we let ĥi = hi
Ni

.

• The attention mechanism can help the model automatically focus on relevant parts of

the sequence to better capture the long-range structure and it has shown effectiveness

in many tasks [9, 83, 22]. Thus, we define our second way of aggregation based on the

attention mechanism as follows:

ĥi =
Ni∑
j=1

ajh
i
j (4.1)

where aj is the attention score, which can be obtained as

aj =
e
a(hij)∑

m ea(him)
(4.2)

where a(hij) is a feedforward layer:

a(hij) = vTa tanh(Wah
i
j) (4.3)

Note that different attention mechanisms can be used, we will leave it as one future

work. We denote the aggregation way described above as aggregation12.

For the general purpose, we will use RNN to denote GRU in the rest of the chapter.
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4.3.2 Capturing Sequence Relation

The RNN layer is able to capture the sequential information. However, in linked sequences,

sequences are naturally related. The Homophily theory suggests that linked entities tend

to have similar attributes [87], which have been validated in many real-world networks

such as social networks [74], web networks [79], and biological networks [11]. As indicated

by Homophily, a node is likely to share similar attributes and properties with nodes with

connections. In other words, a node is similar to its neighbors. With this intuition, we

propose the link layer to capture sequence relation in linked sequences.

As shown in Figure 4.2, to capture sequence relation, for a node, the link layer not only

includes information from its sequential information but also aggregates information from its

neighbors. The link layer can contain multiple hidden layers. In other words, for one node,

we can aggregate information from itself and its neighbors multiple times. Let vki be the

hidden representations of the sequence Si after k aggregations. Note that when k = 0, v0
i is

the input of the link layer, i.e., v0
i = ĥi. Then vk+1

i can be updated as:

vk+1
i = act(

1

|N (i)|+ 1
(vki +

∑
Sj∈N (i)

vkj )) (4.4)

where act() is an element-wise activation function, N (i) is the set of neighbors who are linked

with Si, i.e., N (i) = {Sj |A(i, j) = 1}, and |N (i)| is the number of neighbors of Si. We define

Vk = [vk1 ,v
k
2 , . . . ,v

k
N ] as the matrix form of representations of all sequences at the k-th layer.

We modify the original adjacency matrix A by allowing A(i, i) = 1. The aggregation in the

Equation 4.4 can be written in the matrix form as:

Vk+1 = act(AD−1Vk) (4.5)
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where Vk+1 is the embedding matrix after k + 1 step aggregation, and D is the diagonal

matrix where D(i, i) is defined as:

D(i, i) =
N∑
j=1

A(i, j) (4.6)

4.3.3 Linked Recurrent Neural Networks

With the model components to capture sequential and relation information, the procedure of

the proposed framework LinkedRNN is presented below:

(hi1,h
i
2, . . . ,h

i
Ni

) = RNN(Si)

ĥi = aggregation1(hi1,h
i
2, . . . ,h

i
Ni

)

v0
i = ĥi

vk+1
i = act(

1

|N (i)|+ 1
(vki +

∑
Sj∈N (i)

vkj ))

zi = aggregation2(v0
i ,v

1
i , . . . ,v

M
i ) (4.7)

where the input of the RNN layer is the sequential information and the RNN layer will

produce the sequence of latent representations (hi1,h
i
2, . . . ,h

i
Ni

). The sequence of latent

representations will be aggregated to obtain the output of the RNN layer, which serves

as the input of the Link layer. After M layers, link layer produces a sequence of latent

representations (v0
i ,v

1
i , . . . ,v

M
i ), which will be aggregated to the final representation.

The final representation zi for the sequence Si is to aggregate the sequence (v0
i ,v

1
i , . . . ,v

M
i )

from the link layer. In this work, we investigate several ways to obtain the final representation

zi as:
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• As vMi is the output of the last layer, we can define the final representation as: zi = vMi ,

and we denote this way as aggregation21.

• Although the new representation vM incorporates all the neighbor information, the

signal in the representation of itself may be overwhelmed during the aggregation process.

This is especially likely to happen when there are a large number of neighbors. Thus, to

make the new representation to focus more on itself, we propose to use a feed forward

neural network to perform the combination. We concatenate representations from the

last two layers as the input of the feed forward network. We refer this aggregation

method as aggregation22.

• Each representation v
j
i could contain its unique information, which cannot be carried

in the later part. Thus, similarly, we use a feed forward neural network to perform the

combination of (v1
i ; v

2
i ; · · · ; vMi ). We refer this aggregation method as aggregation23.

To learn the parameters of the proposed framework LinkedRNN, we need to define a loss

function that depends on the specific task. In this work, we investigate LinkedRNN in two

tasks – classification and regression.

Classification. The final output of a sequence Si is zi. We can consider zi as features

and build the classifier. In particular, the predicted class labels can be obtained through a

softmax function as:

pi = softmax(Wczi + bc) (4.8)

where Wc and bc are the coefficients and the bias parameters, respectively. pi is the predicted

label of the sequence Si. The corresponding loss function used in this chapter is the cross-
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entropy loss.

Regression. For the regression problem, we choose linear regression in this work. In

other words, the regression label of the sequence Si is predicted as:

pi = Wrzi + br (4.9)

where Wr and br are the regression coefficients and the bias parameters, respectively. Then

square loss is adopted in this work as the loss function as:

L =
1

K

K∑
i=1

(yi − pi)2 (4.10)

Note that there are other ways to define loss functions for classification and regression.

We would like to leave the investigation of other formats of loss functions as one future work.

Prediction. For an unlabeled sequence Sj under the classification problem, its la-

bel is predicted as the one corresponding to the entity with the highest probability in

softmax(Wczj + bc).

For an unlabeled sequence Sj under the regression problem, its label is predicted as

Wrzi + br.

Although the framework is designed for transductive learning, it can be naturally used

for inductive learning. For a sequence Sk, which is unseen in the given linked sequences

S, according to its sequential information and its neighbors N (k), it is easy to obtain its

representation zk via Equation 4.7. Then based on zk, its label can be predicted as the

normal prediction step described above.
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Table 4.1: Statistics of the datasets.

Description DBLP BOOHEE
# of sequences 47,491 18,229
Network density (‰) 0.13 0.012
Avg length of sequences 6.6 23.5
Max length of sequences 20 29

4.4 Experiment

In this section, we present experimental details to verify the effectiveness of the proposed

framework. Specifically, we validate the proposed framework on datasets from two different

domains. Next, we firstly describe the datasets we used in the experiments and then compare

the performance of the proposed framework with representative baselines. Lastly, we analyze

the key components of LinkedRNN.

4.4.1 Datasets

In this study, we collect two types of linked sequences. One is from DBLP where data contains

textual sequences of chapters. The other is from a weight loss website BOOHEE where

data includes weight sequences of users. Some statistics of the datasets are demonstrated in

Table 4.1. Next we introduce more details.

DBLP dataset. We constructed a chapter citation network from the public available

DBLP data set1[111]. This dataset contains information for millions of chapter from a variety

of research fields. Specifically, each chapter contains the following relevant information:

chapter id, publication venue, the id references of it and abstract. Following the similar

practice in [110], we only select chapters from conferences in 10 largest computer science

domains including VCG, ACL, IP, TC, WC, CCS, CVPR, PDS , NIPS, KDD, WWW,

1https://aminer.org/citation.
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ICSE, Bioinformatics, TCS. We construct a sequence for each chapter from their abstracts

and regard their citation relationships as the sequence relation. Specifically, we first split

the abstract into sentences and tokenize each sentence using python NLTK package. Then,

we use Word2Vec [89] to embed each word into Euclidean space and for each sentence, we

treat the mean of its word vectors as the sentence embedding. Thus, the abstract of each

chapter can be represented by a sequence of sentence embeddings. We will conduct the

classification task on this dataset, i.e., chapter classification. Thus, the label of each sequence

is the corresponding publication venue.

BOOHEE dataset. This dataset is collected from one of the most popular weight

management mobile applications, BOOHEE 2. It contains million of users who self-track

their weights and interact with each other in the internal social network provided by the

application. Specifically, they can follow friends, make comment to friends’ post and mention

(@) friends in comments or posts. The recored weights by users form sequences which contain

the weight dynamic information and the social networking behaviors result in three networks

that correspond to following, commenting, and mentioning interactions, respectively. Previous

work [123] has shown a social correlation on the users’ weight loss. Thus, we use these social

networks as the sequence relation for the weight sequence data. We preprocess the dataset to

filter out the sequences from suspicious spam users. Moreover, we change the time granularity

of weight sequence from days to weeks to remove the daily fluctuation noise. Specifically, we

compute the mean value of all the recorded weights in one week and use it as the weight for

that week. For networks, we combine three networks into one by adding them together and

filter out weak ties. In this dataset, we will conduct a regression task of weight prediction.

We choose the most recent weight in a weight sequence as the weight we aim to predict

2https:www.boohee.com
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(or the groundtruth of the regression problem). Note that for a user, we remove all social

interactions that form after the most recent weight where we want to avoid the issue of using

future sequence relation for weight prediction.

4.4.2 Representative Baselines

To validate the effectiveness of the proposed framework, we construct three groups of

representative baselines. The first group includes the state-of-the-art network embedding

methods, i.e., node2vec [45] and GCN [71], which only capture the sequence relation. The

second group is the GRU RNN model [42], which is the basic model we used in our model to

capture sequential information. Baselines in the third group is to combine models in the first

and second groups, which captures both sequential and sequence relation. Next, we present

more details about these baselines.

• Node2vec [45]. Node2vec is one state-of-the-art network embedding method. It learns

the representation of sequences only capturing the sequence relation in a random-walk

perspective.

• GCN [71] It is the traditional graph convolutional graph algorithm. It is trained with

both relation and label information. Hence, it is different from node2vec, which is learnt

with only sequence relation and is totally independent on the task.

• RNN [42]. RNNs have been widely used for modeling sequential data and achieved great

success in a variety of domains. However, they tend to ignore the correlation between

sequences and only focus on sequential information. We construct this baseline to show

the importance of correlation information. To make the comparison fair, we employ

the same recurrent unit (GRU) in both the proposed framework and this baseline.
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• RNN-node2vec. The Node2vec method is able to learn representation from the sequence

relation and the RNN can do so from the sequential information. Thus, to obtain the

representation of sequences that contains both relational and sequential information,

we concatenate the two sets of embeddings obtained from Node2vec and RNN via a

feed forward neural network.

• RNN-GCN. RNN-GCN applies a similar strategy of combining RNN and node2vec to

combine RNN and GCN.

There are several notes about the baselines. First, node2vec does not use label information

and it is unsupervised , RNN and RNN-node2vec utilize label information and they are

supervised, and GCN and RNN-GCN use both label information and unlabeled data and they

are semi-supervised. Second, some sequences may not have sequence relation and baselines

only capture sequence relation cannot learn representations for these sequences; hence, in

this work, when representations from sequence relation are unavailable, we will use the

representations from the sequential information via RNN instead. Third, we do not choose

LSTM and its variants as baselines since our current model is based on GRU and we also

can choose LSTM and its variants as the base models.

4.4.3 Experimental Settings

Data split: For both datasets, we randomly select 30% for test. Then we fix the test

set and choose x% of the remaining 70% data for training and 1 − x% for validation to

select parameters for baselines and the proposed framework. In this work, we vary x as

{10, 30, 50, 70}.

Parameter selection: In our experiments, we set the dimension of representation vectors
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Table 4.2: Performance comparison on the DBLP dataset

Measurement Method Training ratio
10 % 30 % 50% 70%

Micro-F1

node2vec 0.6641 0.6550 0.6688 0.6691
GCN 0.7005 0.7093 0.7110 0.7180
RNN 0.7686 0.7980 0.7978 0.8025
RNN-node2vec 0.7940 0.8031 0.7933 0.8114
RNN-GCN 0.7912 0.8230 0.8255 0.8284
LinkedRNN 0.8146 0.8399 0.8463 0.8531

Macro-F1

node2vec 0.6514 0.6523 0.6513 0.6565
GCN 0.6874 0.6992 0.7004 0.7095
RNN 0.7452 0.7751 0.7754 0.7824
RNN+node2vec 0.7734 0.7797 0.7702 0.7912
RNN+GCN 0.7642 0.8014 0.8069 0.8104
LinkedRNN 0.7970 0.8249 0.8331 0.8365

of sequences to 100. For Node2vec, we use the validation data to select the best value for p

and q from {0.25, 0.50, 1, 2, 4} as suggested by the authors [45] and use the default values for

the remaining parameters. In addition, the learning rate for all of the methods are selected

through validation set.

Evaluation metrics: Since we will perform classification in the DBLP data, we use

Micro and Macro F1 scores as the metrics for DBLP, which are widely used for classification

problems [134, 45]. The higher value means better performance. We perform the regression

problem weight prediction in the BOOHEE data. Therefore the performance in BOOHEE

data is evaluated by mean squared error (MSE) score. The lower value of MSE indicates

higher prediction performance.
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4.4.4 Experimental Results

We first present the results in DBLP data. The results are shown in Table 4.2. For the

proposed framework, we choose M = 2 for the link layer and more details about discussions

about the choices of its aggregation functions will be discussed in the following section. From

the table, we make the following observations:

• As we can see in Table 4.2, in most cases, the performance tends to improve as the

number of training samples increases.

• The random guess can obtain 0.1 for both micro-F1 and macro-F1. We note that the

network embedding methods perform much better than the random guess, which clearly

shows that the sequence relation is indeed helpful for the prediction.

• GCN achieves much better performance than node2vec. As we mentioned before, GCN

uses label information and the learnt representations are optimal for the given task.

While node2vec learns representations independent on the given task, the representations

may be not optimal.

• The RNN approach has higher performance than GCN. Both of them use the label

information. This observation suggests that the content and sequential information is

very helpful.

• Most of the time, RNN-node2vec and RNN-GCN outperform the individual models.

This observation indicates that both sequential and sequence relation are important

and they contain complementary information.

• The proposed framework LinkedRNN consistently outperforms baselines. This strongly

demonstrates the effectiveness of LinkedRNN. In addition, comparing to RNN-node2vec
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Table 4.3: Performance comparison on the BOOHEE dataset

Method Training ratio
10 % 30 % 50% 70%

node2vec 8.8702 8.8517 7.4744 7.0390
GCN 8.9347 8.6830 6.7949 6.7278
RNN 8.6600 8.6048 7.0466 6.8033
RNN-node2vec 8.4653 8.5944 7.0173 6.7796
RNN-GCN 8.6286 8.5662 6.9967 6.7945
LinkedRnn 7.1822 6.3882 6.8416 6.3517

and RNN-GCN, the proposed framework is able to jointly capture the sequential and

sequence relation coherently, which leads to significant performance gain.

We present the performance on BOOHEE in Table 4.3. Overall, we make similar observa-

tions as these on DBLP as – (1) the performance improves with the increase of number of

training samples; (2) the combined models outperform individual ones most of the time and

(3) the proposed framework LinkedRNN obtains the best performance.

Via the comparison, we can conclude that both sequential and relation information in the

linked sequences are important and they contain complementary information. Meanwhile,

the consistent impressive performance of LinkedRNN on datasets from different domains

demonstrate its effectiveness in capturing the sequential and relation information presented

in the sequences.

4.4.5 Component Analysis

In the proposed framework LinkedRNN, we have investigate several ways to define the

two aggregation functions. In this subsection, we investigate the impact of the aggregation

functions on the performance of the proposed framework LinkedRNN by defining the following
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variants.

• LinkedRNN11: it is the variant which chooses aggregation11 and aggregation21

• LinkedRNN12: we define the variant by using aggregation11 and aggregation22

• LinkedRNN13: this variant is made by applying aggregation11 and aggregation23

• LinkedRNN21: this variant utilizes aggregation12 and aggregation21

• LinkedRNN22: it is the variant which chooses aggregation12 and aggregation22

• LinkedRNN23: we construct the variant by adopting aggregation12 and aggregation23

The results are demonstrated in Figure 4.3a. Note that we only show results on DBLP

with 50% as training since we can have similar observations with other settings. It can be

observed:

• Generally, the variants of LinkedRNN with aggregation12 obtain better performance

than aggregation11. It demonstrates that aggregating the sequence of the latent

presentations with the help of the attention mechanism can boost the performance.

• Aggregating representations from more layers in the link layer typically can result in

better performance.

4.4.6 Parameter Analysis

LinkedRNN uses the link layer to capture sequence relation. The link layer can have multiple

layers. In this subsection, we study the impact of the number of layers on the performance of

LinkedRNN. The performance changes with the number of layers are shown in Figure 4.3b.
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Figure 4.3: Model analysis results

Similar to the component analysis, we only report the results with one setting in DBLP since

we have similar observations. In general, the performance first dramatically increases and

then slowly decreases. One layer is not sufficient to capture the sequence relation while more

layers may result in overfitting.

4.5 Discussion

RNNs have been proven to be powerful in modeling sequences in many domains. Most

of existing RNN methods have been designed for sequences which are assumed to be i.i.d.

However, in many real-world applications, sequences are inherently related and linked se-

quences present both challenges and opportunities to existing RNN methods, which calls for

novel RNN methods. In this chapter, we study the problem of designing RNN models for

linked sequences. Suggested by Homophily, we introduce a principled method to capture

sequence relation and propose a novel RNN framework LinkedRNN, which can jointly model
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sequential and relation information. Experimental results on datasets from different domains

demonstrate that (1) the proposed framework can outperform a variety of representative

baselines; and (2) sequence relation is helpful to boost the RNN performance.

There are several interesting directions to investigate in the future. First, our current

model focuses on unweighted and undirected relation and we will study weighted and directed

links and the corresponding RNN models. Second, in current work, we focus on classification

and regression problems with certain loss functions. we will investigate other types of loss

functions to learn the parameters of the proposed framework and also investigate more

applications of the proposed framework. Third, since our model can be naturally extended

for inductive learning, we will further validate the effectiveness of the proposed framework

for inductive learning. Finally, in some applications, the sequence relation may be evolving;

thus we plan to study RNN models, which can capture the dynamics of links as well.
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Chapter 5

Modeling Temporal Information

5.1 Introduction

In many scenarios, sequences are also associated with temporal information. For example, in a

customer behavior sequence, each behavior (event) has a time stamp recording the exact time

that behavior happened. Such temporal information is essential for recommender systems

to make recommendation at the right time, which is vital to improve customers’ shopping

experience in e-commerce for the following reasons [120, 2, 67, 72, 38]. First, customers’

interests in buying a product naturally fluctuate. Thus, there could be right moments when

recommending one product will benefit the customer most. On the contrary, there could be

huge opportunity cost if the system does it at the moment when the customer loses his/her

interest since it may lose great opportunities to attract customers. Second, many products

are time-sensitive. For instance, popular snow boots are unlikely well wanted in summer.

Therefore, it will greatly impair customers’ trust if recommender systems overlook the time

information. Third, predicting time about customers’ needs will also enable providers to

supply enough goods and avoid disappointing customers with “out of order" experience.

The increasing availability of time-stamped fine-grained customers’ behaviors observed by

providers brings us unprecedented opportunities to build advanced recommender systems

that take both customers’ preference and its temporal dynamics into consideration. Take
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a customer who plans to buy a phone for example, she may firstly search for some phone

brands in e-commerce websites. Then she clicks a few models for detailed description and

adds two of them to the shopping cart for further comparison. Finally, she deletes one in

the cart and decides to purchase the other one. The fine-grained behaviors as shown in the

previous example offer us a new perspective to model customers’ preferences. Furthermore,

these behaviors are often time-stamped; thus it provides rich temporal information that

enables us to gain a deep understanding on temporal dynamics of customers’ preferences.

Such understanding enables us to perform just-in-time recommendations where we consider

what and when to recommend simultaneously.

Although exploiting time-stamped fine-grained users’ behaviors will potentially bring

in tremendous opportunities to advance recommender systems, new challenges are also

introduced. First, considering users’ behaviors introduces great complexity to model the

relations among various products. The majority of traditional recommender systems merely

consider coarse-grained user-item interactions. They often assume that the influence of

one product on another is static. However, when considering behaviors users perform on

products, such influence could vary according to the specific behavior associated with the

product. Below is one example. If a customer clicks “iPhone", it is a strong signal that she

may be interested in buying a new phone; thus in addition to presenting iPhone models,

we can also recommend some “Samsung" phones to her. In other words, clicking “iPhone"

increases the probability of recommending “Samsung" phone. On the other hand, if she just

purchased an “iPhone", it is unlikely that she will buy another new phone in the near future.

Thus, it is more suitable to recommend “iPhone" cases than “Samsung" phones. In this case,

purchasing “iPhone" should decrease the probability of recommending a “Samsung" phone.

Therefore, “iPhone"’s influence on “Samsung" phone depends on the behaviors associated such
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as purchase and click. Second, temporal dynamics of customers’ interests are heterogeneously

influenced by various products they have interacted with. For example, a customer’s interest

in buying a new "iPhone" could be related by her previous interactions with other products

such as “iPad" and “Samsung" phones, each of which can have different influence according to

the behaviors associated. This presents formidable challenges to accurately model temporal

dynamics of interests because it requires to consider all the customers’ historical interactions,

which is further complicated by varied relations among products.

In this chapter, we investigate the just-in-time recommendation problem and address

aforementioned challenges simultaneously to leverage the timestamped fine-grained customer

behavior data.

5.2 Problem Statement

Let U = [u1, u2, · · · , uN ] be the set of N users. We assume that P = [p1, p2, · · · , pV ] is a

set of products where V is the number of products. Let B = (b1, b2, · · · , bB) be the set of

B behaviors users can perform on products such as “click" and “purchase". The historical

interactions of a user ui with the recommender system have been recorded and are represented

as a sequence Si:

Si = {(ti1, bi1, pi1), (ti2, b
i
2, p

i
2), · · · , (tik, bik, pik)} (5.1)

where each element in Si is a 3-tuple that is named as an event in this work. Each event

ej = (tij , b
i
j , p

i
j) contains one time stamp tij , one behavior type b

i
j ∈ B and one product pji ∈ P .

Moreover, S = [S1, S2, · · · , SN ] is used to denote the set of event sequences of all users in
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U . We further assume that the next event after tik for ui (tik+1, b
i
k+1, p

i
k+1) is available for

all ui ∈ U . With above notations, the problem we plan to study in this work can formally

defined as:

Given event sequences of a set of users U , i.e., S, and the corresponding next events

{(tik+1, b
i
k+1, p

i
k+1)}Ni=1, we aim to learn a mapping function from S to {(tik+1, b

i
k+1, p

i
k+1)}Ni=1;

thus it can simultaneously predict next product pjk+1 and its corresponding time stamp tjk+1

given a user uj /∈ U with its historical event sequence Sj = {(tj1, b
j
1, p

j
1), (t

j
2, b

j
2, p

j
2), · · · , (tjk, b

j
k, p

j
k)} /∈

S.

5.3 The Proposed Framework

In this section, we first give an architecture overview about the proposed framework and then

we detail each model component.

5.3.1 An Architecture Overview

In addition to sequential information, sequences also contain temporal information to indicate

when events happened, which not only enables us to make the accurate recommendation

but also can allow us to perform recommendations at the right time. To achieve this, as

mentioned before, major challenges include capturing the sequential information, complex

interactions between products and behaviors, and modeling the timing accurately. In this

subsection, we will introduce key components of our proposed model that are able to address

those challenges and simultaneously recommend right product and predict recommendation

time. The overview of our framework is shown in Figure 5.1. It consists of six layers from the

bottom to the top: 1) Input layer; 2) Embedding layer, which embeds high-dimensional input
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Output Layer

Figure 5.1: The network architecture of the proposed framework. It consists of six key
layers: 1) Input layer; 2) Embedding layer, which embeds high-dimensional input vector into
low-dimension space; 3) RNN layer, which captures the sequential and temporal information
in sequences; 4) Interaction layer, which models the interactions between products and events
in the sequence; 5) Recommendation layer, which includes product layer and time layer to
predict products and time, respectively; and 6) Output layer where λi denotes the time and
Pi indicates the probability of recommending product i.

vector into low-dimension space; 3) RNN layer, which captures the sequential and temporal

information in sequences; 4) Interaction layer, which models the interactions between products

and events in the sequence; 5) Recommendation layer, which includes product layer and time

layer to predict products and time, respectively; and 6) Output layer where λi characterizes

the temporal dynamics of interest in buying ith product and Pi indicates the probability of

recommending product i. In the following subsections, we will give details of each layer.

5.3.2 Embedding Layer

The input of the model is the sequences of events, where each event e = (t, b, p) contains

timing, behavior and product information. p = {0, 1}V is a one-hot vector and p[i =

j] = 1, p[i 6= j] = 0 if jth product is involved in e. Similarly, b = {0, 1}B is the one-hot
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vector for behavior indication. Both products and behaviors space could be very large

in real-world recommender systems. For example, there could be millions of products in

e-commerce recommender systems. Hence, one-hot vectors are typically high-dimensional,

which motivates us to add an embedding layer right after the input layer to embed products

and behaviors into low-dimension spaces. Specifically, two embedding matrices Wp ∈ RV×Kp

and Wb ∈ RV×Kb are introduced. The representation of p and b in the embedding spaces

become p ·Wp and b ·Wb, respectively. Note that t can also be embedded by using an

embedding matrix as it does for b and p. But in this work, to reduce number of parameters,

we use binary number of timestamp t to be the time embedding te and pad zeros to the

left to make all of time embedding vectors have the same length. Thus, each event e is the

concatenation of behavior, product and temporal information in their embedding spaces as:

e = [p ·Wp‖b ·Wb‖te] (5.2)

where ‖ is the concatenation operator. As Kp � V and Kb � B, the resulted representation

of events is dense, which will be the input into the following RNN layer to capture the

sequential information of events.

5.3.3 RNN Layer: Learning Sequential Information

The order and time of user behaviors in the event sequence should carry important information

to understand user’s interest. In this subction, we design a RNN sublayer to effectively

model the sequences. Specifically, at time-step t, the RNN receives an input vector et ∈ RE ,

involving behavior bt ∈ B, product pt ∈ P and a latent representation ht−1 of the sequence

seen previously. It emits an output vector ht, an updated representation that incorporates
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the new observation from et. Due to its simplicity and performance, we choose GRU as the

RNN cell. The RNN sublayer will output hidden states h1,h2, · · · ,ht with hi representing

the sequential information up to time stamp ti.

5.3.4 Interaction Layer: Modeling Heterogeneous Influence

Although, the hidden representation ht produced by GRU based RNN contains sequential

information of events in a sequence and has been successfully utilized for recommendation [56].

However, GRU only models the sequence and fails to consider how the events in sequences

will affect later decision on each product. In fact, later interest of a product is highly related

to past behaviors with products. For example, if a user clicks one cellphone several times

in the near past, it is very likely that she has interest in buying a new phone. Thus, it is

desirable to recommend similar products for her. In another case, if the user has already

purchased a cellphone, the probability that she will purchase it again in the near future is

very low. Thus, instead of similar products, related products such as phone cases are likely

to match her interests. However, for other types of products such as food, the story could be

totally different. For instance, if the user has purchased popular and positively rated snacks,

it is highly possible that she will buy it again. In this case, previous behaviors increase the

probability of the same behaviors. Thus, later interest of a product is complicatedly related

to both previous behaviors and products in the sequence. To capture the heterogeneous

influence of events on different products, we learn a unique latent representation ci of the

sequences for each product. To be specific, with the sequence of hidden representation

H = {h1, h2, · · ·hk} produced by previously introduced RNN layer and the candidate product

embedding vectors W
p
1,:,W

p
2,:, · · · ,W

p
V,:, we compute the relation between the jth product’s

embedding W
p
j,: and each hidden representation hi in H through a function a(·) followed by
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a Softmax function as follows:

αij =
e
a(hi,W

p
j,:

)

∑
k e

a(hk,W
p
j,:

)
(5.3)

where a(·) could be any functions such as feedforward neural networks and dot product. As

the dot product is computed much faster practically due to the highly optimized matrix

multiplication code [117], in this work, we have chosen it as the function a(·) such that

a(p,q) = pTq. The output latent vector cj which is the unique representation of the

sequence history on the jth product can be then computed by the weighted sum of hidden

representation vectors as follows:

cj =
∑
i

αijhi (5.4)

Thus, the heterogeneous influence of the events in a sequence on a product j is captured

and contained in the unique representation vectors cj . With cj , we are able to design product

and time layers for product recommendation and time prediction.

5.3.5 Product Layer: Recommending the Product

For the jth product, previous layer outputs a unique vector cj , which captures both sequential

information and relations between the jth product and each event in the sequence and

represents the user’s later interest on that product. In this subsection, we describe the product

layer that utilizes cj and embedding vector of jth product W
p
j,: to make recommendations.

Specifically, the product layer involves a non-linear function s(·), which synthesizes cj and

W
p
j,: to obtain a score which indicates user’s future interest on the jth product. Due to the
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computation efficiency mentioned in the previous subsection, we also choose s(·) to be the

dot product such that s(p · q) = pTq. Note that other functions such as feed-forward neural

networks can also be used, we leave it as one future exploration direction. To obtain interest

probability distribution over all the candidate products, we apply a softmax layer on the top

of S(·):

P (ỹ = ithproduct) =
exp(s(W

p
i,:, c

i))∑
j exp(s(W

p
j,:, c

j))
(5.5)

Given the probability distribution, we can rank products according to their probabilities for

recommendations.

5.3.6 Time layer: Predicting Recommendation Time

Beside sequential information, event sequences also provide rich temporal information that

can be leveraged to model user’s interest dynamics to make the recommendation just in time.

For example, a user’s interest of a certain product will naturally fluctuate instead of staying

the same. Accurately modeling these dynamics enables us recommend the right product at

the time when user needs it. However, as mentioned previously, it is very challenging to

model the dynamics of user interest as it varies from product to product. Fortunately, the

unique representation cj of users history information for each product enables us to achieve

the goal. In this subsection, we will describe our time prediction layer that leverages cj to

model the temporal dynamics of user’s interest for jth product. Next, we briefly introduce

temporal point process to model temporal dynamics.

Temporal point process is a random process whose realization consists of a sequence of

isolated events with a time stamp t for each event and is denoted by {ti|i = 1, 2, · · · , N},
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where N is the number of events and ti ∈ N+. Note that temporal point process is also called

counting process in some literature and the two terminologies are interchangeable. In this

work, we will stick to the former one. A point process is often modeled by its conditional

intensity function λ(t|Ht), where Ht is the history before t, which represents the rate of

events happening at time t given the time stamps of all events happening before t. The

formal definition of λ(t|Ht) is the following [1]:

λ(t|Ht) = lim
∆t→0

1

∆t

S(t|Ht)− S(t+ ∆t|Ht)
S(t|Ht)

(5.6)

where S(t|Ht) is the conditional probability that the new event will not happen before t

given Ht. With Equation 5.6, S(t|Ht) can be straightforwardly written as:

S(t′|Ht) = exp

{
−
∫ t

t′
λ(τ |Ht)dτ

}
(5.7)

Thus, the conditional probability density of an event happening at time stamp ti is f(ti) =

λ(ti)S(ti) and the likelihood of the realization {ti|i = 1, 2, · · · , N} is:

L({ti|i = 1, 2, · · · , N}) =
n∑
i

log λ(ti)−
∫ tn

0
λ(τ)dτ (5.8)

Depending on the assumptions about parametric form of λ(t|Ht), the temporal point

process can be reduced to more specific ones. For example, if λ(t|Ht) = λ(t) = λ0, it is

the Poisson process [70]. A more general point process is inhomogeneous Poisson process

where λ(t|Ht) = λ(t). Moreover, if λ(t) increases or decreases when new event comes, the

temporal point process becomes Hawkes [52] or self-correcting process [62], respectively.

Although, these specific temporal point processes whose intensity function λ(t) takes assumed
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parametric form has shown it effectiveness in various applications [75, 50, 91], it requires

prior domain knowledge, which is not always available, to make a reasonable choice of the

form. In addition, this approach is constrained by the chosen parametric forms because

it may not align well with the actual data, which is generated by a much more complex

underlying process. To leverage the effectiveness of temporal point process in modeling event

sequences and avoid issues with parametric form of intensity function, in the next, we exploit

the high-level representation that contains the temporal information of the sequences to

model the intensity function.

Modeling intensity function: The interaction layer outputs a unique high-level represen-

tation of the temporal information of user history for each product. Thus, it is natural to

model the intensity function that characterizes the underlying dynamics of user’s interest on

a product with its corresponding representation vector. Specifically, the intensity function for

the future interest on jth product can be learned as follows:

λj(δt) = σ(wt · cj)e−σ(wd·cj)δt (5.9)

where δt is the elapsed time since the last event in the sequence happening, wd and wt are

the model learnable parameters, σ(wt · cj) determines how much previous events trigger the

intensity for jth product and σ(wd · cj) determines how quickly the influence diminishes.

Predicting the time of next event: With the intensity function λj(δt), the probability

of event involving the jth product happening at time t is:

pj(t) =λj(t)
(
−
∫ t

0
λj(τ)dτ

)
(5.10)

=σ(wt · cj) exp
(
− σ(wd · cj)δt
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+
σ(wt · cj)
σ(wd · cj)

exp(−σ(wd · cj)δt− 1)
)

To predict the time of event involving jth product happening, we calculate the expected value

of pj(t) as follows:

t̂j =

∫ ∞
0

t · pj(t)dt (5.11)

Thus, t̂j indicates the right time to recommend the jth product.

5.3.7 Learning Model Parameters

Given S and their next event {(tik+1, b
i
k+1, p

i
k+1)}Ni=1, one straightforward loss function of

the proposed framework to learn model parameters is the negative sum of log likelihood for

events:

L =
N∑
i=1

(βLpi + (1− β)Lti) (5.12)

where Lti = − logP
pik+1(tik+1) and Lpi = − logP (ỹ = pik+1) are the loss of temporal and

product modeling for ith sequence, respectively. And β controls the relative emphasis of

time or item prediction accuracy, N is the number of total sequences, pik+1 and tik+1 are the

product and time in the next event of ith sequence, respectively.

However, we empirically found that the above loss function could lead to very unstable

performance which is consistent with other works [56]. To address this, we adopt negative

sampling strategy in the training process. Specifically, for each positive product pik+1, we

randomly sample one negative product pineg from P and enforce P (ỹ = pik+1) > P (ỹ = pineg)
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by the logits loss for binary classification as follows:

Lpi = − log σ(s(W
p
pos,:, c

pos))− log(1− σ(s(W
p
neg,:, c

neg)) (5.13)

where s(·) is the dot product function used in Equation 5.5, and pos and neg are the product

indexes of pipos and pineg, respectively.

5.4 Experiment

In this section, we conduct extensive experiments with real-world data to evaluate the

proposed model JRec. We first describe details of the data followed by experimental settings.

Then we compare the performance of JRec in the tasks of product recommendation and event

time prediction with that of representative baselines.

5.4.1 Experimental Settings

Data Description: The data used in experiments is collected from a popular e-commerce

website JD.com. This data records click and purchase events from customers’ interactions

with the website. Thus, each event has two pieces of information: one the user behavior

type (click or purchase); the other is the product. We collect 6, 166, 916 sessions and these

sessions contain 169, 856 products. To avoid data sparsity problem, we filter out sequences

that contain products that appear less than one hundred times in the data. We further

filter out very short sequences in order to analyze how the length of the sequence affect the

performance. We follow the procedure in [56] and split the data into training, validation and

testing sets. Each sequence will be in one and only one of the three sets.
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Figure 5.2: Performance comparison on next item prediction. The prediction performance is
measured by Recall@30, Recal@15 and MRR@15. The left and right panels show the results
with long and short sequences, respectively. It is easily observed that the proposed framework
JRec achieves the best performance with any metrics.

Experiment settings: To analyze how the length of event sequence will affect the model

performance, we further construct two datasets from the original data. Specifically, we cut

the last 10 and 50 events of the training sequences to make one of the datasets only contain

the sequences of length 10 and the other only contain those of 50. This also ensures that

both datasets have the same set of sessions, so that we are able to control variables other

than sequence length that could potentially affect the prediction performance.

5.4.2 Performance On Next Item Recommendation

In this subsection, we evaluate our proposed model in terms of its accuracy in predicting

customers’ next interested product. Our model will produce a probability distribution

over all the products. To consider real-world scenarios where a recommender system often

recommends a couple of products that match customers’ interest most, we choose two metrics

to measure the model performance. The first metric is Recall@x, which is the proportion

of cases that the desired products are ranked in top x in terms of probability. We vary the
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value of x such that x = {15, 30}. The second metric used for evaluation is Mean Reciprocal

Rank (MRR), which is the average of the reciprocal probability ranks of the desired products.

Thus, in contrast to Recall@x that measures system general recommendation performance,

MRR focuses on the system’s ability to recommend user the most desired product. These

two metrics are widely used in previous works to evaluate the effectiveness of a recommender

system and their mathematical expressions are shown as follows:

Recall@x =
1

N

∑
i

I(ranki < x) (5.14)

MRR =
1

N

∑
i

1

ranki

where I(x) = 1 is x is true and I(x) = 0 otherwise. The higher Recall@x and MRR are, the

better the performance is.

To show the recommendation performance of the proposed model, we compare it with

the following representative baselines:

POP-global: This baseline recommends the most popular products in the training data to

customers.

POP-user: Instead of a global view, this method considers customer-specific information

and recommends products that have been most popular in the given customer’s history.

Matrix factorization(MF): MF embeds products and customers into low-dimension spaces

according to the customer-item interactions and it is a widely adopted approach in recom-

mender systems. However, in session-based settings, MF can not be directly applied as

the customer set is not fixed and there could be new one to come. Thus, we follow the

approach in [56] that when a new session comes, we compute the average embeddings of all

the products in the session history and use it as the embedding of session. To obtain the
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product embeddings, we construct and factorize an interaction matrix in which the value in

ith row and jth column is the number of occurrence of the jth product in the ith session.

RNN: Recurrent Neural Network is one of most effective methods in modeling sequential

information and has gained great success in diverse tasks. Recently it is also adopted in

recommender systems and achieves the state-of-the-art performance. In this baseline, we use

the model described in [56] and choose the GRU as the recurrent unit to make the comparison

fair. Note that this baseline is also known as GRU4REC [56] and has been widely used as

baselines from session recommendation tasks.

RNN+ATT: This baseline is a variant of the RNN model. It adds one attention layer on top

of the basic GRU model. As attention mechanism is able to identify important information

in a sequence, comparing to RNN model, this baseline will demonstrate the effectiveness of

attention mechanism.

RMTPP: It models event data based on recurrent neural network and marked temporal

point process. This baseline is able to simultaneously predict the type and time of next

event [33]. Thus, if we regard the product as the event type, it can be naturally used to

jointly predict next product and time.

Implementation Details: All the deep methods are implemented in Pytorch 1 and we

optimize them by mini-batch stochastic Adam algorithm [69]. For RMTPP, we directly use

the code provided by the authors 2. In addition, to make the comparison fair, in this work,

we use the same network settings (i.e. number of layer, hidden size, mini-batch size etc.) to

all deep methods and we select learning rate from [0.1, 1e−1, 1e−2, 1e−3, 1e−4] according to

the validation performance.

1http://pytorch.org/
2https://github.com/musically-ut/tf_rmtpp
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Results: The results of recommendation performance of all methods are shown in Figure 5.2.

Following observations can be made from the figure. (1) All model based methods achieved

better performance than heuristics which recommend products merely based on their pop-

ularity. (2) RNN-based methods that are able to capture the sequential information have

substantial performance gain over the MF methods, which is consistent with the previous

observations [56]. (3) Comparing to RNN, RNN+ATT performs better with long sequences

and comparable with short ones. This can be explained that it is hard to capture the

long-term dependencies in long sequences and attention mechanism can mitigate the problem

by making the model focus on related events. In contrast, it is much easier for RNN to capture

the dependencies in short sequences and attention mechanism may not be so useful for short

sequences. (4) RMTPP obtains worst performance. We suspect this is because RMTPP is

designed for the case where there are only limited number of event types, e.g, less than 10.

But the number of event types in our task is much larger as there are huge amount of items

in the e-commerce scenario. (5) JRec significantly outperforms all baselines. Specifically,

Table 5.1 shows the performance improvement of JRec compared to the best performance of

the baselines. We argue that JRec is able to make much better recommendation because of

two key advantages. One is the RNN layer that is able to capture sequential information in

the sequences. The other, which is more important, is the interaction layer that can exploit

the complex relation among behaviors and products. For instance, it is able to attend to the

highly relevant events, which will increase the customer’s interest on that certain product.

To summarize, the proposed framework is able to outperform all the baseline methods

because (1) it models sequential and temporal information; (2) it effectively captures the

complex relations between products when behaviors present; and (3) it explicitly models the

varied influence of past events on different products.
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Table 5.1: Performance improvement of JRec compared to the best performance of the
baselines (%)

Sequence length Recall@30 Recall@15 MRR@15
K=50 +11.86 +21.08 +62.07
K=10 +30.28 +44.81 +55.90

5.4.3 Performance On Next Time Prediction

In this subsection, we will focus on evaluating the performance of our model on time prediction.

Specifically, given the product in the next event, we will show how accurately our model can

model customers’ interest temporal dynamics by predicting when the next event will happen.

This is a key task for recommender systems that aim to make just-in-time recommendation.

Evaluation: We use Mean Absolute Error (MAE) as the accuracy measurement, which is

computed as: MAE = 1
N

∑
i(|ti − t̂i|), where ti and t̂i are the predicted and actual time of

next event of the ith sequence, respectively. A lower MAE score means better performance.

We compare the proposed model with the following representative methods for next time

prediction:

Mean-global: This method predicts the next time based on the average time intervals in

the training data.

Mean-local: Rather than focusing on global information, this approach only uses the local

information and predicts the next time of the session by computing the average of historical

time intervals in the session.

Hawkes: Hawkes process model is widely used to model event data with time stamps. It is

based on the “self-excited" assumption that the advent of event will increase the rate of new

event coming.

RMTPP: As noted in the previous subsection, this method models the event type and time
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simultaneously and can directly predict the time of the next event [33].

Results: The results for time prediction task are shown in Table 5.2. From the table, we

observe that: 1) The Hawkes method obtained the worst performance. We argue this comes

from the incorrect assumption that the underlying process that generates the click-purchase

data is self-excited. In fact, the advent of one event may even prohibit the happening of

next event. For instance, after purchasing a very expensive product, a customer may use up

most of her budget and will not likely shop anything for some time. While Hawkes process

has achieved great success in modeling event data, its performance can drop substantially

if the assumption is not satisfied. Thus, this gives an alarm of applying parametric models

which largely depends on the correctness of the assumption underlying the data. 2) RMTPP

significantly outperforms both heuristics and Hawkes. This is because RMTPP can utilize

RNNs to effectively capture the underlying mechanism generating the sequences. Unlike its

bad performance for product prediction, the temporal modeling challenge in datasets is very

similar to the case for which the model is designed. Thus, it is able to obtain state-of-the-art

performance. 3) JRec has the best performance among all methods with both long and short

sequences. It also outperforms RMTPP, which is designed for event time prediction. we

argue this is because the JRec is able to capture the varied influence of the historical events

on individual product.

5.5 Discussion

In this chapter, we study just-in-time recommendation problem that is to recommend a right

product to a customer at the right time. Specifically, we propose a novel model JRec that

leverages the new opportunities brought by the fine-grained temporal behavior data and
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Table 5.2: Next event time prediction performance comparison.

Baselines K=50 K=10
MAE MAE

Mean-global 1038.96 1107.04
Mean-user 1050.38 1050.38
Hawkess 1247.36 3476.80
RMTPP 890.09 892.80
JRec 887.01 889.15

simultaneously predicts the probability of customers’ interest and its temporal dynamics.

Specifically, JRec not only models the sequential information of the event sequences, but also

captures the varied influence of sessions historical data on each product and obtains unique

representations, which pave a way for product prediction and interest dynamics modeling

with temporal point process. Extensive experiments with real-world e-commerce data have

shown that JRec is able to outperform representative baselines for both next product and

time prediction.

In this chapter, we focus on session-based recommendation setting and treat each session

independently. Thus, one interesting future direction is to extend current framework to

capture the relation among customers’, where event sequences are related to others. Moreover,

we only consider customers’ interest for products in general and ignore that of a behavior

type. For example, for music service providers, knowing a customer will listen a song or buy

a song could be very important for their marketing strategies. Thus, we would also like to

extend our framework to predict product, time and behavior type simultaneously.
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Chapter 6

Modeling Hierarchy Information

6.1 Introduction

Most of the widely used language processing systems have been built on neural networks

that are highly effective, achieving the performance comparable to humans [28, 132, 135].

They are also very brittle, however, as they could be easily broken with the presence of

noises [12, 140, 34]. However, the language processing mechanism of humans are very robust.

One representative example is the following Cambridge sentence:

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht
oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat
ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it
wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by
istlef, but the wrod as a wlohe.

In spite of the fact that a human can read the above sentence with little difficulty, it

can cause a complete failure to existing natural language processing systems such as Google

Translation Engine 1. Building robust natural language processing systems is becoming

increasingly important nowadays given severe consequences that can be made by adversarial

samples [49]: carefully misspelled spam emails that fool spam detection systems [37] delib-

erately designed input sentences that force chatbot to emit offensive language [126, 29, 81],

1https://translate.google.com/
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ym
<latexit sha1_base64="en7GsON1m3JiC39JdLY69Tp7Jtw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RjQkkS5idzCZD5rHMzArLkk/w4kERr36RN//GSbIHTSxoKKq66e6KEs6M9f1vr7Syura+Ud6sbG3v7O5V9w8ejUo1oS2iuNKdCBvKmaQtyyynnURTLCJO29H4Zuq3n6g2TMkHmyU0FHgoWcwItk66z/qiX635dX8GtEyCgtSgQLNf/eoNFEkFlZZwbEw38BMb5lhbRjidVHqpoQkmYzykXUclFtSE+ezUCTpxygDFSruSFs3U3xM5FsZkInKdAtuRWfSm4n9eN7XxVZgzmaSWSjJfFKccWYWmf6MB05RYnjmCiWbuVkRGWGNiXToVF0Kw+PIyeTyrB+f14O6i1rgu4ijDERzDKQRwCQ24hSa0gMAQnuEV3jzuvXjv3se8teQVM4fwB97nD2kijeA=</latexit>

c1
<latexit sha1_base64="T5/PcuWTiPZZMn9+cIcwbjjRd4Y=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirnEBl5lUK25dXcOskq8gtSgQHNQ/eoPI5YorpFJam3Pc2P0U2pQMMlnlX5ieUzZhI54L6OaKm79dH7rjJxlypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTx5CN7yy6ukfVH3Luvew1WtcVvEUYYTOIVz8OAaGnAPTWgBgzE8wyu8Ocp5cd6dj0VrySlmjuEPnM8fIbGNog==</latexit>

c2
<latexit sha1_base64="JczVZD/3qQ/zjFkeOTrMUCTDsEc=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0tsUC8PKlW35s5BVolXkCoUaA4qX/1hxBKJyjJBjel5bmz9lGrLmcBZuZ8YjCmb0BH2MqqoROOn81tn5DxThiSMdFbKkrn6eyKl0pipDLJOSe3YLHu5+J/XS2x446dcxYlFxRaLwkQQG5H8cTLkGpkV04xQpnl2K2FjqimzWTx5CN7yy6ukXa95lzXv4arauC3iKMEpnMEFeHANDbiHJrSAwRie4RXeHOm8OO/Ox6J1zSlmTuAPnM8fIzaNow==</latexit>

cm<latexit sha1_base64="tq1vrRR7V4SL2iWo4ZqTslV7OUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpfYQFYG1Zpbd+cgq8QrSA0KNAfVr/4wYolEZZmgxvQ8N7Z+SrXlTOCs0k8MxpRN6Ah7GVVUovHT+a0zcpYpQxJGOitlyVz9PZFSacxUBlmnpHZslr1c/M/rJTa88VOu4sSiYotFYSKIjUj+OBlyjcyKaUYo0zy7lbAx1ZTZLJ48BG/55VXSvqh7l3Xv4arWuC3iKMMJnMI5eHANDbiHJrSAwRie4RXeHOm8OO/Ox6K15BQzx/AHzucPfN2N3g==</latexit>

Encoder

Decoder

y1
<latexit sha1_base64="ysNXRcmK3pJ0qbmpzS4ZdA5saJY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfdb3+tWaW3dnIMvEK0gNCjT71a/eIGZpxBUySY3pem6Cfk41Cib5pNJLDU8oG9Mh71qqaMSNn89OnZATqwxIGGtbCslM/T2R08iYLApsZ0RxZBa9qfif100xvPJzoZIUuWLzRWEqCcZk+jcZCM0ZyswSyrSwtxI2opoytOlUbAje4svL5PGs7p3XvbuLWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPw4yjaQ=</latexit>

y2
<latexit sha1_base64="OuTQaiOgEEfpU0lCug4ncLRXJ/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+i6t1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEPto2l</latexit>

ym
<latexit sha1_base64="en7GsON1m3JiC39JdLY69Tp7Jtw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RjQkkS5idzCZD5rHMzArLkk/w4kERr36RN//GSbIHTSxoKKq66e6KEs6M9f1vr7Syura+Ud6sbG3v7O5V9w8ejUo1oS2iuNKdCBvKmaQtyyynnURTLCJO29H4Zuq3n6g2TMkHmyU0FHgoWcwItk66z/qiX635dX8GtEyCgtSgQLNf/eoNFEkFlZZwbEw38BMb5lhbRjidVHqpoQkmYzykXUclFtSE+ezUCTpxygDFSruSFs3U3xM5FsZkInKdAtuRWfSm4n9eN7XxVZgzmaSWSjJfFKccWYWmf6MB05RYnjmCiWbuVkRGWGNiXToVF0Kw+PIyeTyrB+f14O6i1rgu4ijDERzDKQRwCQ24hSa0gMAQnuEV3jzuvXjv3se8teQVM4fwB97nD2kijeA=</latexit>

c1
<latexit sha1_base64="T5/PcuWTiPZZMn9+cIcwbjjRd4Y=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirnEBl5lUK25dXcOskq8gtSgQHNQ/eoPI5YorpFJam3Pc2P0U2pQMMlnlX5ieUzZhI54L6OaKm79dH7rjJxlypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTx5CN7yy6ukfVH3Luvew1WtcVvEUYYTOIVz8OAaGnAPTWgBgzE8wyu8Ocp5cd6dj0VrySlmjuEPnM8fIbGNog==</latexit>

c2
<latexit sha1_base64="JczVZD/3qQ/zjFkeOTrMUCTDsEc=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0tsUC8PKlW35s5BVolXkCoUaA4qX/1hxBKJyjJBjel5bmz9lGrLmcBZuZ8YjCmb0BH2MqqoROOn81tn5DxThiSMdFbKkrn6eyKl0pipDLJOSe3YLHu5+J/XS2x446dcxYlFxRaLwkQQG5H8cTLkGpkV04xQpnl2K2FjqimzWTx5CN7yy6ukXa95lzXv4arauC3iKMEpnMEFeHANDbiHJrSAwRie4RXeHOm8OO/Ox6J1zSlmTuAPnM8fIzaNow==</latexit>

cm<latexit sha1_base64="tq1vrRR7V4SL2iWo4ZqTslV7OUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpfYQFYG1Zpbd+cgq8QrSA0KNAfVr/4wYolEZZmgxvQ8N7Z+SrXlTOCs0k8MxpRN6Ah7GVVUovHT+a0zcpYpQxJGOitlyVz9PZFSacxUBlmnpHZslr1c/M/rJTa88VOu4sSiYotFYSKIjUj+OBlyjcyKaUYo0zy7lbAx1ZTZLJ48BG/55VXSvqh7l3Xv4arWuC3iKMMJnMI5eHANDbiHJrSAwRie4RXeHOm8OO/Ox6K15BQzx/AHzucPfN2N3g==</latexit>

Encoder

Decoder

y1
<latexit sha1_base64="ysNXRcmK3pJ0qbmpzS4ZdA5saJY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfdb3+tWaW3dnIMvEK0gNCjT71a/eIGZpxBUySY3pem6Cfk41Cib5pNJLDU8oG9Mh71qqaMSNn89OnZATqwxIGGtbCslM/T2R08iYLApsZ0RxZBa9qfif100xvPJzoZIUuWLzRWEqCcZk+jcZCM0ZyswSyrSwtxI2opoytOlUbAje4svL5PGs7p3XvbuLWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPw4yjaQ=</latexit>

y2
<latexit sha1_base64="OuTQaiOgEEfpU0lCug4ncLRXJ/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+i6t1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEPto2l</latexit>

ym
<latexit sha1_base64="en7GsON1m3JiC39JdLY69Tp7Jtw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RjQkkS5idzCZD5rHMzArLkk/w4kERr36RN//GSbIHTSxoKKq66e6KEs6M9f1vr7Syura+Ud6sbG3v7O5V9w8ejUo1oS2iuNKdCBvKmaQtyyynnURTLCJO29H4Zuq3n6g2TMkHmyU0FHgoWcwItk66z/qiX635dX8GtEyCgtSgQLNf/eoNFEkFlZZwbEw38BMb5lhbRjidVHqpoQkmYzykXUclFtSE+ezUCTpxygDFSruSFs3U3xM5FsZkInKdAtuRWfSm4n9eN7XxVZgzmaSWSjJfFKccWYWmf6MB05RYnjmCiWbuVkRGWGNiXToVF0Kw+PIyeTyrB+f14O6i1rgu4ijDERzDKQRwCQ24hSa0gMAQnuEV3jzuvXjv3se8teQVM4fwB97nD2kijeA=</latexit>

LSTM 
CELL

Prediction 
layer 

w1
<latexit sha1_base64="WFTrKAxLUTOX9DnMkbB5jT9QoOw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbTbt0dxN2J0oJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmlldW19o7xZ2dre2d2r7h+0bZQYxlsskpHpBNRyKTRvoUDJO7HhVAWSPwTjm9x/eOTGikjf4yTmvqJDLULBKObSU9+r9Ks1t+7OQJaJV5AaFGj2q1+9QcQSxTUySa3tem6MfkoNCib5tNJLLI8pG9Mh72ZUU8Wtn85unZKTTBmQMDJZaSQz9fdESpW1ExVknYriyC56ufif100wvPJToeMEuWbzRWEiCUYkf5wMhOEM5SQjlBmR3UrYiBrKMIsnD8FbfHmZtM/q3nndu7uoNa6LOMpwBMdwCh5cQgNuoQktYDCCZ3iFN0c5L8678zFvLTnFzCH8gfP5A0A9jbY=</latexit>

LSTM 
CELL

Prediction 
layer 

w2
<latexit sha1_base64="bvcH1tUu9sDkvWGMgzfqJcUtqvc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibsTpRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3JjRaQfcBJzX9GhFqFgFDPpqV8r9csVt+rOQVaJl5MK5Gj0y1+9QcQSxTUySa3tem6M/pQaFEzyWamXWB5TNqZD3k2ppopbfzq/dUbOUmVAwsikpZHM1d8TU6qsnagg7VQUR3bZy8T/vG6C4bU/FTpOkGu2WBQmkmBEssfJQBjOUE5SQpkR6a2EjaihDNN4shC85ZdXSatW9S6q3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMRPMMrvDnKeXHenY9Fa8HJZ47hD5zPH0HCjbc=</latexit>

LSTM 
CELL

Prediction 
layer 

wn
<latexit sha1_base64="TWrYdtj3FQTWagR6k++6SdfKYXM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKthbaUDbbSbt0dxN2N0oJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLK6tr6RnmzsrW9s7tX3T9omyjRDFssEpHuBNSg4ApblluBnVgjlYHAh2B8k/sPj6gNj9S9ncToSzpUPOSM2lx66qtKv1pz6+4MZJl4BalBgWa/+tUbRCyRqCwT1Jiu58bWT6m2nAmcVnqJwZiyMR1iN6OKSjR+Ort1Sk4yZUDCSGelLJmpvydSKo2ZyCDrlNSOzKKXi/953cSGV37KVZxYVGy+KEwEsRHJHycDrpFZMckIZZpntxI2opoym8WTh+AtvrxM2md177zu3V3UGtdFHGU4gmM4BQ8uoQG30IQWMBjBM7zCmyOdF+fd+Zi3lpxi5hD+wPn8AZzujfM=</latexit>

c1
<latexit sha1_base64="T5/PcuWTiPZZMn9+cIcwbjjRd4Y=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirnEBl5lUK25dXcOskq8gtSgQHNQ/eoPI5YorpFJam3Pc2P0U2pQMMlnlX5ieUzZhI54L6OaKm79dH7rjJxlypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTx5CN7yy6ukfVH3Luvew1WtcVvEUYYTOIVz8OAaGnAPTWgBgzE8wyu8Ocp5cd6dj0VrySlmjuEPnM8fIbGNog==</latexit>

c2
<latexit sha1_base64="JczVZD/3qQ/zjFkeOTrMUCTDsEc=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0tsUC8PKlW35s5BVolXkCoUaA4qX/1hxBKJyjJBjel5bmz9lGrLmcBZuZ8YjCmb0BH2MqqoROOn81tn5DxThiSMdFbKkrn6eyKl0pipDLJOSe3YLHu5+J/XS2x446dcxYlFxRaLwkQQG5H8cTLkGpkV04xQpnl2K2FjqimzWTx5CN7yy6ukXa95lzXv4arauC3iKMEpnMEFeHANDbiHJrSAwRie4RXeHOm8OO/Ox6J1zSlmTuAPnM8fIzaNow==</latexit>

cm<latexit sha1_base64="tq1vrRR7V4SL2iWo4ZqTslV7OUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpfYQFYG1Zpbd+cgq8QrSA0KNAfVr/4wYolEZZmgxvQ8N7Z+SrXlTOCs0k8MxpRN6Ah7GVVUovHT+a0zcpYpQxJGOitlyVz9PZFSacxUBlmnpHZslr1c/M/rJTa88VOu4sSiYotFYSKIjUj+OBlyjcyKaUYo0zy7lbAx1ZTZLJ48BG/55VXSvqh7l3Xv4arWuC3iKMMJnMI5eHANDbiHJrSAwRie4RXeHOm8OO/Ox6K15BQzx/AHzucPfN2N3g==</latexit>

Encoder

c1
<latexit sha1_base64="T5/PcuWTiPZZMn9+cIcwbjjRd4Y=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirnEBl5lUK25dXcOskq8gtSgQHNQ/eoPI5YorpFJam3Pc2P0U2pQMMlnlX5ieUzZhI54L6OaKm79dH7rjJxlypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTx5CN7yy6ukfVH3Luvew1WtcVvEUYYTOIVz8OAaGnAPTWgBgzE8wyu8Ocp5cd6dj0VrySlmjuEPnM8fIbGNog==</latexit>

c2
<latexit sha1_base64="JczVZD/3qQ/zjFkeOTrMUCTDsEc=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0tsUC8PKlW35s5BVolXkCoUaA4qX/1hxBKJyjJBjel5bmz9lGrLmcBZuZ8YjCmb0BH2MqqoROOn81tn5DxThiSMdFbKkrn6eyKl0pipDLJOSe3YLHu5+J/XS2x446dcxYlFxRaLwkQQG5H8cTLkGpkV04xQpnl2K2FjqimzWTx5CN7yy6ukXa95lzXv4arauC3iKMEpnMEFeHANDbiHJrSAwRie4RXeHOm8OO/Ox6J1zSlmTuAPnM8fIzaNow==</latexit>

cm<latexit sha1_base64="tq1vrRR7V4SL2iWo4ZqTslV7OUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpfYQFYG1Zpbd+cgq8QrSA0KNAfVr/4wYolEZZmgxvQ8N7Z+SrXlTOCs0k8MxpRN6Ah7GVVUovHT+a0zcpYpQxJGOitlyVz9PZFSacxUBlmnpHZslr1c/M/rJTa88VOu4sSiYotFYSKIjUj+OBlyjcyKaUYo0zy7lbAx1ZTZLJ48BG/55VXSvqh7l3Xv4arWuC3iKMMJnMI5eHANDbiHJrSAwRie4RXeHOm8OO/Ox6K15BQzx/AHzucPfN2N3g==</latexit>

Encoder

c1
<latexit sha1_base64="T5/PcuWTiPZZMn9+cIcwbjjRd4Y=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirnEBl5lUK25dXcOskq8gtSgQHNQ/eoPI5YorpFJam3Pc2P0U2pQMMlnlX5ieUzZhI54L6OaKm79dH7rjJxlypCEkclKI5mrvydSqqydqiDrVBTHdtnLxf+8XoLhjZ8KHSfINVssChNJMCL542QoDGcopxmhzIjsVsLG1FCGWTx5CN7yy6ukfVH3Luvew1WtcVvEUYYTOIVz8OAaGnAPTWgBgzE8wyu8Ocp5cd6dj0VrySlmjuEPnM8fIbGNog==</latexit>

c2
<latexit sha1_base64="JczVZD/3qQ/zjFkeOTrMUCTDsEc=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0tsUC8PKlW35s5BVolXkCoUaA4qX/1hxBKJyjJBjel5bmz9lGrLmcBZuZ8YjCmb0BH2MqqoROOn81tn5DxThiSMdFbKkrn6eyKl0pipDLJOSe3YLHu5+J/XS2x446dcxYlFxRaLwkQQG5H8cTLkGpkV04xQpnl2K2FjqimzWTx5CN7yy6ukXa95lzXv4arauC3iKMEpnMEFeHANDbiHJrSAwRie4RXeHOm8OO/Ox6J1zSlmTuAPnM8fIzaNow==</latexit>

cm<latexit sha1_base64="tq1vrRR7V4SL2iWo4ZqTslV7OUM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpfYQFYG1Zpbd+cgq8QrSA0KNAfVr/4wYolEZZmgxvQ8N7Z+SrXlTOCs0k8MxpRN6Ah7GVVUovHT+a0zcpYpQxJGOitlyVz9PZFSacxUBlmnpHZslr1c/M/rJTa88VOu4sSiYotFYSKIjUj+OBlyjcyKaUYo0zy7lbAx1ZTZLJ48BG/55VXSvqh7l3Xv4arWuC3iKMMJnMI5eHANDbiHJrSAwRie4RXeHOm8OO/Ox6K15BQzx/AHzucPfN2N3g==</latexit>

Encoder

Figure 6.1: The graphical illustration of the proposed framework: MUDE.

etc. Thus, in this work, we focus on building a word recognition framework which can

denoise the misspellings such as those shown in the Cambridge sentence. As suggested by

psycholinguistic studies [99, 27], the humans can comprehend text that is noised by jumbling

internal characters while leaving the first and last characters of a word unchanged. Thus, an

ideal word recognition model is expected to emulate robustness of human language processing

mechanism.

The benefits of such framework are two-folds. The first is its recognition ability can be

straightforwardly used to correct misspellings. The second is its contribution to the robustness

of other natural language processing systems. By serving as a denoising component, the word

recognition framework can firstly clean the noised sentences before they are inputted into

other natural language processing systems [98, 144].

From the human perspective, there are two types of information that play an essential role

for us to recognize the noised words [96]. The first is the character-level dependencies. Take

the word ‘wlohe’ in the Cambridge sentences as an example, it is extremely rare to see a ‘w’ sits

next to an ‘l’ in an English word. Instead, it is more natural with ‘wh’. Thus, it is quite easy

for humans to narrow down possible correct forms of ‘wlohe’ to be ‘whole’ or ‘whelo’. To ensure

that it should be ‘whole’, we often need the second type of information: context information
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such as ‘but the wrod as a wlohe.’, which is denoted as word-level dependencies in this chapter.

The character-level and world-level dependencies form hierarchical structures. Intuitively, an

effective word recognition framework should capture these hierarchical structures. However,

hierarchical structures are rarely exploited by the exiting works such as scRNN [102]. Hence,

we propose a framework MUDE that is able to fully utilize hierarchical structures for the

robust word recognition task. It integrates a character-level sequence-to-sequence model and

a word-level sequential learning model into a coherent framework. The major contributions

of our work are summarized as follows:

• We identify importance of hierarchical structures for recognizing a noised word;

• We propose a novel framework, MUDE, that utilizes both character-level and word-level

dependencies for robust word recognition task;

• We conduct extensive experiments on various types of noises to verify the effectiveness

of MUDE.

6.2 The Proposed Framework: MUDE

In this section, we describe MUDE that is able to capture both character-level and word-level

dependencies. The overall architecture is illustrated in Figure 6.1. It consists of 3 major

components: a sequence-to-sequence model, a bi-directional recurrent neural network and a

prediction layer. Next we will detail each component.
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6.2.1 Learning Character-level Dependencies

As mentioned previously, there exist sequential patterns in the characters of a word. For

example, vocabulary roots such as cur and bio can be found in many words. In this subsection,

we propose a sequence-to-sequence model to learn a better representation of a given word by

incorporating character-level dependencies. The model consists of an encoder and a decoder,

which we will describe next.

6.2.1.1 Encoder

Let ŵ = c1, c2, · · · cm be a sequence of characters of a given noised word ŵ. We firstly map

each character ci to a dc-dimensional character embedding as follows:

xi = Eoi (6.1)

where E ∈ RC×dc is the embedding matrix given that the total number of unique characters

is C. oi ∈ RC is the one-hot representation of ci. Since there could some noise in ŵ, the

sequential order of ci can be misleading. Thus, instead of using a sequential learning model

such as recurrent neural network, we choose the multi-head attention mechanism [117] to

model the dependencies between characters without considering their order. To do so, we

add a special character c0 whose final representation will be used as the representation of the

word.

Specifically, the multi-head attention mechanism will obtain a refined representation for

each character in ŵ. Next, without the loss of generality, we will use ci as an example to

illustrate. To obtain the refined representation of ci, xi will firstly be projected into query
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space and xj ∀j ∈ {0, 1, · · · ,m} will be projected into key and value spaces as follows:

x
q
i = Qxi

xkj = Kxj ∀j ∈ {0, 1, · · · ,m} (6.2)

xvj = Vxj ∀j ∈ {0, 1, · · · ,m}

where Q, K, V are the projection matrices for query, key, and value spaces, respectively.

With xqi , x
k
j and xvj , the refined representation ei of ci can be calculated as the weighted sum

of xvj :

ei =
∑

αjx
v
j (6.3)

where αj is the attention score that is obtained by the following equation:

α0, α1, · · · , αm = σs(
x
q
i
T
xk0√
d

,
x
q
i
T
xk1√
d

, · · · , x
q
i
T
xkm√
d

)

Where σs is the softmax function. To capture the dependencies of characters from different

aspects, multiple sets of projection matrices are usually used, which will result in multiple

sets of xqi , x
k
j and xvj , and thus ei. To be concrete, assume that there are h sets of projection

matrices, from Equation 6.2 and Equation 6.3, we can obtain h eis, which are denoted as

{e1
i , e

2
i , · · · , ehi }. With this, the refined representation of ci is obtained by the concatenation

operation:

zi = concatenation(e1
i , e

2
i , · · · , ehi ) (6.4)
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where zi is the new representation of ci and contains dependency information of ci to other

characters in ŵ from h aspects.

Following [117], we also add a positional-wise feedforward layer to zi as follows:

pi = W2ReLU(W1zi) (6.5)

where W1 and W2 are the learnable parameters. pi is the final representation of ci. Note

that we can have several above mentioned layers stacked together to form a deep structure.

At this point, we have obtained the refined representation vector for each character and

we use that of the special character c0 as the representation of given noised word, which is

denoted as wc

6.2.1.2 Decoder

To capture the sequential dependency in the correct words, the Gated Recurrent Unit (GRU)

which has achieved great performance in many sequence learning tasks [129, 6, 128] is used

as the decoder. To be specific, in the decoding process, the initial hidden state h0 of GRU

is initialized with the noised word presentation ŵ. Then at each time stamp t, GRU will

recursively output a hidden state ht given the hidden state ht−1 at the previous time stamp.

Due to the page limitation, we do not show the details of GRU, which is well described in [20].

In addition, each hidden state will emit a predicted character cpt . The decoding process will

end when the special character denoting the end of word is emitted. Concretely, the whole

decoding process is formally formulated as follows:

h0 = wc (6.6)
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ht = GRU(ht−1)

pt = σs(Wpht)

c
p
t = arg max

i
(pt[i])

where Wp ∈ RC×d is a trainable parameter. pt ∈ RC gives the emission probability of each

character and pt[i] denotes the ith entry of vector pt.

6.2.1.3 Sequence-to-sequence Loss

To train the previously described character-level sequence-to-sequence model, we define the

loss function as follows:

Lseq2seq = −
m∑
i

pi[yi] (6.7)

where yi is the index of the ground truth at position i of the correct word w. By minimizing

Lseq2seq, the designed sequence-to-sequence model can learn a meaningful representation

that incorporates character-level sequential dependencies for the noised word. Next, we will

describe the framework component that captures the word-level dependencies.

6.2.2 Capturing Word-level Dependencies

From the human perspective, it is vitally important to consider the context of the whole

sentences in order to understand a noised word. For example, it would be very hard to know

‘frist’ means ‘first’ until a context ‘the olny iprmoetnt tihng is taht the frist and lsat ltteer

be at the rghit pclae.’ is given. Thus, to utilize the context information and word-level

dependencies, we design a recurrent neural network (RNN) to incorporate them in the
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noised word representation. Specifically, the word presentations obtained from character-level

encoder will be passed into a bi-directional long short-term memory (LSTM). Concretely,

given a sequence of word presentations S = {wc1, wc2, · · · , wcn} obtained from character-level

dependencies, we calculate a sequence of refined word representation vectors {w1, w2, · · · , wn}

as follows:

w
f
1 , w

f
2 , · · · , w

f
n = LSTMforward(w

c
1, w

c
2, · · · , wcn)

wb1, w
b
2, · · · , wbn = LSTMbackward(w

c
1, w

c
2, · · · , wcn) (6.8)

w1, w2, · · · , wn = w
f
1 ||wb1, w

f
2 ||wb2, · · · , w

f
n||wbn

where ‖ denotes concatenation. LSTMforward indicates that wcs are processed from wc1 to

wcn, while LSTMbackward processes word presentations in an opposite direction, namely, from

wcn to wc1. Comparing to original LSTM where only forward pass is performed, bi-directional

LSTM can include both ‘past’ and ‘future’ information in the representation of wi.

With the aforementioned procedure, the representation of each word now incorporates

both character-level and word-level dependencies. Thus, the correct word is predicted as

follows:

pwi = σs(Wwwi) (6.9)

w
p
i = arg max

i
(pwt [i])

where Ww ∈ RV×dw is a trainable matrix and V is the size of the vocabulary that contains

all possible words. Moreover, pwi ∈ RV is the probability distribution over the vocabulary for

the ith word in a sentence.
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6.2.2.1 Word Prediction Loss

To effectively train MUDE for correct word prediction, similar to character-level sequence-to-

sequence model, we define the following objective function:

Lpred = −
n∑
i

pwi [ywi ] (6.10)

where ywi is the index of the ith correct word.

6.2.3 Training Procedure

So far we have described MUDE which includes a character-level sequence-to-sequence model

and a word-level sequential learning model. To train both models simultaneously, we design

a loss function for the whole framework as follows:

L = Lpred + βLseq2seq (6.11)

where β is a hyperparameter that controls the contribution of the character-level sequence-to-

sequence model. Since the major goal of the framework is to predict the correct word given

the noised word, we decrease the value of β gradually as the training proceeds to allow the

optimizer increasingly focus on improving the word prediction performance.

6.2.3.1 Test Stage

As shown in Figure 6.1, in the test stage, we simply remove the decoder of the sequence-to-

sequence model and only keep the encoder in the framework.
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6.3 Experiment

In this section, we conduct extensive experiments on the spell correction task to verify the

effectiveness of MUDE. Next, we firstly introduce the experimental settings, followed by the

analysis of the experimental results.

6.3.1 Experimental Settings

6.3.1.1 Data

We use the publicly available Penn Treebank [86] as the dataset. Following the previous

work [102], we firstly experiment on 4 different types of noise: Permutation (PER), Deletion

(DEL), Insertion (DEL), and Substitution (SUB), which only operate on the internal characters

of words, leaving the first and last characters unchanged. Table 6.1 shows a toy example of a

noised sentence. These 4 types of noise can cover most of the realistic cases of misspellings

and commonly tested in previous works [12, 98]. For each type of noise, we construct a noised

dataset from the original dataset by altering all the words that have more than 3 characters

with corresponding noise. We use the same training, validation and testing split in [102],

which contains 39,832, 1,700 and 2,416 sentences, respectively.

Table 6.1: Toy examples of noised text

Noise Type Sentence
Correct An example of noised text
PER An epaxmle of nsieod txet
DEL An examle of nosed tet
INS An edxample of nmoised texut
SUB An exsmple of npised test
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6.3.1.2 Baselines

To show the effectiveness of MUDE, we compare it with two strong and widely used baselines.

The first is Enchant 2 spell checker which is based on dictionaries. The second one is

scRNN [102]. It is a recurrent neural network based word recognition model and has achieved

previous state-of-the-art results on spell correction tasks. This baseline only considers the

sequential dependencies in the word level with a recurrent neural network and ignores that of

character level. Note that other baselines including CharCNN [107] have been significantly

outperformed by scRNN. Thus, we do not include them in the experiments.

6.3.1.3 Implementation Details

Both scRNN and MUDE are implemented with Pytorch. The number of hidden units of

word representations is set to be 650 as suggested by previous work [102]. The learning rate

is chosen from {0.1, 0.01, 0.001, 0.0001} and β in Equation 6.11 is chosen from {1, 0.1, 0.001}

according to the model performance on the validation datasets. The parameters of MUDE

are learned with stochastic gradient decent algorithm and we choose RMSprop [115] to be

the optimizer as it did in [102]. To make the comparison fair, scRNN is trained with the

same settings as MUDE.

6.3.2 Comparison Results

The comparison results are shown in Table 6.2. There are several observations can be made

from the table. The first is that model based methods (scRNN and MUDE) achieve much

better performance than dictionary based one (Enchant). This is not surprising as model

based methods can effectively utilize the sequential dependencies of words in the sentences.

2https://abiword.github.io/enchant/
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Moreover, MUDE consistently outperforms scRNN in all cases, which we believe attributes to

the effective design of MUDE to capture both character and word level dependencies. More

detailed analysis of contribution brought by the character-level dependencies will be shown

later in this section. In addition, we observe that the difficulty brought by different types of

noise varies significantly. Generally, for model based methods, permutation and insertion

noises are relatively easier to deal with comparing to deletion and substitution noises. We

argue this is because the former ones do not lose any character information. In other words,

the original character information is largely preserved with permutation and insertion. On

the contrary, both deletion and substitution can cause information loss, which makes it harder

to recognize the original words. This again demonstrate how important the character-level

information is. Finally, the results also show that in more difficult situations where deletion

or substitution noises present, the advantages of the MUDE become even more obvious. This

clearly suggests the effectiveness of the MUDE.

Table 6.2: Performance comparison on different types of noise in terms of accuracy (%). Best
results are highlighted with bold numbers.

Method INT DEL INS SUB

Enchant 72.33 71.23 93.93 79.77
scRNN 98.23 91.55 95.95 87.09
MUDE 98.81 95.86 97.16 90.52

Next, we take one step further by removing the constraint that the noise will not affect the

first and last characters of each word. More specifically, we define 4 new types of noise that

are W-PER, W-DEL, W-INS, and W-SUB, which stand for altering a word by permuting

the whole word, deleting, inserting, and substituting characters in any position of the word.

Similarly, for each type of new noise, we construct a noised dataset. The results are shown in
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Figure 6.2: Learning curve of MUDE in the training procedure with different β values.

Table 6.3: Performance comparison on different types of noise in terms of accuracy (%). Best
results are highlighted with bold numbers.

Method W-PER W-DEL W-INS W-SUB

Enchant 59.08 69.84 93.77 77.23
scRNN 97.36 89.99 95.96 81.12
MUDE 98.75 93.29 97.10 85.17

Table 6.3.

From the table, we observe that firstly, the performance of nearly all methods decreases

comparing to that of Table 6.2. This suggests the new types of noise are more difficult to

handle, which is expected as they cause more variations of noised words. In fact, without

keeping first and last characters of each words, it also becomes a difficult task for human

to comprehend the noised sentences [99]. Secondly, MUDE still achieves higher accuracy

than other baselines, which is consistent with observations from Table 6.2. More importantly,

as the difficulty of the task increases, the advantages of MUDE over scRNN also become

more obvious. Take the noise of substitution for example, in Table 6.2, MUDE has around

3.5% absolute accuracy gain over scRNN. When more difficult noise (W-SUB) comes, the
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performance gain of MUDE becomes 4% as shown in Table 6.3. Such observation is also

consistent with previous findings.

In summary, both Table 6.2 and 6.3 clearly demonstrate the robustness of MUDE and

its advantages over scRNN which can not utilize the character-level dependencies. Thus, in

the next subsection, we conduct analysis on the contribution of character-level dependencies

to gain better understanding of MUDE.

6.3.3 Parameter Analysis

In this subsection, we analyze the contribution of character-level dependencies to better word

representations by showing the model performance with different β values, which controls

the contribution of character-level sequence-to-sequence loss. Specifically, we let the β be 0

and 1. When β is 0, MUDE will totally ignore the character-level dependencies; When β

equals to 1, MUDE achieve best accuracy in validation set. The prediction loss and seq2seq

loss during the training stage with different β values are shown in Figure 6.2. Note that the

trends in Figure 6.2 are similar in all of the cases with the different types noise and we only

show that of W-PER case due to the page limitation.

As the upper sub-figure shows, when β = 1 the prediction loss converges faster and at a

lower value comparing to that of case when β = 0. For the seq2seq loss, it remains constant

value when β = 0 as the model does not learn anything regarding seq2seq task. On the other

hand, when β = 1, the seq2seq loss stably decreases, suggesting that the MUDE is trained to

obtain better representation of each word. The obvious positive correlation between these

two losses clearly demonstrates the importance of learning character-level dependencies in

misspelling correction tasks.
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Table 6.4: Generalization analysis results. The best results are highlighted. MEAN shows
the average value of each row.

Test Noise

Train Noise PER W-PER DEL W-DEL INS W-INS SUB W-SUB MEAN

PER – 98.81 82.55 79.61 92.21 92.37 71.39 69.88 85.70
W-PER 98.75 – 81.31 78.3 91.32 91.25 69.55 67.91 84.64
DEL 90.83 90.83 – 86.02 79.96 79.97 81.99 76.02 85.18
W-DEL 86.75 86.75 94.08 – 78.83 78.87 80.35 79.07 84.74
INS 94.79 94.79 77.3 74.81 – 97.15 82.86 80.42 87.41
W-INS 95.67 95.67 78.34 75.95 97.01 – 82.96 80.78 87.91
SUB 91.71 91.71 88.34 81.49 81.19 81.21 – 83.65 86.22
W-SUB 87.05 87.05 83.42 82.42 79.27 79.17 85.67 – 83.65

Table 6.5: Data augmentation results. The values that are higher than these of Table 6.4 are
bold.

Test Noise

PER W-PER DEL W-DEL INS W-INS SUB W-SUB MEAN

W-ALL 96.45 96.45 94.26 93.34 95.3 95.28 91.51 90.48 94.13

6.3.4 Generalization Analysis

In this subsection, we conduct experiments to understand generalization ability of MUDE.

Concretely, we train the framework on one type of noise and test it with a dataset that

presents another type of noise. The results are shown in Table 6.4.

From results, we have the following two observations. Firstly, between datasets with

similar type of noise, MUDE generalizes quite well (e.g. trained on W-PER and tested on

PER), which is not surprising. However, the MUDE trained on one type of noise performs

much worse on other types of noise that are very different. These observations suggest that

it is hard for MUDE to generalize between noises, which we argue is possibly because of the

small overlap between distributions of each type of noise.
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Thus, in the next, we apply the commonly used adversarial training method by augmenting

all types of noise to train MUDE and test it on each type noise individually. As W-* (*∈

{PER, DEL, INS, SUB}) includes the *, in this experiment, we only combine W-* instead of

all types of noise. We denote the new constructed training dataset as W-ALL. The results

are shown in Table 6.5. It can be observed from table that the MUDE trained on W-ALL

has much better generalization ability (i.e., the mean value is much higher). In addition, it is

interesting to see that performance of the MUDE decreases slightly in relatively easy cases

where permutation or insertion noise presents while increasing a lot in difficult cases where

deletion or substitution noise presents.

6.3.5 Case Study

In this subsection, we take the Cambridge sentences which are not the training set as an

example to give a qualitative illustration of MUDE’s misspelling correction performance.

Note that due to the constraint of space, we only show the results of the two types of noise:

W-PER and W-INS. The examples are shown in Table 6.6 and 6.7, respectively. We can see

from the table that it is quite difficult for even humans to comprehend the noised sentence

when first and last characters are also changed. However, MUDE can still recognize almost

all of the words. In addition, for both cases, the MUDE has much less errors in the corrected

sentence than scRNN, which is consistent with previous quantitative results.

6.4 Related Work

In this section, we briefly review the related literature that is grouped into two categories.

The first category includes the exiting works on similar tasks and the second one contains
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Table 6.6: An illustrative example of spelling correction outputs for the Cambridge sentence
noised by W-PER. Words that the models fail to correct are underlined and bold.

.

Correct According to a researcher at Cambridge University , it does n’t matter in what
order the letters in a word are , the only important thing is that the first and
last letter be at the right place . The rest can be a total mess and you can still
read it without problem . This is because the human mind does not read every
letter by itself , but the word as a whole .

Noised iodrcAngc ot a reeachsr at meigaCdbr srtiinUyve , it seod tn’ amrtte in wtah
rerdo het tserelt in a rdwo rae , the onyl onmtiaptr ingth si tath hte itfrs dan
stla treelt be ta het tgrhi place . hTe rset nca be a aotlt mess dan ouy anc lsilt
drae ti tthwuoi lorbmpe . hTsi is aubeecs the huamn dmni edos nto erad evrye
lteter by etfisl , but het rdwo sa a eholw .

scRNN According to a research at Cambridge University , it does n’t matter in what
order the letters in a word are , the only important thing is that the first and
last letter be at the right place . The rest can be a total mess and you can still
read it without problem . This is because the human mind does not read very
letter by itself , but the word as a whole .

MUDE According to a research at Cambridge University , it does n’t matter in what
order the letters in a word are , the only important thing is that the first and
last letter be at the right place . The rest can be a total mess and you can still
read it without problem . This is because the human mind does not read every
letter by itself , but the word as a whole .

previous works that have applied word recognition model to improve the robustness of other

NLP systems.

6.4.1 Grammatical Error Correction

Since the CoNLL-2014 shared task [93], Grammatical Error Correction (GEC) has gained

great attention from NLP communities [138, 46, 66, 21, 65]. Currently the most effective

approaches regard GEC as machine translation problem that translates erroneous sentences

to correct sentences. Thus, many methods that are based on statistical or neural machine

translation architectures have been proposed. However, most of the existing GEC systems
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Table 6.7: An illustrative example of spelling correction outputs for the Cambridge sentence
noised by W-INS. Words that the models fail to correct are underlined and bold.

.

Correct According to a researcher at Cambridge University , it does n’t matter in what
order the letters in a word are , the only important thing is that the first and
last letter be at the right place . The rest can be a total mess and you can still
read it without problem . This is because the human mind does not read every
letter by itself , but the word as a whole .

Noised Acxcording to a reysearch at Cazmbridge Univversity , it doesw n’t msatter in
whmat orderh the letteros in a fword are , the oynly wimportant tghing is tyhat
the fircst and ldast legtter be at the rightv placeu . The resty can be a totalp
mesus and you can stillb rnead it withougt promblem . Txhis is bebcause the
humgan minnd doess not reabd everyb lettfer by itslelf , but the whord as a
whvole .

scRNN according to a research at Cambridge University , it does n’t matter in what
order the letters in a word are , the only important thing is that the first and
last better be at the right place . The rest can be a total less and you can
still read it without problem . This is because the human mind does not rated
every better by itself , but the word a a whole .

MUDE According to a research at Cambridge University , it does n’t matter in what
order the letters in a word are , the only important thing is that the first and
last letter be at the right place . The rest can be a total uses and you can
still read it without problem . This is because the human mind does not bear
every letter by itself , but the word as a whole .

have focused on correction of grammar errors instead of noised spellings. For example, most

of words in a wrong sentence in CoNLL-2014 shared task [93] are correct such as ‘Nothing

is absolute right or wrong’, where the only error comes from the specific form ‘absolute’.

One of the existing works that are most similar to this chapter is scRNN [102], where each

word is represented in a fixed ‘bag of characters’ way. It only consists of a word-level RNN

and focused on very easy noise. On the contrary, our proposed framework is more flexible

and can obtain meaningful representations that incorporate both character and word-level

dependencies. In addition, we have experimented on more difficult types of noise than these

in [102] and achieved much better performance.
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6.4.2 Denoising Text for Downstream Tasks

Robust NLP systems are becoming increasingly important given the severe consequences

adversarial samples can cause [43, 63, 49]. However, previous works have shown that

neural machine translation models can be easily broken with words whose characters are

permuted [12]. To solve this problem, researchers have found that misspelling correction

models can play an extremely effective role [98, 144] in improving the robustness of the

systems. For example, Pruthi et al [98] firstly applied the pre-trained scRNN model to

source sentence to remove noise and then the denoised source sentence was input into the

neural translation model to obtain the correctly translated sentence. In addition, Zhou

et al [144] directly integrated such denoising models into the machine translation system

that was trained in an end-to-end approach. In either way, these works suggest that the

proposed framework which has demonstrated strong performance can have great potentials

in improving the robustness of other NLP systems.

6.5 Discussion

As most of the current NLP systems are very brittle, it is extremely important to develop

robust neural models. In this chapter, we have presented a word recognition framework,

MUDE, that achieves very strong and robust performance with different types of noise

presenting. The proposed framework is able to capture hierarchical structures to obtain

effective word representations. Extensive experiments on datasets with various types of noise

have demonstrated its superior performance over the exiting popular models.

There are several meaningful future research directions that are worthy exploring. The

first is to extend MUDE to deal with sentences where word-level noise presents. For example,
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in the noised sentences, some of the words might be swapped, dropped, inserted or replaced,

etc. In addition, it is also meaningful to improve the generality of MUDE such that it can

achieve strong performance with the presence of various types of noise not seen in the training

dataset. Another possible future direction is to utilize MUDE to improve the robustness

other NLP systems including machine translation, reading comprehension, text classification,

etc. Moreover, as this work primarily focuses on English, it would be very meaningful to

experiment the proposed framework on other languages. Finally, since dictionary contains

very complete information of words, we believe that by incorporating it in our framework,

the performance can be further improved.
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Chapter 7

Modeling Multi-scale Sequential

Dependencies

7.1 Introduction

Nowadays, Information and Communication Technology (ICT) has permeated every aspect

of our daily life and played a crucial role on the society than ever. While ICT systems have

brought unprecedented convenience, when in abnormal states caused by malicious attackers,

they could also lead to ramifications including severe loss of economy and social wellbeing [39,

124, 73, 16, 76]. Therefore, it is vital to timely and accurately detect abnormal states of ICT

systems such that the loss can be mitigated. Fortunately, with the ubiquitous sensors and

networks, ICT systems have generated a large amount of monitoring data [84, 3, 142, 32].

Such data contains rich information and provides us with unprecedented opportunities to

understand complex states of ICT systems.

One type of the most important monitoring data is discrete event sequences which can be

seen everywhere such as control commands of machine systems, logs of a computer program,

transactions of customer purchases and DNA in genetics. Due to the rich information they

provide, they have been a valuable source for anomaly detection adopted by both academic

research and industry practice [15, 14, 17, 36, 32]. For example, system logs that record the
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Log Messages

Log Key Sequence

Time Line

k1 k2 k3 k4 k5

2005-11-10-23.04.09.760063 R63-M0-N3-C:J14-U11 RAS KERNEL INFO iar 
00106298 dear 02f7a18c 
2005-11-10-23.12.32.269153 R63-M0-N5-C:J12-U01 RAS KERNEL INFO 488205 
floating point alignment exceptions 
2005-11-11-04.39.52.183132 R31-M0-N8-I:J18-U01 RAS KERNEL INFO ciod: 
generated 128 core files for program /bgl/apps/followup/SPaSM_static/
SPaSM_mpi.new_comp 
2005-11-11-18.58.22.474164 R23-M1-N0-C:J08-U11 RAS KERNEL INFO CE sym 
25, at 0x12127ee0, mask 0x10 
2005-11-14-18.25.23.269634 R46-M1-NE-C:J14-U11 RAS KERNEL FATAL rts: 
kernel terminated for reason 1004 
2005-11-15-21.12.12.119153 R63-M0-N2-C:J52-U01 RAS KERNEL INFO 489105 
floating point alignment exceptions 

k1:

k2:

k3:

k4:

k5:

k2:

k2

Figure 7.1: An illustrative example of BGL log messages and the corresponding log key
sequence. Each log message contains a predefined log key that is underscored by red lines.

detailed messages of run time information by nearly all the modern computer systems are

extensively used for anomaly detection [82, 32, 130, 95]. Each log message can be roughly

considered as consisting of a predefined constant print statement (also known as “log key” or

“message type”) and a specific parameter (also known as “variable”). When the log keys are

arranged chronologically according to the recording time, they form a discrete event sequence

that can reflect the underlying system state. Figure 7.1 shows an illustrative example of logs

from a BlueGene/L supercomputer system (BGL). In this example, there are six log messages

that are generated by five corresponding predefined statements (log keys). These log keys

form a discrete event sequence. When the system in an abnormal state, the resulted discrete

event sequences will deviate from normal patterns. For instance, if “k2” always comes after “k1”

in a normal state, then the log key sequence shown in Figure 7.1 may indicate the abnormal

state of the system because it shows that “k2”comes directly after “k5”, which is unlikely to

happen in the normal state. In this work, we refer to discrete event sequences generated by

normal and abnormal system states as normal and abnormal sequences, respectively.
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Despite that detecting anomaly for discrete event sequences has attracted much atten-

tion [85, 92, 17, 47, 94, 32], it still remains an extremely difficult task due to several intrinsic

challenges. The first challenge is from the data imbalance issue that is commonly seen in

all kinds of anomaly detection problems. As systems are in normal states in most of the

time, abnormal sequences are very rare. This makes the data distributed very unequally in

terms of normal and abnormal states. Thus, binary classification models that have achieved

great success in the other problems becomes ineffective for anomaly detection. Moreover,

in reality we often do not have the prior knowledge about abnormal sequence that further

exacerbates the difficulty. The second obstacle comes from the discrete property of events.

Unlike continuous sequences where each event are real-valued and have physical meanings, the

discrete event sequence consists of discrete symbols, making it hard to capture the relations

of events over time. The last but not the least challenge is the sequential nature of the data.

In order to determine whether a discrete event sequence is abnormal or not, it is essential to

consider each individual event, subsequences of events and the whole sequence simultaneously.

This requires dedicated efforts to designing models that not only have strong capability to

capture the sequential dependencies but also are flexible to handle sequential dependencies

at different scales.

In this chapter, in an attempt to address the aforementioned challenges, we propose an

one-class classification framework for event sequence anomaly detection (OC4Seq). It is

proposed to directly integrate the anomaly detection objective with a specially designed deep

sequence models that explicitly incorporates sequential dependencies at different scales. The

main contributions of this work are summarized as follows:

• We identify the importance of multi-scale sequential dependencies in anomaly detection

for discrete event sequences empirically.
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• We introduce a novel framework (OC4Seq) to explicitly capture multi-scale sequential

dependencies and directly optimize the deep sequence models with one-class classification

objective.

• We conduct extensive experiments on three datasets to consistently demonstrate that

OC4Seq outperforms the state-of-the-art representative methods with a significant

margin.

7.2 Problem Statement

Given an event set E that contains all possible discrete events, an event sequence Si is defined

as Si = (ei1, e
i
2, · · · , eiNi), where e

i
j ∈ E and N i is the length of sequence Si. Each event eij

is represented by a categorical value, i.e., eij ∈ N+.

With the notations above, the anomaly detection for discrete event sequence problem

under the one-class setting is formally defined as follows:

Given a set of sequences S = {S1, S2, · · · , SN}, where each sequence Si is normal, we

aim to design a one-class classifier that is able to identify whether a new sequence S is the

normal class or not by capturing the underlying multi-scale sequential dependencies in S.

7.3 Preliminaries: One-Class Classifier

In this section, we introduce preliminaries that lay a foundation for our proposed framework.

One-Class classifier is a specially designed classifier that is trained with objects of a single

class and can predict whether an object belongs to this class or not in the test stage. One of

the most widely used one-class classifiers is kernel-based such as One-Class Support Vector
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Machines (OC-SVM) [103] and Support Vector Data Description (SVDD) [114]. Both OC-

SVM and SVDD are inspired by SVM that tries to maximize the margin between two classes.

Next, we use SVDD as an example to illustrate traditional one-class classifiers. SVDD aims at

finding a spherically shaped boundary around the given data in the kernel space. Concretely,

let the center of the hypersphere be c and the radius be R > 0. The SVDD objective is

defined as follows:

min
R,c,ε

R2 + C

n∑
i=1

εi (7.1)

s.t.‖φ(xi − c)‖2 ≤ R2 + εi, εi ≥ 0, ∀i

where xi is the feature vector of ith data and εi ≥ 0 is a slack variable for xi that is introduced

to allow the possibility of outliers in the training set and hyperparameter C controls the

trade-off between errors εi and the volume of the sphere. The objective defined in Equation 7.1

is in primary form and similar to SVM, it is solved in the dual space by using Lagrange

multipliers. For more details of the optimization, please refer to the original chapter [114].

Once the R and c are determined, the points that are outside the sphere will be classified as

other classes.

Recently, a deep neural network based one-class classifier called Deep SVDD was introduced

in [100]. Inspired by SVDD, it tries to find a minimum hypersphere in the latent space.

Unlike SVDD which relies on kernel functions for feature transformation, Deep SVDD takes

advantage of deep neural networks to learn data representations. Specifically, the simplified

objective that employs a quadratic loss for penalizing the distance of every data point
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Figure 7.2: The overview of the proposed framework OC4Seq. It consists of two major compo-
nents that learns the sequential information from global and local perspectives, respectively.

representation to center is defined as:

min
W

1

n

∑
i=1

‖φ(xi)− c‖2 +
λ

2
‖W‖2F (7.2)

where φ(·) is the deep neural network whose parameter areW and ‖‖F indicates the Frobenius

norm. This objective function has been proved with nice theoretical properties [100]. Once

the neural networks are trained and center fixed, outliers will be detected similarly as SVDD.

7.4 The Proposed Framework

In this section, we introduce a multi-scale one-class framework for event sequence anomaly

detection. An overall of the proposed framework OC4Seq is shown in Figure 7.2. It consists of

two major components that focus on global and local information in the sequences, respectively.

The details of each component are described in the next subsections.
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7.4.1 Learning Embeddings for Events

The inputs of the framework are the sequences of events, where each event et is a one-hot

vector and e(j) = 1, e(i) = 0 ∀i 6= j if et is the jth type event of the set E . In real-world

scenarios, event space could be very large, i.e., there are tens of thousands of event types.

This can lead et to be very high-dimensional and cause notorious learning issues such as

sparsity and curse of dimension. In addition, one-hot vector representation makes an implicit

assumption that events are independent with each other, which does not hold in most cases.

Therefore, we design an embedding layer to embed events into a low-dimension space that can

preserve relations between events. To do so, we introduce an embedding matrix E ∈ Rde×|E|,

where de is the dimension of the embedding space and |E| is the number of event types in E .

With this, the representation of et can be obtained as follows:

xt = ET · et (7.3)

where xt ∈ Rde is the new low-dimensional dense representation vector for et. After the

embedding layer, the input sequences will be passed into the other components that will be

introduced next.

7.4.2 Anomaly Detection from Global Perspective

To detect an anomalous sequence, it is important to learn an effective representation of the

whole sequence in the latent space. To this end, we propose to integrate the widely used

Gated Recurrent Neural Networks (GRU) [20] with one-class objective function. Specifically,

given a normal sequence, i.e., Si = (xi1,x
i
2, · · · ,xiNi), the GRU outputs a state vector h

Ni

at the final step summarizes all the information in the previous steps, we regard it as the
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representation of the whole sequence. Please note that the GRU component can be replaced

by any sequence learning models such as Long Short-Term Memory (LSTM) [57]. In fact, we

empirically found that the two have similar performance. Due to its structural simplicity, we

choose GRU over LSTM. More details of component analysis can be found in Section 7.5.

Inspired by the intuition behind the Deep SVDD that all the normal data should be lie

within a hypersphere of minimum volume in a latent space, we propose the following objective

function to guide the GRU training process:

Lglobal = min
Θ

1

N

N∑
i=1

‖h
Ni
− c‖2 + λ‖Θ‖2F (7.4)

Here c is a predefined center in the latent space and n is the total number of sequences

in the training set. The first term in the objective function employs a quadratic loss for

penalizing the distance of every sequence representation to the center c and the second term

is a regularizer controlled by the hyperparameter λ. Therefore, this objective will force the

GRU model to map sequences to representation vectors that, on average, have the minimum

distances to the center c in the latent space.

Although GRU is effective to model the whole sequence, it might ignore vital information

for event sequence anomaly detection because of the following reason: the abnormal property

of a sequence can be caused by only a small abnormal subsequence or even a single abnormal

event. However, when the sequence is long, the abnormal information could be overwhelmed

by other normal subsequences during the representation learning procedure. This could lead

to a very high false negative rate. Therefore, to solve this problem, we design a subsequence

learning component that is used to detect the anomaly from the local perspective. In the

next subsection, we describe its details.
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7.4.3 Anomaly Detection from Local Perspective

In this previous subsection, we introduce to combine GRU and Deep SVDD one-class

classification objective to embed the normal sequences in a latent space where they lie within

a small distance to a predefined center. However, local information that is vital for anomaly

detection could be overwhelmed during this process. Thus, we design the subsequence learning

component from the local perspective.

For a given event sequence, we construct subsequences of a fixed size M with a sliding

window. Therefore, each subsequence contains its unique local information, which plays

an important role to determine whether the whole sequence is abnormal or not. To learn

the representation of subsequence, we introduce the local GRU component that will model

the sequential dependencies in every subsequence. To be concrete, given a subsequence

xit−M+1,x
i
t−M+2, · · · ,xit of lengthM , the local GRU processes them sequentially and outputs

M hidden states, the last of which is used as the representation of the local subsequence:

hit = GRU(xit−M+1,x
i
t−M+2, · · · ,xit) (7.5)

Thus, for all subsequences in a sequence, the GRU will obtain a sequence of hidden represen-

tations that incorporate sequential dependencies in every local region as follows:

hi1,h
i
2, · · · ,hiNi−M = LocalGRU(xi1,x

i
2, · · · ,xiNi) (7.6)

where LocalGRU is the name for the second GRU model that processes each subsequence. For

a normal event sequence, it is intuitive to assume that all of its subsequences are also normal.

Thus, we further assume that all the local subsequences should be within a hypersphere in
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another latent space. To impose this assumption, we design the following objective function

to guide the local sequence learning procedure:

Llocal = min
ΘL

1

N

N∑
i=1

Ni∑
j=1

‖h
Nij
− cL‖2 + λ‖ΘL‖2F (7.7)

Here, cL is a predefined center of another hypersphere in the latent space and ΘL contains all

the trainable parameters of LocalGRU. Similarly, the first term penalizes the average distance

between all normal subsequences to the center cL and the second term is a regularizer.

7.4.4 The Objective Function and Optimization Procedure

In previous subsections, we have introduced components of OC4Seq to detect an abnormal

event sequence from both global and local perspectives, respectively. In this subsection, we

design an objective function to combine them together. Specifically, given the global and

local loss function Lglobal and Llocal, the overall objective function of OC4Seq is defined as

follows:

min
ΘL,Θ

L = Lglobal + αLlocal (7.8)

where α is a hyper parameter that controls the contribution from local information in the

sequence. This objective enables us to train the framework in an end-to-end manner. The

specific optimization procedure is described next.

Optimization. We use stochastic gradient descent (SGD) and its variants (e.g., Adam)

to optimize the objective function defined in Equation 7.8. Following previous work [100],

to accelerate the training process, the predefined centers c is computed as follows: given
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Table 7.1: The key statistics of RUBiS, HDFS and BGL datasets.

Dataset # of normal # of abnormal # of log keys

RUBiS 11,677 1,000 24
HDFS 558,221 16,838 28
BGL 9,543 985 1,540

the untrained GRU, we firstly feed the sequences in the training set into it and obtain the

sequence representation vectors. Then we obtain an average vector by computing the mean

value of all representation vectors and use it as c. To obtain cL, similar process is applied

with untrained LocalGRU. Once c and cL are obtained, they remain as constant vectors

in the optimization process. The whole training process is done when the objective value

converges.

7.5 Experiment

In this section, we conduct extensive experiments to evaluate the proposed framework OC4Seq

on one synthetic web logs and two real world system log datasets. Next, we first describe

the datasets and experimental settings. Then we present the experimental results and

observations. Finally, we conduct qualitative analysis to gain deep understandings on the

proposed framework.

7.5.1 Datasets

RUBiS [5]: This dataset is a synthetic web log dataset and was generated by an auction site

prototype modeled after eBay.com [5]. Specifically, each log message contains information

related to a user web behavior including user_id, date, request_info, etc. Following previous
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works [136, 139], we first parse each log message into a structured representation which

consists of a log key and a variable among others. Next, the log keys of a same user are

collected following the time order that form an event sequence. Thus, each log key sequence

represents a user behavior session in a web server. In addition, we create synthetic anomalous

users and their attack cases to obtain abnormal sequences. After the generation process, we

are able to collect 11,677 normal sequences and 1,000 abnormal sequences.

Hadoop Distributed File System (HDFS) [130]: This dataset was generated by a

Hadoop-based map-reduce cloud environment using benchmark workloads. It contains

11,175,629 log messages, of which 2.9% are labeled as anomalies by Hadoop experts. Each log

message involves a block ID, a time stamp and state information. To make the comparison

fair, we used the public available dataset1 processed by [32]. As described in [32], the log

messages are firstly parsed into structured text so that a log key is extracted from each log

message. In addition, the log keys are sliced into sequences according to the associated block

IDs. As a result, there are 558,221 normal sequences and 16,838 abnormal sequences.

BlueGene/L (BGL) [95]: This dataset contains 4,747,936 log messages generated by

a BlueGene/L supercomputer system at Lawrence Livermore National Labs (LLNL) in

Livermore, California, with 131,072 processors and 32,768GB memory. Each log message

contains system information such as type, time stamp, nodes, content, etc. The log messages

can be categorized into two types, i.e., non-alert and alert. The non-alert messages are labeled

as normal and alert messages are labeled abnormal. Similarly, the log messages are firstly

parsed by Drain [54] whose implementation2 is open sourced by [145]. Following previous

work [88], the log keys are sliced using time sliding windows. A sequence is labeled abnormal

1https://www.cs.utah.edu/ mind/chapters/deeplog_misc.html
2https://github.com/logpai/logparser
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Table 7.2: The prediction performance comparison on RUBiS, HDFS and BGL datasets.

Datasets OC-SVM PCA Invariant Mining DeepLog OC4Seq

HDFS
F-1 score 0.509 0.634 0.943 0.941 0.976
Precision 0.622 0.968 0.893 0.952 0.955
Recall 9.431 0.471 1.000 0.930 0.998

RUBiS
F-1 score 0.351 0.784 0.912 0.935 0.985
Precision 0.220 0.862 0.841 0.885 0.987
Recall 0.869 0.718 0.996 0.992 0.983

BGL
F-1 score 0.336 0.423 0.428 0.326 0.747
Precision 0.215 0.269 0.273 0.196 0.704
Recall 0.764 0.993 1.000 0.980 0.795

if it contains at least one abnormal message. After processing, there are normal and abnormal

sequences.

The statistics of three datasets are summarized in the Table 7.1. Moreover, as stated in

Section 7.2, this work focuses on the one-class setting where the training dataset does not

contain any abnormal sequence. Therefore each dataset is splitted into training, validation

and test sets by the following process. Firstly, we randomly sample the training data from

the normal sequence set. Then, we separately split the remaining normal sequences and all

the abnormal sequences into validation and test sets with the validation to test ratio 3/7. At

last, we combine the two validation/test sets into one.

7.5.2 Baselines

To evaluation the proposed framework, we construct following representative anomaly detec-

tion baselines.

• Principle Component Analysis (PCA) [125]. PCA is a classic unsupervised method that

has been extensively used for a variety of problems. More recently, it becomes a popular

109



method for anomaly detection [130]. Specifically, it firstly constructs a count matrix M,

where each row represents a sequence and each column denotes a log key. Moreover, each

entry M(i, j) indicates the count of jth log key in the ith sequence. Next, PCA learns

a transformed coordinate system where the projection lengths of normal sequences are

small while these of abnormal sequences are large. Although, it has been shown that

PCA can be effective in detecting anomalies especially in reducing false positives [32],

it totally ignores the sequential information, which could play an important role for

sequence anomaly detection. We use the open sourced implementation3 [55].

• Invariant Mining (IM) [82]. IM is another popular unsupervised anomaly detection

method. It is designed to automatically mine invariants in logs and assumes that

discovered invariants can capture the inherent linear characteristics of log flows. Similar

to PCA, it firstly constructs a count matrix M. Next, IM learns sparse, integer valued

invariants with physical meanings from M. Finally, with the mined invariants, IM

makes an invariant hypothesis and sequences that do not satisfy the hypothesis are

detected as anomalies. As IM also relies the M , it has similar drawbacks of PCA. The

IM used in this work was implemented by [55].

• One-Class SVM (OC-SVM) [103]. OC-SVM is a very effective one-class classier that

has been extensively used for anomaly detection [77, 122, 4]. It is especially suited

for the our setting that the training set only contains normal data. Specifically, it

learns a kernel that maps the normal data into a latent space where all the normal

sequence clusters in a small region. Thus, a sequence that does not belong to the

cluster is regarded as abnormal. To apply OC-SVM, we firstly need to extract features

3https://github.com/logpai/loglizer
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from each sequence. In this work, we tried two models to extract features: sequence

auto-encoder [25] and bag-of-words [137]. As we empirically found the latter often has

better performance, we choose bag-of-words as the feature extractor. The OC-SVM

used in this work was implemented with the scikit-learn package4.

• DeepLog [32]. DeepLog is a state-of-the-art log anomaly detection method. This

method is based on a LSTM model which tries to capture the sequential dependencies

in sequences. Specifically, by training with normal sequences, it learns to predict the

next token given the previously seen tokens in a sequence. During the test stage, for

each time step in a sequence, DeepLog will output a probability distribution over all

the log keys. If any of the actual tokens is not in the top k candidates, it will regard the

sequence as abnormal. Compared to other baselines this method is able to utilize the

sequential information and has demonstrated state-of-the-art performance in previous

works.

7.5.3 Experimental Settings

Model Selection: For all the methods with hyper-parameters, we use the validation set to

select the best value and report the performance on the test set. For DeepLog, we follow the

original chapter’s suggestion [32]. Specifically, both the h and g are selected from {8, 9, 10},

which denotes window size and candidates number, respectively. The number of layer is

set to be 2 and the number of LSTM hidden units is 64. For OC4Seq, we use the same

hyper-parameters as DeepLog and select α that controls the contribution of local subsequence

from {0.01, 0.1, 1, 10}.
4https://scikit-learn.org/
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Implementation Details: We implemented OC4Seq with Pytorch 1.5 5. The model is

trained using Adam [69] optimizer with learning rate to be 0.01. The mini-batch size is

chosen to be 64 and the model is trained for 100 epochs on a single NVIDIA GEFORCE

RTX 2080 card. To encourage reproducible results, we make the code publicly available 6.

Evaluation Metrics: To measure the model performance on anomaly detection, we choose

the widely used Precision, Recall and F1 score as the evaluation metrics. They are defined as

follows:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(7.9)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

where TP is the abbreviation for True Positives that denotes the number of true abnormal

sequences that are detected by the model; FP is the abbreviation for False Positives that

measures the number of normal sequences that are regarded as anomalies; FN is False

Negative that denotes the number of abnormal sequences the model fails to report. Thus,

due to the definition, there is well-known trade-off between precision and recall. On the

other hand, the F1 score considers the balance of the two and is often considered as a more

comprehensive evaluation metric.

7.5.4 Performance Comparison

The results of all methods on three datasets are shown in Table 7.2. From the table, we made

the following observations: 1) On most datasets, OC-SVM has the worse performance. We

5https://pytorch.org/
6https://github.com/xxxxx
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Figure 7.3: Validation Precision-Recall curves on HDFS datasets.

argue that this is because OC-SVM is highly dependent on feature qualities. Unlike dense

data where OC-SVM generally performs very well, it is very hard to extract meaningful

features from discrete event sequence. 2) IM and DeepLog outperforms PCA significantly

in most of the evaluation metrics. This is expected as both IM and DeepLog are designed

specifically for anomaly detection for log data. 3) IM and DeepLog generally have comparable

results in terms of F-1 score. It is interesting to observe that IM always achieves very

impressive Recall while DeepLog is better in Precision. We argue that this difference could

be caused by the fact that DeepLog focuses much on the local subsequence information while

IM always concentrates on global sequence information. 4) On all the datasets, the proposed

framework OC4Seq has achieved best F-1 scores. In addition, when comparing to the second

best method, the performance gain brought by OC4Seq is significant. In terms of Precision,

OC4Seq still achieved the highest value in most cases. For Recall, OC4Seq was only slightly

outperformed by IM which has much lower precision scores. 5) All of the methods performed

much worse on BGL datasets than other two datasets. This is because BGL involve much

more log keys that can make the task extremely difficult. Moreover, it is interesting to note
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that the DeepLog method becomes especially ineffective as it heavily relies on the next key

prediction which is very difficult when log keys space becomes large. In this challenging case,

the improvement from OC4seq over other baselines becomes even more remarkable.

As a summary, from the experimental results on three datasets, our proposed framework

OC4Seq demonstrates its superior performance over the baselines. We argue this is because

OC4Seq can capture sequential information from both local subsequence and whole sequence

and it directly optimizes the anomaly detection objective. Next we design further experiments

to gain deeper understandings on OC4Seq.

7.5.5 Parameter Analysis

In this subsection, we analyze key hyper-parameters and components of OC4Seq. We only

report the performance on the HDFS validation dataset as we have similar observations on the

others. Moreover, the performance is evaluated by Precision-Recall curve as it eliminates the

need to choose a specific anomaly threshold and very suitable for datasets with imbalanced

label distribution. We also report the area under the Precision-Recall curve (average precision)

where the higher the value, the better the performance.

We firstly varies the value of α from {0, 0.01, 0.1, 1, 10}, which controls the contribution

from local subsequence information. The results are shown in Figure 7.3a. As can be seen in

the figure, with the increase of α, the performance firstly increases and then decreases. The

initial increase demonstrates the importance to incorporate local subsequence information

while the latter decrease suggests that the global sequential information is also very essential

and should not be overwhelmed by local information.

Next, we varies the number of RNN layers from {1, 2, 3, 4} and the results are shown

in Figure 7.3b. These results suggest that more layers does not necessary lead to better
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Figure 7.4: The local and global anomaly scores of HDFS log key sequences.

performance as it may cause other issues such as overfitting. Thus, it is important to select a

proper value through validation process.

Finally, to investigate how different types of RNN cell affect anomaly detection perfor-

mance, we experienced on popular cells, i.e., RNN (Vanilla), GRU, LSTM. The results are

shown in Figure 7.3c. From the figure, it is easily seen that the LSTM and GRU cells have

very similar performance while vanilla RNN achieves much worse results. These results are

consistent with previous works [23]. Due to its simpler structure, we choose GRU in OC4Seq.

7.5.6 Case Study

In this subsection, to further understand how the local and global information contribute

to anomaly detection, we conduct case studies involving two pairs of representative log

key sequences in the HDFS dataset. Specifically, for a sequence, we use the trained model

to calculate the anomaly scores of each subsequence and the whole sequence. The higher

the anomaly score is, the more likely the sequence is abnormal. The results are shown in

Figure 7.4.
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In the sub-figure 7.4a, we show the first pair of normal and abnormal sequences. The left

panel uses dot lines to demonstrate the anomalous scores for local subsequences. Each dot

denotes one anomalous score (y axis) of xth subsequence (x axis). The right panel uses bar

to show the anomalous score for the whole sequence (global information). From the figure,

we observe that the two sequences have comparable anomalous scores for the whole sequence.

Thus it is very difficult to detect the abnormal one purely from the global perspective.

However, from the local perspective, we can see that the 10th subsequence of abnormal

sequence has a very high anomalous score while the anomalous scores of subsequence of

normal sequence are all very low. Therefore, in this case, the local information plays a very

important role in detecting anomalies.

In the sub-figure 7.4b, the anomalous scores of the second pair of sequence are shown.

Unlike the previous case, the second pair of sequences has very similar anomalous scores

for local subsequences. This makes it hard to detect anomaly from the local perspective.

However, the abnormal sequence has significantly higher anomalous score from the global

perspective than the normal one. Therefore, the global information contributes a lot to

detecting the anomaly in this case. From the two cases, we further illustrate the importance

of combining both local and global information in a sequence for anomaly detection.

7.5.7 Visualization of Normal and Abnormal Sequences

In this subsection, to gain insights of the one-class classifier objective function, we project

the global representations of both normal and abnormal sequences in the HDFS validation

set to a two-dimensional space by Local Linear Embedding techniques [31]. The visualization

of the two-dimensional space is shown in Figure 7.5. We observe that the normal sequences

generally cluster together and lie in a very small region. On the other hand, the abnormal
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Figure 7.5: The visualization of HDFS datasets. Abnormal and normal data are denoted by
red and blue dots, respectively.

sequences spread all over the place. Therefore, the visualization clearly show that by directly

minimizing the anomalous score which measures the distance between normal data point and

a center point, the one-class classifier objective function is very effective to guide the model

to separate the abnormal and normal sequences in the latent space.

7.6 Discussion

In this chapter, we propose the OC4seq, a novel one-class recurrent neural network for discrete

event sequence detection. It can deal with multi-scale sequential dependencies and detect

anomalies from both local and global perspectives. Specifically, OC4seq incorporates an

effective anomaly detection objective that is able to guide the learning process of sequence

models. Moreover, it explicitly map the local subsequence and whole sequence into different

latent spaces, where the abnormal data points can be easily detected. The proposed OC4seq
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has consistently shown superior performance than representative baselines in extensive

experiments on one synthetic and two benchmark datasets. In addition, through parameter

analysis and case studies, the importance of capturing multi-scale sequential dependencies for

discrete event sequence anomaly detection has been well demonstrated. Also, the visualization

of the sequence representations qualitatively suggests the effectiveness of anomaly detection

objectives.

118



Chapter 8

Conclusions

8.1 Dissertation Summary

In this dissertation, we have described our efforts denoted to sequence learning with side

information. Particularly, we have discussed our proposed effective sequences models that

capture the most common types of side information and their applications in real-world tasks

of various fields.

In Chapter 3, we identified the existence of intrinsic relation of events in certain sequences.

To exploit it for sequence learning tasks, we proposed a novel framework SEE that is is

able to capture both sequential dependencies and event relations effectively. In addition,

our framework has been evaluated extensively with real-world educational and e-commerce

sequences. Compared to RNNs that fails to capture the event relation, our proposed framework

achieves significantly better performance consistently. Through a carefully designed model

component analysis, we showed the contribution of event relation for sequence modeling

performance.

In Chapter 4, we focused on capturing the relation between sequences. We firstly refuted

the assumption behind most of the existing sequence models that sequences are independently

and identically distributed. We showed that in many real-world applications, sequences

are inherently related. Given both challenges and opportunities brought by the sequence
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relation, we devoted our efforts to design a novel sequence model. Our model is based on the

Homophily theory that has been verified empirically by many researchers from various fields.

Our model can jointly capture the sequential dependencies of events and sequence relation.

Through comprehensive experiments, we demonstrated that our model is able to outperform

a variety of representative baselines. We also clearly showed that the effectiveness of our

model came from its ability to capture sequence relation.

In Chapter 5, we showed that sequences are also associated with temporal information

and studied the just-in-time recommendation problem. In addition, we proposed a recom-

mender framework JRec to model the temporal dynamics of customer interest. Compared to

traditional recommender systems, JR is not only able to recommend the right products to

customers but also do it at the right time. This is attributed to the fact that JRec models

both sequential and temporal information of sequences simultaneously. Collaborating with a

big e-commerce company, we were able to evaluate our framework with real-world data. The

experiment results suggested that JRec outperformed representative baselines in both item

recommendation and customer interest prediction tasks.

In Chapter 6, we covered our efforts in designing a sequence model to capture the

hierarchical structures in English languages. Specifically, we presented a word recognition

model MUDEA to tackle the word recognition problem that plays an extremely important

role in robust NLP systems. Our model is able to leverage both character-level and word-

level dependencies for this task. We studied our model with extensive experiments. The

results showed that MUDE is very robust with different types of word noise presenting.

Compared to existing popular word recognition systems, our model has achieved higher

accuracy consistently. When the task became more difficult, i.e., with the substitution noise,

the performance gain of our model was even more significant. Based on the experiment
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results, we identified the promise of our model in boosting the robustness of other NLP

systems.

In Chapter 7, we discussed the problem of anomaly detection problem for sequential

data, which is ubiquitous in information systems. We observed that the state of a sequence

depends on sequential dependencies of events of multiple scales. Therefore, we proposed

a novel one-class recurrent neural network for this problem. Our model, OC4Seq, is able

to capture multi-scale sequential dependencies and detect anomalies from both local and

global perspectives. Through extensive experiments on one synthetic and two benchmark

anomaly detection datasets, we demonstrated that OC4seq outperformed representative

baselines significantly and consistently. To understand our model better, we also conducted a

comprehensive analysis of its parameters as well as case studies. The results clearly showed

the contribution of multi-scale sequential dependencies to improving both true positive rate

and false-negative rate in sequence anomaly detection problem.

In summary, we are excited about the performance boost brought by side information. As

most of the research community focuses on learning sequential dependencies, this dissertation

provides our unique and pioneering works of exploring and exploiting side information for

sequence modeling.

8.2 Future Works

Given the promising results achieved in our works, we believe more dedicated efforts should

be devoted in this area. In the following, we outline a few meaningful future directions from

two aspects: applications and modeling.
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8.2.1 Applications

As stated earlier, sequential data is ubiquitous as well as side information. However, due to

the time constraint, we can only apply our models to a limited number of applications. There

are many more tasks where proposed models could play a role in boosting state-of-the-art

performance. Next, we give two concrete examples.

The first example is the people search problem in social network sites such as Facebook

and LinkedIn [60, 61]. The goal of people search is to give the most relevant persons to a

search query. Current approaches often consider this problem as a typical ranking problem

where user profiles are documents. However, as demonstrated in Chapter 4, the connections

between user profiles can also play an important role. Considering the fact that user social

connection information is readily available in these social network sites, it is very promising

to extend the LinkedRNN proposed in Chapter 4 to improve the current approaches to the

people search problem.

The second one is the disease prediction from Electronic Health Record [80], where we aim

to predict the disease a patient might develop in the future from his/her records of historical

clinical visits. In this case, the patient clinical visits form an event sequence and each visit is

one event that has associated a timestamp. The temporal information plays an essential role

in this problem because of two reasons. The first comes from the fact that patients usually

visit clinics irregularly. This suggests that the historical records are not evenly distributed

along the timeline. Second, it is crucial to accurately predict not only the type of disease the

patient might have but also when the disease will be developed. Thus, it is a natural idea to

extend our work in Chapter 5 to tackle this, which is essentially a sequence modeling with

temporal information problem.
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8.2.2 Modeling

In this dissertation, we have presented a number of effective models to capture side information

for sequence learning. However, there are still many scenarios that require further effort into

modeling.

One future direction in this line is to develop unified sequence models to capture various

types of side information simultaneously. Our proposed models often focus on one type of

side information. However, in many cases, two or more types of side information coexist.

For example, the student video-watch sequences in massive open online courses platforms

involve both temporal information, i.e., time stamps for each video-watch event and event

(lecture) relation [131]. Further, if social connections among students are provided, it would

be beneficial to incorporate sequence relation as well. To achieve this, a unified sequence

model is necessary. Nevertheless, building unified sequence models is very difficult. The main

challenges include keeping a proper balance of information from all perspectives, limiting the

model computation complexity, etc. We hope that our proposed models can provide insights

and inspirations for future works in this direction.

In addition, our works assume an ideal situation where side information is clean and stable.

However, this does not hold in many real-world cases where the side information could contain

noise and might change over time. To give a concrete example, let’s consider the sequence

relation described in Chapter 3, where the sequences are user historical weight records and

relations are the social connections among users. It is often the case that user social interest

changes frequently. As a result, their social relations are not stable. Thus, it is important to

design new models to incorporate both sequence relation and its dynamics. Moreover, there

might exist some malicious users who can bring noises to the resulted sequence relations.
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Therefore, how to make the model robust to noises is another important problem that need

to solve in the future.

The third direction is to improve the interpretability of the models. It is great to

see that our proposed models have brought promising results for many sequence learning

tasks. Although we have conducted quantitative and qualitative analysis to study where

the effectiveness comes from, it is of paramount importance to make the models themselves

explainable so that they not only give accurate predictions but also provide the rationale

for their behaviors. This can bring huge benefits to both model users and designers. From

the user’s perspective, knowing the rationale behind the model behaviors is essential for

them to trust the model, which is especially vital in health-related domains [118, 35]. From

the designer’s perspective, interpretability paves a direct way for them to improve model

performance further. Existing works in this direction are limited and mainly focus on

the sequence part [116, 90]. Thus, dedicated efforts are needed to make our models more

interpretable from both sequence and side information perspectives.
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