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ABSTRACT

SEMI-ADVERSARIAL NETWORKS FOR IMPARTING DEMOGRAPHIC
PRIVACY TO FACE IMAGES

By

Vahid Mirjalili

Face recognition systems are being widely used in a number of applications ranging from user

authentication in hand-held devices to identifying people of interest from surveillance videos. In

several such applications, face images are stored in a central database. In such cases, it is nec-

essary to ensure that the stored face images are used for the stated purpose and not for any other

purposes. For example, advanced machine learning methods can be used to automatically extract

age, gender, race and so on from the stored face images. These cues are often referred to as de-

mographic attributes. When such attributes are extracted without the consent of individuals, it can

lead to potential violation of privacy. Indeed, the European Union’s General Data Protection and

Regulation (GDPR) requires the primary purpose of data collection to be declared to individuals

prior to data collection. GDPR strictly prohibits the use of this data for any purpose beyond what

was stated.

In this thesis, we consider this type of regulation and develop methods for enhancing the pri-

vacy accorded to face images with respect to the automatic extraction of demogrpahic attributes. In

particular, we design algorithms that modify input face images such that certain specified demogr-

pahic attributes cannot be reliably extracted from them. At the same time, the biometric utility of

the images is retained, i.e., the modified face images can still be used for matching purposes. The

primary objective of this research is not necessarily to fool human observers, but rather to prevent

machine learning methods from automatically extracting such information.



The following are the contributions of this thesis. First, we design a convolutional autoen-

coder known as a semi-adversarial neural network, or SAN, that perturbs input face images such

that they are adversarial with respect to an attribute classifier (e.g., gender classifier) while still

retaining their utility with respect to a face matcher. Second, we develop techniques to ensure that

the adversarial outputs produced by the SAN are generalizable across multiple attribute classifiers,

including those that may not have been used during the training phase. Third, we extend the SAN

architecture and develop a neural network known as PrivacyNet, that can be used for imparting

multi-attribute privacy to face images. Fourth, we conduct extensive experimental analysis us-

ing several face image datasets to evaluate the performance of the proposed methods as well as

visualize the perturbations induced by the methods. Results suggest the benefits of using semi-

adversarial networks to impart privacy to face images while still retaining the biometric utility of

the ensuing face images.
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Chapter 1

Introduction

“If this is the age of information, then privacy is the issue of our times.” [3]

1.1 Privacy Motivation

In the past decade, the growth of social media coupled with low-cost mobile devices has resulted

in assimilation of massive data in different forms [3, 6]. Examples of such forms include field-

structured data as well as multimedia such as images and videos, all of which contain valuable

information including some person-specific information [5, 105, 36]. Examples of such data in-

clude a patient’s medical records in a hospital such as their medical history, a customer’s online

shopping history, a user’s social media activities, data about users on a dating website/application,

data obtained from mobile phones and wearable devices, questions and answers on online forums,

browsing and online reading activities, etc. [6, 149, 79]. The concurrent developments in data-

mining techniques and the exponential growth of user-generated data has enabled large-scale data

analysis, thus, benefiting both the data holders and the individuals [6, 131]. On the other hand,

this may lead to extracting some sensitive information about individuals (such as behaviour pat-

terns), while they may or may not be aware of such activities [100]. This, therefore, raises privacy

concerns as well as concerns regarding violations of social fairness [22, 156, 28, 75], and other

unethical or security-related issues [5, 107].
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Regarding the individuals’ privacy, traditionally, the users were given the option to choose

their desired level of privacy in form of choice and consent. For example, users could choose their

gender, race, or age from a list of possible options including an option for “do not wish to say”,

which if selected, indicates that the particular user is not willing to provide such information [98].

However, this traditional choice and consent scheme is not adequate for today’s modern digital

age, since, with the advances in data mining, such information can still be inferred from other parts

of the collected data. For example, a person’s demographic information such as gender, age, and

race (are also called demographic attributes) could be inferred from their face images stored in the

databases [36, 70]. As a result, developing privacy-protecting schemes beyond traditional methods

is crucial.

In the following sub-sections, we will review some implications that can result from disclosing

or inferring the demographic attributes.

1.1.1 Re-identification via data sharing

While typically these databases are held privately, sharing such data across different third-party

organizations or releasing certain types of data to the public is important for research and business

purposes [45]. For example, researchers would need to get access to patients’ data from a hos-

pital to study patterns in disease symptoms, or sharing customers’ purchasing history to business

and marketing researchers. Given that such data contain sensitive information about individuals,

an obvious requirement is to remove the person-specific fields that are directly associated with

an individual, for example, name, address, phone number, IDs, SSN, etc. However, removing

these identifiers is not enough to fully protect against privacy attacks [42, 130], and can lead to

re-identification (associating each record to the individual through inference). In particular, as

shown in Figure 1.1, the presence of a combination of quasi-identifiers can still lead to person
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Figure 1.1: Re-identification of the records in an anonymous database by linking it to a database
of identifiable records via their common quasi-identifiers.

re-identification. [4]. Such quasi-identifiers are attributes that describe a group of individuals, for

example, demographic attributes such as gender, age, race, place of birth, as well as other social

status information such as marital status, education degree, etc. Even though such quasi-identifiers

do not correspond to a unique individual but rather a group of individuals, the existence of such

information in the shared data can lead to person re-identification through linking attacks, and

consequently, identity theft, predicting Social Security Numbers (SSN) [4], violating users pri-

vacy, and other unethical issues.

While sharing the quasi-identifiers such as age, gender, and race may not appear as a critically

privacy-related issue, but we should note that different levels of information can be inferred from

such shared attributes. The resulting consequences can be tangible for example, identity theft, or

intangible, for example a stranger knowing a patient’s medical records [3]. Acquisti and Gross [4]

investigated the possibility of inferring Social Security numbers using the birth information of in-

dividuals combined with publicly available data such as Death Master File (DMF). Sweeny [134]

was able to re-identify the subjects in anonymous medical records by linking the database of med-
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ical records with a purchased voter registration database, while the person-specific identifiable

fields were removed but the quasi-identifiers were still present. The serious privacy-related con-

sequences such as identity theft and person re-identification solely by the use of demographic

attributes further show the importance of carefully protecting such quasi-identifier attributes.

1.1.2 Targeted advertisement

Personalizing some online services and products can be beneficial for marketing purposes as well

as benefiting the end-user or customer [6, 131]. For example, personalizing the news-feed on social

media could make it more appealing for the user to utilize the service. Search engines and online

shopping services could personalize the search results which can benefit the end-user by helping

them find what they are looking for, in less amount of time. However, these benefits and advantages

come with the risks pertaining to misuse and abuse of information [5]. In particular, it raises

fairness issues as well as privacy issues. For example, decisions about jobs should not be based

on race and gender [71]. According to [115], some job advertisers on the Facebook platform were

only targeting men in certain areas, which could be unethical. Online shopping services may utilize

certain demographic attributes such as age, gender, and race for targeted advertisement (which is

to suggest certain products to their customers). However, this also leads to several fairness issues,

as is the case that such personalization activities may narrow down the choices for the users and

customers. Search engines may systematically suggest local news to the users, thereby, negatively

affecting the global awareness of their users. Besides, it is possible that the vendors in online

shopping may use that information to personalize the offered prices for such products.
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1.1.3 Consent-free inference and ethics

In addition to the issues mentioned in the previous sub-section, inferring information about the

individuals without their consent is considered a violation of their privacy [98]. Addressing such

ethical issues requires new regulations to be implemented. For instance, the European Union

has already compiled General Data Protection and Regulation (GDPR) [120] which is a set of

regulations in order to protect the personal data of individuals. In this regard, GDPR has specific

terms and conditions, according to which, any type of processing applied to individuals’ data

requires their consent. In the next section, we will see an overview of some terms in GDPR that

are directly related to this work.

1.2 European Union General Data Protection and Regulation

(EU GDPR)

Regulation (EU) 2016/679 of the European Parliament, also known as General Data Protection and

Regulation (GDPR) [120], was passed in April 2016 after four years of preparation, and enforced

in May 2018.12 The overall goal of GDPR is to protect and empower the data privacy of all

EU citizens, and regulates how the personal data of EU residents are processed by an individual,

company, or an organization (see Figure 1.2).

Personal Data: According to GDPR, personal data is defined as any information related to

an identified or identifiable individual, in other words, any data that can ultimately lead to the

identification of a person. Some examples of personal data include name, address, phone number,

IP address, cookie ID, data collected from an individual in a hospital, as well as biometric data

1https://eur-lex.europa.eu/legal-content/FR/TXT/HTML/?uri=CELEX:32016R0679
2https://gdpr-info.eu/
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Figure 1.2: EU GDPR regulates how personal data of EU citizens are processed by a company or
an organization.

such as face images, fingerprints, iris images, etc.

Data Processing: Any form of manual or automated operations performed on personal data

constitutes data processing. It includes various operations such as data collection, structuring the

data, applying some alterations and combining data with other sources. Application of machine

learning and pattern recognition based sophisticated data analysis tools is also considered data

processing.

Based on GDPR requirements, when applying any data processing, one needs to consider the

following five criteria (see Figure 1.3):

• Specific Purpose: At the time of any data collection, the specific purpose for collecting and

storing the data must be explicitly stated to the user/customer, and their consent must be

acquired for the stated purpose. Regulations also specify how the consent is acquired from

the users. For instance, users should not be deprived of certain services if they do not wish

to give their consent for their participation in some data collection (unless if the collected

data is essential for that service). In other words, accessing the services provided by the

organization should not be conditioned on users’ consent. Some examples of the specific
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Figure 1.3: Five criterion based on GDPR for lawful personal data processing.

purpose of data collection are as follows

Example: Collecting biometric data of individuals for recognition purposes.

Example: Recording a phone conversation for quality purposes.

Among the criteria specified for legal data processing, this is probably the most important

one, since this criterion (specific purpose) is used as the basis or conditions of multiple other

criteria.

• Data Minimization: Restricting the amount of data collection to what is essential for the

stated specific purpose. Based on the specific purpose which is stated to the user/customer

and their consent for that purpose is acquired, the specified data can be lawfully collected

and the data processing steps that towards fulfilling that purpose can be applied on the data.

However, collecting data and applying processing beyond the stated purpose is prohibited.
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Example: Based on the previous example, we can lawfully collect biometric data of the

users for recognition provided that the user is informed of this purpose and his/her consent

is acquired. However, collecting information that are not related to recognition, or even,

inferring other demographic attributes from their biometric data is not allowed.

Example: For ride-sharing apps, accommodation, or food delivery services, collecting

name, address, and credit card information are allowed while collecting race information is

beyond the purpose of such services, thereby, violating the data minimization criterion.

• Accuracy: The data holder must ensure that the collected data is accurate and up-to-date.

Example: Career agencies, recruiters, and websites that collect resumes of candidates

must ensure that the stored resumes are up-to-date.

• Storage Limitation: The data holder must not store the data longer than what is necessary

for the specified purpose. This is also related to the right to be forgotten.

Example: In the previous example with collecting resumes from job seekers when the

purpose is accomplished, i.e. the job seeker has found a job, or the client is no longer avail-

able in the job market, the data holder must remove the data of this individual.

• Integrity & Confidentiality: The data holder must ensure to implement appropriate means

in order to safeguard the personal data against unauthorized access, accidental loss, or dam-

age.

Example: Encrypting the data to avoid data leakage.

Example: Anonymizing the personal data of individuals to avoid re-identification.

Example: While carefully protecting the person-specific information (e.g., name, ad-

dress, phone, SSN) is necessary, the other demographic information (e.g. age, gender, race,

place of birth, etc.) could still be used for re-identification. Therefore, safeguarding those
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attributes is also necessary.

These five criteria summarize the requirements for lawfully performing data processing on in-

dividuals’ data. However, note that simply having these requirements does not guarantee privacy,

as is the case that simply having laws that prohibit crimes does not guarantee to stop crimes. For

example, to prevent shop-lifting, even though the law already exists, stores still have to implement

security cameras and control exit-gates to prevent shop-lifting. Similarly, companies and organi-

zations that deal with personal data of individuals are still required to implement certain measures

to prevent data breaches and privacy violation.

We also note that besides GDPR, other states and governments has also provided regulations

to protect and support customers’ data. California Customer Privacy ACT(CCPA) [1] is a notable

example, which gives the residents of California the right to know what personal data is being

collected by the organizations, accessing and requesting to delete their personal data, as well as

allowing users to say no to the sale of their personal data without being discriminated against due

to exercising their privacy rights.

1.3 Biometric Recognition

Biometrics is the science of recognizing individuals based on their physical or behavioral charac-

teristics such as face images, fingerprints, iris, gait, etc. [70]. A typical biometric system acquires

biometric data from a subject (e.g., a 2D face image), extracts a feature set, and compares the fea-

ture set to templates in a database (e.g., face images labeled with an identifier) in order to verify

a person’s claimed identity (verification) or to determine the person’s identity (identification) [70,

148].

Among the different biometric modalities, face biometrics has been the most widely used

9



modality since it requires the least active user participation, as well as having high accessibil-

ity and public acceptance [139]. In addition, with the emergence of deep learning technology,

face recognition accuracy has improved drastically [127, 148], addressing challenges posed by

the variations in illumination, age, pose and expression [143, 27]. Typically, a face recognition

algorithm digitizes an input face image and extracts an embedding representation (also known as

face representation vector). The representations obtained from face images must contain salient

features that are unique to each individual, and therefore, relevant for recognizing the individual in

the image. However, in practice, they may contain background information, variations regarding

illumination, the face pose and facial expression, as well as other information about the demo-

graphics of the person in the image, such as gender, age, ethnicity, etc. Face recognition models

that are robust to pose, facial expression, and other background variations have been built [127,

148]. Demographic information embedded in the face representation vectors could potentially help

the recognition performance, however, such information is considered sensitive information, and

recently, new attempts have been made towards removing such sensitive information from face

representations [103, 139].

1.3.1 Deep learning-based face matchers

Modern face recognition systems rely on using a deep face matcher, which leverages deep learning

for internally extracting and comparing the face representation vectors. Given a pair of face images,

a face matcher computes the embedding face representation vectors for each face image, and then

a match score (in the range [0, 1]) is defined as the similarity between the two face representation

vectors. A high match score (e.g., close to 1) indicates a genuine pair of face images, meaning

they belong to the same subject (Fig. 1.4-A), while, a low match score (e.g., close to 0) implies

the given pair is an impostor pair, meaning the two face images belong to two different persons

10



Figure 1.4: Matching a pair of face images: (A) a genuine pair results in match score M close to
1, (B) an impostor pair results in match score M close to 0.

(Fig. 1.4-B).

1.3.2 Demographic attributes

Besides recognizing individuals, biometric data including face images, iris, fingerprint, gait, and

voice contain ancillary information. Such information include gender (sex), age, race/ethnicity,

health characteristics such as body-mass-index (BMI), height, accessories, etc. [36]. These ancil-

lary information are often called demographic attributes since they are not necessarily unique to

an individual due to their lack of distinctiveness, and rather shared among a group [37]. Demo-

graphic attributes can be used in various applications, such as narrowing down the search space for

identification [37], age-based access control, etc. [66, 37, 153].

While extracting certain attributes from face images such as gender [62, 89], age [29, 47],

race/ethnicity [62, 87], as well as body-mass-index (BMI) [150] has been well studied in the liter-

ature, extracting certain attributes from other biometric modalities such as iris and fingerprint are

still challenging [123]. Below, we will review some of these attributes.

• Gender from face: From an evolutionary standpoint, humans are naturally trained to detect
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Voice

Fingerprint

Iris

Face

Gender, Race/ethnicity, Age, Sexual orientation,
Hair/eye/skin color, 

Health-characteristics, BMI, height, 
Accessories, glasses, contact lenses, hat, 

Beard/moustache, makeup

Gender, Age, Race/ethnicity, Eye color

Gender

Body/gait Gender, Age, 
Health-characteristics, BMI, Height

Gender, Age, Race,
Health-characteristics, Height

Figure 1.5: Examples of various demographic attributes that can be extracted from different bio-
metric modalities.
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the gender3. Automatic detection of gender from face images using machine learning and

artificial neural networks has been vastly studied in the literature [84, 121, 89, 142, 60]. One

of the early methods for this purpose used a small neural network model, coined SEXNET,

which was composed of two fully connected layers that received input face images of size

30 ⇥ 30, and achieved 91.2% average accuracy [50]. Most notably, Perez et al. [113] fused

features from intensity, shape, and texture with different scales and achieved 99.13% accu-

racy on FERET dataset. Deep Convolutional Neural Networks (DCNN) have been able to

reach human-like performance on CelebA dataset [86] without aligning face images [60].

• Age from face: Predicting age from face images has potential applications for demographic

analyses, age-specific access control, etc. Age prediction from face images has been studied

widely in the literature [84, 124, 15, 30, 47, 48]. Niu et al. [106] have used ordinal regression

with extended binary classification as binary rankings [85], which was able to outperform

metric regression for age estimation. Cao et al. [24] further extended the ordinal regression

formulation to enforce consistency among the individual binary classifiers, and obtained

state-of-the-art performance.

• Gender and race from iris: Thomas et al. [140] were the first to investigate gender predic-

tion from near-infrared iris images. Demographic prediction from iris texture has been vastly

studied, including gender and race prediction [82, 20], as well as predicting eye-color from

NIR iris images [19]. Recently, Tapia and Aravena [136] have explored gender prediction

using deep learning methods.

• Gender from fingerprint: Gender estimation from fingerprints has gained considerable

attention in the biometrics community [129, 119]. In this regard, discrete-wavelet trans-
3Past literature has used the terms “gender” and “sex” interchangeably. In this work, we use gender as a binary

class (“male” and “female”), but wish to point out that many categories of gender have been identified
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formation has been used as a viable technique for feature extraction. [61, 55] Gnanasivam

and Muttan [49] combined wavelet-based features and singular value decomposition and

achieved 87.52% prediction accuracy.

• Attributes from voice: Gender prediction from voice signal is motivated by natural differ-

ences between male and female voices, especially, given the difference in the range of their

voice frequencies [151]. Although gender prediction from voice signals obtained in real-

world conditions with background noise is very challenging [114, 5], it is shown that 100%

classification accuracy can be obtained using clean data [32]. Walavalkar et al. [147] have

compared the performance of different classifier models in gender recognition for voice sig-

nals. Pronobis and Magimai-Doss [114] have evaluated the gender prediction performance

using fundamental frequency (F0) and cepstral features under clean and noisy conditions

and concluded that under noisy conditions cepstral-based features work better than F0 fea-

tures. In addition to gender, biological studies show the relationship between the vocal and

the body size, which is justified with evolutionary perspectives [43], leading to predicting

height from voice.

1.3.3 Identifying different notions of demographic attributes

As we consider three demographic attributes in this work, viz., gender, age and race, it is worth

noting that there could be different definitions of these attributes in different societies and commu-

nites. Therefore, in this sub-section, we will clarify our usage of these attributes, while admitting

that our usage can be widely different from society’s evolving understanding of these attributes.

Gender versus sex From a societal perspective, gender can have a number of categories. For

example, Facebook currently provides a list of 58 possible options for gender identity. This brings
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a point of distinction between the biological sex of an individual and their gender. In this work, we

consider gender as a binary label, i.e. Male or Female.

Chronological age versus Biological age: The chronological age of a person is the number

of years since his/her birth, while the biological age can be same, lower or higher than the chrono-

logical age, due to the genetic effects and environmental conditions. In this work, we consider

chronological age, which can be accurately measured according to the birth-year of the person.

Race versus Ethnicity: Similar to gender and sex, there is a major distinction between race

and ethnicity. While race of a person is based on their genetic ancestry, ethnicity is often defined

on the basis of cultural, religious, nationality and language factors. A person can choose their

ethnicity according to how they identify themselves. In this work, however, we consider race as

determined by the physical traits (although, the labels are not drawn from the genetic data.)

1.4 Privacy in Biometrics

Based on what we have seen so far, biometric data can reveal a lot of information about the individ-

uals, ranging from person-specific information to demographic attributes. Leveraging the person-

specific information in biometric data and the ability to use them for recognizing individuals makes

them a suitable choice for authentication systems. Using biometrics for authentication is more

advantageous than the traditional password-based authentication, due to ease-of-use, omitting the

need to memorize long passwords, higher security since they cannot be shared or stolen, etc. [104].

On the other hand, if the biometric data stored for verification are exposed in a data breach, such

data can be misused by adversaries for undesired purposes with serious consequences. Further-

more, in contrast to traditional authentications such as passwords and pins, the biometric traits of

an individual cannot be altered. Therefore, if they are exposed in a data-breach, they are exposed
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permanently. This results in serious security and privacy consequences, and therefore, necessitates

the need to properly secure the biometric data using privacy-preserving schemes.

Privacy in biometrics literature covers a broad range of topics, from security and cryptogra-

phy to face de-identification and demographic privacy. Regarding the security aspects, extensive

work regarding protecting the privacy of biometric data has been done [118, 104]. Natgunanathan

et al. [104] conducted a comprehensive study on the performances and shortcomings of exist-

ing of privacy-preserving biometric schemes (PPBS), including encryption-based schemes [74],

cancelable-based schemes [118], and multimodal and hybrid-based schemes [111, 146, 14, 112].

These approaches are applicable for protecting the biometric data in data breach scenarios, aiming

to prevent an adversary or a cracker from gaining access using stolen biometric data. However,

in this work, we mainly deal with confounding the extraction of certain information from biomet-

ric data without compromising the recognition utility of the data, which has applications different

from those of PPBS. Given our primary modality is face images, here, we review the existing ap-

proaches under two scenarios: 1) face de-identification for preserving the anonymity of subjects in

an image or video 2) confounding demographic attributes.

1.4.1 Face de-identification

Advances in image and video acquisition technology accompanied by computing hardware storage

have made it possible to capture a massive amount of visual data from surveillance cameras, hand-

hold devices, and cameras installed on autonomous cars, etc. The captured images and videos have

various applications in person re-identification, behavioral analysis, crowd-activity detection, etc.

However, as society embraces this technology, the privacy concerns grow as well [7]. The captured

images and videos in public places contain subjects from whom we may not have or will not be

able to acquire their consent prior to sharing or publicizing the images and videos. This raises
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several privacy issues, identity theft, and security concerns. Therefore, it is necessary to be able

to automatically remove the person-specific features from such data. Face de-identification is an

attempt to protect the privacy of subjects in an image or video without hurting the data utility,

by removing as much identity information as possible while other non-identity information are

preserved.

For example, in surveillance videos, detecting the activities in a public place suffices in most

cases, without needing the identity of subjects in the scene [144]. As another example, when taking

a video in a public place, where the scene contains subjects, publishing this video on TV, social

media, or other public domains may require consent from all subjects in the scene which can be

infeasible in many cases. An alternative way to preserve the privacy of those subjects is face de-

identification, which can be used to remove the facial features that could potentially lead to the

identification of those subjects in the video.

Naı̈ve face de-identification

The ad-hoc solution for face de-identification is to naı̈vely distort images by blurring or pix-

elation [21] (see Fig. 1.6). While these ad-hoc methods are able to prevent humans from rec-

ognizing the subjects, it was shown by [59, 57] that these techniques often provide very poor

privacy-protection. Furthermore, they distort the images and obscure the facial details, which

makes the output images lose their utility in various classification tasks. As a result, various face

de-identification techniques are proposed in the literature that can overcome the limitations of these

ad-hoc methods.

Face de-identification based on k-same family of methods

First, Newton et al. [105] proposed k-same technique, which is based on the k-anonymity

method, and computes the average color and texture of k faces. Given a set of face images
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Blocking

Blurring

Pixelation

Figure 1.6: Ad-hoc face de-identification techniques used traditionally: blocking some facial com-
ponents, pixelation, and blurring. These techniques damage the data utility significantly.

S0 = {I1, I2, ..., In}, k-same generates a new de-identified set Sd = {I
(d)
1 , I

(d)
2 , ..., I

(d)
n }, where

each de-identified image I
(d)
i

can relate to k other images in S, and therefore, it can be shown that

the best possible recognition rate is reduced to 1/k. However, this algorithm has some limitations

such as introducing undesirable artifacts, ghosting effects, losing the demographic utility, and dis-

turbing the facial expression, etc. Gross et al. [58] proposed k-Same-Select in order to preserve the

demographic utility, in which they proposed selecting k images from the same cohort. As a result,

they showed that their method was able to preserve the facial expression.

Later, Gross et al. [59] improved this technique and proposed k-same-M by incorporating Ac-

tive Appearance Model (AAM) [34]. In 2008, face-swapping was introduced by Bitouk et al. [17]

where a source face is seamlessly blended with candidate images which were similar to the query

image in terms of pose and appearance. A generative multi-factor model was proposed in [57]

that separates identity and non-identity components of a face image prior to the de-identification

process. Their results improved the expression classification performance on the de-identified im-
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ages. Jourabloo et al. [72] adopted k-Same algorithm and proposed Attribute-Preserved Face De-

identification (APFD) using an optimization scheme in order to find the optimal set of weights such

that face attributes are preserved. Recently, deep-learning-based schemes for face de-identification

have also emerged [152, 93, 92]. Most notably, Meden et al. [93] proposed k-Same-Net, which

leverages a generative deep neural network for face de-identification.

Table 1.1: Overview of face de-identification approaches.

Authors Year Model Highlighted Features

Newton et al. [105] 2005 k-Same Provable privacy
Undesirable artifacts

Gross et al. [58] 2005 k-Same-Select Selecting k input images based on attributes
Preserve facial expression

Gross et al. [59] 2006 k-Same-M Active-Appearance Model (AAM)
Reducing the artifacts

Gross [56] 2008 Multi-Factor (MF) Separating identity & non-identity components

Du et al. [41] 2014 GARP-face Preserving Gender, Age and Race

Jourabloo et al. [72] 2017 APFD Optimizing the weights to preserve attributes

Medn et al. [93] 2018 k-Same-Net Neural-Network-based de-identification
Preserves demographic utility

1.4.2 Demographic privacy

As we mentioned previously (Section 1.3.2), demographic attributes such as age, gender, eth-

nicity, etc. can be automatically extracted from biometric data. Another aspect of privacy is to

suppress the automatic extraction of such attributes from biometric data while preserving their

recognition capability [123]. This has several privacy applications, such as preventing the misuse

of demographic information, preventing targeted advertisement without users’ consent, preventing

profiling users based on their demographic attributes, etc. Table 1.2 shows an overview of existing
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techniques for attribute conversion from face images.

Table 1.2: Overview of attribute conversion methods.

Authors Year Proposed Model Highlighted Features

Rowland and Perrett [125] 1995 Prototypes of Ghosting artifacts
males/females Too much changes

Tiddeman et al. [141] 2006 Prototypes in the Improved ghosting effectswavelet domain

Suo et al. [133] 2011 Component-based Seamless; No ghosting effect
Too much changes

Othman and Ross [107] 2014 Mixing faces of Generating multiple outputs
opposite gender Ghosting artifacts

Sim and Zhang [131] 2015 MMDA Considering multiple-attributes
Loosing recognition utility

Mirjalili and Ross [100] 2017 Adversarial Non-transferableexamples

Choi et al. [33] 2017 StarGAN Realistic-looking outputs
Loosing recognition utility

Mirjalili et al. [101] 2018 SAN Transferable
Non-generalizable

Chhabra et al. [31] 2018 Adversarial Multiple attributes
examples Non-transferable

Mirjalili et al. [98] 2019 FlowSAN Generalizable

Mirjalili et al. [97] 2020 PrivacyNet GAN + an auxiliary matcher
Multi-attribute privacy

One of the earliest attempts in this regard was done by Rowland and Perrett [125] for gender

conversion of facial images. In their work, they proposed finding the prototypes of male and female

faces and use these prototypes as the gender conversion axis. In their work, they utilized Active

Appearance Model (AAM) [34] for aligning face images together and finding the prototypes of

face shapes, as well as the color/texture prototypes. Later, Suo et al. [133] proposed a component-

based approach in which face images are decomposed into several facial components. Then, for

a given face image, they replaced each facial component with that of the closest match from the

opposite gender group. They showed that the identity of face images are preserved since the closest
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Figure 1.7: Imparting demographic privacy to face images: confounding gender/age/race classi-
fiers while retaining the biometric utility of a face image.

matching components were used to build the new face.

While these existing techniques focus mainly on converting the gender of a face image and

ignore the recognition capability, Othman and Ross [107] developed the notion of demographic

privacy in which gender information is confounded while recognition as the primary biometric

utility is retained. They proposed a face-mixing approach where a source face image is combined

with a candidate image from the opposite gender. Therefore, based on k-anonymity principle, the

best possible gender classification rate is at most 1/k (with k = 2). Later, Sim and Zhang [131]

extended this notion of face privacy to include multiple attributes, age, gender, and ethnicity. They

proposed a technique to map an input face image into orthogonal axes corresponding to age, gen-

der, and ethnicity using Multi-Modal Discriminant Analysis (MMDA). Then a new image can be

reconstructed using linear interpolation based on the desired degree of preserving or flipping each

attribute.

With the discovery of adversarial examples [135, 54, 126], Mirjalili and Ross [100] investigated
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the possibility of generating adversarial examples in order to confound gender classifiers while the

recognition utility of face images are retained. Later, Chhabra et al. [31] extended this approach to

multi-attributes including gender, age, and ethnicity. While both these works were able to confound

specific attribute classifiers that were used to derive the perturbations, they failed in transferring

the perturbations to unseen attribute classifiers. In order to overcome this limitation, Mirjalili et

al. [101] proposed a convolutional autoencoder, coined Semi-Adversarial Networks (SAN), which

generates perturbed samples that are transferable to unseen gender classifiers. In their technique,

they used two auxiliary networks to derive the cost function, (1) a CNN-based gender classifier,

which its output is used to derive gender-based perturbations, and (2) a CNN-based auxiliary face

matcher, to ensure that the perturbed face image still matches with its original version.

Furthermore, to address the generalizability issue of SAN models, Mirjalili et al. [99] proposed

an ensemble of SAN models, which were trained on a set of diverse gender classifiers. General-

izability to unseen gender classifiers was further improved in [98] by sequentially training SAN

models, and stacking them for evaluation.

Generative Adversarial Networks (GANs) [53] have also been successfully used for convert-

ing certain facial attributes. Choi et al. [33] proposed a model called StarGAN [33], in which

they used a cycle-consistent conditional-GAN to convert any selective combination of five facial

attributes. However, conventional GANs are not able to preserve the recognition utility of face

images. Mirjalili et al. [97] proposed a GAN model called PrivacyNet, which applies a constraint

on recognition via a pre-trained auxiliary face matcher so that the output face images still match

with their original version. They showed that this technique can overcome the limitations of con-

ventional GANs in preserving the recognition capability.

The summary of contributions of this research is as follows:

• Formulating the problem of demographic privacy that is to avoid the extraction of demo-
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graphic attributes while retaining the recognition capability.

• Investigating an efficient method for generating adversarial examples to fool a particular

gender classifier in a complete blackbox scenario while retaining face matching utility.

• Designing a neural network model, called Semi-Adversarial Network (SAN), for generating

adversarial examples that are transferable to unseen gender classifiers.

• Designing two algorithms for making the SAN model generalizable to arbitrary unseen

gender classifiers;

• Combining the SAN idea with Generative Adversarial Networks (GANs) for generating per-

turbations for multiple attributes selectively that are generalizable to unseen attribute classi-

fiers.

Next, we will describe some practical application of this work. Potential applications of this

work are as follows

• Imparting demographic privacy to face images for users of online shopping and social

media websites:

When users are signing up for a social media or online shopping website, they are typically

asked for their demographic information, but with an option to not disclose such information.

However, in such cases, the organization that stores users information has the ability to

extract the demographic information using their face images.

• Protecting the information related to demographic distribution of users or patients

while sharing data across different organizations:

Let us consider an example for an online shopping application where users have provided

their personal information to use the services. The service provider uses face recognition
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services of a third party. From the perspective of a business competitive strategy, it is desired

for the online shopping service to protect the demographic distribution of their user-base

from the competitors. Therefore, while the shopping service needs to share the data with the

third party for face recognition purposes, they also need to protect the information regarding

the distribution of their users.

• Prevent user-profiling and targeted advertisement in compliance with GDPR:

Let us consider services that store and use personal information of users for specific purposes

that are already stated to the users. Note that GDPR allows users to freely accept or deny

terms of use, which includes whether or not disclose their demographic information. When

users opt out of targeted advertisement, service provider can no longer profile users based

on their demographic attributes for targeted advertisement or other business purpose, and

removing the demographic attributes would further prevent the service provider from such

activities.

1.5 Goals and Objectives

As we reviewed the importance of preserving the privacy of biometric data, our objective in this

work is to design and implement methods to preserve the privacy of face images. In particular,

we focus on developing methods for modifying face images such that the biometric utility of the

face images are preserved, while extracting demographic attributes is confounded. The detailed

description of the proposed algorithms are provided in the following chapters:

• Chapter 2: We investigate the possibility of imparting gender privacy to face images using

additive perturbations. Our objective is to derive perturbations for a specific gender classifier,

such that the performance of the gender classifier is negatively impacted. Given a face image
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and its ground-truth gender, this objective is accomplished by mixing patches of the face

image with a candidate image from an opposite gender using Delaunay triangulation.

• Chapter 3: The adversarial perturbations derived using the proposed method in Chapter 2

are not transferable to an unseen gender classifier. With “unseen classifier”, we refer to a

classifier that was not used for generating the perturbation or used for training a model that

derives such perturbations. Therefore, here we focus on developing a CNN-based model,

coined SAN, for generating perturbations that are transferable to such unseen gender clas-

sifiers. The SAN model consists of a convolutional autoencoder, which is trained using an

auxiliary gender classifier and an auxiliary face matcher.

• Chapter 4: While the SAN model developed in Chapter 3 is shown to generate perturbations

that are transferable to unseen gender classifiers, the issue of generalizability to arbitrary

unseen gender classifier still holds. The SAN model relies heavily on an auxiliary gender

classifier during its training to derive the perturbations, which means the generalizability

of perturbations might be affected. In this regard, we propose using an ensemble of SAN

models in order to generate multiple perturbed outputs for each input face image, to address

the generalizability of the SAN model.

• Chapter 5: To address the generalizability issues of the SAN model, we further extended

the ensemble SAN model proposed in Chapter 4, and investigated the possibility of stack-

ing multiple SAN models to form a stronger model. We designed a new model, coined

FlowSAN, in which we train SAN models sequentially and stack them such that the output

of SANi�1 is given as input to SANi. As a result, FlowSAN can successively degrade the

performance of unseen face-based gender classifiers.

• Chapter 6: While the methods proposed in the previous chapters mainly consider the gender
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attribute, in this chapter, we extend the SAN model to include three demographic attributes:

gender, age, and ethnicity. To further improve the performance and the visual quality of

the output face images, we use the Cycle-GAN algorithm, trained on CelebA and MORPH

datasets.

• Chapter 7: In this chapter, we introduce two open problems with regards to imparting pri-

vacy using the SAN model and describe our approach to investigate these problems. First,

we investigate the interpretability of SAN perturbations, and try to understand why SAN has

resulted in the specific perturbations for a particular image. The second problem we intro-

duce is to study how humans perceive the perturbed images and investigate whether human

observers could reveal the attributes which the SAN model is trying to confound. We have

used Amazon MTurk for this study and investigated the performance of MTurk participants

in gender classification on original images (before perturbation), as well as outputs of our

model. In addition, we hypothesize that human performance in gender classification on face

images strongly relies on the presence of peripheral information. In order to verify our hy-

pothesis, we cropped face images to exclude the peripheral information in face images, and

studied the performance of human observers.

1.6 Summary

In this chapter, we first reviewed the importance of data privacy and motivations for preserving the

privacy of individuals. We first introduced the consequences of sharing data that contain sensitive

personal information about individuals. Targeted advertisement, inferring sensitive information

without consent from users, and other unethical issues were discussed. Such issues demand proper

regulations by the legislative body, as well as scientific research to investigate and develop tools
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for protecting the privacy of individuals. In this regard, the European Union passed the regulations

known as EU GDPR, for protecting the privacy of individuals, which define what constitutes a

lawful processing of individuals’ data.

Then, we reviewed existing techniques for data-anonymization and privacy-preserving schemes

for field-structured data. Shifting our focus to biometric data, and in particular, face images, we

considered two aspects of face privacy in the literature: 1) face de-identification which tries to

remove the identity information from a face image while preserving its utility, 2) demographic

privacy which is to suppress the automatic extraction of demographic attributes from a face image,

while retaining its recognition utility. The existing techniques and their drawbacks on both aspects

of face privacy are described. Then, the objective of our work for imparting demographic privacy

to face images is provided.
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Chapter 2

Imparting Demographic Privacy to Face

Images

Portions of this chapter have been published in:

• V. Mirjalili, A. Ross, ”Soft biometric privacy: Retaining biometric utility of face images

while perturbing gender”, International Joint Conference on Biometrics (IJCB 2017).

2.1 Introduction

In Chapter 1, we have discussed the privacy issues related with extracting demographic attributes

such as gender, age and ethnicity from biometric data of individuals. In this regard, automatic ex-

traction of such attributes without users’ consent is considered a privacy violation. In this chapter,

we investigate the possibility of applying some perturbations to face images in order to confound

machine learning models from extracting these attributes, while at same time, biometric utility of

such data is still retained. In particular, we focus on transforming a face image such that it can

be used for recognition purposes by a biometric matcher, but information such as gender and race

cannot be reliably estimated by a demographic attribute classifier. Specifically, we consider flip-

ping the gender attribute of a given face image, as shown in Fig. 2.1. Given the original input

image (left column), applying the perturbations in the middle column results in an output image
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Figure 2.1: Objective of our work: perturb a face image such that the gender attribute is flipped as
assessed by an automated gender classifier.

(right column) whose gender, as assessed by an automated gender classifier, is flipped to male

(respectively, female) in the top (respectively, bottom) row. Our goal is to find these perturbations

for an input face image.

2.1.1 Adversarial images

Szegedy et al. [135] discovered that neural networks are vulnerable to adversarial examples. They

defined adversarial examples as input data that are perturbed slightly in such a way that the network

will misclassify them. They proposed a box-constrained optimization problem to find the smallest

perturbations required to modify the input such that the output target label is changed. The per-

turbations applied to input images are barely perceptible to the human eye. Further, they showed
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that these perturbations are robust in that the same perturbations can cause misclassification on

different networks with the same topology but trained on different subsets of data. Later, Goodfel-

low et al. [54] proposed a fast-gradient sign method for generating adversarial perturbations, and

observed that adversarial examples generalize well to different neural network models with differ-

ent architectures or trained using disjoint training sets. Rozsa et al. [126] proposed a fast flipping

attribute (FFA) algorithm for generating adversarial examples, which leverages backpropagation

and the negative gradients of the decision layer of a neural network to perturb input examples.

They found that input examples that were misclassified naturally (referred to as natural adversarial

examples) could be correctly classified after perturbations using the fast flipping algorithm.

Focusing on the gender attribute of a face image, besides the adversarial technique that lever-

ages neural networks, the previously mentioned attribute conversion methods relied on either using

prototypes for different classes or fusion of facial components. Considering the fact that the pri-

mary objective of these methods was to modify the apparent gender of an input face image as

assessed by a human observer, the output contains perceptual changes compared to the input face

image. As a result, a human observer is potentially fooled into assigning an incorrect gender label

to the modified image.1 These methods modify the face and texture of the input face image, with-

out explicitly determining the specific features of the face that is being exploited by the attribute

classifier. Therefore, these methods induce unnecessary changes to the input face image which

may not be directly affecting attribute conversion. As opposed to previous methods, in this work,

our goal is to apply changes that specifically target a particular attribute (in this case, flipping the

gender attribute). Given a specific face matcher and a specific face attribute classifier, we propose

an attribute flipping algorithm to iteratively perturb face images and show that it is possible to

1It is worthwhile to note that the focus of our work is on fooling an automated classifier as opposed to a human
observer.
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generate adversarial images which are misclassified by a robust attribute classifier (e.g., gender

classifier). We show that, in most cases, slightly perturbing a few pixels in the input can confuse

the gender classifier, while retaining the utility of a biometric matcher. Note that we target a spe-

cific gender classifier; in other words, we do not intend to flip the gender attribute as assessed by a

human observer. As a result, if a human is monitoring the images, they may be able to detect the

correct gender. In summary, the contributions of the proposed work compared to previous methods

are as follows:

• The proposed method is generalizable to work with any biometric matcher and facial at-

tribute classifier;

• The proposed method finds perturbations that specifically target flipping an attribute, result-

ing in imperceptible changes (in most cases).

2.2 Proposed Method

2.2.1 Problem formulation

We assume that we are given a binary 2 attribute classifier, f , that outputs a classification score for

an input image X 2 Rn, i.e., f : Rn
! R. The class label is computed as sign(f(X)). Further-

more, we denote M(Xi, Xj) as a biometric matcher that computes the match score between face

images Xi and Xj . Our goal is to efficiently find a minimally perturbed image X 0 = �(X) such

that g(X)f(X 0) < 0, where g(X) 2 {�1, 1} is the ground-truth attribute label (e.g., female=�1;

male=1). Here, � is the transformation function that modifies the image. Therefore, we define the

2As explained in Chapter 1, in this work, we assume that gender has 2 labels; however, it must be noted that societal
and personal interpretation of gender can result in many more classes. Facebook, for example, suggests over 58 gender
classes: https://goo.gl/lwTJhr
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Figure 2.2: Workflow of the proposed method for finding per image perturbations in order to flip
the gender attribute of a face image.

following cost function for optimization:

J(X 0, X) = f(X 0) sign(g(X)). (2.1)

This cost function is designed to give a positive value if the estimated attribute score of the per-

turbed image X 0 has the same sign (positive for male, negative for female) as its ground-truth

label.

Optimizing Attribute Perturbation: Based on the objective function given above, the optimiza-

tion problem for attribute perturbation can be stated as follows:

min
�

J(X 0, X) where X 0 = �(X). (2.2)

For this optimization, we apply small incremental perturbations to an input image as described

next.

Algorithm for attribute perturbations The inputs and outputs to this algorithm are as follows:

• Inputs: a 2D face image XS
0 , a gallery of face images, a face attribute classifier f , threshold
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⌘

• Output: perturbed image X 0 whose attribute is flipped

The steps of the algorithm are as follows:

• Find landmark points LS on XS
0

• Find a candidate in gallery, XC , that has highest correlation of landmark points, LC , with

those of XS
0

• Apply Delaunay triangulation to LS and find the corresponding triangles in LC

• Initialize XS
 XS

0

• Repeat the following steps until the cost function J(XS , XS
0 ) goes below threshold ⌘. For

each triangle T in LS , perform the following steps:

– Create matrix MaskT with ones for pixels inside triangle T and zeros everywhere else

– Estimate the affine transformation matrix At: TS = At TC

– Define ↵ = (✏+, ✏�)

– Apply perturbations in two directions:

XS
0

T,↵
= (1�MaskT )X

S+

MaskT

⇣
(1� ↵)XS + ↵AtXC

⌘
8↵

– Calculate the cost function J associated with perturbed images:

J(XS
0

T,✏+
, XS

0 ), J(X
S
0

T,✏�
, XS

0 )
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– Compute numerical gradients for cost function:

rTJ =
J(XS

0

T,✏+
, XS

0 )� J(XS
0

T,✏�
, XS

0 )

2⇥ ✏+

– Choose the perturbed new image for the next step:

XS
new

=

8
><

>:

XS
0

T,✏+
, if rTJ < 0,

XS
0

T,✏�
, otherwise.

2.2.2 Finding perturbation direction

One way of perturbing an input image is through modifying one pixel at a time and computing

the cost function. However, this method is not efficient given the large search space; also, the

attribute classification output may not be useful due to low sensitivity after changing only one

pixel. Therefore, we use a warping technique to simultaneously modify a group of pixels. The

group of pixels to be modified are determined via Delaunay triangulation based on facial landmark

points [96]. Also, in order to find the “direction” of perturbing a group of pixels in one triangle,

we first select a candidate face image from a gallery set that has the highest correlation of facial

landmark points with the input face image. The proposed method for finding the perturbations that

would flip the gender attribute of a face image is illustrated in Fig. 2.2.

Given a source face image XS
0 , a set of 77 facial landmark points LS are extracted using the

Stasm software (see Fig. 2.3 for an example). Then, a candidate image XC that has the highest

correlation of landmark points LC with those of XS
0 is chosen from a gallery set of faces. The cor-

relations are calculated by averaging over the correlations of x and y coordinates of corresponding

landmark points. Next, Delaunay triangulation is performed on points in LS . For each triangle TS ,
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Figure 2.3: Example of Delaunay triangulation on landmark points extracted from an input face
image.

the corresponding triangle points TC are found from the candidate image XC . The iterative per-

turbation procedure starts by initializing XS
 XS

0 . For each triangle TS and its corresponding

TC , the affine transformation matrix At is estimated that maps TC onto TS (i.e., TS = At TC ).

Next, a binary mask MaskT is defined, that has a value of 1 corresponding to image pixels inside

triangle TS . Finally, the source image is perturbed as,

XS
0

T,↵
= (1�MaskT )X

S+

MaskT

⇣
(1� ↵)XS + ↵AtXC

⌘
,

(2.3)

where, coefficient ↵ determines perturbing pixels either towards the candidate image (when ↵ =

✏+ > 0) or away from the candidate image (when ↵ = ✏� < 0), and |↵| determines the magnitude

of the perturbations. MaskT ensures that the perturbations are only applied to the triangle TS ,

while face pixels outside TS stay unmodified.

Since we do not have the closed mathematical form of attribute classifier f(X), we use the

central-difference to compute the gradient of cost functionrT,↵J numerically:

rTJ(X
S
0

T
, X0) =

J(XS
0

T,✏+
, X0)� J(XS

0

T,✏�
, X0)

2✏+
. (2.4)
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Based on the numerical gradient computed above, the perturbation which results in decreasing

the cost function J is accepted according to the following rule:

XS
new

=

8
>>>>><

>>>>>:

XS
0

T,✏+
, if rTJ < 0,

XS
0

T,✏�
, otherwise.

(2.5)

The next iteration starts with XS = XS
new

. This procedure is repeatedly performed for all

triangles until the cost function goes below a predefined threshold ⌘.

The entire process is summarized in Algorithm 1.

2.3 Experiments and Results

We used two face datasets for evaluating the proposed method of perturbing face attributes: the

MUCT dataset [94] which has 276 subjects – 131 male subjects, 145 female subjects – with 10

or 15 samples per subject and the LFW dataset [68] which has 5740 subjects – 1461 female and

4274 male subjects – and a total of 13227 face samples. In this section, we present the results

of our approach to perturb the gender attribute of input images. For this purpose, we designed

two experiments as shown in Table 2.1, where perturbations are generated based on two gender

classifiers, IntraFace [142] and a Commercial-of-The-Shelf (GCOTS) software. For computing

the numerical gradient as mentioned in the previous section, we used ✏+ = 0.05 and ✏� = �0.05.

Our algorithm is run iteratively until the cost function reaches ⌘ = �0.1 or less. A secondary

stopping criterion is invoked when the number of iterations exceeds a maximum user set value; in

our experiments, this value is set to 40.
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Table 2.1: Summary of designed experiments.

Experiments Perturbations guided by
Exp1 IntraFace
Exp2 GCOTS
Exp3 None (Ref. [107])

Analysis 1: Assessing how gender prediction is affected.
Dataset Gender classifier
Original (before) IntraFace GCOTS
Exp1 output IntraFace GCOTS
Exp2 output IntraFace GCOTS
Exp3 output IntraFace GCOTS

Analysis 2: Assessing how identity matching is affected through computing genuine/impostor
match scores.

Dataset Match score estimator
Original (before) VGG MCOTS
Exp1 output VGG MCOTS
Exp2 output VGG MCOTS

2.3.1 Gender perturbation

Two examples from the MUCT dataset are shown in Fig. 2.4 where the gender score is progres-

sively suppressed as assessed by the IntraFace gender classifier. Figure 2.4(a) shows a face image

whose gender score is initially negative (i.e., female), which after 31 triangle update steps becomes

positive (i.e., male). A similar trend is observed in Fig. 2.4(b), where the initial positive gender

score (suggesting a male face) is successfully flipped to a negative value (suggesting a female face).

While some of the previous gender perturbation methods rely on utilizing a candidate face

image of the opposite gender [107, 125, 133], our method does not stipulate this condition. Given

an input source image, our method was tested using candidates from the same gender as well as

candidates from the opposite gender; it was observed that our method successfully works with both

types of candidates. However, in some cases, utilizing candidates from opposite gender required

fewer iterations, although the difference was not statistically significant.
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Figure 2.4: Two examples showing the progress of incremental gender perturbation based on In-
traFace gender classifier. (a) Input image initially classified as female (gender score=�0.4), grad-
ually perturbed until classified as male (gender score=0.1). (b) Input image initially classified as
male (gender score=1.7), gradually perturbed until classified as female (gender score=�0.1).
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The histograms of male and female scores of images in the MUCT dataset before and after

gender perturbation are displayed in Fig. 2.5. In Fig. 2.5, panels (a) and (b) show the distribu-

tion of gender scores of images in the original dataset as computed using IntraFace and GCOTS,

respectively. Panels (c) and (d) show the distribution of gender scores on the images after they

have been perturbed using the proposed method, and panels (e) and (f) shows the scores for output

images generated using the algorithm in [107]. In the original dataset (Fig. 2.5(a)), the distribu-

tion of gender score for male subjects is shown in white, and that of female subjects is shown in

green. The histogram of gender scores after applying our gender-perturbation method and using

the IntraFace gender classifier to guide the process, is shown in Fig. 2.5(c). This analysis indi-

cates that gender scores are flipped, i.e., those which were originally classified as male now have

negative scores, and vice versa. Similar results are obtained when GCOTS is used to guide the

perturbation process (see Fig. 2.5(b) and (d)). Note that in this case, although the distribution of

gender scores for ground-truth males and females are very well separated in the original dataset,

yet our method can successfully perturb the gender attribute. The histograms of gender scores

computed for output images from [107] are completely overlapped. This is expected according to

the K-anonymity [134] principle, since two subjects from opposite genders are mapped to a single

mixed face. Quantitatively, the confusion matrices before and after gender perturbation (see Ta-

ble 2.3) indicate that a 14.9% misclassification rate in the original dataset has increased to 76.6%

after gender perturbation based on the proposed method and guided by IntraFace.

While the objectives of our current work are similar to that of [107], there are some important

differences. In our work, we intend to flip the gender attribute as assessed by a specific gender

classifier, while in [107], two face images from opposite genders are mixed without taking into

account any specific gender classifier. Furthermore, in their work, both shape and texture are

modified, while in our work, only the texture has changed and the shape of the source face image

39



Table 2.2: Gender prediction errors (%) computed using IntraFace and GCOTS on the MUCT and
LFW datasets.

Dataset IntraFace GCOTS

MUCT

Original 14.9 5.1
Perturbed by IntraFace 76.6 5.4
Perturbed by GCOTS 24.1 90.1
Ref. [107] 50.2 51.9

LFW

Original 10.5 2.7
Perturbed by IntraFace 90.0 2.5
Perturbed by GCOTS 24.3 68.6
Ref. [107] 55.5 45.0

Table 2.3: Confusion matrices for gender prediction using IntraFace, on the original MUCT dataset
(top) and after perturbations guided by IntraFace (bottom).

Predictions
Male Female

Ground Truth Male 1762 17
Female 521 1300

Predictions
Male Female

Ground Truth Male 276 1503
Female 1255 566
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Figure 2.5: Histogram of gender scores obtained by IntraFace [142] ((a),(c), and (e)) and GCOTS
((b),(d), and (f)) on the MUCT dataset. Top row shows the histogram of gender scores in the origi-
nal data set before perturbations, and middle shows histograms after perturbation. For comparison,
the histograms of gender scores for the method proposed by Othman and Ross [107] is shown in (e)
and (f). Note that the proposed algorithm is successfully flipping the gender attribute as assessed
by both gender classifiers.
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stays unchanged.

2.3.2 Match scores

In order to determine if the match scores are affected by the proposed gender perturbation method,

we computed genuine and impostor match scores on the original MUCT and LFW datasets (be-

fore perturbation), as well as genuine and impostor scores on the perturbed datasets (guided

by IntraFace gender classifier and GCOTS gender classifier). Furthermore, we also computed

cross-genuine and cross-impostor scores, where face images in the original dataset are compared

against those in the perturbed datasets. These experiments are conducted using two face matchers:

MCOTS3 and VGG face descriptor [109]. To obtain match scores using the VGG face descriptor,

we used the cosine similarity to compare feature descriptors corresponding to a pair of images.

Comparing the genuine and impostor histograms for the original dataset and the perturbed datasets

(Fig. 2.6) shows that the distributions of genuine and impostor match scores are still well separated.

Furthermore, Receiver Operating Characteristic (ROC) curves for all three cases (before per-

turbation, after perturbation, and cross-comparison (before/after)) is shown in Fig. 2.7. The ROC

curves for all these three cases show little divergence from each other, which provides further

evidence that the matching accuracy is not adversely affected by the perturbations.

Two unsuccessful cases are shown in Fig. 2.8, where the gender scores of the original images

and perturbed images are both in the positive region thereby indicating the male class. We ob-

served that the average number of perturbations in successful cases was 1084.5 (± 20) for male

faces, and 667.2 (±18) for female faces, when IntraFace is used to guide the perturbation process.

These numbers were found to be slightly higher when the GCOTS software is used to guide the

3The face matcher in this case is a state-of-the-art COTS software that demonstrates excellent performance in
challenging face datasets.
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Figure 2.6: Distribution of genuine and impostor match scores obtained via MCOTS software (left
column) and using the c VGG face descriptor [109] (right column) on the MUCT dataset; results
from original dataset ((a),(b)); after gender perturbations as guided by the IntraFace gender clas-
sifier ((c),(d)); cross comparison between original and perturbed images, where perturbation was
guided by IntraFace ((e),(f)); after gender perturbations as guided by the GCOTS gender classi-
fier ((g),(h)); and cross comparison between original and perturbed images, where perturbation is
guided by GCOTS ((i),(j)).
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Figure 2.7: ROC curves for face matching obtained using the MCOTS software ((a), (c)) and the
VGG face descriptor [109] ((b), (d)). Top row shows the results obtained on the MUCT dataset,
and the bottom row on the LFW dataset. Note that the recognition performance is not significantly
impacted in most cases.
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Figure 2.8: Two examples of unsuccessful cases where our method fails to completely flip the
gender attribute as assessed by IntraFace [142].

perturbation process: 1592 (± 32) for male faces, and 782 (± 22) for female faces.

In a practical application, perturbing the gender attribute of all stored face images would not

be prudent since the output of the attribute classifier can be trivially flipped by the user in order to

obtain the true attribute value. In order to avoid this, we can apply the perturbation randomly on a

certain proportion of the stored images and leave the rest unchanged. As a result, the certainty of

the correct gender label will be reduced.
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2.4 Summary and Future Work

While biometric data is solely expected to be used for recognizing an individual, advances in ma-

chine learning has made it possible to extract additional information such as age, gender, ethnicity,

and health indicators from biometric data. These auxiliary attributes are referred to as demographic

attributes. Extracting such attributes from the biometric data of an individual, without their knowl-

edge, has raised several privacy concerns. In this work, we focused on extending privacy to face

images. In particular, we designed a technique to modify a face image such that gender informa-

tion cannot be easily extracted from it, while the image can still be used for biometric recognition

purposes. The proposed method entails iteratively perturbing a given face image such that the

performance of the face matcher is not adversely affected, but that of the demographic attribute

classifier is confounded. The perturbation is accomplished using a gradient descent technique. Ex-

periments involving 2 face matchers and 2 gender classifiers convey the efficacy of the proposed

method.

While we showed that the perturbations introduced in this chapter are able to confound the

particular gender classifier that was used to derive such perturbations, such perturbations are not

transferable to unseen gender classifiers. In the next chapter, we will address this issue by intro-

ducing a CNN-based algorithm that can derive perturbations that can be transferable to unseen

classifiers.
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Chapter 3

Semi Adversarial Networks for Gender

Privacy to Face Images

Portions of this chapter have been published in:

• V. Mirjalili, S. Raschka, A. Namboodiri, A. Ross, ”Semi-Adversarial Networks: Convolu-

tional Autoencoders for Imparting Privacy to Face Images”, 11th IAPR International Con-

ference on Biometrics (ICB 2018).

3.1 Introduction

In Chapter 1, we investigated the possibility of generating adversarial examples and deriving per-

turbations to confound a machine learning based gender classifier on face images, while the perfor-

mance of face matchers were still retained. While the adversarial perturbations derived based on

a gender classifier could successfully confound that particular gender classifier, an unseen gender

classifier could still correctly predict the gender of the perturbed face images. This shows that the

perturbations are not transferable to an unseen classifier.

In this chapter, we develop a convolutional autoencoder (CAE) that generates a perturbed face

image that can be successfully used by a face matcher but not by an unseen gender classifier. The

proposed CAE is referred to as a semi-adversarial network since its output is adversarial to the
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gender classifier but not to the face matcher. The proposed network can be easily appropriated for

use with other attributes (such as age or race). In principle, the design of the semi-adversarial net-

work can be utilized in other problem domains where there is a need to confound some classifiers

while retaining the utility of other classifiers.

In particular, we provide an alternative solution by designing a convolutional autoencoder that

transforms input images such that the performance of an arbitrary gender classifier is impacted,

while that of an arbitrary face matcher is retained. The contributions of this chapter, in this regard,

are the following: (a) formulating the privacy-preserving problem in terms of a convolutional au-

toencoder that does not require prior knowledge about the gender classifier nor the face matcher

being used; (b) incorporating an explicit term related to the matching accuracy in the objective

function which ensures that the utility of the perturbed images is not negatively impacted; (c) de-

veloping a generalizable solution that can be trained on one dataset and applied to other previously

unseen datasets.

To the best of our knowledge, this is the first work where adversarial training is used to design

a generator component that is able to maximize the performance with respect to one classifier

while minimizing the performance with respect to another. Experimental results show that the

proposed method of semi-adversarial learning for multi-objective functions is efficient for deriving

perturbations that are generalizable to other classifiers that were not used (or not available) during

training.

48



3.2 Proposed Method

3.2.1 Problem formulation

Let X 2 Rm⇥n⇥c denote a face image having c channels each of height m and width n. Let

fG(X) denote a binary gender classifier that returns a value in the range [0, 1], where 1 indicates

a “Male” and 0 indicates a “Female”. Let fM (X1, X2) denote a face matcher that computes the

match score between a pair of face images, X1 and X2. The goal of this work is to construct a

model �(X), that perturbs an input image X such that the perturbed image X 0 = �(X) has the

following characteristics: (a) from a human perspective, the perturbed image X 0 must look similar

to the original input X; (b) the perturbed image X 0 is most likely to be misclassified by an arbitrary

gender classifier fG(X); (c) the match scores, as assessed by an arbitrary biometric matcher fM ,

between perturbed image X 0 and other unperturbed face images from the same subject, are not

impacted thereby retaining verification accuracy.

This goal can be expressed as the following objective function, which minimizes a loss function

J consisting of three disjoint terms corresponding to the three characteristics listed above:

J(X, y,X 0; fG, fM ) =

�DJD(X,X 0) + �GJG(y,X
0; fG) + �MJM (X,X 0; fM ),

(3.1)

where, X is the input image, y is the gender label of X , and X 0 is the perturbed image. The

term JD(X,X 0) measures the dissimilarity between the input image and the perturbed image pro-

duced by a decoder �(X) to ensure that the perturbed images still appear as realistic face images.

The second term, JG(y,X 0; fG), measures the loss associated with correctly predicting gender of

perturbed image X 0 using fG, to ensure that the accuracy of the gender classifier on the perturbed

image X 0 is reduced. The third term, JM (X,X 0; fM ), measures the loss associated with the match
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score between X and X 0 computed by fM . This term ensures that the matching accuracy as as-

sessed by fM is not substantially diminished due to the perturbations introduced to confound the

gender classifier.

In order to optimize this objective function, i.e., minimizing gender classifier accuracy while

maximizing the biometric matching accuracy and generating realistic looking images, we design a

novel convolutional neural network architecture that we refer to as a semi-adversarial convolutional

autoencoder.

3.2.2 Semi-adversarial network architecture

The semi-adversarial network introduced in this chapter is significantly different from Generative

Adversarial Networks (GANs). A typical GAN has two components: a discriminator and a gen-

erator. The generator learns to generate realistic looking images from the training data, while the

discriminator learns to distinguish between the generated images and the corresponding training

data [53, 126]. In contrast to regular GANs consisting of a generator and a single discriminator,

the proposed semi-adversarial network attaches two independent classifiers to a generative sub-

network. Unlike the generator subnetwork of GANs that is trained based on the feedback of one

classifier, the semi-adversarial configuration proposed in this chapter learns to generate image per-

turbations based on the feedback of two classifiers, where one classifier acts as an adversary of the

other. Hence, the semi-adversarial network architecture we propose consists of the following three

different subnetworks (Fig. 3.1): (a) a trainable generative component in form of a convolutional

autoencoder (subnetwork I) for adversarial learning; (b) an auxiliary CNN-based gender classifier

(subnetwork II); (c) an auxiliary CNN-based face matcher (subnetwork III).

The auxiliary gender classifier as well as the auxiliary matcher1 are detachable parts in this

1The term “auxiliary” is used to indicate that these subnetworks do not correspond to pre-trained gender classifiers
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network architecture used only during the training phase. In contrast to GANs, the generative

component of this proposed network architecture is a convolutional autoencoder (section 3.2.2),

which is initially pre-trained to produce an image that closely resembles an image from the training

set after incorporating gender prototype information (section 3.2.2). Then, during further training,

feedback from both an auxiliary CNN-based gender classifier and an auxiliary CNN-based face

matcher are incorporated into the loss function (see Eqn. (3.1)) to perturb the regenerated images

such that the error rate of the auxiliary gender classifier increases while that of the auxiliary face

matcher is not unduly affected.

An overview of this semi-adversarial architecture is shown in Fig. 3.1, and the details are

further described in the following subsections.

Figure 3.1: Schematic representation of the semi-adversarial neural network architecture designed
to derive perturbations that are able to confound gender classifiers while still allowing biometric
matchers to perform well. The overall network consists of three sub-components: a convolu-
tional autoencoder (subnetwork I), an auxiliary gender classifier (subnetwork II), and an auxiliary
matcher (subnetwork III).

Convolutional autoencoder The architecture of the convolutional autoencoder sub-network

or face matchers, but rather classifiers that are generated from the training data. Note that such a formulation makes
the semi-adversarial network generalizable.
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that modifies and reconstructs the input image in three different ways is shown in Fig. 3.2. The

input to this sub-network is a gray-scale face image of size 224 ⇥ 224 concatenated with a same-

gender prototype, PSM (Fig. 3.3). The input is then processed through the encoder part consisting

of two convolutional layers; each layer is followed by a leaky ReLU activation function and an

average pooling layer, resulting in feature maps of size 56 ⇥ 56 ⇥ 12. Next, the outputs of the

encoder are passed through a decoder with two convolutional layers each, followed by a leaky

ReLU activation and an upsampling layer using two-dimensional nearest neighbor interpolation.

The output of the decoder is a 224⇥ 224⇥ 128 dimensional feature map.

The feature maps from the decoder output are then concatenated with either same-gender

(PSM ), neutral-gender (PNT ), or opposite-gender (POP ) prototypes in the proto-combiner mod-

ule (see Fig. 3.2 and Fig. 3.3). The proto-combiner module is followed by a final convolutional

layer and a sigmoid activation function yielding a reconstructed image X 0
SM

, X 0
NT

, or X 0
OP

, de-

pending on the gender-prototype used. The autoencoder described in this section contains five

trainable layers. Those layers are pre-trained using an information bottleneck approach [65] to

retain the relevant information from both the original image and the same-gender prototype. This

is sufficient to reconstruct realistic looking images by minimizing JD(X,X 0), which measures the

dissimilarity between the gray-scale input images and the perturbed images by computing the sum

of the element-wise cross entropy between input and output (perturbed) images. After pre-training,

this subnetwork is further trained by passing its reconstructed images to two other sub-networks:

the auxiliary gender predictor and the auxiliary face matcher (Fig. 3.1). The gender prototypes, as

well as the two subnetworks, are described in the following subsections.

Gender prototypes The 224 ⇥ 224 male and female RGB gender prototypes (Pmale, Pfemale)

were computed as the average of all 65,160 male images and 92,190 female images, respectively,

in the CelebA training set [86]. Then, the same-gender (PSM ) and opposite-gender (POP ) pro-
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Figure 3.2: Architecture of the autoencoder augmented with gender-prototype images. The en-
coder receives a one-channel gray-scale image as input, which is concatenated with the RGB chan-
nels of the same-gender prototype image. After the compressed representation is passed through
the decoder part of the autoencoder for reconstruction (128 channels), the proto-combiner concate-
nates it with the RGB channels of a same-, neutral-, or opposite-gender prototype resulting in 131
channels that are then passed to a final convolutional layer.

totypes, which are being concatenated with the input image and combined with the autoencoder

output (Fig. 3.2), are constructed based on the ground-truth label y, while the neutral-gender pro-

totype is computed as the weighted mean of male and female prototypes (Fig. 3.3):

• Same-gender prototype, PSM : yPmale + (1� y)Pfemale

• Opposite-gender prototype, POP : (1� y)Pmale + yPfemale

• Neutral prototype, PNT : ↵FPfemale + ↵MPmale

Here, ↵F is the proportion of females in the CelebA training set and ↵M is the proportion

of males. The convolutional autoencoder network (summarized in Fig. 3.1 and further illustrated

in Fig. 3.2) is provided with same-gender prototype images (female or male corresponding to
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Figure 3.3: Gender prototypes used to confound gender classifiers while maintaining biometric
matching during the semi-adversarial training of the convolutional autoencoder.

the ground truth label of the input image), which are concatenated with the input image before

being transmitted to the encoder module in order to derive a compressed representation of the

original image along with the same-gender prototype information. After the decoder reconstructs

the original images, the three different gender-prototypes are added as additional channels via the

proto-combiner (Fig. 3.2).

The final convolutional layer of the autoencoder produces three different perturbed images:

X 0
SM

(obtained when the same-gender prototype is used), X 0
NT

(when the neutral prototype is

used), and X 0
OP

(when the opposite-gender prototype is used).

Pre-training: During pre-training, to ensure that the convolutional autoencoder is capable of

reconstructing the original images, only the same gender perturbations (X 0
SM

) were considered in

the cross-entropy cost function.

Training: For the further training of the autoencoder, to confound the auxiliary gender clas-

sifier and ensure high matching accuracy of the auxiliary matcher, both the perturbed outputs

using same- and opposite-gender prototypes were passed through the auxiliary gender classifier,

to ensure that the perturbation made using the same-gender prototype produces accurate gender

prediction while perturbations made using the opposite-gender prototype confounds the gender

prediction. The perturbed outputs due to the neutral prototypes are not incorporated in the loss
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function, and are only used for evaluation purposes.

3.2.3 Auxiliary CNN-based gender classifier

The architecture of the auxiliary CNN-based gender classifier, which consists of six convolutional

layers and two fully connected (FC) layers, is summarized in Fig. 3.4. Each convolutional layer is

followed by a leaky ReLU activation function and a max-pooling layer that reduces the height and

width dimensions by a factor of 2, resulting in feature maps of size 4⇥ 4⇥ 256. Passing the output

of the second FC layer through a sigmoid function results in class-membership probabilities for

the two labels: 0:“Female” and 1:“Male”. This network was independently trained on the CelebA-

train dataset by minimizing the cross-entropy cost function, until its convergence after five epochs;

the gender prediction accuracy of the auxiliary network when tested on the CelebA-test set was

96.14%. During training, two dropout layers with drop probability of 0.5 were added to the FC

layers for regularization. However, these dropout layers were removed when this subnetwork was

used for deriving perturbations as part of the three-subnetwork neural network architecture shown

in Fig 3.1.

As this CNN-based gender classifier was only used for training the convolutional autoencoder

for generating perturbed face images, and not for further evaluation of this model, it is referred to

as auxiliary gender classifier to distinguish it from the gender classifiers used for evaluation.

3.2.4 Auxiliary CNN-based face matcher

As discussed in Section 3.2.1, the loss function contains a term JM (X,X 0; fM ) to ensure good

face matching accuracy despite the perturbations introduced to confound the gender classifier.

To provide match scores during the training of the autoencoder subnetwork, we used a publicly

55



Figure 3.4: Architecture of the CNN-based auxiliary gender classifier that was used during the
training of the convolutional autoencoder. This classifier was used as an auxiliary (fixed) com-
ponent in the final model to derive the image perturbations according to the objective function
described in Section 3.2.1.

available VGG model as described by Parkhi et al. [109] consisting of 16 weight layers. This VGG

subnetwork produces face descriptors which are vector representations of size 2622 extracted from

RGB face images. The publicly available weight parameters of this network were used without

further performance tuning.

In addition, as the open-source VGG-face network expects RGB images as inputs, we modified

the convolutional filters of the first layer by adding the three filter matrices related to the input

channels, for compatibility with the single-channel gray-scale input images. As this CNN-based

face matcher was only used for training the convolutional autoencoder for generating perturbed

face images, and not for further evaluation of this model, it is referred to as auxiliary matcher to

distinguish it from the commercial matching software used for evaluation.
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3.2.5 Loss function

After pre-training the convolutional autoencoder described in Section 3.2.2, it is connected to the

other two subnetworks (the auxiliary CNN-based gender classifier described in Section 3.2.3 and

the auxiliary CNN-based face matcher described in Section 3.2.4) for further training. During the

pre-training stage, the loss term JD(X,X 0) was used to ensure that the convolutional autoencoder

is capable of producing images that are similar to the input images. The loss term is computed as

the element- or pixel-wise cross entropy, S, between input and output (perturbed) images:

JD(X,X 0
SM

) =
2242X

k=1

S
⇣
X(k), X

0(k)
SM

⌘
. (3.2)

Next, to generate the perturbed images X 0
SM

, X 0
NT

, or X 0
OP

(based on the type of gender-

prototype used) such that gender classification is confounded but biometric matching remains ac-

curate, two loss terms, JG and JM , were used. The first loss term is associated with suppressing

gender information in X 0
OP

and preserving it in X 0
SM

:

JG
�
y,X 0

SM
, X 0

OP
; fG

�
=

S
�
y, fG(X

0

SM
)
�
+ S

�
1� y, fG(X

0

OP
)
�
,

(3.3)

where, S(t, p̂) denotes the cross-entropy cost function using target label t and the predicted class-

membership probability p̂. Note that in this loss function, we use the ground truth labels for X 0
SM

so that the gender of X 0
SM

is correctly predicted, while we use flipped labels for X 0
OP

so that

the gender of perturbed image X 0
OP

is incorrectly predicted. We found that without the use of

this configuration for X 0
SM

and X 0
OP

, the network will perturb the input image, X , such that

perturbations are overfit to the auxiliary gender classifier that is used during training.

The second loss term, JM , measures the matching similarity between input image X and the
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perturbed image X 0
SM

generated from the same-gender prototype:

JM (X,X 0
SM

;Rvgg) =
��Rvgg(X

0

SM
)�Rvgg(X)

��2
2 , (3.4)

where, Rvgg(X) indicates the vector representation of image X obtained from the VGG-face net-

work [109]. The total loss is then the weighted sum of the two loss terms JG and JM :

Jtotal
�
X, y,X 0

SM
, X 0

OP
; fG, Rvgg

�
=

�GJG(y,X
0

SM
, X 0

OP
; fG) + �MJM (X,X 0

SM
;Rvgg).

(3.5)

Jtotal was then used to derive the loss gradients with respect to the parameter weights of the

convolutional autoencoder during the training stage, to generate perturbations according to the

objective function (Section 3.2.1). Note that the coefficients �M and �G in Eqn 3.5 constitute

additional tuning parameters to re-weight the contributions of JG and JM toward the total loss. In

this work, we did not optimize �M and �G, however, and used a constant of 1 to weight both JG

and JM equally.

3.2.6 Datasets

The original dataset source used in this work is the large-scale CelebFaces Attributes (CelebA)

dataset [86], which consists of 202,599 face images in JPEG format for which gender attribute

labels were already available with the dataset. The dataset was randomly divided into 162,079

training images (CelebA-train) and 40,520 images for testing (CelebA-test). The CelebA-train

dataset was used to train the gender classifier (Section 3.2.3), as well as the convolutional autoen-

coder (Section 3.2.2).

In addition to the CelebA-test dataset, three publicly available datasets were used for evalua-
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Table 3.1: Sizes of the datasets used in this study for training and evaluation. CelebA-train was
used for training only, while the other four datasets were used to evaluate the final performance of
the trained model.

Dataset Train # Images # Male # Female
CelebA-train yes 157,350 65,160 92,190
CelebA-test no 39,411 16,318 23,093
MUCT no 3754 131 145
LFW no 12,969 4205 1448
AR-face no 3286 76 60

tion only: MUCT [94], LFW [68] and AR-face [90] databases. The final compositions of these

datasets, after applying a preprocessing step using a deformable part model (DPM) as described by

Felzenszwalb et al. [44] to ensure that all images have the same dimensions (224⇥ 224), are sum-

marized in Table 3.1. The resulting perturbed images obtained from the CelebA-test, MUCT, LFW,

and AR-face datasets, were used to measure the effectiveness of modifying the gender attribute as

assessed by a commercial gender classifier (G-COTS) and a commercial biometric matcher (M-

COTS, excluding AR-images labeled as occluded due to sunglasses or scarfs).

3.2.7 Implementation details and software

The convolutional autoencoder (Section 3.2.2), auxiliary CNN-based gender classifier (Section 3.2.3)

and the auxiliary CNN-based face matcher (Section 3.2.4) were implemented in TensorFlow [2]

based on custom code for the convolutional layers and freezing the parameters of the gender clas-

sifier and face matcher during training of the autoencoder subnetwork [117].

3.3 Experiments and Results

After training the autoencoder network using the CelebA-train dataset as described in Section

3.2.2, the model was used to perturb images in other, independent datasets: CelebA-test, MUCT,
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Figure 3.5: Example input images with their reconstructions using same, neutral, and opposite
gender prototypes from the CelebA-test (first two rows) and MUCT (last two rows) datasets.

LFW, and the AR-face database. For each face image in these datasets, a set of three output images

was reconstructed using same-gender, neutral-gender, and opposite-gender prototypes. Further-

more, our results are compared with the face-mixing approach proposed in [107]. Examples of

these reconstructed outputs for two female face images, and two male face images are shown in

Fig. 3.5.
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3.3.1 Evaluation and verification

The previously described auxiliary CNN-based gender classifier (Section 3.2.3) and auxiliary

CNN-based face matcher (Section 3.2.4) were not used for the evaluation of the proposed semi-

adversarial autoencoder as these two subnetworks were used to provide semi-adversarial feedback

during training. The performance of the semi-adversarial autoencoder is expected to be optimally

biased when tested using the auxiliary gender classifier and auxiliary face matcher. Thus, we

used independent gender classification and face matching software for evaluation and verification

instead, to represent a real-world use case scenario.

Two sets of experiments were conducted to assess the effectiveness of the proposed method.

First, two independent software for gender classification were considered: the popular research

software IntraFace [142] as well as a state-of-the-art commercial software, which we refer to as

G-COTS. Second, a state-of-the-art commercial matcher that has shown excellent recognition per-

formance on challenging face datasets was used to evaluate the face matching performance; we

refer to this commercial face matching software as M-COTS.

3.3.2 Perturbing gender

In order to assess the effectiveness of the proposed scheme in perturbing gender, the reconstructed

images using the proposed semi-adversarial autoencoder from the four datasets were analyzed.

The Receiver Operating Characteristic (ROC) curves for predicting gender using IntraFace and

G-COTS from the original images and the perturbed images are shown in Fig. 3.6.

We note that gender prediction via IntraFace is heavily impacted when using different gender

prototypes for image reconstruction. We observe that the performance of IntraFace on AR-face im-

ages after opposite-gender perturbation is very close to random (as indicated by the near-diagonal
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Table 3.2: Error rates in gender prediction using IntraFace and G-COTS gender classification
softwares on the original datasets before and after perturbation. Note the substantial increase in
the prediction error upon perturbation via the convolutional autoencoder model using opposite-
gender prototypes.

Software Dataset Original Perturbed Ref. [107](before) (after OP)

IntraFace

CelebA-test 19.7% 39.3% 44.6%
MUCT 8.0% 39.2% 57.7%
LFW 33.4% 72.5% 70.9%
AR-face 16.9% 53.8% 54.2%

G-COTS

CelebA-test 2.2% 13.6% 42.4%
MUCT 5.1% 25.4% 53.9%
LFW 2.8% 18.8% 46.1%
AR-face 9.3% 26.9% 40.6%

ROC curve in Fig. 3.6(a)-(d)). The performance of G-COTS proves to be more robust towards per-

turbations, compared to IntraFace; however, the ROC curve corresponding to the opposite-gender

prototype, shows a substantial deviation from the ROC curve of the original images (Fig. 3.6(e)-

(h)). This observation indicates that the opposite-gender prototype perturbations have a substantial,

negative impact on the performance of state-of-the-art G-COTS software, thereby extending gen-

der privacy.

The exact error rates in predicting the gender attribute of face images using both IntraFace and

G-COTS software are provided in Table 3.2 for the original images and the perturbed images using

opposite-gender prototypes. The quantitative comparison of the error rates indicates a substantial

increase in the prediction error rates when image datasets were perturbed using opposite-gender

prototypes. Note that in the case of G-COTS software, perturbations made by the face mixing

scheme proposed in [107] result in higher error rates. On the other hand, the additional advantage

of our approach is in preserving the identity, as we will see in the next section.
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Figure 3.6: ROC curves comparing the performance of IntraFace (a-d) and G-COTS (e-h) gender
classification software on original images (“Before”) as well as images perturbed via the convo-
lutional autoencoder model (“After”) on four different datasets: CelebA-test, MUCT, LFW, and
AR-face.

3.3.3 Retaining matching accuracy

The match scores were computed using a state-of-the-art M-COTS software and the resulting ROC

curves are shown in Fig. 3.7. While the matching term, JM , in the loss function is directly applied
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to reconstructed outputs from same-gender prototype, X 0
SM

, the reconstructions that use neutral-

or opposite-gender prototypes are not directly subject to this loss term (see Section 3.2.5). As

a result, the ROC curve of the reconstructed images coming from same-gender prototype appear

much closer to the original input compared to the reconstructed images from neutral- and opposite-

gender prototypes. Overall, we were able to retain a good matching performance even when using

opposite-gender prototype. On the other hand, the ROC curves obtained from outputs of the mixing

approach proposed in [107] are heavily impacted, resulting in de-identified outputs (which is not

desirable in this work).

Finally, the True Match Rate (TMR) values at a False Match Rate of 1% are reported in Ta-

ble 3.3. The perturbed images from all three datasets show TMR values that are very close to the

value obtained from the unperturbed original dataset.

Table 3.3: True (TMR) and false (FMR) matching rates (measured at values of 1%) of the indepen-
dent, commercial M-COTS matcher after perturbing face images via the convolution autoencoder
using same (SM), neutral (NT), and opposite (OP) gender prototypes, indicating that the biometric
matching accuracy is not substantially affected by confounding gender predictions.

Dataset Original Perturbed
(before) (SM) (NT) (OP)

MUCT 99.88 % 99.79% 99.57% 98.44%
LFW 90.29% 90.02% 88.47% 83.45%
AR-face 94.97% 94.11% 91.95% 90.81%

3.4 Summary and Future Work

In this work, we focused on developing a semi-adversarial network for imparting demographic

privacy to face images. In particular, our semi-adversarial network perturbs an input face image

such that gender prediction is confounded while the biometric matching utility is retained. The

proposed method uses an auxiliary CNN-based gender classifier and an auxiliary CNN-based face
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Figure 3.7: ROC curves showing the performance (true and false matching rates) of M-COTS
biometric matching software on the original images (“Before”) compared to the perturbed images
(“After”) generated by the convolutional autoencoder model using same-, neutral-, or opposite-
gender prototypes for three different datasets: (a) MUCT, (b) LFW, and (c) AR-face.

matcher for training the convolutional autoencoder. The trained model is evaluated using two

independent gender classifiers and a state-of-the-art commercial face matcher which were unseen

during training. Experiments confirm the efficacy of the proposed architecture in imparting gender
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privacy to face images, while not unduly impacting the face matching accuracy.

While the proposed SAN model was shown to be successful in confounding unseen gender

classifier, we need to find the vulnerable points of the SAN model. One such vulnerabilities is

the issue of generalizability, which means whether the perturbed face images are able to confound

an arbitrary unseen gender classifier or not. In the next chapter, we provide a solution using an

ensemble model to address this issue.
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Chapter 4

On the Generalization Ability of Gender

Privacy using Semi-Adversarial Networks

Portions of this chapter have been published in:

• V. Mirjalili, S. Raschka, A. Ross, ”Gender privacy: An ensemble of semi adversarial net-

works for confounding arbitrary gender classifiers”, 9th International Conference on Bio-

metrics Theory, Applications and Systems (BTAS 2018).

4.1 Introduction

In chapter 2, we investigated the possibility of utilizing adversarial images for imparting gender

privacy. The researchers were able to generate image perturbations targeting a specific gender

classifier and showed that these perturbations could confound the gender classifier, while preserv-

ing the performance of a commercial face-matcher. Although perturbed adversarial images have

shown to be effective in confounding a particular classifier, the issue that these images may not

adversarially affect other unseen classifiers limits their effectiveness in practical privacy appli-

cations.1 Adversarial images generated for a particular gender classifier may not generalize to

another. Furthermore, in a real-world application, the knowledge of a gender classifier may not

1The term “unseen” indicates that the classifier or matcher was not used during the training stage.
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be available in advance; as a result, generating adversarial images for an unseen gender classifier

would be difficult. To address this issue, in Chapter 3, developed an autoencoder called Semi Ad-

versarial Network (SAN) for generating perturbed face images that could potentially generalize

across unseen gender classifiers. They trained the SAN model using an auxiliary gender classifier

and an auxiliary face matcher and evaluated the success of their model in producing output images

that could confound two unseen gender classifiers, while preserving the recognition accuracy of

an unseen face matcher. Although the accuracy of the two unseen gender classifiers were indeed

confounded, yet, generalizability to a large number of unseen gender classifiers remains an open

problem (see Section 4.3). Furthermore, a human observer may be able to correctly classify the

gender of the perturbed images generated by their model (see Figure 4.6), which means that, in

principle, there exists an unseen gender classifier that can correctly recognize the gender of the

perturbed images. In this chapter, we formulate an ensemble technique to address the limitations

of the previous SAN model and facilitate its generalizability to a large number of unseen gender

classifiers.2 In the context of this work, the generalizability of a SAN model is defined as its ability

to perturb face images in such a way that an arbitrary unseen gender classifier is confounded while

an arbitrary unseen face matcher retains its utility.

The major contributions of this chapter are as follows:

• Designing an ensemble of SANs to address the problem of generalizability across unseen

gender classifiers.

• Conducting large-scale experiments that convey the practicality and efficacy of the proposed

approach.

2The acronym SAN was simultaneously coined by two independent research groups. Cao et al. [25] defined
Selective Adversarial Networks for partial style transfer, and Mirjalili et al. [101] defined Semi Adversarial Networks
for imparting privacy to face images. Here, we use SAN to refer to the latter.
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• Ensuring that race and age attributes are retained in the perturbed face images.

4.2 Proposed Method

Previous SAN model [101]: The overall architecture of the individual SAN models in the en-

semble is similar to the SAN model proposed in [101] as shown in Figure 4.2, but with a few

modifications. The SAN model consists of a convolutional autoencoder to perturb face images,

a convolutional neural network (CNN) as an auxiliary face matcher, and a CNN as an auxiliary

gender classifier. The pre-trained, publicly available VGG-face CNN [109] is used as the auxil-

iary face matcher. The input gray-scale image is first fused with a face prototype belonging to

the same gender as the input image. Then 128 feature maps are obtained from the last layer of the

decoder, which are combined with the face prototype of the opposite gender using 1⇥ 1 convolu-

tions. The final image is then passed to both the auxiliary face matcher and the auxiliary gender

classifier to compute its match score with the original input and its gender probability, respectively.

During training, each input image is reconstructed by the autoencoder using both same-gender and

opposite-gender prototypes to obtain two different outputs. Then, three different cost functions are

used based on these outputs. First, a pixel-wise similarity measure between the input and the out-

put from the same-gender prototype is used as a cost function to ensure that the autoencoder is able

to construct realistic images. The second cost function is the L2 distance between the face vector

of the input image and those of the outputs to make the autoencoder learn to perturb face images

such that the accuracy of the face matcher is retained. The third cost term is the cross-entropy

loss applied to the gender probabilities of the two outputs as computed by the auxiliary gender

classifier, where the ground-truth label of the input image is used for the output of the same-gender

prototype but the reverse is used for the output of the opposite-gender prototype.
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4.2.1 Ensemble SAN Formulation

We assume that there exists a large set of gender classifiers G = {G1, G2, ..., Gn
}, where each

Gi(X) predicts the gender of a person based on a 2D face image, X . Furthermore, we assume

a set of face-matchers denoted by M = {M1,M2, ...,Mm
}, where each M i(Xa, Xb) computes

the match score between a pair of face images, Xa and Xb. The goal of the work is to design

an ensemble of t SAN models, S = {S1, S2, ..., St
}, that can be shown to generalize to arbitrary

gender classifiers. In particular, we demonstrate that for each face image X , S produces a set

of outputs S(X) = {Y 1, Y 2, ..., Y t
} such that for each Gi

2 G, there exists at least one output

Y j = Sj(X) that is able to confound Gi. At the same time, the outputs, S(X), can be successfully

used for face recognition by the matchers in M.

4.2.2 Diversity in Autoencoder Ensembles

One of the key aspects of neural network ensembles is diversity among the individual network

models [63]. Several techniques have been proposed in the literature for enhancing diversity among

individual networks in an ensemble, such as seeding the networks with different random weights,

choosing different network architectures, or using bootstrap samples of the training data [132, 39].

In the context of SAN models, autoencoder diversity can be imposed in two ways: (a) through

training on different datasets, and (b) by utilizing different auxiliary gender classifiers. Intuitively,

an ensemble of classifiers can only be useful if individual classifiers do not make similar errors

on the test data [132, 63, 80]. To benefit from ensembles, it is thus critical to ensure error diversity,

which can be accomplished by assembling the ensemble from a diverse set of classifiers. A number

of approaches to explicitly measure ensemble diversity have been reported in the literature [80].

Among the novel contributions of this work is the development of ensemble methods for SANs
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Figure 4.1: Diversity in an ensemble SAN can be enhanced through its auxiliary gender classi-
fiers (see Figure 4.2). When the auxiliary gender classifiers lack diversity, ensemble SAN cannot
generalize well to arbitrary gender classifiers.

using oversampling and data augmentation techniques. As shown in Figure 4.1, if auxiliary gender

classifiers that are used to build a SAN lack diversity, the ensemble SAN cannot generalize to

arbitrary classifiers. Therefore, in order to ensure generalizability, we (1) diversify the auxiliary

gender classifiers and (2) diversify the autoencoder component of the SANs during the training

phase.

4.2.3 Ensemble SAN Architecture

The original SAN model used single-attribute prototype images, which were computed by aver-

aging over all male and female images, respectively, in the training dataset [101]. However, this

approach does not take other demographic attributes into account, such as race and age, which

increases the risk of introducing a systematic bias to the perturbed images if certain attributes are

over- or under-represented in the training dataset. This issue is addressed in the current work.

Proposed Ensemble Model: The overall architecture of the proposed model is shown in

Figure 4.3. The ensemble consists of t individual SAN models that are trained independently as
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Figure 4.2: Architecture of the original SAN model [101].

will be discussed later. Each model is associated with an individually pre-trained auxiliary gender

classifier and a pre-trained auxiliary face matcher.3 After the training of a SAN model has been

completed, the auxiliary networks (gender classifier and face matcher) are discarded, and each

SAN model Sj is used to generate an output image Y j (j 2 {1, ..., t}) from an input image X ,

which results in a total of t output images.

We further propose that taking attributes other than just the attribute of interest (i.e., gender)

into account reduces side-effects such as modifications to the race and age of an input image. Con-

sidering three binary attributes, gender (male, female), age (young, old), and race (black, white),

we can categorize an input image into one of eight disjoint groups. For each group, we generate

a prototype image, which is the average of all face images from the training dataset that belong to

that group. Hence, given eight distinct categories or groups, eight different prototypes are com-

puted. Next, an opposite-attribute prototype is defined by flipping one of the binary attribute labels

of an input image. For example, if the input image had the attribute labels {young, female, white},

3The term auxiliary is used to indicate that these gender classifiers and face matchers are only used during training
and not associated with any of the “unseen” gender classifiers and face matchers that will be used in the evaluation
phase.
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Figure 4.3: Schematic of the proposed ensemble of t SAN models. During the training phase, each
SAN model, Si, is associated with an auxiliary gender classifier Gi and an auxiliary face matcher
M i (common across all SANs). During the evaluation phase, the trained SAN models are used to
generate t outputs {Y 1, Y 2, ..., Y t

}.

the opposite-gender prototype chosen for gender perturbation would be {young, male, white}. The

face prototype for each group is shown in Figure 4.4, and is computed by aligning the correspond-

ing faces onto the the average face shape of each group.

The similarities and differences between the originally proposed SAN model and the ensemble

SANs developed in this work are summarized below:

• The autoencoder, auxiliary gender classifier, and auxiliary face matcher architectures are

similar to the original SAN model.

• In contrast to the original SAN model, we construct face image prototypes to reduce alter-
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Figure 4.4: Face prototypes computed for each group of attribute labels. The abbreviations at the
bottom of each image refer to the prototype attribute-classes, where Y=young, O=old, M=male,
F=female, W=white, B=black.

ations to non-target attributes such as age and race.

• Instead of training a single SAN model, we create an ensemble of diverse SAN models that

extend the range of arbitrary gender classifiers that can be confounded while preserving the

utility of arbitrary face matchers.

4.2.4 Ensemble of SANs: Training Approach

To obtain a diverse set of SAN models, we trained the individual SAN models using different initial

random weights. Further, we enhanced the diversity among the models by designing three different

training schemes for the auxiliary gender classifier component of the SAN model as illustrated in

Figure 4.5 and further described below.

• E1 (regular): Consists of five SANs, where the auxiliary gender classifier in each SAN

model was initialized with different initial random weights. The models were trained on the

CelebA training partition without resampling.
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Figure 4.5: An example illustrating the oversampling technique used for enforcing diversity among
SAN models in an ensemble. A: A random subset of samples are duplicated. B: Different Ensem-
ble SANs (E1, E2, and E3) are trained on the CelebA-train dataset. SANs of the E1 ensemble
are trained on the same dataset with different random seeds. In addition to using different random
seeds, E2 SAN models are trained on datasets created by resampling the original dataset (dupli-
cating a random subset of the images). Finally, for E3, a random subset of black subjects was
duplicated for training the different SANs in the ensemble.
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• E2 (subject-based oversampling): Consists of five SANs similar to E1, but in addition to

choosing different initial random weights for the auxiliary gender classifiers, we applied a

resampling technique by duplicating each sample from a random subset of subjects (repre-

senting 10% of the images in the training set). The selected subjects are disjoint across the

five models, and the samples are duplicated four times.

• E3 (race-based oversampling): Five SANs were trained, similar to E1 and E2, but instead

of resampling a random subset of subjects as in E2, we resampled instances of the minority

race represented in the CelebA dataset to balance the racial distribution in the training data.

In particular, a random 10%-subset of black samples was duplicated 40 times, that is, 10%

of the black samples were copied 40 times and appended to the training dataset.

4.2.5 Datasets

We used five face image datasets in this work, viz., CelebA [86], MORPH [122], LFW [68],

MUCT [94], and RaFD [83]. The details of the datasets, and how they were used in this work,

are summarized in Table 4.1. Furthermore, the CelebA and MORPH datasets were split into non-

overlapping training and test partitions, such that the train and test partitions are subject-disjoint

(i.e., if a dataset contained multiple poses of the same person, these were all included either in the

training set or the test set but not both). CelebA-train was used for training the auxiliary gender

classifiers under the three schemes mentioned in the previous section, as well as for training all the

individual SAN models. The face prototypes were computed using the CelebA-train and MORPH-

train datasets. The remaining datasets were used for evaluating the performance of the SAN models

on unseen gender classifiers and unseen face matchers.
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Table 4.1: Overview of datasets used in this study. The letters
in the “Usage” column indicate the tasks for which the datasets
were used. A: training auxiliary gender classifiers, B: SAN
training, C: SAN evaluation, D: constructing unseen gender
classifiers used for evaluating SAN models.

Dataset #male #female Usagesubjects / images subjects / images

CelebA-train 4482 / 73,549 5163 / 103,772 A, B
CelebA-test 502 / 7929 581 / 11,511 C
MORPH-train 10,363 / 41,587 1938 / 7567 D
MORPH-test 1143 / 4643 224 / 863 C
LFW 4205 / 10,064 1448 / 2905 D
MUCT 131 / 1844 145 / 1910 C
RaFD 42 / 1008 25 / 600 C

4.2.6 Obtaining Race Labels

Since race labels are not provided in the face datasets considered in this study, we designed a

procedure to efficiently label the face images:

1. Predict the racial labels for individual face images using a commercial-off-the-shelf (COTS)

software.

2. Aggregate the COTS predictions for each subject (for whom multiple face images with dif-

ferent poses are present in a given dataset) by majority voting. For example, if five face

images of a given subject exist and three face images are labeled as white and two face im-

ages are labeled as black, the label white was assigned to all five face images of the given

subject.

3. Group the subjects based on their predicted majority class label from the previous step. Then,

visually inspect one face image per subject and correct the class labels for all face images of

a given subject if the class label was assigned incorrectly.
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4.3 Experiments and Results

As described in Section 4.2, we trained and evaluated three auxiliary gender classifiers associated

with the three ensemble SAN models: E1, E2, and E3. Table 4.2 summarizes the performance of

these three models in terms of their gender classification errors on the CelebA-test and MORPH

datasets. While the performance of E1 and E2 are similar, E3 outperforms E1 and E2 on MORPH.

Given that 77% of the face images in the MORPH dataset have the class label black, it is evi-

dent that oversampling examples of the under-represented race during training could have helped

overcome the algorithmic bias in gender classification.

Based on the results from Table 4.2, the ensemble of auxiliary gender classifiers in E3 achieves

higher accuracy on the MORPH-test dataset. In addition, in Table 4.2, we computed the entropy

as an empirical measure of ensemble diversity [80], and the results confirm that auxiliary gender

classifiers in E3 have higher diversity. Hence, we selected the ensemble SAN E3 for evaluation on

unseen gender classifiers and face matchers. Figure 4.6 shows example images with their perturbed

outputs from each of the SAN models in E3. In the remainder of the document, SAN-1 to SAN-5

denote the 5 models pertaining to E3.

4.3.1 Unseen Gender Classifiers

In order to assess the performance of the proposed ensemble SAN in confounding an arbitrary

gender classifier, we used 9 gender classifiers that were not available to any of the SAN models

during training, as noted in Table 4.3. We used five pre-trained models: a commercial-of-the-

shelf gender classifier (G-COTS), IntraFace [142], AFFACT [60], and two additional Convolu-

tional Neural Network(CNN)-based gender classifiers from Ref. [13]. In addition to the five ex-

isting gender classifiers, we also included CNN-based gender classifiers that were trained on three
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Table 4.2: Error rates of the auxiliary gender classifiers on the CelebA / MORPH-test datasets. E3
(95% confidence interval: 5.46%–5.63%) performs significantly better (p⌧ 0.01) on the MORPH
dataset compared to E1 (CI95: 6.24%–6.42%) and E2 (CI95: 6.25%–6.43%). At the end, ensemble
diversities are reported [80].

Auxiliary E1: E2: E3:
Classifier Regular Subject-based Race-based

G
1 2.25 / 5.56 2.07 / 6.24 2.29 / 5.17

G
2 2.11 / 6.20 2.03 / 6.45 1.97 / 5.28

G
3 2.03 / 6.38 2.06 / 6.46 2.13 / 5.04

G
4 2.21 / 6.97 2.03 / 5.85 1.99 / 6.96

G
5 2.42 / 6.53 2.12 / 6.72 2.02 / 5.28

Average: 2.20 / 6.33 2.06 / 6.34 2.08 / 5.55
Diversity: 0.047/ 0.079 0.044 / 0.076 0.045 / 0.083

Figure 4.6: Four example images with their perturbed outputs using the original SAN model from
Ref. [101] and the outputs of five individual SAN models. Note that the ensemble SAN generates
diverse outputs that is necessary for generalizing to arbitrary gender classifiers.
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datasets, MORPH-train, LFW, and a merged version of MORPH-train and LFW. The CNN ar-

chitecture of each of these gender classifiers contain five convolutional layers, each followed by

SELU [78] activation units and a max-pooling layer. Inspired by HyperFace [116], the feature

maps from the third convolution layer are fused with those of the last convolution layer to provide

features with hierarchical receptive fields for classification. The fused feature maps then undergo

a global average pooling prior to two fully-connected layers, which were followed by a final sig-

moid activation function. Two CNN models, named CNN-LFW and CNN-MORPH, were trained

on the MORPH-train and LFW datasets, respectively, after the datasets were balanced by oversam-

pling the female samples. A third CNN model, called CNN-Merged, was trained on the merged

MORPH-train/LFW dataset, after balancing the male/female ratio, as well as balancing the size of

the two datasets since MORPH-train is almost five times larger than LFW. Furthermore, we also

applied data augmentation during training by randomly adjusting illumination and contrast using

the Torchvision library and PyTorch software [110]. Finally, for the fourth gender predictor, we

used CNN-Merged but applied data augmentation in the evaluation phase as suggested in [60].

Some examples of this data augmentation during evaluation are shown in Figure 4.7. The illumi-

nation and contrast of a test sample is varied randomly to obtain seven samples. The augmented

face images were then evaluated by the gender predictor, CNN-Merged, and the average score of

the seven different modified test samples is reported; this is denoted as CNN-Aug-Eval (examples

of the seven augmentation methods are shown in Figure 4.7, columns 2-8).

The performance of all nine unseen gender classifiers is shown in Figure 4.8. The ROC curves

of gender prediction on the perturbed images generated by each SAN model is compared with

the ROC curves of gender prediction on the original samples from the CelebA-test, MORPH-test,

MUCT, and RaFD datasets. The ROC curves indicate that the gender classification performance

varies widely across the SAN models. In certain cases, the perturbations made by some of the
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Table 4.3: List of the nine unseen gender classifiers used for evaluating the outputs of the proposed
ensemble SAN models.

Pre-trained models In-house trained CNN models

G-COTS CNN-MORPH
IntraFace [142] CNN-LFW
AFFACT [60] CNN-Merged
Ref. [13]-A CNN-Aug-Eval
Ref. [13]-B

Figure 4.7: Data augmentation at the evaluation phase using random illumination and contrast ad-
justments. The left column shows the perturbed images before augmentation, and the next seven
columns show the samples used for augmentation along with their gender prediction scores. Fi-
nally, average prediction scores obtained using the CNN-Merged model on these seven augmented
samples are computed and denoted as CNN-Aug-Eval in the text.
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SAN models improve the performance of the gender classifier compared to their performance on

the original data. In contrast to the original SAN model [101] (also shown in Figure 4.8 for com-

parison), it is always possible to find at least one SAN model in the ensemble that can effectively

degrade the gender classification performance for a given image.

To illustrate the advantage of the proposed ensemble SAN over a single SAN, we did the

following. For each unseen gender classifier, we selected the best-perturbed sample for each face

image, X , based on the ground-truth gender label as follows:

Pbest =

8
>><

>>:

min
i=1..5

P (Si(X)), if X is male;

max
i=1..5

P (Si(X)), if X is female.
(4.1)

The ROC curve using the best-perturbed sample is shown in Figure 4.8 for each gender classi-

fier. The results suggests that diversity among individual SAN models is necessary for confounding

unseen gender classifiers.

4.3.2 Unseen Face Matchers

Next, we show the performance of unseen face matchers on the original and perturbed samples. For

this analysis, we utilized four face matchers: a commercial-of-the-shelf face matcher (M-COTS)

that has shown state-of-the-art performance in face recognition, and face representation vectors

obtained from DR-GAN [143], FaceNet [127], and OpenFace [10]. For the latter three choices,

we used the cosine-similarity measure between a pair of face vectors to measure their degree of

dissimilarity. Figure 4.9 shows the performance of these four matchers on the four evaluation

datasets. The performance of M-COTS and DR-GAN on perturbed samples matches closely with

that of original samples, except for some minor deviations for the DR-GAN matcher on the RaFD
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Figure 4.8: ROC curves of the nine unseen gender classifiers (each row corresponds to one classi-
fier) on the perturbed images generated by each SAN model of the E3 ensemble on four evaluation
datasets: CelebA-test, MORPH-test, MUCT, and LFW. Note that the gender classification perfor-
mance shows a wide degree of change on perturbed samples, but in all cases, there is always one
output from each ensemble degrading the performance.
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Figure 4.9: ROC curves of the four unseen face matchers (each row corresponds to one matcher)
on the perturbed images generated by each SAN model of the E3 ensemble on four evaluation
datasets: CelebA-test, MORPH-test, MUCT, and RaFD. Note that the matching performance is
mostly retained except for some small degradations in the case of FaceNet and OpenFace.

dataset. Performance of FaceNet and OpenFace on perturbed samples shows marginal deviation

from that of original samples. In contrast, the face mixing approach [107] results in significant

drop in performance of unseen face matchers, thereby suggesting that these outputs have lost their

biometric utility.

Practical Implementation: In a practical application, we may not have a priori knowledge

about the arbitrary gender classifier. Given an arbitrary gender classifier, one way to utilize the

ensemble SAN is by randomly selecting one of the t perturbed images. The result of such a random

SAN model selection is shown in Figure 4.8. As the results illustrate, in most cases, randomly

selecting a SAN model from the E3 ensemble results in better performance in terms of confounding

arbitrary unseen gender classifiers compared to using a single SAN model. Furthermore, randomly

selecting one SAN output does not degrade the face matching performance (Figure 4.9).

Randomly selecting a perturbed sample tends to conceal the true gender label, since flipping
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the predicted label may or may not result in the true label of the original sample.

While gender recognition from a human perspective was not the main focus of this study, we

may consider a human observer as an arbitrary gender classifier. The degree to which the gender

information is concealed from human observers will be a subject of future studies.

4.4 Summary and Future Work

In this work, we focused on addressing one of the main limitations of previous gender privacy

methods, viz., their inability to generalize across multiple previously unseen gender classifiers. In

this regard, we proposed an ensemble technique that generates diverse perturbations for an input

face image, and at least one of the perturbed outputs is expected to confound the gender information

with respect to an arbitrary gender classifier. We showed that randomly selecting perturbations for

face images stored in a biometric database is an effective way for enabling gender privacy. In

addition, we have showed that the face matching accuracy is retained for all perturbed outputs,

thereby preserving the biometric utility of the face images.

In the next chapter, we will extend the ensemble SAN model introduced in this chapter. In

particular, we propose an algorithm to stack SAN models in order to further improve the general-

ization ability of SAN models.
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Chapter 5

FlowSAN: Privacy-enhancing

Semi-Adversarial Networks to Confound

Arbitrary Face-based Gender Classifiers

Portions of this chapter have been published in:

• V. Mirjalili, S. Raschka, A. Ross, ”FlowSAN: privacy-enhancing semi-adversarial networks

to confound arbitrary face-based gender classifiers”, IEEE Access, Vol. 7, pp. 99735-99745,

2019.

5.1 Introduction

Previously, in Chapter 3 we developed Semi-Adversarial Networks (SAN) [101] for imparting

demographic privacy to face images, where a face image is modified such that the matching utility

of the modified face image is retained while the automatic extraction of gender information is

confounded. We empirically showed that the ability to predict gender information, using an unseen

gender classifier from outputs of the SAN model, is successfully diminished. In Chapter 4, we

defined the generalizability of the SAN model as its ability to confound arbitrary unseen1 gender

1The term “unseen” indicates that a certain classifier (or face matcher) was not used during the training stage. On
the contrary, the term “auxiliary” in this work refers to the classifier (or face matcher) that is used during the training
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classifiers. Generalizability is an important property for real-world privacy applications since the

lack thereof implies that there exists at least one gender classifier that can still reliably estimate

the gender attribute from outputs of the SAN model and, therefore, jeopardizes the privacy of

users. In order to address the generalizability issue of SAN models, in this chapter, we propose

the FlowSAN model, that progressively degrades the performance of unseen gender classifiers.

Extensive experiments on a variety of independent gender classifiers and face image datasets show

that the proposed FlowSAN method (Fig. 5.1) results in a substantially improved generalization

performance compared to the original SAN method with regard to concealing gender information

while retaining face matching utility.

In this work, we address the generalization issue of the SAN method using a novel stacking

paradigm that will successively enhance the perturbations for confounding an arbitrary unseen

gender classifier as illustrated in Fig. 5.1. We refer to this method as FlowSAN. The primary

contributions of this work are as follows:

• Designing the FlowSAN model that can successively degrade the performance of arbitrary

unseen gender classifiers;

• Generalizing the FlowSAN model to multiple arbitrary gender classifiers;

• Demonstrating the practicality and efficacy of the proposed approach in confounding the

gender information for real-world privacy applications via extensive experiments involving

broad and diverse sets of datasets.
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Figure 5.1: Illustration of the FlowSAN model, which sequentially combines individual SAN mod-
els in order to sequentially perturb a previously unseen gender classifier, while the performance of
an unseen face matcher is preserved. A: An input gray-scale face image Iorig is passed to the
first SAN model (SAN1) in the ensemble. The output image of SAN1, I 01, is then passed to the
second SAN model in the ensemble, SAN2, and so forth. B: An unmodified face image from
the CelebA [86] dataset (Iorig) and the perturbed variants I 0

i
after passing it through the different

SAN models sequentially. The gender prediction results measured as probability of being male
(P (Male)) as well as the face match score between the original (Iorig) and the perturbed images
(I 0
i
) are shown.
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Figure 5.2: Architecture of the original SAN model [101] composed of three subnetworks: I: a
convolutional autoencoder [16], II: an auxiliary face matcher (M ), and III: an auxiliary gender
classifier (G). In addition, the unit D computes the pixelwise dissimilarity between input and
perturbed images during model training.

5.2 Proposed Method

Original SAN model [101]: The SAN model for imparting gender privacy to face images was first

proposed in [101], and the overall architecture is shown in Fig. 5.2. The SAN model leverages pre-

computed face prototypes, which are average face images for each gender. SAN consists of three

subnetworks: 1) a convolutional autoencoder that perturbs an input face image via face prototypes,

2) an auxiliary face matcher, which is a convolutional neural network (CNN), and 3) a CNN-based

auxiliary gender classifier. The input to the convolutional autoencoder is a gray-scale2 face image

Iorig, of size 224⇥224⇥1, fused with a face prototype belonging to the same gender (Psm). After

the fused input image was passed through the encoder and decoder networks, the face prototypes

(Psm prototype face image from the same gender as input image, or Pop the prototype face image

of the opposite gender) are added as additional channels to the resulting 128-channel feature-map

phase.
2Since most face-matchers work with gray-scale face images, we used gray-scale images in all experiments to

allow for a fair comparison between matchers based on the same input data.
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representation. Finally, a 1⇥1-convolutional operation is used to reduce the number of channels in

the resulting feature-maps to a 224⇥224⇥1-dimensional output image, which is denoted as I 0sm or

I 0op, depending on the type of prototype used by the decoder:

I 0sm = SAN(Iorig;Psm), and

I 0op = SAN(Iorig;Pop).

(5.1)

These output images, I 0sm and I 0op, are then passed to both the auxiliary face matcher and the aux-

iliary gender classifier. The auxiliary face matcher predicts whether the original and the perturbed

face images belong to the same individual via a face match score. The gender classifier predicts

the gender of the input and output images via gender probabilities for male and female.3 For the

auxiliary face matcher, the pre-trained, publicly available VGG-face model [109] is used, which

computes the face representation vectors for an input face image, and the similarity between two

face representation vectors determines the associated match-score.

Three different loss functions are defined based on the outputs from the autoencoder, the aux-

iliary gender classifier, and the auxiliary face matcher. The first component of the loss function,

JD, measures the pixelwise dissimilarity between the input and the output from the same-gender

prototype I 0sm, which is used to ensure that the autoencoder subnetwork is able to construct realistic

face images:

JD(Iorig, I
0
sm) =

1

h⇥w

h⇥wX

i=1

H(I
(i)
orig, I

0(i)
sm ), (5.2)

3As explained in Chapter 1, throughout this work we have assumed binary labels for gender; however, it must be
noted that societal and personal interpretation of gender can result in many more classes.
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where H indicates the cross-entropy function for the binary case, defined as

H(p, q) = � (p log(q) + (1� p) log(1� q)) . (5.3)

The second loss term, JM , is the squared L2 distance between the face representation vectors

obtained from the auxiliary face matcher (VGG-face network [109]) for the input image and the

perturbed output, making the autoencoder learn how to perturb face images such that the accuracy

of the face matcher is retained:

JM (Iorig, I
0
op) = kRM (Iorig)�RM (I 0op)k

2
2, (5.4)

where RM (I) and RM (I 0op) indicate the face representation vectors for the input image and the

perturbed output based on the opposite-gender prototype.

Finally, the third loss term, JG, is the cross-entropy loss function applied to the gender proba-

bilities computed by the auxiliary gender classifier, G, on the two perturbed output images. Here,

the ground-truth label y of the input image is used for I 0sm, but the reverse (1� y) is used for I 0op:

JG(y, I
0
sm, I 0op) = H(y,G(I

0(k)
sm )) +H(1� y,G(I

0(k)
op )). (5.5)

The total loss, Jtot, is the weighted sum of the three individual loss functions described in the

previous paragraphs,

Jtot = �1JD + �2JM + �3JG, (5.6)

where the parameters �i are the relative weighting terms that can be chosen uniformly or adjusted

via hyperparameter optimization.
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In the remaining part of the chapter, we use notation I 0 for the output of a SAN model on a

face image Iorig when using the opposite-gender prototype, i.e., I 0 = SAN(Iorig;Pop).

Based on our previous study [99], we employed a data augmentation and resampling scheme

for training the auxiliary gender classifiers as a means to diversify the SAN models. In particular,

by resampling the instances belonging to the underrepresented race in the CelebA [86] dataset,

we aimed to balance the racial distribution in the training data. In this regard, we generated five

resampled training datasets, where in each one a random disjoint subset of samples from the un-

derrepresented race was replicated 40 times. This is an effort to enhance the diversity among the

SAN models in an ensemble. The resampling approaches that are used to mitigate the imbalances

in the different training datasets employed in this study are described in [99].

5.2.1 Training and Evaluation of an Ensemble SAN model

In our previous work [99], we proposed an ensemble approach for generalizing SAN models to

unseen gender classifiers. The objective of an ensemble SAN was to create n SAN models such

that their union can span a larger subset of the hypothesis space compared to a single SAN model.

Therefore, for a new test image and an arbitrary unseen gender classifier, G, it is likely that at

least one of these SAN models in the ensemble is able to confound G. For training an ensemble

of SANs, we start with n auxiliary gender classifiers, G = {G1, G2, ..., Gn}, which were trained

using different data augmentation schemes (to achieve higher diversity among classifiers), and a

pre-trained face matcher M . Then, we train n SAN models, where SANi is associated with the

auxiliary gender classifier Gi, as shown in Fig. 5.3. According to the original SAN model pro-

posed in [101], the loss function for training each model is composed of three components: gender

loss, matching loss, and pixelwise dissimilarity loss (Eq. 5.6). Note that the ensemble of SAN

models described with this setting can be trained in parallel since each SAN model is independent
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Figure 5.3: Illustration of an ensemble SAN, where individual SAN models are trained independent
of each other using n diverse, pre-trained, auxiliary gender classifiers (G = {G1, G2, ..., Gn}), and
a face matcher M that computes face representation vectors for both input face image Iorig and the
output of the SAN model. D refers to a module that computes pixelwise dissimilarity between an
input and output face image.
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of others, and each individual SAN model takes unmodified images as input (Fig. 5.3).

Evaluation of an ensemble of models, that were trained independently, can be performed in two

ways:

1. Averaging: Evaluating the ensemble of SANs by computing the average output image from

the set of n outputs as shown in Fig. 5.4-A.

2. Gibbs: Randomly selecting the output of one SAN model (Fig. 5.4-B).

These two ensemble-based methods serve as a basis for the comparison with the proposed FlowSAN

method, which is described in the following section.

5.2.2 FlowSAN: Connecting Multiple SAN Models

Assume there exists a large set of gender classifiers G = {G1, G2, ..., Gg}, where each Gi(I) pre-

dicts the probability that a face image I belongs to a male individual. Furthermore, suppose there

exists a set of m face-matchers denoted by M = {M1,M2, ...,Mm}, where each Mi(Ia, Ib) com-

putes the match score between a pair of face images, Ia and Ib. Our goal is to design an ensemble

of n SAN models, E = hS1, S2, ..., Sni, that, once they are sequentially stacked together, can

be shown to generalize to confound unseen gender classifiers in G. We hypothesize that stacking

diverse SANs sequentially would have a cumulative effect, where each SAN adds perturbations

to an input image that confound a particular gender classifier. Therefore, stacking SANs would

enhance their generalizability in terms of decreasing the performance of multiple, diverse gender

classifiers.

We define a recursive function E (Iorig, t) for stacking SAN models in E = {SAN1, ..., SANn},
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Figure 5.4: Two approaches for evaluating an ensemble of SAN models: Combining a set of n SAN
models trained in the ensemble by (A) averaging n output images, and (B) randomly selecting an
output (Gibbs).
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as follows:

 E (Iorig, t) =

8
>>><

>>>:

SAN1(Iorig) if t = 1,

SANt

�
 E (Iorig, t� 1)

�
otherwise.

(5.7)

By varying t from 1 to n,  E (Iorig, t) produces a sequence of n output images hI 01, I
0
2, ..., I

0
ni:

• t = 1! I 01 =  E (Iorig, 1) = SAN1(Iorig),

• t = 2! I 02 =  E (Iorig, 2) = SAN2
�
SAN1(Iorig)

�
,

• ...

• t = n! I 0n =  E (Iorig, n) = SANn

�
... SAN1(Iorig)

�
.

In particular, we hypothesize that for each Gi 2 G, the stacking of SAN models will progres-

sively confound Gi. Since the individual SAN models were trained to have a minimal impact on

face matching performance, we further hypothesize that the perturbations introduced in the out-

put face images hI 01, ..., I
0
ni from the stacked SAN models should not substantially affect the face

recognition performance of the matchers in M.

5.2.3 Training Procedure for Stacking SAN Models

The goal of this work is to develop a model that leverages the image perturbations induced by

individual, diverse SAN models to broaden the spectrum of diverse gender classifiers that can

successfully be confounded. To accomplish this goal, we designed and evaluated the FlowSAN

model, where multiple individually-trained SAN models were sequentially combined.

This section describes the training procedure for the FlowSAN model, where SAN models

i = 1, ..., n are trained in sequential order, each with their corresponding auxiliary gender classifier
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and an auxiliary face matcher, which is common among all SANs. The first SAN model, SAN1 2

E = {SAN1, ..., SANn}, takes the original image as input and generates a perturbed output, I 01,

while using the auxiliary gender classifier G1 during its training. Then, once SAN1 is trained, the

entire training dataset is transformed by SAN1, and the transformed data is then used for training

the next SAN model while using its corresponding auxiliary gender classifier. This process is

repeated for SAN models i = 1, ..., n, to obtain n SAN models that are trained in sequential order.

Note that the matching loss is computed between face representation vectors (generated by a face

matcher) of the SAN output with that of the corresponding original face image, as opposed to

the input to the SAN model (which is already perturbed for i � 2). This is to ensure that the

matching performance does not substantially decline as the sequence is expanded. Furthermore,

we considered three different scenarios for the pixelwise dissimilarity loss:

1. Omitting the pixelwise dissimilarity loss term;

2. pixelwise dissimilarity with respect to the input, i.e., I 0
i�1 for SANi;

3. pixelwise dissimilarity loss with respect to the original image Iorig for each of SAN models

i = 1, ..., n.

We evaluated all three different pixelwise loss function schemes listed above. However, we were

unable to observe any noticeable differences except for some cases where the third scheme slightly

outperformed the other two. Therefore, we only report the results of the third case in this chapter.

The training procedure is illustrated in Fig. 5.5.
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Figure 5.5: An illustration of a FlowSAN model: n SAN models are trained sequentially using
n auxiliary gender classifiers (G = {G1, G2, ..., Gn}), and a face matcher M that computes face
representation vectors for both input image I and the output of SAN model. Both auxiliary face
matcher and the dissimilarity unit (D) use the original image along with the output of their corre-
sponding SAN.

5.2.4 Evaluating the FlowSAN Model

During the model evaluation, the auxiliary networks (the auxiliary gender classifiers and auxiliary

face matchers) from the individual SANs are discarded, and the n SAN models are stacked in

the same sequence they were trained, in order to enhance their generalizability to arbitrary gender

classifiers. In the FlowSAN model, the first SAN model (SAN1) takes an original image (Iorig)

as input and generates a perturbed output image I 01. This output image is then passed into the

next SAN model in the sequence to obtain I 02, and so forth. In general, the ith SAN model (SANi

for i = 2, ..., n) takes the output of the previous SAN model (I 0
i�1) as input and generates the

perturbed output I 0
i
.

5.3 Experiments and Results

We designed two different protocols for training n SAN models:

(a) Training an ensemble of SANs independent of each other as described in [99] (see Sec-

tion 5.2.1);
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(b) Training the FlowSAN model using the sequential procedure described in Section 5.2.2.

Protocol (a) was adapted from [99] and is further described in Section 5.2.1. For evaluating

models trained in the ensemble, we applied two techniques: 1) taking the average output from

SAN models which we denote as Ens-Avg, and 2) randomly selecting the output which we denote

as Ens-Gibbs. In addition, similar to [99], we also define the oracle best-perturbed sample for a

specific gender classifier, G:

best(I; E , G) =

8
>>>>><

>>>>>:

argmin
SANi2E

G(SANi(I)) if y = 1,

argmax
SANi2E

G(SANi(I)), otherwise.

(5.8)

The results of best-perturbed samples are denoted as Ens-Best. This analysis indicates which

output from the ensemble model E has resulted in the highest prediction error for a particular

gender classifier G if the best output is selected.

The training of the FlowSAN model was initiated from the pre-trained individual SAN models

in [99] and then trained for 10 additional epochs on the CelebA-train subset [86] (see Table 5.1) us-

ing the training procedure described in Section 5.2.2. Then, the models were stacked successively

to generate a sequence of perturbed output images, hI 01, . . . , I
0
ni.

As the FlowSAN model conceals the gender information in face images incrementally, it natu-

rally produces a sequence of perturbed face images, where the length of this sequence is determined

by its ensemble size. By varying the size of the ensemble, we can have a fair comparison between

the ensemble approach vs. the FlowSAN model, such that the number of SANs used to obtain an

output from the ensemble model is consistent with the number of SANs that are used to generate

the output from the FlowSAN model.

For model evaluation and comparison, we used four test datasets: CelebA-test [86], MORPH-
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Table 5.1: Overview of datasets used in this study. The letters in the “Usage” column indicate the
tasks for which the datasets were used. a: training auxiliary gender classifiers, b: SAN training, c:
SAN evaluation, d: constructing unseen gender classifiers used for evaluating SAN models.

Dataset #male #female Usage

CelebA-train 73,549 103,772 a, b
CelebA-test 7,929 11,511 c
MORPH-train 41,587 7,567 d
MORPH-test 4,643 863 c
LFW 10,064 2,905 d
MUCT 1,844 1,910 c
RaFD 1,008 600 c

test [122], MUCT [94], and RaFD [83]. The number of male and female individuals in each dataset

is listed in Table 5.1.

5.3.1 Performance in Confounding Unseen Gender Classifiers

In order to evaluate the generalization performance of the three ensemble-based methods discussed

in the previous section (Ens-Avg, Ens-Gibbs, Ens-Best) as well as the proposed FlowSAN model,

we considered six independent gender classifiers. The experiments designed in this section as-

sess how well the proposed models are able to confound gender classifiers that were unseen during

training. These six gender classifiers include three models that were already trained: a commercial-

of-the-shelf gender classifier (G-COTS), IntraFace [142], AFFACT [60], and three CNN models

built in-house, which we refer to as CNN-1, CNN-2 (trained using MORPH-train and LFW, re-

spectively), and CNN-3 (trained on the union of MORPH-train and LFW). Note that these three

CNN models have shown a similar level of performance on the original test-sets, compared to the

other three pre-trained gender predictors.

Fig. 5.6 shows the area under the ROC curve as a performance metric for evaluating the

generalization performance of each unseen gender classifier on the four independent test datasets.
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Figure 5.6: Area under the ROC curve (AUC) measured for the six unseen gender classifiers (CNN-
3, CNN-2, CNN-1, AFFACT, IntraFace, and G-COTS) on the test partitions of the four different
datasets (CelebA, MORPH, MUCT, and RaFD). The gender classification performance on the
original images (”Orig.”) is shown (blue dashed line) as well as the perturbed samples using the
three ensemble-based models (Ens-Avg, Ens-Gibbs, Ens-Best) the proposed FlowSAN model, and
the face mixing approach [107] (gray dashed line). The index (1, 2, ..., 5) on the x-axis indicates
the sequence of outputs hI 01, I

0
2, ..., I

0
5i obtained by varying the ensemble size, n. In almost all

cases, stacking three SAN models results in an AUC of approximately 0.5 (a perfectly random
gender prediction).
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The performance of these gender classifiers on the original images (before perturbations), as well

as the outputs from the mixing approach by [107], is also shown for comparison.

In all cases, the FlowSAN approach results in lower AUC values (lower is better) of predictions

made by unseen gender classifiers (Fig. 5.6) compared to the ensemble models Ens-Avg and

Ens-Gibbs. In fact, the results of the stacking SAN models are almost on par with the oracle

best-perturbed samples (Ens-Best) for each gender classifier. In some cases, the FlowSAN model

even outperforms Ens-Best. It is important to note that selecting the best-perturbed sample

(from the individual SAN models) for each gender classifier without a priori knowledge of

the classifier is infeasible in practice. Yet, we are able to outperform the best result using the

FlowSAN model in several cases.

Note that in a real privacy application, reaching a near random gender prediction performance

(AUC ⇡ 0.5, and Equal Error Rate (EER)⇡ 0.5) is desired for gender anonymization. As it can be

seen in Fig. 5.6, both Ens-Avg and Ens-Gibbs methods produce samples that are mostly incapable

of lowering the AUC of the unseen gender classifiers below 0.75 AUC. Based on the results shown

in Fig. 5.6 (and the EER results shown in Fig. 5.9), it is evident that, in the majority of cases, a

sequential stacking of three SAN models via FlowSAN produces the desired behavior in terms of

face gender-anonymization, i.e., AUC ⇡ 0.5 (similarly, EER ⇡ 0.5). Although, in some cases,

the 5th output from Ens-Avg and Ens-Gibbs resulted in a low, desired AUC of ⇡ 0.5, it also has a

substantially detrimental effect on the face matching performance, as discussed in Section 5.3.2.

As a result, we conclude that stacking three SAN models in FlowSAN is sufficient to achieve

the best gender label anonymization performance across a set of different, unseen gender classi-

fiers and face image datasets. Stacking fewer than three models affects unseen gender classifiers

substantially less, and stacking more than three models induces such strong perturbations that flip-

ping the predicted labels could again de-anonymize the perturbed face images with respect to their
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Figure 5.7: A randomly selected set of examples showing input face images and their outputs from
I 01 to I 05 using (A) the ensemble model, Ens-Avg, and (F) using the FlowSAN model.

gender labels.

We shall note that our study was not the first to confound gender classifiers to produce random

predictions. In [107], researchers proposed a face mixing approach that also leads to successful

gender anonymization (approximately 0.5 AUC gender prediction performance for a specific gen-

der classifier); however, this approach was unable to retain the face matching utility. In different

studies, the researchers were able to retain face matching utility but without generalizing to arbi-

trary gender classifiers [100, 31]. Thus, the FlowSAN model we propose in this chapter presents

the first successful approach for satisfying both objectives: concealing gender information and

retaining matching performance to a satisfactory degree across a variety of independent gender

classifiers and face matchers.
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5.3.2 Retaining the Performance of Unseen Face Matchers

To assess the effect of the gender perturbations on the matching accuracy, we considered four dif-

ferent unseen face matchers. This includes a commercial-of-the-shelf face matcher (M-COTS),

which has shown state-of-the-art performance in face recognition, as well as three publicly avail-

able algorithms that provide face representation vectors: DR-GAN [143], FaceNet [127], and

OpenFace [10]. For the latter three models, we measured the cosine similarity between face repre-

sentation vectors obtained from the original images and face representation vectors obtained from

the SAN-perturbed output images.

Fig. 5.8 shows the True Match Rate (TMR) values at False Match Rate (FMR) of 0.1% for

different ensemble methods. In most cases, the performance of the face matchers regarding the first

three outputs (I 01, I 02, and I 03) is similar and relatively close to the matching performance on original

images. We note that stacking three SANs in FlowSAN yields the desired performance with regard

to confounding unseen gender classifiers. Therefore, the evaluation of the face matching perfor-

mance for stacking more than three SANs I 03 (i.e., I 04 and I 05) is only included for completeness.

Comparing the performance of face matchers for equal values of n, we observe that the face

matchers appear to perform slightly better on outputs produced by the ensemble model compared

to the FlowSAN model. However, the extent to which the gender classification performance is

reduced by the two models is not the same for equal values of n (Table 5.2). The ensemble model

requires at least n = 5 individual SAN models to be able to confound unseen gender classifiers to

reach the same level of gender anonymization as the FlowSAN model with n = 3. Therefore, if we

compare the ensemble models with n = 5 to the FlowSAN model with n = 3, the face matchers

perform substantially better on the face image outputs by the FlowSAN model (Fig. 5.8). Further,

note that the performance of M-COTS on CelebA on the original images is already as low as
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Figure 5.8: True Match Rate (TMR) values at False Match Rate (FMR) of 0.1% obtained from
four unseen face matchers, M-COTS, DR-GAN, FaceNet, and OpenFace on the original images as
well as perturbed outputs after applying stacking SAN models and the ensemble models (Ens-Avg
and Ens-Gibbs). Note that the matchers' performance obtained after applying the first three SANs
in the FlowSAN model is close to the original performance, but it further diminishes when the
sequence is extended.

85.6%. In fact, all matchers perform poorly on the CelebA dataset, which may be due to different

face orientations captured in the wild.

5.3.3 Preserving Privacy

The overall average performance considering the two target objectives of this study, i.e., confound-

ing gender classifiers and retaining the matching utility of face images, is provided in Table 5.2. In

this analysis, the average EER results of all six gender classifiers over all four evaluation datasets
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Table 5.2: Comparing the overall average performance of six unseen gender classifiers and four
unseen face matchers over the four evaluation datasets using n = 3 or n = 5 SAN models.
This shows that stacking 3 SAN models results in gender anonymization EER ⇡ 0.5, while the
the average matching performance is still comparable to the unmodified images as well as the
matching performance on the outputs form other existing methods.

Gender: Matching:
EER TMR at

FMR=0.1%

Orig. 10% 76.3%
Ref [107] 46% 9.1%

n = 3 n = 5 n = 3 n = 5
Ens-Avg 23% 40% 64.9% 48.1%
Ens-Gibbs 29% 31% 65.2% 65.6%
Ens-Best 48% 57% – –
FlowSAN 49% 64% 61.9% 35.4%

were computed for original images, outputs from Ref. [107], as well as outputs from the stacking

and the ensemble models using n = 3 and n = 5. The results clearly show that the FlowSAN

model outperforms the ensemble-based methods, including the oracle-best results. On the other

hand, the average true matching rate (TMR) values, at a false matching rate (FMR) of 0.1%, are

also computed similarly, and the results indicate that the Ens-Gibbs method has the highest perfor-

mance for both ensemble sizes, while the performance of the FlowSAN model at n = 3 is ranked

as second, but it is very close to that of Ens-Gibbs. The detailed EER results for each gender

classifier is provided in Table 5.3.

5.3.4 Computational Efficiency

The overall computational cost for training the ensemble-based approach and the FlowSAN model

is similar, except that FlowSAN requires an additional data transformation step between each con-

secutive SAN training. However, the ensemble approach comes with a bigger advantage that the
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individual SAN models can be trained in parallel, while the SAN models in the FlowSAN model

have to be trained sequentially.

5.4 Summary and Future Work

In this work, we address one of the main limitations of previous gender privacy methods, namely,

their inability to generalize across multiple previously unseen gender classifiers. In this regard, we

propose the FlowSAN method that sequentially combines diverse perturbations for an input face

image to confound the gender information with respect to an arbitrary gender classifier. We com-

pared the performance of the proposed FlowSAN model with two ensemble-based approaches: 1)

using the average output of SAN models trained independent of each other (Ens-Avg); 2) randomly

selecting the output from the SAN models in the ensemble (Ens-Gibbs).

Our experiments show that the FlowSAN method outperforms the other ensemble-based ap-

proaches in terms of confounding gender attribute for a range of gender classifiers. More im-

portantly, while gender classification is successfully confounded, face matching accuracy is re-

tained for all perturbed output face images, thereby preserving the biometric utility of the gender-

anonymous face images.

For future work, we will extend the proposed privacy-preserving scheme to multiple demo-

graphic attributes including age and race, and design a SAN model that can confound a selected

combination of attributes while preserving matching performance. This is expected to enhance the

privacy of individuals whose biometric data is stored in central databases.
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Figure 5.9: Equal Error Rate (EER) measured for the six unseen gender classifiers (CNN-3, CNN-
2, CNN-1, AFFACT, IntraFace, and G-COTS) on the test partitions of the four different datasets
(CelebA, MORPH, MUCT, and RaFD). The gender classification performance on the original
images (”Orig.”) is shown (blue dashed line) as well as the perturbed samples using the three
ensemble models (Ens-Avg, Ens-Gibbs, Ens-Best), the proposed FlowSAN model, and the face
mixing approach [107] (gray dashed line). The index (1, 2, ..., 5) on the x-axis indicates the
sequence of outputs hI 01, I

0
2, ..., I

0
5i obtained by varying the ensemble size, n.
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Table 5.3: Comparing the overall average Equal Error Rate (EER) of six unseen gender classifiers
averaged over all four evaluation datasets (CelebA-test, MORPH-test, MUCT, and RaFD), higher
is better. Note that the Ens-Best method is the result of “oracle best” selected classifier from an
ensemble of multiple SANs, which assumes knowledge of the gender classifier. While this is
impractical in a real-world privacy application, we show the results for comparison purposes.

Part-A: (n = 3)

Gender Orig. Ref. [107]Classifier Ens-Avg Ens-Gibbs Ens-Best FlowSAN
G-COTS 0.13 0.48 0.05 0.18 0.30 0.40
IntraFace 0.10 0.46 0.23 0.38 0.61 0.65
AFFACT 0.09 0.46 0.26 0.28 0.44 0.38
CNN-1 0.10 0.46 0.38 0.36 0.62 0.53
CNN-2 0.12 0.47 0.23 0.23 0.35 0.48
CNN-3 0.05 0.46 0.23 0.30 0.53 0.51
Average 0.10 0.46 0.23 0.29 0.48 0.49

Part-B: (n = 5)

G-COTS 0.13 0.48 0.17 0.18 0.35 0.71
IntraFace 0.10 0.46 0.47 0.41 0.71 0.80
AFFACT 0.09 0.46 0.36 0.32 0.58 0.45
CNN-1 0.10 0.46 0.55 0.38 0.74 0.75
CNN-2 0.12 0.47 0.45 0.25 0.38 0.59
CNN-3 0.05 0.46 0.39 0.32 0.65 0.57
Average 0.10 0.46 0.40 0.31 0.57 0.64
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Chapter 6

PrivacyNet: Semi-Adversarial Networks for

Multiattribute Face Privacy

Portions of this chapter have been published in:

• V. Mirjalili, S. Raschka, A. Ross, ”PrivacyNet: Semi-adversarial networks for multi-attribute

face privacy”, IEEE Transactions on Image Processing, Vol. 29, pp. 9400-9412, 2020.

6.1 Introduction

So far, we developed Semi-Adversarial Networks (SAN) which is a deep-learning model for im-

parting gender privacy to face images. While the original SAN model has successfully been shown

to conceal gender attributes from face images while being able to retain satisfactory face matching

accuracy, it did not apply to a broader range of soft biometric characteristics.

In this chapter, we propose a new method for imparting multi-attribute privacy to face images

including age, gender, and race, which we refer to as PrivacyNet. Our overall objective is shown

in Fig. 6.1, where PrivacyNet can perturb the soft biometric information contained in an input face

image across three orthogonal axes corresponding to age, gender, and race. While soft biometric

information can be successfully concealed, the matching utility of transformed faces is preserved.

In previous chapters, we developed a deep learning model to generate perturbed examples for
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Figure 6.1: The overall idea of this work: transforming an input face image across three dimensions
for imparting multi-attribute privacy selectively while retaining recognition utility. The abbreviated
letters are M: Matching, G: Gender, A: Age and R:Race.

confounding gender information in face images [101]. The neural network was coined Semi-

Adversarial Network (SAN) and is composed of a convolutional autoencoder for synthesizing

face images such that the gender information in the synthesized images is confounded while their

matching utility is preserved. The SAN model is trained using an auxiliary gender classifier and

an auxiliary face matcher. After training, the auxiliary subnetworks are discarded and the convolu-

tional autoencoder is used for performance evaluation, and it was shown that this model is able to

confound gender information as assessed by some unseen1 attribute classifiers while the matching

utility, assessed by unseen face matchers, was retained. Furthermore, using an ensemble of SAN

models, it was empirically shown that the face pertubations for concealing soft-biometric informa-

tion generalize to arbitrary unseen gender classifiers [99]. Most recently, imparting privacy to face

representation vectors have also emerged, where extracting sensitive information from the face

1In contrary to “auxiliary” classifiers, the term “unseen” indicates that the classifier (or face matcher) was not used
during the training stage.

111



representation vectors is confounded [139, 103]. SensitiveNet [103] was also proposed where the

proposed model generates agnostic face representations for face recognition such that the sensitive

information including gender and race are removed from these representations [71].

Here, we present a new model, PrivacyNet, for enabling multi-attribute privacy. Existing tech-

niques including controllable face privacy [131] work on well-posed cropped face images and the

face area needs to be cropped. Furthermore, confounding multiple attributes requires adding a

sequence of perturbations which can potentially result in further drift in matching performance.

Perturbation-based method proposed by [31] have limited applicability to real-world privacy prob-

lems since their perturbed faces do not generalize to unseen attribute classifiers, and can only con-

found the specific classifiers where the perturbations are derived for. On a different avenue, Gener-

ative Adversarial Networks (GAN) [53, 88] and its variants have shown remarkable performance

in many computer vision tasks such as image-to-image translation, and face image synthesis [33,

155, 76, 69, 11]. However, GAN models are not considered a viable solution for imparting soft-

biometric privacy since GANs are trained to generate realistic face images from random samples of

an arbitrary distribution rather than altering specific input images. Hence, a face image generated

by a GAN is not specifically related to a given input image but rather the distribution of all training

set images. Therefore, as the previously proposed SAN model has shown to successfully overcome

the limitations of existing techniques in confounding unseen attribute classifiers, while maintain-

ing the recognition capability, in this work we design PrivacyNet, a multi-attribute privacy model

empowered with GAN for confounding age, race and gender in a controllable fashion, where the

users or the system can decide what attributes to flip and what to conceal.

In summary, the contributions of this work is the following

• the design of the multi-attribute PrivacyNet model to provide controllable soft-biometric

privacy including gender, age, and race;
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Figure 6.2: Schematic representation of the architecture of PrivacyNet for deriving perturbations to
obfuscate three attribute classifiers – gender, age and race – while allowing biometric face matchers
to perform well. (A) Different components of the PrivacyNet: generator, source discriminator,
attribute classifier, and auxiliary face matcher. (B) Cycle-consistency constraint applied to the
generator by transforming an input face image to a target label and reconstructing the original
version.

• a solution for making GAN models useful in biometric applications by ensuring that gener-

ated face images still match with their original counterpart;

• performance assessments using unseen attribute classifiers which provide empirical evidence

for the efficacy of the proposed model in imparting soft-biometric attribute privacy to face

images.

6.2 Proposed method

6.2.1 Problem Formulation

Given a face image X , let Sobf be a set of face attributes to be obfuscated and Skeep be a set of

attributes to be preserved. The overall objective is to find function � that applies some perturbations

to the input image X such that X 0 = �(X) has the following properties:
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Figure 6.3: Schematic representation of the architecture of PrivacyNet for deriving perturbations to
obfuscate three attribute classifiers – gender, age and race – while allowing biometric face matchers
to perform well. (A) Different components of the PrivacyNet: generator, source discriminator,
attribute classifier, and auxiliary face matcher. (B) Cycle-consistency constraint applied to the
generator by transforming an input face image to a target label and reconstructing the original
version.

• For a soft biometric attribute a 2 Sobf, the performance of an unseen attribute classifier fa

is substantially reduced.

• For the remaining set of attributes b 2 Skeep, the performance of an arbitrary classifier fb

is not noticeably adversely affected; that is, the performance of an attribute classifier fb on

perturbed image X 0 is close to its performance on the original face image X .

• The primary biometric utility, which is face recognition, must be retained for the modified

face image, X 0. In other words, given pairs of image examples before (hX1, X2i) and after

(hX 01, X
0
2i) perturbations, the matching performance as assessed by an arbitrary face matcher

(fM ) is not substantially affected, i.e.,

fM (X1, X2) ⇡ fM (X 01, X
0
2) ⇡ fM (X1, X

0
2) ⇡ fM (X 01, X2).
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Figure 6.4: The detailed neural network architecture of the four sub-networks of PrivacyNet: the
generator G, the discriminators Dsrc and Dattr, and the pre-trained auxiliary face matcher M.
Note that Dsrc and Dattr share the same convolutional layers and only differ in their respective
output layers.
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6.2.2 PrivacyNet

According to the objectives described in Section 6.2.1, the PrivacyNet neural network architecture

(Fig. 6.3A) is composed of four sub-networks: A generator (G) that modifies the input image, a

source discriminator (Dsrc) which determines if an image is real or modified, an attribute classifier

(Dattr) for predicting facial attributes, and an auxiliary face matcher (M ) for biometric face recog-

nition. Along with the input image, both generator and discriminator receive the attribute labels as

conditional variables, that are spanned to the same width and height as the input image, (224⇥224).

Together, these subnetworks form a cycle-consistent GAN [155] as illustrated in Fig. 6.3B. Given

an RGB input face image X , the attribute label vector V0 2 Zc corresponds to the ground truth

attribute labels of the original face image. The target label vector Vt 2 Zc (c is the total number of

attributes) denotes the desired facial attributes for modifying the face image. Given a target vector

Vt 6= V0, the objective of the generator G is to synthesize a new image X 0 = G(X,Vt) such that

X 0 is mapped to the target label vector Vt by an attribute classifier Dattr. The other component of

the GAN model is a source discriminator Dsrc, which is trained to distinguish real images from

those synthesized by the generator.

The total loss terms for training the discriminator (LD,tot) and the generator (LG,tot) are as

follows:

LD,tot = LD,src + �D,attrLD,attr, (6.1)

and

LG,tot = LG,src + �G,attrLG,attr+

�mLG,m + �recLG,rec,

(6.2)
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where, � coefficients are hyperparameters representing the relative weights for the corresponding

loss terms. The individual terms of the total loss for the discriminator (LD,tot) and the generator

(LG,tot) are described in the following paragraphs.

For the discriminator, the loss term associated with source discrimination (i.e., discriminating

between real and synthesized images) is defined as

LD,src = EX,V0

h
� log

�
Dsrc(X,V0)

�i
+

EX,Vt

h
� log

�
1�Dsrc (G(X,Vt),Vt)

�i
,

(6.3)

where, EX,V

⇥
f(X,V)

⇤
represents the expected value of the random variable f(X,V) taken over

distribution of X given the conditional variable V . Similarly, the loss associated with the source

discrimination for the generator subnetwork is defined as

LG,src = EX,Vt

h
log(1�Dsrc

�
G(X,Vt),Vt)

�i
, (6.4)

where, Dsrc(X) returns the estimate of the probability that the input image X is real or was

synthesized by the generator.

Next, the loss terms for attribute classification are defined as

LD,attr = EX,V0

h
� log

�
Dattr(V0|X)

�i
(6.5)

and

LG,attr = EX,Vt

h
� log

�
Dattr(Vt|G(X,Vt))

�i
, (6.6)

where, Dattr(V|X) is the probability that input image X belongs to attribute class V .
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The loss term for optimizing the performance of the biometric face matcher M on the perturbed

images is defined as the squared L2 distance between the normalized features of the original face

image X and those of the synthesized image G(X,Vt):

LG,m = EX,Vt

h
kRM(X)�RM(G(X,Vt))k

2
2

i
, (6.7)

where, RM(X) is the normalized face descriptor of face image X after applying a face matcher

M.

Lastly, a reconstruction loss term is used to form a cycle-consistent GAN that is able to recon-

struct the original face image X from its modified face image X 0 = G(X,Vt):

LG,rec = EX,V0,Vt

h
kX �G(G(X,Vt),V0)k1

i
. (6.8)

Note that the distance term in Eq. 6.8 is computed as the pixel-wise L1 norm between the orig-

inal and modified images, which empirically results in less blurry images compared to employing

a L2 norm as the distance measure [69].

6.2.3 Neural Network Architecture of PrivacyNet

The composition of the different neural networks used in PrivacyNet, generator G, real vs. syn-

thetic classifier Dsrc, attribute classifier Dattr, and face matcher RM is described in Fig. 6.4. The

generator and the discriminator architectures were adapted from [33] and [155], respectively.

Generator. The generator G receives as input an RGB face image X of size 224⇥224⇥3 along

with the target labels Vt concatenated as extra channels. The first two convolutional layers, with

stride 2, reduce the size of the input image to a to 32 ⇥ 32 with 128 channels. The convolutional
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layers are followed by instance normalization layers (InstanceNorm) [145]. The layer activations

are computed by applying the non-linear ReLU activation function to the InstanceNorm outputs.

Then, 6 residual blocks [64] are applied, followed by two transposed convolution for upsampling

the image size to 224⇥224. Finally, the output image X 0 is constructed by a 1⇥1 convolution layer

and the hyperbolic tangent (Tanh) activation function, which returns pixels in the range (�1, 1)

(the input image pixels are also scaled to be in range [�1, 1]).

Discriminator and Attribute Classifier. The discriminator, as shown in Fig. 6.4, combines the

source discriminator Dsrc and the attribute classifier Dattr into one network where all the layers

except the last convolution layer are shared among the two tasks. All the shared convolution layers

are followed by a Leaky ReLU non-linear activation with a small negative slope of ↵ = 0.01. In

the last layer, separate convolutional layers are used for the two tasks, where Dsrc returns a scalar

score for computing the loss according to Wasserstein GAN [12], and Dattr returns a vector of

probabilities for each attribute class.

Face Matcher. Lastly, the auxiliary face matcher is adapted from the publicly available pre-

trained VGG-Face CNN model that receives input face images of size 224⇥224⇥3 and computes

their face descriptors of size 2622 [109].

6.2.4 Datasets

We have used five datasets in this study: CelebA [86], MORPH [122], MUCT [94], RaFD [83], and

UTK-face [154]. Table 6.1 shows the number of examples in each dataset, including the number

of examples for each face attribute. Since the race label distribution in CelebA is heavily skewed

towards Caucasians, and MORPH is heavily skewed towards persons with African ancestry, we

combined CelebA and MORPH for training. Both the CelebA and MORPH datasets are split into

training and evaluation sets in a subject-disjoint manner. The two training subsets from CelebA
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Table 6.1: Overview of datasets used in this study, with the number of face images corresponding
to each attribute. Samples which belong to a race other than the two categories shown below, as
well as those whose age-group could not be determined, are omitted.

Dataset Gender Race Age groups
Male Female African-descent Caucasian Young Midle-aged Old

CelebA 84,434 118,165 11,119 142,225 79,848 91,373 16,337
MORPH 47,057 8,551 42,897 10,736 25,009 26,614 3,985
MUCT 1,844 1,910 1,030 1,480 1,326 1,807 620
RaFD 1,008 600 0 1,608 1,276 332 0
UTK-face 12,582 11,522 4,558 10,222 12,980 6,068 5,056

and MORPH are merged to train the PrivacyNet model with a relatively balanced race distribution.

The other three datasets, MUCT, RaFD, and UTK-face are used only for evaluation. While all five

datasets provide provide binary attribute gender labels 2, each dataset lacks the ground-truth labels

for at least one of the other attributes, age or race.

Gender Attribute: All the five datasets considered in this study provide ground-truth labels for

the gender attribute. Furthermore, since gender is a well-studied topic, there are several face-based

gender predictors available for evaluation. In this study, we have considered three gender classifiers

for evaluation: a commercial-off-the-shelf software G-COTS, IntraFace [142], and AFFACT [60].

Race Labels: We consider binary labels for race: Caucasians and African descent. Samples

that do not belong to these two race groups are omitted from our study since the other race groups

are under-represented in our training datasets. We have used the ground-truth labels provided

in the MORPH and UTK-face datasets, but for the other three datasets, we labeled the samples

in multiple stages. First, an initial estimate of the race attribute is computed using commercial

software R-COTS. Next, the predictions made by R-COTS from all samples of the same subject

are aggregated, and subjects that show discrepant predictions for different samples are visualized

2In this paper we treat gender as a binary attribute with two labels, male and female; however, it must be noted that
societal and personal interpretation of gender can result in many more classes.
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and the discrepant labels are manually corrected. Finally, one random sample from every subject

is visually inspected to verify the predicted label. Furthermore, note that since RaFD did not have

any sample from the African-descent race group, we did not use this dataset for race prediction

analysis.

Age Information: The ground-truth age information is only provided in the MORPH and

UTK-face datasets. Therefore, for the remaining datasets (CelebA, MUCT, and RaFD) we used

the commercial-off-the-shelf A-COTS software to obtain the class labels of the original images.

For the evaluation of our proposed model, we use the Mean Absolute Error (MAE) metric to

measure the change in predicted age on the output images of PrivacyNet from the predicted age on

the original face images. Therefore, the combination of all five datasets shows both changes in age

prediction with respect to the original (for CelebA, MUCT, and RaFD) as well as the ground-truth

age values (for MORPH and UTK-face datasets). For training the PrivacyNet model, we create

three age groups based on the age values:

yage =

8
>>>>><

>>>>>:

0 age  30;

1 30 < age  45;

2 45 < age.

(6.9)

Due to the non-stationary nature of patterns in face aging [30, 106], creating age groups does

not fully capture the non-linearity in the textural changes. However, this scheme is consistent with

the treatment of the other two attributes, gender and age. Further, it should be emphasized that

our objective is not to synthesize face images in particular age groups (which is known as age

synthesis); instead, the goal of the proposed method is to disturb the performance of arbitrary age

predictors.

Identity Information: For matching analysis, we exclude the UTK-face dataset since the sub-
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Table 6.2: Summary of the datasets used in this study, with the number of subjects and samples in
the train-test partitions. The “Excluded Experiments” column indicate datasets that were removed
from an experiment for the reasons given in the text.

Datasets Train Test Excluded
# Subj # Samples # Subj # Samples Experiments

CelebA 8,604 150,530 167 2,795 –
MORPH 11,176 45,512 1,968 8,038 –
MUCT – – 185 2,508 –
RaFD – – 67 1,608 Race

UTK-face – – NA 14,182 Matching

ject information is not provided. We used three face matchers, a commercial-off-the-shelf software

M-COTS, and two publicly available face matchers DR-GAN [143] and SE-ResNet-50 [67] (SE-

Net for short) which were trained on the VGGFace2 dataset [23].

A summary of the datasets and the number of subjects and samples in each dataset is provided

in Table 6.2.

6.3 Experimental Results

The proposed PrivacyNet model is trained on the joint training subsets of CelebA and MORPH as

explained in Section 6.2.4. Due to the memory-intensive training process, we used a batch-size of

16. The models were trained for 200, 000 iterations. The optimal hyperparameter settings for the

weighting coefficients of the attribute loss terms were �attr,d = 1 and �attr,d = 4. The matching

term coefficient was set to �m = 4, and the hyperparameter for the reconstruction term was set

to �rec = 4. After training the PrivacyNet model, both the discriminator and the auxiliary face

matcher subnetworks are discarded and only the generator is used for transforming the unseen face

images in the evaluation datasets.

Additionally, we also trained a cycle-GAN model [33], without the auxiliary face matcher, as a

baseline to study the effects of the face matcher. The cycle-GAN model is trained using the same
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protocol that was described for training PrivacyNet. In the remainder of this paper, we will refer

to this method as “baseline-GAN”. The transformations of five different example images from the

CelebA-test dataset are shown in Fig. 6.5.

The following subsections summarize the results of the experiments and analyze how the per-

formance of the attribute classifiers and face matchers is affected by the face attribute perturbations

via PrivacyNet.

6.3.1 Perturbing Facial Attributes

The performance assessment of the proposed PrivacyNet model involves three objectives:

1. when an attribute is selected to be perturbed, the performance of unseen attribute classifiers

must decrease;

2. the attribute classifiers should retain their performance on attributes that are not selected for

perturbation;

3. in all cases, the performance of unseen face matchers must not be drastically affected.

We conducted several experiments to assess whether the proposed PrivacyNet model meets

these objectives.

Gender Classification Performance: We considered three gender classifiers: a commercial-

off-the-shelf software (G-COTS), AFFACT [60] and IntraFace [142]. For this comparison study,

all five evaluation datasets listed in Table 6.2 were considered. The performances of the different

gender classifiers on the original and perturbed images are measured using the Equal Error Rate

(EER); the results are shown in Fig. 6.6. For a given image, PrivacyNet can produce up to 15

distinct outputs, depending on the combination of attributes that are selected for perturbation.
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Figure 6.5: Five example face images from the CelebA dataset along with their transformed ver-
sions using PrivacyNet and baseline-GAN models. The rows are marked by their selected at-
tributes: G: gender, R: race, and A: age, where the specific target age group is specified as A0
(young), A1 (middle-aged), or A2 (old).

124



3
0

3131 31

35 3534 353534 3534 35

3534 35 3534 35
3534 35

3534 353534 35
3534 35

3534 35
3534 35

3534 35 3534 353534 35
3534 35

Figure 6.6: Performance of three gender classifiers – G-COTS, AFFACT, and IntraFace – on origi-
nal images as well as different outputs of the proposed model (the larger the difference the better).
The results of a face mixing approach, as described in [107], are also shown. Different outputs are
marked by their selected attributes: G: gender, R: race, and A: age, where the specific target age
group is abbreviated as A0 (young), A1 (middle-aged), and A2 (old). The outputs of PrivacyNet,
where the gender attribute is selected for perturbation, are shown in orange, and the rest are shown
in blue.
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The EER results shown in Fig. 6.6 indicate that PrivacyNet increases the error rate of the

cases where the gender attribute is willfully perturbed, which is desired. At the same time, it can

preserve the performance of gender classifiers when gender information is to be retained. The EER

of gender classification using G-COTS software on gender-perturbed outputs increases to 20-40%,

and the EER of gender classification using AFFACT and IntraFace on these outputs surpasses

60%. Comparisons between the gender prediction results on the outputs of PrivacyNet and the

outputs of the face-mixing approach by Othman and Ross [107], as well as the model by Sim

and Zhang [131], show that in case of G-COTS, the PrivacyNet results are superior in terms of

increasing the EER (Fig. 6.6).

Note that we did not include the results of the GAN model in Fig. 6.6 for readability sake.

However, we observed that the GAN model shows larger deviations (which is advantageous) in

cases where gender was intended to be perturbed. This is expected since the GAN model does

not have the constraints from the auxiliary face matcher. Therefore, there is more flexibility for

modifying the patterns of the face. However, a disadvantage of the GAN model is that it also

significantly degrades the matching utility as shown in Section 6.3.2.

Next, we consider the distributions of gender prediction scores using G-COTS and AFFACT

on original images as well as the outputs of PriavcyNet, as shown in Figure 6.7 and 6.8. In order

to measure the change in the distributions of male and female scores, we used KL-divergence. The

kl-divergence is computed for each individual label (i.e., distributions of males before and after).

Then, the weighted average of the results of KL-divergence of males and females are combined

together to get the total KL-divergence. The results indicates that for G-COTS scores, the KL-

divergence changes in modest amount, from 0.49 to 1.05 (see Figure 6.7. On the other hand, the

KL-divergence obtained from the results of AFFACT shows larger amounts, ranging from 2.9 to

3.8.
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Figure 6.7: Change in distribution of gender prediction scores as assessed by G-COTS on the
original images as well as the outputs of PrivacyNet.

Figure 6.8: Change in distribution of gender prediction scores as assessed by AFFACT on the
original images as well as the outputs of PrivacyNet.
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Figure 6.9: Performance of the race classifier, R-COTS, on original images as well as different
outputs of the proposed model. Different outputs are marked by their selected attributes: G: gen-
der, R: race, and A: age, where the specific target age group is denoted as A0, A1, and A2 (the
larger the difference the better). The outputs of PrivacyNet, where the race attribute is selected for
perturbation, are shown in orange, and the rest are shown in blue.

Race Prediction Performance: We conducted the race prediction analysis using a commercial-

off-the-shelf software, R-COTS. Similar to the gender classification experiments, we show the EER

of race classification on original images as well as the different outputs of the PrivacyNet model

in Fig. 6.9. Since the face mixing approach proposed in [107] was only formulated for gender and

not race perturbations, we did not include it in this section.

The EER results in Fig. 6.9 show that PrivacyNet successfully meets the objectives of our study

for confounding race predictors. The outputs where race is not intended to be perturbed (shown in

blue) exhibit low EER values similar to the EER obtained from the original images (EER ⇠ 1%).

On the other hand, when race is selected to be perturbed, the EER values increase significantly

(EER ⇠ 20% for CelebA and UTK-face, and EER ⇠ 10% for MORPH and MUCT datasets).

The results of separately perturbing gender and race using the controllable face privacy method

proposed in [131] are also shown for comparison. When the race attribute is perturbed according

to [131], the performance is slightly higher than our model. However, the disadvantage of the

128



Figure 6.10: Change in distribution of gender prediction scores as assessed by G-COTS on the
original images as well as the outputs of PrivacyNet.

controllable face privacy method [131] is that when it perturbs the gender attribute, it also affects

the race predictions.

In addition, Figure 6.10 shows the distributions of race prediction on white and black samples

from the original images as well as the samples after undergone PrivacyNet perturbations. The

KL-divergence values for the four datasets changes 0.024 for the CelebA dataset, to 1.259 for

RaFD.

Age Prediction Performance: To assess the ability of PrivacyNet for confounding age infor-

mation, we used a commercial-off-the-shelf age predictor (A-COTS), which has shown remarkable

performance across the different datasets tested in this study (Fig. 6.11). We used the Mean Abso-

lute Error (MAE) values in unit of years to measure the change in age prediction before and after

perturbing the images (Fig. 6.11). As mentioned previously (Section 6.2.4), the ground-truth age

values for three datasets – CelebA, MUCT, and RaFD – are not provided. Therefore, for these three

datasets, the MAE values are computed as the difference between the age predictions on the output
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Figure 6.11: Change in age prediction of A-COTS on different outputs of the proposed model.
This is with respect to the age predicted on original images for CelebA, MUCT and RaFD, and the
ground-truth age values for MORPH and UTK-face. Different outputs are marked by their selected
attributes: G: gender, R: race, and A: age, where the specific target age group is denoted as A0, A1
and A2. The outputs of PrivacyNet, where the age attribute is selected for perturbation, are shown
in orange, and the rest are shown in blue.

images and the predictions on the original images, while for the other two datasets, MORPH and

UTK-face, the ground-truth values are used for computing the MAE values.

The results of age-prediction show that the MAE obtained from the outputs, where age is not

meant to be perturbed, remains at approximately 5 years. However, when we intend to modify

the age of face images, using the label A2 results in the highest MAE (around 20 years for RaFD

and 15 years for the other four datasets) compared to A0 and A1. A possible explanation for

this observation is that, due the nature of the aging process, larger textural changes occur in face

images belonging to A2. The MAE of the A0 group is also relatively large (except for RaFD),

which may be caused by the reversal of the textural changes. However, the results of the middle-

age group (A1) is similar to the cases where we did not intend to modify the age. We hypothesize

that the small changes in A1 are also due to the non-stationary aspect of aging patterns; the age

perturbations via the PrivacyNet model can potentially be improved by using an ordinal regression
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approach for age prediction.

6.3.2 Retaining the Matching Utility of Face Images

Besides obfuscating soft-biometric attributes in face images, another objective of this work is to

retain the recognition utility of all outputs of PrivacyNet. For this purpose, we conducted matching

experiments using three unseen face matchers: commercial-off-the-shelf software (M-COTS) and

two publicly available matchers, SE-ResNet-50 trained on the VGGFace2 dataset [23] (SE-Net for

short), and DR-GAN [143]. Fig. 6.12 shows the ROC curves obtained from these matching exper-

iments for four datasets – CelebA, MORPH, MUCT, and RaFD. The UTK-face dataset is removed

from this analysis since it does not contain subject information. Since PrivacyNet generated 15

outputs for each input face image, the minimum and maximum True Match Rate (TMR) values

at each False Match Rate (FMR) value are computed and only the range of values for these 15

outputs are shown. Note that it is expected for the matching utility to be retained in all these 15

outputs. Similarly, the range of TMR values at each FMR obtained from the 15 different outputs

of the GAN model that did not have the auxiliary face matcher for training, is also shown for

comparison. The ROC curves of PrivacyNet are very close to the ones obtained from the original

images for each dataset, compared to the baseline results, which both show significantly larger de-

viations. It is worth noting that the baseline-GAN is equivalent to removing the matching loss term

LG,m from PrivacyNet. As shown in Figures 6.5,6.12 and 6.13-(“Baseline-GAN”), the PrivacyNet

model produces more realistic-looking faces images without the matching loss term. However, re-

moving the matching loss term results in a severe decline in matching performance, affecting both

the true matching rate and identification accuracy (Figs. 6.12 and 6.13). The coefficient � can be

further tuned to control the trade-off between the performance of face-matching and obfuscating

the soft-biometric attributes.
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In addition to the ROC curves, we have also plotted the Cumulative Match Characteristics

(CMC) [38], as shown in Fig. 6.13. According to the CMC curves, the results of PrivacyNet match

very closely with the CMC curves obtained from the original images in all cases, which shows that

PrivacyNet retains matching utility.

It is worth noting that Ref. [131] has more favorable CMC curves than the other methods

evaluated in this study. A plausible explanation is that Ref. [131] aligns and normalizes its inputs

to a reference face image, which significantly reduces the intra-class variations. This reduction of

intra-class variations increases the number of true positives. However, it also increases the number

of false positives, thereby deteriorating the ROC performance. One may argue that the difference

in performance could be due to the different training datasets that were used to train our model and

that of Ref. [131], and, perhaps, re-training Ref. [131] would be necessary for a fair comparison.

However, we note that we used the original model for Ref. [131], which was constructed from a

carefully curated dataset, and the original authors of [131] recommended against retraining.

6.4 Ablation study on cycle-consistency term

While the presented model in this chapter has shown to be effective in imparting multi-attribute

demographic privacy to face images, in this section, we look at the effect of the cycle-consistency

loss term in more detail. To do this, we perform a preliminary analysis, in which a new experiment

is designed where PrivacyNet model is trained without the cycle-consistency term. This model is

denoted as Baseline2, and its performance compared with the results of PrivacyNet and those of

Baseline1 (a GAN model without face-matching loss term). Example inputs and outputs of these

models are shown in Figure 6.14.

Qualitatively, the results suggest that the cycle-consistency could have been removed without
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Figure 6.12: ROC curves showing the performance of unseen face matchers on the original images
for PrivacyNet, the baseline-GAN model, face mixing [107] approach and the controllable face
privacy [131] method. The results show that ROC curves of PrivacyNet have the smallest devia-
tion from the ROC curve of original images suggesting that the performance of face matching is
minimally impacted, which is desired.
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Figure 6.13: CMC curves showing the identification accuracy of unseen face matchers on the orig-
inal images. Also shown is the range of CMC curves for the PrivacyNet model and the baseline-
GAN model, along with that of the face mixing [107] and controllable face privacy [131] ap-
proaches. It must be noted that in cases where the results of PrivacyNet or GAN are not visible,
the curves overlapped with the CMC curve of the original images: this means that there was no
change in matching performance at all (which is the optimal case). The results confirm that trans-
formations made by PrivacyNet preserve the matching utility of face images.

134



Figure 6.14: Some input and output example images, based on the PrivacyNet, as well as two
ablation models (PrivacyNet without cycle-consistency loss, PrivacyNet without the matching loss
term).

affecting the main two objectives of this work (i.e., biometric utility is not adversely affected,

while improving the obfuscation of the demographic attributes. This is mainly due to the fact

that cycle-consistency was included in CycleGAN [155] for improving the visual quality of the

generated outputs. However, in this study, the visual quality is of lesser importance, compared to

the two other objectives. As a result, removing the cycle-consistency could potentially relax the

constraints imposed on the model and thereby, resulting in improving its performance.

Based on the objectives of this work, we look at two measures. First, we consider the ROC

curves of gender classification, before and after applying the perturbations using all three models

(PrivacyNet, Baseline1, and Baseline2), as shown in Figure 6.15. The results shown in this figure

indicates that the performance of Baseline2 is close to that of PrivacyNet. Comparing the area

under the ROC curves show that AUC of Baseline2 is 94%, which is slightly higher than that of
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Figure 6.15: Comparison of gender classification on the original images as well as the outputs of
PrivacyNet and two ablation experiments: Baseline1 is the model without the matching term, and
Baseline2 is the model without the cycle-consistency loss.

PrivacyNet (87%).

Next, we also compare the performance of face-matching as shown in the Figure 6.16. In

this case, Baseline2 shows 5% higher TMR at FPR = 0.1%: 79% for Baseline2 vs. 74% for

PrivacyNet.

As a result, we conclude that removing the cycle-consistency loss term improves the obfusca-

tion of gender attribute, while it deteriorates the matching performance.

136



Figure 6.16: Comparison of matching accuracy on the original images, as well as the outputs
of the PrivacyNet model along with two ablation experiments: Baseline1 is the model without the
matching term, and Baseline2 is the model without the cycle-consistency loss (Top in normal scale,
bottom in log-scale).
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6.5 Debiasing face recognition

Face recognition models are known to suffer from algorithmic bias [9]. This algorithmic bias

has typically results in certain demographics having poorer face recognition accuracy than oth-

ers. In this regard, one application of removing facial attributes from face images is to debias

face-recognition systems. Sixue et al. [51] proposed DebFace, a model that removes demographic

attribute information from face representation vectors, in order to debias the face recognition sys-

tems. Given that our proposed PrivacyNet also obfuscate demographic attributes from face images,

in this section, we investigate whether the proposed algorithm can potentially be used for debias-

ing face recognition algorithms. To do this, we first computed face representation vectors before

and after applying the perturbations by PrivacyNet. Following Sixue et al. [51], we then group the

samples into different categories based on their demographic attributes. For example, in case of

perturbing gender, two groups are formed: a group of male samples vs. a group of female samples.

Then, we measured the verification accuracy for all subjects in each group separately. The results

of verification accuracy of each demographic group before an dafter applying perturbations made

by PrivacyNet is shown in Figure 6.17.

As we can see from the results shown in Figure 6.17, the peroformances of different demo-

graphic groups before and after applying perturbations are very similar to each other, and we do

not observe a noticeable change towards debiasing face recognition algorithms. We argue that this

observation is due to the following reasons:

1. PrivacyNet does not completely remove the demogrpahic informaiton from face images, but

rather, applies perturbation towards making the prediction of demographic attributes less

reliable.

2. As PrivacyNet works in the image-level, the perturbed face images still need to be processed
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Figure 6.17: Comparison of verification accuracy for different demographic groups before (origi-
nal) and after applying PrivacyNet perturbations, to investigate algorithmic bias.
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by face matchers in order to calculate their face representation vectors, and this is the step

that introduces the algorithmic bias. While other debiasing algorithms (such as Sixue et

al. [51]) work on the extracted face representation vectors.

6.6 Summary and Future Work

In this work, we designed a special neural network model coined PrivacyNet for imparting multi-

attribute privacy to face images including age, gender and race attributes. PrivacyNet utilizes

the Semi-Adversarial Network (SAN) empowered by Generative Adversarial Networks (GAN)

to synthesize a new face image from an input face image, where certain attributes are perturbed

selectively, while other face attributes are preserved. Most importantly, the matching utility of

face images from this transformation is preserved. Experimental results using three unseen face

matchers as well as three unseen attribute classifiers show the efficacy of our proposed model in

perturbing such attributes, while the matching utility of face images is not adversely impacted.

In the next chapter, we discuss two open problems for imparting soft-biometric privacy using

the SAN models. First, it is important to see if the perturbations can be reliably detected using a

machine-learning system. Secondly, the perturbations made by SAN from the human perspective

needs to be investigated. We then describe our proposed work to study these issues.
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Chapter 7

A deeper study on perturbations

7.1 Motivation

The problem of face recognition entails the comparison of face images for biometric recogni-

tion [91, 70]. A facial recognition system can operate in two modes. In the verification mode, the

input face image is compared against only those images in the gallery belonging to the claimed

identity in order to determine the veracity of the claim. In the identification mode, no identity is

claimed, and so the input face image is compared against all the gallery images in order to deter-

mine its identity. With the unprecedented advancements in deep learning and computer vision [52],

face recognition is now being widely deployed in a number of applications ranging from smart-

phones to border control to security and surveillance [46, 73, 81, 18]. However, recent research

has raised several concerns regarding the fairness of facial recognition systems across different

demographic groups [138, 137, 26, 35, 40]. Furthermore, a face image divulges rich auxiliary

information, , since advancements in machine learning has enabled the extraction of age, gender1,

race2, and health status [36]. However, extracting such sensitive information from a person’s face

image requires permission from the users, and extracting such information without permission

violates users’ privacy [100, 101].

1Throughout this work, we assume binary labels for gender; however, it must be noted that societal and personal
interpretation of gender can result in many more classes.

2While ethnicity is related to cultural identity of individuals in a group, race can inform physical characteristics.
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Figure 7.1: Example perturbations added automatically to input face images by the PrivacyNet [97]
model for confounding gender information with respect to automated gender classifiers. The per-
turbations target gender-related features, with minimal adverse effects on recognition performance.
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In order to enhance privacy, a new line of research has emerged in order to preempt the ex-

traction of such auxiliary information without adversely affecting the recognition utility of face

images [31, 103, 101, 100]. Early work toward this goal was based on adversarial mechanisms for

confounding face attributes by perturbing the face images or their templates [31, 100]. However,

generalizability of such methods is an issue. In other words, perturbations that confounded one

attribute (say, gender) classifier, may not have the desired effect on another classifier. Morales et

al. [103] developed SensitiveNet, which adds perturbations to face representation vectors based

on a current attribute classifier, followed by training a new classifier using the perturbed repre-

sentation vectors. This process is repeated until the performance of a newly trained classifier on

perturbed representation vectors does not reach a threshold. While this technique has shown its

efficacy in removing auxiliary information in face representation vectors, in some applications, it

is necessary rely on using face images and apply such perturbations to the face images directly.

To address this limitation, Mirjalili et al. [101] developed Semi-Adversarial Networks (SANs) for

confounding arbitrary face attribute classifiers, and its extended version called PrivacyNet [97] for

confounding multiple attributes (viz., age, gender, race). Some examples of input face images, their

perturbations and the resulting outputs for confounding gender classifiers are shown in Fig. 7.1.

While previous work [103, 98, 97] have shown their efficacy in imparting demographic privacy

to face images, not much study has been conducted towards interpretability of the perturbation and

understanding how such models work. While the machine learning community has investigated

the process of generating adversarial examples and interpreting their effect on the classifier [8,

54], the effect of adversarial examples in confounding human observers is negligible as adversarial

examples are mostly created as imperceptible perturbations to input images [54, 108].

However, we do not know how SAN-based models add perturbations to input face images [97,

98]. Furthermore, the effect of SAN perturbations on human observers is still not clear. In the
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domain of machine learning, interpretability of a model means understanding why a ML model

has given certain output. Therefore, in this paper, we investigate the perturbations introduced by

SAN, and study the interpretability of SAN results. Furthermore, the effect of the perturbations

introduced by SAN models on human observers is also studied.

The contributions of this work are as follows:

• Studying how the SAN model finds the perturbations for confounding an attribute classifier

• Designing experiments for studying the effect of SAN perturbations on human observers

The outline of the paper is as follows. We first provide an overview of SAN model as proposed

by Mirjalili et al. [101] in Section 7.2. Next, in Section 7.3, we study the interpretability of the

perturbations added by SAN to input images using two methods, namely, Grad-CAM [128] and

CNN-fixations [102]. Finally, in Section 7.3.1, we describe our designed experiments for studying

the effects of perturbations applied to face images on human observers.

7.2 An Overview of Semi-Adversarial Networks

Semi-Adversarial Networks (SAN) was first proposed by Mirjalili et al. [101] for imparting de-

mographic privacy to face images. The general idea of SAN (see Fig. 7.2) relies on adding per-

turbations to an input face image in order to confound the utility of one classifier (e.g., a gender

classifier), while retaining the utility of another classifier (e.g., a face matcher). To do this, they

leveraged auxiliary classifiers where the SAN model learns to synthesize perturbed outputs that can

confound one classifier, while minimizing the effect of such perturbations on the other classifier. In

the context of demographic privacy, the utility of face recognition is retained, while confounding

the extraction of demographic attributes. The schematic representation of a typical SAN model is
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Figure 7.2: The general idea of semi-adversarial networks originally proposed by Mirjalili et
al. [101] for imparting demographic privacy to face images. The SAN model adds perturbations
to an input face image such that demographic attribute(s) cannot be reliably extracted from the
output, while the output can still be used for face recognition.

shown in Fig. 7.2.

Mirjalili et al. [97] later extended the SAN model to multi-attribute face privacy, where a

combination of demographic attributes (e.g., age and gender) could be selectively confounded. To

do this, they used conditional Generative Adversarial Networks (GANs) [155, 33], composed of

a generator, a discriminator and one or more auxiliary attribute classifiers. The generator tries

to synthesize realistic-looking outputs while at the same, the outputs can selectively confound or

retain the utility of auxiliary attribute classifiers based n the given conditional variable [97].

In contrast to the original SAN model [101], PrivacyNet [97] does not rely on a pre-trained

auxiliary attribute classifier. Instead, an auxiliary attribute classifier is trained simultaneously with

the generator. Furthermore, the auxiliary attribute classifiers and the discriminator sub-networks

are shared, which helps the model learns the distribution of face attributes based on the training

data. This results in improving the generalizability of PrivacyNet with respect to unseen attribute
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Figure 7.3: Heatmaps of average perturbations for Female and Male samples obtained using a pri-
vacy preserving method (PrivacyNet [97]). The results indicate that in most datasets, PrivacyNet
focuses on hair and eyes for input female face images, while for input male face images. Fur-
thermore, the area related to facial hair (beard and moustache) have opposite effects for male and
female face images.

classifiers.

Figure 7.3 shows the average heatmaps of the intensity of perturbations introduced by Priva-

cyNet to input face images for confounding gender information on CelebA [86], MORPH [122],

MUCT [94], RaFD [83], and UTK-face [154]. It can be observed that in most datasets, the pixels

corresponding to facial hair (moustache and beard) are smoothed-out for male samples, while the

opposite effect has occurred for female samples.

7.3 Understanding SAN perturbations

While Mirjalili et al. [97] have shown the efficacy of their proposed SAN model in imparting

demographic privacy to face images, in this section, we delve deeper to interpret the perturbations

produced by SAN, which is important for deploying a machine learning model in a real-world

application. To accomplish this, we have used two models that allow for identifying which pixels
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in the input image are important for the prediction made by a deep neural network classifier.

The first model for interpreting DNN results is called CNN Fixations [102], which starting from

the network output, selects the activations of the previous layer that lead to positive activations at

the current layer. The second model for interpreting the results is another visualization technique

for DNN classifiers called Grad-CAM [128]. Note that while the CNN fixations rely on positive

activations at each layer of a DNN, Grad-CAM is a gradient-based technique which focuses on

features with the highest gradient values.

The CelebA dataset [86], which contains 202,599 face images of celebrities, was split into

90% train and 10% test partition in a subject-disjoint manner, according to [97]. The PrivacyNet

model was trained on CelebA-train dataset. Furthermore, a CNN-based gender classifier with 4

convolutional layers followed by 2 fully-connected layers was further trained independent of the

SAN training, and then evaluated on the examples in CelebA-test dataset.

In the following sub-sections, we will see the results of both CNN-fixations and Grad-CAM

models.

7.3.1 Studying the interpretability of SAN perturbations using CNN-fixations

We have applied CNN-fixations to the results of the gender classifier using two versions of the

examples in CelebA-test dataset as input to the classifier. First we applied CNN-fixations to the

original test examples before applying PrivacyNet. Second, we obtained the outputs of PrivacyNet

using CelebA-test examples, and then applied CNN-fixations on outputs of PrivacyNet. The results

of CNN-fixations before and after adding PrivacyNet perturbations are compared in Fig. 7.4.

Based on the results of CNN-fixations on samples from CelebA-test dataset, we can observe

that fixations on the original images correspond to the most important features for gender classifi-

cation. After applying SAN perturbations to these examples, the position of the fixations change
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Figure 7.4: Detecting important features for gender classification using CNN-fixations [102] before
(original images) and after SAN perturbations (PrivacyNet [97] outputs).
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significantly. This suggest that SAN perturbations mostly target the features related to the texture

of such regions, and as a result, after applying such perturbations, the important features for gen-

der classification will change in order to make the image become a member of the opposite class.

Furthermore, we can also see that in a majority of cases, SAN introduces perturbations in the same

location as identified by the CNN fixations. This is an important observation given that the SAN

models were trained using auxiliary gender classifiers, while these fixations are obtained from an

unseen gender classifier.

Results for other datasets including MUCT [95], MORPH [122], RaFD [83] and UTK-face [154]

dataset is provided in the supplementary materials.

7.3.2 Studying the interpretability of SAN perturbations using Grad-CAM

Next, we look at the detected features obtained by Grad-CAM [128]. Similar to the previous sub-

section, Grad-CAM was applied to the results of the attribute classifier using both original as well

as outputs of the SAN model. Figure 7.5 shows the results on samples from CelebA test dataset,

before (original images) and after SAN perturbations (PrivacyNet outputs).

While the change in detected features using Grad-CAM from original images to PrivacyNet

outputs is consistent with the results of CNN-fixations, we note an important observation. After

introducing perturbations, the regions highlighted with blue in Grad-CAM visualization corre-

spond to areas that have not been modified by CNN perturbations. As a result, these blue regions

still correspond to the important features for the class label of the original image, and as a result,

Grad-CAM gives lower weights to such regions, indicating that these regions are not important for

gender classification. In contrast, the regions that have been perturbed to a greater extent are the

ones that are also highlighted in red via Grad-CAM visualization (see Figure 7.4 vs. Figure 7.5).
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Figure 7.5: Visualizing detected features for gender classification using Grad-CAM [128] before
(original images) and after SAN perturbations (PrivacyNet outputs).
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7.3.3 Summary of interpretability studies on SAN perturbations

Based on the results described in the previous subsections (as well as the results shown for other

datasets in the supplementary figures), in summary we can make the following conclusion:

• For female faces, SAN focuses mostly on perturbations in the locations containing facial hair

such as moustache, beard, as well as removing the lipstick and face blush (if applicable).

• For male faces, SAN focuses on removing beard or moustache or the wrinkles on the fore-

head. In addition, in some cases the perturbations are towards adding lipstick, blush, or even

slightly changing the shape of nose and eyes.

In the next section, we further study the effect of such perturbations on human perception.

7.4 Studying the effect of perturbations from the human per-

spective

In the following two sub-sections, we present the results of two different experiments. First, we

perform a preliminary experiment by presenting the original face images and their cropped versions

to (voluntary) human evaluators. In the second experiment, we extend the previous experiment and

utilize Amazon MTurk to study human perception of SAN perturbations at a broader scale.

7.4.1 Preliminary experiment with volunteer assessors

For a preliminary experiment on the performance of human observers on gender detection, we

presented a few perturbed face images to some volunteer participants. Our preliminary analysis

shows that peripheral information that are present in the background of an image has a substantial
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impact on the performance of humans in detecting the correct gender attribute from the perturbed

face images. Such peripheral information includes wearing jewelries, make-up, type of clothing,

as well as hairstyle and the existence of facial hair. Given that such information are distinctive for

gender classification, and that human brains have naturally learned to use these discriminatory in-

formation for gender classification, then the existence of such information in the perturbed samples

help humans correctly classify gender of the perturbed face images.

While humans can use the peripheral information present in a face portrait image, our proposed

SAN model does not perturb these information such as clothing or hairstyle. One reason for this is

that our model relies on auxiliary gender classifiers, which are trained on a small dataset, compared

to the amount of data that humans have observed in their lifetime. Furthermore, humans have the

ability to utilize information from other domains. For example, they can easily assign a certain type

of clothing that may not have seen before to a particular gender, while gender classifiers trained on

only face images would have difficulties doing that. Recall that the SAN model relies on auxiliary

attribute classifiers, and these attribute classifiers are trained on a finite dataset. As a result of this,

the auxiliary gender classifier used for training the SAN model only focuses on features present

in the face area, as opposed to peripheral information. Therefore, our SAN model cannot modify

the clothing of an individual in order to confound the gender information present in the image.

Instead, we have observed that our model is able to modify some other gender-related features that

appear on the face area, for example, facial hair, facial make-up, etc.

We note that face recognition matchers generally do not utilize such peripheral information.

Information about the clothes, or hair style may not be reliably used for face matching, as this

information have high intra-class variability, and therefore, are not useful for face matchers. Most

face matchers receive cropped face images as input, and modern face matchers do that internally

and only focus on the face area, discarding the peripheral components. Therefore, given that face
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Original Images
(no perturbation)

Perturbed Images
(gender)

Cropped CroppedNon-croppedNon-cropped

Figure 7.6: Cropped face images vs. full-face portrait images. Humans can easily detect gen-
der from full-face portraits based on the peripheral information such as hair and clothing, paying
minimal attention to the details of the facial texture. Therefore, predicting gender from the non-
cropped original, cropped original, and non-cropped face images is trivial for humans while de-
tecting gender from cropped face images after applying perturbations (right-most column) is more
challenging.
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matchers are fairly robust with regard to cropped face images as opposed to full portrait images,

we presented the cropped face images to volunteer participants.

The results on measuring the performance of human participants on gender detection from the

modified face images are shown in Fig. 7.7. In this experiment, eight face images were modified

via PrivacyNet model for confounding gender. The modified face images were then cropped to

include only the face areas and remove the peripheral information. The cropped face images were

then presented to 11 participants, and their responses were recorded. The number of times each

label is provided by participants for these face images are provided in Fig. 7.7. The consensus

of the 11 responses for each face image is compared with the ground-truth label of the original

images, and when the consensus results match with the true label, the results are highlighted in

green. These results show that only 4 out of 8 cases the consensus of 11 participants were able to

correctly predict the gender. Such significant change in the consensus results of the 11 participants

supports our hypothesis.

The individual responses from each participant are also shown in Fig. 7.8. The responses from

participants demonstrate that the highest performance among participant is 6/8, while the lowest

performance is 2/8, and the average among all 11 participants is 41%. Furthermore, the perfor-

mance of participants varies among different face images. The highest performance is observed for

face images 2 and 3, which is 8/11 and the lowest value is recorded to be 2/11. Given that humans

are considered experts in gender detection due to evolutionary reasons, these results indicate the

success of the SAN model in confounding gender attribute from face images.

7.4.2 Human perception study with Amazon MTurk

In the next experiment, in order to get statistically reliable results on the performance of humans,

we extended the previous study to Amazon MTurk which have much larger number of participants.
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Male 4
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Orig. Label F

Male 8
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Don’t know 1
Orig. Label M

Male 8
Female 2
Don’t know 1
Orig. Label M

Male 5
Female 4
Don’t know 2
Orig. Label F

Male 5
Female 5
Don’t know 1
Orig. Label M

Male 2
Female 6
Don’t know 3
Orig. Label F

Male 9
Female 2
Don’t know 0
Orig. Label F

Male 3
Female 4
Don’t know 4
Orig. Label M

Figure 7.7: Our preliminary experiments on measuring the performance of human observers in
gender classification of perturbed images using PrivacyNet. The responses from 11 participants
are acquired for each image. The cases where the majority of participants have correctly predicted
the gender (matches with the original label) are highlighted with green, and those in which the
majority of predictions do not match with the original label are highlighted with orange.
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Correct 
Prediction

RateParticipants
1 M M -- M M -- M -- 2/8
2 -- M M F F M M F 3/8
3 M F M M F F M F 2/8
4 -- M M -- F F M -- 3/8
5 F M -- F M M M -- 4/8
6 F M F F M F M M 6/8
7 M M M M F F F F 4/8
8 F F M F -- F M M 5/8
9 F M M M M F M M 6/8

10 -- -- -- -- M M F M 3/8
11 M M M M M -- M F 3/8

Accuracy 4/11 8/11 7/11 4/11 6/11 6/11 2/11 4/11

Figure 7.8: Our preliminary experiments on measuring the performance of human observers in
gender classification of perturbed images using PrivacyNet. The responses from 11 participants
are acquired for each image. The cases where the majority of participants have correctly predicted
the gender (matches with the original label) are highlighted with green, and those in which the
majority of predictions do not match with the original label are highlighted with orange.
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In this experiment, each participant is asked to classify the gender in face images. For cropping face

images, we used an automatic face detection software, called DLib [77]. Three different versions

of each face image in our study were generated: 1) cropped original image, 2) non-cropped output

of SAN, and 3) cropped outputs of SAN. A randomized subset of images in each category were

given to the participants. We have made sure that a single participant does not see more than one

version of one face image because that could have introduced bias to their classification. Figure 7.9

shows snapshots of two example queries displayed to Amazon MTurk participants.

Analyzing the collected data After obtaining the classification results from the participants,

we analyzed the data to study the impact of the perturbations on human observers. In this section,

we have used a commercial-off-the-shelf gender classifier (G-COTS) that has shown state-of-the-

art performance in gender classification. The resulting bar-plots before and after perturbations are

shown in Fig. 7.10.

The results from G-COTS shows a decline in performance for both SAN outputs, cropped and

non-cropped. However, from the human results, we see that the performance on non-cropped SAN

outputs is similar to that of the original images, which shows that humans observers are still able

to predict the original gender label from outputs of SAN. However, once SAN outputs are cropped,

the performance drops significantly.

The decline in gender detection performance by human observers on the cropped perturbed

images confirms our hypothesis that the perturbations are effective for confusing humans in gender

classification. Furthermore, the difference in the performance of gender classification by human

participants on the non-cropped and cropped output images gives further insight on how much

human brain focuses on peripheral attributes (clothing and hair) for gender classification.

Figure 7.11 also shows the confusion matrix of the human results on original samples, outputs

of SAN without cropping, and cropped SAN outputs.
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Figure 7.9: Snapshots of two example queries as were displayed to Amazon MTurk participants:
Given the displayed image to the participants, they were asked to choose the gender based on their
best judgment.
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Figure 7.10: Accuracy of gender prediction on original images, SAN outputs without cropping,
and cropped SAN outputs: performance of ML-based gender predictor, G-COTS (top), and human
performance using Amazon MTurk (bottom).
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Figure 7.11: Confusion matrices of human performance in gender classification on samples from
the original datasets, as well as outputs of SAN without cropping, and cropped SAN outputs: (a)
CelebA, (b) MORPH, (c) MUCT, (d) RaFD, (e) UTK-face.
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7.4.3 Controlling the trade-off between the degree of privacy vs. matching

performance

Based on the results from previous chapters, there is a trade-off between the degree of demographic

privacy and the matching performance. Therefore, in order to explore the trade-off between match-

ing performance and the degree of privacy, in this section we perform a preliminary experiment to

explore such trade-off while considering only the gender attribute. The purpose of this experiment

is to show the feasibility of controlling such trade-off. In this experiment, we explore the operating

curve using the hyper-parameter �M which is the coefficient of the loss term corresponding to the

matching term for training the generator. It is expected that decreasing �M results in higher degree

of privacy while lowering the matching performance. Figure 7.12 shows the trade-off between

the demographic privacy and matching accuracy. Along the x-axis, we have reported the EER for

gender prediction, while along the y-axis, we have reported the TMR of the face matcher at an

FMR of 0.1%.

This particular analysis was undertaken on CelebA dataset which was split into a 196K training

images and 2500 test images. Such curve can be used to select the operating point while consid-

ering the trade-off between matching accuracy and degree of demographic privacy. For example,

in an application where matching performance is more important than demographic privacy, the

operating point can be selected towards preserving the matching performance.

Based on such operating curve, a vendor of face recognition who is deploying this application

while concerned with demographic privacy can tune the trade-off between privacy and matching

accuracy.
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Figure 7.12: Operating curve showing trade-off between matching accuracy and the degree of
privacy that can be obtained using PrivacyNet model. This shows the feasibility of controlling the
trade-off by carefully selecting the operating point for an application.

7.5 Summary

In this work, we delved deeper into understanding perturbations with two studies. First, we inves-

tigated how the SAN model perturbs a face image and the reason for perturbing specific regions of

an input face image by the SAN model. We compared the important regions for gender classifica-

tion before and after applying SAN perturbations, which showed that SAN model tries to target the

important regions in the original input face image. In the second study, we investigated the effect

of perturbations on gender classification from the human perspective. For this purpose, we ana-

lyzed the results of human evaluators which confirmed that the presence of peripheral information

such as hair-style, types of clothing and jewelries have significant impact on the performance of

human evaluators. Therefore, cropping the face areas on the outputs of SAN resulted in significant

decrease in performance of human evaluators.
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Figure 7.13: Visualizing detected features for gender classification using CNN-fixations [102]
before (original images) and after SAN perturbations (PrivacyNet outputs) on some samples in
MORPH dataset.
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Figure 7.14: Visualizing detected features for gender classification using CNN-fixations [102]
before (original images) and after SAN perturbations (PrivacyNet outputs) on some samples in
MUCT dataset.
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Figure 7.15: Visualizing detected features for gender classification using CNN-fixations [102]
before (original images) and after SAN perturbations (PrivacyNet outputs) on some samples in
RaFD dataset.
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Figure 7.16: Visualizing detected features for gender classification using CNN-fixations [102]
before (original images) and after SAN perturbations (PrivacyNet outputs) on some samples in
UTK-face dataset.
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Figure 7.17: Visualizing detected features for gender classification using Grad-CAM [128] before
(original images) and after SAN perturbations (PrivacyNet outputs) on some samples in MORPH
dataset.
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Figure 7.18: Visualizing detected features for gender classification using Grad-CAM [128] before
(original images) and after SAN perturbations (PrivacyNet outputs) on some samples in MUCT
dataset.
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Figure 7.19: Visualizing detected features for gender classification using Grad-CAM [128] before
(original images) and after SAN perturbations (PrivacyNet outputs) on some samples in RaFD
dataset.
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Figure 7.20: Visualizing detected features for gender classification using Grad-CAM [128] before
(original images) and after SAN perturbations (PrivacyNet outputs) on some samples in UTK-face
dataset.
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Chapter 8

Summary and Conclusions

Face images have been widely used for recognition purposes, which is to recognize the person

in the image. However, besides the recognition, face images can be used to extract demographic

information. On the other hand, recent privacy regulations such as European Union General Data

Protection and Regulation (EU-GDPR) restricts the use of personal data of data subjects for pur-

poses beyond the specific purpose for which the data is collected and the consent from data subjects

is acquired. As a result, it is important to provide means to avoid the extraction of demographic

information from face images, when such images are only collected for recognition purposes. This

study was focused on imparting multi-attribute demographic privacy to face images, such that gen-

der, age and race cannot be reliably extracted from face images, while not adversely affecting the

recognition utility of such data.

8.1 Research contributions and main findings of this work

In Chapter 2, we consider the problem of deriving additive perturbations based on a face-based

given gender classifier, and provide the following contributions:

• Designed an efficient gradient descent-based technique that iteratively adds perturbations to a

face image in order to confound gender information. At the same, the matching performance

of the perturbed face images was retained.
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• Performed extensive experiments to show that the proposed method is applicable to any

gender classifier in a black-box scenario.

Chapter 3 presents addresses the problem related to transferability of perturbation to unseen

gender classifiers. The contributions of this chapter are

• Designed a neural network model called Semi-Adversarial Networks (SAN) that is trained

with an auxiliary gender classifier and an auxiliary face matcher for imparting gender privacy

to face images.

• The SAN model learns to derive perturbations that are transferable to unseen gender classi-

fiers.

In Chapter 4, we focused on the generalizability issue of the SAN model, which is to ensure

that the perturbed face images are able to confound arbitrary unseen gender classifiers. The con-

tributions of this chapter are as follows:

• Designed an ensemble SAN model that trains multiple SAN models for addressing the gen-

eralizability issue, where each SAN model is trained using an auxiliary gender classifier.

• Enhancing diversity among the SAN models in the ensemble by oversampling randomly

selected samples, which leads to enhancing diversity in auxiliary gender classifiers, and

thereby, improving the generalizability of the ensemble SAN model.

Chapter 5 introduces Stack-SAN for enhancing the generalizability of the SAN model, with

the following contributions:

• Designed a model that sequentially trains and stacks SAN models such that the output from

the SAN model i is fed as input to the SAN model i+ 1.
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• Performed extensive experiments that showed gender classification performance decreases

progressively as the input goes through the stack of SAN models.

Chapter 6 extends the SAN model to multi-attribute including gender, age, and race. The

contributions are the following:

• Designed a multi-attribute face privacy model called PrivacyNet using Generative Adversar-

ial Networks (GAN) that is able to modify input face images such that gender, age, and race

can be selectively confounded, while the matching utility is retained.

• Conducted extensive experiments using multiple attribute classifiers and face matchers, and

showed the efficacy of the proposed model on multiple datasets.

Chapter 7 addresses two research problem related to how the perturbations made by SAN are

perceived by human observers.

• Designed an experiment where a subset of face images were shown to human observers

using Amazon MTurk platform, where the participants were asked to classify the gender of

the person shown in the image.

• The designed experiment confirmed that the perturbations made by the SAN model were

able to fool human observers.

8.2 Limitations of this study

PrivacyNet model was shown to be able to successfully confound gender and race from face images

in a selective manner; however, its performance with regard to age showed it to be less satisfactory

than the other two attributes. In this regard, we observed the following:
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• The performance of modifying age was observed to be biased, as the performance of modi-

fying the age-group of a face image from A0 to A2 was higher than changing it from A0 to

A1.

• In some cases where the age-group of a subject was not meant to be modified, we observed

certain cases appear younger by visual inspection.

We hypothesize that the first issue is caused since we have used an age-group classifier, while

age-group is an ordinal attribute, i.e., there is a natural order between the values: A0 < A1 <

A2. This issue can be addressed by replacing the auxiliary age-group classifier with an ordinal

regression model.

The second issue is due to the way the boundaries of the age-groups are defined. Face aging

has shown non-linear properties, causing more variations in certain age-ranges than others. In this

study, we did not optimize the definition of age-groups; however, finding optimal age-groups can

address this issue.

8.3 Recommendations and future work

Based on the limitations of the work mentioned in the previous section regarding the performance

of PrivacyNet on modifying or preserving age-group of subjects, I recommend using an ordinal

regression model that can reliably determine the age or age-group of a subject, and use that as an

auxiliary network for training the PrivacyNet model.

In addition, while this study has focused on face images, extending demographic attribute pri-

vacy to other biometric modalities, such as finger print and iris is necessary. Further, a controllable

model for imparting various degrees of privacy to individual subjects is needed.
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