
INTERPRETABLE ARTIFICIAL INTELLIGENCE USING NONLINEAR DECISION TREES

By

Yashesh Deepakkumar Dhebar

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Mechanical Engineering – Doctor of Philosophy

2020

ABSTRACT

INTERPRETABLE ARTIFICIAL INTELLIGENCE USING NONLINEAR DECISION TREES

By

Yashesh Deepakkumar Dhebar

The recent times have observed a massive application of artificial intelligence (AI) to automate

tasks across various domains. The back-end mechanism with which automation occurs is generally

black-box. Some of the popular black-box AI methods used to solve an automation task include

decision trees (DT), support vector machines (SVM), artificial neural networks (ANN), etc. In the

past several years, these black-box AI methods have shown promising performance and have been

widely applied and researched across industries and academia. While the black-box AI models have

been shown to achieve high performance, the inherent mechanism with which a decision is made

is hard to comprehend. This lack of interpretability and transparency of black-box AI methods

makes them less trustworthy. In addition to this, the black-box AI models lack in their ability to

provide valuable insights regarding the task at hand. Following these limitations of black-box AI

models, a natural research direction of developing interpretable and explainable AI models has

emerged and has gained an active attention in the machine learning and AI community in the past

three years. In this dissertation, we will be focusing on interpretable AI solutions which are being

currently developed at the Computational Optimization and Innovation Laboratory (COIN Lab)

at Michigan State University. We propose a nonlinear decision tree (NLDT) based framework to

produce transparent AI solutions for automation tasks related to classification and control. The

recent advancement in non-linear optimization enables us to efficiently derive interpretable AI

solutions for various automation tasks. The interpretable and transparent AI models induced using

customized optimization techniques show similar or better performance as compared to complex

black-box AI models across most of the benchmarks. The results are promising and provide

directions to launch future studies in developing efficient transparent AI models.

Copyright by
YASHESH DEEPAKKUMAR DHEBAR
2020

Dedicated to my parents and elder brother Paurav.

iv

ACKNOWLEDGEMENTS

The PhD journey for me has been really fulfilling and transformational and I would be like to

acknowledge those who have played instrumental role during this endeavour. I thought that writing

this Acknowledgements section of my dissertation would be easy and quick, however its not the

case. While I was typing this, I came to a realization that this expression of gratitude would be

very limited and always incomplete for certain people including my parents, my brother Paurav,

my friends with whom I spent most of my PhD duration with and Prof. Kalyanmoy Deb.

The role of my family has been extremely important and encouraging in bringing me to the

point I am at right now. Contributions and sacrifices made by my father Mr. Deepak Dhebar and

my mother Mrs. Deepika Dhebar are among the things which cannot be quantified and most of

which I believe are still outside my conscious realm. If it would not have been my brother Paurav,

who spotted my technical aptitude and envisioned me getting into the IIT, my trajectory of life

would be have been completely different. The vision, the support and the encouragement provided

to me by my family has played a big part in turning this dream into reality.

I would like to thank my friends who I see as my family far from my hometown, the friends

with whom I stayed and created a permanent bond with during my PhD – thank you Tarang, Swati,

Mayank, Kokil, Ashish, Saptarshi, Sabhyasachi, Thrilok and Vikram Prajapati. I would like to also

thank Abhinav and Kamala for showing their concern and warmth and being like elder siblings in

the town. The stay has been made equally joyous because of the indoor board games amidst the

harsh weather of Michigan and I would like to thank Kanchan, Aritra, Rahul and Bakul for being

the part of the clan.

I would like to thank Pratap Bhanu Solanki for helpingme duringmy transition from IIT Kanpur

to Michigan State University. I would like to thank Nilay Kant for his valuable inputs during my

recent job search and providingmewith some fundamental insights across numerous aspects during

my PhD.

I was really fortunate to have great lab-mates as my colleagues at the Computational Optimiza-

v

tion and Innovation Laboratory. I got to learn a lot from them. Thank you Abhinav, Haitham,

Proteek, Rayan, Julian, Zhichao, Khaled, Airuddh, Ali, Abhiroop, Yash, Shuvei, Mohamed and

visiting scholars viz. Ankur, Flavio, Pablo, Sukrit, Sparsh and Hemant. I would like to thank Mrs.

Debjani Deb for organizing lab gatherings and enriching the social culture of the lab.

It was indeed my pleasure to interact with Prof. Ranjan Mukherjee and Mrs. Moushumi

Mukherjee and am thankful to them for introducing me and involving me in the Durga Pooja

festivals and other social gatherings. It was indeed great to experience the Indian traditional culture

on the foreign land.

I would like to thank Prof. Bhaskar Dasgupta and Prof. Bishakh Bhattacharya of IIT Kanpur

and Prof. G. K. Ananthasuresh of IISc Bangalore who wrote my recommendation letter for PhD.

I would like to thank Prof. Niraj Sinha, Prof. Anindya Chatterjee and Prof. Harish Karnick of

IIT Kanpur for giving valuable advice regarding how to choose a career after bachelors and what

to consider while opting for a PhD. I still remember this line from Prof. Chatterjee’s homepage

and it reads: The PhD advisor is more than merely a source of information and funding. Ideally,

your PhD advisor will profoundly influence not only how you view your subject, but how you view

the world. I could experience this my case. Working under Prof. Kalyanmoy Deb shaped me

fundamentally and his guidance showed me the way to conduct the life: both professional and

personal.

Thank you Prof. Deb for everything and thank you Prof. Erik Goodman, Prof. Ronald Averill

and Dr. Vishnu Boddeti for being the part of my PhD committee and for providing valuable

feedback and suggestions in regards to my research.

Warm Regards,

Yashesh Dhebar

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ALGORITHMS . xviii

CHAPTER 1 THE NEED AND THE START . 1
1.1 Our Work . 2

CHAPTER 2 A HIGH LEVEL VIEW OF OUR INTREPRETABLE AI MODEL . . 4

CHAPTER 3 CLASSIFICATION . 7
3.1 Past Studies . 9
3.2 Proposed Approach . 12

3.2.1 Classifier Representation Using Nonlinear Decision Tree 12
3.2.2 Split-Rule Discovery Using Bilevel Optimization 14

3.3 Bilevel Approach for Split-Rule Identification . 17
3.3.1 The Hierarchical Objectives to derive split-rule 17

3.3.1.1 Computation of �! . 19
3.3.1.2 Computation of �* . 20

3.3.2 Upper Level Optimization (ULGA) . 20
3.3.2.1 Custom Initialization for Upper Level GA 21
3.3.2.2 Ranking of Upper Level Solutions 21
3.3.2.3 Custom Crossover Operator for Upper Level GA 22
3.3.2.4 Custom Mutation Operator for Upper Level GA 24
3.3.2.5 Duplicate Update Operator . 27

3.3.3 Lower Level Optimization (LLGA) . 27
3.3.3.1 Custom Initialization for Lower Level GA 28
3.3.3.2 Selection, Crossover, and Mutation for Lower Level GA 30
3.3.3.3 Termination Criteria for Lower level GA 31

3.4 Ablation Studies and Comparison . 31
3.4.1 Ablation Studies on Lower Level GA . 31
3.4.2 Ablation Studies on the Proposed Bilevel GA 33

3.5 Visualization of split-rule: X-Space and B-Space 35
3.6 Overall Tree Induction and Pruning . 36
3.7 Results . 38

3.7.1 Customized Datasets: DS1 to DS4 . 39
3.7.2 Breast Cancer Wisconsin Dataset . 40
3.7.3 Wisconsin Diagnostic Breast Cancer Dataset (WDBC) 41
3.7.4 Real World Auto-Industry Problem (RW-problem) 42
3.7.5 Results on Multi-Objective Optimization Problems 43

3.7.5.1 Truss 2D and Welded Beam Problems 44

vii

3.7.5.2 Modified ZDT (m-ZDT) and DLTZ (m-DTLZ) Problems 47
3.7.5.3 m-ZDT and m-DTLZ Results: 50

3.8 Additional Comparisons and Results . 51
3.8.1 Support Vector Machines (SVMs) . 53
3.8.2 Generalized Additive Models (GAMs) . 55
3.8.3 Genetic Programming (GP) . 58
3.8.4 Results . 62

3.9 Conclusions and Future work . 63
3.10 Parameter Settings . 65

3.10.1 Termination Criteria and other Parameter Settings for Inducing a Non-
linear Decision Tree (NLDT) . 65

3.10.2 Parameter Setting for NSGA-II for multi-objective data creation 65
3.10.3 Parameter Setting for Upper Level GA . 66
3.10.4 Parameter Setting for Lower Level GA . 66
3.10.5 Creation of Customized 2D Datasets: DS1- DS4 67

CHAPTER 4 CONTROL: INTERPRETABLE POLICY FOR DISCRETE AC-
TION SPACES . 69

4.1 Introduction . 69
4.2 Motivation for the Study . 70
4.3 Related Past Studies . 73
4.4 Performance Measures . 75

4.4.1 Open-Loop Accuracy . 75
4.4.2 Closed-loop Performance . 76

4.5 Nonlinear Decision Trees (NLDTs) as Policies . 76
4.5.1 Binary-split NLDT . 77
4.5.2 Multi-split NLDT . 78

4.6 Overall Approach . 79
4.6.1 Data Normalization . 80
4.6.2 Open-loop Training . 80

4.6.2.1 Open-loop training for Binary-split NLDT 80
4.6.2.2 Open-loop training for Multi-split NLDT 81

4.6.3 Closed-loop Training . 82
4.7 Experiments: AIM and Procedure . 82

4.7.1 Experimental Setup . 83
4.7.1.1 Creation of Regular Dataset . 84
4.7.1.2 Creation of Balanced Dataset 85

4.8 Experiments and Analysis on Control Tasks with Binary Action Spaces 85
4.8.1 CartPole Problem . 85

4.8.1.1 NLDT for CartPole Problem . 86
4.8.2 CarFollowing Problem . 87

4.8.2.1 NLDT for CarFollowing Problem 90
4.9 Experiments and Analysis on Multiple Discrete Action Space 92

4.9.1 MountainCar Problem . 92
4.9.2 NLDT for MountainCar Problem . 93

viii

4.9.3 LunarLander Problem . 94
4.9.3.1 NLDT for LunarLander Problem 95

4.10 Conclusions . 98

CHAPTER 5 SCALE-UP STUDY AND IMPROVISATION 101
5.1 Ablation Study for Open-loop Training . 103
5.2 Closed-loop Visualization . 105
5.3 Reengineering NLDT* . 109
5.4 Conclusion . 111

CHAPTER 6 EXTENSION TOREGRESSION AND CONTINUOUS CONTROL
PROBLEMS . 113

6.1 Introduction . 113
6.2 Interpretable AI for Regression Problems using NLDT 113
6.3 Dual Bilevel Algorithm (DBA) for Regression . 115

6.3.1 Data Normalization . 116
6.3.2 Bilevel Regression Algorithm to Obtain '(x) 117

6.3.2.1 Lower Level Regression Optimization 118
6.3.2.2 Upper Level Regression Optimization 122

6.3.3 Bilevel Partition Algorithm (BPA) to Obtain %(x) 123
6.3.3.1 Lower Level Partition Optimization 124

6.3.4 Results on a Customized Benchmark Problem 125
6.4 Interpretable AI for Control Problem with Continuous Action Space 128

6.4.1 NLDT Representation and Training . 131
6.4.2 Data generation . 131
6.4.3 Results on Car-Following Problem . 132

CHAPTER 7 CONCLUSION AND FUTUREWORK 136

BIBLIOGRAPHY . 139

ix

LIST OF TABLES

Table 3.1: Results on DS1 to DS4 datasets (2 features). 39

Table 3.2: Results on breast cancer Wisconsin dataset (10 features). 40

Table 3.3: Results on WDBC dataset (30 features). 41

Table 3.4: Results on the real-world auto-industry problem (36 features). 43

Table 3.5: Results on Truss-2D with gA0=: = 6. 44

Table 3.6: 2D Truss problem with gA0=: = 6 and gA0=: = 9. 45

Table 3.7: Results on welded beam design with 6A4 5 = 1 and 6A4 5 = 10. gA0=: = 3 is
kept fixed. 47

Table 3.8: Parameter setting to generate datasets for m-ZDT and m-DTLZ problems. We
generate 1000 datapoints for each class. 49

Table 3.9: Results onmulti-objective problems for classifying dominated and non-dominated
solutions. 51

Table 3.10: SVM Result for different values of penalty parameter �. For each dataset,
the first row represents the testing accuracy and the second row represents
complexity (number of support vectors). � = 1000 gives overall best performance. 56

Table 3.11: Details regarding parametric study for GAMs. 58

Table 3.12: GP Result for different values of parsimony coefficient %2. For each dataset,
the first row represents the testing accuracy and the second row represents
complexity (number of internal nodes). %2 = 0.001 produces better results. . . . 60

Table 3.13: Summary of results obtained using various methods. For each dataset, the
first row indicates testing accuracy and the second row indicates complexity.
Italicized entries are statistically insignificant (according to 95% confidence in
Wilcoxon rank-sum test) compared to the best entry in the same row. 63

Table 3.14: Parameter setting to create customized datasets D1-D4. For Class-1 data-
points (X, f) = (0, 0.01). 68

x

Table 4.1: Class Distribution of Regular Training Datasets for different problems. For
each row, the 8-th number in second column represents the number of datapoints
belonging to 8-th action. 84

Table 4.2: Effect of training data size on performance of NLDT$! on CartPole problem. . . 86

Table 4.3: Results on CarFollowing problem correspoing to open-loop training (NLDT$!). 89

Table 4.4: Closed-loop performance analysis after re-optimizing NLDT for CarFollowing
problem (k = 103). 89

Table 4.5: Mountain car results. The numbers indicate average scores. 93

Table 4.6: LunarLander open-loop training (NLDT$!) results. The numbers indicate
average scores. 95

Table 4.7: Closed-loop performance onLunarLander problemwith andwithout re-optimization
on 26-rule NLDT$! . Number of rules are specified in brackets for each NLDT
and total parameters for the DNN is marked. 97

Table 4.8: NLDT rules before and after the closed-loop training for LunarLander problem,
for which NLDT* is shown in Figure 4.16. Video showing the simulation
output of the performance of NLDTs with rule-sets mentioned in this table can
be found at https://youtu.be/DByYWTQ6X3E. Respective minimum and
maximum state variables are Gmin = [-0.38, -0.08, -0.80, -0.88, -0.42, -0.85,
0.00, 0.00], Gmax = [0.46, 1.52, 0.80, 0.50, 0.43, 0.95, 1.00, 1.00], respectively. . 99

Table 5.1: Details regarding custom designed Planar Serial Manipulator environments. . . . 102

Table 5.2: Comparing performance of different lower-level optimization algorithms. For
comparison, closed-loop performance of the original DNN policy is also reported.104

xi

https://youtu.be/DByYWTQ6X3E

LIST OF FIGURES

Figure 2.1: NLDT for classification: At each conditional node (white colored), a nonlin-
ear condition 58 (x) ≤ 0 is checked for a datapoint x. The datapoint x traverses
the NLDT by following conditions 58 (x) at each conditional node and reaches
a leaf node (colored) where it is assigned to a class represented by the leaf node. 4

Figure 2.2: NLDT for Regression: Each terminal leaf node (green colored) here repre-
sents a regression equation '8 (x) to predict the value of a dependent variable
H. However, these regression rules (H = '8 (x)) are valid only for certain part
of the feature space. These regions of the feature space are defined using the
partition rules 58 (x) at each condition node (white). 5

Figure 3.1: An illustration of a Nonlinear Decision Tree (NLDT) for a classification
problem. For a given conditional node, the split-rule function 58 (x) is derived
using a dedicated bilevel-optimization procedure. At first, the algorithm is
applied to the entire data on Node 1 to obtain split-rule 51(x) ≤ 0. If this
split-rule is not able to partition the data perfectly, then a similar bilevel
optimization is invoked at Node 2 and Node 3 to determine 52(x) and 53(x),
respectively, on the subset of data present in Node 1 (wherein the Node 2 will
have the data satisfying the split-rule 51(x) ≤ 0 and Node 3 will have data
of Node 1 which violates split-rule 51(x) ≤ 0). The process continues until
a certain termination criteria is met. Terminal leaf-nodes are assigned with a
class-label based on the distribution of data in that node. 12

Figure 3.2: In this illustration, a two-class data comprising of two features G1 and G2 is
provided. �, � and � are three different split-rules. Split-rule � is able to
optimally partition the data, but is complex and may not be interpretable.
Rule � is simple, however it does not produce accurate classification. Rule �
is simple as well as classifies the data accurately. 18

Figure 3.3: Illustrations of meaningful and meaningless crossover operations. In the
meaningful crossover operation, children (green dots) will carry information
of parents (red dots). Hence, they will be located with high probability at the
corners of the rectangle ����. On the other hand, themeaningless crossover
operation creates children at random locations, without taking leverage of parents. 23

Figure 3.4: Upper Level Crossover Operation . 24

Figure 3.5: Mutation for Upper Level GA . 26

xii

Figure 3.6: Illustration of Data in B-Space. The split function 5 (x,B, <,w,�) is a
straight line in B-space. Dotted lines represent the convex hull engulfing the
data. Different possible split functions are shown by straight lines �, �, � and �. 28

Figure 3.7: Mixed dipole (xA, xB) and a hyperplane � (wh, \ℎ). 30

Figure 3.8: Customized datasets. DS1 is linear and balanced, DS2 is linear but unbal-
anced with minority class having 10x less points. DS3 is nonlinear and DS4
has a sandwiched distribution. 32

Figure 3.9: Results on DS1 dataset to benchmark LLGA. Numbers in first parenthesis
indicate Type-1 and Type-2 error on training data and the numbers in second
parenthesis indicate Type-1 and Type-2 error on testing data. 33

Figure 3.10: Results on DS2 dataset to benchmark LLGA. 34

Figure 3.11: Bilevel GA results on DS3 and DS4. 35

Figure 3.12: Results on DS3 dataset to benchmark the overall bilevel algorithm. 36

Figure 3.13: Results on DS4 dataset to benchmark the overall bilevel algorithm. 37

Figure 3.14: Feature Transformation. A point in three-dimensional X-space is mapped to
a point in a two-dimensional B-space for which �8 = G

181
1 G

182
2 G

183
3 38

Figure 3.15: Breast Cancer Wisconsin NLDT. For each node, number of datapoints #
present in the node, impurity of the node (Gini) and class distribution (in
square parenthesis) is reported. 40

Figure 3.16: B-space plot for Wisconsin breast cancer dataset. 41

Figure 3.17: Tree for WDBC dataset. For each node, number of datapoints # present
in the node, impurity of the node (Gini) and class distribution (in square
parenthesis) is reported. 42

Figure 3.18: B-space plot for WDBC dataset. 42

Figure 3.19: NLDT for the auto-industry problem. The first split-rule uses five variables
and the second one uses 12. For each node, number of datapoints # present
in the node, impurity of the node (Gini) and class distribution (in square
parenthesis) is reported. 43

xiii

Figure 3.20: Truss design problem data visualization. 6A4 5 = 1 is kept fixed. For a
fixed value of 6A4 5 , larger value of gA0=: implies better separation between
datapoints belonging to two classes. 45

Figure 3.21: Comparison of bilevel and CART methods on truss problem with gA0=: = 6
dataset. 46

Figure 3.22: Welded Beam Design Problem data visualization. gA0=: = 3 is kept fixed.
Problem at (b) is more difficult to solve than at (a). 47

Figure 3.23: Welded beam classifier with one rule for 6A4 5 = 10. 48

Figure 3.24: m-ZDT Datasets. 49

Figure 3.25: m-DTLZ Datasets. 50

Figure 3.26: Original DS1 and its modified version. 53

Figure 3.27: SVM on separable datasets with a hard margin. 54

Figure 3.28: SVM with non-separable datasets with a soft margin. 54

Figure 3.29: Effective degree of freedom (EoDF) V/s Accuracy for Cancer-10 dataset.
The best (8, @8) parameter setting for this dataset is found to be ∗ =
[8, 3, 8, 13, 8, 8, 13, 3, 8, 21] and @∗ = [2, 2, 5, 5, 2, 3, 3, 2, 2, 2]. 59

Figure 3.30: A sample genetic program (GP) tree. The aboveGP translates to this equation:
5 (x) = (G5 − G7) + 3G2. 59

Figure 3.31: Classifiers for Cancer data: %2 = 0.005: 5 (x) = G9+ −0.537
(0.171G6) (0.171G3G2)

and

%2 = 0.01: 5 (x) = G2 + −0.502
(0.077G6)

. 61

Figure 4.1: Control Loop . 69

Figure 4.2: Mountain Car problem. It comprises of two state variables G, E and is con-
trolled using three actions: -1 for deceleration, 0 for nothing and +1 for
acceleration. 71

Figure 4.3: State-action combinations for MountainCar prob. 71

Figure 4.4: Performance measures. 75

Figure 4.5: Binary-split NLDT for Discrete action control systems. 77

xiv

Figure 4.6: Multi-split NLDT configuration. Numbers in square brackets indicate class
distribution of datapoints. 78

Figure 4.7: A schematic of the proposed overall approach. 79

Figure 4.8: Three control problems. 83

Figure 4.9: CartPole NLDT$! induced using 10,000 training samples. It is 91.45%
accurate on the testing dataset but has 100% closed loop performance. Nor-
malization constants are: xmin = [-0.91, -0.43, -0.05, -0.40], xmax = [1.37,
0.88, 0.10, 0.45]. 87

Figure 4.10: Reward function for CarFollowing environment. 88

Figure 4.11: Relative distance plot for CarFollowing problem. 89

Figure 4.12: NLDT$! for the CarFollowing problem. Normalization constants are: Gmin

= [0.25, -7.93, -1.00], Gmax = [30.30, 0.70, 1.00]. 90

Figure 4.13: NLDT$! forMountainCar problem. Normalization constants: Gmin = [-1.20,
-0.06], Gmax = [0.50, 0.06]. 93

Figure 4.14: NLDT-6 (with 26 rules) and other lower depth NLDTs for the LunarLander
problem. Lower depth NLDTs are extracted from the depth-6 NLDT. Each
node has an associated node-id (on top) and a node-class (mentioned in bottom
within parenthesis). Table 4.7 in provides results on closed-loop performance
obtained using these trees before and after applying re-optimization on rule-
sets using the closed-loop training procedure. 96

Figure 4.15: Final NLDT*-3 for LunarLander prob. Ĝ8 is a normalized state variable (see
Section 4.6.1). 96

Figure 4.16: Topology of Depth-3 NLDT(%)
$!

obtained from a different run on the Lu-
narLander problem. The equations corresponding the conditional-nodes be-
fore and after re-optimization are provided in Table 4.8. 98

Figure 4.17: Closed-loop training plot for finetuning the rule-set corresponding to depth-3
NLDT(%)

$!
(Table 4.8) to obtain NLDT* for LunarLander problem. 100

Figure 5.1: Acrobot and a customized Planar Serial Manipulator benchmark problems. . . . 101

xv

Figure 5.2: Action Vs. Time plot for 5-Link manipulator problem. Figure 5.2b provides
the plot for NLDT* which is obtained from the NLDT$! trained using SQP
algorithm in lower-level. Similarly, Figure 5.2c provides the plot for NLDT*
which is obtained from the NLDT$! trained using RGA algorithm in lower-level.106

Figure 5.3: Action Vs. Time plot for 10-Link manipulator problem. Figure 5.3b provides
the plot for NLDT* which is obtained from the NLDT$! trained using SQP
algorithm in lower-level. Similarly, Figure 5.3c provides the plot for NLDT*
which is obtained from the NLDT$! trained using RGA algorithm in lower-level.108

Figure 5.4: NLDTs for 5-Link Manipulator problem. 110

Figure 5.5: Pruned version of NLDT* (Figure 5.4b) for 5-link manipulator problem. 111

Figure 6.1: Piecewise linear regression tree with two predictors from [1]. At each leaf
node, features involved in the expression of two-regressor linear model is
shown. Splits use only one feature variable. 114

Figure 6.2: Conceptual layout of NLDT for regression task. 114

Figure 6.3: Three Island Regression Problem. 118

Figure 6.4: Computation of Lower Level Objective function �! based on Algorithm 9. . . 120

Figure 6.5: Regression algorithm is applied on all datapoints. The obtained regression
rule '0(x) = 0.91G1 − 0.90G0 + 0.08 is able to fit the subset of datapoints
which are represented by Y-predicted (in green circles). Partition rule %0(x)
will be now derived to identify the domain in G-space (i.e. %0(x) ≤ 0)) where
this regression rule is applicable. 123

Figure 6.6: Result on the Pure Three Island Dataset. (a) Visualization of result. (b)
Intertpretable AI representation using NLDT. Normalization constants are:
Xmean = [0.49, 0.49], Xstd = [0.25, 0.25], Ymean = 0.05 and Ystd = 0.28. . . . 126

Figure 6.7: Result on the Noisy Three Island Dataset. (a) Visualization of result. (b)
Intertpretable AI representation using NLDT. Normalization constants are:
Xmean = [0.52, 0.52], Xstd = [0.28, 0.27], Ymean = 0.03 and Ystd = 0.29. . . . 127

Figure 6.8: A Car-following problem with continuous acceleration. The rear car is con-
trolled by an AI while the car in the front moves with a random acceleration
profile. This problem is similar to the problem shown in Figure 4.8b with the
only difference being that the cars can now assume a value of acceleration in
range −2</B2 to 2</B2 (unlike in the previous case where the rear car could
only have an acceleration from pre-specified discrete values). 128

xvi

Figure 6.9: ANN Output for the continuous car-following problem described in Fig-
ure 6.8. Figures (a), (b) and (c) are the plots of different state variables w.r.t
to the time-step. The output of the ANN is shown in Figure (d). 129

Figure 6.10: NLDT Agent representation for continuous control task involving one action. . . 131

Figure 6.11: Plots from different simulation runs with different initial relative velocity
(EA4;) between cars. The NLDT’s acceleration output (red line) matches with
the ANN’s acceleration output (blue line). NLDT agent behaviour is almost
the same as that of ANN and can thus be used to explain the behaviour of ANN. 133

Figure 6.12: NLDT for car following problem with continuous action space. 134

xvii

LIST OF ALGORITHMS

Algorithm 1: Pseudo Code to Recursively Induce NLDT. 15

Algorithm 2: ObtainSplitRule subroutine. Implements a Bilevel optimization algorithm of
determine a split-rule. The UpperLevel searches the space of Block Matrix B and
modulus-flag <. Constraint violation value for an upper level individuals comes
by executing lower-level GA (LLGA) as shown in Algorithm 3. 16

Algorithm 3: EvaluateUpperLevelPop subroutine. A dedicated LowerLevel optimization
is executed for each upper level population member. 17

Algorithm 4: Crossover operation in upper level GA. 25

Algorithm 5: CartPole Rules. Normalization constants are: G<8= = [-0.91, -0.43, -0.05,
-0.40], G<0G = [1.37, 0.88, 0.10, 0.45]. 87

Algorithm 6: Ruleset corresponding to NLDT$! (Figure 4.12) of the CarFollowing problem. 90

Algorithm 7: MountainCar NLDT$! . Normalization constants are: G<8= = [-1.20, -0.06],
G<0G = [0.50, 0.06]. 94

Algorithm 8: Pseudo-code of dual bilevel algorithm (DBA) 116

Algorithm 9: Algorithm to compute the lower level fitness �! 119

xviii

CHAPTER 1

THE NEED AND THE START

The year was 2016 and our lab was offered with a project from the Dow Chemical Company. The

goal of that project was to develop an automation system to automatically predict the harmonized

tariff schedule code (HS-code) given the chemical recipe of a product which the Dow Chemical

Company imports or exports. Prof. Deb, Prof. Goodman and I operated as a team from MSU

and collaborated with concerned experts from the Dow who were involved in manually solving the

task of HS-code assignment. At the end of the project, we were able to successfully develop an

automation system to predict the HS-codes of chemical products with a human-level accuracy. This

work attracted attention from various corporate organizations and is currently under the process of

getting patented. During the process of developing a classifier, the team at Dow used to casually

intervene into those slides where I used to show them how the AI doing HS-code prediction looks

like. They were intrigued by the fact that the task being handled manually at Dow was now getting

done by the AI, with the same performance accuracy as that of manual HS-code assignment. More

than that, they were interested to know how the AI is thinking in the background and is coming up

with a HS-code for a supplied chemical product. The AI developed however was fairly complicated

and no such human interpretable logic could be borrowed through the visual inspection of AI, but

we got the signal that a human mind is simply not satisfied with answers an AI is providing, and it

longs to understand “why" the thing worked.

The implicit signal to develop an interpretable AI from Dow was made explicit a few months

later. Our lab was approached by General Motors (GM), which wanted to develop a classifier to

distinguish between good and bad designs. The task here was to develop a classifier which could

be read by design engineers at GM. The readable AI would then serve as a tool to develop better

insights regarding the design process and could be used as a recipe by design engineers to develop

and innovate future car designs.

Later, a similar problem of developing an explainable AI was floated to us by Ford Motors,

1

where the task was to decipher the complicated logic learnt by a deep neural network (DNN)

which is controlling a car for autonomous driving. The research presented in this dissertation is a

byproduct of the process we went through in answering the questions laid out by two automotive

giants. It has triggered many possibilities and we believe that foundation set by our work would

lead to a further advancement in the field of interpretable and explainable AI.

1.1 Our Work

The field of interpretable and explainable AI has received active attention in the past four years.

Broadly speaking, the interpretable AI approaches are categorized into two main groups

• Intrinsic (or model based) and

• Post-hoc.

Within the framework of intrinsically interpretable AI, the AI model itself is transparent and

interpretable. The task of generating a less complex AI is generally realized using decision trees,

rule-sets [2, 3] or additive models [4, 5, 6]. The aim here is to express an AI (or a subpart of an

AI) in as simple format as possible.

The post-hoc interpretable methods are aimed towards analyzing the behavior of an already

trained AI, mostly using visualization techniques such as partial dependence plots, histogram plots,

heat-maps, attention maps, etc. A more comprehensive explanation to these is provided in [7, 8].

In this dissertation, we focus at developing an intrinsically interpretable AI solutions in form of

a nonlinear decision trees (NLDT). The main criteria we consider in our research is to reduce the

complexity of the transparent AI while ensuring it has a good performance for the machine learning

task under consideration. Additionally, the approach being developed assumes that the features

(or attributes) in a given automation task are interpretable. The optimization algorithm is then

developed to induce an AI which is visually simple, involves less number of terms or functionals

and can be expressed in a format which is humanly comprehensible.

2

The dissertation is organized as follows. First, a birds-eye view of the overall interpretable AI

framework is provided in Chapter 2. In Chapter 3, we formally introduce the algorithm to derive

NLDT for classification problems. Next, the approach developed to induce NLDT in Chapter 3 is

extended to solve control problems involving discrete actions. In the same chapter, a reinforcement

learning algorithm in form of closed-loop training is proposed to enhance the control performance

of NLDT. The approach to arrive at interpretable controllers is improvised and tested for scalability

on custom designed benchmarks in Chapter 5. A methodology to extend the concept of NLDT to

solve regression and continuous control problems is discussed in Chapter 6. Concluding remarks

and possible directions for future work are provided in Chapter 7.

3

CHAPTER 2

A HIGH LEVEL VIEW OF OUR INTREPRETABLE AI MODEL

Before we dig into the details, I would like to provide you with a bird’s eye view of the overall

approach. The interpretable and explainable AI we are developing assumes the framework of a

Nonlinear Decision Tree (NLDT). A high-level perspective of NLDT for a classification task and

regression task is provided in Figures 2.1 and 2.2 respectively.

Figure 2.1: NLDT for classification: At each conditional node (white colored), a nonlinear condition
58 (x) ≤ 0 is checked for a datapoint x. The datapoint x traverses the NLDT by following conditions
58 (x) at each conditional node and reaches a leaf node (colored) where it is assigned to a class
represented by the leaf node.

Here 58 (x) and '8 (x) can be any linear or non-linear functions on the input feature vector x.

Conceptually, all AI models can be represented in the NLDT format. For instance, artificial

neural networks (ANNs) or support vector machines (SVMs) designed for binary classification

tasks will have one single condition 50(x) ≤ 0 which will be used to predict if the supplied input

datapoint x belongs to Class 1 or Class 2. A natural extension to handle multi class problems

is possible either by increasing number of conditions 58 (x) or by increasing number of splits per

condition by allowing more branches from a conditional node. We shall visit the topic of handling

multiple classes with our proposed NLDT approach later in the thesis. A complicated axis parallel

4

Figure 2.2: NLDT for Regression: Each terminal leaf node (green colored) here represents a
regression equation '8 (x) to predict the value of a dependent variable H. However, these regression
rules (H = '8 (x)) are valid only for certain part of the feature space. These regions of the feature
space are defined using the partition rules 58 (x) at each condition node (white).

decision tree (decision tree involving only rules such as G8 ≤ g8, where G8 is the 8-th component of

the feature vector x) are by default in the NLDT format.

Similar to classification problems, all the AI models developed to handle regression problems

can be represented with the NLDT framework. In case of ANNs, the NLDT representation will

involve only one node (which will be also a terminal node) with regression rule H = '0(x), where

'0(x) will represent an ANN.

While ANNs, SVMs or traditional CART decision trees can be used to model classification

decision boundaries or regression surfaces, they are expressed with either a very complicated

expression for functions 58 (x) or '8 (x) (like in ANNs or SVMs) but simpler topology (only upto 1

layer of NLDT is sufficient), OR are topologically very complex (like CART based decision trees)

but have simple expressions for 58 (x) and '8 (x). Hence, existing AI models lie in either of the two

extremes:

• Either they have a very complicated function representation for 58 (x) and '8 (x), OR

• They are topologically complicated and involves many nodes in the overall structure of the

NLDT.

5

The above mentioned two aspects make these traditional AI models non-comprehensible and

thus non-interpretable.

However, what if we allow a controlled non-linearity for 58 (x) and '8 (x)? Maybe allowing

some degree of non-linearity for 58 (x) and '8 (x) can help us induce a decision tree with fewer

nodes while also ensuring the simplicity of rule expression for 58 (x) and '8 (x) as compared to

black-box AI counterparts like ANN, DNN, SVM 0r CART based DT1.

In this dissertation, we develop algorithms which navigate through the search space of equations

to obtain visually simple linear or non-linear rules (58 (x), '8 (x)) as compared to black-box AI

counterparts and eventually induce decision tree with fewer nodes. A more in-depth discussion

will follow in subsequent chapters where we design dedicated algorithms to solve classification

and regression problems and apply them to generate a relatively interpretable translator to policy

networks for reinforcement learning tasks. The interpretable AI (IAI) models developed are

relatively simple, easy to read and thus humanly more comprehensible thank black-box AI models.

1In this work, we will use black-box term for AI models represented as DNN, ANN, SVM and topologically
complex CART Based trees.

6

CHAPTER 3

CLASSIFICATION

In a classification task, usually a set of labelled data involving a set of features and its belonging to

a specific class are provided. The task in a classification problem solving is to design an algorithm

which works on the given dataset and arrives at one or more classification rules (expressed as a

function of problem features) which are able to make predictions with maximum classification

accuracy. A classifier can be expressed in many different ways suitable for the purpose of the

application. It can be a procedure in which a feature vector is supplied to the procedure as an

input and the procedure determines the class in which the feature vector belongs. It can also be a

mathematical function of the feature vector, considering only a few features, instead of all features,

that when takes a valuewithin a non-overlapping range in the real space, it belongs to a specific class.

It can also assume the form of a rule-set system with several “if-then-else" conditional statements.

Each rule in the rule-set system helps to generate an overall classification logic. Decision Trees

(DT) fall under this category, wherein the rule-set is represented in an inverted tree based structure.

The non-terminal conditional nodes comprise of conditional statements and the terminal leaf-nodes

have a class label associated with them. A datapoint traverses through the DT by following the

rules at conditional nodes and lands at a particular leaf-node.

The classifier under consideration involves several variables which are supposed to be learned

(or optimized) using an optimization algorithm to achieve an optimal classification performance. In

case of mathematical single-rule based classifiers like artificial neural networks (ANNs) or support-

vector-machines (SVM), these variables are associated with connection-weights or coefficients and

location of support-vectors respectively. If the classifier is represented as a rule-set like in DT, each

of the conditional split-rules involve some variables which dictate the equation of the split-rule. The

optimization problem of determining these variables of classifier involves one or more objectives

specifying the quality of classification.

Due to their importance in many practical problems involving design, control, identification,

7

and other machine learning related tasks, researchers have spent a lot of attention to develop efficient

optimization-based classification algorithms [9, 10, 11]. While most algorithms are developed for

classifying two-class data sets, the developed methods can be extended to multi-class classification

problems as a hierarchical two-class classification problem or by extending them to constitute a

simultaneous multi-class classification algorithm. In this chapter, we will consider the binary

classification task. An extension to multi-class classification will be discussed later in Chapter 4.

In most classification problem solving tasks, maximizing classification accuracy or minimizing

classification error on the labelled dataset is usually used as the sole objective. However, besides

the classification accuracy, in many applications, users are also interested in finding an easily

interpretable classifier for various practical reasons: (i) it will help identify most important rules

which are responsible for the classification task, (ii) it will help provide a more direct relationship

of features to have a better insight for the underlying classification task for knowledge enhancement

and future developmental purposes. The definition of an easily interpretable classifier will largely

depend on the context. In terms of mathematically expressed classifier, this may mean a linear,

polynomial, or posynomial function involving only a few features. In the case of a DT-based

classifier, this may additionally mean a low-depth tree involving only a few branches of the tree.

In our work, we propose a number of novel ideas. First, instead of a DT, we propose to develop

a nonlinear decision tree (NLDT) as a classifier, in which every non-terminal conditional node will

represent a nonlinear function of features (5 (x)) to express a split-rule. Each of these split-rules

will split the data into two non-overlapping subsets. Successive hierarchical splits of these subsets

are carried out and the tree is allowed to grow until one of the termination criteria is met. We argue

that flexibility of allowing nonlinear split-rule at conditional nodes (instead of a single-variable

based rule, which is found in tradition ID3 based DTs [12]) will result in a more compact DT (i.e.

it will have fewer nodes). Second, to derive the split-rule at a given conditional node, a dedicated

bilevel-optimization algorithm is applied. The upper level optimization focuses at determining the

structure of the split-rule, while the lower level optimization searches for the necessary coefficients

(weights) and biases of the corresponding rule-structure as supplied by the upper level. Third,

8

our proposed methodology uses some generic classification problem information to make the

overall bilevel optimization algorithm computationally efficient. Fourth, we emphasize simplistic

rule structures in our bilevel optimization method so that obtained rules are also relatively more

interpretable than the black-box AI counterparts like SVM or ANN.

In the remainder of this chapter, we provide a brief survey of the existing approaches of inducing

DTs in Section 3.1. A detailed description about the problem of inducing interpretable DTs from

optimization perspective and a high-level view on proposed approach is provided in Section 3.2.

Next, we provide an in-depth discussion of the bilevel-optimization algorithm which is adopted

to derive interpretable split-rules at each conditional node of NLDT in Section 3.3. Section 3.6

provides a brief overview on the post-processing method which is used to prune the tree to simplify

its topology. Compilation of results on standard classification and engineering problems is provided

in section 3.7. The chapter ends with concluding remarks and some highlights on future work in

Section 3.9.

3.1 Past Studies

There exist many studies involving machine learning and data analytics methods for discovering

rules from data. Here, we provide a brief mention of some studies which are close to our proposed

study.

Traditional induction of DTs is done in an axis-parallel fashion [12], wherein each split-rule

is of type G8 ≤ g8 or G8 ≥ g8. Algorithms such as ID3, CART and C4.5 are among the popular

ones in this category. The work done in the past to generate non-axis-parallel trees can be found

in [13, 14, 15], where the researchers rely on randomized algorithms to search for multi-variate

hyperplanes. Work done in [16, 17] use evolutionary algorithms to induce oblique DTs. The idea

of OCI [15] is extended in [18] to generate nonlinear quadratic split-rules in a DT. Bennett Et al.

[19] uses SVM to generate linear/nonlinear split-rules.

However, these works do not address certain key practical considerations, such as the complexity

of the combined split-rules and handling of biased data. Some works which take the aspect of

9

complexity of rule into consideration are discussed next.

In [20], ellipsoidal and interval based rules are determined using the set of support-vectors and

prototype points/vertex points. The authors there primarily focus at coming up with compact set

of if-then-else rules which are comprehensible. Despite its intuitiveness, the approach proposed

in [20] doesn’t result into comprehensible set of rules on high-dimensional datasets. Another

approach suggested in [21] uses the decompositional based technique of deriving rules using the

output of a linear-SVMclassifier. The rules here are expressed as hypercubes. Themethod proposed

is computationally fast, but it lacks in its scope to address nonlinear decision boundaries and its

performance is limited by the performance of a regular linear-SVM.On the other hand, this approach

has a tendency to generate more rules if the data is distributed parallel to the decision boundary.

The study conducted in [22] uses a trained neural-network as an oracle to develop a DT of at least

m-of-n type rule-sets (similar to the one described in ID2-of-3 [23]). The strength of this approach

lies in its potential to scale up. Its pedagogical approach of inducing DT by referring to the oracle

empowers it to create as many synthetic datapoints as desired using the oracle neural-network.

However, its accuracy on unseen dataset usually falls by about 3% from the corresponding oracle

neural-network counterpart. Authors in [24] use a pedagogical technique to evolve comprehensible

rules using genetic-programming. The algorithm G-REX proposed in this work considers the

fidelity (i.e. how closely can the evolved AI agent mimic the behaviour of the oracle NN) as the

primary objective and the compactness of the rule expression is penalized using a parameter to

evolve interpretable set of fuzzy rules for a classification problem. The approach is good enough to

produce comprehensible rule-set, but it needs tweaking and fine tuning of the penalty parameter.

A nice summary of the above mentioned methods is provided in [25]. Ishibuchi et al. in [26]

implemented a three-objective strategy to evolve fuzzy set of rules using a multi-objective genetic

algorithm. The objectives considered in that research were the classification accuracy, number of

rules in the evolved rule-set and the total number of antecedent conditions. In [27], an artificial

neural network (ANN) is used as a final classifier and a multi-objective optimization approach is

employed to find simple and accurate classifier. The simplicity is expressed by the number of nodes.

10

Hand calculations are then used to analytically express the neural network with a mathematical

function. This procedure however becomes intractable when the evolved neural network has a large

number of nodes.

Genetic programming (GP) basedmethods have been found efficient in deriving relevant features

from the set of original features which are then used to generate a classifier [28, 29]. In some studies,

the entire classifier is encoded with a genetic-representation and the genome is then evolved using

GP. Some works conducted in this regard also simultaneously consider complexity of the classifier

[30, 31, 32, 33], but those have been limited to axis-parallel or oblique splits. Application of GP

to induce nonlinear multivariate decision tree can be found in [34, 35]. Our approach of inducing

nonlinear decision tree is conceptually similar to the idea discussed in [34], where the DT is induced

in the top-down way and at each internal conditional node, the nonlinear split-rule is derived using a

GP. Here, the fitness of a GP solution is expressed as a weighted-sum of misclassification-rates and

generalizability term. However, the interpretability aspect of the split-rule does not get captured

anywhere in the fitness assignment and authors do not report the complexity of the final classifier.

No further extension of this study is found in the literature.

In our proposed approach, we attempt to evolve nonlinearDTswhich are robust to different biases

in the dataset and simultaneously target in evolving nonlinear yet simpler polynomial split-rules at

each conditional node of NLDT with a dedicated bilevel genetic algorithm (shown pictorially in

Figure 3.1). In oppose to the method discussed in [34], where the fitness of GP individual doesn’t

capture the notion of complexity of rule expression, the bilevel-optimization proposed in our work

deals with the aspects of interpretability and performance of split-rule in a logically hierarchical

manner (conceptually illustrated in Figure 3.2). Results indicate that the proposed bilevel algorithm

for evolving nonlinear split-rules eventually generates classifiers which are simpler than other

black-box AI and traditional machine learning (ML) based classifiers and have high or comparable

classification accuracy on all the test problems used in this study.

11

3.2 Proposed Approach

3.2.1 Classifier Representation Using Nonlinear Decision Tree

As mentioned before, the classifier developed in this work is represented in the form of a nonlinear

decision tree (NLDT) as depicted in Figure 3.1.

Figure 3.1: An illustration of a Nonlinear Decision Tree (NLDT) for a classification problem.
For a given conditional node, the split-rule function 58 (x) is derived using a dedicated bilevel-
optimization procedure. At first, the algorithm is applied to the entire data on Node 1 to obtain
split-rule 51(x) ≤ 0. If this split-rule is not able to partition the data perfectly, then a similar
bilevel optimization is invoked at Node 2 and Node 3 to determine 52(x) and 53(x), respectively,
on the subset of data present in Node 1 (wherein the Node 2 will have the data satisfying the
split-rule 51(x) ≤ 0 and Node 3 will have data of Node 1 which violates split-rule 51(x) ≤ 0). The
process continues until a certain termination criteria is met. Terminal leaf-nodes are assigned with
a class-label based on the distribution of data in that node.

The decision tree (DT) comprises of conditional (or non-terminal) nodes and terminal leaf-

nodes. Each conditional-node of the DT has a rule associated to it. In NLDT, we allow this rule

to assume a nonlinear equation. A datapoint x traverses the DT based on conditions defined by

split-rules at conditional nodes and eventually lands at a particular terminal leaf node. To make the

DT more interpretable, two aspects are considered:

12

1. Simplicity of split-rule 58 (x) at each conditional nodes (see Figure 3.2) and

2. Simplicity of the topology of overall DT, which is computed by the counting total number of

conditional-nodes in the DT.

Under an ideal scenario, the simplest split-rule will involve just one attribute (or feature) and

can be expressed as 5 (x) : G: − g ≤ 0. Here, the split occurs based on the : Cℎ component of

the overall feature vector x. Since for most of the problems, just one such simple split-rule is not

sufficient to partition the data into two-classes, many such splits are used in hierarchical fashion to

partition the dataset, wherein the first split is done on the entire training-dataset and the subsequent

splits are conducted on the subsets of the original training-dataset. This exercise usually resolves

into a topologically complicated DT. DTs induced using algorithms such as ID.3 and C4.5 fall

under this category. In the present work, we refer to these trees with CART.

On the other extreme, a topologically-simplest tree will correspond to the DT involving only one

conditional node, but the associated rule is complex to interpret. SVM based classifiers fall in this

category, wherein decision-boundary is expressed in form of a complicated mathematical equation.

Another way to represent a classifier is through an artificial neural network (ANN), which when

attempted to express analytically, will resort into a complicated nonlinear function 5 (x) without

any easy interpretability.

In this work, we propose a novel and compromise approach to above two extreme cases so

that the resulting DT is not deep and associated split-rule function at each conditional node 58 (x)

assume a nonlinear form with controlled complexity and is easily interpretable as compared to

the rule equation corresponding to SVM (or ANN). Allowing the flexibility to have nonlinear

split-rules is believed to induce the tree which is topologically simpler than the CART counterpart,

while simultaneously ensuring simplicity of split-functions 58 (x). If the split at the root-node is

not sufficient to partition the dataset into two classes, subsequent nonlinear splits are determined

in a hierarchical fashion, similar to popular ID3 and C4.5 approaches of inducing CART based

13

decision trees. This process continues until one of the termination criteria is met1. The challenging

task of obtaining nonlinear split-rule 5 (x) ≤ 0 for each conditional-node is carried out using a

dedicated bilevel-optimization, which we discuss in Section 3.2.2. A high-level perspective of this

is provided in Figure 3.1. During the training phase, NLDT is induced using a recursive algorithm

as shown in Algorithm 1. Brief description about subroutines used in Algorithm 1 is provided

below and relevant pseudo codes for ObtainSplitRule subroutine and an evaluator for upper-level

GA are provided in Algorithm 2 and 3 respectively.

• ObtainSplitRule(Data)

– Input: (# × (3 + 1))-matrix representing the dataset comprising of # datapoints with

3 features. The last column indicates the class-label.

– Output: Nonlinear split-rule 5 (x) ≤ 0.

– Method: Bilevel optimization is used to determine 5 (x). Details regarding this are

discussed in Sec 3.3.

• SplitNode(Data, SplitRule)

– Input: Data, split-rule 5 (x) ≤ 0.

– Output: LeftNode and RightNode which are node-data-structures, where LeftN-

ode.Data represents datapoints in the input Data satisfying 5 (x) ≤ 0 while RightN-

ode.Data represents datapoints in the input Data violating the split-rule.

3.2.2 Split-Rule Discovery Using Bilevel Optimization

In this chapter, we restrict the expression of split-rule at a conditional node of the decision tree

operating on a feature vector x to assume the following structure:

Rule : 5 (x,w,�,B) ≤ 0, (3.1)

1Details regarding termination criteria can be found in the Section 3.10

14

Algorithm 1: Pseudo Code to Recursively Induce NLDT.
Input: Dataset
Function UpdatedNode = InduceNLDT(Node, depth):

Node.depth = depth;
if TerminationSatisfied(Node) then

Node.Type = ‘leaf’;
else

Node.Type = ‘conditional’;
Node.SplitRule = ObtainSplitRule(Node.Data);
[LeftNode, RightNode] = SplitNode(Node.Data, Node.SplitRule);
Node.LeftNode = InduceNLDT(LeftNode, depth + 1);
Node.RightNode = InduceNLDT(RightNode, depth + 1);

end
UpdatedNode = Node;

// NLDT Induction Algorithm
RootNode.Data = Dataset;
Tree = InduceNLDT(RootNode, 0)

where 5 (x,w,�,B) can be expressed in two different forms depending on whether a modulus

operator < is sought or not:

5 (x,w,�,B) =


\1 + F1�1 + . . . + F?�? , if < = 0,��\1 + F1�1 + . . . + F?�?

�� − ��\2�� , if < = 1.
(3.2)

Here, F8’s are coefficients or weights of several power-laws (�8’s), \8’s are biases,< is themodulus-

flagwhich indicates the presence or absence of themodulus operator, ? is a user-specified parameter

to indicate the maximum number of power-laws (�8) which can exist in the expression of 5 (x), and

�8 represents a power-law rule of type:

�8 = G
181
1 × G1822 × . . . × G183

3
, (3.3)

15

Algorithm 2: ObtainSplitRule subroutine. Implements a Bilevel optimization algorithm
of determine a split-rule. The UpperLevel searches the space of Block Matrix B and
modulus-flag <. Constraint violation value for an upper level individuals comes by
executing lower-level GA (LLGA) as shown in Algorithm 3.
Input: Data
Output : SplitRule // split-rule 5 (x)
Function SplitRule = ObtainSplitRule(Data):

Initialize: %* // Upper Level population
// Execute LLGA (Algorithm 3)
%* = EvaluateUpperLevelPop(%*);
// Upper Level GA Loop
for gen = 1:MaxGen do

%%0A4=C
*

= Selection(%*);
%�ℎ8;3
*

= Crossover(%%0A4=C
*

);
%* = Mutation(%�ℎ8;3

*
);

// Execute LLGA (Algorithm 3)
%* = EvaluateUpperLevelPop(%*);
// Elite preservation

%* = SelectElite(%%0A4=C
*

, %*);
if TerminationConditionSatisfied then

break;
end

end
// Extract best solution in %*
SplitRule = ObtainBestInd(%*);

B is a block-matrix of exponents 18 9 , given as follows:

B =



111 112 113 . . . 113

121 122 123 . . . 123
...

...
...

. . .
...

1?1 1?2 1?3 . . . 1?3


. (3.4)

Exponents 18 9 ’s are allowed to assume values from a specified discrete set E. In this work, we set

? = 3 and E = {−3,−2,−1, 0, 1, 2, 3} to limit the maximum complexity of the rule, however value

of ? and set E can be changed by the user. Parameters F8 and \8 are real-valued variables in [−1, 1].

The feature vector x is a datapoint in a 3-dimensional space. Another user-defined parameter 0max

16

Algorithm 3: EvaluateUpperLevelPop subroutine. A dedicated LowerLevel optimization
is executed for each upper level population member.
Input: %* // Upper Level population
Output
:

%′
*
// Evaluated Population

Function %′
*
= EvaluateUpperLevelPop(%*):

for i = 1:PopSize do
// Execute LLGA (see Section 3.3.3)
[�! , w, �] = LLGA(Data, B, <);
[%*[i].w, %*[i].�] = [w, �];
// Constraint and Fitness Value
%*[i].CV = �! − g� ;
%*[i].�* = MaxActiveTerms(B);

end
%′
*
= %*

controls the maximum number of variables that can be present in each power-law �8. The default

is 0max = 3 (i.e. dimension of the feature space).

3.3 Bilevel Approach for Split-Rule Identification

3.3.1 The Hierarchical Objectives to derive split-rule

Here, we illustrate the need of formulating the problem of split-rule identification as a bilevel-

problem using Figure 3.2.

The geometry and shape of split-rules is defined by exponent terms 18 9 appearing in its expres-

sion (Eq. 3.2 and 3.3) while the orientation and location of the split-rule in the feature-space is

dictated by the values of coefficients F8 and biases \8 (Eq. 3.2). Thus, the above optimization task

of estimating split-rule 5 (x) involves two types of variables:

1. Discrete: �-matrix representing exponents of �-terms (i.e. 18 9 as shown in Eq. 3.4) and the

modulus flag < indicating the presence or absence of a modulus operator in the expression

of 5 (x), and

2. Continuous: weights w and biases � in each rule function 5 (x).

17

Figure 3.2: In this illustration, a two-class data comprising of two features G1 and G2 is provided.
�, � and � are three different split-rules. Split-rule � is able to optimally partition the data, but
is complex and may not be interpretable. Rule � is simple, however it does not produce accurate
classification. Rule � is simple as well as classifies the data accurately.

Identification of a good structure for � terms and value of< is a more difficult task, compared to the

weight and bias identification. We argue that if both types of variables are concatenated in a single

genome, a good (B, <) combination may be associated with a not-so-good (w, �) combination

(like split-rule � in Fig. 3.2), thereby making the whole solution vulnerable to deletion during

evolution. It may be better to separate the search of a good structure of (B, <) combination from

the weight-bias search at the same level, and search for the best weight-bias combination for every

(B, <) pair as a detailed task. This hierarchical structure of the variables motivates us to employ

a bilevel optimization approach [36] to handle above variables. The upper level optimization

algorithm searches the space of B and <. Then, for each (B, <) pair, the lower level optimization

algorithm is invoked to determine the optimal values of w and �. Referring to Fig. 3.2, the upper-

level will search for the structure of 5 (x) which might have a nonlinearity (like in rule �) or might

be linear (like rule �). Then, for each upper-level solution (for instance a solution corresponding

to a linear rule structure), the lower-level will adjust its weights and biases to determine its optimal

location �.

18

The bilevel optimization problem can be then formulated as shown below:

Min. �* (B, <,w∗,�∗),

s.t. (w∗,�∗) ∈ argmin
{
�! (w,�) |(B,<)

��
�! (w,�) |(B,<) ≤ g� ,

−1 ≤ F8 ≤ 1, ∀8, � ∈ [−1, 1]<+1
}
,

< ∈ {0, 1}, 18 9 ∈ {−3,−2,−1, 0, 1, 2, 3},

(3.5)

where the upper level objective �* is quantifies the simplicity of the split-rule, and, the lower-level

objective �! quantifies quality of split resulting due to split-rule 5 (x) ≤ 0. An upper-level solution

is considered feasible only if it is able to partition the data within some acceptable limit which is

set by a parameter g� . A more detailed explanation regarding the upper level objective �* and the

lower-level objective �! is provided in next sections. A pseudo code of the bilevel algorithm to

obtain split-rule is provided in Alogrithm 2 and the pseudo code provided in Algorithm 3 gives on

overview on the evaluation of population-pool in upper level GA. In next sections, we provide a

mathematical insight on the procedure to compute lower-level and upper level objective functions,

�! and �* respectively.

3.3.1.1 Computation of �!

The impurity of a node in a decision tree is defined by the distribution of data present in the node.

In this work, we use gini-score to gauge the impurity of a node. Thus, for a given parent node % in

a decision tree and two child nodes ! and ' resulting from it, the net-impurity of child nodes (�!)

can be computed as follows:

�! (w,�) |(B,<) =
(
#!

#%
Gini(!) + #'

#%
Gini(')

)
(w,�,B,<)

, (3.6)

where #% is the total number of datapoints present in the parent node %, and #! and #' indicate

the total number of points present in left (!) and right (') child nodes, respectively. Datapoints in

% which satisfy the split-rule at node % (i.e. 5% (x) ≤ 0, x ∈ %) (Eq 3.1) go to left node, while the

rest go to the right node. The objective �! of minimizing the net-impurity of child nodes favors

19

the creation of purer child nodes (i.e. nodes with a low gini-score value). For an ideal split, the

left and right child nodes will have completely homogeneous data, i.e. all datapoints present in the

node will belong to one class (say left node will have all points from Class-1 while right node will

have all points from Class-2).

3.3.1.2 Computation of �*

The objective �* is subjective in its form since it targets at dealing with a subjective notion of

generating visually simple equations of split-rule. Usually, equations with more variables and terms

seem visually complicated. Taking this aspect into consideration, �* is set as the total number of

non-zero exponent terms present in the overall equation of the split-rule (Eq. 3.1). Mathematically,

this can be represented with the following equation:

�* (B, <,w∗,�∗) =
?∑
8=1

3∑
9=1

6(18 9), (3.7)

where 6(U) =


1, U ≠ 0,

0, U = 0.

Here, we use only B to define �* , but another more comprehensive simplicity term involving

presence or absence of modulus operators and relative optimal weight/bias values of the rule can

also be used.

3.3.2 Upper Level Optimization (ULGA)

A genetic algorithm (GA) is implemented to explore the search space of power-laws �8’s and

modulus flag < in the upper level. The genome is represented as a tuple (B, <) wherein B is a

matrix as shown in Equation 3.4 and < assumes a Boolean value of 0 or 1.

The upper level GA focuses at estimating a simple equation of the split-rule within a desired

value of net impurity (�!) of child nodes. Thus, the optimization problem for upper level is

20

formulated as a single objective constrained optimization problem as shown in Eq. 3.5. The

constraint function �! (w,�) |(B,<) is evaluated at the lower level of our bilevel optimization

framework. The threshold value g� indicates the desired value of net-impurity of resultant child

nodes (Eq. 3.6). In our experiments, we set g� to be 0.05. As mentioned before, a solution satisfying

this constraint implies creation of purer child nodes. Minimization of objective function �* should

result in a simplistic structure of the rule and the optimization will also reveal key variables needed

in the overall expression.

3.3.2.1 Custom Initialization for Upper Level GA

Minimization of objective �* (given in Eq 3.7) requires to have less number of active (or non-zero)

exponents in the expression of split-rule (Eq 3.1). To facilitate this, the population is initialized

with a restriction of having only one active (i.e. non-zero) exponent in the expression of split-rule,

i.e., any-one of the 18 9 ’s in the block matrix B is set to a non-zero value from a user-specified set E

and the rest of the elements of matrix B are set to zero. Note here that only 23 number of unique

individuals (3 individuals with < = 0 and 3 individuals with < = 1) can exist which satisfy the

above mentioned restriction. If the population size for upper level GA exceeds 23, then remaining

individuals are initialized with two non-zero active-terms (i.e. randomly, two 18 9 ’s are set to a

non-zero value, while rest of the elements in B are fixed to zero) and the process continues until all

population members in the upper level are initialized uniquely. As the upper level GA progresses,

incremental enhancement in rule complexity is realized through crossover and mutation operations,

which are described next.

3.3.2.2 Ranking of Upper Level Solutions

The binary-tournament selection operation and (`+_) survival selection strategies are implemented

for the upper level GA. Selection operators use the following hierarchical ranking criteria to perform

selection:

21

Definition 3.3.1 For two individuals 8 and 9 in the upper level, rank(8) is better than rank(9), when

any of the following is true:

• 8 and 9 are both infeasible AND �! (8) < �! (9),

• 8 is feasible (i.e. �! (8) ≤ g�) AND 9 is infeasible (i.e. �! (9) > g�),

• 8 and 9 both are feasible AND �* (8) < �* (9),

• 8 and 9 both are feasible AND �* (8) = �* (9)

AND �! (8) < �! (9),

• 8 and 9 both are feasible AND �* (8) = �* (9)

AND �! (8) = �! (9) AND <(8) < <(9).

3.3.2.3 Custom Crossover Operator for Upper Level GA

The main challenging aspect of developing an evolutionary algorithm is to design meaningful

genetic operators. Crossover operation is one such stage in GAs where there is an information

exchange between two (or more) individual species in the parent population pool. The crossover

operation between two (or more) participating parents creates one or more children. For a real

coded GA involving only real continous variables, Simulated Binary Crossover (SBX) [37] is one

such meaningful genetic operator for exchanging information between two parents to create two

children. A 2D illustration of the concept of meaningful crossover is provided in Figure 3.3.

In our case, in the upper level, the crossover operator needs to be designed to meaningfully

crossover two parent equations. To do that, population members are first clustered according to

their <-value – all individuals with < = 0 belong to one cluster and all individuals with < = 1

belong to another cluster. The crossover operation is then restricted to individuals belonging to

the same cluster. The crossover operation selects two parents %1 and %2 from the same cluster

having block matrix BP1 and BP2 to create two children with block matrices BC1 and BC2 . As

mentioned before, each row of a block matrix B represents a power-law �8 (Eq. 3.3). The crossover

22

(a) Meaningful Crossover (SBX) example (b) Meaningless Crossover example

Figure 3.3: Illustrations of meaningful and meaningless crossover operations. In the meaningful
crossover operation, children (green dots) will carry information of parents (red dots). Hence, they
will be located with high probability at the corners of the rectangle ����. On the other hand, the
meaningless crossover operation creates children at random locations, without taking leverage of
parents.

operation is executed separately on each row of block matrices of participating parents to generate

corresponding rows of child block matrices. First, rows of block matrices of participating parents

are rearranged in descending order of the magnitude of their corresponding coefficient values (i.e.

weights F8 of Eq. 3.2). This way, the most influential power-law in the equation of parent individual

will be shuffled to the first row of the rearranged block matrix B′. The second row of the rearranged

block matrix B′ will have exponents corresponding to the second most influential power-law and

so on. Let the parent block matrices be represented as B′P1
and B′P2

after this rearrangement. The

crossover operation is then conducted element wise on each row of B′P1
and B′P2

. Doing so allows

us to mate those rows of the participating parents which had similar importance in the respective

equations of the split-rule. For better understanding of the cross-over operation, a psuedo code is

provided in Algorithm 4 and a schematic is provided in Figure 3.4.

23

(a) Sorting of B-mat

(b) Crossover Operation

Figure 3.4: Upper Level Crossover Operation

3.3.2.4 Custom Mutation Operator for Upper Level GA

In genetic algorithms, the purpose of mutation operation is to conduct local perturbations to parent

solutions. A meaningful and controlled mutation generates the mutated individual in the vicinity

of the unmutated original value2. In real coded GAs, polynomial mutation [38] is popularly used to

execute this task. An illustrative plot of polynomial mutation operator is provided in Figure 3.5a.

Since the upper level of our GA focuses on the search space involving discrete variables, we

use the discretized version of mutation to mutate the values of exponents 18 9 (Eq. 3.3) as shown in

Figure 3.5. For a given upper level solution with block matrix B andmodulus flag<, the probability

with which 18 9 ’s and < gets mutated is controlled by parameter ?*<DC . From the experiments, value

of ?*<DC = 1/3 is found to work well. The mutation operation then changes the value of exponents

2while most of the times mutation is desired to create local perturbations, under some scenario, a randomized
mutation is favoured to increase the diversity of the population pool.

24

Algorithm 4: Crossover operation in upper level GA.
input : Block matrices BP1 and BP2 , and weight vectors wP1 and wP2 .
output
:

Child block matrices BC1 and BC2 .

B′P1
= SortRows(BP1 ,wP1);

B′P2
= SortRows(BP2 , wP2);

=A>FB = Size(BP1 ,1);
=2>;B = Size(BP1 ,2);
for 8 ← 1 to =A>FB do

for 9 ← 1 to =2>;B do
A = rand();
// random no. between 0 and 1.
if A ≤ 0.5 then

BC1 (8, 9) = BP1 (8, 9);
BC2 (8, 9) = BP2 (8, 9);

else
BC1 (8, 9) = BP2 (8, 9);
BC2 (8, 9) = BP1 (8, 9);

end
end

end

18 9 and the modulus flag <. Let the domain of 18 9 be given by E, which is a sorted finite set of

allowable exponents. Since E is sorted, its elements can be accessed using an integer-id : , with

id-value of : = 1 representing the smallest exponent and : = =4 representing the largest exponent.

In our case, E = [−3,−2,−1, 0, 1, 2, 3] (making =4 = 7). The mechanism with which the mutation

operator mutates the value of 18 9 for any arbitrary sorted array E is illustrated in Fig. 3.5.

Here, the red tile indicates the index (:) of exponent 18 9 in array E. Red shaded vertical bars

indicate the probability distribution for obtaining mutated-values. The 18 9 can be mutated to either

of : − 2, : − 1, : + 1, or : + 2 id-values with a probability of U, VU, VU, and U respectively. The

parameter V is preferred to be greater than one and is supplied by the user. The parameter U is then

computed using the following equation:

U =
1

2(1 + V) . (3.8)

25

(a) Polynomial Mutation on the 8-th component of an individual x. The
probability distribution curve %(G, [) dictates the location where the 8-th
component of child (i.e. G8

�
) will be after mutating the parent component

(i.e. G8
%
). Here, the mutated value G8

�
has a higher probability of getting

created near the parent value G8
%
. The steepness of the probability curve

%(G, [) can be adjusted by parameter [, with higher values of [giving
steeper curve.

(b) Discretized Mutation mimics the behaviour of real polynomial mutation
discussed in figure above. Red vertical bars indicate the probability distri-
bution of obtaining mutated values. The parent unmutated value is located
at :-th index value. Here, we intentionally avoid creating mutated value on
the parent value and encourage creation of mutated values at immediate two
neighboring allowable values to facilitate the creation of unique solutions.

Figure 3.5: Mutation for Upper Level GA

The above formula to compute U is derived by equating the sum of probabilities to 1. In our

experiments, we have set V = 3. The value of the modulus flag < is mutated randomly to either 0

or 1 with 50% probability.

In order to bias the search to create simpler rules (i.e. split-rules with a small number of non-

zero 18 9 ’s), we introduce a parameter ?I4A>. The value of parameter ?I4A> indicates the probability

with which a variable 18 9 participating in mutation is set to zero (i.e. 18 9 ← 0). In our case, we

use ?I4A> = 0.75. Thus, 18 9 → 0 with a net probability of ?*<DC × ?I4A>.

26

3.3.2.5 Duplicate Update Operator

After creating the offspring population, we attempt to eliminate duplicate population members.

For each duplicate found in the child population, the block-matrix B of that individual is randomly

mutated using the following equation

B(8A , 9A) = E(:A), (3.9)

where 8A , 9A and :A are randomly chosen integers within specified limits. This process is repeated

for all members of child population, until each member is unique within the child population. This

operation allows to maintain diversity and encourages the search to generate multiple novel and

optimized equations of the split-rule.

(`+_) survival selection operation is then applied on the combined child and parent population.

The selected elites then go to the next generation as parents and the process repeats.

The parameter setting for upper level GA can be found in Section 3.10.

3.3.3 Lower Level Optimization (LLGA)

For a given population member of the upper level GA (with block matrix B and modulus flag < as

variables), the lower level optimization problem determines the coefficients F8 (Eq. 3.2) and biases

\8 such that �! (w,�) |(B,<) (Eq. 3.6) is minimized. Thus, the lower level optimization problem

can be stated as below:

Minimize: �! (w,�) |(B,<) , (3.10)

w ∈ [−1, 1]? , � ∈ [−1, 1]<+1.

We describe the details of the real-parameter GA used for solving the lower level problem next.

27

3.3.3.1 Custom Initialization for Lower Level GA

One of the most crucial and effective operator to determine optimal values of variables of lower

level optimization was the initialization operation. As stated before in Section 3.3.1.1, the lower

level objective function �! provides the quantification to the net impurity of child nodes (Eq. 3.6).

The number of points going to left child node�! and right child node�' depends on the sign of the

split function 5 (x) of the parent node, where 5 (x) ≤ 0 =⇒ x→ �! and 5 (x) > 0 =⇒ x→ �'.

Geometrically the split function 5 (x,B, <,w,�) is linear in the transformed B-space since

5 (x,B, <,w,�) =


∑?

8=1 F8�8 + \0 if < = 0���∑?

8=1 F8�8 + \0
��� − |\1 | if < = 1

where �8 =
∏3
9=1 G

18 9

9
3. Hence, the lower level searches the optimal orientation (dictated by w)

and location (dictated by�) of the linear straight line in the mapped B-space as shown in Figure 3.6.

Figure 3.6: Illustration of Data in B-Space. The split function 5 (x,B, <,w,�) is a straight line
in B-space. Dotted lines represent the convex hull engulfing the data. Different possible split
functions are shown by straight lines �, �, � and �.

Since no separation of data is evident if the straight line representing the split function in

3technically, with < = 1, there will be two linear lines which will represent the split fuction. However, each line
will be separating two classes.

28

B-space lies outside of the convex hull (dotted lines in Figure 3.6), the function landscape of

�! (w,�) |B,< is flat in the region outside the convex hull (since either #! = 0 or #' = 0 in

Eq. 3.6). This constitutes a very significant portion of the domain of �! . If the initial population

pool of straight lines lies in the region outside of the convex hull, then the optimization algorithm

gets no signal and motivation to move and reorient pool of initialized straight lines. Under certain

scenarios, crossover and mutation operators might generate solutions representing straight lines

passing through the dataset (shown by � in Figure 3.6), thereby partitioning it into two subsets

5 (x) ≤ 0 and 5 (x) > 0. In practice, a lot of computation is wasted while arriving at a situation

where most of the individuals in the population pool represent straight lines in B-space which

crosses the convex hull and partition the data.

In a bilevel optimization, the lower level problem must be solved for every upper level variable

vector, thereby requiring a computationally fast algorithm for the lower level problem. Considering

these aspects, instead of creating every population member in lower level randomly, we use the

mixed dipole concept [39, 17, 40] to initialize the population pool of straight lines in B-space to

ensure each of the initialized member partitions atleast one point in the dataset from the rest as

shown in Figure 3.7. This smart initialization facilitates faster convergence towards optimal (or

near-optimal) values of w and �.

The dipole based initialization is done in the following way:

Step 1: Randomly pick two datapoints xA and xB such that xA ∈ Class-1 and xB ∈ Class-2.

Step 2: Weights wh and bias \ℎ of the hyperplane � (where � (wh, \ℎ) : wh · x + \ℎ = 0) separating

xA and xB can be computed with equation mentioned below

wh = xA − xB,

\ℎ = Δ × (−wh · xB) − (1 − Δ) × (wh · xA),
(3.11)

where Δ is a random number between 0 and 1. This is pictorially represented in Fig. 3.7.

29

Step 3: Set values of variables w and � of a population member of lower level GA as shown below

w = wh, (3.12)

\1 = \ℎ, (3.13)

\2 = min(Δ , 1 − Δ) if < = 1. (3.14)

Step 4: Repeat Steps 1-3 until all population members of lower level GA are initialized.

Figure 3.7: Mixed dipole (xA, xB) and a hyperplane � (wh, \ℎ).

As mentioned before, this method of initialization is found to be more efficient than randomly

initializing w andΘ since in the region beyond the convex-hull bounding the training dataset (which

constitutes major volume of the domain space), the landscape of �! is flat thereby making any

optimization algorithm to stagnate.

3.3.3.2 Selection, Crossover, and Mutation for Lower Level GA

The binary tournament selection [38], SBX crossover [37] and polynomial mutation [41] were used

to create the offspring solutions. (` + _) survival selection strategy was then adopted to preserve

elites.

30

3.3.3.3 Termination Criteria for Lower level GA

The lower level GA is terminated after a maximum of 50 generations were reached or when the

change in the lower level objective value (i.e. �!) is less than 0.01% in the past 10 consecutive

generations.

Other parameters setting for lower-level GA can be found in Section 3.10.

3.4 Ablation Studies and Comparison

In this section, we test the efficacy of lower-level and upper-level optimization algorithm by

applying them on four customized problems (DS1-DS4) which are shown pictorially in Fig. 3.8.

Their performances are compared against two standard classifiers: CART and support-vector-

machines (SVM)4.

3.4.1 Ablation Studies on Lower Level GA

Since the lower level GA (LLGA) focuses at determining coefficients F8 and bias \8 of linear

split-rule in B-space, DS1 and DS2 datasets are used to guage its efficacy. The block matrix B is

fixed to 2 × 2 identity matrix and the modulus-flag < is set to 0. Hence, the split-rule (classifier)

to be evolved is

5 (x) = \1 + F1G1 + F2G2,

where F1, F2 and \1 are to be determined by the LLGA.

The classifier generated by our LLGA is compared with that obtained using the standard SVM

algorithm (without any kernel-trick) on DS1 dataset. Since DS2 dataset is unbalanced, SMOTE

algorithm [42] is first applied to over-sample datapoints of the minority class before generating

the classifier using SVM. For the sake of completeness, classifier generated by SVM on DS2

dataset, without any oversampling, is also compared against the ones obtained using LLGA and

4Here, the support vector machine is applied without any kernal-trick.

31

(a) DS1 Dataset. (b) DS2 Dataset.

(c) DS3 Dataset. (d) DS4 Dataset.

Figure 3.8: Customized datasets. DS1 is linear and balanced, DS2 is linear but unbalanced with
minority class having 10x less points. DS3 is nonlinear and DS4 has a sandwiched distribution.

SMOTE+SVM. The results are shown in Fig. 3.9 and Fig. 3.10, respectively, for DS1 and DS2

datasets. Type-1 and Type-2 errors are reported for each experiment5.

It is clearly evident from the results shown in Fig. 3.9 that the proposed customized LLGA

is more efficient than SVM in arriving at the desired split-rule as a classifier. The LLGA is able

to find the decision boundary with 100% prediction accuracy on training and testing datasets.

However, the classifier generated by SVM has an overlap with the cloud of datapoints belonging to

the scattered class and there-by resulting into the accuracy of 89% on the testing dataset.

On the DS2 dataset, SVM is required to rely on SMOTE to synthetically generate datapoints

5Type-1 error indicates the percentage of datapoints belonging to Class-1 getting classified as Class-2. Type-2
error indicates the percentage of points belonging to Class-2 getting classified as Class-1).

32

(a) LLGA: (0%, 0%); (0%, 1%) (b) SVM: (0%, 17%); (0%, 10%)

Figure 3.9: Results on DS1 dataset to benchmark LLGA. Numbers in first parenthesis indicate
Type-1 and Type-2 error on training data and the numbers in second parenthesis indicate Type-1
and Type-2 error on testing data.

in order to achieve respectable performance as can be seen from Fig. 3.10b (without SMOTE) and

3.10c (with SMOTE). However, LLGA performs better without SMOTE, as shown in Fig. 3.10a.

Ablation study conducted above on LLGA clearly indicates that the customized optimization

algorithm developed for estimating weights w and bias� in the expression of a split-rule is reliable

and efficient and could easily outperform the classical SVM algorithm.

3.4.2 Ablation Studies on the Proposed Bilevel GA

As mentioned before, the upper level of our bilevel algorithm aims at determining optimal power-

law structures (i.e. �8s) and the value of modulus flag <. Experiments are performed on DS3

and DS4 datasets to guage the efficacy of upper level (and thus the overall bilevel) GA. No prior

information about the optimal values of block matrix B and modulus flag < is supplied. Thus, the

structure of the equation of the split-rule is unknown to the algorithm. Results of these experiments

are shown in Figs. 3.11a and 3.11b.

As can be seen from Fig. 3.11a, the proposed bilevel algorithm is able to find quatratic split-rule

which is able to partition the DS3 dataset with no Type-I or Type-II error. Results on DS4 dataset

validated the importance of involving modulus-flag < as a search variable for upper level GA in

33

(a) LLGA : (0%, 0%); (0%, 0%) (b) SVM: (100%, 0%); (100%, 0%)

1 1.5 2 2.5 3 3.5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) SVM+SMOTE: (0%, 1.5%); (0%, 1.5%)

Figure 3.10: Results on DS2 dataset to benchmark LLGA.

addition to the block-matrix B. The algorithm is able to converge at the optimal tree topology

(Fig. 3.11b) with 100% classification accuracy.

It is to note here that the algorithm had no prior knowledge about optimal block matrix B of

exponents 18 9 . This observation suggests that the upper level GA is successfully able to navigate

through the search space of block-matrices B and modulus-flag < (which is a binary variable) to

arrive at the optimal power-laws and split-rule.

Fig. 3.12 and Fig. 3.13 shows plots of a decision boundary (split-rule) obtained using our

bilevel-algorithm onDS3 andDS4 datasets, their corresponding NLDTs and its comparison against

the decision-tree obtain using traditional CART algorithm on DS3 and DS4 datasets.

34

(a) DS3: (0%, 0%); (0%, 0%) (b) DS4: (0%, 0%); (0%, 0%)

Figure 3.11: Bilevel GA results on DS3 and DS4.

3.5 Visualization of split-rule: X-Space and B-Space

A comprehensible visualization of the decision boundary is possible if dimension of the feature

space is up to three. However, if the dimension 3 of the original feature space (or, X-space) is larger

than three, the decision-boundary can be visualized on the transformed-feature-space (or B-space).

In our experiments, the maximum number of allowable power-law-rules (?) is fixed to three (i.e.

? = 3). Thus, any datapoint x in a 3-dimensional X-space can be mapped to a three-dimensional

B-space (Eq. 3.3). A conceptual illustration of this mapping is provided in Fig. 3.14, where, for the

sake of simplicity, a three-dimensional X-space (G1 to G3) is mapped to a two-dimensional B-space

using two power-law-rules (�1 and �2).

It is to note here that the power-law rules �8’s are not known a priori. The proposed bilevel

optimization method determines them so that the data becomes linearly separable in B-space.

Results and discussions provided in Section 3.7 provide clarity on this novel aspect of our nonlinear

decision tree representation.

35

(a) Bilevel GA results: (0%, 0%) and (1%, 0%). (b) Obtained NLDT for DS3 problem – One rule.

x1 ≤ 1.01

x0 ≤ 0.75 3

x0 ≤ 0.34 x1 ≤ 0.46

1 x1 ≤ 0.84

x0 ≤ 0.64 x0 ≤ 0.40

x1 ≤ 0.82 x1 ≤ 0.60

1 1 x1 ≤ 0.58 3

1 1

x1 ≤ 0.89 3

1 3

x0 ≤ 1.01 3

x1 ≤ 0.27 3

1 x0 ≤ 0.86

1 3

(c) CART results: (0%, 4%) and (4%, 3%) – 13 rules.

Figure 3.12: Results on DS3 dataset to benchmark the overall bilevel algorithm.

3.6 Overall Tree Induction and Pruning

Once the split-rule for a conditional node is determined using the above bilevel optimization

procedure, resulting child nodes are checked for the following termination criteria:

• Depth of the Node > Maximum allowable depth,

• Number of datapoints in node < #<8=, and

• Node Impurity ≤ g<8=.

36

(a) Bilevel GA results: (0%, 0%) and (0%, 0%)
– No error. (b) Obtained NLDT for DS4 problem – One rule.

x0 ≤ 1.03

x0 ≤ 0.74 3

x1 ≤ 1.52 x1 ≤ 1.50

3 x0 ≤ 0.53

x1 ≤ 1.93 x1 ≤ 1.95

3 x0 ≤ 0.43

x1 ≤ 2.20 x1 ≤ 2.20

x1 ≤ 2.17 x0 ≤ −0.01

3 1 3 x0 ≤ 0.07

x1 ≤ 2.84 x1 ≤ 2.86

3 1 1 3

x1 ≤ 1.95 3

3 1

x0 ≤ 0.63 3

1 x1 ≤ 1.73

1 3

x1 ≤ 0.97 x0 ≤ 0.80

3 x0 ≤ 1.01

x0 ≤ 0.90 3

x1 ≤ 1.14 x1 ≤ 1.24

3 x0 ≤ 0.78

x1 ≤ 1.38 x1 ≤ 1.43

3 1 1 3

1 3

1 3

(c) CART results: (4%, 3%) and (5%, 18%), 27 rules.

Figure 3.13: Results on DS4 dataset to benchmark the overall bilevel algorithm.

If any of the above criteria is satisfied, then that node is declared as a terminal leaf node. Otherwise,

the node is flagged as an additional conditional node. It then undergoes another split (using a split-

rule which is derived by running the proposed bilevel-GA on the data present in the node) and the

process is repeated. This overall process is illustrated in Algorithm 1. This procedure eventually

produces themain nonlinear decision tree #!�)<08=. The fully grown decision tree then undergoes

pruning to produce the pruned decision tree #!�)?AD=43 .

During the pruning phase, splits after the root-node are systematically removed until the training

accuracy of the pruned tree does not fall below a pre-specified threshold value of g?AD=4 = 3%

37

Figure 3.14: Feature Transformation. A point in three-dimensional X-space is mapped to a point
in a two-dimensional B-space for which �8 = G

181
1 G

182
2 G

183
3 .

(set here after trial-and-error runs). This makes the resultant tree topologically less complex

and provides a better generalizability. In subsequent sections, we provide results on final NLDT

obtained after pruning (i.e. #!�)?AD=43), unless otherwise specified.

3.7 Results

This section summarizes results obtained on four customized test problems, two real-world

classification problems, three real-world optimization problems and eight custom designed multi-

objective problems. For each experiment, 50 runs are performed with random training and testing

sets. A dataset is split into training and testing sets with a ratio of 7:3, respectively. Mean and

standard deviation of training and testing accuracy-scores across all 50 runs are evaluated to

gauge the performance of the classifier. Statistics about the number of conditional nodes (given by

#Rules) in NLDT, average number of active terms in split-rules of decision tree (i.e. �* /Rule) and

rule length (which gives total number of active-terms appearing in the entire NLDT) is provided to

quantify the simplicity and interpretability of classifier (lesser this number, simpler is the classifier).

The comparison is made against classical CART tree solution [12] and SVM [43] results. For SVM,

the Gaussian kernel is used and along with overall accuracy-scores; statistics about the number

of support vectors (which is also equal to the rule-length) is also reported. It is to note that the

decision boundary computed by SVM can be expressed with a single equation, however the length

38

of the equation usually increases with the number of support vectors [44]. We used MATLAB’s

SVM routine with default parameter settings.

For each set of experiments, best scores are highlighted in bold andWilcoxon signed-rank test is

performed on overall testing accuracy scores to check the statistical similarity with other classifiers

in terms of classification accuracy. Statistically similar classifiers (which will have their ?-value

greater than 0.05) are italicized.

3.7.1 Customized Datasets: DS1 to DS4

The compilation of results of 50 runs on datasets DS1-DS4 is presented in Table 3.1. The results

clearly indicate the superiority of the proposed nonlinear, bilevel based decision tree approach over

classical CART and SVM based classification methods. Bilevel approach finds a single rule with

Table 3.1: Results on DS1 to DS4 datasets (2 features).

Dataset Method Training
Accuracy

Testing
Accuracy p-value #Rules FU/Rule Rule

Length

DS1
Bilevel 99.78 ± 0.51 99.55 ± 1.08 – 1.0 ± 0.0 2.3 ± 0.6 2.3 ± 0.6
CART 97.99 ± 0.96 90.32 ± 4.06 7.34e-10 14.5 ± 1.7 1 14.5 ± 1.7
SVM 98.67 ± 0.31 98.50 ± 1.09 1.29e-05 1 71.5 ± 3.3 71.5 ± 3.3

DS2
Bilevel 99.80 ± 0.40 99.44 ± 0.87 – 1.0 ± 0.0 2.3 ± 0.7 2.3 ± 0.7
CART 98.80 ± 0.50 95.43 ± 1.50 5.90e-10 11.0 ± 1.4 1 11.0 ± 1.4
SVM 96.95 ± 0.73 95.24 ± 0.16 2.43e-10 1 44.7 ± 1.9 44.7 ± 1.9

DS3
Bilevel 99.91 ± 0.35 99.77 ± 0.67 – 1.0 ± 0.0 2.2 ± 0.5 2.2 ± 0.5
CART 99.42 ± 0.57 95.00 ± 2.35 7.00e-10 11.5 ± 1.3 1 11.5 ± 1.3
SVM 98.96 ± 0.42 98.38 ± 1.15 7.16e-09 1 62.1 ± 3.4 62.1 ± 3.4

DS4
Bilevel 99.34 ± 1.21 98.88 ± 1.65 – 1.2 ± 0.4 2.6 ± 0.6 3.1 ± 1.4
CART 96.98 ± 1.19 88.68 ± 3.60 7.31e-10 31.3 ± 4.2 1 31.3 ± 4.2
SVM 98.19 ± 0.44 97.28 ± 1.19 1.31e-05 1 89.8 ± 3.3 89.8 ± 3.3

two to three appearances of variables in the rule, whereas CART requires 11 to 31 rules involving

a single variable per rule, and SVM requires only one rule but involving 44 to 90 appearances of

variables in the rule. Moreover, the bilevel approach achieves this with the best accuracy. Thus,

classifiers obtained by bilevel approach are more simplistic and simultaneously more accurate.

39

3.7.2 Breast Cancer Wisconsin Dataset

This problem was originally proposed in 1991. It has two classes: benign and malignant, with

458 (or 65.5%) datapoints belonging to benign class and 241 (or 34.5%) belonging to malignant

class. Each datapoint is represented with 10 attributes. Results are tabulated in Table 3.2. The

bilevel method and SVM had similar performance (p-value> 0.05), but SVM requires about 90

variable appearances in its rule, compared to only about 6 variable appearances in the single rule

obtained by the bilevel approach. The proposed approach outperformed the classifiers generated

using techniques proposed in [20, 25, 24, 21, 22] in terms of both: accuracy and comprehensibil-

ity/compactness. The NLDT classifier obtained by a specific run of the bilevel approach has five

variable appearances and is presented in Fig. 3.15.

Table 3.2: Results on breast cancer Wisconsin dataset (10 features).

Method Training
Accuracy

Testing
Accuracy p-value #Rules FU/Rule

Rule
Length

Bilevel 98.07 ± 0.39 96.50 ± 1.16 0.308 1.0 ± 0.0 6.4 ± 1.7 6.4 ± 1.7
CART 98.21 ± 0.49 94.34 ± 1.92 8.51e-09 11.6 ± 2.4 1 11.6 ± 2.4
SVM 97.65 ± 0.39 96.64 ± 1.16 – 1 89.4 ± 14.8 89.4 ± 14.8

Figure 3.15: Breast Cancer Wisconsin NLDT. For each node, number of datapoints # present in
the node, impurity of the node (Gini) and class distribution (in square parenthesis) is reported.

Figure 3.16 provides B-Space visualization of decision-boundary obtained by the bilevel ap-

proach, which is able to identify two nonlinear �-terms involving variables to split the data linearly

40

to obtain high accuracy.

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.2

0.4

0.6

0.8

1

Figure 3.16: B-space plot for Wisconsin breast cancer dataset.

3.7.3 Wisconsin Diagnostic Breast Cancer Dataset (WDBC)

This dataset is an extension to the dataset of the previous section. It has 30 features with total 356

datapoints belonging to benign class and 212 to malign class. Results shown in Table 3.3 indicate

that the bilevel-based NLDT is able to outperform standard CART and SVM algorithms. The

NLDT generated by a run of the bilevel approach requires seven out of 30 variables (or features)

and is shown in Fig. 3.17. It is almost as accurate as that obtained by SVM and is more interpretable

(seven versus about 107 variable appearances).

Table 3.3: Results on WDBC dataset (30 features).

Method Training
Accuracy

Testing
Accuracy p-value #Rules FU/Rule

Rule
Length

Bilevel 98.24 ± 0.64 96.20 ± 1.49 4.65e-05 1.0 ± 0.0 9.2 ± 4.1 9.2 ± 4.1
CART 98.76 ± 0.60 92.11 ± 2.07 1.09e-09 10.8 ± 2.1 1 10.8 ± 2.1
SVM 98.65 ± 0.37 97.39 ± 1.37 – 1 106.7 ± 6.6 106.7 ± 6.6

The �-space plot (Fig. 3.18) shows an efficient discovery of �-functions to linearly classify the

supplied data with a high accuracy.

41

Figure 3.17: Tree for WDBC dataset. For each node, number of datapoints # present in the node,
impurity of the node (Gini) and class distribution (in square parenthesis) is reported.

Figure 3.18: B-space plot for WDBC dataset.

3.7.4 Real World Auto-Industry Problem (RW-problem)

This real-world engineering design optimization problem has 36 variables, eight constraints, and

one objective function. The dataset is highly biased, with 188 points belonging to the good-class

and 996 belonging to the bad-class. Results obtained using the bilevel GA are shown in Table 3.4.

The proposed algorithm is able to achieve near 90% accuracy scores requiring only two split-rules.

The best performing NLDT has the testing-accuracy of 93.82% and is shown in Fig. 3.19.

SVM performed the best in terms of accuracy, but the resulting classifier is complicated with

42

about 241 variable appearances in the rule. However, bilevel GA requires only about two rules, each

having about only 10 variable appearances per rule to achieve slightly less-accurate classification.

CART requires about 30 rules with a deep DT, making the classifier difficult to interpret easily.

Table 3.4: Results on the real-world auto-industry problem (36 features).

Method Training
Accuracy

Testing
Accuracy p-value #Rules FU/Rule

Rule
Length

Bilevel 94.36 ± 1.47 89.93 ± 2.04 4.35e-09 1.9 ± 0.5 10.0 ± 2.9 18.2 ± 5.9
CART 98.00 ± 0.55 91.13 ± 1.32 9.80e-08 29.6 ± 3.9 1 29.6 ± 3.9
SVM 94.98 ± 0.73 93.24 ± 1.38 – 1 240.8 ± 9.4 240.8 ± 9.4

Figure 3.19: NLDT for the auto-industry problem. The first split-rule uses five variables and the
second one uses 12. For each node, number of datapoints # present in the node, impurity of the
node (Gini) and class distribution (in square parenthesis) is reported.

3.7.5 Results on Multi-Objective Optimization Problems

After bench-marking the proposed bilevel GA algorithm on standard classical benchmarks and a

single-objective engineering problem, we now evaluate its performance on two real-world multi-

objective problems: welded-beam design and 2D truss design and eight modified ZDT and DTLZ

problems. We will briefly discuss the procedure used to generate datasets corresponding to these

problems followed by results obtained on them using our approach.

43

3.7.5.1 Truss 2D and Welded Beam Problems

Data creation:

For each problem, NSGA-II [45] algorithm is first applied to evolve the population of # individuals

for 6<0G generations. Population for each generation is stored. Naturally, population from later

generations are closer to Pareto-front than the population of initial generations. We artificially

separate the entire dataset into two classes – good and bad – using two parameters 6A4 5 (indicating

an intermediate generation for data collection) and gA0=: (indicating the minimum non-dominated

rank for defining the bad cluster). First, population members from 6A4 5 and 6<0G generations are

merged. Next, non-dominated sorting is executed on the merged population to determine their non-

domination rank. Points belonging to same non-domination rank are further sorted based on their

crowding-distance (from highest to lowest) [45]. For the good-class, top #� points from rank-1

front are chosen and for the bad-class, top #� points from gA0=: front onward are chosen. Increasing

the gA0=: increases the separation between good and bad classes, while the 6A4 5 parameter has the

inverse effect. Parameter setting for NSGA-II algorithm which is used to generate multi-objective

datasets can be found in Section 3.10.

Truss 2D Results:

Truss 2D problem [46] is a three-variable multi objective problem involving one constraint. Visu-

alization of the Truss dataset in the F-space and X-space is provided in Figure 3.20 for gA0=: = 6

and gA0=: = 9, with 6A4 5 = 1.

Compilation of results obtained using gA0=: = 6 is provided in Table 3.5.

Table 3.5: Results on Truss-2D with gA0=: = 6.

Method Training
Accuracy

Testing
Accuracy p-value #Rules FU/Rule Rule

Length
Bilevel 99.77 ± 0.72 99.54 ± 0.75 – 1.2 ± 0.5 2.9 ± 0.5 3.3 ± 0.9
CART 99.34 ± 0.32 98.33 ± 1.10 6.04e-08 11.06 ± 3.15 1 11.06 ± 3.15
SVM 99.66 ± 0.15 99.46 ± 0.50 0.135 1 62.5 ± 2.9 62.5 ± 2.9

44

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

F
1

0

2

4

6

8

10
F

2

10
4

Pareto

Non-Pareto

(a) F-space plot with gA0=: = 6.

1

0.01

1.5

2

x
3

2.5

3

x
2

0.005 0.01

x
1

0.005
0 0

Pareto

Non-Pareto

(b) X-space plot with gA0=: = 6.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

F
1

0

2

4

6

8

10

F
2

10
4

Pareto

Non-Pareto

(c) F-space plot with gA0=: = 9.

1

0.01

1.5

2

x
3

2.5

3

x
2

0.005 0.01

x
1

0.005
0 0

Pareto

Non-Pareto

(d) X-space plot with gA0=: = 9.

Figure 3.20: Truss design problem data visualization. 6A4 5 = 1 is kept fixed. For a fixed value of
6A4 5 , larger value of gA0=: implies better separation between datapoints belonging to two classes.

Clearly, the bilevel NLDT has the best accuracy and fewer variable appearances (meaning easier

intrepretability) compared to CART and SVM generated classifiers.

Fig. 3.21a shows a 100% correct classifier with a single rule obtained by our bilevel NLDT,

whereas Fig. 3.21b shows a typical CART classifier with 19 rules, making it difficult to interpret

easily.

A comparison of results obtained using NLDT approach on truss problem with gA0=: = 6 and

gA0=: = 9 is provided in Table 3.6.

Table 3.6: 2D Truss problem with gA0=: = 6 and gA0=: = 9.

gA0=:
Training
Accuracy

Testing
Accuracy #Rules FU/Rule

6 99.86 ± 0.36 99.6 ± 0.58 1.20 ± 0.53 2.92 ± 0.52
9 100 ± 0 99.92 ± 0.19 1.36 ± 0.48 2.26 ± 0.52

Clearly, since the data is more separated for gA0=: = 9, the results for gA0=: = 9 are more

accurate and relatively simpler.

45

(a) Bilevel classifier requiring only one rule.

x0 ≤ 0.01

x2 ≤ 1.82 3

3 x2 ≤ 2.19

x1 ≤ 0.01 x1 ≤ 0.01

x0 ≤ 0.00 x0 ≤ 0.00

x0 ≤ 0.00 3

1 1

3 x0 ≤ 0.00

1 x1 ≤ 0.01

3 1

3 x0 ≤ 0.00

3 1

(b) CART classifier with 11 rules.

Figure 3.21: Comparison of bilevel and CART methods on truss problem with gA0=: = 6 dataset.

Welded Beam Design Problem Results:

This bi-objective optimization problem has four variables and four constraints [46]. Here, two sets

of experiments are conducted for two different values of 6A4 5 , keeping the value of gA0=: fixed to

3. Visualization of these datasets in the objective space (or F-space) is provided in Figure 3.22.

A higher value of 6A4 5 results in good and bad datapoints too close to each other (Figure 3.22b),

thereby making it difficult for the classification algorithm to determine a suitable classifier. This

can be validated from the results presented in Table 3.7. However, bilevel NLDTs have produced

46

0 10 20 30 40 50

F
1

0

0.5

1

1.5

2

2.5

3

3.5

4

F
2

10
-3

Pareto

Non-Pareto

(a) F-space plot with 6A4 5 = 1.

0 10 20 30 40 50

F
1

0

0.5

1

1.5

2

2.5

3

3.5

4

F
2

10
-3

Pareto

Non-Pareto

(b) F-space plot with 6A4 5 = 10.

Figure 3.22: Welded Beam Design Problem data visualization. gA0=: = 3 is kept fixed. Problem at
(b) is more difficult to solve than at (a).

one rule with about 2 to 4 variable appearances compared to 39.5 to 126 (on average) for SVM

classifiers. CART does well in this problem with, on average, 2.94 to 8.42 rules. The NLDT

(having a single rule) obtained with 6A4 5 = 10 is shown in Fig. 3.23. Interestingly, the bilevel

NLDTs have similar accuracy to that of CART and SVM.

Table 3.7: Results on welded beam design with 6A4 5 = 1 and 6A4 5 = 10. gA0=: = 3 is kept fixed.

Method Training
Accuracy

Testing
Accuracy p-value #Rules FU/Rule Rule

Length
6A4 5 = 1

Bilevel 99.98 ± 0.06 99.38 ± 0.49 0.158 1.0 ± 0.0 2.6 ± 0.7 2.6 ± 0.7
CART 99.97 ± 0.07 99.50 ± 0.59 – 2.94 ± 0.71 1 2.94 ± 0.71
SVM 99.37 ± 0.17 99.40 ± 0.40 0.331 1 39.5 ± 2.5 39.5 ± 2.5

6A4 5 = 10
Bilevel 99.39 ± 0.38 98.58 ± 1.13 3.42e-02 1.0 ± 0.0 3.9 ± 1.0 3.9 ± 1.0
CART 99.46 ± 0.27 97.72 ± 1.04 4.63e-08 8.42 ± 1.42 1 8.42 ± 1.42
SVM 99.46 ± 0.19 98.97 ± 0.54 – 1 126.0 ± 6.8 126.0 ± 6.8

3.7.5.2 Modified ZDT (m-ZDT) and DLTZ (m-DTLZ) Problems

Problem Definition and Dataset Creation:

These are the modified versions of ZDT and DLTZ problems [45, 47]. For m-ZDT problems, the

g-function is modified to the following:

47

Figure 3.23: Welded beam classifier with one rule for 6A4 5 = 10.

6I3C (G2, . . . , G=) =1 + 18
= − 1

=∑
8 = 2 and even

(G8 + G8+1 − 1)2. (3.15)

Many two-variable relationships (G8 + G8+1 = 1) must be set to be on the Pareto set.

For m-DTLZ problems, the g-function for xm variables is

63C;I (xm) =100 ×
=∑

G8 ∈ xm and 8 is even
(G8 + G8+1 − 1)2. (3.16)

Pareto points for m-ZDT and m-DTLZ problems are generated by using the exact analytical

expression of Pareto-set (locations where 6 = 0). The non-Pareto set is generated by using two

parameters fB?A403 and f> 5 5 B4C . To compute the location of a point xnp belonging to non-Pareto

set from the location of the point xp on the Pareto set, following equation is used:

G
(8)
=? =G

(8)
? + A1(f> 5 5 B4C + A2fB?A403) (3.17)

where A1 ∈ −1, 1, A2 ∈ [0, 1] . (3.18)

Here, A1 and A2 are randomly generated for each G (8)=?. For m-ZDT problems, 8 = 1, 2, . . . =,

48

Table 3.8: Parameter setting to generate datasets for m-ZDT and m-DTLZ problems. We generate
1000 datapoints for each class.

Prob. nvars fspead foffset
m-ZDT1 30 0.3 0.1
m-ZDT1 500 0.3 0.1
m-ZDT2 30 0.3 0.1
m-ZDT2 500 0.3 0.1
m-DTLZ1 30 0.05 0
m-DTLZ1 500 0.05 0
m-DTLZ2 30 0.05 0
m-DTLZ2 500 0.05 0

while for m-DTLZ problems G (8)=?, G
(8)
? ∈ xm. Parameter setting for generating m-ZDT and m-DTLZ

datasets is provided in Table 3.8. For 30 variable problems, all G8 ∈ xm are changed according to

Eq. 3.18 for generate non-pareto points. However, for 500 vars problems, only first 28 of variables

in xm are modified according to Eq. 3.18 to generate non-pareto data-points.

Visualization of Datasets for m-ZDT and m-DTLZ problems in provided in Figure 3.24 and

Figure 3.25.

(a) m-ZDT1, 30 vars (b) m-ZDT1, 500 vars

(c) m-ZDT2, 30 vars (d) m-ZDT2, 500 vars

Figure 3.24: m-ZDT Datasets.

49

(a) m-DTLZ1, 30 vars (b) m-DTLZ1, 500 vars

(c) m-DTLZ2, 30 vars (d) m-DTLZ2, 500 vars

Figure 3.25: m-DTLZ Datasets.

3.7.5.3 m-ZDT and m-DTLZ Results:

Experiments conducted on datasets involving 500 features (see Table 3.9) and for two and three-

objective optimization problems confirm the scalability aspect of the proposed approach. In all

these problems, traditional methods like CART and SVM find it difficult to conduct a proper

classification task. The provision of allowing controlled non-linearity at each conditional-node

provides the proposed NLDT approach with necessary flexibility to make an appropriate overall

classification.

50

Table 3.9: Results on multi-objective problems for classifying dominated and non-dominated
solutions.

Method Training Acc. Testing Acc. # Rules �* /Rule Rule Length
m-ZDT1-2-30

NLDT 99.18 ± 0.40 98.96 ± 0.59 1.80 ± 0.60 4.47 ± 2.21 7.64 ± 3.50
CART 97.48 ± 0.37 94.78 ± 1.02 26.42 ± 1.89 1.00 ± 0.00 26.42 ± 1.89
SVM 84.14 ± 2.42 82.84 ± 2.77 1.00 ± 0.00 1192.38 ± 11.34 1192.38 ± 11.34

m-ZDT2-2-30
NLDT 99.23 ± 0.38 98.96 ± 0.57 1.92 ± 0.56 4.37 ± 1.82 8.14 ± 3.36
CART 97.41 ± 0.36 94.72 ± 0.89 27.80 ± 2.19 1.00 ± 0.00 27.80 ± 2.19
SVM 99.28 ± 0.18 98.44 ± 0.57 1.00 ± 0.00 315.54 ± 6.12 315.54 ± 6.12

m-DTLZ1-3-30
NLDT 97.21 ± 2.52 96.65 ± 2.86 3.12 ± 0.59 6.14 ± 2.18 19.10 ± 7.03
CART 89.72 ± 0.88 71.74 ± 2.49 93.88 ± 3.23 1.00 ± 0.00 93.88 ± 3.23
SVM 52.44 ± 0.63 45.86 ± 1.28 1.00 ± 0.00 1381.56 ± 8.25 1381.56 ± 8.25

m-DTLZ2-3-30
NLDT 97.76 ± 1.88 97.22 ± 2.25 3.02 ± 0.62 5.81 ± 1.95 17.50 ± 6.73
CART 85.64 ± 3.33 63.41 ± 7.59 100.82 ± 6.11 1.00 ± 0.00 100.82 ± 6.11
SVM 54.82 ± 0.98 49.61 ± 1.62 1.00 ± 0.00 1367.42 ± 8.44 1367.42 ± 8.44

m-ZDT1-2-500
NLDT 99.20 ± 0.29 98.93 ± 0.60 1.78 ± 0.54 5.66 ± 3.23 9.36 ± 4.15
CART 98.76 ± 0.27 93.48 ± 0.94 20.58 ± 1.39 1.00 ± 0.00 20.58 ± 1.39
SVM 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 240.88 ± 4.62 240.88 ± 4.62

m-ZDT2-2-500
NLDT 99.18 ± 0.38 98.88 ± 0.71 1.80 ± 0.69 5.30 ± 2.45 8.88 ± 3.98
CART 98.61 ± 0.36 93.95 ± 1.33 20.98 ± 1.98 1.00 ± 0.00 20.98 ± 1.98
SVM 100.00 ± 0.00 100.00 ± 0.00 1.00 ± 0.00 248.06 ± 4.37 248.06 ± 4.37

m-DTLZ1-3-500
NLDT 94.36 ± 4.03 93.77 ± 4.24 3.00 ± 0.45 7.61 ± 2.36 22.76 ± 7.57
CART 83.23 ± 3.52 58.26 ± 7.37 104.88 ± 5.49 1.00 ± 0.00 104.88 ± 5.49
SVM 51.56 ± 0.52 47.13 ± 1.19 1.00 ± 0.00 1382.38 ± 8.84 1382.38 ± 8.84

m-DTLZ2-3-500
NLDT 95.89 ± 3.83 95.33 ± 4.46 3.04 ± 0.56 7.28 ± 3.16 22.14 ± 10.45
CART 89.09 ± 1.75 70.04 ± 3.46 96.08 ± 3.93 1.00 ± 0.00 96.08 ± 3.93
SVM 51.30 ± 0.55 47.01 ± 1.20 1.00 ± 0.00 1382.62 ± 8.46 1382.62 ± 8.46

3.8 Additional Comparisons and Results

In previous sections, we focused at fundamental procedure of inducing the NLDT and com-

pared its performance against two standard algorithms: SVM and CART. In this section, we extend

our experimental study to compare our approach against other methods which are strong poten-

51

tial candidates to generate an interpretable AI: generalized additive models (GAMs) and genetic

programming (GP). We also re-iterate experiments using the default parameter settings for NLDT

and CART, while we fine tune the results corresponding to SVM using the best possible parameter

values.

New problems (m-DS1 to m-DS3) are introduced here to obtain further insight into the working

principles of above mentioned algorithms. The customized problems DS1 to DS4, m-DS1 to m-

DS3, m-ZDTs and m-DTLZs are designed to benchmark the performance of classifiers on various

properties of datasets such as:

• Data Distribution: For DS1-DS4 datasets, degree of scatter in data varies across classes.

For m-DS1, m-DS2 and m-DS3 the scattering of data for each class is more similar than

that in original DS datasets. A visualisation of feature spaces for DS1 and m-DS1 dataset is

provided in Figure 3.26a and 3.26b, respectively to demonstrate this.

• Geometry of Decision Boundary: Here, the effect of the nature of the simplest possible de-

cision boundary is considered. Decision boundary corresponding to DS1-DS2 and modified

DS1-DS2 is linear, DS3 and m-DS3 have decision boundary involving nonlinearity of order

2 and DS4 have two disjoint linear decision boundaries.

• Data Bias: Here, effect of bias in class representation is considered. All datasets except DS2

and m-DS2 are balanced. For DS2 and m-DS2, minority class has 5 times less number of

data points as the majority class.

In next few sections, we briefly discuss SVM, GAM and GP to gain a conceptual insight towards

critical parameters which can influence the classification performance and the complexity of the

classifier. A more detailed discussion is provided in [48].

52

(a) DS1 Dataset. (b) m-DS1 Dataset.

Figure 3.26: Original DS1 and its modified version.

3.8.1 Support Vector Machines (SVMs)

For a separable dataset, support vector machine (SVM) algorithm attempts to derive a decision

boundary in the form of a single mathematical equation as shown below:

H(x) = w)5(x) + 1, (3.19)

where 5(x) is a set of feature transformation functions which can be either linear or non-linear

functions of feature vector x, w is a weight vector and 1 is a bias term. A conceptual understanding

of SVM is provided in Figure 3.27. For a binary classification task involving class labels C = −1

or C = 1, an optimal hyper-surface is derived by maximizing the margin between two classes, as

shown by H = 0 line in the figure. Points with H ≤ −1 belong to one class and points with H ≥ 1

belong to another class. The points which fall on H = 1 and H = −1 are called support vectors, as

they alone decide the classifier. However, for non-separable datasets, such as the scenario shown

in Figure 3.28, a soft margin approach is used to allow some data points within |H | < 1 (margin)

while training the SVM. These points are also declared as support vectors in addition to the points

on the margin.

53

Figure 3.27: SVM on separable datasets with a hard margin.

Figure 3.28: SVM with non-separable datasets with a soft margin.

To identify the classifier and the support vectors, the underlying optimization problem is solved:

Minimize: 1
2 | |F | |

2 + �
#∑
8=1
Z8,

subject to : C8 (w)5(x8) + 1) ≥ 1 − Z8,

Z8 ≥ 0, 8 = 1, 2, . . . , #,

(3.20)

where C8 is the true class label (either 1 or -1) of the datapoint, Z8 is the distance of 8-th data point from

its representative margin, thus Z8 = max [0, 1 − C8H(x8)] (where value of H(x8) is estimated from

Eq. 3.19). � is a penalty parameter which is used to enhance generalizability by compromising

with training accuracy. It is also aimed to balance the complexity of the classifier (described

54

with the number of non-zero terms of w) and soft support vectors within the margin and is an

important parameter. With lower values of �, broader margin (with some misclassification of

training datapoints) is achieved while for large values of �, misclassification of training datapoints

is heavily penalized and so narrower margin is achieved.

Using a kernel trick [49] : (x? , x@) = 5(x?))5(x@) Eq. 3.19 is transformed into the following:

H(x) =
#∑
8=1

08C8: (x, x8) + 1, (3.21)

where 08 is a Lagrange multiplier which is obtained by converting the optimization problem of

maximizing the margin (Eq. 3.20) to a dual Lagrangian representation [49]:

Min: ! (a) =
#∑
8=1
08 − 1

2

#∑
8=1

#∑
9=1
080 9 C8C 9 : (x8, x 9),

s.t. 08 ∈ [0, �],
#∑
8=1
08C8 = 0.

(3.22)

Classical gradient based algorithms can then be employed to find 08. In Eq. 3.21, data points x8

for which 08 = 0 do not contribute in the equation of the split rule (Eq. 3.21) and data points for

which 08 > 0 are called support vectors for the SVM classifier and they dictate the overall length of

the classifier’s equation (Eq. 3.21). The penalty parameter � has to be tuned to efficiently derive

the decision boundary. Lower value of � makes the classifier more generalizable. � = ∞ (hard

margin) attempts to achieve near 100% training accuracy and hence is prone to overfitting. In our

case, we use scikit-learn’s [50] SVMmodule and set � = 1, 000. We use RBF (or Gaussian) kernel

function. Table 3.10 shows results for various settings of � on some datasets considered in our

study.

3.8.2 Generalized Additive Models (GAMs)

For a binary classification task involving two classes: Class 1 (H = 0) and Class 2 (H = 1), the

GAM based classifier [5, 6] estimates the probability of a data point belonging to class H = 1 (i.e.

55

Table 3.10: SVM Result for different values of penalty parameter �. For each dataset, the first
row represents the testing accuracy and the second row represents complexity (number of support
vectors). � = 1000 gives overall best performance.

Pen. Param. DS1 DS2 DS3 DS4

� = 1 94.75 ± 1.97
191.94 ± 4.38

95.24 ± 0.00
16.56 ± 0.80

96.93 ± 1.87
64.68 ± 2.16

45.20 ± 4.24
138.76 ± 1.99

� = 10 98.42 ± 1.16
58.70 ± 2.90

95.24 ± 0.00
30.46 ± 0.64

99.32 ± 0.70
26.68 ± 1.88

68.77 ± 4.00
262.60 ± 4.76

� = 1, 000 99.88 ± 0.33
8.36 ± 0.87

99.70 ± 0.50
8.56 ± 0.67

99.75 ± 0.58
10.60 ± 0.92

96.63 ± 1.35
56.70 ± 3.13

Pen. Param. m-DS1 m-DS2 m-DS3 Cancer-10

� = 1 99.77 ± 0.67
70.22 ± 2.23

95.24 ± 0.00
16.18 ± 0.59

99.97 ± 0.23
36.54 ± 1.72

97.15 ± 1.08
69.98 ± 6.51

� = 10 100.00 ± 0.00
26.42 ± 1.46

98.89 ± 0.85
14.40 ± 0.89

100.00 ± 0.00
12.60 ± 0.98

95.98 ± 1.13
56.22 ± 6.43

� = 1, 000 99.93 ± 0.33
7.38 ± 0.75

99.97 ± 0.22
5.34 ± 0.55

100.00 ± 0.00
8.82 ± 1.01

95.23 ± 1.09
52.36 ± 4.91

Pen. Param. Truss Welded Beam Cancer-30

� = 1 77.31 ± 2.16
343.76 ± 9.51

98.83 ± 0.70
47.26 ± 3.00

90.83 ± 1.83
106.88 ± 4.44

� = 10 81.29 ± 2.19
258.52 ± 10.85

99.53 ± 0.42
17.86 ± 1.73

91.94 ± 1.36
81.66 ± 4.54

� = 1, 000 88.54 ± 1.60
176.22 ± 7.87

99.63 ± 0.38
7.88 ± 0.86

95.08 ± 1.65
58.74 ± 5.18

%(H = 1|x))6 as Ĥ(x) using the following equation

Ĥ(x) = 1
1 + 4−6(x)

, (3.23)

where 6(x) is referred to as link function [51]. The link function 6(x) in GAM is expressed as a

sum of non-linear functions as shown below:

6(x) = 51(x) + 52(x) + · · · + 5" (x) + V0, (3.24)

6probability of datapoint belonging to other class (i.e. H = 0) will be 1 − Ĥ.

56

where V0 is a constant and 58 (x) are scalar valued nonlinear functions. The functional form of

58 (x) and total number of such nonlinear functions is pre-specified by the user. Modelling of link

function 6(x) using Eq. 3.24 makes GAMs more generalizable than its precursor: generalized

linear models (GLMs) [4], which involves only linear terms.

In our experiments, we use penalized B-splines to model non-linearity of each feature separately

(i.e. referring to Eq. 3.24, 58 (x) = B8 (G8)). Thus, the 6-function in our case is given by

6(x) = B1(G1) + B2(G2) . . . B3 (G3) + V0,

where: B8 (G8) =
 8∑
9=1
�
(@8)
9
(G8)V 9 = B′

8
(G8)#8 .

(3.25)

Here, B8 (G8) denotes a spline function corresponding to 8-th feature, �(@8)
9
(G8) indicates the basis

function of order @8, V 9 are scalar coefficients and 8 is the total number of basis functions used to

model the spline. The order of spline (i.e. @8) and the number of basis-functions 8 is user-specified.

Once the structure of link function 6(x) is specified, an optimization algorithm is invoked to

learn parameters corresponding to basis functions �(@8)
9
(G8) and coefficients V 9 with an objective

to minimize the error between the estimated value of probability (Ĥ(x) Eq. 3.23) and the actual H

values across the dataset. To make the resulting model more generalize and simple, a second-order

smoothing is employed. Thus, using Eq. 3.23 and 3.25, the overall optimization problem translates

to minimizing the following function:

Min: � (B′, #)=
#∑
8=1
(H8 − Ĥ8 (B′#))2 +

3∑
9=1

_ 9

∫
(B′′9 (G 9 |B′

9
9
))23G 9 , (3.26)

where H8 is the actual class of the 8-th datapoint (which can have value of either 0 or 1) and Ĥ8 is

the probability of 8-th point belonging to class H = 1 (i.e. %(H = 1|xi)) as predicted by the GAM

classifier using Eq. 3.23. _ 9 are the penalty parameters which are prespecified. In our case, we

use _ 9 = 0.6 for all features. The rule complexity of a GAM classifier can be tuned using _ 9 ,

where higher values of _ 9 imposes heavy penalty on non-linearities with more than second order.

Additionally, the complexity can also be controlled by regulating the degree (@8) and number of

57

basis-functions 8 (Eq. 3.25). In our experimental setup, we conduct series of experiments using

different combinations of (8, @8) to model splines for each feature. Values of and @ are picked

from the one listed in Table 3.11.

Table 3.11: Details regarding parametric study for GAMs.

Basis Functions () Degree (@)
2, 3, 5, 8, 13, 21 2, 3, 5

Total number of terms arising from the expression of rule 6(x) (Eq. 3.25) is

Total Terms =
3∑
9=1
(@ 9 + 1) × 9 + 9 + 1. (3.27)

However, due to second-order smoothening effect (Eq. 3.26), non-linearities greater than 2nd order

which are not contributing in minimizing the error
∑#
8=1(H8 − Ĥ8 (B

′#))2 will get removed from

the rule and thus, the effective degree of freedom (EoDF) will be far less than the total length of

the rule. Effective degrees of freedom versus accuracy plot for GAM classifiers obtained using

various combinations of (8, @8) on Cancer-10 dataset is shown in Figure 3.29. It is clear that a

high training accuracy is achieved with a large EoDF, but makes an over-fitting and produces less

testing accuracy. About 500 such experiments are performed and the best combinations of (8, @8)

are used to generate results (Table 3.13) for a given dataset. Note here that generating classifiers

using GAM is computationally expensive for high-dimensional datasets and so, we do not run

experiments on datasets involving 500 features.

3.8.3 Genetic Programming (GP)

Genetic Programming has been extensively used to derive non-linear and interpretable classifiers

[52, 53, 54, 55, 56, 57]. A GP algorithm evolves programs (or equations of classifier’s decision

boundary in our case) using genetic operators like crossover and mutation. Programs in GP are

usually represented with tree architecture as shown in Figure 3.30. Internal nodes of this tree can

involve mathematical operations, like +,×,−,÷, log, sin. Allowable set of mathematical operations

58

(a) Training Accuracy (b) Testing Accuracy

Figure 3.29: Effective degree of freedom (EoDF) V/s Accuracy for Cancer-10 dataset. The best
(8, @8) parameter setting for this dataset is found to be ∗ = [8, 3, 8, 13, 8, 8, 13, 3, 8, 21] and
@∗ = [2, 2, 5, 5, 2, 3, 3, 2, 2, 2].

Figure 3.30: A sample genetic program (GP) tree. The above GP translates to this equation:
5 (x) = (G5 − G7) + 3G2.

are pre-specified by the user. In our case, we use {+,×,−,÷} only. Terminal leaf nodes of a GP

program either have one of the input feature G8 or a constant term 2. It is to note here that a GP tree

(T) represents one non-linear equation and is fundamentally different from the decision tree which

involves assembly of split-rule equations which are organized in a hierarchical format. The optimal

structure of tree, operators used, features G8 involved and value of constants 2 are all unknown and

are determined through an evolutionary algorithm. The evolution is conducted with an objective to

minimize the cross-entropy loss. However, if unchecked, the size of GP trees grows as the evolution

progress and the GP algorithm suffers from bloating [58]. To counter this effect of bloating and

encourage evolution of simpler trees (trees with less number of nodes), a parsimony coefficient %2

is used to penalize the fitness of a GP tree (T) as shown below:

Min: 5�% (T) = �;>BB + %2 ×)B8I4, (3.28)

59

where �;>BB = −
1
#

∑#
8=1 [H(x8) log(Ĥ(x8)) + (1−H(x8)) log(1− Ĥ(x8))], and Ĥ(x) = Sigmoid(5 (x)).

In Eq. 3.28,)B8I4 represents size of the tree and is computed by counting total number of nodes in

the tree. 5 (x) is the value the GP tree outputs for a given feature vector x (see Figure 3.30).

It is important to choose a suitable parsimony coefficient %2 for a problem. Smaller value of

%2 will encourage bloating and will evolve complex equations while the higher value of %2 will

evolve simpler equations at an expense of reduced classification accuracy. In our case, we perform

experiments using three values %2: 0.01, 0.005 and 0.001, and conduct 50 runs on each dataset

shown in Table 3.12 after randomly splitting the dataset into 70% training and 30% testing for each

run. Statistics regarding testing accuracy and complexity (measured as the total number of internal

nodes) is reported in the table. It is clear from the table that while a small %2 produces a better

Table 3.12: GP Result for different values of parsimony coefficient %2. For each dataset, the first
row represents the testing accuracy and the second row represents complexity (number of internal
nodes). %2 = 0.001 produces better results.

Pars. coeff. DS1 DS2 DS3 DS4

%� = 0.01 61.07 ± 9.91
3.40 ± 3.70

95.24 ± 0.00
1.98 ± 0.14

65.37 ± 11.57
4.44 ± 2.37

49.93 ± 1.43
1.12 ± 3.40

%� = 0.005 77.3 ± 11.29
16.18 ± 9.99

95.24 ± 0.00
3.86 ± 1.23

86.27 ± 11.41
19.86 ± 11.45

50.37 ± 2.96
2.06 ± 3.88

%� = 0.001 91.70 ± 6.91
67.72 ± 26.72

95.37 ± 0.63
15.14 ± 13.55

96.50 ± 3.3
76.74 ± 33.36

58.00 ± 11.22
18.76 ± 23.94

Pars. coeff. m-DS1 m-DS2 m-DS3 Cancer-10

%� = 0.01 89.53 ± 3.27
8.34 ± 1.98

95.65 ± 0.70
3.58 ± 1.07

96.33 ± 4.68
15.04 ± 6.36

94.03 ± 4.59
5.56 ± 2.06

%� = 0.005 93.37 ± 4.57
16.32 ± 9.55

95.65 ± 0.70
3.76 ± 1.22

98.4 ± 1.99
19.88 ± 9.94

95.04 ± 1.76
7.88 ± 3.07

%� = 0.001 98.83 ± 1.88
55.38 ± 22.39

96.67 ± 1.93
14.08 ± 9.11

99.27 ± 1.22
49.80 ± 21.69

96.13 ± 1.29
15.80 ± 5.66

Pars. coeff. Truss WeldedBeam Cancer-30

%� = 0.01 82.78 ± 11.28
5.20 ± 3.30

84.88 ± 13.08
9.32 ± 5.15

90.47 ± 4.54
4.78 ± 2.30

%� = 0.005 90.03 ± 8.50
11.98 ± 7.12

92.35 ± 6.06
14.08 ± 5.35

90.96 ± 6.29
5.74 ± 1.84

%� = 0.001 97.36 ± 3.81
36.02 ± 16.99

96.46 ± 4.14
35.90 ± 18.28

92.40 ± 4.98
14.58 ± 7.14

60

accuracy, a large %2 produces smaller sized GPs. To demonstrate, we present two GP classifiers for

%2 = 0.005 and 0.01 obtained for the breast cancer Wisconsin dataset (involving total 10 features)

in Figure 3.31. Training ()A) and testing ()4) accuracy are better for %2 = 0.005.

(a) %2 = 0.005,)A = 96.44,)4 = 99.02,
Complexity = 6.

(b) %2 = 0.01,)A = 95.60,)4 = 98.05,
Complexity = 3.

Figure 3.31: Classifiers for Cancer data: %2 = 0.005: 5 (x) = G9 + −0.537
(0.171G6) (0.171G3G2)

and

%2 = 0.01: 5 (x) = G2 + −0.502
(0.077G6)

.

Table 3.12 indicates that GP does not perform well on certain problems even in small-sized

problems, such as DS1 and DS4. In a mathematical classifier search, there are two hierarchical

aspects which must be learnt: (i) structure of the classifier, and (ii) coefficient of each term in the

structure. GP attempts to learn both aspects in a single optimization task. We argue that while a

“good" structure may have evolved at a generation, if its associated coefficients are not proper, the

whole classifier will be judged as “bad". We attempt to alleviate this aspect in the next procedure

by using a bilevel optimization framework.

61

3.8.4 Results

A comprehensive compilation of results obtained on all 19 datasets is shown in Table 3.13. The

results are segmented into four parts: Sr. 1-7 for synthetic DS datasets, Sr. 8-9 for traditional

cancer datasets, Sr. 10-11 for real-world multi-objective datasets, Sr. 12-19 for high-dimensional

modified multi-objective ZDT and DTLZ benchmarks. For each method, a parametric study is

performed on each problem and the setting which obtained the best testing accuracy is used to

generate the final results. Statistics of 50 runs (with random data-split of 70% training and 30%

testing in each) on each dataset for two performance metrics is presented in Table 3.13.

For CART, the complexity metric is defined as total number of nodes; for SVM, it is defined

as total number of support vectors; for GAM, it is defined as the effective degrees of freedom

(EoDF); for GP, it is defined as the total number of internal nodes; and for NLDT, it is defined as

total number of variable occurrences in the entire tree. It is clear that a method with high testing

accuracy and low complexity is better.

The table clearly indicates that NLDT performs well in terms of both metrics. Also, the

performance of NLDT scales well with an increase in feature size. CART produces a good

compromise on accuracy and complexity, but performs worse than NLDT on both metrics. While

SVM achieves a high accuracy, in general, the complexity of its classifiers is large, thereby making

them not easy to interpret for any explainability purposes. The performance of GP is poor for

achieving a high accuracy. GAM is clearly not suitable for problems with a large number of

features and cannot be run due to impractical computational time requirement for some problems

(marked with a dash). GP cannot match both accuracy and complexity obtained by NLDT. GP’s

performance is also depended on the way the data is scattered which is evident from results on

DS1 and m-DS1 problem. This is mostly because of the fact that in GP, the rule-structure and

coefficients are evolved simultaneously, thereby making it difficult to efficiently navigate through

the search-space of equations. A future study could be launched to incorporate bilevel search

strategy with customized initialization to evolve rules within GP framework. In most problems,

NLDT classifiers require fewer conditional rules (albeit with restricted nonlinearities) and still

62

achieve near 100% correct testing accuracy.

Table 3.13: Summary of results obtained using various methods. For each dataset, the first row
indicates testing accuracy and the second row indicates complexity. Italicized entries are statistically
insignificant (according to 95% confidence in Wilcoxon rank-sum test) compared to the best entry
in the same row.

Sr. Problem NLDT CART SVM GAM GP

1 DS1 99.55 ± 1.08
2.3 ± 0.6

90.32 ± 4.06
14.5 ± 1.7

99.87 ± 0.45
8.16 ± 0.88

100.0 ± 0.00
2.89 ± 0.00

91.70 ± 6.91
67.72 ± 26.72

2 DS2 99.44 ± 0.87
2.3 ± 0.7

95.43 ± 1.50
11.0 ± 1.4

99.33 ± 1.10
7.64 ± 0.87

100.0 ± 0.00
2.89 ± 0.00

95.37 ± 0.63
15.14 ± 13.55

3 DS3 99.77 ± 0.67
2.2 ± 0.5

95.00 ± 2.35
11.5 ± 1.3

99.63 ± 0.69
10.22 ± 1.42

99.47 ± 1.03
4.98 ± 0.14

96.50 ± 3.30
76.74 ± 33.36

4 DS4 98.88 ± 1.65
3.1 ± 1.4

88.68 ± 3.60
31.3 ± 4.2

93.97 ± 2.35
43.70 ± 2.69

48.63 ± 6.50
3.80 ± 0.99

59.63 ± 10.81
24.70 ± 26.40

5 m-DS1 99.10 ± 1.54
2.00 ± 0.00

89.73 ± 4.53
7.90 ± 1.22

99.90 ± 0.40
7.50 ± 0.75

100.0 ± 0.00
2.90 ± 0.00

98.83 ± 1.88
55.38 ± 22.39

6 m-DS2 99.46 ± 1.08
2.10 ± 0.30

96.25 ± 1.92
5.96 ± 0.81

99.94 ± 0.44
5.44 ± 0.67

99.94 ± 0.31
2.90 ± 0.00

96.67 ± 1.93
14.08 ± 9.11

7 m-DS3 99.20 ± 1.30
2.02 ± 0.14

92.87 ± 4.35
5.78 ± 1.11

100.00 ± 0.00
8.82 ± 0.89

99.17 ± 1.48
3.24 ± 0.22

99.27 ± 1.22
49.8 ± 21.69

8 Cancer-10 96.50 ± 1.16
6.4 ± 1.7

94.34 ± 1.92
11.6 ± 2.4

95.07 ± 1.23
51.26 ± 5.02

95.32 ± 1.49
22.14 ± 10.36

96.13 ± 1.29
15.80 ± 5.66

9 Cancer-30 96.20 ± 1.49
9.2 ± 4.1

92.11 ± 2.07
10.8 ± 2.1

95.24 ± 1.29
58.88 ± 4.46

93.74 ± 5.83
32.47 ± 12.41

92.40 ± 4.98
14.58 ± 7.14

10 Welded Beam 98.58 ± 1.13
3.9 ± 1.0

97.72 ± 1.04
8.42 ± 1.42

99.58 ± 0.45
7.86 ± 1.27

99.53 ± 0.48
11.06 ± 0.81

96.46 ± 4.14
35.90 ± 18.28

11 Truss 99.54 ± 0.75
3.30 ± 0.90

98.33 ± 1.10
11.06 ± 3.15

88.21 ± 1.62
174.28 ± 8.49

96.18 ± 1.20
19.19 ± 1.06

97.36 ± 3.81
36.02 ± 16.99

12 m-ZDT1-30 98.97 ± 0.57
7.60 ± 3.50

97.77 ± 0.58
30.26 ± 4.65

99.39 ± 0.35
82.08 ± 4.19

85.31 ± 1.35
220.20 ± 11.73

93.58 ± 10.21
45.34 ± 26.09

13 m-ZDT1-500 98.93 ± 0.60
9.34 ± 4.15

95.96 ± 0.80
21.02 ± 1.55

100.00 ± 0.00
140.58 ± 4.25

—
—

83.21 ± 18.42
52.14 ± 24.47

14 m-ZDT2-30 98.96 ± 0.57
8.10 ± 3.35

97.88 ± 0.70
28.22 ± 2.35

99.51 ± 0.33
80.98 ± 3.50

84.97 ± 1.18
233.69 ± 6.56

91.57 ± 11.92
48.44 ± 23.69

15 m-ZDT2-500 98.87 ± 0.72
8.84 ± 3.95

95.96 ± 0.80
21.02 ± 1.55

100.00 ± 0.00
140.56 ± 4.00

—
—

85.06 ± 16.82
50.64 ± 21.24

16 m-DTLZ1-30 98.77 ± 0.87
11.98 ± 5.85

78.52 ± 7.94
128.40 ± 22.39

94.22 ± 0.95
615.54 ± 9.24

55.96 ± 3.19
33.89 ± 0.01

81.59 ± 17.32
16.08 ± 21.89

17 m-DTLZ1-500 93.76 ± 4.24
22.72 ± 7.50

78.31 ± 7.21
126.94 ± 20.07

64.32 ± 1.76
1236.82 ± 13.26

—
—

80.49 ± 11.54
8.66 ± 16.19

18 m-DTLZ2-30 97.22 ± 2.25
17.48 ± 6.75

69.83 ± 6.16
156.00 ± 16.09

94.25 ± 1.04
615.44 ± 10.67

54.52 ± 2.96
35.84 ± 0.02

79.81 ± 19.46
12.32 ± 14.79

19 m-DTLZ2-500 95.32 ± 4.45
22.02 ± 10.62

76.68 ± 5.44
133.22 ± 15.95

64.22 ± 1.48
1245.92 ± 11.45

—
—

78.46 ± 14.08
8.08 ± 15.21

3.9 Conclusions and Future work

In this chapter, we have addressed the problem of generating interpretable and accurate non-

linear decision trees for binary classification problems. Split-rules at the conditional nodes of

a decision tree have been represented as a weighted sum of power-laws of feature variables. A

provision of integrating modulus operation in the split-rule has also been formulated, particularly

63

to handle sandwiched classes of datapoints. The proposed algorithm of deriving split-rule at a

given conditional-node in a decision tree has two levels of hierarchy, wherein the upper-level is

focused at evolving the power-law structures and operates on a discrete variable space, while the

lower-level is focused at deriving values of optimal weights and biases by searching a continuous

variable space to minimize the net impurity of child nodes after the split. Efficacy of upper-level

and lower-level evolutionary algorithm have been tested on customized datasets. The lower-level

GA is able to robustly and efficiently determine weights and biases to minimize the net-impurity. A

test conducted on imbalanced dataset has also revealed the superiority of the proposed lower-level

GA to achieve a high classification accuracy without relying on any synthetic data. Ablation studies

conducted on the upper-level GA also demonstrate the efficacy of the algorithm to obtain simpler

split-rules without using any prior knowledge. Results obtained on standard classification bench-

mark problems and a real-world single-objective problem has amply demonstrated the efficacy and

usability of the proposed algorithm.

The classification problem has been extended to discriminate Pareto-data from non-Pareto data

in a multi-objective problem. Experiments conducted on multi-objective engineering problems

have resulted in determining simple polynomial rules which can assist in determining if the given

solution is Pareto-optimal or not. These rules can then be used as design-principles for generating

future optimal designs. As further future studies, we plan to integrate non-polynomial and generic

terms in the expression of the split-rules. The proposed bilevel framework can also be tested for

regression and reinforcement-learning related tasks which we shall discuss in upcoming chapters.

The upper-level problem can be converted to a bi-objective problem for optimizing both �* and �!

simultaneously, so that a set of trade-off solutions can be obtained in a single run. Nevertheless, this

proof-of-principle study on the use of a customized bilevel optimization method for classification

tasks is encouraging for us to launch such future studies.

64

3.10 Parameter Settings

3.10.1 Termination Criteria and other Parameter Settings for Inducing a Non-linear Deci-
sion Tree (NLDT)

• Number of power-laws per split-rule: ? = 3,

• Allowable set of exponents: E = {−3,−2, . . . , 3},

• Impurity Metric: Gini Score.

• Minimum Impurity to conduct a split: g<8= = 0.05

• Minimum number of points required in a node conduct a split: #<8= = 10

• Maximum allowable Depth = 5

• Pruning threshold: g?AD=4 = 3%

3.10.2 Parameter Setting for NSGA-II for multi-objective data creation

We used the implementation of NSGA-II Algorithm as provided in pymoo [59]. pymoo is an official

python package for multiobjective optimization algorithms and is developed under supervision of

Prof. Deb who is the original developer of NSGA-II and NSGA-III algorithms. Following

parameter setting was adopted to create Pareto and non-Pareto datasets for two objective Truss and

Welded beam problems:

• Population Size = 500

• Maximum Generations = 1000

• Cross Over = SBX

• SBX [2 = 15

• SBX probabililty = 0.9

65

• Mutation type = Polynomial Mutation

• Mutation [< = 20

• Mutation probability ?< = 1/=E0A (where =E0A is total number of variables)

3.10.3 Parameter Setting for Upper Level GA

This section provides the general parameter setting used for the upper level of our bilevel GA.

• Population size = 10 × 3, where 3 is the dimension of the feature space of the original

problem.

• Selection = Binary tournament selection.

• Crossover probability (?*G>E4A) = 0.9

• Mutation parameters:

– Mutation probability (?*<DC) = <8=(0.33, 1/3).

– Distribution parameter V = 3 (any value > 1 will be good).

• ?I4A> = 0.75

• Maximum number of generations = 100

3.10.4 Parameter Setting for Lower Level GA

Following parameter setting is used for lower level GA:

• Population size = 50,

• Maximum generations = 50,

• Variable range = [−1, 1],

• Crossover type = Simulated Binary Crossover (SBX)

66

• Mutation type = Polynomial Mutation

• Selection type = Binary Tournament Selection

• Crossover probability = 0.9,

• Mutation probability = 1/=E0A ,

• Number of variables =E0A = ? + 1, if < = 0 or ? + 2 if < = 1, where ? is the total number of

power-laws allowed and < is the modulus flag,

• SBX and polynomial mutation parameters: ([2, [<) = (2, 15).

3.10.5 Creation of Customized 2D Datasets: DS1- DS4

As mentioned before, the customized datasets DS1-DS4 (Figure 3.8) were synthetically generated.

This section explains the procedure which was adopted to generate these customized datasets.

Datapoints in 2� space were created using a reference curve b (x) and were assigned to either

the Class-1 or Class-2. Two additional parameters X and f controlled the location of a datapoint

relative to the reference curve b (x). Datapoints (x(i)) for a given dataset were generated using

following steps:

• First = points falling on curve b (x) = 0 were initialized for reference. Lets denote these

reference points on the curve with x(i)r (where 8 = 1, 2, . . . , =). Thus,

b (x(i)r) = 0, 8 = 1, 2, . . . , =.

• = points (x(i)) for a dataset were then generated using the following equation

x(i) = x(i)r + X + fA, 8 = 1, 2, . . . , =, (3.29)

where A is a random number between 0 and 1, X represents the offset and f indicates the

amount of spread.

67

Four datasets generated for conducting ablation studies are graphically represented in Fig. 3.8.

Parameter setting which was used to generate these datasets is provided Table 3.14. #� and

#� indicate the number of datapoints belonging to Class-1 and Class-2 respectively.

Table 3.14: Parameter setting to create customized datasets D1-D4. For Class-1 data-points
(X, f) = (0, 0.01).

Dataset b (x) Class-1 Class-2
NA NB (X, f)

DS1 2G1 + G2 − 3 = 0 100 100 (0.025, 0.2)
DS2 2G1 + G2 − 3 = 0 10 200 (0.025, 0.2)
DS3 G2

1 + G2 − 1 = 0 100 100 (0.025, 0.2)

DS4 2G1 + G2 − 3 = 0 100 50 (0.025, 0.2)
50 (−0.015,−0.2)

68

CHAPTER 4

CONTROL: INTERPRETABLE POLICY FOR DISCRETE ACTION SPACES

4.1 Introduction

Control system problems are increasingly being solved by using modern reinforcement learning

(RL) and other machine learning (ML) methods to find an autonomous agent (or controller) to

provide an optimal action �C for every state variable combination (C in a given environment at

every time-step C. Execution of the output action �C takes the object to the next state (C+1 in the

environment and the process is repeated until a termination criteria is met. This is conceptually

demonstrated in Figure 4.1

Figure 4.1: Control Loop

Themapping between input state (C and output action �C is usually captured through an artificial

intelligence (AI) method. In the RL literature, this mapping is referred to as policy (c(() : S→ A),

where S is the state space and A is the action space. Sufficient literature exists in efficient training

of these RL policies [60, 61, 62, 63]. While these methods are efficient at training the AI policies

for a given control system task, the developed AI policies, captured through complicated networks,

are complex and non-interpretable.

Interpretability of AI policies is important to a human mind due to several reasons: (i) they help

69

provide a better insight and knowledge to the working principles of the derived policies, (ii) they

can be easily deployed with a low fidelity hardware, (iii) they may also allow an easier way to extend

the control policies for more complex versions of the problem. While defining interpretability is

a subjective matter, a number of past efforts have attempted to find interpretable AI policies with

limited success.

In the remainder of this chapter, we first present themainmotivation behind finding interpretable

policies in Section 4.2. A few past studies in arriving at interpretable AI policies is presented in

Section 4.3. In Section 4.5, we briefly discuss an extension to our nonlinear decision tree (NLDT)

approach in the context of arriving at interpretable AI policies. The overall open-loop and closed-

loop NLDT policy generation methods are described in Section 4.6. Results on some control

system problems are presented in Section 4.7. Finally, conclusions and future studies are presented

in Section 4.10.

4.2 Motivation for the Study

Asmentioned in the earlier chapters, various data analysis tasks, such as classification, controller

design, regression, image processing, etc., are increasingly being solved using artificial intelligence

(AI) methods.These are done, not because they are new and interesting, but because they have been

demonstrated to solve complex data analysis tasks without much change in their usual frameworks.

With more such studies over the past few decades, they are faced with a huge challenge. Achieving

a high-accuracy solution does not necessarily satisfy a curious domain expert, particularly if the

solution is not interpretable or explainable. A technique (whether AI-based or otherwise) to handle

data well is no more enough, researchers now demand an explanation of why and how they work.

Consider the MountainCar control system problem (see Figure 4.2, which has been extensively

studied using various AI methods [64, 65, 66]. The problem has two state variables (position GC

along G-axis and velocity EC along positive G-axis) at every time instant C which would describe the

state of the car at C. Based on the state vector (C = (GC , EC), a policy c(() must decide on one of the

three actions �C : decelerate (�C = 0) along positive G-axis with a pre-defined value −0, do nothing

70

Figure 4.2: Mountain Car problem. It comprises of two state variables G, E and is controlled using
three actions: -1 for deceleration, 0 for nothing and +1 for acceleration.

(�C = 1), or accelerate (�C = 2) with 0 in positive G-axis direction. The goal of the control policy

c(() is to take the under-powered car (it does not have enough fuel to directly climb the mountain

and reach the destination) over the right hump in a maximum of 200 time-steps starting anywhere

at the trough of the landscape. Physical laws of motion are applied and a policy c(() has been

trained to solve the problem. The RL produces a black-box policy c>A02;4 (() for which an action

�C ∈ [0, 1, 2] will be produced for a given input (C = (GC , EC) ∈ R2. Figure 4.3a shows the state-

(a) Using c>A02;4 . (b) Using NLDT.

Figure 4.3: State-action combinations for MountainCar prob.

action combinations obtained from 92 independent successful trajectories (amounting to total of

71

10,000 time-steps) leading to achieving the goal using a pre-trained deterministic black-box policy

c>A02;4. The G-location of the car and its velocity can be obtained from a point on the 2D plot.

The color of the point (C = (GC , EC) indicates the action �C suggested by the oracle policy c>A02;4

(�C = 0: blue, �C = 1: orange, and �C = 2: green). If a user is now interested in understanding

how the policy c>A02;4 chooses a correct �C for a given (C , one way to achieve this would be to

represent and analyze the policy function c8=C ((C) as shown below:

c8=C ((C) =


02C8>= 0, if q0((C) is true,

02C8>= 1, if q1((C) is true,

02C8>= 2, if q2((C) is true,

(4.1)

where q8 ((C) : '2 → {0, 1} is a Boolean function which partitions the state space S into two

sub-domains based on its output value and for a given state (C , exactly one of q8 ((C) is true, thereby

making the policy c8=C deterministic. If we re-look at Figure 4.3a we notice that the three actions

are quite mixed at the bottom part of the G-E plot (state space). Thus, the partitioning Boolean

functions q8 of Eq. 4.1 need to be quite complex in order to have q0((C) = true for all blue points,

q1((C) = true for all orange points and q2((C) = true for all green points in a mutually exclusive

manner.

What we address in this study is an attempt to find an approximated policy function c8=C ((C)

which may not explain all 100% time instance data corresponding to the oracle black-box policy

c>A02;4 ((C) (Figure 4.3a), but it is fairly interpretable to capture and explain most of the behavior

of c>A02;4. Consider the state-action plot in Figure 4.3b, which is generated with a simpler and

a relatively more interpretable policy c8=C ((C) = {8 |q8 ((C) is true, 8 = 0, 1, 2} obtained by our

proposed procedure as shown below

q0((C) = ¬k1((C),

q1((C) = (k1((C) ∧ ¬k2((C)) ,

q2((C) = (k1((C) ∧ k2((C)) ,

(4.2)

72

where k1((C) = |0.96 − 0.63/ĜC2 + 0.28/ÊC − 0.22ĜC ÊC | ≤ 0.36, and k2((C) = |1.39 − 0.28ĜC2 −

0.30ÊC2 | ≤ 0.53. Here, ĜC and ÊC are normalized state variables (see Section 4.6.1). The action �C

predicted using the above policy does not match the output of c>A02;4 at some states (about 8.1%),

but from our experiments we observe that it is still able to drive the mountain-car to the destination

goal located on the right hill in 99.8% episodes.

Importantly, the policies are simplistic and amenable to an easier understanding of the relation-

ships between GC and EC to make a near perfect control. Since the explanation process used the

data from c>A02;4 as the universal truth, the derived relationships can also provide an explanation

of the working of the black-box policy c>A02;4. A more gross approximation to Figure 4.3a by

more simplified relationships (q8) may reduce the overall open-loop accuracy (see Section 4.4)

of matching the output of c>A02;4. Hence, a balance between a good interpretability and a high

open-loop accuracy in searching for Boolean functions q8 ((C) becomes an important matter for

such an interpretable AI-policy development study.

In this work, we focus on developing a search procedure for arriving at the k-functions (see

Eq. 4.2) for discrete action systems. The structure of the policy c8=C ((C) shown in Eq. 4.1 resembles

a decision tree (DT), but unlike a standard DT, it involves a nonlinear function at every non-leaf

node, requiring an efficient nonlinear optimization method to arrive at reasonably succinct and

accurate functionals. The procedure we propose here is generic and is independent of the AI

method used to develop the black-box policy c>A02;4.

4.3 Related Past Studies

A few studies exist which are focused at generating interpretable policies. In [67], an in-

terpretable orchestrator is developed to choose from two RL-policies: c� (modelled for reward

maximization) and c' for maximizing an ethical consideration. The orchestrator is dependent

on only one of the state-variables and despite it being interpretable, the policies: c� and c' are

still black-box and convoluted. [68] constructs a set of interpretable index based policies and uses

multi-arm bandit procedure to select a high performing index based policy. The search space of

73

interepretable policies is much smaller and the procedure suggested for finding an interpretable

policy is computationally heavy, taking about hours to several days of computational time on simple

control problems. In [69], genetic programming (GP) is used to obtain interpretable policies on

control tasks involving continuous actions space through model-based policy learning. However

the interpretability was not captured in the design of the fitness function and a large archive was

created passively to store every policy for each complexity encountered during the evolutionary

search. A linear decision tree (DT) based model is used in [70] to approximate the Q-values of

trained neural network. In that work, the split in DT occurs based on only one feature, and at each

terminal node the Q-function is fitted using a linear model on all features. [71] uses a program

sketch (to define the domain of interpretable policies 4. Interpretable policies are found using a

trained black-box oracle 4# as a reference by first conducting a local search in the sketch space

(to mimic the behaviour of the oracle 4# and then fine-tuning the policy parameters through

online Bayesian optimization. The bias towards generating interpretable programs is done through

controlled initialization and local search rather than explicitly capturing interpretability as one of

the fitness measure. Particle swarm optimization [72] is used to generate interpretable fuzzy rule

set in [73] and is demonstrated on classic control problems involving continuous actions. Works

on DT [12] based policies through imitation learning has been carried out in [74]. [75] extends this

to utilize Q-values and eventually render DT policies involving < 1, 000 nodes on some toy games

and CartPole environment with an ultimate aim to have the induced policies verifiable. [76] used

axis-aligned DTs to develop interpretable models for black-box classifiers and RL-policies. They

first derive a distribution function P by fitting the training data through axis-aligned Gaussian dis-

tributions. P is then used to compute the loss function for splitting the data in the DT. [77] attempts

to generate interpretable DTs from an ensemble using a genetic algorithm. In [78], regression

trees are derived using classical methods such as CART [12] and Kd-tree [79] to model Q-function

through supervised training on batch of experiences and comparative study is made with ensemble

techniques. In [80], a gradient based approach is developed to train the DT of pre-fixed topology

involving linear split-rules. These rules are later simplified to allow only one feature per split node

74

(a) Open-loop (b) Closed-loop

Figure 4.4: Performance measures.

and resulting DTs are pruned to generate simplified rule-set.

While the above methods attempt to generate an interpretable policy, the search process does

not use complexity of policy in the objective function, instead, they rely on initializing the search

with certain interpretable policies. In our approach described below, we use to concept of NLDT

induction discussed in Chapter 3 to build an efficient search algorithm to directly find relatively

simple and interpretable policies than black-box DNN or tabular-tile based policies using recent

advances in nonlinear optimization.

4.4 Performance Measures

Before we proceed into formally discussing the NLDT based policies, we will quickly discuss

two performance metrics we used to measure and compare performance of policies.

4.4.1 Open-Loop Accuracy

Open-loop accuracy quantifies how accurately does a given policy c8=C mimics the reference black-

box oracle policy c>A02;4. This is conceptually shown in Figure 4.4a. Here, under ideal scenario

(100% open-loop accuracy), for every state ((C), the output �′(C) of policy c8=C will match the

output �(C) of the black-box policy c>A02;4. In our case, since the action-space is discrete, the

open-loop accuracy is identical to the classification accuracy on the labelled state-action dataset

75

generated using the black-box policy c>A02;4.

4.4.2 Closed-loop Performance

Under the close-loop setting, theAI is directly used as a controller to control the object by interacting

with the environment or dynamics of the control system as shown in Figure 4.4b. For each transition

from state ((C) to state ((C + 1) using action �(C), a reward A (C) is collected. The loop is repeated

until a termination criteria is reached. The entire sequence of state-action-state transitions from

start to termination is referred to as episode. The cumulative reward value collected during entire

episode is given by

'4 =

C 5∑
C=0

A (C), (4.3)

where C 5 is the time-step at which an episode terminated. The episode is called a success if the

desired goal is reached or a target is achieved upon the termination. Else, the episode is declared

as a failure. In the mountain-car example (Figure 4.2), an episode is considered as a success if by

200 time-steps, the AI is able to drive the car to the flag-post located on the right up-hill, else it’s a

failure.

We measure closed-loop performance of an AI using two metrics

• Cumulative Reward which is measured using Eq. 4.3, and

• Task Completion Rate, which quantifies number of successful episodes across 100 closed-

loop simulations.

4.5 Nonlinear Decision Trees (NLDTs) as Policies

Similar to classification problems where NLDT is used as a classifier to predict the class of a

given datapoint, in control systems involving discrete actions, NLDT can represent a policy wherein

for a given input state x, the corresponding action 0 can be determined by traversing the tree and

reaching the leaf node.

76

We implement two frameworks to represent non-linear decision trees: binary-split and multi-

split. The binary-split NLDT is identical to the one discussed in Chapter 3. The multi-split NLDT

can be obtained by allowing more than two splits for a given conditional node. We will briefly

discuss binary-split and multi-split NLDT frameworks.

4.5.1 Binary-split NLDT

In binary-split NLDT, a conditional node undergoes exactly two splits. Unlike in Chapter 3 where

we mainly discussed problems involving two classes, in case of discrete-action control problems,

more than two actions can appear. This is conceptually illustrated in Figure 4.5 for control problem

involving three actions.

Figure 4.5: Binary-split NLDT for Discrete action control systems.

Each conditional node represents a non-linear control logic 5 (x) ≤ 0, where the non-linear

function 5 (x) assumes the similar form as the one discussed in Chapter 3 and is shown below for

quick reference

5 (x) =


∑?

8=1 F8�8 + \1, if < = 0,���∑?

8=1 F8�8 + \1
��� − |\2 |, if < = 1,

(4.4)

The �8 are power-laws of type �8 =
∏3
9=1 G

18 9

9
and < indicates presence or absence of absolute

operator.

77

4.5.2 Multi-split NLDT

Unlike the binary-split NLDT, in multi-split NLDT, a node is allowed to have more than two

partitions or splits. If the number of classes (or discrete action values in our case) in the dataset is

2, then a node in the multi-split NLDT can have upto 2-splits as shown in Figure 4.6a.

(a) Schematic of Multi-split NLDT. (b) Biases in 58 (x) for Multi-split NLDT.

Figure 4.6: Multi-split NLDT configuration. Numbers in square brackets indicate class distribution
of datapoints.

The number within square brackets in a node in multi-split NLDT of Figure 4.6a indicates class

distribution. The split function 5 (x) for a node in multi-split NLDT is given by the following

equation

5 (x) =
?∑
8=1

F8�8 . (4.5)

Notice the difference between split-rule for binary-split NLDT (Eq. 4.4) and split-rule for multi-split

NLDT (Eq. 4.5). The former involves bias terms \8 and a modulus parameter < while the latter is

expressed as the weighted sum of power-laws �8 (Eq. 3.3) only. In multi-split NLDT, for a given

feature vector x, the value of its split function 5 (x) is compared against biases \8 to determine

child node where the datapoint will belong. This is schematically shown in Figure 4.6b for a node

undergoing 4 splits. Thus, for a given feature vector x,

If −∞ < 5 (x) ≤ \1, Move to Split 1 Node,

If \1 < 5 (x) ≤ \2, Move to Split 2 Node,

· · · · · ·

78

4.6 Overall Approach

The overall approach is illustrated in Figure 4.7. First, a dedicated black-box policy c>A02;4 is

Figure 4.7: A schematic of the proposed overall approach.

trained from the actual environment/physics of the problem. Training of black-box policy c>A02;4 is

not the focus of our current work and we use standard approaches from literature to obtain c>A02;4.

Next, the trained policy c>A02;4 (Block 1 in the figure) is used to generate labelled training and

testing datasets of state-action pairs from different time-steps. We generate two types of training

datasets: Regular – as they are recorded from multiple episodes, and Balanced – selected from

multiple episodes to have almost equal number of states for each action, where an episode is a

complete simulation of controlling an object with a policy over multiple time-steps. Third, the

labelled training dataset (Block 2) is used to find the NLDT (Block 3) using the recursive bilevel

evolutionary algorithm described in Section 4.6.2. We call this an open-loop NLDT (or, NLDT$!),

since it is derived from a labelled state-action dataset generated from c>A02;4, without using any

overall reward or any final goal objective in its search process, which is typically a case while doing

reinforcement learning. Use of labelled state-action data in supervised manner allows a faster

search of NLDT even with a large dataset as compared to constructing the NLDT from scratch

through reinforcement learning by interacting with the environment to maximize the cumulative

rewards [71]. Next, in an effort to make the overall NLDT relatively more interpretable while

simultaneously ensuring better closed-loop performance, we prune the NLDT by taking only the

79

top part of NLDT$! (we call NLDT
(%)
$!

in Block 4) and re-optimize all non-linear rules within it for

the weights and biases using an efficient evolutionary optimization procedure to obtain final NLDT*

(Block 5). The re-optimization is done here with closed-loop objectives, such as the cumulative

reward function or closed-loop completion rate. We briefly discuss the open-loop training procedure

of inducing NLDT$! and the closed-loop training procedure to generate NLDT* in next sections.

4.6.1 Data Normalization

First, we provide the exact normalization of state variables performed before the open-loop learning

task is executed. Before training and inducing the non-linear decision tree (NLDT), features in the

dataset are normalized using the following equation:

Ĝ8 = 1 + (G8 − Gmin
8)/(G

max
8 − Gmin

8), (4.6)

where G8 is the original value of the 8-th feature, Ĝ8 is the normalized value of the 8-th feature, Gmin
8

and Gmax
8

are minimum and maximum value of 8-th feature as observed in the training dataset. This

normalization will make every feature G8 to lie within [1, 2]. This is done to ensure that G8 = 0 is

avoided to not cause a division by zero.

4.6.2 Open-loop Training

As a first step for open-loop training, the pre-trained black-box oracle c>A02;4 is used to generate

labelled state-action dataset (step A in Figure 4.7). Once the labeled dataset is generated, the

problemof inducingNLDT to fit the data translates to the supervised learning problemof developing

a classifier.

4.6.2.1 Open-loop training for Binary-split NLDT

The open-loop training for binary-split is identical to the procedure discussed in Chapter 3 wherein

an evolutionary bilevel algorithm is employed to derive non-linear split-rule at each conditional

80

node. The NLDT is grown using recursive splitting of training data.

4.6.2.2 Open-loop training for Multi-split NLDT

Similar to binary-split NLDT, a dedicated bilevel optimization algorithm is applied to derive the

split-rule 5 (x) of Eq. 4.5 and its associated biases \8 at a given conditional node. The optimization

formulation to obtain the split-rule for a conditional node in multi-split NLDT and values of

corresponding \8 is as given below

Min. �* (B,w∗,�∗),

s.t. (w∗,�∗) ∈ argmin
{
�! (w,�) |(B,<)

��
�! (w, −1 ≤ F8 ≤ 1, ∀8, �) |(B,<) ≤ g� ,

� ∈ [−1, 1]<+1
}
,

\8 < \ 9 , 8 < 9 , ∀8, 9 , 18 9 ∈ /.

(4.7)

Here, the upper level objective function �* is identical to the one given in Eq. 3.7. It quantifies

the complexity of the rule by counting the number of non-zero exponents in power-laws �8. The

lower level objective function �! quantifies the quality of split by computing weighted sum of

impurity scores of resulting child nodes as shown in the equation below

�! =

=2ℎ8;3B∑
8=1

#8

#
Gini(8), (4.8)

where =2ℎ8;3B indicates total number of child nodes created from the split. The number of splits (and

hence the number of child nodes) depends on the distribution of datapoints in the given conditional

node. If the number of datapoints belonging to 8-th class in the given conditional node is =8 and

there are total 2 classes in the original dataset, then the number of splits =B?;8CB (or equivalently

=2ℎ8;3B) a given conditional node undergoes is

=B?;8CB =

2∑
8=1

max(0, =8 − g2)
=8 − g2

, (4.9)

81

where g2 is a user specified parameter. The optimization formulation for lower-level optimization

in multi-split NLDT is given as under

Min. �! (w,�)
��
(B,<) ,

s.t. \8 < \ 9 , 8 ∈ {1, . . . , =2 − 2} and 9 = 8 + 1,

F8 ∈ [−1, 1]? , � ∈ [−1, 1]=2−1,

(4.10)

where ? is the total number of power-laws �8 (Eq. 4.5).

4.6.3 Closed-loop Training

The intention behind the closed-loop training is to enhance the closed-loop performance of NLDT.

It will be discussed in Section 4.7 that while closed-loop performance of NLDT$! is at par with

c>A02;4 on control tasks involving two to three discrete actions, like CartPole and MountainCar, the

NLDT$! struggles to autonomously control the agent for control problems such as LunarLander

having more states and actions. In closed-loop training, we fine-tune and re-optimize the weights

W and biases� of an entire NLDT$! (or pruned NLDT$! , i.e. NLDT
(%)
$!

– block 4 in Figure 4.7)

to maximize its closed-loop fitness (��!), which is expressed as the average of the cumulative

reward collected on " episodes:

Maximize ��! (W,�) = 1
"

"∑
8=1

'4 (W,�),

Subject to W ∈ [−1, 1]=F ,� ∈ [−1, 1]=\ ,
(4.11)

where =F and =\ are total number of weights and biases appearing in entire NLDT and " = 20 in

our case.

4.7 Experiments: AIM and Procedure

In this work, we conduct experiments to demonstrate the performance of NLDT on control

problems involving discrete actions. Efficacy of the proposed approach of inducing NLDT is

82

shown on two types of control tasks as listed below:

• Binary Discrete Action Space (B-DAS): The agent in these control tasks is allowed to

have exactly two discrete actions. Environments considered for this task are CartPole and

CarFollowing as shown in Figures 4.8a and 4.8b, respectively.

• Multiple Discrete Action Space (M-DAS): Action space of agent in these control tasks in-

volves three or more discrete actions. Environments considered for this task areMountainCar

and LunarLander as shown in Figures 4.2 and 4.8c, respectively.

(a) CartPole environment.

(b) CarFollowing environment.

(c) LunarLander environment.

Figure 4.8: Three control problems.

Through our experiments, we try to empirically demonstrate effects of training data size,

data distribution (regular or balanced) and NLDT framework (binary-split or multi-split) on the

performance of NLDT.

4.7.1 Experimental Setup

At first, a dedicated black-box AI is trained for each control tasks listed above. The method used

to derive the black-box AI for each control task is provided in the corresponding sections. It is

83

to note here that training of the black-box AI is not the focus of our research. Our aim here is to

decipher complicated and incomprehensible (but efficiently functioning) black-box AI controller by

representing it in a relatively more interpretable format through Non-linear Decision Tree (NLDT).

Once the black-box AI is trained, it is used to generate labelled training and testing datasets of

state-action pairs (block 2 in Figure 4.7). The labelled training dataset is used to induce the NLDT

using the recursive bilevel evolutionary algorithm [81] (Section 4.6.2).

The training dataset is generated by storing state-action values from the sequential interaction

of black-box AI (such as DNN) with the corresponding environment. We generate two types of

training datasets: Regular and Balanced. Discussion regarding the procedure used to generate

regular and balanced dataset is explained next.

4.7.1.1 Creation of Regular Dataset

For creating a regular dataset of =C>C0; datapoints, the sequential state-action data of different

episodes is stored from the interaction of trained black-box AI with the corresponding environment.

Since the datapoint (state-action pair) is stored for each time-step in sequential manner (if the

episode terminates and the collected number of datapoints is less than =C>C0; , then a new episode

is invoked and the process of data collection repeats), there is no explicit control on the number of

datapoints which will fall into a particular action category. Hence, the resulting data distribution

might have an inherent bias. This bias in data distribution is more evident for environments

involving more than two actions as shown in Table 4.1.

Table 4.1: Class Distribution of Regular Training Datasets for different problems. For each row,
the 8-th number in second column represents the number of datapoints belonging to 8-th action.

Problem #Classes Class Distribution
CartPole 2 4997; 5003

CarFollowing 2 5237; 4763
MountainCar 3 3452; 495; 6053
LunarLander 4 3661; 1650; 3779; 910

Since some of the actions have lesser representation in the training dataset, it might negatively

affect the closed-loop performance of the NLDT. To investigate this effect of bias, we create

84

balanced datasets with near-uniform distribution across all actions/classes. The procedure to

create a balanced (or almost balanced) dataset is discussed next.

4.7.1.2 Creation of Balanced Dataset

In order to create a uniformly (or near-uniformly) distributed data across all actions in the dataset

of =C>C0; datapoints, data creation procedure similar to the one discussed above is implemented,

i.e. data is stored from sequential time-steps. However, if the number of datapoints for a particular

action reaches a threshold limit of d =C>C0;=02C8>=B
e (where =02C8>=B is the total number of discrete actions

and dGe indicates the round-up function), no extra datapoints are collected for that action. It is

to note that data for other actions (for which number of collected datapoints is still less than the

prescribed threshold value) is still collected from sequential time-steps until total =C>C0; datapoints

are collected.

The regular and balanced data creation method is used to create training datasets only. Testing

datasets are created with the regular dataset creation approach. Also, since for binary action spaces,

the distribution is fairly uniform (Table 4.1), we don’t create balanced training datasets for these

problems (i.e. CartPole and CarFollowing).

4.8 Experiments and Analysis on Control Tasks with Binary Action Spaces

In this section, we conduct experiments and discuss results obtained by using our approach for

control tasks involving two discrete actions, namely: 1) CartPole, and 2) CarFollowing.

4.8.1 CartPole Problem

As shown in Figure 4.8a, the CartPole problem comprises of four state variables: 1) G-position

(G → G0), velocity in +ve G direction (E → G1), angular position from vertical (\ → G2) and angular

velocity (l → G3) and is controlled by applying force towards left (action 0) or right (action 1) to

the cart. The objective is to balance the inverted pendulum (i.e. −24 deg ≤ \ ≤ 24 deg) while also

ensuring that the cart doesn’t fall off from the platform (i.e. −4.8 ≤ G ≤ 4.8). For every time-step,

85

a reward value of 1 is received while \ is within ±24 deg. The maximum episode length is set to

200 time-steps.

A deep neural network (DNN) controller is trained on the CartPole environment using the PPO

algorithm [61]. Table 4.2 shows the performance of NLDT on the training data sets of different

sizes. It is observed that NLDT trained with 5,000 and 10,000 data points shows a robust open-loop

performance and also produces 100% closed-loop performance. Keeping this in mind, we keep

the training data size of 10,000 fixed across all control problems discussed in this dissertation.

It is observed that NLDT$! trained with at least 5,000 data points shows a robust open-loop

performance. The obtained NLDT$! has a about two rules with on an average three terms in the

derived policy function.

Table 4.2: Effect of training data size on performance of NLDT$! on CartPole problem.

Training
Data Size

Training
Accuracy

Testing
Accuracy

#
Rules

Rule
Length

Cumulative
Reward

Compl. Rate
(Closed-loop)

100 97.00 82.79 1.50 3.30 199.73 95.0
500 95.5 79.66 1.90 3.88 175.38 51.00
1,000 91.90 90.59 1.80 4.05 200.00 100
5,000 92.07 92.02 1.70 4.25 200.00 100
10,000 91.86 92.05 1.30 4.45 200.00 100

Interestingly, the same NLDT (without closed-loop training) also produces 100% closed-loop

performance by achieving the maximum cumulative reward value of 200.

4.8.1.1 NLDT for CartPole Problem

One of the NLDT$! obtained for the CartPole environment is shown in Figure 4.9 in terms of

normalized state variable vector x̂.

The respective policy can be alternatively stated using the programmable if-then-else rule-

structure as shown in Algorithm 5:

A little manipulation will reveal that for a correct control startegy, Action 0 must be invoked if

following condition is true:

2.39 ≤
(
Ĝ0

Ĝ2
2 +

3.50
Ĝ3

2

)
≤ 5.06,

86

Figure 4.9: CartPole NLDT$! induced using 10,000 training samples. It is 91.45% accurate on
the testing dataset but has 100% closed loop performance. Normalization constants are: xmin =
[-0.91, -0.43, -0.05, -0.40], xmax = [1.37, 0.88, 0.10, 0.45].

Algorithm 5: CartPole Rules. Normalization constants are: G<8= = [-0.91, -0.43, -0.05,
-0.40], G<0G = [1.37, 0.88, 0.10, 0.45].

if
���−0.18Ĝ0Ĝ2

−2 − 0.63Ĝ3
−2 + 0.67

��� − 0.24 ≤ 0 then
Action = 0

else
Action = 1

end

otherwise, Action 1 must be invoked. First, notice that the above policy does not require the current

velocity (Ĝ1) to determine the left or right action movement. Second, for small values of angular

position (Ĝ2 ≈ 1) and angular velocity (Ĝ3 ≈ 1), i.e. the pole is falling towards left, the above

condition is always true. That is, the cart should be pushed towards left, thereby trying to stabilize

the pole to vertical position. On the other hand, if the pole is falling towards right (large values

of Ĝ2 ≈ 2 and Ĝ3 ≈ 2), the term in bracket will be smaller than 2.39 for all Ĝ0 ∈ [1, 2], and the

above policy suggests that Action 1 (push the cart towards right) must be invoked. When the pole is

falling right, a push of the cart towards right helps to stabilize the pole towards its vertical position.

These extreme case analyses are intuitive and our policy can be explained for its proper working,

but what our NLDT approach is able to find is a precise rule for all situations of the state variables

to control the Cart-Pole to a stable configuration, mainly using the blackbox-AI data.

4.8.2 CarFollowing Problem

This problem simulates a one dimensional car chasing scenario. We have developed a discretized

version of the car following problem discussed in [82] (illustrated in Figure 4.8b), wherein the task

87

is to follow the car in the front which moves with a random acceleration profile (between −1</B2

and +1</B2) and maintain a safe distance of 3B0 5 4 = 30< from it. The rear car is controlled

using two discrete acceleration values of −1</B2 (Action 0) and +1</B2 (Action 1). The car-chase

episode terminates when the relative distance 3A4; = G 5 A>=C − GA4; is either zero (i.e. collision case)

or is greater than 150 m. At the start of the simulation, both cars start with the initial velocity of

zero. A DNN policy for CarFollowing problem was obtained using a double Q-learning algorithm

[83]. The reward function for the CarFollowing problem is shown in Figure 4.10, indicating that a

relative distance close to 30 m produces the highest reward.

Figure 4.10: Reward function for CarFollowing environment.

It is to note here that unlike the CartPole control problem, where the dynamics of the systemwas

deterministic, the dynamics of the CarFollowing problem is not deterministic due to the random

acceleration profile with which the car in the front moves. This randomness introduced by the

unpredictable behaviour of the front car makes this problem more challenging.

Results for the CarFollowing problem are shown in Table 4.3. An average open-loop accuracy

of 96.53% is achieved with at most three rules, each having 3.28 terms on an average.

For this problem, we apply the closed-loop re-optimization (Blocks 4 and 5 to produce Block 6

in Figure 4.7) on the entire NLDT$! . As shown Table 4.4, NLDT* is able to achieve better closed-

88

Table 4.3: Results on CarFollowing problem correspoing to open-loop training (NLDT$!).

Train. Acc. Test. Acc. Depth # Rules Rule Length Compl. Rate
96.41 ± 1.97 96.53 ± 1.90 1.90 ± 0.30 2.40 ± 0.66 3.28 ± 0.65 100 ± 0.00

loop performances (100% completion rate and better average cumulative reward). Figure 4.11

shows that NLDT* adheres the 30< gap between the cars more closely than original DNN or

NLDT$! .

Table 4.4: Closed-loop performance analysis after re-optimizing NLDT for CarFollowing problem
(k = 103).

AI Cumulative Reward Compl. RateBest Avg ± Std
DNN 174.16k 173.75k ±20.95 100 ± 0.00

NLDT$! 174.15k 173.87k ±16.48 100 ± 0.00
NLDT* 179.76k 179.71k ±0.95 100 ± 0.00

0 100 200 300 400 500 600 700 800
Time Steps

26.5

27.0

27.5

28.0

28.5

29.0

29.5

30.0

30.5

31.0

Re
la

tiv
e

Di
st

an
ce

dsafe = 30
DNN
NLDT
NLDT*

Figure 4.11: Relative distance plot for CarFollowing problem.

89

4.8.2.1 NLDT for CarFollowing Problem

The NLDT$! obtained for the CarFollowing problem is shown in Figure 4.12. The rule-set is

Figure 4.12: NLDT$! for the CarFollowing problem. Normalization constants are: Gmin = [0.25,
-7.93, -1.00], Gmax = [30.30, 0.70, 1.00].

provided in its natural if-then-else form in Algorithm 6.

Algorithm 6: Ruleset corresponding to NLDT$! (Figure 4.12) of the CarFollowing
problem.
if 0.63Ĝ0 − 0.87Ĝ1

−2Ĝ2 − 1.00 ≤ 0 then
if 0.96Ĝ1

−3 − 0.58Ĝ0 + 1.00 ≤ 0 then
Action = 1

else
Action = 0

end
else

Action = 1
end

Recall that the physical meaning of state variables is: G0 → 3A4; (relative distance between

front car and rear car), G1 → EA4; (relative velocity between front car and rear car) and G2 → 0

(acceleration value (−1 or +1 m/s2) at the previous time step). Action = 1 stands for acceleration

and Action = 0 denotes deceleration of the rear car in the next time step.

From the first rule (Node 0), it is clear that if the rear car is close to the front car (Ĝ0 ≈ 1),

the root function 50(x) is never going to be positive for any value of relative velocity or previous

acceleration of the rear car (both Ĝ1 and Ĝ2 lying in [1,2]). Thus, Node 4 (Action = 1, indicating

90

acceleration of the rear car in the next time step) will never be invoked when the rear car is too

close to the front car. Thus for Ĝ0 ≈ 1, the control always passes to Node 1. A little analysis will

also reveal that for Ĝ0 ≈ 1, the rule 51(x) > 0 for any relative velocity Ĝ1 ∈ [1, 2]. This means that

when the two cars are relatively close, only Node 3 gets fired to decelerate (Action = 0) the rear

car. This policy is intuitively correct, as the only way to increase the gap between the cars is for the

controlled rear car to be decelerating.

However, when the rear car is far away for which Ĝ0 ≈ 2, Action 1 (Node 4) gets fired if

Ĝ1 > 1.829
√
Ĝ2. If the rear car was decelerating in the previous time step (meaning Ĝ2 = 1),

the obtained NLDT recommends that the rear car should accelerate if Ĝ1 ∈ [1.829, 2], or when

the magnitude of the relative velocity is small, or when G1 ∈ [−0.776, 0.700]</B. This will

help maintain the requisite distance between the cars. On the other hand, if the rear car was

already accelerating in the previous time step (Ĝ2 = 2), Node 4 does not fire, as Ĝ1 can never be

more than 1.829
√

2 and the control goes to Node 1 for another check. Thus, the rule in Node 0

makes a fine balance of the rear car’s movement to keep it a safe distance away from the front

car, based on the relative velocity, position, and previous acceleration status. When the control

comes to Node 1, Action 1 (acceleration) is invoked if Ĝ1 ≥ 0.96/(0.58Ĝ0 − 1). For Ĝ0 ≈ 2, this

happens when Ĝ1 > 1.817 (meaning that when the magnitude of the relative velocity is small,

or G1 ∈ [−0.879, 0.700]</B), the rear car should accelerate in the next time step. For all other

negative but large relative velocities G1 ∈ [−7.930, 0.879]</B), meaning the rear car is rushing to

catch up the front car, the rear car should decelerate in the next time step. From the black-box AI

data, our proposed methodology is able to obtain a simple decision tree with two nonlinear rules to

make a precise balance of movement of the rear car and also allowing us to understand the behavior

of a balanced control strategy.

Results of NLDT’s performance on problems with two discrete actions (Tables 4.2, 4.3 and

4.4) indicate that despite having a noticeable mismatch with the open-loop output of the oracle

black-box policy c>A02;4, the closed-loop performance of NLDT is at par or at times better than

c>A02;4. This observation suggests that certain state-action pairs are not of crucial importance

91

when it comes to executing the closed-loop control and, therefore, errors made in predicting these

state-action events do not affect or deteriorate the closed-loop performance.

4.9 Experiments and Analysis on Multiple Discrete Action Space

In this section, we investigate the performance of proposed NLDT method to approximate

the behavior of the parent ANN/black-box AI for control tasks involving more than two discrete

actions. Here, as mentioned before, we compare the open-loop and closed-loop performances

across different representations of NLDT, i.e. binary-split NLDT and multi-split NLDT, and two

different training dataset distributions, namely, regular and balanced.

4.9.1 MountainCar Problem

A schematic of this environment is shown in Figure 4.2. The car starts somewhere near the bottom

of the valley and the goal of the task is to reach the flag-post located on the right up-hill with

non-negative velocity. The fuel is not enough to directly climb the hill and hence a control strategy

needs to be devised to move car back (left up-hill), leverage the potential energy and then accelerate

it to eventually reach the flag-post within 200 time-steps. The car receives the reward value of -1 for

each time-step, until it reaches the flag-post where the reward value is zero. The car is controlled

using three actions: accelerate left (action 0), do nothing (action 1) and accelerate right (action 2)

by observing its state which is given by two state-variables: G position→ G0 and velocity E → G1.

We use the SARSA algorithm [84] with tile encoding to derive the black-box AI controller, which

is represented in form of a tensor and has total 151, 941 elements.

Compilation of results of the NLDT controller induced using different NLDT-representations

and training dataset distributions is presented in Table 4.5. A state-action plot of the black-box AI

and the NLDT controller corresponding to the first row of Table 4.5 is provided in Figures 4.3a

and 4.3b, respectively. It can be seen from the plots that about 8% mismatch in the open-loop

performance (i.e. testing accuracy in Table 4.5) comes from the lower region of state-action plot

(Figures 4.3a and 4.3b) due to highly non-linear output of the black-box AI controller. Again,

92

despite having this mismatch, the NDLT controller is able to achieve close to 100% closed-loop

control performance. The regular dataset is able to produce a multi-split NLDT with three control

Table 4.5: Mountain car results. The numbers indicate average scores.

Balanced Training
Accuracy

Testing
Accuracy Depth # Rules Avg Rule

Length
Completion

Rate
Binary-split NLDT

No 90.61 91.92 2 2 3.00 99.8
Yes 86.11 88.70 3 4 3.00 100.0

Multi-split NLDT
No 91.66 91.50 2 3 1.67 100.0
Yes 88.53 88.44 2 4 2.50 100.0

rules with an average 1.67 terms in each rule to achieve 100% closed-loop performance. The

multi-split NLDT has a comparable performance to that of binary-split NLDT.

4.9.2 NLDT for MountainCar Problem

The NLDT$! obtained for the MountainCar problem is shown below in Figure 4.13. The resulting

rule-set is also shown in if-then-else statements in Algorithm 7.

Figure 4.13: NLDT$! for MountainCar problem. Normalization constants: Gmin = [-1.20, -0.06],
Gmax = [0.50, 0.06].

This rule-set corresponds to the plot shown in Figure 4.3b. A detail analysis of the two rules

can be made to have a deeper understanding of the control policy.

93

Algorithm7:MountainCarNLDT$! . Normalization constants are: G<8= = [-1.20, -0.06],
G<0G = [0.50, 0.06].

if
���−0.22Ĝ0Ĝ1 + 0.28Ĝ1

−1 − 0.63Ĝ0
−2 + 0.96

��� − 0.36 ≤ 0 then

if
���−0.30Ĝ1

2 − 0.28Ĝ0
2 + 1.39

��� − 0.53 ≤ 0 then
Action = 2

else
Action = 1

end
else

Action = 0
end

4.9.3 LunarLander Problem

This problem is motivated from a classic problem of design of a rocket-controller. Here, the state

of the lunar-lander is expressed with eight state variables, of which six can assume continuous real

values, while the rest two are categorical, and can assume a Boolean value. The first six state

variables indicate the (G, H) position, and velocity and angular orientation and angular velocity of

the lunar-lander. The two Boolean state variables provide the indication regarding the left-leg and

right-leg contact of lunar-lander with the ground terrain. The lunar-lander is controlled using four

actions: action 0→ do nothing, action 1→ fire left engine, action 2→ fire main engine and action

3→ fire right engine as shown schematically in Figure 4.8c. The black-box DNN based controller

for this problem is trained using the PPO algorithm [61] and involves two hidden layers of 64 nodes.

Table 4.6 provides the compilation of results obtained using open-loop training.

It is evident from the table that the binary-split NLDT$! representation is superior to the multi-

split NLDT$! representation in terms of both open-loop and closed-loop performances. In this

problem, a better closed-loop performance of NLDT$! is observed when the open-loop training

is done on the balanced dataset. This indicates that under-represented actions in regular training

dataset (see Table 4.1) limits the exposure to some crucial states during the training phase of NLDT.

The crucial state-action pairs (or experience) necessary for closed-loop control gets captured while

creating the balanced dataset, and so, despite having the lower open-loop performance on the testing

94

Table 4.6: LunarLander open-loop training (NLDT$!) results. The numbers indicate average
scores.

Balanced Training
Accuracy

Testing
Accuracy Depth # Rules Avg Rule

Length
Completion

Rate
Binary-split NLDT

No 79.17 76.36 3 5.60 5.59 14.00
Yes 69.83 66.58 3 4.40 5.79 42.00
No 87.43 81.74 6 34.70 4.94 48.00
Yes 81.74 71.52 6 25.70 5.17 93.00

Multi-split NLDT
No 75.84 69.68 2 4 3.50 0.11
Yes 68.31 70.79 2 5 5.80 21.60
No 86.95 79.40 6 37 3.84 17.70
Yes 82.17 71.08 6 41 3.95 89.50

dataset (which is regular), the overall closed-loop performance improves. The best performance is

observed with a binary-split NLDT$! trained on the balanced dataset.

4.9.3.1 NLDT for LunarLander Problem

The topology of one of the binary-split NLDT$! obtained after open-loop training using balanced

dataset is shown in Figure 4.14.

This NLDT$! successfully lands the lander in 93.4% episodes and has in total 26 rules each

having about 4.15 terms involving state variables.

It is understandable that a complex control task involving many state variables cannot be

simplified or made interpretable with just one or two control rules. A separate study focusing at

identifying crucial state-action pairs would help us understand this phenomenon better and we plan

to do this in our future work. Next, we use a part of the NLDT$! from the root node to obtain

the pruned NLDT(%)
$!

(step ‘B’ in Figure 4.7) and re-optimize all weights (W) and biases (�) using

the procedure discussed in Section 4.6.3 (shown by orange box in Figure 4.7) to find closed-loop

NLDT*.

Table 4.7 shows that for the prunedNLDT-3which comprises of the top three layers and involves

only four rules of original 26-rule NLDT$! (i.e. NLDT-6), the closed-loop performance increases

95

Figure 4.14: NLDT-6 (with 26 rules) and other lower depth NLDTs for the LunarLander problem.
Lower depth NLDTs are extracted from the depth-6 NLDT. Each node has an associated node-id
(on top) and a node-class (mentioned in bottom within parenthesis). Table 4.7 in provides results
on closed-loop performance obtained using these trees before and after applying re-optimization
on rule-sets using the closed-loop training procedure.

from 51% to 96% (NLDT*-3 results in Table 4.7) after re-optimizing its weights and biases with

closed-loop training.

The resulting NLDT with its associated four rules are shown in Figure 4.15.

Figure 4.15: Final NLDT*-3 for LunarLander prob. Ĝ8 is a normalized state variable (see Sec-
tion 4.6.1).

As shown in Table 4.7, the NLDT* with just two rules (NLDT-2) is too simplistic and does

96

not recover well after re-optimization. However, the NLDT*s with four and seven rules achieve a

near 100% closed-loop performance. Clearly, an NLDT* with more rules (NLDT-5 and NLDT-6)

are not worth considering since both closed-loop performances and the size of rule-sets are worse

than NLDT*-4. Note that DNN produces a better reward, but not enough completion rate, and the

policy is more complex with 4,996 parameters.

Table 4.7: Closed-loop performance on LunarLander problem with and without re-optimization on
26-rule NLDT$! . Number of rules are specified in brackets for each NLDT and total parameters
for the DNN is marked.

Re-Opt. NLDT-2
(2)

NLDT-3
(4)

NLDT-4
(7)

NLDT-5
(13)

NLDT-6
(26)

DNN
(4,996)

Cumulative Reward
Before −1675.77

± 164.29
42.96
± 13.83

54.24
± 27.44

56.16
± 23.50

169.43
±23.96

247.27
± 3.90

After −133.95
± 2.51

231.42
± 17.95

234.98
±22.25

182.87
± 21.92

214.94
± 17.31

Completion Rate
Before 0.00

± 0.00
51.00
± 3.26

82.00
± 9.80

79.00
± 7.66

93.00
±3.30

94.00
±1.96

After 48.00
± 7.38

96.00
± 2.77

99.00
±1.71

93.00
± 7.59

94.00
± 4.45

To demonstrate the efficacy and repeatability of our proposed approach, we perform another

run of the open-loop and closed-loop training and obtain a slightly different NLDT*-3, which is

shown in Figure 4.16. This NLDT also has four rules, which are shown in Table 4.8. Four rules

corresponding to the pruned NLDT(%)
$!

(Depth 3) are also shown in the table for comparison. It can

be noticed that the re-optimization of NLDT through closed-loop training (Section 4.6.3) modifies

the values of coefficients and biases, however the basic structure of all four rules remains intact.

Figure 4.17 shows the closed-loop training curve for generatingNLDT* fromDepth-3NLDT(%)
$!

.

The objective is to maximize the closed-loop fitness (reward) ��! (Eq. 4.11) which is expressed as

the average of the cumulative reward '4 collected over" episodes. It is evident that the cumulative

reward for the best-population member climbs to the target reward of 200 at around 25-th generation

and the average cumulative reward of the population also catches up the best cumulative reward

value with generations.

97

Figure 4.16: Topology of Depth-3 NLDT(%)
$!

obtained from a different run on the LunarLander
problem. The equations corresponding the conditional-nodes before and after re-optimization are
provided in Table 4.8.

A visualization of the real-time closed-loop performance obtained using this new NLDT (Fig-

ure 4.16) for two different rule-sets (i.e. before applying re-optimization and after applying the

re-optimization through closed-loop training) is shown in https://youtu.be/DByYWTQ6X3E. It

can be observed in the video that the closed-loop control executed using the Depth-3 NLDT(%)
$!

comprising of rules obtained directly from the open-loop training (i.e. without any re-optimization)

is able to bring the LunarLander close to the target. However the LunarLander hovers above the

landing pad and the Depth-3 NLDT(%)
$!

is unable to land it in most occasions. Episodes in these

cases are terminated after the flight-time runs out. On the other hand, the Depth-3 NLDT* compris-

ing of rule-sets obtained after re-optimization through closed-loop training is able to successfully

land the LunarLander.

4.10 Conclusions

In this work, we have proposed a two-step strategy to arrive at hierarchical and relatively

interpretable rulesets using a nonlinear decision tree (NLDT) concept to facilitate an explanation

of the working principles of AI-based policies. The NLDT training phases use recent advances in

98

https://youtu.be/DByYWTQ6X3E

Table 4.8: NLDT rules before and after the closed-loop training for LunarLander problem, for
which NLDT* is shown in Figure 4.16. Video showing the simulation output of the performance of
NLDTs with rule-sets mentioned in this table can be found at https://youtu.be/DByYWTQ6X3E.
Respective minimum and maximum state variables are Gmin = [-0.38, -0.08, -0.80, -0.88, -0.42,
-0.85, 0.00, 0.00], Gmax = [0.46, 1.52, 0.80, 0.50, 0.43, 0.95, 1.00, 1.00], respectively.

Node Rules before Re-optimization (Depth-3 NLDT(%)
$!

)
0

���−0.23Ĝ0Ĝ2
−1Ĝ6

−1Ĝ7
−1 − 1.00Ĝ1

−1Ĝ6 − 0.79Ĝ0
−1Ĝ1

−1Ĝ6
2 + 0.83

��� − 0.85
1 0.17Ĝ2

−1 − 0.64Ĝ3Ĝ7
−1 + 0.90Ĝ1

−2Ĝ6
−2Ĝ7

−3 + 0.29
2 0.82Ĝ7

−1 + 0.52Ĝ0
−1Ĝ4Ĝ6

−1 − 0.59Ĝ4
−1 − 0.95

6
���−0.16Ĝ4

−3Ĝ6
−3Ĝ7 − 0.86Ĝ0Ĝ5

−1Ĝ6
−3 + 1.00Ĝ4Ĝ6

−1 − 0.70
��� − 0.26

Node Rules after Re-optimization (Depth-3 NLDT*)
0

���−0.39Ĝ0Ĝ2
−1Ĝ6

−1Ĝ7
−1 − 0.96Ĝ1

−1Ĝ6 − 0.12Ĝ0
−1Ĝ1

−1Ĝ6
2 + 0.89

��� − 0.80
1 0.17Ĝ2

−1 − 0.78Ĝ3Ĝ7
−1 + 0.90Ĝ1

−2Ĝ6
−2Ĝ7

−3 + 0.35
2 0.82Ĝ7

−1 + 0.52Ĝ0
−1Ĝ4Ĝ6

−1 − 0.59Ĝ4
−1 − 0.96

6
���− (

1.3 × 10−3
)
Ĝ4
−3Ĝ6

−3Ĝ7 − 0.86Ĝ0Ĝ5
−1Ĝ6

−3 + 0.65Ĝ4Ĝ6
−1 − 0.42

��� − 0.26

nonlinear optimization to focus its search on rule structure and details describing weights and biases

of the rules by using a bilevel optimization algorithm. Starting with an open-loop training, which

is relatively fast (due computationally fast fitness evaluation) but uses only time-instant state-action

data, we have proposed a final closed-loop training phase in which the complete or a part of the

open-loop NLDT is re-optimized for weights and biases using complete episode data. Results on

popular discrete action problems have amply demonstrated the usefulness of the proposed overall

approach.

This proof-of-principle study encourages us to pursue a number of further studies. First, the

scalability of the NLDT approach to large-dimensional state-action space problems must now be

explored. A study conducted in Chapter 3 on binary classification of dominated versus non-

dominated data in multi-objective problems was successfully extended to 500-variable problems.

While it is encouraging, the use of customization methods for initialization and genetic operators

using problem heuristics and/or recently proposed innovization methods [46] in the upper level

problem can be tried. Second, this study has used a computationally fast open-loop accuracy

measure as the fitness for evolution of the NLDT$! . This is because, in general, an NLDT$! with

99

https://youtu.be/DByYWTQ6X3E

0 5 10 15 20 25 30
Generation

500

400

300

200

100

0

100

200
Re

wa
rd

Closed-Loop Training

Best Reward
Avg. Reward

Figure 4.17: Closed-loop training plot for finetuning the rule-set corresponding to depth-3NLDT(%)
$!

(Table 4.8) to obtain NLDT* for LunarLander problem.

a high open-loop accuracy is likely to achieve a high closed-loop performance. However, we have

observed here that a high closed-loop performance is achievable with a NLDT$! having somewhat

degraded open-loop performance, but re-optimized using closed-loop performancemetrics. Thus, a

method to identify the crucial (open-loop) states from the AI-based simulation dataset that improves

the closed-loop performance would be another interesting step for deriving NLDT$! . This may

eliminate the need for re-optimization through closed-loop training. Third, a more comprehensive

study using closed-loop performance and respective complexity as two conflicting objectives for a

bi-objective NLDT search would produce multiple trade-off control rule-sets. Such a study can, not

only make the whole search process faster due to the expected similarities among multiple policies,

they will also enable users to choose a single policy solution from a set of accuracy-complexity

trade-off solutions.

100

CHAPTER 5

SCALE-UP STUDY AND IMPROVISATION

In this chapter, we focus at how the overall algorithm developed in previous chapter can be made

more efficient in terms of – training time and scalability. To this purpose, we introduce a benchmark

problem of planar serial robotic manipulator. This problem is inspired from the classical Acrobot

control problem [64]. A schematic of the acrobot problem and serial manipulator problem is

provided in Figure 5.1a and 5.1b respectively.

(a) Acrobot (b) Planar Serial Manipulator

Figure 5.1: Acrobot and a customized Planar Serial Manipulator benchmark problems.

The state-space for acrobot environment (Figure 5.1a) is six dimensional with following state

variables: B8=(\1), 2>B(\1), B8=(\2), 2>B(\2), l1 and l2, where \1 is the angle the first link makes

with the vertical axis and \2 is the angle the longitudinal axis of the second link makes with that of

the first one. The second joint between the first and second link is actuated with a motor. In case

of planar manipulator (Figure 5.1b), the sate space comprises of angular position \8 and angular

velocity l8 of each joint. Thus, for a =-link manipulator involving = revolute joints, the state space

would be 2= dimensional. The motor is located at the last joint of the manipulator and is actuated

101

using three torque values: −g, 0 and g. Each link is of 1 unit length and has its center-of-mass at

its geometric center. The motor is assumed to be massless for the sake of simplicity. The base of

the planar-manipulator is located at (0, 0, 0) and the motion of the planar manipulator is limited

to the XZ plane. There is a downward gravitational pull (6) of 10 units (i.e. -10 along vertical Z

axis). Torque is applied along the Y-axis. The task in this problem is to take the end-effector (i.e.

tip of the last link) of the serial-manipulator to a desired height of � units by supplying torque to

the motor located at the last joint (joint between (= − 1)-th and =-th link). The difficulty of this

benchmark problem can be adjusted by

1. changing the number of links,

2. changing the value of desired height level �,

3. changing the value of torque g and

4. placing extra motors at other joints.

We simulate the mechanics of the planar serial manipulator using PyBullet [85]: a Python based

physics engine.

In our work, we provide two case-scenarios by focusing at the first three points of the above list.

As mentioned before, by changing the number of links, the dimension of the state-space changes.

The dimension of the action-space depends on the number of motors used. In the present work, we

keep the number of motors fixed to one.

The details regarding two environments which are created and studied in this chapter are

summarized in Table 5.1.

Table 5.1: Details regarding custom designed Planar Serial Manipulator environments.

Env. Name # Links
(=)

Motor
Torque (g)

Desired
Height (�)

State
Vars.

5-Link Manipulator 5 1,000 +2 10
10-Link Manipulator 10 2,000 +2 20

The reward function A (x, �) is given by the following equation

102

A (x) =


−1 −

(
�+1−I�
=+�+1

)2
if I� < �,

100 if I� ≥ H,
(5.1)

where I� is the vertical location of the end-effector. The minimium value for I� is −= when the

entire manipulator is stretched to its full length and all joint angles (i.e. \8) are 0.

At the beginning of an episode, joint angles \8 of the manipulator are randomly initialized

between −5 deg and +5 deg, and the angular velocities l8 are initialized to a value between

−0.5 rad/sec and +0.5 rad/sec.

In next sections we discuss results obtained on the above two custom designed environments

by using different procedures of inducing NLDE$! . The black-box AI (DNN) is trained using the

PPO algorithm [61].

5.1 Ablation Study for Open-loop Training

In this section, we launch two separate studies related to open-loop training procedure (see

Figure 4.7). Following our results from Chapter 4, we restrict our discussion to binary-split

NLDTs. It was seen in the previous chapter that the open-loop training is conducted using the

hierarchical bilevel-optimization algorithm, which is discussed at length in Chapter 3. A dedicated

bilevel-optimization algorithm is invoked to derive the split-rule 5 (x) at a given conditional node.

The upper-level search is executed using a discrete version of a genetic algorithm and the lower-

level search is realized through an efficient real-coded genetic algorithm (RGA). Evolutionary

algorithms are in general considered robust and have a potential to conduct more global search.

However, being population driven, their search-speed is often less that of classical optimization

algorithms. In this section, we study the effect of replacing the real-coded algorithmwith a classical

sequential quadratic programming (SQP) optimization algorithm in the lower-level of the overall

bilevel algorithm for obtaining NLDT$! . Later, closed-loop training based on real-code genetic

algorithm is applied to NLDT$! to obtain NLDT* by re-optimizing the real valued coefficients of

103

NLDT$! (section 4.6.3). We use the SciPy [86] implementation of SQP. The initial point required

for this algorithm is obtained using the dipole concept (Figure 3.7, Eq. 3.11).

For analysis, we induce theNLDT$! of depth-3 on the balanced training dataset (section 4.7.1.2)

of 10,000 datapoints. The testing dataset is regular (see section 4.7.1.1) and comprises of 10,000

datapoints. Comparison of accuracy scores and average training time of inducing NLDT$! by

using SQP and RGA algorithm at lower-level is provided in Table 5.2. For a given procedure

(SQP or RGA) the best NLDT$! from 10 independent runs is chosen and is re-optimized using

closed-loop training (section 4.6.3). Statistics regarding closed-loop performance of NLDT* is

shown in the last two columns of Table 5.2. It is to note here that the closed-loop training is done

using the real-coded genetic algorithm (RGA) discussed in section 4.6.3.

Table 5.2: Comparing performance of different lower-level optimization algorithms. For compari-
son, closed-loop performance of the original DNN policy is also reported.

Open-Loop NLDT$! Closed-Loop NLDT*
Algo.
Name

Training
Accuracy

Testing
Accuracy

Training
Time (s)

Cumulative
Reward

Completion
Rate

5-Link Manipulator
SQP 62.46 ± 2.01 69.34 ± 5.39 15.29 ± 4.95 −91.52 ± 14.42 97.92 ± 1.93
RGA 71.14 ± 1.77 69.17 ± 4.39 1091.56 ± 319.18 −123.48 ± 25.11 97.00 ± 5.13
DNN NA NA NA −170.90 ± 42.57 89.00 ± 5.19

10-Link Manipulator
SQP 56.57 ± 1.00 55.64 ± 3.58 39.27 ± 11.63 −318.82 ± 15.52 96.00 ± 3.92
RGA 65.84 ± 0.85 62.60 ± 3.09 2860.96 ± 789.49 −281.88 ± 9.38 95.00 ± 4.31
DNN NA NA NA −325.86 ± 4.63 85.88 ± 1.94

It can be observed from the results that open-loop training done with SQP in lower-level is about

70 times faster than the training done using RGA at lower level. The training done with RGA has a

better overall open-loop performance. Thus, if the task is to closely mimic the behavior of black-box

AI or if only a high classification accuracy is desired (in case of classification problems), then RGA

is the recommended algorithm for lower-level optimization to obtain NLDT$! . However, NLDT*

obtained after re-optimizing NLDT$! corresponding to SQP and RGA have similar closed-loop

completion rate (last column of Table 5.2). This implies that despite low open-loop accuracy

scores, the open-loop training done using SQP in lower-level was able to successfully determine

104

the template of split-rules 5 (x) and the topology of NLDT, which upon re-optimization via closed-

loop training algorithm could fetch a decent performing NLDT*. During open-loop training,

the search on weights and coefficient using SQP was possibly not as perfect as compared to the

one obtained through RGA, however, the re-optimization done through closed-loop training could

compensate this shortcoming of SQP algorithm and produce NLDT*with a respectable closed-loop

performance. Additionally, in either cases, the NLDT* obtained always had a better closed-loop

performance than the original black-box DNN policy. This observation suggests that it is preferable

to use SQP in lower-level during open-loop training to quickly arrive at a rough structure ofNLDT$!

and then use closed-loop training to derive a high performing NLDT*. Another important thing

to note here is that the open-loop training time for obtaining NLDT$! for 10-link manipulator

problem is about 2.5 times less than the corresponding training time for obtaining NLDT$! for

the 5-link manipulator problem. This is because, the population size in upper-level GA for 10-link

manipulator problem (20 state variables) is twice that of the one for the 5-link manipulator problem

(10 state variables). Also, the upper-level search in the high-dimensional space could possibly take

more generations than it will take for lower-dimensional search spaces to converge.

5.2 Closed-loop Visualization

In this section we provide a visual insight into the closed-loop performance of NLDT* and

DNN which we derived in the previous section. In our case, the frequency of the simulation is set

to 240Hz, meaning that the transition to the next state is calculated using the time-step of 1/240

seconds. Geometrically speaking, this implies that the Euclidean distance between states from

neighboring time-steps would be small. The AI (DNN or NLDT*) outputs the action value of 0 (−g

torque), 1 (0 torque) or 2 (+g torque) for a given input state. Action Vs Time plots corresponding

to different closed-loop simulation runs obtained by using DNN, NLDT* (SQP)1 and NLDT*

(RGA)2 as controllers is shown in Figure 5.2 and 5.3 for 5-link and 10-link manipulator problems

respectively.

1NLDT* (SQP) indicates that the corresponding NLDT$! was derived using the SQP algorithm in the lower-level
2NLDT* (RGA) indicates that the correspondingNLDT$! was derived using the RGA algorithm in the lower-level

105

0 20 40 60 80 100 120
Time Steps

0

1

2

Ac
tio

n

(a) DNN

0 20 40 60 80 100 120 140
Time Steps

0

1

2

Ac
tio

n

(b) NLDT* (SQP)

0 20 40 60 80 100 120 140
Time Steps

0

1

2

Ac
tio

n

(c) NLDT* (RGA)

Figure 5.2: Action Vs. Time plot for 5-Link manipulator problem. Figure 5.2b provides the
plot for NLDT* which is obtained from the NLDT$! trained using SQP algorithm in lower-level.
Similarly, Figure 5.2c provides the plot for NLDT* which is obtained from the NLDT$! trained
using RGA algorithm in lower-level.

106

Certain key observations can be made by looking at the plots in Figure 5.2. The control output

for DNN is more erratic, with sudden jerks as compared to the control output of NLDT* (SQP)

and NLDT* (RGA). The performance of NLDT* in Figures 5.2b and 5.2c is smooth and regular.

This behaviour can be due to the involvement of a relatively simpler non-linear rules (as compared

to the complicated non-linear rule represented by DNN) which are captured inside NLDT*. This

is equivalent to the observation we made for the mountain car problem in Figures 4.3a and 4.3b,

wherein the black-box AI had a very erratic behavior for the region of state-space in the lower-half

of the state-action plot, while the output of NLDT was more smooth. Additionally, it was seen in

Table 5.2 that the NLDT* (irrespective of how its predecessor NLDT$! was obtained, i.e. either

through SQP or RGA in lower-level) showed better closed-loop performance than the parent DNN

policy. This observation implies that simpler rules expressed in the form of a nonlinear decision

tree have better generalizability, thereby giving more robust performance for randomly initialized

control problems. A careful investigation to the plots in Figure 5.2b and 5.2c reveals that only two

out of three allowable actions are required to efficiently execute the given control task of lifting the

end-effector of a 5-link serial manipulator. This concept will be used to re-engineer the NLDT*, a

discussion regarding which is provided in the next section.

A similar argument can be made from plots in Figure 5.3 for 10-link manipulator problem. This

is a slightly difficult problem to solve than the 5-link version since it involves twice the number

of state variables. Interestingly, the search for NLDT* provides us with the simplest solution to

this problem to lift the end-effector to the desired height of 2 units above the base. The simplest

solution here is to give a constant torque in one direction as shown in Figure 5.3b. However, for

this problem the best closed-loop performance in terms of cumulative reward (second last column

of Table 5.2) is obtained using the control strategy corresponding to NLDT* (RGA) (Figure 5.3c).

Here too, for most of the states, only one action is required, and occasionally other actions are

invoked.

107

0 50 100 150 200 250
Time Steps

0

1

2

Ac
tio

n

(a) DNN

0 50 100 150 200 250
Time Steps

0

1

2

Ac
tio

n

(b) NLDT* (SQP)

0 50 100 150 200 250 300
Time Steps

0

1

2

Ac
tio

n

(c) NLDT* (RGA)

Figure 5.3: Action Vs. Time plot for 10-Link manipulator problem. Figure 5.3b provides the
plot for NLDT* which is obtained from the NLDT$! trained using SQP algorithm in lower-level.
Similarly, Figure 5.3c provides the plot for NLDT* which is obtained from the NLDT$! trained
using RGA algorithm in lower-level.

108

As mentioned before, in the next section we will discuss a post-processing approach to further

simplify the NLDT*.

5.3 Reengineering NLDT*

It was seen in action-time plots in Figure 5.2b, 5.2c, 5.3b and 5.3c that not all actions are required

to perform a given control task. Also, it might be possible that while performing a closed-loop

control using NLDT, not all branches and nodes of NLDT are visited. Thus, the portion of the

NLDT which is not being utilized or is getting utilized very rarely can be pruned and the overall

NLDT architecture can be made simpler. To illustrate this idea, we consider the NLDT which is

derived for the 5-link manipulator problem. The topology of the best performing NLDT$! (SQP)

for the 5-link manipulator problem is shown Figure 5.4a.

As mentioned before, this NLDT$! is trained on a balanced training dataset which is generated

by collecting state-action pairs using parent DNN controller. In the figure, for each node, the

information regarding its node-id, class distribution (given in square parenthesis) and the most

dominating class is provided. Other than the root-node (Node 0), all nodes are colored to indicate

the dominating class, however, it is to note that only the class associated to leaf-nodes carry the

actual meaning while predicting the action for a given input state. This NLDT$! comprises of

three split-rules in total. The class-distribution for each node is obtained by counting how many

datapoints from the balanced training dataset visited a given node. Thus, the root node comprises

of all datapoints (total 10,000), which are then scattered according to the split-rules present at each

conditional node.

Figure 5.4b provides topology of NLDT* which is obtained after re-optimizing NLDT$! of

Figure 5.4a using closed-loop training. As discussed in section 4.6 and 4.6.3, the topology of the

tree and the structure of non-linear rules is identical for both: NLDT$! and NDLT*. However,

the weights and biases of NLDT* are updated to enhance the closed-loop control performance.

Similar to NLDT$! of Figure 5.4a, the information regarding node id and class-distribution is

provided for all the nodes of NLDT* in Figure 5.4b. However, the data distribution in NLDT*

109

(a) NLDT$!

(b) NLDT*

Figure 5.4: NLDTs for 5-Link Manipulator problem.

is obtained by using the actual state-action data from closed-loop simulations, wherein NLDT* is

used as a controller. Total 10,000 datapoints are collected in form of sequential states-action pairs

from closed-loop simulation runs which are executed using NLDT*. As can be seen in the root

node of NLDT* (Figure 5.4b), out of 10,000 states visited during closed-loop control, action 0 (−g

torque) was chosen by NLDT* for total 7736 states and action 2 (+g torque) was chosen for 2264

states. In none of the states visited during closed-loop control was action 1 (no torque) chosen.

This is consistent with what we have observed in the Action Vs Time plot in Figure 5.2b, wherein

most of the time action 0 was executed, while there was no event where action 1 was executed.

The flow of these 10,000 state-action pairs through NLDT* and their corresponding distribution

110

in each node of NLDT* is provided in Figure 5.4b. It can be observed that Node 5, Node 4 and

Node 8 of NLDT* are never visited during closed-loop control. This implies that splits at Node 2,

Node 1 and Node 6 are redundant. Thus, the part of NLDT* shown in red-box in Figure 5.4b can

be pruned and the overall topology of the tree can be simplified. The pruned NLDT* will involve

only one split (occurring at Node 0) and two leaf nodes: Node 1 and Node 6. However, it is to

note here that we need to re-assign class-labels to the newly formed leaf nodes (i.e. Node 1 and

Node 6) based on the data-distribution from closed-loop simulations. The old class-labelling for

the Node 1 and Node 6 was done based on the open-loop data (Figure 5.4a). Using the new class

distribution corresponding to NLDT* (Figure 5.4b), Node 1 is re-labelled with Class-2 and Node 6

with Class-0. The pruned version of NLDT* of Figure 5.4b is provided in Figure 5.5 (here nodes

are re-numbered, with Node 6 of NLDT* in Figure 5.4b re-numbered to Node 2 in the pruned

NLDT* as shown in Figure 5.5). The split-rule corresponding to the root-node is also shown.

Interestingly, out of 10 total state-variables, only 2 are used to decide which action to execute for

closed-loop control. G1 corresponds to the angular position of the second link and G9 variable

corresponds to the angular velocity of the last joint (i.e. the joint between link-4 and link-5 where

the motor is connected).

Figure 5.5: Pruned version of NLDT* (Figure 5.4b) for 5-link manipulator problem.

5.4 Conclusion

In this chapter we introduced benchmark problems to conduct scalable study and investigate

and compare algorithms to efficiently conduct open-loop training. The lower level optimization

111

done using SQP during open-loop training reduces the overall open-loop training time by 70 times.

The NLDT$! induced using RGA in lower level shows robust and relatively better open-loop

performance. However the closed-loop performance observed after re-optimizing NLDT$! to

NLDT* is similar in either case. This observation suggests the use of SQP in control tasks to

quickly generate NLDT$! . An extension of this work can be made for action-spaces involving

more than 3 actions. This can be achieved by allowing more joints of the serial-manipulator to get

actuated using motors. Also, a hybrid approach combining SQP and RGA for open-loop training

can be derived to efficiently induce high performing NLDT$! . This aspect will be particularly

useful for classification problems.

112

CHAPTER 6

EXTENSION TO REGRESSION AND CONTINUOUS CONTROL PROBLEMS

6.1 Introduction

In this chapter, we provide a conceptual path on how to extend the idea of nonlinear decision

tree to solve problems pertaining to regression and control systems involving continuous action

as output. Regression problems involves several independent features which are represented with

feature vector x, and one dependent variable H. The task here is to learn the relationship between

dependent and independent variables (H = 5 (x)) Traditionally, linear regression models and neural

networks can be trained to predict the value of a dependent variable H from the input features x.

However, these regression models are inherently complex since they translate to long equations to

represent the mathematical relationship between output H and input features x. Regression trees

have been popularly used to find piece-wise constant curves to fit the regression surface. The idea

behind regression trees is to partition the feature space into sub-regions using one or more splits

and then have a constant term for each such sub-region to approximate the value of the dependent

variable H. CART and M5 based trees fall in this category. An improvisation to this concept is

suggested in [1], where, instead of having the leaf node to represent a constant valued function as

in CART, leaf nodes represent a linear or quadratic functions comprising of < features (where < is

a user-specified parameter). Partitioning splits however occur on only one feature. An example of

interpretable tree generated in this fashion is shown in Figure 6.1.

6.2 Interpretable AI for Regression Problems using NLDT

The interpretable AI (IAI) developed for regression in our case is represented in the form of

a nonlinear decision tree (NLDT), with terminal leaf nodes representing regression equations and

the non-terminal conditional split-nodes representing conditional rules. The set of conditions at

split-nodes define the domain in the feature space where the regression rule at a follower terminal

113

Figure 6.1: Piecewise linear regression tree with two predictors from [1]. At each leaf node,
features involved in the expression of two-regressor linear model is shown. Splits use only one
feature variable.

node is applicable. A conceptual illustration of the NLDT framework for regression task is provided

in Figure 6.2.

Figure 6.2: Conceptual layout of NLDT for regression task.

The rule '8 at each terminal node is a function of feature vector x and provides the value of the

dependent variable H (i.e. H = '8 (x)). Each conditional rule %8 partitions the feature space into

114

two parts: %8 (x) ≤ 0 and %8 (x) > 0. Thus mathematically, for each 8-th leaf node:

If: % 9 (x) > 0, for all 9 < 8, and %8 (x) ≤ 0,

Rule: H = '8 (x).
(6.1)

For example, for Node 1 (8 = 0) leaf node, the rule indicates: If %0 ≤ 0, then H = '0(x).

Node 3 rule (8 = 2) indicates: If %0 > 0 ∧ %2 ≤ 0, then H = '2(x). The nonlinear decision tree is

induced by hierarchically applying a Dual bilevel algorithm at each conditional node. For an 8-th

conditional node, Stage 1 of the proposed dual bilevel algorithm focuses at deriving the regression

rule H = '8 (x). Stage 2 of the algorithm is then invoked to derive the partition rule %8 (x) to split the

data in conditional node �8 into two subsets: �!8 and �'
8
. Points in �!

8
follows the regression rule

H = '8 (x) and have a mean squared error (MSE) value within a user defined threshold value g<B4.

Thus, �!
8
is declared as a terminal leaf node. A new dedicated dual bilevel algorithm is reapplied

to the datapoints present in node�'
8
and process repeats. This procedure of hierarchically inducing

the decision tree continues until one of the termination criteria is met. We now discuss the dual

bilevel algorithm which is used to derive regression and partition rule at a given conditional node

�8.

6.3 Dual Bilevel Algorithm (DBA) for Regression

The dual bilevel algorithm is used to derive two rules at a given conditional node 8: 1) regression

rule H = '8 (x) and 2) partition rule %8 (x). The objective of deriving regression rule '8 (x) is to fit

as many datapoints present in the conditional node �8 as possible. If the regression rule H = '8 (x)

is able to fit all datapoints present in node �8 within an acceptable limit on mean squared error,

the dual bilevel algorithm is terminated and the node �8 is declared as the leaf node. However,

if regression rule H = '8 (x) is not able to fit all datapoints in �8, the second stage of dual bilevel

algorithm is invoked to derive the partition rule %8 (x). As mentioned before, the partition rule

%8 (x) partitions the data in node �8 into two subsets

• Left child node (�!
8
) (for which %8 (x) ≤ 0), and

115

• Right child node (�'
8
) (for which %8 (x) > 0),

such that datapoints in subset �!
8
have their MSE value w.r.t to regression curve H = '8 (x) within

a pre-specified threshold value g<B4. Thus, for a new test datapoint x, conditions listed in Eq. 6.1

are first checked before applying regression rule H = '8 (x) to estimate the value of the dependent

variable H. A high level pseudo-code for the dual bilevel algorithm is provided in Algorithm 8.

Algorithm 8: Pseudo-code of dual bilevel algorithm (DBA)
Input : Data in Conditional node �8: # datapoints with 3 independent variables

((G1, G2, . . . , G3) = x) and one dependent variable H.
Output
:

Regression Rule H = '8 (x) and partition rule %8 (x).

// Bilevel Algorithm to derive '8 (x)
Step 1 derive regression rule: H = '8 (x);
if MSE(�0C0, '8 (x)) ≤ g<B4 then

terminate;
else

Derive Partition Rule %8 (x);
end

Wewill next discuss the bilevel algorithm which is used to derive the regression rule H = '8 (x).

6.3.1 Data Normalization

Before training and inducing the NLDT for regression, we normalize the data. Each feature G8 and

dependent variable H is normalized using the following equation:

G=>A< =
G − `G
2fG

, (6.2)

where G=>A< is the normalized value of the variable G, `G and fG are mean and standard deviation

of variable G, respectively.

116

6.3.2 Bilevel Regression Algorithm to Obtain '(x)

The regression rule to be evolved is expressed as a weighted sum of power-laws as given in equation

below:

'8 (x) =
F1�1 + F2�2 + · · · + F?�? + \0

\1
, (6.3)

where �8’s are power-laws of type �8 =
∏3
9=1 G

18 9

9
. Like in the standard classification task discussed

in Chapter 3, the genome representing the template of the regression rule is represented with a

block matrix B as shown below

B =



111 112 113 . . . 113

121 122 123 . . . 123
...

...
...

. . .
...

1?1 1?2 1?3 . . . 1?3


. (6.4)

The upper level of the bilevel algorithm conducts the search in the discrete space of exponents

18 9 . The lower level of the bilevel algorithm searches the coefficients F8 corresponding to power-

laws �8 and the bias terms \0 and \1. The upper level algorithm is similar to the upper level

algorithm developed for classification problems (see section 3.3.2), however the objective and

constraint evaluation is different as shown in Eq. 6.5. For the lower level, we use the sequential

quadratic program (SQP) to estimate the values of F8’s and \8’s. The optimization formulation

corresponding to the problem of estimating the regression function H = '8 (x) is given below:

Minimize �* (B,w∗,�∗) = �! (w∗,�∗) |B,

Subject to (w∗,�∗) ∈ argmin {�! (w,�) |B} ,

−1 ≤ F8 ≤ 1, ∀8, \0 ∈ [−1, 1], \1 ∈ (0, 1],

18 9 ∈ /,

(6.5)

where for our study here we choose / = {−3,−2,−1, 0, 1, 2, 3}. The allowable powers indicated

by set / controls the maximum complexity achievable by our procedure. The fitness of the upper

117

level individual corresponds to the fitness of the optimal solution of the corresponding lower level

problem. We will next discuss how the lower level fitness function is designed to facilitate the

regression fit.

6.3.2.1 Lower Level Regression Optimization

Since we are targeting at evolving a simple rule, it is highly likely that one simple rule won’t fit

the entire dataset. Figure 6.3 illustrates one such situation involving two independent variables

and one dependent variable. Here, datapoints are scattered across three disjoint islands. Most of

Figure 6.3: Three Island Regression Problem.

them belong to island 2 while island 1 has the least number of datapoints. There might exist one

complicated regression surface which passes through all the datapoints. However, since we are

interested in having simple rule, one of the simple solution is to have three simple linear rules, one

for each island. Furthermore, in our overall algorithm, we would be interested to determine the

rule corresponding to island 2 first since it has majority number of points. The fitness function �!

for the lower-level optimization is formulated to capture these aspects. The algorithm to compute

�! is provided in Algorithm 9.

We will discuss the motivation behind different segments of Algorithm 9 here and explain the

idea with the help of Figure 6.4.

118

Algorithm 9: Algorithm to compute the lower level fitness �!
Input : Dataset D in B-space of size # × ? and array . of length # comprising of values

of dependent variable H, weight vector w, bias valus \0 and \1.
Output
:

Lower level fitness value �!

// predict the value of H

1 . ′ = PredictY(D,w, \0, \1);
// Compute the absolute difference between predicted and actual .
values

2 .4AA>A = |. − . ′|;
// Get a Boolean array of good points

3 � = .4AA>A ≤ g4AA>A ;
// Compute the total number of good points

4 #6>>3 = Σ
#
8
� [8];

5 if #6>>3 == 0 then
// No good point found

6 �! = ComputeRMSE(. ′, .); // Root Mean Squared Error
7 else
8 if #6>>3 < # − 2 then

// Sorted array of error in ascending order
9 (4AA>A = Sort(.38 5 5);

/* Get the error value of the best point from set of bad points
�′. */

10 3′ = (4AA>A [#6>>3 + 1];
11 if 3′ < 0.5 then

12 A = 1
#6>>3+1

Σ
#6>>3+1
8=1 (4AA>A [8]2;

13 else
14 A = ComputeRMSE(. [�], . ′[�]);
15 end
16 else
17 A = ComputeRMSE(. [�], . ′[�]);
18 end
19 �! = A − #6>>3
20 end

The value of �! is computed based on which stage the regression surface is relative to the

training data.

Stage 1 Here, the regressed surface is far off from the location of training datapoints as shown in

Figure 6.4a. This implies that no points are within a g4AA>A distance from the regressed

119

(a) Stage 1 (b) Stage 2

(c) Stage 3

Figure 6.4: Computation of Lower Level Objective function �! based on Algorithm 9.

surface, i.e. ∀x ∈ �, |H(x) − H′(x) | > g4AA>A , where H and H′ are actual and regressed values

of x respectively. The value of parameter g4AA>A is user specified. Under this scenario,

the objective �! is evaluated by computing mean squared error (MSE) between actual and

predicted values. Minimization of MSE in Stage 1 brings the regression surface closer to

the location of training dataset. This is shown pictorially in Fig. 6.4a. This segment is

represented by lines 5-6 in Algorithm 9. Eventually, the regressed surface/curve will come

in the vicinity of one (or more) datapoints (shown by red in Fig. 6.4a) and will result into

#6>>3 ≥ 0, where #6>>3 is the number of datapoints for which the difference between

predicted and actual H value is less than g4AA>A .

Stage 2 During Stage 2, we already have atleast one point with |H − H′| ≤ g4AA>A (i.e. #6>>3 ≥ 1).

In Stage 2, we design the objective function �! such that its minimization will ensure

maximization of number of good points (i.e. points with |H − H′| ≤ g4AA>A). One such way to

enforce this is to set �! = −#6>>3 . However, setting �! this way resembles a discontinuous

120

many-to-one mapping. This will create local flat regions (similar to the situation discussed

in Figure 3.6) thereby making it difficult for an optimization solver to navigate the search

space of w and �. We thus do the following modification to avoid creation of flat zones in

the fitness landscape of �!:

Step 1 Determine the closest point x′ in dataset D to the regressed surface such that |H′(x′) −

H(x′) | > g4AA>A and compute its error as 3′ = |H′(x′) − H(x′) | (line 9-10 in Algorithm 9).

If 3′ < 0.5, go to Step 2, else go to Stage 3

Step 2 Since 3′ < 0.5, x′ is potentially a next good point. Thus, we append datapoint x′ to the

list of good points and compute the MSE on this modified set of good points. Let the

MSE value of this set (good points + potentially good point) be denoted with A. �! is

then computed as

�! = A − #6>>3

as shown in line 12 and line 19 in Algorithm 9. Note that at first, the term #6>>3 will

remain constant and only A will get minimized while minimizing �! . This will result

in tilting of the regressed surface as shown in Figure 6.4b (where regressed surface �

is tilted to �). Eventually, minimization of �! this way will successively cover more

points (shown by shaded red colors in Figure 6.4b) and will bring the regression surface

to location � (shown in Figure 6.4c).

Stage 3 Here, the next closest point with 3′ > g4AA>A is far away from the regression surface

(marked with green in Figure 6.4c). Hence, �! will be computed as

�! = A − #6>>3 ,

where A is the mean squared error of good points (i.e. all those points for which

|H(x) − H′(x) | ≤ g4AA>A). In the example shown in Figure 6.4, values assumed by �!

during Stage 3 will be certainly less than those in Stage 2 since #6>>3 term of �! in

121

Stage 3 will be more by atleast 1 unit than the #6>>3 term in Stage 2. Also, #6>>3 term

in Stage 3 will remain constant since the next possible good point (green colored in

Figure 6.4c) is located very far away. Thus, minimization of �! will implyminimization

of A. This will steer to re-position the line � (for which all red points of Figure 6.4c

were within g4AA>A distance) to line �.

Based on the above explanation and illustrations shown in Figure 6.4, in a particular lower level

optimization run using a point based classical optimization approach, the values of �! as observed

in Stage 1 will be more than those observed in Stage 2 and values observed in Stage 2 will be more

than those observed in Stage 3. This would be true in general, but will also depend on several other

factors such as noise in the dataset, value of g4AA>A and relative locations of datapoints in training

set.

Eventually, the regression curve will fit certain segment of the training data (represented by �

in Figure 6.4c). In our experiments, we set g4AA>A = 0.03. Computing �! using the procedure

discussed above removes the bottleneck of having flat fitness landscape. This allows us to use

point based classical optimization algorithms to quickly determine optimal values of w and �.

Having a fast and reliable lower level optimization is really important for the efficient design of the

overall bilevel algorithm to estimate the regression function '(x). Next we discuss the upper level

optimization which is used to estimate the structure and template of the regression function '(x).

6.3.2.2 Upper Level Regression Optimization

Fitness of the optimal solution of lower level optimization becomes the fitness of the upper level

optimization as shown in Eq. 6.5. Since genetic operators in the upper level are designed to

incrementally complexify the expression of the power-law rule (Eq. 6.3), starting from a very

basic rule involving only one variable appearance, we observe a natural preference and bias for

simpler rules over complex rules. Output from one run of bilevel regression algorithm is shown

in Figure 6.5. It can be observed that the algorithm is able to successfully fetch us with a linear

122

regression rule '8 (x) = 0.91G1 − 0.90G0 + 0.08 to fit the island comprising of maximum number

of datapoints (Figure 6.5).

Figure 6.5: Regression algorithm is applied on all datapoints. The obtained regression rule
'0(x) = 0.91G1 − 0.90G0 + 0.08 is able to fit the subset of datapoints which are represented by
Y-predicted (in green circles). Partition rule %0(x) will be now derived to identify the domain in
G-space (i.e. %0(x) ≤ 0)) where this regression rule is applicable.

6.3.3 Bilevel Partition Algorithm (BPA) to Obtain %(x)

The regression rule (H′ = '8 (x)) derived in the previous section fits certain portion of the dataset

in node �8 (as an illustration, this is highlighted with green circles in Figure 6.5). The bilevel

partition algorithm is now employed to derive a partitioning boundary %8 (x) = 0 which separates

the dataset in �8 into two subsets: �!
8
(for which %8 (x) ≤ 0) and �'

8
(for which %8 (x) > 0). The

fraction of datapoins in �!
8
have their mean squared error w.r.t. the regression curve '8 (x) within

a user specified threshold value g<B4. Hence, for these datapoints, the depended variable H can be

predicted using the regression function '8 (x). The partition rule %8 (x) is derived to maximize the

number of datapoints in �!
8
(for which %8 (x) ≤ 0) while keeping their mean squared error value

(where the error is measured between the actual H value and the predicted H′ value) within g<B4.

The optimization formulation to derive the partition rule %8 (x) is organized in the bilevel

structure as shown below

123

Minimize �* (B, <,w∗,�∗) = �! (w∗,�∗) |(B,<) ,

Subject to 6* (B, <,w∗,�∗) = 6! (w∗,�∗) |(B,<) ≤ 0,

(w∗,�∗) ∈ argmin
{
�! (w,�)

��6! (w,�) ≤ 0
} ��
(B,<) ,

−1 ≤ F8 ≤ 1, ∀8, � ∈ [−1, 1]<+1,

< ∈ {0, 1}, 18 9 ∈ /.

(6.6)

The overall bilevel algorithm is identical to the one developed for the classification problem

to derive split-rules for a classification task (as explained in Section 3.3), with the only change in

the objective and constraint functions. The partition rule %8 (x) (where 8 is the node number (see

Figure 6.2)) being derived is of the following type

%8 (x,w,�,B) =


\1 + F1�1 + . . . + F?�? , if < = 0,��\1 + F1�1 + . . . + F?�?

�� − ��\2�� , if < = 1.
(6.7)

where all symbols carry similar meanings to those discussed in the equation of split-rule for

classification problem (Eq. 3.2). x is the input feature vector, �8 is the power-law of type �8 (x) =∏3
9=1 G

18 9

9
, F8’s are the coefficients and \8’s are the biases.

Since both objective and constraint value for upper level optimization are borrowed from the

optimal solution of the lower level optimization, we discuss the optimization formulation for lower

level optimization in the next section.

6.3.3.1 Lower Level Partition Optimization

The lower level optimization estimates optimal values of weights w and biases � which minimize

the following objective function

Min. �! (w,�)
��
(B,<) = −#;4 5 C

s.t. 6! (w,�)
��
(B,<) = "(�;4 5 C − g<B4 ≤ 0

−1 ≤ F8 ≤ 1, ∀8, � ∈ [−1, 1]<+1

(6.8)

124

Here, #;4 5 C indicates the number of points in node 8 for which %8 (x) |(w,�,B,<) ≤ 0 (Eq. 6.7).

Thus, this objective function tends to maximize the number of points going to the left node

�!
8

after partition. "(�;4 5 C is computed by measuring the mean squared error of the ac-

tual H value of datapoints in the left node �!
8

with the predicted H′ values obtained using

the regression function H′ = '8 (x) derived in the previous section. The constraint satisfaction(
6! (w,�) |(B,<) = "(�;4 5 C − g<B4 ≤ 0

)
ensures that H value of all datapoints coming to the left

node �!
8
after the split (i.e. %8 (x) ≤ 0) can be reliably predicted by using the regression function

H′ = '8 (x). In our experiments, we set the value of g<B4 parameter to g2
4AA>A (where g4AA>A = 0.03).

It is to note here that the regression rule H = '8 (x) is not applicable to points belonging to subset

�'
8
(i.e. %8 (x) > 0). Hence, the right node which contains datapoints from subset �'

8
becomes the

new non-terminal node and a dedicated dual bilevel algorithm is applied to it to derive its corre-

sponding regression and partition rules ('2(x) and %2(x) in Figure 6.2). This process is repeated

until maximum depth of tree is reached or the regression rule is able to fit all datapoints belonging

to a non-terminal node (in which case it is declared as a terminal leaf node).

6.3.4 Results on a Customized Benchmark Problem

In this section, we show results obtained on different versions of customized benchmark three island

problem (Figure 6.3). In the first experiment, we generate a pure dataset using the following set of

equations for islands 1, 2 and 3:

Island 1: .1 = -0 + -1 + 0.2, [-0, -1] ∈ [0, 0.2]2

Island 2: .2 = −-0 + -1 + 0.1, [-0, -1] ∈ [0.2, 0.7]2

Island 3: .3 = -0 − -1 − 0.3, [-0, -1] ∈ [0.7, 1]2

Concatenate: .?DA4 = [.1;.2;.3]

(6.9)

In the second experiment, we add noise to the pure dataset of Eq. 6.9 as shown below

.
(8)
=>8B4

= .
(8)
?DA4 + n, 8 = 1, 2, . . . #, n ∈ [−0.1, 0.1] (6.10)

125

Results obtained on pure and noisy three island datasets are provided in Figures 6.6 and 6.7

respectively. Very small MSE values for each of the three leaf nodes indicate the efficacy of our

proposed Dual bilevel optimization algorithm to find regression and partition rules.

(a)

(b)

Figure 6.6: Result on the Pure Three Island Dataset. (a) Visualization of result. (b) Intert-
pretable AI representation using NLDT. Normalization constants are: Xmean = [0.49, 0.49],
Xstd = [0.25, 0.25], Ymean = 0.05 and Ystd = 0.28.

As can be seen from results shown in Figure 6.6 and Figure 6.7, the proposed approach of deriv-

ing piece-wise non-linear regression equations fetches us with a relatively simple and interpretable

regressor, which otherwise would have assumed a complicated form with other regression models

like artificial neural networks or regression CART. The rules evolved are simplistic in structure and

126

(a)

(b)

Figure 6.7: Result on the Noisy Three Island Dataset. (a) Visualization of result. (b) Intert-
pretable AI representation using NLDT. Normalization constants are: Xmean = [0.52, 0.52],
Xstd = [0.28, 0.27], Ymean = 0.03 and Ystd = 0.29.

the induced NLDT is also topologically simple.

Currently, we are required to properly set the parameter g4AA>A (g<B4 = g2
4AA>A) to get optimal

performance. One of the possible way to efficiently handle this is to re-formulate the upper-level

problem as multi-objective and search for the knee in the bi-objective pareto front of MSE Vs #!

(where #! is the number of points in left node) and use that solution to conduct the partition.

In the next section, we will apply the proposed dual bilevel algorithm to arrive at a relatively

interpretable policy for a control problem involving continuous action.

127

6.4 Interpretable AI for Control Problem with Continuous Action Space

In this section, we implement the dual bilevel algorithm we developed in the previous section to

explain control logic of an ANN (artificial neural network) agent which is used to control an object

using an action value from a continuous real domain. The problem considered here is borrowed

from [87] and is pictorially shown in Figure 6.8.

Figure 6.8: A Car-following problem with continuous acceleration. The rear car is controlled by
an AI while the car in the front moves with a random acceleration profile. This problem is similar
to the problem shown in Figure 4.8b with the only difference being that the cars can now assume
a value of acceleration in range −2</B2 to 2</B2 (unlike in the previous case where the rear car
could only have an acceleration from pre-specified discrete values).

Here, the car in the rear is autonomously controlled using an AI. The car in the front moves

with a random acceleration profile. The state of the rear car at a given time C is determined by three

quantities (the state is denoted by a real-parameter vector x):

1. Its relative distance from the front car (G0 = 3 5 A>=C − 3A40A),

2. its relative velocity with respect to the front car (G1 = E 5 A>=C − EA40A) and

3. its acceleration at time C − 1 (G2 = 0(C − 1)).

The control task requires to have a safe distance 3B0 5 4 between two cars, while simultaneously

ensuring a comfortable and smooth ride. The ANN agent is trained using the DDPG algorithm

[62]. For a given time-step C, the ANN agent takes the state x of the rear car as an input and outputs

the acceleration value H (i.e. 0(C)) in the continuous range from -2</B2 to 2</B2. Figure 6.9

shows a sample run where the trained ANN agent is used to control the rear car while the car in the

front operates with a random acceleration.

128

(a)

(b)

Figure 6.9: ANNOutput for the continuous car-following problem described in Figure 6.8. Figures
(a), (b) and (c) are the plots of different state variables w.r.t to the time-step. The output of the
ANN is shown in Figure (d).

129

Figure 6.9 (cont’d)

(c)

(d)

To explain the performance of the ANN, we first collect the data comprising of series of states

and corresponding action value as determined by the ANN. The tabulated data is then used to

train and induce the NLDT. This problem of training and deriving NLDT from the ANN generated

dataset translates to a regression problem of predicting the value of a continuous dependent variable

given a set of continuous input features (or state variables in our case). The challenge here is to

obtain the NLDT regressor with simple rules so that it can act as a logic-translator to explain the

inner-logic of the ANN, RL or any more compelex CNN/DNN used earlier to solve the problem.

130

6.4.1 NLDT Representation and Training

As mentioned in the last section, the problem of developing interpretable AI for a continuous

control task involving one action translates to a regression rule finding problem. We thus adopt the

dual bilevel approach we discussed in section 6.3 to derive the NLDT for this regression problem.

For the control task, the regression rules represent different control logic and the partition rules

represent different conditions (or scenario) under which a given control logic is applicable. An

illustrative sketch of the same is provided in Figure 6.10.

Figure 6.10: NLDT Agent representation for continuous control task involving one action.

The conditional rules %8 (x) and control logic '8 (x) are expressed as weighed sum of power-laws

as mentioned in Eq. 6.3 and 6.7 respectively. The induction and training of the non-linear decision

tree (NLDT) of Figure 6.10 is done using the methodology discussed in the previous section in

Section 6.3.

6.4.2 Data generation

To derive the NLDT, the data is first generated using the trained artificial neural network (ANN)

controller. For our task, the ANN controller takes state variables as input and outputs the value

of the acceleration. In our experiments, we generate 5,000 datapoints to populate the training

131

data. Once the training data is generated, the dataset is normalized using the method discussed

in Section 6.3.1. The normalized data is then used to train the NLDT. As mentioned before, each

regression rule and partition rule is derived using the proposed dual bilevel algorithm (Section 6.3).

6.4.3 Results on Car-Following Problem

In this section we discuss some results obtained on the 1D car following problem involving

continuous action space (Figure 6.8). As mentioned before, the car in the front follows a random

acceleration profile. The rear car is controlled using a trained ANN controller. The NLDT takes the

same state information as the ANN counterpart and predicts the value of acceleration. It is desired

to have the predicted acceleration value of NLDT to be as close as possible to the corresponding

ANN output for a given input state. Plots from different simulation runs are shown in Figure 6.11

to provide the visualization of how closely the NLDT is able to mimic the parent ANN controller’s

output.

The performance seen in Figure 6.11 is obtained by the NLDT agent shown in Figure 6.12.

From the results shown in Figure 6.11, it can be concluded that our proposed algorithm is able

to induce a relatively interpretable NLDT (Figure 6.12) which is able to match the predictions of the

complicated ANN controller. It is important to highlight all components of the NLDT (Figure 6.12)

which is obtained by our procedure:

1. A two-depth decision tree is adequate to explain control strategies of the ANN with a small

MSE error. Our dual bilevel approach is able to evolve this simple tree.

2. The tree involves one non-linear partition rule (%0(x)) at the root node, and two non-linear

regression rules (H = '8 (x)) at left leaf node (8 = 1, applicable for %0(x) ≤ 0) and right leaf

node (8 = 2, applicable for %0(x) > 0).

3. The structures of the regression and partition rules are evolved by our dual bilevel optimizer

involving simple expressions.

132

(a) EA4; (C = 0) = 0

(b) EA4; (C = 0) = 5

Figure 6.11: Plots from different simulation runs with different initial relative velocity (EA4;)
between cars. The NLDT’s acceleration output (red line) matches with the ANN’s acceleration
output (blue line). NLDT agent behaviour is almost the same as that of ANN and can thus be used
to explain the behaviour of ANN.

133

Figure 6.11 (cont’d)

(c) EA4; (C = 0) = 10

Figure 6.12: NLDT for car following problem with continuous action space.

While the original ANN can control the rear car well, it certainly cannot explain the reasons

behind choosing the action for each combination of three input states. Above partition and regression

rules paves the way of arriving at a relatively humanly-interpretable explanation to the data derived

from the ANN controller. Notice that a regular decision tree (DT) is incapable of coming up

with such a nonlinear combinations of variables. This is true even for the generalized linear

models (GLMs) and generalized additive models (GAMs). Due to hurdles of optimizing non-linear

optimization problems with guaranteed optimality, nonlinear decision trees were not studied in the

134

past. With the advancements of efficient evolutionary (and bilevel) optimization methods, we are

able to open up this avenue to come up with as few as possible and as interpretable as possible

nonlinear decision rules. We believe that this strategy can be extended to more complex control

problems.

135

CHAPTER 7

CONCLUSION AND FUTUREWORK

In this work, we primarily focused on inducing an intrinsically interpretable AI which is relatively

interpretable and simple than ANN, CART and SVM. The AI in our case is modelled using a

nonlinear decision tree (NLDT) wherein, unlike traditional decision trees, the conditional nodes

involve non-linear rules on input features. The non-linear rules at conditional nodes are expressed

as weighted sum of power-laws with exponents assuming values from a discrete set while the

coefficients and biases take real values between -1 to 1. The search for the non-linear rules is

carried out using a custom-designed bilevel approach. The upper level spans the discrete search

space corresponding to exponents while the lower level conducts a search on continuous variables

to optimize the split criteria. The NLDT is grown through a recursive splitting procedure, and

for each new conditional node, the non-linear rule is efficiently derived using a bilevel algorithm.

This implies that there is no need to pre-supply the topology of the NLDT since it gets organically

determined. TheNLDTs produced are simple in topology as compared to traditionalCART trees and

have much simpler rules than ANN or SVM counterparts at each conditional node, thereby making

the overall AI relatively more interpretable. A comparison with classical classification algorithms

on some standard and custom-designed benchmarks reveals the superiority of the proposed NLDT

algorithm in efficiently deriving simple yet high-performing classifiers.

This idea is extended to develop relatively interpretable controllers for control problems involv-

ing discrete actions. The open-loop training determines the structure of the NLDT and non-linear

rules, which are then re-optimized using an evolutionary-algorithm-based closed-loop training pro-

cedure to enhance the closed-loop control performance of the NLDT. The objective evaluation for

closed-loop training is computationally expensive; however, a speed-up to the overall evolutionary

closed-loop training algorithm is possible by distributing the evaluation of population individuals to

different computer cores. The proposed algorithm is able to induce an NLDT* controller which is

relatively simple than DNN controller and has better closed-loop control than the parent black-box

136

AI controller. One of our key observations in this study was it was not required to have an NLDT$!

with 100% open-loop accuracy to achieve a competent closed-loop performance. We extended our

study of inducing relatively interpretable controllers in Chapter 5 to conduct a scale-up study and

proposed a benchmark-problem. The open-loop training is made considerably fast by replacing the

lower-level RGA algorithm with a classical SQP algorithm. This compromises the open-loop accu-

racy, however the re-optimization through the follow-up closed-loop training successfully readjusts

weights and coefficients of NLDT$! . The resulting NLDT* has a better closed-loop performance

than the original black-box AI. The NLDT* is then pruned and simplified by eliminating nodes

which are rarely visited during closed-loop control runs.

A conceptual layout on the possible extension of NLDT idea to solve regression and control

problems with continuous action space is demonstrated in Chapter 6. Here, a dual-bilevel algorithm

to proposed to systematically derive regression functions '(x) and partition functions %(x). The

proposed approach is first tested on a customized three-island regression problem involving three

separate disjoint linear regression surfaces. Next, the dual-bilevel algorithm of inducing NLDT

is applied to derive an interpretable translator to the DNN for a CarFollowing problem involving

continuous action. The derivedNLDT involves only one partition rule and two non-linear regression

control rules and is able to successfully mimic the behaviour of the parent DNN controller.

The results obtained are very encouraging and open up a number of possible research paths.

For classification problems, the parameter g� is required (Eq. 3.5). A parameter-free algorithm

could be developed to conduct splits. Currently, the rule structure is fixed to be a weighted sum of

power-laws. A genetic-programming-based approach can be used with the bilevel idea to derive

rules with different non-linearity. Another possible extension to this work would involve developing

an algorithm to handle categorical features in addition to ordinal or continuous features. It would

also be interesting to see how the dual-bilevel approach can be applied to any generic regression

or continuous control task. Currently, this approach is sensitive to the parameters g4AA>A and

g<B4 (Algo. 9 and Eq. 6.8). Another parallel research can be launched focused on automating

the reasoning and explanation process of developed NLDTs. Currently, we could do it for simple

137

problems manually.

This work on producing a transparent AI system which is relatively interpretable used several

concepts from the non-linear optimization literature, such as bilevel-optimization and constraint-

handling. The training of inducing NLDT$! and NLDT* can be made better and faster by using

concepts from surrogate optimization and metamodelling. A multi-objective-optimization-based

approach can also be developed to induce NLDT wherein the interpretability and performance are

modelled as separate objectives. As mentioned before, interpretability is subjective, so it calls for

a joint collaborative research to develop transparent AI systems by integrating domain expertise of

human experts and requirements of end-users. We hope that our work helps to advance the research

in the field of interpretable artificial intelligence and beyond.

138

BIBLIOGRAPHY

139

BIBLIOGRAPHY

[1] H. Kim, W.-Y. Loh, Y.-S. Shih, and P. Chaudhuri, “Visualizable and interpretable regression
models with good prediction power,” IIE Transactions, vol. 39, no. 6, pp. 565–579, 2007.

[2] B. Letham, C. Rudin, T. H. McCormick, D. Madigan et al., “Interpretable classifiers using
rules and bayesian analysis: Building a better stroke prediction model,” The Annals of Applied
Statistics, vol. 9, no. 3, pp. 1350–1371, 2015.

[3] J. H. Friedman, B. E. Popescu et al., “Predictive learning via rule ensembles,” The Annals of
Applied Statistics, vol. 2, no. 3, pp. 916–954, 2008.

[4] J. A. Nelder and R. W. Wedderburn, “Generalized linear models,” Journal of the Royal
Statistical Society: Series A, vol. 135, no. 3, pp. 370–384, 1972.

[5] T. J. Hastie and R. J. Tibshirani, Generalized additive models. CRC press, 1990, vol. 43.

[6] S. N. Wood, Generalized additive models: An introduction with R. CRC press, 2017.

[7] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Interpretable machine
learning: definitions, methods, and applications,” arXiv preprint arXiv:1901.04592, 2019.

[8] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16, no. 3, pp. 31–57, 2018.

[9] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervisedmachine learning: A review of clas-
sification techniques,” Emerging artificial intelligence applications in computer engineering,
vol. 160, pp. 3–24, 2007.

[10] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter opti-
mization,” in Advances in neural information processing systems, 2011, pp. 2546–2554.

[11] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka: Combined selection
and hyperparameter optimization of classification algorithms,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,
2013, pp. 847–855.

[12] L. Breiman, Classification and regression trees. Routledge, 2017.

[13] D. Heath, S. Kasif, and S. Salzberg, “Induction of oblique decision trees,” in IJCAI, vol. 1993,
1993, pp. 1002–1007.

[14] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of oblique decision trees,”
Journal of artificial intelligence research, vol. 2, pp. 1–32, 1994.

[15] S. K.Murthy, S. Kasif, S. Salzberg, and R. Beigel, “Oc1: A randomized algorithm for building
oblique decision trees,” in Proceedings of AAAI, vol. 93. Citeseer, 1993, pp. 322–327.

140

[16] E. Cantú-Paz and C. Kamath, “Using evolutionary algorithms to induce oblique decision
trees,” in Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computa-
tion. Morgan Kaufmann Publishers Inc., 2000, pp. 1053–1060.

[17] M. Kretowski, “An evolutionary algorithm for oblique decision tree induction,” in Inter-
national Conference on Artificial Intelligence and Soft Computing. Springer, 2004, pp.
432–437.

[18] A. Ittner and M. Schlosser, “Non-linear decision trees-ndt,” in ICML. Citeseer, 1996, pp.
252–257.

[19] K. P. Bennett and J. A. Blue, “A support vector machine approach to decision trees,” in Neural
Networks Proceedings, 1998. IEEEWorld Congress on Computational Intelligence. The 1998
IEEE International Joint Conference on, vol. 3. IEEE, 1998, pp. 2396–2401.

[20] H. Núñez, C. Angulo, and A. Català, “Rule extraction from support vector machines.” in
Esann, 2002, pp. 107–112.

[21] G. Fung, S. Sandilya, and R. B. Rao, “Rule extraction from linear support vector machines,” in
Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining. ACM, 2005, pp. 32–40.

[22] M. Craven and J. W. Shavlik, “Extracting tree-structured representations of trained networks,”
in Advances in neural information processing systems, 1996, pp. 24–30.

[23] P. M. Murphy and M. J. Pazzani, “Id2-of-3: Constructive induction of m-of-n concepts for
discriminators in decision trees,” in Machine Learning Proceedings 1991. Elsevier, 1991,
pp. 183–187.

[24] U. Johansson, R. König, and L. Niklasson, “The truth is in there-rule extraction from opaque
models using genetic programming.” in FLAIRS Conference. Miami Beach, FL, 2004, pp.
658–663.

[25] D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen, “Comprehensible credit scoring
models using rule extraction from support vector machines,” European journal of operational
research, vol. 183, no. 3, pp. 1466–1476, 2007.

[26] H. Ishibuchi, T. Nakashima, and T.Murata, “Three-objective genetics-based machine learning
for linguistic rule extraction,” Information Sciences, vol. 136, no. 1-4, pp. 109–133, 2001.

[27] Y. Jin and B. Sendhoff, “Pareto-based multiobjective machine learning: An overview and
case studies,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 38, no. 3, pp. 397–415, 2008.

[28] H. Guo and A. K. Nandi, “Breast cancer diagnosis using genetic programming generated
feature,” Pattern Recognition, vol. 39, no. 5, pp. 980–987, 2006.

[29] M. Muharram and G. D. Smith, “Evolutionary constructive induction,” IEEE transactions on
knowledge and data engineering, vol. 17, no. 11, pp. 1518–1528, 2005.

141

[30] M. Shirasaka, Q. Zhao, O. Hammami, K. Kuroda, and K. Saito, “Automatic design of binary
decision trees based on genetic programming,” in Proc. The Second Asia-Pacific Conference
on Simulated Evolution and Learning (SEAL’98. Citeseer, 1998.

[31] S. Haruyama and Q. Zhao, “Designing smaller decision trees using multiple objective opti-
mization based gps,” in IEEE International Conference on Systems, Man and Cybernetics,
vol. 6. IEEE, 2002, pp. 5–pp.

[32] C.-S. Kuo, T.-P. Hong, and C.-L. Chen, “Applying genetic programming technique in classi-
fication trees,” Soft Computing, vol. 11, no. 12, pp. 1165–1172, 2007.

[33] M. C. Bot, “Improving induction of linear classification trees with genetic programming,” in
Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation, 2000,
pp. 403–410.

[34] R. E. Marmelstein and G. B. Lamont, “Pattern classification using a hybrid genetic program-
decision tree approach,” Genetic Programming, pp. 223–231, 1998.

[35] E. M. Mugambi, A. Hunter, G. Oatley, and L. Kennedy, “Polynomial-fuzzy decision tree
structures for classifying medical data,” in International Conference on Innovative Techniques
and Applications of Artificial Intelligence. Springer, 2003, pp. 155–167.

[36] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From classical to evo-
lutionary approaches and applications,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 2, pp. 276–295, 2017.

[37] K.Deb andR.B.Agrawal, “Simulated binary crossover for continuous search space,”Complex
systems, vol. 9, no. 2, pp. 115–148, 1995.

[38] K. Deb,Multi-objective optimization using evolutionary algorithms. Wiley, 2005.

[39] L. Bobrowski and M. Kretowski, “Induction of multivariate decision trees by using dipolar
criteria,” in European Conference on Principles of Data Mining and Knowledge Discovery.
Springer, 2000, pp. 331–336.

[40] M. Kretowski and M. Grześ, “Global induction of oblique decision trees: an evolutionary
approach,” in Intelligent Information Processing and Web Mining. Springer, 2005, pp.
309–318.

[41] K. Deb, Multi-objective optimization using evolutionary algorithms. John Wiley & Sons,
2001, vol. 16.

[42] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority
over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357,
2002.

[43] V. Vapnik, The nature of statistical learning theory. Springer science & business media,
2013.

142

[44] J.-P. Vert, K. Tsuda, and B. Schölkopf, “A primer on kernel methods,” Kernel methods in
computational biology, vol. 47, pp. 35–70, 2004.

[45] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–
197, 2002.

[46] K. Deb and A. Srinivasan, “Innovization: Innovating design principles through optimization,”
inProceedings of the 8th annual conference onGenetic and evolutionary computation. ACM,
2006, pp. 1629–1636.

[47] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization test
problems,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No. 02TH8600), vol. 1. IEEE, 2002, pp. 825–830.

[48] Y. Dhebar, S. Gupta, and K. Deb, “Evaluating nonlinear decision trees for binary classification
tasks with other existing methods,” ArXiv, vol. abs/2008.10753, 2020.

[49] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[51] K. Larsen, “Gam: the predictive modeling silver bullet,” Multithreaded Stitch Fix, vol. 30,
pp. 1–27, 2015.

[52] K. Neshatian, M. Zhang, and P. Andreae, “A filter approach tomultiple feature construction for
symbolic learning classifiers using genetic programming,” IEEETransactions onEvolutionary
Computation, vol. 16, no. 5, pp. 645–661, 2012.

[53] A. Cano, A. Zafra, and S. Ventura, “An interpretable classification rule mining algorithm,”
Information Sciences, vol. 240, pp. 1–20, 2013.

[54] I. De Falco, A. D. Cioppa, and E. Tarantino, “Discovering interesting classification rules with
genetic programming,” Applied Soft Computing, vol. 1, no. 4, pp. 257–269, 2002.

[55] M. C. J. Bot and W. B. Langdon, “Application of genetic programming to induction of linear
classification trees,” in European Conference on Genetic Programming. Springer, 2000, pp.
247–258.

[56] J. Eggermont, J. N. Kok, and W. A. Kosters, “Genetic programming for data classification:
Partitioning the search space,” in Proceedings of the 2004 ACM symposium on Applied
computing, 2004, pp. 1001–1005.

[57] K. C. Tan, A. Tay, T. H. Lee, and C. M. Heng, “Mining multiple comprehensible classification
rules using genetic programming,” in Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02, vol. 2. IEEE, 2002, pp. 1302–1307.

143

[58] H. Iba, “Bagging, boosting, and bloating in genetic programming,” in Proceedings of the 1st
Annual Conference on Genetic and Evolutionary Computation, 1999, pp. 1053–1060.

[59] J. Blank and K. Deb, “pymoo - Multi-objective Optimization in Python,” https://pymoo.org.

[60] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimiza-
tion,” in International Conference on Machine Learning (ICML), 2015, pp. 1889–1897.

[61] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimiza-
tion algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[62] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,
2015.

[63] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International
Conference on Machine Learning (ICML), 2016, pp. 1928–1937.

[64] R. S. Sutton, “Generalization in reinforcement learning: Successful examples using sparse
coarse coding,” in Advances in Neural Information Processing Systems 8, D. S. Touretzky,
M. C. Mozer, and M. E. Hasselmo, Eds. MIT Press, 1996, pp. 1038–1044.

[65] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search,” in Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), vol. 10. Atlanta, 2010,
pp. 1607–1612.

[66] W. D. Smart and L. P. Kaelbling, “Practical reinforcement learning in continuous spaces,” in
International Conference on Machine Learning (ICML), 2000, pp. 903–910.

[67] R. Noothigattu, D. Bouneffouf, N. Mattei, R. Chandra, P. Madan, K. Varshney, M. Campbell,
M. Singh, and F. Rossi, “Interpretable multi-objective reinforcement learning through policy
orchestration,” arXiv preprint arXiv:1809.08343, 2018.

[68] F. Maes, R. Fonteneau, L. Wehenkel, and D. Ernst, “Policy search in a space of simple
closed-form formulas: towards interpretability of reinforcement learning,” in International
Conference on Discovery Science. Springer, 2012, pp. 37–51.

[69] D. Hein, S. Udluft, and T. A. Runkler, “Interpretable policies for reinforcement learning
by genetic programming,” Engineering Applications of Artificial Intelligence, vol. 76, pp.
158–169, 2018.

[70] G. Liu, O. Schulte, W. Zhu, and Q. Li, “Toward interpretable deep reinforcement learning with
linear model u-trees,” in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2018, pp. 414–429.

[71] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Programmatically interpretable
reinforcement learning,” arXiv preprint arXiv:1804.02477, 2018.

144

[72] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-
International Conference on Neural Networks, vol. 4. IEEE, 1995, pp. 1942–1948.

[73] D. Hein, A. Hentschel, T. Runkler, and S. Udluft, “Particle swarm optimization for generating
interpretable fuzzy reinforcement learning policies,” Engineering Applications of Artificial
Intelligence, vol. 65, pp. 87–98, 2017.

[74] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured predic-
tion to no-regret online learning,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, 2011, pp. 627–635.

[75] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learning via policy extrac-
tion,” in Advances in neural information processing systems (NIPS), 2018, pp. 2494–2504.

[76] O. Bastani, C. Kim, and H. Bastani, “Interpretability via model extraction,” arXiv preprint
arXiv:1706.09773, 2017.

[77] G. Vandewiele, O. Janssens, F. Ongenae, F. De Turck, and S. Van Hoecke, “Genesim: Genetic
extraction of a single, interpretable model,” arXiv preprint arXiv:1611.05722, 2016.

[78] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforcement learning,”
Journal of Machine Learning Research, vol. 6, no. Apr, pp. 503–556, 2005.

[79] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Commu-
nications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[80] A. Silva, M. Gombolay, T. Killian, I. Jimenez, and S.-H. Son, “Optimization methods for
interpretable differentiable decision trees applied to reinforcement learning,” in International
Conference on Artificial Intelligence and Statistics, 2020, pp. 1855–1865.

[81] Y. Dhebar andK. Deb, “Interpretable rule discovery through bilevel optimization of split-rules
of nonlinear decision trees for classification problems,” arXiv preprint arXiv:2008.00410,
2020.

[82] S. Nageshrao, B. Costa, and D. Filev, “Interpretable approximation of a deep reinforcement
learning agent as a set of if-then rules,” in 18th IEEE International Conference On Machine
Learning And Applications (ICMLA). IEEE, 2019, pp. 216–221.

[83] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning”
arXiv preprint arXiv:1509.06461, 2015.

[84] G. A. Rummery and M. Niranjan, “On-line q-learning using connectionist systems,” Uni-
versity of Cambridge, Department of Engineering Cambridge, UK, Tech. Rep. CUED/F-
INFENG/TR166, 1994.

[85] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics
and machine learning,” http://pybullet.org, 2016–2020.

145

http://pybullet.org

[86] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-
riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[87] N. Subramanya, C. Bruno, and D. Filev, “Interpretable approximation of a deep reinforcement
learning agent as a set of if-then rules.”

146

	List of Tables
	List of Figures
	LIST OF ALGORITHMS
	The Need and The Start
	Our Work

	A High Level View of Our Intrepretable AI Model
	Classification
	Past Studies
	Proposed Approach
	 Classifier Representation Using Nonlinear Decision Tree
	 Split-Rule Discovery Using Bilevel Optimization

	Bilevel Approach for Split-Rule Identification
	The Hierarchical Objectives to derive split-rule
	Computation of FL
	Computation of FU

	Upper Level Optimization (ULGA)
	Custom Initialization for Upper Level GA
	Ranking of Upper Level Solutions
	Custom Crossover Operator for Upper Level GA
	Custom Mutation Operator for Upper Level GA
	Duplicate Update Operator

	 Lower Level Optimization (LLGA)
	Custom Initialization for Lower Level GA
	Selection, Crossover, and Mutation for Lower Level GA
	Termination Criteria for Lower level GA

	Ablation Studies and Comparison
	Ablation Studies on Lower Level GA
	Ablation Studies on the Proposed Bilevel GA

	Visualization of split-rule: X-Space and B-Space
	Overall Tree Induction and Pruning
	Results
	Customized Datasets: DS1 to DS4
	Breast Cancer Wisconsin Dataset
	Wisconsin Diagnostic Breast Cancer Dataset (WDBC)
	Real World Auto-Industry Problem (RW-problem)
	Results on Multi-Objective Optimization Problems
	Truss 2D and Welded Beam Problems
	Modified ZDT (m-ZDT) and DLTZ (m-DTLZ) Problems
	m-ZDT and m-DTLZ Results:

	Additional Comparisons and Results
	Support Vector Machines (SVMs)
	Generalized Additive Models (GAMs)
	Genetic Programming (GP)
	Results

	Conclusions and Future work
	Parameter Settings
	Termination Criteria and other Parameter Settings for Inducing a Non-linear Decision Tree (NLDT)
	Parameter Setting for NSGA-II for multi-objective data creation
	Parameter Setting for Upper Level GA
	Parameter Setting for Lower Level GA
	Creation of Customized 2D Datasets: DS1- DS4

	Control: Interpretable Policy for Discrete Action Spaces
	Introduction
	Motivation for the Study
	Related Past Studies
	Performance Measures
	Open-Loop Accuracy
	Closed-loop Performance

	Nonlinear Decision Trees (NLDTs) as Policies
	Binary-split NLDT
	Multi-split NLDT

	Overall Approach
	Data Normalization
	Open-loop Training
	Open-loop training for Binary-split NLDT
	Open-loop training for Multi-split NLDT

	Closed-loop Training

	Experiments: AIM and Procedure
	Experimental Setup
	Creation of Regular Dataset
	Creation of Balanced Dataset

	Experiments and Analysis on Control Tasks with Binary Action Spaces
	CartPole Problem
	NLDT for CartPole Problem

	CarFollowing Problem
	NLDT for CarFollowing Problem

	Experiments and Analysis on Multiple Discrete Action Space
	MountainCar Problem
	NLDT for MountainCar Problem
	LunarLander Problem
	NLDT for LunarLander Problem

	Conclusions

	Scale-up Study and Improvisation
	Ablation Study for Open-loop Training
	Closed-loop Visualization
	Reengineering NLDT*
	Conclusion

	Extension to Regression and Continuous Control Problems
	Introduction
	Interpretable AI for Regression Problems using NLDT
	Dual Bilevel Algorithm (DBA) for Regression
	Data Normalization
	Bilevel Regression Algorithm to Obtain R(x)
	Lower Level Regression Optimization
	Upper Level Regression Optimization

	Bilevel Partition Algorithm (BPA) to Obtain P(x)
	Lower Level Partition Optimization

	Results on a Customized Benchmark Problem

	Interpretable AI for Control Problem with Continuous Action Space
	NLDT Representation and Training
	Data generation
	Results on Car-Following Problem

	Conclusion and Future Work
	Bibliography

