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ABSTRACT

ANALYSIS TECHNIQUES AND DIAGNOSTICS OF
NON-RELATIVISTIC HADRON BEAMS

By

Christopher Richard

Beam diagnostics are essential to the operation of hadron particle accelerators. They

are used to tune the accelerator, verify beamline modes, ensure minimal beam losses, and

characterize and monitor the beam quality. By adding and improving the measurements of

the beam properties, the operation of the accelerator can be better informed and improved.

Addition and improved measurements of the beam properties can be realized by developing

new analysis techniques for the existing diagnostic devices.

This dissertation presents further analysis of measurements from two devices. Firstly, it

discusses converting phase space measurements taken with an Allison scanner from position-

angle coordinates to action-phase coordinates. In this coordinate system, the distribution

is stable under changes to linear optics. This allows for direct comparison of phase space

measurements taken at different locations or with different transverse focusing. In addition,

this stability can make it easier to visualize and quantify the beam tails.

Secondly, beam profile measurements taken with Beam Position Monitors (BPMs) by

measuring multiple harmonics are presented. The measurements are primarily focused on

non-relativistic beams where the transverse and longitudinal profiles can be fit to the BPM

signals. While these measurements were unsuccessful, it understood why they failed and

how to avoid the same issues for future measurements.

Lastly, the design of a test stand to calibrate BPMs for non-relativistic effects is presented.



The test stand relies on a helical transmission line can can propagate signals with phase

velocity of 0.03c. It is shown, with the appropriate geometry, that the phase velocity, pulse

propagation, and field profiles from the helical transmission line can match the those of a

non-relativistic bunch.
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Chapter 1

Introduction

1.1 Hadron Accelerators

Hadron accelerators for fundamental science research continue to push to higher beam power

which is a product of the beam energy and current [1] (Fig. 1.1). The energy frontier is

pushed in proton accelerators such as the Large Hadron Accelerator (LHC) at CERN. These

accelerators are used for high energy physics research to produce and study exotic, heavy

particles such as the Higgs boson. Other machines increase the power by increasing the beam

current. These machines, such as the Facility for Rare Isotope Beams (FRIB) currently being

built at Michigan State University (MSU), require higher currents to increase production

rates of rare phenomena to achieve better statistics for the users. Hadron accelerators also

have uses in the medical field, e.g. production of radioactive isotopes for tumor imaging,

and industry, e.g. processing of semiconductors.

All of the machines in this large family of accelerators require minimal beam losses. For

high power accelerators, the beams can cause significant damage to the accelerator if even a

small portion of the beam is lost. Due to the significantly higher mass of hadrons compared

to electrons, when hadrons strike a surface they deposit their energy over a relatively short

distant which can cause significant damage to the material. For lower power machines, losses

need to be avoided to reduce maintenance and increase up time. To ensure minimal losses,

the beam quality must be measured and monitored with a diagnostic suite.
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Figure 1.1: The beam of high intensity hadron accelerators [1]. The yellow lines represent
beam power contours.

1.2 Accelerator front ends

One of the important sections of hadron accelerators is the front end. In the front end,

the beam is created, focused, and initially accelerated before it enters the main accelerator.

This section is typically comprised of four parts: the beam source, the Low Energy Beam

Transport (LEBT), the Radio Frequency Quadrupole (RFQ), and Medium Energy Beam

Transport (MEBT).

1.2.1 Hadron beam sources

Hadron beams are generated as a continuous, DC beam with energy ∼10s keV/u where u

is the number of nucleons. Proton accelerators typically use H− sources [9] because these

are easier to produce than fully stripped hydrogen. The electrons are stripped off to create

2



Figure 1.2: Charge states of uranium produced by and ECR ion source [2].

a proton beam further down the beamline once the beam as been accelerated. Heavy ion

accelerators rely on sources such as Electron Cyclotron Resonance (ERC) ion sources to

generate high charge state ions [10]. Both H− and ECR ion sources produce a variety of

ions. H− sources can output electrons and several charge states of hydrogen. ECR ion

sources produces a wide range of charge states, e.g. the produced charge states of uranium

from an ECR ion source are shown in Fig. 1.2.

1.2.2 Low energy beam transport

The beam from the ion source goes into the LEBT. The LEBT ideally selects a single charge

state created by the ion source to inject into the main accelerator. Accelerators typically

can only propagate one charge state and the rest would be lost because accelerators rely on

electric and magnetic fields to focus and accelerate the beam. To remove the contaminating
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particles, the beam is passed through dipole bending magnets. The bending radius r of a

particle with mass m, charge q, and momentum p traveling through dipole with strength B

is

r =
m

q

p

B
. (1.1)

Therefore, different charge states of a given isotope will be deflected by a different amount.

By choosing the correct dipole strength, the desired charge state and momentum will pass

through the bend. However, because the beam pipe has a non-zero aperture, it allows for

some range of momenta ∆p and range of charge states ∆q to pass through the bend. These

contaminating charge states follow different trajectories and can be removed by limiting the

aperture of the beam pipe by inserting slits to intercept the unwanted particles.

In addition, the LEBT focuses the beam transversely. Transverse focusing relies on linear

focusing forces from either electric or magnetic quadruples or solenoid magnets. The focusing

from a quadrupole field provides uncoupled motion between the x and y planes. However,

the fields from these magnets will focus the beam in one plane and defocus in the other.

Therefore, at least two quadrupole magnets are required to proved net focusing in both x

and y planes. Typically quadrupoles are grouped into structures of two or three magnets,

call doublets and triplets respectively, that will focusing in both planes. Solenoid magnets

provide focusing in x and y which can make them more compact. However, they couple the

motion in the x and y planes making the dynamics more complex [11].

1.2.3 Radio frequency quadrupole

The LEBT transports the beam into the RFQ. The RFQ provides traverse focusing and

accelerates the beam to energies on the order of 1 MeV/u [3]. The transverse focusing is
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Figure 1.3: Sketch of an RFQ [3]. Four vanes create a quadrupole field to focus the beam
transversely. The vanes are modulated to create a longitudinal field to accelerator the beam.

provided by a time-varying electric field modulated at a radio frequency. The field is shaped

by four conducting vanes (see Fig. 1.3) to create a quadrupole field. Because the electric

field is modulated in time, the structure alternates between focusing and defocusing in each

plane, resulting in net focusing in both planes. To accelerate the beam, the pole tips of

the vanes are shaped with a sinusoidal modulation to create a longitudinal electric field.

Because this structure relies on a radio frequency (RF) field, only particles that are affected

a positive longitudinal electric field will be accelerated. Particles that are aligned with the

negative field will be decelerated. This results in the DC input beam becoming separated

into discrete groups called bunches separated in time by the RF period. This time structure

of the beam is often called a bunch train.
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1.2.4 Medium energy beam transport

After the RFQ, the beam propagates through the MEBT which transports the beam to

the main accelerator. Transverse focusing is provided with quadrupole or solenoid magnets.

In addition, the MEBT focuses the beam longitudinally to maintain the bunch structure.

The longitudinal focusing is provided by an RF buncher cavity. These devices have an

RF longitudinal electric field that is phased such that particle with the average energy will

arrive when the electric field is zero. Particles with higher energy will arrive early and a

negative electric field will decelerate them. Likewise, lower energy particles will arrive late

and positive electric field will accelerate them.

The MEBT also must manipulate the beam so it is within the acceptance of the main

accelerator to avoid losses. This is further discussed in section 1.3.2. In addition, it may be

necessary to remove particles that are far from the center of the beam, typically called halo

or tails, because they are the most likely to be lost in the accelerator. These particles can

be removed by inserting plates called scrapers into the beamline to intercept the extraneous

particles. It is often preferable to purposefully remove the halo and tails in the MEBT when

they have low energy an will not cause significant damage rather than risk them being lost

later at higher energies where the damage can be more detrimental.

1.2.5 Measured beamlines

The measurements presented in this dissertation were taken in the front ends of two separate

accelerators. The first is the Proton Improvement Plan 2 Injector Test (PIP2IT) [12]. This

accelerator is a test stand for the front end of the Proton Improvement Plan 2 (PIP-II) project

at Fermilab [13]. PIP2IT accelerates H− ions starting with a 30 keV source and a solenoid
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Figure 1.4: PIP2IT front end.

focusing LEBT (Fig. 1.4). The RFQ operates at 162.5 MHz and accelerates the beam to

2.1 MeV. The transverse focusing in the 10 m MEBT is provided by two quadrupole doublets

and seven triplets and the longitudinal focusing is proved by three RF buncher cavities.

Measurements were also taken with the front end at the Facility for Rare Isotope Beams

(FRIB) at Michigan State University (MSU) [14]. Beams of heavy ions up to 238U are created

with an ECR ion source at 7 keV/u. The LEBT focuses the beam with a combination of

solenoids and quadrupoles starting at ground level then vertically dropping 30 feet to the

RFQ (Fig. 1.5). The RFQ operates at 80.5 MHz and accelerates the ions to 0.5 MeV/u.

The MEBT focusing the beam with four quadrupole triplets and two RF bunchers.

1.3 Transverse beam dynamics

1.3.1 Single particle dynamics

The dynamics of a particle of mass m in an electromagnetic field defined by the potentials

φ and A can be determined from the Hamiltonian [11]

Ht = eφ+ T = eφ+ c
√
m2c2 + (P− eA)2 (1.2)

where P is the canonical momentum P = p + eA [15]. For simplicity, this Hamiltonian

assumes a linear coordinate system which is sufficient for the discussion here of front ends
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Figure 1.5: Overview of the diagnostics in the FRIB front end.

because they are predominately straight. A more general form in curvilinear coordinates can

be used when bends are a significant feature of the optics [11]. The independent variable

of this Hamiltonian is time t. In accelerators, it is often preferable to use the longitudinal

coordinate z as the independent variable as it determines the location in the machine. With

z as the independent variable and normalizing to the total momentum p, the Hamiltonian

becomes

Hz = −eAz
p
−

√
1−

(
px
p

)2

+

(
py
p

)2

(1.3)

Hz = −eAz
p
−
√

1− x′2 + y′2 (1.4)

where x′ = dx/dz and y′ = dy/dz are referred to as angles and measured in radians.
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Hamilton’s equations are

∂x

∂z
=
∂Hz
∂x′

(1.5)

∂x′

∂z
= −∂Hz

∂x
(1.6)

which, using the paraxial approximation x′ � 1 and y′ � 1, gives the equation of motion

−u′′ = − e

pz

∂Az
∂u

. (1.7)

For linear, uncoupled optics, e.g. a quadrupole magnet with Az = G(y2−x2)/2, the equation

of motion becomes

u′′ + κu = 0 (1.8)

where κ is the focusing strength of the optic. This is known as Hill’s equation. In general κ

is a function of z as the beamline consists of focusing magnets separated by regions without

focusing fields, κ = 0 called drift spaces. Hill’s equation is widely used in accelerator physics

because most accelerators primarily rely on linear optics to focus the beam. However, to

satisfy Maxwell’s equations, the focusing fields must have non-linear components. The ef-

fects from the non-linear components are lessened by purposefully designing the magnets to

minimize the non-linearities and simulations can be performed if it necessary to account for

these effects [16].

The linear dynamics of the particles can be determined by integrated Hill’s equation over

the beamline. However, it is often more practical to use a transfer matrix M that relates
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the coordinates of the particle at one location z1 to another z2

u
u′


z=z2

= M(z2|z1)

u
u′


z=z1

. (1.9)

Equation 1.9 holds for uncoupled, linear transverse motion as described by Eq. 1.8. It can

also be generalized to the full 4D transverse phase space (x, x′, y, y′) and the full 6D dynam-

ics (x, x′, y, y′,∆z,∆pz/pz). These matrices can be found in literature for most beamline

elements such as dipoles, quadrupoles, and solenoids [17].

1.3.1.1 The betatron function

The beamline optics tend to arranged in quasi-periodic structures. Because of this, the

motion of the particles can be described in phase-amplitude form

u =
√
εβ(z) cos(φ(z)− φ0) (1.10)

where ε is an overall amplitude and φ0 is an arbitrary phase offset. The dynamics are

determined by the betatron function β(z) and the betatron phase φ(z). The dynamics of β

and φ can be determined by taking the second derivative of Eq. 1.10, plugging into Eq. 1.8,

then separately setting the cosine and sine terms to zero. This gives two equations

1

2

(
ββ′′ − 1

2
β′2
)
− β2φ′2 + β2κ = 0 (1.11)

β′φ′ + βφ′′ = 0. (1.12)
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Equation 1.12 can easily be integrated to determine ψ(z)

β′φ′ + βφ′′ = (βφ′)′ = 0 (1.13)

βφ′ = constant ≡ 1 (1.14)

φ(z) = φ0 +

∫ z

0

dz̄

β(z̄)
. (1.15)

Equation 1.14 can then be used in Eq. 1.11 to determine the dynamics of the β(z)

1

2
ββ′′ − 1

4
β′ + κβ2 = 0. (1.16)

The betatron function is typically accompanied by α = −1
2β
′ and γ = (1+α2)/β. Together,

α, β, and γ are known as the Twiss parameters and their physical meaning is discussed is

section 1.3.2. The betatron phase advance has a well defined meaning for periodic focusing

lattices because the particle trajectory will also be periodic with the period defined by where

φ(z) = 2πn. This is is typically characterized by the betatron tune which is the number of

oscillations per lattice period. For quasi-periodic focusing structures, such as are found in

linacs, the exact nature of the betatron phase is more complicated but the same intuition

holds.

1.3.1.2 Action-phase coordinates

The Hamiltonian shown in Eq. 1.4 is useful because uses the physical coordinates (u, u′, z).

It can be simpler analytically to work in normalized coordinates (w, ẇ, φ) where φ is the
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betatron phase and ẇ = dw/dφ [11]. In this coordinate system the Hamiltonian is

Hw =
1

2
w2 +

1

2
ẇ (1.17)

A canonical transformation can be made to action-phase coordinates (J, φ, φ) (that is not a

typo, the betatron phase is being used for a transverse and longitudinal coordinate) using

the generator function

G = −1

2
w2 tan(φ− φ0) (1.18)

where φ0 is an arbitrary phase. The normalized coordinates can be found by

∂G

∂w
= ẇ = −w tan(φ− φ0) (1.19)

∂G

∂ψ
=

−w2

2 cos2(φ− φ0)
≡ J (1.20)

and solving for w and ẇ

w =
√

2J cos(φ− φ0) (1.21)

ẇ = −
√

2J sin(φ− φ0). (1.22)

This gives the Hamiltonian

Hw = J (1.23)
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and the equations of motion in action-phase coordinates are

J̇ = 0 (1.24)

φ̇ = 1. (1.25)

The action J is a constant of motion and the transverse dynamics are entirely determined

by the betatron phase advance.

To relate this coordinate system to physical coordinates, Eqs. 1.21 and 1.22 can be

written in terms of u and u′

w =
u√
β

(1.26)

ẇ =
√
βu′ + αw. (1.27)

Plugging these into Hw = J the action of a particle can be determined in terms of its location

in phase space u, u′, and the Twiss parameters

J =
1

2

(
βu′2 + 2αuu′ + γu2

)
. (1.28)

This is the equation of an ellipse in u − u′ phase space with orientation determined by the

Twiss parameters and size determined by J . The location of the particle on this ellipse is

determined by φ

φ = − arctan

(
αu+ βu′

u

)
. (1.29)

The beam dynamics can therefore by interpreted as particles traveling along these ellipses

of constant action. In real space, the orientation of the ellipse will evolve according the the

13



applied focusing, but the action of the particle will remain constant.

1.3.2 Phase space dynamics

The above derivations concern the dynamics of a single particle. Unsurprisingly, a beam

consists of a collection of particles. While the individual particles travel along elliptical

trajectories in phase space as defined by the action and betratron phase, the general distri-

bution is not necessarily elliptical. However, the Twiss parameters and emittance are still

well defined for general beam distributions by describing the ellipse that encompasses the

beam distribution. The emittance and Twiss parameters can be found from a general beam

distribution by

ε =
√〈

u2
〉 〈
u′2
〉
− 〈uu′〉 (1.30)

β =

〈
u2
〉

ε
(1.31)

α = −
〈
uu′
〉

ε
(1.32)

γ =

〈
u′2
〉

ε
(1.33)

where 〈...〉 denotes averages. These are typically taken from rms values. This brings physical

meaning to the parameters: the emittance, a conserved quantity, is the rms area of the beam

in phase space and the Twiss parameters are the second order moments normalized to the

emittance. The geometric emittance ε is often scaled by the relativistic factors and referred

to as the normalized emittance εn = γrβrε. This is done to keep the emittance constant as

the beam is acceleratred. Equation 1.16, determining the evolution of the betatron function

through the beamline, is a description of the evolution of the beam size.
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Like the first order moments, the second order moments can also be propagated through

focusing elements using the transfer matrices. The second order moments can be put in

matrix form

σ =

 〈u2〉 〈
uu′
〉

〈
uu′
〉 〈

u′2
〉
 (1.34)

which can be propagated by the transfer matrices like a second order tensor

σ(z = z2) = MT (z2|z1)σ(z = z1)M(z2|z1). (1.35)

Note that |σ| = ε2 and therefore must be constant. To preserve the determinate, the transfer

matrices must be symplectic.

There is a maximum emittance, called the acceptance, that can be propagated through

the accelerator without losses. For transverse dynamics this is determined by the optics

and the apertures of the beam pipe and beamline elements. In addition, to avoid losses,

the MEBT optics must correctly orient the beam in phase space at the end of the front

end to ‘match’ the beam to the accelerator optics. This is achieved by aligning the beam

distribution with the expected ellipse in phase space that the particle trajectories will follow.

If the beam is not properly matched, the beam will oscillate around the matched condition

resulting in larger beam sizes that can cause losses.

1.3.3 Space charge effects

The beam is a collection of charged particles and, for intense beams, the electric field created

by these particles will affect the dynamics. This results in a non-linear addition to Hill’s
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equation [18]

u′′ + κu = − q

mγ3bβ
2
b c

2

∂φ

∂u
(1.36)

where q and m are the charge and mass of the particles, γb is the Lorenz factor, βbc is the

beam velocity, and φ is the potential of the self-field. This can be approximated for a uniform

beam of radius rb and line charge density λ as

u′′ + κu =
Q

r2b
(1.37)

where Q is called the normalized perveance

Q =
qλ

2πε0mγ
3
bβ

2
b c

2
. (1.38)

This effect of space charge decays rapidly with increasing beam energy as γ3rβ
2
r . Near the

source typical values of Q are on the order of 10−2 and higher energies Q ≤ 10−6. This

linear space charge force causes a reduction of the betatron phase advance called betatron

tune depression.

Space charge forces also affect the beam size. The dynamics of the second order moments

can be determined from Eq. 1.37 by multiplying by u and taking an average

〈
uu′′

〉
+ κ

〈
u2
〉
− Q

rb

〈
u2
〉

= 0 (1.39)

The beam radius can be defined at twice the rms beam size rb = 2
〈
u2
〉1/2

and this gives a

definition of the edge emittance of ε = 4εrms. These definitions are exact for a Kapchinsky-

Vladimirsky (KV) disitrbution [19] and are approximations for general distributions [18].
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The derivatives of rb are

r′ = 2

〈
uu′
〉〈

u2
〉1/2 = 4

〈
uu′
〉

rb
(1.40)

r′′ = 4

〈
uu′′

〉
rb

+
ε2

r3b
. (1.41)

Plugging these into Eq. 1.39 gives the envelope equation dictating the dynamics of the beam

radius

r′′b + κrb −
Q

rb
− ε2

r3b
= 0 (1.42)

The beam radius evolves according to the beam optics κ. In addition, there is a thermal

defocusing affect related to the emittance and a space charge defocusing affect that propor-

tional to Q. The beam is said to be space charge dominated if Q/rb � ε2/r3b and emittance

dominated if Q/rb � ε2/r3b .

For a general beam distribution, the space charge forces will be non-linear. These forces

distort the distribution in phase space causing filamentation resulting in tail and halo grown

and increasing the emittance (Fig. 1.6). These affects need to be characterized and, if

necessary, compensated for before the beam leaves the MEBT to ensure a quality beam is

accelerated.

1.4 Diagnostics

It is crucial to ensure a high quality beam enters the main accelerator. Not only is this

important to minimize beam losses but also it challenging to deliver a quality beam to the

users if the initial conditions are poor. To characterize and monitor the beam quality, the

front ends have extensive diagnostic suites (e.g. see Fig. 1.5) because the beam is traveling
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Figure 1.6: An initially uniform beam distribution in phase space evolving in a quadrupole
focusing channel with space charge [4]. The beam undergoes filamentation, develops an “S”
shape and diluting the entire phase space causing the emittance to increase.
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non-relativistically and therefore beam evolves rapidly due to its low magnetic rigidity and

can experience tail and halo growth caused by space charge and non-linear forces. Listed

below is a subset of the diagnostic devices used in front ends.

1.4.1 Beam position monitoring

One of the most common devices in hadron accelerators are Beam Position Monitors (BPMs).

Measuring the beam position is important to verify the beam optics and also ensure the beam

is near the center of the beam pipe to avoid losses.

BPMs in hadron accelerators commonly rely on capacitive pickups that couple to the

electric field generated by the beam. These have four pickups located at the top, bottom,

left, and right sides of the beam pipe. To measure the beam position, the image charge

generated by the electric field from the beam on each of the pickups is measured. The radial

electric field in cylindrical coordinates (r, φ, z) from a pencil beam located at (r0, φ0) in a

pipe of radius Rp traveling at v = βrc and charge modulated with frequency ω is given by

[20]

Er(r, φ, z) =Dω cos

(
ω

[
t+

z0 − z
βrc

])∑
n=0

gIn(gr0)

ε0NπIn(gRp)
cos(n[φ− φ0])×

[
I ′n(gr)Kn(gRp)− In(gRp)K

′
n(gr)

]
(1.43)

where In and Kn are the modified Bessel functions of the first and second kind [21], primes

denote derivatives with respect to the argument, and

N =


2, n=0

1, else

(1.44)
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is a harmonic factor and

g =
ω

γrβrc
(1.45)

acts as a transverse propagation constant. g is proportional to the ratio of the photon and

beam momenta and g is small when the beam momentum is large and g is large when the

beam momentum is small. The image charge at a point on the beam pipe is

σ(φ, z) = −Dω cos

(
ω

[
t+

z0 − z
βrc

])∑
n=0

In(gr0)

NπRpIn(gRp)
cos(n[φ− φ0]) (1.46)

The beam position can be determined by are measuring the image charge at two locations

on opposite sides of the beam pipe at the azimuthal locations φ = φm and φ = φm +π. The

difference of these two signals ∆ divided by the sum Σ is

∆

Σ
=

∑
n

In(gr0)
NIn(gRp)

(cos(n[φm − φ0])− cos(n[φm + π − φ0]))∑
n

In(gr0)
NIn(gRp)

(cos(n[φm − φ0]) + cos(n[φm + π − φ0]))
. (1.47)

This can be approximated by taking terms up to n=3

∆

Σ
≈

2
I1(gr0)
I1(gRp)

cos(φ0 − φm) + 2
I3(gr0)
I3(gRp)

cos(3(φ0 − φm))

I0(gr0)
I0(gRp)

+ 2
I2(gr0)
I2(gRp)

cos(2(φ0 − φm))
(1.48)
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then expanding in r0 up to 5th order using Mathematica [22]

∆

Σ
≈
I0(gRp)

I1(gRp)
cos(φm − φ0)r0+ (1.49)(

I0(gRp)

24I3(gRp)
cos(3(φm − φ0))−

I20 (gRp)

4I1(gRp)I2(gRp)
cos(φm − φ0) cos(2(φm − φ0))−

I0(gRp)

8I1(gRp)
cos(φm − φ0)

)
r30+(

I0(gRp)

48I1(gRp)
cos(φm − φ0) +

7I20 (gRp)

96I1(gRp)I2(gRp)
cos(φm − φ0) cos(2(φm − φ0))−

I30 (gRp)

16I1(gRp)I2(gRp)
cos(φm − φ0) cos2(2(φm − φ0))−

I20 (gRp)

96I2(gRp)I3(gRp)
cos(2(φm − φ0)) cos(3(φm − φ0))−

I0(gRp)

128I3(gRp)
cos(3(φm − φ0))

)
r50.

The position of the beam can then be estimated by taking only the term linear in r0

∆

Σ
≈
gI0(gRp)

I1(gRp)
r0 cos(φm − φ0) (1.50)

∆

Σ
≈
gI0(gRp)

I1(gRp)
[x0 cos(φm) + y0 sin(φm)] (1.51)

where x0 = r0 cos(φ0) and y0 = r0 cos(φ0) is the location of the beam centroid in Cartesian

coordinates. Therefore the position of the beam can be determined using the ∆/Σ signal

from a horizontal pair of pickups to measure x0 and a vertical pair to measure y0. For

large enough gRp the result is dependent on gRp, i.e. the measured frequency and beam

momentum, and therefore multiple calibrations must be used to correctly measure the beam

position as the beam accelerates and β increases. If gRp � 1, generally corresponding to
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Figure 1.7: As the beam accelerates the electric field is compressed into to the plane per-
pendicular to the velocity resulting in the same field profile on opposite sides of the beam
pipe [5].

relativistic beams γrβr � 1, then Eq. 1.51 becomes momentum and frequency independent

∆

Σ
≈ 2

Rp
[x0 cos(φm) + y0 sin(φm)] . (1.52)

The dependence on gRp for large gRp is due to the profile of the electric field on the pipe

wall generated by a non-relativistic beam extending beyond the length of the bunch and the

fields profiles are different on each pickup and vary with beam position. As the beam is

accelerated and increases in energy, relativistic effects ‘pancake’ the field distribution into

the plane perpendicular to the beam velocity (see Fig. 1.7) and the longitudinal profile of

the fields becomes similar to the beam profile. At these higher energies, varying the beam

position causes little variation in the field profiles on the wall and only changes the amplitude

resulting in no frequency dependence in position measurements [23].

The low βr, high gRp effects are most important in the front ends of hadron machines

where the beam is traveling non-relativistically [24]. For example, at FRIB, with f=161 MHz

and Rp ≈20 mm, these effects will cause a 2% error in the measured position at β ≈ 0.18

[6]. However, in the MEBT the beam has velocity βr=0.033 corresponding to gRp=2.4 and

non-relativistic effects must be accounted for.
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Figure 1.8: Simulation results for the calculated beam position using the linear ∆/Σ (left)
and a higher order polynomial correction (right) [6].

The linear response of Eqs. 1.51 and 1.52 hold for small beam offsets from the center of

the BPM relative to Rp. When the beam is further away, the ∆/Σ signals vary non-linearly

with beam position (see Fig. 1.8). These non-linearities are mapped on a test stand by

stringing a straight wire through the BPM and sending a tone down the wire and recording

the response of the BPM pickups. This is repeated for different locations of the wire to map

the response for different beam positions. To determine the position, the wire location is

related to the pickup signals using a higher order polynomial, e.g. the FRIB BPMs use a

fifth order polynomial [6].

The shape of the BPM pickups affect the measured signals and must be taken into

account. The pickups have some finite size causing their measured signal to be the integrated

image charge over the button geometry

σpickup(ω) =

∫
button

σ dAbut. (1.53)

Common BPM pickup geometries are round button pickups [6], rectangular split-plate pick-
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Figure 1.9: A sketch of a capacative BPM and its equivalent circuit is shown on the left
[7]. Due to the capacitance to ground, BPMs suppress the low frequency components of the
measured signals (right, R = 50 Ω, C=3 pF).

ups [25], and stripline pickups [26]

The measured signals also are affected by the impedance of the BPM pickup. The BPM

pickups are capacitive and connected to a 50 Ω cable (see Fig. 1.9). This system acts as a

high pass filter with cut off frequency ωc = 1/RC where R is the resistance and C is the

capacitance of the pickup to ground. The measured voltage from a capacitive BPM pickup

is [7]

Vmeas(ω) ∝ ω/ωc√
1 + (ω/ωc)2

σpickup(ω). (1.54)

This suppresses the low frequency components of the measured signal causes the measured

signals to appear like the derivative of the electric field at the wall. For FRIB C=3.3 pF and

ωc=6.06 GHz [6].

The BPM signals are, unsurprisingly, affected by noise and one main concerns is thermal

noise. When measuring the voltage across a resistor R at temperature T , the rms voltage
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from thermal noise is related to the measured bandwidth ∆f [27]

VT,rms =
√

4kBTR∆f (1.55)

where kB is the Boltzmann constant. While the BPM pickups have a broadband response to

the beam, typically narrowband filtering is use to reduce the thermal noise. The narrowband

filtering selects a single harmonic of the bunch repetition rate. This is often the first harmonic

because it has the highest amplitude. However, the second harmonic is also be used to prevent

the signals from being affected by the RF accelerating elements operating at the principle

harmonic. Because BPMs rely on measuring the frequency content of a bunch train, they

can be used the the MEBT but not the LEBT. In the LEBT profile monitors can be used

to determine the beam position.

1.4.2 Profile measurements

Like position monitoring, measuring the transverse profiles in real space of the beam is used

to verify the beamline optics. In addition, these measurements can be used to characterize

the beam quality and ensure the beam is small enough to avoid losses. Due to the low energy

in front ends, devices that intercept the beam are commonly used measure the beam profiles

in this region. For higher energy beams, interceptive diagnostics are less commonly used and

alternative methods are employed such as gas jets [28].

One common profile monitor is a scintillator screen [29]. These are inserted into the

beamline and when the beam strikes the screen, energy is deposited that excited the scintil-

lator molecules causing them to produce light which is recorded with a camera. The more

energy that is deposited the more light that is produced so the areas with higher beam in-
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tensity will be brighter. Assuming the intensity of the light is linear with the beam intensity,

the recorded image is a direct replication of the 2D transverse distribution.

Scintillators must be chosen such that their response is linear within the range of ex-

pected beam intensities to avoid saturation. An additional consideration is the scintillating

properties will decay with use. If the beam is always striking the same spot on the scintilla-

tor, the response at the high intensity region will decay faster which will eventually distort

the measured distributions.

Another commonly used device is a wire profile monitor. These devices insert a thin

conducting wire into the beam and when the particles strike it, they excite a current in the

wire that can be recorded. The current is proportional to the total intensity intercepted

by the wire. By stepping the wire through the beam, the profile in one direction can be

mapped [5]. To reduce noise, the measurements at each location can be averaged in time and

background measurements without the beam can be taken. Wire profile monitors typically

have three wires to measure the x and y profiles as well as one at 45◦ to measure x − y

coupling.

The resolution of these scanners is determined by step size and the size of the wire.

However, arbitrarily thin wires cannot be used because the wire must be able to withstand

the beam intensity that it intercepts. If the wire is too thin and overheats it can be deformed

or break. An additional consideration is when the beam strikes the wire, the wire can emit

secondary electrons. This would affect the measured current as charge is leaving the wire.

To prevent this the wires are typically held at voltage. Further more, if multiple wires are

used, then crosstalk between the wires will limit the ability to measure the low intensity

portions of the beam.
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1.4.3 Phase space distribution measurements

The distribution of the beam in u− u′ phase space is often measured in front ends with slit

scanners. These devices have a thin slit that is inserted into the beamline to only allow a

small slice of the beam at a specific location to pass. The particles in the passed beamlet will

have some range of angles which will cause the particles to diverge. For example a particle

with u′ = 10 mrad will drift 1 mm transversely over 100 mm while a particle with u′ = 5 mm

will only drift 0.5 mm. Therefore, if the transverse profile of the passed beamlet is measured

downstream, the u′ profile of the particles at the location of the slit can be reconstructed.

The entire u − u′ phase space distribution can be measured by stepping the slit through

the beam and recording the transverse profile of the passed beamlet at each step. These

measurements of the phase space distribution are referred to here as phase portraits.

There are as many forms of these scanners as there are types of profile monitors, e.g.

pepperpots [30], slit-slit scanners [31] and slit-wire harp scanners [32]. The phase portraits

presented in chapter 2 were taken with an Allison-type scanner [33] in the PIP2IT MEBT.

Allison scanners consist of a rigid box with a thin slit on either end and a variable electric

dipole between the slits (Fig. 1.10). The beam is intercepted by the front plate and particles

can only pass through the first slit to select narrow position range. The passed beamlet is

deflected by the dipole field until it strikes rear wall. If the particles have the correct initial

transverse angle then the deflection will cause the particles to pass through the second slit

and into a Faraday cup to measure the passed current. For an Allison scanner of length `

and a beam of mass m traveling at v = βrc � c the passed angle x′0 for a given voltage V

is

x′0(V ) =
qV `

2mβ2r c
2
. (1.56)
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Figure 1.10: Simplified schematic of an Allison scanner. The red line shows the trajectory
of particles through the device.

The 2D transverse phase space can therefore be measured by stepping the whole box through

the beam so the front slit can take slices at different positions and at each position the electric

dipole strength is swept to scan a range of angles. At each position-dipole setting the current

on the Faraday cup is measured to determine the intensity of the beam in the small phase

space area that passed through the scanner.

It is important to handle the background noise when analyzing the measured phase

portraits. There are many methods for accounting for the noise. A simple and inelegant

method is to set a cut threshold in intensity that is high enough to remove all the noise [34].

This level can be set by varying the cut level and calculating the rms emittance for each cut

level and finding a knee point where the noise starts to affect the measured values. This

will inevitably remove a portion of the beam signal, but if it is small then the impact on the

rms parameters will be minimal. Another method is to calculate the rms emittance over an

ellipse in phase space with the same Twiss parameters as the beam core [35]. If this ellipse is

too large noise will effect the calculated rms emittance. Therefore the noise can be excluded

by varying the size of this ellipse find a range where the emittance is stable. Ref. [36] sets

the cut threshold to a negative value to include all measured pixels, and relies on perfect

cancellation of the random noise outside of the beam when calculating the rms parameters.
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1.4.4 Beam tail measurements

It is generally agreed that the beam tails have densities in the range of 10−1 to 10−4 of

the peak density with the halo having even lower density [37] and typically have a different

distribution from the core. However, there are a variety of definitions of tails are used

based on the needs of different accelerators. In addition, beam tails can be challenging to

quantify because the beam rotates in phase space and the variations from beam dynamics

must be isolated from variations caused by tail growth. This is particularly challenging when

measuring the tails with profile monitors.

Even when measuring the distribution of the beam in phase space, it can be challenging

to quantify the beam tails. A typically practice is to only calculate the rms parameters of

the phase portrait and ‘qualify’ the beam tails visually.
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Chapter 2

Analysis of Phase Portraits using

Action-Phase Coordinates

A method that has been used to analyze tails in simulations is to convert the particle locations

from u−u′ coordinates to normalized coordinates w−ẇ [38]. In this coordinate system there

is a well defined notion of radius because w and ẇ have the same units. The tail growth can

then be quantified by the particle density as a function of radius.

This idea can be further developed by using J − φ coordinates instead of w − ẇ. This

gives a better physical interpretation as the ‘radius’ of a particle is its action. The intensity

distribution as a function of J will be constant under linear forces and therefore it can be

used to study tail growth due to non-linear effects and characterize the beam quality. In

addition, this analysis can be applied to beamline measurements taken in x−x′ coordinates

from a phase space scanner by determining the Twiss parameters of the beam and calculated

J and φ of each pixel using Eqs. 1.28 and 1.29. An example of a phase portrait measured

with an Allison scanner in the PIP2IT MEBT is shown in Fig 2.1 in x− x′ coordinates and

with each pixel converted into J − φ coordinates. The phase portrait in J − φ coordinates

should be stable modulo shifts φ caused by changes to the optics.

There measurements presented in this chapter were taken with an Allison scanner in the

PIP2IT MEBT. The PIP2IT MEBT was assembled and beam measurements were performed
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Figure 2.1: Measured phase portrait in x − x′ coordinates and J − φ coordinates taken at
location 1.

in several stages between 2016 - 2018. Its initial configuration is shown in Fig. 2.2 and

configuration at the end of the 2018 run is shown in Fig. 2.3. The primary beam parameters

in the MEBT are summarized in Table 2.2. The Allison scanner was used in three locations

and was moved at different phases of the MEBT construction:

1. Location 1, downstream of the second quadrupole doublet as shown in Fig. 2.2, in the

horizontal position

2. Location 2, in the middle of the beamline, in the vertical position

3. Location3, toward the end of the beamline downstream of all focusing optics, as shown

in Fig. 2.3, in the vertical position.

Most of the measurements presented here were taken at the first location of the Allison

scanner (Fig. 2.2). Results from other two locations are explicitly noted.

2.0.1 Allison scanner noise

Measurements take with the PIP2IT MEBT Allison scanner unfortunately had significant

electronic noise compared to the measured signal intensities. For a typical scan of a 5 mA
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Table 2.1: Parameters of the PIP2IT MEBT Allison scanner

Parameter Value Unit
Slit size 0.2 mm
Slit separation 320 mm
Plate voltage ±1000 V
Plate length 300 mm
Plate separation 5.6 mm
Maximum measurable angle at 2.1 MeV ±12 mrad

RFQ

Scraper
Allison
scanner

DumpScraper

Figure 2.2: Initial PIP2IT MEBT configuration. The Allison scanner is in location 1 and
measures the transverse phase space in the horizontal plane

Figure 2.3: Final configuration of the PIP2IT MEBT with the Allison scanner in location 3
and oriented to measure the transverse phase space in the vertical plane. Transverse focusing
is provided by quadrupoles with two doublets and seven triplets.

Table 2.2: PIP2IT MEBT beam parameters

Parameter Value Unit
Beam energy 2.1 MeV
Macro-pulse repetition rate 1-20 Hz
Macro-pulse length 0.005-25 ms
Bunch repetition rate 162.5 MHz
Pulse beam current Up to 10 mA
Transverse emittance, rms norm. ≤ 0.23 mm mrad
Longitudinal emittance, rms norm. ≤ 0.34 mm mrad
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beam, its rms noise is 0.2%-0.3% of the maximum amplitude for nominal operation. This

limited the dynamic range of the device to ∼2 orders of magnitude. The source of the noise

was investigated but no remedy was found.

In addition, significant jitter of the beam centroid was measured with the BPMs in the

MEBT, but the source of the jitter could not be located nor the jitter eliminated [39].

Spectral analysis of the BPM readings shows the jitter has frequencies up to ∼3 Hz with no

dominant harmonics. Therefore, even individual angular scans are affected as it takes ∼1 s

to sweep the voltage over the angle range while measuring at 20 Hz and approximately 5

minutes to complete a typical phase space measurement [40]. In the MEBT, the amplitude

of the jitter varies along the beamline in accordance with the optics and reaching up to

0.2 mm rms in amplitude.

The source of centroid jitter was determined to be in the LEBT, but the exact source was

not determined nor fixed. The motion can be rotated between the horizontal and vertical

planes by changing the strength of a solenoid focusing magnet in the LEBT [41]. However,

for the optimal performance of the RFQ, the LEBT solenoids need to be set such that the

jitter was primarily in the vertical plane. This noticeably impacted the measurements taken

at locations two and three. The majority of the results presented in the following sections

use measurements taken in the first location of the Allison scanner where the scanner was

oriented horizontally to reduce the effects of the jitter.

To estimate the effect of the jitter on the pixel amplitude, multiple phase portraits taken

with the same focusing were used to estimate the rms scatter at each pixel σIi [42]. At

location one, σIi was found to increase approximately linearly with the pixel amplitude Ii
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(Fig. 2.4 left) with the linear fit

σIi = 0.0067 + 0.024Ii. (2.1)

The intensities vary by 2-3% for pixels near the center of the beam and is dominated by

electronic noise at low intensities. The error bars shown in results from measurements taken

at location one follow Eq. 2.1.

For measurements taken at locations two and three, the jitter in the vertical plane sig-

nificantly increases the variation in the pixel amplitude and follow the general trend (Fig.

2.4 right)

σi =


0.01 + 0.3Ii for Ii < 0.9

0.28 for Ii ≥ 0.9

(2.2)

This jitter has minimal effect on the measured rms parameters of the beam and causes an

error of only ∼2% [40]. However, it confounds the detailed measurements of the distribution

in phase space and beam tails using J − φ coordinates.

2.1 Beam description using J − φ coordinates

2.1.1 Core description

When the phase portraits measured in the MEBT were converted to action-phase coordi-

nates, it was found that in the central portion of the beam, i.e. pixels at small actions, the

pixel amplitude is mostly independent of the phase and decreases exponentially with action

Igauss = I0e
−J/εc = I0e

− 1
2εc

(
γx2+2αxx′+βx′2

)
(2.3)
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Figure 2.4: The rms scatter of the pixel amplitudes plotted as a function of the average
amplitudes (blue) phase portraits measured at location one (left) and location three (right).
The orange lines show the fits from Eqs.2.1 and 2.2.

which describes a Gaussian distribution in x − x′ coordinates with constant emittance εc.

On semi-logarithmic scale, Eq. 2.3 represents a straight-line with slope −1/εc, εc is referred

to here as the central slope. Since Eq. 2.3 describes a perfect Gaussian distribution, εc is a

measure of how broad the core distribution is and can be interpreted as the rms emittance

of the beam if the Gaussian core was extended and the tails removed.

2.1.2 Discussion on the beam distribution

The choice of the describing the core as Gaussian was not immediately obvious. One consid-

eration was, in the PIP2IT LEBT, the transverse beam distribution was measured to not be

Gaussian [43]. Instead it was uniform-Gaussian (UG) caused by the beam being initially spa-

tially limited by the ion source extraction aperture resulting in the beam distribution coming

for the ion source being uniform in position and Gaussian in angle. The UG distribution,

projected onto one plane in action-phase coordinates is
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IUG(J, φ) = I0

√
1− J cos2(φ)

2εUG
e
−J sin2(φ)

εUG

×H
(

1− J cos2(φ)

2εUG

)
(2.4)

where I0 is the peak intensity, εUG is the rms emittance, and H is the Heaviside function

H(x) =


0 if x < 0

1 if x ≥ 0

. (2.5)

In addition, according to Refs. [18, 44], after experiencing multiple betatron oscillations

in a periodic structure, the transverse distribution is expected to relax towards an equilibrium

distribution. For a space charge dominated beam the equilibrium distribution is uniform and

for an emittance dominated beam it is a Maxwell-Boltzmann distribution in action which

corresponds to Eq. (2.3). The beam arrives to the MEBT after passing ∼12 betatron periods

in the RFQ and it was not obvious if this was sufficient for the relaxation. Also, for nominal

5 mA operation the perveance in the MEBT is Q ∼ 10−6 and the rms radius is r ≈ 3 mm

and geometric emittance is ε ≈ 3 mm mrad. Putting these values into the envelope equation

(Eq. 1.42), we find the strength of the space charge and emittance terms are on the same

order, Q/rb ≈ ε2/r3b ∼ 10−4, therefore the beam was not expected to be space charge or

emittance dominated.

To determine the distribution of the beam core at low action, the measured distribution

was fit to Eq. 2.3 and Eq. 2.4. In addition, the phase portrait was fit to two other models

commonly used for approximating the beam distribution: the Kapchinskiy-Vladimirskiy
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(KV) and waterbag (WB) distributions. In action they are

IKV (J, φ) = I0 ·H
(

1− J

2εKV

)
(2.6)

IWB(J, φ) = I0

(
1− J

3εWB

)
H

(
1− J

3εWB

)
(2.7)

where εKV and εWB are the corresponding emittances.

In Fig. 2.5, the high-amplitude pixels within the normalized action J < 0.15 mm mrad

(containing 60% of the measured beam), are plotted together with fits of the idealized dis-

tributions Eq. 2.3, Eq. 2.4, Eq. 2.6, and Eq. 2.7. The Gaussian distribution Eq. 2.3 is

the best fit with reduced χ2 = 2.07. For a waterbag distribution, the reduced χ2 = 6.55

(χ2 normalized to the degrees of freedom), however, this model abruptly deviates from the

measured distribution outside of the fitting region. The UG and KV distributions poorly fit

the data with the reduced χ2 of 47 and 687 respectively.

The large value of χ2 for the Gaussian fit indicates that Eq. 2.3 does not fully characterize

the distribution. Moreover, the χ2 value grows quickly when including in the fit additional

pixels with larger action. The growth is caused primarily by appearance at large J of a phase

dependence of the pixel amplitudes, which is discussed below.

2.1.2.1 Central parameters

The initial attempts to compare the measured data with Eq. 2.3 showed a relatively large

scatter of pixel intensities for any given action, even at low actions (Fig. 2.6, blue). This was

caused by the choice of Twiss parameters used to define the action which can significantly

affect the distribution in J − φ coordinates. Intially, the Twiss parameters used were the

rms parameters of the entire beam (referred here as the rms Twiss parameters). This choice
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Figure 2.5: Comparison of the measured distribution in action in the beam core (black) with
several ideal distributions: Gaussian, KV, UG, and WB. Note that the UG distribution is
phase-dependent, and, therefore, pixel intensities vary for a given action and is represented
here by the area shaded in green.

of Twiss parameters results in a large scatter even for particles with low action because it

includes the non-Gaussian beam tails which skew the rms description of the beam away core

distribution.

Alternatively, the action can be defined using pixels in the ‘central’ portion of the beam.

The central portion was found by removing the lower intensity pixels of the beam then

fitting Eq. 2.13 to determine the ‘central’ Twiss parameters and central slope. The fraction

removed was scanned from 30-60% of the total intensity in 1% steps. Generally, the central

slope increases at large and small cuts (Fig. 2.7). The increase at small cuts is attributed

to the tails affecting the fit and at large cuts poor statistics increases the central slope

significantly when the number pixels is below ∼30. To avoid both of these effects, the

central slope was fit to a cubic polynomial and the cut was chosen to be the point closest to

the minimum of the fitted curve. If a cubic polynomial could not be fit, the cut was set to

50%.
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Figure 2.7: Central slope as a function of the portion of the beam removed. The curve is
fit to a cubic polynomial to determine the minimum εc which is used to define the central
paramters.
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When the central Twiss parameters are used to define action and phase, the scatter in

the beam’s central region is reduced (Fig. 2.6, red). This is seen in the reduced χ2 for

fitting Eq. 2.3 to pixels with J < 0.15 mm mrad which is χ2=64 when using the rms Twiss

parameters and χ2=2 when using the central Twiss parameters.

2.1.3 Allison scanner phase dependence

Equation 1.56 tacitly assumes the slits in the Allison scanner are infinitesimally small to

determine the passed angle for a given voltage . In reality the slits have finite size 2d. This

causes the measured phase space area for every position-voltage setting to be a rhomboid

(Fig. 2.8) with vertices at

(
x0 + d, x′0

)
(2.8)(

x0 − d, x′0
)

(2.9)(
x0 + d, x′0 −

2d

`

)
(2.10)(

x0 − d, x′0 +
2d

`

)
. (2.11)

This distorts the measured distribution from the true distribution. For example, if a pure

2D Gaussian is measured with an Allison scanner of slit to slit length ` and slits y1 and y2

extending from −d to d the measured intensity distribution is given by integrating over both

slits [45]

Imeas(x, x
′) =

1

4d2

∫ d

−d

∫ d

−d
exp

(
− 1

2εc

[
γ(x+ y1)2+

2α(x+ y1)

(
x′ +

y2 − y1
`

)
+ β

(
x′ +

y2 − y1
`

)2
])

dy1dy2. (2.12)
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Figure 2.8: The shaded area represents the passed phase space area for a given position and
voltage setting of an Allison scanner. The grid is the displayed pixel size.

The integrand can be expanded to second order in y1 and y2 and the resulting measured

distribution up to order d2 is

Imeas(x, x
′) = exp

(
− 1

2εc

[
γx2 + 2αxx′ + βx′2

])
(

1 +
d2

6ε2c

[
εc

(
2α

`
− 2β

`2
− γ
)

+ 2

(
αx+ βx′

`

)2

+

(
αx′ + γx

)2 − 2

(
αx+ βx′

`

)(
αx′ + γx

)])
. (2.13)

At large J , when the parameters in Table 2.1 are used, this variation is approximately 2%

of the measured intensity variation at a given action and was generally ignored. However,

at low J , this distortion needs to be accounted for when defining action and the central

parameters.

The effect of the slits can be seen by varying the strength of a quadrupole magnet directly

upstream of the Allison scanner to change the Twiss parameters at the Allison scanner (Fig.
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Figure 2.9: Left: Variation of the Twiss parameters with quadrupole current. Right: The
central slope is constant when accounting for effects of the slit size.

2.9 left). Because this is changing a linear optic, the action distribution and εc should not

change. If the slit effect is not accounted for and the central Twiss parameters are found

by taking rms values over the high intensity pixels, then the central slope decreases linearly

with the quadrupole excitation current (Fig. 2.9 right). If instead, the central slope and

central Twiss parameters are found by fitting to Eq. 2.13 then εc is constant within ±5%.

The recorded pixel intensity is also affected by the thickness of the slits [46]. This

effect was neglected in these measurements because the effect is related to the angle of

the measured particles which is comparatively small in the PIP2IT MEBT of ±12 mrad.

Most Allison scanners are used LEBTs where the lower energy results in a larger range of

transverse angles of ≈ ±40 mrad. The thickness of the slits for phase portraits recorded in

the PIP2IT MEBT, the slit thickness is estimated to have at most a 2% affect on the pixel

intensities.
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Figure 2.10: The intensities are binned in action to determine Jtr with Eq. 2.14 to separate
the tails from the core. The error bars represent ±3σ.

2.1.4 Tail description

The distinction between the beam core and tails is defined by the transition action Jtr where

the distribution deviates significantly from Gaussian Eq. 2.3. The transition action is found

by firstly, determining the central parameters as outlined above and calculating the action

and phase of each pixel. Then, all the pixels are sorted into normalized action bins Ji,

typically 0.05 mm mrad in size, and the mean amplitude I(Ji) and the standard deviation

σInt(Ji) of the amplitude in each action bin is calculated. The value of Jtr is chosen as the

action of the bin where the mean amplitude deviates from the fit of Eq. 2.3 by more than

three times the standard deviation of the mean (see Fig. 2.10)

I(Jtr)− I0e−Jtr/εc = 3σInt(Jtr). (2.14)

All particles with action less than the transition action are defined to be in the core, and

particles with larger action are in the tail. This gives a measure of the extent of the beam
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core. The relative weight of the core can be quantified by the fraction of the total intensity

in the beam core. The percentage of the beam intensity in the tails is typically 10-20% of

the total intensity.

With these definitions, the transition action and the percent of the beam in the core are

constant under linear forces and can be used as a metric for tail growth due to non-linear

effects. In theory the maximum action can also be used. However, in practice, because the

pixel with maximum action has intensity just above the noise floor, the maximum action is

very noisy rendering it an unreliable quantitative measure.

At actions above Jtr the scatter of pixel intensities at a given action clearly deviates

from the Gaussian core (Fig. 2.11 (b)). The dominant part of this scatter comes from strong

phase dependence with the tail being split into two “branches” of similar intensities that

are separated in phase by approximately π rad which are clearly evident when the data is

plotted in J − φ coordinates (Fig. 2.11 (c)). The location in phase of the branches φb is

defined by the phase of the second harmonic of this distribution. This is found by taking the

Fourier transform of the pixel intensities as a function of phase for J > 1.5Jtr. Unfortunately,

attempts to find an analytical description of the tail distribution did not succeed.

Hence, the measured beam distribution is described in action phase coordinates by seven

parameters. The beam core is characterized by the central slope εc and central Twiss pa-

rameters αc, βc and is defined by pixels with action less than the transition action Jtr. All

particles with action larger than the transition action are in the tails which are characterized

by the phase of the branches φb, the maximum action Jmax, and the fraction of the particles

in the core.

Note that because the beam centroid jitter is assumed to be from a single source and

therefore predominately along a single line in phase space, it would add an asymmetry
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(a) (b) (c)

Figure 2.11: Phase portrait in position-angle phase space (a) and action-phase phase space
(c). The beam splits into two branches separated in phase at large actions. The pixel
amplitude versus action (b) shows deviation from the core distribution at large action.

for an initially symmetric distribution. To determine if the centroid jitter was responsible

of the measured tails, this effect was modeled using a 2D Gaussian distribution with rms

parameters equal to the typically measured central parameters and 0.2 mm rms position

jitter added. The amplitudes of the zeroth and second harmonics were calculated for the

given distribution by taking the Fourier transform with respect to phase in normalized action

bins ∆J=0.05 mm mrad wide. The resulting asymmetry, quantified by the amplitude of the

second harmonic in phase calculated for pixels with actions J > 0.5 mm mrad, was found to

be at least an order of magnitude lower than observed in measurements (Fig. 2.12) at large

action. At lower action, in the core, the amplitude of the second harmonic is similar between

the model and the measurements. This supports the claim that the core is Gaussian and

the measured deviations are expected.
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Figure 2.12: The amplitude of the 0th harmonic of the pixel intensities as a function of φ
for a Gaussian model is at least an order of magnitude larger than the amplitude of the 2nd

harmonic. For the measured beams, the ratio of the 0th and 2nd harmonic amplitudes is
similar to the model at low J . However, the tails cause the 2nd harmonic to dominate at
large action.

2.2 Selected beam measurements

2.2.1 Background noise removal

After taking a scan, the scanner operating program removes the background and calculates

the rms parameters of the phase portrait. The background removal is performed by setting

to zero all pixels with intensity less than a user-defined threshold. By default, the threshold

is set to 1% of the peak intensity [42], which was adequate to remove the noise for the

nominal 5 mA beam. However, for low intensity beams this rejection threshold does not

remove all noise, artificially increasing the reported emittance. And, for high intensity, the

cut level can be too aggressive, removing otherwise observable beam tails. Therefore a more

robust method is desired. Section 1.4.3 briefly describes alternative methods to account for

the electronic noise, however, they are based around determining the rms parameters of the
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distribution and are not overly concerned with including some noise or excluding a small

portion of the beam signal.

In order study beam tails, we define the cut threshold based on the noise level and

remove only the pixels that cannot be distinguished from the beam signal. This cut level is

established by firstly, finding the area that is most likely to contain only noise. The measured

portrait cell array is divided into four identical quadrants. In the quadrant with minimum

total intensity, the 6×6 pixel square in the outermost corner of this rectangle is assumed

to contain only signal from noise. This assumption was confirmed by taking measurements

without the beam and comparing the signals in the corners to measurements with a beam

present. The mean signal of this square is calculated and subtracted from each pixel over

the entire portrait. The rms noise level σn in this square is calculated and the cut threshold

Tc is set to

Tc = Anσn. (2.15)

To determine the coefficientAn, let us consider a rectangular portrait containingNpixels =

K ×M pixels for which amplitudes are determined by random Gaussian noise so that the

probability density Pp of finding a pixel with a given intensity Ip is

dPp
dIp

=
1√

2πσn
e
−
I2p

2σ2n . (2.16)

The probability P0 of having a pixel with amplitude An times higher than the rms noise

amplitude σn is

P0 = 0.5erfc

(
An√

2

)
(2.17)

where erfc is the standard error function [21]. The probability P1 of having at least one pixel
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above the threshold is

P1 = 1− (1− P0)
Npixels ≈ P0Npixels. (2.18)

This cleaning procedure can use P1 to set a cut threshold that will remove all the noise.

To achieve this we require An ≈ 3.3. However, if after the cut single pixels remain above the

threshold with all zero neighbors then these can be easily removed. Therefore, the cut level

can be set lower and afterwards single pixels can be removed. For this, the cut threshold

needs to be set high enough so no pairs of neighboring pixels (side-by-side or diagonally)

will be above the cut threshold Anσn. The total number of independent neighboring pairs

Npairs is

Npairs = 4KM − 3(K +M) + 2, (2.19)

which is approximated by

Npairs ≈ 4Npixels for K � 1, M � 1. (2.20)

The probability P2 that two neighboring pixels are both above the threshold is

P2 = 1− (1− P 2
0 )
Npairs ≈ 4P 2

0Npixels. (2.21)

In practice, it was accepted that one in ∼ 100 portraits may contain an un-removed noise

pair (P2 = 0.01). The value of P0 is calculated from Eq. 2.20 and 2.21 and then the threshold

is determined by inverting Eq. 2.17. For a typical number of pixels of 3000, the multiplier

in Eq. 2.15 is An ≈ 2.2. For the nominal beam in PIP2IT, the cut threshold calculated with

48



0.5 1.0 1.5 2.0 2.5 3.0
Peak intensity (arb. units)

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S 
em

itt
an

ce
 (m

m
 m

ra
d)

RMS method
1% method

Figure 2.13: Vertical RMS emittance with horizontal scraping. The five data points corre-
spond to 1, 2, 3, 4, 5 mA of beam current after scraping.

this method is typically ∼0.5% of the peak intensity. This limits the dynamic range of the

scanner to approximately two orders of magnitude.

To test the robustness of this method, a horizontal scraper was stepped through the beam

upstream of the Allison scanner at location three and the phase portraits in the vertical plane

were measured at each step. Removal of the beam horizontally results in a lower intensity of

a given pixel in the vertical phase space, so that the peak intensity can be used as a measure

of the remaining current. When the noise-based cut is used, the measured emittance is

constant within 10%, showing that the beam ellipse is not x-y coupled (Fig. 2.13). However,

when the same data are analyzed with the default 1% cut, the emittance appears to increase

when the peak intensity goes below ∼1.5, corresponding to a beam current of roughly 2 mA,

due to noise flooding the phase portrait.
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2.2.2 Quadrupole scan

To test that the stability of the measured distributions in J−φ coordinates, the strength of an

upstream quadrupole magnet close to the Allison scanner was varied. This is a change to the

linear focusing optics so the Twiss parameters will change but no significant changes in the

distribution over action are expected. Despite the dramatic visible changes of the portraits

in x− x′ coordinates (seee Fig. 2.14(a)), the distribution in action-phase coordinates stays

the same (see Fig. 2.14 (d,e)), and portion of particles outside of a given action is stable for

more than 99% of the measured beam (see Fig. 2.14 (f)). The portion of particles in the

core and the central slope are found to be stable (see Fig. 2.14(b)) within ±3% and ±5%,

respectively.

The phase of the particles for scans with different optics shifts by the difference in betatron

phase advance between these portraits. While a phase shift cannot modify the appearance

of the phase-independent core, the phase position of the tails should change accordingly.

In the case of the presented quadrupole scan, the change in the phase advance is small

because the distance between the varied quadrupole and the Allison scanner is short. The

observed phase position of the branches is in agreement, within measurement errors, with

the simulated phase advance (see Fig. 2.14 (c)).

2.2.3 Comparison of measurements in different locations

The stability of description of the distributions in action-phase coordinates allows for com-

parisons of the phase portraits of the beam that have passed through significantly different

optics. As mentioned above, phase portraits were recorded in three locations and with two

scanner orientations over 18 months. The results of these measurements, performed with
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(c)
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Figure 2.14: Analysis of phase protraits in a quadrupole scan. (a) phase portraits in x− x′
coordinates recorded at the quadrupole currents increasing from left to right and from top
to bottom from 3.06A to 5.46 A. The x and x′ ranges in each plot are 30 mm and 24 mrad,
correspondingly. No significant variation of the slit - corrected central slope and percent in
the core are observed while the quadrupole strength was scanned (b). The average branch
phase agrees with small changes of the simulated betatron phase (c). Phase portraits in
action-phase coordinates for the minimum and maximum quadrupole currents overlap (d),
(e). The portion of the beam outside of a given action is stable over most of the beam (f).
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the same settings for the ion source, LEBT, and RFQ, are summarized in Table 2.3. Each

result represents an average over 10 measurements made on different days in an attempt

to separate day-to-day variability from difference between locations and orientation. The

presented errors are the rms variations over each set of 10 measurements.

Across all three locations of the Allison scanner, the rms emittance is the same within

the errors which was initially interpreted as no significant differences in the distributions.

However in J−φ phase space, higher values of the central slope and percent in the core at the

location 1 were measured. This is attributed to a difference between the distributions in the

horizontal and vertical planes, since these values stay constant from location 2 to location

3. This difference between the two planes is also seen in the larger spread in intensities at

low action for the horizontal plane at location 1 compared to the other two locations (Fig.

2.15 left). However, direct comparison by measuring both planes in single location was not

performed to confirm this theory.

There is no change, within the scatter, in εc and the fraction of the intensity in the

core between locations 2 and 3 in which the Allison scanner measured in the vertical plane.

This is interpreted as an absence of measurable changes in the beam core parameters in

the MEBT. The extent of the beam tails can be more easily seen by plotting the total

intensity of pixels with action larger than some value as a function of action, i.e. integrating

the intensity-action distribution (Fig. 2.15 right). Outside of ∼ 95% of the measured beam

intensity, the difference between distributions is larger that one would expect from statistical

fluctuations and reconstruction errors by comparing with Fig. 2.14 (f). The increase of

particle population outside of large actions from location 2 to location 3 visible in Fig. 2.15

(right) may be a sign of tail growth. However, due to the limited dynamic range of the

Allison scanner and existence of beam jitter, it is difficult to make a definitive claim.
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Figure 2.15: Comparison of the amplitude versus action distribution (left) at the beginning
and end of the MEBT shows a difference between the horizontal and vertical planes. The
far tails extend farther at location 3 compared to location 2 (right) which is a sign of tail
growth. The portion outside a given action at location one cannot be used to search for tail
growth because it represents a different plane. The shaded areas represent the rms errors
calculated by propagation of the pixel amplitude fluctuations.

Table 2.3: Average rms emittances and core and tail parameters for the three locations of
the Allison scanner.

Location rms ε εc % in core
1 - horz 0.20± 0.013 0.146± 0.003 88± 2.5
2 - vert 0.19± 0.015 0.117± 0.013 71± 11
3 - vert 0.22± 0.024 0.123± 0.011 72± 10

2.2.4 Distribution at different beam currents

Changing the beam current is another example where distribution over action gave more

detailed information about the beam distribution than the rms parameters. Figure 2.16

shows how the beam parameters at location 1 vary when the beam current is increased by

increasing the extraction voltage of the ion source. All other settings, tuned to optimize

performance at the nominal 5 mA, are kept constant.

Looking solely at the rms parameters that are were initially used to quantify the dis-
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tributions, an increase in the rms emittance is seen starting at ∼3 mA coincident with the

flattening of the peak intensity of the beam. This appears to be a saturation of the beam

core resulting in increased tails.

However, the parameters used to describe the action distribution tell a different story.

At 3 mA the fraction of the beam in the core plateaus as does Jtr signifying minimal tail

growth at higher currents. The central slope, however, continues to increase for all currents.

At low current, the growth of the central slope is compensated by a reduction in the size of

the tails resulting in minimal changes to the rms emittance. Above 3 mA, the central slope

continues to broaden, but the tails see less variation. It is the broadening of the central

region that causes in the increase in the rms emittance, not tail growth.

2.2.5 Scraping

The PIP2IT MEBT contains four sets of four scrapers each set consists of a bottom, top,

right, and left scraper. One goal of the scraping system in the PIP2IT MEBT is to remove

far tails and intercepting part of the beam with the scraping system was foreseen as a normal

mode of operation. Preliminary estimates for tail removal were made for a phase-independent

Gaussian beam in Ref. [47]. In this case, it is optimal to separate the scraper by π/2 betatron

phase advance to minimize the maximum passable action. However, measurements with the

Allison scanner showed the situation to be more complicated due to the phase-dependent

branches. For illustration, Fig. 2.17 compares phase portraits recorded at location three

when removing beam with a single scraper at different locations. For this study the top

scraper was moved into the beam at each of the scraping stations, one at a time, to intercept

10% of the current (0.5 mA) based on the measured current at the beam dump. In Fig. 2.17

phase portraits with (red) and without (blue) scraping are overlapped in x − x′ (left) and
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Figure 2.16: The total beam intensity (a), peak pixel amplitude (b), emittance (c), and Twiss
parameters (d) for different extraction voltages Vextr. Parameters are plotted as functions
of the beam current in the LEBT.

55



J − φ (right) coordinates. The action and phase of the scraped beams are calculated using

the beam centroid and the central Twiss parameters of the non-scraped beam to maintain

the same definition of action for direct comparisons.

Figure 2.17 shows that scraping the same fraction of the beam current by different scrap-

ers results in different removal of the tails due to a strong dependence of the tail intensity

on phase. For example, inserting the scraper M71 (Fig. 2.17(d)) removes primarily the tail

particles, while the scraper just upstream, M61 (Fig. 2.17(c)) misses a significant portion

of the branches and does not reduce the maximum action of the beam. Instead, in order to

remove 10% of the current, the scraper removes particles with lower action. Therefore, in

order to achieve maximal tail reduction for a given reduction of the output beam current,

the beam phasing at the scrapers can be optimized by adjusting the optics and/or scraper

locations such that the phases of the branches are at 0 or π at the scrapers. Alternatively, if

such changes to the optics are not possible, scrapers that are not expected to intercept the

tails can be positioned to remove less of the total beam current with minimal increase to the

passed maximum J . This can result in a more efficient scraping regime than will remove less

of the total current but still remove the large action beam tails.

Phase portraits for scraping near location 1 with scraper M00 visibly show a rounded

edge on the scraped side. This is visually distinct from scraping near location 3 with scraper

M71 where phase portraits have a straight scraped edge, Fig. 2.17. This hints that for

the upstream scrapers propagation through the beam line smears the scraping boundary

beyond of what is expected from the finite width of the scanner slits. This could be related

to non-linear space-charge fields, as expected from preliminary simulations in Ref. [47]. In

attempting to make a numerical estimation of this effect, one can propagate the scraper

footprint using the transport matrix and calculate the portion of the particles beyond the
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Figure 2.17: Phase portraits with scraping. Rows (a) - (d) correspond to moving into the
beam one of the scrapers along the beam line presented in Fig. 2.3; from top to bottom
M00, M11, M61, M71. In each case, 0.5 mA is intercepted out of the initial 5 mA. The row
(e) represents the ’flat’ beam when top and bottom scrapers are inserted in M00 and M11
stations. The solid lines represent the attempt of propagating the scrape lines according to
5 mA beam simulations. The dashed lines represent propagation with the phase advance
increased by 10%. See other details in the text.
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cut line in the recorded portrait. A scraper with vertical offset d from the beam center

produces a line in the Allison scanner portrait

u′1(u) =
u

β1
(cot(∆φ)− α1)− d√

β0β1 sin(∆φ)
(2.22)

where subscripts 0 and 1 denote the locations of the scraper and Allison scanner, corre-

spondingly, ∆φ is the vertical betatron phase advance between the two locations, and α and

β are the Twiss parameters. The center of the coordinate system is placed at the center of

the distribution. The rms Twiss parameters at the Allison scanner are measured directly.

At the scraper, the offset and the rms beam size and, assuming a constant emittance, β0

can be reconstructed by stepping the scraper through the beam and recording the passed

current on the beam dump. The dump current as a function of the scraper position can

be fit to the standard error function to determine the first and second order moments. The

phase advance needs to be delivered by the optics model. The rms parameters, simulated by

TraceWin [48], are found in a good agreement with the envelope measurements performed

with scrapers [49], and the phase advances are calculated using the rms beam sizes and emit-

tances delivered by the program. The scraper footprints drawn according to Eq. 2.22 are

shown on all plots of Fig. 2.17 with solid lines. These lines were expected to approximately

coincide with the scraped edge of the beam distribution. However, this visually is not the

case, and numerical estimations of the particles’ diffusion over the scraper footprints cannot

be made. A possible interpretation of this result is that the accuracy of prediction with the

linear model with uniform phase advance for all particles becomes unsatisfactory for the case

of long propagation of the tails with non-linear space charge and focusing forces. Simulations

performed with the same initial conditions and the same magnet settings but with a zero
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beam current show the phase advances that are larger than at nominal 5 mA by 10 - 20%

[47] (depending on the longitudinal position). Because the density varies across the beam,

it can assumed that the tail particles advance in the phase with a rate somewhere between

the zero current and nominal cases. The dashed lines in Fig. 2.17 drawn with the phase

advances increased by 10% to estimate the reduced betatron tune depression of the tails for

each portrait are indeed visually closer to the scraper footprints.

This assumption of non-uniform phase advances is supported by an increasing phase shift

of the second harmonic as a function of action throughout the MEBT. The second harmonic

was calculated by taking the Fourier transform with respect to phase in normalized action

bins ∆J=0.05 mm mrad wide. This was done for measurements at each of the three locations

of the Allison scanner and the phases were shifted by a constant to have zero phase at higher

J for easier comparison (Fig. 2.18). At location 1, the phase is mostly constant with action.

At location two, the phase starts to decrease at lower actions and this behavior becomes

larger at location three. The shift in the second harmonic is approximately proportional to

the amplitude of the 0th harmonic at all locations, i.e. the amplitude of the local density.

This effect can be interpreted as the tails have a different phase advance from the core

resulting in the beam becoming ‘S’ shaped [18].

This increasing ‘S’ shape can explain that despite having the same εc and fraction in the

core, the distribution at location 3 extends to higher action compared to location 2 (see Fig.

2.15). The tail particles are shifting away from the primary axis of the ellipse defined by

the central parameters encompassing the core. This would cause the tails to move to higher

actions without the central distribution or the total population of tail particles changing.
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Figure 2.18: Phase of the second harmonic of the pixel intensities as a function of phase
varies with action. Larger variations are seen father from the start of the MEBT showing
the phase advance varies across the beam.

2.3 Future work

The development of the analysis of phase portraits using J −φ coordinates was intended for

studying the beam tails. Unfortunately, noise issues with the Allison scanner in the PIP2IT

beamline made this challenging. The thermal noise was quite large and limited the dynamic

range of the device to roughly two orders a magnitude. To adequately measure the beam

tails, a dynamic range of at least three or four orders of magnitude is required. While we

did investigate the source of the large noise floor, no correction was found.

In addition, the beam jitter distorts the measured phase space distribution. The jitter

appears to be random, therefore the measured distribution on average should be mostly

unaffected and adequate for determining the rms beam parameters. However, the jitter does

affect the pixel intensities on the individual level which confounds detailed analysis of the

phase portraits using action.

Because of these issues, it is challenging to further the development of this analysis
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technique using phase portraits taken in the PIP2IT MEBT. Future studies should be taken

of a more stable beam with a phase space scanner with a larger dynamic range.

Also, the intensities of the individual pixels are known to be affected by the geometry of

the Allison scanner. Equation (2.13) provides a simple model of this effect for a Gaussian

beam and it is needed to determine the central parameters. It would be ideal to correct

the intensity of each pixel for this effect. This procedure is essentially a deconvolution of

the measured phase portrait with the passed phase space area for a given position-voltage

setting (Fig. 2.8) and a procedure for this is described in Ref. [46]. However, deconvolution

is an inherently noisy process and, due the added noise from beam jitter, attempts to carry

out this correction failed. Once again, cleaner signals are needed to improve the analysis.
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Chapter 3

Beam profile measurements using

beam position monitors

Measurements of the beam distribution in phase space are useful to fully characterize the

beam. However, these devices can typically only be used in low energy regions of the beamline

because they rely on the lower magnetic rigidity of beam to sample discrete portions of the

beam. In addition, because these devices intercept the beam, they must be able to withstand

the deposited beam power which becomes more challenging at higher energies. Also, because

they are inserted into the beamline, the phase space measurements cannot be performed

during operation. While slit based phase scanners are useful for characterizing the beam

distribution, typically, there will only be a couple phase space scanners in a beamline and

cannot be used to continuously monitor the beam properties.

On the other hand, the most prevalent diagnostic devices in almost every beamline are

beam position monitors. These non-intercepting devices are used throughout the entirety

of accelerators as one of the primary tools to verify the beam dynamics and tune of the

beamline. Standard analysis of the BPM signals only determines the first order moments

(centroid) of the beam. Expanding the analysis of the BPM signals to give more information

about the beam distribution would allow for passive monitoring of more beam properties at

many locations. This additional information would be highly beneficial for determining the
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operation points of particle accelerators.

3.1 BPM signals

3.1.1 Validity of the pencil beam model

The electric field given by Eq. 1.46 holds for a infinitesimally small beam transversely with

charge modulated longitudinally at a single frequency. While, this is clearly a significant

abstraction from an actual beam, it is an adequate model of the BPM signals in most cases

and widely used [5]. The single frequency model is acceptable because the processing of the

BPM pickups’ signals typically use narrowband filtering to measure a single harmonic of the

bunch repetition rate to reduce noise. In addition, at higher beam energies, the ∆/Σ signals

are approximately frequency independent.

The pencil beam is an acceptable model of the transverse distribution if the beam is

small compared the pipe radius. However, when the beam size covers an appreciable portion

of the pipe aperture, the signals measured by the pickups can be modeled by summing

over a collection of pencil beams at different locations to generate the transverse profile.

The components of this discretized model far from the center will be affected by the non-

linearities in the pickups’ response and cause the measured position to be distorted [7]. This

distortion is dependent on the exact transverse distribution making it challenging to model.

Because this effect is due solely to non-linearities caused by the geometry of the BPM, it is

independent of gRp and non-relativistic effects.

This is effect is typically on the order of a few percent variation and typically is not

considered when determining the beam position. For example, consider a Gaussian beam

with σy = 2 mm located at x0=2 mm and y0=1 mm in a pipe of radius Rp = 23.5 mm. When
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Figure 3.1: Variation of ∆/Σ when changing σx of a Gaussian beam centered at x0=2 mm
and y0=1 mm for a 47 mmm aperture BPM with 20 mm diameter round pickups.

σx is varied from 1 mm to 5 mm, the resulting ∆/Σ, and therefore the position measurement,

varies by 2-3% (Fig. 3.1). While these beam offsets are larger than ideal, these parameters

are representative of a beam in the FRIB MEBT.

3.1.2 A more detailed BPM model

While this infinitesimally thin, single frequency model of a beam is generally adequate for

position measurements, in reality the signals from BPM pickups also contain information of

the longitudinal bunch profiles. The BPM signals are directly proportional to the Fourier

amplitude of the longitudinal profile Dω at the measured frequency. Therefore, it is possible,

using beamline models, to measure the longitudinal size of the bunch by varying the longi-

tudinal optics and measuring changes in the amplitude of a signal harmonic to calibrate for

these effects and use the BPMs to measure the longitudinal bunch length [50, 51]. In theory,

the beamline model dependence can be removed by recording the BPM pickups’ response

at multiple frequencies. In order to achieve this, a more complete analytic model than Eq.
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1.46 is needed.

One important missing feature in Eq. 1.46 is the dependence on the transverse distribu-

tion which is more complex than the longitudinal distribution dependence. The dependence

of the image charges on the pipe wall σwall for a given transverse distribution T (r, φ) can be

found by integrating Eq. 1.46 for σ from a pencil beam over T (r, φ)

σwall(ω, zm, φm) = Dω cos

(
ω

[
t+

z0 − zm
βc

])
×∫∫

rdrdφ
∑
n=0

T (r, φ)
In(gr/Rp)

πNIn(gRp)
cos[n(φm − φ)]. (3.1)

The effect of the transverse distribution is more discussed in section 3.1.3.

The image change must now be integrated over the pickup. For a round pickup, which

are used at FRIB, of radius Rb Eq. 1.53 becomes

σpickup(ω) =

∫ Rb

−Rb
dz

∫ 1
Rp

√
R2
b
−z2

− 1
Rp

√
R2
b
−z2

Rp dφmσwall. (3.2)

For simplicity all terms in σwall independent of zm and φm will be put into a single coefficient
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F (g, r, φ) and φ 7→ φ+ φp to accommodate any azimuthal pickup location φp. This gives

σmeas(ω) =

∫ Rb

−Rb
dzm

∫ 1
Rp

√
R2
b
−z2

− 1
Rp

√
R2
b
−z2

Rp dφm

∫∫
rdrdφ×

∑
n=0

F cos[n(φm − φp − φ)] cos

[
ω

βc
(zm − z0)

]
(3.3)

σmeas(ω) =

∫∫
rdrdφ

∑
n=0

FRp
2

n
cos[n(φp + φ)]×

∫ Rb

−Rb
dzm cos

[
ω

βc
(zm − z0)

]
sin

[
n

Rp

√
R2
b − z

2

]
(3.4)

σmeas(ω) ≡
∫∫

rdrdφ
∑
n=0

FRp cos[n(φp + φ)] · P (ω) (3.5)

where

P (ω) =
2

n

∫ Rb

−Rb
dzm cos

[
ω

βc
(zm − z0)

]
sin

[
n

Rp

√
R2
b − z

2

]
(3.6)

is the transit time factor for a round button pickup. Therefore the correction for the button

shape can be separated from the effects of the beam distribution.

This derivation approximates the pickup geometry as flush with the round pipe wall. In

practice, flat button pickups are commonly used because they are simple to manufacture.

Show in Fig. 3.2 is the inside of a BPM used at FRIB where flat, 20 mm diameter pickups are

used and they are recessed 1 mm from the inner pipe wall. This difference in geometry needs

to be accounted for when the measured wavelength is on the same order as the pickup size.

For the 20 mm diameter pickups used at FRIB, the frequency needs to be above ∼0.5 GHz

for a beam traveling at β = 0.033 corresponding to the beam energy exiting the RFQ. This

estimate is confirmed by CST Microwave Studio [52] simulations of the two BPM geometries

at this velocity which show the difference becomes significant at ∼400 MHz (Fig. 3.3). To

limit the effect of the curved approximation, the broadband measurements presented below
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Figure 3.2: Geometry of the FRIB MEBT BPMs. The pipe radius is 23.75 mm and the
pickup radius is 10 mm [6].

with the FRIB BPMs were limited to 400 MHz.

3.1.3 Pickup signal variation with transverse distribution

The variation of the field profile with beam position, as mentioned in section 1.4.1., can be

seen from the measured spectra from various offsets of a pencil beam (Fig. 3.4). Because,

for non-relativistic beams, the signals on the pickups vary with ω and βr, they are best

characterized in terms of gRp with higher gRp corresponds to higher frequency and lower

βr. The effect of offsetting the beam is significant for gRp > 1 with variations on the order

of 10s of percent for values of gRp up to ∼10. For gRp < 1 the spectra on the buttons from

an offset beam are the same as the spectra for a centered beam. Therefore, for gRp > 1
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Figure 3.3: Signal on a flat and curved 20 mm diameter BPM pickup from a β=0.033 beam.
The two geometries give similar results up to ∼400 MHz.

Eq. 1.51 must be used to correctly determine the position and for gRp < 1 Eq. 1.52, which

independent of g, can safely be used.

To see the effect of the transverse distribution, the amplitude of the integral in Eq. 3.1

is plotted in Fig. 3.5 as a function of gRp and are normalized to the result a pencil beam.

A Gaussian beam with σx = σy was used and the transverse size was varied. Similar to

offsetting the beam, the variations due to transverse beam size are significant for gRp > 1.

For gRp < 1, the transverse size can be neglected and a pencil beam can be assumed.

Similar effects are seen when varying σx or σy individually while leaving the other fixed.

This dependence on the transverse distribution at high gRp caused by the electric field

distribution and is distinct from the errors caused by the transverse beam distribution due

to non-linearities discussed in section 1.4.1. Because the transverse distribution can affect the

field profiles on the BPM pickups, the transverse distribution should be able to be determined

from the pickup signals. This would require measurements at multiple frequencies to separate

the transverse effects from longitudinal profile effects. Such would measurements would
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Figure 3.4: Variation in the measured spectra on a 20 mm diameter pickup in a 47.5 mm
diameter pipe for an offset pencil beam. The spectra are normalized to the centered case.

Table 3.1: Parameters of the distributions used in Fig. 3.6.

Amp 1 x0 1 y0 1 σx 1 σy 1 Amp 2 x0 2 y0 2 σx 2 σy 2
Double Gaussian 1 0 mm 1.07 mm 1.7 mm 2.49 mm
Single Gaussian 1 0 mm 0 mm 1.7 mm 1 mm 0.4 0 mm 2 mm 1.7 mm 3 mm

effective turn BPMs into transverse and longitudinal profile monitors.

If a BPM is operating in a region where where transverse distributions must be accounted

for, it is important to use the exact distribution. It is not sufficient to use a model with

the same first and second order moments. For example, consider a beam with transverse

profile that is the sum of two Gaussian and a beam with a single Gaussian profile with the

same first and second order moments, e.g. distribution with parameters given in Table 3.1.

At high gRp the measured signals significantly differ both in amplitude and profile resulting

in errors in the measured position (Fig. 3.6). This effect is difficult to correct because it

requires an accurate model of the the beam. At lower gRp the measured spectra become

nearly identical on all pickups and the distribution no longer needs to be taken into account.
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Figure 3.5: Variation in the measured spectrum for a centered round Gaussian beam of
different sizes. The spectra are normalized to a centered pencil beam.

3.1.4 Button sum signal

The dependence on the pickup spectra on the transverse distribution makes measurements

of the beam profiles challenging. To partially alleviate this sensitivity, the signals from all

four buttons can be added together. By summing Eq. 3.5 over the four pickups, the summed

signal is found to be

σsum(ω) = P (ω)

∫∫
rdrdφ

∑
n=0

FRp

(
cos[n(0 + φ)] + cos[n(π/2 + φ)]+

cos[n(π + φ)] + cos[n(3π/2 + φ)]

)
(3.7)

σsum(ω) = P (ω)

∫
dAbeam

∑
n=0

FRp · 4 cos(nφ)


1, n ≡ 0 (mod 4)

0, else

(3.8)

For the circular button pickups used for FRIB, only azimuthal harmonics that are zero

modulo four remain after summing. This significantly reduces the dependence of the signal
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Figure 3.6: Comparison of measured spectra from a Gaussian and double Gaussian beam
with the same first and second order moments with β=0.033 (left) and β=0.15 (right). At
large g the different distribution results in a different measured spectra.
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on φ as well as the dependence on the beam position and transverse distribution. In the case

of rectangular pickups that cover the full 2π solid angle, only the n = 0 component remains

and the signal is independent of φ.

The scalings with the transverse distribution discussed above are repeated in Fig. 3.7

using the summed signals for the FRIB BPM geometry. The dependence on beam offset for

a pencil beam is reduced by a factor of ∼7 and the dependence on the transverse size for

a Gaussian beam is reduced by >20% at high gRp. The reduction of dependence on the

transverse bunch shape is independent of the size of the beam. These reductions allow for

the summed signal the beam can be assumed to be a pencil beam at gRp ≈ 3 which is an

improvement from the non-summed signals which require gRp ≈ 1 to assume a pencil beam.

However, while this method reduces the sensitivity to the transverse distribution which

is beneficial for determining the longitudinal profile, for low enough βr, gRp will be large

enough that the transverse distribution still needs to be accounted for. But, due to symmetry,

the x and y profiles cannot be distinguished from each other in the summed signal and the

position can only be determined modulo a phase of π/4. This can result in the aggravating

situation where the same number of parameters must be used to describe the beam as the

non-summed case, but less information is obtained. In general, the sum signal should be

used when information of the transverse distribution is not needed and when gRp ∈ (1, 3).

3.1.5 BPM response simulations

The required correction to recover the beam parameters from the measured signals were

checked using CST Microwave Studio simulations [52]. The simulations were performed

using the wakefield solver with a mono-energetic pencil beam and the field at the pipe

wall was measured at a single point to confirm Eq. 1.46. This eliminates corrections for
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Figure 3.7: (Top) Variation of the summed signal for an offset pencil beam. The varia-
tions in the spectra are a factor of ∼7 lower than the non-summed signals. (Bottom) The
summed signals of a 1 mm offset Gaussian beam normalized to the single pickup signals.
The variations of the summed spectra are reduced by 20% compared to the non-summed
signals.
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Figure 3.8: CST simulations using the wakefield solver must be fit to a uniform square
beam with side length given by the mesh size. For the given frequency range, this artificial
transverse distribution can be ignored for β >0.15.

the transverse size and the pickup geometry and impedance; these features were planned

be added later to test Eq. 3.5. However, simulations using the wakefield solver showed a

discrepancy between the field at a point on the wall in simulation results and the analytic

field at the wall from a pencil beam for βr < 0.15 (see Fig. 3.8).

Instead, the simulation results matched the expected signals from a uniform square beam

with side length equal to twice the mesh cell size suggesting the discrepancy is caused by how

CST handles the pencil beam in the wakefield solver. The pencil beam used in the wavefield

solver transversely lays on the intersection of four mesh cells. The solver appears to assume

all cells touching the thin, pencil beam are part of the beam and must be included in the

analytic model. The damping of the transverse distribution effects by reducing gRp is also

confirmed by simulations with βr ≥ 0.15 which agree with the analytic results from a pencil

beam and do not require a transverse distribution.

With this unwitting inclusion of a transverse distribution at low β, the wakefield solver

was used for simulations including a BPM model. The model used is a simplified model
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Figure 3.9: Model of the FRIB BPMS in CST Microwave Studio.

consisting of flat cylindrical buttons that are connected to ground via 50 Ω discrete ports

(Fig. 3.9). The impedance of these pickups was measured using the transmission coefficient

S2,1 between two pickups and fitting for the resistance and capacitance (Fig. 3.10) similar

to the procedure in Ref. [6]. The measured capacitance to ground was 4.1 pF.

The BPM signals match the expected analytic signals within 5% for β = 0.033 and the

difference decreased when β was increased (Fig. 3.11). From these signals, a resonance due

to the button size can be seen around 500 MHz for β=0.033. This resonance is not seen in

beamline measurements due to low pass filtering.

3.2 Bunch profile measurements

3.2.1 TIS waveforms

The BPM system at FRIB can measure the signals from the buttons over a wide bandwidth

using a Time Interleaved Sampling (TIS) method similar to the method described in Ref.

[53]. This method assumes beam is comprised of a series of individual bunches that are
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Figure 3.11: Simulation results compared to analytic results of BPM pickup signals from a
centered pencil beam using the wakefield solver.
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Figure 3.12: Example of the sampling procedure to measure the TIS waveforms. Each sample
taken by the digitizer is at a different phase with respect to the signal and can be used to
reconstruct the individual repeated pulse (image courtesy of S. Cogan).

assumed to be identical and longitudinally spaced at a repetition rate of either 40.25 MHz or

80.5 MHz. The pickup signals from the bunch train are sampled by the digitizer at 119 MHz.

Each sample of the digitizer occurs at a different phase with respect to the bunches (Fig.

3.12) resulting in an effective sampling rate of 2.737 GHz and can resolve harmonics of

40.25 MHz up to 1.3 GHz. However, the measurements are limited to 0.5 GHz by a low-pass

filter on the board. These measured signals are referred to here has the TIS waveforms.

3.2.2 Filtering effects

After the signal is measured by the pickup, it, passes through a cable and lowpass filter to

a digitizer. The response to this system was characterized by removing the cables from the

pickups and inputting a harmonic of 80.5 MHz up to 483 MHz into the cables and recording

the output of the digitizer. For this calibration, the TIS waveforms could not be recorded

because that system requires the input signal to be phase locked to the 80.5 MHz global

clock while the signal generator could only lock to a 5 MHz or 10 MHz clock. Instead the

raw signal from the digitizer was recorded. The Fourier transforms of these signals were used
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Figure 3.13: Cable and board calibration for four buttons on a BPM.

to determine the response for each harmonic. For any given input frequency, the harmonics

of that frequency were also seen. The first higher harmonic at twice the input frequency was

at least three orders of magnitude lower than the primary tone and ignored in the analysis.

This calibration is stable within ±10% for tested BPMs.

The calibration of the four pickups on one of the FRIB BPMs is shown in Fig. 3.13.

Note that two of the pickups are ∼ 1.5 dB lower than the other two. For these buttons, the

signal processing board includes a switch for injecting signals which causes the reduction.

All BPMs have these switches for two of the buttons and these must be correctly accounted

for.

Only harmonics of 80.5 MHz were calibrated because, at the time the calibration was

performed, the TIS waveforms could only measure harmonics of 80.5 MHz. The software was

later updated to measure harmonics of 40.25 MHz. The uncalibrated 40.25 MHz harmonics,

except for 40.25 MHz, are corrected using a cubic spline interpolation of the 80.5 MHz

harmonics measurements. The 40.25 MHz harmonic was not used in measurements because
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it could not be calibrated. These calibrations were only performed for the first nine warm

BPMs near the RFQ including all four BPMs in the MEBT. For all other BPMs, the signals

are approximately corrected using an average of these measurements and knowledge of the

pickups with the switches.

3.2.3 Beamline measurements

Measurements of the BPM buttons signals were taken in the FRIB MEBT (Fig. 1.5). In

this region the beam velocity is βr = 0.033. The TIS waveforms were recorded for all four

BPM in the MEBT which have a 47 mm diameter aperture and four, 20 mm diameter round

pickups. However, most measurements of interest were taken with the third BPM because

there is a wire profile monitor directly upstream of it and it is sufficiently downstream of

a buncher cavity to cause variations in the bunch length. The TIS waveforms recorded

harmonics of 40.25 MHz up to 483 MHz corresponding to a range of gRp from 0.6 to 7.2.

The TIS waveform were taken to measure harmonics of 40.25 MHz, however the RF

frequency of FRIB is 80.5 MHz. This is possible because, in single charge state operation, a

prebuncher before the RFQ causes the bunches coming out of the RFQ only fill every other

RF bucket. However, due to imperfect bunching, a small signal was seen in the bucket that

was supposed to be empty. This causes the even harmonics of 40.25 MHz, i.e. the harmonics

of 80.5 MHz, to be slightly higher than the odd harmonics (Fig. 3.14). The beamline was

also operated without the prebuncher, in this case all RF buckets were filled and only the

harmonics of 80.5 MHz are non-zero.

The raw TIS waveforms are corrected for the impedance and board effects (Fig. 3.15)

then fit to Eq. 3.5 to determine the transverse and longitudinal sizes of the bunch. This

fitting assumes the beam is Gaussian transversely and longitudinally with fit parameters x0,
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Figure 3.14: Example of a measured TIS waveform in the FRIB MEBT (left). The bump
at 15 ns is a partially filled RF bucket. This causes the harmonics of 80.5 MHz to be higher
than the rest of the harmonic of 40.25 MHz (right).

y0, σx, σy, σxy, σz, an amplitude, and an offset to account for noise. Because the amplitude

of each button depends on the transverse size and offset, all four button spectra must be

fit simultaneously. The measured spectra in the MEBT fit within ±10% to Eq. 3.5 with

differences primarily due to the discrepancy between the even and odd harmonics (Fig. 3.16).

3.2.4 RF buncher voltage scan

Measurements were taken with the third BPM in the MEBT for a range of voltages of

the upstream buncher cavity with it set to a bunching phase to change the bunch length

at the BPM. Along with the TIS waveforms, the transverse profiles were recorded with a

wire profile scanner directly upstream of the BPM. The Fast Faraday Cup (FFC) located

downstream of the third BPM could not be used to verify the longitudinal profile for most

measurements because a Faraday cup at the same location needed to be inserted to act as

a beam stop. Instead, simulations were used to compare the expected longitudinal size to
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Figure 3.15: Raw and calibrated spectra of a BPM in the MEBT
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Figure 3.16: Fitting the measured spectra and fractional error from the measured values.
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Figure 3.17: Comparison of the measured bunch length with simulations at the third BPM
in the MEBT when the buncher cavity voltage is varied. The BPM measurement, while
close to the expected values, fail to produced the expected trend.

the BPM measurements (Fig. 3.17). While the BPM measurements give longitudinal and

transverse sizes on the same order as the simulation results, the longitudinal measurements

fail to follow the expected trend from changing the buncher voltage.

To verify the simulation results, separate measurements were taken with the FFC for

the same range of buncher voltages and they follow the expected trend of going through a

minima. In addition the FFC measurements confirm that the longitudinal beam profile is

primarily Gaussian.

The abnormal behavior of the BPM measurements is believed to be cased by the trans-

verse distribution of the beam. Measurements of the transverse profile with the wire scanner

clearly show clearly non-Gaussian profiles (Fig. 3.18), particularly in the vertical plane, while

the fittings to the BPM measurements assumes a Gaussian distribution. The TIS waveforms

were fit for harmonics of 40.25 MHz from 80.5 MHz up to 402.5 MHz corresponding to a

range of gRp from 1.2 to 6.0 and so the exact form of the transverse distribution will affect
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Figure 3.18: Examples of transverse profile measurement in the FRIB MEBT measured with
a wire profile monitor.

the measured spectra. It was initially hoped that, while not exact, the Gaussian model

would be capable of correctly approximating the second order moments. But, the buncher

scan results showed this is not the case.

There exists a wire profile monitor directly upstream of the third BPM. It is possible to

input the measured profiles from this scanner into Eq. 3.5 in order to fit the longitudinal

profile. However, this procedure cannot be generally applied to the other BPM along the

beamline because there are no measurements of the transverse distribution elsewhere. Vary-

ing an upstream quadrupole to change the transverse distribution at the third BPM in the

MEBT resulted in a variety of measured transverse profiles at the BPM. Because of this, a

better model of the transverse distribution to use in the fitting was not developed.

In an attempt to remove the transverse effects, the spectra were measured with BPMs

at the end of the first accelerating linac segement of FRIB where the beam is traveling at

βr = 0.185 corresponding to a maximum gRp of 1.07. This is sufficiently low to ignore the
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Figure 3.19: Spectra and fitting a pencil beam to measurements at β = 0.185. The droop at
low frequency is hypothesized to be caused by incorrectly modeling the pickup impedance.

transverse distribution and assume a pencil beam. These measurements were taken with four

BPMs and, based on simulations, the beam length should be linearly increasing across the

four locations. The BPM measurements, once again, fail to reproduce the expected trend

(Fig. 3.19 right).

It is suspected, that the averaged cable and board corrections were insufficient and/or

the impedance of the BPM is not properly being compensated. The measured spectra, after

corrections for the impedance and cable and board effects, retained a droop at low frequency

(Fig. 3.19 left) which is a characteristic effect of the pickup impedance. In addition, the

longitudinal profile was measured to be primarily Gaussian with a wire scanner in this region

of the beamline which contradicts the BPM spectra.
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3.3 Future work

Using the BPMs as transverse and longitudinal profile monitors is a complicated measure-

ment particularly with the complex transverse profiles in the FRIB MEBT. However, one

of the BPMs in the MEBT is directly downstream a wire profile monitor and it may be

possible to directly input those transverse models into Eq. (3.5) and fit only for longitudinal

bunch size. This method would only work for that single BPM and the profiles in the model

would need to be continuously updated when the machine is retuned, e.g. for accelerating

a different isotope. Another possibility for transverse profile measurements at high gRp, is

to apply this method to a different beamline that has cleaner distributions. For example, as

shown in chapter 2, the beam is predominately Gaussian in the PIP2IT MEBT. In addition

to further measurements, the analytic model should be further studied to understand how

close the model to be to the beam distribution for reasonable errors.

At FRIB, TIS waveforms can be taken for BPMs in higher beam velocity, lower gRp

regions, where the effects from the transverse distribution should be damped out and a

pencil can be assumed for fitting for the longitudinal size. However BMPs in this section of

the accelerator were not calibrated for the effects of cable attenuation and low pass filtering

and the average calibration was not sufficient. Once calibrations are performed on these

BPMs, the measured signals should be able to be fit to determine the longitudinal size of

the bunches.

In addition, the response BPM pickups to a beam as described in Eq. (3.5) makes some

assumptions about the beam. Namely, it assumes the beam in mono-energetic and there is

no longitudinal-transverse coupling. These affects should be included in the model and their

effects characterized.
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Chapter 4

Helical transmission line for BPM

calibration

As shown in chapter 3, measurements with the BPMs of non-relativistic, high gRp beams are

more challenging than measurements at lower gRp. These measurements are also challenging

to study because we must rely on analytic and numeric models that, in practice, cannot

exactly model the true BPM geometry. It would be beneficial for BPM measurements at

high gRp, both broadband measurements and position measurements, to have a test stand

capable of calibrating and testing the BPMs’ response in the high gRp regime where they will

be operated. In order to calibrate for the effects from non-relativistic, high gRp beams, a test

stand must be capable of replicating the measured beam’s expected velocity and longitudinal

profile and generate the correct field distribution on the BPM pickups. To calibrate and test

the BPM signals expected from the beam in the FRIB MEBT, this requires replicating a

200 ps long bunch traveling at βr = 0.033.

The typical test stand for calibrating for non-linearities in BPMs consists of a straight

conducting wire that is strung through the BPM [5]. A tone at the measurement frequency

of the BPM is passed down the wire and the signals on the pickups are measured. This is

repeated while moving the wire over a grid of positions within the BPM. The wire position is

then related to the pickup signals with a polynomial fitting to calibrate the BPM response.
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Figure 4.1: Circuit model of a transmission line [8].

Because these test stands rely on a straight wire, they propagate signals at the speed

of light and cannot be used to calibrate for non-relativistic effects. These devices are still

useful for BPM measurements of high gRp beams to calibrate for the velocity independent

non-linear effects and validate the models in the speed of light limit. To calibrate for the

high gRp effects, a new test stand must be developed capable of propagating signals at the

same velocity as the beam in question.

4.1 Transmission lines primer

Before discussing possible test stand geometries, the basic properties of transmission lines

should be introduced. Transmission lines are used to transport power and signals in the

form of electromagnetic fields. They typically consist of two conductors that have a voltage

difference between them V (z, t) and a current travels along them I(z, t). Over a small length

∆z a transmission line can be approximated by a circuit with a series resistance per unit

length R, series inductance per unit length L, shunt conductance per unit length G, and

shunt capacitance per unit length C as shown in Fig. 4.1. Using Kirchhoff’s laws the voltage

and current can be shown to obey the equations [8]
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V (z, t)−R∆zI(z, t)− L∆z
∂I(z, t)

∂t
− V (z + ∆z, t) = 0 (4.1)

I(z, t)−G∆zV (z + ∆z, t)− C∆z
∂V (z + ∆z, t)

∂t
− I(z + ∆z, t) = 0. (4.2)

The continuous limit, known as the telegrapher equations, can be found by dividing by ∆z

and taking the limit as ∆z → 0

∂V

∂z
= −RI − L∂I

∂t
(4.3)

∂I

∂z
= −GV − C∂V

∂t
. (4.4)

For an RF field V (z, t) = V̄ (z)eiωt and I(z, t) = Ī(z)eiωt. In this case the telegrapher

equations become

∂V̄

∂t
= −(R + iωL)Ī (4.5)

∂Ī

∂t
= −(C + iωC)V̄ (4.6)

Taking a derivative with respect to t gives the wave equations

∂2V̄

∂t2
− γ2V̄ = 0 (4.7)

∂2Ī

∂t2
− γ2Ī = 0 (4.8)

where γ is the propagation constant

γ = α + ih =
√

(R + iωL)(G+ iωG). (4.9)
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The electromagnetic fields will propagate along the transmission line with phase velocity

vp =
ω

h
. (4.10)

The wave equations shows voltage and current oscillate with z i.e. V̄ (z) = V0e
−γz and

Ī(z) = I0e
−γz. The current and voltage can be related by plugging this form into the

telegrapher equations resulting in

V̄ (z) = ZĪ(z) (4.11)

where Z is the impedance of the transmission line

Z =

√
R + iωL

G+ iωC
. (4.12)

For the case of a lossless transmission line R = G = 0. In this case the the phase velocity

and impedance become frequency independent

vp =
1√
LC

(4.13)

Z =

√
L

C
. (4.14)

This formalization of the behavior of a transmission line requires knowledge of the circuit

elements L, C, R, and G. For an arbitrary geometry of conductors, it can be non-obvious

how to directly determine these. Instead, it can be more straight forward to derive the form

of the electromagnetic fields first. For a geometry with two conductors with one nested inside
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the other, one method for doing this is using the Hertzian potentials [54]

∇2Πe − µε
∂2Πe

∂t2
= 0 (4.15)

∇2Πm − µε
∂2Πm

∂t2
= 0. (4.16)

If Πe and Πm are assumed to only have a ẑ component, then the fields are given by

E = ∇×∇×Πe −∇×
∂2Πm

∂t2
(4.17)

H = ∇×∇×Πm −∇×
∂2Πe

∂t2
. (4.18)

One of the benefits of this method is transverse electric (TE) and transverse magnetic (TM)

modes naturally appear. For example, if Πe = 0 but Πm does not, then Ez = 0 correspond-

ing to a TE mode. Similarly if Πm = 0 then the resulting field will be a TM mode.

With the nested conductor geometry, a cylindrical coordinates system can often be used.

In cylindrical coordinates with a dielectric between the two conductors with permittivity ε
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and permeability µ, the general field equations from Hertzian potentials are

Er =
[
−ihγ

(
I′n (γr)A

(1)
n + K′n (γr)A

(2)
n

)
(4.19)

− ωµn

r

(
In (γr)B

(1)
n + Kn (γr)B

(2)
n

)]
e−inθe−ihz

Eθ =

[
−hn
r

(
In (γr)A

(1)
n + Kn (γr)A

(2)
n

)
(4.20)

+ iωµγ
(

I′n (γer)B
(1)
n + K′n (γr)B

(2)
n

)]
e−inθe−ihz

Ez = −γ2
[
In (γr)A

(i)
n + Kn (γr)A

(2)
n

]
e−inθe−ihz (4.21)

Hr =
[ωεn
r

(
In (γr)A

(1)
n + Kn (γr)A

(2)
n

)
(4.22)

− ihγ
(

I′n (γr)B
(1)
n + K′n (γr)B

(2)
n

)]
e−inθe−ihz

Hθ =
[
−iωεγ

(
I′n (γr)A

(1)
n + K′n (γr)A

(2)
n

)
(4.23)

− hn

r

(
In (γr)B

(1)
n + Kn (γr)B

(2)
n

)]
e−inθe−ihz

Hz = −γ2
[
In (γr)B

(1)
n + Kn (γr)B

(2)
n

]
e−inθe−ihz (4.24)

where In and Kn are the modified Bessel functions of the first and second kind [21], primes

denote derivatives with respect to the argument, n is the azimuthal harmonic number, and γ

and h are the transverse and longitudinal propagation constants respectively and are related

by

h2 = k2 + γ2 (4.25)

where k =
√
µεω is the free space propagation constant. The field coefficients A

(1)
n , A

(2)
n ,

B
(1)
n , and B

(2)
n are found by applying the boundary conditions at the conductors.

From the fields the current I can be determined from Biot-Savart law and voltage V

can be determined by integrating the electric field between the conductors. These can be
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used to determine the impedance. In addition the circuit elements R, L, C, and G can be

determined by

L =
µ

|I|2

∫
S
|H|2ds (4.26)

C =
ε

|V |2

∫
S
|E|2ds (4.27)

R =
Rs
|I|2

∫
C1+C2

|H|2d` (4.28)

G =
ωε′′

|I|2

∫
S
|E|2ds (4.29)

where S is the cross sectional area of the transmission line, C1 and C2 and the curves defining

the boundaries of the two conductors, Rs is the surface resistance, and ε = ε′ − iε′′ [8].

4.2 Initially considered test stand geometries

To create a test stand capable of replicating non-relativistic beams it is possible to use an

electron beam tuned to match the velocity and shape of the desired beam. However, this

relies on an entirely new test stand from the currently existing straight wire one which

requires additional hardware and cost. It would be preferable to modify the existing test

stand to allow for calibration for non-relativistic effects.

A possible RF structure to replace the straight wire is a Goubau line which can propagate

signals at less than the speed of light and can be used to replicate electron beams to calibrate

beamline devices [55, 56, 57]. Goubau lines are single conductor transmission lines comprised

of a conducting wire of radius Ri covered in a dielectric with radius a and permittivity εi

(Fig. 4.2). This dielectric layer causes a surface wave to propagate at less than the speed of

light. The dispersion relation for a Goubau line in a dielectric εe and centered in a conducting
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Figure 4.2: Cross section of a Goubau line.

pipe of radius Re is

γi
εi

I0(γiRi)K0(γia)− I0(γia)K0(γiRi)

I0(γiRi)K1(γia) + I1(γia)K0(γiRi)
=
γe
εe

I0(γeRe)K0(γea)− I0(γea)K0(γeRe)

I0(γeRe)K1(γea) + I1(γea)K0(γeRe)
(4.30)

where γi and γe are the transverse propagation constants in the dielectric and outside the

dielectric respectively. This is found following the same steps shown in section 4.4 and using

the appropriate boundary conditions. The longitudinal propagation constant h is found by

h2 = γ2i + k2i = γ2e + k2e (4.31)

The dispersion relation is used to relate the longitudinal propagation constant to the

frequency. If h is linear with frequency, i.e. h = aω, then the phase velocity will be constant

and the transmission line is said to be dispersion free. If the relation is non-linear, then the

phase velocity will vary with frequency and the transmission line is disperive.

For the Gaubou line, assuming εe = ε0, the high frequency limit of the phase velocity

vp = c/
√
εi which it reaches when λ ≈ a. In order to achieve a phase velocity of vp = 0.033c,

a material with a dielectric constant of ∼900 must be used which is impractical. In addition,
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Figure 4.3: Normalized phase velocity of a Gaubou line with Ri=2 mm, Re=20 mm, εi=10ε0,
and two different dielectric layer radii a. The low frequency limit is too large to replicate a
non-relativistic beam.

the low frequency limit is significantly larger than the high frequency limit (Fig. 4.3). To

calibrate the broadband measurements of the BPMs, the phase velocity must match the

beam within the measured bandwidth, e.g. up to 0.5 GHz for the FRIB BPMs. The low

frequency limit can be reduced by increasing a, however, even when the dielectric layer fills

a significant portion of the beampipe, the reduction is not enough to reach non-relativistic

phase velocities.

4.3 Helical RF structures

An RF structure that is known to be capable of propagating at sufficiently low phase veloc-

ities is a helical transmission line. The low phase velocity of helices is relied on for devices

such as slow traveling wave tubes for RF power amplifiers [58] and the fast kickers for PIP-II

[59]. There are many applications of helical RF structures, however, many concern radiation

modes for antennae [60] or transmission lines for signal propagation at 10s to 100s of GHz
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[61]. General solutions have also been published (e.g. [62, 63]), however, most solution focus

on deriving impedance, dispersion, and radiation properties of these structures. For the

desired test stand, the largest concern is the behavior of the electric fields as they propagate

along the helix because they must replicate the fields generated by a beam.

The general solutions can provide insights into the challenges of using a helical trans-

mission line at lower frequencies. The dispersion relation for a helix in free space [62] shows

the high frequency limit of the phase velocity is vp = c · sin(ψ) where ψ is the pitch angle

of the helix. This allows these structures to be created for any desired phase velocity by

constructing a helix with the correct ψ, however the low frequency limit of the phase velocity

of a helix in free space is the speed of of light [62]. Many uses of helical transmission lines

can ignore this effects because they operate at high enough frequencies where the phase

velocity has reached its high frequency limit. However, this clearly will not replicate the

velocity of a non-relativistic beam within the desired frequency band and, in addition, the

large discrepancy between the high and low frequency limits quickly causes the input pulse

to deform due to dispersion making replicating the correct bunch shape challenging. These

effects will affect the lower frequency transmission line and steps must be taken to mitigate

this issue.

4.4 Helical transmission lines - analytic solution

The geometry of a helical conductor makes exactly solving for the electromagnetic fields

challenging. However, the boundary conditions can be significantly simplified using the

sheath helix model [62]. This model approximates a helix as an infinitesimally thin cylinder

that conducts on a helical path along the surface making the structure a 1D conductor that
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is longitudinally uniform. Specifically, the boundary conditions at the helix become

Ei,‖ = Ee,‖ = 0 (4.32)

Ei,⊥ = Ee,⊥ (4.33)

Hi,‖ = He,‖ (4.34)

where the subscripts e and i denote fields in the external and internal regions of the helix

and the subscripts ‖ and ⊥ denote the field components parallel and perpendicular to the

direction of conductivity of the sheath helix. These unit vectors in cylindrical coordinates

are

‖̂ = sin(ψ)ẑ + cos(ψ)θ̂ (4.35)

⊥̂ = cos(ψ)ẑ + sin(ψ)θ̂ (4.36)

where ψ is the pitch angle of the helix. While this model is an abstraction from real helix,

it is shown below that it well represents the tightly wound helices needed to replicate non-

relativistic beams.

The transmission line for the test stand consists of a helix of radius a and pitch ψ, a

conducting rod of radius Ri centered inside of the helix, a dielectric with permittivity εi

of thickness s = a − Ri fills the space between the rod and the helix to support the helix,

and the helix is centered inside a conducting pipe of radius Re. The analytic solution also

assumes the region between the helix and the outer conductor is filled with a dielectric with

permittivity εe; however, this is set to ε0 for all studies (Fig. 4.4).

The derivation of the electromagnetic fields presented here follows the work of S. Sensiper
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Figure 4.4: Cross section of helical transmission line geometry. The grey circle represents
the helix.

[62] and others [63] starting with the Hertzian potentials, Eqs. 4.15 and 4.16

In this geometry the fields must be defined in the internal region, between the inner

conductor and the helix, and the external region, between the helix and outer conductor.

The general field equations in the internal region are

Ei,r =
[
−ihγi

(
I′n (γir)A

(1)
i,n + K′n (γir)A

(2)
i,n

)
(4.37)

− ωµn

r

(
In (γir)B

(1)
i,n + Kn (γir)B

(2)
i,n

)]
e−inθe−ihz

Ei,θ =

[
−hn
r

(
In (γir)A

(1)
i,n + Kn (γir)A

(2)
i,n

)
(4.38)

+ iωµγi

(
I′n (γir)B

(1)
i,n + K′n (γir)B

(2)
i,n

)]
e−inθe−ihz

Ei,z = −γ2i
[
In (γir)A

(i)
i,n + Kn (γir)A

(2)
i,n

]
e−inθe−ihz (4.39)

Hi,r =
[ωεin

r

(
In (γir)A

(1)
i,n + Kn (γir)A

(2)
i,n

)
(4.40)

− ihγi

(
I′n (γir)B

(1)
i,n + K′n (γir)B

(2)
i,n

)]
e−inθe−ihz

Hi,θ =
[
−iωεiγi

(
I′n (γir)A

(1)
i,n + K′n (γir)A

(2)
i,n

)
(4.41)

− hn

r

(
In (γir)B

(1)
i,n + Kn (γir)B

(2)
i,n

)]
e−inθe−ihz

Hi,z = −γ2i
[
In (γir)B

(1)
i,n + Kn (γir)B

(2)
i,n

]
e−inθe−ihz (4.42)
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where In and Kn are the modified Bessel functions of the first and second kind and γi and

hi are the transverse and longitudinal propagation constants respectively and are related by

h2 = k2i + γ2i = k2e + γ2e (4.43)

where ki =
√
µεiω is the free space propagation constant. The external fields have the

same form except with different propagation constants and coefficients and are denoted by

exchanging the subscript i for e.

The field coefficients A
(1)
i,n , A

(2)
i,n , A

(1)
e,n, A

(2)
e,n, B

(1)
i,n , B

(2)
i,n , B

(1)
e,n, and B

(2)
e,n are found by

applying the boundary conditions at the helix (Eqs. 4.32, 4.33, 4.34) and the inner and outer

conducting surfaces. The boundary conditions in cylindrical coordinates at the conductors

and the sheath helix are

Ei,z
∣∣
Ri

= 0 (4.44)

Ei,θ
∣∣
Ri

= 0 (4.45)

Hi,r
∣∣
Ri

= 0 (4.46)

Ee,z
∣∣
Re

= 0 (4.47)

Ee,θ
∣∣
Re

= 0 (4.48)

He,r
∣∣
Re

= 0 (4.49)

Hi,z
∣∣
a +Hi,θ

∣∣
a cot(ψ) = He,z

∣∣
a +He,θ

∣∣
a cot(ψ) (4.50)

Hi,r
∣∣
a = He,r

∣∣
a (4.51)

Ei,z
∣∣
a = Ee,z

∣∣
a (4.52)

Ei,θ
∣∣
a = Ee,θ

∣∣
a (4.53)
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Ee,z
∣∣
a = −Ee,θ

∣∣
a cot(ψ) (4.54)

Ei,z
∣∣
a = −Ei,θ

∣∣
a cot(ψ), (4.55)

Only a linearly independent subset of the boundary conditions are needed to solve for the

field coefficients. Using A
(1)
i,n as an overall amplitude and Eqs. 4.44, 4.46, 4.48, 4.49, 4.50,

4.52, and 4.53 the field coefficients become:

A
(2)
i,n = −A(1)

i,n ·
In (γiRi)

Kn (γiRi)
(4.56)

A
(2)
e,n = −A(1)

e,n ·
In (γeRe)

Kn (γeRe)
(4.57)

A
(1)
e,n = A

(1)
i,n ·

γ2i
γ2e

Kn(γeRe)w1,i

Kn(γiRi)w1,e
(4.58)

B
(2)
i,n = −B(1)

i,n ·
I′n (γiRi)

K′n (γiRi)
(4.59)

B
(2)
e,n = −B(1)

e,n ·
I′n (γeRe)

K′n (γeRe)
(4.60)

B
(1)
i,n = −iA(1)

i,n ·
[
a2γiγ

2
eK′n (γiRi)w4,e

(
γik

2
ew1,iw2,e − γek2iw1,ew2,i

)
− nhw1,iw1,ew3,eK

′
n (γiRi)

(
nh cot(ψ) + aγ2e

)(
γ2i − γ

2
e

)]
×{

aµωγ2eKn (γiRi)w1,e×[
γi

(
nh cot(ψ) + aγ2e

)
w3,ew4,i − γe

(
nh cot(ψ) + aγ2i

)
w3,iw4,e

]}−1
(4.61)

B
(1)
e,n = B

(1)
i,n ·

[
a2γ2i γeK

′
n (γeRe)w4,i

(
γik

2
ew1,iw2,e − γek2iw1,ew2,i

)
− nhw1,iw1,ew3,iK

′
n (γeRe)

(
nh cot(ψ) + aγ2i

)(
γ2i − γ

2
e

)]
×[

a2γeγ
2
i K′n (γiRi)w4,e

(
γik

2
ew1,iw2,e − γek2iw1,ew2,i

)
− nhw1,iw1,ew3,eK

′
n (γiRi)

(
nh cot(ψ) + aγ2e

)(
γ2i − γ

2
e

)]−1
(4.62)
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where

w1,i,e = In
(
γi,ea

)
Kn
(
γi,eRi,e

)
− In

(
γi,eRi,e

)
Kn
(
γi,ea

)
(4.63)

w2,i,e = I′n
(
γi,ea

)
Kn
(
γi,eRi,e

)
− In

(
γi,eRi,e

)
K′n
(
γi,ea

)
(4.64)

w1,i,e = In
(
γi,ea

)
K′n
(
γi,eRi,e

)
− I′n

(
γi,eRi,e

)
Kn
(
γi,ea

)
(4.65)

w1,i,e = I′n
(
γi,ea

)
K′n
(
γi,eRi,e

)
− I′n

(
γi,eRi,e

)
K′n
(
γi,ea

)
. (4.66)

The dispersion relation can be found by creating a matrix from the boundary conditions

used to determine the field coefficients and setting the determinant to 0.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 In(γeRe) Kn(γeRe)

0 0 nεeω
Re

In(γeRe)
nεeω
Re

Kn(γeRe)

In(γiRi) Kn(γiRi) 0 0

nεiω
Ri

In(γiRi)
nεiω
Ri

Kn(γiRi) 0 0

−iω cot(ψ)γiεiI
′
n(γia) −iω cot(ψ)γiεiK

′
n(γia) iω cot(ψ)γeεeI′n(γea) iω cot(ψ)γeεeK′

n(γea)

0 0 −
(
γ2e + nh
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After simplification the dispersion relation is

0 =γ3i

[
nh cot(ψ) + aγ2e

]2
w1,iw1,ew3,ew4,i + γ3e

[
nh cot(ψ) + aγ2i

]2
w1,iw1,ew3,iw4,e

+ a2 cot2(ψ)γ2eγ
2
i w4,iw4,e

(
γek

2
iw1,ew2,i − γik2ew1,iw2,e

)
. (4.68)

This is solved numerically for γe as a function of ke using

γ2e = γ2i + k2i − k
2
e (4.69)

and then h(ω) can be determined along with the phase velocity vp(ω) = ke/h = βc.

4.4.1 Dispersion distortion correction

In order to produce the specific pulse shape at the device under test, it is ideal for the

transmission line to be dispersion free so any pulse input into the transmission line will not

be deformed throughout propagation. However, for a helix in free space, the phase velocity

varies from β = 1 to β = sin(ψ) which causes significant deformation to the input pulse. For

many applications the helix is inside of pipe (e.g. for RF power amplifiers [58]), and initial

designs of the test stand added a conducting pipe around the helix. For this geometry, the

low frequency limit of the phase velocity is significantly less than β = 1. For example for

the parameters given for Fig. 4.7, the high frequency limit is vp = 0.05c and low frequency

limit is vp = 0.09c. However, the deformation due to dispersion is still a major issue with

significant deformation to the pulse shape seen even for relatively short propagation distances

(see Fig. 4.5).

One method to mitigate the deterioration is to use dispersion itself to correct the pulse
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Figure 4.5: The deformed pulse due to dispersion is found by analytically propagating a pulse
a set distance. This can be corrected by reversing the deformed pulse in time and inputting
it into the transmission line. When this pulse is propagated along the transmission line, the
dispersion will correct the pulse at the set distance. The DUT can be placed at this location.

at a given location. This is achieved by propagating the desired pulse along the helix and

measuring the pulse at the desired location of the device under test. This pulse is then

reversed in time and input into the helix. This effectively subtracts the accumulated phase

shifts at each frequency due to dispersion and the original signal will be reconstructed at

the place of measurement (Fig. 4.5). This method was rejected because the deformed pulses

input into the helix are rather complex and analytic and numerical models are required

to generate them which may not sufficiently replicate the physical device. In addition,

generating these signals with an arbitrary signal generator would require a fast rise time and

would have proved challenging.

Another considered method is to slowly decrease the pitch of the helix from a loosely

wound helix at the input to the required pitch for the desired velocity. In the region of

decreasing ψ, the decreasing pitch can compress the pulse more quickly than dispersion can
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distort it. This results in a shorter pulse at the end of the compression section than was

input and the pulse at the end will be well formed with minimal deformation (Fig. 4.6).

Once the pulse starts to propagate along the constant pitch portion of the system, the effects

of dispersion once again deforms the pulse shape. For this geometry the device under test

needs be placed directly after the compression section to measure the desired pulse shape at

the correct velocity. However, this placement of the device must be done very carefully. If

the device is too far to one side and the helix will have the wrong pitch and the fields will

be traveling at the wrong velocity. If the device is too far in the other direction, then the

fields will be deformed due to dispersion.

4.4.2 Dispersion reduction geometry

A more practical solution to prevent pulse deformation due to dispersion is to add a conductor

inside of the helix. Using the separation s=0.5 mm, the dispersion becomes significantly

flatter than without the inner conductor with all other geometry the same (see Fig. 4.7).

The change total variation in phase velocity is ∆vp=0.039 without the inner conductor and

∆vp=0.001 with the inner conductor for the parameters given in Fig. 4.7. Numerically

solving Eq. 4.68 shows the low frequency limit of the phase velocity linearly varies with

separation s between the helix and inner conductor as approximately

lim
f→0

(vp) ∝ 0.0025s. (4.70)

for s in mm. The high frequency limit remains the same but the phase velocity converges

more slowly for smaller s. The slow convergence results in less variation in vp over a given

bandwidth despite the larger variation between the low and high frequency limits. For
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Figure 4.6: Propagation of a Gaussian pulse along a helix with reducing pitch. The horizontal
axis is the longitudinal position and the vertical axis the transverse position. The vertical line
represents the end of the pitch compression section. The pulse is compressed but maintains
its form during the pitch reduction but dispersion deforms the pulse in the constant pitch
section.
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Figure 4.7: Dispersion for different transmission line geometries. The addition of the inner
conductor significantly flattens vp(ω). Helix parameters s=0.5 mm, a=5 mm, Re=23.75 mm,
ψ=0.05, εi = ε0.

example, in Fig. 4.8, for a bandwidth up to 1 GHz, s=1 mm have a range of ∆vp=0.0028

and for s=0.1 mm ∆vp=0.00057. Therefore, a narrow separation should be used when

constructing a helical transmission line to limit the deformation of pulses due to dispersion.

The dielectric constant of the dielectric layer can also be varied. In the case of εi = εe =

ε0, the high frequency limit of the phase velocity is vp = c ·sin(ψ) and the low frequency limit

is higher than this. As the internal dielectric constant increases for a fixed geometry the high

frequency limit drops approximately as ε
−1/3
i while the low frequency limit drops as ε

−1/2
i

(Fig. 4.8 right). This causes the low frequency limit to drop below the high frequency limit.

The difference in scaling causes the disparity between the low and high frequency limits

of the phase velocity to increase with εi which is non-ideal for maintaining pulse shapes.

However, its effects can be mitigated by reducing s. In theory, the dielectric constant can be

chosen such that the high and low frequency limits of vp are equal which would be an ideal

system, however, in practice this is difficult to realize.
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Figure 4.8: Dispersion scaling with s (left) and εr (right). Helix parameters: s=0.5 mm,
a=5 mm, Re=23.75 mm, ψ=0.05, εi = ε0.

When the pitch angle of the helix is changed, the low and high frequency limits of the

phase velocity scale as sin(ψ) (Fig. 4.9). Therefore, the total variation in vp will increase

with the pitch angle. However, with larger pitch angles, the phase velocity converges more

slowly. This can result in less deformation to the pulse during propagation.

It should be noted that while significant efforts were made to flatten the dispersion curve

to reduce deformations, the electric field near the helix still becomes significantly deformed

due to dispersion (see Fig. 4.10). This is caused by the short pulse propagating along helix

of ∼200 ps rms needed to replicate the bunch. For pulses this short the bandwidth is large

enough to cause significantly different phase shifts resulting in distortion. However, the

fields near the helix are not representative of the fields at the pipe wall where they will be

measured by the BPM being calibrated. As the radial distance from the helix increases, the

high frequency components are suppressed because the field is non-relativistic. Therefore,

the fields at the pipe wall will propagate with minimal deformation even though the signal

near the helix has significant distortions (Fig. 4.10).
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Figure 4.10: Despite efforts to reduce dispersion effects, the pulses near the helix are signif-
icantly deformed due to dispersion (left). However, the fields near the pipe wall have the
high frequency components suppressed and therefore maintain their shape. This same effect
distorts the pulse when the helix is offset in the pipe. Offsets up to 5 mm can be achieved
with minimal deformations (right). The pulses shown here are from CST Microwave Studio
simulations.
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For the test stand, the helix will need to be offset in the pipe. As shown in section 4.5.6,

this does not change the dispersion properties, however, it will reduce the radial distance

between the helix and the pipe wall resulting in a shorter pulse being measured by at least

one of the BPM pickups. Fortunately, for offsets up to 5 mm, the higher frequencies are

still sufficiently suppressed in the measured bandwidth and the measured signals are still not

significantly deformed.

4.4.3 Higher order effects

The discussions above focuses solely on the n = 0 azimuthal mode, however, helical transmis-

sion lines support higher order modes [62]. The nth higher order mode is excited at ka ≈ n.

For a = 5 mm which will be used for the test stand, this corresponds to ω ≈10 Ghz which is

well outside the required bandwidth. Unlike the n = 0 mode, which has significantly reduced

phase velocity at low frequency compared to the helix in free space, the higher order modes

propagate at vp(ωc) = c at the cutoff frequency (Fig. 4.12). The high frequency limits of vp

of the higher order modes are the same as the n = 0 mode.

The presented analysis relies solely on the sheath helix model. More complex models

can also be made using a tape helix with windings of finite width [63]. These models

introduce forbidden regions in k − h space and near the boundaries of these regions, the

dispersion diverges from the sheath helix model [62]. However, for the given geometry, the

required bandwidth is far from a forbidden region and the sheath helix model is a reasonable

approximation (see Fig. 4.11). In addition, the tape helix models predict radiating modes at

low frequencies. It is believed that these are seen in simulations, however these travel near

the speed of light and can be easily separated from the slow signals (see Fig. 4.21).
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4.4.4 Impedance Properties

Once the field coefficients and propagation constants are found, a complete description of

the fields is known and the impedance can be calculated. For the three conductor geometry

described above, two separate impedances can be defined: Zi which between the inner

conductor and the helix, and Ze between the helix and pipe. The impedance in each region

was calculated by

Zi =

∫ a
Ri
Er,idr

a
∫ π
−πHθ,i(a)dθ

(4.71)

Ze =

∫ Re
a Er,edr

Re
∫ π
−πHθ,e(Re)dθ − a

∫ π
−πHθ,i(a)dθ

. (4.72)

In general, these are similar except at low frequencies (Fig. 4.13).

Reducing s maintains the high frequency behavior of the impedance but reduces the low

frequency limit and reduces the variation at lower frequencies. This causes the impedance to

converge more slowly to the high frequency behavior (Fig. 4.13 left). Ideally, a small enough

s should be used to achieve a near constant Z over the desired bandwidth so the input

and output of the helical transmission line can easily matched with a resistive network.

Increasing the dielectric constant reduces the low frequency limit of the impedance and

causes the impedance to start to decrease at a lower frequency (Fig. 4.13 right). While it

is preferable to use a lower dielectric constant to increase the bandwidth of near constant

impedance region, the effect of the dielectric is not as significant as the effect of s.

The low frequency limit of the impedance scales as 1/sin(ψ) while the high frequency

limit does not change with the pitch angle (Fig. 4.14. The higher pitch angles converge to

the high frequency limit at a higher frequency which can make matching simpler.
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Figure 4.13: Impedance scaling with s and εi. The solid line is the external impedance
and the dashed line is the internal. Helix parameters: s=0.5 mm, a=5 mm, Re=23.75 mm,
ψ=0.05, εi = ε0.
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Figure 4.15: Sensitivity of the low frequency limit of the external impedance to variation of
different parameters. The impedance is most susceptible to changes in s.

To avoid internal reflections due to changes to the impedance caused by variations in

construction, the geometric parameters were varied in the analytic model to determine to

which the system is most sensitive. Most of the geometry factors, such as the pitch and

outer pipe radius, have a minimal impact on the impedance. The impedance is primarily

sensitive to the the inner conductor radius and helix radius, but they have opposite effects

the impedance. For example as seen in Fig. 4.15, a 5% increase in the helix radius causes

an almost 50% increase in the low frequency limit of the impedance while increasing the

inner conductor radius by 5% reduces the impedance by ∼ 50%. Therefore, the separation s

between the helix and inner conductor must be constant along the transmission line to limit

large variations in the impedance for even small changes. The radius of the inner conductor

can vary as long as the helix radius also changes to keep the separation constant.
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4.4.4.1 Inductance and Capacitance

The inductance L and capacitance C per unit length of the lossless helical transmission line

can be determined from the longitudinal propagation constant and impedance based on the

general forms derived from the telegraphers equations (Eqs. 4.10, 4.13, 4.14)

Li,e =
h

ω

1

Zi,e
(4.73)

Ci,e =
h

ω
Zi,e. (4.74)

As with the impedance, these parameters are defined separately for the internal and external

regions.

The concept of adding the internal conductor was devised as a method to increase the

capacitance of the transmission line to reduce the phase velocity (Eq. 4.13). This is effect

can be seen by calculating the internal capacitance for different values of s (Fig. 4.16).

Decreasing s does result in a larger capacitance at low frequency and converges to the same

limit at high frequency as expected based on dispersion. However, competing with this effect

is a decrease in the inductance at low frequency with decreasing s which will increase the

phase velocity. The inductance is decreased by almost the same factor as the increase in

capacitance with the largest discrepancy seen at frequencies <1 GHz. This similarity results

in minimal changes to the phase velocity and large changes to the impedance when changing

s. As expected from Fig. 4.13, changing εi results in significant changes to the high and low

frequency limits of the capacitance and inductance.
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Figure 4.17: Meshing of helical transmission line in CST Microwave Studio for time domain
simulations.

Table 4.1: Simulated helical transmission line geometry parameters.

Pipe radius, Re 20.65 mm
Inner conductor radius, Ri 4.5 mm
Helix radius, a 5 mm
Separation, s 0.5 mm
Pitch angle, ψ 0.05 rad
Dielectric constant, εi 3.5ε0
Helix wire width 1 mm
Helix wire thickness, ∆a 0.1 mm

4.5 Simulations

Time domain simulations of the helical transmission line were performed in CST microwave

studio with properties given in Table 4.1 unless otherwise stated. This geometry is expected

to be close to what will be used for a BPM test stand. Simulations were performed up to

1.5 GHz which is well below the cutoff frequency of the first higher mode. Note, while it

is best to minimize s to improve pulse propagation, s = 0.5 mm was used because it was

impractical to create a mesh for smaller values. The mesh size was set to resolve the dielectric

layer and spacing between windings with at least two mesh cells (Fig. 4.17). The helix has

thickness ∆a centered around the helix radius a.
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Figure 4.18: Helical transmission line model. Microstrips are used to match the input and
output.

Figure 4.19: Lumped elements used for impedance matching.

4.5.1 Matching

Signals were input onto the helical transmission line using a stripline connected to the helix

and inner conductor on either end of the helix (Fig. 4.18). For most simulations, the stripline

impedance was set equal to the low frequency limit of the helix impedance and no matching

network was used. Alternatively, the stripline impedance can be set unequal to the the helix

impedance then matched using a resistive L-network [64] (Fig. 4.19). With the stripline

input geometry, the signal is input into the internal region of the transmission line and the

stripline (with or without the L-network) only provides an impedance match to this region.

The external region must also me matched. This performed with an additional resistor with

impedance equal to the low frequency limit of Ze placed between the outer conductor and

helix.

With the stripline matched to the helix, a good match is seen with S1,1 <-15 dB and
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Figure 4.20: S1,1 with and without a resistive L-network for matching.

S2,1 >-1.5 dB up to 2 GHz. Strong resonances are seen corresponding the harmonics of the

helix length for signals traveling at the expected slow phase velocity. These resonances can be

damped by using the resistive L-network in the matching scheme (Fig. 4.20). However, the

L-network also reduces transmission by ∼11 dB due to losses in the resistors [64]. Therefore,

to maximize the amplitude of the propagated signal, the L-network was only used when it

was necessary to damp the resonances.

With both matching geometries, a signal traveling at the speed of light proceeds the

slow pulse that is a factor of ∼10 lower in amplitude (Fig. 4.21). The speed of light signal

is not reflected when it reaches the end of the transmission line, however, it is seen again

when the slow signal reaches the end of the helix. This signal may be an excited higher

order mode. However, the amplitude of the fast signal is independent of θ therefore it is not

an n > 0 mode of the sheath helix. It could also be a radiating mode, but the amplitude

does not decrease with propagation distance. Another possibility is tape helices, which is

used in simulations, are known to support additional modes not present in analytic solutions

using the sheath helix approximation. It is possible one of these modes is excited and this
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Figure 4.21: The radial electric field at the wall shows minimal deformation during propaga-
tion along the transmission line. The slow pulses are proceeded by a smaller speed of light
signal that reappears once the slow pulse has reached the end of the transmission line.

geometry should be further studied.

For a single pulse propagating along the helix, which was used for all studies presented

in this dissertation, there is enough separation between the fast and slow pulses to easily

distinguish them and this abnormality does not affect the results.

4.5.2 Dispersion measurements

The dispersion was measured by inputting a Gaussian pulse into the system and measuring

the radial electric field using probes along the transmission line. Nine probes were evenly

spaced along the transmission line. The probes were be placed as close as possible to the

helix to measure the largest bandwidth. However, if a probe is too close it will measure near

field effects from the winding of the helix. To ensure minimal near field effects, eight probes

were placed around the helix in π/4 increments. The probes were moved from 0.25 mm to

2 mm away from the helix to determine the radius where the field is no longer significantly
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Figure 4.22: The electric field 0.5 mm away from the helix has a strong first harmonic
due to the helix windings. At 1.5 mm away from the helix the the angular dependence is
significantly reduced.

dependent on θ because within the simulated frequency range, only the n = 0 mode should

be excited, therefore there should be no azimuthal dependence in the fields.

The fields 0.25 mm from the helix varies chaotically with θ by ±50%. At 0.5 mm off the

helix, the variations are slightly reduced and show a strong cos(θ) dependence due to the

helix winding (Fig. 4.22). This behavior is sufficiently reduced for the fields 1.5 mm radially

off from the helix with variations on the 1-4% level. While the Ez field still has a clear cos(θ)

dependence, its amplitude is small enough to ignore.

For measurements of the phase velocity, the probes were placed 1.5 mm away from the

helix to maximize the measured bandwidth and avoid near field effects (Fig. 4.23). The time

signals from each probe were transformed into the frequency domain to determine the phase
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Figure 4.23: Probe suite used to measure the fields from the helix.

shifts as a function of frequency and location. A linear fit of the phases as a function of the

probe position gives the phase velocity for each frequency (Fig. 4.24)

φ(f, z) =
f

vp
z. (4.75)

The measured phase velocity agrees with the sheath helix model within 3% up to 2 GHz at

which point, the signals are dominated by noise.

However, near exact agreement can be achieved by assuming a = a+∆a = 0.51 mm in the

analytic model (Fig. 4.25). This value is the sum of the helix radius and the helix thickness

in the simulation. This scaling also holds for thicker helices, however, the agreement with

theory is poorer most likely because the assumption of an infinitesimally thin helix used in

the analytic model no longer holds.

The cause of this phenomenon is unknown and it is particularly strange considering in the

simulations the helix conductor is placed at r ∈ [a−∆a/2, a+ ∆a/2]. The helix conductor

does not reach a+∆a. In addition, increasing ∆a will reduce s which should cause significant

changes in the impedance and dispersion, but these effects are not seen. It is speculated that

these deviations are caused issues with meshing the thin geometry of the helix.
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Figure 4.24: The phases at each frequency (top left) for each probe are fitted according to
Eq. 4.75 to calculate the phase velocity. The top left plot shows the fitting at 500 MHz.
The resulting phase velocity agrees with theory within 3%.
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Figure 4.25: Exact matching of the dispersion can be achieved by setting the helix radius
in the analytic model to a + ∆a used in the simulations. The helix radius in simulations is
5 mm for all presented measurements with ∆a given by Da on each plot. The stated helix
radius is the radius used to analytically calculate the dispersion.
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4.5.3 Impedance measurements

The impedance of the helical line was measured using the reflection coefficient S1,1. For this

measurement, the stripline impedance was changed to 102.5 Ω to be unequal to the helix

impedance of Zhelix ≈ 64.5 Ω and matched to the helix using a resistive L-network to damp

the resonances. In addition, to increase S1,1 the resistors in the L-network were intentionally

set incorrectly for a poor impedance match. With this network, the helix impedance can be

found by

Zhelix =

(
R−1sh +

[
Z0

1− S11
1 + S11

+R

]−1)−1
(4.76)

where Z0 is the impedance of the microstrip, R is the series resistance, and Rsh is the shunt

resistance of the L-network.

The real part of the impedance from simulations agrees with the analytic model within

5% up to 2 GHz (see Fig. 4.26). The simulation also showed a small reactance that was

<15% of the real impedance which was not present in the analytic model. No attempt was

made to match the reactance because the reflections and transmission were adequate with the

current matching networks. The added complications of developing a frequency dependent,

reactive network to improve the impedance match outweigh the benefits of a slightly better

match. However, the source of the imaginary impedance should be explored in the future.

In addition, when constructing a helical transmission line for the test stand, it would be best

to use s < 0.5 mm which will result in less frequency dependence in Z and a better match

would be expected.
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Figure 4.26: The analytic impedance matches the results from simulations with 5%

4.5.4 Electric field scaling

The electric field was compared to the analytic solution by measuring the field using field

probes at multiple radii along the transmission line. The fields measured 1.5 mm off the

helix were used to determine the field coefficients in the analytic fields. The expected field

near the pipe wall can then be calculated using the analytic model and it within 10% with

the simulation results up to 0.4 GHz where noise starts to dominate the simulation results

(Fig. 4.27).

An unexpected feature of the fields is, when a Gaussian pulse is input, near the helix the

amplitude of the radial electric field decreases at low frequency (Fig. 4.28). There are no

signs of losses or reflections in the S parameters at low frequency to explain this reduction.

It was found that this phenomena is caused by the coupling between the internal and

external regions of the transmission line. This coupling can be derived analytically by taking
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Figure 4.27: The field coefficients were derived from fitting the electric field 1.5 mm from
the helix. These are used to calculate the analytic electric field 15 mm from the helix. This
field profile agrees well with simulations.

the ratio of the internal and external radial electric fields at the helix

Er,e
Er,i

∣∣∣∣
r=a

=
γiK

2
0(γeRe)w1,iw2,e

γeK2
0(γiRi)w1,ew2,i

. (4.77)

This can be inverted to determine the appropriate input pulse to have a Gaussian field profile

at the helix in the external region which is necessary to replicate a given bunch shape. This

coupling agrees with the results of simulations (Fig. 4.28). While an exact input can be

generated, for simplicity, for a Gaussian pulse input in the internal region, the spectra near

the helix can be roughly fit to the difference of two Gaussians (Fig. 4.28)

Er,e
∣∣
r=a ≈ G1 exp(−2π2σ21f

2)−G2 exp(−2π2σ22f
2). (4.78)

The standard deviations and amplitudes of the two Gaussian can be determined from the

standard deviation σi of the input Gaussian pulse. For the parameters given in Table 4.1,
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the coefficients can be determined by

G1 = 0.119e−0.653σi (4.79)

G2 = 0.066e−0.826σi (4.80)

σ1 = 0.905σi − 0.005 (4.81)

σ2 = 1.582σi + 0.111 (4.82)

for σi in ns. This fitting can be inverted to determine the required input to achieve a Gaussian

pulse of length σi in the external region. However, the quality of the double Gaussian fit

deteriorates for pulses less than 100 ps rms.

4.5.5 Beam comparison

The electric field propagated by the helical transmission line needs to replicate the fields

from a non-relativistic, high gRp beam. The longitudinal profile can be set by the input

pulse with proper consideration of the internal-external coupling. The radial electric field

from a line charge (Eq. 1.43) has the same general dependence on coordinates as the field

from the helix (Eq. 4.37). However, the beam has g as a transverse propagation constant

which corresponds to a fixed beam velocity while the helix has γe and the phase velocity

varies with frequency.

The variation of the phase velocity of the helix means a choice must be made for the

velocity of the modeled beam. It was found for comparing the fields up to 1 GHz, using

vp(f = 1 GHz) gives the best agreement. The variation in phase velocity makes it only

possible to accurately replicate the fields from a beam within a specific bandwidth. To

increase the bandwidth the dispersion curve must be flatted which is an addition reason to
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Figure 4.28: The field in the external region is suppressed at low frequency compared to
the field in the internal region. This matches with signals measured 1.5 mm off the helix in
simulations. For a Gaussian input, the field in the external region can be roughly fit to the
difference of two Gaussians.

127



reduce s. The smaller s there will be less variations in the phase velocity, which will result

in better agreement over a larger bandwidth.

This disparity in propagation constants also causes the fields to scale differently with r.

Therefore the fields of a beam and a helix cannot be the same over the entire pipe aperture.

In order to replicate the BPM signals from a beam, the field profile from the helix at the

pipe wall must match the expected fields from a beam. This exact profile on the pipe will be

dependent of the choice of the transverse distribution of the modeled beam. To determine

the best transverse profile, the radial electric field of the beam was fit to the field of the helix

for a pencil beam, ring beam, and uniform beam using the beam radius as a fit parameter

(Fig. 4.29). The ring distribution best fit the helix fields with deviation of at most 10% up to

1 GHz. Up to 0.5 GHz, the bandwidth of the FRIB BPMs, the ring distribution varies from

the helix field by less than 1%. The fields from a uniform beam match well up to ∼0.3 GHz

which is sufficient for calibrating position measurements taken at 161 MHz. The helix fields

cannot model a pencil beam. This is primarily because there is no geometric parameter of

a pencil, such as radius, that can be varied to fit the fields.

4.5.6 Offset helices

The analytic and simulation work presented in this chapter has all been concerned with

centered helices. However, for the test stand to calibrate BPMs, the helix must be moved off

center to replicate offset beams. The performance and applicability of the helical transmis-

sion line as a test stand would be limited if the dispersion and impedance properties of the

helical transmission line vary significantly when the helix is offset in a pipe. To explore the

effects of offsetting the helix in simulations, a helix was moved off center in a pipe in 2 mm

steps up to 10 mm. At each step the the dispersion was calculated from probes measuring
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Figure 4.30: The dispersion and impedance sees no significant variation due to offsets up to
10 mm offsets.

the electric field 1.5 mm off the helix as described in section 4.5.2. No significant change

in the dispersion was seen with offsetting the helix up to 2 GHz (Fig. 4.30). In addition,

the impedance was determined using the reflection coefficient from a mismatched L-network

for each helix location. Once, again, no significant change in the impedance was seen when

the helix was offset (Fig. 4.30). These are highly beneficial behaviors because no additional

considerations need to be taken when the helix is offset to replicate off center beams. The

helix can be significantly offset in the pipe and the input pulse will not need to be changed

because there is no change to dispersion and the matching network will not need to varied

because the impedance is also stable.

4.6 Future work

while the analytic and numeric models show a helical transmission line is capable of replicat-

ing the field profiles and velocity of a non-relativistic beam, there are discrepancies between

the two models. Most notable is the fast pulses seen in simulations and the imaginary part
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of the impedance do not appear in the analytic solution. These may be caused by the sheath

helix approximation used analytically not fully describing the fields generated by the tape

helix used in simulations. Analytic models of tape helices exist and predict additional modes

that could explain the discrepancies. While the sheath helix approximation is sufficient to

show helical transmission lines can be used for this test stand, it would be beneficial to de-

velop an analytic model using a tape helix geometry to determine if the higher order affects

will cause issues.

In addition, further tests of the numerical model should be performed. In particular,

further studies of the discrepancy between the dispersion measured in the simulations and the

analytic model. In particular, the scaling with ∆a should be further explored to determined

if this is a real affect or caused by issues with the meshing of the thin geometry of the helix

and dielectric layer.

The next step for this project is to construct and test a helical transmission line to verify

the results presented in this chapter. A straight forward method for constructing the helix

is to insert a conducting rod into a dielectric tube then creating a grove to lay the helix

with a thread cutter. From discussions with the staff at the MSU physics machine shop, it

is expected this method can at best achieve s ∼ 0.5 mm. This value of s was used in most

simulations and it is sufficient to propagate pulses with minimal dispersion effects. However,

a smaller s would be preferable for impedance matching and less variations in the phase

velocity. This would require a different construction method to be developed.

The initial construction should be focused on measuring the properties of the transmission

line and not be used as a BPM test stand. For this the outer pipe should be outfitted with

multiple pickups at different positions in z to measure the dispersion. These pickups should

be as small as is practical to limit the effects of their geometry on the measured signals which
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will allow easier comparison to the expected field structure from the analytic and numeric

models.
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Chapter 5

Conclusions

It is important to characterize and monitor the beam quality in hadron accelerators. It

is particularly important to do so in the front ends where the beam is non-relativistic and

evolving rapidly. The large diagnostic suites in the front ends are used ensure a quality beam

enters the main accelerating structure to reduces losses and maximize the performance of the

accelerator. The operation of the accelerator can be improved by gaining more information

about the beam quality by adding more measurements of the beam properties and taking

more detailed measurements of the beam distribution. This can be achieved by furthering

the analysis of signals produced by existing diagnostic devices.

One particular feature of the beam that needs characterized is the beam tails as these

portions of the beam are far from the beam center are the most likely to be lost in the

accelerator. To quantify the phase space distributions and beam tails measured in x − x′

phase space, the phase portraits can be converted to J − φ coordinates. In this coordinate

system the distribution is stable under linear optics and can be quantified and directly

compared to other measurements to study tail growth caused by non-linear forces.

The presented method for characterizing the beam core and tails relies on fitting to a

model of the core distribution. For the measurements presented in this disseration, taken in

the PIP2IT MEBT, the core was Gaussian. However, the same methodology can be used

for any distribution and applied to other accelerators as long there is an adequate model of

the beam core for fitting. With this analysis technique, the beam tails are clearly visible

133



when plotting in J − φ coordinates which could be a useful tool in the control room to help

visualize, quantify, and reduce the tails.

For monitoring the beam properties, BPMs are one of the most important and prevalent

devices. By adding measurements of multiple harmonics of the bunch repetition rate, these

position monitors can in theory also monitor the bunch size which would be highly beneficial

for monitoring the beam quality. Unfortunately, it was shown in the front ends, where beam

is non-relativistic, determining the bunch size from these measurements is challenging and

requires a adequate model of transverse profile of the beam. While the measurements in

the FRIB MEBT failed to replicate the expected trends, the resulting measurements were

close to the expected values. This gives some hope that for beams with simpler transverse

profiles, this method can be successful for non-relativistic beam.

It was also show analytically that these multi-harmonics measurements can be made eas-

ier by measuring relativistic beam because the effects of the transverse distribution damps

out and only the longitudinal profile needs to be fit. While, this is less information about

the bunch, by using every BPM in a relativistic section to measure the bunch length, the

longitudinal dynamics can be continuously monitored along the beam line even while deliv-

ering the beam to the users. This extensive monitoring is currently not possible with the

existing devices and techniques.

Key to the multi-harmonic BPM measurements and position measurements for non-

relativistic beams is understanding the signals generated by the BPM pickups and how

they relate to the beam. Current studies of these signals rely on analytic and numeric

models. To study and calibrate the signals from the physical devices that will be used in the

beamline, a test stand was developed using a helical transmission line. This will allow further

development of the multi-harmonic analysis by propagating pulses with known properties to

134



verify the behavior of the BPM signals.

Analytic and numeric models of this test stand show it is capable of replicating the

velocity and electric field profiles on the BPM pickups of a non-relativistic beam. With these

properties understood, all that remains construct, test, and use these helical structures as a

test stand for BPMs.

All of the devices and techniques presented in this dissertation promise to improve our

ability to monitor and characterize the beam quality. They warrant further investigation

and have the possibility to greatly benefit the beam diagnostic’s toolbox. The broadband

BPM measurements have the most obvious advantage of turning every BPM into a non-

interceptive longitudinal profile monitor. The helical test stand should accompany these

BPM measurements for measurements at low energies. And the action-phase analysis can

give a more detailed view of the beam distribution with less concern of variations between

separate measurements.
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