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ABSTRACT 

INNOVATIVE APPROACHES TO GAUGE RESILIENCE OF MANAGED RAINFED 

AGRICULTURAL SYSTEMS  

By 

Eeswaran Rasu 

Increasing climate extremes have devastated both crop yields and farm economies, 

especially in the rainfed agricultural systems of the Midwestern United States. Furthermore, these 

extreme events are projected to increase in the future due to climate change. As a result, alternative 

agricultural practices are becoming more common in efforts to mitigate the impacts of extreme 

climatological events. Nevertheless, the level of resiliency of these practices has not yet been 

adequately quantified due to the lack of robust metrics available to address the complexity of 

agricultural systems while being simple enough to be measured at different scales. To this end, 

three studies were conducted and compiled into this dissertation. These studies were carried out in 

a long-term cropping system experiment at the W.K. Kellogg Biological Station and the 

Kalamazoo River Watershed located in the Southwestern Michigan of the United States. 

The first study was designed to evaluate the applicability of soil moisture metrics to gauge 

resiliency of four differently managed rainfed agricultural treatments at the field scale. The 

robustness of these metrics was assessed over a long-period (1993-2018) for a corn-soybean-wheat 

rotation by monitoring crop growth and yield in response to climate variability. Results 

demonstrated that the soil moisture metrics can be used as indicators of resilience at the field scale. 

The no-till treatment had the highest level of resilience as quantified by soil moisture retention, 

effectiveness of reducing drought severity, crop yields, and stability of yields. Although the 

organic treatment substantially improved resiliency in terms of soil moisture conservation and 

drought mitigation than the conventional treatment, the limitation of available nitrogen 



   

 

 

 

significantly reduced corn and wheat yields. Meanwhile, the reduced input treatment was the least 

resilient as it was vulnerable during extreme climate conditions.  

The second study was performed to evaluate the climate resilience of four rainfed 

agricultural treatments in terms of profitability and farm risks for the same corn-soybean-wheat 

rotation. Crop production and management data were used to conduct enterprise budgeting and 

risk analysis. The means and volatility of estimated net returns and risk preferences were used as 

the evaluation metrics. According to the results of this study, the organic and the no-till treatments 

had higher resilience than the conventional and the reduced input treatments as they were projected 

to generate greater net revenues with higher stability. Furthermore, these treatments were 

promising to cater to a large group of farmers with different risk preferences. Meantime, 

conventional and reduced inputs treatments were found to be adversely affected by climate 

extremes. 

The goal of the third study was to examine the impacts of large-scale adaptation of 

conservation agricultural practices (i.e., no-till treatment) on resilience in comparison to traditional 

practices (i.e., conventional treatment). Similar to the previous two studies, the corn-soybean-

wheat rotation was applied on all agricultural land use in the Kalamazoo River Watershed during 

the period of 1993-2019. Crop and groundwater models were integrated to derive the resilience 

metrics, namely recharge, groundwater level, soil moisture, yield, and net return. Results showed 

clear improvement in all metrics under the no-till treatment. Therefore, the adoption of the no-till 

could improve the overall resilience of the corn-soybean-wheat rotation.  

Together, these studies present a set of robust metrics to quantify the resilience of diverse 

rainfed agricultural systems both at the field and watershed scale.  
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1. INTRODUCTION 

Sustainably increasing the production of edible crops by 60-120 percent to feed the 

increasing global population by 2050 is a major challenge of the 21st century (Berners-Lee et al., 

2018; Pradhan et al., 2015; Tilman et al., 2011). Food crops are produced both under rainfed and 

irrigated agricultural systems around the world. Remarkably, rainfed agriculture contributes to 

60 percent of the total food production throughout the world (FAO, 2017), while in the United 

States, the majority of cropland (≈94%) is planted under the rainfed system (USDA, 2014). The 

rainfed agricultural system is dominant in the Midwestern United States, which is highly 

productive, economically vital, technologically advanced, and predominantly produces row crops 

of corn, soybean, and wheat (Franzluebbers et al., 2011). Unfortunately, the regional climate of 

the Midwestern States is changing as a result of anthropogenic global climate change, and the 

increasing frequencies of climate extremes such as droughts, floods, and heatwaves have been 

documented (Andresen et al., 2012; Hatfield et al., 2018; Pryor et al., 2014). These extreme 

events significantly impact crop yields and may offset the productivity increment achieved 

through genetics and management advancements within the past few decades (Hatfield et al., 

2018; Wang et al., 2016).  

Soil moisture is the most limiting factor of productivity in rainfed agriculture. The 

availability of soil moisture is dictated by the seasonality of precipitation (i.e., onset, intensity, 

and frequency) and its interactions with the soil-plant-atmosphere continuum (Rost et al., 2009). 

This dependency on precipitation makes the rainfed system very vulnerable to climate extremes. 

For example, the 2012 drought devastated the crops and economies of rainfed farmers in the US 

Midwest (Boyer et al., 2013; Rippey, 2015). It is projected that climate extremes, such as these, 

will only increase in frequency and intensity in the future (Jin et al., 2018).  
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There is an increasing consensus among stakeholders that the resilience of these 

production systems must be improved. Resilience can be defined as the ability of a system to 

maintain its structure and functions in the face of climate perturbations (Holling, 1973; Walker et 

al., 2004). Resiliency allows the system to continue to provide its services, which in agriculture, 

means the growth and yield of crops, stress tolerance, profits, and other ecosystem services 

offered by agricultural systems. Nevertheless, increasing evidence demonstrates that 

conventional agriculture, which is currently widely practiced around the world, has become 

vulnerable to the stressors associated with climate change and variability (Adhikari et al., 2015; 

Lesk et al., 2016). Moreover, conventional agriculture has been shown to contribute to global 

environmental change and therefore be unsustainable (Foley et al., 2011). As a result, alternative 

agricultural practices, such as conservation agriculture, have been proposed. However, the 

resilience of these practices against climate extremes is not yet well understood and the risk 

levels and profitability concerns associated with adoption have prevented widespread 

implementation (Eeswaran, 2018; Mausch et al., 2017; Roesch-McNally et al., 2018).  

Resilience is applicable to a wide range of disciplines (e.g., biological systems, 

engineering, economics, social welfare, politics, etc.), and these disciplines determine how 

resilience should be quantified and what metrics should be used to gauge the resiliency (Quinlan 

et al., 2016). Although several metrics have been previously applied to measure the resilience of 

agricultural systems, most of them have been qualitative. Moreover, these metrics often fail to 

capture the temporal dynamics at both the field and regional scales. Therefore, this dissertation 

aims to advance the understanding of the following knowledge gaps and thereby contribute to the 

crop and soil sciences to better manage agricultural systems in a changing environment.              
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Knowledge Gap 1: Lack of a robust resilience metric to address the complexity in agricultural 

systems as related to temporal variabilities while being simple enough to be measured at the field 

scale. 

Knowledge Gap 2:  Resilience matrices are needed to account for long-term profitability and 

risks at the farm scale for alternative management systems (treatments). 

Knowledge Gap 3: Absence of knowledge on how the conservation agriculture (i.e., no-till) 

affects the overall resiliency at large scales (e.g., a large watershed). 

To address the knowledge gap 1, the following objectives were accomplished: (1) rank 

the relative resilience of different rainfed agricultural systems using the metrics of temporal 

dynamics of soil moisture; (2) evaluate the robustness of the soil moisture metrics of temporal 

dynamics on crops growth and yield under climate extremes; and (3) compare the effectiveness 

of different rainfed agricultural systems on reducing agricultural drought severity.  

To fulfill the knowledge gap 2, the following objectives were studied: (1) evaluate the 

effects of climate variability on farm net returns under different production and treatment 

systems; and (2) assess the risk level for the adaptation of different production systems under 

different treatments.   

To ascertain the knowledge gap 3, the following objectives were examined: (1) assess 

recharge, groundwater table, and soil moisture variabilities for the long-term corn-soybean-wheat 

rotation under the conventional and the no-till practices at a watershed scale; (2) estimate yields 

and net returns under the conventional and the no-till practices within a large, diverse watershed; 

(3) evaluate the overall changes in resiliency as affected by the adaptation of no-till for row crop 

agriculture in the watershed.   
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2. REVIEW OF LITERATURE 

2.1 Overview 

Global environmental changes pose far-reaching challenges to our food production 

systems (Campbell et al., 2016; Myers et al., 2017; Wheeler and von Braun, 2013). With the 

increasing frequency of climatic extremes, farmers face a daunting task to maintain their crop 

productivity. Impacts of these extreme climatic events disproportionately affect the rainfed 

agricultural systems because of its total dependency on precipitation to rebuild the soil moisture 

required for crop growth (Kuwayama et al., 2019; Minoli et al., 2019; Rost et al., 2009; Sweet et 

al., 2017). Meanwhile, the conventional practices that are commonly implemented to manage 

rainfed agricultural systems have become more unreliable in certain regions (e.g., Midwestern 

United States) to climate change and variability. In fact, conventional practices are known to 

exacerbate extreme events via contributing to global environmental changes (Bennett et al., 

2014; Lesk et al., 2016).  

To overcome these challenges, alternative agricultural practices have been introduced as 

agronomic interventions to improve the resilience of crop production systems (Branca et al., 

2013; Michler et al., 2019). However, the resilience of these management practices for climate 

risk management in rainfed agriculture should be quantified using appropriate set of metrics to 

assess their benefits. Therefore, the goal of this review is first to explore the challenges and 

opportunities in rainfed agricultural systems, then to understand the concept of resilience while 

learning how the resiliency can be measured, and finally to identify the knowledge gaps within 

the context of managed rainfed agricultural systems.  
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2.2 Rainfed Agriculture 

Agriculture can be classified into two types, namely, rainfed agriculture and irrigated 

agriculture, depending on the source of water used to grow crops. Rainfed agriculture entirely 

relies on infiltrated precipitation (predominantly rainfall) for crop production, while irrigated 

agriculture depends on full or supplementary irrigation. Globally, rainfed agriculture accounts 

for 80% of the cultivated lands and contributes to nearly 60% of total food production in a wide 

range of production systems (FAO, 2017). Furthermore, the majority of the cereals are cultivated 

as rainfed crops. The percentages of corn, wheat, rice, and other coarse grains produced in 

rainfed systems are 82%, 66%, 40%, and 86%, respectively (Rosegrant et al., 2002).    

Regionally, rainfed farmlands account for more than 95% in sub-Saharan Africa, almost 

90% in Latin America, 60-65% in Asia, and 75% in East and North Africa (Wani et al., 2009). 

Meanwhile, in the United States, about 94% of farmland acres are under rainfed agriculture 

(USDA, 2014). The productivity of rainfed agriculture in temperate regions such as in Europe 

and North America is much higher than the productivity in humid and dry tropical regions. 

(FAO, 2011). This discrepancy in productivity is associated to the variations in soil fertility, 

climate, and biotic stressors (Rosenzweig and Liverman, 1992).          

2.2.1 Global Challenges in Rainfed Agriculture 

Water stress is the major challenge in rainfed agriculture systems. Meanwhile, since 

producers do not have a control over the timing and amount of the precipitation, the water use 

efficiency of rainfed systems is generally low (Rao et al., 2015; Wani et al., 2009). Other 

constraints that substantially reduce the productivity of rainfed agriculture are soil degradation, 

soil organic matter depletion, soil erosion, nutrient deficiencies, environmental pollution, low 

external inputs, low investment capacity, and poor market linkages (Rao et al., 2015; Wani et al., 
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2009). Moreover, increase in rainfall variability (due to climate change) is becoming another 

important challenge in rainfed farming systems (Kassie et al., 2014).    

2.2.2 Rainfed Agriculture in the Midwestern United States 

Rainfed agriculture systems in the Midwestern United States are highly productive than 

the rainfed systems in Africa, Asia, and Latin America (Rosegrant et al., 2002). Moreover, they 

are ecologically diverse, practice a high level of farm technology, and receiving annual 

precipitation of greater than 500 mm (Franzluebbers et al., 2011). In this region, the rainfed 

production systems are economically important, and most of the corn and soybean crops, are 

produced either as a monocrop or in rotation (Hatfield, 2012). The productivity of rainfed crops 

steadily increased in the past as a result of genetic improvements (closer to 70%) and 

management intensification (closer to 30%) such as plant populations, row spacing, soil fertility, 

cover crops, rotation, farm mechanization and advancements in crop protection (Franzluebbers et 

al., 2011; Hatfield et al., 2018). Moreover, with the development of herbicide-resistant crop 

varieties, adoption of conservation agriculture practices such as no-tillage has been substantially 

increased to counteract with the problems of soil erosion, nutrient leaching, runoff, and yield 

instability (Franzluebbers et al., 2011). 

2.2.3 Challenges of Rainfed Agriculture in the US Midwest 

Regardless of the overall increase in productivity, crop yields in the US Midwest have 

shown to be vulnerable to interannual variability in the climate (Hatfield et al., 2018; Hatfield, 

2012; Ortiz-Bobea et al., 2018). This phenomenon can be explained by the fact that the water 

availability for rainfed agriculture is determined by the seasonal characteristics of precipitation 

(i.e., intensity and frequency) and its interaction with the soil-plant-atmosphere continuum (Rost 
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et al., 2009). Therefore, rainfed agriculture is much vulnerable to the effects of climate 

variability and extremes.  

Changes in the Midwest regional climate associated to the anthropogenic activities 

resulted in increased frequencies of extreme climatic events such as droughts, floods, and 

heatwaves (Andresen et al., 2012; Dai et al., 2016; Pryor et al., 2014). For example, the 2012 

Midwest drought devastated major crops and the economic base of rainfed farms in this region 

(Fuchs et al., 2015; Mallya et al., 2013; Otkin et al., 2016). As a result of this drought, corn yield 

in the US has fallen for three consecutive years (2010-2012) for the first time since 1928-1930 

(Rippey, 2015). These climate extremes will continue to have substantial impacts not only on the 

national economy but also on international trade (Boyer et al., 2013), since the share of 

Midwestern region on U.S agricultural exports are relatively large, especially for corn and 

soybean. 

Nitrate leaching is identified as a major threat to environmental quality and human health 

(Bowles et al., 2018). Since intensive agricultural management is practiced in this region, nitrate 

leaching has been found to be another important challenge in this system (Hussain et al., 2019; 

Martinez-Feria et al., 2019). However, the adoption of conservation agriculture practices has 

been shown to minimize the leaching losses of nitrogen and increase the nitrogen use efficiency 

of crops (Palm et al., 2014; Syswerda et al., 2012). 

2.3 Resilience in Rainfed Agriculture  

Resilience was first defined by Holling (1973) in the context of ecological systems. 

Accordingly, resilience is the capacity of a system to absorb disturbances and reorganize while 

changing. Thus, it can still maintain essentially the same function, structure, identity, and 

feedbacks (Holling, 1973; Walker et al., 2004). In rainfed agriculture, resilience can be defined 
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as the ability of a rainfed system to maintain its structures and patterns of behavior in the face of 

stressors such as climate perturbations so it can continue to provide its services and desirable 

outcomes such as crop growth, yield and other ecosystem services (Tendall et al., 2015; Urruty et 

al., 2016). Resilience also refers to the ability of an agricultural system to develop capacities to 

cope and adapt to a new condition (e.g., climate shocks and extremes) via appropriate 

management practices (Bousquet et al., 2016).  

Since soil moisture is the key determinant of productivity in rainfed agriculture, Tow et 

al. (2011) argued that the ability of a system or its components to recover from water stress could 

also be considered as a measure of resilience. This could be achieved by implementing 

management interventions that can alleviate the exposure and severity of water stress in a way 

that an extreme climatic event shall not reduce the crop yields significantly.  

2.4 Interventions to Improve Resilience in Rainfed Agriculture 

Interventions to enhance the resilience in rainfed agriculture can be broadly categorized 

as agronomic interventions, genetic interventions, and decision support systems. As climate 

change is already hampering agriculture around the world, these interventions are also known to 

support the key objectives of climate-smart agriculture (Lipper et al., 2014). Below, each of these 

interventions is described in detail.  

2.4.1 Agronomic Interventions 

Agronomic interventions may include crop, soil, and water management options aimed at 

improving resilience in agricultural systems. Agronomic interventions such as adjustment of 

planting and harvesting times, altering fertilizer and water application rates (Howden et al., 2007; 

Nouri et al., 2017; Rurinda et al., 2015), mulching (Erenstein, 2003; Qin et al., 2015), crop 

diversification and agroforestry (Altieri et al., 2015; Gan et al., 2015; Lin, 2011; Mbow et al., 
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2014) and adoption of conservation agriculture (Delgado et al., 2013; Michler et al., 2019) have 

varying potentials to build resilience in rainfed agriculture. 

2.4.2 Genetic Interventions 

Genetic interventions involve the development of novel crop germplasms with improved 

tolerance to environmental stresses such as drought and heat and/or genotypes with phenological 

adjustments so that they can escape and/or avoid overlapping with the occurrences of such stress 

events (Ainsworth and Ort, 2010; Ceccarelli et al., 2010; Davies et al., 2011). The introduction 

of these crop genotypes with improved stress tolerance has substantially increased the climate-

resilience of major crops such as corn and soybean around the world (Cairns et al., 2012; 

Chapman et al., 2012; Sadok and Sinclair, 2011). 

2.4.3 Decision Support Interventions 

Decision support interventions mainly refer to the utilization of weather and seasonal 

climate forecast information to make agricultural decisions in the face of uncertainties in the 

upcoming days/season (Hansen et al., 2011; Klemm and McPherson, 2017; Meinke et al., 2006). 

Forecast products can potentially influence many steps throughout the agricultural production 

such as selection of crops and varieties, changing planting dates, input management, changing 

land management practices, adjusting marketing practices, and determining index-based 

insurances to farmers thereby improve the climate-resilience in rainfed agriculture (Crane et al., 

2011; Klemm and McPherson, 2017). With increasing real-time or near-real-time earth and 

environmental observations and modeling tools, decision support systems such as Regional 

Hydrological Extremes Assessment System (RHEAS) offers agricultural practitioners and 

policymakers a framework to estimate onset, severity, recovery, and duration of regional 
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droughts and their impacts on expected crop yield outlooks in the vulnerable regions (Andreadis 

et al., 2017). 

2.5 Promising Agricultural Systems to Improve Resilience 

To improve resilience, agricultural systems should be persistent, adaptive, and 

transformative at appropriate times and places. Persistence may include absorbing shocks of 

agricultural risks like weather extremes, invasive species, pest/disease outbreaks, and price 

fluctuations. Agriculture also needs to be adaptive to the long-term changes in the environment, 

such as the effects of climate change, soil degradation, and environmental pollution. Finally, a 

resilient agriculture system must be able to transform into new modes of operation without 

harming the human and natural environment (Bennett et al., 2014). Conservation and organic 

agriculture systems have many promising characteristics that could improve resiliency (Michler 

et al., 2019; Milestad and Darnhofer, 2003). 

2.5.1 Conservation Agriculture  

 Conservation agriculture consists of three agronomic principles, namely, 

minimum soil disturbance/no-till, permanent soil cover by crop residues/cover crops, and crop 

rotations (Hobbs et al., 2008; Palm et al., 2014). Conservation agriculture was originated in 

response to the US Dust Bowl in 1930’s to counteract soil erosion by wind and water (Baveye et 

al., 2011) and significantly expanded during mid-to late-1990’s with the development of 

herbicides, herbicide-tolerant crop species, and improved farm mechanization (Derpsch et al., 

2010). Since then, it has been rapidly adopted in North America, South America, and Australia 

primarily on large-scale mechanized farms, with heavy applications of herbicides to control 

weeds that are otherwise normally controlled by tillage (Palm et al., 2014). Although it was 

originally designed for high-input agricultural systems in temperate regions, it has gained 
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momentum with smallholder farmers in Asia and Africa (Brouder and Gomez-Macpherson, 

2014) due to its numerous benefits beyond soil erosion control. 

Globally, conservation agriculture was practiced in 180 Million hectares of cropland 

(12.5% of total cropland) by 78 countries during the period of 2015-2016 (Kassam et al., 2019). 

During the same period, the adoption of conservation agriculture in the United States was 43.2 

Million hectares, which corresponds 35% of total cropland (Kassam et al., 2019). However, in 

the US Midwest, farmers practice various intensities of conservation agriculture with different 

combinations of agronomic principles (Denny et al., 2019), making them varying degrees of 

resilience to climate shocks and extremes.  

In comparison to conventional tillage, the no-till systems showed the highest level of 

resilience as a result of improved water availability and soil quality, that helps to avoid 

substantial reductions in crop yields during extreme climatic events (Delgado et al., 2013; 

Harrington and Tow, 2011; Lal et al., 2012; Michler et al., 2019). In contrast, few other studies 

(e.g., Pittelkow et al., 2015a; Powlson et al., 2014) have shown yield reductions with no-till and 

limited potential to improve resilience. Interestingly, a recent global meta-analysis highlighted 

that the no-till system, when it is combined with other two conservation agriculture principles 

(residue retention and crop rotation), significantly increases crop yields, especially in rainfed 

crops (Pittelkow et al., 2015b). This could be due to the capture of snow, reduction of runoff and 

soil evaporation (with the retention of crop residues), and creation of better soil structure and 

rooting patterns through crop rotations to store more water in the root zone (Franzluebbers et al., 

2011; Lal et al., 2012; Lampurlanés et al., 2016; O’Leary et al., 2011). 
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2.5.2 Organic Agriculture 

The movement for organic agriculture began in the first half of the 20th century and have 

been expanded in the 1970’s with the formulation of organic standards. International Federation 

of Organic Agriculture Movements (IFOAM) institutionalized four principles of organic 

agriculture, namely, health, ecology, fairness, and care, with the main focus of protecting 

mankind and environment in the process of food production (Luttikholt, 2007). Organic 

agricultural systems are well known to improve soil organic matter, especially when practiced 

for a long-term (Pimentel et al., 2005). It has been estimated that for every 1% organic matter, 

soil can hold approximately 10,000-11,000 liters of plant-available water per ha down to about 

30 cm of soil depth (Gomiero et al., 2011). Therefore, the water holding capacity of soils under 

organic agriculture is greater than the soils under conventional agriculture (Lotter et al., 2003; 

Mäder et al., 2002).  

Moreover, organic agriculture has shown number of promising features to build resilience 

and reduce environmental impacts in various food systems thus serves as climate-friendly 

farming (Milestad and Darnhofer, 2003; Scialabba and Müller-Lindenlauf, 2010; Tuomisto et al., 

2012). Even though the yield gap between organic and high input conventional agriculture is 

larger mainly due to nutrient limitation (De Ponti et al., 2012), organic systems achieve 

comparable or even higher yields in many developing countries, as compared to the current 

conventional systems (Scialabba and Müller-Lindenlauf, 2010). In contrast, the production cost 

of certified organic farms is generally higher as the producers spend more on labor, insurance, 

certification, and marketing costs than the conventional farmers (Uematsu and Mishra, 2012). 
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2.5.3 Reduced Input Agriculture  

Reduced input agriculture or low external input agriculture is aimed at minimizing the 

environmental pollution of conventional agriculture practices (Odum, 1987). Therefore, direct or 

indirect use of petrochemicals-based inputs (e.g., fertilizers, pesticides) are substantially reduced 

in this system in comparison to a conventional system (Buttel et al., 1986). Reduced input 

agriculture can be considered as a step toward sustainable agriculture since it improves 

ecological processes within the agricultural systems (Stinner and House, 1987). However, it has 

limited potential to improve the overall profit of agricultural productions (Kessler and 

Moolhuijzen, 1994). To improve the productivity of reduced input agriculture, several 

management practices were introduced such as integrating leguminous cover crop and 

intercropping (Robertson et al., 2014). 

2.6 Metrics of Resilience in Agricultural Systems 

Appropriate metrics are required to quantify the resiliency of promising agricultural 

systems. The measure of resilience can be used to maintain or shift a system towards a more 

desirable and sustainable state, track thresholds of potential concerns, and help with assessments 

on how the system is being managed and can be further improved (Quinlan et al., 2016). 

Meantime, evaluation of resilience often involves a holistic approach that incorporates social, 

economic, and environmental dimensions of resilience (COSA, 2017). Because of the 

complexity and interactions in these three dimensions, food system resilience is generally 

assessed qualitatively (Toth et al., 2016). However, qualitative assessments are case-specific, and 

their applicability across scales varies based on the assumptions. 

Various organizations and individuals have developed and employed several tools to 

measure the resilience of farming systems in many regions of the world (Douxchamps et al., 
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2017). These tools have been generally applied to large socioeconomic units (e.g., households/ 

communities/ administrative units/ national scale). For example, the Food and Agriculture 

Organization of the United Nations (FAO, 2016) developed the Resilience Index Measurement 

and Analysis Model (RIMA), which has been applied in many African countries to measure the 

climate-resilience of agricultural communities (Serfilippi and Ramnath, 2018). Few other 

examples are;  Community Based Resilience Assessment (CoBRA) developed by United Nations 

Development Program (UNDP, 2013), Self-evaluation and Holistic Assessment of climate 

Resilience of farmers and Pastoralists (SHARP) adopted by the Food and Agriculture 

Organization of the United Nations (Choptiany et al., 2017), Community-based Risk Screening 

Tool-adaptation and Livelihood (CRiSTAL) developed by International Institute for Sustainable 

Development (IISD, 2014), Climate Vulnerability and Capacity Analysis (CVCA) established by 

Care International (Care, 2009) and Resilience, and Adaptation and Transformation Assessment 

Framework (RATALF) developed by The Commonwealth Scientific and Industrial Research 

Organization (O’Connell et al., 2015). 

These tools consist of a combination of measurement indices to quantify the resilience of 

the different aspects of agricultural systems, called ‘resilience metrics’. Generally, these metrics 

include the means and variance of agricultural production (Di Falco and Chavas, 2008; Zampieri 

et al., 2020), crop yields (Birthal et al., 2015; Li et al., 2019; Martin and Magne, 2015), profit 

(Browne et al., 2013; Komarek et al., 2015; Seo, 2010), revenue (Kandulu et al., 2012; Rigolot et 

al., 2017; Tibesigwa and Visser, 2015), labor productivity (Komarek et al., 2015), crop failure 

(Jones and Thornton, 2009), dietary diversity (Dillon et al., 2015), farming risks (Komarek et al., 

2015), agricultural gross domestic product (Hsiang and Jina, 2014) and expenditure for food 

consumption/food security (Alfani et al., 2015). In the context of agricultural development, 
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climate-resilience was monitored and evaluated using income, food availability, land area, and 

labor force (Douxchamps et al., 2017). Nevertheless, these indicators are often used at a large 

scale and show non-linear responses to climate variability depending upon various characteristics 

of farms and farmers (Di Falco and Chavas, 2008; Tittonell, 2014). 

Although there is a growing interest in the concept of resilience in the face of global 

environmental changes, there is no pragmatic guidelines available to quantify the overall 

resilience of farming systems (COSA, 2017). Moreover, existing tools and frameworks often fail 

to capture the spatial and temporal dynamics of resilience at various scales (Dixon and Stringer, 

2015; Douxchamps et al., 2017). Therefore, new metrics are needed to address the complexity in 

agricultural systems while being simple enough to be measured at different scales. 

2.6.1 Soil Moisture 

Soil moisture primarily controls the productivity of crops in rainfed agricultural systems 

(Jägermeyr et al., 2016), and is considered among 27 key indicators of climate-resilience 

proposed by the committee on sustainability assessment (COSA, 2017). Precipitation is the 

source of soil moisture in rainfed farming; therefore, the seasonality of rainfall, such as onset, 

intensity, and frequency, determines the availability of water resources to crops (Robinson et al., 

2019). Moreover, soil moisture affects several hydrological processes such as evapotranspiration, 

runoff, and recharge to aquifers hence considered as one of the components of hydrological cycle 

(Robinson et al., 2019). Meanwhile, irregular rainfall associated to the climate variability has 

reduced the plant available water, and water stress has been identified as an important abiotic 

stress that significantly affects crop yields (Dinar et al., 2019; Ortiz-Bobea et al., 2019; Rossato 

et al., 2017). That is why Rockström et al. (2010) argued that any investment that focuses on the 

improvement of rainfed agriculture should primarily consider water management.  
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Spatiotemporal dynamics of soil moisture should be taking into account in order to 

evaluate soil moisture as a metric of resilience. Mean relative difference (MRD) of soil moisture, 

Spearman’s rank correlation coefficient, and the Index of Temporal Stability (ITS) are used as 

indices of the spatiotemporal variabilities of soil moisture (Liu et al., 2018; Vachaud et al., 

1985). These indices were commonly used to identify temporally stable or representative 

locations to employ soil moisture monitoring equipment (Barker et al., 2017; Brocca et al., 2010; 

Starks et al., 2006; Zhou et al., 2007) and/or to validate remotely sensed soil moisture products 

(Cosh et al., 2008; Jacobs et al., 2004; Wagner et al., 2008). Moreover, these indices were also 

used to study the spatiotemporal dynamics of soil moisture in hillslope (Gao et al., 2016; Liu et 

al., 2018) or under diverse land uses (Hu et al., 2010) or in different depths of the soil (Gao and 

Shao, 2012; He et al., 2019). In contrast, the applicability of these indices to quantify the 

resilience of different agricultural systems has not been studied before. 

2.6.2 Drought Indices 

Shortage of soil moisture to the crops for a few weeks due to the absence of rainfall can 

lead to the development of agricultural droughts (Esfahanian et al., 2017). Drought affects both 

quantity and quality of crop yields depending on the following factors; timing of drought in 

relation to the crop's growth stage, reliability of water resources, vulnerability of cropping 

system, and socioeconomic conditions of farmers (Rey et al., 2017). Hence, drought indicators 

can be used as metrics of resilience in agricultural systems and building drought resilience is 

essential to sustain agricultural production in the United States (Brusberg and Shively, 2015). 

The agricultural drought indices, which are commonly used are presented in Table 2.1 

(Esfahanian et al., 2017; Moorhead et al., 2015).  
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Table 2.1. Commonly used available agricultural drought indices. 

Agricultural Drought Index Inputs Required Reference 

Soil Water Deficit Index Soil moisture, field capacity, 

wilting point 

Martínez-Fernández et al., 

2015 

Soil Moisture Deficit Index Soil moisture Narasimhan and 

Srinivasan, 2005 

Evapotranspiration Deficit 

Index 

Actual Evapotranspiration (ET), 

potential evapotranspiration 

(PET) 

Narasimhan and 

Srinivasan, 2005 

Palmer Drought Severity 

Index (PDSI)/ Palmer Z index 

Precipitation, temperature, 

available soil water capacity, 

and latitude of the location 

Palmer, 1965; Alley, 1984 

Reconnaissance Drought 

Index 

Actual ET, PET Tsakiris and Vangelis, 

2005 

Accumulated Drought Index Precipitation, reference ET 

(ET0) 

Sivakumar et al., 2011 

Relative Water Deficit Actual ET, PET Sivakumar et al., 2011 

Crop Moisture Index Same as PDSI Palmer, 1968 

Vegetation Condition Index Satellite images Kogan, 1995 

Standardized Vegetation 

Index 

Remote sensing data Peters et al., 2002 

 

Soil Water Deficit Index (SWDI): SWDI can be used to quantify the agricultural drought 

when temporal soil moisture data is available (Martínez-Fernández et al., 2015). SWDI can be 

calculated using the following formula:   

𝑆𝑊𝐷𝐼 =  {
𝜃𝑣−𝜃𝑓𝑐

𝜃𝑓𝑐−𝜃𝑤𝑝
}  × 10                                                                                              (2.1) 

where, Ɵ𝑣 is the percentages of the volumetric soil moisture (cm3/cm3), Ɵ𝑓𝑐 is the 

percentage of the field capacity (cm3/cm3) of the soil and Ɵ𝑤𝑝 is the percentage of the permanent 

wilting point (cm3/cm3). When SWDI is positive, the soils have excess water; when it equals 

zero, the soil is at the field capacity (i.e., no water deficit). Negative values indicate drought, and 

the soil reaches the wilting point when the SWDI reaches ≤ -10. At this point, the soil water 

content is below the lower limit of water available for plant uptake (Savage et al., 1996). 
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According to calculated SWDI values, drought severity in agricultural systems can be classified 

as “no drought” if SWDI > 0, as “mild” if 0 > SWDI > -2, as “moderate” if -2 > SWDI > -5, as 

“severe” if -5 > SWDI > -10, and as “extreme” if -10 ≥ SWDI (Martínez-Fernández et al., 2015). 

Although the annual and monthly time scales of evaluation seem adequate to monitor the 

effects of meteorological and hydrological droughts (Sharma, 1997), a shorter period of analysis 

is required to evaluate the effects of agricultural drought. A weekly period is commonly 

recommended for cropping systems as their growth stages show different levels of sensitivity to 

drought, and farmers require a sufficient window of time for management interventions such as 

irrigation planning (Purcell et al., 2003). For this purpose, SWDI is appropriate to evaluate the 

effects of droughts in agricultural systems. Moreover, the SWDI is more comprehensive 

compared to the Soil Moisture deficit Index (SMDI) in capturing soil moisture deficit since it 

uses several soil parameters. In contrast, the SMDI only uses one parameter – soil moisture 

(Esfahanian et al., 2017). 

Soil Moisture deficit Index (SMDI): SMDI only requires the soil moisture in the root zone 

as input (Narasimhan and Srinivasan, 2005). The weekly percentage of soil moisture deficit or 

excess can be calculated as follows: 

𝑆𝐷𝑖𝑗 =  
𝑆𝑊𝑖𝑗−𝑀𝑆𝑊𝑗

𝑀𝑆𝑊𝑗−𝑚𝑖𝑛𝑆𝑊𝑗
 × 100, 𝑖𝑓 𝑆𝑊𝑖𝑗 = 𝑀𝑆𝑊𝑗                                                           (2.2) 

𝑆𝐷𝑖𝑗 =  
𝑆𝑊𝑖𝑗−𝑀𝑆𝑊𝑗

𝑚𝑎𝑥𝑆𝑊𝑗−𝑀𝑆𝑊𝑗
 × 100, 𝑖𝑓 𝑆𝑊𝑖𝑗 > 𝑀𝑆𝑊𝑗                                                          (2.3)   

where, 𝑆𝐷𝑖𝑗  is the soil water deficit (%), 𝑆𝑊𝑖𝑗 is the mean weekly soil water (mm) in the 

soil profile, 𝑀𝑆𝑊𝑗 is the long-term median of available soil water (mm) in the soil profile, 

𝑚𝑎𝑥. 𝑆𝑊𝑖𝑗 is the long-term maximum of available soil water (mm) in the soil profile, and 
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𝑚𝑖𝑛. 𝑆𝑊𝑖𝑗 is the long-term minimum of available soil water (mm) in the soil profile. i denotes 

the year while j denotes the week. Using the above equation, the seasonality inherent in soil 

water is removed, and the deficit values can be compared across seasons. The soil water deficit 

(SD) values during a week could range from – 100 to +100, indicating very dry to very wet 

conditions, respectively. As the SD values for all the subbasins were scaled between – 100 and 

+100, they are also spatially comparable across different climatic zones (Narasimhan and 

Srinivasan, 2005). Thereafter, SMDI for any given week can be calculated by: 

𝑆𝑀𝐷𝐼𝑗 =
∑ 𝑆𝐷𝑡

𝑗
𝑡=1

25𝑡+25
                                                                                                            (2.4) 

where, t is the time in weeks. SMDI during any week will range from -4 to +4, 

representing the worst drought and no drought conditions, respectively.  

Evapotranspiration Deficit Index (ETDI): ETDI is calculated using a procedure similar to 

the calculation of SMDI. However, a water stress ratio is initially computed rather than using the 

evapotranspiration (ET) alone (Narasimhan and Srinivasan, 2005). The weekly water stress ratio 

(WS) is calculated as follows: 

𝑊𝑆 =  
𝑃𝐸𝑇−𝐴𝐸𝑇

𝑃𝐸𝑇
                                                                                                               (2.5) 

where, PET is the weekly potential evapotranspiration of the crop, and AET is the weekly 

actual evapotranspiration. Values of WS may range from 1 to 0, where 1 indicating zero actual 

evapotranspiration and 0 indicating the evapotranspiration occurring at potential rates. After 

calculating WS, the maximum, minimum, and median water stresses are used to calculate the 

weekly water stress anomaly (WSA). The WSA values will range from -100 to +100, with 
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negative values indicating dry conditions and positive values indicating wet conditions 

(Narasimhan and Srinivasan, 2005).  

Under water-limited conditions, crop transpiration will not occur at the potential rates. 

Therefore, the ratio of actual ET to PET can indicate the stress on the plant, thus, ETDI may be 

more suitable to evaluate the impacts of agricultural drought than the indices that use 

precipitation. Meanwhile, the major limitation to this drought index is that the actual crop ET 

data may not often be measured in agricultural settings. Furthermore, the PET must be available 

for the same crop as the actual ET. Although the reference ET (ET0) can replace PET, ET0 is 

only applicable for the reference crop, and different crops will have different relationships to ET0 

depending on their growth stage-specific crop coefficients (Moorhead et al., 2015). 

Palmer Drought Severity Index (PDSI)/ Palmer Z index: As part of the original work 

done by Palmer in the early 1960s, the Palmer Moisture Anomaly Index (Z Index) is usually 

calculated on a monthly basis along with PDSI output as the moisture anomaly. The PDSI 

addresses two of the most elusive properties of droughts namely, intensity and their beginning 

and ending time (Alley, 1984). However, this index is computationally intensive and less 

transparent compared to the SWDI, SMDI, and ETDI, because it requires a total of eight 

parameters such as precipitation, temperature, available soil water capacity, and latitude of the 

location of interest (Alley, 1984; Ficklin et al., 2015; Jacobi et al., 2013; Palmer, 1965). 

Moreover, the Z-index has been used with a coarse spatial resolution of 7000-100,000 km2 and 

monthly temporal resolution, while SMDI and ETDI were used with a finer spatial resolution (16 

km2) and weekly temporal resolution (Narasimhan and Srinivasan, 2005).  

Reconnaissance Drought Index (RDI): RDI was introduced by Tsakiris and Vangelis 

(2005) with the objective of developing an agricultural drought index accounting for both 
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precipitation and ET. RDI first calculates the aridity index using precipitation and potential 

evapotranspiration. The aridity index is calculated as the ratio between the long-term annual 

mean of precipitation and the annual mean of ET0. RDI will then be calculated as a standardized 

or normalized ratio between the cumulative precipitation and cumulative ET0 for a given period 

(Tsakiris and Vangelis, 2005). RDI can be also calculated for various time scales; however, ET 

data may not be available in all the locations, and an accurate estimation of ET requires 

numerous inputs (Moorhead et al., 2015).   

Accumulated Drought Index (ADI): ADI was formulated by the Integrated Center of 

Agrometeorological Information in Brazil (Sivakumar et al., 2011). ADI is calculated as follows: 

𝐴𝐷𝐼 =  ∑ 𝐷𝐼/(3𝑛𝑁)                                                                                                      (2.6) 

where, DI is derived from the relationship between precipitation and ET as detailed in 

Sivakumar et al. (2011), n is the number of time periods, and N is the number of periods with 

less than 10 mm of precipitation. Even though this index uses both precipitation and ET to assess 

the drought conditions, it was not well-established and verified in the drought assessment 

literature (Moorhead et al., 2015).     

Relative Water deficit (RWD): RWD is calculated as the ratio of actual ET to PET 

(Sivakumar et al., 2011). 

𝑅𝑊𝐷 =  (1 −  
𝐴𝐸𝑇

𝑃𝐸𝑇
)  × 100                                                                                           (2.7) 

The RWD will be zero if actual ET is occurring at the rate of PET, that indicates no water 

stress to crops. RWD can be calculated for different time scales; nonetheless, the actual ET data 
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is difficult to obtain, and it varies for different crops. This is the major drawback of this index to 

implement it across different landscapes.    

2.6.3 Farm Economics 

Farm profit is the key concern of producers since the livelihood of most of the farmers is 

primarily depends on their farming enterprises. Farm profits are generally measured as the 

earnings before interest taxes and amortization. Additionally, net farm revenue, operating profit 

margin ratio, rate of return on farm assets, and rate of return on farm equity can be used to 

quantify the profitability of agricultural enterprises (Langemeier, 2016). Farmers depend on net 

farm income for; living expenses, to pay their debts, and to purchase new assets to continue their 

farming operations. 

The United States had 6.8 million farms in 1935; however, according to a recent survey 

conducted in 2019, there were 2.02 million farms located in 897 million acres of land, with an 

average farm size of 444 acres (ERS, 2020). This decline in the number of farms highlights the 

increasing agricultural productivity and opportunities for nonfarm employment. Therefore, 

agricultural production in the United States is currently concentrated to a smaller number of 

large, specialized farms, mostly in rural areas. Technological advancements in crop and animal 

genetics, agrochemicals, farm machinery, and management were the driving force for the growth 

in agricultural outputs (ERS, 2020). 

The net farm income of the whole country is calculated by subtracting total farm 

expenses from gross farm income. Net farm income (inflation-adjusted) was forecasted to 

increase by 21.7% in 2020, to 102.7 billion US dollars by the United States Department of 

Agriculture. Total cash receipts from major row crops corn, soybean, and wheat were 50.1 

billion, 34.2 billion, and 9.0 billion US dollars, respectively, in 2019. The median of the total 
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household income from all farming households was 72,481 US dollars in 2018. In contrast, the 

annual farm sales of around half of the US farms were under 10,000 US dollars, and these farm 

families mostly rely on off-farm employment for their family income. Meantime, large-scale 

farms had an annual farm income of 348,811 US dollars (ERS, 2020). 

Farm economics is one of the three pillars of sustainable agriculture (Pham and Smith, 

2014). Crop productivity, profitability, and stability are the indicators used to gauge 

sustainability in farming systems (Pham and Smith, 2014). For the households depending on 

farming for their livelihood, the gross farm income should be able to compensate both fixed and 

variable costs involved in their farming operation. Meanwhile, most of the developing countries 

have tropical climates and smallholdings, where farm families cannot meet their income needs 

alone from farming. Therefore, they need to seek off-farm income to maintain their farming 

operations (Li et al., 2012). 

According to Tey and Brindal (2015), the farm profit is determined mostly by the scale of 

operation, operational efficiency, and output prices. Improving the operational efficiency through 

precision management of resources such as irrigation water and nutrients has substantially 

improved the profitability in farming systems (McConnell and Burger, 2011; Sapkota et al., 

2014; Spencer et al., 2019). Conservation management systems also have improved the 

profitability of farming systems (Jat et al., 2014; Ngwira et al., 2013); however, some other 

studies have shown mixed results (Mafongoya et al., 2016; Plastina et al., 2020).  

Farmers’ interventions to address the challenges of climate extremes, such as 

implementing any resilient practices, maybe costlier and riskier than the business-as-usual 

practices; therefore, the long-term profitability is the most important factor that determines 

adaptation of such practices (Kumar et al., 2016; Mausch et al., 2017; Sain et al., 2017). 
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Moreover, farmers demonstrate different preferences toward risks, depending on the 

socioeconomic factors. (Brink and McCarl, 1978; Lu et al., 2003). For example, a highly 

profitable production system may also be highly risky because of the variabilities on net 

revenues and/or market demands, thus may not be preferred by a risk-averse farmer. Farm 

profitability also determines the costs and benefits of farm insurance policies, which are 

important tools for climate risk management (Annan and Schlenker, 2015; Tack and Ubilava, 

2015). 

Resilience in terms of farm economics can be measured using both the mean and 

volatility of the expected net revenues or profitability, where a system with higher mean and 

lower volatility can be taken as a relatively resilient system (Abson et al., 2013; Browne et al., 

2013). The volatility, as it measures the variations in farm income, can also capture the risk 

associated with the system (Browne et al., 2013). It is essential that the producers make informed 

decisions considering the most appropriate risk management strategies tailored to their 

adaptation systems and the probability of risks (Vigani and Kathage, 2019). Conversely, an 

appropriate cost-benefit analysis or enterprise budgeting is required to reasonably estimate the 

net return in farming enterprises (Plastina et al., 2020). To perform an accurate enterprise 

budgeting, correct data on the quantities of inputs, outputs, and associated costs during the time 

of operation are essential for the period of analysis, which may not adequately available from 

farm records. 

2.6.4 Ecosystem Services 

Ecosystems are a vital part of the environment, and all the benefits that humans receive 

from the natural environment are called ecosystem services (Costanza et al., 1997; Mengist et al., 

2020). Agricultural ecosystems are managed to primarily produce food, fodder, fiber, and fuel; 
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however, they also offer various ecosystem services that are essential for the functioning of the 

environment (Dale and Polasky, 2007; Swinton et al., 2007; Tancoigne et al., 2014; Wood et al., 

2015). According to the Millennium Ecosystem Assessment, ecosystem services can be broadly 

grouped into four categories, namely, provisioning services, regulating services, supporting 

services, and cultural services (Fisher et al., 2009; MEA, 2005).  

Provisioning services include any goods that are directly consumed by people, such as 

food, water, energy, raw materials, timber, ornamentals, genetic and medicinal resources. 

Regulatory services comprise carbon sequestration, climate regulation, mitigation of floods, 

control of soil erosion, management of pest/disease outbreak, purification of water, air, and soil, 

decomposition, and detoxification. Supporting services involve natural processes such as 

photosynthesis, cycling of water and nutrients, soil formation, pollination, and biodiversity. 

Tangible benefits such as recreation, education, inspiration, ecotherapy, and other spiritual 

values of the ecosystems come under the cultural services (Garbach et al., 2014; MEA, 2005; 

Wei et al., 2021). 

Although the food production systems have the potential to offer numerous ecosystem 

services, the current trend of conventional agriculture deliberately aimed on maximizing few 

provisioning services (e.g., food, fodder, fuel) with the simplification of agricultural landscapes 

rather than harnessing a range of ecosystem services (Bommarco et al., 2013; Gaba et al., 2015; 

Robertson and Swinton, 2005) which in turn affects the resilience and sustainability of the 

agricultural systems. 

Remarkably, ecosystem services and system resilience are strongly related to each other. 

Resilient ecosystems can withstand or quickly recover from environmental disturbances such as 

climate perturbations and continue to supply ecosystem services. On the other hand, the 
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ecosystem with lower resilience may be vulnerable to extreme events (Biggs et al., 2012; Fedele 

et al., 2017; Montoya and Raffaelli, 2010). Therefore, the loss of ecosystem resilience could 

compromise ecosystem services that are indispensable for agricultural systems, especially in the 

face of increasing climatic extremes (DeClerck et al., 2016; El Chami et al., 2020; Swift et al., 

2004).  

For example, recharge is an important water-related ecosystem service in agricultural 

systems (Coates et al., 2013; Serna-Chavez et al., 2014). Recharge is the deep percolation of 

water leaving the vadose zone from agricultural farms and contribute to replenishing the aquifers 

and the groundwater-dependent ecosystems such as wetlands and streams (Gordon et al., 2010; 

Sampath et al., 2015). A significant portion of the land area is utilized to grow agricultural crops; 

thus, large quantities of recharge to groundwater occurs from the cropland areas. In the 

meantime, groundwater resources are highly exploited to cater to the requirements of increasing 

human population. Extraction of groundwater above the rate of local recharge has significantly 

reduced the groundwater storage in the aquifers that has affected the baseflow to streams, 

groundwater-fed wetlands, and other dependent habitats and species (Dalin et al., 2017; Scanlon 

et al., 2012; Wada et al., 2010). 

Recharge may behave differently in response to various tillage practices (O’Leary et al., 

2011; Owens, 1994). Since reduced tillage or zero tillage is one of the important principles of 

conservation agriculture, it is important to understand how recharge responds to such tillage 

regimes when conservation practices are implemented at regional scales. If conservation tillage 

could increase the recharge and thereby improve groundwater levels, it will increase the 

resiliency in the face of declining groundwater resources. 
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2.7 Modeling Resilience at a Large Scale  

Resilience in agricultural systems not only confined to farm scales but also expand across 

regional scales (Bailey and Buck, 2016; Scherr et al., 2012). To evaluate the resilience at larger 

scales, appropriate metrics should be measured. However, it is often impossible to measure the 

resilience metrics at regional scales due to the lack of resources to collect data. Meanwhile, 

modeling approaches can be implemented to solve this problem.  

Model is the representation of a conceptualized system, which consists of a set of 

equations to mimic the system's behavior. Models assist in understanding and explaining the 

performance of the systems at different scales. Depending on the structure, functions, and 

purposes, models can be classified as statistical, mechanistic, deterministic, stochastic, dynamic, 

static, process-based, descriptive, and explanatory models (Murthy, 2004).  

Statistical models are based on historical observations, and the relationships between 

inputs and outputs are developed using statistical techniques (Jones et al., 2017a). Mechanistic 

models explain not only the relationships between model parameters but also detail the 

mechanisms of the modeling process. Deterministic models simulate predictions on dependent 

variables without any associated probability distribution, variance, or random element, while a 

probability element is attached to each output in stochastic models. Dynamic models represent 

the behavior of a system; therefore, time is included as a variable; however, static models do not 

include time as a variable; hence dependent and independent variables will have constant values 

over a given period of time. Process-based models are often computer models that use several 

mathematical equations to detail the processes occurring at different levels in a system. 

Descriptive models are used to describe the system without much emphasis on the mechanisms, 
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while explanatory models describe the mechanisms and processes that cause the functioning of 

the systems (Murthy, 2004). 

Most of the crop and hydrological models that are used to evaluate the performances of 

agricultural systems are process-based models (Jones et al., 2017a; Siad et al., 2019). Therefore, 

these models can be implemented to produce resilience metrics such as crop growth, yield, 

revenues, and soil water balances at different scales ranging from field to region. 

2.7.1 Crop Modeling 

Development of crop models to characterize the processes of crop growth began between 

1950-1960 and currently achieved remarkable improvements in agricultural system models 

(Boote et al., 2013; Jones et al., 2017a). Crop models can be broadly categorized into predictive 

and explanatory models (Di Paola et al., 2016). Predictive models are used to predict the yield 

mostly based on empirical functions (i.e., statistical relationships) between environmental 

variables and crop yield using few easily derived parameters. Meanwhile, explanatory models 

are built by considering plant-environment interactions and ecophysiological processes (e.g., 

photosynthesis, leaf area expansion, biomass partitioning) that govern the growth and yield 

formation of crops (Di Paola et al., 2016). Explanatory models are also called process-based 

models and continue to be updated. Meanwhile, the number of parameters that are required to 

explain each process within the model has been increased that ultimately elevate the complexity 

of these models compared to predictive models. Therefore, hybrid models (i.e., mixing both 

empirical and mechanistic approaches) are often used to evaluate the performance of different 

agricultural systems (Di Paola et al., 2016). 

Crop models require weather, soil, crop cultivar, and management information to 

simulate the processes such as photosynthesis, respiration, water and nitrogen balances, 
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phenology, partitioning, and senescence generally at a daily time scale (Boote et al., 2013; Jones 

et al., 2003). Numerous crop models have been developed in various countries. Each of these 

models has its own strengths and weaknesses (Di Paola et al., 2016). Some of the popular crop 

models are; Agricultural Production Systems Simulator (APSIM) (Keating et al., 2003), 

AquaCrop (Vanuytrecht et al., 2014), CropSyst (Stöckle et al., 2003), Daisy (Abrahamsen and 

Hansen, 2000), Decision Support System for Agrotechnology Transfer (DSSAT) (Jones et al., 

2003), EPIC (Williams et al., 1984), InfoCrop (Aggarwal et al., 2006), MONICA (Nendel et al., 

2011), Oryza (Bouman et al., 2001), System Approach to Land Use Sustainability (SALUS) 

(Basso et al., 2006), STICS (Brisson et al., 1998), and WOFOST (Diepen et al., 1989). 

Among these crop models, DSSAT and APSIM operate as a platform for multiple crop 

modules for major food crops. For example, within the DSSAT framework, CERES-Rice, 

CERES-maize, CERES-wheat, and CROPGRO-soybean modules are available to model rice, 

maize, wheat, and soybean crops, respectively (Jones et al., 2003). DSSAT currently consists of 

process-based simulation modules for 42 major crops, and the APSIM has a unique capability of 

modeling intercropping systems (Hoogenboom et al., 2019; Jones et al., 2017b; Keating et al., 

2003).  

DSSAT is the most widely used crop modeling system in the world. The applications of 

DSSAT include the evaluation of genetic improvement (Boote et al., 1996), assessment of the 

impacts of climate change and variability (Fodor et al., 2017; Rosenzweig et al., 2014), 

optimization of management practices such as tillage, water, and nutrients (Iocola et al., 2017; 

Joshi et al., 2017; Kropp et al., 2019; Liu et al., 2013; Malik and Dechmi, 2019; Roy et al., 

2019), evaluation of crop responses to environmental stresses (Liu et al., 2016; Saseendran et al., 

2015) and yield gap analysis (Teixeira et al., 2019). Meanwhile, DSSAT was applied for yield 
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forecasting, disease management, precision farming, decision support, and policy analysis in 

agriculture (Boote et al., 1996; Jha, 2019; Shelia et al., 2015; Thorp et al., 2008). Meanwhile, the 

sequence modeling procedure in DSSAT enables us to simulate crop rotations (Bowen et al., 

1998; Liu et al., 2013; Salmerón et al., 2014).  

Crop models have been successfully used to implement hypothetical experiments and/or 

to simulate field experiments to assess various genetic × environment × management (G×E×M) 

interactions from field to regional scales (Adnan et al., 2019; Balboa et al., 2019; Eitzinger et al., 

2017; Jin et al., 2019; Peng et al., 2020). Increasing access to biophysical data from remote 

sensing and integration of data assimilation techniques have substantially improved the scale of 

implementation of crop models (Jin et al., 2018).  Therefore, crop modeling can help to evaluate 

the resilience of different production systems and to quantify their responses to different 

adaptation measures (Challinor et al., 2018; Rötter et al., 2018). 

2.7.2 Hydrological Modeling 

Hydrological models are used to predict and manage the distribution and fluxes of water 

as a function of various climate, soil, and physiographical characteristics that are used to describe 

the system within the model (Siad et al., 2019). Hydrological models that describe the land 

surface processes are called rainfall-runoff models, and those that describe the processes in the 

saturated zone are referred to as groundwater models. A large number of hydrological models are 

currently available to model hydrological processes from the scale of small catchments to the 

globe (Siad et al., 2019). Some of these models are; Variable Infiltration Capacity (VIC) model 

(Liang et al., 1994), MIKE-SHE (Refsgaard and Storm, 1995), Hydrologiska Byråns 

Vattenbalansavdelning (HBV) (Lindström et al., 1997), Soil and Water Assessment Tool 

(SWAT) (Gassman et al., 2007), Water Evaluation and Planning System (WEAP) (Sieber and 
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Purkey, 2015), Soil Water Atmosphere Plant (SWAP) (Van Dam et al., 2008) and HYDRUS 

(Šimůnek et al., 2012). MODFLOW (Harbaugh, 1995) and Interactive Groundwater (IGW) (Li 

and Liu, 2006) are the commonly available hydrological models to simulate groundwater 

systems. Each model has its unique features and applications, and their choice and 

implementation depend on data availability and modeling objectives. Furthermore, hydrological 

models can be coupled with crop models to better evaluate the water movement through the 

plant-soil-atmosphere continuum (Siad et al., 2019). 

Groundwater models use the finite difference approximation of the governing partial 

differential equation to solve flow conditions in confined and unconfined aquifers as follows 

(Heath, 1983): 

𝑆𝑠
𝜕ℎ

𝜕𝑡
= ∇(𝐾 ∙ ∇𝐻) + 𝑞                                                                                                    (2.8) 

where, Ss is the specific storage coefficient, h is the hydraulic head, t is time, K is the 

saturated hydraulic conductivity, ∇ is the mathematical gradient operator, and q is the net flux 

(i.e., source (+) or sink (-) term).  

Regional groundwater modeling requires numerous data inputs, which include aquifer 

properties, lithology, hydrographic information, land use, climate data, topography, recharge, 

and static water levels (Liao et al., 2020). Calibrated groundwater models are very useful tools to 

evaluate the impacts of land use changes and pumping on the groundwater flow dynamics 

(Sampath et al., 2015), groundwater quality (Curtis et al., 2018), and contaminant transport in the 

saturated zone (Hadley and Newell, 2014). 
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2.8 Adaptation of Resilient Practices 

The adaptation usually refers to the process, action, or outcome of farmers and farming 

systems to better cope with the changing condition, stress, hazard, or risk (Smit and Wandel, 

2006). Climate change adaptation in the context of agriculture could be identified as the 

adjustment of agronomic practices, agricultural processes, and capital investments in response to 

extreme events (Ainsworth and Ort, 2010). Depending on the timing of implementation, 

adaptations can be proactive (anticipatory) or reactive. Based on their degree of spontaneity, they 

could be either autonomous or planned. Adaptation in farming communities is closely related to 

their respective adaptive capacity and vulnerability. The concepts of adaptation, adaptive 

capacity, vulnerability, resilience, exposure, and sensitivity are closely related and have wide 

applications to global environmental changes and its impacts on agricultural systems. 

Vulnerability is determined by both the differential exposure and sensitivity of farming 

communities to climate change and to the adaptive capacities of those communities to deal with 

the effects associated with exposures. Exposure and sensitivity signify the likelihood of 

experiencing detrimental effects, while the livelihood characteristics of agricultural systems 

influence its sensitivity to such exposure (Smit and Wandel, 2006). 

Agriculture has evolved through centuries in different regions of the world; therefore, it 

has an immense diversity of management practices to be used for adaptation to the impacts of 

climate variability. Such practices may involve adjustment of the timing of planting and 

harvesting, replacing crop species and cultivars with more appropriate thermal duration or stress 

tolerance, developing new crop varieties with improved traits, precision management of 

agricultural inputs such as water and nutrients and improvement of climate forecasting to reduce 

the production risks (Delgado et al., 2013; Howden et al., 2007; Minoli et al., 2019). 
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Many agricultural systems can provide both adaptation and mitigation benefits 

synergistically if they are designed and managed appropriately in a large landscape (Harvey et 

al., 2014). This is because most of the agricultural adaptation options for climate extremes have 

positive impacts on mitigation. These include measures that reduce soil erosion, reduce leaching 

of nitrogen and phosphorous, conserving soil moisture, increasing the diversity of crop rotations, 

and modification of microclimate to reduce temperature extremes (Smith and Olesen, 2010). 

Cooper et al. (2009) argued that, the development of temperature-adapted varieties, together with 

improved farm management practices, could result in practically complete mitigation of the 

negative impact of temperature rise and rainfall variability. 

According to Smit and Skinner (2002), the adaptation strategies of farming communities 

in response to climate change can be categorized into four groups namely, technological 

developments (e.g., crop improvement, weather and climate information systems, and resource 

management innovation), government programs and insurance (e.g., agricultural subsidies and 

livelihood support programs, farm insurance, and resource management programs), farm 

practices (e.g., farm production, irrigation, and timing of operation) and farm financial 

management (e.g., crop insurance, crop shares, income stabilization, and household income). 

The ability of farmers to adapt to climate change will depend on several socioeconomic 

factors. Land tenure, farm size, ownership of agricultural assets and livestock, gender, age, and 

availability of inputs decide the technology adoption under climate change (Asfaw et al., 2014). 

In Africa, the adaptation of conservation farming practices (minimum tillage, permanent soil 

cover, and crop rotations) determine by the availability of extension services and rainfall 

variability (Arslan et al., 2014). This shows the role of agro-ecological and socioeconomic 
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constraints in explaining adoption, as well as the potential role and effectiveness of outreach 

programs to support it. 

Recent survey studies among the farmers in the Midwestern United States indicate that 

most of the producers recognized the changing climate (Arbuckle et al., 2013; Doll et al., 2017; 

Mase et al., 2017) and have, therefore, implemented different climate adaptation measures 

(Denny et al., 2019; Morton et al., 2015). For example, farmers who better understand the causes 

and casualties of climate change are increasingly using climate information, conservation 

practices, crop insurance, and other alternative options for mitigating risks to climate change 

(Arbuckle et al., 2013; Haigh et al., 2015; Mase et al., 2017; Morton et al., 2017). However, 

recognition of the threats due to climate change and the rate of uptake of climate-resilient 

practices still inadequate compared to the rate of changes in climate variability (Church et al., 

2017; Lemos et al., 2014). This is because there are many barriers to adaptation and operating at 

different levels. Barriers are the obstacles that hinder the planning and implementation of 

adaptation measures. Generally, farmers are constrained by financial barriers, socio-cultural 

barriers, institutional barriers, technological barriers, and a lack of information on the impacts of 

climate extremes (Antwi-Agyei et al., 2015). To overcome these barriers, a comprehensive and 

dynamic policy approach is required considering all the aspects ranging from individual farmer 

awareness to the establishment of efficient markets (Howden et al., 2007). Moreover, there is a 

need to engage stakeholders at different levels from different sectors with diverse and often 

contesting types of expertise, experience values, and interests (Vervoort et al., 2014).  

2.9 Summary 

Overall, increasing climate extremes have become the major challenge for the rainfed 

agricultural systems in the Midwestern United States. Although farmers have realized the causes 
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and casualties of these extreme climatic events, the uptake of adaptation measures was not 

adequate to face the challenges. Alternative agricultural practices such as conservation 

agriculture and organic agriculture have been introduced and endorsed for adaptation to 

counteract the effects of climate change and variability. However, the resilience of these 

promising management systems has not been adequately quantified due to the lack of metrics to 

capture the temporal variabilities both at field and regional scales. Therefore, carrying out 

research studies to explore the metrics that are practical and able to quantify the resilience of 

different rainfed systems would aid in identifying appropriate options for climate risk 

management in agriculture.                
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3. INTRODUCTION TO METHODOLOGY 

This dissertation comprised of three research studies that are critically important to 

quantify the level of resiliency in agricultural settings. The first paper, entitled “Evaluating the 

Applicability of Soil Moisture-based Metrics for Gauging the Resiliency of Rainfed Agricultural 

Systems,” aimed to develop appropriate metrics to measure the resiliency of rainfed agricultural 

systems at the field scale. Soil moisture is the major limiting factor of crop productivity in 

rainfed agriculture. Hence, the spatiotemporal dynamics of soil moisture is one of the key 

indicators of resilience. We hypothesized that above-average soil moisture during the growing 

season could improve the resiliency of rainfed agricultural systems. Thus, the elevated soil 

moister content can positively affect the growth and yields of crops, especially during climate 

extremes such as droughts. This hypothesis was tested in a long-term crop rotation (corn-

soybean-wheat) setting. The experimental fields were managed under four treatments, namely, 

conventional, no-till, reduced input, and organic treatments. This long-term cropping system 

experiment was located at the W.K. Kellogg Biological Station in the temperate humid climate 

of Southwest Michigan, United States. The data on precipitation, soil moisture, total crop 

biomass, crop yield, and soil organic carbon were collected for the duration of this study. Four 

soil moisture-based metrics, namely, the mean relative difference, Spearman’s rank correlation 

coefficient, the index of temporal stability, and the soil water deficit index, were computed for 

each treatment. Next, the robustness of these metrics under long term (1993-2018) climate 

variabilities was evaluated for reducing drought severity and maintaining/improving growth and 

yield of crops using different statistical techniques.  

The second study, entitled “Evaluating the Climate Resilience in terms of Profitability 

and Farm Risk Management for a Long-Term Corn-Soybean-Wheat Rotation under Different 
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Treatment Systems,” examined the climate resilience of alternative agricultural treatments in 

terms of profitability and risks that are essential concerns of producers. Three alternative 

treatments include the no-till treatment, the reduced input treatment, and the organic treatment, 

were compared against the conventional treatment for the same crop rotation (i.e., corn-soybean-

wheat). The annual crop management and production data for each treatment were obtained for 

the period of study (1993-2018) from the W.K. Kellogg Biological Station. Means and volatility 

of expected net returns and the risk preferences were used as metrics to evaluate the resilience. 

The net returns for each crop production and treatment systems were estimated using static 

enterprise budgeting, while the volatility of net returns was calculated using the relative standard 

deviation. The payoff matrix tool was utilized to assess the risk preferences for each production 

and treatment systems. A statistical mixed model was used to quantify the effects of long-term 

climate variability on the estimated net returns. Finally, resilient treatments were defined as those 

with higher expected net revenues with lower volatility to the conventional treatment and also 

have a wide range of risk preferences for the adaptation. 

The last study, entitled “Quantification of Resilience Metrics as Affected by a 

Conservation Agricultural Practice at a Watershed Scale,” was designed to scale up the 

quantification of resilience from the field scale to a larger scale (e.g., a watershed). This study 

was implemented in the Kalamazoo River watershed located in the Southwestern Michigan of 

the United States. The long-term data collected from the W.K. Kellogg Biological Station for the 

conventional and the no-till treatments were used to develop a sequence crop model to represent 

the corn-soybean-wheat rotation, and this model was calibrated using the yield and soil moisture 

data for the study period (1993-2019). The soil, climate, and land use data were collected for the 

watershed scale simulation. Meanwhile, yield, soil moisture, and recharge values were obtained 
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from the calibrated crop model for different soils and climate within the study area. The net 

return was calculated using an enterprise budget for each crop. Yield, net return, and recharge 

data were analyzed using a mixed model to exploit the statistical significance between two 

treatments. The daily soil moisture data over the growing season was used to compute soil 

moisture metrics, namely, the mean relative difference and the soil water deficit index. The 

annual recharge data comes from the crop model for the agricultural areas, while a calibrated 

groundwater model was used to calculate a long-term mean recharge values from the non-

agricultural areas. This information was integrated to assess the long-term changes in the water 

table under both treatments. Finally, recharge, groundwater table, soil moisture, yield, and net 

return were used to evaluate the overall changes in resiliency as affected by the adaptation of no-

till as a conservation agriculture treatment in the watershed.        
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4. EVALUATING THE APPLICABILITY OF SOIL MOISTURE-BASED METRICS 

FOR GAUGING THE RESILIENCY OF RAINFED AGRICULTURAL SYSTEMS 

4.1 Introduction 

Rainfed agriculture systems account for 80 percent of the croplands in the world and 

contribute to nearly 60 percent of total food production (FAO, 2017). Meanwhile, in the United 

States, about 94 percent of farmland acres are considered rainfed agriculture (USDA, 2014). 

Rainfed agricultural systems in the United States are economically important, ecologically diverse, 

technologically advanced, and are most common in the eastern half of the mainland where annual 

precipitation is greater than 500mm. In this region, the majority of the corn and soybean crops are 

produced from these systems, either as a monocrop or in rotation. The productivity of these crops 

steadily increased in the past as a result of genetic improvements (about 70%) and management 

interventions (about 30%). Moreover, with the development of glyphosate-resistant crop varieties, 

adoption of conservation agriculture practices such as no-tillage has been substantially increased 

to counteract the problems of soil erosion, nutrient leaching and runoff, and yield instability 

(Franzluebbers et al., 2011).  

Regardless of this overall increase in productivity, crop yields have been shown to be 

vulnerable to interannual variability in the climate (Hatfield et al., 2018; Hatfield, 2012; Lesk et 

al., 2016; Thornton et al., 2014). Like in other areas around the world, changes in the regional 

climate in the Midwestern states result in increasing the frequencies of extreme events such as 

droughts, floods, and heatwaves (Andresen et al., 2012; Hatfield et al., 2018; Pryor et al., 2014). 

The water availability for rainfed agriculture is primarily controlled by the seasonal pattern of 

precipitation (intensity and frequency) and its interactions with the soil-plant-atmosphere 

continuum (Rost et al., 2009). This makes rainfed crop production much vulnerable to the effects 
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of climate variability and extremes. For example, the flash drought in 2012 devastated major crops 

and economic base of rainfed farms in the Midwestern region (Fuchs et al., 2012; Mallya et al., 

2013; Otkin et al., 2018, 2016). Flash droughts are associated with decreased precipitation and 

humidity, increased solar radiation, and elevated temperatures, leading to reduced availability of 

soil water to crops (Ford and Labosier, 2017). As highlighted by Rippey, (2015), due to this 

drought development, corn yield in the US has fallen for three consecutive years from 2010-2012 

for the first time since 1928-1930. These climate extremes will have substantial impacts not only 

on the national economy but also on international markets (Boyer et al., 2013).  

Resilience can be generally defined as a capability of a system to recover from stressors 

(Holling, 1973). Therefore, climate-resilience can be considered as the ability of a system to 

maintain its structures and patterns of behavior in the face of climate perturbations. This allows 

the system to continue to provide its services, which in the case of agriculture, is the growth and 

yield of crops (Tendall et al., 2015; Urruty et al., 2016; Walker et al., 2004). It also refers to the 

ability of a system to develop capacities to cope with, adapt, and potentially transform the 

appropriate management practices to face the challenges of the climate shocks and extremes 

(Bousquet et al., 2016). Specific to rainfed agriculture, climate-resilience can be used to describe 

the ability of the components of the system to recover from water stress (Tow et al., 2011). This 

could be achieved by implementing management interventions that will keep the soil moisture at 

relevant levels in a way that extreme climatic events shall not reduce the crop yields significantly. 

Such actions to enhance the climate-resilience in rainfed agriculture can be broadly categorized as 

genetic interventions, informed decisions, and agronomic interventions.  

Genetic interventions involve developing new germplasm with improved tolerance to 

environmental stresses such as drought and heat stress and/or crop genotypes with phenological 
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adjustments to avoid such stresses (Ainsworth and Ort, 2010; Ceccarelli et al., 2010; Davies et al., 

2011). Adoption of these genotypes with improved stress tolerance has increased the climate-

resilience of corn and soybean production systems around the world (Cairns et al., 2012; Chapman 

et al., 2012; Sadok and Sinclair, 2011). Informed decisions refer to the utilization of seasonal 

climate forecast information (Hansen et al., 2011; Meinke et al., 2006). Forecast products such as 

those of NOAA’s climate prediction center (e.g., three-month outlooks) can potentially influence 

most of the agronomic and genetic interventions. Agronomic interventions may include, 

adjustment of planting and harvesting times, altering fertilization rates and irrigation practices 

(Howden et al., 2007; Nouri et al., 2017; Rurinda et al., 2015), mulching (Erenstein, 2003; Qin et 

al., 2015), crop diversification and agroforestry (Altieri et al., 2015; Gan et al., 2015; Lin, 2011; 

Mbow et al., 2014) and adoption of conservation agriculture (Delgado et al., 2013; Michler et al., 

2019). There is also evidence for the improvement of climate-resilience under organically 

managed agricultural systems (Scialabba and Mller-Lindenlauf, 2010; Tuomisto et al., 2012) due 

to the enhancement in soil quality and reduction in environmental impacts. 

In this study, we are mainly focusing on agronomic interventions, especially conservation 

agriculture as climate-resilience practices. Conservation agriculture comprises of three 

management principles: minimum soil disturbance/no-till, permanent soil cover by crop 

residues/cover crops, and crop rotation (Hobbs et al., 2013; Pittelkow et al., 2015a). These 

conservation practices are adopted at various intensities and combinations in the Midwestern states 

to provide varying degrees of resilience to climate shocks and extremes (Denny et al., 2019). In 

comparison to conventional tillage, the no-till/zero-tillage systems showed the highest level of 

climate-resilience as a result of improved water availability and soil quality, that helps to avoid 

substantial reductions in crop yields during extreme climatic events (Delgado et al., 2013; 
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Harrington and Tow, 2011; Michler et al., 2019). In contrast, some other studies (e.g., Pittelkow 

et al., 2015a; Powlson et al., 2014) have shown that no-till reduces crop yields compared to 

conventional tillage and their potential for climate-resilience is limited. Interestingly, Pittelkow et 

al., 2015b, in their comprehensive review, highlighted that no-till, when combined with the other 

two principles of conservation agriculture (residue retention and crop rotation), significantly 

increases the crop yields in rainfed systems. This could be due to the ability of the system to capture 

snow, reduction of runoff and soil evaporation (with the retention of crop residues), and creation 

of better soil structure and rooting patterns through crop rotations to store more water in the root 

zone (Franzluebbers et al., 2011; O’Leary et al., 2011).  

To evaluate responses of varying agronomic interventions of climate-resilience practices, 

there is a need for quantification metrics for system resiliency. Resilience metrics can be used to 

shift a system towards more desirable and sustainable states, track thresholds of potential concerns, 

and help with assessments on how the system is being managed (Quinlan et al., 2016). The 

Committee on Sustainability Assessment (COSA) stated that gauging resilience generally involves 

a holistic approach that incorporates social, economic, and environmental dimensions of resilience 

(COSA, 2017). Because of the complexity and interactions in these three dimensions, food system 

resilience is often assessed qualitatively (Toth et al., 2016). However, qualitative assessments are 

region-specific and subject to variations in assumptions. Therefore, multiple tools have been 

developed to evaluate the climate resilience of food production systems in many parts of the world 

(Douxchamps et al., 2017). These tools have often been applied to large socioeconomic units (e.g., 

households/communities/administrative regions/national scale). For example, the Resilience Index 

Measurement and Analysis Model (RIMA) developed by the Food and Agriculture Organization 

of the United Nations (FAO, 2016), is increasingly used to measure the climate-resilience of 
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agricultural communities in many African countries (Serfilippi and Ramnath, 2018). Other such 

tools are Community Based Resilience Assessment (CoBRA) developed by United Nations 

Development Program (UNDP, 2013), Self-evaluation and Holistic Assessment of climate 

Resilience of farmers and Pastoralists (SHARP) used by FAO (Choptiany et al., 2017), 

Community-based Risk Screening Tool-adaptation and Livelihood (CRiSTAL) developed by 

International Institute for Sustainable Development (IISD, 2014), Climate Vulnerability and 

Capacity Analysis (CVCA) developed by Care International (Care, 2009) and Resilience, 

Adaptation and Transformation Assessment Framework (RATALF) developed by The 

Commonwealth Scientific and Industrial Research Organization (O’Connell et al., 2015). 

In general, these tools use indices known as resilience metrics to evaluate the flexibility of 

a system. Means and variance of agricultural production (Di Falco and Chavas, 2008), crop yields 

(Birthal et al., 2015; Martin and Magne, 2015), profit (Browne et al., 2013; Komarek et al., 2015; 

Seo, 2010), revenue (Kandulu et al., 2012; Rigolot et al., 2017; Tibesigwa and Visser, 2015), labor 

productivity (Komarek et al., 2015), crop failure (Jones and Thornton, 2009), dietary diversity 

(Dillon et al., 2015), farming risks (Komarek et al., 2015), agricultural gross domestic product 

(Hsiang and Jina, 2014), and expenditure for food consumption/food security (Alfani et al., 2015) 

have been used as resilience metrics. These metrics are often used in combination and have shown 

non-linear responses to climate variability depending upon various characteristics of farms and 

farmers (Di Falco and Chavas, 2008; Tittonell, 2014). Despite the growing knowledge in this area, 

there is still no consensus on how resilience should be measured and no universal tool available to 

quantify resilience at different scales. Moreover, existing tools and frameworks often fail to 

capture the spatial and temporal dynamics of resilience (Dixon and Stringer, 2015; Douxchamps 

et al., 2017).  
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To address these challenges, there is a need for new metrics to address the complexity in 

agricultural systems while being simple enough to be measured and adopted by individual farmers. 

Therefore, we propose a new measure to overcome these challenges and constraints by providing 

a case-specific definition of resilience and confining our focus to long-term agronomic 

performance (soil moisture, growth, and yield of crops) under different rainfed agricultural 

systems in an experimental farm scale.  However, it is important to note that this study is only 

focusing on farm-scale resiliency and therefore is not considering other sociological/institutional 

characteristics that are important beyond farm-scale, which can be evaluated through existing 

resilience metrics, which were discussed earlier. In order to achieve this goal, three objectives need 

to be satisfied: 1) rank the relative resilience of different rainfed agricultural systems using the 

metrics of temporal dynamics of soil moisture; 2) evaluate the robustness of the soil moisture 

metrics of temporal dynamics to growth and yield under climate extremes; and 3) compare the 

effectiveness of different rainfed agricultural systems on reducing agricultural drought severity. 

4.2 Materials and Methods 

Root zone soil moisture is the key determinant of productivity in rainfed agricultural 

systems (Jägermeyr et al., 2016). The ability of a system to store a substantial amount of soil 

moisture is one of the key indicators of resilience, as recommended by COSA, (2017). In this study 

we applied a combination of soil moisture-based metrics to gauge the resiliency of rainfed 

agricultural systems. Long-term (1993-2018) agricultural experiment data on soil moisture, total 

crop biomass, crop yield, and soil organic carbon were collected, which provides an excellent 

opportunity to conduct an exhaustive evaluation of resiliency in agricultural systems. We 

hypothesize that a rainfed agricultural system has a higher degree of resilience if it can maintain 

above-average soil moisture; thus, this relative resilience will beneficially affect the yields, 
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especially during periods of climate variabilities (e.g., drought). We test this hypothesis using soil 

moisture-based metrics in four differently managed long-term rainfed row crop treatments, 

namely, conventional treatment (CON), no-till treatment (NT), reduced input treatment (RI), and 

organically managed treatment (OR). These soil moisture-based metrics include three metrics of 

the temporal stability of soil moisture and an agricultural drought index. The soil moisture 

temporal dynamics metrics were selected to evaluate the relative resilience of different rainfed 

agricultural treatments (Objective 1), then we examined the robustness of these soil moisture 

metrics for different crops under climate extremes (i.e., dry and wet years) during the growing 

season. The results of this section can prove whether the soil moisture temporal dynamics metrics 

can be used to evaluate the resiliency of different agricultural systems as measures of growth and 

yield (Objective 2). Finally, an agricultural drought index was selected to evaluate the 

effectiveness of different rainfed agricultural treatments on reducing the agricultural drought 

severity (Objective 3).  

4.2.1 Study Location and Site Description 

This study was conducted at the Kellogg Biological Station (KBS), where Long-Term 

Ecological Research (LTER) experiment is implemented to evaluate the performance of different 

annual and perennial crops under varying management intensity gradients (Robertson and 

Hamilton, 2015). KBS is located in Southwest Michigan at 288 AMSL, within the northern 

boundary of the U.S. Corn Belt (42.41˚ N, 85.37˚ W). For the period of 1981-2010, the mean 

annual air temperature is 10.1 ˚C, and the mean annual precipitation is 1,005 mm, with 511 mm of 

the total precipitation falling as rain during the summer growing season (May-September) (NCEI, 

2019). The evapotranspiration in this region is water-limited during the warmer part of the year 

and energy-limited during the colder months (Mcvicar et al., 2012). The soil of this experimental 
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station is classified as fine-loamy, mixed, mesic Typic Hapludalf (Kalamazoo loam series) 

developed on glacial till and outwash (Syswerda and Robertson, 2014). The texture of the Ap 

horizon (0-30 cm) of this soil is loam or sandy loam (43% sand, 38% silt, and 19% clay). The pH, 

bulk density, and total soil carbon are 5.5, 1.6 g cm-3, and 12.85 g kg-1, respectively (Crum and 

Collins, 1995). The Main Cropping System Experiment (MCSE), established in 1988 (Figure 4.1), 

is comprised of seven model ecosystems namely, four annual row crop systems with different 

management intensity (treatments), Poplar (Populus deltoides × P. nigra), continuous Alfalfa 

(Medicago sativa), and an early successional vegetation community (Robertson and Hamilton, 

2015). For this study, we selected the first four annual row crop treatments that were designed in 

a management intensity gradient. 
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Figure 4.1. The experimental fields of the Main Cropping System Experiment (MCSE) at the 

Kellogg Biological Station (KBS) in Michigan, United States. 
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Crops were established and measurements began in 1989. All agricultural systems within 

the experiment have been managed as rainfed and each of them is assigned to six replicates 

(blocks) of one-ha, plots (87 × 105 m) in a randomized complete block design. The four annual 

row crop treatments consisted of maize (Zea mays)-soybean (Glycine max)-winter wheat (Triticum 

aestivum) rotations managed as (i) conventional treatment (CON), (ii) no-till treatment (NT), (iii) 

reduced input treatment (RI), and (iv) organically managed (USDA certified organic) treatment 

(OR). The conventional treatment is considered as the control. This allows us to measure the 

resilience of selected agricultural systems in comparison to the conventional system. The reasons 

behind the selection of the conventional treatment as control are; 1) majority of the croplands 

(>85% globally and >65% in the United States) are under conventional agriculture (Kassam et al., 

2019) and 2) conventional system has been identified as the significant contributor of pollutions 

to the environment (Foley et al., 2011; Meier et al., 2015).  

All row crop treatments were planted and harvested at the same time. A routine 

experimental design was followed only from 1993; therefore, we confined this study for the period 

of 1993-2018. The detailed description of the four annual row crop treatments is presented in the 

Supplementary Materials section (Table S4.1). 

4.2.2 Data Collection 

To achieve the objectives of this research, gravimetric soil moisture, soil organic carbon, 

total crop biomass, and yield were measured for the period (1993-2018) from the experimental 

plots at KBS. Gravimetric soil moisture data were collected, and then respective bulk density data 

were used to convert it into volumetric soil moisture. This volumetric soil moisture data was used 

to calculate the metrics of soil moisture temporal dynamics to evaluate the relative resilience of 

different rainfed agricultural treatments (Objective 1). In addition, soil organic carbon data were 
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collected to explore its associations with observed soil moisture dynamics. Total crop biomass and 

yield data were collected to evaluate the robustness of the soil moisture metrics to gauge resiliency 

to climate extremes in terms of growth and yield of crops (Objective 2). Finally, the volumetric 

soil moisture data was used to calculate the drought index to evaluate the effectiveness of different 

rainfed agricultural treatments on reducing the agricultural drought severity (Objective 3). 

Soil moisture: Gravimetric soil moisture measurements began in 1989 in all MSCE 

agricultural treatments. These measurements were employed each year, typically biweekly 

throughout the growing season (April-October). Soils were collected from five permanent 

sampling stations established in each replicate (plot). Two soil cores were taken from each 

sampling station using soil augers to represent 0-25 cm depth. These ten samples then composited 

by the physically mixing of individual soil cores taken within a replicate into one homogenous 

sample. Composite soil samples were sieved through a 4 mm screen to remove debris and 

homogenize the sample. About 40-50 g of sieved composite samples were taken into soil moisture 

cans, and then oven-dried to a constant weight, at least 24 hours at 105 ˚C. The gravimetric soil 

moisture (θg) was calculated as follows (Reynolds, 1970): 

𝜃g =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑜𝑖𝑠𝑡 𝑠𝑜𝑖𝑙−𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙
             (4.1) 

Bulk density: Bulk density is used to convert gravimetric soil moisture into volumetric 

soil moisture. It was measured by taking core samples at different soil horizons (Blake and 

Hartge, 1986). In this study, we used the gravel-free bulk density values measured at 0-25 cm 

depth. Bulk density (BD) was calculated as follows (Carter and Gregorich, 2008):  

𝐵𝐷 =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑐𝑜𝑟𝑒 (𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒)
              (4.2)  
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Bulk density measurements were available for MCSE during the years of 1996, 2001, 2010 

and 2013. Therefore, bulk density measurements from the years 1996, 2001, 2010 and 2013 were 

used to convert gravimetric soil moisture measurements for the periods of 1993-2000, 2001-2009, 

2010-2012, and 2013-2018, respectively. Equation 4.3 (Evett, 2008) was used to covert 

gravimetric soil moisture into volumetric soil moisture (θv), assuming the density of water is 1 

gcm-3. 

𝜃v =  𝜃g × 𝐵𝐷                (4.3) 

Soil organic carbon: Soil organic carbon from the surface soils for each treatment and 

respective replicates was available for the period of 1989-2001. Even though the measurements 

have been made for total soil carbon (organic and inorganic forms), extensive testing of KBS 

surface soils has shown soil inorganic carbon to be non-detectable; thus, total soil carbon is 

identical to total organic carbon. To measure the total soil carbon, subsamples were oven-dried at 

60 ̊ C for at least 48 hours until no further mass loss occurs. Dried and finely grounded soil samples 

are weighed into small foil capsules which are combusted in an automated CHN (carbon, hydrogen 

and nitrogen) analyzer that measures the amount of released CO2 using gas chromatography. Soil 

carbon values are expressed as a percentage of carbon in dry soil. We utilized these soil organic 

carbon values to explore its associations with soil moisture dynamics. 

Crop biomass and yield: Total crop biomass was measured from 1993 at peak growth of 

biomass. Aboveground biomass hand-clipped within 1 m2 quadrat at each of the five sampling 

stations per replicate, once in a growing season. Collected biomass was oven-dried at 60 ˚C for 48 

hours and weighed. Seed yield of crops was measured during crop harvest determined by machine 

harvesters appropriate to each crop. The standardized moisture content for yield measurement was 

15.5% for corn and 13% for wheat and soybean.   
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4.2.3 Calculating the Metrics of temporal Dynamics of Soil Moisture to Examine the Relative 

Resilience of Different Rainfed Agricultural Treatments     

Metrics of the temporal dynamics of soil moisture are the mean relative difference 

(MRD), index of temporal stability (ITS), and non-parametric Spearman’s rank correlation 

coefficient (rs). MRD is used to present the relative ranks of different rainfed agricultural 

treatments in terms of root zone soil moisture content, ITS is used to show the variability of the 

MRD ranking over the growing season and rs was used to indicate the persistence of the relative 

MRD ranks over the period of study (Jacobs et al., 2004; Joshi et al., 2011; Vachaud et al., 

1985). In the past, temporal stability analysis of soil moisture was used to identify time-stable 

points or representative locations to employ monitoring networks/sensors (Barker et al., 2017; 

Brocca et al., 2010; Starks et al., 2006; Zhou et al., 2007) and/or to validate remote sensing soil 

moisture products (Cosh et al., 2008; Jacobs et al., 2004; Joshi et al., 2011; Wagner et al., 2008). 

In other studies, the metrics were used to study the spatiotemporal dynamics of soil moisture in 

hillslope (Gao et al., 2016; Liu et al., 2018) or under different land use (Hu et al., 2010) or in 

diverse soil layers (Gao and Shao, 2012; He et al., 2019). In this study, we will use these metrics 

to gauge the relative resilience of different rainfed agricultural treatments. 

Mean Relative Difference: MRD was introduced by Vachaud et al. (1985) to study the 

temporal stability of spatially measured soil moisture. The mean relative difference (equation 

4.4) together with the index of temporal stability (equation 4.7) have been used in the 

spatiotemporal analysis of soil moisture (Gao and Shao, 2012; He et al., 2019; Joshi et al., 2011; 

Liu et al., 2018). Here, we use these metrics to evaluate the spatiotemporal dynamics of soil 

moisture across different agricultural treatments. The MRD (% cm3/cm3) for treatment in a 

particular growing season (year) is defined as:              
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𝑀𝑅𝐷 =  
1

𝑁𝑡
∑ [(Ɵ𝑣 −  Ɵ̅)/ Ɵ̅𝑁𝑡

𝑡=1 ]              (4.4) 

Ɵ̅ =  
1

𝑁𝑇
∑ Ɵ𝑣𝑁𝑇

𝑇=1                  (4.5) 

where, θv is the volumetric soil moisture (% cm3/cm3) measured in a treatment T at time 

t. Ɵ̅ is the mean volumetric soil moisture of all treatments. NT is the number of treatments. Nt is 

the number of soil moisture measurements (sampling days) during the particular growing season.  

A negative MRD value indicates that the treatment is drier than the field-averaged soil 

moisture, whereas a positive MRD value signifies that the treatment is wetter than the field mean 

soil moisture (Joshi et al., 2011). 

Variance of Relative Difference (VRD): The variance of the relative difference for each 

treatment is calculated as:    

𝑉𝑅𝐷 =  
1

𝑛𝑡−1
∑ {

Ɵ𝑣−Ɵ̅

Ɵ̅
− 𝑀𝑅𝐷}

2
𝑁𝑡
𝑡=1              (4.6) 

The MRD quantifies the deviation of the soil moisture in a particular treatment, and the 

VRD quantifies the accuracy of that measurement (Joshi et al., 2011). Here we calculated VRD 

to derive ITS in the next step (equation 4.7).  

Index of Temporal Stability: ITS can be derived by considering both MRD and VRD 

(He et al., 2019; Jacobs et al., 2004; Liu et al., 2018); therefore, ITS represents both bias and 

accuracy metrics.: 

𝐼𝑇𝑆 =  √𝑀𝑅𝐷2 + 𝑉𝑅𝐷               (4.7)  

In a rank ordered MRD and ITS plot, treatments with MRD values close to zero and with 

smaller ITS values can be considered temporally more stable (He et al., 2019; Joshi et al., 2011; 



   

 

53 

 

Liu et al., 2018). However, our intention in this work is to find out relatively wetter treatment 

(i.e., positive MRD). Because we hypothesized that if an agricultural system can hold more soil 

moisture due to conservation practices (e.g., no-till) during the growing period than a 

conventional system, it would positively be affecting the growth and yield of crops in rainfed 

agricultural systems.  

Non-parametric Spearman’s rank correlation coefficient: The non-parametric 

Spearman’s rank test (Vachaud et al., 1985) was used to examine the persistence of MRD ranks 

over the 26-year study period for each treatment. The rs is expressed as:  

rs = 1 −  
6 ∑ (𝑅𝑖𝑗 −𝑅𝑖𝑘)𝑛

𝑖=1

𝑛(𝑛2−1)
               (4.8) 

where, Rij is the rank of MRD in treatment i on the year j, Rik is the rank of MRD in 

treatment i on the following year k, and n is the number of years. The rs was calculated for each 

agricultural system where rs of 1, for any treatment, represent the MRD having the same rank 

between the years j and k. Therefore, higher values of rs (values closer to 1) represent higher 

temporal persistence of relative ranking over the study period (Liu et al., 2018).  

4.2.4 Evaluate the Sensitivity of the Mean Relative Difference of Soil Moisture to Climate 

Variability and its Reflections on Crop Growth and Yield in Different Treatments     

Long-term experimental data on soil moisture, total crop biomass, crop yield, and soil 

organic carbon were collected from KBS-LTER data catalog and processed using a python script 

in Wing Pro Version 7.1.2 (Wingware, Cambridge, Massachusetts, USA) and Microsoft Excel 

Version 2016 (Microsoft Corporation, Redmond, Washington, USA). In this study, a mixed 

model (Milliken and Johnson, 2009) was used to explore the statistical significance of random 

and fixed effects of independent variables on selected response variables.  
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The statistical model for evaluating the effects of treatment, climate variability and year 

on selected response variables (i.e., MRD, total crop biomass and yield) was specified as:  

yijk = µ + clim + trti + yrk + trti × clim + blkj(yrk) + trti × yrk + eijk                               (4.9)    

where, yijk: is the vector of observation (response variable) collected for the ith treatment, 

within jth block on the kth year. µ: is the overall mean, trt: is the fixed effect of treatments, which 

represents different agricultural systems, blk: is the random effect of the replications (blocks) 

nested within years, clim: is the fixed effect of the climate variability (dry, normal and wet), yr: 

is the random effect of the year, trt × clim: is the interaction between the effects of treatment and 

the fixed effect of climate variability, trt × yr: is the interaction between the effects of treatment, 

the random effect of the year, and e is the residual. The effect of seasonal mean temperature was 

also initially included in the statistical model as a fixed effect; however, the temperature effect 

and all the interaction terms with temperature were non-significant at p≤0.05 for all studied 

response variables. Thus, we decided not to include the effect of seasonal mean temperature in 

the final statistical model. The non-significant effect of seasonal mean temperature was most 

likely a result of a little coefficient of variation (CV = 4.8%) observed for this continuous 

variable. The normality of the residuals and homogeneity of variances were checked for each 

response variable (Milliken and Johnson, 2001). The data for all response variables were normal, 

and their variances were homogenous.  

Analyses were performed by crop (separately for each crop), using PROC GLIMMIX 

procedure (Milliken and Johnson, 2009) in SAS software version 9.4 (SAS Institute Inc. Cary, 

North Carolina, USA). Fixed effects were tested using F-test (Steel et al., 1980), and random 

effects were tested using Wald test for covariance (Wald, 1943). Tukey Test for mean separation 

was performed when significant differences were detected for the fixed effects (Lee and Lee, 
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2018), and significant differences were evaluated at the 0.05 probability level (Steel et al., 1980). 

Pearson’s correlation analysis (Weaver et al., 2017) was performed using MINITAB 15 

(Minitab, LLC. State College, PA, USA) to determine the relationship between MRD vs. soil 

organic carbon. 

4.2.5 Compare the Effectiveness of Different Treatments on Reducing Agricultural Drought 

Severity 

Agricultural drought is defined as a period of soil moisture deficiency resulted in the 

shortage of precipitation that occurs for a few weeks of duration (Esfahanian et al., 2017). 

Drought is the major growth- and yield-limiting abiotic stress in rainfed agricultural systems. A 

U.S. based study estimated yield reductions in row crops as high as 8% in the rainfed agriculture 

counties of Midwest due to recent drought events (Kuwayama et al., 2019). Moreover, increasing 

climate variability and extremes make rainfed agriculture more vulnerable to droughts (Hatfield 

et al., 2018), which increases the adoption of conservation practices among farmers (Ding et al., 

2009). Therefore, we decided to evaluate the impacts of these treatments on agricultural drought 

severity and occurrence using the Soil Water Deficit Index (SWDI). SWDI was considered for 

this study since it requires fewer inputs and is more widely used than other agricultural drought 

indices such as Palmer Moisture Anomaly Index (Alley, 1984; Palmer, 1965), Soil Moisture 

Deficit Index (Narasimhan and Srinivasan, 2005), and Evapotranspiration Deficit Index 

(Narasimhan and Srinivasan, 2005). In addition, when time-series soil moisture measurements 

are available from the root zone, SWDI can be successfully implemented at field scale to assess 

agricultural drought 

(Martínez-Fernández et al., 2015) with the additional information on field capacity and 

permanent wilting point of that particular soil. Ultimately, the evaluation of the agricultural 
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drought severity will enable us to gauge the relative resilience of different rainfed agricultural 

systems.   

Categorization of climate variability: Total seasonal precipitation (April-October) for the 

period of 30 years (1989-2018) was collected from the KBS weather station located within the 

experimental site, and the probability distribution was calculated to categorize the climate 

variability, namely dry years (cumulative probability less than 33.3%), normal years (cumulative 

probability in between 33.3% and 66.6%) and wet years (cumulative probability greater than 

66.6%) as shown in Figure 4.2. 

 

Figure 4.2. Cumulative probability distribution of seasonal precipitation for the period of 30 

years (1989-2018) at KBS weather station. 
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Based on the frequency analysis explained above, dry years were categorized as the years 

that the seasonal precipitation ≤ 580 mm, wet years were categorized as the years that the 

seasonal precipitation ≥ 700 mm and normal years were categorized as the years that seasonal 

precipitation is in between. Classification of the entire experimental period (1993-2018) into the 

above climate variability categories for each crop in the rotation is given in Table 4.1. 

Table 4.1. Climate variability for each crop in the rotation. 

Crop Categories of climate 

variabilities 

Years 

Corn Dry years 1996, 1999, 2002, 2005 

Normal years 1993, 2014, 2017 

Wet years 2008, 2011 

Soybean Dry years 1997, 2012 

Normal years 2003, 2009 

Wet years 1994, 2000, 2006, 2015, 2018 

Wheat Dry years 1995, 1998, 2007 

Normal years 2004, 2010, 2016 

Wet years 2001, 2013 

 

Soil Water Deficit Index (SWDI): Soil water deficit index is an agricultural drought 

indicator developed by Martínez-Fernández et al. (2015) based on water deficit accumulation or 

soil water storage. SWDI is the fraction between the differences of i) volumetric soil moisture 

and field capacity, and ii) plant available water content, which is the difference between field 

capacity and permanent wilting point. This fraction is then multiplied by 10 to obtain SWDI 

(equation 4.10), and the respective drought severity levels:   

   𝑆𝑊𝐷𝐼 =  {
𝜃𝑣−𝜃𝐹𝐶

𝜃𝐹𝐶−𝜃𝑊𝑃
}  × 10            (4.10) 

where, θv is the volumetric soil moisture (% cm3/cm3), θFC is the field capacity (% 

cm3/cm3) of the soil, and θWP is the permanent wilting point (% cm3/cm3). The SWDI is 

calculated for the root zone on all the dates of soil moisture measurement for each treatment 
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during the growing season. The median volumetric soil moisture of six replicates was used to 

calculate SWDI. Since the soil texture of this experimental station is fine-loamy, we selected the 

field capacity value of 27% and the wilting point of 12% as proposed by Ratliff et al. (1983) and 

Hanson et al. (2000). When SWDI is positive, the soils have excess water; when it equals zero, 

the soil is at the field capacity (i.e., no water deficit). A negative MRD indicates the drought, and 

the water deficit is absolute (wilting point) when the SWDI reaches ≤ -10. After this point, the 

soil water content falls below the lower limit of plant-available water (Savage et al., 1996). 

Based on calculated SWDI, drought severity can be categorized as “no drought” if SWDI > 0, as 

“mild” if 0 > SWDI > -2, as “moderate” if -2 > SWDI > -5, as “severe” if -5 > SWDI > -10, and 

as “extreme” if -10 > SWDI (Martínez-Fernández et al., 2015). 

The number of droughts in each severity category was added for each treatment during 

the study period 1993-2018, and the percentage of drought events was calculated and compared 

under the categories of climate variability (dry, normal, and wet years). Moreover, SWDI for the 

entire study period (1993-2018) was organized in descending order for each treatment to perform 

probability analysis as described by Alizadeh (2013). This would allow analyzing the behavior of 

drought severity under different treatments in response to climate variability.   

4.3 Results and Discussion 

4.3.1 Ranking the Resilience of Soil Moisture in Different Treatments  

As discussed earlier, we hypothesize that if soil moisture in an agricultural system can 

remain wetter than the conventional (control) system over the growing season due to treatment, it 

would beneficially affect the growth and yield of crops in rainfed agriculture. Therefore, 

treatments were ranked on the ascending order of MRD for the study period (1993-2018) and 
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presented together with ITS for each climate variability category as dry years (Figure 4.3), 

normal years (Figure S4.1), and wet years (Figure S4.2).  

 

Figure 4.3. Ranked MRD of volumetric soil moisture and ITS for each treatment during the dry 

years.  Note: Crop grown is given next to the respective year for each plot. CON: Conventional 

treatment; NT: No-till treatment; RI: Reduced input treatment; OR: Organic treatment. 

 

According to the relative positions of MRD during dry years (Figure 4.3), a no-till 

treatment maintained higher soil moisture (and higher MRD) than a conventional treatment. 

Similarly, the organic treatment always performed better than the reduced input treatment, while 

the conventional treatment performed better than the reduced input treatment in the majority of 

years. During normal and wet years, no-till and organic treatments were better than the 

-0.3

-0.1

0.1

0.3

RI OR CON NT

2012-Soybean
-0.3

-0.1

0.1

0.3

RI CON OR NT

2007-Wheat
-0.3

-0.1

0.1

0.3

RI CON OR NT

2005-Corn

-0.3

-0.1

0.1

0.3

RI CON OR NT

2002-Corn
-0.3

-0.1

0.1

0.3

RI OR CON NT

1999-Corn
-0.3

-0.1

0.1

0.3

RI OR CON NT

1998-Wheat

-0.3

-0.1

0.1

0.3

CON RI OR NT

1997-Soybean
-0.3

-0.1

0.1

0.3

CON RI OR NT

1996-Corn
-0.3

-0.1

0.1

0.3

RI CON OR NT

1995-Wheat

M
e

an
 R

e
la

ti
ve

 D
if

fe
re

n
ce

 (
M

R
D

)/
 In

d
ex

 o
f 

Te
m

p
o

ra
l S

ta
b

ili
ty

 (
IT

S)

a. b. c.

d. e. f.

g. h. i.

Treatment



   

 

60 

 

conventional treatment, while reduced input treatment performed equally to the conventional 

treatment in most of the normal and wet years (Figures S4.1 and S4.2).  

Table 4.2 presents the number of occurrences in each rank, based on MRD and the 

relative positions of MRD (either negative or positive) for different categories of climate 

variability. The rankings are based on the ascending order of MRD in which a wetter system is 

represented by the highest-ranking (rank=4). During dry and normal years, the majority of the 

times, the conventional treatment represents the second rank, the no-till treatment represents the 

fourth rank, reduced input treatment represents the first rank, and the organic treatment 

represents the third rank. This indicates that the no-till treatment is the wettest and organic 

treatment is wetter than the conventional treatment; however, the reduced input treatment is drier 

than the conventional treatment during dry and normal years. During wet years, the majority of 

the times conventional treatment represents the lowest rank (i.e., rank 1) thus it was the driest of 

the treatments, while no-till treatment represents the highest rank (i.e., rank 4) thus wettest of the 

treatments. Organic and reduced input treatments fall in between; however, the organic treatment 

is still wetter than the reduced input treatment.  

Concerning the relative positions of MRD, the no-till treatment is wetter (100% of years 

having positive MRD) than all other treatments during dry, normal, and wet years. The organic 

treatment performs similar to the conventional treatment, while the reduced input treatment is 

drier than conventional treatment in dry years (100% of years having negative MRD). During 

normal and wet years, the organic treatment is wetter in ≥50% of years, which is higher than the 

conventional treatment. Meanwhile, the reduced input treatment performs equally to the 

conventional treatment during normal and wet years. 
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Table 4.2. Relative positions and ranking based on MRD, and their respective percentages for 

each agricultural system under each climate variability category.  

Category of 

climate 

variability 

Treatment* 

Relative positions 

of MRD 

(Percent of the total 

years) 

Ranking based on MRD 

Number of occurrences in each 

rank  

(Years) 

MRD<

0 

MRD>0 
1 2 3 4 

Dry years CON 77.8 22.2 2  4 3 0 

NT 0 100 0  0  0 9 

RI 100 0 7  2  0  0  

OR 77.8 22.2 0  3 6  0  

Normal years CON 87.5 12.5 2  5  1  0  

NT 0  100 0  0  1  7  

RI 87.5 12.5 6  2  0  0  

OR 50 50 0  1  6  1  

Wet years CON 100 0  5  4  0  0  

NT 0 100 0  0  0  9  

RI 100 0 3  5  1  0 

OR 44.4 55.6 1  0 8  0  
*CON: Conventional treatment; NT: No-till treatment; RI: Reduced input treatment; OR: Organic treatment. 

 

The highest level of soil moisture resilience shown by the no-till treatment irrespective of 

climate variability. This can be due to improved soil water dynamics. In the no-till treatment, a 

greater amount of crop residues is retained in the soil compared to the conventional treatment 

(Palm et al., 2014; Pittelkow et al., 2015b). As a result, organic matter and biotic activity 

significantly increase in the topsoil, which leads to greater wet aggregate stability and macropore 

connectivity while reducing soil compaction (Blanco-Canqui and Ruis, 2018; Palm et al., 2014; 

Perego et al., 2019). Therefore, water infiltration increases, surface runoff, and soil evaporation 

decreases, which results in an increased amount of plant-available water (Liu et al., 2013; Palm 

et al., 2014; Thierfelder et al., 2013; Thierfelder and Wall, 2009). The impact of the no-till 

treatment on higher soil moisture and water use efficiency is also evident under irrigation 

(Gathala et al., 2013; Grassini et al., 2011). The average measured soil organic carbon in our 



   

 

62 

 

experiment for the 13-year period (1989-2001) supports these arguments where the no-till 

treatment had significantly higher soil organic carbon than the conventional treatment (Figure 

S4.3). Additionally, the organic treatment and the reduced input treatment also had significantly 

higher soil organic carbon compared to the conventional treatment. However, accumulation of 

soil organic carbon in tilled reduced input and organic treatments are unlikely and may be a 

result of leguminous winter cover crop established in these treatments (Robertson et al., 2014). 

We also found a significant positive correlation between the mean relative difference (MRD) of 

volumetric soil moisture and the soil organic carbon (Figure S4.4). This highlights the increase in 

soil moisture retention with increasing soil organic carbon, which was observed in the no-till and 

the organic treatments. This is one of the main reasons for the increasing yield of crops with 

increasing soil organic carbon (Oldfield et al., 2019) unless other resources are limited. The next 

best treatment in terms of soil moisture resilience was the organic treatment. This can be due to 

increased biological activity such as an abundance of earthworms that could beneficially affect 

the soil water dynamics; however, activity of earthworms will be limited in other systems as a 

result of the application of herbicides (Bai et al., 2018). Moreover, leguminous winter cover 

cropping may also have beneficially affected the soil water dynamics in the organic system 

(Basche et al., 2016). Even though the reduced input system had a leguminous winter cover crop, 

it had the lowest soil moisture resilience may be because of the impacts of herbicides on soil 

structure by reducing soil biological activities (Basche and DeLonge, 2019).  

As we look for an agricultural system with higher MRD, most of the time, the system 

with greater MRD also has higher ITS (Figures 4.3, S4.1, and S4.2). However, under a few 

instances, lower MRD can obtain a higher ITS. This can be explained by Equation 4.7 in which 

the ITS is always a positive value regardless of whether MRD is a positive or negative number. 
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Therefore, ITS is not a suitable metric for gauging the resilience of an agricultural system as 

related to soil moisture temporal dynamics in a growing season.  

4.3.2 Temporal Persistence of Soil Moisture in Different Treatments 

Spearman’s rank correlation coefficient (rs) of different treatments for the duration of the 

study (1993-2018) is shown in Figure 4.4. Accordingly, the no-till treatment showed the highest 

temporal persistence (rs≈1), highlighting its ability to maintain greater resilience of soil moisture 

among other treatments for the long-term (26-years). The conventional treatment showed the 

lowest temporal persistence. This is due to its ranking of the MRD, which behaves differently in 

different years (Figures 4.3, S4.1, and S4.2). Thus, the ability of the conventional treatment to 

maintain the resilience of soil moisture for an extended period is limited. The temporal 

persistence of the organic treatment and the reduced input treatment fall in between conventional 

and no-till treatments; however, the organic treatment performs a little better than the reduced 

input treatment. Therefore, the ability of the organic treatment to maintain the resilience of soil 

moisture for a long period is greater than the reduced input treatment. This observation is in 

support of the long-term effects of the no-till treatment in soil moisture conservation (Bai et al., 

2018; Lampurlanés et al., 2016). Moreover, Castellini et al. (2019) detected a significantly higher 

number of micropores under the long-term no-till treatment compared to the conventional 

treatment. This can be another reason for the highest temporal persistence of soil moisture in the 

no-till treatment. Meanwhile, the moderate level of temporal persistence of soil moisture 

observed for organic and reduced input treatments can be attributed to increased soil moisture 

conservation with the winter cover crop applied to these treatments (Basche et al., 2016). Cover 

crops are also beneficial in reducing annual deep drainage and soil evaporation (Yang et al., 

2020), thereby increasing soil water availability in the root zone.   
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Figure 4.4. Spearman’s rank correlation coefficient of different treatments for the duration of the 

study.  CON: Conventional treatment; NT: No-till treatment; RI: Reduced input treatment; OR: 

Organic treatment. 

  

4.3.3 Evaluating the Effects of Treatments and Climate Variability on Mean Relative 

Difference of Soil Moisture and its Reflections on Growth and Yield of Crops 

The mixed model (equation 4.9) explained in Section 2.5 was used to analyze the MRD, 

total biomass (at peak growth), and yield, considering them as response variables for individual 

crop types. The probability of the effects on the above response variables on each crop is 

presented in Table S4.2. Accordingly, the effect of treatments (trt) on MRD was strongly 

significant (p<0.0001) for all crops. However, the effect of climate variability (clim), year (yr), 

and interaction terms (trt × clim and trt × yr) were not significant. This means that MRD can be 

used to differentiate the impacts of different treatments regardless of climate variabilities and the 

random yearly effects. For total biomass and yield the effect of treatment (trt) was strongly 

significant (p<0.0001) in corn and wheat while it was significant (p<0.05) in soybean. Therefore, 
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we first compared the treatments against the means of MRD, means of total biomass, and means 

of yield for each crop type in Table 4.3: 

Table 4.3. The means of MRD, total biomass and yield for different treatments and crop types*. 
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CON -0.0549c 14.26a 6.78b -0.0551c 5.33a 2.40b -0.0202b 8.07a 3.74a 

NT 0.1121a 15.08a 7.80a 0.1055a 5.46a 2.83a 0.1293a 8.45a 3.90a 

RI -0.0602c 14.45a 6.81b -0.0492c 5.21ab 2.62ab -0.0742b 6.86b 3.38b 

OR 0.0136b 10.14b 4.30c 0.0072b 4.81b 2.33b -0.0204b 4.59c 2.08c 

* Means with the same letter in each column are not significantly different at p<0.05. CON: Conventional 

treatment; NT: No-till treatment; RI: Reduced input treatment; OR: Organic treatment. 

 

The comparison of treatments versus means of MRD (Table 4.3) showed that the no-till 

treatment had significantly higher MRD than the conventional treatment, which was ultimately 

reflected on the yield where it was significantly greater under the no-till treatment in corn and 

soybean. However, significantly higher MRD was not reflected in the growth where the biomass 

under the no-till treatment was not significantly different from the biomass under the 

conventional treatment. MRD in the reduced input treatment was not significantly different from 

the conventional treatment, which was reflected in the growth and yield of corn and soybean, 

where their biomass and yield were not significantly different (Table 4.3). Meanwhile, the MRD 

in the organic treatment was significantly greater than that in the conventional system for corn 

and soybean (Table 4.3). This was not reflected in the growth as it was significantly lower in the 

organic treatment for both crops. Furthermore, the yield of corn was significantly lower in the 

organic treatment than the conventional treatment. In contrast, the yield of soybean in the organic 

treatment was not significantly different from the yield in the conventional treatment. In wheat, 

MRD was significantly higher in the no-till treatment than the conventional treatment; however, 

growth and yield were not significantly different. Moreover, MRD in the reduced input and 
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organic treatments was not significantly different from the conventional treatment in wheat; 

however, growth and yield were significantly lower in these two treatments than the 

conventional treatment. 

In addition to significant treatment effects (trt), the interaction between treatment and 

climate variability (trt × clim) was also significant for the total biomass and yield of crops (Table 

S4.2). The occurrence of treatment by climate interaction (trt × clim) highlights that the 

performances of treatments change in different categories of climate variability; thus, worthy of 

an investigation. As shown in Figure S4.5, the cereals (corn and wheat) presented the highest 

growth and largest grain yield in the normal years, while the wet years produce higher growth 

and yield for soybean. Furthermore, we are particularly interested in the total biomass and yield 

performances of treatments under dry extreme of the climate variability. Total biomass of corn 

and soybean were not different among the treatments (Figure S4.5; a and b) during dry years. 

However, the no-till treatment had equivalent total biomass for wheat to that in the conventional 

treatment, while wheat growth was smaller in the reduced input and organic treatments (Figure 

S4.5; c). The no-till treatment produces higher yields than the conventional treatment for 

soybean and wheat during dry years (Figure S4.5; e and f) while corn yield in the no-till 

treatment was similar to that in the conventional treatment (Figure S4.5; d). Dry year yields of 

corn and soybean under the reduced input treatment and the organic treatment were comparable 

to the yields under the conventional treatment (Figure S4.5; d and e); however, these treatments 

did not perform well on the yield of wheat compared to the conventional treatment (Figure S4.5; 

f). Furthermore, the interaction between treatment and year (trt × yr) was also significant for the 

total biomass and yield of corn (Table S4.2). The occurrence of treatment by years interaction 

(trt × yr) is expected due to the number of years evaluated (26-years). In addition, this can be 
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originated from interannual variations on other above- and below-ground environmental 

variables (e.g., solar radiation, vapor pressure deficit, and nutrient dynamics) which could also 

affect the growth and yield but were not included in the model (equation 4.9) used for this study. 

In summary, significantly greater soil moisture retention, as quantified by MRD under the 

no-till treatment, was reflected on the significantly higher yields in corn and soybean than the 

conventional treatment when averaged across all the years. Moreover, the no-till soybean and 

wheat produced substantially higher yields than the conventional soybean and wheat during dry 

years. Similar to our study, significantly higher yields under the no-till treatment were also 

observed in several previous studies when combined with crop residue retention in long-term 

crop rotations (Corbeels et al., 2014; Deines et al., 2019; Pittelkow et al., 2015b; Rusinamhodzi 

et al., 2011). Moreover, Syswerda et al. (2012) found significantly lower nitrate leaching loss 

under the no-till treatment than the conventional treatment in this same experiment at KBS-

LTER. Hence, the no-till treatment has the ability to use a greater amount of nitrogen in the 

process of yield formation.  

Although the organic treatment had significantly greater MRD in corn and soybean than 

the conventional treatment, it did not produce significantly higher biomass or yield. However, 

organic soybean yield was equivalent to the conventional treatment even during dry years. 

Significantly higher MRD for no-till and organic treatments in corn and soybean than the 

conventional treatment signifies a greater soil moisture retention over the growing season under 

no-till and organic treatments. As previously discussed, this can be attributed to the improvement 

in soil physical properties and soil organic carbon with these conservation systems (Hobbs et al., 

2008; Valkama et al., 2020; Verhulst et al., 2010; Williams et al., 2017). Additionally, the 

decrease in evaporation, increase in infiltration, and the ability to store more soil moisture under 
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no-tillage produces greater soil water storage (Blevins et al., 1971; Lal et al., 2012; Lampurlanés 

et al., 2016). Meanwhile, the major reason behind the significant growth and yield reduction, 

especially in cereal crops (i.e., corn and wheat) with the organic treatment versus the other 

treatments, was nitrogen deficiency as organic treatment lacks exogenous nitrogen fertilizer 

application (Robertson et al., 2014). Growth and yield reduction were evident even if though 

higher soil water retention was shown to be higher for organic treatment than the conventional 

and reduced input treatments in our study. Interestingly, the yield of soybean in the organic 

treatment was comparable to that in the conventional and reduced input treatments even during 

dry years. This is because soybean has a synergistic relationship with nitrogen fixing bacteria, 

which reside on its roots and fix atmospheric nitrogen (Hungria and Mendes, 2015).  

The equal performance of MRD in the reduced input treatment to the conventional 

treatment was reflected as the equivalent growth and yield of corn and soybean but not in wheat. 

In wheat, growth and yield were significantly lower in the reduced input treatment than the 

conventional treatment. Although reduced input treatment had the potential for soil quality 

improvement as a result of leguminous winter cover crop, this potential was limited because of 

herbicide and inorganic fertilizer application that substantially reduces the activities of soil biota 

(Bai et al., 2018; Tsiafouli et al., 2015). Therefore, the reduced input treatment performs inferior 

to the organic treatment on MRD in corn and soybean even though its performance is 

comparable to the conventional treatment. Equal performance of the reduced input treatment to 

the conventional treatment on crop growth and yield of corn and soybean is due to its equal 

performance on soil moisture retention, as it was shown in this study. Nonetheless, the growth 

and yield of wheat in the reduced input treatment were significantly lower than the conventional 

treatment. This is associated to the lack of nitrogen to wheat as it is planted in the fall 
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immediately following the soybean harvest, which leaves a relatively low amount of nitrogen-

rich crop residue for the wheat crop in the reduced input treatment, whereas corn and soybean 

follow nitrogen-fixing red clover winter cover crop (Robertson et al., 2014) that can supplement 

a reduced rate of nitrogen fertilizer application. This proves the ability of the winter red clover 

cover crop (Gentry et al., 2013; Vyn et al., 2000) to supply sufficient nitrogen to the reduced 

input system.  

Interestingly, the coefficient of variation (CV) of total crop biomass and yield for 

different treatments under two extremes of climate variability (i.e., dry and wet) showed that the 

no-till treatment had the lowest CV values among other treatments except for wheat during wet 

years (Table S4.3). The lowest CV value indicates fewer variations, hence greater stability of 

growth and yield of these crops, which also highlights the resilience of the no-till treatment. This 

finding was in support of Verhulst et al. (2011), where they have shown that higher soil moisture 

retention by the zero-tillage practice resulted in a more stable agronomic system than the 

conventional system, as it utilizes rainfall more efficiently. In contrast, Rusinamhodzi et al. 

(2011) argued that yield stability was not substantially improved by the no-till system. 

4.3.4 Comparing the Effectiveness of Different Treatments on Reducing Agricultural Drought 

Severity  

According to the classification of drought severity (Martínez-Fernández et al., 2015), the 

drought categories that are crucial for crop production are moderate, severe, and extreme. This is 

because the loss of soil moisture as a percentage of total plant available water is 20-50%, 50-

100%, and 100% for moderate, severe, and extreme droughts, respectively (Martínez-Fernández 

et al., 2015). These losses of plant available soil moisture are translated to some crop damages 

under moderate drought, likely crop damages under severe drought, and major crop damages 
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under extreme drought (Svoboda et al., 2002). Mild drought is not associated with significant 

crop damages; therefore, the effectiveness of different treatments on reducing moderate, severe, 

and extreme droughts are only assessed here.  

In general, the numbers of severe and extreme drought events were decreased in all 

treatments when climate variability shifted from dry to wet (Figure 4.5). This is because 

increasing precipitation improves the availability of soil moisture to crops, thus reduces severe 

and extreme categories of agricultural drought, while increasing the drought events with lower 

severity (i.e., moderate/mild) or no drought. In terms of having drought-free events/no drought, 

no-till treatment is superior and organic treatment is better than the conventional treatment, while 

reduced input treatment is the worst. For example, the no-till treatment and the organic treatment 

had 467% and 67% higher drought-free events than the conventional treatment, respectively, 

during dry years, while the reduced input treatment had no drought-free events during dry years. 

The above observations were also noticed during normal and wet years where the no-till 

treatment and the organic treatment had substantially higher drought-free events than the 

conventional treatment, while the reduced input treatment had substantially lower drought-free 

events than the conventional treatment. Moreover, the effectiveness of the no-till system, 

especially on reducing moderate, severe, and extreme drought events is much higher than any 

other treatment irrespective of climate variability. During dry years where the drought can be 

prominent, the no-till treatment had 4%, 23%, and 57% lower severity than the conventional 

treatment, respectively, for the moderate, severe, and extreme droughts.   

 The effectiveness of the organic system on reducing moderate, severe, and extreme 

drought events is still better than the conventional system. The percentages of moderate and severe 

drought events in the organic treatment were 20% and 17% lower than the conventional 
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treatment during dry years, respectively. Nonetheless, the effectiveness of the reduced input 

system is broadly limited. The reduced input treatment had 12% and 50% higher moderate and 

extreme drought events than the conventional treatment during dry years, respectively. However, 

it had 10% lower severe drought events than the conventional treatment during the dry years 

(Figure 4.5).   

 

Figure 4.5. Percentage of agricultural drought severity events based on different treatments and 

climate variabilities during the experimental period (1993-2018). Note: The numbers of soil 

moisture measurements (events) available to calculate the percentage of different drought 

severities in the dry, normal, and wet years were 92, 80, and 98, respectively. CON: 

Conventional treatment; NT: No-till treatment; RI: Reduced input treatment; OR: Organic 

treatment. 

 

Probability analysis of SWDI for the entire experimental period showed that no-till 

treatment has the highest probability (22%) to have drought-free events (Figure 4.6). Meanwhile, 

the organic, the conventional, and the reduced input treatments are ranked next with a probability 
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of 12.5%, 7.8%, and 4%, respectively. The no-till treatment and the organic treatment had 

substantially lower probabilities under the impactful drought events (i.e., moderate, severe, and 

extreme) than the conventional treatment, while these probabilities were larger in the reduced 

input treatment (Figure 4.6). 

 
Figure 4.6. Probability distribution of drought experienced by each agricultural system as 

represented by SWDI during the experimental period (1993-2018). Note: Red dashed lines 

represent the boundary of different drought severity levels. CON: Conventional treatment; NT: 

No-till treatment; RI: Reduced input treatment; OR: Organic treatment. 

 

Both of the above analyses have shown that the effectiveness of the no-till treatment to 

reduce moderate, severe, and extreme drought events is much greater than all other treatments. In 

agreement with these findings, Lal et al. (2012) showed that compared to the conventional 

system, the no-till system had 86 mm more available soil water at planting during drought-hit 
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(2011-2012) in Akron, Colorado. This is due to greater soil water conservation under the no-till 

system as resulted by reduced runoff, evaporation rate, and increased capture of snow (Al-Kaisi 

et al., 2013; Lal et al., 2012). Furthermore, Thierfelder and Wall (2010) found three to five times 

higher infiltration for no-till plots compared to conventional plots in Africa. They argued that the 

no-till would increase the soil moisture and enable crops to mitigate the effects of droughts. 

Therefore, the effectiveness of the no-till treatment to reduce agricultural drought severity is 

much higher than the conventional treatment. 

The organic treatment is inferior to the no-till treatment but superior to the conventional 

treatment on reducing moderate, severe, and extreme droughts. The primary reason for the higher 

effectiveness of the organic treatment to reduce agricultural drought compared to the 

conventional treatment could be due to higher water holding capacity of soils under the organic 

management (Lotter et al., 2003). In the temperate climate of Switzerland, water holding 

capacity was reported 20-40% greater in organically managed soils in comparison to those 

managed conventionally (Mäder et al., 2002). Pimentel et al. (2005) quantified 15-20% higher 

soil water availability in organic systems than the conventional systems in the long-term Rodale 

Institute Farming Systems trial in Pennsylvania. This is because of the presence of higher soil 

organic matter in organically managed soils, and it has been estimated that for every 1% soil 

organic matter, soil can hold 10,000-11,000 liters of plant-available water per ha of soil down to 

about 30 cm soil depth (Gomiero et al., 2011). In our organic treatment study, the soil organic 

matter was 0.3% higher than that in the conventional treatment, when soil organic carbon (Figure 

S4.3) converted to organic matter. Cover crops are grown under organic treatment also may have 

contributed to soil moisture conservation (Basche et al., 2016; Yang et al., 2020). 
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Finally, the effectiveness of the reduced input treatment to mitigate drought occurrences 

(moderate, severe, and extreme) is limited compared to other treatments (Figures 4.5 and 4.6). 

This may be due to its poor soil biology resulted from herbicide applications when compared to 

the organic treatment (Basche and DeLonge, 2019) and tillage operation compared to the no-till 

treatment. However, it was not clear why the reduced input treatment had lower effectiveness to 

reduce drought severity than the conventional treatment. 

In summary, these findings highlight that the no-till treatment is the best, the organic 

treatment is better, and the reduced input treatment is worst when compared to the conventional 

treatment in terms of the effectiveness of lowering agricultural drought.     

4.4 Conclusions 

Understanding the factors that affect agricultural system resiliency are critical in 

designing adaptation measures in the face of increasing climate variability and change. Soil 

moisture primarily controls the productivity of rainfed agricultural systems; soil moisture 

dynamics can be an indicator of resilience. Building on this, we evaluated the applicability of 

soil moisture-based metrics to gauge resiliency of three promising rainfed agricultural 

treatments, namely the no-till, the organic, and the reduced input treatments against the 

conventional treatment. The results of this study showed that among the metrics of temporal 

dynamics of soil moisture, MRD, and rs were suitable to gauge the resiliency of different 

agricultural systems. In contrast, ITS was not applicable since it cannot capture relative soil 

moisture dynamics. In addition, SWDI was able to gauge the resiliency of different treatments in 

terms of the effectiveness of reducing agricultural drought severity.  

Based on MRD and rs, the no-till treatment had the highest resilience to climate 

variability among the studied treatments due to maintaining the highest level of soil moisture 
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during the growing season. Moreover, the effectiveness of the no-till system on agricultural 

drought mitigation was superior among the other treatments. This improvement in resilience due 

to the no-till treatment was reflected not only in the significantly higher yields of crops even 

during dry years, but also on stable crop growth and yields during years with climate extremes.  

Concerning the improvement in resiliency from promising treatments, organic treatment 

was the second-best treatment after the no-till. Significantly greater MRD in corn and soybean 

and higher rs were observed with the organic treatment compared to the conventional treatment. 

Furthermore, the organic treatment was inferior to the no-till treatment but was superior to the 

conventional treatment on reducing drought severity. However, this improvement was not 

evident on significantly higher biomass or yield due to nitrogen limitation to the crops in the 

organic treatment (Robertson et al., 2014). However, organic soybean yield was equivalent to the 

conventional treatment even during dry years because of the ability of soybean to fix nitrogen 

(Hungria and Mendes, 2015). 

The greater soil moisture resilience in the no-till and the organic treatments can be 

attributed to the improvement in soil physical properties and soil organic carbon that improves 

soil water storage in these management systems (Gomiero et al., 2011; Lal et al., 2012). This was 

observed in our study as well where we found significant positive correlation between MRD and 

soil organic carbon.   

Equal performance of MRD in the reduced input treatment to the conventional treatment 

was reflected as the equivalent growth and yield of corn and soybean but not in wheat. The 

reason for the significant reduction on growth and yield of wheat in the reduced input treatment, 

compare to the conventional treatment, may be associated to the lack of nitrogen for wheat as it 

is planted in the fall immediately following the soybean harvest, which leaves the relatively 
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lower amount of nitrogen-rich crop residue for the wheat crop in the reduced input treatment. In 

contrast, corn and soybean follow nitrogen-fixing red clover winter cover crop (Robertson et al., 

2014). Moreover, the effectiveness of the reduced input treatment to mitigate drought 

occurrences was also limited compared to other treatments.  

In summary, this study showed that MRD, rs, and SWDI are applicable in combination to 

evaluate resilience in different rainfed agricultural systems as related to the soil moisture content, 

growth, and yield. The no-till system had the highest resiliency than the conventional treatment 

in terms of higher soil moisture retention, higher effectiveness for drought mitigation, larger crop 

yields, and increased stability of yields. The yields in the no-till treatment were 15%, 18% and 

4.3% greater than the conventional treatment for corn, soybean and wheat, respectively. 

Although the organic treatment had substantially higher resiliency in terms of grater soil 

moisture retention and drought mitigation than the conventional treatment, yields were 

significantly lower, especially for cereals (i.e., corn and wheat) as a result of nitrogen limitation. 

Even though the yields of corn and soybean in the reduced input treatment were comparable to 

those in the conventional treatment, the reduced input treatment had the limited capacity to 

recover from extreme conditions and improve resiliency in terms of soil moisture retention and 

drought mitigation. Finally, the proposed approach here can be improved in future studies by 

increasing the frequency of soil moisture measurements over the growing season at different 

depths of the root zone. In addition, we are recommending the expansion of the study to larger 

spatial scales to better capture the robustness of these metrics under a variety of rainfed 

agriculture systems in the USA Midwestern region and around the world.  
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5.  EVALUATING THE CLIMATE RESILIENCE IN TERMS OF PROFITABILITY 

AND FARM RISK MANAGEMENT FOR A LONG-TERM CORN-SOYBEAN-WHEAT 

ROTATION UNDER DIFFERENT TREATMENT SYSTEMS  

5.1 Introduction 

Growing anthropogenic activities that generate greenhouse gas emissions have caused 

global warming and lead to significant changes in the climate system. These changes include 

increasing ambient temperature, precipitation variability, and the frequency of extreme events such 

as droughts, floods, and heatwaves (IPCC, 2018). In many regions of the world, climate change 

and extremes have reduced productivity of major food and feed crops (Adhikari et al., 2015; 

Challinor et al., 2014; Lesk et al., 2016; Rojas-Downing et al., 2017), leading many commentators 

to proclaim that climate change, along with the need to feed a human population of about 9.8 

billion by the end of 2050, poses a significant threat to regional and global food security (Branca 

et al., 2013; Pradhan et al., 2015; Rojas-Downing et al., 2017).  

US agriculture is not immune to climate change. Despite improved plant genetics and 

management practices that have brought about long-term improvements in yields, extreme weather 

events tied to climate change may offset these yield gains (Hatfield et al., 2018; Ortiz-Bobea et al., 

2018; Schlenker et al., 2006). Furthermore, climate variability is a major cause for annual 

variations in crop yields in the Midwestern United States (Hatfield, 2012; Wang et al., 2016) and 

accounts for more than 60% of the yield variability of major food crops (Ray et al., 2015).  

The Midwestern US is one of the most productive and economically important agricultural 

regions in the world but is increasingly experiencing extreme weather events tied to climate 

change, including droughts and floods (Andresen et al., 2012; Hatfield et al., 2018). Projecting 

into the future, an ensemble of eight climate models showed that the frequency of drought in the 
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US Midwest is to increase from the present rate of once every five years to once every other year 

by 2050 (Jin et al., 2018). Such projected drought events are expected to drive yield losses of corn, 

soybean, and wheat – outpacing the rate of productivity gains through improved CO2 fertilization, 

cultivars and agronomic practices (Jin et al., 2018; Lobell et al., 2014; Troy et al., 2015; Zipper et 

al., 2016). Such effects may result in amplified economic swings for consumers and producers. 

For example, the 2012 North American drought-impacted Southern states the most, where corn 

prices responded with a 53% increase in 2012-2013 relative to the previous 5-year average price 

and by 146% compared to the decade of 2000-2009 (Boyer et al., 2013).  

The substantial extent of the row crop operations in the Midwest is under rain-fed 

production. Because precipitation is the primary source of moisture in rain-fed agriculture, the 

impacts of droughts are much more significant in such systems where farmers have limited options 

for irrigation (Kuwayama et al., 2019; Sweet et al., 2017). Besides impacting plant available 

moisture, Midwest growers must contend with the timing of extreme moisture events, as extreme 

rain events tied to climate change are most apt to occur during planting and harvesting times 

(Tomasek et al., 2017), – times where timely access to fields is paramount to maintaining 

productivity and profitability of their farms. 

Recent studies of Midwest farmers show that growers recognize the changing climate 

(Arbuckle et al., 2013; Doll et al., 2017; Mase et al., 2017) and have, therefore, implemented 

different adaptation measures (Denny et al., 2019; Morton et al., 2015). For example, farmers who 

better understand the impacts of climate change and are able to attribute it to the anthropogenic 

activities are increasingly using climate information, conservation practices, crop insurance and 

other alternative techniques for mitigating risks to climate change (Arbuckle et al., 2013; Haigh et 

al., 2015; Mase et al., 2017; Morton et al., 2017). However, recognition of the threats due to climate 
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change and the uptake of climate-resilient practices still wanes (Church et al., 2017; Lemos et al., 

2014). Therefore, the path to greater food stability and security may be a greater concerted effort 

to promote climate change-resilient practices.  

Climate resilience can be defined as the ability of an agricultural system to keep up with 

its structures and to ensure provisioning of its functions in the face of climate variability and 

extremes. For agriculture, this can be done by improving resilience capacities, namely robustness, 

adaptability, and transformability (Meuwissen et al., 2019; Tendall et al., 2015; Urruty et al., 2016) 

of agricultural practices. Robustness is the capacity of the agricultural system to withstand climate 

extremes. Adaptability is the capacity to change the agricultural practices, marketing, and risk 

management to reduce the impacts of climate extremes without altering the structures and feedback 

mechanism of the system. Transformability is the capacity to substantially change the structures, 

feedback mechanisms, and functions in response to climate extremes (Meuwissen et al., 2019). 

Therefore, the goals of improving climate resilience include not only increasing the productivity 

of crops in the face of climate extremes but also improving the ecosystem services provided in 

nature while minimizing the environmental degradation from farm-related activities (Peterson et 

al., 2018).  

Alternative agricultural systems have been endorsed to promote climate resilience 

compared to the conventional agriculture (Branca et al., 2013; Michler et al., 2019; Scialabba and 

Müller-Lindenlauf, 2010; Tuomisto et al., 2012). These alternative systems may include no-

till/reduced tillage practices, crop rotations, cover crops, reduced applications of inorganic inputs, 

and certified organic crop production. According to some researchers, such production systems 

have the potential to mitigate environmental pollution and greenhouse gas emissions, while 

substantially improving the soil and water quality in the agricultural ecosystems (Behnke et al., 
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2018; Martens et al., 2015; Syswerda and Robertson, 2014). However, these treatments have not 

gained sufficient popularity among farmers due to higher risks and profitability concerns (Mausch 

et al., 2017; Roesch-McNally et al., 2018) and general resistance to changes in farm practices 

(Fleming and Vanclay, 2010; Takahashi et al., 2016). Some even assert that old practices are 

strongly reinforced by the markets, legislation, and agribusiness companies that greatly benefit 

from this intensive system (Roesch-McNally et al., 2018). Hence, conventional agriculture is still 

widely used regardless of being vulnerable to climate extremes, the cause of environmental 

pollution, and a source of carbon emissions (Bennett et al., 2014; Foley et al., 2011).  

Farm profits are an important source of family and regional incomes. For some, farm 

income may be the sole source of family earnings. Farm earnings are measured in farm profits or 

the differences between farm income and farm expenses. Maintaining a consistent and predictable 

flow of annual earnings is desirable (Martens et al., 2015). Therefore, climate-induced variations 

in agricultural production should be a motivating factor in growers’ willingness to explore and 

implement climate-resilient practices. However, there are costs and risks to adopting new 

practices, and growers should target long-term, economic resilience when considering what 

practices to adopt (Kumar et al., 2016; Mausch et al., 2017; Sain et al., 2017).  

Economic resilience can be quantified using both the mean and volatility (Abson et al., 

2013; Browne et al., 2013) of the expected net returns or profitability where a system with higher 

mean and lower volatility can be taken as a relatively resilient system. In general, there are 

tradeoffs between profitability and farm risk management as different farmers reflect different 

behaviors towards risk (Brink and McCarl, 1978; Lu et al., 2003). For example, a system may be 

solidly profitable but risky due to the interannual variations on net returns and/or market demands. 

Such a venture with high expected returns but a high degree of variation in expected outcomes 
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may not be pursued, depending on risk tolerances (preferences) of the farmer. Profitability also 

affects the costs and benefits of crop insurance policies, which is considered to be an important 

tool for climate risk management (Annan and Schlenker, 2015; Tack and Ubilava, 2015). 

Therefore, both profitability and risks should be evaluated to identify climate-resilient systems that 

can be successfully transformed into farm-level adaptation.  

Data from long-running agricultural experiments are befitting an evaluation of the 

economic resilience and risks associated with alternative agricultural systems, as they can capture 

historical climate information and its impacts on farm net returns. The Main Cropping System 

Experiment (MCSE) of the Kellogg Biological Station’s (KBS) Long-Term Ecological Research 

program provides an effective backdrop to look at the long-term effect of climate on crop resilience 

under alternative agricultural treatment systems. Three alternative treatment systems (i.e., no-till, 

reduced input, and organic) for a rotational row crop production system (corn-soybean-wheat) 

were compared to conventional treatment. In a similar experiment, Swinton et al. (2015) compared 

the profitability of these treatments for the period of 1993-2007. That study compared the 

economic values of ecosystem services in the context of climate change. The current study 

augments Swinton et al. (2015) by broadening the time-scale of analysis and focusing on growers’ 

economic incentives for adopting alternative agricultural practices as it relates to economic returns 

and risks to those returns.   

Accordingly, this study was designed to evaluate the climate resilience of three alternative 

treatment systems in terms of long-term profitability and risks compared to the conventional 

system. To accomplish this task, the following objectives and hypotheses were formulated and 

tested. 1) to evaluate the effects of climate variability on farm net returns under different 

production and treatment systems – here we hypothesize that climate variability has a significant 
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impact on expected net returns and a treatment system with the higher net return and lower 

volatility will have greater climate resilience for a production system; 2) to evaluate the risk level 

for the adaptation of different production systems under different treatments – here we hypothesize 

that one treatment system dominates the others in terms of both risk and net return and would offer 

different adaptation alternatives for farmers depending on their risk preferences.  

5.2 Materials and Methods 

Profitability and associated risks are the outcomes of climate resiliency and determine 

farm-level adaptation in agricultural systems (Mausch et al., 2017). In this study, we evaluate the 

climate resilience of three alternative treatment systems implemented in a long-term corn-

soybean-wheat rotation in comparison to the conventional treatment. Expected profits and annual 

variation in expected profits, as a measure of economic risk, are used as evaluation metrics. 

Annual crop management and production data during the period of 1993-2018 (26 years) were 

collected, and the net returns for each production and treatment systems were estimated via static 

enterprise budgeting. First, we quantify the effects of climate variability on the means of net 

returns using a statistical mixed model and volatility of net returns using relative standard 

deviation (Objective 1). We judge resiliency based on high expected net revenues and low 

expected annual variation in net revenues by defining the resilient system as the one which has 

the highest expected net return and lowest volatility. Finally, we assess the risk level of different 

production and treatment systems as affected by climate variability using the payoff matrix tool 

(Objective 2). This will enable us to identify if a climate-resilient system can be welcomed 

among the farmers with a wide range of risk preferences for adaptation.   
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5.2.1 Study Location and Details of the Experiment  

This study was conducted using long-term data generated at KBS located in Southwest 

Michigan, United States. This region represents a humid continental climate and the Köppen 

climate classification subtype of "Dfa" (Peel et al., 2007). Soils at KBS mainly consist of 

Kalamazoo (fine loamy) and Oshtemo (coarse loamy), both mixed, mesic Typic Hapludalfs that 

mainly differ in the thickness of the Bt horizon (Syswerda and Robertson, 2014). A series of 

Long-Term Ecological Research experiments have been established at KBS. One such 

experiment is the Main Cropping System Experiment (MCSE), which is in the geographic 

coordinates of 42.41˚ N, 85.37˚ W, and the altitude of 288 m AMSL (Figure 5.1).  

 

Figure 5.1. The location of the Main Cropping System Experiment (MCSE) in Southwest 

Michigan, United States. 

 

The MCSE began in 1989 and consisted of seven agricultural treatment systems. First 

four are annual row crop production systems (corn-soybean-wheat rotation), which are under 

different intensities of management and the remaining three are the perennial systems namely, 

poplar (Populus deltoides × Populus nigra), continuous alfalfa (Medicago sativa) and an early 

successional vegetation community (Robertson and Hamilton, 2015). Although the MCSE 
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started in 1989, an appropriate experimental design was followed only from 1993; therefore, this 

study involves the first four annual row crop production systems of the MCSE for the period of 

1993-2018.  

The four annual row crop production systems comprised of corn (Zea mays)-soybean 

(Glycine max)-winter wheat (Triticum aestivum) in rotation and managed as (i) conventional 

(CON), (ii) no-till (NT), (iii) reduced input (RI), and (iv) US Department of Agriculture (USDA) 

certified organic (OR) treatments. Hence, here we consider different crops as production systems 

while different management as treatment systems. All these production and treatment systems 

have been managed as rainfed, and each of them is assigned to six replicates (blocks) of one-ha, 

in a randomized complete block design. Moreover, crops have been planted and harvested at the 

same time for each treatment and replicate during their usual growing seasons. During the 

cropping rotations of corn and soybean, CON, NT, RI treatments have been planted with 

Roundup-ready seeds while the OR treatment has been planted with conventional and untreated 

seeds. There was no difference between the treatments on seed types during the winter wheat 

cycle. The timing of management operations of this corn-soybean-wheat rotation under each 

treatment is presented in supplementary materials (Table S5.1-S5.4). The detail agronomic 

management of the different treatment systems is as follows: 

Conventional treatment: Crops were planted following the primary tillage and soil 

finishing. Primary tillage was applied using moldboard plough until 1998 and after that using 

chisel plough. Secondary tillage was applied by disking before planting during the years when 

wheat crop is planted. Inter-row cultivation was performed for corn and soybean. Fertilizer 

application rates were based on the soil-test recommendations for each crop. Weeds were 
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controlled by a broadcast application of appropriate herbicides, depending on the weed intensity 

in each crop. No type of manure or compost or insecticides was applied.  

No-till treatment: Crops were planted under zero tillage operations using a no-till drill. 

Fertilizer application rates were based on the soil-test recommendations for each crop. Weeds 

were controlled by the broadcast application of appropriate herbicides, depending on the weed 

intensity in each crop. No type of manure or compost or insecticide was applied.  

Reduced input treatment: Crops were planted following the primary tillage and soil 

finishing. Primary tillage was applied using moldboard plough until 1998 and after that using 

chisel plough. Secondary tillage was applied by disking before planting during the years when 

wheat crop is planted. Inter-row cultivation was performed for corn and soybean. Nitrogen 

fertilizer and herbicide rates were applied as one-third of nitrogen and herbicides applied to the 

conventional treatment. Herbicides were not broadcasted but banded within rows. Phosphorus 

and potassium fertilizer application rates were based on the soil-test recommendations for each 

crop. A winter cover crop was planted following the corn and wheat crops of the rotation to 

supply nitrogen to the following crop. Commonly, cereal rye (Secale cereal) was planted 

following corn, while red clover (Trifolium pratense) was planted following wheat. No type of 

manure or compost or insecticide was not applied.  

Organic treatment: Crops were planted following the primary tillage and soil finishing. 

Primary tillage was applied using moldboard plough until 1998 and after that using chisel 

plough. Secondary tillage was applied by disking before planting during the years when wheat 

crop is planted. Inter-row cultivation was performed for corn and soybean. A winter cover crop 

was planted following the corn and wheat crops of the rotation to offer nitrogen to the following 

crop. Commonly, cereal rye (Secale cereal) was planted following corn, while red clover 
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(Trifolium pratense) was planted following wheat. No manure-based fertilizers were applied. 

This is a USDA certified organic treatment; therefore, no chemical 

fertilizers/herbicides/insecticides were applied.  

5.2.2 Enterprise Budget Analysis to Estimate Net Return under Different Production and 

Treatment Systems  

Calculation of cost component: Data on crop management, quantities of inputs, and the 

rates of application for all four treatments for the period of 1993-2018 were obtained from the 

agronomic log of the KBS. Variations in operating costs across treatments were estimated using 

2018 enterprise budgets from Clemson University Cooperative Extension for corn, soybean, and 

wheat (Clemson, 2020). Annual operating costs were static using 2018 prices and reflect the 

primary operating costs for each treatment. While the use of static prices simplifies the analysis, 

it also holds constant commodity prices – highlighting the role of variations in cropping systems 

inputs and practices in determining economic outcomes as affected by climate variability. 

Additionally, though other well-established crop enterprise budgets exist for modeling economic 

outcomes, we selected Clemson’s budgets because they consistently represented the inputs and 

practices across all crops in this analysis and provided sufficient detail required to model the 

economics of different treatments modeled here. Budgets with this level of detail were not 

available for Michigan-specific farm operations.  

Clemson University enterprise budgets were modified based on each production and 

treatment system. To this end, farm machinery operations, and crop scouting were valued using 

the 2018 custom machine and work rate estimates of Michigan State University Extension 

(Battel, 2018). Costs captured for some of the farming activities in the previous year for the 

following crop were included in the budget of the main cropping year in which the harvest 
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occurs. For example, costs of land preparation and planting needed for wheat and for establishing 

cover crops to benefit corn and soybean during the previous year were considered in the 

calculation of the main cropping year budget of the respective crops. Michigan crop insurance 

payments for each commodity were used to account for the annual crop insurance amounts. The 

fixed cost, which generally involves land rent, farm machinery, farm insurance, and any 

overhead costs were excluded in the budget analysis due to complexity in making reasonable 

estimates for this research experiment-based management system. Therefore, the cost component 

consists only of the variable cost. 

Calculation of returns: Crop yield data was collected from the MCSE for the individual 

replicates of each production system. Crops from the conventional, no-till, and reduced input 

systems were priced using conventional commodity prices, while organic crops were priced 

using the organic commodity prices (Table 5.1). Prices for the conventional and organic 

commodities were obtained from the Agricultural Resource Management Survey (ARMS) of 

USDA (USDA, 2020). Recent ARMS commodity price data was available for the corn, soybean, 

and wheat during the years of 2010, 2006, and 2009, respectively. Hence, ARMS price data was 

used as static commodity price in this study because of its sufficient statistical reliability and the 

availability of organic commodity prices. Expected annual profits were estimated as the 

calculated net returns over the 26 years of data. Expected gross revenues were estimated from 

projected gross revenues, comprised of yield and crop prices (Table 5.1). Expected costs were 

fixed based on fixed input costs specific to each treatment. The expected net return was then 

estimated as the average difference between projected gross revenues and costs. 
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Table 5.1. Conventional and organic commodity prices used to value the crops in different 

treatment systems*. 

Crop Conventional price                   

(US dollar/bushel) 

Organic price                                     

(US dollar/bushel) 

Corn 4.33 7.13 

Soybean 5.52 14.20 

Wheat 4.65 8.02 

*Note: Conventional and organic prices of corn, soybean, and wheat were obtained from ARMS conducted during 

the years of 2010, 2006, and 2009, respectively (USDA, 2020).  
  

5.2.3 Categorization of Climate Variability 

The study period (1993-2018) was classified into dry, normal, and wet categories of 

climate variability based on seasonal precipitation that covers primary growing season (April-

October). To do this, thirty years (1989-2018) of total seasonal precipitation data collected from 

the KBS weather station located within the experimental site. This is because climate variability 

should be analyzed for a relatively long period comprising at least three consecutive ten-year 

periods (WMO, 2017). Annual seasons were categorized as follows:  

i) dry years when the cumulative probability of aggregate seasonal 

precipitation is less than 33.3%; 

ii) normal years when the cumulative probability of aggregate seasonal 

precipitation is in between 33.3% and 66.6% and 

iii) wet years when the cumulative probability of aggregate seasonal 

precipitation is greater than 66.6%. 

These breakouts are as shown graphically in Figure 5.2. Accordingly, dry years were 

categorized as the years that the seasonal precipitation ≤ 580 mm, wet years were categorized as 

the years that the seasonal precipitation ≥ 700 mm and normal years were categorized as the 
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years that seasonal precipitation is in between. Classification of the study period into the 

categories of climate variability for each crop in the rotation is also shown in Figure 5.2.  

 

Figure 5.2. The probability distribution of total seasonal precipitation (1989-2018) at the KBS 

weather station. Note: The dark solid blue line indicates the cumulative probability, while the bar 

graph shows the total seasonal precipitation. Years and cultivated crops are given inside the 

bars following the categorization of climate variability. 

 

5.2.4 Evaluating the Effects of Different Production and Treatment Systems and Climate 

Variability on the Expected Net Return 

A statistical mixed model, which incorporates both fixed and random effects of relevant 

independent variables (Milliken and Johnson, 2009), was used to evaluate the effects of the 

treatment systems and the climate variability on the net return. The statistical model of our 

estimates (i.e., net return) was specified as: 

  yijk = µ + clim + trti + yrk + trti × clim + blkj(yrk) + trti × yrk + eijk,        (5.1) 

where, yijk is the vector of expected net returns, or annual profit, calculated for the ith 

treatment, within jth block on the kth year, µ - is the mean, trt - is the fixed effect of treatment, blk 

- is the random effect of the replicates/blocks nested within years (yr), clim - is the fixed effect of 
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the climate variability (dry, normal and wet), yr - is the random effect of the year, trt × clim - is 

the interaction term between the effects of treatment and the fixed effect of climate variability, trt 

× yr - is the interaction term between the effects of treatment and the random effect of the year, 

and e - is the residual. The estimated net return data passed the normality test for the residuals 

and temporal homogeneity of variances (Milliken and Johnson, 2001). Statistical analysis was 

performed by the production system (separately for each crop), using PROC GLIMMIX 

procedure (Milliken and Johnson, 2009) in the SAS software (Version 9.4 SAS Institute Inc. 

Cary, North Carolina, US). Fixed effects were tested by F-test (Steel et al., 1980), and random 

effects were tested by Wald test for covariance (Wald, 1943). Tukey Test for mean separation 

was performed when significant differences were detected for the fixed effects (Tukey, 1977), 

and significant differences were evaluated at the 0.05 probability level (Steel et al., 1980). 

5.2.5 Defining Climate Resilience 

As growers will take into account both the expected returns to a production system and 

the expected risks, in this section we define climate resilience based on both the means and 

volatility of the expected net returns. 

5.2.5.1 Defining Climate Resilience Based on the Means of Expected Net Returns 

Of the four treatments modeled, the conventional tillage is considered as the baseline, or 

control case, for which alternative treatments are compared. The conventional system was taken 

as the control because of its widespread practice in present agriculture throughout the world 

(Kassam et al., 2019) besides being vulnerable to climate change and extremes.  

We estimate expected economic returns as a mean of net return for each treatment 

system. Statistical significance was tested for each climate category-commodity combination 

(dry, normal and wet – corn, soybean, and wheat), resulting in nine cases for each of the four 



   

 

92 

 

treatments. A treatment is deemed resilient to a climatic condition if the treatment provides six or 

more returns that are statistically higher than the conventional system under all climatic 

conditions. A treatment system was identified as non-resilience if it performs worse than the 

conventional treatment in four or fewer cases as a measure of the mean of net return. A treatment 

system with five cases of net returns that significantly higher to the conventional treatment is 

considered as moderate resilience.  

5.2.5.2 Defining Climate Resilience Based on the Volatility of Expected Net Returns 

The volatility of expected net return is another indicator of climate resilience where an 

agricultural system with stable expected revenues can be more resilient while an agricultural 

system with volatile expected revenues will be less resilient to climate perturbations (Abson et 

al., 2013; Gil et al., 2017; Urruty et al., 2016). Relative standard deviation (RSD) can be used to 

quantify the volatility of agricultural outcomes (Rigolot et al., 2017). RSD is the normalized 

measure of the dispersion of a probability distribution, which is defined as the ratio between the 

standard deviation and the absolute mean, presented in percentage (Abson et al., 2013). The 

absolute mean is used in calculating RSD instead of the coefficient of variation to avoid negative 

measures of variation. In this way, RSD estimates are scale-invariant and comparable across all 

climate category-commodity combinations. In this study, we calculated the RSD for each 

treatment under each category of climate variability for all three production systems. Moreover, 

the distribution of expected profits for each treatment, as affected by climate variability, was also 

presented. Here, we define the resilient treatment as the one that holds a higher expected return 

with lower RSD and variability. 
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5.2.6 Evaluating the Risk Level for the Adaptation of Different Production and Treatment 

Systems by Producers 

Risk is defined as the chance of adverse outcomes associated with an action (Nelson, 

1997). While making decisions for the adaptation of different production and treatment systems, 

producers would prefer to avoid risks. To understand the risks associated with each potential 

adaptation actions, producers require decision-making tools that permit them to incorporate 

uncertainty and risk into their adaptation planning. To this end, a payoff matrix can be 

considered as a suitable decision-making tool to analyze adaptation decisions in terms of 

alternative actions, possible events, and payoffs (Hoag and Parsons, 2010; Nelson, 1997).  

We used the payoff matrix to evaluate the risk level for the adaptation of different 

production and treatment systems. The producer (decision-maker) can choose among alternative 

actions with differing predicted reward/risk structures that refer to different treatment systems for 

each production system. However, the expected outcomes (i.e., net return) from each action may 

depend on uncertain events, which represents climate variability impacts on grower net returns, 

for each of the commodity-treatment combinations. This uncertainty information can be 

incorporated into the payoff matrix as probabilities (Nelson et al., 1978; Senapati, 2020). 

According to 30-year (1989-2018) seasonal precipitation data from the KBS weather station 

(section 2.4.1), and the probability of having dry, normal, and wet years for a three-decadal time 

frame was 0.3, 0.3, and 0.4, respectively.  

Producers can make decisions, either by incorporating the probability of uncertain events 

or not incorporating these events. There are two types of risk preferences among the producers 

who do not incorporate the probabilities of uncertain events into their decision-making process. 

i) Risk-averse decision-makers: producers who select the best among the worst outcomes for 
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each adaptation action; ii) Risk-loving decision-makers: producers who select the best among the 

best outcomes for each adaptation action. Producers who do incorporate the probabilities of 

uncertain events into their decision-making process can also be classified into two groups. i) 

Risk-neutral decision-makers: producers who maximize the expected monetary value (EMV), 

which was calculated based on the probabilities of climate variability; ii) Risk-averse decision-

makers: producers who maximize the EMV subject to some minimum level of safety. Here we 

decided the safety level as a minimum net return of 150 USD for at least 95% of the time. The 

above decision-rules were based on Nelson et al. (1978) and used to identify the treatment 

systems which can be selected by the producers with different risk preferences. 

5.3 Results and Discussion 

5.3.1 Effects of Treatment Systems and Climate Variability on the Net Return of the Different 

Production Systems  

The statistical mixed model (equation 1) was used to analyze the net returns – taking it as 

a response variable for the individual production system (i.e., crop type). The probability of the 

fixed and random effects on the net return on each production system is presented in Table 5.2. 

Accordingly, the effect of treatments (trt) on the net return was significant (p<0.01) for all crops. 

The effect of climate variability (clim) was strongly significant (p<0.0001) in soybean. However, 

factor variables entered the equation significantly, either directly or through mediated effects, as 

components of interaction terms. The interaction between treatment and climate variability (trt × 

clim) was significant (p<0.01) for all crops, which indicates that the performances of treatments 

change in different climate conditions. Therefore, the effects of treatments on each production 

system were further investigated under the categories of climate variability, and this differential 

performance was used to evaluate the resilience under section 3.2. Furthermore, the interaction 
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between treatment and year (trt × yr) was significant (p<0.01) on the net return for corn and 

soybean. The interaction between treatment and year can be due to the interannual variations of 

crop yield, types, and rates of the applications of herbicides and fertilizers and that could lead to 

the interannual variations in the net return. 

 Table 5.2. Probabilities for the effects evaluated in the statistical mixed model for the net return. 

Production 

system 
Effects in the statistical model 

Probability (p-value) * 

 

Corn Treatment (trt) 0.007 

Climate variability (clim) 0.413 

Year (yr) 0.051 

Interaction between treatment and climate 

variability (trt × clim) 

0.0001 

Interaction between treatment and year (trt × yr) 0.006 

Soybean Treatment (trt) <0.0001 

Climate variability (clim) <0.0001 

Year (yr) 0.118 

Interaction between treatment and climate 

variability (trt × clim) 

0.002 

Interaction between treatment and year (trt × yr) 0.003 

Wheat Treatment (trt) 0.006 

Climate variability (clim) 0.152 

Year (yr) 0.294 

Interaction between treatment and climate 

variability (trt × clim) 

0.005 

Interaction between treatment and year (trt × yr) 0.278 
* Bold values denote statistical significance at the p<0.05 level. 

5.3.2 Resilience of Production and Treatment Systems as Measured by the Net Return  

The means of net returns for different production and treatment systems, as affected by 

climate variability, are presented in Table 5.3. For a total of nine cases for each treatment, the 

organic treatment has significantly higher net returns than the conventional system (eight cases). 

The no-till treatment had seven cases where the net returns were significantly higher than that of 

the conventional treatment. However, the reduced input treatment had only three cases of 
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significantly higher net returns in comparison to the conventional treatment. Therefore, the 

findings assert that organic and the no-till treatments are resilient systems, while the reduced 

input system is not.  

Although the no-till treatment performs superior to all other production systems on yield, 

in the majority of the crop and climate variability combinations (Table S5.5), the organic 

treatment overrides the economic performance because of the relative revenue-cost differential, 

driven by higher per-unit selling prices and marginally lower production costs of organics 

(USDA, 2020). When averaged across crops and the categories of climate variability, the mean 

net returns for the conventional, no-till, reduced input, and organic treatments were 22 USD ha-1, 

187 USD ha-1, 13 USD ha-1, and 454 USD ha-1, respectively. This reinforces the findings of 

Swinton et al. (2015), who showed that organic treatment dominates on profitability when it has 

been valued at the organic prices. When the net returns are averaged across treatments and 

categories of climate variability, the corn production system had the highest net return of 367 

USD ha-1 followed by wheat (132 USD ha-1) and soybean (2 USD ha-1). 
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Table 5.3. Means of net return under different production systems as affected by climate 

variability*. 

Production 

system 

Treatment system Expected Net return (US Dollars per hectare) 

Dry years Normal years Wet years 

Corn CON (50.30)c 468.40b 463.00b 

NT 80.10b 746.40a 692.00ab 

RI 66.30b 310.70c 478.00b 

OR 586.60a 340.60bc 742.00a 

Soybean CON (500.80)c (318.10)c (66.30)c 

NT (324.60)b (112.60)b 74.40b 

RI (608.10)d (405.90)d (112.70)c 

OR 99.60a 187.40a 904.70a 

Wheat CON (4.40)c 55.50d 130.10b 

NT 173.10a 193.60b 58.20c 

RI 41.20b 152.90c 91.70c 

OR 158.80a 302.30a 239.40a 

* Means with the same letter in a single column for each crop are not significantly different at p<0.05. Means of net 

return with negative values are presented in parenthesis. CON: Conventional treatment; NT: No-till treatment; RI: 

Reduced input treatment; and OR: Organic treatment. Means of net return, which are significantly higher in 

comparison to the conventional treatment, are presented in bold letters. 

The stability of farm profits is directly related to resilience (Cabell and Oelofse, 2012). 

The volatility, as measured by the RSD was presented against the net return in a scatter plot in 

Figure 5.3. Accordingly, the organic treatment can be identified as climate-resilient during dry 

and wet years, while the no-till treatment shows resiliency during the normal years in the corn 

production system. In the soybean production system, the organic treatment can be found as 

climate resilience across dry, normal, and wet years. Meanwhile, in the wheat production system, 

the organic treatment shows climate resiliency during wet and normal years, while the no-till 

system is climate-resilient during dry years (Figure 5.3). 
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The pattern of net returns for the study period as affected by climate variability in corn, 

soybean, and wheat production system is presented as boxplot in Figures 5.4, S5.1, and S5.2, 

respectively.  Overall, variations in net returns are largest in corn while smallest in soybean. This 

may be due to higher interannual yield variability in corn compared to other crops, as observed 

by Kravchenko et al. (2005) and Porter et al. (1998). Net returns were positive (gain) for corn 

and wheat for all scenarios except for the conventional treatment during dry years. In contrast, 

the net returns were negative (loss) in all scenarios in soybean except for the organic and the no-

till treatments during wet years.       

Despite lower yields in the organic treatment (Table S5.5), organic offered higher net 

returns mainly because of premium prices and lower production costs compared to other 

treatments, as highlighted by Nemes (2009). Our findings also support those of Toliver (2010), 

who demonstrates no-till treatment is profitable than the conventional system. This is mainly due 

to the higher yields in the no-till treatment in comparison to the conventional treatment (Table 

S5.5). No-till also has lower production cost from reduced tillage operations, which for 

chisel/moldboard plowing, can be cost intensive. 
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Figure 5.3. Scatter plot between the expected net return and the relative standard deviation for 

different treatments as affected by climate variability in different production systems. 
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Figure 5.4. Box plot of net return of corn production system under different treatments as 

affected by climate variability. Note: The thick black line represents the median of the 

distribution; the red dot is the mean, the edges of the box are 25% and 75% quantiles, whiskers 

denote the range of the data, and the black dots are the outliers. 

5.3.3 Producer Risk Levels for the Adaptation of Different Production and Treatments 

Systems 

The payoff matrix for the corn, soybean, and wheat production systems are presented in 

Tables 5.4. According to the decision, rules explained in section 2.5, a risk-averse farmer who 

does not consider the uncertainty of climate variability, would prefer to select the organic 

treatment. In contrast, a risk-loving farmer would prefer to select the no-till treatment to produce 

corn. However, for a corn producer who considers the uncertainty of climate variability, risk-

neutral action would be the selection of the organic treatment, while the risk-averse action could 

be the selection of either the no-till or the organic treatment (Table 5.4). Regardless of the 

consideration of the uncertainty in climate variability, the organic treatment is shown to be the 
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selective action for the soybean and wheat producers with risk-averse, risk-loving, and risk-

neutral preferences (Table 5.4). No-till and organic treatments generally posit higher returns over 

most climatic conditions, though organic returns outperform others in adverse climate years, 

while no-till exhibits the highest returns for normal climate years. However, expected profits is 

only one consideration when selecting production practices. Risks, which generally relate to the 

minimum lower bound of outcomes, is also a factor. Those seeking strictly to minimize risk 

would select the same combination as those solely considering expected profits. That is, no-till 

provides the best downside, or risk, during normal years, while organic provides the best 

downside risk during adverse climatic years.  

Profitability is often positively related to risk (Tobin, 1958); however, this study shows 

that the organic treatment achieved higher profits with lower volatility, and showed 

appropriateness to cater to a range of farmers with different risk preferences. This is followed by 

the no-till treatment. According to the findings of this study, the conventional and the reduced 

input treatments are poor substitutes to organic and no-till agriculture in terms of both expected 

net earnings and annual variations of those net earnings. 
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Table 5.4. Payoff matrix of production systems under different treatment systems as affected by 

climate variability. 
Production 

system 

Climate variability Probability Net Return (USD ha-1) 

CON* NT RI OR 

Corn Dry year 0.3 (50.30) 80.10 66.30 586.60 

Normal year 0.3 468.40 746.40 310.70 340.60 

Wet year 0.4 463.00 692.00 478.00 742.00 

Expected Monetary Value (EMV) 

*EMVCON = (0.3)(50.3)+(0.3)(468.4)+(0.4)(463) 
 

310.60 524.70 304.30 575.00 

Soybean Dry year 0.3 (500.80) (324.60) (608.10) 99.60 

Normal year 0.3 (318.10) (112.60) (405.90) 187.40 

Wet year 0.4 (66.30) 74.40 (112.70) 904.70 

Expected Monetary Value (EMV) 

*EMVCON =  

(0.3)(-500.8)+(0.3)(-318.1)+(0.4)(-66.3) 

 

(272.10) (101.4) (349.30) 448.00 

Wheat Dry year 0.3 (4.40) 173.10 41.20 158.80 

Normal year 0.3 55.50 193.60 152.90 302.30 

Wet year 0.4 130.10 58.20 91.70 239.40 

Expected Monetary Value (EMV) 

*EMVCON =  

(0.3)(-4.4)+(0.3)(55.5)+(0.4)(130.1) 

 

67.40 133.30 95.00 234.10 

Note: The worst outcome from each production and treatment system is in bold format. The best outcome from each 

production and treatment system is in italic format. The maximum EMV for each production system is in bold-italic 

format. *shows how EMV is calculated under the conventional treatment, and the equation was used to calculate 

EMV in other treatments.    

The organic treatment commends a higher expected net revenue as a result of the current 

market value proposition afforded to the organic crops. The organic crop production practices, 

which consist of the use of non-genetically modified crops and avoidance of any synthetic 

agrochemicals, have comparably lower costs and higher revenues. Thus, more farmers can enter 

into the organic agriculture and increase the supply of organic produces. Of course, the law of 

supply dictates that as entrants increase the supply of organic produce, the price will fall until all 

excess profits that can be gleaned from organics are exhausted. However, there are barriers to 

entry that may protect profits to the organic sector. Such barriers include the initial transition 

period and associated costs of three years to transition to certified organic production, where 
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farmers face declining transitional yields and revenues (Bravo-Monroy et al., 2016; Bowman and 

Zilberman, 2013). Other barriers include surmounting the learning curve for managing a 

profitable organic operation. Though not a barrier to entry to organic, farmers are often unwilling 

to change current practices despite the potential for gains (Fleming and Vanclay, 2010; 

Takahashi et al., 2016). In addition, as organic operations become more common, abiotic 

stressors such as pests and diseases will likely increase production costs (Röös et al., 2018), 

thereby reducing the net earnings advantage afforded by organics. Finally, there is the threat that 

widespread organic production has on aggregate food supply. If widespread organic production 

reduces aggregate farm productivity, the conventional market will shrink, giving rise to the price 

of non-organic foods, and thereby eroding the organic food price advantage. That is, in the long 

run, many factors will be at play, impacting the future direction of the agri-food economy.              

5.4 Conclusions 

Identifying alternative agricultural practices to improve climate resilience in current crop 

production systems is an urgent requirement to face the challenges of increasing climate 

extremes. Profitability and associated risks are the key determinants of climate resilience as they 

affect the decision of farmers for transition and adaptation. In this study, we evaluated the 

climate resilience of three alternative treatments, namely, no-till, reduced input, and organic 

treatments in comparison to the conventional treatment in the long-term (26-years) corn-

soybean-wheat rotational production system in Southwest Michigan, US. Historical seasonal 

precipitation data was used to categorize the climate variability during the study period, and an 

appropriate enterprise budget analysis was conducted to derive expected annual net returns using 

the crop management and production data collected from the experimental station. A statistical 

mixed model was used to evaluate the effects of different treatments and climate variability on 
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the expected net returns. Mean and volatility of the expected net returns were used to define 

climate-resilient treatments. Additionally, the payoff matrix approach was used to identify the 

suitability of alternative treatments for farmers with different risk preferences. 

According to the findings of this study, the organic treatment showed the highest 

resilience, followed by the no-till treatment. The conventional and the reduced input treatments 

showed lower levels of resilience to climate change. The findings are significant in showing that 

no-till practices dominate conventional and reduced input practices in both expected annual net 

revenues with relatively lower risk to those revenues in light of climate change. It also shows 

that while organic production revenues are largely expected to exceed net revenues of 

conventional food crops, for many commodities, organic systems may exert greater annual 

stability in revenues. However, market conditions assert that such an advantage is likely to wane 

over time as growers migrate to this more profitable option. Related to this is the question of why 

migration to organic has not occurred faster than experienced. Part of the reason may be the high 

transition costs going to organic, while another component likely arises from market structures 

that favor conventional practices and psychological barriers to significant disruptions of existing 

production practices. Overcoming these constraints will require policy and industry buy-in to 

alternative agricultural practices, including an expansion of crop insurance offerings, favorable 

Natural Resources Conservation Service (USDA-NRCS) – Environmental Quality Incentives 

Programs, and industry support for sustainably-produced food crops.  
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6.  QUANTIFICATION OF RESILIENCE METRICS AS AFFECTED BY A 

CONSERVATION AGRICULTURAL PRACTICE AT A WATERSHED SCALE   

6.1 Introduction 

In similarity to other regions in the world, the Midwestern United States has already been 

adversely impacted by climate change and variability (Andresen et al., 2012; Fuchs et al., 2015; 

Hatfield et al., 2018), and the increasing climate extremes, such as droughts, are projected to 

increase in the future (Jin et al., 2018). These extreme events have lead to substantial crop yield 

losses (Hatfield et al., 2018; Wang et al., 2016), affecting both producers and consumers. To 

counteract these drought extremes, groundwater based irrigation systems are widely used in the 

U.S. (Siebert et al., 2010). However, extraction of groundwater for irrigation above the rate of 

recharge has significantly reduced groundwater levels, affecting the baseflow to streams, 

groundwater-fed wetlands, and other groundwater dependent habitats and species (Dalin et al., 

2017; Scanlon et al., 2012; Wada et al., 2010). Therefore, there is an increasing consensus 

among researchers that the resilience and ecosystem services provided by agricultural production 

systems should be improved. 

Ecosystem services denote all the benefits humans obtain from different natural systems 

for their physical and socio-economic prosperity (Costanza et al., 1997; Mengist et al., 2020). 

Agricultural practices are responsible for the primary production of food and fiber, while 

providing numerous ecosystem services at different scales (Dale and Polasky, 2007; Power, 

2010; Swinton et al., 2007; Tancoigne et al., 2014; Wood et al., 2015). Comprehensive 

documentation of ecosystem services has been conducted within the framework of the 

Millennium Ecosystem Assessment (MEA); accordingly, ecosystem services can be broadly 
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categorized based on provisioning, regulating, supporting, and cultural roles of the ecosystem 

(Fisher et al., 2009; MEA, 2005).  

Supporting services are fundamental in nature; without them, other types of services 

cannot occur. Nevertheless, the current trend of agricultural intensification deliberately focuses 

on a few provisioning services (e.g., food, water, energy), through agricultural landscape 

simplification, rather than harnessing a range of ecosystem services (Bommarco et al., 2013; 

Gaba et al., 2015; Robertson and Swinton, 2005) which in turn affects the resilience and 

sustainability of the agricultural systems. This phenomenon is very common in the Midwestern 

United States (Landis, 2017), which is one of the industrialized large-scale agricultural regions in 

the world, and contributes significantly to global food security and the economy as it produces 

the majority of the U.S. row crops and several other food, feed, and fuel crops (Hatfield, 2012; 

Oppedahl, 2018).  

Ecosystem services and resilience are interconnected, where the ecosystems with lower 

resilience are vulnerable to disturbances (e.g., climate perturbations) and higher resilience 

ensures a stable supply and/or recovery of ecosystem services (Biggs et al., 2012; Fedele et al., 

2017; Montoya and Raffaelli, 2010). In other words, the loss of ecosystem resilience could 

compromise ecosystem services that are indispensable for sustainable agricultural production 

systems (DeClerck et al., 2016; El Chami et al., 2020; Swift et al., 2004). Therefore, increased 

resilience and ecosystem services can be seen as an opportunity for climate change adaptation 

and disaster risk reduction (Munang et al., 2013). 

Improving agroecosystem services and resilience is not only confined to the farm scale, 

but can be expanded across the landscape (Bailey and Buck, 2016; Scherr et al., 2012). For 

example, agricultural recharge, which is the water leaving the vadose zone from agricultural 
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farms, may contribute to groundwater-dependent wetlands, streams, and dependent species 

(Gordon et al., 2010; Sampath et al., 2015) beyond those farms. These groundwater-dependent 

systems deliver services such as microclimate regulation, water for irrigation, flood mitigation, 

and control of pests and diseases (Griebler and Avramov, 2015; McLaughlin and Cohen, 2013), 

which in turn enhance the resilience of agro-ecosystems. Although groundwater recharge is 

broadly considered as a provisioning service (Prudencio and Null, 2018; Serna-Chavez et al., 

2014), it is also indirectly linked to regulatory and support services. Therefore, recharge can be 

considered as a major water-related ecosystem service and can be used as a metric to evaluate 

resilience in agro-ecosystems (Coates et al., 2013; Serna-Chavez et al., 2014). 

Resilience signifies the ability of an agricultural ecosystem to maintain its structure and 

function in the face of disturbances (Walker et al., 2004). The initial step of improving resilience 

is the assessment of resilience at appropriate scales. Resilience metrics are used to quantify 

resilience and can be used individually or in combination (Douxchamps et al., 2017; Serfilippi 

and Ramnath, 2018). Commonly used resilience metrics are means and variance of agricultural 

production/yields (Di Falco and Chavas, 2008; Eeswaran et al., 2021; Martin and Magne, 2015), 

profit/revenue (Browne et al., 2013; Kandulu et al., 2012; Komarek et al., 2015; Rigolot et al., 

2017), soil moisture (Eeswaran et al., 2021), crop failure (Jones and Thornton, 2009), and 

farming risks (Komarek et al., 2015). 

No-till has been endorsed for enhancing ecosystem services such as carbon sequestration, 

greenhouse gas mitigation, microclimate regulation, control of nutrient leaching, soil erosion 

control and improving species richness (Lal, 2013; Robertson and Swinton, 2005; Syswerda and 

Robertson, 2014; Zhang et al., 2016), often at the field scale. Considering all of the 

aforementioned benefits, there is an increasing trend in the adoption of no-till agriculture around 
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the world (Kassam et al., 2019). However, there is a dearth of knowledge on how no-till affects 

the overall resilience at a larger scale. To fill this gap, we present an approach that integrates 

long-term field experimental data and modeling to evaluate an ecosystem service (i.e., 

groundwater recharge and water table) and resiliency (i.e., soil moisture, drought mitigation, 

yield, and net return) of convetinal and no-till practices in a large, diverse watershed. The 

objectives of this study are: 1) assess recharge, groundwater table, and soil moisture variabilities 

for the long-term corn-soybean-wheat rotation under conventional and no-till practices at a 

watershed scale; 2) estimate yields and net returns under conventional and no-till practices 

within a large, diverse watershed; and 3) evaluate the overall changes in resiliency as affected by 

the adaptation of no-till as conservation agriculture.             

6.2 Materials and Methods 

The modeling framework of this study is presented in Figure 6.1. Initially, observed data 

from a long-term (1993-2019) corn-soybean-winter wheat rotation experiment of both 

conventional tillage and no-till treatments were used to parameterize a crop model (i.e., the 

Decision Support System for Agrotechnology Transfer-DSSAT) (Jones et al., 2003). Next, the 

DSSAT model was calibrated using the measured volumetric soil moisture and crop yield from 

the long-term field experiment. The calibrated DSSAT model was applied to individual fields 

within a large and diverse watershed. The results from the large-scale crop model were used to 

calculate the annual recharge and resilience measures for individual fields.  

The simulated drainage from the crop model, i.e., the deep percolation from the bottom of 

the soil profile, was assumed to reach the water table instantaneously and act as recharge from 

the agricultural land use (Xiang et al., 2020). This assumption can be supported by the existence 

of permeable soils and strong connection between the surface and groundwater within the study 
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watershed (Grannemann et al., 2008). Groundwater flow in the watershed was modeled using a 

process-based groundwater model called Interactive Groundwater (IGW) (Li and Liu, 2006; Liao 

et al., 2015a) and calibrated using static water level data. Finally, changes in the water table as 

ecosystem service and metrics of resilience were evaluated as affected by the adaptation of a no-

till treatment and compared to the base scenario (a conventional tillage treatment). 

 

Figure 6.1. An overview of the modeling process. 
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6.2.1 Study Area 

Our research project comprises of both field experiments and modeling efforts. The 

following sections describe the study area for each of these efforts. 

6.2.2 Description of Long-Term Field Experiment 

The DSSAT cropping system model (Jones et al., 2003) for the watershed scale 

evaluation was developed using the long-term experimental data collected from the Main 

Cropping System Experiment (MCSE) of the Kellogg Biological Station (KBS). KBS is located 

within the Kalamazoo River watershed in Michigan, U.S. at the coordinates of 42.41˚ N, 85.37˚ 

W and the altitude of 288m AMSL (Figure 6.2). The annual precipitation at the KBS is about 

1,027 mm, while the annual mean temperature is 10.1 ˚C, ranging from the lowest monthly mean 

of -9.4 ˚C to the highest of 28.9 ˚C in January and July, respectively (Cusser et al., 2020). This 

experimental site has fine loamy, well-drained, mesic Typic Hapludalf (Kalamazoo loam series) 

soils formed from the glacial till and outwash (Syswerda and Robertson, 2014).  

The MCSE, established in 1989, consists of several experimental treatments of annual 

and perennial cropping systems. To meet the objectives of this study, only conventional and no-

till treatments were considered of a corn (Zea mays), soybean (Glycine max), and winter wheat 

(Triticum aestivum) annual rotation. Both treatments have been under rainfed management. 

Further, each of these experimental treatments consisted of six replicants (blocks) in a 

randomized complete block design, and each block has a dimension of 87 × 105 m. In the 

conventional treatment, crops were planted following the primary tillage using moldboard 

plough until 1998 and thereafter using chisel plough. Primary tillage was followed by soil 

finishing each year. Disking was practiced as secondary tillage before planting a wheat crop in 

the rotation while inter-row cultivation was performed for corn and soybean. Nitrogen fertilizer 
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was applied as per the soil-test recommendations for each crop. Appropriate herbicides were 

broadcasted to control weeds depending on the weed intensity. Crops were not applied with any 

manure or insecticides. The same management was used for the no-till treatment, except crops 

were planted without tillage using a no-till drill (Robertson and Hamilton, 2015). Even though 

the MCSE was established in the late 1980s, an appropriate experimental design was adopted 

from 1993. Therefore, our study was designed for the experimental period of 1993-2019. The 

crop rotation begins with corn in 1993 and ends with wheat harvest in 2019, covering nine 

complete rotations (27 years). The following data were used to parameterize the crop model 

developed for this experiment.  

The daily weather data (precipitation, maximum temperature, minimum temperature, and 

solar radiation) for the experimental period were obtained from the automated weather station 

located within the MCSE site. The soil analysis data of bulk density, organic carbon, total 

nitrogen, soil pH, extractable phosphorous, and exchangeable potassium at different depths were 

collected from previously published data (Crum and Collins, 1995). Crop management data such 

as cultivar, planting (date of planting, planting method, planting distribution, planting density, 

row spacing, row direction, and planting depth), nitrogen fertilizer application (date of 

application, type of nitrogen fertilizer, method of application, depth of application and quantity 

of application), tillage (date of tillage, tillage implement and tillage depth), and harvesting date 

were collected from the MCSE agronomic log. The gravimetric soil moisture was measured 

typically in biweekly intervals at a depth of 0-25 cm from each replicate of the treatment during 

the study period. Periodically, updated soil bulk density data for the same depth (0-25 cm) was 

used to transform gravimetric soil moisture into volumetric soil moisture. The detailed procedure 

for sampling gravimetric soil moisture and the conversion into volumetric soil moisture can be 
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found in Eeswaran et al. (2021). Crop yields were measured at harvest using combine harvesters 

for the entire block. The seed yield was calculated based on the standard seed moisture level of 

15.5% for corn and 12.5% for wheat and soybean.  

 

Figure 6.2. Location of the experimental site and the Kalamazoo River Watershed in Michigan, 

USA. 

 

6.2.3 Description of the Study Watershed 

The study was conducted in the Kalamazoo River watershed, which is in the Southwest 

part of Michigan, USA (Figure 6.2). The watershed drains an extent of 5,232 km2 from the 
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counties of Allegan, Barry, Calhoun, Eaton, Hillsdale, Jackson, Kalamazoo, Kent, Ottawa, and 

Van Buren into Lake Michigan near the towns of Saugatuck and Douglas (KRWC, 2011). The 

hydrogeology of this watershed is determined by thick glacial deposits of sand and gravel that 

contribute to permeable soils and stable groundwater inflows (Wesley, 2005). Generally, there is 

a high degree of connection between surface and groundwater in the basin (Grannemann et al., 

2008). Soil groups which make up the watershed are 40% of sandy loam, 30% of loamy sand, 

25% of clay loam, and 5% of organic soils (Wesley, 2005). The watershed has a gentle to 

moderate slope, and the drainage class is moderate to well-drained (Schaetzl et al., 2009).  

The Kalamazoo River Watershed is historically well known for its richness in 

biodiversity, ecosystem services, and recreational opportunities as it consists of several lakes, 

headwater streams, wetlands, and flood plains that are heavily contributed by its groundwater 

system (Alexander et al., 2014; KRWC, 2011). A stable baseflow to streams and other habitats is 

essential to attenuate temperature extremes and to sustain aquatic life (KRWC, 2011). In 

contrast, growing pressures from development, urbanization, and agricultural operations have 

significantly altered the hydrology and water quality within the watershed (Wesley, 2005). 

Moreover, groundwater is extracted for industries, public water supply, domestic wells, 

irrigation, livestock, mining, and other commercial purposes; thus, groundwater withdrawal in 

this watershed is rated highest in the State of Michigan (Wesley, 2005). The high groundwater 

withdrawal within the Kalamazoo River Watershed warranted its use for this study.  

Agriculture is the primary land use within the watershed (47%) followed by forest cover 

and successional vegetation (30%), lakes, wetlands, and flood plains (15%), and urban areas 

(8%) (Figure 6.2; KRWC, 2011). Row crops such as corn, soybean, and wheat dominate 

agricultural lands while pasture, alfalfa, fruit crops, and livestock are also produced in the region. 
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The climate varies across the watershed depending on location, distance from Lake Michigan 

(lake effect), the formation of air masses, and atmospheric disturbances. The mean annual 

temperature of the basin is about 8.8 ˚C, and the annual precipitation ranges between 810-865 

mm, of which about half is snowfall (Wesley, 2005). 

Watershed scale crop modeling was performed for the period 1993-2019 and the 

following data were collected for this task. The daily weather data (precipitation, maximum 

temperature, and minimum temperature) for the study period were obtained from eight 

meteorological stations in the Kalamazoo River Watershed (Figure 6.2) using NOAA’s National 

Centers for Environmental Information. To fill in the missing weather data, the Soil Water 

Assessment Tool (SWAT) weather generator, i.e., WXGEN, was used (Sharpley and Williams, 

1990). The soil data for the watershed were downloaded from a global soil profile database for 

crop modeling applications available at Harvard Dataverse (Han et al., 2015). This soil data is 

available as compatible to the DSSAT crop model (.SOL format) at 10 km resolution and 

recommended for large scale crop modeling (Han et al., 2019). A total of 85 grids were found in 

the Kalamazoo River Watershed. The land use data were collected from National Land Cover 

Database (NLCD) 2013 (Homer et al., 2020) and the agricultural land use (legend 82: cultivated 

crops) in the watershed was extracted using ArcGIS 10.6 (Esri, Redlands, California, USA). 

Finally, the soil grids were assigned to respective weather stations using geoprocessing tools 

(Thiessen method) in ArcGIS (Thiessen, 1911). Therefore, a total of 85 modeling domains were 

used for crop modeling in the watershed.                      

6.2.4 Crop Modeling 

Crop modeling for conventional and no-till treatments of the long-term experiment was 

performed in DSSAT. DSSAT is one of the most highly cited crop modeling platforms in global 
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agricultural research and currently consists of process-based simulation models for more than 42 

crops (Hoogenboom et al., 2019; Jones et al., 2003, 2017). DSSAT has been successfully 

implemented in the evaluation of interactions among genetics, environment, and management at 

scales ranging from field to landscape (Adnan et al., 2019; Eitzinger et al., 2017). This includes 

the assessment of genetic improvement (Boote et al., 1996), evaluation of the impacts of climate 

change (Fodor et al., 2017; Rosenzweig et al., 2014), optimization of management practices such 

as tillage, water, and nutrients (Iocola et al., 2017; Kropp et al., 2019; Liu et al., 2013; Malik and 

Dechmi, 2019; Roy et al., 2019), and yield gap analysis (Teixeira et al., 2019). Moreover, 

DSSAT was applied for yield forecasting, precision farming, decision support, and policy 

analysis in agriculture (Boote et al., 1996; Shelia et al., 2015; Thorp et al., 2008). Crop modeling 

can also offer valuable opportunities to evaluate resilience against climate extremes when 

integrated with long-term research experiments (Rötter et al., 2018). 

In this study, the SEQUENCE modeling procedure (Bowen et al., 1998; Liu et al., 2013; 

Salmerón et al., 2014) in DSSAT-CSM was used to simulate the corn-soybean-winter wheat 

rotation for the conventional and the no-till treatments. The DSSAT version 4.7.5 (Hoogenboom 

et al., 2019) was used to simulate corn, soybean, and winter wheat by applying crop models of 

CERES-maize, CROPGRO-soybean, and CERES-wheat for the respective crops (Jones et al., 

2003). Weatherman application within the DSSAT (Pickering et al., 1994) was used to create 

DSSAT format (.WTH) weather files for the experimental period (1993-2019) using collected 

daily precipitation, maximum temperature, minimum temperature, and solar radiation from the 

MCSE site. The soil information (Kalamazoo Loam soil-MSKB 890006) was obtained from the 

DSSAT soil database and the Web Soil Survey (NRCS, 2020), and the relevant model 

parameters, such as the saturated hydraulic conductivity (SSKS), were updated accordingly. The 
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soil analysis data collected from Crum and Collins, (1995) were used as the initial soil analysis 

values.  

The best cultivar options suggested by Grace and Robertson for MCSE at KBS were 

available in DSSAT sequence models (MSKB8902.SQX) and were used to initialize the 

simulation (Hoogenboom et al., 2019). Accordingly, four crop cultivars (two corn cultivars and 

one cultivar each for soybean and winter wheat) were used for crop modeling. The identification 

codes of the corn cultivars used are IB0090 and IB0093, both belong to the ecotype IB0001. The 

identification code of the soybean cultivar is 990002 (ecotype: SB0201) while the identification 

code for the wheat cultivar is IB0488 (ecotype: USWH01). Planting information, nitrogen 

fertilizer applications, and harvesting information were incorporated for both treatments. The 

period between crops in the rotation was modeled as fallows. Irrigation information was not 

required as both treatments were managed as rainfed. Tillage operation for the conventional 

treatment was set as moldboard plow until 1998 and then as chisel plow. For the no-till 

treatment, tillage was set to be a no-till drill. Treatments were appropriately assigned in separate 

files (.SQX), and simulation was initiated using the following methods: The Priestly-

Taylor/Ritchie method was used to estimate evapotranspiration (Priestley and Taylor, 1972), 

Suleiman-Ritchie method (Suleiman and Ritchie, 2003) was used to estimate soil evaporation, 

infiltration rate was estimated using the Soil Conservation Service method (SCS, 1985), Century 

method (Parton, 1996) was used to simulate soil organic matter, and soil layer distribution was 

set to the modified soil profile. The soil water balance was simulated in DSSAT as a function of 

daily precipitation, irrigation (if any), transpiration, soil evaporation, runoff, and drainage on a 

daily time step (Ritchie, 1998).  
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Daily volumetric soil moisture was simulated for the depths of 0-5 cm, 5-15 cm, 15-22 

cm, and 22-31 cm using the DSSAT model. Then, weighted average soil moistures were 

calculated for the comparison with the observed soil moisture at 0-25 cm depth. The root growth 

factor (SRGF), lower limit/wilting point (SLLL), drained upper limit/field capacity (SDUL) were 

manually adjusted to match the simulated and observed soil moisture to calibrate the DSSAT soil 

water balance module (Calmon et al., 1999; Fang et al., 2008). The final soil properties generated 

from soil data calibration is presented in Table S6.1. Performance of the soil moisture and yield 

calibration was evaluated using coefficient of determination (R2) (Equation 6.1), normalized root 

mean square error (NRMSE) (Equation 6.2), and index of agreement (d) (Equation 6.3). NRMSE 

and d are commonly used to statistically evaluate the goodness of fit between observed and 

simulated soil moisture and yield (Araya et al., 2017; Dokoohaki et al., 2016; Liu et al., 2013; 

Yang et al., 2014). The model performance according to NRMSE goodness of fit can be 

classified as 0-15% (good), 15-30% (moderate), and >30% (poor). Goodness of fit based on d 

(Willmott, 1982) can be categorized as <0.7 (poor), 0.7-0.8 (moderate), 0.8-0.9 (good), and 0.9-

1.0 (excellent) as proposed by Liu et al. (2013). 

𝑅2 =
[∑ (𝑆𝑖−�̅�)(𝑂𝑖−�̅�)]2 𝑛

𝑖=1

∑ (𝑆𝑖−�̅�)2𝑛
𝑖=1  ∑ (𝑂𝑖−�̅�)2𝑛

𝑖=1

                                                                                            (6.1) 

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝑆𝑖−𝑂𝑖)2/𝑛𝑛

𝑖=1

�̅�
 × 100                                                                                  (6.2) 

𝑑 = 1 −  
∑ (𝑆𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑆𝑖−�̅�|+|𝑂𝑖−�̅�|)2𝑛
𝑖=1

                                                                                           (6.3) 

where, 𝑆𝑖 is the simulated ith value, 𝑂𝑖 is the observed ith value, 𝑆̅ is the mean of the 

simulated values, �̅� is the mean of the observed values, and n is the number of values.  
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6.2.5 Groundwater Modeling 

Groundwater flow in the shallow unconsolidated glacial deposits was modeled using 

Interactive Groundwater (IGW), a groundwater modeling software introduced by Li and Liu 

(2006), which uses the finite difference approximation of the governing partial differential 

equation (Equation 6.4) to solve confined and unconfined flow conditions: 

𝑆𝑠
𝜕ℎ

𝜕𝑡
= ∇(𝐾 ∙ ∇𝐻) + 𝑞                                                                                                    (6.4) 

where, Ss is the specific storage coefficient, h is the hydraulic head [L], t is time [T], K is 

the saturated hydraulic conductivity, ∇ is the mathematical gradient operator, q is the net source 

(positive) or sink (negative) flux term, including recharge, and surface seepage [LT−1].   

IGW is periodically updated (see, e.g., Liao et al., 2015a, 2015b, 2020); for this study, the 

IGW model was developed, calibrated, and visualized using the new web-based version of IGW 

called MAGNET – Multi-scale Adaptive Global Network – 4 Water, accessible on the 

magnet4water website: https://www.magnet4water.com/magnet.  

The IGW modeling software is live linked to a database comprising terabytes of raw and 

derived data useful for the groundwater modeling. A high-resolution (10 m) digital elevation 

model (DEM) (NED USGS 2006) was used to map topographic variations (i.e., the aquifer top) 

and to simulate groundwater-surface seeps in the watershed (see more below). The bottom 

boundary is represented by a spatially variable surface based on the top of the bedrock 

underneath the unconsolidated sediments. For this project, the bedrock was assumed to be 

impermeable, however it is known that the lower portion of this watershed has a bedrock that is 

very transmissive. The reason for assuming an impermeable bedrock is to better compare the 

impacts of different scenarios of agricultural management on restoring the unconfined aquifer, 

which is impossible to quantify if the bedrock is transmissive. The bedrock top elevation raster 
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(500 m resolution) was interpolated from borehole records found in the statewide water well 

database called Wellogic (MDEQ, 2020). Hydraulic conductivity (K) of the aquifer was 

represented by a spatially-variable, two-dimensional (2D) raster of horizontal hydraulic 

conductivity. This was generated by interpolating estimated K values from records in the 

Wellogic database, public water supply, and U.S. Geological Society aquifer-tests, and aquifer 

properties reported in the literature (State of Michigan, 2006). Given that the horizontal extent of 

the model was much larger than the vertical extent, it was hypothesized that flow was 

predominantly two-dimensional (2D) and that a 2D model could capture the dominant flow 

processes. The model extent was divided into 418 cells in the x- (west-east) direction and 258 

cells in the y- (north-south) direction.   

The model was executed for the time period between 1993-2019 using a one-year time 

step. The initial condition was generated by running the model in steady-state mode to represent 

long-term mean conditions, since no data was available to prescribe the initial head distribution. 

Annual recharge distributions from the calibrated DSSAT SEQUENCE model were included in 

the source/sink term at each time step. In non-cropland areas, the long-term mean recharge 

applied in the steady-state model was used. Natural, long-term mean recharge to the aquifer was 

input to the steady-state model and was created following empirical methods presented by 

Holtschlag (1997) involving observed streamflow hydrographs and information related to land 

use, soil conditions, and watershed characteristics (State of Michigan, 2006).  

For both the ‘initial condition’ steady-state model and the subsequent transient model, 

groundwater discharge into lakes, streams, and wetlands/springs - the major control of the long-

term prevailing groundwater flow patterns – was captured through the critical use of high-

resolution Digital Elevation Models (DEMs). Specifically, the entire land surface, modeled using 
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the 10 m DEM from NED USGS (2006), was treated as a one-way head-dependent boundary 

condition (seepage). This allowed groundwater to discharge to the surface where the 

groundwater level intercepted the land surface. The flux per unit area leaving the aquifer was the 

product of the leakance (hydraulic conductivity per unit thickness) of the land surface with the 

difference between the land surface elevation and the head in the aquifer. Leakance is a 

calibration parameter that is manually calibrated. For example, if the leakance was too low the 

flooded area would be too large and vice versa (note: a final calibrated value of 1 day-1 was used 

for transient simulation). Surface seepage maps at different time-steps were compared to the 

surface water features obtained from NHD USGS (2010) to ensure that this approach effectively 

captured the spatial patterns of groundwater discharge to the surface water bodies. Groundwater 

pumping was not represented in the initial condition model nor the transient simulation. A ‘no-

flow’ condition (i.e., zero groundwater flux) was applied along the lateral and bottom boundaries 

of both steady state and transient models. In short, recharge in the watershed was balanced by 

surface seepage to surface water bodies in the simulations presented here. 

The initial head distribution was obtained from the steady-state solution, and the 

simulation was advanced in time by solving Eq. (4) with annual time-steps. Annual recharge 

distributions from the calibrated DSSAT SEQUENCE model for the conventional and no-till 

treatments were included in the source/sink term at each time step in sperate runs. In non-

cropland areas, the long-term mean recharge applied in the steady-state model was used (State of 

Michigan, 2006). All other aquifer properties / attributes from the steady-state model were 

applied during the transient simulation. In addition, a specific yield of 0.1 was assigned based on 

the aforementioned distribution of soil types in the watershed (detailed specific yield data was 

not available).  
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6.2.6 Simulation of Crop Yields and Recharge at a Watershed Scale 

Calibrated DSSAT SEQUENCE model for the conventional and no-till treatments were 

used to simulate crop yields and agricultural recharge for the period of 1993-2019. The 

watershed was clustered according to climate and soil types. It was assumed that the corn-

soybean-wheat rotation was planted on all agricultural land within the watershed. The crop 

model was later run for each unique set of climate and soil type under the conventional and no-

till treatment scenarios.  

6.2.7 Assessment of Resilience as Affected by the Adoption of No-Till Agriculture  

A rising groundwater table from increased recharge is beneficial since many natural 

habitats, such as wetlands, depend on year-round groundwater availability (McLaughlin and 

Cohen, 2013; Sampath et al., 2015, 2016). In addition, increases in soil moisture within the root 

zone can improve the resilience of rainfed agricultural productions (Eeswaran et al., 2021). 

Yield, net return, and soil moisture metrics, namely mean relative difference (MRD) and soil 

water deficit index (SWDI), were used as metrics of resilience. MRD and SWDI were shown to 

be suitable metrics to evaluate resilience in agricultural systems (Eeswaran et al., 2021). MRD 

was presented by (Vachaud et al., 1985) to evaluate the temporal stability of spatially distributed 

soil moisture measurements. Additionally, treatment with a higher MRD was considered resilient 

to climate extremes, such as droughts (Eeswaran et al., 2021). The MRD during a particular 

growing season was computed as follows: 

𝑀𝑅𝐷 =  
1

𝑁
∑ {(Ɵ𝑣 − Ɵ̅𝑁

𝑗=1 )/Ɵ̅}                                                                                       (6.5) 

Ɵ̅ =  
1

𝑛
 ∑ Ɵ𝑣

𝑛
𝑖=1                                                                                                                (6.6) 

where, Ɵ𝑣 is the simulated daily volumetric soil moisture for ith treatment on jth day. 

This soil moisture was derived as a weighted average for 0-25 cm depth from the simulation 
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outputs. The number of treatments denoted by n. Ɵ̅ is the average volumetric soil moisture of all 

treatments and N is the total number of days in the growing season. In this study, the growing 

season was considered to start on April 1st and end October 31st, since it covered the critical 

stages of each crop and the MRD values were calculated in percentages. Probability analysis 

(Alizadeh, 2013) was conducted for the annual MRD values, and probability curves were 

compared between treatments to assess the resilience as affected by the adoption of the no-till 

treatment. 

SWDI is an agricultural drought index proposed by Martínez-Fernández et al. (2015) and 

can be implemented to assess droughts when continuous soil moisture data is available. The 

SWDI is calculated using the following formula: 

𝑆𝑊𝐷𝐼 =  (
Ɵ𝑣−Ɵ𝑓𝑐

Ɵ𝑓𝑐−Ɵ𝑤𝑝
)  × 10                                                                                             (6.7) 

where, Ɵ𝑣 is the simulated daily volumetric soil moisture during the growing season as 

above. Ɵ𝑓𝑐 is the field capacity/drain upper limit, and Ɵ𝑤𝑝 is the wilting point/lower limit. Ɵ𝑓𝑐 

and Ɵ𝑤𝑝 values were obtained from each selected soil file (Han et al., 2015) as weighted 

averages for the 0-25 cm soil depth. A particular soil will have excess water when SWDI is 

positive, soil will be at the field capacity when SWDI equals zero, and be in a drought phase 

when SWDI is negative. Moreover, drought severity categories can be classified based on SWDI 

as  “no drought” if SWDI > 0, as “mild” if 0 > SWDI > -2, as “moderate” if -2 > SWDI > -5, as 

“severe” if -5 > SWDI > -10, and as “extreme” if -10 > SWDI (Martínez-Fernández et al., 2015). 

Calculated SWDI for the entire growing season (April-October) for each year during the study 

period (1993-2019) was used to calculate the median, mean, maximum, and minimum across all 

soils, and these values were later arranged in descending order to perform probability analysis 
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for each treatment (Alizadeh, 2013). Probability curves were compared between treatments to 

assess the resilience of the no-till agriculture to drought. 

The net return was estimated through cost-benefit analysis using the annual crop yields 

and the price received for crops in November 2018 in Michigan (USDA, 2019). In 2018, the 

price of corn, soybean, and winter wheat was 131.50, 307.50, and 180.76 US dollars per ton, 

respectively. The cost was calculated using the variable cost involved in all agricultural 

operations for both treatments during the year 2018 in the long-term research experiment. This 

cost was estimated based on a detailed 2018 enterprise budget from Clemson University 

Cooperative Extension for the respective crops (Clemson, 2020). The pricing of cost and benefit 

components were considered as static over the years of simulation and the fixed cost was 

excluded due to lack of information for reliable estimates.  

The yield, net return, and annual recharge were statistically analyzed in a mixed model 

(Equation 6.8) to evaluate the significance of fixed and random effects on these response 

variables for each evaluated crop (i.e., corn, soybean and wheat). 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝑎𝑘 + 𝑡𝑖 + 𝑠𝑗 + (𝑡𝑎)𝑖𝑘 + (𝑠𝑎)𝑗𝑘 + (𝑡𝑠)𝑖𝑗 + 𝜀𝑖𝑗𝑘                                (6.8) 

where, 𝑌𝑖𝑗𝑘 is the  response (grain yield/net return/annual recharge) simulated for the ith 

treatment, within jth soil type on the kth cropping year; µ is the intercept; 𝑎𝑘 is the fixed effect of 

the cropping year k; 𝑡𝑖 is the fixed effect of the treatment i; 𝑠𝑗 represents the random effects of 

the jth soil type, with 𝑠~𝑁(0, 𝜎𝑠
2); (𝑡𝑎)𝑖𝑘 denotes the fixed interaction between the ith treatment 

and kth cropping year; (𝑠𝑎)𝑗𝑘 is the random effect of the interaction between jth soil type and 

kth cropping year, with (𝑠𝑎)~𝑁(0, 𝜎𝑠𝑎
2 ); (𝑡𝑠)𝑖𝑗 is the random effect of the interaction between 

the ith treatment and jth soil type, (𝑡𝑠)~𝑁(0, 𝜎𝑡𝑠
2 ); and 𝜀𝑖𝑗𝑘 is the error associated with each 

observation, with 𝜀~𝑁(0, 𝜎𝜀
2). To ensure the normality of the residuals and the homogeneity of 
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variances, the grain yield and annual recharge data were log-transformed. Transformations were 

not needed for net return. There were varying extents of acreage of agricultural land use for each 

soil in the watershed. Hence, the area of each soil was used as a weighting factor in the model. 

The comparison between the means was performed using the Tukey-Kramer test, assuming 𝛼 =

0.05  (Herberich et al., 2010). All analyses were performed using the GLIMMIX procedure 

(Milliken and Johnson, 2009) in the SAS software version 9.4 (SAS Institute Inc. Cary, North 

Carolina, USA).  

6.3 Results and Discussion 

6.3.1 Calibration of the Crop Model 

The sequential DSSAT crop model was calibrated and validated for yield and soil 

moisture during the period of 1993-2019, which included nine complete rotations of corn-

soybean-wheat crops. The performance of the model to simulate crop yields under both 

treatments was measured by the goodness of fit indicators shown in Table 6.1. According to the 

R2 and d-index, the model performance was considered excellent, whereas the NRMSE indicated 

moderate performance (Liu et al., 2013; Willmott, 1982). However, relatively large NRMSE 

values are expected when modeling long-term crop performance for multiple growing seasons as 

a result of interannual variations. It is also important to note that the performance of the no-till 

model was slightly better than the conventional model. A similar performance was observed for 

the simulation of soil moisture. However, performance indicators show that the crop model was 

reasonably calibrated for the corn-soybean-wheat rotation (Table 6.1). 

Table 6.1. The goodness of fit parameters of the calibrated crop model to simulate yield and soil 

moisture under the conventional and no-till treatments. 

Treatment Crop yield Soil moisture 

R2 NRMSE (%) d-index R2 NRMSE (%) d-index 

Conventional 0.73 27.6 0.92 0.74 29.0 0.8 

No-till 0.75 26.6 0.93 0.74 19.3 0.9 
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6.3.2 Calibration of the Groundwater Model 

The steady-state simulation results are shown in Figure S6.1. The comparison between 

the simulated results (heads) of the steady-state model and Static Water Level (SWL) 

measurements from water well records in the Wellogic database can be seen in Figure 6.3. SWL 

observations from 23,757 glacial wells were used to calibrate the model. The solid 45-degree line 

represents “perfect agreement” between simulated and actual observations while the dashed lines 

represent confidence intervals of one standard deviation (Figure 6.3). Calibration results show 

that the model performance was good, as indicated by a strong Nash-Sutcliffe model efficiency 

coefficient (NSE) of 0.90. Even though there was slightly large spread of the data points, all data 

was centered around the line of perfect agreement. The center-focused distribution demonstrates 

that the model was able to capture the dominant spatial structure of the groundwater system (i.e., 

the distribution of groundwater recharge and discharge areas). Slightly large spread in the data, 

as indicated by the root-mean-square error of 7.91 m, primarily reflects the significant noise 

embedded in the SWL observations (Curtis et al., 2018). 
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Figure 6.3. Comparison between simulated groundwater heads and observed groundwater heads. 

The solid red line in the calibration indicates a 1:1 perfect agreement. The dashed lines 

represent a confidence interval of one standard deviation. 

 

6.3.3 Resilience as Affected by the Adoption of No-Till Agriculture 

In this study, we quantified resilience in terms of recharge, groundwater table, soil 

moisture metrics, crop yield, and net return for both the conventional and the no-till treatments. 

Treatments with higher recharge, groundwater table, soil moisture retention, ability to mitigate 

drought, larger crop yields, and higher net revenues were considered as resilient over the long-

term (1993-2019) evaluation. 

6.3.3.1 Recharge and Groundwater Table as Affected by the Adoption of No-Till 

Agriculture 

The statistical analysis for the annual recharge showed that the effects of treatment, year, 

and the interaction between treatment and year were strongly significant (see the supplementary 
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material Table S6.2). The means of the annual recharge across different soils and years from 

each crop can be seen in Figure 6.4. Results showed that the no-till treatment significantly 

increased the annual recharge from all crops in comparison to the conventional treatment. The 

annual recharge from the no-till treatment for corn, soybean, and wheat were 12.4%, 6.2%, and 

13.2% greater than the annual recharge from the conventional treatment, respectively. The 

soybean had the highest recharge followed by wheat and corn. Because the interaction effect 

between treatment and year was also significant for the annual recharge (Table S6.2), the 

comparisons between treatments for each crop during the period of study is presented in Figure 

S6.2. In most years, the no-till treatment had significantly higher recharge than the conventional 

treatment. The changes in recharge across the years can be attributed to the changes in 

precipitation and crop growth, which affect other water balance components (Figure S6.2).         

 

 

Figure 6.4. The mean annual recharge from different crops under two treatments in the 

Kalamazoo River watershed. ** indicates strongly significant means at p<0.0001. 

    

**

**
**
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The results from the transient simulation for the conventional and no-till treatments are 

presented in Figures 6.5 and 6.6. Figure 6.5 shows the 2019 head distribution under the 

conventional treatment, and the location of the six monitoring wells where transient head results 

were reported. It is important to note that the changes in the water table at the watershed scale 

over time were difficult to distinguish, therefore no comparison of plan-view model results under 

each agricultural scenario was presented. Therefore, temporal changes of groundwater levels 

were presented at each monitoring wells (Figure 6.6). The time-series comparisons show that the 

no-till treatment resulted in higher water tables compared to the conventional treatment. The 

differences were typically small, with about 0.3-0.5 m at Monitoring Well 1, 0.1-0.3 m at 

Monitoring Well 4, and 0.1 m or less at the other locations. However, even a relatively small 

improvement in the groundwater table can have beneficial effects on streams and aquatic 

ecosystems in the Kalamazoo River Watershed, due to the large contribution of groundwater to 

streamflow in this region (Cooper and Merritt, 2012; Sampath et al., 2016). 
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Figure 6.5. Monitoring well (MW) locations superimposed over the 2019 head distribution under 

conventional treatment. 
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Figure 6.6. Simulated water table heads under the conventional and no-till treatments for the six 

monitoring wells. 
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As observed in our study, higher recharge in the no-till treatment simultaneously 

increased the groundwater table; however, the magnitude of change was dependent upon the 

characteristics of the underlying groundwater system (Figure 6.6). The higher recharge observed 

under the no-till treatment in this study may have been caused by the greater infiltration of 

rainwater (Nunes et al., 2018). According to Kravchenko et al. (2011), the no-till system 

establishes large pores associated with the undisturbed root channels created by the previous 

crops. The macropores in a no-till system may contribute to greater infiltration and thus recharge. 

In agreement with the findings reported here, Syswerda and Robertson (2014) also found higher 

downward drainage under the no-till treatment compared to the conventional treatment.  

In many regions of the world, groundwater is being tapped at rates greater than the local 

recharge, leading to the depletion of aquifers (Dalin et al., 2017; Reitz et al., 2017). Furthermore, 

increasing climate variability has already posed additional challenges to water resources and 

accelerated stresses to the water-energy-food nexus (Smidt et al., 2016). Therefore, an improved 

recharge and water table under the no-till practice can increase the resilience of the food systems, 

while also supporting the sustainability of groundwater-dependent ecosystems. 

6.3.3.2 Soil Moisture Metrics as Affected by the Adoption of No-Till Agriculture 

The probability distribution of the of mean, maximum, and minimum of MRD for both 

treatments across 85 soils over the period of the study is presented in Figure 6.7. MRD measures 

soil moisture deviations from the average soil moisture of agricultural treatments, and a positive 

MRD signifies a wetter treatment while a negative MRD signified a drier treatment (Eeswaran et 

al., 2021). The mean of the MRD clearly shows that the conventional treatment mostly (>93% 

probability) generated a negative MRD while the no-till treatment generated a positive MRD. 

Therefore, the no-till treatment consistently retained higher soil moisture than the conventional 
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treatment. Based on the maximum line for the conventional treatment (Figure 6.7a), it also had a 

small probability (<14%) to be wetter than the no-till treatment. Similarly, the minimum line of 

the no-till treatment (Figure 6.7b) shows that it also had the chance to be drier than the 

conventional treatment by the same magnitude of probability as above.  

The probability distribution of SWDI across all soils over the study period is shown in 

Figure 6.8. As shown in Figure 6.8, the probability of having different drought severity levels 

can be analyzed based on respective SWDI values (Martínez-Fernández et al., 2015). Based on 

the mean SWDI, the no-till treatment had a 43% probability of having no drought events, which 

was substantially higher than the conventional treatment (38%). Moreover, the no-till treatment 

had a lower probability of having mild, moderate, severe, and extreme droughts in comparison to 

the conventional treatment. According to the maximum SWDI, the no-till treatment had 78% 

probability to have drought free days while the probability for the conventional treatment was 

75%. The minimum SWDI also showed that the no-till treatment (13%) had higher drought free 

days than the conventional treatment (10%). Thus, the no-till treatment was superior in 

mitigating drought compared to the conventional treatment in this watershed.  
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Figure 6.7. The probability distribution for the mean, maximum, and minimum of MRD across 

different soils in the Kalamazoo River watershed for the period of 1993-2019 as affected by the 

conventional (a) and the no-till (b) treatments.Note: Red dashed line at zero MRD indicates the 

demarcation, where the positive MRD values signify wetter treatment while the negative MRD 

values signify drier treatment. 

 

 

Figure 6.8. The probability distribution for the mean, maximum, and minimum of SWDI across 

different soils in the Kalamazoo River watershed for the period of 1993-2019 as affected by the 

conventional (a) and the no-till (b) treatments. Note: Red dashed lines are to demarcate different 

drought severity levels. 

 

Consistently higher soil moisture retention by the no-till treatment was due to the 

beneficial improvement of soil physical properties, such as water holding capacity (Moebius-

Clune et al., 2008). Furthermore, the no-till treatment has been found to increase rainwater 
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infiltration, decrease runoff, and to reduce soil evaporation thereby increasing the proportion of 

available water in the root zone (Lal et al., 2012; Lampurlanés et al., 2016; Verhulst et al., 2011). 

The ability of the no-till treatment to store more soil moisture could help to mitigate the impacts 

of droughts on the crops, as evident in this study. This agreed with the findings of Thierfelder 

and Wall (2010) where the no-till system performed better for soil water dynamics in a drought-

prone region of Africa. Based on the above findings, the no-till treatment was more resilient than 

the conventional treatment and adaptation of the no-till management in the Kalamazoo River 

Watershed would enhance its resilience to extreme drought events, which are detrimental to 

rainfed systems. 

6.3.3.3 Crop Yield and Net Return as Affected by the Adoption of the No-Till Agriculture 

The probabilities for the statistical significance of the effects evaluated for crop yield and 

net return is presented in Table S6.2. To perform this statistical analysis, the extent of each soil 

in the agricultural land use was used as a weighting factor, since it is critical to consider 

production area when comparing management effects at larger scales (Leng et al., 2019). As a 

result, we evaluated the effects of treatments in the watershed over the entire study period with 

high confidence. The statistical analysis showed that the effect of treatments was strongly 

significant on the yield of corn and soybean, but not in wheat. Nonetheless, treatment effect was 

strongly significant for the net return from all crops. Furthermore, the effect of year and 

interaction between the treatment and year were significant for both yield and net return of all 

crops (Table S6.2).  

The means of crop yield and net return as separated by treatments across the years and 

soils are presented in Table 6.2. Accordingly, the yield increased under the no-till treatment by 

1.23%, 0.61%, and 0.24% for corn, soybean, and wheat, respectively. Deines et al. (2019) 
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reported a 3.3% and 0.74% yield improvement, respectively, for corn and soybean as a result of 

conservation tillage adoption in the US corn belt region. However, it is important to note that 

conservation tillage is a mixture of different intensities of reduced tillage and not necessarily 

entirely no-tillage. In this study, the net return was 20%, 23.4%, and 48.3% higher under the no-

till treatment for corn, soybean, and wheat, respectively (Table 6.2). The higher margin of net 

revenues for the no-till treatment was mainly because of its lower production costs compared to 

the conventional treatment. The no-till treatment was cheaper due to absence of tillage 

operations, even though the herbicide application rates were higher than the conventional tillage. 

The costs to produce corn, soybean, and wheat conventionally were 918.84, 705.03, 586.56 

USD/ha, respectively. On the other hand, no-till treatment costs were 867.36, 632.12, and 508.58 

USD/ha, for corn, soybean, and wheat productions, respectively. As the interaction effects 

between treatment and year were significant for both yield and net return in all the crops, the 

strength of significance may vary across different years. This differential performance, as 

affected by treatment and years, is shown in Figure S6.3 (yield) and Figure S6.4 (net return). In 

summary, the no-till outperformed the conventional treatment in the majority of the years.    

Table 6.2. The mean yield and net return for different crops under two treatments in the 

Kalamazoo River watershed*. 

Treatment Corn Soybean Wheat 

Yield 

(Mg/ha) 

Net return 

(USD/ha) 

Yield 

(Mg/ha) 

Net return 

(USD/ha) 

Yield 

(Mg/ha) 

Net return 

(USD/ha) 

Conventional 8.91b 315.31b 3.27b 345.87b 4.09a 165.77b 

No-till 9.02a 378.47a 3.29a 426.78a 4.10a 245.88a 

*Means with the same letter in each column are not significantly different at p<0.05. 

The no-till treatment increased crop yields in most studies around the world (Corbeels et 

al., 2014; Pittelkow et al., 2015; Rusinamhodzi et al., 2011). However, some studies have found 

no significant effects on yield under the no-till systems (e.g., Daigh et al., 2018), while a few 
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other studies reported reductions in crop yield (e.g., Powlson et al., 2014). In contrast, to see the 

consistently outperforming trends under the adoption of the no-till agriculture the evaluation 

must be longer than a decade (Cusser et al., 2020). This study was built on this need and 

successfully captured the long-term impacts of the no-till treatment. The results showed that the 

adoption of the no-till treatment could significantly improve the resilience of agricultural systems 

by increasing crop yields and net return. The increment in crop yields under the no-till 

management can be attributed to the enhancement of soil physical, chemical, and biological 

properties (Nunes et al., 2018). 

6.4 Conclusions 

In this long-term study, we found that the adoption of no-till treatment for a corn-

soybean-wheat rotation has potential to increase the resilience in the Kalamazoo River 

Watershed. This improvement of resilience was demonstrated using the following metrics: 

recharge, water table, soil moisture, drought vulnerability, yield, and net return. The no-till 

treatment had significantly higher annual recharge, for corn, soybean, and wheat which were 

12.4%, 6.2%, and 13.2% greater than the annual recharge from the conventional treatment, 

respectively. The highest recharge was observed for soybean followed by wheat then corn. The 

rise in the water table resulting from the adoption of the no-till treatment in the watershed ranged 

between 0.1-0.5 m, which could substantially contribute to replenishing the aquifers and 

groundwater-dependent ecosystems. MRD of soil moisture clearly showed that the no-till 

treatment consistently maintained higher soil moisture compared to the conventional treatment, 

thus remained as a relatively wetter treatment. Therefore, the no-till treatment had a higher 

resilience against drought compared to the conventional treatment as quantified by the drought 

index (SWDI). Yields and net returns were also improved under the no-till treatment for all crops 
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in the rotation. When averaged across the years and soils, the no-till treatment produced 1.23%, 

0.61%, and 0.24% higher grain yields for corn, soybean, and wheat, respectively. Moreover, the 

no-till generated 20.0%, 23.4%, and 48.3% higher net returns for corn, soybean, and wheat, 

respectively.  

There were two major assumptions in this study. First, all agricultural land use in the 

Kalamazoo River Watershed was assumed to be planted with a corn-soybean-wheat rotation. 

However, farmers plant a variety of crops throughout the watershed; therefore, the findings are 

mostly applicable to the row crop rotations in this region. Secondly, we assumed that the deep 

percolation simulated by the crop model instantly reached the water table. This assumption is 

only valid in regions where there is a greater connection between the surface and groundwater, 

similar to our study area. To expand our approach to different landscapes with varying climate, 

soil, groundwater, and cropping systems, we recommend modifying both the crop and 

groundwater modeling procedures adhering to site-specific parameters and requirements.  
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7. CONCLUSIONS 

In this dissertation, several innovative approaches were introduced within three studies to 

quantify the resilience of rainfed agricultural systems at both the field and watershed scales. The 

robustness of these approaches was tested using data from a long-term cropping system 

experiment at KBS and then scaled up to the Kalamazoo River Watershed located in the 

Southwestern portion of Michigan, USA.  

In the first study, the applicability of soil moisture metrics to gauge resiliency of 

differently managed rainfed agricultural treatments were evaluated at the field scale. In addition, 

the robustness of soil moisture metrics was examined over a long-term period (1993-2018) by 

monitoring the impacts of climate variabilities on crop growth and yield for a corn-soybean-

wheat rotation. The major takeaways from this study are as follows: 

▪ Soil moisture-based metrics can be used to measure the resilience in rainfed 

agricultural systems. 

▪ The no-till treatment significantly improved the resiliency of a corn-soybean-

wheat rotation than the conventional treatment in terms of higher soil moisture 

retention, higher effectiveness for drought mitigation, greater crop yields, and 

increased stability of yields. 

▪ The organic treatment had substantially higher resiliency in terms of greater soil 

moisture retention and drought mitigation than the conventional treatment; 

however, nitrogen limitation significantly reduced yields, especially for cereal 

crops (i.e., corn and wheat). 

▪ The reduced input treatment was the least resilient as it had limited capacity to 

recover from the impacts of climate extremes (i.e., drought). 
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In the second study, climate resilience of alternative treatments for a long-term (1993-

2018) corn-soybean-wheat rotation was evaluated in terms of profitability and farm risks for 

adaptation using enterprise budgeting and risk analysis. Means and volatility of expected net 

revenues and risk preferences were used as evaluation metrics. The key take-home messages 

from this study are as follows: 

▪ The organic treatment was expected to exceed the conventional treatment's net 

revenues and stability making it more resilient.    

▪ The no-till treatment was superior to the conventional and the reduced input 

treatments in expected annual net revenues with lower risk under climate 

extremes. 

▪ Due to higher resilience and lower risk levels, the organic and no-till treatments 

were suitable to cater to a large group of farmers with different risk preferences 

for adaptation. 

▪ The conventional and reduced input treatments were vulnerable to climate 

extremes and should not be promoted in areas with a high-level of climate 

variabilities.  

In the third study, the overall resilience of a conservation agricultural practice (i.e., no-

till) was compared to the conventional tillage for the corn-soybean-wheat rotation at the 

watershed scale using an integrated framework of crop and groundwater models. Recharge, 

groundwater head, soil moisture, yield, and net return were used as resilience metrics. The key 

conclusions of this study are as follows: 
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▪ The adoption of the no-till treatment increased the annual recharge and 

groundwater heads in the watershed over the long-term study (1993-2019), and 

the highest recharge was observed for soybean followed by wheat and corn. 

▪ The rise in the groundwater table under the no-till treatment ranged from 0.1m to 

0.5 m, depending on the underlying groundwater system in the watershed, and 

had the potential to beneficially impact the groundwater-dependent ecosystems. 

▪ Shifting from the conventional tillage to the no-till treatment significantly 

increased the yield of corn and soybean and the expected net returns from all 

crops.  

▪ The no-till treatment consistently retained higher soil moisture than the 

conventional treatment and thereby helped to mitigate the impacts of droughts. 

▪ The overall resilience of the corn-soybean-wheat rotation was substantially 

improved by the adoption of the no-till treatment.  
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8. RECOMMENDATIONS FOR FUTURE RESEARCH 

 This dissertation presented innovative approaches to quantify the resilience of 

rainfed agricultural systems at the field and watershed scales. The possible areas to further 

strengthen these approaches are as follows: 

▪ Soil moisture-based metrics can be further improved with more frequently 

measured soil moisture at different depths within the root zone. This can be 

achieved through installing automated soil moisture sensors in the treatment plots 

at sufficient densities. 

▪ Remote sensing-based soil moisture measurements (e.g., Soil Moisture Active 

Passive-SMAP, Soil Moisture Ocean Salinity-SMOS) can be applied to develop 

soil moisture-based resilience metrics if their spatial resolutions are reasonably 

improved at the field scale. 

▪ The approaches presented here can also be extended to the irrigated cropping 

systems if the frequency and amount of irrigation are periodically recorded.  

▪ The current version of the DSSAT model does not allow intercropping. Therefore, 

developing the intercropping module for DSSAT can assist in the evaluation of 

different cover crop species on the resilience of cropping systems. In addition, 

simulation of crop responses to nutrients can be improved by developing potassium 

and phosphorus (e.g., wheat) uptake models. 

▪ Seamless integration of crop and groundwater models can give us better insights to 

study the impacts of different agricultural practices on recharge and groundwater 

restoration. 
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▪ In this study the annual recharge and groundwater average head were reported to 

gauge the resiliency as related to ecosystem services. However, it is recommended 

to report these metrics during the dry season to better represent the impacts of 

groundwater restoration on ecosystem services. 

▪ Studying different pathways to motivate producers to adopt climate-resilient 

practices considering market and policy implications. 



   

 

144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

  



   

 

145 

 

APPENDIX 

Table S4.1. Details of the four annual row crop treatments of MCSE investigated in this study.  
Treatment  Description of Management 

Conventional (CON) Crops were planted in corn-soybean-winter wheat rotation. Primary tillage was 

practiced using moldboard plow until 1998 and chisel plowing was used from 

1999 onward. Disks were used for secondary tillage before wheat planting, 

while the field was conditioned with a soil finisher prior to soybean and maize 

planting. Moreover, inter-row cultivation was practiced for soybean and maize. 

Fertilizers were applied at the rates based on soil-test recommendations for each 

crop. Herbicides were broadcasted within and between rows to control weeds. 

There were no applications of manure/compost or insecticides. 

No-till (NT) Crops were planted in corn-soybean-winter wheat rotation. These crops were 

established under zero tillage. Fertilizers were applied at rates based on soil-test 

recommendations for each crop.  Herbicides were broadcasted within and 

between rows to control weeds.  There were no applications of manure/compost 

or insecticides. 

Reduced input (RI) Crops were planted in corn-soybean-winter wheat rotation. Primary tillage was 

practiced using moldboard plow until 1998 and chisel plowing was used from 

1999 onward. Disks were used for secondary tillage before wheat planting, 

while the field was conditioned with a soil finisher prior to soybean and maize 

planting. Moreover, inter-row cultivation was practiced for soybean and maize. 

Nitrogen (N) fertilizer and herbicide inputs were applied as one-third of N and 

herbicides applied to the conventional system (Reduced input). These 

herbicides were banded within rows.  Winter cover crop was established 

following the corn and wheat crops within the rotation with the intention of 

supplementing nitrogen to the following crop. Generally, cereal rye (Secale 

cereal) was planted following corn, while red clover (Trifolium pratense) was 

planted after wheat. There were no applications of manure/compost or 

insecticides. 

Organically managed (USDA 

certified organic) (OR)  

Crops were planted in corn-soybean-winter wheat rotation. Primary tillage was 

practiced using moldboard plow until 1998 and chisel plowing was performed 

from 1999 onward. Disks were used for secondary tillage before wheat 

planting, while the field was conditioned with a soil finisher prior to soybean 

and maize planting. Moreover, inter-row cultivation was practiced for soybean 

and maize.  Winter cover crop was established following the corn and wheat 

crops within the rotation with the intention of supplementing nitrogen to the 

following crop. Generally, cereal rye (Secale cereal) was planted following 

corn, while red clover (Trifolium pratense) was planted after wheat. This 

certified organic treatment was not applied with any chemical 

fertilizers/herbicides/insecticides.  
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Figure S4.1. Ranked MRD of volumetric soil moisture and ITS for each treatment during the 

normal years.Note: Crop grown is given next to the respective year for each plot. CON: 

Conventional treatment; NT: No-till treatment; RI: Reduced input treatment; OR: Organic 

treatment. 
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Figure S4.2. Ranked MRD of volumetric soil moisture and ITS for each treatment during the wet 

years. Note: Crop grown is given next to the respective year for each plot. CON: Conventional 

treatment; NT: No-till treatment; RI: Reduced input treatment; OR: Organic treatment. 
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Figure S4.3. Means of soil organic carbon content in different treatments during the period of 

1989-2001 in this experiment.The error bars represent the standard error. CON: Conventional 

treatment; NT: No-till treatment; RI: Reduced input treatment; OR: Organic treatment. 
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Figure S4.4. Association between mean relative difference (MRD) of volumetric soil moisture 

and soil organic carbon content in the treatments investigated in this study. 
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Figure S4.5. Total biomass (a-c) and yield (d-f) of crops as affected by the interaction between 

treatment and climate variability. The error bars represent the standard error. CON: 

Conventional treatment; NT: No-till treatment; RI: Reduced input treatment; OR: Organic 

treatment. 
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Table S4.2. P-values for the effects evaluated in the statistical mixed model for MRD, total 

biomass and yield. 

Crop Effects in the statistical model Probability (p-value) 

MRD Total biomass Yield 

Corn Treatment (trt) <0.0001** <0.0001** <0.0001** 

Climate variability (clim) 0.9250 0.5154 0.2641 

Year (yr) >0.05 0.0563 0.0948 

Interaction between treatment and 

climate variability (trt × clim) 

0.1733 0.0002** 0.0003** 

Interaction between treatment and 

year (trt × yr) 

0.2497 0.0171* 0.0043* 

Soybean Treatment (trt) <0.0001** 0.0020* 0.0198* 

Climate variability (clim) 0.9998 0.0024* <0.0001** 

Year (yr) >0.05 0.0845 0.0867 

Interaction between treatment and 

climate variability (trt × clim) 

0.1442 0.0071* 0.0031* 

Interaction between treatment and 

year (trt × yr) 

0.4661 0.6700 0.8306 

Wheat Treatment (trt) <0.0001** <0.0001** <0.0001** 

Climate variability (clim) 0.9805 0.7511 0.2335 

Year (yr) >0.05 0.0698 0.0729 

Interaction between treatment and 

climate variability (trt × clim) 

0.8305 0.3534 0.1965 

Interaction between treatment and 

year (trt × yr) 

0.8107 0.0700 0.0640 

**Strongly significant at p<0.001; *significant at p<0.05. 
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Table S4.3. Coefficient of variation of total crop biomass and yield of crops under different 

treatments as affected by climate extremes.  

Crop parameter Category of climate 

extreme 

Treatment Coefficient of variation (%) 

Corn Soybean Wheat 

Total crop 

biomass 

Dry year CON 28.1 26.3 30.9 

NT 19.0* 22.6* 21.0* 

RI 25.1 24.0 22.7 

OR 31.9 28.1 35.4 

Wet year CON 27.9 18.6 15.1 

NT 20.0* 11.6* 16.6 

RI 38.1 21.2 7.4* 

OR 22.1 20.2 21.0 

Crop yield Dry year CON 38.4 19.0 17.7 

NT 27.7* 7.8* 10.0* 

RI 39.3 16.9 16.2 

OR 33.2 18.3 28.4 

Wet year CON 38.6 13.6 8.9 

NT 28.9* 12.3* 13.4 

RI 42.2 15.0 8.5* 

OR 30.7 13.0 23.5 
*Lowest coefficient of variation for the total crop biomass and yield within each climate extreme.  
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Table S5.1. Details and timing of management operations for corn-soybean-wheat rotation under 

the conventional treatment (CON). 

Month  Week 

of the 

month 

Management operation Year 

April  2 0-0-60 potassium fertilizer application 1 

May  1 Chisel plowing (moldboard plow until 1998) 1 

May  1 Soil finishing 1 

May  2 Corn planting 1 

May   2 19-17-0 liquid fertilizer application 1 

May  3 Herbicide Application 1 

June  2 28-0-0 liquid nitrogen fertilizer application 1 

October  3 Corn harvesting 1 

November  1 Mowing 1 

April  3 0-0-60 potassium fertilizer application 2 

April  4 11-52-0 monoammonium phosphate fertilizer application 2 

May  1 Chisel plowing (moldboard plow until 1998) 2 

May  2 Soil finishing 2 

May  3 Soybean planting 2 

May  4 Herbicide application 2 

July  3 Herbicide application 2 

August  1 Miticide application (if required) 2 

October  1-2 Soybean harvesting 2 

October  2 Chisel plowing (moldboard plow until 1998) 2 

October  2 Soil finishing 2 

October  4 Wheat planting 2 

March  4 19-19-19 N-P-K fertilizer application 3 

April  2 Herbicide application 3 

April  3 28-0-0 liquid nitrogen fertilizer application 3 

July  2 Wheat harvesting 3 

August  4 Mowing 3 

September  2-3 Glyphosate application to kill  3 
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Table S5.2. Details and timing of management operations for corn-soybean-wheat rotation under 

the no-till treatment (NT). 

Month Week 

of the 

month 

Management operation Year 

April 2 0-0-60 potassium fertilizer application 1 

May 2 Corn planting (no-till drill) 1 

May  2 19-17-0 liquid fertilizer application 1 

May 3 Herbicide Application 1 

June 2 28-0-0 liquid nitrogen fertilizer application 1 

October 3 Corn harvesting 1 

November 1 Mowing 1 

April 3 0-0-60 potassium fertilizer application 2 

April 4 11-52-0 monoammonium phosphate fertilizer application 2 

May 3 Soybean planting (no-till drill) 2 

May 4 Herbicide application 2 

July 3 Herbicide application 2 

August 1 Miticide application (if required) 2 

October 1-2 Soybean harvesting 2 

October 4 Wheat planting (no-till drill) 2 

March 4 19-19-19 N-P-K fertilizer application 3 

April 2 Herbicide application 3 

April 3 28-0-0 liquid nitrogen fertilizer application 3 

July 2 Wheat harvesting 3 

August 4 Mowing 3 

September 2-3 Glyphosate application to kill  3 
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Table S5.3. Details and timing of management operations for corn-soybean-wheat rotation under 

the reduced input treatment (RI). 

Month Week 

of the 

month 

Management operation Year 

April 2 0-0-60 potassium fertilizer application 1 

May 1 Chisel plowing (moldboard plow until 1998) 1 

May 1 Soil finishing 1 

May 2 Corn planting 1 

May  2 19-17-0 liquid fertilizer application 1 

May 3 Herbicide Application 1 

June 3 Row cultivation (inter row cultivator) 1 

October 3 Corn harvesting 1 

November 1 Mowing 1 

November 2 Planting cereal rye cover crop 1 

April 3 0-0-60 potassium fertilizer application 2 

April 3 0-48-0 phosphate fertilizer application 2 

May 1 Chisel plowing (moldboard plow until 1998) 2 

May 2 Soil finishing 2 

May 3 Soybean planting 2 

June 3 Row cultivation (inter row cultivator) 2 

July 3 Herbicide application 2 

August 1 Miticide application (if required) 2 

October 1-2 Soybean harvesting 2 

October 2 Chisel plowing (moldboard plow until 1998) 2 

October 2 Soil finishing 2 

October 4 Wheat planting 2 

April 2 Herbicide application 3 

April 3 28-0-0 liquid nitrogen fertilizer application 3 

July 2 Wheat harvesting 3 

August 1-2 Planting red clover cover crop 3 
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Table S5.4. Details and timing of management operations for corn-soybean-wheat rotation under 

the organic treatment (OR). 

Month Week 

of the 

month 

Management operation Year 

May 1 Chisel plowing (moldboard plow until 1998) 1 

May 1 Soil finishing 1 

May 2 Corn planting 1 

June 1 Row cultivation (rotary hoe) 1 

June 2 Row cultivation (rotary hoe) 1 

June 4 Row cultivation (inter row cultivator) 1 

July 1 Row cultivation (inter row cultivator) 1 

October 3 Corn harvesting 1 

November 1 Mowing 1 

November 2 Planting cereal rye cover crop 1 

May 1 Chisel plowing (moldboard plow until 1998) 2 

May 2 Soil finishing 2 

May 3 Soybean planting 2 

June 2 Row cultivation (rotary hoe) 2 

June 3 Row cultivation (rotary hoe) 2 

July 1 Row cultivation (inter row cultivator) 2 

July 3 Row cultivation (inter row cultivator) 2 

October 1-2 Soybean harvesting 2 

October 2 Chisel plowing (moldboard plow until 1998) 2 

October 2 Soil finishing 2 

October 4 Wheat planting 2 

July 2 Wheat harvesting 3 

August 1-2 Planting red clover cover crop 3 
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Table S5.5. Means of yield under different production and treatment systems as affected by 

climate variability*. 

Production 

systems 

Treatment systems Crop Yield (Mgha-1) 

Dry years Normal years Wet years 

Corn CON 4.98a 8.27b 8.14a 

NT 5.50a 9.48a 9.25a 

RI 5.67a 7.22c 8.47a 

OR 4.29b 3.78d 5.10b 

Soybean CON 1.41b 1.79b 3.04b 

NT 1.96a 2.25a 3.42a 

RI 1.61b 1.71bc 3.39a 

OR 1.43b 1.59c 2.98b 

Wheat CON 3.14b 4.18ab 3.96a 

NT 3.50a 4.60a 3.35b 

RI 2.64c 4.04b 3.50b 

OR 1.75d 2.31c 2.24c 
* Means with the same letter in a single column for each crop are not significantly different at p<0.05. CON: 

Conventional treatment; NT: No-till treatment; RI: Reduced input treatment; and OR: Organic treatment. Means of 

yield, which are significantly higher in comparison to the conventional treatment, are presented in bold letters. 
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Figure S5.1. Box plot of net return of soybean production system under different treatments as 

affected by climate variability. Note: The thick black line represents the median of the 

distribution, the red dot is the mean, the edges of the box are 25% and 75% quantiles, whiskers 

denote the range of the data and the black dots are the outliers. 
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Figure S5.2. Box plot of net return of wheat production system under different treatments as 

affected by climate variability. Note: The thick black line represents the median of the 

distribution, the red dot is the mean, the edges of the box are 25% and 75% quantiles, whiskers 

denote the range of the data and the black dots are the outliers. 
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Table S6.1. Soil properties at the KBS Main Cropping System Experiment site used to develop 

the sequential DSSAT model. 
Soil 

depth 

 

Bulk 

density 

 

Organic 

carbon 

 

Sand Silt Clay Root growth 

factor in 

soil* 

Saturated 

hydraulic 

conductivity 

Field 

capacity 

water 

content 

at 

33kPa* 

Wilting 

point 

water 

content at 

1,500kPa* 

(cm) (g/cm 3) ---------------(%)---------------- unitless cm/h cm 3/cm 3 cm 3/cm 3 

0-10 1.60 1.10 43 38 19 1.0 0.36 0.267 0.125 

10-22 1.60 0.90 43 38 19 0.8 0.36 0.267 0.137 

22-31 1.60 0.70 31 47 22 0.5 0.25 0.267 0.137 

31-41 1.60 0.30 33 44 23 0.4 0.20 0.295 0.165 

41-51 1.60 0.22 56 19 25 0.3 0.20 0.297 0.165 

51-61 1.60 0.10 62 17 21 0.3 0.20 0.267 0.137 

61-75 1.60 0.05 69 12 19 0.2 0.96 0.267 0.137 

75-89 1.60 0.02 89 4 7 0.2 1.98 0.160 0.060 

89-102 1.60 0.02 88 5 7 0.1 20.0 0.160 0.060 

102-120 1.60 0.02 88 5 7 0.1 20.0 0.160 0.060 

 *parameters used to calibrate the soil water module of the DSSAT. 

 

Table S6.2. Probability values for the significance of the effects evaluated in the statistical mixed 

model for crop yields and net return. 
Crop Fixed effect  Probability (p-value) of the parameters 

Yield Net return Recharge 

Corn Treatment (trt) <0.0001 <0.0001 <0.0001 

Year (yr) <0.0001 <0.0001 <0.0001 

Interaction between treatment and year (trt × yr) <0.0001 <0.0001 <0.0001 

Soybean Treatment (trt) <0.0001 <0.0001 <0.0001 

Year (yr) <0.0001 <0.0001 <0.0001 

Interaction between treatment and year (trt × yr) <0.0001 <0.0001 <0.0001 

Wheat Treatment (trt) 0.0856 <0.0001 <0.0001 

Year (yr) <0.0001 <0.0001 <0.0001 

Interaction between treatment and year (trt × yr) <0.0001 <0.0001 <0.0001 
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Figure S6.1. Results of the calibrated steady-state groundwater model including head contours, 

color map for head, and velocity vectors. 
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Figure S6.2. Mean annual recharge from corn (a), soybean (b), and wheat (c) across different 

soils in the Kalamazoo River watershed for the period between 1993-2019 as affected by the 

conventional and the no-till treatments. Note: Strongly significant means (p<0.0001) are 

indicated by **, and non-significance cases are denoted by “ns”. 
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Figure S6.3. Mean yield of corn (a), soybean (b), and wheat (c) across different soils in the 

Kalamazoo River watershed for the period between 1993-2019 as affected by the conventional 

and the no-till treatments. Note: Strongly significant means (p<0.0001) are indicated by **, 

significant means (p<0.05) are indicated by *, and non-significance cases are denoted by “ns”. 
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Figure S6.4. Average net return of corn (a), soybean (b), and wheat (c) across different soils in 

the Kalamazoo River watershed for the period between 1993-2019 as affected by the 

conventional and the no-till treatments. Note: Strongly significant means (p<0.0001) are 

indicated by **, significant means (p<0.05) are indicated by *, and non-significance cases are 

denoted by “ns”. 
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