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ABSTRACT

THE NECESSARY AND SUFFICIENT CONDITIONS IN WEIGHTED
INEQUALITIES FOR SINGULAR INTEGRALS AND A LOCAL TB

THEOREM WITH AN ENERGY SIDE CONDITION.

By

Christos Grigoriadis

We provide an essentially complete dictionary of all implications among the basic and

fundamental conditions in weighted theory such as the doubling, one weight Ap(w), A∞

and Cp conditions as well as the two weight Ap(ω, σ) and the “buffer" Energy and Pivotal

conditions. The most notable implication is that in the case of A∞ weights the two weight

Ap condition implies the p−Pivotal condition hence giving an elegant and short proof of the

known NTV-conjecture with p = 2 for A∞ weights in terms of existing T1 theory. We also

provide a quite technical construction inspired by [15] proving that we can have doubling

weights satisfying the Cp condition which are not in A∞.

We obtain a local two weight Tb theorem with an energy side condition for higher di-

mensional fractional Calderón-Zygmund operators. The proof follows the general outline

of the proof for the corresponding one-dimensional Tb theorem in [69], but encountering a

number of new challenges, including several arising from the failure in higher dimensions of

T. Hytönen’s one-dimensional two weight A2 inequality.

Hytönen used this inequality to deal with estimates for measures living in adjacent in-

tervals. Hytönen’s theorem states that the off-testing condition for the Hilbert transform is

controlled by the Muckenhoupt’s A2 and A∗2 conditions. So in attempting to extend the two

weight Tb theorem to higher dimensions, it is natural to ask if a higher dimensional analogue

of Hytönen’s theorem holds that permits analogous control of terms involving measures that



live on adjacent cubes.We show that it is not the case even in the presence of the energy

conditions used in one dimension [69]. Thus, in order to obtain a local Tb theorem in higher

dimensions, it was necessary to find some substantially new arguments to control the noto-

riously difficult nearby form. More precisely, we show that Hytönen’s off-testing condition

for the two weight fractional integral and the Riesz transform inequalities is not controlled

by Muckenhoupt’s Aα2 and Aα,∗2 conditions and energy conditions.
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Chapter 1

Introduction

The goal of this section is to first provide the reader with an exposition to the basic tools

needed to work in weighted theory. We start with a few basic facts about harmonic functions

and the Poisson kernel which leads to the definition of the Hilbert transform for a special class

of functions, the Schwartz functions. Then, in the attempt to extend the Hilbert transform

to Lp spaces we talk about the Fourier transform and tempered distributions. Last, we

generalize from the Hilbert transform to singular integrals and the Maximal operator.

1.1 Harmonic functions in the upper half plane

Let f : R→ R be a real valued smooth function, i.e. it has derivatives of all orders. We can

extend f to a harmonic function u in the upper half plane H = {(x, y) : y > 0, x ∈ R} by

convolution with the Poisson kernel :

Pt(x) =
1

π

t

t2 + x2
(1.1.1)

and we get

u(x, t) =

∫
R
Pt(x− y)f(y)dy, t > 0

1



It is simple to prove that u is harmonic since Pt(x) is harmonic (with respect to the variables

x, t). Indeed

∂Pt(x)

∂x2
=
−2t3 + 6x2t

(x2 + t2)3
,
∂Pt(x)

∂t2
=

2t3 − 6x2t

(x2 + t2)3

and since f is smooth we can move the derivative inside the integral and hence we have

uxx(x, t) + utt(x, t) =

∫
R

(
∂Pt(x)

∂x2
+
∂Pt(x)

∂t2

)
f(y)dy = 0.

Using the fact
∫
R Pt(x)dx = 1 we can also check that

lim
t→0

u(x, t) = f(x)

Singular integrals arise when we try to find the harmonic conjugate of u, i.e. the function

v such that g(z) = u(z) + iv(z) is analytic.

First we notice that the Poisson kernel Pt(x) is the real part of the analytic function

h(z) = i
πz . Indeed, writing z = x+ it we have

h(z) =
i

πz
=

iz̄

π|z|2
=

t+ ix

t2 + x2
= Pt(x) + iQt(x)

where

Qt(x) =
1

π

x

t2 + x2
(1.1.2)

and hence v(x, t) =
∫
RQt(x−y)f(y)dy is the harmonic conjugate of u. But now it is not

easy to define limt→0 v(x, t). We can see there is a problem by taking limt→0Qt(x) = 1
πx

since this is not even locally integrable since the integral around 0 does not exist. The

singularity at x = 0 is the motivation for the name singular integrals. So we cannot just talk

2



about
∫
R

1
πxf(x)dx since this integral is not properly defined so let’s see how to interpret

that integral.

1.2 The Hilbert transform

It is clear that for
∫
R

1
πxf(x)dx to make sense f cannot be any function (just try any constant

function on R). For this reason we define the Schwartz space.

Definition 1.2.1. Let f be a real valued function. We say f ∈ S if and only if f is infinitely

differentiable and

sup
x∈R
|xnf (k)(x)| ≤ cn,k = cn,k(f) <∞, n, k ∈ N (1.2.1)

where f (k) denotes the k − th derivative of f .

We can now define the principal value of 1
x .

Definition 1.2.2. We define the principal value of 1
x and we write p.v. 1x , by

p.v.
1

x
(f) = lim

ε→0

∫
|x|>ε

f(x)

x
dx, f ∈ S (1.2.2)

So p.v. 1x maps Schwartz functions to the real numbers.

To see that this definition makes sense, we have to verify that the limit in the definition

actually exists. So let f ∈ S, we have

p.v.
1

x
(f) = lim

ε→0

∫
|x|>ε

f(x)

x
dx = lim

ε→0

∫
ε<|x|<1

f(x)

x
dx+

∫
|x|≥1

f(x)

x
dx

= lim
ε→0

∫
ε<|x|<1

f(x)− f(0)

x
dx+

∫
|x|≥1

f(x)

x
dx

3



and the last equality holds since
∫
ε<|x|<1

1
xdx = 0. Now since f is a Schwartz function, by

(1.2.1) we get

|p.v.1
x

(f)| ≤ sup
ε<|x|<1

|f ′(x)|+ sup
|x|≥1

|f(x)|
∫
|x|≥1

c1,0

x2
dx ≤ ||f ′||∞ + c1,0||f ||∞

≤ c0,1 + c0,0c1,0 <∞

where ||f ||∞ = sup
x∈R
|f(x)|. So the limit makes sense.

This brings us to the definition of the Hilbert transform which is the archetype of singular

integrals.

Definition 1.2.3. Let f ∈ S. We define the Hilbert transform by

Hf(x) = lim
t→0

Qt ∗ f(x) = lim
ε→0

1

π

∫
|x−y|>ε

f(y)

x− y
dy (1.2.3)

The Hilbert transform is extremely important mainly for the reason of mapping the

boundary values (f) of a harmonic function (u) to it’s harmonic conjugate (v) and it’s been

extensively studied since then.

It is quite restrictive though that right now we can talk about the Hilbert transform only

for the limited class of Schwartz functions. To extend the definition of the Hilbert transform

to bigger classes of functions we need to talk about the Fourier transform of a function and

tempered distributions.

4



1.3 The Fourier transform and tempered distributions

In the class of Schwartz functions S we can define a topology by (1.2.2). We say a sequence

{fm}m∈N, where f ∈ S converges to 0 if and only if for all n, k ∈ N

lim
n,k→∞

cn,k(f) = 0. (1.3.1)

Definition 1.3.1. We say a function f ∈ Lp(Rn) if and only if

∫
Rn
|f(x)|pdx <∞

It is easy to see using (1.2.2) that S ⊂ Lp(Rn) for all p > 1. The Schwartz class is also

dense in Lp(Rn) meaning that for any f ∈ Lp(Rn) there exist a sequence {fm} such that

lim
m→∞

||fm − f ||p = 0.

With this metric now in the Schwartz class we can define the space of bounded linear func-

tionals in S, we call it S′ the space of tempered distributions.

Definition 1.3.2. We say a map T : S → R (or S → C) is in S′, the space of tempered

distributions, if

lim
m→∞

fm = 0⇒ lim
m→∞

T (fm) = 0

Remember the limit on the left hand side is in the sense of (1.3.1). One can easily check

that the principal value defined in (1.2.2) is a tempered distribution.

Let’s now define the Fourier transform which we will see is a tempered distribution itself.

We first define the Fourier transform for L1 functions.

5



Definition 1.3.3. Let f ∈ L1(Rn). The Fourier transform F of f is given by

F(f)(ξ) =

∫
Rn

f(x)e−2πix·ξdx (1.3.2)

where x · ξ = x1ξ1 + x2ξ2 + ...+ xnξn. We will also write F(f)(ξ) = f̂(ξ).

Here are some properties of the Fourier transform that we need:

1. Linearity: ̂(af + bg) = af̂ + bĝ.

2. ||f̂ ||∞ ≤ ||f ||1 and hence f̂ is continuous.

3. f̂ ∗ g = f̂ ĝ.

We can also define the Fourier transform of tempered distributions.

Definition 1.3.4. The Fourier transform of T ∈ S ′ is the tempered distribution T̂ given by

T̂ (f) = T (f̂), f ∈ S.

The following theorems can be found in [12], pg 13-16.

Theorem 1.3.5. The Fourier transform is a continuous map from S to S such that

∫
Rn

f̂ g =

∫
Rn

fĝ

and

f(x) =

∫
Rn

f̂(ξ)e2πix·ξdξ

Theorem 1.3.6. The Fourier transform is a bounded linear bijection from S ′ to S ′ whose

inverse is also bounded.

6



Theorem 1.3.7. The Fourier transform is an isometry on L2 meaning for f ∈ S, f̂ ∈ L2

and ||f̂ ||2 = ||f ||2.

Now we can extend the Fourier transform to functions in L2. Let f ∈ L2(Rn). By theorem

1.3.7 and using the density of S in L2 there exist {fm}m∈N such that ||fm||2 → ||f ||2 as

m → ∞ hence there is a function g such that ||f̂m||2 → ||g||2 as m → ∞. We call then

g = f̂ the Fourier transform of f and we have equality of norms, i.e. ||f ||2 = ||f̂ ||2.

1.4 The Hilbert transform on Lp spaces

Now we have all the tools we need to extend the Hilbert transform from the space of Schwartz

functions to the space of Lp functions.

First, by (1.1.2) and calculating it’s Fourier transform we get

Q̂t(ξ) = −isgn(ξ)e−2πt|ξ| (1.4.1)

Now by (1.2.3) we get for f ∈ S:

Ĥf(x) = lim
t→0

Q̂t ∗ f(x) = lim
t→0

Q̂t(ξ)f̂(ξ) = −isgn(ξ)f̂(ξ). (1.4.2)

The first equality holds by the continuity of the Fourier transform on tempered distri-

butions (theorem 1.3.6), the second equality from property (2) after (1.3.2) and the last

equality by (1.4.1).

Now by the density of S in L2 and using theorem 1.3.7 we can extend the definition of

the Hilbert transform to L2 functions and we also have

||Hf ||2 = ||Ĥf ||2 = ||f ||2, f ∈ L2(Rn)
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Next, the extension to Lp, p > 1 came from Riesz in 1928 with the following theorem.

Theorem 1.4.1 (Riesz 1928). Let f ∈ S. The Hilbert transform is strong (p, p), 1 < p <∞

i.e.

||Hf ||p ≤ Cp||f ||p

Again, like in the case for L2 functions, using the density of S in Lp we extend the

definition of the Hilbert transform to Lp functions.

1.5 Singular integrals and the maximal operator.

The Hilbert transform is the archetype of a more general class of operators that we want to

study the so called singular integral operators.

Definition 1.5.1. A singular integral of convolution type is an operator T defined by con-

volution with a kernel K that is locally integrable on Rn\{0}, in the sense that

T (f)(x) = lim
ε→0

∫
|x−y|>ε

K(x− y)f(y)dy

Typically the kernel satisfies the following conditions:

1. ||K̂||∞ ≤ C <∞

2. sup
y 6=0

∫
|x|>2|y| |K(x− y)−K(x)|dx ≤ C

For K(x) = 1
πx we get the Hilbert transform.

The first property, usually referred as a size condition, on K̂ is used to ensure that the
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tempered distribution p.v.K given by the principal value integral

p.v.K[φ] = lim
ε→0

∫
|x|>ε

φ(x)K(x)dx

is well defined on L2.

The second property, usually referred as the Hörmander condition or smoothness condi-

tion, is used to ensure the boundedness of the operators in Lp(Rn) for p > 1.

Example 1.5.2. An important example of singular integrals is the Riesz transforms:

Rjf(x) = cn lim
ε→0

∫
|y|>ε

yj

|y|n+1
f(x− y)dy

where

cn = Γ

(
n+ 1

2

)
π−

n+1
2 .

The Riesz transforms are the extension of the Hilbert transform in higher dimensions. The

constant cn is so that R̂jf(ξ) = −i
ξj
|ξ| f̂(ξ).

We have the following theorem for singular integrals of convolution type.

Theorem 1.5.3 (Calderon-Zygmund 1952, Hörmander 1960). Let f ∈ S. Assume K is

a kernel as in definition 1.5.1. Then the operator T associated with K is strong (p, p),

1 < p <∞ i.e.

||Hf ||p ≤ Cp||f ||p

These singular integrals are called of convolution type because Tf = K ∗ f (with an

abuse of notation since we do not write the limit here). We can extend to operators T that

have a kernel K(x, y) and the resulting operator is not of convolution type. First we need
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to define what a standard kernel is.

Definition 1.5.4. We say K(x, y) : Rn × Rn → R is a standard kernel when:

1. |K(x, y)| ≤ C
|x−y|n

2. |K(x, y)−K(x′, y)| ≤ C|x−x′|δ

(|x−y|+|x′−y|)n+δ , for |x− x
′| ≤ 1

2 max
(
|x− y|, |x′ − y|

)
3. |K(x, y)−K(x, y′)| ≤ C|y−y′|δ

(|x−y|+|x−y′|)n+δ , for |y − y
′| ≤ 1

2 max
(
|x− y|, |x− y′|

)
property (1) here is the analog of ||K̂||∞ ≤ C <∞ and is again a size condition on the

kernel. Properties (2) and (3) are the analog of condition (2) and are again called Hörmander

conditions.

Definition 1.5.5. A general singular integral is an operator T associated with a standard

kernel K, in the sense that

T (f)(x) =

∫
Rn

K(x, y)f(y)dy, x /∈ suppf, f ∈ S (1.5.1)

An important note here is that the operator uniquely defines the Kernel but the ker-

nel does not uniquely define the operator. The classical example on that is the operators

Tb(f)(x) = b(x)f(x) where b is a bounded function. All these are general singular integrals

with kernel K(x, y) = 0. This comes from the fact that the integral formula holds only for

x /∈ suppf so we have

0 = Tb(f)(x) =

∫
Rn

K(x, y)f(y)dy ⇒ K(x, y) = 0

and the implication comes from setting f1(x) = 1A(x), f2(x) = 1B(x) where A = {K(x, y) >

0} and B = {K(x, y) < 0}.
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Example 1.5.6. A general singular integral studied a lot is the Cauchy integral. Let’s

remember the Cauchy integral theorem. Let U be an open subset of C and Dz0 = {z :

|z − z0| ≤ r} be contained in U . Given a holomorphic function f : U → C and any w in the

interior of Dz0 we have

f(w) =
1

2πi

∫ 2π

0

f(z0 + reiθ)ireiθ

z0 + reiθ − w
dθ

Inspired by the classic Cauchy integral, we get the Cauchy integral on a Lipschitz curve.

Let L : R→ R be Lipschitz or equivalently ||L′||∞ ≤ C <∞ and let Γ = (t, L(t)) be a curve

on the plane. Let f ∈ S(R). The Cauchy integral along Γ is given by

CΓf(z) =
1

2πi

∫ ∞
−∞

f(t)(1 + iL′(t))
t+ iL(t)− z

dt

CΓf(z) is a holomorphic function on C \ Γ.

Another operator that often appears together with the Hilbert transform and singular

integrals, as we will later see, is the Maximal operator of Hardy and Littlewood.

Definition 1.5.7. The Maximal operator is given by

Mf(x) = sup
I3x

1

|I|

∫
I
|f(y)|dy (1.5.2)

where the supremum is taken over all cubes containing x ∈ Rn.

Hardy and Littlewood proved that the maximal operator is bounded in Lp(R), p > 1 and

Wiener later extended the result to higher dimensions. We have:

Theorem 1.5.8 (Hardy-Littlewood-Wiener 1930,1939). The Maximal operator is a bounded
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operator on Lp(Rn)→ Lp(Rn), p > 1.

(∫
Rn
|Mf(x)|pdx

)1
p
≤ C

(∫
Rn
|f(x)|pdx

)1
p
.

(1.5.2) is not the only way to define the maximal operator. We could also use

M ′f(x) = sup
r>0

1

(r)n

∫
Ir
|f(y)|dy (1.5.3)

where Ir is the cube centered at x with side length r. We call M ′ the centered maximal

operator and M is the non-centered maximal operator. One can use either of them since

they are pointwise equivalent, i.e. there exist constants cn, Cn such that

cnMf(x) ≤M ′f(x) ≤ CnMf(x).

1.6 Extending the Lebesgue measure

All the theorems presented until now were using the Lebesgue measure. The work in this

monograph is concerned on extending all these results to more general measures. The fol-

lowing definition contains all the different measures that will concern us.

Definition 1.6.1.

1. The measure µ is called inner regular if for any open set U , µ(U) = supK⊂U µ(K)

where the supremum is taken over all compact subsets of U .

2. The measure µ is called outer regular if for any Borel set B, µ(B) = infB⊂U µ(U)

where the infimum is taken over all open sets containing B.
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3. The measure µ is called locally finite if for every point x ∈ Rn there is an open set U

containing x such that µ(U) <∞. Equivalently µ is called locally finite if for every K

compact µ(K) <∞.

4. The measure µ is called Radon if it satisfies all the above, i.e. it is inner regular, outer

regular and it is locally finite.

5. The measure µ is called absolutely continuous if there exists w : Rn → R+ such that

for any Borel set B, µ(B) =
∫
B w(x)dx. The function w(x) in this case is called a

weight.

6. The measure µ is called doubling if there exists a constant C > 0 such that for any

cube I we have

µ(2I) ≤ Cµ(I) (1.6.1)

7. The measure µ on Rn is called upper doubling if there exists a constant C > 0 such

that for any ball Br of radius r we have

µ(Br) ≤Mrn. (1.6.2)

8. We say a measure σ is reverse doubling if there exists ε > 0 depending only on the

measure σ such that for all cubes I:

σ(2I) ≥ (1 + ε)σ(I). (1.6.3)

Doubling measures satisfy the reverse doubling property as the following lemma from

[52] proves.
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Lemma 1.6.2. Let σ be a doubling measure with doubling constant Kσ. Then there

exist a constant δσ > 0 depending only on the doubling constant of σ such that for all

cubes I we have σ(2I) ≥ (1 + δσ)σ(I).
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Chapter 2

On weighted theory.

The goal of this section is to provide the reader with the development of the theory from

Muckenhoupt’s Ap condition for one weight results up to 2020 where we have general singular

integrals and two Radon measures σ, ω . Weighted theory tries to answer questions as the

following.

Question 1. Given two locally finite positive Borel measures ω, σ in Rn and a general

singular integral operator T , what are the necessary and sufficient conditions so that the

following inequality holds:

||T (fdσ)||Lp(ω) . ||f ||Lp(σ), ∀f ∈ Lp(σ), p > 1. (2.0.1)

2.1 One weight theory

(2.0.1) is a generalization of the one weight inequality for the Hilbert transform where T = H,

dω(x) = w(x)dx, dσ(x) = w(x)1−p′dx and f ∈ Lp(w)

||Hf ||Lp(ω) . ||f ||Lp(ω) (2.1.1)

which was shown by Hunt, Muckenhoupt and Wheeden [20] to be equivalent to the finiteness

of the Muckenhoupt one weight Ap condition, namely ω has to be absolutely continuous to
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Lebesgue measure dω = w(x)dx and

Ap(w) = sup
I

1

|I|

∫
I
w(x)dx

(
1

|I|

∫
I
w(x)

1
1−pdx

)p−1

≤ C <∞ (2.1.2)

where the supremum is taken uniformly over all cubes in Rn. There has been a huge amount

of work in harmonic analysis and boundary value problems around the Ap condition, check

Stein [71], Duoandikoetxea [12], Garnett [14] and references there.

Coifman and Fefferman in [7] proved (2.1.1) using the following inequality, which holds

for any w ∈ A∞ =
⋃
p≥1Ap,

∫
Rn
|Tf(x)|pw(x)dx ≤ C

∫
Rn
|Mf(x)|pw(x)dx (2.1.3)

where T is any singular integral operator and f is bounded and compactly supported. We

can extend to any locally integrable f for which the right hand side is finite (since otherwise

there is nothing to prove) using the dominated convergence theorem.

Muckenhoupt in [39] proved, for n = 1, that a more general class of weights than the

Ap weights, namely the Cp weights (see (2.1.4)), are necessary for (2.1.3) to hold. This was

generalized in higher dimensions by Sawyer in [54]. Sawyer in [54] also shows that the Cq

condition for q > p is sufficient for (2.1.3) to hold. It is still unknown if the Cp condition is

sufficient for (2.1.3) to hold.

We say the measure ω satisfies the Cp condition, 1 < p <∞ if it is absolutely continuous

to the Lebesgue measure, i.e. dω = w(x)dx, and there exist C, ε > 0 such that

|E|w∫
Rn |M1I(x)|pw(x)dx

≤ C

(
|E|
|I|

)ε
, for E compact subset of I cube (2.1.4)
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with
∫
Rn (M1I (x))pw(x)dx < ∞, where |E|w =

∫
E w(x)dx. Here M denotes the classical

Hardy-Littlewood maximal operator. We will call w(x) a Cp weight.

We prove that Cp weights is a strictly larger class than the A∞ weights. We actually

show that there exist even doubling weights (see (1.6.1)) that are also Cp weights that are

not in A∞. Check the diagram at the end of the introduction.

Theorem 2.1.1. (Cp ∩ D ; A∞) There exist a weight w that is doubling and satisfies the

Cp condition but w is not an A∞ weight.

The weight w used in theorem 2.1.1. has a doubling constant Cw & 3np. We show that

this is sharp, i.e. if the doubling constant Cw of the weight w does not satisfy Cw ≥ 3np

then the Cp condition is equivalent to A∞.

Theorem 2.1.2. (Cp+small doubling ⇒ A∞) Let w be a doubling Cp weight with doubling

constant Cw < 3np in Rn. Then w ∈ A∞.

2.2 Two weight theory.

The generalization of the one weight Ap condition was naturally modified to the two weight

problem by:

Ap(ω, σ) = sup
I

(
ω(I)

|I|

)1
p
(
σ(I)

|I|

) 1
p′
<∞ (2.2.1)

where the supremum is taken over all cubes in Rn and the weight w gives its place to two

positive locally finite Borel measures. Notice that by setting dω = w(x)
1

1−pdx, dσ = w(x)dx

we retrieve the one weight Ap condition (2.1.2).

The two weight problem could have applications in a number of problems connected to

higher dimensional analogs of the Hilbert transform. For example, questions regarding sub-
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spaces of the Hardy space invariant under the inverse shift operator (see [75], [46]),questions

concerning orthogonal polynomials (see [76], [49], [50]) and some questions in quasiconfor-

mal theory for example the conjecture of Iwaniec and Martin (see [25]) or higher dimensional

analogues of the Astala conjecture (see [30]).

The classicalAp condition (2.2.1) is necessary for (2.0.1) to hold but is no longer sufficient,

which is an indication that makes two weight theory much more complicated. F. Nazarov

in [40] has shown that even the strengthened Ap(ω, σ) conditions with one or two tails of

Nazarov, Treil and Volberg

At1p (ω, σ) = sup
I

(
ω(I)

|I|

)1
p

(P (I, σ))
1
p′ <∞ (2.2.2)

At2p (ω, σ) = sup
I

(P (I, ω))
1
p (P (I, σ))

1
p′ <∞ (2.2.3)

where

P (I, ω) ≡
∫
Rn

 |I|
1
n

(|I|
1
n + dist(x, I))2

n ω(dx) (2.2.4)

along with their duals At1,∗p (ω, σ),At2,∗p (ω, σ), where the roles of σ and ω are interchanged,

are no longer sufficient for (2.0.1) to hold.

When the operator T in (2.0.1) is a fractional operator such as the Cauchy transform

or the fractional Riesz transforms then the fractional analogs of (2.2.1), (2.2.2), (2.2.3) are

used

Aαp (ω, σ) = sup
I

(
ω(I)

|I|1−
α
n

)1
p
(

σ(I)

|I|1−
α
n

) 1
p′
<∞ (2.2.5)

At1,αp (ω, σ) = sup
I

(
ω(I)

|I|1−
α
n

)1
p

(Pα(I, σ))
1
p′ <∞ (2.2.6)
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At2,αp (ω, σ) = sup
I

(Pα(I, ω))
1
p (Pα(I, σ))

1
p′ <∞ (2.2.7)

where Pα is the reproducing Poisson integral and is given by

Pα(I, ω) ≡
∫
Rn

 |I|
1
n

(|I|
1
n + dist(x, I))2

n−α ω(dx)

The standard Poisson integral, is given by

Pα(I, ω) ≡
∫
Rn

|I|
1
n

(|I|
1
n + dist(x, I))n+1−α

ω(dx)

and is used for the definition of the fractional “buffer" conditions. The two Poisson integrals

agree for n = 1, α = 0. We refer the reader to [64] for more details. All the results that we are

proving here for the Ap conditions hold for their fractional analogs without any modification

in the proofs.

We show that the classical Ap condition is weaker than the tailed conditions, but the two

tailed Ap condition holding is equivalent to both one tailed Ap conditions holding.

Theorem 2.2.1. We have the following implications:

1. (Ap ; A
t1
p ∩A

t1,∗
p ) The two weight classical Ap condition does not imply the one tailed

Ap conditions.

2. (At1p ; At2p ) The one tailed At1p condition does not imply the two tailed At2p condition.

3. (At1p ∩ A
t1,∗
p ⇔ At2p ) The two tailed At2p condition holding is equivalent to both one

tailed At1p ,A
t1,∗
p conditions holding.

The measures that we use for the proof of theorem 2.2.1. are non doubling and we show

that this is the only case. All doubling measures are reverse doubling (see lemma 1.6.2.). So
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the previous sentence is justified by the following theorem:

Theorem 2.2.2. (ω, σ ∈ D , Ap ⇒ A
t1
p ⇒ A

t2
p ) If ω, σ are reverse doubling measures, then

the classical two weight classical Ap implies the tailed Ap conditions.

A proof of theorem 2.2.2 for the one tailed conditions can be found in [70].

2.2.1 The testing conditions.

Since the two weight Ap conditions are not sufficient for (2.0.1) to hold, some other necessary

conditions are required, namely the 1-testing conditions

||T (1Idσ)||Lp(ω) ≤ Tp|I|σ (2.2.8)

||T ∗(1Idω)||Lp(σ) ≤ (T∗)p|I|ω

where I runs over all cubes and T,T∗ are the best constants so that (2.2.8) holds.

The testing conditions were first introduced by Sawyer in [56] in 1982 for the boundedness

of the maximal operator and they involved two weights, u, v namely Sawyer proved that the

Maximal operator is bounded on Lp(u)→ Lq(w) if and only if the Sawyer testing condition

is satisfied, i.e. if and only if

Sp,q(w, u1−p′) = sup
I

(∫
I
u(x)1−p′dx

)−1
p
(∫

I

[
M(1Iu

1−p′)(x)
]q
w(x)dx

)1
q
<∞ (2.2.9)

where the supremum is taken over all cubes I ⊂ Rn.

Two years later in 1984, David and Journé in [10] using (2.2.8) for dσ = dω = dx proved

that a general singular integral is bounded in Lp as long as (2.2.8) holds.

The testing conditions alone are trivially not sufficient for (2.0.1) to hold for general
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measures since as pointed out in [48] for example, the second Riesz transform R2 of any

measure supported on the real line is the zero element in Lp(ω) for any measure ω carried

by the upper half plane. On the other hand, such a pair of measures need not satisfy the

Muckenhoupt conditions, which are necessary for (2.0.1) to hold.

The famous Nazarov-Treil-Volberg conjecture (NTV conjecture), states that Ap(ω, σ)

and testing conditions are necessary and sufficient for (2.0.1) to hold.

2.2.2 The “buffer" Pivotal and Energy conditions.

Nazarov, Treil and Volberg in a series of very clever papers assumed the pivotal condition,

for p = 2, and proved (2.0.1) (see [42],[45],[75]).

The Pivotal condition V is given by

V(ω, σ)p = sup
I0=∪Ir

1

σ(I0)

∑
r≥1

ω(Ir)P (Ir, 1I0σ)p <∞ (2.2.10)

where the supremum is taken over all possible decompositions of I0 in disjoint cubes {Ir}r∈N

and all cubes I0 such that σ(I0) 6= 0, and its dual V∗ where σ and ω are interchanged.

Lacey, Sawyer and Uriarte-Tuero in [32] proved, again for p = 2, that (2.0.1) for the

Hilbert transform implies the weaker Energy condition E

E(ω, σ)p = sup
I0=∪Ir

1

σ(I0)

∑
r≥1

ω(Ir)E(Ir, ω)2P (Ir, 1I0σ)p <∞ (2.2.11)

where the supremum is taken over all possible decompositions of I0 in disjoint cubes {Ir}r∈N
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and all cubes I0 such that σ(I0) 6= 0, where

E(I, ω)2 ≡ 1

2
Eω(dx)
I Eω(dx′)

I

(x− x′)2

|I|2
(2.2.12)

and its dual E∗ where σ and ω are interchanged.

In the same paper, Lacey, Sawyer and Uriarte-Tuero proved that a hybrid of the Pivotal

and Energy conditions was sufficient but not necessary in the two weight inequality for the

Hilbert transform.

Both the energy and the pivotal conditions, sometimes referred to as “buffer conditions",

are used to approximate certain forms that appear in the proofs of almost all two weight

inequalities. The NTV conjecture states that we can prove (2.0.1) without assuming them.

It is true though that if both ω, σ are individually A∞ weights, the classical Ap(ω, σ)

condition implies the Pivotal condition providing a short and elegant proof of the NTV-

conjecture for A∞ weights assuming existing T1 theory. Earlier, Sawyer in [58] gave a proof

using different methods for the case of smooth kernels.

Theorem 2.2.3. (T1 theorem for A∞ weights) Assume ω, σ are in A∞, T is an α-fractional

singular integral and we have the T1 testing and the fractional Aα2 (ω, σ) conditions to hold,

along with their duals. Then, T is bounded on L2(Rn).

We can get another proof of this theorem for singular integrals by using theorem 3 in

[47] by inserting an Ap weight w between ω, σ and then using the one weight results in [7]

or [20].
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2.2.3 The relationship between the two weight Ap and “buffer" con-

ditions.

It is shown in [32] that we can have a pair of measures satisfying the tailed A2 conditions

(2.2.2), (2.2.3) but failing to satisfy the Pivotal condition (2.2.10), hence proving the impli-

cation At22 ; V2.

We show here that the Pivotal condition (2.2.10) does not imply the tailed A2 conditions

(2.2.2), (2.2.3).

Theorem 2.2.4. (Vp ; At1p ) Let 1 < p ≤ 2. The Pivotal condition Vp does not imply the

one tailed Ap condition At1p .

Remark 2.2.5. It is immediate from (2.2.12) that the Energy condition (2.2.11) is dominated

by the Pivotal condition (2.2.10) hence we immediately get the following important corollary.

Corollary 2.2.6. (E ; At12 ) Let 1 < p ≤ 2. The Energy condition E does not imply the

one tailed Ap condition At1p .

2.2.4 Known cases of the NTV conjecture.

While the general case of the NTV conjecture in Rn is still not completely understood,

several important special cases have been completely solved.

First, in the two part paper by Lacey, Sawyer, Shen and Uriarte-Tuero [34] and Lacey

[27] proved the NTV conjecture, namely that Ap(ω, σ) and testing conditions are necessary

and sufficient for (2.0.1) to hold, assuming also that the measures σ and ω had no common
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point masses, for the Hilbert Transform. Hytönen [22] with his new offset version of A2

Aoffset
2 (ω, σ) = sup

I

ω(I)

|I|

∫
Rn\I

 |I|
1
n

(|I|
1
n + dist(x, I))2

n σ(dx) <∞ (2.2.13)

removed the restriction of common point masses on σ, ω. An alternate approach using

“punctured" versions of A2 appears in [67].

Other important cases include first Sawyer, Shen, Uriarte-Tuero [64] for α-fractional

singular integrals, Lacey-Wick [37] for the Riesz transforms, Lacey, Sawyer, Shen, Uriarte-

Tuero and Wick [35] for the Cauchy transform and Sawyer, Shen, Uriarte-Tuero [65] for the

Riesz tranform when a measure is supported on a curve in Rn and recently [58] for general

Calderon-Zygmund operators and doubling measures that also satisfy the fractional Aα∞

condition, check (3.1.16). The NTV conjecture is yet to be proven for a general operator T .

2.3 Tb theory

The original T1 theorem of David and Journé [10], which characterized boundedness of a

singular integral operator by testing over indicators 1Q of cubes Q, was quickly extended to

a Tb theorem by David, Journé and Semmes [11], in which the indicators 1Q were replaced

by testing functions b1Q for an accretive function b, i.e. 0 < c ≤ Reb ≤ |b| ≤ C <∞. Here

the accretive function b could be chosen to adapt well to the operator at hand, resulting in

almost immediate verification of the b-testing conditions, despite difficulty in verifying the

1-testing conditions. One motivating example of this phenomenon is the boundedness of the

Cauchy integral on Lipschitz curves, easily obtained from the above Tb theorem1. See e.g.

1The problem reduces to boundedness on L2 (R) of the singular integral operator CA with kernel
KA (x, y) ≡ 1

x−y+i(A(x)−A(y))
, where the curve has graph {x+ iA (x) : x ∈ R}. Now b (x) ≡ 1+ iA′ (x) is
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[72, pages 310-316].

Subsequently, M. Christ [5] obtained a far more robust local Tb theorem in the setting of

homogeneous spaces, in which the testing functions could be further specialized to bQ1Q ,

where now the accretive functions bQ can be chosen by the reader to differ for each cube

Q. Applications of the local Tb theorem included boundedness of layer potentials, see e.g.

[2] and references there; and the Kato problem, see [19], [18] and [3]: and many authors,

including G. David [8]; Nazarov, Treil and Volberg [43], [42]; Auscher, Hofmann, Muscalu,

Tao and Thiele [4], Hytönen and Martikainen [24], and more recently Lacey and Martikainen

[29], set about proving extensions of the local Tb theorem, for example to include a single

upper doubling weight together with weaker upper bounds on the function b. But these

extensions were modelled on the ‘nondoubling’ methods that arose in connection with upper

doubling measures in the analytic capacity problem, see Mattila, Melnikov and Verdera [38],

G. David [8], [9], X. Tolsa [74], and alsoVolberg [75], and were thus constrained to a single

weight - a setting in which both the Muckenhoupt and energy conditions follow from the

upper doubling condition.

More recently, in a precursor to the present result, [69] obtained a general two weight

Tb theorem for the Hilbert transform on the real line. Here, we extend this precursor

to higher dimensions. As in [69], we adapt methods from the theory of two weight T1

theorems, which arose from [44], [75], [34], [27], [64] and [66], and were used in [24] as well,

to prove a two weight local Tb theorem. These methods involve the ‘testing’ perspective

toward characterizing two weight norm inequalities for an operator T . As suggested by

work originating in [10] and [55], it is plausible to conjecture that a given operator T is

accretive and the b-testing condition
∫
I
∣∣CA (1Ib) (x)

∣∣2 dx ≤ TbH |I| follows from
∣∣CA (1Ib) (x)

∣∣2 ≈ ln x−α
β−x ,

for x ∈ I = [α, β]. In the case of a C1,δ curve, the kernel KA is C1,δ and a Tb theorem applies with T = CA
and σ = ω = dx, to show that CA is bounded on L2 (R).
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bounded from one weighted space to another if and only if both it and its dual are bounded

when tested over a suitable family of functions related geometrically to T , e.g. testing over

indicators of intervals for fractional integrals T as in [55].

The main two weight local Tb theorem: Here is a brief statement of our main

theorem.

Theorem 2.3.1 (local Tb in higher dimensions). Let Tα denote a Calderón-Zygmund op-

erator on Rn, and let σ and ω be locally finite positive Borel measures on Rn that satisfy

the energy and Muckenhoupt buffer conditions. Then Tασ , where Tασ f ≡ Tα (fσ), is bounded

from L2 (σ) to L2 (ω) if and only if the b-testing and b∗-testing conditions

∫
I
|Tασ bI |

2 dω ≤
(
Tb
Tα

)2
|I|σ and

∫
J

∣∣Tα,∗ω b∗J
∣∣2 dσ ≤ (Tb∗,∗

Tα

)2
|J |ω , (2.3.1)

taken over two families of test functions {bI}I∈P and
{
b∗J
}
J∈P , where bI and b∗J are only

required to be nondegenerate in an average sense, and to be just slightly better than L2

functions themselves, namely Lp for some p > 2.

2.3.1 Challenges in higher dimensional two weight Tb theory and a

counterexample to Hytönen’s off testing condition

A number of difficulties arise in generalizing to higher dimensions the work that was done

in [69] for dimension n = 1. The main difficulty lies in the strictly-one dimensional nature

of a fundamental inequality of Hytönen, namely that local testing, i.e. testing the integral

of
∣∣Tσ1Q

∣∣2 over the cube Q, together with the A2 condition, imply full testing, meaning

that
∣∣Tσ1Q

∣∣2 is integrated over the entire space Rn. For the proof of full testing, Hytönen

uses an inequality for the Hardy operator that is true only in dimension n = 1 - in fact we
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prove that this property of the Hardy operator is not available in higher dimensions. Before

stating the theorem we need to define the fractional energy and the off testing conditions.

Definition 2.3.2. We say that the pair (σ, ω) satisfies the energy (resp. dual energy) con-

dition if

(Eα2 )2 ≡ sup
Q=∪̇Qr

1

σ(Q)

∞∑
r=1

Pα
(
Qr,1Qσ

)
|Qr|

1
n

2 ∥∥∥x−mω
Qr

∥∥∥2

L2
(
1Qrω

) <∞

(
Eα,∗2

)2 ≡ sup
Q=∪̇Qr

1

ω(Q)

∞∑
r=1

Pα
(
Qr,1Qω

)
|Qr|

1
n

2 ∥∥∥x−mσ
Qr

∥∥∥2

L2
(
1Qrσ

) <∞
where the supremum is taken over arbitrary decompositions of a cube Q using a pairwise

disjoint union of subcubes Qr, where Pα(Q, µ) is the standard Poisson integral and

m
µ
I ≡

1

µ(I)

∫
xdµ(x) =

〈
1

|I|µ

∫
x1dµ(x), ...,

1

|I|µ

∫
xndµ(x)

〉
.

Definition 2.3.3. The off-testing constants Toff,α and Rj,off,α in R2 by

T 2
off,α = sup

Q

1

ω(Q)

∫
R2\Q

(∫
Q

1

|x− y|2−α
dω(y)

)2

dσ(x)

R2
m,off,α = sup

Q

1

ω(Q)

∫
R2\Q

(∫
Q

tm − xm
|x− t|3−α

dω(t)

)2

dσ(x), 1 ≤ m ≤ 2

for all cubes Q ⊂ R2 whose sides are parallel to the axes.

Theorem 2.3.4. For 0 ≤ α < 2, there exists a pair of locally finite Borel measures σ, ω in

R2 such that the fractional Muckenhoupt Aα2 ,A
α,∗
2 and the energy Eα2 , E

α,∗
2 constants are

finite but the off-testing constant Toff,α is not.
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Theorem 2.3.5. For 0 ≤ α < 2, there exists a pair of locally finite Borel measures σ, ω in

R2 such that the fractional Muckenhoupt Aα2 ,A
α,∗
2 and the energy Eα2 , E

α,∗
2 constants are

finite but the off-testing constants Rm,off,α are not.

With full testing in hand, we obtain a number of properties that greatly simplify matters

but we no longer have this tool. Here are the main challenges encountered in passing from

the one-dimensional setting to the higher dimensional analog.

1. The nearby form. The main difficulty in proving the Tb theorem in dimensions

n > 1 arises in treating the nearby form in Chapter 5. Full testing is used repeatedly

everywhere in this chapter, and a demanding technical approach involving random

surgery and averaging, is needed throughout this chapter. In particular, to obtain

estimates over adjacent cubes, we decomposed one of the cubes into a smaller rectangle

that is separated from the other cube by a halo. The separated part is estimated by

the Muckenhoupt’s A2 condition, while the halo is estimated by applying probability

over grids. A typical example is the following: Let I be a cube in the grid associated

to the function f and J a cube in the grid associated to the function g. Let also bI , b∗J

be the testing functions used in the theorem for these cubes.

We would like to estimate
∫
Tασ

(
bI1I\J

)
b∗J1Jdω. The domains of integration inside

the operator and inside the integral are adjacent. In dimension n = 1 we could use

Hytönen’s result. Now we instead argue by splitting the integral as follows:

∣∣∣∣∫ Tασ

(
bI1I\J

)
b∗J1Jdω

∣∣∣∣ ≤ ∣∣∣∣∫ Tασ

(
bI1I\(1+δ)J

)
b∗J1Jdω

∣∣∣∣+∣∣∣∣∫ Tασ

(
bI1(I\J)∩(1+δ)J

)
b∗J1Jdω

∣∣∣∣ .
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The first term on the right hand side, where the domains inside the operator and

the integral are disjoint with positive distance, is bounded by a constant multiple,

depending on δ and n, times the A2 constant. Using averaging over grids, the second

term on the right hand side is bounded by δNTα where the small δ gain comes from

the fact that |(I\J)∩ (1 + δ)J |
1
n ≈ δ|I| where | · | denotes the Lebesque measure of the

cube.

2. Splitting forms. Here we begin with a pair of smooth compactly supported func-

tions (f, g) and we would like to decompose the functions into their Haar expansions.

However, when we select a grid G for f , the support of f may not be contained in any

of the dyadic cubes in the grid G, with a similar problem when selecting a grid H for

g. To deal with this, we follow NTV by adding and subtracting certain averages for

these terms, resulting in four integrals to be controlled by our hypotheses. In the one

dimensional setting, full testing was used to eliminate three out of the four such inte-

grals that appear after decomposing the functions in sums of martingale differences.

Here in this paper, the argument was adjusted to avoid using full testing by averaging

over the two grids G and H associated with f and g.

3. Pointwise Lower Bound Property (PLBP). In [69] for n = 1, the PLBP was

used to control terms involving certain ‘modified dual martingale differences’ in which

a factor bQ had been removed. Moreover, it was proved there that, without loss of

generality, the p-weakly accretive families of testing functions bQ and b∗Q for Q ∈ P

could be assumed to satisfy the pointwise lower bound property, written PLBP :

∣∣bQ (x)
∣∣ ≥ c1 > 0 for Q ∈ P and σ-a.e. x ∈ R,
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for some positive constant c1. However, this reduction to assuming PLBP depended

heavily on Hytönen’s A2 characterization for supports on disjoint intervals, something

that is unavailable in higher dimensions as the following theorem shows:

To circumvent this difficulty we used an observation (that goes back to Hytönen and

Martikainen) that under the additional assumption that the breaking cubes Q, those

for which there is a dyadic child Q′ of Q with bQ′ 6= 1Q′bQ, satisfy an appropriate

Carleson measure condition.

4. Indented corona. In chapter 8 (dealing with the stopping form) we construct an

‘indented corona’. In dimension n = 1 this construction simply reduces to consideration

of the ‘left and right ends’ of the intervals. In the absence of ‘right and left ends’ in

higher dimensions, this simple construction is replaced by a more intricate tower of

Carleson cubes.

2.4 Organization of the paper

In chapter 3, section 3.1 we prove theorems 2.1.1 and 2.1.2. In section 3.2 we prove theorem

2.2.1 and theorem 2.2.2. We prove the T1 theorem for A∞ weights, theorem 2.2.3, in

subsection 3.2.3, using the Sawyer testing condition (see (2.2.9) and theorem 3.2.6). In

subsection 3.2.4 we prove theorem 2.2.4 and give a partial answer to question 2 in theorem

3.2.11. In chapter 4 we prove theorems 2.3.4 and 2.3.5. In chapter 5 we prove theorem 2.3.1.

Check the lattices and the graph in section 2.5 for a summary of the theorems presented in

this paper and the history of weighted theory.
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2.5 Open problems, lattices and a historic diagram

Here is a list of open questions.

1. The most difficult and important problem in the theory of T1 and Tb arises from the

fact that, while the Muckenhoupt buffer conditions are necessary for boundedness of

a wide range of singular integrals, the energy buffer conditions are only necessary for

boundedness of the Hilbert transform and some perturbations in dimension n = 1, see

[57], [68]. What is a reasonable substitute for the energy buffer conditions in a T1 or

Tb theorem?

2. Does Theorem 2.3.1 remain true in the case p = 2, i.e. when b =
{
bQ
}
Q∈P is a

2-weakly σ-accretive family of functions, and b∗ =
{
b∗Q

}
Q∈P

is a 2-weakly ω-accretive

family of functions?

3. In the special case of the Hilbert transform in dimension n = 1, are the energy con-

ditions in Theorem 2.3.1 already implied by the Muckenhoupt, b-testing and dual

b∗-testing conditions for a pair of p-weakly accretive families, p > 2?

The following lattices provide a summary of the implications among the necessary and

sufficient conditions in weighted theory.

One weight conditions

Combining (3.1.3), theorem 2.1.1, remark 3.1.3, remark 3.1.4, remark 3.1.5 and theorem

3.1.6 we get, for p < q, the following lattice of inclusions for the conditions used in one
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weighted theory

A1(ω) ( Ap(ω) ( Aq(ω) ( A∞(ω)
(
Aα∞(ω) ∩ D(ω) (


D(ω)

Aα∞(ω)

(
Cp(ω) ∩ D(ω) (


D(ω)

Cp(ω)

Two weight conditions

Combining remark 3.2.1, theorem 2.2.1, theorem 2.2.2, remark 3.2.9, theorem 2.2.4, remark

2.2.5, corollary 2.2.6, theorem 3.1.6, theorem 3.2.6, corollary 3.2.7 and the example in [32]

we get the following lattice of inclusions for the conditions used in two weighted theory.

For general Radon measures:

Theorem 2.2.1,

remark 3.2.1, remark 3.2.9, [32]: V(ω, σ)p ( Ap(ω, σ) ( At1p (ω, σ) ∪ At1p (σ, ω)

A
t1
p (ω, σ) ∩ At1p (σ, ω) = A

t2
p (ω, σ)

A
t1
p (ω, σ) ( A

t2
p (ω, σ)

Remark 2.2.5,

theorem 2.2.4, corollary 2.2.6: E(ω, σ)p ( V(ω, σ)p 6=⇒ At1p (ω, σ) ( At2p (ω, σ)
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For doubling measures:

Theorem 2.2.2: Ap(ω, σ) = A
t1
p (ω, σ) = At2p (ω, σ)

Theorem 3.2.6, corollary 3.2.7: Ap(ω, σ) ∩ A∞(ω) ( Sd(ω, σ) ⊆ V(ω, σ)p

Theorem 3.2.11: Ap(ω, σ) ∩ D(σ) ∩ D(ω) ( V(ω, σ)p

(small doubling constant)

We end the introduction with a diagram detailing the relevant history of two weight

theory for this paper. Many important contributions are omitted, such as those dealing with

Lp, Lq assumptions in the case of Lebesgue measure, see for example [17] and references

there, and results for dyadic operators, see for example [4] and references there.
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Figure 2.5.1: Theory development diagram

As is evident from the diagram, theorem 2.3.1 (and its precursor for n = 1) is the first

local Tb theorem for two weights.
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Chapter 3

Necessary and sufficient conditions in

weighted theory

3.1 One weight conditions

3.1.1 The A1 and A∞ conditions.

We say the weight w(x) is an A1 weight if and only if

Mw(x) ≤ [w]A1
w(x) (3.1.1)

and we call [w]A1
the A1 constant of w. A1 is a stronger condition than the Ap condition

for p > 1.

If we take the union of all the Ap weights for the different p we get the larger class of

A∞ weights, i.e. A∞ =
⋃
p>1

Ap (check [12], chapter 7). Another equivalent and commonly

used characterization for A∞ weights is the following: We say w ∈ A∞, if for all I ⊂ Rn

and E ⊂ I, there exist uniform constants C, ε > 0 such that

w(E)

w(I)
≤ C

(
|E|
|I|

)ε
. (3.1.2)
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Remark 3.1.1. We have the following linear lattice for 1 < p < q <∞:

A1 ( Ap ( Aq ( A∞ (3.1.3)

The power weights w(x) = |x|α show that all the inclusions are proper.

In particular we have the following known lemma.

Lemma 3.1.2. Let w(x) = |x|α, x ∈ Rn. Then

[w]Ap ≈


(α + n)−1(−αp′p + n)

− pp′ , −n < α < n(p− 1)

∞, otherwise

3.1.2 A Cp and doubling weight that is not in A∞

For the rest of this section, we are going to say that a measure ω is doubling if

ω(3I) ≤ Cω(I). (3.1.4)

This definition is equivalent to (1.6.1). In this subsection we give the proof for theorem 2.1.1.

The construction is a very involved variation of the construction in [15].

Proof of theorem 2.1.1: Let I0 = [−1
2 ,

1
2 ] and In = 3In−1 = 3nI0, the intervals centered

at 0 with length 3n. We call G the triadic grid created by the intervals In. Define the

measure w as follows: w (x) = 1, x ∈ I0 and w (In) = 1
δn1

, 1
3 > δ1 > 0 to be determined later.
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Ilkn
I0

Figure 3.1.1: Building construction

Call I ln, Imn , Irn the left, middle and right third of In respectively. Let w(x) =
3−n+1(1−δ1)

2δn1
,

x ∈ Irn.

Fix k ∈ N and nk ∈ N to be determined later. Let I l,mnk to have the same center as I lnk

and |I l,0nk | = 3m, 0 ≤ m ≤ nk − 1. Let w(I
l,m
nk

) = δ
nk−m
2 w(I lnk

), where 1
3 > δ2 > 0 to be

determined later. For m ≥ 2 let w (x) =
3(1−δ2)

2|Il,mnk |
w
(
I
l,m
nk

)
, for all x ∈ I

l,m
nk
\I l,m−1
nk

. This

defines w completely outside 3I
l,0
nk

. Check the figure below.

Now let I ⊂ I
l,0
nk

be any triadic interval such that |I| ≥ 3−ik , and ik ∈ N will be

determined later. Let

w (I) =


δ2w (πI) if ∂I ∩ ∂πI = ∅

1−δ2
2 w (πI) if ∂I ∩ ∂πI 6= ∅

where πI is the triadic parent of I in the grid G. Let w (x) be constant for any triadic interval

I ⊂ I
l,0
nk

with |I| ≤ 3−ik .

We are left with defining w on 3I
l,0
nk
\I l,0nk . Call J

l
nk

the left third of 3I
l,0
nk

and Jrnk its right

third. Let J
l,ik
nk

be the right most triadic ik child of J lnk and let w(x) =
(

1−δ2
2

)ik
w(J lnk

),

x ∈ J
l,ik
nk

. Now for all triadic I such that J
l,ik
nk
⊂ I ⊂ J lnk

, let I l, Im, Ir denote the left,

middle and right thirds of I and define w(x) =
3(1−δ2)

2|I| w(I), x ∈ I l, w(x) =
3δ2
|I| w(I),
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x ∈ Im and w(Ir) =
1−δ2

2 w(I). Similarly (but on the left end) we define w on Jrnk . This

construction on J lnk and Jrnk is done so that w is doubling.

Indeed, to see that w is doubling, let J1, J2 be two triadic intervals of the same length

that touch. If they have the same triadic parent then w(J1)/w(J2) . 1
min(δ1,δ2)

. If not,

we apply the first case to their common ancestor and get again w(J1)/w(J2) . 1
min(δ1,δ2)

.

For an arbitrary interval I, let 3m ≤ |I| ≤ 3m+1. Then I ⊂ J1 ∪ J2 triadic intervals with

|J1| = |J2| = 3m+1. Then w(3I) . 1
min(δ1,δ2)

w(I).

Allowing ik →∞ makes w singular to Lebesgue. Check ([15], Lemma 2.2). Choose ik so

that there exists an interval Jnk and Enk ⊂ Jnk ⊂ 3I
l,0
nk

,such that

w
(
Enk

)
w
(
Jnk

) ≈ 1

2
,
|Enk |
|Jnk |

≈ 1

2k
and

w (E)

w (I)
. 2k

|E|
|I|

(3.1.5)

for all intervals I ⊂ 3I
l,0
nk

and E ⊂ I. This can be done by following in [15] definition 2.1.

and lemma 2.2. Note that because we stop at height ik, (3.1.5) tells us that there is a “worst

interval" Jnk .

By letting k →∞ it is clear that A∞ fails to hold for w. So we now need to prove that

the Cp condition holds.

By the end of the next calculation we will determine δ1, δ2. We want to prove w is Cp

and for that we need to show that (2.1.4) holds with
∫
R (M1I (x))pw (x) dx < ∞ for any

interval I. Let first, I = I
l,0
nk

.
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We have

∫
R

(
M1

I
l,0
nk

(x)

)p
w (x) dx =

∫
I
l,0
nk

(
M1

I
l,0
nk

(x)

)p
w (x) dx+ (3.1.6)

+

∫
Ilnk
\Il,0nk

(
M1

I
l,0
nk

(x)

)p
w (x) dx+

∫
R\Ilnk

(
M1

I
l,0
nk

(x)

)p
w (x) dx

≡ A+B + C

We have immediately A = w
(
I
l,0
nk

)
, for B we get

B =

∫
Ilnk
\Il,0nk

 |I l,0nk |

2|I l,0nk |+ 2dist
(
x, I

l,0
nk

)
pw (x) dx

≈ 2−p (1− δ2)

nk−1∑
m=1

3−mp

δm2
w
(
I
l,0
nk

)
= 2−p (1− δ2)w

(
I
l,0
nk

) nk−1∑
m=1

(
3−p

δ2

)m

Now choose δ2 = 3−p
2 so that the series above diverges (any δ2 ≤ 3−p works here). We also

want nk so that

2−p (1− δ2)w
(
I
l,0
nk

) nk−1∑
m=1

(
3−p

δ2

)m
& 2kw

(
I
l,0
nk

)
. (3.1.7)

We are only left with calculating term C. We have,

C =

∫
R\Ilnk

 |I l,0nk |

2|I l,0nk |+ 2dist
(
x, I

l,0
nk

)
pw (x) dx (3.1.8)

≈ 2−p3−nkp (1− δ1)
1− δ2
δ
nk−1
2

w
(
I
l,0
nk

) ∞∑
m=1

(
3−p

δ1

)m

Choose δ1 > 3−p so that the infinite series converges. Combining the estimates for A,B and
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C we get: ∫
R

(
M1

I
l,0
nk

(x)

)p
w (x) dx <∞ (3.1.9)

and

w (E)∫
R

(
M1

I
l,0
nk

(x)

)p
w (x) dx

≤ w (E)

2kw(I
l,0
nk

)
.

2k

2k
|E|
|I l,0nk |

=
|E|
|I l,0nk |

. (3.1.10)

for E ⊂ I
l,0
nk

. We want to extend (3.1.9) and (3.1.10) to all triadic intervals. Note that (3.1.9)

holds for any interval I. To see that, choose n big enough so that I ⊂ In. Then, following

the calculations for estimating C in (3.1.8) we get that

∫
R\In

(M1I(x))pw (x) dx <∞

which of course gives us ∫
R

(M1I(x))pw (x) dx <∞ (3.1.11)

To get (3.1.10) for any triadic I ⊂ 3I
l,0
nk

, note that we can follow the same calculations

that led to (3.1.7) and just choose nk big enough so that we get the gain 2kw(I). This

is possible since the construction is finite and it stops at some height ik. For that finite

number of intervals, we choose nk big enough so that all the intervals get the gain 2k, i.e.∫
R (M1I(x))pw (x) dx ≥ 2kw(I). So we have for any E ⊂ I, using (3.1.5),

w (E)∫
R (M1I(x))pw (x) dx

≤ w(E)

2kw(I)
.
|E|
|I|

. (3.1.12)

We will use the following calculation for triadic intervals I ⊂ I lnk
. Let I = 3I

l,0
nk

, following
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(3.1.6) and using δ2 = 3−p
2 ,

∫
R

(M1I)
pdw ≡ A′ +B′ + C ′.

and A′ +B′ ≈ 3p(A+B) hence

∫
Ilnk

(M1I (x))pw (x) dx ≈ 3p
∫
Ilnk

(
M1

I
l,0
nk

(x)

)p
w (x) dx

and

w (E)∫
R (M1I(x))pw (x) dx

.
w(E)

3p2kw(I
l,0
nk

)
. 31−p |E|

|I|
≤ |E|
|I|

(3.1.13)

for any E ⊂ 3I
l,0
nk

, so we don’t lose any of the “gain" necessary for (3.1.12) to hold. We can

repeat for all triadic intervals I such that I l,0nk ⊂ I ⊂ I lnk
. Note that for I = I lnk

B′ = 0. To

extend (3.1.13) to triadic intervals I ⊃ I lnk
notice that

w(E)

w(π(I))
. δ1

w(E)

w(I)
. δ1

|E|
|I|
≤ 3δ1

|E|
|π(I)|

≤ |E|
|π(I)|

=⇒ w(E)

w(π(I))
.
|E|
|π(I)|

for any E ⊂ 3I
l,0
nk

, where we used δ1 < 1
3 .

To get (3.1.12) for an arbitrary triadic interval, let I be a triadic interval not contained

in any I l,0nk and E any subset of I. We write

E =

 ⋃
I
l,0
nk
⊂I

(
E ∩ 3I

l,0
nk

)⋃
E∖ ⋃

I
l,0
nk
⊂I

3I
l,0
nk

 = E1 ∪ E2
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Using (3.1.13) we see that

w(E1) =
∑
I
l,0
nk
⊂I

w(E ∩ 3I
l,0
nk

) .
∑
I
l,0
nk
⊂I

|E ∩ 3I
l,0
nk
|

|I|

∫
R

(M1I)
pdw (3.1.14)

=
|E1|
|I|

∫
R

(M1I)
pdw

To deal with E2, note that for x ∈ I
∖ ⋃
I
l,0
nk
⊂I

3I
l,0
nk

, w(x) .
3(1−δ2)

2|I| w(I) so we get

w(E2)

w(I)
≈ |E2|
|I|

(3.1.15)

combining (3.1.14), (3.1.15) we get (3.1.12) for a triadic interval I.

We are left with extending (3.1.12) to an arbitrary interval I. Let 3m ≤ |I| ≤ 3m+1 and

E ⊂ I. Then I ⊂ J1 ∪ J2, J1, J2 triadic intervals such that |J1| = |J2| = 3m+1. Since

M1I(x) ≈M1J1
(x) ≈M1J2

(x), for all x ∈ R.

we get

w (E)∫
R (M1I(x))pw (x) dx

≈ w (E ∩ J1)∫
R

(
M1J1

(x)
)p
w (x) dx

+
w (E ∩ J2)∫

R

(
M1J2

(x)
)p
w (x) dx

.
|E ∩ J1|
|J1|

+
|E ∩ J2|
|J2|

≈ |E|
|I|

This shows that w satisfies (2.1.4) and hence w is a Cp weight and the proof is complete.

42



3.1.3 Doubling Cp weights are in A∞ for small doubling constants

Note that the construction in the proof of theorem 2.1.1 we depended heavily on the big

doubling constant of the weight w. Here we show that this is the only case by proving

theorem 2.1.2.

Proof of theorem 2.1.2: It will be enough to show that

∫
Rn
|M1I |pw(x)dx ≈ w(I)

the result then follows immediately from (2.1.4). Let In = 3mI the cubes with same center

as I and side length `(In) = 3m`(I). We write

∫
Rn
|M1I |pwdx =

∞∑
m=0

∫
Im\Im−1

|M1I |pwdx ≈
∞∑
m=0

∫
Im\Im−1

|I|pw(x)dx

(|I|
1
n + dist(x, I))np

≈
∞∑
m=0

|I|pw(Im)

|Im|p
.
∞∑
m=0

(Cw)mw(I)

(3np)m
. w(I)

since Cσ < 3np by hypothesis and the series converges.

Remark 3.1.3. Not all doubling weights are Cp weights. For an example just choose δ1 <

3−p in the construction of theorem 2.1.1.

Remark 3.1.4. There exist non-doubling Cp weights. For an example choose δ2,k = 1
5k in

each Ink in the construction of theorem 2.1.1. A much simpler example is given by getting

the Lebesgue measure in Rn and setting the measure of the unit ball equal to 0, i.e. define

w(E) = m(E\B(0, 1)) where B(0, 1) is the unit ball in Rn.
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3.1.4 The Aα∞ condition.

To complete the picture for the one weight conditions we are introducing the fractional Aα∞

condition. We are following very closely [58] where Aα∞ was introduced.

First we define the α−relative capacity of a measure Capα(E; I) of a compact subset E

of a cube I by

Capα(E; I)=inf
{∫

h(x)dx : h ≥ 0, Supph ⊂ 2I and Iαh ≥ (diam2I)α−n on E
}

Check [1] for more properties on capacity.

We say that a locally finite positive Borel measure ω is an Aα∞ measure if

ω(E)

ω(2I)
≤ η(Capα(E, I)) (3.1.16)

when ω(2I) > 0, for all compact subsets E of a cube I, for some function η : [0, 1] → [0, 1]

with lim
t→0

η(t) = 0.

Note that omitting the factor 2 in ω(2I) above makes the condition more restrictive in

general, but remains equivalent for doubling measures. It is shown in [58] that ω ∈ Aα∞

implies the Wheeden-Muckenhoupt inequality

∫
|Iαf |p dω ≤

∫
|Mαf |p dω (3.1.17)

for all f positive Borel measures.

Remark 3.1.5. Aα∞ measures are not necessarily doubling. Take for example the Lebesgue
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measure in Rn and set the measure of the unit ball equal to 0, i.e. define ω(E) = m(E\B(0, 1))

where B(0, 1) is the unit ball in Rn. This measure is clearly non-doubling and hence not in

A∞ but it is an Aα∞ measure.

There exist also doubling fractional A∞ measures that are not in A∞. The example

we use for that is exactly the one used in [15] but here we have to calculate the relative

capacities of the sets used.

Theorem 3.1.6. (Aα∞∩D ; A∞) There exist a measure µ singular to the Lebesgue measure

that is doubling and satisfies the Aα∞ condition with η(t) = t but µ is not an A∞ weight.

Proof. Let µ([0, 1]) = 1, 0 < δ < 3−1 to be determined later, and for any triadic I ⊂ [0, 1]

let

µ (I) =


δµ (πI) if ∂I ∩ ∂πI = ∅

1−δ
2 µ (πI) if ∂I ∩ ∂πI 6= ∅

It was shown in [15] that µ is a doubling measure. It is also shown that it is singular to the

Lebesgue measure hence it does not satisfy the A∞ condition.

To show that it satisfies the Aα∞ condition, let I ⊂ [0, 1] be a triadic interval and E ⊂ I

be compact.

We claim that ||IαµI ||L∞(I) = Cα,δµ(I)|I|α−1, where µI is the restriction of µ on the

set I and the constant Cα,δ is independent of I. For any x ∈ I we have

IαµI(x) =

∫
I
|x− y|α−1dµ(y) . µ(I)|I|α−1

∞∑
k=0

3k(1−α)
(

1− δ
2

)k
= Cα,δµ(I)|I|α−1

as long as 31−α 1−δ
2 < 1⇒ α > 1−

ln( 2
1−δ )

ln 3 .
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Now for any f ≥ 0, Suppf ⊂ 2I and Iαf ≥ |2I|α−1 on E, using Fubini’s theorem we

have

µ(E) =

∫
I

1Edµ ≤
∫
I
|2I|1−αIαf(x)1E(x)dµ(x) =

∫
|2I|1−αIαµE(x)f(x)dx

≤ ||f ||1||IαµE ||∞|2I|1−α ≤ ||f ||1||IαµI ||∞|2I|1−α . ||f ||1µ(I)

So Capα(E, I) & µ(E)
µ(I)

hence Aα∞ holds with η(t) = t and the proof is complete.

3.2 Two weight conditions

We start this section with the proofs of theorems 2.2.1 and 2.2.2.

3.2.1 Non doubling Ap examples

Remark 3.2.1. Note first that we have the following simple implications At2p ⇒ A
t1
p ⇒ Ap.

Indeed it is easy to see:

P (I, σ) =

∫
I

|I|
(|I|+ dist(x, I))2

σ(dx) +

∫
R/I

|I|
(|I|+ dist(x, I))2

σ(dx)

=
σ(I)

|I|
+

∫
R/I

|I|
(|I|+ dist(x, I))2

σ(dx) ≥ σ(I)

|I|

and so immediately from the definitions (2.2.1), (2.2.2) and (2.2.3) we get

Ap(ω, σ) ⊆ At1p (ω, σ) ⊆ At2p (ω, σ).

Remark 3.2.2. We work with p = 2 for simplicity. The examples we use work with trivial

modifications for any p > 1.
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Proof of theorem 2.2.1:

(1) We want to construct two measures ω, σ such that the two weight classical A2 con-

dition holds but both one tailed A2 conditions fail. First, we construct measures uk and vnk

that satisfy
uk(I)vnk (I)

|I|2
≤M,

uk(I)

|I|
P (I, vnk ) & n

where the constant M does not depend on k, n. Then we will combine the measures uk and

vnk to create ω, σ such that the two weight classical A2 condition holds and both one tailed

A2 conditions fail for the pair ω, σ. Let

uk(E) = m(E ∩ [k, k + 1]), vnk (E) =
n∑
i=0

2im
(
E ∩

[
k + 2i, k + 2i+1

])

where m is the classic Lebesgue measure on R. Let I = (a, b), a < k+ 1 and k+ 2i−1 ≤ b <

k + 2i, for some i ≥ 0 (of course if the interval does not intersect [k, k + 1] then uk(I) = 0).

Then

uk(I)vnk (I)

|I|2
≤ 4i+1 − 1

(4− 1)(2i−1 − 2)2
= M (3.2.1)

which is bounded for i > 2 (the cases i = 0, 1, 2 can be seen directly). Now let I = [k, k+ 1].

We have then:

uk(I)

|I|
P (I, vnk ) =

∫
R

vnk (dx)

(1 + dist(x, [k, k + 1]))2
=

n∑
i=0

∫
Ii

vnk (dx)

(1 + dist(x, [k, k + 1]))2
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where Ii = [k + 2i, k + 2i+1]. We get:

k∑
i=0

∫
Ii

vnk (dx)

(1 + dist(x, [1, 2]))2
≥ 1 +

n∑
i=1

∫
Ii

vnk (dx)(
1 + 2i − 2)

)2
(3.2.2)

= 1 +
n∑
i=1

vnk (Ii)(
2i − 1

)2 = 1 +
n∑
i=1

22i(
2i − 1

)2 ≈ n.

Now we define ω, σ as follows:

ω(E) =
∞∑
k=1

u
100k

(E) +
∞∑
k=1

vk−100k
(E)

σ(E) =
∞∑
k=1

u−100k
(E) +

∞∑
k=1

vk
100k

(E)

It is easy to see that with I = Ik = [100k, 100k + 1] both one tailed A2 conditions fail

using (3.2.2).

To see that the classical A2 condition holds, let I = (a, b) be any interval. It is simple to

check that if I is big enough such that |a| ≈ 100k, |b| ≈ 100n for k 6= n then

ω(I)σ(I)

|I|2
≤ 1.

While if |a| ≈ |b| ≈ 100k for some k then using (3.2.1) we get

ω(I)σ(I)

|I|2
≤ 2M

hence the classical two weight A2 condition holds but both one tailed A2 conditions fail.
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(2) Now we turn to proving At12 ; At22 . Let the new measures be:

ω(E) =
∞∑
n=1

2nm
(
E ∩

[
2n, 2n+1

])
σ(E) = m(E ∩ [0, 1])

From the construction above we can see that with I = [0, 1] we get:

P (I, ω)P (I, σ) =

∫
R

ω(dx)

(1 + dist(x, [0, 1]))2

∫
R

σ(dx)

(1 + dist(x, [0, 1]))2

=

∫
R

ω(dx)

(1 + dist(x, [0, 1]))2

∫ 1

0

dx

(1 + dist(x, [0, 1]))2
=

∫
R

ω(dx)

(1 + dist(x, [0, 1]))2

Now from the definition of ω the last expression is equal to:

∞∑
n=1

∫ 2n+1

2n

2n

(1 + dist(x, [0, 1]))2
dx ≥

∞∑
n=1

22n

22n
=∞

To prove that At12 hold let I be an interval such that 2n ≤ |I| < 2n+1 and 2k − 1 ≤

dist(I, [0, 1]) < 2k+1 − 1 with k ≥ 0. We have two cases:

(i) n ≥ k.

ω(I)

|I|
P (I, σ) ≤

n+1∑
l=1

2lm
(
I ∩

[
2l, 2l+1

])
|I|2

≤

n+1∑
l=1

22l

22n
=

22(n+2) − 1

(4− 1)22n
< M <∞

where the first inequality uses the fact that the interval cannot intersect any point in

[2n+2,∞) otherwise n ≥ k would not be satisfied.
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(ii) n < k. If k = 0 then I ∩ [2,∞) = ∅ and there is nothing to prove. So assume k > 0.

ω(I)

|I|
P (I, σ) ≤

k+1∑
l=k

2lm
(
I ∩

[
2l, 2l+1

])
22k

≤ 22k + 22(k+1)

22k
= 5 <∞

where the first inequality now holds because I cannot contain neither any point in (0, 2k)

for otherwise dist(I, (0, 1)) < 2k − 1 nor any point in [2k+1,∞) because n < k would not be

satisfied and the proof is complete.

(3) Last, for the equivalence of the two tailed A2 condition to both one tailed A2 conditions

let I ∈ Rn be a cube. We have:

P (I, σ) ≈ σ(I)

|I|
+
∞∑
k=1

3n−1∑
m=1

σ(Ikm)

3kn|Ikm|
, P (I, ω) ≈ ω(I)

|I|
+
∞∑
k=1

3n−1∑
m=1

ω(Ikm)

3kn|Ikm|

I
I1
m

I2
m

Figure 3.2.1: Splitting for n = 2

where |Ikm|
1
n = 3k|I|

1
n and d(Ikm, I) ≈ 3k, and all the implied constants depend only on

the dimension, check Figure 3.2.1. There exist k1, k2 ≥ 0 such that

P (I, σ) ≈ 2

σ(I)

|I|
+

k1∑
k=1

3n−1∑
m=1

σ(Ikm)

3kn|Ikm|

 ≈ 2
∞∑

k=k1

3n−1∑
m=1

σ(Ikm)

3kn|Ikm|
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P (I, ω) ≈ 2

ω(I)

|I|
+

k2∑
k=1

3n−1∑
m=1

ω(Ikm)

3kn|Ikm|

 ≈ 2
∞∑

k=k2

3n−1∑
m=1

ω(Ikm)

3kn|Ikm|

We can assume without loss of generality that k1 ≤ k2.

Let J = I ∪

 k1⋃
k=1

3n−1⋃
m=1

Ikm

, hence |J |
1
n ≈ 3k1|I|

1
n where again the implied constant

depends only on dimension. We calculate

σ(J)

|J |
P (J, ω) ≈ 1

|J |

σ(I) +

k1∑
k=1

3n−1∑
m=1

σ(Ikm)

ω(J)

|J |
+
∞∑
k=1

3n−1∑
m=1

ω(Jkm)

3kn|Jkm|


≈ 1

3k1n|I|

σ(I) +

k1∑
k=1

3n−1∑
m=1

σ(Ikm)

ω(J)

|J |
+
∞∑
k=1

3n−1∑
m=1

ω(I
k+k1
m )

3kn|Ik+k1
m |


≈ 1

3k1n|I|

σ(I) +

k1∑
k=1

3n−1∑
m=1

σ(Ikm)

ω(J)

|J |
+
∞∑

k=k1

3n−1∑
m=1

3k1nω(Ikm)

3kn|Ikm|


&

1

|I|

σ(I) +

k1∑
k=1

3n−1∑
m=1

σ(Ikm)

ω(J)

|J |
+
∞∑

k=k2

3n−1∑
m=1

ω(Ikm)

3kn|Ikm|


&

σ(I)

|I|
+

k1∑
k=1

3n−1∑
m=1

σ(Ikm)

3kn|Ikm|

ω(J)

|J |
+
∞∑

k=k2

3n−1∑
m=1

ω(Ikm)

3kn|Ikm|


≈ P (I, σ)P (I, ω)

hence showing that the one tailed Ap conditions bound the two tailed Ap condition and the

proof is complete.

Remark 3.2.3. From the above construction we see that the same measures could work to

prove the same implications for Aoffset
p (2.2.13), and it’s two tailed analogue since it’s exactly

the nature of the tail that we take advantage of in the construction.
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3.2.2 Two weight Ap equivalence for doubling measures

Remark 3.2.4. We are going to use p = 2 in the proof for simplicity. The general case

follows immediately since 1
p ,

1
p′ < 1 and hence

P (I, ω)
1
p ≈

 ∞∑
k=1

3n−1∑
j=1

ω(Iki )

32kn|I|

1
p

≤
∞∑
k=1

3n−1∑
j=1

(
ω(Iki )

32kn|I|

)1
p

and from here the proof follows the same way as for p = 2.

Proof of theorem 2.2.2: Let ω, σ be reverse doubling measures with reverse doubling

constants 1 + δω and 1 + δσ respectively. It is enough to prove that we can bound the two

tailed At2p (ω, σ) from the classical Ap(ω, σ). Let I be a cube. We then have,

P (I, ω)P (I, σ) .
ω(I)σ(I)

|I|2
+
ω(I)

|I|

∞∑
m=1

3n−1∑
i=1

σ(Imi )

32mn|I|
+
σ(I)

|I|

∞∑
k=1

3n−1∑
j=1

ω(Iki )

32kn|I|

+
∞∑
m=1

3n−1∑
i=1

σ(Imi )

32mn|I|

∞∑
k=1

3n−1∑
j=1

ω(Ikj )

32kn|I|
≡ A+B + C +D

where |Imj | = 3mn|I|, dist(Imj , I) ≈ 3m|I|
1
n ,

⋃
m∈N

3n−1⋃
j=1

Imj = Rn\I and the implied constant

depends only on dimension. A is bounded immediately by A2(ω, σ). For B we have:

B =
∞∑
m=1

3n−1∑
i=1

ω(I)σ(Imi )

32mn|I|2
.
∞∑
m=1

(1 + δω)−m
3n−1∑
i=1

ω(Im)σ(Im)

|Im|2
. A2(ω, σ) <∞

where Im = I ∪

 m⋃
`=1

3n−1⋃
j=1

I`j

 and the implied constant again depends only on dimension

and the reverse doubling constant of ω. The bound for C is similar to B.
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For D we have:

D =
∞∑
m=1

m∑
k=1

3n−1∑
i=1

3n−1∑
j=1

σ(Imi )ω(Ikj )

32mn|I|32kn|I|
+
∞∑
k=1

k−1∑
m=1

3n−1∑
j=1

3n−1∑
i=1

σ(Imi )ω(Ikj )

32mn|I|32kn|I|

≡ I + II

We will get the bound for I, the calculations for II are identical.

I .
∞∑
m=1

m∑
k=1

3n−1∑
i=1

3n−1∑
j=1

(1 + δω)k−m
σ(Im)ω(Im)

32kn|Im|2
.

. A2(ω, σ)
∞∑
m=1

(1 + δω)−m
m∑
k=1

(1 + δω)k

32kn
≤ Cn,σA2(ω, σ) <∞

Combining all the above bounds and getting supremum over the cubes I we get

At22 (ω, σ) ≤ Cn,ω,σA2(ω, σ)

which completes the proof of the theorem.

Remark 3.2.5. The same proof works for the fractional Ap(ω, σ) conditions as defined in

[64].

3.2.3 The T1 theorem for A∞ weights.

The goal of this subsection is to prove theorem 2.2.3. For that we are going to use the Sawyer

testing condition.
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3.2.3.1 The Sawyer testing condition.

Sawyer in [56] proved that the Maximal operator is bounded on Lp(u)→ Lq(w) if and only

if 2.2.9 holds, i.e. if and only if

Sp,q(w, u1−p′) = sup
I

(∫
I
u(x)1−p′dx

)−1
p
(∫

I

[
M(1Iu

1−p′)(x)
]q
w(x)dx

)1
q
<∞ (3.2.3)

where the supremum is taken over all cubes I ⊂ Rn. Replacing the weights w, u with the

measures ω, σ we call Sp,qd (ω, σ) the dyadic Sawyer testing condition where the Maximal

operator in (3.2.3) is replaced by the dyadic Maximal operator Md where the supremum in

the operator is taken over only dyadic cubes.

Theorem 3.2.6. (σ ∈ A∞, Ap(ω, σ)⇒ S
p,p
d (ω, σ)) Let ω, σ be Radon measures in Rn such

that σ ∈ A∞. If ω, σ satisfy the Ap(ω, σ) condition then the dyadic Sawyer testing condition

S
p,p
d (ω, σ) holds.

Proof. Let I be a cube in Rn. Let Ωm = {x ∈ I : (Md1Iσ) (x) > Km} =
⋃̇
Imj , where K is

a constant to be determined later and Imj are the maximal, disjoint dyadic cubes such that
σ(Imj )

|Imj |
> Km. We have

∫
I

(Md1Iσ)p (x)dω(x) .
∑
m,j

(
σ(Imj )

|Imj |

)p
ω(Imj )

=
∑
m,j

σ(Imj )
1
p′ ω(Imj )

1
p

|Imj |


p

σ(Imj ) ≤ Ap(ω, σ)
∑
m,j

σ(Imj )

54



Call Amt =
⋃
Im+1
j ⊂Imt

Im+1
j . Since σ ∈ A∞ we get

σ (Amt ) ≤ C

(
|Amt |
|Imt |

)ε
σ(Imt )

for some C positive and ε like in (3.1.2). From the maximality of Imj we obtain

|Amt | =
∑

Im+1
j ⊂Imt

∣∣∣Im+1
j

∣∣∣ ≤ 1

Km+1
σ (Amt ) ≤ 2n

K
|Imt |

Choose K big enough that C
(
|Amt |
|Imt |

)ε
≤ 1

2 . Fix m ∈ N, k ≥ −m, then

∑
j

σ(Ikj ) ≤
(

1

2

)m+k∑
j

σ(I−mj ) ≤
(

1

2

)m+k

σ(I)

∞∑
k=−m

∑
j

σ(Ikj ) ≤
∞∑

k=−m
2−m−kσ(I) ≤ 2σ(I)

and by taking m→∞ we get

∑
k,j

σ(Ikj ) = lim
m→∞

∞∑
k=−m

∑
j

σ(Ikj ) ≤ 2σ(I)

and this completes the proof of the theorem.

With theorem 3.2.6. at hand we get the following corollary.

Corollary 3.2.7. (ω ∈ A∞, Ap(ω, σ)⇒ V(ω, σ)p) Let ω, σ be Radon measures in Rn such

that σ ∈ A∞. Then the Ap(ω, σ) condition implies the pivotal condition V(ω, σ)p.
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Proof. Let I be a cube in Rn.

P(I, σ) =

∫
|I|(

|I|
1
n + |x− xI |

)2n
dσ(x).

∞∑
m=0

σ
(
(2m + 1)I

)
2m|2mI|

(3.2.4)

.
∞∑
m=0

inf
x∈I

Mdσ(x)2−m . inf
x∈I

Mdσ(x)

where Md denotes the dyadic maximal function.

Let I0 be a cube in Rn. Let I0 =
⋃
r≥1 Ir be a decomposition of I0 in disjoint cubes.

Using (3.2.4) we get

∑
r≥1

ω(Ir)P
p(Ir,1I0σ) ≤

∑
r≥1

ω(Ir) inf
x∈Ir

(
Md1I0σ

)p
(x) ≤

∫
I0

(
Md1I0σ

)p
(x)dω(x)

and using theorem 3.2.6. the last expression is bounded by a constant multiple of σ(I0). So

we have ∑
r≥1

ω(Ir)P
p(Ir,1I0σ) ≤ Kσ(I0)

and that completes the proof of the corollary.

Question 2. A∞ is a special class of doubling measures. Is it true that for ω doubling

measure, Ap(ω, σ)⇒ V(ω, σ)p?

Question 3. In corollary 3.2.7 we prove that for ω ∈ A∞ dyadic Sawyer testing implies

pivotal. Is it true that Sp,pd (ω, σ) = V(ω, σ)p?

Remark 3.2.8. The proof of corollary 3.2.7, holds also for the fractional Ap(ω, σ) and

pivotal conditions as stated in [64] (stated for p = 2 but extends immediately to any p > 1).

Proof of theorem 2.2.3: If both the measures ω, σ are in the one weight A∞, then by
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corollary 3.2.7, the the two weight A2(ω, σ) condition implies both the pivotal conditions

V(ω, σ)2 ((2.2.10) and it’s dual) and we can apply the main theorem from [64] (or the one

in [37]) to get the result.

3.2.4 The “buffer" conditions do not imply the tailed Ap conditions.

The goal of this subsection is to give a proof of theorem 2.2.4. First we make the following

simple remark.

Remark 3.2.9. It is immediate to see that the Pivotal condition implies the classical Ap

condition. Just let the decomposition in (2.2.10) be just a single cube.

Remark 3.2.10. We are going to use p = 2 in the proof for simplicity. The proof works for

1 < p ≤ 2, without any modifications.

Proof of theorem 2.2.4: We construct measures ω and σ so that the pivotal condition V2

(2.2.10) holds, but At12 (2.2.2) does not. Let

ω(E) = δ0, σ(E) =
∞∑
n=2

nδn(E)

where δn denotes the point mass at x = n. First we check At12 does not hold. Let I = [0, 1].

Then

ω(I)

|I|
P (I, σ) =

∫
R

1

(1 + dist(x, [0, 1]))2
σ(dx) =

∞∑
n=2

n

(n)2
=∞

To show the pivotal condition holds, let I0 = (a, b) where a < 0 and n ≤ b < n+ 1, n ≥ 2

(we need I0 to contain some masses from σ and 0 ∈ I0 for otherwise there is nothing to
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prove). Decomposing I0 = ∪̇Ir, only the Ir such that 0 ∈ Ir contributes to the pivotal

condition. Call that cube I1. We consider the cases:

(i) |I1| ≤ 1. We calculate:

ω(I1)P (I1, I0σ)2

σ(I0)
=

(∫
I0

|I1|σ(dx)

(|I1|+ dist(x, I1)))2

)2

σ(I0)
≤ |I1|2

(
n∑
k=2

k

k2

)2/ n∑
k=2

k

≤ M <∞

where the constant M does not depend on n.

(ii) |I1| ≥ n. We get:

ω(I1)P (I1, I0σ)2

σ(I0)
=

(∫
I0

|I1|σ(dx)

(|I1|+ dist(x, I1)))2

)2

σ(I0)
≤ |I1|2

(
n∑
k=2

k

|I1|2

)2/ n∑
k=2

k

≤ n2

|I1|2
≤ 1

(iii) 1 ≤ |I1| ≤ n. We have:

ω(I1)P (I1, I0σ)2

σ(I0)
.
|I1|2

n2

( |I1|∑
k=2

k

|I1|2
+

n∑
k=|I1|

1

k

)2

.
|I1|2

n2

(
1 + log

( n

|I1|

))2

.
|I1|2

n2
+
|I1|2

n2
log2

( n

|I1|

)
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Now, on the last expression setting x = n
|I1|

we get the function f(x) = log2 x

x2 , x ≥ 1 which

is bounded independent of n. Combining all three cases we see that the pivotal condition is

bounded.

Question 4. In the above example, one can check that the dual pivotal condition does not

hold. Is it true that V(σ, ω)p ∩ V(ω, σ)p ⇒ At1p (ω, σ)?

3.2.4.1 Doubling measures and the Pivotal condition.

The result in this subsection is essentially in [58], equation (4.4), but we include it for

completeness. We partially answer positively question 2.

If the measures ω, σ are doubling but not in A∞ then we do not in general know if the

Pivotal condition can be controlled by the Ap(ω, σ) condition. For measures with small

doubling constant though the Ap(ω, σ) condition implies V(ω, σ)p.

Theorem 3.2.11. (Small doubling+Ap(ω, σ)⇒ V(ω, σ)p) Let ω, σ be doubling measures in

Rn with doubling constants Kω, Kσ and reverse doubling constants 1+δω, 1+δσ respectively.

If Kσ < 2p(1 + δω) then the Ap(ω, σ) condition implies the pivotal condition V(ω, σ)p.

Proof. Let I0 be a cube in Rn and I0 = ∪r≥1Ir be a decomposition of I0 in disjoint cubes.

∑
r≥1

ω(Ir)P (Ir, I0σ)p ≈
∑
r≥1

ω(Ir)

(
mr∑
m=1

σ(Imr )

2m|Imr |

)p

≤
∑
r≥1

 mr∑
m=1

(1 + δω)
−mp ω

1
p (Imr )σ

1
p′ (Imr )

2m|Imr |
σ

1
p (Imr )


p

≤ Ap(ω, σ)
∑
r≥1

σ(Ir)

(
mr∑
m=1

(
Kσ

2p(1 + δω)

)m
p
)p
. Ap(ω, σ)σ(I0)
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where mr = log2

( |I0|
|Ir|

) 1
n , Imr is the cube with same center as that of Ir and |Imr |

1
n =

2m|Ir|
1
n . where the implied constant depends only on the doubling constant of σ and the

reverse doubling constant of ω. This completes the proof of the theorem.

Remark 3.2.12. For a doubling measure ω and a cube I ⊂ Rn we have that in (2.2.12)

E(I, ω)2 ≥ cω > 0 since ω(I1) ≈ ω(I2) where |I1| = |I2| = 2−n|I| and I1 is in the top left

corner of I, I2 in the bottom right corner of I. Hence for ω doubling the Pivotal condition

V(ω, σ)p is equivalent to the Energy condition E(ω, σ)p.

60



Chapter 4

Counterexample to Hytönen’s off-testing

condition in two dimensions

We begin with the proof of Theorem 2.3.4. The proof of Theorem 2.3.5 will be very similar

and we will only have to deal with the cancellation occurring in the kernel with Lemma 4.3.1

being useful.

Proof of Theorem 2.3.4. First we build two measures in R, generalizing the work done in

[32], and then they will be used for our two dimensional construction.

4.1 The One-Dimensional Construction

Given 0 ≤ α < 2, choose 1
3 ≤ b < 1 such that 1

9 ≤
(

1−b
2

)2−α
≤ 1

3 . Let s−1
0 =

(
1−b

2

)2−α
.

Recall the middle-b Cantor set Eb and the Cantor measure ω̈ on the closed interval I0
1 = [0, 1].

At the kth generation in the construction, there is a collection {Ikj }
2k
j=1 of 2k pairwise disjoint

closed intervals of length |Ikj | =
(

1−b
2

)k
. The Cantor set is defined by Eb =

⋂∞
k=1

⋃2k
j=1 I

k
j

and the Cantor measure ω̈ is the unique probability measure supported in E with the property

that is equidistributed among the intervals {Ikj }
2k
j=1 at each scale k, i.e

ω̈(Ikj ) = 2−k, k ≥ 0, 1 ≤ j ≤ 2k.
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We denote the removed open middle bth of Ikj by Gkj and by z̈kj its center. Following closely

[32], we define

σ̈ =
∑
k,j

skj δz̈kj

where the sequence of positive numbers skj is chosen to satisfy
skj ω̈(Ikj )

|Ikj |4−2α
= 1, i.e.

skj =

(
2

s2
0

)k
, k ≥ 0, 1 ≤ j ≤ 2k.

4.1.1 The Testing Constant is Unbounded

. Consider the following operator

T̈ f(x) =

∫
R

f(y)

|x− y|2−α
dy

Note that

T̈ ω̈(z̈k1 )=

∫
I0
1

dω̈(y)

|z̈k1 − y|2−α
≥
∫
Ik1

dω̈(y)

|z̈k1 − y|2−α
≥

ω̈(Ik1 )(
1
2

(
1−b

2

)k)2−α ≈
(s0

2

)k

since |z̈k1 − y| ≤ |z̈
k
1 | for y ∈ I

k
1 and z̈k1 = 1

2(1−b
2 )k. Similar inequalities hold for the rest of

z̈kj . This implies that the following testing condition fails:

∫
I0
1

(
T̈ (1

I0
1
ω̈)(x)

)2

dσ̈(y) &
∞∑
k=1

2k∑
j=1

skj ·
(s0

2

)2k
=
∞∑
k=1

2k∑
j=1

1

2k
=∞ (4.1.1)
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4.1.2 The Ä2 Condition

. Let us now define

P̈(I, µ) =

∫
R

(
|I|

(|I|+ |x− xI |)2

)2−α

dµ(x)

and the following variant of the Aα2 condition:

Äα2 (σ̈, ω̈) = sup
I
P̈(I, σ̈) · P̈(I, ω̈)

where the supremum is taken over all intervals in R. We verify that Äα2 is finite for the pair

(σ̈, ω̈). The starting point is the estimate

σ̈(I`r) =
∑

(k,j):z̈kj ∈I
`
r

skj =
∞∑
k=l

2k−`skj = 2−`
∞∑
k=l

(
4

s2
0

)k
≈

(
2

s2
0

)`
= s`r

and from this, it immediately follows,

σ̈(I`j )ω̈(I`j )

|I`j |4−2α
≈

s`jω̈(I`j )

|I`j |4−2α
= 1, for ` ≥ 0, 1 ≤ j ≤ 2`. (4.1.2)
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Now from the definition of σ̈ we get,

P̈(I`r , σ̈) ≤ σ̈(I`r)

|I`r |2−α
+

∫
I0
1\I

`
r

 |I`r |(
|I`r |+ |x− xI`r

|
)2


2−α

dσ̈(x) (4.1.3)

≤ σ̈(I`r)

|I`r |2−α
+
∑̀
m=0

∞∑
k=m

2k−mskj |I
`
r |2−α(

|I`r |+ b
(

1−b
2

)m)4−2α

.
σ̈(I`r)

|I`r |2−α
+
∑̀
m=0

2−m|I`r |2−α
(

4
s20

)m
(
b
(

1−b
2

)m−`
|I`r |
)4−2α

=
σ̈(I`r)

|I`r |2−α
+

b2α−4

|I`r |2−α

(
1

s2
0

)̀ ∑̀
m=0

2m

.
σ̈(I`r)

|I`r |2−α
+

s`r
|I`r |2−α

≈ σ̈(I`r)

|I`r |2−α

and using the uniformity of ω̈,

P̈(I`r , ω̈) ≤ ω̈(I`r)

|I`r |2−α
+

∫
I0
1\I

`
r

 |I`r |(
|I`r |+ |x− xI`r

|
)2


2−α

dω̈(x) (4.1.4)

≤ ω̈(I`r)

|I`r |2−α
+
∑̀
k=1

|I`r |2−α ω̈(Ikjk
)(

|I`r |+ b
(

1−b
2

)k−1
)4−2α

≤ ω̈(I`r)

|I`r |2−α
+
∑̀
k=1

|I`r |2−α ω̈(Ikjk
)(

b
(

1−b
2

)k−1−`
|I`r |
)4−2α

.
ω̈(I`r)

|I`r |2−α
+

2−`

|I`r |2−α
= 2

ω̈(I`r)

|I`r |2−α
,

where Ikjk
⊂ Ik−1

t , I`r ⊂ Ik−1
t and Ikjk

∩ I`r = ∅, and where all the implied constants in the
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above calculations depend only on α. From (4.1.3), (4.1.4) and (4.1.2), we see that

P̈(I`r , σ̈)P̈(I`r , ω̈) . 1.

Let us now consider an interval I ⊂ I0
1 and let A > 1 be fixed. Then, let k be the smallest

integer such that z̈kj ∈ AI; if there is no such k, then AI $ G`j , for some `. We have the

following cases:

Case 1. Assume that I ⊂ AI $ Gkj ⊂ Ikj . If |xI − z̈
k
j | ≤ dist(xI , ∂G

k
j ) then,

P̈(I, σ̈)P̈(I, ω̈) = |I|4−2α
∫
I0
1

dσ̈(x)

(|I|+ |x− xI |)4−2α

∫
I0
1

dω̈(x)

(|I|+ |x− xI |)4−2α
(4.1.5)

. |I|4−2α

 skj

|I|4−2α
+

1

|Ikj |2−α

∫
I0
1\G

k
j

|Ikj |
2−αdσ̈(x)

(|Ikj |+ |x− xIkj
|)4−2α

 P̈(Ikj , ω̈)

|Ikj |2−α

.
|I|4−2α

|Ikj |2−α

(
skj

|I|4−2α
+

σ̈(Ikj )

|Ikj |4−2α

)
ω̈(Ikj )

|Ikj |2−α
.
σ̈(Ikj )ω̈(Ikj )

|Ikj |4−2α
≈ 1

where in the first inequality we used the fact that |x− xI | ≈ |x− z̈kj | & |I
k
j | when x /∈ Gkj ,

since xI is “close" to the center of Gkj , and for the second inequality we used (4.1.3) and

(4.1.4).

If |xI − z̈kj | > dist(xI , ∂G
k
j ), we can assume b

(
1−b

2

)m−1
≤ |I| ≤ b

(
1−b

2

)m
for some

m > k, since for m = k we have |I| ≈ |Ikj |, |x−xI | & |x−xIkj
| for x /∈ Gkj and we can repeat

the proof of (4.1.5). Now let Imt be the m-th generation interval that is closer to I that

touches the boundary of Gkj . We have, using |xImt − z̈
`
j | . |xI − z̈

`
j |, for all ` ≥ 1, 1 ≤ j ≤ 2`,

P̈(I, σ̈) . P̈(Imt , σ̈) and P̈(I, ω̈) . P̈(Imt , ω̈), which imply

P̈(I, σ̈)P̈(I, ω̈) . 1.
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Case 2. Now assume Gkj ⊂ AI. If Ikj ∩ I = ∅, then, using the minimality of k, I ⊂ Gmt

for some m < k and we can repeat the proof of (4.1.5). If Ikj ∩ I 6= ∅ then |I| . |I
k
j | since

otherwise AI would contain z̈k−1
t , contradicting the minimality of k if we fix A big enough

depending only on α. Hence we have:

|Gkj |+ |x− z̈
k
j | ≤ |G

k
j |+ |xI − z̈

k
j |+ |x− xI | ≤

(
A+

A

2

)
|I|+ |x− xI |

which implies that

P̈(I, σ̈).
∫
I0
1

|I|2−α(
|Gkj |+ |x− z̈

k
j |
)4−2α

dσ̈(x).
|I|2−α

|Ikj |2−α

∫
I0
1

|Ikj |
2−α(

|Ikj |+ |x− z̈
k
j |
)4−2α

dσ̈(x)

and similarly

P̈(I, ω̈) .
|I|2−α

|Ikt |2−α
P̈(Ikj , ω̈) ≤ P̈(Ikj , ω̈).

which implies

P̈(I, σ̈)P̈(I, ω̈) . 1

Case 3. If neither Gkj ∩ AI 6= Gkj nor Gkj ∩ AI 6= AI, note that Gkj ⊂ 3AI and we repeat

again the proof of Case 2.

Thus, for any interval I ⊂ I0
1 , we have shown that P̈(I, σ̈)P̈(I, ω̈) . 1, which implies

Äα2 (σ̈, ω̈) <∞ (4.1.6)
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4.1.3 The Energy Constants Ë and Ë∗

. Now define the following variant of the energy constants

Ë = sup
I=
⋃̇
Ir

1

σ̈(I)

∑
r≥1

ω̈(Ir)E(Ir, ω̈)2P̈(Ir,1I σ̈)2

Ë∗ = sup
I=
⋃̇
Ir

1

ω̈(I)

∑
r≥1

σ̈(Ir)E(Ir, σ̈)2P̈(Ir,1I ω̈)2

where the supremum is taken over the different intervals I and all the different decompositions

of I =
⋃̇
r≥1Ir, and

P̈(I, µ) =

∫
R

|I|
(|I|+ |x− xI |)3−αdµ(x),

E(I, µ)2 =
1

2

1

µ(I)2

∫
I

∫
I

(x− x′)2

|I|2
dµ(x′)dµ(x) =

1

µ(I)
·
∥∥x−mµ

I

∥∥2
L2(1Iµ)

≤ 1.

We first show that Ë is bounded. We have

P̈(I, σ̈) =

∫
|I|

(|I|+ |x− xI |)3−αdσ̈(x).
∞∑
n=0

σ̈
(
(2n + 1)I

)
(2n)|2nI|2−α

≤
∞∑
n=0

inf
x∈I

Mασ̈(x)2−n . inf
x∈I

Mασ̈(x)

whereMαµ(x) = sup
I3x

1

|I|2−α

∫
I
dµ and the implied constants depend only on α. Thus, given

an interval I = ∪̇r≥1Ir, we have:

∑
r≥1

ω̈(Ir)P̈
2(Ir,1I σ̈) ≤

∑
r≥1

ω̈(Ir) inf
x∈I

(Mα1I σ̈)2 (x) ≤
∫
I

(Mα1I σ̈)2 (x)dω̈(x)
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and so we are left with estimating the right hand term of the above inequality. We will prove

the inequality ∫
I`r

(
Mα1

Ilr
σ̈
)2

(x)dω̈(x) ≤ Cσ̈(I`r). (4.1.7)

where the constant C depends only on α. This will be enough, since for an interval I

containing a point mass z̈`r but no masses z̈kj for k < `, we have

∫
I

(Mασ̈)2 (x)dω̈(x) =

∫
I∩I`r

(
Mα1

I∩I`r
σ̈
)2

(x)dω̈(x) ≤
∫
I`r

(
Mα1

I`r
σ̈
)2

(x)dω̈(x)

≤ σ̈(I`r) ≈ σ̈(I)

Since the measure ω̈ is supported in the Cantor set Eb, we can use the fact that for x ∈ I`r∩Eb,

Mα(1
I`r
σ̈)(x) . sup

(k,j):x∈Ikj

1∣∣∣Ikj ∣∣∣2−α
∫
Ikj ∩I

`
r

dσ̈ ≈ sup
(k,j):x∈Ikj

s
−2(k∨`)
0 2k∨`

s−k0

≈ σ̈(I`r)

|I`r |2−α
≈
(

2

s0

)`

Fix m and let the approximations ω̈(m) and σ̈(m) to the measures ω and σ̈ given by

dω̈(m) (x) =
2m∑
i=1

2−m
1∣∣Imi ∣∣1Imi (x) dx and σ̈(m) =

∑
k<m

2k∑
j=1

skj δzkj
.

For these approximations we have in the same way the estimate for x ∈
⋃2m
i=1 I

m
i ,

Mα
(
1
I`r
σ̈(m)

)
(x) . sup

(k,j):x∈Ikj

1∣∣∣Ikj ∣∣∣2−α
∫
Ikj ∩I

`
r

dσ̈ ≈ sup
(k,j):x∈Ikj

(
1
s0

)k∨` (
2
s0

)k∨`
(

1
s0

)k ≤ C

(
2

s0

)`
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Thus for each m ≥ n ≥ ` we have

∫
I`r

Mα
(
1
I`r
σ̈(n)

)2
dω̈(m)≤C

∑
i:Imi ⊂I

`
r

(
2

s0

)2`

2−m=C2m−
(̀

2

s0

)2`

2−m = Cs`r ≈ C

∫
I`r

dσ̈

Now since ω̈m converges weakly to ω̈ and using the fact that Mα is lower semi-continuous

we get: ∫
I`r

Mα
(
1
I`r
σ̈(n)

)2
dω̈ ≤ lim inf

m→∞

∫
I`r

Mα
(
1
I`r
σ̈(n)

)2
dω̈(m) ≤ Cσ̈(I`r)

Now, taking n→∞, by monotone convergence we get (4.1.7). This proves

∑
r≥1

ω̈(Ir)P̈
2(Ir,1I σ̈) ≤ Cσ̈(I) (4.1.8)

which in turn implies Ë <∞ as E(Ir, ω̈) ≤ 1.

Finally, we show that the dual energy constant Ë∗ is finite. Let us show that for I ⊂ I0
1

σ̈(I)E(I, σ̈)2P̈(I, ω̈)2 . ω̈(I). (4.1.9)

as if we let {Ir : r ≥ 1} be any partition of I, (4.1.9) gives

∑
r≥1

σ̈(Ir)E(Ir, σ̈)2P̈(Ir, ω̈)2 .
∑
r≥1

ω̈(Ir) = ω̈(I) .

Now let us establish (4.1.9). We can assume that E(I, σ̈) 6= 0. Let k be the smallest

integer for which there is a r with z̈kr ∈ I. And let n be the smallest integer so that for some
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s we have z̈k+n
s ∈ I and z̈k+n

s 6= z̈kr . We have that

E(I, σ̈)2 =
1

2

1

σ̈(I)2

∫
I

∫
I

|x− x′|2

|I|2
dσ̈(x)dσ̈(x′)

=
1

σ̈(I)2

[
σ̈(z̈kr )

∫
I

|x− z̈kr |2

|I|2
dσ̈(x) +

∫
I

∫
I\{z̈kr }

|x− x′|2

|I|2
dσ̈(x)dσ̈(x′)

]

.
σ̈(z̈kr )σ̈(I\{z̈kr })

σ̈(I)2
+
σ̈(I\{z̈kr })
σ̈(I)

.

(
2

s2
0

)n

Finally, σ̈(I) ≈
(

2
s20

)k
, ω̈(I) ≈ 2−k−n, and P̈(I, ω̈) ≈

(
s0
2

)k
, which proves (4.1.9).

4.2 The Two Dimensional Construction

It is time now to define the two dimensional measures that prove the statement of Theorem

2.3.4. For any set E ⊂ R2 let

ω(E) =
∞∑
n=0

ω̈n(E)

where ω̈0(E) = ω̈(Ex ∩ I0
1 ), Ex the projection of E on the x-axis, and ω̈n are copies of ω̈0

at the intervals [an, an + 1]× {0} with kn = an+1 − (an + 1) to be determined later. In the

same way, let

σ(E) =
∞∑
n=0

σ̈n(E)

where σ̈0(E) = σ̈([E∩(I0
1×{γ0})]x), and σ̈n are copies of σ̈0 at the intervals [an, an+1]×{γn},

where the height γn will be determined later. Check Figure 4.2.1.

ω ω ω ω

σ
σ

σ σ
γn

kn

Figure 4.2.1: Positioning of measures
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4.2.1 The A2 conditions.

We will now prove that both Aα2 and Aα,∗2 constants are bounded. Let Q be a cube in R2,

Jn0 = [an, an + 1]× {0} and Jnγn = [an, an + 1]× {γn}. We take cases for Q. If Q intersects

only one of the intervals Jn0 , say J
0
0 for convenience, and (Q ∩ J0

0 )x =: J0 we have:

Pα(Q,1Qcσ)
ω(Q)

|Q|1−
α
2
. P̈(J0, σ̈)

ω̈(J0)

|J0|2−α
+ Pα(Q,1

(J1
γ1

)c
σ)

ω̈(I0
1 )

|Q|1−
α
2

≤ Äα2 (σ̈, ω̈) + C <∞

using (4.1.6) and taking kn large enough so that the second summand is bounded indepen-

dently of the interval (kn = 42n·max{(2−α)−1,1} would do here). If Q intersects more than

one of the intervals Jn0 , it is easy to see, using that Q is very big (since it intersects more

than one of the intervals) and that kn is also large, that:

Pα(Q,1Qcσ)
ω(Q)

|Q|1−
α
2
. 1

which of course shows that Aα2 is bounded. Essentially using the same calculations we see

that Aα,∗2 is bounded as well.
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4.2.2 Off-Testing Constant

. Let us now check that the off-testing constant is not bounded. Choose the cube Qn =

[an, an + 1]× [0,−1]. Then,

1

ω(Qn)

∫
Qcn

[∫
Qn

dω(y)

|x− y|2−α

]2

dσ(x)≥ 1

ω̈(I0
1 )

∫
I0
1

[∫
I0
1

dω̈(y1)√
(x1 − y1)2 + γ2

n
2−α

]2

dσ̈(x1)

for x = (x1, x2) and y = (y1, y2). Taking γn such that the last expression on the display

above equals n (note that this is feasible, since for γn = 0, (4.1.1) gives infinity in the latter

expression above) we have

T 2
off,α ≥

1

ω(Qn)

∫
Qcn

[ ∫
Qn

dω(y)

|x− y|2−α

]2

dσ(x) ≥ n

and by letting n→∞ we obtain that the off-testing constant is not bounded.

4.2.3 The Energy Conditions

. For the energy condition Eα2 first, let Q be a cube and Q = ∪̇Qr, where {Qr}∞r=1 is a

decomposition of Q. Then we have

1

σ(Q)

∞∑
r=1

Pα
(
Qr,1Qσ

)
|Qr|

1
2

2 ∥∥∥x−mω
Qr

∥∥∥2

L2
(
1Qrω

)≤ 2

σ(Q)

∞∑
r=1

ω(Qr)
(
Pα
(
Qr,1Qσ

) )2

Assume that Q intersects m intervals of the form Jn0 . Then we have m − 2 . σ(Q) . m.

The case m = 1 is exactly the same as the one dimensional analog for Ë . Assume m = 2.
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Now we need to take cases for Qr:

(i) Let Q1 be the set of cubes Qr that intersect only one of the intervals Jn0 . Then we

have, following the proof of (4.1.8), that

∑
Qr∈Q1

ω(Qr)
(
Pα
(
Qr,1Qσ

))2 ≤ Cσ(Q)

(ii) If Qr intersects both of the intervals Jn0 then this Qr is unique since the family {Qr}r∈N

forms a decomposition of Q. Therefore we have:

ω(Qr)
(
Pα
(
Qr,1Qσ

))2 . ω(Qr)σ(Q)

|Qr|2−α
σ(Q) . σ(Q)

using the fact that |Qr| & 42 since it intersect two of the intervals Jn0 and ω(Qr) .

2, σ(Q) . 2.

For m ≥ 3, again we take cases for Qr:

(i) If Qr intersects only one Jn0 we again have, following the proof of (4.1.8), that

∑
Qr∈Q1

ω(Qr)
(
Pα
(
Qr,1Qσ

))2 ≤ Cσ(Q)

(ii) If Qr intersects more than one of the intervals Jn0 , the last one being Jn0
0 we have

ω(Qr)
(
Pα
(
Qr,1Qσ

))2 . ω(Qr)σ(Q−r )2

|Qr|2−α
+ ω(Qr)

m∑
k=1

1

42k|Qr|2−α
. 2

where Q−r contains all the intervals Jn0 such that n ≤ n0. Again in the last inequality

we use the fact that Qr is very big since it intersects at least two intervals Jn0 . Now
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since Qr form a decomposition of Q we can have at most m− 1 of these.

Combining the above cases, we obtain

∞∑
r=1

ω(Qr)
(
Pα
(
Qr,1Qσ

) )2 ≤ Cσ(Q) + 2m− 2 ≤ 2Cσ(Q)

and that proves the energy condition is bounded.

The dual energy Eα,∗2 can also be proved bounded with the same calculations as in the

energy condition following the proof of (4.1.9) instead of (4.1.8) as in the first case above.

This completes the proof of the Theorem 2.3.4.

4.3 The Riesz transform lemma

To obtain the same result for the Riesz transforms, we need to deal with the fact that the

kernel is not positive. This prevents us from placing the masses for σ̈ at the center of the

intervals Gkj , as we did in the proof of Theorem 2.3.4. Since otherwise, if the point-mass σ̈

is located at the center of Gkj , it would result in the cancellation of much of the mass not

letting us deduce that the off testing condition for the Riesz transform is unbounded. The

following lemma, whose proof follows closely the work in [32] but with a two dimensional

twist, helps us overcome this problem, showing that, while not being able to place the point

masses in the middle of Gkj , we can place them far from the boundary. This enables us to

show that the Ä2 condition is bounded, like in the proof of Theorem 2.3.4. First we need to

define the operator

R̈f(x) =

∫
R

(x− y)f(y)

|x− y|3−α
dy

Lemma 4.3.1. For k ≥ 1, 1 ≤ j ≤ 2k, write Gkj = (akj , b
k
j ). Then there exists 0 < c < 1
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that depends only on α such that

R̈ω̈

(
akj +c

(
1− b

2

)k
b

)
≈
(s0

2

)k

where ω̈ is the measure defined above.

Proof. Fix k. We have

R̈ω̈

(
ak1 +c

(
1− b

2

)k
b

)
≤R̈ω̈

(
akj +c

(
1− b

2

)k
b

)
≤R̈ω̈

(
ak

2k
+c

(
1− b

2

)k
b

)

from monotonicity. So it is enough to prove the following:

(s0

2

)k
. R̈ω̈

(
ak1 +c

(
1− b

2

)k
b

)
≤ R̈ω̈

(
ak

2k
+c

(
1− b

2

)k
b

)
.
(s0

2

)k

We start with right hand inequality. Following the definitions of R̈, ω̈ we get

R̈ω̈

(
ak

2k
+c

(
1− b

2

)k
b

)
≤
∫

[0,ak
2k

]

dω̈(y)(
ak

2k
+c
(

1−b
2

)k
b−y

)2−α

≤
k∑
`=1

2−`(
ak

2k
+c
(

1−b
2

)k
b−
[
1−
(

1−b
2

)`−1(
1+b

2

)])2−α

≈ 2−k

c2−αs−k0

+
k−1∑
`=1

2−`

s−`0

[
1+b

2 +
(

1−b
2

)k−`+1[
cb− 1+b

2

]]2−α

≤ 2−k

c2−αs−k0

+
k−1∑
`=1

2−`

s−`0

[
1+b

2 −
1+b

2

(
1−b

2

)k−`+1
]2−α

since ak
2k

= 1−
(

1+b
2

)(
1−b

2

)k
. The square bracket inside the last fraction is minimized for
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` = k − 1 and we get the inequality

R̈ω̈

(
ak

2k
+c

(
1− b

2

)k
b

)
.

2−k

c2−αs−k0

+
k−1∑
`=1

(s0

2

)`
.

1

c2−α

(s0

2

)k

where the implied constants depend again only on α. We should note here that the summand

with ` = k is the dominant one in the above inequality.

Now we consider the left hand inequality. We have that R̈ω̈
(
ak1 +c

(
1−b

2

)k
b

)
equals

R̈ω̈1
Ik+1
1

(
ak1 +c

(
1− b

2

)k
b

)
+
k+1∑
`=1

R̈ω̈1
I`2

(
ak1 +c

(
1− b

2

)k
b

)
(4.3.1)

and following the argument for the previous inequality we see that

∣∣∣∣∣∣
k+1∑
`=1

R̈ω̈1
I`2

(
ak1 +c

(
1− b

2

)k
b

)∣∣∣∣∣∣ ≤ A
(s0

2

)k

where A depends only on α but not on c. The first summand of (4.3.1) gives

∫
Ik+1
1

dω̈(y)(
ak1 +c

(
1−b

2

)k
b−y

)2−α ≥
∞∑

`=k+1

2−`−1((
1−b

2

)`
+ c
(

1−b
2

)k
b

)2−α

≈
sk0
2k

∞∑
`=k+1

2−`+k−1((
1−b

2

)`−k
+cb

)2−α

=
sk0
2k

∞∑
`=1

2−`−1((
1−b

2

)`
+cb

)2−α .

Choosing c small enough not depending on k (since the last sum does not depend on k), we
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obtain ∫
Ik+1
1

dω̈(y)(
ak1 +c

(
1−b

2

)k
b−y

)2−α ≥ C1

(s0

2

)k

with C1 > 2A and we conclude our lemma.

Proof of Theorem 2.3.5. Set żkj = akj+cb
(

1−b
2

)k
and define the measure σ̇ =

∑
k,j

skj δżkj
where

skj =

(
2
s20

)k
as before. Following verbatim the calculations of Theorem 2.3.4, one can show

that Ä2(σ̇, ω̈) < ∞. Now define the measures ω and σ, as before, for any measurable set

E ⊂ R2 by

ω(E) =
∞∑
n=0

ω̈n(E) and σ(E) =
∞∑
n=0

σ̇n(E)

where σ̇0(E) = σ̇([E∩(I0
1×{γ0})]x), and σ̇n are copies of σ̇0 at the intervals [an, an+1]×{γn},

and where the height γn will be determined later. Again, as before, it is easy to see that both

Aα2 and Aα,∗2 and both Eα2 and Eα,∗2 are bounded. Let us now finish the proof by showing

that the off-testing constant for the Riesz transforms are unbounded. From Lemma 4.3.1 we

have R̈ω̈(żkj ) &
(
s0
2

)k
which implies

∫
I0
1

(
R̈(1

I0
1
ω̈)(x)

)2

dσ̇(y) &
∞∑
k=1

2k∑
j=1

skj ·
(s0

2

)2k
=
∞∑
k=1

2k∑
j=1

1

2k
=∞. (4.3.2)

Now choose the cube Qn = [an, an + 1]× [0,−1]. Then,

R2
1,off,α ≥ 1

ω(Qn)

∫
Qcn

[ ∫
Qn

(x1 − y1)dω(y)

|x− y|3−α

]2

dσ(x)

≥ 1

ω(Qn)

∫
I0
1

[ ∫
I0
1

(x1 − y1)dω̈(y1)√
(x1 − y1)2 + γ2

n
3−α

]2

dσ̇(x1) =
n

ω(Qn)

77



by choosing the height γn so that
∫
I0
1

[∫
I0
1

(x1−y1)dω̈(y1)√
(x1−y1)2+γ2

n
3−α

]2

dσ̇(x1) = n by (4.3.2). Letting

n→∞, we see that the off-testing constant is unbounded.
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Chapter 5

A two weight local Tb theorem for

n-dimensional Fractional Integrals

5.1 The local Tb theorem and proof preliminaries

5.1.1 Standard fractional singular integrals

Let 0 ≤ α < n. We define a standard α-fractional CZ kernel Kα(x, y) to be a real-valued

function defined on Rn×Rn satisfying the following fractional size and smoothness conditions

of order 1 + δ for some δ > 0: For x 6= y,

|Kα (x, y)| ≤ CCZ |x− y|α−n (5.1.1)

|∇Kα (x, y)| ≤ CCZ |x− y|α−n−1

∣∣∇Kα (x, y)−∇Kα (x′, y)∣∣ ≤ CCZ

(∣∣x− x′∣∣
|x− y|

)δ
|x− y|α−n−1 ,

∣∣x− x′∣∣
|x− y|

≤ 1

2
,

and the last inequality also holds for the adjoint kernel in which x and y are interchanged.

We note that a more general definition of kernel has only order of smoothness δ > 0, rather

than 1+δ, but the use of the Monotonicity and Energy Lemmas in arguments below involves

first order Taylor approximations to the kernel functions Kα (·, y).
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5.1.1.1 Defining the norm inequality

We now turn to a precise definition of the weighted norm inequality

‖Tασ f‖L2(ω)
≤ NTασ

‖f‖
L2(σ)

, f ∈ L2 (σ) . (5.1.2)

For this we introduce a family
{
ηαδ,R

}
0<δ<R<∞

of nonnegative functions on [0,∞) so that

the truncated kernels Kα
δ,R (x, y) = ηαδ,R (|x− y|)Kα (x, y) are bounded with compact sup-

port for fixed x or y. Then the truncated operators

Tασ,δ,Rf (x) ≡
∫
Rn

Kα
δ,R (x, y) f (y) dσ (y) , x ∈ Rn, (5.1.3)

are pointwise well-defined, and we will refer to the pair
(
Kα,

{
ηαδ,R

}
0<δ<R<∞

)
as an α-

fractional singular integral operator, which we typically denote by Tα, suppressing the de-

pendence on the truncations.

Definition 5.1.1. We say that an α-fractional singular integral operator Tα satisfies the

norm inequality (5.1.2) provided

∥∥∥Tασ,δ,Rf∥∥∥L2(ω)
≤ NTασ

‖f‖
L2(σ)

, f ∈ L2 (σ) , 0 < δ < R <∞.

It turns out that, in the presence of the Muckenhoupt conditions (5.1.7) below, the

norm inequality (5.1.2) is essentially independent of the choice of truncations used, and this

is explained in some detail in [67]. Thus, as in [67], we are free to use the tangent line

truncations described there throughout the proofs of our results.
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5.1.2 Weakly accretive functions

Denote by P the collection of cubes in Rn. Note that we include an Lp upper bound in our

definition of ‘p-weakly accretive family’ of functions.

Definition 5.1.2. Let p ≥ 2 and let µ be a locally finite positive Borel measure on Rn. We

say that a family b =
{
bQ
}
Q∈P of functions indexed by P is a p-weakly µ-accretive family

of functions on Rn if for Q ∈ P,

supp bQ ⊂ Q

0 < cb ≤ 1

|Q|µ

∫
Q
bQdµ ≤

(
1

|Q|µ

∫
Q

∣∣bQ∣∣p dµ
)1
p

≤ Cb <∞. (5.1.4)

5.1.3 b-testing conditions

Suppose σ and ω are locally finite positive Borel measures on Rn. The b-testing conditions

for Tα and b∗-testing conditions for the dual Tα,∗ are given by

∫
Q

∣∣Tασ bQ∣∣2 dω ≤
(
Tb
Tα

)2
|Q|σ , for all cubes Q, (5.1.5)∫

Q

∣∣∣Tα,∗ω b∗Q

∣∣∣2 dσ ≤
(
Tb∗
Tα,∗

)2
|Q|ω , for all cubes Q.

5.1.4 Poisson integrals and the Muckenhoupt conditions

Let µ be a locally finite positive Borel measure on Rn, and suppose Q is a cube in Rn. Recall

that |Q|
1
n = ` (Q) for a cube Q. The two α-fractional Poisson integrals of µ on a cube Q are
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given by the following expressions:

Pα (Q, µ) ≡
∫
Rn

|Q|
1
n(

|Q|
1
n +

∣∣x− xQ∣∣)n+1−αdµ (x) ,

Pα (Q, µ) ≡
∫
Rn

 |Q|
1
n(

|Q|
1
n +

∣∣x− xQ∣∣)2


n−α

dµ (x) ,

where
∣∣x− xQ∣∣ denotes distance between x and the center xQ of Q and |Q| denotes the

Lebesgue measure of the cube Q. We refer to Pα as the standard Poisson integral and to

Pα as the reproducing Poisson integral. Note that these two kernels satisfy for all cubes Q

and positive measures µ,

0 ≤ Pα (Q, µ) ≤ CPα (Q, µ) , n− 1 ≤ α < n,

0 ≤ Pα (Q, µ) ≤ CPα (Q, µ) , 0 ≤ α < n− 1.

We now define the one-tailed constant with holes Aα2 using the reproducing Poisson kernel

Pα. On the other hand, the standard Poisson integral Pα arises naturally throughout the

proof of the Tb theorem in estimating oscillation of the fractional singular integral Tα, and

in the definition of the energy conditions below.

Definition 5.1.3. Suppose σ and ω are locally finite positive Borel measures on Rn. The

one-tailed constants Aα2 and Aα,∗2 with holes for the weight pair (σ, ω) are given by

Aα2 ≡ sup
Q∈P

Pα
(
Q,1Qcσ

) |Q|ω
|Q|1−

α
n
<∞,

Aα,∗2 ≡ sup
Q∈P

Pα
(
Q,1Qcω

) |Q|σ
|Q|1−

α
n
<∞.
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Note that these definitions are the conditions with ‘holes’ introduced by Hytönen [22] -

the supports of the measures 1Qcσ and 1Qcω in the definition of Aα2 are disjoint, and so

any common point masses of σ and ω do not appear simultaneously in the factors of any

of the products Pα
(
Q,1Qcσ

) |Q|ω
|Q|1−

α
n
. Recall, the definition of the classical Muckenhoupt

condition

Aα2 = sup
Q∈P

|Q|ω
|Q|1−

α
n

|Q|σ
|Q|1−

α
n

but it will find no use in the two weight setting with common point masses permitted.

Initially, these definitions of Muckenhoupt type were given in the following ‘one weight’

case, dω (x) = w (x) dx and dσ (x) = 1
w(x)

dx, where Aα2
(
λw, (λw)−1

)
= Aα2

(
w,w−1

)
is

homogeneous of degree 0. Of course the two weight version is homogeneous of degree 2 in

the weight pair, Aα2 (λσ, λω) = λ2Aα2 (σ, ω), while all of the other conditions we consider

in connection with two weight norm inequalities, including the operator norm NTα (σ, ω)

itself, are homogeneous of degree 1 in the weight pair. This awkwardness regarding the

homogeneity of Muckenhoupt conditions could be rectified by simply taking the square root

of Aα2 and renaming it, but the current definition is so entrenched in the literature, in

particular in connection with the A2 conjecture, that we will leave it as is.

5.1.4.1 Punctured Aα2 conditions

The classical Aα2 characteristic fails to be finite when the measures σ and ω have a common

point mass - simply let Q in the sup above shrink to a common mass point. But there is a

substitute that is quite similar in character that is motivated by the fact that for large cubes

Q, the sup above is problematic only if just one of the measures is mostly a point mass when

restricted to Q.
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Given an at most countable set P = {pk}∞k=1 in Rn, a cube Q ∈ P , and a positive locally

finite Borel measure µ, define

µ (Q,P) ≡ |Q|µ − sup {µ (pk) : pk ∈ Q ∩P} , (5.1.6)

where the supremum is actually achieved since
∑
pk∈Q∩P

µ (pk) < ∞ as µ is locally finite.

The quantity µ (Q,P) is simply the µ̃ measure of Q where µ̃ is the measure µ with its

largest point mass from P in Q removed. Given a locally finite positive measure pair (σ, ω),

let P(σ,ω) = {pk}∞k=1 be the at most countable set of common point masses of σ and ω. Then

the weighted norm inequality (5.1.2) typically implies finiteness of the following punctured

Muckenhoupt conditions:

A
α,punct
2 (σ, ω) ≡ sup

Q∈P

ω
(
Q,P(σ,ω)

)
|Q|1−

α
n

|Q|σ
|Q|1−

α
n
,

A
α,∗,punct
2 (σ, ω) ≡ sup

Q∈P

|Q|ω
|Q|1−

α
n

σ
(
Q,P(σ,ω)

)
|Q|1−

α
n

.

In particular, all of the above Muckenhoupt conditions Aα2 , A
α,∗
2 , Aα,punct2 and A

α,∗,punct
2

are necessary for boundedness of an elliptic α-fractional singular integral Tασ fromL2 (σ) to

L2 (ω). It is convenient to define

Aα2 ≡ A
α
2 +Aα,∗2 + A

α,punct
2 + A

α,∗,punct
2 . (5.1.7)
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5.1.5 Energy Conditions

Here is the definition of the strong energy conditions, which we sometimes refer to simply as

the energy conditions. Let

m
µ
I ≡

1

|I|µ

∫
xdµ(x) =

〈
1

|I|µ

∫
x1dµ(x), ...,

1

|I|µ

∫
xndµ(x)

〉

be the average of x with respect to the measure µ, which we often abbreviate to mI when

the measure µ is understood.

Definition 5.1.4. Let 0 ≤ α < n. Suppose σ and ω are locally finite positive Borel measures

on Rn. Then the strong energy constant Eα2 is defined by

(Eα2 )2 ≡ sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

Pα (Ir,1Iσ)

|Ir|
1
n

2 ∥∥∥x−mω
Ir

∥∥∥2

L2
(
1Irω

) , (5.1.8)

where the supremum is taken over arbitrary decompositions of a cube I using a pairwise

disjoint union of subcubes Ir. Similarly, we define the dual strong energy constant Eα,∗2 by

switching the roles of σ and ω:

(
Eα,∗2

)2 ≡ sup
I=∪̇Ir

1

|I|ω

∞∑
r=1

Pα (Ir,1Iω)

|Ir|
1
n

2 ∥∥∥x−mσ
Ir

∥∥∥2

L2
(
1Irσ

) . (5.1.9)

These energy conditions are necessary for boundedness of elliptic and gradient elliptic

operators, including the Hilbert transform (but not for for certain elliptic singular operators

that fail to be gradient elliptic) - see [68] and [69]. It is convenient to define

Eα2 ≡ E
α
2 + Eα,∗2
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as well as

NT Vα ≡ Tb
Tα + Tb∗

Tα,∗ +
√

Aα2 + Eα2 . (5.1.10)

5.1.6 The two weight local Tb Theorem

Here we derive a local Tb theorem based in part on the proof of the T1 theorem in [63], and

in part on the proof of a one weight Tb theorem in Hytönen and Martikainen [24]. Recall

from [68] that an α-fractional singular integral Tα with kernel Kα is said to be elliptic if

|Kα (x, y)| ≥ c |x− y|α−1 and gradient elliptic if the kernel Kα (x, y) satisfies

|∇Kα (x, y)| ≥ c |x− y|α−n−1 . (5.1.11)

The Hilbert transform kernel K (x, y) = 1
y−x satisfies (5.1.11) with α = 0, n = 1. In

dimension n = 1 the Muckenhoupt conditions are necessary for norm boundedness of elliptic

operators by results in [32], [22] and [66], and the energy conditions are necessary for norm

boundedness of gradient elliptic operators by results in [68]. Moreover, in dimension n =

1, Hytönen [22, Corollary 3.10] proves that full testing is controlled by testing and the

Muckenhoupt conditions for the Hilbert transform, and this is easily extended to 0 ≤ α < 1:

FTb
Tα . Tb

Tα +
√
Aα2 +

√
Aα,∗2 and FTb∗

Tα,∗ . Tb∗
Tα,∗ +

√
Aα2 +

√
Aα,∗2 .

Theorem 5.1.5. Suppose that σ and ω are locally finite positive Borel measures on Eu-

clidean space Rn. Suppose that Tα is a standard α-fractional singular integral operator

on Rn, and set Tασ f = Tα (fσ) for any smooth truncation of Tασ , so that Tασ is apriori

bounded from L2 (σ) to L2 (ω). Assume the Muckenhoupt and energy conditions hold, i.e.
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Aα2 ,A
α,∗
2 , A

α,punct
2 , A

α,∗,punct
2 , Eα2 , E

α,∗
2 < ∞. Finally, let p > 2 and let b =

{
bQ
}
Q∈P be

a p-weakly σ-accretive family of functions on Rn, and let b∗ =
{
b∗Q

}
Q∈P

be a p-weakly

ω-accretive family of functions on Rn. Then for 0 ≤ α < n, the operator Tασ is bounded from

L2 (σ) to L2 (ω) with operator norm NTασ
, i.e.

‖Tασ f‖L2(ω)
≤ NTασ

‖f‖
L2(σ)

, f ∈ L2 (σ) ,

uniformly in smooth truncations of Tα if and only if the b-testing conditions for Tα and

the b∗-testing conditions for the dual Tα,∗ both hold. Moreover, we have

NTα . Tb
Tα + Tb∗

Tα +
√

Aα2 + Eα2 .

Remark 5.1.6. In the special case that σ = ω = µ, the classical Muckenhoupt Aα2 condition

is

sup
Q∈P

|Q|µ
|Q|1−

α
n

|Q|µ
|Q|1−

α
n
<∞,

which is the upper doubling measure condition with exponent n− α, i.e.

|Q|µ ≤ C` (Q)n−α , for all cubes Q,

87



which of course prohibits point masses in µ. Both Poisson integrals are then bounded,

Pα (Q, µ).
∞∑
k=0

|Q|
1
n(

2k |Q|
1
n

)n+1−α

∣∣∣2kQ∣∣∣
µ
.
∞∑
k=0

|Q|
1
n(

2k |Q|
1
n

)n+1−α

(
2k`(Q)

)n−α
= 2

Pα (Q, µ).
∞∑
k=0

 |Q|
1
n(

2k |Q|
1
n

)2


n−α∣∣∣2kQ∣∣∣

µ
.
∞∑
k=0

 |Q|
1
n(

2k |Q|
1
n

)2


n−α(

2k`(Q)
)n−α

= Cα

and it follows easily that the equal weight pair (µ, µ) satisfies not only the Muckenhoupt Aα2

condition, but also the strong energy condition Eα2 :

∞∑
r=1

(
Pα (Ir,1Iσ)

|Ir|

)2 ∥∥∥x−mω
Ir

∥∥∥2

L2(ω)
≤ C

∞∑
r=1

∥∥∥∥∥x−m
ω
Ir

|Ir|

∥∥∥∥∥
2

L2(ω)

≤ C
∞∑
r=1

|Ir|ω ≤ C |I|ω = C |I|σ ,

since ω = σ. Thus Theorem 5.1.5, when restricted to a single weight σ = ω, recovers a

slightly weaker, due to our assumption that p > 2, version of the one weight theorem of

Lacey and Martikainen [29, Theorem 1.1] for dimension n = 1. On the other hand, the

possibility of a two weight theorem for a 2-weakly µ-accretive family is highly problematic, as

one of the key proof strategies used in [29] in the one weight case is a reduction to testing

over f and g with controlled L∞ norm, a strategy that appears to be unavailable in the two

weight setting.

In order to prove Theorem 5.1.5, it is convenient to establish some improved properties

for our p-weakly µ-accretive family, and also necessary to establish some improved energy

conditions related to the families of testing functions b and b∗. We turn to these matters in

the next two subsections.
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5.1.7 Reduction to real bounded accretive families

We begin by noting that if bQ satisfies (5.1.4) with µ = σ, and satisfies a given b-testing

condition for a weight pair (σ, ω), then RebQ satisfies

(
1

|Q|µ

∫
Q

∣∣RebQ∣∣p dµ
)1
p

≤ Cb (p)

and the given b-testing condition for (σ, ω) with RebQ in place of bQ.

Thus we may assume throughout the proof of Theorem 5.1.5 that our p-weakly µ-accretive

families b ≡
{
bQ
}
Q∈D and b∗ ≡

{
b∗Q

}
Q∈G

consist of real-valued functions.

Next we show that the assumption of testing conditions for a fractional integral Tα and

p-weakly µ-accretive testing functions b =
{
bQ
}
Q∈P and b∗ =

{
b∗Q

}
Q∈P

with p > 2 can

always be replaced with real-valued ∞-weakly µ-accretive testing functions, thus reducing

the Tb theorem for the case p > 2 to the case when p = ∞. We now proceed to develop a

precise statement. We extend (5.1.4) to 2 < p ≤ ∞ by

supp bQ ⊂ Q , Q ∈ P , (5.1.12)

1 ≤ 1

|Q|µ

∫
Q
bQdµ ≤


(

1
|Q|µ

∫
Q

∣∣bQ∣∣p dµ)1
p
≤ Cb (p) <∞ for 2 < p <∞∥∥bQ∥∥L∞(µ)

≤ Cb (∞) <∞ for p =∞

Proposition 5.1.7. Let 0 ≤ α < 1, and let σ and ω be locally finite positive Borel measures

on Rn, and let Tα be a standard α-fractional elliptic and gradient elliptic singular integral

operator on Rn. Set Tασ f = Tα (fσ) for any smooth truncation of Tασ , so that Tασ is apriori
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bounded from L2 (σ) to L2 (ω). Finally, define the sequence of positive extended real numbers

{pm}∞m=0 =

 2

1−
(

2
3

)m

∞

m=0

=

{
∞, 6, 18

5
,
162

65
, ...

}
.

Suppose that the following statement is true:

(S∞) If b =
{
bQ
}
Q∈P is an ∞-weakly σ-accretive family of functions on Rn and if b∗ ={

b∗Q

}
Q∈P

is an ∞-weakly ω-accretive family of functions on Rn, then the operator

norm NTασ
of Tασ from L2 (σ) to L2 (ω), i.e. the best constant in

‖Tασ f‖L2(ω)
≤ NTασ

‖f‖
L2(σ)

, f ∈ L2 (σ) ,

uniformly in smooth truncations of Tα, satisfies

NTα . (Cb (∞) + Cb∗ (∞))
(
Tb
Tα + Tb∗

Tα +
√

Aα2 + Eα2

)
,

where Cb (∞) , Cb∗ (∞) are the accretivity constants in (5.1.12), and the constants

implied by . depend on α and the constant CCZ in (5.1.1).

Then for each m ≥ 0, the following statements hold:

(Sm) Let p ∈ (pm+1, pm]. If b =
{
bQ
}
Q∈P is a p-weakly σ-accretive family of functions on

Rn, and if b∗ =
{
b∗Q

}
Q∈P

is a p-weakly ω-accretive family of functions on Rn, then

the operator norm NTασ
of Tασ from L2 (σ) to L2 (ω), uniformly in smooth truncations

of Tα, satisfies

NTα . (Cb (p) + Cb∗ (p))3m+1 (
Tb
Tα + Tb∗

Tα +
√

Aα2 + Eα2

)
,
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where Cb (p) , Cb∗ (p) are the accretivity constants in (5.1.4), and the constants implied

by . depend on p, α, and the constant CCZ in (5.1.1).

Proof of Proposition 5.1.7. We will prove it by induction. We first prove (S0). So fix p ∈

(p1, p0) = (6,∞), and let b =
{
bQ
}
Q∈P be a p-weakly σ-accretive family of functions on Rn,

and let b∗ =
{
b∗Q

}
Q∈P

be a p-weakly ω-accretive family of functions on Rn. Let 0 < ε < 1

(to be chosen differently at various points in the argument below) and define

λ = λ (ε) =

(
p

p− 2
Cb (p)p

1

ε

) 1
p−2

(5.1.13)

and a new collection of test functions,

b̂Q ≡ 2bQ

(
1{∣∣∣bQ∣∣∣≤λ} +

λ∣∣bQ∣∣1{∣∣∣bQ∣∣∣>λ}
)
, Q ∈ P , (5.1.14)

We compute

∫{∣∣∣bQ∣∣∣>λ}
∣∣bQ∣∣2 dσ=

∫{∣∣∣bQ∣∣∣>λ}
∫ ∣∣∣bQ∣∣∣

0
2tdt

 dσ
=

∫ ∫{
(x,t)∈Rn×(0,∞):max{t,λ}<

∣∣∣bQ(x)
∣∣∣} 2tdtdσ (x)

=

∫ λ

0

∫{
x∈Rn:λ<

∣∣∣bQ(x)
∣∣∣}dσ (x) 2tdt+

∫ ∞
λ

∫{
x∈Rn:t<

∣∣∣bQ(x)
∣∣∣}dσ (x) 2tdt

=λ2
∣∣{∣∣bQ∣∣ > λ

}∣∣
σ

+

∫ ∞
λ

∣∣{∣∣bQ∣∣ > t
}∣∣
σ

2tdt,
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and hence

∫{∣∣∣bQ∣∣∣>λ}
∣∣bQ∣∣2 dσ ≤ λ2 1

λp

(∫ ∣∣bQ∣∣p dσ)+

∫ ∞
λ

1

tp

(∫ ∣∣bQ∣∣p dσ) 2tdt (5.1.15)

≤
{
λ2−p +

∫ ∞
λ

2t1−pdt
}
Cb (p)p |Q|σ

=
p

p− 2
λ2−pCb (p)p |Q|σ = ε |Q|σ ,

by (5.1.13). Thus we have the lower bound,

(5.1.16)∣∣∣∣ 1

|Q|σ

∫
Q
b̂Qdσ

∣∣∣∣ = 2

∣∣∣∣∣ 1

|Q|σ

∫
Q
bQdσ −

1

|Q|σ

∫
Q
bQ

(
1− λ∣∣bQ∣∣

)
1{∣∣∣bQ∣∣∣>λ}dσ

∣∣∣∣∣
≥ 2

∣∣∣∣ 1

|Q|σ

∫
Q
bQdσ

∣∣∣∣− 2

(
1

|Q|σ

∫
Q

∣∣bQ∣∣2 1{∣∣∣bQ∣∣∣>λ}dσ
)1

2

≥ 2− 2

(
1

|Q|σ
ε |Q|σ

)1
2

= 2− 2
√
ε ≥ 1 > 0, Q ∈ P .

For an upper bound we have

∥∥∥b̂Q∥∥∥
L∞(σ)

≤ 2λ = 2λ (ε) = 2

(
p

p− 2
Cb (p)p

1

ε

) 1
p−2

,

which altogether shows that

C
b̂

(∞) ≤ 2

(
p

p− 2
Cb (p)p

1

ε

) 1
p−2

= 2

(
p

p− 2

) 1
p−2

Cb (p)
p
p−2 ε

− 1
p−2 (5.1.17)
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if we choose 0 < ε ≤ 1
4 . Similarly we have

C
b̂∗ (∞) ≤ 2

(
p

p− 2
Cb∗ (p)p

1

ε∗

) 1
p−2

= 2

(
p

p− 2

) 1
p−2

Cb∗ (p)
p
p−2 (ε∗)

− 1
p−2

for 0 < ε∗ ≤ 1
4 . Moreover, we also have, using (5.1.15),

√∫
Q

∣∣∣Tασ b̂Q∣∣∣2 dω ≤ 2

√∫
Q

∣∣Tασ bQ∣∣2 dω + 2

√√√√∫
Q

∣∣∣∣∣Tασ 1{∣∣∣bQ∣∣∣>λ}
(

λ∣∣bQ∣∣ − 1

)
bQ

∣∣∣∣∣
2

dω

≤ 2Tb
Tα

√
|Q|σ + 2NTα

√∫{∣∣∣bQ∣∣∣>λ}
∣∣bQ∣∣2 dσ

≤ 2
{
Tb
Tα +

√
εNTα

}√
|Q|σ , for all cubes Q,

which shows that

Tb̂
Tα ≤ 2Tb

Tα + 2
√
εNTα . (5.1.18)

Now we apply the fact that (S∞) holds to obtain

NTα .
(
C
b̂

(∞) + C
b̂∗ (∞)

){
Tb̂
Tα + Tb̂∗

Tα,∗ +
√

Aα2 + Eα2

}

and take ε = ε∗ to conclude, using (5.1.17) and (5.1.18), that

NTα . Cimplied (Cb (p) + Cb∗ (p))
p
p−2 ε

− 1
p−2

{
Tb
Tα + Tb∗

Tα,∗ +
√

Aα2 + Eα2

}
(5.1.19)

+Cimplied (Cb (p) + Cb∗ (p))
p
p−2 ε

1
2−

1
p−2NTα

Now we choose

ε =
1

Γ
(Cb (p) + Cb∗ (p))

−
p
p−2

1
2−

1
p−2
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with Γ =
(
2Cimplied

)4, which satisfies Γ ≥ 1, so that the final term on the right satisfies

Cimplied (Cb (p) + Cb∗ (p))
p
p−2 ε

1
2−

1
p−2 NTα ≤ Cimplied

(
1

Γ

)1
4

NTα =
1

2
NTα

where we have used 1
2 −

1
p−2 ≥

1
4 for p > 6. This term can then be absorbed into the left

hand side of (5.1.19) to obtain

NTα . (Cb (p) + Cb∗ (p))

p
p−2

1+

1
p−2

1
2−

1
p−2

 {
Tb
Tα + Tb∗

Tα,∗ +
√

Aα2 + Eα2

}

Since

p

p− 2

{
1 +

1
p−2

1
2 −

1
p−2

}
=

(
1 +

2

p− 2

)(
1 +

2

p− 4

)
≤ 3 for p > 6,

we get

NTα . (Cb (p) + Cb∗ (p))3
{
Tb
Tα + Tb∗

Tα,∗ +
√

Aα2 + Eα2

}
,

which completes the proof of (S0).

We now show that
(
Sp
)
holds for all p∈ (pm+1, pm]. So fix m ≥ 1, p∈ (pm+1, pm], and

suppose that b =
{
bQ
}
Q∈P is a p-weakly σ-accretive family of functions on Rn and that

b∗ =
{
b∗Q

}
Q∈P

is a p-weakly ω-accretive family of functions on Rn. Note that the sequence

{pm}∞m=0 =

{
2

1−
(

2
3

)m
}∞
m=0

satisfies the recursion relation

pm+1 =
6

1 + 4
pm

, equivalently, pm =
4

6
pm+1

− 1
, m ≥ 0.
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Choose q ∈ (pm, pm−1] so that

p >
6

1 + 4
q

=
6q

q + 4
, i.e. q <

4
6
p − 1

=
4p

6− p
, (5.1.20)

which can be done since p > pm+1 = 2

1−
(

2
3

)m+1 is equivalent to pm = 2

1−
(

2
3

)m < 4
6
p−1

,

which leaves room to choose q satisfying pm < q < 4
6
p−1

.

Now let 0 < ε < 1 (to be fixed later), define λ = λ (ε) as in (5.1.13), and define b̂Q as in

(5.1.14). Recall from (5.1.15) and (5.1.16) that we then have

∫{∣∣∣bQ∣∣∣>λ}
∣∣bQ∣∣2 dσ ≤ ε |Q|σ and

∣∣∣∣ 1

|Q|σ

∫
Q
b̂Qdσ

∣∣∣∣ ≥ 1, Q ∈ P ,

if we choose 0 < ε ≤ 1
4 . We of course have the previous upper bound

∥∥∥b̂Q∥∥∥
L∞(σ)

≤ 2λ = 2λ (ε) = 2

(
p

p− 2
Cb (p)p

1

ε

) 1
p−2

and while this turned out to be sufficient in the case m = 0, we must do better than

O
(

1
ε

) 1
p−2 in the case m ≥ 1. In fact we compute the Lq norm instead, recalling that q > p
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and using Chebysev’s inequality,

(
1

|Q|µ

∫
Q

∣∣∣̂bQ∣∣∣q dµ
)1
q

= 2

(
1

|Q|µ

∫
Q

∣∣∣∣∣bQ
(

1{∣∣∣bQ∣∣∣≤λ} +
λ∣∣bQ∣∣1{∣∣∣bQ∣∣∣>λ}

)∣∣∣∣∣
q

dµ

)1
q

= 2

 1

|Q|µ

∫{∣∣∣bQ∣∣∣≤λ}
∫ ∣∣∣bQ∣∣∣

0
qtq−1dt

 dσ +
λq
∣∣{∣∣bQ∣∣ > λ

}∣∣
µ

|Q|µ

1
q

≤ 2

 1

|Q|µ

∫ λ

0

∫{
t<
∣∣∣bQ∣∣∣≤λ} dσ

 qtq−1dt+ Cb (p)p λq−p

1
q

≤ 2

(
1

|Q|µ

∫ λ

0

[
1

tp

∫ ∣∣bQ∣∣p dσ] qtq−1dt+ Cb (p)p λq−p
)1
q

≤ 2Cb (p)
p
q

(∫ λ

0
qtq−p−1dt+ λq−p

)1
q

= 2Cb (p)
p
q

(
2q − p
q − p

λq−p
)1
q

which shows that C
b̂

(q) satisfies the estimate

C
b̂

(q) ≤ 2Cb (p)
p
q

(
2q − p
q − p

)1
q

( p

p− 2
Cb (p)p

1

ε

) 1
p−2

1−pq

. Cb (p)
p
q

(
q−2
p−2

)
ε
−

1−pq
p−2 . Cb (p)

3
2 ε
−

1−pq
p−2 ,

a significant improvement over the bound O
(
ε
− 1
p−2

)
. Here we have used that if p > 6q

q+4 ,

then

p

q

(
q − 2

p− 2

)
<

6q
q−4

6q
q−4 − 2

q − 2

q
<

3

2
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as the function x 7→ x
x−2 is decreasing when x > 2. Moreover, from (5.1.18) we also have

Tb̂
Tα ≤ 2Tb

Tα + 2
√
εNTα .

We can do the same for the dual testing functions b∗ =
{
b∗Q

}
Q∈P

and then altogether,

provided 0 < ε ≤ 1
4 , we have both

1 ≤
∣∣∣∣ 1

|Q|σ

∫
Q
b̂Qdσ

∣∣∣∣ ≤ ∥∥∥b̂Q∥∥∥Lq(σ)
≤ Cb (p)

3
2 ε
−

1−pq
p−2 , Q ∈ P ,

Tb̂
Tα ≤ 2Tb

Tα + 2
√
εNTα ,

as well as

1 ≤
∣∣∣∣ 1

|Q|ω

∫
Q
b̂∗Qdω

∣∣∣∣ ≤ ∥∥∥b̂∗Q∥∥∥Lq(ω)
≤ Cb∗ (p)

3
2 ε
−

1−pq
p−2 , Q ∈ P ,

Tb̂∗
Tα ≤ 2Tb∗

Tα + 2
√
εNTα

We now use these estimates, together with the fact that (Sm−1) holds, to obtain

NTα.
(
C
b̂

(q)+C
b̂∗ (q)

)3n {
Tb̂
Tα + Tb̂∗

Tα,∗ +
√

Aα2 + Eα2

}
.(Cb (p)+Cb∗ (p))

3
23nε

−
1−pq
p−2

{[
Tb
Tα+

√
εNTα

]
+
[
Tb∗
Tα,∗+

√
εNTα

]
+
√

Aα2 +Eα2

}
.(Cb (p) + Cb∗ (p))

3
23n

ε−1−pq
p−2

{
Tb
Tα+Tb∗

Tα,∗+
√

Aα2 +Eα2

}
+
√
εε
−

1−pq
p−2 NTα



We can absorb the term (Cb (p) + Cb∗ (p))
3
23n√εε−

1−pq
p−2 NTα into the left hand side as
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before, by choosing

ε =
1

Γ
(Cb (p) + Cb∗ (p))

 3
23n

1−pq
p−2 −

1
2



with Γ sufficiently large, depending only on the implied constant, since (5.1.20) gives
6
p−1

2 <

2
q , and hence

1

2
−

1− p
q

p− 2
=
p
(

1 + 2
q

)
− 4

2p− 4
>

p

(
1 +

6
p−1

2

)
− 4

2p− 4
=

1

4
. (5.1.21)

Thus,

NTα . (Cb (p) + Cb∗ (p))
3
23n(1+1)

{
Tb
Tα + Tb∗

Tα,∗ +
√

Aα2 + Eα2

}
.

Here we have used that (5.1.21) implies

1−pq
p−2

1
2 −

1−pq
p−2

< 4
1− p

q

p− 2
≤ 1. So we finally have

NTα . (Cb (p) + Cb∗ (p))3n+1 {
Tb
Tα + Tb∗

Tα,∗ +
√

Aα2 + Eα2

}
,

which completes the proof of Proposition 5.1.7.

Thus we may assume for the proof of Theorem 5.1.5 given below that p = ∞ and that

the testing functions are real-valued and satisfy

suppbQ ⊂ Q , Q ∈ P , (5.1.22)

1 ≤ 1

|Q|µ

∫
Q
bQdµ ≤

∥∥bQ∥∥L∞(µ)
≤ Cb (∞) <∞, Q ∈ P .
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5.1.8 Reverse Hölder control of children

Here we begin to further reduce the proof of Theorem 5.1.5 to the case of bounded real

testing functions b =
{
bQ
}
Q∈P having reverse Hölder control

∣∣∣∣ 1

|Q′|σ

∫
Q′
bQdσ

∣∣∣∣ ≥ c
∥∥∥1Q′bQ∥∥∥L∞(σ)

> 0, (5.1.23)

for all children Q′ ∈ C (Q) with
∣∣Q′∣∣σ > 0 and Q ∈ P .

5.1.8.1 Control of averages over children

Lemma 5.1.8. Suppose that σ and ω are locally finite positive Borel measures on Rn. As-

sume that Tα is a standard α-fractional elliptic and gradient elliptic singular integral oper-

ator on Rn, and set Tασ f = Tα (fσ) for any smooth truncation of Tασ , so that Tασ is apriori

bounded from L2 (σ) to L2 (ω). Let Q ∈ P and let NTα (Q) be the best constant in the local

inequality

√∫
Q′

∣∣Tασ (1Qf)∣∣2 dω ≤ NTα (Q)

√∫
Q
|f |2 dσ , f ∈ L2 (1Qσ) .

Suppose that bQ is a real-valued function supported in Q such that

1 ≤ 1

|Q|σ

∫
Q
bQdσ ≤

∥∥1QbQ∥∥L∞(σ)
≤ Cb ,√∫

Q

∣∣Tασ bQ∣∣2 dω ≤ T
bQ
Tα (Q)

√
|Q|σ .

Then for every 0 < δ < 1
2n+1C3

b

, there exists a real-valued function b̃Q supported in Q such

that
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(1). 1 ≤ 1

|Q|σ

∫
Q
b̃Qdσ ≤

∥∥∥1Qb̃Q∥∥∥
L∞(σ)

≤ 2
(

1 +
√
Cb

)
Cb ,

(2).

√∫
Q

∣∣∣Tασ b̃Q∣∣∣2 dω ≤
[
T
bQ
Tα (Q) + 2C

3
4
b δ

1
4NTα (Q)

]√
|Q|σ ,

(3). 0 <
∥∥∥1Qi b̃Q∥∥∥L∞(σ)

≤ 16Cb

δ

∣∣∣∣∣ 1

|Qi|σ

∫
Qi

b̃Qdσ

∣∣∣∣∣ , Qi ∈ C (Q) .

Proof. Let 0 < δ < 1 and fix Q ∈ P . By assumption we have

1 ≤ 1

|Q|σ

∫
Q
bQdσ ≤

∥∥1QbQ∥∥L∞(σ)
≤ Cb.

Let Qi be the children of Q. We now define b̃Q. First we note that the inequality

∣∣∣∣∣ 1

|Qi|σ

∫
Qi

bQdσ

∣∣∣∣∣ < δ

Cb

∥∥∥1QibQ∥∥∥L∞(σ)
(5.1.24)

cannot hold for all Qi, since otherwise we obtain the contradiction

∣∣∣∣∫
Q
bQdσ

∣∣∣∣ ≤ 2n∑
i=1

∣∣∣∣∣
∫
Qi

bQdσ

∣∣∣∣∣ < δ

Cb

2n∑
i=1

|Qi|σ
∥∥∥1QibQ∥∥∥L∞(σ)

≤ δ

Cb
|Q|σ

∥∥1QbQ∥∥L∞(σ)
≤ δ

∣∣∣∣∫
Q
bQdσ

∣∣∣∣ < ∣∣∣∣∫
Q
bQdσ

∣∣∣∣ .
If (5.1.24) holds for none of the Qi, then we simply define b̃Q = bQ, and trivially all the

conclusions of the Lemma 5.1.8 hold. If (5.1.24) holds for at least one of the children, say Qi0 ,

then we define b̃Q differently according to how large the L1 (σ)-average 1∣∣∣Qi0 ∣∣∣σ
∫
Qi0

∣∣bQ∣∣ dσ
is. In this case, define G̃ to be the set of indices for which (5.1.24) holds and G the set of
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indices for which (5.1.24) fails. We define

b̃Q ≡
∑
i∈G

bQ1Q +
∑
i∈G0

δ1Qi +
∑
i∈G+

(
1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ
)

1Qi

+
∑
i∈B−

(
pi − ni

(
1 +

√
Cbδ

))
1Qi +

∑
i∈B+

((
1 +

√
Cbδ

)
pi − ni

)
1Qi

where

G0 ≡

{
i ∈ G̃ :

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ = 0

}

G+ ≡

{
i ∈ G̃ : 0 <

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ ≤√Cbδ

}
,

B− ≡

{
i ∈ G̃ :

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ >√Cbδ and
∫
Qi

nidσ >

∫
Qi

pidσ

}
,

B+ ≡

{
i ∈ G̃ :

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ >√Cbδ and
∫
Qi

pidσ ≥
∫
Qi

nidσ

}
.

and pi, ni are the positive and negative parts of bQ respectively on Qi, i.e.

1Qi (x) bQ (x) = pi (x)− ni (x) ,

1Qi (x)
∣∣bQ (x)

∣∣ = pi (x) + ni (x) ,

Now let us check the conclusions of the Lemma 5.1.8. For (1) we have

1 ≤ 1

|Q|σ

∫
Q
bQdσ

≤ 1

|Q|σ

∫
Q
b̃Qdσ +

1

|Q|σ

∑
i∈B−

∫
Qi

ni
√
Cbδdσ −

1

|Q|σ

∑
i∈B+

∫
Qi

pi
√
Cbδdσ

≤ 1

|Q|σ

∫
Q
b̃Qdσ +

√
CbδCb

1

|Q|σ

∑
i∈B−

|Qi|σ ≤
1

|Q|σ

∫
Q
b̃Qdσ + C

3
2
b

√
δ
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and choosing δ small enough we get

1

2
≤ 1

|Q|σ

∫
Q
b̃Qdσ ≤

∥∥∥1Qb̃Q∥∥∥
L∞(σ)

,

which in turn is bounded by

sup
Qi∈C(Q)

∥∥∥1Qi b̃Qi∥∥∥L∞(σ)
≤ 2

(
1 +

√
Cb

)
Cb

by taking the different cases on Qi:

(a) For i ∈ G0,
∥∥∥1Qi b̃Qi∥∥∥L∞ ≤ δ,

(b) For i ∈ G+,
∥∥∥1Qi b̃Qi∥∥∥L∞ ≤ Cb,

(c) For i ∈ B− ∪B+,
∥∥∥1Qi b̃Qi∥∥∥L∞ ≤ 2(1 +

√
Cb)Cb.

This completes the proof for (1).

For (2), we have from Minkowski’s inequality

√
1

|Q|σ

∫
Q

∣∣∣Tασ b̃Q∣∣∣2 dω≤
√

1

|Q|σ

∫
Q

∣∣Tασ bQ∣∣2dω +

√
1

|Q|σ

∫
Q

∣∣∣Tασ (b̃Q − bQ)∣∣∣2dω
≤ T

bQ
Tα (Q) + NTα (Q)

√
1

|Q|σ

∫
Q

∣∣∣̃bQ − bQ∣∣∣2dσ
= T

bQ
Tα (Q) + NTα (Q)

√√√√ 1

|Q|σ

∑
Qi∈C(Q)

∫
Qi

∣∣∣̃bQ − bQ∣∣∣2dσ
and this last term is bounded by:

∑
i∈G

+
∑
i∈G0

+
∑
i∈G+

+
∑
i∈B−

+
∑
i∈B+

√ 1

|Q|σ

∫
Qi

∣∣∣̃bQ − bQ∣∣∣2dσ
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and since we have:

(a) for i ∈ G,

1

|Q|σ

∫
Qi

∣∣∣̃bQ − bQ∣∣∣2dσ = 0

(b) for i ∈ G0,

1

|Q|σ

∫
Qi

∣∣∣̃bQ − bQ∣∣∣2dσ ≤ 1

|Q|σ

(∫
Qi

δ2dσ +

∫
Qi

|bQ|2dσ

)

≤ 1

|Q|σ

(
δ2|Qi|σ + Cb

∫
Qi

|bQ|dσ

)
= δ2 |Qi|σ

|Q|σ

by the accretivity of bQ and the definition of G0.

(c) for i ∈ G+,

1

|Q|σ

∫
Qi

∣∣∣̃bQ − bQ∣∣∣2 dω =
1

|Q|σ

∫
Qi

∣∣∣∣∣
(

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ
)
− bQ

∣∣∣∣∣
2

dσ

≤ 1

|Q|σ

∫
Qi

∣∣∣∣∣ 1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ
∣∣∣∣∣
2

dσ +

∫
Qi

∣∣bQ∣∣2 dσ


≤ 1

|Q|σ

(∫
Qi

Cbδdσ + Cb

∫
Qi

∣∣bQ∣∣ dσ
)

≤
(
Cbδ + Cb

√
Cbδ

) |Qi|σ
|Q|σ

≤ 2C
3
2
b δ

1
2
|Qi|σ
|Q|σ

.

(d) for i ∈ B−,

1

|Q|σ

∫
Qi

∣∣∣̃bQ − bQ∣∣∣2 dσ =
1

|Q|σ

∫
Qi

|Cbδni|2 dσ = Cbδ
1

|Q|σ

∫
Qi

|ni|2 dσ

≤ C3
bδ
|Qi|σ
|Q|σ

.
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(e) and for i ∈ B+, the same estimate as in the previous case,

we obtain √
1

|Q|σ

∫
Q

∣∣∣Tασ b̃Q∣∣∣2 dω ≤ T
bQ
Tα (Q) + 2 · 2nC

3
4
b δ

1
4NTα (Q) .

where the dimensional constant comes from

1√
|Q|σ

2n∑
i=1

√
|Qi|σ ≤ 2n.

Now we are left with verifying (3). Note that

(a) for i ∈ G, the inequality (5.1.24) does not hold and as b̃Q = bQ there, immediately we

obtain ∥∥∥1Qi b̃Q∥∥∥L∞(σ)
≤

∣∣∣∣∣Cb

δ

∫
Qi

b̃Qdσ

∣∣∣∣∣
(b) for i ∈ G0 ∪G+, ∥∥∥1Qi b̃Q∥∥∥L∞(σ)∣∣∣∣ 1

|Qi|σ
∫
Qi
b̃Qdσ

∣∣∣∣ = 1 <
Cb

δ

(c) for i ∈ B−,

∥∥∥1Qi b̃Q∥∥∥L∞(σ)∣∣∣∣ 1
|Qi|σ

∫
Qi
b̃Qdσ

∣∣∣∣ ≤
(
1 +

√
Cbδ

)
Cb∣∣∣∣ 1

|Qi|σ
∫
Qi

[
pi − ni

(
1 +

√
Cbδ

)]
dσ

∣∣∣∣
≤

(
1 +

√
Cbδ

)
Cb∣∣∣∣√Cbδ

1
|Qi|σ

∫
Qi
nidσ

∣∣∣∣
≤

2(1 +
√
Cbδ)Cb√

Cbδ
1
|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ
≤ 4Cb

Cbδ
=

4

δ
,
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as, by taking 0 < δ < 1
4C3

b

, we have 1 +
√
Cbδ < 2.

(d) and for i ∈ B+ similarly as in the previous case.

In order to obtain the inequalities for b̃Q in the conclusion of Lemma 5.1.8, we simply

multiply the above function b̃Q by a factor of 2.

Finally, if
∣∣bQ∣∣ ≥ c1 > 0, we easily see that

∣∣∣̃bQ∣∣∣ ≥ ∣∣bQ∣∣ ≥ c1 > 0 as well. This completes

the proof of Lemma 5.1.8.

5.1.8.2 Control of averages in coronas

Let DQ be the grid of dyadic subcubes of Q. In the construction of the triple corona below,

we will need to repeat the construction in the previous subsubsection for a subdecomposition

{Qi}∞i=1 of dyadic subcubes Qi ∈ DQ of a cube Q. Define the corona corresponding to the

subdecomposition {Qi}∞i=1 by

CQ ≡ DQ\
∞⋃
i=1

DQi .

Lemma 5.1.9. Suppose that σ and ω are locally finite positive Borel measures on Rn. As-

sume that Tα is a standard α-fractional elliptic and gradient elliptic singular integral oper-

ator on Rn, and set Tασ f = Tα (fσ) for any smooth truncation of Tασ , so that Tασ is apriori

bounded from L2 (σ) to L2 (ω). Let Q ∈ P and let NTα (Q) be the best constant in the local

inequality

√∫
Q

∣∣Tασ (1Qf)∣∣2 dω ≤ NTα (Q)

√∫
Q
|f |2 dσ , f ∈ L2 (1Qσ) .

Let {Qi}∞i=1 ⊂ DQ be a collection of pairwise disjoint dyadic subcubes of Q. Suppose that
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bQ is a real-valued function supported in Q such that

1 ≤ 1

|Q′|σ

∫
Q′
bQdσ ≤

∥∥∥1Q′bQ∥∥∥L∞(σ)
≤ Cb , Q′ ∈ CQ ,√∫

Q

∣∣Tασ bQ∣∣2 dω ≤ T
bQ
Tα (Q)

√
|Q|σ .

Then for every 0 < δ < 1
4C3

b

, there exists a real-valued function b̃Q supported in Q such that

1 ≤ 1

|Q′|σ

∫
Q′
b̃Qdσ ≤

∥∥∥1Q′ b̃Q∥∥∥L∞(σ)
≤ 2

(
1 +

√
Cb

)
Cb , Q′ ∈ CQ ,√∫

Q

∣∣∣Tασ b̃Q∣∣∣2 dω ≤
[

2T
bQ
Tα (Q) + 4C

3
2
b δ

1
4NTα (Q)

]√
|Q|σ ,

0 <
∥∥∥1Qi b̃Q∥∥∥L∞(σ)

≤ 16Cb

δ

∣∣∣∣∣ 1

|Qi|σ

∫
Qi

b̃Qdσ

∣∣∣∣∣ , 1 ≤ i <∞.

Moreover, if
∣∣bQ∣∣ ≥ c1 > 0, then we may take

∣∣∣̃bQ∣∣∣ ≥ c1 as well.

The additional gain in the lemma is in the final line that controls the degeneracy of b̃Q

at the ‘bottom’ of the corona CQ by establishing a reverse Hölder control. Note that if we

combine this control with the accretivity control in the corona CQ, namely

∥∥∥1Q′ b̃Q∥∥∥L∞(σ)
≤ 2

(
1 +

√
Cb

)
Cb ≤ 2

(
1 +

√
Cb

)
Cb

1

|Q′|σ

∫
Q′
b̃Qdσ,

we obtain reverse Hölder control throughout the entire collection CQ ∪ {Qi}∞i=1:

∥∥∥1I b̃Q′∥∥∥L∞(σ)
≤ Cδ,b

∣∣∣∣ 1

|I|σ

∫
I
b̃Q′dσ

∣∣∣∣ , I ∈ C
(
Q′
)
, Q′ ∈ CQ .

This has the crucial consequence that the martingale and dual martingale differences 4σ,b
Q′
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and �σ,b
Q′ associated with these functions as defined in (5.1.38), satisfy

∣∣∣4σ,b
Q′ h

∣∣∣ , ∣∣∣�σ,b
Q′ h

∣∣∣ ≤ Cδ,b
∑

I∈C(Q′)

(
1

|I|σ

∫
I
|h| dσ +

1

|Q′|σ

∫
Q′
|h| dσ

)
1I . (5.1.25)

However, the defect in this lemma is that we lose the weak testing condition for b̃Q in the

corona even if we had assumed it at the outset for bQ.

Proof. The proof of Lemma 5.1.9 is similar to that of the Lemma 5.1.8. Indeed, we define

b̃Q ≡
∑
i∈G0

δ1Qi +
∑
i∈G+

(
1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ
)

1Qi

+
∑
i∈B−

(
1

|Qi|σ

∫
Qi

[
pi − ni

(
1 +

√
Cbδ

)]
dσ

)
1Qi

+
∑
i∈B+

(
1

|Qi|σ

∫
Qi

[(
1 +

√
Cbδ

)
pi − ni

]
dσ

)
1Qi

+bQ1Q\∪∞i=1Qi
,

where

G0 ≡

{
i :

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ = 0

}
,

G+ ≡

{
i : 0 <

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ ≤√Cbδ

}
,

B− ≡

{
i :

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ >√Cbδ and
∫
Qi

nidσ >

∫
Qi

pidσ

}
,

B+ ≡

{
i :

1

|Qi|σ

∫
Qi

∣∣bQ∣∣ dσ >√Cbδ and
∫
Qi

pidσ ≥
∫
Qi

nidσ

}
.

and pi, ni the positive and negative parts of bQ on each Qi. The proof of Lemma 5.1.8 can be
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applied verbatim. We emphasise only that when estimating the testing condition, we need

the bound ∫
Q

∣∣∣̃bQ − bQ∣∣∣2 dσ ≤ C (Cb) δ
1
4

∞∑
i=1

|Qi|σ ≤ C (Cb) δ
1
4 |Q|σ .

Remark 5.1.10. The estimate
∫
Q

∣∣∣̃bQ − bQ∣∣∣2 dσ ≤ C (Cb) δ
1
4
∑∞
i=1 |Qi|σ in the last line of

the above proof is of course too large in general to be dominated by a fixed multiple of
∣∣Q′∣∣σ

for Q′ ∈ CQ, and this is the reason we have no control of weak testing for b̃Q in the rest of

the corona even if we assume weak testing for bQ in the corona CQ. This defect is addressed

in the next subsection below.

5.1.9 Three corona decompositions

We will use multiple corona constructions, namely a Calderón-Zygmund decomposition, an

accretive/testing decomposition, and an energy decomposition, in order to reduce matters

to the stopping form, which is treated in Section 5.6 by adapting the bottom/up stopping

time and recursion of M. Lacey in [27]. We will then iterate these corona decompositions

into a single corona decomposition, which we refer to as the triple corona. More precisely, we

iterate the first generation of common stopping times with an infusion of the reverse Hölder

condition on children, followed by another iteration of the first generation of weak testing

stopping times. Recall that we must show the bilinear inequality

∣∣∣∣∫ (Tασ f) gdω

∣∣∣∣ ≤ NTα ‖f‖L2(σ)
‖g‖

L2(ω)
, f ∈ L2 (σ) and g ∈ L2 (ω) .

108



5.1.9.1 The Calderón-Zygmund corona decomposition

In this section, we introduce the Calderón-Zygmund stopping times F for a function φ ∈

L2 (µ) relative to a cube S0 and a positive constant C0 ≥ 4. Let F = {F}F∈F be the

collection of Calderón-Zygmund stopping cubes for φ defined so that F ⊂ S0, S0 ∈ F , and

for all F ∈ F with F $ S0 we have

1

|F |µ

∫
F
|φ| dµ > C0

1

|πFF |µ

∫
F
|φ| dµ;

1

|F ′|µ

∫
F ′
|φ| dµ ≤ C0

1

|πFF |µ

∫
F
|φ| dµ for F $ F ′ ⊂ πFF.

We denote by πFF be the smallest member of F that strictly contains F . For a cube I ∈ D

let πDI be the D-parent of I in the grid D. For F, F ′ ∈ F , we say that F ′ is an F -child of F

if πF
(
F ′
)

= F (it could be that F = πDF
′), and we denote by CF (F ) the set of F -children

of F . We call πF
(
F ′
)
the F -parent of F ′ ∈ F .

To achieve the construction above we use the following definition.

Definition 5.1.11. Let C0 ≥ 4. Given a dyadic grid D and a cube S0 ∈ D, define S (S0)

to be the maximal D-subcubes I ⊂ S0 such that

1

|I|µ

∫
I
|φ| dµ > C0

1

|S0|µ

∫
S0

|φ| dµ ,

and then define the Calderón-Zygmund stopping cubes of S0 to be the collection

F = {S0} ∪
∞⋃
m=0

Sm

where S0 = S (S0) and Sm+1 =
⋃

S∈Sm
S (S) for m ≥ 0.

109



Define the corona of F by

CF ≡
{
F ′ ∈ D : F ⊃ F ′ % H for some H ∈ CF (F )

}
.

The stopping cubes F above satisfy a Carleson condition:

∑
F∈F : F⊂Ω

|F |µ ≤ C |Ω|µ , for all open sets Ω.

Indeed, ∑
F ′∈CF (F )

∣∣F ′∣∣µ ≤ ∑
F ′∈CF (F )

∫
F ′ |φ| dµ

C0
1
|F |µ

∫
F |φ| dµ

≤ 1

C0
|F |,

and standard arguments now complete the proof of the Carleson condition.

We emphasize that accretive functions b play no role in the Calderón-Zygmund corona

decomposition.

5.1.9.2 The accretive/testing corona decomposition

We use a corona construction modelled after that of Hytönen and Martikainen [24], that

delivers a weak corona testing condition that coincides with the testing condition itself only

at the tops of the coronas. This corona decomposition is developed to optimize the choice of

a new family of real valued testing functions
{
b̂Q

}
Q∈D

taken from the vector b ≡
{
bQ
}
Q∈D

so that we have

1. the telescoping property at our disposal in each accretive corona,

2. a weak corona testing condition remains in force for the new testing functions b̂Q that

coincides with the testing condition at the tops of the coronas,
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3. the tops of the coronas, i.e. the stopping cubes, enjoy a Carleson condition.

We will henceforth refer to the old family as the original family, and denote it by
{
b
orig
Q

}
Q∈D

.

The original family will reappear later in helping to estimate the nearby form.

Let σ and ω be locally finite Borel measures on Rn . We assume that the vector of

‘testing functions’ b ≡
{
bQ
}
Q∈D is a ∞-weakly σ-accretive family, i.e. for Q ∈ D

supp bQ ⊂ Q,

0 < cb≤
1

|Q|µ

∫
Q
bQdσ ≤

∣∣∣∣bQ∣∣∣∣L∞(σ)
≤ Cb <∞

and also that b∗ ≡
{
bQ
}
Q∈D is a ∞-weakly ω-accretive family, and we assume in addition

the testing conditions

∫
Q

∣∣Tασ (1QbQ)∣∣2 dω ≤
(
Tb
Tα

)2
|Q|σ , for all cubes Q,∫

Q

∣∣∣Tα,∗ω

(
1Qb

∗
Q

)∣∣∣2 dσ ≤
(
Tb∗
Tα,∗

)2
|Q|ω , for all cubes Q.

Definition 5.1.12. Given a cube S0, define S (S0) to be the maximal subcubes I ⊂ S0 such

that satisfy one of the following

(a).

∣∣∣∣∣ 1

|I|µ

∫
I
bS0

dσ

∣∣∣∣∣ < γ, or

(b).
∫
I

∣∣∣Tασ (bS0

)∣∣∣2 dω > Γ
(
Tb
Tα

)2
|I|σ

where the positive constants γ,Γ satisfy 0 < γ < 1 < Γ < ∞. Then define the b-accretive

stopping cubes of S0 to be the collection

F = {S0} ∪
∞⋃
m=0

Sm
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where S0 = S (S0) and Sm+1 =
⋃

S∈Sm
S (S) for m ≥ 0.

For ε > 0 chosen small enough depending on p > 2, the b-accretive stopping cubes satisfy

a σ-Carleson condition relative to the measure σ, and the new testing functions
{
b̃Q

}
Q∈D

,

defined by b̃S = 1SbS0
for S ∈ CS0

, satisfy weak testing inequalities. The following lemma

is essentially in [24], but we include a proof for completeness.

Lemma 5.1.13. For γ small enough and Γ large enough, we have the following:

(1). For every open set Ω we have we have the inequality,

∑
S∈F : S⊂Ω

|S|σ ≤ C |Ω|σ . (5.1.26)

(2). For every cube S ∈ CS0
we have the weak corona testing inequality,

∫
S

∣∣∣Tασ bS0

∣∣∣2 dω ≤ C
(
Tb
Tα

)2
|S|σ . (5.1.27)

Proof. Inequality (5.1.27) is immediate from the definition of F in the definition 5.1.12. We

now address the Carleson condition (5.1.26). A standard argument reduces matters to the

case where Ω is a cube Q ∈ F with |Q|σ > 0. It suffices to consider each of the two stopping

criteria separately. We first address the stopping condition
∣∣∣ 1
|I|σ

∫
I bS0

dσ
∣∣∣ < γ. Throughout

this proof we will denote the union of these children S (Q) of Q by E (Q) ≡
⋃

S∈S(Q)

S. Then

we have ∣∣∣∣∣
∫
E(Q)

bQdσ

∣∣∣∣∣ ≤ ∑
S∈S(Q)

∣∣∣∣∫
S
bQdσ

∣∣∣∣ < γ
∑

S∈S(Q)

|S|σ ≤ γ |Q|σ ,
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which together with our hypotheses on bQ gives

|Q|σ ≤
∣∣∣∣∫
Q
bQdσ

∣∣∣∣ ≤
∣∣∣∣∣
∫
E(Q)

bQdσ

∣∣∣∣∣+

∣∣∣∣∣
∫
Q\E(Q)

bQdσ

∣∣∣∣∣
≤ γ |Q|σ +

√∫
Q\E(Q)

∣∣bQ∣∣2 dσ√|Q\E (Q)|σ

≤ γ |Q|σ + Cb

√
|Q|σ

√
|Q\E (Q)|σ.

Rearranging the inequality yields

(1− γ) |Q|σ ≤ Cb

√
|Q|σ

√
|Q\E (Q)|σ

or

(1− γ)2

C2
b

|Q|σ ≤ |Q\E (Q)|σ ,

which in turn gives

∑
S∈S(Q)

|S|σ = |E(Q)| = |Q|σ − |Q\E (Q)|σ

≤ |Q|σ −
(1− γ)2

C2
b

|Q|σ =

(
1− (1− γ)2

C2
b

)
|Q|σ ≡ β |Q|σ ,
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where 0 < β < 1 since 1 ≤ Cb. If we now iterate this inequality, we obtain for each k ≥ 1,

∑
S∈F : S⊂Q
π

(k)
F (S)=Q

|S|σ =
∑

S∈F : S⊂Q
π

(k−1)
F (S)=Q

∑
S′∈S(S)

∣∣S′∣∣σ ≤ ∑
S∈F : S⊂Q
π

(k−1)
F (S)=Q

β |S|σ

...

≤
∑

S∈F : S⊂Q
π

(1)
F (S)=Q

βk−1 |S|σ ≤ βk |Q|σ .

Finally then

∑
S∈F : S⊂Q

|S|σ ≤
∞∑
k=0

∑
S∈F : S⊂Q
π

(k)
F (S)=Q

|S|σ ≤
∞∑
k=0

βk |Q|σ =
1

1− β
|Q|σ =

C2
b

(1− γ)2
|Q|σ .

Now we turn to the second stopping criterion
∫
I

∣∣∣Tασ (bS0

)∣∣∣2 dω > Γ
(
Tb
Tα

)2
|I|σ . We have

∑
S∈CF (S0)

|S|σ ≤
1

Γ
(
Tb
Tα

)2

∑
S∈CF (S0)

∫
S

∣∣∣Tασ (bS0

)∣∣∣2 dω
≤ 1

Γ
(
Tb
Tα

)2

∫
S0

∣∣∣Tασ (bS0

)∣∣∣2 dω ≤ 1

Γ
|S0|σ .

Iterating this inequality gives

∑
S∈F
S⊂S0

|S|σ ≤
∞∑
k=0

1

Γk
|S0|σ =

Γ

Γ− 1
|S0|σ ,
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and then

∑
S∈F
S⊂Ω

|S|σ =
∑

maximal S0∈F
S0⊂Ω

∑
S∈F
S⊂S0

|S|σ ≤
Γ

Γ− 1

∑
maximal S0∈F

S0⊂Ω

|S0|σ =
Γ

Γ− 1
|Ω|σ .

This completes the proof of Lemma 5.1.13.

5.1.9.3 The energy corona decompositions

Given a weight pair (σ, ω), we construct an energy corona decomposition for σ and an energy

corona decomposition for ω, that uniformize estimates (c.f. [43], [32], [63] and [64]). In order

to define these constructions, we recall that the energy condition constant Eα2 is given by

(Eα2 )2 ≡ sup
Q∈P
Q=∪̇Jr

1

|Q|σ

∞∑
r=1

Pα
(
Jr,1Qσ

)
|Jr|

1
n

2 ∥∥x−mJr

∥∥2

L2
(
1Jrω

) ,

where ∪̇Jr is an arbitrary subdecomposition of Q into cubes Jr ∈ P and interchanging the

roles of σ and ω we have the constant Eα,∗2 . Also recall that Eα2 = Eα2 + Eα,∗2 . In the next

definition we restrict the cubes Q to a dyadic grid D, but keep the subcubes Jr unrestricted.

Definition 5.1.14. Given a dyadic grid D and a cube S0 ∈ D, define S (S0) to be the

maximal D-subcubes I ⊂ S0 such that

sup
I⊃∪̇Jr

∞∑
r=1

Pα (Jr,1Iσ)

|Jr|
1
n

2 ∥∥x−mJr

∥∥2

L2
(
1Jrω

) ≥ Cen

[
(Eα2 )2 + Aα2

]
|I|σ , (5.1.28)

where the cubes Jr ∈ P are pairwise disjoint in I, Eα2 is the energy condition constant, and

Cen is a sufficiently large positive constant depending only on α. Then define the σ-energy

115



stopping cubes of S0 to be the collection

F = {S0} ∪
∞⋃
m=0

Sm

where S0 = S (S0) and Sm+1 =
⋃

S∈Sm
S (S) for m ≥ 0.

We now claim that from the energy condition Eα2 <∞, we obtain the σ-Carleson estimate,

∑
S∈S: S⊂I

|S|σ ≤ 2 |I|σ , I ∈ D. (5.1.29)

Indeed, for any S1 ∈ F we have

∑
S∈CF (S1)

|S|σ≤
1

Cen

(
Aα2 +

(
Eα2
)2) ∑

S∈CF (S1)

sup
S⊃∪̇Jr

∞∑
r=1

Pα(Jr,1Sσ)

|Jr|
1
n

2∥∥x−mJr

∥∥2
L2(1Jrω)

≤ 1

Cen
(
Eα2
)2 (Eα2 )2 |S1|σ =

1

Cen
|S1|σ ,

upon noting that the union of the subdecompositions ∪̇Jr ⊂ S over S ∈ CF (S1) is a

subdecomposition of S1, and the proof of the Carleson estimate is now finished by iteration

in the standard way.

Finally, we record the reason for introducing energy stopping times. If

Xα (CS)2 ≡ sup
I∈CS

1

|I|σ
sup
I⊃∪̇Jr

∞∑
r=1

Pα (Jr,1Iσ)

|Jr|
1
n

2 ∥∥x−mJr

∥∥2

L2
(
1Jrω

) (5.1.30)

is (the square of) the α-stopping energy of the weight pair (σ, ω) with respect to the corona
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CS , then we have the stopping energy bounds

Xα (CS) ≤
√
Cen

√(
Eα2
)2

+ Aα2 , S ∈ F , (5.1.31)

where Aα2 and the energy constant Eα2 are controlled by the assumptions in Theorem 5.1.5.

5.1.10 Iterated coronas and general stopping data

We will use a construction that permits iteration of the above three corona decompositions

by combining Definitions 5.1.11, 5.1.12 and 5.1.14 into a single stopping condition. However,

there is one remaining difficulty with the triple corona constructed in this way, namely if a

stopping cube I ∈ A is a child of a cube Q in the corona CA, then the modulus of the average∣∣∣ 1
|I|σ

∫
I bQdσ

∣∣∣ of bQ on I may be far smaller than the sup norm of
∣∣bQ∣∣ on the child I, indeed

it may be that 1
|I|σ

∫
I bQdσ = 0. This of course destroys any reasonable estimation of the

martingale and dual martingale differences 4σ,bQ f and �σ,bQ f used in the proof of Theorem

5.1.5, and so we will use Lemma 5.1.9 on the function bA to obtain a new function b̃A for

which this problem is circumvented at the ‘bottom’ of the corona, i.e. for those A′ ∈ CA (A).

We then refer to the stopping times A′ ∈ CA (A) as ‘shadow’ stopping times since we have

lost control of the weak testing condition relative to the new function b̃A. Thus we must

redo the weak testing stopping times for the new function b̃A, but also stopping if we hit

one of the shadow stopping times. Here are the details.

Definition 5.1.15. Let C0 ≥ 4, 0 < γ < 1 and 1 < Γ < ∞. Suppose that b =
{
bQ
}
Q∈P

is an ∞-weakly σ-accretive family on Rn. Given a dyadic grid D and a cube Q ∈ D, define

the collection of ‘shadow’ stopping times Sshadow (Q) to be the maximal D-subcubes I ⊂ Q

such that one of the following holds:
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(a).

1

|I|σ

∫
I
|f | dσ > C0

1

|Q|σ

∫
Q
|f | dσ ,

(b). ∣∣∣∣∣ 1

|I|µ

∫
I
bQdσ

∣∣∣∣∣ < γ or
∫
I

∣∣Tασ (bQ)∣∣2 dω > Γ
(
Tb
Tα

)2
|I|σ ,

(c).

sup
I⊃∪̇Jr

∞∑
r=1

Pα (Jr, σ)

|Jr|
1
n

2 ∥∥x−mJr

∥∥2

L2
(
1Jrω

) ≥ Cen

[
(Eα2 )2 + Aα2

]
|I|σ .

Now we apply Lemma 5.1.9 to the function bQ with Sshadow (Q) ≡ {Qi}∞i=1 to obtain a

new function b̃Q satisfying the properties

supp b̃Q ⊂ Q , (5.1.32)

1 ≤ 1

|Q′|σ

∫
Q′
b̃Qdσ ≤

∥∥∥1Q′ b̃Q∥∥∥L∞(σ)
≤ 2

(
1 +

√
Cb

)
Cb , Q′ ∈ CQ ,√∫

Q

∣∣Tασ bQ∣∣2 dω ≤
[

2Tb
Tα (Q) + 4C

3
2
b δ

1
4NTα (Q)

]√
|Q|σ ,

∥∥∥1Qi b̃Q∥∥∥L∞(σ)
≤ 16Cb

δ

∣∣∣∣∣ 1

|Qi|σ

∫
Qi

b̃Qdσ

∣∣∣∣∣ , 1 ≤ i <∞.

Note that each of the functions b̃Q′ ≡ 1Q′ b̃Q, for Q
′ ∈ CQ, now satisfies the crucial reverse

Hölder property

∥∥∥1I b̃Q′∥∥∥L∞(σ)
≤ Cδ,b

∣∣∣∣ 1

|I|σ

∫
I
b̃Q′dσ

∣∣∣∣ , for all I ∈ C
(
Q′
)
, Q′ ∈ CQ.

Indeed, if I equals one of the Qi then the reverse Hölder condition in the last line of (5.1.32)

applies, while if I ∈ CQ then the accretivity in the second line of (5.1.32) applies.
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Since we have lost the weak testing condition in the corona for this new function b̃Q,

the next step is to run again the weak testing construction of stopping times, but this time

starting with the new function b̃Q, and also stopping if we hit one of the ‘shadow’ stopping

times Qi. Here is the new stopping criterion.

Definition 5.1.16. Let C0 ≥ 4 and 1 < Γ < ∞. Let Sshadow (Q) ≡ {Qi}∞i=1 be as in

Definition 5.1.15. Define Siterated (Q) to be the maximal D-subcubes I ⊂ Q such that either

∫
I

∣∣∣Tασ (b̃Q)∣∣∣2 dω > Γ
(
Tb̃
Tα

)2
|I|σ ,

or

I = Qi for some 1 ≤ i <∞.

Thus for each cube Q we have now constructed iterated stopping children Siterated (Q)

by first constructing shadow stopping times Sshadow (Q) using one step of the triple corona

construction, then modifying the testing function to have reverse Hölder controlled children,

and finally running again the weak testing stopping time construction to get Siterated (Q).

These iterated stopping times Siterated (Q) have control of CZ averages of f and energy

control of σ and ω, simply because these controls were achieved in the shadow construction,

and were unaffected by either the application of Lemma 5.1.9 or the rerunning of the weak

testing stopping criterion for b̃Q. And of course we now have weak testing within the corona

determined by Q and Siterated (Q), and we also have the crucial reverse Hölder condition on

all the children of cubes in the corona. With all of this in hand, here then is the definition

of the construction of iterated coronas.

Definition 5.1.17. Let C0 ≥ 4, 0 < γ < 1 and 1 < Γ <∞. Suppose that b =
{
bQ
}
Q∈P is
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an ∞-weakly σ-accretive family on Rn. Given a dyadic grid D and a cube S0 in D, define

the iterated stopping cubes of S0 to be the collection

F = {S0} ∪
∞⋃
m=0

Sm

where S0 = Siterated (S0) and Sm+1 =
⋃

S∈Sm
Siterated (S) for m ≥ 0, and where Siterated (Q)

is defined in Definition 5.1.16.

It is useful to append to the notion of stopping times S in the above σ-iterated corona

decomposition a positive constant A0 and an additional structure αS called stopping bounds

for a function f . We will refer to the resulting triple (A0,F , αF ) as constituting stopping

data for f . If F is a grid, we define F ′ ≺ F if F ′ $ F and F ′, F ∈ F . Recall that πFF ′ is

the smallest F ∈ F such that F ′ ≺ F .

Suppose we are given a positive constant A0 ≥ 4, a subset F of the dyadic grid D (called

the stopping times), and a corresponding sequence αF ≡ {αF (F )}F∈F of nonnegative

numbers αF (F ) ≥ 0 (called the stopping bounds). Let (F ,≺, πF ) be the tree structure on

F inherited from D, and for each F ∈ F denote by CF = {I ∈ D : πFI = F} the corona

associated with F :

CF =
{
I ∈ D : I ⊂ F and I 6⊂ F ′ for any F ′ ≺ F

}
.

Definition 5.1.18. We say the triple (A0,F , αF ) constitutes stopping data for a function

f ∈ L1
loc (σ) if

(1). EσI |f | ≤ αF (F ) for all I ∈ CF and F ∈ F ,

(2).
∑
F ′�F

∣∣F ′∣∣σ ≤ A0 |F |σ for all F ∈ F ,
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(3).
∑
F∈F αF (F )2 |F |σ ≤A2

0 ‖f‖
2
L2(σ)

,

(4). αF (F ) ≤ αF
(
F ′
)
whenever F ′, F ∈ F with F ′ ⊂ F .

Property (1) says that αF (F ) bounds the averages of f in the corona CF , and property

(2) says that the cubes at the tops of the coronas satisfy a Carleson condition relative to the

weight σ. Note that a standard ‘maximal cube’ argument extends the Carleson condition in

property (2) to the inequality

∑
F ′∈F : F ′⊂A

∣∣F ′∣∣σ ≤ A0 |A|σ for all open sets A ⊂ Rn. (5.1.33)

Property (3) is the quasi-orthogonality condition that says the sequence of functions

{αF (F ) 1F }F∈F is in the vector-valued space L2
(
`2;σ

)
with control and is often referred

to as a Carleson embedding theorem, and property (4) says that the control on stopping

data is nondecreasing on the stopping tree F . We emphasize that we are not assuming in

this definition the stronger property that there is C > 1 such that αF
(
F ′
)
> CαF (F )

whenever F ′, F ∈ F with F ′ $ F . Instead, the properties (2) and (3) substitute for this

lack. Of course the stronger property does hold for the familiar Calderón-Zygmund stopping

data determined by the following requirements for C > 1,

Eσ
F ′ |f | > CEσF |f | whenever F

′, F ∈ F with F ′ $ F,

EσI |f | ≤ CEσF |f | for I ∈ CF ,

which are themselves sufficiently strong to automatically force properties (2) and (3) with

αF (F ) = EσF |f |.
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We have the following useful consequence of (2) and (3) that says the sequence

{αF (F ) 1F }F∈F has a quasi-orthogonal property relative to f with a constant C ′0 depending

only on C0: ∥∥∥∥∥∥
∑
F∈F

αF (F ) 1F

∥∥∥∥∥∥
2

L2(σ)

≤ C ′0 ‖f‖
2
L2(σ)

. (5.1.34)

Proposition 5.1.19. Let f ∈ L2 (σ), let F be as in Definition 5.1.17, and define stopping

data αF by αF = 1
|F |σ

∫
F |f | dσ. Then there is A0 ≥ 4, depending only on the constant

C0 in Definition 5.1.11 , such that the triple (A0,F , αF ) constitutes stopping data for the

function f .

Proof. This is an easy exercise using (5.1.26) and (5.1.29), and is left for the reader.

5.1.11 Reduction to good functions

We begin with a specification of the various parameters that will arise during the proof, as

well as the extension of goodness introduced in [24].

Definition 5.1.20. The parameters r, τ and ρ will be fixed below to satisfy

τ > r and ρ > r + τ,

where r is the goodness parameter fixed in (5.2.16).

Let 0 < ε < 1 to be chosen later. Define J to be ε− good in a cube K if

d (J, skelK) > 2 |J |ε |K|1−ε ,
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where the skeleton skelK ≡
⋃

K′∈C(K)

∂K ′ of a cube K consists of the boundaries of all the

children K ′ of K. Define GD
(k,ε)−good to consist of those J ∈ G such that J is good in every

supercube K ∈ D that lies at least k levels above J . We also define J to be ε−good in a cube

K and beyond if J ∈ GD
(k,ε)−good where k = log2

`(K)
`(J)

. We can now say that J ∈ GD
(k,ε)−good

if and only if J is ε− good in πkJ and beyond. As the goodness parameter ε will eventually

be fixed throughout the proof, we sometimes suppress it, and simply say "J is good in a cube

K and beyond" instead of "J is ε− good in a cube K and beyond".

As pointed out on page 14 of [24] by Hytönen and Martikainen, there are subtle difficulties

associated in using dual martingale decompositions of functions which depend on the entire

dyadic grid, rather than on just the local cube in the grid. We will proceed at first in the

spirit of [24]. The goodness that we will infuse below into the main ‘below’ form Bbρ (f, g)

will be the Hytönen-Martikainen ‘weak’ goodness: every pair (I, J) ∈ D × G that arises in

the form Bbρ (f, g) will satisfy J ∈ GD
(k,ε)−good where ` (I) = 2k` (J).

It is important to use two independent random grids, one for each function f and g

simultaneously, as this is necessary in order to apply probabilistic methods to the dual

martingale averages �µ,bI that depend, not only on I, but also on the underlying grid in

which I lives. The proof methods for functional energy from [64] and [63] relied heavily on

the use of a single grid, and this must now be modified to accomodate two independent grids.

5.1.11.1 Parameterizations of dyadic grids

It is important to use two independent grids, one for each function f and g simultaneously,

as it is necessary in order to apply probabilistic methods to the dual martingale averages

�µ,bI that depend not only on I but also on the underlying grid in which I lives.

Now we recall the construction from the paper [67]. We momentarily fix a large positive
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integerM ∈ N, and consider the tiling of Rn by the family of cubes DM ≡
{
IMα

}
α∈Z

having

side length 2−M and given by IMα ≡ IM0 + α · 2−M where IM0 =
[
0, 2−M

)
. A dyadic grid

D built on DM is defined to be a family of cubes D satisfying:

1. Each I ∈ D has side length 2−` for some ` ∈ Z with ` ≤ M , and I is a union of

2n(M−`) cubes from the tiling DM ,

2. For ` ≤ M , the collection D` of cubes in D having side length 2−` forms a pairwise

disjoint decomposition of the space Rn,

3. Given I ∈ Di and J ∈ Dj with j ≤ i ≤M , it is the case that either I∩J = ∅ or I ⊂ J .

We now momentarily fix a negative integer N ∈ −N, and restrict the above grids to cubes

of side length at most 2−N :

DN ≡
{
I ∈ D : side length of I is at most 2−N

}
.

We refer to such grids DN as a (truncated) dyadic grid D built on DM of size 2−N . There are

now two traditional means of constructing probability measures on collections of such dyadic

grids, namely parameterization by choice of parent, and parameterization by translation.

Construction #1: Consider first the special case of dimension n = 1. For any

β = {βi}i∈ZNM
∈ ωNm ≡ {0, 1}

ZNM ,

where ZNM ≡ {` ∈ Z : N ≤ ` ≤M}, define the dyadic grid Dβ built on Dm of size 2−N by

Dβ =

2−`

[0, 1) + k +
∑

i: `<i≤M
2−i+`βi


N≤`≤M,k∈Z

(5.1.35)
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Place the uniform probability measure ρNM on the finite index space ωNM = {0, 1}Z
N
M , namely

that which charges each β ∈ ωNM equally. This construction is then extended to Euclidean

space Rn by taking products in the usual way and using the product index space ΩNM ≡

(ωNM )n and the uniform product probability measure µNM = ρNM × ...× ρ
N
M .

Construction #2: Momentarily fix a (truncated) dyadic grid D built on DM of size

2−N . For any

γ ∈ ΓNM ≡
{

2−MZn+ : |γi| < 2−N
}
,

where Zn+ = (N ∪ {0})n, define the dyadic grid Dγ built on Dm of size 2−N by

Dγ ≡ D + γ.

Place the uniform probability measure νNM on the finite index set ΓNM , namely that which

charges each multiindex γ in ΓNM equally.

The two probability spaces
({
Dβ
}
β∈ΩNM

, µNM

)
and

(
{Dγ}

γ∈ΓNM
, νNM

)
are isomorphic

since both collections
{
Dβ
}
β∈ΩNM

and {Dγ}
γ∈ΓNM

describe the set AN
M of all (truncated)

dyadic grids Dγ built on Dm of size 2−N , and since both measures µNM and νNM are the

uniform measure on this space. The first construction may be thought of as being parame-

terized by scales - each component βi in β = {βi}i∈ZNM
∈ ωNM amounting to a choice of the

two possible tilings at level i that respect the choice of tiling at the level below - and since

any grid in AN
M is determined by a choice of scales , we see that

{
Dβ
}
β∈ΩNM

= AN
M . The

second construction may be thought of as being parameterized by translation - each γ ∈ ΓNM

amounting to a choice of translation of the grid D fixed in construction #2 - and since any

grid in AN
M is determined by any of the cubes at the top level, i.e. with side length 2−N , we
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see that {Dγ}
γ∈ΓNM

= AN
M as well, since every cube at the top level in AN

M has the form

Q+γ for some γ ∈ ΓNM and Q ∈ D at the top level in AN
M (i.e. every cube at the top level in

AN
M is a union of small cubes in Dm, and so must be a translate of some Q ∈ D by an amount

2−M times an element of Z+). Note also that in all dimensions, #ΩNM = #ΓNM = 2n(M−N).

We will use E
ΩNM

to denote expectation with respect to this common probability measure

on AN
M .

Notation 5.1.21. For purposes of notation and clarity, we now suppress all reference to M

and N in our families of grids, and in the notations Ω and Γ for the parameter sets, and

we use PΩ and EΩ to denote probability and expectation with respect to families of grids,

and instead proceed as if all grids considered are unrestricted. The careful reader can supply

the modifications necessary to handle the assumptions made above on the grids D and the

functions f and g regarding M and N .

5.1.12 Formulas

We need the following formulas defined on Appendix A of [69].

Eµ,bQ f (x) ≡ 1Q (x)
1∫

Q bQdµ

∫
Q
fbQdµ, Q ∈ P , (5.1.36)

Fµ,bQ f (x) ≡ 1Q (x) bQ (x)
1∫

Q bQdµ

∫
Q
fdµ, Q ∈ P ,

F̂µ,bQ f (x) ≡ 1Q (x)
1∫

Q bQdµ

∫
Q
fdµ, Q ∈ P . (5.1.37)
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and

4µ,bQ f (x)≡

 ∑
Q′∈C(Q)

Eµ,b
Q′ f (x)

− Eµ,bQ f (x) =
∑

Q′∈C(Q)

1Q′(x)
(
Eµ,b
Q′ f(x)−Eµ,bQ f(x)

)
(5.1.38)

�µ,bQ f (x)≡

 ∑
Q′∈C(Q)

Fµ,b
Q′ f (x)

− Fµ,bQ f (x) =
∑

Q′∈C(Q)

1Q′ (x)
(
Fµ,b
Q′ f (x)− Fµ,bQ f (x)

)

We also need

5µQf ≡
∑

Q′∈Cbrok(Q)

(
1

|Q′|µ

∫
Q′
|f | dµ

)
1Q′ , (5.1.39)

5̂µQf ≡
∑

Q′∈Cbrok(Q)

(
1

|Q′|µ

∫
Q′
|f | dµ+

1

|Q|µ

∫
Q
|f | dµ

)
1Q′ ,

∑
Q∈D

∥∥∥5̂µQf∥∥∥2

L2(µ)
. ‖f‖2

L2(µ)
. (5.1.40)

and

�µ,π,bQ f =

 ∑
Q′∈C(Q)

Fµ,π,b
Q′ f

− Fµ,bQ f =
∑

Q′∈C(Q)

F
µ,bQ
Q′ f − F

µ,bQ
Q f, (5.1.41)

Fµ,π,bQ f = 1Q
bπQ∫

Q bπQdµ

∫
Q
fdµ, (5.1.42)

�µ,bQ = �µ,π,bQ �µ,π,bQ +�µ,bQ,brok and �µ,bQ = �µ,π,bQ +�µ,π,bQ,brok (5.1.43)

�µ,bQ,brokf =
∑

Q′∈Cbrok(Q)

F
µ,bQ′
Q′ f − F

µ,bQ
Q′ f,

∣∣∣�µ,π,bQ,brokf
∣∣∣ . ∣∣∣5̂µQf ∣∣∣ , (5.1.44)

with similar equalities and inequalities for4 and E. Here Cbrok (Q) denotes the set of broken

children, i.e. those Q′ ∈ C (Q) for which bQ′ 6= 1Q′bQ, and more generally and typically,
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Cbrok (Q) = C (Q) ∩ A where A is a collection of stopping cubes that includes the broken

children and satisfies a σ-Carleson condition and πQ is the dyadic father of Q.

Define another modified dual martingale difference by

�σ,[,bI f ≡ �σ,bI f −
∑

I′∈Cbrok(I)

Fσ,b
I′ f =

 ∑
I′∈Cnat(I)

Fσ,b
I′ f

− Fσ,bI f, (5.1.45)

where we have removed the averages over broken children from �σ,bI f , but left the average

over I intact. On any child I ′ of I, the function �σ,[,bI f is thus a constant multiple of bI ,

and so we have

�σ,[,bI f = bI
∑

I′∈C(I)

1I′E
σ
I′

(
1

bI
�σ,[,bI f

)
= bI

∑
I′∈C(I)

1I′E
σ
I′
(
�̂σ,[,bI f

)
; (5.1.46)

�̂σ,[,bI f ≡
∑

I′∈C(I)

1I′ E
σ
I′

(
1

bI
�σ,[,bI f

)
,

=
∑

I′∈Cnat(I)

1I′

[
1∫

I′ bIdµ

∫
I′
fdµ− 1∫

I bIdµ

∫
I
fdµ

]
−

∑
I′∈Cbrok(I)

1I′

[
1∫

I bIdµ

∫
I
fdµ

]

Thus for I ∈ CA we have

�σ,[,bI f = bA
∑

I′∈C(I)

1I′E
σ
I′
(
�̂σ,[,bI f

)
= bA�̂

σ,[,b
I f, (5.1.47)

where the averages Eσ
I′
(
�̂σ,[,bI f

)
satisfy the following telescoping property for all K ∈

(CA \ {A}) ∪
(⋃

A′∈CA(A)A
′
)
and L ∈ CA with K ⊂ L:

∑
I: πK⊂I⊂L

EσIK

(
�̂σ,[,bI f

)
=


−EσLF̂

σ
Lf if K ∈ CA (A)

EσK F̂σKf − E
σ
LF̂

σ
Lf if K ∈ CA

, (5.1.48)
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where F̂σK is defined in (5.1.37) above.

Finally, in analogy with the broken differences 4µ,π,bQ,brok and �µ,π,bQ,brok introduced above,

we define

4µ,[,bI,brok f ≡
∑

I′∈Cbrok(I)

Eσ,b
I′ f and �µ,[,bI,brokf ≡

∑
I′∈Cbrok(I)

Fσ,b
I′ f , (5.1.49)

so that

4µ,bI = 4µ,[,bI +4µ,[,bI,brok and �µ,bI = �µ,[,bI +�µ,[,bI,brok . (5.1.50)

These modified differences and the identities (5.1.47) and (5.1.48) play a useful role in the

analysis of the nearby and paraproduct forms.

Lemma 5.1.22. For dyadic cubes R and Q we have

4µ,bR 4
µ,b
Q =


4µ,bQ if R = Q

0 if R 6= Q

.

For the reader’s convenience we now collect the various martingale and probability es-

timates that will be used in the proof that follows. First we summarize the martingale

identities and estimates that we will use in our proof. Suppose µ is a positive locally finite

Borel measure, and that b is a ∞-weakly µ-controlled accretive family. Then,

Martingale identities: Both of the following identities hold pointwise µ-almost every-
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where, as well as in the sense of strong convergence in L2 (µ):

f =
∑

I∈D: I⊂I∞, `(I)≥2−N
�σ,bI f + Fσ,bI∞f,

f =
∑

I∈D: I⊂I∞, `(I)≥2−N
4σ,bI f + Eσ,bI∞f.

Frame estimates: Both of the following frame estimates hold:

‖f‖2
L2(µ)

≈
∑
Q∈D

{∥∥∥�µ,bQ f
∥∥∥2

L2(µ)
+
∥∥∥5µ,bQ f

∥∥∥2

L2(µ)

}
(5.1.51)

≈
∑
Q∈D

{∥∥∥4µ,bQ f
∥∥∥2

L2(µ)
+
∥∥∥5µ,bQ f

∥∥∥2

L2(µ)

}
.

Weak upper Riesz estimates: Define the pseudoprojections,

Ψ
µ,b
B f ≡

∑
I∈B
�µ,bI f, (5.1.52)(

Ψ
µ,b
B

)∗
f ≡

∑
I∈B

(
�µ,bI

)∗
f =

∑
I∈B
4µ,bI f.

We have the ‘upper Riesz’ inequalities for pseudoprojections Ψ
µ,b
B and

(
Ψ
µ,b
B

)∗
:

∥∥∥Ψ
µ,b
B f

∥∥∥2

L2(µ)
≤ C

∑
I∈B

∥∥∥�µ,bI f
∥∥∥2

L2(µ)
+
∑
I∈B

∥∥∥5̂µ,bI f
∥∥∥2

L2(µ)
, (5.1.53)

∥∥∥(Ψ
µ,b
B

)∗
f
∥∥∥2

L2(µ)
≤ C

∑
I∈B

∥∥∥4µ,bI f
∥∥∥2

L2(µ)
+
∑
I∈B

∥∥∥∥(5̂µ,bI )∗
f

∥∥∥∥2

L2(µ)
,

for all f ∈ L2 (µ) and all subsets B of the grid D. Here the positive constant C and depends

only on the accretivity constants, and is independent of the subset B and the testing family

b. The Haar martingale differences 4µ,bQ are independent of both the testing families and
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the grid, while the Carleson averaging operators 5µQ depend on the grid only through the

choice of broken children of Q.

5.1.13 Monotonicity Lemma

As in virtually all proofs of a two weight T1 theorem (see e.g. [27], [34] , [64] and/or [63]),

the key to starting an estimate for any of the forms we consider below, is the Monotonicity

Lemma and the Energy Lemma, to which we now turn. In dimension n = 1 ([34], [27])

the Haar functions have opposite sign on their children, and this was exploited in a simple

but powerful monotonicity argument. In higher dimensions, this simple argument no longer

holds and that Monotonicity Lemma is replaced with the Lacey-Wick formulation of the

Monotonicity Lemma (see [37], and also [63]) involving the smaller Poisson operator. As the

martingale differences with test functions bQ here are no longer of one sign on children, we

will adapt the Lacey-Wick formulation of the Monotonicity Lemma to the operator Tα and

the dual martingale differences
{
�ω,b

∗
J

}
J∈G

, bearing in mind that the operators �ω,b
∗

J are

no longer projections, which results in only a one-sided estimate with additional terms on

the right hand side. It is here that we need the crucial property that the Range of �ω,b
∗

J is

orthogonal to constants,
∫ (
�ω,b

∗
J Ψ

)
dσ =

∫ (
4σ,b

∗
J 1

)
Ψdω =

∫
(0) Ψdω = 0.

We will also need the smaller Poisson integral used in the Lacey-Wick formulation of the

Monotonicity Lemma,

Pα1+δ (J, µ) ≡
∫

|J |
1+δ
n

(|J |+ |y − cJ |)n+1+δ−αdµ (y) ,

which is discussed in more detail below.

Lemma 5.1.23 (Monotonicity Lemma). Suppose that I and J are cubes in Rn such that
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J ⊂ γJ ⊂ I for some γ > 1, and that µ is a signed measure on Rn supported outside I.

Let 0 < δ < 1 and let Ψ ∈ L2 (ω). Finally suppose that Tα is a standard fractional singular

integral on Rn with 0 ≤ α < 1, and suppose that b∗ is an ∞-weakly µ-controlled accretive

family on Rn. Then we have the estimate

∣∣∣〈Tαµ,�ω,b∗J Ψ
〉
ω

∣∣∣ . Cb∗CCZ Φα (J, |µ|)
∥∥∥�ω,b∗J Ψ

∥∥∥F
L2(ω)

, (5.1.54)

where

Φα (J, |µ|) ≡ Pα (J, |µ|)
|J |

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

+
Pα1+δ (J, |µ|)

|J |
‖x−mJ‖L2(1Jω) ,∥∥∥4ω,b∗J x

∥∥∥♠2

L2(ω)
≡

∥∥∥4ω,b∗J x
∥∥∥2

L2(ω)
+ inf
z∈R

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω (EωJ ′ |x− z|)2
,

∥∥∥�ω,b∗J Ψ
∥∥∥F2

L2(µ)
≡

∥∥∥�ω,b∗J Ψ
∥∥∥2

L2(µ)
+

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω [EωJ ′ |Ψ|]2 .
All of the implied constants above depend only on γ > 1, 0 < δ < 1 and 0 < α < 1.

Using5ωJh =
∑

J ′∈Cbrok(J)

(
Eω
J ′ |h|

)
1J ′ defined in (5.1.39), we can rewrite the expressions

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
and

∥∥∥�ω,b∗J Ψ
∥∥∥F2

L2(µ)
as

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
≡

∥∥∥4ω,b∗J x
∥∥∥2

L2(ω)
+ inf
z∈R

∥∥5ωJ (x− z)
∥∥2
L2(ω) ,∥∥∥�ω,b∗J Ψ

∥∥∥F2

L2(µ)
≡

∥∥∥�ω,b∗J Ψ
∥∥∥2

L2(µ)
+
∥∥5ωJΨ

∥∥2
L2(ω) .
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Proof. Using �ω,b
∗

J = �ω,π,b
∗

J �ω,π,b
∗

J +�ω,π,b
∗

J,brok , we write

∣∣∣〈Tαµ,�ω,b∗J Ψ
〉
ω

∣∣∣ =
∣∣∣〈Tαµ,(�ω,π,b∗J �ω,π,b

∗
J +�ω,π,b

∗
J,brok

)
Ψ
〉
ω

∣∣∣
≤

∣∣∣〈Tαµ,�ω,π,b∗J �ω,π,b
∗

J Ψ
〉
ω

∣∣∣+
∣∣∣〈Tαµ,�ω,π,b∗J,brok Ψ

〉
ω

∣∣∣
≡ I + II.

Since
〈

1,�ω,π,b
∗

J h
〉
ω

= 0, we use mJ =
1

|J |ω

∫
J
xdω (x) to obtain

Tαµ (x)− Tαµ (mJ ) =

∫
[(Kα) (x, y)− (Kα) (mJ , y)] dµ (y)

=

∫ [
∇(Kα)T (θ (x,mJ ) , y) · (x−mJ )

]
dµ (y)

for some θ (x,mJ ) ∈ J to obtain

I =

∣∣∣∣∫ [Tαµ (x)− Tαµ (mJ )] �ω,π,b
∗

J �ω,π,b
∗

J Ψ (x) dω (x)

∣∣∣∣
=

∣∣∣∣∫ {∫ ∇(Kα)T (θ (x,mJ )) dµ (y)

}
· (x−mJ ) �ω,π,b

∗
J �ω,π,b

∗
J Ψ (x) dω (x)

∣∣∣∣
≤

∣∣∣∣∫ {∫ ∇(Kα)T (mJ , y) dµ (y)

}
· (x−mJ ) �ω,π,b

∗
J �ω,π,b

∗
J Ψ (x) dω (x)

∣∣∣∣
+

∣∣∣∣∣
∫ {∫ [

∇(Kα)T (θ (x,mJ ) , y)−∇(Kα)T (mJ , y)
]
dµ (y)

}

·(x−mJ ) �ω,π,b
∗

J �ω,π,b
∗

J Ψ (x) dω (x)

∣∣∣∣∣
≡ I1 + I2
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Now we estimate

I1 =

∣∣∣∣∣
[∫
∇(Kα) (mJ , y) dµ (y)

]T
·
∫

(x−mJ ) �ω,π,b
∗

J �ω,π,b
∗

J Ψ (x) dω (x)

∣∣∣∣∣
≤ n

∫ ∫
|∇(Kα) (mJ , y)| d|µ| (y)

∣∣∣4ω,π,b∗J x
∣∣∣ ∣∣∣�ω,π,b∗J Ψ (x)

∣∣∣ dω (x)

. n · CCZ
Pα (J, |µ|)

|J |
1
n

∥∥∥4ω,π,b∗J x
∥∥∥
L2(ω)

∥∥∥�ω,π,b∗J Ψ
∥∥∥
L2(ω)

and

I2 . CCZ
Pα1+δ (J, |µ|)

|J |
1
n

∫
|x−mJ |

∣∣∣�ω,π,b∗J �ω,π,b
∗

J Ψ (x)
∣∣∣ dω (x)

. CCZ
Pα1+δ (J, |µ|)

|J |

√∫
J
|x−mJ |2 dω (x)

∥∥∥�ω,π,b∗J �ω,π,b
∗

J Ψ
∥∥∥
L2(ω)

. CCZ
Pα1+δ (J, |µ|)

|J |
‖x−mJ‖L2(1Jω)

∥∥∥�ω,π,b∗J Ψ
∥∥∥
L2(ω)

.

For term II we fix z ∈ J for the moment. Then since

〈
1,�ω,b

∗
J,brokh

〉
ω

=
〈

1,�ω,b
∗

J h−�ω,π,b
∗

J h
〉
ω

= 0

we have

II =
∣∣∣〈Tαµ,�ω,b∗J,brokΨ

〉
ω

∣∣∣
=

∣∣∣∣∫ {∫ ∇(Kα)T (θ (x, z) , y) dµ (y)

}
· (x− z) �ω,π,b

∗
J,brok Ψ (x) dω (x)

∣∣∣∣
≤ CCZ

Pα (J, |µ|)

|J |
1
n

∫
|x− z| ·

∣∣∣�ω,π,b∗J,brok Ψ (x)
∣∣∣dω(x)

≤ CCZ
Pα (J, |µ|)

|J |
1
n

∑
J ′∈Cbrok(J)

∫
J ′
|x− z| · 1J ′E

ω
J ′ |Ψ| dω(x)
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having used the reverse Hölder control of children (5.1.23) to obtain

∣∣∣�ω,b∗J,brokΨ
∣∣∣ =

∣∣∣∣∣∣∣
∑

J ′∈Cbrok(JQ)

(
F
ω,bJ ′
J ′ − Fω,bJ

J ′

)
Ψ

∣∣∣∣∣∣∣ .
∑

J ′∈Cbrok(J)

1J ′E
ω
J ′ |Ψ| ,

and since

∫
J ′
|x− z| · 1J ′E

ω
J ′ |Ψ| dω(x) =

∫
J ′
|x− z|√
|J ′|ω

1J ′
∫
J ′ |Ψ|dω(x)√
|J ′|ω

dω(x)

we get

II ≤ CCZ
Pα (J, |µ|)

|J |
1
n

√√√√ ∑
J ′∈Cbrok(J)

|J ′|ω
(
Eω
J ′ |x− z|

)2
√√√√ ∑
J ′∈Cbrok(J)

|J ′|ω
[
Eω
J ′ |Ψ|

]2
.

Combining the estimates for terms I and II, we obtain

∣∣∣〈Tαµ,�ω,b∗J Ψ
〉
ω

∣∣∣
. CCZ

Pα (J, |µ|)

|J |
1
n

∥∥∥4ω,π,b∗J x
∥∥∥
L2(ω)

∥∥∥�ω,π,b∗J Ψ
∥∥∥
L2(ω)

+ CCZ
Pα1+δ (J, |µ|)

|J |
1
n

‖x−mJ‖L2(1Jω)

∥∥∥�ω,π,b∗J Ψ
∥∥∥
L2(ω)

+ CCZ
Pα (J, |µ|)

|J |
1
n

inf
z∈J

√√√√ ∑
J ′∈Cbrok(J)

|J ′|ω
(
Eω
J ′ |x− z2|

)2
√√√√ ∑
J ′∈Cbrok(J)

|J ′|ω
[
Eω
J ′ |Ψ|

]2

and then noting that the infimum over z ∈ R is achieved for z ∈ J , and using the triangle

inequality on �ω,π,b
∗

J = �ω,b
∗

J −�ω,π,b
∗

J,brok we get (5.1.54).

The right hand side of (5.1.54) in the Monotonicity Lemma will be typically estimated
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in what follows using the frame inequalities for any cube K,

∑
J⊂K

∥∥∥�ω,b∗J Ψ
∥∥∥F2

L2(ω)
. ‖Ψ‖2

L2(ω)
,

∑
J⊂K

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
.

∫
K
|x−mK |2 dω (x) ,

together with these inequalities for the square function expressions. To see the last one,

write x = (x1, . . . , xn) and note that for J ⊂ K,

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
=

∫
J

∣∣∣4ω,b∗J x
∣∣∣2 dω =

∫
J

n∑
i=1

∣∣∣4ω,b∗J xi

∣∣∣2 dω
≤

n∑
i=1

∫
K
|xi −mKi|

2 dω= ||x−mk||2L2(1Kω)

using the one-variable result from [69].

Lemma 5.1.24. For any cube K we have

∑
J⊂K

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω [EωJ ′ |Ψ| (x)
]2
.

∫
K
|Ψ (x)|2 dω (x) , (5.1.55)

and
∑
J⊂K

inf
z∈R

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω (EωJ ′ |x− z|)2
.

∫
K
|x−mK |2 dω (x) .

Proof. The first inequality in (5.1.55) is just the Carleson embedding theorem since the cubes{
J ′ ∈ Cbrok (J) : J ⊂ K

}
satisfy an ω-Carleson condition, and the second inequality in

(5.1.55) follows by choosing z = mK to obtain

inf
z∈R

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω (EωJ ′ |x− z|)2
≤

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω (EωJ ′ |x−mK |
)2
,
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and then applying the Carleson embedding theorem again:

∑
J⊂K

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω (EωJ ′ |x−mK |
)2
.
∫
K
|x−mK |2 dω (x) .

5.1.13.1 The smaller Poisson integral

The expressions

inf
z∈R

Pα1+δ (J, |µ|)
|J |

‖x− z‖
L2(1Jω)

∥∥∥�ω,b∗J Ψ
∥∥∥F
L2(ω)

are typically easier to sum due to the small Poisson operator Pα1+δ (J, |µ|). To illlustrate, we

show here one way in which we can exploit the additional decay in the Poisson integral Pα1+δ.

Suppose that J is good in I with ` (J) = 2−s` (I) (see Definition 5.2.5 below for ‘goodness’).

We then compute

Pα1+δ

(
J,1A\Iσ

)
|J |

1
n

≈
∫
A\I

|J |
δ
n

|y − cJ |n+1+δ−αdσ (y)

≤
∫
A\I

 |J |
1
n

dist (cJ , I
c)

δ 1

|y − cJ |n+1−αdσ (y)

.

 |J |
1
n

dist (cJ , I
c)

δ Pα
(
J,1A\Iσ

)
|J |

1
n

,

and use the goodness inequality,

dist (cJ , I
c) ≥ 2` (I)1−ε ` (J)ε ≥ 2 · 2s(1−ε)` (J) ,
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to conclude that Pα1+δ

(
J,1A\Iσ

)
|J |

1
n

 . 2−sδ(1−ε)
Pα
(
J,1A\Iσ

)
|J |

1
n

(5.1.56)

Now we can estimate

∑
J⊂K: J good in K

inf
z∈R

Pα1+δ (J,1Kc |µ|)

|J |
1
n

‖x− z‖
L2(1Jω)

∥∥∥�ω,b∗J Ψ
∥∥∥F
L2(ω)

≤

√√√√√√ ∑
J⊂K

J good in K

Pα1+δ (J,1Kc |µ|)

|J |
1
n

2

inf
z∈R
‖x− z‖2

L2(1Jω)

√√√√√ ∑
J⊂K

J good in K

∥∥∥�ω,b∗J Ψ
∥∥∥F2

L2(ω)

where

∑
J⊂K: J good in K

(
Pα1+δ (J,1Kc |µ|)

|J |

)2

inf
z∈R
‖x− z‖2

L2(1Jω)

=
∞∑
s=0

∑
J⊂K: J good in K
`(J)=2−s`(I)

(
Pα1+δ (J,1Kc |µ|)

|J |

)2

inf
z∈R
‖x− z‖2

L2(1Jω)

≤
∞∑
s=0

∑
J⊂K: J good in K
`(J)=2−s`(I)

2−sδ(1−ε)
Pα (J,1Kcσ)

|J |
1
n

2

inf
z∈R
‖x− z‖2

L2(1Jω)

≤

Pα (K,1Kcσ)

|K|
1
n

2 ∞∑
s=0

∑
J⊂K: J good in K
`(J)=2−s`(I)

2−2sδ(1−ε) inf
z∈R
‖x− z‖2

L2(1Kω)

.

Pα (K,1Kcσ)

|K|
1
n

2

inf
z∈R
‖x− z‖2

L2(1Kω)
,

and where we have used (5.5.10), which gives in particular

Pα(J, µ1Ic) .

(
` (J)

` (I)

)1−ε(n+1−α)

Pα(I, µ1Ic).
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for J ⊂ I and d (J, ∂I) > 2` (J)ε ` (I)1−ε. We will use such arguments repeatedly in the

sequel.

Armed with the Monotonicity Lemma and the lower frame inequality

∑
I∈D

∥∥∥�ω,b∗I g
∥∥∥F2

L2(µ)
. ‖g‖2

L2(ω)
,

we can obtain a b∗-analogue of the Energy Lemma as in [64] and/or [63].

5.1.13.2 The Energy Lemma

Suppose now we are given a subset H of the dyadic grid G. Due to the failure of both mar-

tingale and dual martingale pseudoprojections Qω,b
∗

H x and P
ω,b∗
H g (see below for definition)

to satisfy inequalities of the form
∥∥∥Pω,b∗H g

∥∥∥
L2(ω)

. ‖g‖
L2(ω)

when the children ‘break’, it is

convenient to define the ‘square function norms’
∥∥∥Qω,b∗H x

∥∥∥♠
L2(ω)

and
∥∥∥Pω,b∗H g

∥∥∥F
L2(ω)

of the

pseudoprojections

Q
ω,b∗
H x =

∑
J∈H
4ω,b

∗
J x and P

ω,b∗
H g =

∑
J∈H
�ω,b

∗
J g ,

by

∥∥∥Qω,b∗H x
∥∥∥♠2

L2(ω)
≡

∑
J∈H

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

=
∑
J∈H

∥∥∥4ω,b∗J x
∥∥∥2

L2(ω)
+
∑
J∈H

inf
z∈R

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω (EωJ ′ |x− z|)2

∥∥∥Pω,b∗H g
∥∥∥F2

L2(ω)
≡

∑
J∈H

∥∥∥�ω,b∗J g
∥∥∥F2

L2(ω)

=
∑
J∈H

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)
+
∑
J∈H

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω [EωJ ′ |g|]2
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for any subset H ⊂ G. The average EωJ |x− z| above is taken with respect to the variable x,

i.e. EωJ |x− z| =
1
|J |ω

∫
|x− z| dω (x), and it is important that the infimum infz∈R is taken

inside the sum
∑
J∈H.

Note that we are defining here square function expressions related to pseudoprojections,

which depend not only on the functions Q
ω,b∗
H x and P

ω,b∗
H g, but also on the particular

representations
∑
J∈H4

ω,b∗
J x and

∑
J∈H�

ω,b∗
J g. This slight abuse of notation should not

cause confusion, and it provides a useful way of bookkeeping the sums of squares of norms of

martingale and dual martingale differences
∥∥∥4ω,b∗J x

∥∥∥2

L2(ω)
and

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)
, along with

the norms of the associated Carleson square function expressions

∑
J∈H

inf
z∈R

∥∥∇ωJ (x− z)
∥∥2
L2(ω) =

∑
J∈H

inf
z∈R

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω (EωJ ′ |x− z|)2

∑
J∈H

∥∥∇ωJΨ
∥∥2
L2(ω) =

∑
J∈H

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω [EωJ ′ |Ψ|]2 .
Note also that the upper weak Riesz inequalities yield the inequalities

∥∥∥Qω,b∗H x
∥∥∥2

L2(ω)
.

∑
J∈H

∥∥∥4ω,b∗J x
∥∥∥2

L2(ω)
≤
∥∥∥Qω,b∗H x

∥∥∥♠2

L2(ω)∥∥∥Pω,b∗H g
∥∥∥2

L2(ω)
.

∑
J∈H

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)
≤
∥∥∥Pω,b∗H g

∥∥∥F2

L2(ω)

We will exclusively use
∥∥∥Qω,b∗H x

∥∥∥♠2

L2(ω)
in connection with energy terms, and use∥∥∥Pσ,b∗H f

∥∥∥F2

L2(σ)
and

∥∥∥Pω,b∗H g
∥∥∥F2

L2(ω)
in connection with functions f ∈ L2 (σ) and g ∈ L2 (ω).

Finally, note that Qω,b
∗

H x = Q
ω,b∗
H (x−m) for any constant m.
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Recall that

Φα (J, ν) ≡ Pα (J, ν)

|J |
1
n

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

+
Pα1+δ (J, ν)

|J |
1
n

‖x−mJ‖L2(1Jω) .

Lemma 5.1.25 (Energy Lemma). Let J be a cube in G. Let ΨJ be an L2 (ω) function

supported in J with vanishing ω-mean, and let H ⊂ G be such that J ′ ⊂ J for every J ′ ∈ H.

Let ν be a positive measure supported in R\γJ with γ > 1, and for each J ′ ∈ H, let

dνJ ′ = ϕJ ′dν with
∣∣ϕJ ′∣∣ ≤ 1. Suppose that b∗ is an ∞-weakly µ-controlled accretive family

on Rn. Let Tα be a standard α-fractional singular integral operator with 0 ≤ α < 1. Then

we have

∣∣∣∣∣∣
∑
J ′∈H

〈
Tα
(
νJ ′
)
,�ω,b

∗
J ′ ΨJ

〉
ω

∣∣∣∣∣∣ . Cγ
∑
J ′∈H

Φα
(
J ′, ν

) ∥∥∥�ω,b∗
J ′ ΨJ

∥∥∥F
L2(µ)

. Cγ

√∑
J ′∈H

Φα (J ′, ν)2

√√√√∑
J ′∈H

∥∥∥�ω,b∗
J ′ ΨJ

∥∥∥F2

L2(µ)

.

Pα (J, ν)

|J |

∥∥∥Qω,b∗H x
∥∥∥♠
L2(ω)

+
Pα1+δ (J, ν)

|J |
1
n

‖x−mJ‖L2(1Jω)

∥∥∥Pω,b∗H ΨJ

∥∥∥F
L2(µ)

and in particular the ‘energy’ estimate

|〈Tαϕν,ΨJ 〉ω|

≤Cγ

Pα (J, ν)

|J |
1
n

∥∥∥Qω,b∗J x
∥∥∥♠
L2(ω)

+
Pα1+δ (J, ν)

|J |
1
n

‖x−mJ‖L2(1Jω)

∥∥∥∥∥∥
∑
J ′⊂J
�ω,b

∗
J ′ ΨJ

∥∥∥∥∥∥
F

L2(µ)
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where

∥∥∥∥∥∥
∑
J ′⊂J

�ω,b
∗

J ′ ΨJ

∥∥∥∥∥∥
F

L2(µ)

. ‖ΨJ‖L2(µ)
, and the ‘pivotal’ bound

|〈Tα (ϕν) ,ΨJ 〉ω| . CγPα (J, |ν|)
√
|J |ω ‖ΨJ‖L2(ω)

,

for any function ϕ with |ϕ| ≤ 1.

Proof. Using the Monotonicity Lemma 5.1.23, followed by
∣∣νJ ′∣∣ ≤ ν, the Poisson equivalence

Pα
(
J ′, ν

)
|J ′|

1
n

≈ Pα (J, ν)

|J |
1
n

, J ′ ⊂ J ⊂ γJ, suppν ∩ γJ = ∅, (5.1.57)

and the weak frame inequalities for dual martingale differences, we have

∣∣∣∣∣∣
∑
J ′∈H

〈
Tα
(
νJ ′
)
,�ω,b

∗
J ′ ΨJ

〉
ω

∣∣∣∣∣∣ .
∑
J ′∈H

Φα
(
J ′, |µ|

) ∥∥∥�ω,b∗
J ′ ΨJ

∥∥∥F
L2(µ)

.

∑
J ′∈H

Pα
(
J ′, ν

)
|J ′|

1
n

2 ∥∥∥4ω,b∗
J ′ x

∥∥∥♠2

L2(ω)


1
2 ∑

J ′∈H

∥∥∥�ω,b∗
J ′ ΨJ

∥∥∥F2

L2(ω)

1
2

+

∑
J ′∈H

Pα1+δ

(
J ′, |µ|

)
|J ′|

1
n

2 ∥∥x−mJ ′
∥∥2

L2
(
1J ′ω

)


1
2 ∑

J ′∈H

∥∥∥�ω,b∗
J ′ ΨJ

∥∥∥F2

L2(ω)

1
2

.
Pα (J, ν)

|J |
1
n

∥∥∥Qω,b∗H x
∥∥∥♠
L2(ω)

‖ΨJ‖L2(ω)
+

1

γδ
′
Pα

1+δ′ (J, ν)

|J |
1
n

‖x−mJ‖L2(1Jω)‖ΨJ‖L2(ω)
.
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The last inequality follows from the following calculation using Haar projections 4ωK :

∑
J ′∈H

Pα1+δ

(
J ′, ν

)
|J ′|

1
n

2 ∥∥x−mJ ′
∥∥2

L2
(
1J ′ω

) (5.1.58)

=
∑
J ′∈H

Pα1+δ

(
J ′, ν

)
|J ′|

1
n

2 ∑
J ′′⊂J ′

∥∥∥4ωJ ′′x∥∥∥2

L2(ω)

=
∑
J ′′⊂J


∑

J ′: J ′′⊂J ′⊂J

Pα1+δ

(
J ′, ν

)
|J ′|

1
n

2

∥∥∥4ωJ ′′x∥∥∥2

L2(ω)

.
1

γ2δ′
∑
J ′′⊂J

Pα
1+δ′

(
J ′′, ν

)
|J ′′|

1
n

2 ∥∥∥4ωJ ′′x∥∥∥2

L2(ω)

≤ 1

γ2δ′

Pα
1+δ′ (J, ν)

|J |
1
n

2 ∑
J ′′⊂J

∥∥∥4ωJ ′′x∥∥∥2

L2(ω)
,

which in turn follows from (recalling δ = 2δ′ and
∣∣J ′∣∣ 1n +

∣∣y − cJ ′∣∣ ≈ |J | 1n + |y − cJ | and

|J |
|J |+|y−cJ |

≤ 1
γ for y ∈ Rn\γJ)

∑
J ′: J ′′⊂J ′⊂J

Pα1+δ

(
J ′, ν

)
|J ′|

1
n

2

=

∑
J ′: J ′′⊂J ′⊂J

∣∣J ′∣∣2δn (∫
Rn\γJ

1(
|J ′|

1
n +

∣∣y − cJ ′∣∣)n+1+δ−αdν (y)

)2

.
∑

J ′: J ′′⊂J ′⊂J

1

γ2δ′

∣∣J ′∣∣2δn
|J |

2δ
n

(∫
Rn\γJ

|J |
δ′
n(

|J |
1
n + |y − cJ |

)n+1+δ′−α
dν (y)

)2

=
1

γ2δ′

 ∑
J ′: J ′′⊂J ′⊂J

∣∣J ′∣∣2δn
|J |

2δ
n

Pα
1+δ′ (J, ν)

|J |
1
n

2

.
1

γ2δ′

Pα
1+δ′ (J, ν)

|J |
1
n

2

.
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Finally we obtain the ‘energy’ estimate from the equality

ΨJ =
∑
J ′⊂J

�ω,b
∗

J ′ ΨJ , (since ΨJ has vanishing ω-mean),

and we obtain the ‘pivotal’ bound from the inequality

∑
J ′′⊂J

∥∥∥4ω,b∗
J ′′ x

∥∥∥♠2

L2(ω)
. ‖(x−mJ )‖2

L2(1Jω)
≤ |J |2 |J |ω .

5.1.14 Organization of the proof

We adapt the proof of the main theorem in [66], but beginning instead with the decomposition

of Hytönen and Martikainen [24], to obtain the norm inequality

NTα . Tb
Tα + Tb∗

Tα +
√

Aα2 + Eα2

under the apriori assumption NTα <∞, which is achieved by considering one of the trun-

cations Tασ,δ,R defined in (5.1.3) above. This will be carried out in the next four sections of

this paper. In the next section we consider the various form splittings and reduce matters to

the disjoint form, the nearby form and the main below form. Then these latter three forms

are taken up in the subsequent three sections, using material from the appendices.

A major source of difficulty will arise in the infusion of goodness for the cubes J into

the below form where the sum is taken over all pairs (I, J) such that ` (J) ≤ ` (I). We

will infuse goodness in a weak way pioneered by Hytönen and Martikainen in a one weight

setting. This weak form of goodness is then exploited in all subsequent constructions by
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typically replacing J by Jz in defining relations, where Jz is the smallest cube K for which

J is good w.r.t. K and beyond.

Another source of difficulty arises in the treatment of the nearby form in the setting of

two weights. The one weight proofs in [24] and [29] relied strongly on a property peculiar

to the one weight setting - namely the fact already pointed out in Remark 5.1.6 above

that both of the Poisson integrals are bounded, namely Pα (Q, µ) . 1 and Pα (Q, µ) . 1.

We will circumvent this difficulty by combining a recursive energy argument with the full

testing conditions assumed for the original testing functions borigQ , before these conditions

were suppressed by corona constructions that delivered only weak testing conditions for the

new testing functions bQ.

Of particular importance will be a result proved in Appendices A that follow from known

work with some new twists. We show that the functional energy for an arbitrary pair of

grids is controlled by the Muckenhoupt and energy side conditions. The somewhat lengthy

proof of this latter assertion is similar to the corresponding proof in the T1 setting - see e.g.

[66] - but requires a different decomposition of the stopping cubes into ‘Whitney cubes’ in

order to accomodate the weaker notion of goodness used here.

5.2 Form splittings

Notation 5.2.1. Fix grids D and G. We will use D to denote the grid associated with

f ∈ L2 (σ), and we will use G to denote the grid associated with g ∈ L2 (ω).

Now we turn to the probability estimates for martingale differences and halos that we

will use. Recall that given
−→
λ = (λ1, ..., λn), 0 < λi <

1
2 for all 1 ≤ i ≤ n, the λ-halo of J is
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defined to be

∂−→
λ
J ≡

(
1 +
−→
λ
)
J\
(

1−
−→
λ
)
J.

Suppose µ is a positive locally finite Borel measure, and that b is a p-weakly µ-controlled

accretive family for some p > 2. Then the following probability estimate holds.

Bad cube probability estimates. Suppose that D and G are independent random dyadic

grids. With Ψ
µ,b∗

GD
k−bad

g ≡
∑
J∈GD

k−bad
�µ,b

∗
J g equal to the pseudoprojection of g onto k-bad

G-cubes, we have

EDΩ

∥∥∥∥∥Ψ
µ,b∗

GD
k−bad

g

∥∥∥∥∥
2

L2(µ)

 . EDΩ

 ∑
J∈GD

k−bad

[∥∥∥�µ,b∗J,G g
∥∥∥2

L2(µ)
+
∥∥∥∇µJ,Gg∥∥∥2

L2(µ)

]
≤ Ce−kε ‖g‖2

L2(µ)
, (5.2.1)

where the first inequality is the ‘weak upper half Riesz’ inequality from Appendix A of

[69] for the pseudoprojection Ψ
µ,b∗

GD
k−bad

, and the second inequality is proved using the frame

inequality in (5.2.10) below.

Halo probability estimates. Suppose that D and G are independent random grids.

Using the parameterization by translations of grids and taking the average over certain

translates τ +D of the grid D we have

EDΩ
∑

I′∈D: `(I′)≈`(J ′)

∫
J ′∩∂δI′

dω . δ

∫
J ′
dω, J ′ ∈ C (J) , J ∈ G, (5.2.2)

EGΩ
∑

J ′∈G: `(J ′)≈`(I′)

∫
I′∩∂δJ ′

dσ . δ

∫
I′
dσ, I ′ ∈ C (I) , I ∈ D,
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and where the expectations EDΩ and EGΩ are taken over grids D and G respectively. Indeed,

it is geometrically evident that for any fixed pair of side lengths `1 ≈ `2, the average of the

measure
∣∣J ′ ∩ ∂δI ′∣∣ω of the set J ′ ∩ ∂δI ′, as a cube I ′ ∈ D with side length `

(
I ′
)

= `1 is

translated across a cube J ′ ∈ G of side length `
(
J ′
)

= `2, is at most C
∣∣J ′∣∣ω. Using this

observation it is now easy to see that (5.2.2) holds.

In the σ-iterated corona construction we redefined the family b =
{
bQ
}
Q∈D so that the

new functions bnewQ are given in terms of the original functions borigQ by bnewQ = 1Qb
orig
A for

Q ∈ CσA, and of course we then dropped the superscript new. We continue to refer to the

triple stopping cubes A as ‘breaking’ cubes even if bA happens to equal 1AbπA. The results

of Appendix A of [69] apply with this more inclusive definition of ‘breaking’ cubes, and

the associated definition of ‘broken’ children, since only the Carleson condition on stopping

cubes is relevant here.

This and Proposition 5.1.19 give us the triple corona decomposition of f =
∑
A∈A

PσCA
f ,

where the pseudoprojection PσCA
is defined as:

PσCA
f =

∑
I∈CA

�µ,bI f

We now record the main facts proved above for the triple corona.

Lemma 5.2.2. Let f ∈ L2(σ). We have

f =
∑
A∈A

PσCA
f

both in the sense of norm convergence in L2 (σ) and pointwise σ-a.e. The corona tops A and

stopping bounds {αA (A)}A∈A satisfy properties (1), (2), (3) and (4) in Definition 5.1.18,
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hence constitute stopping data for f . Moreover, b = {bI}I∈D is a ∞-weakly σ-controlled

accretive family on D with corona tops A ⊂ D, where bI = 1IbA for all I ∈ CA, and the

weak corona forward testing condition holds uniformly in coronas, i.e.

1

|I|σ

∫
I
|Tασ bA|

2 dσ ≤ C, I ∈ CσA .

Similar statements hold for g ∈ L2(ω).

We have defined corona decompositions of f and g in the σ-iterated triple corona con-

struction above, but in order to start these corona decompositions for f and g respectively

within the dyadic grids D and G, we need to first restrict f and g to be supported in a

large common cube Q∞. Then we cover Q∞ with 2n pairwise disjoint cubes I∞ ∈ D with

` (I∞) = ` (Q∞), and similarly cover Q∞ with 2n pairwise disjoint cubes J∞ ∈ G with

` (J∞) = ` (Q∞). We can now use the broken martingale decompositions, together with

random surgery, to reduce matters to consideration of the four forms

∑
I∈D: I⊂I∞

∑
J∈G: J⊂J∞

∫ (
Tασ �

σ,b
I f

)
�ω,b

∗
J gdω,

with I∞ and J∞ as above, and where we can then use the cubes I∞ and J∞ as the starting

cubes in our corona constructions below. Indeed, the identities in [24, Lemma 3.5]), give

f =
∑

I∈D: I⊂I∞, `(I)≥2−N
�σ,bI f + Fσ,bI∞f,

g =
∑

J∈G: J⊂J∞, `(J)≥2−N
�ω,b

∗
J g + Fω,b

∗
J∞ g,
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which can then be used to write the bilinear form
∫

(Tσf) gdω as a sum of the forms

∑
2n+1pairs
(I∞,J∞)


∑
I∈D
I⊂I∞

∑
J∈G
J⊂J∞

∫ (
Tασ �

σ,b
I f

)
�ω,b

∗
J gdω +

∑
I∈D
I⊂I∞

∫ (
Tασ �

σ,b
I f

)
Fω,b

∗
J∞ gdω

+
∑

J∈G: J⊂J∞

∫ (
Tασ F

σ,b
I∞f

)
�ω,b

∗
J gdω +

∫ (
Tασ F

σ,b
I∞f

)
Fω,b

∗
J∞ gdω

 (5.2.3)

taken over the 2n+1 pairs of cubes (I∞, J∞) above. The second, third and fourth sums in

(5.2.3) can be controlled using testing and random surgery. For example, for the second sum

we have

∣∣∣∣∣∣
∑

I∈D: I⊂I∞

∫ (
Tασ �

σ,b
I f

)
Fω,b

∗
J∞ gdω

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
I∞∩J∞

 ∑
I∈D: I⊂I∞

�σ,bI f

T
α,∗
ω

(
Fω,b

∗
J∞ g

)
dσ

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
I∞∩((1+δ)J∞\J∞)

 ∑
I∈D: I⊂I∞

�σ,bI f

T
α,∗
ω

(
Fω,b

∗
J∞ g

)
dσ

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
I∞\(1+δ)J∞

 ∑
I∈D: I⊂I∞

�σ,bI f

T
α,∗
ω

(
Fω,b

∗
J∞ g

)
dσ

∣∣∣∣∣∣
≡ A1 + A2 + A3

So we are left with bounding A1, A2, A3. We have

A1 ≤

∫
I∞

∣∣∣∣∣∣
∑

I∈D: I⊂I∞
�σ,bI f

∣∣∣∣∣∣
2

dσ


1
2 (∫

J∞

∣∣∣Tα,∗ω

(
Fω,b

∗
J∞ g

)∣∣∣2 dσ)1
2
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and since Fω,b
∗

J∞ g = b∗J∞
EωJ∞g

EωJ∞b∗J∞
is b∗J∞ times an ‘accretive’ average of g on J∞, we get

A1 ≤

∥∥∥∥∥∥
∑

I∈D: I⊂I∞
�σ,bI f

∥∥∥∥∥∥
L2(σ)

(∫
J∞

∣∣∣Tα,∗ω (1J∞b
∗
J∞)

∣∣∣2 dσ)1
2
|EωJ∞g| ·

1

cb∗ |J∞|ω

. Tb*
Tα,∗ ‖f‖L2(σ)

‖g‖
L2(ω)

where in the last inequality we used the frame estimates (5.1.51) and the dual testing con-

dition on b∗J∞ .

For A2 we use expectation on the grid G.

EGA2 ≤ EG
∫
I∞∩[(1+δ)J∞\J∞]

∣∣∣∣∣∣
∑

I∈D: I⊂I∞
�σ,bI f

∣∣∣∣∣∣
∣∣∣Tα,∗ω

(
Fω,b

∗
J∞ g

)∣∣∣ dσ

≤EG

∫
I∞∩[(1+δ)J∞\J∞]

∣∣∣∣∣∣
∑

I∈D: I⊂I∞
�σ,bI f

∣∣∣∣∣∣
2

dσ


1
2(∫ ∣∣∣Tα,∗ω

(
Fω,b

∗
J∞ g

)∣∣∣2dσ)12

≤

EG
∫
I∞∩[(1+δ)J∞\J∞]

∣∣∣∣∣∣
∑

I∈D: I⊂I∞
�σ,bI f

∣∣∣∣∣∣
2

dσ


1
2 (

NTα

∫
|g|2 dω

)1
2

≤

Cδ ∫
I∞

∣∣∣∣∣∣
∑

I∈D: I⊂I∞
�σ,bI f

∣∣∣∣∣∣
2

dσ


1
2 (

NTα

∫
|g|2 dω

)1
2

≤
√
CδNTα ‖f‖L2(σ)

‖g‖
L2(ω)

Finally for A3 we use lemma 5.4.3 since dist(I∞\(1 + δ)J∞, J∞) ≈ δ`(J∞) to get

A3 .
√

Aα2 δ
α−n ‖f‖

L2(σ)
‖g‖

L2(ω)
.
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Altogether we get

EGΩ

∣∣∣∣∣∣∣∣
∑
I∈D
I⊂I∞

∫ (
Tασ �

σ,b
I f

)
Fω,b

∗
J∞ gdω

∣∣∣∣∣∣∣∣.
(
Tb
Tα+

√
Aα2 δ

α−n+δNTα

)
‖f‖

L2(σ)
‖g‖

L2(ω)

Similarly we deal with the third and fourth sum of (5.2.3). We are left to deal with the first

sum in (5.2.3).

5.2.1 The Hytönen-Martikainen decomposition and weak goodness

Now we turn to the various splittings of forms, beginning with the two weight analogue

of the decomposition of Hytönen and Martikainen [24]. Let b (respectively b∗) be a ∞-

weakly σ-controlled (respectively ω-controlled) accretive family. Fix the stopping data A

and {αA (A)}A∈A and dual martingale differences �σ,bI constructed above with the triple

iterated coronas, as well as the corresponding data for g. We are left with the estimation of

the bilinear form
∫

(Tσf) gdω to that of the sum

∑
I∈D

∑
J∈G

∫ (
Tασ �

σ,b
I f

)
�ω,b

∗
J gdω,

We split the form 〈Tασ f, g〉ω into the sum of two essentially symmetric forms by cube size,

∫
(Tσf) gdω =


∑

I∈D: J∈G
`(J)≤`(I)

+
∑

I∈D: J∈G
`(J)>`(I)


∫ (

Tασ �
σ,b
I f

)
�ω,b

∗
J gdω, (5.2.4)

≡ Θ(f, g) + Θ∗(f, g)
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and focus on the first sum,

Θ (f, g) =
∑

I∈D and J∈G: `(J)≤`(I)

〈
Tασ �

σ,b
I f,�ω,b

∗
J

〉
ω
,

since the second sum is handled dually, but is easier due to the missing diagonal. Before

introducing goodness into the sum, we follow [24] and split the form Θ (f, g) into 3 pieces:

∑
I∈D


∑

J∈G: `(J)≤`(I)

d(J,I)>2`(J)ε`(I)1−ε

+
∑

J∈G: `(J)≤2−r`(I)

d(J,I)≤2`(J)ε`(I)1−ε

+
∑

J∈G: 2−r`(I)<`(J)≤`(I)

d(J,I)≤2`(J)ε`(I)1−ε


〈
Tασ �

σ,b
I f,�ω,b

∗
J

〉
ω

≡ Θ1 (f, g) + Θ2 (f, g) + Θ3 (f, g) ,

where ε > 0 will be chosen to satisfy 0 < ε < 1
n+1−α later. Now the disjoint form Θ1 (f, g)

can be handled by ‘long-range’ and ‘short-range’ arguments which we give in a section below,

and the nearby form Θ3 (f, g) will be handled using surgery methods and a new recursive

argument involving energy conditions and the ‘original’ testing functions discarded in the

corona construction. The remaining form Θ2(f, g) will be treated further in this section after

introducing weak goodness.

5.2.1.1 Good cubes with ‘body’

. We begin with the weaker extension of goodness introduced in [24], except that we will

make it a bit stronger by replacing the skeleton ‘skelK’ of a cube K, as used in [24], by a

larger collection of points ‘bodyK’, which we call the dyadic body of K. This modification

will prove useful in establishing the Straddling Lemma in the treatment of the stopping form

in Section 5.6 below. Let P denote the collection of all cubes in Rn. The content of the
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next four definitions is inspired by, or sometimes identical with, that already appearing in

the work of Nazarov, Treil and Volberg in [41] and [43].

Definition 5.2.3. Given a dyadic cube K ∈ Rn, we define W (K) to be the Whitney cubes

in K. Namely, S ∈ W (K) if:

• 3S ⊂ K.

• S′ ∩ S 6= ∅ and 3S′ ⊂ K imply S′ ⊂ S.

Definition 5.2.4. We define the dyadic body ‘bodyK’ of a dyadic cube K ∈ Rn by

bodyK =
⋃

S∈W (K)

∂S

where ∂S is the boundary of S.

Definition 5.2.5. Let 0 < ε < 1. For dyadic cubes J,K ∈ Rn with `(J) ≤ `(K) we define

J to be ε−good in K if

dist(J, bodyK) > 2`(J)ε`(K)1−ε (5.2.5)

and we say it is ε−bad in K if (5.2.5) fails.

Definition 5.2.6. Let D and G be two dyadic grids in Rn. Define GD
(k,ε)−good to consist

of those cubes J ∈ G such that J is ε−good inside every cube K ∈ D with K ∩ J 6= ∅ and

`(K) ≥ 2k`(J).

5.2.1.2 Grid probability

As pointed out on page 14 of [24] by Hytönen and Martikainen, there are subtle difficulties

associated in using dual martingale decompositions of functions which depend on the entire
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dyadic grid, rather than on just the local cube in the grid. We will proceed at first in

the spirit of [24], and the goodness that we will infuse below into the main ‘below’ form

Bbr (f, g) will be the Hytönen-Martikainen ‘weak’ version of NTV goodness, but using the

body ‘bodyI’ of a cube rather than its skeleton ‘skelI’: every pair (I, J) ∈ D×G that arises

in the form Bbr (f, g) will satisfy J ∈ GD
(k,ε)−good where ` (I) = 2k` (J).

Now we return to the martingale differences �σ,bI and �ω,b
∗

J with controlled families b

and b∗ in Rn. When we want to emphasize that the grid in use is D or G, we will denote

the martingale difference by �σ,bI,D, and similarly for �ω,b
∗

J,G . Recall Definition 5.2.5 for the

meaning of when an cube J is ε-bad with respect to another cube K.

Definition 5.2.7. We say that J ∈ P is k-bad in a grid D if there is a cube K ∈ D

with ` (K) = 2k` (J) such that J is ε-bad with respect to K (context should eliminate any

ambiguity between the different use of k-bad when k ∈ N and ε-bad when 0 < ε < 1
2).

Following [69] we know that in one dimension for an interval J and grids D0

P
D0
Ω (D0 : J is k-bad in D0) ≡

∫
Ω

1{D0: J is k-bad in D0}dµΩ (D0) ≤ Cεk2−εk. (5.2.6)

Thus we conclude:

P
D0
Ω (D0 : J is k-good in D0) ≥ 1− Cεk2−εk. (5.2.7)

Now for a cube J to be good in our n-dimensional setting, it needs to be good in each side.

So, we conclude that

PDΩ (D : J is k-good in D) ≥ (1− Cεk2−εk)n. (5.2.8)
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and therefore a cube is bad with probability bounded by:

PDΩ (D : J is k-bad in D) ≤ 1− (1− Cεk2−εk)n. (5.2.9)

Then we obtain from (5.2.9), using the lower frame inequality, the expectation estimate

∫
Ω

∑
J∈GD

k−bad

[∥∥∥�ω,b∗J,G g
∥∥∥2

L2(ω)
+
∥∥∥5ωJ,Gg∥∥∥2

L2(ω)

]
dµΩ (D)

=
∑
J∈G

[∥∥∥�ω,b∗J,G g
∥∥∥2

L2(ω)
+
∥∥∥5ωJ,Gg∥∥∥2

L2(ω)

] ∫
Ω

1{D: J is k-bad in D}dµΩ (D)

≤ (1− (1− Cεk2−εk)n)
∑
J∈G

[∥∥∥�ω,b∗J,G g
∥∥∥2

L2(ω)
+
∥∥∥5ωJ,Gg∥∥∥2

L2(ω)

]
≤ (1− (1− Cεk2−εk)n) ‖g‖2

L2(ω)
,

where 5ωJ,G denotes the ‘broken’ Carleson averaging operator in (5.1.39) that depends on

the broken children in the grid G. Altogether then it follows easily that

EDΩ

 ∑
J∈
⋃∞
`=k G

D
`−bad

[∥∥∥�ω,b∗J,G g
∥∥∥2

L2(ω)
+
∥∥∥5ωJ,Gg∥∥∥2

L2(ω)

]≤(1−(1−Cεk2−εk)n)‖g‖2
L2(ω)

(5.2.10)

for some large positive constant C.

From such inequalities summed for k ≥ r, it can be concluded as in [43] that there is an

absolute choice of r depending on 0 < ε < 1
2 so that the following holds. Let T : L2(σ)→

L2(ω) be a bounded linear operator. We then have the following traditional inequality for
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two random grids in the case that b is an ∞-weakly µ-controlled accretive family:

‖T‖ ≤ 2 sup
‖f‖

L2(σ)
=1

sup
‖g‖

L2(ω)
=1

EΩEΩ′

∣∣∣∣∣∣∣∣∣
〈 ∑
I,J∈DG

r−good

T
(
�σ,bI,Df

)
f,�ω,b

∗
J,D g

〉
ω

∣∣∣∣∣∣∣∣∣ . (5.2.11)

However, this traditional method of introducing goodness is flawed here in the general

setting of dual martingale differences, since these differences are no longer orthogonal pro-

jections, and as emphasized in [24], we cannot simply add back in bad cubes whenever we

want telescoping identities to hold - but these are needed in order to control the right hand

side of (5.2.11). In fact, in the analysis of the form Θ (f, g) above, it is necessary to have

goodness for the cubes J and telescoping for the cubes I. On the other hand, in the analysis

of the form Θ∗ (f, g) above, it is necessary to have just the opposite - namely goodness for

the cubes I and telescoping for the cubes J .

Thus, because in this unfortunate set of circumstances we can no longer ‘add back in’

bad cubes to achieve telescoping, we are prevented from introducing goodness in the full

sum (5.2.4) over all I and J , prior to splitting according to side lengths of I and J . Thus

the infusion of goodness must come after the splitting by side length, but one must work

much harder to introduce goodness directly into the form Θ (f, g) after we have restricted

the sum to cubes J that have smaller side length than I. This is accomplished in the

next subsubsection using the weaker form of NTV goodness introduced by Hytönen and

Martikainen in [24] (that permits certain additional pairs (I, J) in the good forms where

` (J) ≤ 2−r` (I) and yet J is bad in the traditional sense), and that will prevail later in

the treatment of the far below forms T1
farbelow (f, g), and of the local forms BAbr (f, g) (see

Subsection 5.7) where the need for using the ‘body’ of a cube will become apparent in dealing
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with the stopping form, and also in the treatment of the functional energy in Appendix .

5.2.1.3 Weak goodness

Let D and G be dyadic grids. It remains to estimate the form Θ2 (f, g) which, following [24],

we will split into a ‘bad’ part and a ‘good’ part. For this we introduce our main definition

associated with the above modification of the weak goodness of Hytönen and Martikainen,

namely the definition of the cube Rz in a grid D, given an arbitrary cube R ∈ P .

Definition 5.2.8. Let D be a dyadic grid. Given R ∈ P, let Rz be the smallest (if any

such exist) D-dyadic supercube Q of R such that R is good inside all D-dyadic supercubes

K of Q. Of course Rz will not exist if there is no D-dyadic cube Q containing R in which

R is good. For cubes R,Q ∈ P let κ (Q,R) = log2
`(Q)
`(R)

. For R ∈ P for which Rz exists, let

κ (R) ≡ κ
(
Rz, R

)
.

Note that we typically suppress the dependence of Rz on the grid D, since the grid

is usually understood from context. If Rz exists, we thus have that R is good inside all

D-dyadic supercubes K of R with ` (K) ≥ `
(
Rz
)
. Note in particular the monotonicity

property for J ′, J ∈ P :

J ′ ⊂ J =⇒
(
J ′
)z ⊂ Jz.
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Here now is the decomposition:

Θ2 (f, g) =
∑
I∈D

∑
J∈G: Jz 6$I, `(J)≤2−r`(I)

d(J,I)≤2`(J)ε`(I)1−ε

∫ (
Tασ �

σ,b
I f

)
�ω,b

∗
J gdω

+
∑
I∈D

∑
J∈G: Jz$I, `(J)≤2−r`(I)

d(J,I)≤2`(J)ε`(I)1−ε

∫ (
Tασ �

σ,b
I f

)
�ω,b

∗
J gdω

≡ Θbad
2 (f, g) + Θ

good
2 (f, g) ,

and where if Jz fails to exist, we assume by convention that Jz 6$ I, i.e. Jz is not strictly

contained in I, so that the pair (I, J) is then included in the bad form Θbad
2 (f, g). We will

in fact estimate a larger quantity corresponding to the bad form, namely

Θ
bad\
2 (f, g) ≡

∑
I∈D

∑
J∈G: Jz 6$I, `(J)≤2−r`(I)

d(J,I)≤2`(J)ε`(I)1−ε

∣∣∣∣∫ (Tασ �σ,bI f
)
�ω,b

∗
J gdω

∣∣∣∣ (5.2.12)

with absolute value signs inside the sum.

Remark 5.2.9. We now make some general comments on where we now stand and where

we are going.

1. In the first sum Θbad
2 (f, g) above, we are roughly keeping the pairs of cubes (I, J) such

that J is bad with respect to some ‘nearby’ cube having side length larger than that of

I.

2. We have defined energy and dual energy conditions that are independent of the test-

ing families (because the definition of E (J, ω) = Eω,xJ Eω,x
′

J

(∣∣∣x−x′`(J)

∣∣∣2) does not involve
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pseudoprojections �ω,b
∗

J,D ), but the functional energy condition defined below does in-

volve the dual martingale pseudoprojections �ω,b
∗

J,D .

3. Using the notion of weak goodness above, we will be able to eliminate all pairs of cubes

with J bad in I, which then permits control of the short range form in Section 5.3 and

the neighbour form in Section 5.5 provided 0 < ε < 1
n+1−α . Defining shifted coronas in

terms of Jz will then allow existing arguments to prove the Intertwining Proposition

and obtain control of the functional energy in Appendix , as well as permitting control

of the stopping form in Section 5.6, but all of this with some new twists, for example

the introduction of a top/down ‘indented corona’ in the analysis of the stopping form.

4. The nearby form Θ3 (f, g) is handled in Section 5.4 using the energy condition assump-

tion along with the original testing functions borigQ discarded during the construction of

the testing/accretive corona.

These remarks will become clear in this and the following sections. Recall that we earlier

defined in Definition 5.2.6, the set GDk−good = GD
(k,ε)−good to consist of those J ∈ G such that

J is ε− good inside every cube K ∈ D with K ∩ J 6= ∅ that lies at least k levels ‘above’ J ,

i.e. ` (K) ≥ 2k` (J). We now define an analogous notion of GDk−bad.

Definition 5.2.10. Let ε > 0. Define the set GDk−bad = GD
(k,ε)−bad to consist of all J ∈ G

such that there is a D-cube K with sidelength ` (K) = 2k` (J) for which J is ε − bad with

respect to K.

Note that for grids D and G, the complement of GDk−good is the union of GD`−bad for ` ≥ k,

i.e.

G \ GDk−good =
⋃
`≥k
GD`−bad .
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Now assume ε > 0. We then have the following important property, namely for all cubes R,

and all k ≥ r (where the goodness parameter r will be fixed given ε > 0 in (5.2.16) below):

#
{
Q : κ (Q,R) = k and d (R,Q) ≤ 2` (R)ε ` (Q)1−ε

}
. 1. (5.2.13)

As in [24], set

GDbad,n ≡ {J ∈ G : J is ε− bad with respect to some K ∈ D with ` (K) ≥ n} .

We will now use the set equality

{
J ∈ G : Jz 6⊂ I, ` (J) ≤ 2−r` (I) , d (J, I) ≤ 2` (J)ε ` (I)1−ε

}
(5.2.14)

=
{
R ∈ GDbad,`(Q) : r ≤ κ (Q,R) < κ (R) , d (R,Q) ≤ 2` (R)ε ` (Q)1−ε

}
,

which the careful reader can prove by painstakingly verifying both containments.

Assuming only that b is 2-weakly µ-controlled accretive, and following the proof in [24],

we use (5.2.14) to show that for any fixed grids D and G, and any bounded linear operator

Tασ we have the following inequality for the form Θ
bad\,strict
2 (f, g), defined to be Θ

bad\
2 (f, g)
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as in (5.2.12) with the pairs (I, J) removed when Jz = I. We use εQ,R = ±1 to obtain

Θ
bad\,strict
2 (f, g) =

∑
Q∈D

∑
R∈GD

bad,`(Q)
: r≤κ(Q,R)<κ(R)

d(R,Q)≤2`(R)ε`(Q)1−ε

∣∣∣〈Tασ (�σ,bQ,Df) ,�ω,b∗R,G g
〉∣∣∣

=
∑
Q∈D

∑
R∈GD

bad,`(Q)
: r≤κ(Q,R)<κ(R)

d(R,Q)≤2`(R)ε`(Q)1−ε

εQ,R

〈
Tασ

(
�σ,bQ,Df

)
,�ω,b

∗
R,G g

〉

≤
∑
Q∈D

∣∣∣∣∣∣∣∣∣∣∣∣
〈
Tασ

(
�σ,bQ,Df

)
,

∑
R∈GD

bad,`(Q)
: r≤κ(Q,R)<κ(R)

d(R,Q)≤2`(R)ε`(Q)1−ε

εQ,R�
ω,b∗
R,G g

〉
∣∣∣∣∣∣∣∣∣∣∣∣

≤ NTα
∑
Q∈D

∥∥∥�σ,bQ,Df∥∥∥L2(σ)

∥∥∥∥∥∥∥∥∥∥∥∥
∑

R∈GD
bad,`(Q)

: r≤κ(Q,R)<κ(R)

d(R,Q)≤2`(R)ε`(Q)1−ε

εQ,R�
ω,b∗
R,G g

∥∥∥∥∥∥∥∥∥∥∥∥
L2(ω)

≤ NTα
∑
Q∈D

∥∥∥�σ,bQ,Df∥∥∥L2(σ)

∞∑
k=r

∥∥∥∥∥∥∥∥∥∥∥∥
∑

R∈GD
bad,`(Q)

:k=κ(Q,R)<κ(R)

d(R,Q)≤2`(R)ε`(Q)1−ε

εQ,R�
ω,b∗
R,G g

∥∥∥∥∥∥∥∥∥∥∥∥
L2(ω)

,

161



by Minkowski’s inequality, and we continue with

≤ 2NTα

∞∑
k=r

∑
Q∈D

∥∥∥�σ,bQ,Df∥∥∥2

L2(σ)

1
2

·


∑
Q∈D

∑
R∈GD

bad,`(Q)
: k=κ(Q,R)<κ(R)

d(R,Q)≤2`(R)ε`(Q)1−ε

(∥∥∥�ω,b∗R,G g
∥∥∥2

L2(ω)
+
∥∥∥5ωR,Gg∥∥∥2

L2(ω)

)


1
2

. NTα ‖f‖L2(σ)

∞∑
k=r

 ∑
R∈GD

bad,2k`(R)

(∥∥∥�ω,b∗R,G g
∥∥∥2

L2(ω)
+
∥∥∥5ωR,Gg∥∥∥2

L2(ω)

)
1
2

,

where 5ωR,G denotes the ‘broken’ Carleson averaging operator in (5.1.39) that depends on

the grid G, and

1. the penultimate inequality uses Cauchy-Schwarz in Q and the weak upper Riesz in-

equalities (5.1.53) for
∑

R∈GD
bad,`(Q)

: k=κ(Q,R)<κ(R)

d(R,Q)≤2`(R)ε`(Q)1−ε

εQ,R�
ω,b∗
R,G , once for the sum when

εQ,R = 1, and again for the sum when εQ,R = −1. However, we note that since

the sum in R is pigeonholed by k = κ (Q,R), the R’s are pairwise disjoint cubes and

the pseudoprojections �ω,b
∗

R,G g are pairwise orthogonal. Thus we could instead apply

Cauchy-Schwarz first in R, and then in Q as was done in [24], but we must still apply

weak upper Riesz inequalities as above.

2. and the final inequality uses the frame inequality (5.1.51) together with (5.2.13), namely

the fact that there are at most C cubes Q such that κ (Q,R) ≥ r is fixed and d (R,Q) ≤

2` (R)ε ` (Q)1−ε.
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Now it is easy to verify that we have the same inequality for the pairs
(
Jz, J

)
that were

removed, and then we take grid expectations and use the probability estimate (5.2.10) to

obtain for ε′ = 1
2ε that EDΩ

(
Θ
bad\
2 (f, g)

)
is bounded by

(5.2.15)

≤ EDΩNTα ‖f‖L2(σ)

∞∑
k=r

 ∑
R∈GD

bad,2k`(R)

(∥∥∥�ω,b∗R,G g
∥∥∥2

L2(ω)
+
∥∥∥5ωR,Gg∥∥∥2

L2(ω)

)
1
2

≤ NTα ‖f‖L2(σ)

∞∑
k=r

EDΩ
∑

R∈GD
bad,2k`(R)

(∥∥∥�ω,b∗R,G g
∥∥∥2

L2(ω)
+
∥∥∥5ωR,G∥∥∥2

L2(ω)

)
1
2

. 2−
1
2ε
′rNTα ‖f‖L2(σ)

∞∑
k=r

(
(1− (C12−εk)n) ‖g‖2

L2(ω)

)1
2

≤ Cgood2
−1

2εrNTα ‖f‖L2(σ)
‖g‖

L2(ω)
.

Clearly we can now fix r sufficiently large depending on ε > 0 so that

Cgood2
−1

2εr <
1

100
, (5.2.16)

and then the final term above, namely Cgood2
−1

2εrNTα ‖f‖L2(σ)
‖g‖

L2(ω)
, can be absorbed

at the end of the proof in Subsection 5.7. Note that (5.2.16) fixes our choice of the parameter

r for any given ε > 0. Later we will choose 0 < ε < 1
2 ≤

1
n+1−α . It is this type of weak

goodness that we will exploit in the local forms BAbr (f, g) treated below in Section 5.5.
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We are now left with the following ‘good’ form to control:

Θ
good
2 (f, g) =

∑
I∈D

∑
Jz$I: `(J)≤2−r`(I)

d(J,I)≤2`(J)ε`(I)1−ε

∫ (
Tασ �

σ,b
I f

)
�ω,b

∗
J gdω.

The first thing we observe regarding this form is that the cubes J which arise in the sum

for Θ
good
2 (f, g) must lie entirely inside I since J ⊂ Jz $ I. Then in the remainder of the

paper, we proceed to analyze

Θ
good
2 (f, g) =

∑
I∈D

∑
Jz$I: `(J)≤2−r`(I)

∫ (
Tασ �

σ,b
I f

)
�ω,b

∗
J gdω, (5.2.17)

in the same way we analyzed the below term Bbr (f, g) in [63]; namely, by implementing the

canonical corona splitting and the decomposition into paraproduct, neighbour and stopping

forms, but now with an additional broken form. We have (κ, ε)-goodness available for all

the cubes J ∈ G arising in the form Θ
good
2 (f, g), and moreover, the cubes I ∈ D arising in

the form Θ
good
2 (f, g) for a fixed J are tree-connected, so that telescoping identities hold for

these cubes I. This will prove decisive in the following three sections of the paper.

The forms Θ1 (f, g) and Θ3 (f, g) are analogous to the disjoint and nearby forms B∩ (f, g)

and B/ (f, g) in [63] respectively. In the next two sections, we control the disjoint form

Θ1 (f, g) in essentially the same way that the disjoint form B∩ (f, g) was treated in [63] and

in earlier papers of many authors beginning with Nazarov, Treil and Volberg (see e.g. [75]),

and we control the nearby form Θ3 (f, g) using the probabilistic surgery of Hytönen and

Martikainen building on that of NTV, together with a new deterministic surgery involving

the energy condition and the original testing functions. But first we recall, in the follow-

ing subsection, the characterization of boundedness of one-dimensional forms supported on

164



disjoint cubes [22].

5.3 Disjoint form

Here we control the disjoint form Θ1 (f, g) by further decomposing it as follows:

Θ1 (f, g) =
∑
I∈D

∑
J∈G: `(J)≤`(I)

d(J,I)>2`(J)ε`(I)1−ε

∫ (
Tσ�

σ,b
I f

)
�ω,b

∗
J gdω

which can be rewritten as

∑
I∈D


∑

J∈G: `(J)≤`(I)

d(J,I)>max(`(I),2`(J)ε`(I)1−ε)

+
∑

J∈G: `(J)≤`(I)

`(I)≥d(J,I)>2`(J)ε`(I)1−ε


∫(
Tσ�

σ,b
I f

)
�ω,b

∗
J gdω

≡ Θ
long
1 (f, g) + Θshort

1 (f, g) ,

where Θ
long
1 (f, g) is a ‘long range’ form in which J is far from I, and where Θshort

1 (f, g) is a

short range form. It should be noted that the goodness plays no role in treating the disjoint

form.

5.3.1 Long range form

Lemma 5.3.1. We have

∑
I∈D

∑
J∈G: `(J)≤`(I)
d(J,I)>`(I)

∣∣∣∣∫ (Tσ�σ,bI f
)
�ω,b

∗
J gdω

∣∣∣∣ .√Aα2 ‖f‖L2(σ)
‖g‖

L2(ω)
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Proof. Since J and I are separated by at least max {` (J) , ` (I)}, we have the inequality

Pα
(
J,
∣∣∣�σ,bI f

∣∣∣σ) ≈ ∫
I

` (J)

|y − cJ |n+1−α

∣∣∣�σ,bI f (y)
∣∣∣ dσ (y)

.
∥∥∥�σ,bI f

∥∥∥
L2(σ)

` (J)
√
|I|σ

d (I, J)n+1−α ,

since
∫
I

∣∣∣�σ,bI f (y)
∣∣∣ dσ (y) ≤

∥∥∥�σ,bI f
∥∥∥
L2(σ)

√
|I|σ. Thus if A (f, g) denotes the left hand side

of the conclusion of Lemma 5.3.1, we have using first the Energy Lemma,

A (f, g) .
∑
I∈D

∑
J : `(J)≤`(I)
d(I,J)≥`(I)

∥∥∥�σ,bI f
∥∥∥
L2(σ)

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

` (J)

d (I, J)n+1−α

√
|I|σ

√
|J |ω

≡
∑

(I,J)∈P

∥∥∥�σ,bI f
∥∥∥
L2(σ)

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

A (I, J) ;

with A (I, J) ≡ ` (J)

d (I, J)n+1−α

√
|I|σ

√
|J |ω;

and P ≡ {(I, J) ∈ D × G : ` (J) ≤ ` (I) and d (I, J) ≥ ` (I)} .

Now let DN ≡
{
K ∈ D : ` (K) = 2N

}
for each N ∈ Z. For N ∈ Z and s ∈ Z+, we further

decompose A (f, g) by pigeonholing the sidelengths of I and J by 2N and 2N−s respectively:

A (f, g) =
∞∑
s=0

∑
N∈Z

AsN (f, g) ;

AsN (f, g) ≡
∑

(I,J)∈PsN

∥∥∥�σ,bI f
∥∥∥
L2(σ)

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

A (I, J)

where PsN ≡ {(I, J) ∈ DN × GN−s : d (I, J) ≥ ` (I)} .

Now let PσM =
∑

K∈DM
�σ,bK denote the dual martingale pseudoprojection onto

Span
{
�σ,bK

}
K∈DM

. Since the cubes K in DM are pairwise disjoint, the pseudoprojections
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�σ,bK are mutually orthogonal, which means that
∥∥PσMf

∥∥2
L2(σ) =

∑
K∈DM

∥∥∥�σ,bK f
∥∥∥2

L2(σ)
. We

claim that

∣∣AsN (f, g)
∣∣ ≤ C2−s

√
Aα2
∥∥PσNf∥∥FL2(σ)

∥∥PωN−sg∥∥FL2(ω)
, for s ≥ 0 and N ∈ Z. (5.3.1)

With this proved, we can then obtain

A (f, g) =
∞∑
s=0

∑
N∈Z

AsN (f, g) =
∞∑
s=0

∑
N∈Z

AsN (f, g)

≤ C
√

Aα2

∞∑
s=0

2−s
∑
N∈Z

∥∥PσNf∥∥FL2(σ)

∥∥PωN−sg∥∥FL2(ω)

≤ C
√

Aα2

∞∑
s=0

2−s

∑
N∈Z

∥∥PσNf∥∥F2

L2(σ)

1
2
∑
N∈Z

∥∥PωN−sg∥∥F2

L2(ω)

1
2

≤ C
√

Aα2

∞∑
s=0

2−s ‖f‖
L2(σ)

‖g‖
L2(ω)

= C
√

Aα2 ‖f‖L2(σ)
‖g‖

L2(ω)
.

To prove (5.3.1), we pigeonhole the distance between I and J :

AsN (f, g) =
∞∑
`=0

AsN,` (f, g) ;

AsN,` (f, g) ≡
∑

(I,J)∈Ps
N,`

∥∥∥�σ,bI f
∥∥∥
L2(σ)

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

A (I, J)

where PsN,` ≡
{

(I, J) ∈ DN × GN−s : d (I, J) ≈ 2N+`
}
.

If we define H
(
AsN,`

)
to be the bilinear form on `2 × `2 with matrix [A (I, J)](I,J)∈Ps

N,`
,

then it remains to show that the norm
∥∥∥H(AsN,`)∥∥∥`2→`2 of H

(
AsN,`

)
on the sequence

space `2 is bounded by C2−s−`
√

Aα2 . In turn, this is equivalent to showing that the norm∥∥∥H(BsN,`)∥∥∥`2→`2 of the bilinear form H
(
BsN,`

)
≡ H

(
AsN,`

)tr
H
(
AsN,`

)
on the sequence
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space `2 is bounded by C22−2s−2`Aα2 . Here H
(
BsN,`

)
is the quadratic form with matrix

kernel
[
BsN,`

(
J, J ′

)]
J,J ′∈DN−s

having entries:

BsN,`
(
J, J ′

)
≡

∑
I∈DN : d(I,J)≈d(I,J ′)≈2N+`

A (I, J)A
(
I, J ′

)
, for J, J ′ ∈ GN−s.

We are reduced to showing the bilinear form inequality,

∥∥∥H(BsN,`)∥∥∥`2→`2 ≤ C2−2s−2`Aα2 for s ≥ 0, ` ≥ 0 and N ∈ Z.

We begin by computing BsN,`
(
J, J ′

)
:

BsN,`
(
J, J ′

)
=

∑
I∈DN

d(I,J)≈d
(
I,J ′

)
≈2N+`

` (J)

d (I, J)n+1−α

√
|I|σ

√
|J |ω

`
(
J ′
)

d (I, J ′)n+1−α

√
|I|σ

√
|J ′|ω

=
∑
I∈DN

d(I,J)≈d
(
I,J ′

)
≈2N+`

|I|σ
d (I, J)n+1−α d (I, J ′)n+1−α · ` (J) `

(
J ′
)√
|J |ω

√
|J ′|ω.

Now we show that ∥∥∥BsN,`∥∥∥`2→`2 . 2−2s−2`Aα2 , (5.3.2)

by applying the proof of Schur’s lemma. Fix ` ≥ 0 and s ≥ 0. Choose the Schur function

β (K) = 1√
|K|ω

. Fix J ∈ DN−s. We now group those I ∈ DN with d (I, J) ≈ 2N+` into

finitely many groups G1, ...GC for which the union of the I in each group is contained in a

cube of side length roughly 1
1002N+` , and we set I∗k ≡

⋃
I∈Gk

I for 1 ≤ k ≤ C (note that I∗k
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is not a cube). We then have

∑
J ′∈GN−s

β (J)

β (J ′)
BsN,`

(
J, J ′

)
=

∑
J ′∈GN−s

d
(
J ′,J

)
≤ 1

1002N+`+2

β (J)

β (J ′)
BsN,`

(
J, J ′

)
+

∑
J ′∈GN−s

d
(
J ′,J

)
> 1

1002N+`+2

β (J)

β (J ′)
BsN,`

(
J, J ′

)

≡ A+B,

where

A .
∑

J ′∈GN−s
d
(
J,J ′

)
≤ 1

1002N+`+2


∑
I∈DN

d(I,J)≈2N+`

|I|σ


22(N−s)

22(`+N)(n+1−α)

∣∣J ′∣∣ω

=
∑

J ′∈GN−s
d
(
J,J ′

)
≤ 1

1002N+`+2


C∑
k=1

∣∣I∗k ∣∣σ
 22(N−s)

22(`+N)(n+1−α)

∣∣J ′∣∣ω

=
22(N−s)

22(`+N)(n+1−α)

C∑
k=1

∑
J ′∈GN−s

d
(
J,J ′

)
≤ 1

1002N+`+2

∣∣I∗k ∣∣σ ∣∣J ′∣∣ω

. 2−2s−2`
C∑
k=1

∣∣I∗k ∣∣σ
2(`+N)(n−α)

∣∣∣ 1
1002N+`+2J

∣∣∣
ω

2(`+N)(n−α)
. 2−2s−2`Aα2 ,

since I∗k is contained in a cube Ĩ∗k such that |I∗k | ≈ |Ĩ
∗
k |, with an implied constant depending

only on dimension, and Ĩ∗k ,
1

1002N+`+2J are well separated. If we let Qk be the smallest
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cube containing the set

Ek ≡
⋃

J ′∈DN−s: d
(
I∗k,J
′
)
≈2N+`

d
(
J,J ′

)
> 1

1002N+`+2

J ′

we then have

B .
∑

J ′∈DN−s
d
(
J,J ′

)
> 1

1002N+`+2


∑
I∈DN

d
(
I,J ′

)
≈d(I,J)≈2N+`

|I|σ


22(N−s)

22(`+N)(n+1−α)

∣∣J ′∣∣ω

.
∑

J ′∈DN−s
d
(
J,J ′

)
> 1

1002N+`+2


∑

k: d
(
I∗
k
,J ′
)
≈2N+`

∣∣I∗k ∣∣σ


22(N−s)

22(`+N)(n+1−α)

∣∣J ′∣∣ω

.
22(N−s)

22(`+N)(n+1−α)

C∑
k=1

∣∣I∗k ∣∣σ |Ek|ω
. 2−2s−2`

C∑
k=1

∣∣I∗k ∣∣σ
2(`+N)(n−α)

|Qk|ω
2(`+N)(n−α)

. 2−2s−2`Aα2 ,

since I∗k is contained in a cube Ĩ∗k such that |I∗k | ≈ |Ĩ
∗
k |, with an implied constant depending

only on dimension, and Ĩ∗k ,
1

1002N+`+2J are well separated. Thus we can now apply Schur’s
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argument with
∑
J

(aJ )2 =
∑
J ′

(
bJ ′
)2

= 1 to obtain

∑
J,J ′∈GN−s

aJbJ ′B
s
N,`

(
J, J ′

)
=

∑
J,J ′∈GN−s

aJβ (J) bJ ′β
(
J ′
) BsN,` (J, J ′)
β (J) β (J ′)

≤
∑
J

(aJβ (J))2
∑
J ′

BsN,`
(
J, J ′

)
β (J) β (J ′)

+
∑
J ′

(
bJ ′β

(
J ′
))2∑

J

BsN,`
(
J, J ′

)
β (J) β (J ′)

=
∑
J

(aJ )2

∑
J ′

β (J)

β (J ′)
BsN,`

(
J, J ′

)+
∑
J ′

(
bJ ′
)2{∑

J

β
(
J ′
)

β (J)
BsN,`

(
J, J ′

)}

. 2−2s−2`Aα2

∑
J

(aJ )2 +
∑
J ′

(
bJ ′
)2 = 21−2s−2`Aα2 .

This completes the proof of (5.3.2). We can now sum in ` to get (5.3.1) and we are done.

This completes our proof of the long range estimate

A (f, g) .
√
Aα2 ‖f‖L2(σ)

‖g‖
L2(ω)

.

5.3.2 Short range form

The form Θshort
1 (f, g) is handled by the following lemma.

Lemma 5.3.2. We have

∑
I∈D

∑
J∈G: `(J)≤2−ρ`(I)

`(I)≥d(J,I)>2`(J)ε`(I)1−ε

∣∣∣∣∫ (Tσ�σ,bI f
)
�ω,b

∗
J gdω

∣∣∣∣ .√Aα2 ‖f‖L2(σ)
‖g‖

L2(ω)
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Proof. The pairs (I, J) that occur in the sum above satisfy J ⊂ 4I\I, so we consider

P ≡
{

(I, J)∈D×G :` (J)≤2−ρ` (I) , ` (I)≥d (J, I)>2` (J)ε ` (I)1−ε , J⊂4I\I
}

For (I, J) ∈ P , the ‘pivotal’ estimate from the Energy Lemma 5.1.25 gives

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣ . ∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

Pα
(
J,
∣∣4σI f ∣∣σ)√|J |ω .

Now we pigeonhole the lengths of I and J and the distance between them by defining

PsN,d ≡
{

(I, J) ∈ P : ` (I) = 2N , ` (J) = 2N−s, 2d−1 ≤ d (I, J) ≤ 2d, J ⊂ 4I\I
}
.

Note that the closest a cube J can come to I is determined by:

2d ≥ 2` (I)1−ε ` (J)ε = 21+N(1−ε)2(N−s)ε = 21+N−εs;

which implies N − εs+ 1 ≤ d ≤ N.

Thus we have

∑
(I,J)∈P

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣
.

∑
(I,J)∈P

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

Pα
(
J,
∣∣∣�σ,bI f

∣∣∣σ)√|J |ω
=

∞∑
s=0

∑
N∈Z

N∑
d=N−εs+1

∑
(I,J)∈Ps

N,d

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

Pα
(
J,
∣∣∣�σ,bI f

∣∣∣σ)√|J |ω.
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Now we use

Pα
(
J,
∣∣∣�σ,bI f

∣∣∣σ) =

∫
I

` (J)

(` (J) + |y − cJ |)n+1−α

∣∣∣�σ,bI f (y)
∣∣∣ dσ (y)

.
2N−s

2d(n+1−α)

∥∥∥�σ,bI f
∥∥∥
L2(σ)

√
|I|σ

and apply Cauchy-Schwarz in J and use J ⊂ 4I\I to get

∑
(I,J)∈P

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣
.

∞∑
s=0

∑
N∈Z

N∑
d=N−εs−1

∑
I∈DN

2N−s2N(n−α)

2d(n+1−α)

∥∥∥�σ,bI f
∥∥∥
L2(σ)

√
|I|σ

√
|4I\I|ω

2N(n−α)
·

·
√√√√√√

∑
J∈GN−s

J⊂4I\I and d(I,J)≈2d

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)

. (1 + εs)
∞∑
s=0

∑
N∈Z

2N−s2N(n−α)

2(N−εs)(n+1−α)

√
Aα2

∑
I∈DN

∥∥∥�σ,bI f
∥∥∥
L2(σ)

√√√√√√
∑

J∈GN−s
J⊂4I\I

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)

. (1 + εs)
∞∑
s=ρ

2−s[1−ε(n+1−α)]
√

Aα2 ‖f‖L2(σ)
‖g‖

L2(ω)
.
√

Aα2 ‖f‖L2(σ)
‖g‖

L2(ω)

where in the third line above we have used
N∑

d=N−εs−1

1 . 1 + εs, and in the last line

2N−s2N(n−α)

2(N−εs)(n+1−α)
= 2−s[1−ε(n+1−α)] followed by Cauchy-Schwarz in I and N , using that

we have bounded overlap, depending only on dimension and the goodness constant in the

quadruples of I for I ∈ DN . More precisely, if we define fk ≡ Ψ
σ,b
Dk
f =

∑
I∈Dk

�σ,bI f and
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gk ≡ Ψ
σ,b∗
Gk

g =
∑
J∈Gk

�ω,b
∗

J g, then we have the quasi-orthogonality inequality

∑
N∈Z

‖fN‖L2(σ)
‖gN−s‖L2(ω)

≤

∑
N∈Z

‖fN‖2L2(σ)

1
2
∑
N∈Z

‖gN−s‖2L2(ω)

1
2

. ‖f‖
L2(σ)

‖g‖
L2(ω)

.

We have assumed that

0 < ε <
1

n+ 1− α
(5.3.3)

in the calculations above, and this completes the proof of Lemma 5.3.2.

5.4 Nearby form

We dominate the nearby form Θ3(f, g) by

|Θ3 (f, g)| ≤
∑
I∈D

∑
J∈G: 2−rn|I|<|J |≤|I|
d(J,I)≤2`(J)ε`(I)1−ε

∣∣∣∣∫ (Tασ �σ,bI f
)
�ω,b

∗
J gdω

∣∣∣∣ ,

and prove the following proposition that controls the expectation, over two independent

grids, of the nearby form Θ3 (f, g). It should be noted that weak goodness plays no role in

treating the nearby form. Note also that in various steps we will use a small δ > 0. In all

those different instances δ is free of any dependence. Our goal is the following proposition.

Proposition 5.4.1. Suppose Tα is a standard fractional singular integral with 0 ≤ α < n.

Let θ ∈ (0, 1) be sufficiently small depending only on α, n. Then there is a constant Cθ such

that for f ∈ L2 (σ) and g ∈ L2 (ω), and dual martingale differences �σ,bI and �ω,b
∗

J with
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∞-weakly accretive families of test functions b and b∗, we have

EDΩEGΩ
∑
I∈D

∑
J∈G: 2−rn|I|<|J |≤|I|
d(J,I)≤2`(J)ε`(I)1−ε

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣ (5.4.1)

.
(
CθNT Vα +

√
θNTα

)
‖f‖

L2(σ)
‖g‖

L2(ω)
.

The following diagram is a sketch of the proof of proposition (5.4.1).
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Figure 5.4.1: Nearby form diagram
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Before we proceed any further let us mention that we will repeatedly use the inequality

∥∥∥�̂σ,[,bI f
∥∥∥
L2(σ)

.
∥∥∥�σ,bI f

∥∥∥F
L2(σ)

(5.4.2)

Lemma 5.4.2. For f ∈L2(σ) and I∈CA(A) we have
∥∥∥�̂σ,[,bI f

∥∥∥
L2(σ)

.
∥∥∥�σ,bI f

∥∥∥F
L2(σ)

.

Proof. Let I ′ ∈ CD (I) ∩ CA (A). Since I ′ ∈ CA (A), from the corona construction we have

∣∣∣∣ 1

|I ′|σ

∫
I′
bAdσ

∣∣∣∣ > γ. (5.4.3)

Now let {I ′j}j∈N be the collection of maximal subcubes S of I ′ such that

∣∣∣∣ 1

|S|σ

∫
S
bAdσ

∣∣∣∣ < γ2.

Let E =
⋃
j

I ′j . We then have

∣∣∣∣∫
E
bAdσ

∣∣∣∣ ≤∑
j

∣∣∣∣∣∣
∫
I′j
bAdσ

∣∣∣∣∣∣ < γ2
∑
j

∣∣∣I ′j∣∣∣σ ≤ γ2
∣∣I ′∣∣σ

which together with (5.4.3) gives

γ
∣∣I ′∣∣σ <

∣∣∣∣∫
I′
bAdσ

∣∣∣∣ =

∣∣∣∣∫
E
bAdσ

∣∣∣∣+

∣∣∣∣∣
∫
I′\E

bAdσ

∣∣∣∣∣
≤ γ2

∣∣I ′∣∣σ +

√∫
I′\E
|bA|2 dσ

√
|I ′ \ E|σ

≤ γ2
∣∣I ′∣∣σ + Cb

∣∣I ′ \ E∣∣σ ,
where in the last inequality we used the ∞-accretivity of bA. Rearranging the inequality
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yields successively

γ (1− γ)
∣∣I ′∣∣σ ≤ Cb

∣∣I ′ \ E∣∣σ ;

γ (1− γ)

Cb

∣∣I ′∣∣σ ≤ ∣∣I ′ \ E∣∣σ ,

which in turn gives

∑
j

∣∣∣I ′j∣∣∣σ =
∣∣I ′∣∣σ − ∣∣I ′ \ E∣∣σ (5.4.4)

≤
∣∣I ′∣∣σ − γ (1− γ)

Cb

∣∣I ′∣∣σ =

(
1− γ (1− γ)

Cb

) ∣∣I ′∣∣σ ≡ β
∣∣I ′∣∣σ

where 0 < β < 1 since 1 ≤ Cb. This implies

∣∣I ′∣∣σ ≤ 1

1− β
∣∣I ′ \ E∣∣σ

Having that in hand and the fact that �̂σ,[,bI f is constant on I ′, say 1I′�̂
σ,[,b
I f = cI′ we can

now calculate:

∥∥∥1I′�̂σ,[,bI f
∥∥∥2

L2(σ)
=

∫
I′

∣∣∣�̂σ,[,bI f
∣∣∣2 dσ =

∣∣I ′∣∣σ ∣∣cI′∣∣2
≤

1

|I ′ \ E|σ

∫
I′\E
|bA|2 dσ

γ4

∣∣I ′∣∣σ ∣∣cI′∣∣2
=

1

γ4

∣∣I ′∣∣σ
|I ′ \ E|σ

∫
I′\E
|bA|2

∣∣cI′∣∣2 dσ
≤ 1

γ4

∣∣I ′∣∣σ
|I ′ \ E|σ

∫
I′

∣∣∣bA�̂σ,[,bI f
∣∣∣2 dσ

≤ 1

γ4

1

1− β

∫
I′

∣∣∣bA�̂σ,[,bI f
∣∣∣2 dσ,
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and thus for I ′ ∈ CA we obtain

∫
I′

∣∣∣�̂σ,[,bI f
∣∣∣2 dσ . ∫

I′

∣∣∣bA�̂σ,[,bI f
∣∣∣2 dσ,

which in turn gives, after summing over all I ′ ∈ CD (I) ∩ CA (A),

∑
I′∈CD(I)∩CA(A)

∥∥∥1I′�̂σ,[,bI f
∥∥∥2

L2(σ)
.
∥∥∥1IbA�̂σ,[,bI f

∥∥∥2

L2(σ)
≤
∥∥∥bA�̂σ,[,bI f

∥∥∥2

L2(σ)
.

Now if I ′ ∈ CD (I) ∩ A, from the definition of ∇̂µQf in (5.1.39),

∑
I′∈CD(I)∩A

∥∥∥1I′�̂σ,[,bI f
∥∥∥2

L2(σ)
.
∥∥∥∇̂σI f∥∥∥2

L2(σ)
.

Now we are ready to prove (5.4.2). As bA = bI and

∥∥∥�̂σ,[,bI f
∥∥∥2

L2(σ)
=

∑
I′∈CD(I)∩CA(A)

∥∥∥1I′�̂σ,[,bI f
∥∥∥2

L2(σ)
+

∑
I′∈CD(I)∩A

∥∥∥1I′�̂σ,[,bI f
∥∥∥2

L2(σ)

.
∥∥∥bI�̂σ,[,bI f

∥∥∥2

L2(σ)
+
∥∥∥∇̂σI f∥∥∥2

L2(σ)

we obtain

∥∥∥�̂σ,[,bI f
∥∥∥
L2(σ)

.
∥∥∥bI�̂σ,[,bI f

∥∥∥
L2(σ)

+
∥∥∥∇̂σI f∥∥∥L2(σ)

=
∥∥∥�σ,[,bI f

∥∥∥
L2(σ)

+
∥∥∥∇̂σI f∥∥∥L2(σ)

≤
∥∥∥�σ,bI f

∥∥∥
L2(σ)

+
∥∥∥�σ,[,bI,brokenf

∥∥∥
L2(σ)

+
∥∥∥∇̂σI f∥∥∥L2(σ)

.
∥∥∥�σ,bI f

∥∥∥F
L2(σ)

.
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Now from quasiorthogonality and (5.4.2) we get,

∑
J∈G

∑
J ′∈C(J)

∣∣J ′∣∣ω ∣∣∣EωJ ′ (�̂ω,[,b∗J g
)∣∣∣2 .∑

J∈G

∥∥∥�̂ω,[,b∗J g
∥∥∥2

L2(ω)
.
∑
J∈G

∥∥∥�ω,[,b∗J g
∥∥∥2

L2(ω)

.
∑
J∈G

(∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)
+
∥∥∇ωJg∥∥2

L2(ω)

)
. ‖g‖2

L2(ω)
.

We also need the following lemma, that controls the above inner product for cubes of

positive distance.

Lemma 5.4.3. Given the ∞-weakly accretive families of test functions b and b∗ and cubes

Q,R ⊂ Rn, we have

|〈Tασ (bQ1Q), b∗R1R\(1+δ)Q〉ω| . δα−n
√

Aα2

√
|Q|σ

√
|R|ω (5.4.5)

where the implied constant depends on the accretivity constants of the families b,b∗ and the

dimension n.

Proof. We have that
∣∣∣〈Tασ (bQ1Q

)
, b∗R1R\(1+δ)Q

〉
ω

∣∣∣
≤

∫
R\(1+δ)Q

∣∣Tασ (bQ1Q
)∣∣ ∣∣b∗R∣∣ dω

≤

(∫
R\(1+δ)Q

∣∣Tασ (bQ1Q
)∣∣2 dω)1

2
(∫

R\(1+δ)Q

∣∣b∗R∣∣2 dω
)1

2

.

(∫
Rn\(1+δ)Q

(∫
Q
|x− y|α−n

∣∣bQ (y)
∣∣ dσ (y)

)2

dω (x)

)1
2 (∫

R

∣∣b∗R∣∣2 dω)1
2
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.

(∫
Rn\(1+δ)Q

(∫
Q

(
δ
∣∣x− cQ∣∣)α−n ∣∣bQ (y)

∣∣ dσ (y)

)2

dω (x)

)1
2 √
|R|ω

. δα−n
(∫

Rn\(1+δ)Q

∣∣x− cQ∣∣2(α−n)
dω (x)

)1
2 (∫

Q

∣∣bQ (y)
∣∣ dσ (y)

)√
|R|ω

. δα−n
(∫

Rn\(1+δ)Q

∣∣x− cQ∣∣2(α−n)
dω (x)

)1
2

|Q|σ
√
|R|ω

≤ δα−n
√

Aα2

√
|Q|σ

√
|R|ω

since

(∫
Rn\(1+δ)Q

∣∣x− cQ∣∣2(α−n)
dω (x)

)
|Q|σ=

∫
Rn\(1+δ)Q

 |Q|
1
n∣∣x− cQ∣∣2

n−α dω (x)

 |Q|σ
|Q|1−

α
n

. Pα (Q,ω)
|Q|σ
|Q|1−

α
n
≤ Aα,∗2 .

As usual, we continue to write the independent grids for f and g as D and G respectively.

Write the dual martingale averages �σ,bI f and �ω,b
∗

J g as linear combinations

�σ,bI f = bI
∑

I′∈Cnat(I)

1I′ E
σ
I′
(
�̂σ,bI f

)
+

∑
I′∈Cbrok(I)

bI′ 1I′F̂
σ,bI′
I′ f − bI

∑
I′∈Cbrok(I)

1I′F̂
σ,bI
I f,

�ω,b
∗

J g= b∗J
∑

J ′∈Cnat(J)

1J ′ E
ω
J ′
(
�̂ω,b

∗
J g

)
+

∑
J ′∈Cbrok(J)

b∗
J ′ 1J ′F̂

ω,b∗
J ′

J ′ g − b∗J
∑

J ′∈Cbrok(J)

1J ′F̂
ω,b∗J
J g,

of the appropriate function b times the indicators of their children, denoted I ′ and J ′ respec-

tively. We will regroup the terms as needed below.

On the natural child I ′, the expression �̂σ,bI f = 1
bI
�σ,bI f simply denotes the dual mar-

tingale average with bI removed, so that we need not assume |bI | is bounded below in order
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to make sense of 1
bI
�σ,bI f . Similar comments apply to the expressions

F̂
σ,b
I′

I′ f = 1
bI′

F
σ,b
I′

I′ f and F̂σ,bII f = 1
bI
Fσ,bII f . Now if we set

N (I) = {J ∈ G : 2−rn|I| < |J | ≤ |I|, d (J, I) ≤ 2`(J)ε`(I)1−ε}

for the cubes or similar size to I, the left hand side of (5.4.1) is bounded by

I + II ≡
∑
I∈D

∑
J∈N (I)

(1+δ)I∩J=∅

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣ (5.4.6)

+
∑
I∈D

∑
J∈N (I)

(1+δ)I∩J 6=∅

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣

When working in higher dimensions, run the proof pretending you have Hytönen’s es-

timate (which is of course not true due to the result in chapter 4). Then wherever we

were supposed to use Hytönen, we use the delta separation trick. The δ-separated part is

easily seen to be bounded by the Muckenhoupt conditions, and the δ-close part will get a
√
δ estimate. But δ can be chosen at the end, is independent of everything else (it is the

Hytönen-delta, not related to anything else in the proof). So, provided the proof only deals

with finite estimates and finitely many constructions (like the Cantor set construction, that

only does finitely many iterations), those
√
δ terms will be absorbable at the end. Here are

the details:

5.4.1 The case of δ-separated cubes.

In this subsection we are estimating I in (5.4.6) by using Lemma 5.4.3.

Definition 5.4.4. We say that the cubes J and I are δ-separated, where δ > 0, if J ∩ (1 +

182



δ)I = ∅.

For the first sum in (5.4.6) we have, following the proof of Lemma 5.4.3, the satisfactory

estimate

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣ . δα−n
√

Aα2

∥∥∥�σ,bI f
∥∥∥
L2(σ)

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

.

Indeed,

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣
≤

∫
J\(1+δ)I

∣∣∣Tασ (�σ,bI f
)∣∣∣ ∣∣∣�ω,b∗J g

∣∣∣ dω
≤

(∫
J\(1+δ)I

∣∣∣Tασ (�σ,bI f
)∣∣∣2 dω)1

2 (∫
J

∣∣∣�ω,b∗J g
∣∣∣2 dω)1

2

. δα−n
(∫

Rn\(1+δ)I
|x− cI |2(α−n) dω (x)

)1
2 (∫

I

∣∣∣�σ,bI f
∣∣∣ dσ (y)

) ∣∣∣∣∣∣�ω,b∗J g
∣∣∣∣∣∣
L2(ω)

. δα−n
(∫

Rn\(1+δ)I
|x− cI |2(α−n) dω (x)

)1
2 √
|I|σ

∣∣∣∣∣∣�σ,bI f
∣∣∣∣∣∣
L2(σ)

∣∣∣∣∣∣�ω,b∗J g
∣∣∣∣∣∣
L2(ω)

≤ δα−n
√

Aα2

∣∣∣∣∣∣�σ,bI f
∣∣∣∣∣∣
L2(σ)

∣∣∣∣∣∣�ω,b∗J g
∣∣∣∣∣∣
L2(ω)
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So combining all the above we get for the δ-separated cubes that

(5.4.7)

I ≤
∑
I∈D

∑
J∈N (I)

(1+δ)I∩J=∅

δα−n
√

Aα2

∥∥∥�σ,bI f
∥∥∥
L2(σ)

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

≤δα−n
√

Aα2

∑
I∈D

∑
J∈N (I)

(1+δ)I∩J=∅

∥∥∥�σ,bI f
∥∥∥2

L2(σ)


1
2
∑
I∈D

∑
J∈N (I)

(1+δ)I∩J=∅

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)


1
2

.δα−n
√

Aα2 ||f ||L2(σ)
||g||

L2(ω)

where the implied constant in the last line depends only on the goodness parameter r and

the finite repetition of I and J in each sum respectively.

5.4.2 The case of δ-close cubes.

Now we turn to the second sum in (5.4.6) which we will bound by using random surgery and

expectation.

Definition 5.4.5. We say that the cubes J and I are δ-close, if J ∩ (1 + δ)I 6= ∅.

We have

〈
Tασ

(
�σ,bI f

)
,�ω,b

∗
J g

〉
ω

=
〈
Tασ

(
�σ,[,bI f

)
,�ω,[,b

∗
J g

〉
ω

(5.4.8)

+
〈
Tασ

(
�σ,[,bI,brokf

)
,�ω,[,b

∗
J,brokg

〉
ω

+
〈
Tασ

(
�σ,[,bI f

)
,�ω,[,b

∗
J,brokg

〉
ω

+
〈
Tασ

(
�σ,[,bI,brokf

)
,�ω,[,b

∗
J g

〉
ω
.
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The estimation of the latter three inner products, i.e. those in which a broken operator

�σ,[,bI,brok or �ω,[,b
∗

J,brok arises, is simpler, but still requires the use of random surgery in order to

avoid the full testing condition that was available in one dimension. Indeed, recall that

�σ,[,bI,brokf =
∑

I′∈Cbrok(I)

Fσ,b
I′ f =

∑
I′∈Cbrok(I)

(
Eσ
I′F̂

σ,b
I′ f

)
bI′

�ω,[,b
∗

J,brokg =
∑

J ′∈Cbrok(J)

Fω,b
∗

J ′ g =
∑

J ′∈Cbrok(J)

(
Eω
J ′F̂

ω,b∗
J ′ g

)
b∗
J ′

so that if at least one broken difference appears in the inner product, as is the case for the

latter three inner products in (5.4.8), we need to use random surgery to get the necessary

bound. For example, the fourth term satisfies

∣∣∣〈Tασ (�σ,[,bI,brokf
)
,�ω,[,b

∗
J g

〉
ω

∣∣∣ =

∣∣∣∣∣∣∣
∑

I′∈Cbrok(I)

(
Eσ
I′F̂

σ,b
I′ f

)〈
Tασ bI′ ,�

ω,[,b∗
J g

〉
ω

∣∣∣∣∣∣∣
and since

〈
Tασ bI′ ,�

ω,[,b∗
J g

〉
ω

=
〈
1I′∩JT

α
σ bI′ ,�

ω,[,b∗
J g

〉
ω

+
〈
1J\(1+δ)I′T

α
σ bI′ ,�

ω,[,b∗
J g

〉
ω

+
〈
1(J\I′)∩(1+δ)I′T

α
σ bI′ ,�

ω,[,b∗
J g

〉
ω

≡ A(f, g) +B(f, g) + C(f, g)
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we have

∣∣∣∣∣∣∣
∑

I′∈Cbrok(I)

(
Eσ
I′F̂

σ,b
I′ f

)
A(f, g)

∣∣∣∣∣∣∣
≤ Cb,b∗

∑
I′∈Cbrok(I)

∣∣∣EσI′F̂σ,bI′ f ∣∣∣Tb
Tα

√
|I ′|σ

∥∥∥�ω,[,b∗J g
∥∥∥
L2(ω)

≤ Tb
Tα
∥∥∇σI f∥∥L2(σ)

( ∑
I′∈Cbrok(I)

(∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)
+
∥∥∥�ω,[,b∗J,brokg

∥∥∥2

L2(ω)

))1
2

. Tb
Tα

∥∥∥�σ,bI f
∥∥∥F
L2(σ)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

Next by Lemma 5.4.3,

∣∣∣∣∣∣∣
∑

I′∈Cbrok(I)

(
Eσ
I′F̂

σ,b
I′ f

)
B(f, g)

∣∣∣∣∣∣∣≤
∑

I′∈Cbrok(I)

∣∣∣EσI′F̂σ,bI′ f ∣∣∣ δα−n√Aα2

√
|I ′|σ

∥∥∥�ω,[,b∗J g
∥∥∥
L2(ω)

≤ δα−n
√

Aα2

∥∥∥�σ,bI f
∥∥∥F
L2(σ)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)
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Finally, using Cauchy-Schwarz, the norm inequality and accretivity we get

∑
I∈D

∑
J∈N (I)
I∩J 6=∅

∣∣∣∣∣∣∣
∑

I′∈Cbrok(I)

(
Eσ
I′F̂

σ,b
I′ f

)
C(f, g)

∣∣∣∣∣∣∣
≤ CbNTα

∑
I∈D

∑
J∈N (I)
I∩J 6=∅

∑
I′∈Cbrok(I)

∣∣∣EσI′F̂σ,bI′ f ∣∣∣√|I ′|σ ·

·
( ∑
J ′∈C(J)

[
Eω
J ′
(
�̂ω,[,b

∗
J g

)]2 ∣∣∣((J\I ′) ∩ (1 + δ)I ′
)
∩ J ′

∣∣∣
ω

)1
2

≤ Cb,r,nNTα ||f ||L2(σ)
·

·
(∑
I∈D

∑
J∈N (I)
I∩J 6=∅

∑
I′∈Cbrok(I)

∑
J ′∈C(J)

[
Eω
J ′
(
�̂ω,[,b

∗
J g

)]2 ∣∣∣((J\I ′) ∩ (1 + δ)I ′
)
∩ J ′

∣∣∣
ω

)1
2
.

Now, it is geometrically evident that for the Lebesque measure we have

∣∣∣((J\I ′) ∩ (1 + δ)I ′
)
∩ J ′

∣∣∣ . δ|J ′|.

Taking averages over the grid D we get the same inequality for the ω measure:

EDΩ

∣∣∣((J\I ′) ∩ (1 + δ)I ′
)
∩ J ′

∣∣∣
ω
. δ

∣∣J ′∣∣ω .
Thus, if we fix J ′, there are only finitely many I ′ involved that contribute (are non-zero),

and then the expectation in D can "go through" the sum in I ′ to get the estimate

EDΩ
∑
I∈D

∑
J∈N (I)
I∩J 6=∅

∣∣∣∣∣∣∣
∑

I′∈Cbrok(I)

(
Eσ
I′F̂

σ,b
I′ f

)
C(f, g)

∣∣∣∣∣∣∣ ≤ Cb,r,n

√
δNTα ||f ||L2(σ)

||g||
L2(ω)

.
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The constant Cb,r,n depends on the accretivity constant of the family b, the dimension n

and the finite repetition of the intervals J ′ appearing in the sum.

The third term in (5.4.8) is handled similarly if we change to
〈
�σ,[,bI f, T

α,∗
ω

(
�ω,[,b

∗
J,brokg

)〉
σ
,

the dual operator. For the second term in (5.4.8) the proof is somewhat different: it does

not use probability, it is easier because the terms involving g can be estimated as the terms

involving f in the proof just done for the fourth term, and then using Carleson estimates.

So combining the above we get the following

EDΩ
∑
I∈D

∑
J∈N (I)

(1+δ)I∩J 6=∅

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣ (5.4.9)

≤
∑
I∈D

∑
J∈N (I)

(1+δ)I∩J 6=∅

∣∣∣〈Tασ (�σ,[,bI f
)
,�ω,[,b

∗
J g

〉
ω

∣∣∣
+
(
Cb,r,n

√
δNTα + (δα−n + 1)NT Vα

)
||f ||

L2(σ)
||g||

L2(ω)

Thus it remains to consider the first inner product
〈
Tασ

(
�σ,[,bI f

)
,�ω,[,b

∗
J g

〉
ω

on the

right hand side of (5.4.9), which we call the problematic term, and write it as

P (I, J) ≡
〈
Tασ

(
�σ,[,bI f

)
,�ω,[,b

∗
J g

〉
ω

=
∑

I′∈C(I),J ′∈C(J)

〈
Tασ

(
1I′�

σ,[,b
I f

)
,1J ′�

ω,[,b∗
J g

〉
ω

=
∑

I′∈C(I),J ′∈C(J)

Eσ
I′
(
�̂σ,[,bI f

) 〈
Tασ
(
1I′bI

)
,1J ′b

∗
J

〉
ω Eω

J ′
(
�̂ω,[,b

∗
J g

)
.(5.4.10)

It now remains to show that

EDΩEGΩ
∑
I∈D

∑
J∈N (I)

|P (I, J)| .
(
CθNT Vα +

√
θNTα

)
‖f‖

L2(σ)
‖g‖

L2(ω)
. (5.4.11)
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Suppose now that I ∈ CA for A ∈ A, and that J ∈ CB for B ∈ B. Then the inner

product in the third line of (5.4.10) becomes

〈
Tασ
(
bI1I′

)
, b∗J1J ′

〉
ω =

〈
Tασ
(
bA1I′

)
, b∗B1J ′

〉
ω ,

and we will write this inner product in either form, depending on context. We also introduce

the following notation:

P(I,J) (E,F ) ≡
〈
Tασ (bI1E) , b∗J1F

〉
ω , for any sets E and F,

so that

P (I, J) =
∑

I′∈C(I) and J ′∈C(J)

Eσ
I′
(
�̂σ,[,bI f

)
P(I,J)

(
I ′, J ′

)
Eω
J ′
(
�̂ω,[,b

∗
J g

)
.

The first thing we do is reduce matters to showing inequality (5.4.11) in the case that

P(I,J)

(
I ′, J ′

)
is replaced by

P(I,J)

(
I ′ ∩ J ′, I ′ ∩ J ′

)
in the terms P (I, J) appearing in (5.4.11). To see this, write

〈
Tασ
(
bI1I′

)
, b∗J1J ′

〉
ω as

〈
Tασ

(
bI1I′\J ′

)
, b∗J1J ′

〉
ω

+
〈
Tασ
(
bI1I′∩J ′

)
, b∗J1J ′\I′

〉
ω

+
〈
Tασ
(
bI1I′∩J ′

)
, b∗J1I′∩J ′

〉
ω

Set

I =
〈
Tασ

(
bI1I′\J ′

)
, b∗J1J ′

〉
ω

II =
〈
Tασ
(
bI1I′∩J ′

)
, b∗J1J ′\I′

〉
ω

and III =
〈
Tασ
(
bI1I′∩J ′

)
, b∗J1I′∩J ′

〉
ω
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For the first one, we have

I ≤
∣∣∣〈Tασ (bI1I′\(1+δ)J ′

)
, b∗J1J ′

〉
ω

∣∣∣+
∣∣∣〈Tασ (bI1(I′\J ′)∩(1+δ)J ′

)
, b∗J1J ′

〉
ω

∣∣∣ ≡ I1 + I2

Using Lemma 5.4.3, I1 . δα−n
√

Aα2
√
|I ′|σ

√
|J ′|ω and for I2 we need to use random surgery.

Summing all the terms for I2 and using Lemma 5.4.2, we have

EGΩ
∑
I∈D

∑
J∈N (I)

∑
I′∈C(I)

∑
J ′∈C(J)

NTα

∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣ ( ∫

(I′\J ′)∩(1+δ)J ′
|bI |2dσ

)1
2 · (5.4.12)

·
∣∣∣ EωJ ′ (�̂ω,[,b∗J g

)∣∣∣ ( ∫
J ′
|bJ |2dω

)1
2

.NTαE
G
Ω

∑
I∈D

∑
J∈N (I)

∑
I′∈C(I)

∑
J ′∈C(J)

∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣ ·

·
∣∣∣(I ′\J ′) ∩ (1 + δ)J ′

∣∣∣12
σ

∣∣∣ EωJ ′ (�̂ω,[,b∗J g
)∣∣∣∣∣J ′∣∣12ω

≤NTαE
G
Ω

(∑[
Eσ
I′
(
�̂σ,[,bI f

)]2 ∣∣∣(I ′\J ′) ∩ (1 + δ)J ′
∣∣∣
σ

)1
2(∑[

Eω
J ′
(
�̂ω,[,b

∗
J g

)]2
|J ′|ω

)1
2

≤NTαCn,r||g||L2(ω)

(∑
I

∑
I′

[
Eσ
I′
(
�̂σ,[,bI f

)]2
EGΩ

∑
J

∑
J ′

∣∣∣(I ′\J ′) ∩ (1 + δ)J ′
∣∣∣
σ

)1
2

≤NTαCn,r||g||L2(ω)

(∑
I

∑
I′

[
Eσ
I′
(
�̂σ,[,bI f

)]2
δ|I ′|σ

)1
2

≤NTαCn,r
√
δ||f ||

L2(σ)
||g||

L2(ω)

Similarly, we get the bound for II.

We are left then with III where we are integrating over I ′∩J ′. We have to overcome two

difficulties at this step. First, I ′ ∩ J ′ is not necessarily a cube, so we cannot apply any of

the testing conditions available. Second, I ′ ∩ J ′, even if it is a cube, does not need to belong

in either of the grids D or G. We would like to split I ′ ∩ J ′ in smaller cubes of the grid G.
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The problem is that the boundary of I ′ ∩ J ′ does not necessarily align with the grid G. To

deal with this, we cut a slice around I ′ ∩ J ′ so that what is left inside can be split in cubes

of the grid G. This small slice will be bounded using once again random surgery. While for

the remaining cubes, we will use a more involved random surgery technique along with the

A2 and testing condition.

Here are the details: Let η0 = 2−m for m large enough. For any cube L we define the

−→η1-halo for −→η1 = (η1
1, . . . , η

n
1 ) by

∂−→η1
L = (1 +−→η1)L− (1−−→η1)L

where (1 + −→η1)L means a dilation of each coordinate of L according to the corresponding

coordinates of 1 +−→η1. Choose the coordinates of −→η1 such that η02 ≤ ηi1 < η0 for all 1 ≤ i ≤ n

and such that if

I ′ ∩ J ′ =

[(
I ′\∂−→η1I

′
)
∩ J ′

]
·
∪
[(

∂−→η1
I ′ ∩ I ′

)
∩ J ′

]
≡M

·
∪ L (5.4.13)

then M consists of B . 2n·m cubes Ks ∈ G with `(Ks) ≥ 2−m−1`(J ′). Note that either M

or L might be empty depending on where J ′ is located, but this is not a problem. Thus

〈
Tασ
(
bI1I′∩J ′

)
, b∗J1I′∩J ′

〉
ω =

〈
Tασ (bI1M ) , b∗J1L

〉
ω +

〈
Tασ (bI1L) , b∗J1M

〉
ω

+
〈
Tασ (bI1L) , b∗J1L

〉
ω +

〈
Tασ (bI1M ) , b∗J1M

〉
ω

The first two can be estimated using Lemma 5.4.3 and a random surgery. It is important to

mention here that the averages will be taken on the grid D, so that we do not have common
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intersection among the different translations of the halo. Indeed,

〈
Tασ (bI1M ) , b∗J1L

〉
ω =

〈
Tασ (bI1M ) , b∗J1L\(1+δ)M

〉
ω

+
〈
Tασ (bI1M ) , b∗J1L∩(1+δ)M

〉
ω

≡ A1 + A2

and

〈
Tασ (bI1L) , b∗J1M

〉
ω =

〈
Tασ (bI1L) , b∗J1M\(1+δ)L

〉
ω

+
〈
Tασ (bI1L) , b∗J1M∩(1+δ)L

〉
ω

≡ A3 + A4

The first terms on the right hand side of both displays, A1 and A3, are bounded, by applying

the proof of Lemma 5.4.3 forM and L and using the fact thatM consists of B . 2nm cubes.

The bound is a constant multiple of 2nδα−n
√
Aα2
√
|I ′|σ

√
|J ′|ω, which when plugged into

the left hand side of (5.4.11) we get by using Cauchy-Schwarz that

∑
I∈D

∑
J∈N (I)

∑
I′∈C(I)

J ′∈C(J)

∣∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣∣(A1 + A3)

∣∣∣∣ EωJ ′ (�̂ω,[,b∗J g
)∣∣∣∣ (5.4.14)

.
∑
I∈D

∑
J∈N (I)

∑
I′∈C(I)

J ′∈C(J)

∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣δα−n√Aα2

√
|I ′|σ

√
|J ′|ω

∣∣∣∣EωJ ′ (�̂ω,[,b∗J g
)∣∣∣∣

. δα−n
√
Aα2 ||f ||L2(σ)

||g||
L2(ω)
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For A2 (and similarly for A4), we have

EDΩ
∑
I∈D

∑
J∈N (I)

∑
I′∈C(I),J ′∈C(J)

∣∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣∣ · ∣∣∣∣∣∣∣∣Tασ (bI1M )

∣∣∣∣∣∣∣∣
L2(ω)

· (5.4.15)

·
∣∣∣∣∣∣∣∣b∗J1L∩(1+δ)M )

∣∣∣∣∣∣∣∣
L2(ω)

∣∣∣∣ EωJ ′ (�̂ω,[,b∗J g
)∣∣∣∣

≤ NTαCbE
D
Ω

∑
I′∈C(I)&J ′∈C(J)

J∈N (I)

∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣∣∣∣M ∣∣∣12

σ

∣∣∣L ∩ (1 + δ)M
∣∣∣12
ω

∣∣∣∣ EωJ ′ (�̂ω,[,b∗J g
)∣∣∣∣

≤ NTαCb,b∗,r,n


∑

I′∈C(I)&J ′∈C(J)
J∈N (I)

∣∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣∣2|M |σ


1
2

·

·
(
EDΩ

∑
I′∈C(I)&J ′∈C(J)

J∈N (I)

∣∣∣∣ EωJ ′ (�̂ω,[,b∗J g
)∣∣∣∣2|L ∩ (1 + δ)M |ω

)1
2

≤ NTαCb,b∗,r,n
√
δ||f ||

L2(σ)
||g||

L2(ω)

by noting that (1 + δ)M ∩ L is a halo of width δ, much smaller than η0 (so as to get the

estimate by
√
δ, not √η0). Although an estimate of √η0 is easy to obtain (as L already has

width η0) and is sufficient for the purposes of this term, the estimate of
√
δ will be crucially

used later in (5.4.19) to kill the B term. Note also that we can take the averages over all

directions, so that we avoid common intersection along the different translations. Notice that

L,M are "moving" together. This is not a problem since by "moving" they cover different

parts of the cube J ′.

Thus we only need to estimate
〈
Tασ (bI1L) , b∗J1L

〉
ω +

〈
Tασ (bI1M ) , b∗J1M

〉
ω. Applying
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one more time random surgery to the first term we get that

EDΩEGΩ
∑
I∈D

∑
J∈N (I)

∑
I′∈C(I)

J ′∈C(J)

∣∣∣EσI′ (�̂σ,[,bI f
) 〈

Tασ (bI1L) , b∗J1L
〉
ω E

ω
J ′
(
�̂ω,[,b

∗
J g

)∣∣∣

. EGΩNTα ‖f‖L2(σ)
EDΩ

√√√√√√√
∑
I∈D

∑
J∈N (I)

∑
I′∈C(I)

J ′∈C(J)

(∫
∂η1I

′∩J ′

∣∣b∗J ∣∣2 dω
)∣∣∣Eω

J ′
(
�̂ω,[,b

∗
J g

)∣∣∣2

using (5.4.2) and the frame inequalities again. Then using Cauchy-Schwarz on the expecta-

tion EDΩ , this is dominated by

EGΩNTα‖f‖L2(σ)

√√√√√√√√√√√√√
∑
J∈G

∑
J ′∈C(J)


EDΩ

∑
I∈D: 2−rn|I|<|J |≤|I|
d(J,I)≤2`(J)ε`(I)1−ε

I′∈C(I)

∣∣∣∂−→η1I ′ ∩ J ′∣∣∣ω


∣∣∣Eω
J ′
(
�̂ω,[,b

∗
J g

)∣∣∣2

. EGΩNTα ‖f‖L2(σ)

√√√√√∑
J∈G

∑
J ′∈C(J)

2r

EDΩ
∑

I′∈D:|J ′|≤|I′|≤2r|J ′|

∣∣∂η0I ′ ∩ J ′∣∣ω
∣∣∣Eω

J ′
(
�̂ω,[,b

∗
J g

)∣∣∣2
.
√
η0NTα ‖f‖L2(σ)

‖g‖
L2(ω)

≤
√
λNTα ‖f‖L2(σ)

‖g‖
L2(ω)

where in the last line we have used ηi1 ≤ η0, and then

EDΩ
∑

I′∈D:|J ′|≤|I′|≤2r|J ′|

∣∣∂η0I ′ ∩ J ′∣∣ω . η0

∣∣J ′∣∣ω
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as long as we choose η0 � 2−r.

This leaves us to estimate the term
〈
Tασ (bI1M ) , b∗J1M

〉
ω. It is at this point that we will

use the decomposition M =
·⋃

1≤s≤B
Ks constructed above. We have

〈
Tασ (bI1M ) , b∗J1M

〉
ω =

B∑
s,s′=1

〈
Tασ
(
bI1Ks

)
, b∗J1Ks′

〉
ω

which can be rewritten as

B∑
s=1

〈
Tασ
(
bI1Ks

)
, b∗J1Ks

〉
ω+

(∑∑
Ks ∼

Sep
Ks′

+
∑∑
Ks ∼

Adj
Ks′

)〈
Tασ
(
bI1Ks

)
, b∗J1Ks′

〉
ω

(5.4.16)

where we call Ks ∼
Sep

Ks′ the separated cubes, i.e. 3Ks ∩Ks′ = ∅, while by Ks ∼
Adj

Ks′ are

the adjacent cubes, i.e. Ks ∩Ks′ = ∅ and Ks ∩Ks′ 6= ∅. The separated terms sum can be

estimated directly by
√
Aα2 . Indeed, as in the proof of Lemma 5.4.3,

〈
Tασ
(
bI1Ks

)
, b∗J1Ks′

〉
ω
.

(∫
Ks′

(∫
Ks
|x− y|α−n |bI (y)| dσ (y)

)2

dω (x)

)1
2√∣∣Ks′∣∣ω

.

(∫
Rn\Ks

∣∣x− xKs∣∣2α−2n
dω(x)

)1
2

|Ks|σ
√∣∣Ks′∣∣ω

.
√

Aα2

√
|Ks|σ

√
|Ks′|ω

thus,

∑∑
Ks ∼

Sep
Ks′

〈
Tασ
(
bI1Ks

)
, b∗J1Ks′

〉
ω
≤ Cb

∑∑
Ks ∼

Sep
Ks′

√
Aα2

√
|Ks|σ

√
|Ks′|ω (5.4.17)
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which plugged into (5.4.10) appropriately, we get the bound B
√

Aα2
√
|I ′|σ

√
|J ′|ω.

To deal with the adjacent cubes term in (5.4.16), we write

∑∑
Ks ∼

Adj
Ks′

〈
Tασ
(
bI1Ks

)
, b∗J1Ks′

〉
ω

=
∑∑
Ks ∼

Adj
Ks′

〈
bI1Ks , T

α,∗
ω

(
b∗J1Ks′

)〉
σ

=
∑∑
Ks ∼

Adj
Ks′

〈
bI1Ks∩(1+δ)K

s′
, T

α,∗
ω

(
b∗J1Ks′

)〉
σ

+
∑∑
Ks ∼

Adj
Ks′

〈
bI1Ks\(1+δ)K

s′
, T

α,∗
ω

(
b∗J1K

s′

)〉
σ

≡
∼
I +

∼
II

For
∼
II we use Lemma 5.4.3 to get

∼
II . δα−n

√
Aα2

 B∑
s=1

|Ks|σ

1
2
 B∑
s=1

∑
s′≥s

∣∣∣Ks′∣∣∣12ω
2


1
2

(5.4.18)

. δα−nB
√

Aα2

√
|I ′|σ

√
|J ′|ω

while summing
∼
I over

T = {I ∈ D, J ∈ N (I), I ′ ∈ Cnat(I), J ′ ∈ Cnat(J)}

196



and using Cauchy-Schwarz, accretivity, taking averages and using Jensen, we get

(5.4.19)

EGΩ
∑
T

∣∣∣∣EσI′ (�̂σ,[,bI f
)
Eω
J ′
(
�̂ω,[,b

∗
J g

)∣∣∣∣∑∑
Ks ∼

Adj
K
s′

〈
bI1Ks∩(1+δ)Ks′

, T
α,∗
ω

(
b∗J1Ks′

)〉
σ

.EGΩ
∑
T

∣∣∣∣EσI′ (�̂σ,[,bI f
)
Eω
J ′
(
�̂ω,[,b

∗
J g

)∣∣∣∣∑∑
Ks ∼

Adj
Ks′

NTα

√
|Ks ∩ (1 + δ)Ks′|σ

√
|Ks′|ω

.NTαE
G
Ω

∑
T

∣∣∣∣EσI′ (�̂σ,[,bI f
)
Eω
J ′
(
�̂ω,[,b

∗
J g

)∣∣∣∣( B∑
s=1

|Ks′|ω
)1

2 ·

·
( B∑
s=1

(∑
s≤s′

√
|Ks ∩ (1 + δ)Ks′|σ

)2
)1

2

.NTαE
G
Ω

∑
T

∣∣∣∣EσI′ (�̂σ,[,bI f
)
Eω
J ′
(
�̂ω,[,b

∗
J g

)∣∣∣∣√|J ′|ω ·
·
( B∑
s=1

(∑
s≤s′
|Ks ∩ (1 + δ)Ks′|σ ·

∑
s≤s′

1
))1

2

.NTα
√
B ‖g‖

L2(ω)


∑
I∈D

I′∈Cnat(I)

∣∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣∣2EGΩ ∑

J∈N (I)

J ′∈Cnat(J)

B∑
s=1

∑
s≤s′
|Ks∩(1+δ)Ks′|σ


1
2

.NTα
√
B ‖g‖

L2(ω)

(∑
T

∣∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣∣22nδ|I ′|σ

)1
2

. NTα22n
√
B
√
δ ‖f‖

L2(σ)
‖g‖

L2(ω)

because there are up to 2n adjacent cubes Ks′ for a given Ks. The implied constant depends

on r of the nearby form. Note that δ is independent of B or r and will later be chosen small

enough so that the terms containing the norm inequality constant will be absorbed.
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Thus now we are left only with the first term of (5.4.16), i.e. we need to estimate

B∑
s=1

〈
Tασ
(
bI1Ks

)
, b∗J1Ks

〉
ω

Before proceeding further it will prove convenient to introduce some additional notation,

namely we will write the energy estimate in the second display of the Energy Lemma as

|〈Tαν,ΨJ 〉ω| . Cγ,δ PαδQ
ω (J, υ) ‖ΨJ‖L2(µ)

if
∫

ΨJdω = 0 and γJ∩suppν = ∅ (5.4.20)

where

PαδQ
ω (J, υ) ≡ Pα (J, ν)

|J |

∥∥∥Qω,b∗J x
∥∥∥♠
L2(ω)

+
Pα1+δ (J, ν)

|J |
‖x−mJ‖L2(1Jω) .

The use of the compact notation PαδQ
ω (J, υ) to denote the complicated expression on the

right hand side will considerably reduce the size of many subsequent displays.

We now consider the inner product
〈
Tασ (bA1K) , b∗B1K

〉
ω and estimate the case when

K ∈ G, K ⊂ I ′ ∩ J ′, I ′ ∈ C (I) , J ′ ∈ C (J) , I ∈ CAA , J ∈ C
B
B , `(K) = 2−m−1`(J ′).

For subsets E,F ⊂ A ∩B and cubes K ⊂ A ∩B we define

{E,F} ≡
〈
Tασ (bA1E) , b∗B1F

〉
ω , (5.4.21)

and Kin the 2n grandchildren of K that do not intersect the boundary of K while Kout the
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rest 4n − 2n grandchildren of K that intersect its boundary i.e.

Kin =
{
K ′′ ∈ C(2) (K) : ∂K ′′ ∩ ∂K = ∅

}

Kout =
{
K ′′ ∈ C(2) (K) : ∂K ′′ ∩ ∂K 6= ∅

}
We can write

{K,K} = {A,Kin} − {A\K,Kin}+ {Kout, Kout}+ {Kin, Kout} . (5.4.22)

Note that the first two terms on the right hand side of (5.4.22) decompose the inner product

{K,Kin}, which ‘includes’ one of the difficult symmetric inner product {Kin, Kin}, and

where the other difficult symmetric inner products are contained in {Kout, Kout}, which can

be handled recursively. Thus the difficult symmetric inner products are ultimately controlled

by testing on the cube A to handle the ‘paraproduct’ term {A,Kin}, and by using the

energy condition and a trick that resurrects the original testing functions
{
b
∗,orig
J

}
J∈G

,

discarded in the corona constructions above, to handle the ‘stopping’ term {A\K,Kin}.

More precisely, these original testing functions b∗,origJ are the testing functions obtained

after reducing matters to the case of bounded testing functions.

The first term on the right side of (5.4.22) satisfies

|{A,Kin}| =

∣∣∣∣∣
∫
Kin

(Tασ bA) b∗Bdω

∣∣∣∣∣ ≤ ∥∥∥1KinTασ bA∥∥∥L2(ω)

∥∥∥1Kinb∗B∥∥∥L2(ω)
(5.4.23)

≤
∥∥b∗B∥∥∞ ∥∥∥1KinTασ bA∥∥∥L2(ω)

√
|Kin|ω .
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We now turn to the term {A\K,Kin}. Decompose 1Kinb
∗
B as

1Kinb
∗
B =

2n∑
`=1

1
K`in

b∗B − 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b∗Bdω

+
2n∑
`=1

1
K`in

1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b∗Bdω,

and then apply the Energy Lemma to the function

k∗Kin
≡

2n∑
`=1

1
K`in

b∗B − 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b∗Bdω

 ≡ 2n∑
j=1

k
∗,j
Kin

which does indeed satisfy�ω,b
∗

K′ k∗Kin
= 0 unlessK ′ is a dyadic subcube ofK that is contained

in Kin. (Furthermore, we could even replace grandchildren by m-grandchildren in this

argument in order that �ω,b
∗

K′ k∗Kin
= 0 unless K ′ is a dyadic m-grandchild of K that is

contained in Kin, but we will not need this.) We obtain

〈
Tασ

(
bA1A\K

)
,1Kinb

∗
B

〉
ω

=
〈
Tασ

(
bA1A\K

)
, k∗Kin

〉
ω

+

〈
Tασ

(
bA1A\K

)
,

2n∑
`=1

1
K`in

 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b∗Bdω

〉
ω

(5.4.24)

and

∣∣∣〈Tασ (bA1A\K
)
, k∗Kin

〉
ω

∣∣∣ ≤ 2n∑
`=1

∣∣∣〈Tασ (bA1A\K
)
, k
∗,`
Kin

〉
ω

∣∣∣
≤ Cη0,n

 2n∑
`=1

PαδQ
ω
(
K`
in,1A\Kσ

)∥∥∥k∗Kin∥∥∥L2(ω)

where the constant Cη0 depends on the constant Cγ in the statement of the Monotonicity

Lemma with γ = 1
1−η0

since 1
1−η0

Kin ∩ (A\K) = ∅ , and where we have written
{
K`
in

}2n

`=1
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with K`
in denoting the innner grandchildren of K.

Thus we see that P
ω,b∗
H and Q

ω,b∗
H in the Energy Lemma can be taken to be pseudo-

projection onto Kin, i.e. P
ω,b∗
Kin

=
∑

J∈G: J⊂Kin

�ω,b
∗

J and Q
ω,b∗
Kin

=
∑

J∈G: J⊂Kin

4ω,b
∗

J , and we will

see below that the cubes Kin that arise in subsequent arguments will be pairwise disjoint.

Furthermore, the energy condition will be used to control these full pseudoprojections Pω,b
∗

Kin

when taken over pairwise disjoint decompositions of cubes by subcubes of the form Kin.

However, the second line of (5.4.24) remains problematic because we cannot use any type

of testing in K`
in with b∗B since K`

in does not necessarily belong to CB , and this is our point

in which we exploit the original testing functions b∗,orig
K`in

.

5.4.2.1 Return to the original testing functions

From the discussion above, we recall the identity (5.4.24) and the estimate (5.4.25). We also

have the analogous identity and estimate with b∗,orig
K`in

in place of 1Kinb
∗
B :

〈
Tασ

(
bA1A\K

)
, b
∗,orig
K`in

〉
ω

=

〈
Tασ

(
bA1A\K

)
,1
K`in

b∗,orig
K`in

− 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b
∗,orig
K`in

dω

〉
ω

(5.4.25)

+

〈
Tασ

(
bA1A\K

)
,1
K`in

 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b
∗,orig
K`in

dω

〉
ω
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and

∣∣∣∣∣∣∣
〈
Tασ

(
bA1A\K

)
,1
K`in

b∗,orig
K`in

− 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b
∗,orig
K`in

dω

〉
ω

∣∣∣∣∣∣∣ (5.4.26)

. PαδQ
ω
(
K`
in,1A\Kσ

)∥∥∥∥∥∥1K`in
b∗,orig

K`in

− 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b
∗,orig
K`in

dω

∥∥∥∥∥∥
L2(ω)

for 1 ≤ ` ≤ 2n, where the implied constants depend on L∞ norms of testing functions and

the constant in the Energy Lemma. Using the notation

{
Kout, K

`
in

}orig
≡
〈
Tασ bA1Kout , b

∗,orig
K`in

〉
ω

for 1 ≤ ` ≤ 2n.

note that

{A\K,Kin}+
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

){
Kout, K

`
in

}orig

= {A\K,Kin} −
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

)〈
Tασ

(
bA1A\K

)
, b
∗,orig
K`in

〉
ω

+
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

)[〈
Tασ (bA1A) , b

∗,orig
K`in

〉
ω

−
〈
bA1Kin , T

α,∗
ω b

∗,orig
K`in

〉
σ

]
≡ B + C

Now for B, using Energy Lemma to the function

Ψ`
J =

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

)
b
∗,orig
K`in

−

 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b∗Bdω

1
K`in
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for 1 ≤ ` ≤ 2n we have

|B|=
∣∣∣∣ 〈Tασ (bA1A\K

)
,1Kinb

∗
B

〉
ω
−

2n∑
`=1

 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b∗Bdω

〈Tασ (bA1A\K
)
,1
K`in

〉
ω

∣∣∣∣
+O

[ 2n∑
`=1

(
Pα(K`

in1A\Kσ)

|K`
in|

∣∣∣∣∣∣Qω,b∗
K`in

x
∣∣∣∣∣∣♠
L2(ω)

)]√
|Kin|ω

+O

[ 2n∑
`=1

(
Pα1+δ(K

`
in1A\Kσ)

|K`
in|

∣∣∣∣∣∣x−m
K`in

∣∣∣∣∣∣
L2(ω)

)]√
|Kin|ω

.

 2n∑
`=1

PαδQ
ω
(
K`
in,1A\Kσ

)√|Kin|ω
having used the triangle inequality to get

∣∣∣∣Ψ`
J

∣∣∣∣
L2(ω)

.

∣∣∣∣∣
∫
K`in

b∗Bdω∫
K`in

b
∗,orig
B dω

∣∣∣∣∣
√
|K`

in|ω +
√
|K`

in|ω .
√
|Kin|ω, 1 ≤ ` ≤ 2n

and

∣∣∣∣ 〈Tασ (bA1A\K
)
,1Kinb

∗
B

〉
ω
−

2n∑
`=1

 1∣∣∣K`
in

∣∣∣
ω

∫
K`in

b∗Bdω

〈Tασ (bA1A\K
)
,1
K`in

〉
ω

∣∣∣∣
.

 2n∑
`=1

PαδQ
ω
(
K`
in,1A\Kσ

) ∣∣∣∣∣∣
∣∣∣∣∣∣1K′′`

2n∑
`=1

(
b∗B −

1

|K ′′l |ω

∫
k′′
`

b∗Bdω

)∣∣∣∣∣∣
∣∣∣∣∣∣
L2(ω)

.

 2n∑
`=1

PαδQ
ω
(
K`
in,1A\Kσ

)√|Kin|ω
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where in the last inequality we used accretivity and triangle inequality. We turn our attention

in term C. We have that

∣∣∣∣∣
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

)〈
Tασ (bA1A) , b

∗,orig
K`in

〉
ω

∣∣∣∣∣
.

2n∑
`=1

√∫
K′′
`

|Tασ bA|2 dω

√√√√∫
K`in

∣∣∣∣b∗,origK′′
`

∣∣∣∣2 dω
.

√∫
Kin

|Tασ bA|2 dω
√
|Kin|ω

Also, ∣∣∣∣∣
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

)〈
bA1Kin , T

α,∗
ω b

∗,orig
K`in

〉
σ

∣∣∣∣∣ ≡ I + II + III

where

I =
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

)〈
bA1Kin ,1K`in

T
α,∗
ω b

∗,orig
K`in

〉
σ

II =
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

)〈
bA1

Kin\(1+δ)K`in
, T

α,∗
ω b

∗,orig
K`in

〉
σ

III =
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

)〈
bA1

(Kin\K`in)∩(1+δ)K`in
, T

α,∗
ω b

∗,orig
K`in

〉
σ

The first term I is bounded using the dual testing condition. Indeed,

I ≤
∣∣∣∣bA1Kin

∣∣∣∣
L2(σ)

2n∑
`=1

T∗Cb∗
√
|K`

in|ω ≤ 2nT∗Cb∗
∣∣∣∣bA1Kin

∣∣∣∣
L2(σ)

√
|Kin|ω
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The second term II is bounded using Lemma 5.4.3. Indeed,

II ≤
2n∑
`=1

δα−n
√
Aα2

√
|Kin\(1 + δ)K`

in|σ
√
|K`

in|ω

≤ 2nδα−n
√
Aα2

√
|Kin|ω

√
|Kin|σ

Finally,

III ≤
2n∑
`=1

∣∣∣∣∣∣Tασ (bA1
(Kin\K`in)∩(1+δ)K`in

)∣∣∣∣∣∣
L2(ω)

∣∣∣∣∣∣b∗,orig
K`in

∣∣∣∣∣∣
L2(ω)

≤ NTα
√
CbCb∗

( 2n∑
`=1

∣∣∣(Kin\K`
in) ∩ (1 + δ)K`

in

∣∣∣
σ

)1
2√
|Kin|ω

≡
√
CbCb∗ ·∆(K)

where we have defined

∆ (K) = NTα

( 2n∑
`=1

∣∣∣(Kin\K`
in) ∩ (1 + δ)K`

in

∣∣∣
σ

)1
2√
|Kin|ω

This last term will be iterated and a final random surgery will give us the desired bound.

5.4.2.2 A finite iteration and a final random surgery.

Letting

ΦA,B(Kin) =
∣∣∣∣∣∣1KinTασ (bA)∣∣∣∣∣∣L2(ω)

√
|Kin|ω (5.4.27)

+
2n∑
`=1

PαδQ
ω
(
K`
in,1A\Kσ

)√
|Kin|ω

+
(
Tα + Tα,∗ + δα−n

√
Aα2

)√
|Kin|σ

√
|Kin|ω
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and simplifying more our notation

{Kout, Kin}orig ≡
2n∑
`=1

( 1

|K`in|ω

∫
K`in

b∗Bdω

1

|K`in|ω

∫
K`in

b
∗,orig
B dω

){
Kout, K

`
in

}orig

we have so far that (5.4.22) is written as

{K,K} = {Kout, Kin}orig + {Kout, Kout}+ {Kin, Kout}+O
(
ΦA,B(Kin) + ∆(K)

)

Now

{Kout, Kout} =
∑
`

{K`
out, K

`
out}+

∑
m6=`

Kmout∩K
`
out=∅

{K`
out, K

m
out}+

∑
m6=`

Kmout∩K
`
out 6=∅

{K`
out, K

m
out}

where K`
out, 1 ≤ ` ≤ 4n − 2n, are the outer grandchildren of K. For the second sum above,

we get

∣∣∣∣ ∑
m6=`

Kmout∩K
`
out=∅

{K`
out, K

m
out}

∣∣∣∣ . √
Aα2

∑
`

√
|K`

out|σ
∑
m6=`

Kmout∩K
`
out=∅

√
|Km

out|ω

.
√
Aα2

√
|Kout|σ

√
|Kout|ω

where the implied constant depends on dimension and the accretivity of functions involved

and since dist(K`
out, K

m
out) ≥ `(K`

out) there is no δ. For the third sum, we need to use random
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surgery again. Using Lemma 5.4.3,

|{K`
out, K

m
out}| =

∣∣∣∣ 〈Tασ (bA1
K`out

)
,1Kmout

b∗B

〉
ω

∣∣∣∣
≤
∣∣∣∣〈Tασ (bA1

K`out\(1+δ)Kmout

)
,1Kmout

b∗B

〉
ω

∣∣∣∣+

∣∣∣∣〈Tασ (bA1
K`out∩(1+δ)Kmout

)
,1Kmout

b∗B

〉
ω

∣∣∣∣
≤ δα−n

√
Aα2

√
|K`

out|σ
√
|Km

out|ω + NTα

√
|Km

out|ω
√
|K`

out ∩ (1 + δ)Km
out|σ

Thus, summing

∑
`

∑
m6=`

Kmout∩K
`
out 6=∅

|{K`
out, K

m
out}| (5.4.28)

. δα−n
√
Aα2

√
|Kout|σ

√
|Kout|ω + NTα

∑
`

∑
m 6=`

Kmout∩K
`
out 6=∅

√
|Km

out|ω
√
|K`

out ∩ (1 + δ)Km
out|σ

≤δα−n
√

Aα2

√
|Kout|σ

√
|Kout|ω + NTα

∑
`

(∑
m6=`
|K`

out ∩ (1 + δ)Km
out|σ

)1
2√
|Kout|ω

Let

E(K) = NTα
∑
`

(∑
m6=`
|K`

out ∩ (1 + δ)Km
out|σ

)1
2√
|Kout|ω

We will iterate this term below and we will the necessary bound. We now turn to {Kin, Kout}

and we have

| {Kin, Kout} |

≤
∣∣∣∣ 〈Tασ (bA1Kout\(1+δ)Kin

)
,1Kinb

∗
B

〉
ω

∣∣∣∣+

∣∣∣∣ 〈Tασ (bA1Kout∩(1+δ)Kin

)
,1Kinb

∗
B

〉
ω

∣∣∣∣
. δα−n

√
Aα2

√
|Kout|σ

√
|Kin|ω + NTα

√
|Kin|ω

√
|Kout ∩ (1 + δ)Kin|σ
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and similarly | {Kout, Kin}orig | is bounded by

. δα−n
√
Aα2

√
|Kout|σ

√
|Kin|ω + NTα

√
|Kin|ω

√
|Kout ∩ (1 + δ)Kin|σ

Let

F(K) = NTα
√
|Kout ∩ (1 + δ)Kin|σ

√
|Kin|ω

Using the bounds we found above we have from (5.4.22),

| {K,K} | .
4n−2n∑
`=1

|{K`
out, K

`
out}|+O

(
ΦA,B(Kin)

)
+∆(K) + E(K) + F(K) + Cδ,η0,b,b∗

√
Aα2

√
|K|σ

√
|K|ω

Iterating the first term above a finite number of times, using again the norm inequality and

a final random surgery we get the bound we need. Indeed, for ν ∈ N

| {K,K} | ≤
∑

M∈Mν

| {M,M} |+O

 ∑
M∈M∗ν

[
ΦA,B (Min)

]
+ ∆(M) + E(M) + F(M)


+Cδ,η0,b,b∗

√
Aα2

∑
M∈M∗ν

√
|M |σ

√
|M |ω

≡ A (K) +B (K) + C (K) = A(I′,J ′) (K) +B(I′,J ′) (K) + C(I′,J ′) (K) ,(5.4.29)
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where the collections of cubes Mν = Mν (K) and M∗ν = M∗ν (K) are defined recursively

by

M0 ≡ {K} ,

Mk+1 ≡
⋃

M∈Mk

{
M `
out

}
, k ≥ 0,

M∗ν ≡
ν⋃
k=0

Mk .

We will include the subscript
(
I ′, J ′

)
in the notation when we want to indicate the pair(

I ′, J ′
)
that are defined after (5.4.13). Now the term C (K) can be estimated by

C (K) = Cδ,η0,b,b∗
√

Aα2

∑
M∈M∗ν

√
|M |σ

√
|M |ω ≤ νCδ,η0,b,b∗

√
Aα2

√
|K|σ

√
|K|ω (5.4.30)

where ν is chosen below depending on η0. For the first term A (K), we will apply the norm

inequality and use probability, namely

|A (K)| ≤
√
CbCb∗NTα

∑
M∈Mν

√
|M |σ

√
|M |ω

≤
√
CbCb∗NTα

√ ∑
M∈Mν

|M |σ
√ ∑
M∈Mν

|M |ω

≤
√
CbCb∗NTα

√ ∑
M∈Mν

|M |σ
√
|K|ω,

where
√
CbCb∗ is an upper bound for the testing functions involved, followed by

EGΩ

 ∑
M∈Mν

|M |σ

 ≤ ε
∣∣I ′∣∣σ ,
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for a sufficiently small ε > 0, where roughly speaking, we use the fact that the cubesM ∈Mν

depend on the grid G and form a relatively small proportion of I ′, which captures only a

small amount of the total mass
∣∣I ′∣∣σ as the grid is translated relative to the grid D that

contains I ′.

Here are the details. Recall that the cubes K are taken from the set of consecutive cubes

{Ki}Bi=1 that lie in I ′ ∩ J ′, that the cubes M ∈ Mν (Ki) have length 1
4nν ` (Ki), and that

there are (4n − 2n)ν such cubes inMν (Ki) for each i. Thus we have

∑
M∈Mν(K)

|M | =
∑

M∈Mν(K)

1

4nν
|K| = (4n − 2n)ν

1

4nν
|K|

and
(

4n − 2n

4n

)ν
→ 0 as ν →∞, which implies

EGΩ

 B∑
i=1

∑
M∈Mν(Ki)

|M |σ

 ≤ B

(
4n − 2n

4n

)ν ∣∣I ′∣∣σ ≤ ε
∣∣I ′∣∣σ

where we have used that the variable B is at most 2nm and where the final inequality holds

if ν is chosen large enough such that B
(

4n−2n

4n

)ν
≤ ε. Then we have by Cauchy-Schwarz

applied first to
B∑
i=1

∑
M∈Mν(Ki)

and then to EGΩ,

EGΩ

 B∑
i=1

|A (Ki)|

 ≤ EGΩ
√
CbCb∗NTα

√√√√√ B∑
i=1

∑
M∈Mν(Ki)

|M |σ
√
|J ′|ω(5.4.31)

≤
√
CbCb∗NTα

√√√√√EGΩ

B∑
i=1

∑
M∈Mν(Ki)

|M |σ
√
|J ′|ω

≤
√
CbCb∗NTα

√
ε |I ′|σ

√
|J ′|ω =

√
CbCb∗

√
εNTα

√
|I ′|σ

√
|J ′|ω,
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as required.

Now we turn to summing up the remaining terms

B (K) = C
∑

M∈M∗ν

ΦA,B (Min) + ∆(M) + E(M) + F(M) above. In the case when the cube

I ′ is a natural child of I, i.e. I ′ ∈ Cnat (I) so that I ′ ∈ CAA , we have

∑
M∈M∗ν(K)

∥∥∥1MinTασ bA∥∥∥2

L2(ω)
=

∑
M∈M∗ν(K)

∫
Min

|Tασ bA|
2 dω ≤

∫
I′
|Tασ bA|

2 dω .
(
Tb
Tα

)2 ∣∣I ′∣∣σ
by the weak testing condition for I ′ in the corona CA. Also,

∑
M∈M∗ν(K)

|Min|ω ≤ |K|ω ≤
∣∣J ′∣∣ω

because of the crucial fact that the cubes {Min}M∈M∗ν(K) form a pairwise disjoint subde-

composition of K ⊂ I ′ ∩ J ′ (for any ν ≥ 1). Of course, this implies

 ∑
M∈M∗ν(K)

(TTα,∗ + Aα2 )2 |Min|σ

1
2
 ∑
M∈M∗ν(K)

|Min|ω

1
2

.
(
TTα,∗ + Aα2

)√
|I ′|σ |J ′|ω

and using the definition of PαδQ
ω (J, υ) in (5.4.2),

∑
M∈M∗ν(K)

2n∑
`=1

PαδQ
ω
(
M `
in,1A\Kσ

)2

.
∑

M∈M∗ν(K)

2n∑
`=1

Pα
(
M `
in,1Aσ

)
∣∣∣M `

in

∣∣∣
2 ∥∥∥∥x−mM`

in

∥∥∥∥2

L2

(
1
M`
in
ω

)
. (Eα2 + Aα2 )

∣∣I ′∣∣σ
upon using the stopping energy condition for I ′ in the corona CA, i.e. the failure of (5.1.28),
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in the corona CA with the subdecomposition

I ′ ⊃
·⋃

M∈M∗ν(K)

2n⋃
`=1

M `
in

Combining these four bounds together with the definition of ΦA,B in (5.4.27), after applying

Cauchy-Schwarz, gives

∑
M∈M∗ν(K)

ΦA,B (Min) . δα−n · NT Vα
√
|I ′|σ |J ′|ω

In particular then, if we now sum over natural children I ′ of I ∈ CA and the associated

children J ′ of J ∈ N (I), where

N (I) ≡
{
J ∈ G : 2−r` (I) < ` (J) ≤ ` (I) and d (J, I) ≤ 2` (J)ε ` (I)1−ε

}
.

we obtain the following corona estimate, using the collection of K that is defined after
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(5.4.13),

(5.4.32)∑
I∈CA
J∈N (I)

∑
I′∈Cnat(I)&J ′∈C(J)

K∈K
(
I′,J ′

)
∣∣∣EσI′ (�̂σ,[,bI f

)∣∣∣ ∣∣∣B(I′,J ′) (K)
∣∣∣ ∣∣∣EωJ ′ (�̂ω,[,b∗J g

)∣∣∣

. δα−n ·B · NT Vα
∑
I∈CA
J∈N (I)

∑
I′∈Cnat(I)

J ′∈C(J)

∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣ √|I ′|σ |J ′|ω ∣∣∣EωJ ′ (�̂ω,[,b∗J g

)∣∣∣

. δα−n ·B · NT Vα

∑
I∈CA

∑
I′∈Cnat(I)

∣∣I ′∣∣σ ∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣2
1

2

·

·

∑
I∈CA

∑
J∈N (I)

∑
J ′∈C(J)

∣∣J ′∣∣ω ∣∣∣EωJ ′ (�̂ω,[,b∗J g
)∣∣∣2
1

2

. δα−n ·B · NT Vα
∥∥∥PσCAf∥∥∥FL2(σ)

∥∥∥∥∥PωCG,nearbyA

g

∥∥∥∥∥
F

L2(σ)

where CG,nearbyA =
⋃

I∈CA
N (I), and the final line uses (5.4.2) to obtain

∑
I∈CA

∑
I′∈Cnat(I)

∣∣I ′∣∣σ ∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣2 =

∑
I∈CA

∥∥∥�̂σ,[,bI f
∥∥∥2

L2(σ)

.
∑
I∈CA

∥∥∥�σ,bI f
∥∥∥2

L2(σ)
≤
∥∥∥PσCAf∥∥∥F2

L2(σ)

and similarly for the sum in J and J ′, once we note that given J ∈ CG,nearbyA , there are only

boundedly many I ∈ CA for which J ∈ N (I).

In order to deal with this sum in the case when the child I ′ is broken, we must take

the estimate one step further and sum over those broken cubes I ′ whose parents belong to

the corona CA, i.e.
{
I ′ ∈ D : I ′ ∈ Cbrok (I) for some I ∈ CA

}
. Of course this collection is
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precisely the set of A -children of A, i.e.

{
I ′ ∈ D : I ′ ∈ Cbrok (I) for some I ∈ CA

}
= CA (A) . (5.4.33)

To obtain the same corona estimate when summing over broken I ′, we will exploit the

fact that the cubes A′ ∈ CA (A) are pairwise disjoint. But first we note that when I ′ is a

broken child, neither weak testing nor stopping energy is available. But if we sum over such

broken I ′, and use (5.4.33) to see that the broken children are pairwise disjoint, we obtain

the following estimate where for convenience we use the notation
∼
Mν ≡

⋃
K∈K(I′,J ′)

M∗ν (K):

∑
I∈CA
J∈N (I)

∑
I′∈Cbrok(I)&J ′∈C(J)

K∈K
(
I′,J ′

)
∣∣∣EσI′ (�̂σ,[,bI f

)∣∣∣ ∣∣∣B(I′,J ′) (K)
∣∣∣ ∣∣∣EωJ ′ (�̂ω,[,b∗J g

)∣∣∣

.δα−n ·B · NT Vα
∑
I∈CA
J∈N (I)

∑
I′∈Cbrok(I)

J ′∈C(J)

∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣√|J ′|ω ∣∣∣EωJ ′ (�̂ω,[,b∗J g

)∣∣∣ ·

·

 ∑
M∈
∼
Mν

∥∥∥1MinTασ bA∥∥∥2

L2(ω)
+
∑

M∈
∼
Mν

2n∑
`=1

PαδQ
ω
(
M `
in,1Aσ

)2
+
∑

M∈
∼
Mν

|Min|σ


1/2

.Bδα−nNT Vα

( ∑
I∈CA

I′∈Cbrok(I)

∑
J∈N (I)

J ′∈C(J)

∑
M∈
∼
Mν

{∥∥∥1MinTασ bA∥∥∥2

L2(ω)
+

∑
`=1

PαδQ
ω
(
M `
in,1Aσ

)2
|Min|σ

})1
2

·

·
(

1

|A|σ

∫
A
|f | dσ

)


∑
J∈CG,nearbyA
J ′∈C(J)

∑
I∈CA: J∈N (I)

I′∈Cbrok(I)

∣∣J ′∣∣ω ∣∣∣EωJ ′ (�̂ω,[,b∗J g
)∣∣∣2


1
2
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which gives that

(5.4.34)∑
I∈CA
J∈N (I)

∑
I′∈Cbrok(I)&J ′∈C(J)

K∈K
(
I′,J ′

)
∣∣∣EσI′ (�̂σ,[,bI f

)∣∣∣ ∣∣∣B(I′,J ′) (K)
∣∣∣ ∣∣∣EωJ ′ (�̂ω,[,b∗J g

)∣∣∣

. NT Vα

√
|A|σ

(
1

|A|σ

∫
A
|f | dσ

)2
∥∥∥∥∥PωCG,nearbyA

g

∥∥∥∥∥
F

L2(σ)

because

∣∣∣EσI′ (�̂σ,[,bI f
)∣∣∣ =

∣∣∣∣ 1∫
I bIdσ

∫
I
fdσ

∣∣∣∣ . 1

|I|σ

∫
I
|f | dσ . 1

|A|σ

∫
A
|f | dσ

if I ′ ∈ Cbrok (I) and I ∈ CA, and because

(5.4.35)∑
I∈CA

I′∈Cbrok(I)

∑
J∈N (I)

J ′∈C(J)

∑
M∈
∼
Mν

∥∥∥1MinTασ bA∥∥∥2

L2(ω)
+

2n∑
`=1

PαδQ
ω
(
M `
in,1Aσ

)2
+ |Min|σ


.

(
Tb
Tα + Eα2 + 1

)2
|A|σ

Indeed, in this last inequality (5.4.35), we have used first the testing condition,

∑
I∈CA

I′∈Cbrok(I)

∑
J∈N (I)

J ′∈C(J)

∑
M∈
∼
Mν

∥∥∥1MinTασ bA∥∥∥2

L2(ω)
≤ Tb

Tα

∑
I∈CA

I′∈Cbrok(I)

∑
J∈N (I)

J ′∈C(J)

|I|σ

. Tb
Tα

∑
I∈CA

I′∈Cbrok(I)

|I|σ ≤ Tb
Tα |A|σ
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where in the first inequality we used the fact that the Min that appear are all disjoint and

form a subdecomposition of I ′ ⊂ I and then used testing. On the second inequality we used

the bounded overlap of J for any given I, since we are in the case of nearby cubes, and we

get the last inequality because the I ∈ CA, which have a broken child I ′, are disjoint and

form a subdecomposition of A. The same argument can be applied for the second sum of

(5.4.35) upon using the energy condition for all I ∈ CA which have a broken child I ′ and

using the finite repetition again since we are in the nearby form.

The inequality (5.4.34) is a suitable estimate since

∑
A∈A

√
|A|σ

(
1

|A|σ

∫
A
|f | dσ

)2
∥∥∥∥∥PωCG,nearbyA

g

∥∥∥∥∥
F

L2(σ)

. ‖f‖
L2(σ)

‖g‖
L2(σ)

by quasiorthogonality and the frame inequalities (5.1.40) and (5.1.51), together with the

bounded overlap of the ‘nearby’ coronas
{
CG,nearbyA

}
A∈A

. We are left with estimating

∆,E,F that we get after the iteration.

Let us first deal with ∆. By Kj
i,` we mean a grandchild of a cube Kj

i and K
j
i comes

from Ki after having iterated j times, so Kj
i,` is a (2j + 2)-child of Ki. We have

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

∆(K
j
i,`)

≤ NTαCb,b∗,ν

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

( 2n∑
q=1

∣∣∣(Kj
i,`,in\K

j,q
i,`,in

)
∩ (1 + δ)K

j,q
i,`,in

∣∣∣
σ

)1
2
√
|Kj

i,`|ω

≤ NTαCb,b∗,ν

( B∑
i=1

ν∑
j=1

4n−2n∑
`=1

2n∑
q=1

∣∣∣(Kj
i,`,in\K

j,q
i,`,in

)
∩ (1 + δ)K

j,q
i,`,in

∣∣∣
σ

)1
2√
|J ′|ω

where Kj,q
i,`,in is one of the inner grandchildren of Kj

i,`,in. Now fixing q = q0 and taking
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averages over the grid G we get

EGΩ

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

∣∣∣(Kj
i,`,in\K

j,q
i,`,in

)
∩ (1 + δ)K

j,q
i,`,in

∣∣∣
σ
≤ Cnδ|I|σ

the constant depends on dimension since for the same i, j we can have intersection as `

moves. Adding the different q we get finally

EGΩ

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

∆(K
j
i,`) ≤ NTαCb,b∗,ν,n

√
δ
√
|I ′|σ

√
|J ′|ω. (5.4.36)

For F we get,

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

F(K
j
i,`) ≤ NTαCb,b∗

( B∑
i=1

ν∑
j=1

4n−2n∑
`=1

∣∣∣Kj
i,`,out ∩ (1 + δ)K

j
i,`,in

∣∣∣
σ

)1
2√
|J ′|ω

and again averaging over grids G, we get the bound

EGΩ

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

F(K
j
i,`) ≤ NTαCb,b∗

√
δ
√
|I ′|σ

√
|J ′|ω (5.4.37)

Note here that upon choosing δ small enough there is no repetition in the different terms
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that arise. Finally, for E, we have

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

E(K
j
i,`) (5.4.38)

≤ NTα

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

4n−2n∑
q=1

(∑
r>q

∣∣∣Kj,q
i,`,out ∩ (1 + δ)K

j,r
i,`,out

∣∣∣
σ

)1
2
√∣∣∣Kj

i,`,out

∣∣∣
ω

≤ NTα

( B∑
i=1

ν∑
j=1

4n−2n∑
`=1

4n−2n∑
q=1

∑
r>q

∣∣∣Kj,q
i,`,out ∩ (1 + δ)K

j,r
i,`,out

∣∣∣
σ

)1
2
·

·
( B∑
i=1

ν∑
j=1

4n−2n∑
`=1

4n−2n∑
q=1

∑
r>q

∣∣∣Kj
i,`,out

∣∣∣
ω

)1
2

≤ NTα · Cn,ν
( B∑
i=1

ν∑
j=1

4n−2n∑
`=1

4n−2n∑
q=1

∑
r>q

∣∣∣Kj,q
i,`,out ∩ (1 + δ)K

j,r
i,`,out

∣∣∣
σ

)1
2√
|J ′|ω

Taking averages,

EGΩ

B∑
i=1

ν∑
j=1

4n−2n∑
`=1

E(K
j
i,`) ≤ NTα · Cn,ν

√
δ
√
|I ′|σ

√
|J ′|ω

The constant Cn,ν comes from the intersection of the sets Kj
i,`,out.

Recall that after splitting in the cases of δ-seperated and δ-close cubes, we got the bound

(5.4.7) in the separated case and after an initial application of random surgery, we reduced

the proof of Proposition 5.4.1 to establishing inequality (5.4.11). Then using the bounds in

(5.4.12), (5.4.14), (5.4.15), (5.4.16), (5.4.17), (5.4.18) we reduced P (I, J) to getting a bound

for {K,K} in the notation used in (5.4.21). Then using the estimates in (5.4.30), (5.4.31),

(5.4.32) and (5.4.34) together with (5.4.29), (5.4.36), (5.4.37) and (5.4.38) establishes prob-

abilistic control of the sum of all the inner products {K,K} taken over appropriate cubes

K, yielding (5.4.11) as required if we choose ε, λ, η0 and δ sufficiently small. And combining
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all the above bounds we proved proposition 5.4.1, namely we got the bound

EDΩEGΩ
∑
I∈D

∑
J∈G: 2−rn|I|<|J |≤|I|
d(J,I)≤2`(J)ε`(I)1−ε

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣ .

(
CθNT Vα +

√
θNTα

)
‖f‖

L2(σ)
‖g‖

L2(ω)

5.5 Main below form

Now we turn to controlling the main below form (5.2.17),

Θ
good
2 (f, g) =

∑
I∈D

∑
Jz$I: `(J)≤2−ρ`(I)

∫ (
Tσ�

σ,b
I f

)
�ω,b

∗
J gdω.

To control Θ
good
2 (f, g) ≡ Bbρ (f, g) we first perform the canonical corona splitting of

Bbρ (f, g) into a diagonal form and a far below form, namely Tdiagonal (f, g) and

Tfarbelow (f, g) as in [63]. This canonical splitting of the form Bbρ (f, g) involves the corona

pseudoprojections Pσ,b
CDA

acting on f and the shifted corona pseudoprojections Pω,b
∗

CG,shiftB

acting

on g, where B is a stopping cube in A. The stopping cubes B constructed relative to

g ∈ L2 (ω) play no role in the analysis here, except to guarantee that the frame and weak

Riesz inequalities hold for g and
{
�ω,b

∗
J g

}
J∈G

. Here the shifted corona CG,shiftB is defined

to include those cubes J ∈ G such Jz ∈ CDB . Recall that the parameters τ and ρ are fixed

to satisfy

τ > r and ρ > r + τ,

where r is the goodness parameter already fixed in (5.2.16).
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Definition 5.5.1. For B ∈ A we define the shifted G-corona by

CG,shiftB =
{
J ∈ G : Jz ∈ CDB

}
.

We will use repeatedly the fact that the shifted coronas CG,shiftB are pairwise disjoint in

B: ∑
B∈A

1
CG,shiftB

(J) ≤ 1, J ∈ D. (5.5.1)

The forms Bbρ,ε (f, g) are no longer linear in f and g as the ‘cut’ is determined by the

coronas CDA and CG,shiftB , which depend on f as well as the measures σ and ω. However,

if the coronas are held fixed, then the forms can be considered bilinear in f and g. It is

convenient at this point to introduce the following shorthand notation:

〈
Tασ

(
P
σ,b

CDA
f

)
,P
ω,b∗

CG,shiftB

g

〉bρ,ε
ω

≡
∑

I∈CDA and J∈CG,shiftB : Jz$I
`(J)≤2−ρ`(I)

〈
Tασ

(
�σ,bI f

)
,�ω,b

∗
J g

〉
ω
.

(5.5.2)

Caution One must not assume, from the notation on the left hand side above, that the

function Tασ
(
PσCA

f
)
is simply integrated against the function Pω

CG,shiftB

g. Indeed, the

sum on the right hand side is taken over pairs (I, J) such that Jz ∈ CDB and Jz $ I

and ` (J) ≤ 2−ρ` (I).

5.5.1 The canonical splitting and local below forms

We then have the canonical splitting determined by the coronas CDA for A ∈ A (the stopping

times B play no explicit role in the canonical splitting of the below form, other than to
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guarantee the weak Riesz inequalities for the dual martingale pseudoprojections �ω,b
∗

J )

Bbρ,ε (f, g) (5.5.3)

=
∑

A,B∈A

〈
Tασ

(
P
σ,b
CA
f
)
,P
ω,b∗

CG,shiftB

g

〉bρ,ε
ω

=
∑
A∈A

〈
Tασ

(
P
σ,b
CA
f
)
,P
ω,b∗

CG,shiftA

g

〉bρ,ε
ω

+
∑

A,B∈A
B$A

〈
Tασ

(
P
σ,b
CA
f
)
,P
ω,b∗

CG,shiftB

g

〉bρ,ε
ω

+
∑

A,B∈A
B%A

〈
Tασ

(
P
σ,b
CA
f
)
,P
ω,b∗

CG,shiftB

g

〉bρ,ε
ω

+
∑

A,B∈A
A∩B=∅

〈
Tασ

(
P
σ,b
CA
f
)
,P
ω,b∗

CG,shiftB

g

〉bρ,ε
ω

≡ Tdiagonal (f, g) + Tfarbelow (f, g) + Tfarabove (f, g) + Tdisjoint (f, g) .

Now the final two terms Tfarabove (f, g) and Tdisjoint (f, g) each vanish since there are no

pairs (I, J) ∈ CDA × C
G,shift
B with both (i) Jz $ I and (ii) either B $ A or B ∩A = ∅. The

far below form Tfarbelow (f, g) requires functional energy, which we discuss in a moment.

Next we follow this splitting by a further decomposition of the diagonal form into local

below forms BAbρ (f, g) given by the individual corona pieces

BAbρ,ε (f, g) ≡

〈
Tασ

(
P
σ,b
CA
f
)
,P
ω,b∗

CG,shiftA

g

〉bρ,ε
ω

(5.5.4)

and prove the following estimate:

∣∣∣BAbρ,ε (f, g)
∣∣∣ . NT Vα (αA (A)

√
|A|σ +

∥∥∥Pσ,bCA f∥∥∥FL2(σ)

) ∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F

L2(ω)

.
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This reduces matters to the local forms since we then have from Cauchy-Schwarz that

∑
A∈A

∣∣∣BAbρ,ε (f, g)
∣∣∣ . NT Vα

∑
A∈A

αA (A)2 |A|σ +

∥∥∥∥∥Pσ,bCDA f
∥∥∥∥∥
F2

L2(σ)

1
2

·

·

∑
A∈A

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F2

L2(ω)

1
2

. NT Vα ‖f‖L2(σ)
‖g‖

L2(ω)
.

by the lower frame inequalities

∑
A∈A

∥∥∥Pσ,bCA f∥∥∥F2

L2(σ)
. ‖f‖2

L2(σ)
and

∑
A∈A

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F2

L2(ω)

. ‖g‖2
L2(ω)

using also quasi-orthogonality
∑
A∈A

αA (f)2 |A|σ . ‖f‖
2
L2(σ)

in the stopping cubes A, and

the pairwise disjointedness of the shifted coronas CG,shiftA :

∑
A∈A

1
CG,shiftA

≤ 1D.

From now on we will often write CA in place of CDA when no confusion is possible.

Finally, the local forms BAbρ,ε (f, g) are decomposed into stopping BAstop (f, g), paraprod-

uct BAparaproduct (f, g) and neighbour BAneighbour (f, g) forms. The paraproduct and neighbour

terms are handled as in [63], which in turn follows the treatment originating in [43], and this

leaves only the stopping form BAstop (f, g) to be bounded, which we treat last by adapting

the bottom/up stopping time and recursion of M. Lacey in [27].

However, in order to obtain the required bounds of the above forms into which the below

form Bbρ (f, g) was decomposed, we need functional energy. Recall that the vector-valued
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function b in the accretive coronas ‘breaks’ only at a collection of cubes satisfying a Carleson

condition. We defineM(r,ε)−deep (F ) to consist of the maximal r-deeply embedded dyadic

G-subcubes of a D-cube F - see (.0.7) in Appendix for more detail.

Definition 5.5.2. Let Fα = Fα (D,G) be the smallest constant in the ‘functional energy’

inequality below, holding for all h ∈ L2 (σ) and all σ-Carleson collections F ⊂ D with

Carleson norm CF bounded by a fixed constant C:

∑
F∈F

∑
M∈M(r,1)−deep,D(F )

Pα (M,hσ)

|M |
1
n

2 ∥∥∥∥∥Qω,bCG,shiftF ;M
x

∥∥∥∥∥
♠2

L2(ω)

≤ Fα‖h‖L2(σ)
, (5.5.5)

The main ingredient used in reducing control of the below form Bbρ (f, g) to control of

the functional energy Fα constant and the stopping form BAstop (f, g), is the Intertwining

Proposition from [63]. The control of the functional energy condition by the energy and

Muckenhoupt conditions must also be adapted in light of the p-weakly accretive function b

that only ‘breaks’ at a collection of cubes satisfying a Carleson condition, but this poses no

real difficulties. The fact that the usual Haar bases are orthonormal is here replaced by the

weaker condition that the corresponding broken Haar ‘bases’ are merely frames satisfying

certain lower and weak upper Riesz inequalities, but again this poses no real difference in

the arguments. Finally, the fact that goodness for J has been replaced with weak goodness,

namely Jz $ I, again forces no real change in the arguments.

We then use the paraproduct / neighbour / stopping splitting mentioned above to reduce
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boundedness of BAbρ,ε (f, g) to boundedness of the associated stopping form

BAstop (f, g) ≡
∑
I∈CA

∑
J∈CG,shiftA : Jz$I
`(J)≤2−ρ`(I)

(
EσIJ
�σ,bI f

) 〈
Tασ 1A\IJ bA,�

ω,b∗
J g

〉
ω

(5.5.6)

where f is supported in the cube A and its expectations EσI |f | are bounded by αA (A)

for I ∈ CσA, the dual martingale support of f is contained in the corona CσA, and the dual

martingale support of g is contained in CG,shiftA , and where IJ is the D-child of I that

contains J .

5.5.2 Diagonal and far below forms

Now we turn to the diagonal and the far below terms Tdiagonal (f, g) and Tfarbelow (f, g),

where in [63] the far below terms were bounded using the Intertwining Proposition and the

control of functional energy condition by the energy conditions, but of course under the

restriction there that the cubes J were good. Here we write

(5.5.7)

Tfarbelow (f, g) =
∑

A,B∈A
B$A

∑
I∈CA and J∈CG,shiftB
Jz$I and `(J)≤2−r`(I)

〈
Tασ

(
�σ,bI f

)
,
(
�ω,b

∗
J g

)〉
ω

=
∑
B∈A

∑
I∈D: B$I

〈
Tασ

(
�σ,bI f

)
,

∑
J∈CG,shiftB

�ω,b
∗

J g

〉
ω

−
∑
B∈A

∑
I∈D: B$I

〈
Tασ

(
�σ,bI f

)
,

∑
J∈CG,shiftB
`(J)>2−r`(I)

�ω,b
∗

J g

〉

ω

= T1
farbelow (f, g)− T2

farbelow (f, g) .
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since if I ∈ CA and J ∈ CG,shiftB , with Jz $ I and B $ A, then we must have B $ I.

First, we note that expectation of the second sum T2
farbelow (f, g) is controlled by (5.4.1) in

Proposition 5.4.1 , i.e.

EDΩEGΩ

∣∣∣∣∣∣∣∣∣∣∣∣
∑
B∈A

∑
I∈D: B$I

〈
Tασ

(
�σ,bI f

)
,

∑
J∈CG,shiftB
`(J)>2−r`(I)

�ω,b
∗

J g

〉

ω

∣∣∣∣∣∣∣∣∣∣∣∣
. EDΩEGΩ

∑
I∈D

∑
J∈G: 2−r`(I)<`(J)≤`(I)

d(J,I)≤2`(J)ε`(I)1−ε

∣∣∣〈Tασ (�σ,bI f
)
,�ω,b

∗
J g

〉
ω

∣∣∣
.

(
CθNT Vα +

√
θNTα

)
‖f‖

L2(σ)
‖g‖

L2(ω)
.

The form T1
farbelow (f, g) can be written as

T1
farbelow (f, g) =

∑
B∈A

∑
I∈D: B$I

〈
Tασ

(
�σ,bI f

)
, gB

〉
ω

;

where gB ≡
∑

J∈CG,shiftB

�ω,b∗J g = P
ω,b∗

CG,shiftF

g

and the Intertwining Proposition 5.5.7 can now be applied to this latter form to show that it

is bounded byNT Vα+Fα. Then Proposition .0.1 can be applied to show that Fα . Aα2 +Eα2 ,

which completes the proof that

∣∣Tfarbelow (f, g)
∣∣ . NT Vα ‖f‖L2(σ)

‖g‖
L2(ω)

. (5.5.8)

5.5.3 Intertwining Proposition

First we adapt the relevant definitions and theorems from [63].
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Definition 5.5.3. A collection F of dyadic cubes is σ-Carleson if

∑
F∈F : F⊂S

|F |σ ≤ CF |S|σ , S ∈ F .

The constant CF is referred to as the Carleson norm of F .

Definition 5.5.4. Let F be a collection of dyadic cubes in a grid D. Then for F ∈ F , we

define the shifted corona CG,shiftF in analogy with Definition 5.5.1 by

CG,shiftF =
{
J ∈ G : Jz ∈ CF

}
.

Note that the collections CG,shiftF are pairwise disjoint in F . Let CF (F ) denote the set of

F -children of F . Given any collection H ⊂ G of cubes, a family b∗ of dual testing functions,

and an arbitrary cube K ∈ P , we define the corresponding dual pseudoprojection P
ω,b∗
H and

its localization P
ω,b∗
H;K to K by

Q
ω,b∗
H =

∑
H∈H

4ω,b
∗

H and Q
ω,b∗
H;K =

∑
H∈H: H⊂K

4ω,b
∗

H . (5.5.9)

Recall from Definition 5.5.2 that Fα = Fα (D,G) = Fb
∗
α (D,G) is the best constant in (5.5.5),

i.e.

∑
F∈F

∑
M∈M(r,1)−deep,D(F )

Pα (M,hσ)

|M |
1
n

2 ∥∥∥∥∥Qω,bCG,shiftF ;M
x

∥∥∥∥∥
♠2

L2(ω)

≤ Fα‖h‖L2(σ)
.

Remark 5.5.5. If in (5.5.5), we take h = 1I and F to be the trivial Carleson collec-

tion {Ir}∞r=1 where the cubes Ir are pairwise disjoint in I, then we obtain the deep energy
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condition in Definition .0.4, but with P
ω,b∗

CG,shiftF ;M
in place of P

weakgood,ω
J . However, the

pseudoprojection P
weakgood,ω
J is larger than P

ω,b∗

CG,shiftF ;J
, and so we just miss obtaining the

deep energy condition as a consequence of the functional energy condition. Nevertheless, this

near miss with h = 1I explains the terminology ‘functional’ energy.

We will need the following ‘indicator’ version of the estimates proved above for the disjoint

form.

Lemma 5.5.6. Suppose Tα is a standard fractional singular integral with 0 ≤ α < 1, that

ρ > r, that f ∈ L2 (σ) and g ∈ L2 (ω), that F ⊂ Dσ and G ⊂ Dω are σ-Carleson and

ω-Carleson collections respectively, i.e.,

∑
F ′∈F : F ′⊂F

∣∣F ′∣∣σ . |F |σ , F ∈ F , and
∑

G′∈G: G′⊂G

∣∣G′∣∣ω . |G|ω , G ∈ G,

that there are numerical sequences {αF (F )}F∈F and
{
βG (G)

}
G∈G such that

∑
F∈F

αF (F )2 |F |σ ≤ ‖f‖
2
L2(σ)

and
∑
G∈G

βG (G)2 |G|σ ≤ ‖g‖
2
L2(σ)

, (5.5.10)

Then

∑
F∈F

∑
J∈G: `(J)≤`(F )

d(J,F )>2`(J)ε`(F )1−ε

∣∣∣〈Tασ (1FαF (F )) ,�ω,b
∗

J g
〉
ω

∣∣∣ (5.5.11)

+
∑
G∈G

∑
I∈D:`(I)≤`(G)

d(I,G)>2`(I)ε`(G)1−ε

∣∣∣〈Tασ (�σ,bI f
)
,1GβG (G)

〉
ω

∣∣∣
.

√
Aα2 ‖f‖L2(σ)

‖g‖
L2(ω)

.
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The proof of this lemma is similar to those of Lemmas 5.3.1 and 5.3.2 in Section 5.3

above, using the square function inequalities for �σ,bI , ∇σI,F and �ω,b
∗

J , ∇ωJ,G .

Proposition 5.5.7 (The Intertwining Proposition). Let D and G be grids, and suppose that

b and b∗ are ∞-weakly σ-accretive families of cubes in D and G respectively. Suppose that

F ⊂ D is σ-Carleson and that the F-coronas

CF ≡
{
I ∈ D : I ⊂ F but I 6⊂ F ′ for F ′ ∈ CF (F )

}

satisfy

EσI |f | . EσF |f | and bI = 1IbF , for all I ∈ CF , F ∈ F .

Then

EDΩ

∣∣∣∣∣∣
∑
F∈F

∑
I: I%F

〈
Tασ �

σ,b
I f,P

ω,b∗

CG,shiftF

g

〉
ω

∣∣∣∣∣∣ .(
Fα+Tb

Tα+
√

Aα2 δ
α−n+δNTα

)
‖f‖

L2(σ)
‖g‖

L2(ω)
,

where the implied constant depends on the σ-Carleson norm CF of the family F .

Proof. We write the sum on the left hand side of the display above as

∑
F∈F

∑
I: I%F

〈
Tασ �

σ,b
I f,Pω

CG,shiftF

g

〉
ω

=
∑
F∈F

〈
Tασ

 ∑
I: I%F

�σ,bI f

 ,Pω
CG,shiftF

g

〉
ω

=
∑
F∈F

〈
Tασ
(
f∗F
)
, gF

〉
ω ;

where f∗F ≡
∑

I: I%F
�σ,bI f and gF ≡ Pω

CG,shiftF

g.

Note that gF is supported in F . By the telescoping identity for �σ,bI , the function f∗F
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satisfies

1F f
∗
F =

∑
I: I∞⊃I%F

�σ,bI f = Fσ,bF f − 1FF
σ,b
I∞f = bF

EσF f

EσF bF
− 1F bI∞

EσI∞f

EσI∞bI∞
.

where I∞ is the starting cube for corona constructions in D. However, we cannot apply the

testing condition to the function 1F bI∞ , and since EσI∞f does not vanish in general, we will

instead add and subtract the term Fσ,bI∞f to get

(5.5.12)∑
F∈F

〈
Tασ
(
f∗F
)
, gF

〉
ω =

∑
F∈F

〈
Tασ

 ∑
I: I∞⊃I%F

�σ,bI f

 ,Pω
CG,shiftF

g

〉
ω

=
∑
F∈F

〈
Tασ

Fσ,bI∞f +
∑

I: I∞⊃I%F
�σ,bI f

 ,Pω
CG,shiftF

g

〉
ω

−
∑
F∈F

〈
Tασ

(
Fσ,bI∞f

)
,Pω
CG,shiftF

g

〉
ω

,

where the second sum on the right hand side of the identity satisfies

EDΩ

∣∣∣∣∣∣
∑
F∈F

〈
Tασ

(
Fσ,bI∞f

)
,Pω
CG,shiftF

g

〉
ω

∣∣∣∣∣∣.
(
Tb
Tα+

√
Aα2 δ

α−n+δNTα

)
‖f‖

L2(σ)
‖g‖

L2(ω)

Indeed, as

∑
F∈F

〈
Tασ

(
Fσ,bI∞f

)
,Pω
CG,shiftF

g

〉
ω

=

[∫
I∞∩J∞

+

∫
J∞∩((1+δ)I∞\I∞)

+

∫
J∞\(1+δ)I∞

]∑
F∈F

Pω
CG,shiftF

g

Tασ

(
Fσ,bI∞f

)
dω

≡ A1 + A2 + A3
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by Cauchy-Schwarz and Riesz inequalities, the term A1 is controlled by testing, the term A3

by Muckenhoupt’s condition using lemma 5.4.3 and finally

EDΩA2 ≤

Cδ ∫
I∞

∣∣∣∣∣∣
∑
F∈F

Pω
CG,shiftF

g

∣∣∣∣∣∣
2

dω


1
2 (

NTα

∫
|f |2 dσ

)1
2

≤
√
CδNTα ‖f‖L2(σ)

‖g‖
L2(ω)

.

The advantage now is that with

fF ≡ Fσ,bI∞f + f∗F = Fσ,bI∞f +
∑

I: I∞⊃I%F
�σ,bI f

then in the first term on the right hand side of (5.5.12), the telescoping identity gives

1F fF = 1F

Fσ,bI∞f +
∑

I: I∞⊃I%F
�σ,bI f

 = Fσ,bF f = bF
EσF f

EσF bF
,

which shows that fF is a controlled constant times bF on F .

The cubes I occurring in this sum are linearly and consecutively ordered by inclusion,

along with the cubes F ′ ∈ F that contain F . More precisely we can write

F ≡ F0 $ F1 $ F2 $ ... $ Fn $ Fn+1 $ ...FN = I∞

where Fm = πmF F for all m ≥ 1. We can also write

F = F0 ≡ I0 $ I1 $ I2 $ ... $ Ik $ Ik+1 $ ... $ IK = FN = I∞
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where Ik = πkDF for all k ≥ 1. There is a (unique) subsequence {km}Nm=1 such that

Fm = Ikm , 1 ≤ m ≤ N.

Then we have

fF (x)≡ Fσ,bI∞f (x) +
K∑
`=1

�σ,bI`
f (x) and gF ≡

∑
J∈CG,shiftF

�ω,b
∗

J g.

Assume now that km ≤ k < km+1. We denote by θ (I) the 2n − 1 siblings of I,

i.e. Ĩ ∈ θ (I) implies Ĩ ∈ CD (πDI) \ {I}. There are two cases to consider here:

Ĩk /∈ F and Ĩk ∈ F .

We first note that in either case, using a telescoping sum, we compute that for

x ∈ Ĩk ⊂ Fm+1\Fm,

we have the formula

fF (x) = Fσ,bI∞f (x) +
K∑

`=k+1

�σ,bI`
f (x)

= Fσ,b
Ĩk
f (x)− Fσ,bIk+1

f (x) +
K−1∑
`=k+1

(
Fσ,bI`

f (x)− Fσ,bI`+1
f (x)

)
+ Fσ,bI∞f (x)

= Fσ,b
Ĩk
f (x) .
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Now fix x ∈ Ĩk. If Ĩk /∈ F , then Ĩk ∈ CFm+1
, and we have

|fF (x)| =
∣∣∣∣Fσ,bĨk f (x)

∣∣∣∣ . ∣∣∣bĨk (x)
∣∣∣ Eσ

Ĩk
|f |∣∣∣∣EσĨkbθ(Ik)

∣∣∣∣ . EσFm+1
|f | , (5.5.13)

since the testing functions b
Ĩk

are bounded and accretive, and Eσ
Ĩk
|f | . EσFm+1

|f | by

hypothesis. On the other hand, if Ĩk ∈ F , then Ik+1 ∈ CFm+1
and we have

|fF (x)| =
∣∣∣∣Fσ,bĨk f (x)

∣∣∣∣ . Eσ
Ĩk
|f | .

Note that F c =
·⋃

k≥0

θ (Ik). Now we write

fF = ϕF + ψF ,

ϕF ≡
∑
k≥0

∑
Ĩk∈θ(Ik)

Ĩk∈F

Fσ,b
Ĩk
f and ψF = fF − ϕF ;

∑
F∈F

〈Tασ fF , gF 〉ω =
∑
F∈F

〈Tασ ϕF , gF 〉ω +
∑
F∈F

〈Tασ ψF , gF 〉ω ,

and note that ϕF = 0 on F , and ψF = bF
EσF f

EσF bF
on F . We can apply the first line in (5.5.11)

using Ĩk ∈ F to the first sum above since J ∈ CG,shiftF implies J ⊂ Jz ⊂ F ⊂ Ik, which
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implies that d(J, Ĩk) > 2` (J)ε `(Ĩk)1−ε. Thus we obtain after substituting F ′ for Ĩk below,

∣∣∣∣∣∣
∑
F∈F

〈Tασ ϕF , gF 〉ω

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
∑
F∈F

∑
J∈CG,shiftF

〈
Tασ


∑
k≥0

∑
Ĩk∈θ(Ik)

Ĩk∈F

Fσ,b
Ĩk
f

 ,�ω,b
∗

J g

〉

ω

∣∣∣∣∣∣∣∣∣∣∣
≤

∑
F∈F

∑
J∈CG,shiftF

∑
k≥0

∑
Ĩk∈θ(Ik)

Ĩk∈F

∣∣∣∣〈Tασ (Fσ,bĨk f
)
,�ω,b

∗
J g

〉
ω

∣∣∣∣
≤

∑
F ′∈F

∑
J∈G: `(J)≤`

(
F ′
)

d
(
J,F ′

)
>2`(J)ε`

(
F ′
)1−ε

∣∣∣〈Tασ (Fσ,bF ′ f) ,�ω,b∗J g
〉
ω

∣∣∣

.
√
Aα2 ‖f‖L2(σ)

‖g‖
L2(ω)

.

Turning to the second sum, we note that for km ≤ k < km+1 and x ∈ Ĩk with Ĩk /∈ F ,

we have

|ψF (x)| .
∣∣∣bĨk ∣∣∣ EσĨk |f | 1

Ĩk
(x) . αF (Fm+1) 1

Ĩk
(x)

Note that for σ-almost all x ∈ I∞ there exists a unique F ∈ F such that x ∈ F\
⋃

F ′∈CF (F )

F ′

since the family F is a Carleson family. Also from the stopping criteria we have αF (F ) ≤

αF (F ′) for F ′ ⊂ F . Hence we get the following inequality for x /∈ F ,

|ψF (x)| . Φ (x) 1Fc (x) , (5.5.14)

where we have defined

Φ ≡
∑
F∈F

αF (F ) 1F\∪CF (F ) .
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Now we write

∑
F∈F

〈Tασ ψF , gF 〉ω =
∑
F∈F

〈Tασ (1FψF ) , gF 〉ω +
∑
F∈F

〈Tασ (1FcψF ) , gF 〉ω ≡ I + II.

Then by cube testing,

|〈Tασ (bF1F ) , gF 〉ω| = |〈1FT
α
σ (bF1F ) , gF 〉ω| . TTα

√
|F |σ ‖gF ‖

F
L2(ω)

,

and so quasi-orthogonality, together with the fact that on F , ψF = bF
EσF f

EσF bF
is a constant

c =
EσF f

EσF bF
times bF , where |c| is bounded by αF (F ), give

|I| =

∣∣∣∣∣∣
∑
F∈F

〈Tασ (1F cbF ) , gF 〉ω

∣∣∣∣∣∣ .
∑
F∈F

αF (F )
∣∣∣ 〈Tασ bF , gF 〉ω ∣∣∣

.
∑
F∈F

αF (F )TTα
√
|F |σ ‖gF ‖

F
L2(ω)

. TTα ‖f‖L2(σ)

∑
F∈F

‖gF ‖
F2

L2(ω)

1
2

Now 1FcψF is supported outside F , and each J in the dual martingale support CG,shiftF

of gF = Pω
CG,shiftF

g is in particular good in the cube F , and as a consequence, each such cube

J as above is contained in some cube M for M ∈ W (F ). This containment will be used in

the analysis of the term IIG below.

In addition, each J in the dual martingale support CG,shiftF of gF = Pω
CG,shiftF

g is([
3
ε

]
, ε
)
-deeply embedded in F , i.e. J b[3

ε

]
,ε
F the definition of CG,shiftF . As a consequence,

each such cube J as above is contained in some cubeM forM ∈M([
3
ε

]
,ε
)
−deep,D

(F ). This

containment will be used in the analysis of the term IIB below.
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Notation 5.5.8. Define ρ ≡
[

3
ε

]
, so that for every J ∈ CG,shiftF , there is

M ∈M(ρ,ε)−deep,G (F ) such that J ⊂M .

The collections W (F ) and M(ρ,ε)−deep,G (F ) used here, and in the display below, are

defined in (.0.7) in Appendix. Finally, since the cubes M ∈ W (F ), as well as the cubes

M ∈ M([
3
ε

]
,ε
)
−deep,G

(F ), satisfy 3M ⊂ F , we can apply (5.1.54) in the Monotonicity

Lemma 5.1.23 using (5.5.14) with µ = 1FcψF and J ′ in place of J there, to obtain

|II| =

∣∣∣∣∣∣
∑
F∈F

〈Tασ (1FcψF ) , gF 〉ω

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
F∈F

∑
J ′∈CG,shiftF

〈
Tασ (1FcψF ) ,�ω,b

∗
J ′ g

〉
ω

∣∣∣∣∣∣∣∣
.

∑
F∈F

∑
J ′∈CG,shiftF

Pα
(
J ′,1Fc|ψF |σ

)
|J ′|

1
n

∥∥∥4ω,b∗
J ′ x

∥∥∥♠
L2(ω)

∥∥∥�ω,b∗
J ′ g

∥∥∥F
L2(ω)

+
∑
F∈F

∑
J ′∈CG,shiftF

Pα1+δ

(
J ′,1Fc|ψF |σ

)
|J ′|

1
n

∥∥x−mJ ′
∥∥
L2(ω)

∥∥∥�ω,b∗
J ′ g

∥∥∥F
L2(ω)

.
∑
F∈F

∑
M∈W(F )

Pα (M,1FcΦσ)

|M |
1
n

∥∥∥∥∥∥Qω,b∗CG,shiftF ;M

x

∥∥∥∥∥∥
♠

L2(ω)

∥∥gF ;M

∥∥F
L2(ω)

+
∑
F∈F

∑
J∈Mdeep

(ρ,ε),G(F )

∑
J ′∈CG,shiftF ;J

Pα1+δ

(
J ′,1Fc|ψF |σ

)
|J ′|

1
n

∥∥x−mJ ′
∥∥
L2
(
1J ′ω

)∥∥∥�ω,b∗
J ′ g

∥∥∥F
L2(ω)

≡ IIG + IIB .

where gF ;M denotes the pseudoprojection gF ;M =
∑

J ′∈CG,shiftF : J ′⊂M

�ω,b
∗

J ′ g.

Note: We could also bound IIG by using the decompositionM(ρ,ε)−deep,G (F ) of F into

certain maximal G-cubes, but the ‘smaller’ choice W (F ) of D-cubes is needed for IIG in

order to bound it by the corresponding functional energy constant Fα, which can then be

controlled by the energy and Muckenhoupt constants in Appendix .
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Then from Cauchy-Schwarz, the functional energy condition, and

‖Φ‖2
L2(σ)

≤
∑
F∈F

αF (F )2 |F |σ . ‖f‖
2
L2(σ)

,

we obtain

|IIG|≤

∑
F∈F

∑
M∈W(F )

(
Pα (M,1FcΦσ)

|M |

)2∥∥∥∥∥∥Qω,b∗CG,shiftF ;M

x

∥∥∥∥∥∥
♠2

L2(ω)


1
2∑
F∈F

∑
M∈W(F )

∥∥gF ;M

∥∥F2

L2(ω)

12

. Fα ‖Φ‖L2(σ)

∑
F∈F

‖gF ‖
F2

L2(ω)

1
2

. Fα ‖f‖L2(σ)
‖g‖

L2(ω)
,

by the pairwise disjointedness of the coronas CG,shiftF ;M jointly in F and M , which in turn

follows from the pairwise disjointedness (5.5.1) of the shifted coronas CG,shiftF in F , together

with the pairwise disjointedness of the cubes M . Thus we obtain the pairwise disjointedness

of both of the pseudoprojections Pω,b
∗

CG,shiftF ;M

and Q
ω,b∗

CG,shiftF ;M

jointly in F and M .

In term IIB the quantities
∥∥x−mJ ′

∥∥2

L2
(
1J ′ω

) are no longer additive except when the

cubes J ′ are pairwise disjoint. As a result we will use (5.1.58) in the form,

(5.5.15)

∑
J ′⊂J

Pα1+δ

(
J ′, ν

)
|J ′|

1
n

2 ∥∥x−mJ ′
∥∥2

L2
(
1J ′

) . 1

γ2δ′

Pα
1+δ′ (J, ν)

|J |
1
n

2 ∑
J ′′⊂J

∥∥∥4ωJ ′′x∥∥∥2

L2

.

Pα
1+δ′ (J, ν)

|J |
1
n

2

‖x−mJ‖2L2(1J )
,

and exploit the decay in the Poisson integral Pα
1+δ′ along with weak goodness of the cubes

J . As a consequence we will be able to bound IIB directly by the strong energy condition
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(5.1.8), without having to invoke the more difficult functional energy condition. For the

decay we compute that for J ∈M(ρ,ε)−deep,G (F )

Pα
1+δ′ (J,1Fc|ψF |σ)

|J |
1
n

≈
∫
Fc

|J |
δ′
n

|y − cJ |n+1+δ′−α
|ψF | (y) dσ

≤
∞∑
t=0

∫
πt+1
F F\πtFF

 |J |
1
n

dist
(
cJ ,
(
πtFF

)c)
δ′ |ψF | (y)

|y − cJ |n+1−αdσ

.
∞∑
t=0

 |J |
1
n

dist
(
cJ ,
(
πtFF

)c)
δ′ Pα

(
J,1

πt+1
F F\πtFF

|ψF |σ
)

|J |
1
n

,

and then use the weak goodness inequality and the fact that J ⊂ F

dist
(
cJ ,
(
πtFF

)c)
≥ 2`

(
πtFF

)1−ε
` (J)ε ≥ 2 · 2t(1−ε)` (F )1−ε ` (J)ε ≥ 2t(1−ε)+1` (J) ,

to conclude that

Pα
1+δ′ (J,1Fc|ψF |σ)

|J |
1
n

2

.

 ∞∑
t=0

2−tδ
′(1−ε)

Pα
(
J,1

πt+1
F F\πtFF

|ψF |σ
)

|J |
1
n


2

(5.5.16)

.
∞∑
t=0

2−tδ
′(1−ε)

Pα
(
J,1

πt+1
F F\πtFF

|ψF |σ
)

|J |
1
n


2

.

where in the last inequality we used the Cauchy-Schwarz inequality. Now we again apply
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Cauchy-Schwarz and (5.5.16) to obtain

IIB =
∑
F∈F

∑
J∈Mdeep

(ρ,ε),G(F )

∑
J ′∈CG,shiftF ;J

Pα1+δ

(
J ′,1Fc|ψF |σ

)
|J ′|

1
n

∥∥x−mJ ′
∥∥
L2
(
1J ′ω

)∥∥∥�ω,b∗
J ′ g

∥∥∥F
L2(ω)

≤

∑
F∈F

∑
J∈Mdeep

(ρ,ε),G(F )

∑
J ′∈CG,shiftF ;J

Pα1+δ

(
J ′,1Fc|ψF |σ

)
|J ′|

1
n

2 ∥∥x−mJ ′
∥∥2

L2
(
1J ′ω

)


1
2

∑
F∈F

‖gF ‖
F2

L2(ω)

1
2

≤

∑
F∈F

∑
J∈M(ρ,ε)−deep,G(F )

Pα
1+δ′ (J,1Fc|ψF |σ)

|J |
1
n

2

‖x−mJ‖2L2(1Jω)


1
2

‖g‖
L2(ω)

≡
√

IIenergy ‖g‖L2(ω)
,

and it remains to estimate IIenergy. From (5.5.16) and the strong energy condition (5.1.8),
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we have

IIenergy =
∑
F∈F

∑
J∈M(ρ,ε)−deep,G(F )

Pα
1+δ′ (J,1Fc|ψF |σ)

|J |
1
n

2

‖x−mJ‖2L2(1Jω)

≤
∑
F∈F

∑
J∈Mdeep

(ρ,ε),G(F )

∞∑
t=0

2−tδ
′(1−ε)

Pα
(
J,1

πt+1
F F\πtFF

|ψF |σ
)

|J |
1
n


2

‖x−mJ‖2L2(1Jω)

=
∞∑
t=0

2−tδ
′(1−ε)∑

G∈F

∑
F∈C(t+1)

F (G)

∑
J∈Mdeep

(ρ,ε),G(F )

Pα
(
J,1

G\πtFF
|ψF |σ

)
|J |

1
n


2

‖x−mJ‖2L2(1Jω)

.
∞∑
t=0

2−tδ
′(1−ε)∑

G∈F
αF (G)2

∑
F∈C(t+1)

F (G)

∑
J∈Mdeep

(ρ,ε)
(F )

Pα
(
J,1

G\πtFF
σ

)
|J |

1
n


2

‖x−mJ‖2L2(1Jω)

.
∞∑
t=0

2−tδ
′(1−ε) ∑

G∈F
αF (G)2 (Eα2 )2 |G|σ . (Eα2 )2 ‖f‖2

L2(σ)
.

This completes the proof of the Intertwining Proposition 5.5.7.

The task of controlling functional energy is taken up in Appendix below.

5.5.4 Paraproduct, neighbour and broken forms

In this subsection we reduce boundedness of the local below form BAbr,ε (f, g) defined in

(5.5.4) to boundedness of the associated stopping form

BAstop (f, g) ≡
∑

I∈CDA and J∈CG,shiftA
Jz$I and `(J)≤2−r`(I)

(
EσIJ
�̂σ,[,bI f

)〈
Tασ

(
1A\IJ bA

)
,�ω,b

∗
J g

〉
ω
, (5.5.17)
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where the modified difference �̂σ,[,bI must be carefully chosen in order to control the corre-

sponding paraproduct form below. Indeed, below we will decompose

BAbr,ε (f, g) = BAparaproduct (f, g)− BAstop (f, g) + BAneighbour (f, g) + BAbrok (f, g) ,

and we will show that

∑
A∈A

∣∣∣BAbr,ε (f, g) + BAstop (f, g)
∣∣∣ . (Tb

Tα +
√

Aα2

)
‖f‖

L2(σ)
‖g‖

L2(ω)

and the bound of BAstop (f, g) will be the main subject of the next section.

Note that the modified dual martingale differences �σ,[,bI and �̂σ,[,bI ,

�σ,[,bI f ≡ �σ,bI f −
∑

I′∈Cbrok(I)

Fσ,b
I′ f = bA

∑
I′∈C(I)

1I′E
σ
I′
(
�̂σ,[,bI f

)
= bA�̂

σ,[,b
I f,

satisfy the following telescoping property for all K ∈
(
CA\ {A}

)
∪

 ⋃
A′∈CA(A)

A′

 and

L ∈ CA with K ⊂ L:

∑
I: πK⊂I⊂L

EσI

(
�̂σ,[,bI f

)
=


−EσLF̂

σ,b
L f if K ∈ CA (A)

EσK F̂σ,bK f − EσLF̂
σ,b
L f if K ∈ CA

.

Fix I ∈ CA for the moment. We will use

1I = 1IJ
+

∑
Ĩ∈θ(IJ )

1
Ĩ
,

1IJ
= 1A − 1A\IJ ,
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where θ (IJ ) denotes the 2n− 1 D-children of I other than the child IJ that contains J . We

begin with the splitting

〈
Tασ �

σ,b
I f,�ω,b

∗
J g

〉
ω

=
〈
Tασ

(
1IJ
�σ,bI f

)
,�ω,b

∗
J g

〉
ω

+
∑

Ĩ∈θ(IJ )

〈
Tασ

(
1
Ĩ
�σ,bI f

)
,�ω,b

∗
J g

〉
ω

=
〈
Tασ

(
1IJ
�σ,[,bI f

)
,�ω,b

∗
J g

〉
ω

+

〈
Tασ

1IJ

∑
I′∈Cbrok(I)

Fσ,b
I′ f

 ,�ω,b
∗

J g

〉
ω

+
∑

Ĩ∈θ(IJ )

〈
Tασ

(
1
Ĩ
�σ,bI f

)
,�ω,b

∗
J g

〉
ω

≡ I + II + III .

From (5.1.47) we have

I =
〈
Tασ

(
1IJ
�σ,[,bI f

)
,�ω,b

∗
J g

〉
ω

=
〈
Tασ

[
bA

(
1IJ
�̂σ,[,bI f

)]
,�ω,b

∗
J g

〉
ω

= EσIJ

(
�̂σ,[,bI f

)〈
Tασ

(
1IJ

bA

)
,�ω,b

∗
J g

〉
ω

= EσIJ

(
�̂σ,[,bI f

)〈
Tασ bA,�

ω,b∗
J g

〉
ω
− EσIJ

(
�̂σ,[,bI f

)〈
Tασ

(
1A\IJ bA

)
,�ω,b

∗
J g

〉
ω

Since the function Fσ,bIJ f is a constant multiple of bIJ on IJ , we can define F̂σ,bIJ f ≡
1
bIJ

Fσ,bIJ f

and then

II =

〈
Tασ

1IJ ∑
I′∈Cbrok(I)

Fσ,b
I′ f

,�ω,b∗J g

〉
ω

= 1CA(A)(IJ )EσIJ

(
F̂σ,bIJ f

)〈
Tασ bIJ

,�ω,b
∗

J g
〉
ω

where the presence of the indicator function 1CA(A) (IJ ) simply means that term II vanishes
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unless IJ is an A-child of A. We now write these terms as

〈
Tασ �

σ,b
I f,�ω,b

∗
J g

〉
ω

= EσIJ

(
�̂σ,[,bI f

)〈
Tασ bA,�

ω,b∗
J g

〉
ω

−EσIJ

(
�̂σ,[,bI f

)〈
Tασ

(
1A\IJ bA

)
,�ω,b

∗
J g

〉
ω

+
∑

Ĩ∈θ(IJ )

〈
Tασ

(
1
Ĩ
�σ,bI f

)
,�ω,b

∗
J g

〉
ω

+1{IJ∈CA(A)} E
σ
IJ

(
F̂σ,bIJ f

) 〈
Tασ bIJ

,�ω,b
∗

J g
〉
ω
,

where the four lines are respectively a paraproduct, stopping, neighbour and broken term.

The corresponding NTV splitting of BAbr,ε (f, g) using (5.5.4) and (5.5.2) becomes

BAbr,ε (f, g) =

〈
Tασ

(
PσCA

f
)
,Pω
CG,shiftA

g

〉br,ε
ω

=
∑

I∈CA and J∈CG,shiftA
Jz$I and `(J)≤2−r`(I)

〈
Tασ

(
�σ,bI f

)
,�ω,b

∗
J g

〉
ω

= BAparaproduct (f, g)− BAstop (f, g) + BAneighbour (f, g) + BAbrok (f, g) ,

where

BAparaproduct (f, g) ≡
∑

I∈CA and J∈CG,shiftA
Jz$I and `(J)≤2−r`(I)

EσIJ

(
�̂σ,[,bI f

)〈
Tασ bA,�

ω,b∗
J g

〉
ω

BAstop (f, g) ≡
∑

I∈CA and J∈CG,shiftA
Jz$I and `(J)≤2−r`(I)

EσIJ

(
�̂σ,[,bI f

)〈
Tασ

(
1A\IJ bA

)
,�ω,b

∗
J g

〉
ω

BAneighbour (f, g) ≡
∑

I∈CA and J∈CG,shiftA
Jz$I and `(J)≤2−r`(I)

∑
Ĩ∈θ(IJ )

〈
Tασ

(
1
Ĩ
�σ,bI f

)
,�ω,b

∗
J g

〉
ω
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correspond to the three original NTV forms associated with 1-testing, and where

BAbrok (f, g) ≡
∑

I∈CA and J∈CG,shiftA
Jz$I and `(J)≤2−r`(I)

1{IJ∈CA(A)} E
σ
IJ

(
F̂σ,bIJ f

) 〈
Tασ bIJ

,�ω,b
∗

J g
〉
ω

(5.5.18)

"vanishes" since Jz $ I and IJ ∈ CA (A) imply that Jz /∈ CGA, contradicting J ∈ C
G,shift
A .

Remark 5.5.9. The inquisitive reader will note that the pairs (I, J) arising in the above

sum with Jz $ I replaced by Jz = I are handled in the probabilistic estimate (5.2.15) for

the bad form Θ
bad\
2 defined in (5.2.12).

5.5.4.1 The paraproduct form

The paraproduct form BAparaproduct (f, g) is easily controlled by the testing condition for

Tα together with weak Riesz inequalities for dual martingale differences. Indeed, recalling

the telescoping identity (5.1.48), and that the collection
{
I ∈ CA: ` (J) ≤ 2−r` (I)

}
is tree

connected for all J ∈ CG,shiftA , we have

BAparaproduct (f, g) =
∑

I∈CA and J∈CG,shiftA
Jz$I and `(J)≤2−r`(I)

EσIJ

(
�̂σ,[,bI f

)〈
Tασ bA,�

ω,b∗
J g

〉
ω

=
∑

J∈CG,shiftA

〈
Tασ bA,�

ω,b∗
J g

〉
ω


∑

I∈CA: Jz$I and `(J)≤2−r`(I)

EσIJ

(
�̂σ,[,bI f

)
=

∑
J∈CG,shiftA

〈
Tασ bA,�

ω,b∗
J g

〉
ω

{
1{

J :I\(J)J∈CA
}Eσ

I\(J)J
F̂σ,b
I\(J)J

f − EσAF̂
σ,b
A f

}

=

〈
Tασ bA,

∑
J∈CG,shiftA

{
1{

J :I\(J)J∈CA
}Eσ

I\(J)J
F̂σ,b
I\(J)J

f − EσAF̂
σ,b
A f

}
�ω,b

∗
J g

〉
ω
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where I\ (J) denotes the smallest cube I ∈ CA such that Jz $ I and ` (J) ≤ 2−r` (I), and

of course I\ (J)J denotes its child containing J . Note that by construction of the modified

difference operator �σ,[,bI , the only time the average F̂σ
I\(J)J

f appears in the above sum is

when I\ (J)J ∈ CA, since the case I\ (J)J ∈ A has been removed to the broken term. This is

reflected above with the inclusion of the indicator 1{
J :I\(J)J∈CA

}. It follows that we have

the bound

∣∣∣∣∣1{J :I\(J)J∈CA
}Eσ

I\(J)J
F̂σ,b
I\(J)J

f

∣∣∣∣∣+
∣∣∣EσAF̂σ,bA f

∣∣∣ . EσA |f | ≤ αA (A)

Thus from Cauchy-Schwarz, the upper weak Riesz inequalities for the pseudoprojections

�ω,b
∗

J g and the bound on the coefficients λJ ≡

(
1{

J :I\(J)J∈CA
}Eσ

I\(J)J
F̂σ,b
I\(J)J

f − EσAF̂
σ,b
A f

)
given by |λJ | . αA (A), we have

∣∣∣BAparaproduct (f, g)
∣∣∣ = (5.5.19)∣∣∣∣∣∣∣∣

〈
Tασ bA,

∑
J∈CG,shiftA

{(
1{

J :I\(J)J∈CA
}Eσ

I\(J)J
F̂σ,b
I\(J)J

f − EσAF̂
σ,b
A f

)}
�ω,b

∗
J g

〉
ω

∣∣∣∣∣∣∣∣
≤ ‖1ATασ bA‖L2(ω)

∥∥∥∥∥∥∥∥
∑

J∈CG,shiftA

λJ�
ω,b∗
J g

∥∥∥∥∥∥∥∥
L2(ω)

. αA (A) ‖1ATασ bA‖L2(ω)

∑
J∈CG,shiftA

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

≤ Tb
Tα αA (A)

√
|A|σ

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F

L2(ω)

.
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5.5.4.2 The neighbour form

Next, the neighbour form BAneighbour (f, g) is easily controlled by the Aα2 condition using the

pivotal estimate in Energy Lemma 5.1.25 and the fact that the cubes J ∈ CG,shiftA are good in

I and beyond when the pair (I, J) occurs in the sum. In particular, the information encoded

in the stopping tree A plays no role here, apart from appearing in the corona projections on

the right hand side of (5.5.25) below. We have

BAneighbour (f, g) =
∑

I∈CA and J∈CG,shiftA
Jz$I and `(J)≤2−r`(I)

∑
Ĩ∈θ(IJ )

〈
Tασ

(
1
Ĩ
�σ,bI f

)
,�ω,b

∗
J g

〉
ω

(5.5.20)

where we keep in mind that the pairs (I, J) ∈ D×G that arise in the sum for BAneighbour (f, g)

satisfy the property that Jz $ I, so that J is good with respect to all cubes K of size at

least that of Jz, which includes I. Recall that IJ is the child of I that contains J , and that

θ (IJ ) denotes its 2n − 1 siblings in I, i.e. θ (IJ ) = CD (I) \ {IJ}. Fix (I, J) momentarily,

and an integer s ≥ r. Using �σ,bI = �σ,[,bI +�σ,[,bI,brok and the fact that �σ,[,bI f is a constant

multiple of b
Ĩ
on the cube Ĩ, we have the estimates

∣∣∣1Ĩ�σ,[,bI f
∣∣∣ =

∣∣∣(Eσ
Ĩ
�̂σ,[,bI f

)
b
Ĩ

∣∣∣ ≤ Cb

∣∣∣Eσ
Ĩ
�̂σ,[,bI f

∣∣∣ ,∣∣∣1Ĩ�σ,[,bI,brokf
∣∣∣ ≤ 1CA(A)(Ĩ) Eσ

Ĩ
|f | ,

and hence

1
Ĩ

∣∣∣�σ,bI f
∣∣∣ ≤ C1

Ĩ

(∣∣∣Eσ
Ĩ
�̂σ,[,bI f

∣∣∣+ 1CA(A)(Ĩ) Eσ
Ĩ
|f |
)
, (5.5.21)
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which will be used below after an application of the Energy Lemma. We can write

BAneighbour (f, g) as

∑
I∈CA&J∈GD

(κ(IJ ,J),ε)−good
∩CG,shiftA &Jz$I

d
(
J,Ĩ
)
>2`(J)ε`

(
Ĩ
)1−ε

and `(J)≤2−r`(I)

∑
Ĩ∈θ(IJ )

〈
Tασ

(
1
Ĩ
�σ,bI f

)
,�ω,b

∗
J g

〉
ω

where we have included the conditions

J ∈ GD(κ(IJ ,J),ε)−good and d(J, Ĩ) > 2` (J)ε `(Ĩ)1−ε

in the summation since they are already implied the remaining four conditions, and will be

used in estimates below.

We will also use the following fractional analogue of the Poisson inequality in [75].

Lemma 5.5.10. Suppose 0 ≤ α < 1 and J ⊂ I ⊂K and that d (J, ∂I)> 2` (J)ε` (I)1−ε for

some 0 < ε < 1
n+1−α . Then for a positive Borel measure µ we have

Pα(J, µ1K\I) .
(
` (J)

` (I)

)1−ε(n+1−α)

Pα(I, µ1K\I). (5.5.22)

Proof. We have

Pα
(
J, µ1K\I

)
≈
∞∑
k=0

2−k
1∣∣2kJ∣∣1−αn

∫(
2kJ

)
∩(K\I)

dµ,

and
(

2kJ
)
∩ (K\I) 6= ∅ requires

d (J,K\I) ≤ c2k` (J) ,
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for some dimensional constant c > 0. Let k0 be the smallest such k. By our distance

assumption we must then have

2` (J)ε ` (I)1−ε ≤ d (J, ∂I) ≤ c2k0` (J) ,

or

2−k0+1 ≤ c

(
` (J)

` (I)

)1−ε
.

Now let k1 be defined by 2k1 ≡ `(I)
`(J)

. Then assuming k1 > k0 (the case k1 ≤ k0 is similar)

we have

Pα
(
J, µ1K\I

)
≈


k1∑

k=k0

+
∞∑

k=k1

 2−k
1∣∣2kJ∣∣1−αn

∫(
2kJ

)
∩(K\I)

dµ

. 2−k0
|I|1−

α
n∣∣∣2k0J
∣∣∣1−αn

 1

|I|1−
α
n

∫(
2k1J

)
∩(K\I)

dµ

+ 2−k1Pα
(
I, µ1K\I

)

.

(
` (J)

` (I)

)(1−ε)(n+1−α)( ` (I)

` (J)

)n−α
Pα
(
I, µ1K\I

)
+
` (J)

` (I)
Pα
(
I, µ1K\I

)
,

which is the inequality (5.5.22).

Now fix I0 = IJ , Iθ ∈ θ (IJ ) and assume that J br,ε I0. Let `(J)
`(I0)

= 2−s in the pivotal

estimate from Energy Lemma 5.1.25 with J ⊂ I0 ⊂ I to obtain

∣∣∣〈Tασ (1Iθ
�σ,bI f

)
,�ω,b

∗
J g〉ω

∣∣∣. ∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

√
|J |ωPα

(
J,1Iθ

∣∣∣�σ,bI f
∣∣∣σ)

.
∥∥∥�ω,b∗J g

∥∥∥
L2(ω)

√
|J |ω · 2

−(1−ε(n+1−α))sPα
(
I0,1Iθ

∣∣∣�σ,bI f
∣∣∣σ)

.
∥∥∥�ω,b∗J g

∥∥∥
L2(ω)

√
|J |ω · 2

−(1−ε(n+1−α))sPα
(
I0,1Iθ

EσIθ
f · σ

)
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Here we are using (5.5.22) in the third line, which applies since J ⊂ I0, and we have used

(5.5.21) in the fourth line and the shorthand notation

EσIθ
f ≡

∣∣∣EσIθ�̂σ,[,bI f
∣∣∣+ 1CA(A) (Iθ) EσIθ

|f |

where the cube I on the right hand side is determined uniquely by the cube Iθ ∈ θ (IJ ).

In the sum below, we keep the side lengths of the cubes J fixed at 2−s times that of I0,

and of course take J ⊂ I0. We also keep the underlying assumptions that J ∈ CG,shiftA and

that J ∈ GD
(κ(IJ ,J),ε)−good in mind without necessarily pointing to them in the notation.

Matters will shortly be reduced to estimating the following term:

A(I, I0, Iθ, s) ≡
∑

J : 2s+1`(J)=`(I):J⊂I0

∣∣∣〈Tασ (1Iθ
�σ,bI f

)
,�ω,b

∗
J g〉ω

∣∣∣
≤ 2−(1−ε(n+1−α))s

(
EσIθ

f
)

Pα(I0,1Iθ
σ)
∑

J :J⊂I0
2s+1`(J)=`(I)

∥∥∥�ω,b∗J g
∥∥∥
L2(ω)

√
|J |ω

≤ 2−(1−ε(n+1−α))s
(
EσIθ

f
)

Pα(I0,1Iθ
σ)
√
|I0|ωΛ(I, I0, Iθ, s)

where Λ(I, I0, Iθ, s)
2 ≡

∑
J∈CG,shiftA : 2s+1`(J)=`(I): J⊂I0

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)
.

The last line follows upon using the Cauchy-Schwarz inequality and the fact that J ∈

CG,shiftA . We also note that since 2s+1` (J) = ` (I),

∑
I0∈CD(I)

Λ(I, I0, Iθ, s)
2 ≡

∑
J∈CG,shiftA : 2s+1`(J)=`(I): J⊂I

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)
;(5.5.23)

∑
I∈CA

∑
I0∈CD(I)

Λ(I, I0, Iθ, s)
2 ≤

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F2

L2(ω)

248



Using (5.4.2) we obtain

∣∣∣EσIθ (�̂σ,[,bI f
)∣∣∣ ≤√EσIθ

∣∣∣�̂σ,[,bI f
∣∣∣2 . ∥∥∥�σ,bI f

∥∥∥F
L2(σ)

|Iθ|
−1

2
σ (5.5.24)

and hence

EσIθ
f ≡

∣∣∣EσIθ(IJ )�̂
σ,[,b
I f

∣∣∣+ 1CA(A) (Iθ) EσIθ
|f |

.

(∥∥∥�σ,bI f
∥∥∥F
L2(σ)

+ 1CA(A) (Iθ) |Iθ|
1
2
σ E

σ
Iθ
|f |

)
|Iθ|
−1

2
σ

and thus A(I, I0, Iθ, s) is bounded by

2−(1−ε(n+1−α))s

(∥∥∥�σ,bI f
∥∥∥F
L2(σ)

+ 1CA(A) (Iθ) |Iθ|
1
2
σ E

σ
Iθ
|f |

)
·

·Λ(I, I0, Iθ, s) |Iθ|
−1

2
σ Pα(I0,1Iθ

σ)
√
|I0|ω

.
√
Aα2 2−(1−ε(n+1−α))s

(∥∥∥�σ,bI f
∥∥∥F
L2(σ)

+ 1CA(A) (Iθ) |Iθ|
1
2
σ E

σ
Iθ
|f |

)
Λ(I, I0, Iθ, s)

since Pα(I0,1Iθ
σ) .

|Iθ|σ
|Iθ|1−

α
n

shows that

|Iθ|
−1

2
σ Pα(I0,1Iθ

σ)
√
|I0|ω .

√
|Iθ|σ

√
|I0|ω

|Iθ|1−
α
n

.
√

Aα2

where the implied constant depends on α and the dimension. An application of Cauchy-
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Schwarz to the sum over I using (5.5.23) then shows that

∑
I∈CA

∑
I0,Iθ∈CD(I)

I0 6=Iθ

A(I, I0, Iθ, s)

.
√

Aα2 2−(1−ε(n+1−α))s

√√√√∑
I∈CA

∥∥∥�σ,bI f
∥∥∥F2

L2(σ)
+

∑
Iθ∈CA(A)

|Iθ|σ
(
EσIθ
|f |
)2
·

·

√√√√√√√√√
∑
I∈CA


∑

I0,Iθ∈CD(I)
I0 6=Iθ

Λ(I, I0, Iθ, s)


2

.
√
Aα2 2−(1−ε(n+1−α))s

√√√√∥∥∥PσCAf∥∥∥F2

L2(σ)
+

∑
A′∈CA(A)

|A′|σ
(
Eσ
A′ |f |

)2
·

·

√√√√√√√√√
∑
I∈CA


∑

I0∈CD(I)
I0 6=Iθ

Λ(I, I0, Iθ, s)


2

.
√

Aα2 2−(1−ε(n+1−α))s

‖PσCAf‖FL2(σ)
+

√√√√ ∑
A′∈CA(A)

|A′|σ
(
Eσ
A′ |f |

)2

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F

L2(ω)

This estimate is summable in s ≥ r since ε < 1
n+1−α , and so the proof of

∣∣∣BAneighbour (f, g)
∣∣∣ ≤ ∑

I∈CA

∑
I0 and Iθ∈CD(I)

I0 6=Iθ

∞∑
s=r

A(I, I0, Iθ, s) (5.5.25)

.
√
Aα2

∥∥∥PσCAf∥∥∥FL2(σ)
+

√√√√ ∑
A′∈CA(A)

|A′|σ αA (A′)2


∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F

L2(ω)
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is complete since Eσ
A′ |f | . αA

(
A′
)
.

Now if we sum in A ∈ A the inequalities (5.5.19), (5.5.25) and (5.5.18) we get

∑
A∈A

∣∣∣BAbr,ε (f, g) + BAstop (f, g)
∣∣∣

.
(
Tb
Tα +

√
Aα2

)√√√√√∑
A∈A

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F2

L2(ω)

·

·

√√√√√√∑
A∈A

αA (A)2 |A|σ +
∥∥∥PσCAf∥∥∥F2

L2(σ)
+

∑
A′∈CA(A)

αA (A′)2 |A′|σ


.

(
Tb
Tα +

√
Aα2

)
‖f‖

L2(σ)
‖g‖

L2(ω)

The stopping form is the subject of the following section.

5.6 The stopping form

Here we deal with the stopping form. We modify the adaptation of the argument of M. Lacey

in to apply in the setting of a Tb theorem for an α-fractional Calderón-Zygmund operator Tα

in Rn using the Monotonicity Lemma 5.1.23, the energy condition, and the weak goodness

of Hytönen and Martikainen [24]. We directly control the pairs (I, J) in the stopping form

according to the L -coronas (constructed from the ‘bottom up’ with stopping times involving

the energies
∥∥∥�ω,b∗J

∥∥∥2

L2(ω)
) to which I and Jz are associated. However, due to the fact that

the cubes I need no longer be good in any sense, we must introduce an additional top/down

‘indented’ corona construction on top of the bottom/up construction of M. Lacey, and in

connection with this we introduce a Substraddling Lemma. We then control the stopping

form by absorbing the case when both I and Jz belong to the same L -corona, and by
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using the Straddling and Substraddling Lemmas, together with the Orthogonality Lemma,

to control the case when I and Jz lie in different coronas, with a geometric gain coming

from the separation of the coronas. This geometric gain is where the new ‘indented’ corona

is required.

Apart from this change, the remaining modifications are more cosmetic, such as

• the use of the weak goodness of Hytönen and Martikainen [24] for pairs (I, J) arising in

the stopping form, rather than goodness for all cubes J that was available in [27], [64],

[66] and [67]. For the most part definitions such as admissible collections are modified

to require Jz ⊂ I;

• the pseudoprojections �σ,bI ,�ω,b
∗

J are used in place of the orthogonal Haar projections,

and the frame and weak Riesz inequalities compensate for the lack of orthogonality.

Fix grids D and G. We will prove the bound

∣∣∣BAstop (f, g)
∣∣∣ . NT Vα

∥∥∥∥∥Pσ,bCDA f
∥∥∥∥∥
F

L2(σ)

∥∥∥∥∥Pσ,bCG,shiftA

g

∥∥∥∥∥
F

L2(ω)

, (5.6.1)

where we recall that the nonstandard ‘norms’ are given by,

∥∥∥∥∥Pσ,bCDA f
∥∥∥∥∥
F2

L2(σ)

≡
∑
I∈CDA

∥∥∥�σ,bI f
∥∥∥2

L2(σ)
,

∥∥∥∥∥Pσ,bCG,shiftA

g

∥∥∥∥∥
F2

L2(ω)

≡
∑

J∈CG,shiftA

∥∥∥�ω,b∗J g
∥∥∥2

L2(ω)
,
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and that the stopping form is given by

BAstop (f, g) ≡
∑

I∈CDA and J∈CG,shiftA
Jz$I and `(J)≤2−ρ`(I)

(
EσIJ
�̂σ,[,bI f

)〈
Tασ

(
bA1A\IJ

)
,�ω,b

∗
J g

〉
ω

=
∑

I: πI∈CDA and J∈CG,shiftA
Jz$I and `(J)≤2−(ρ−1)`(I)

(
EσI �̂

σ,[,b
πI f

)〈
Tασ

(
bA1A\I

)
,�ω,b

∗
J g

〉
ω

where we have made the ‘change of dummy variable’ IJ → I for convenience in notation

(recall that the child of I that contains J is denoted IJ ). Changing ρ− 1 to ρ we have:

BAstop (f, g) =
∑

I: πI∈CDA and J∈CG,shiftA
Jz$I and `(J)≤2−ρ`(I)

(
EσI �̂

σ,[,b
πI f

)〈
Tασ

(
bA1A\I

)
,�ω,b

∗
J g

〉
ω
,

For A ∈ A recall that we have defined the shifted G-corona by

CG,shiftA ≡
{
J ∈ G : Jz ∈ CDA

}
,

and also defined the restricted D-corona by

CD,restrictA ≡ CA\ {A} ≡ C′A.

Definition 5.6.1. Suppose that A ∈ A and that P ⊂ CD,restrictA ×CG,shiftA . We say that the

collection of pairs P is A -admissible if

• (good and (ρ, ε)-deeply embedded) For every (I, J) ∈ P , and Jz ⊂ I & A.

• (tree-connected in the first component) if I1 ⊂ I2 and both (I1, J) ∈ P and (I2, J) ∈ P ,
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then (I, J) ∈ P for every I in the geodesic [I1, I2] = {I ∈ D : I1 ⊂ I ⊂ I2}.

From now on we often write CA and C′A in place of CDA and CD,restrictA respectively when

there is no confusion. The basic example of an admissible collection of pairs is obtained from

the pairs of cubes summed in the stopping form BAstop (f, g),

PA ≡
{

(I, J) : I ∈ C′A and J ∈ GD(ρ,ε)−good ∩ C
G,shift
A where J bρ,ε I

}
. (5.6.2)

Definition 5.6.2. Suppose that A ∈ A and that P is an A -admissible collection of pairs.

Define the associated stopping form B
A,P
stop by

B
A,P
stop (f, g) ≡

∑
(I,J)∈P

(
EσI �̂

σ,[,b
πI f

) 〈
Tασ

(
bA1A\I

)
,�ω,b

∗
J g

〉
ω
.

Proposition 5.6.3. Suppose that A ∈ A and that P is an A-admissible collection of pairs.

Then the stopping form B
A,P
stop satisfies the bound

∣∣∣BA,Pstop (f, g)
∣∣∣ . (Eα2 +

√
Aα2

)∥∥∥Pσ,bCA f∥∥∥FL2(σ)

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F

L2(ω)

(5.6.3)

With the above proposition in hand, we can complete the proof of (5.6.1) by summing
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over the stopping cubes A ∈ A with the choice PA of A-admissible pairs for each A:

∑
A∈A

∣∣∣∣BA,PAstop (f, g)

∣∣∣∣
.

∑
A∈A

(
Eα2 +

√
Aα2

)∥∥∥Pσ,bCA f∥∥∥FL2(σ)

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F

L2(ω)

.
(
Eα2 +

√
Aα2

)∑
A∈A

∥∥∥Pσ,bCA f∥∥∥F2

L2(σ)

1
2
∑
A∈A

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
F2

L2(ω)

1
2

.
(
Eα2 +

√
Aα2

)
‖f‖

L2(σ)
‖g‖

L2(ω)

by the lower Riesz inequality
∑
A∈A

∥∥∥Pσ,bCA f∥∥∥F2

L2(σ)
. ‖f‖2

L2(σ)
, quasi-orthogonality∑

A∈A
αA (f)2 |A|σ . ‖f‖

2
L2(σ)

in the stopping cubes A, and by the pairwise disjointedness of

the shifted coronas CG,shiftA :
∑
A∈A

1
CG,shiftA

≤ 1D.

To prove Proposition 5.6.3, we begin by letting

Π1P ≡
{
I ∈ CD,restrictA : (I, J) ∈ P for some J ∈ CG,shiftA

}
,

Π2P ≡
{
J ∈ CG,shiftA : (I, J) ∈ P for some I ∈ C′A

}
,

consist of the first and second components respectively of the pairs in P , and writing

B
A,P
stop (f, g) =

∑
J∈Π2P

〈
Tασ ϕ

P
J ,�

ω,b∗
J g

〉
ω

;

where ϕPJ ≡
∑

I∈C′A: (I,J)∈P

bAE
σ
I

(
�̂σ,[,bπI f

)
1A\I (since bI = bA for I ∈ CA).

By the tree-connected property of P , and the telescoping property of dual martingale differ-
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ences, together with the bound αA (A) on the averages of f in the corona CA, we have

∣∣∣ϕPJ ∣∣∣ . αA (A) 1A\IP (J), (5.6.4)

where IP (J) ≡
⋂
{I : (I, J) ∈ P} is the smallest cube I for which (I, J) ∈ P . It is important

to note that J is good with respect to IP (J) by our infusion of weak goodness above. Another

important property of these functions is the sublinearity:

∣∣∣ϕPJ ∣∣∣ ≤ ∣∣∣ϕP1
J

∣∣∣+
∣∣∣ϕP2
J

∣∣∣ , P = P1∪̇P2 . (5.6.5)

Now apply the Monotonicity Lemma 5.1.23 to the inner product
〈
Tασ ϕJ ,�

ω
Jg
〉
ω to obtain

∣∣∣〈Tασ ϕJ ,�ω,b∗J g
〉
ω

∣∣∣ . Pα
(
J, |ϕJ |1A\IP (J)σ

)
|J |

1
n

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

+
Pα1+δ

(
J, |ϕJ |1A\IP (J)σ

)
|J |

1
n

∥∥x−mω
J

∥∥
L2(1Jω)

∥∥∥�ω,b∗J g
∥∥∥F
L2

Thus we have

(5.6.6)∣∣∣BA,Pstop (f, g)
∣∣∣ ≤ ∑

J∈Π2P

Pα
(
J, |ϕJ |1A\IP (J)σ

)
|J |

1
n

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

+
∑

J∈Π2P

Pα1+δ

(
J, |ϕJ |1A\IP (J)σ

)
|J |

1
n

∥∥x−mω
J

∥∥
L2(1Jω)

∥∥∥�ω,b∗J g
∥∥∥F
L2

≡ |B|A,Pstop,1,4ω (f, g) + |B|A,Pstop,1+δ,Pω (f, g) ,

where we have dominated the stopping form by two sublinear stopping forms that involve the
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Poisson integrals of order 1 and 1 + δ respectively, and where the smaller Poisson integral

Pα1+δ is multiplied by the larger quantity
∥∥x−mω

J

∥∥
L2 (1Jω). This splitting turns out to

be successful in separating the two energy terms from the right hand side of the Energy

Lemma, because of the two properties (5.6.4) and (5.6.5) above. It remains to show the two

inequalities:

|B|A,Pstop,4ω (f, g) .
(
Eα2 +

√
Aα2

)∥∥∥Pσ,bπ(Π1P)
f
∥∥∥F
L2(σ)

∥∥∥Pω,b∗Π2P
g
∥∥∥F
L2(ω)

, (5.6.7)

for f ∈ L2 (σ) satisfying where EσI |f | ≤ αA (A) for all I ∈ CA; and where π (Π1P) ≡

{πDI : I ∈ Π1P}; and

|B|A,Pstop,1+δ,Pω (f, g) .
(
Eα2 +

√
Aα2

)∥∥∥∥∥Pσ,bCDA f
∥∥∥∥∥
L2(σ)

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
L2(ω)

(5.6.8)

where we only need the case P = PA in this latter inequality as there is no recursion involved

in treating this second sublinear form. We consider first the easier inequality (5.6.8) that

does not require recursion.

5.6.1 The bound for the second sublinear inequality

Now we turn to proving (5.6.8), i.e.

|B|A,Pstop,1+δ,Pω (f, g) .
(
Eα2 +

√
Aα2

)∥∥∥∥∥Pσ,bCDA f
∥∥∥∥∥
L2(σ)

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
L2(ω)
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where since

|ϕJ | =

∣∣∣∣∣∣∣
∑

I∈C′A: (I,J)∈P

EσI

(
�̂σ,[,bπI f

)
bA1A\I

∣∣∣∣∣∣∣ ≤
∑

I∈C′A: (I,J)∈P

∣∣∣EσI (�̂σ,[,bπI f
)
bA 1A\I

∣∣∣ ,

the sublinear form |B|A,Pstop,1+δ,Pω can be dominated and then decomposed by pigeonholing

the ratio of side lengths of J and I:

|B|A,Pstop,1+δ (f, g)

=
∑

J∈Π2P

Pα1+δ

(
J, |ϕJ |1A\IP (J)σ

)
|J |

1
n

‖x−mJ‖L2(1Jω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

≤
∑

(I,J)∈P

Pα1+δ

(
J,
∣∣∣EσI (�σ,[,bπI f

)∣∣∣1A\Iσ)
|J |

1
n

‖x−mJ‖L2(1Jω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

≡
∞∑
s=0

|B|A,P;s
stop,1+δ (f, g) ;

We will now adapt the argument for the stopping term starting on page 42 of [32], where the

geometric gain from the assumed ‘Energy Hypothesis’ there will be replaced by a geometric

gain from the smaller Poisson integral Pα1+δ used here.

First, we exploit the additional decay in the Poisson integral Pα1+δ as follows. Suppose

258



that (I, J) ∈ P with ` (J) = 2−s` (I). We then compute

Pα1+δ

(
J, |bA|1A\Iσ

)
|J |

1
n

≈
∫
A\I

|J |
δ
n

|y − cJ |n+1+δ−α |bA (y)| dσ (y)

≤
∫
A\I

 |J |
1
n

dist (cJ , I
c)

δ 1

|y − cJ |n+1−α |bA (y)| dσ (y)

.

 |J |
1
n

dist (cJ , I
c)

δ Pα
(
J, |bA|1A\Iσ

)
|J |

1
n

,

and using the goodness of J in I,

d (cJ , I
c) ≥ 2` (I)1−ε ` (J)ε ≥ 2 · 2s(1−ε)` (J) ,

to conclude, using accretivity, that

Pα1+δ

(
J, |bA|1A\Iσ

)
|J |

1
n

 . 2−sδ(1−ε)
Pα
(
J,1A\Iσ

)
|J |

1
n

. (5.6.9)

We next claim that for s ≥ 0 an integer,

|B|A,P;s
stop,1+δ,Pω (f, g) . 2−sδ(1−ε)

(
Eα2 +

√
Aα2

)∥∥∥∥∥Pσ,bCDA f
∥∥∥∥∥
L2(σ)

∥∥∥∥∥Pω,b∗CG,shiftA

g

∥∥∥∥∥
L2(ω)

from which (5.6.8) follows upon summing in s ≥ 0. Now using both

∣∣∣EσI (�̂σ,[,bπI f
)∣∣∣ 1

|I|σ

∫
I

∣∣∣�σ,[,bπI f
∣∣∣ dσ ≤ ∥∥∥�σ,[,bπI f

∥∥∥
L2(σ)

1√
|I|σ

,

∑
I∈D

∥∥∥�σ,[,bπI f
∥∥∥2

L2(σ)
.
∑
I∈D

(∥∥∥�σ,bπI f∥∥∥2

L2(σ)
+
∥∥∇σπIf∥∥2

L2(σ)

)
≈ ‖f‖2

L2(σ)
,
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we apply Cauchy-Schwarz in the I variable above to see that

[
|B|A,P;s

stop,1+δ,Pω (f, g)
]2

.

∥∥∥∥∥Pσ,bCDA f
∥∥∥∥∥
L2(σ)


∑
I∈C′A

 1√
|I|σ

∑
J : (I,J)∈P

`(J)=2−s`(I)

Pα1+δ

(
J,1A\Iσ

)
|J |

1
n

‖x−mJ‖L2(1Jω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)


2


1
2

Using the frame inequality for �ω,b
∗

J we can then estimate the sum inside the square brackets

by

∑
I∈C′A


∑

J : (I,J)∈P
`(J)=2−s`(I)

∥∥∥�ω,b∗J g
∥∥∥F2

L2(ω)


∑

J : (I,J)∈P
`(J)=2−s`(I)

1

|I|σ

Pα1+δ

(
J,1A\Iσ

)
|J |

1
n

2

‖x−mJ‖2L2(1Jω)

.
∥∥∥Pω,b∗Π2P

g
∥∥∥F2

L2(ω)
A (s)2 ,

where

A (s)2 ≡ sup
I∈C′A

∑
J : (I,J)∈P
`(J)=2−s`(I)

1

|I|σ

Pα1+δ

(
J,1A\Iσ

)
|J |

1
n

2

‖x−mJ‖2L2(1Jω)

Finally then we turn to the analysis of the supremum in last display. From the Poisson decay

(5.6.9) we have

A (s)2 . sup
I∈C′A

1

|I|σ
2−2sδ(1−ε) ∑

J : (I,J)∈P
`(J)=2−s`(I)

Pα
(
J,1A\Iσ

)
|J |

1
n

2

‖x−mJ‖2L2(1Jω)

. 2−2sδ(1−ε)
[
(Eα2 )2 + Aα2

]
,
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Indeed, from Definition 5.1.14, as (I, J) ∈ P , we have that I is not a stopping cube in A,

and hence that (5.1.28) fails to hold, delivering the estimate above since J bρ,ε I good must

be contained in some K ∈ M(r,ε)−deep (I), and since
Pα
(
J,|bI |1A\Iσ

)
|J |

1
n

≈
Pα
(
K,|bI |1A\Iσ

)
|K|

1
n

.

The terms
∥∥PωJx∥∥2

L2(ω) are additive since the J ′s are pigeonholed by ` (J) = 2−s` (I).

5.6.2 The bound for the first sublinear inequality

Now we turn to proving the more difficult inequality (5.6.7). Denote by N
A,P
stop,4ω the best

constant in

|B|A,Pstop,4ω (f, g) ≤ N
A,P
stop,4ω

∥∥∥Pσ,bπ(Π1P)
f
∥∥∥F
L2(σ)

∥∥∥Pω,b∗Π2P
g
∥∥∥F
L2(ω)

, (5.6.10)

where f ∈ L2 (σ) satisfies EσI |f | ≤ αA (A) for all I ∈ CA, and g ∈ L2 (ω) and π(Π1P) =

{πI : I ∈ Π1P}. We refer to N
A,P
stop,4ω as the restricted norm relative to the collection P .

Inequality (5.6.7) follows once we have shown that NA,P
stop,4ω . E

α
2 +

√
Aα2 .

The following general result on mutually orthogonal admissible collections will prove very

useful in establishing (5.6.7). Given a set {Qm}∞m=0 of admissible collections for A, we say

that the collections Qm are mutually orthogonal, if each collection Qm satisfies

Qm ⊂
∞⋃
j=0

{
Am,j × Bm,j

}

where the sets
{
Am,j

}
m,j and

{
Bm,j

}
m,j are each pairwise disjoint in their respective dyadic

grids D and G:
∞∑

m,j=0

1Am,j ≤ 1D and
∞∑

m,j=0

1Bm,j ≤ 1G .

Lemma 5.6.4. Suppose that {Qm}∞m=0 is a set of admissible collections for A that are
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mutually orthogonal. Then Q ≡
∞⋃
m=0
Qm is admissible, and the sublinear stopping form

|B|A,Qstop,4ω (f, g) has its restricted norm N
A,Q
stop,4ω controlled by the supremum of the restricted

norms NA,Qm
stop,4ω :

N
A,Q
stop,4ω ≤ sup

m≥0
N
A,Qm
stop,4ω .

Proof. If J ∈ Π2Qm, then ϕQJ = ϕQmJ and IQ (J) = IQm (J), since the collection {Qm}∞m=0

is mutually orthogonal. Thus we have

|B|A,Qstop,4ω (f, g) =
∑

J∈Π2Q

Pα
(
J,
∣∣∣ϕQJ ∣∣∣1A\IQ(J)σ

)
|J |

1
n

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

=
∑
m≥0

∑
J∈Π2Qm

Pα
(
J,
∣∣∣ϕQmJ ∣∣∣1A\IQm(J)σ

)
|J |

1
n

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

=
∑
m≥0

|B|A,Qmstop,4ω (f, g) ,

and we can continue with the definition of N̂A,Qm
stop,4ω and Cauchy-Schwarz to obtain

|B|A,Qstop,4ω (f, g)≤
∑
m≥0

N̂
A,Qm
stop,4ω

∥∥∥Pσ,bπ(Π1Qm)
f
∥∥∥F
L2(σ)

∥∥∥Pω,b∗Π2Qm
g
∥∥∥F
L2(ω)

≤

(
sup
m≥0

N̂
A,Qm
stop,4ω

)√√√√∑
m≥0

∥∥∥Pσ,bπ(Π1Qm)
f
∥∥∥F2

L2(σ)

√√√√∑
m≥0

∥∥∥Pω,b∗Π2Qm
g
∥∥∥F2

L2(ω)

≤

(
sup
m≥0

N̂
A,Qm
stop,4ω

)√∥∥∥Pσ,bπ(Π1Q)
f
∥∥∥F2

L2(σ)

√∥∥∥Pω,b∗Π2Q
g
∥∥∥F2

L2(ω)
.
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Now we turn to proving inequality (5.6.7) for the sublinear form |B|A,Pstop,4ω (f, g), i.e.

|B|A,Pstop,4ω (f, g) ≡
∑

J∈Π2P

Pα
(
J, |ϕJ |1A\IP (J)σ

)
|J |

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

.
(
Eα2 +

√
Aα2

)∥∥∥Pσ,bπ(Π1P)
f
∥∥∥F
L2(σ)

∥∥∥Pω,b∗Π2P
g
∥∥∥F
L2(ω)

;

where ϕJ ≡
∑

I∈C′A: (I,J)∈P

(
EσI �̂

σ,[,b
πI f

)
bA 1A\I is supported in A\IP (J)

and IP (J) denotes the smallest cube I ∈ D for which (I, J) ∈ P . We recall the stopping

energy from (5.1.30),

Xα (CA)2 ≡ sup
I∈CA

1

|I|σ
sup

I⊃
·
∪Jr

∞∑
r=1

(
Pα (Jr,1Aσ)

|Jr|

)2 ∥∥x−mJr

∥∥2

L2
(
1Jrω

) ,

where the cubes Jr ∈ G are pairwise disjoint in I.

What now follows is an adaptation to our sublinear form |B|A,Pstop,4ω of the arguments of

M. Lacey in [27], together with an additional ‘indented’ corona construction. We have the

following Poisson inequality for cubes B ⊂ A ⊂ I:

Pα
(
A,1I\Aσ

)
|A|

1
n

≈
∫
I\A

1

(|y − cA|)n+1−αdσ (y) (5.6.11)

.
∫
I\A

1

(|y − cB |)n+1−αdσ (y) ≈
Pα
(
B,1I\Aσ

)
|B|

1
n

where the implied constants depend on n, α.

Fix A ∈ A. Following [27] we will use a ‘decoupled’ modification of the stopping energy
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Xα (CA) to define a ‘size functional’ of an A-admissible collection P . So suppose that P is

an A-admissible collection of pairs of cubes, and recall that Π1P and Π2P denote the cubes

in the first and second components of the pairs in P respectively.

Definition 5.6.5. For an A-admissible collection of pairs of cubes P, and a cube K ∈ Π1P,

define the projection of P ‘relative to K’ by

ΠK2 P ≡
{
J ∈ Π2P : Jz ⊂ K

}
,

where we have suppressed dependence on A.

Definition 5.6.6. We will use as the ‘size testing collection’ of cubes for P the collection

Πbelow1 P ≡ {K ∈ D : K ⊂ I for some I ∈ Π1P} ,

which consists of all cubes contained in a cube from Π1P.

Continuing to follow Lacey [27], we define two ‘size functionals’ of P as follows. Recall

that for a pseudoprojection QωH on x we have

∥∥∥Qω,b∗H x
∥∥∥♠2

L2(ω)
=

∑
J∈H

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

=
∑
J∈H

∥∥∥4ω,b∗J x
∥∥∥2

L2(ω)
+ inf
z∈Rn

∑
J ′∈Cbrok(J)

∣∣J ′∣∣ω (EωJ ′ |x− z|)2



Definition 5.6.7. If P is A-admissible, define an initial size condition Sα,Ainitsize (P) by

Sα,Ainitsize (P)2 ≡ sup
K∈Πbelow1 P

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2 ∥∥∥∥Qω,b∗ΠK2 P
x

∥∥∥∥♠2

L2(ω)

. (5.6.12)
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The following key fact is essential.

Key Fact #1:

If K ⊂ A and K /∈ CA, then ΠK2 P = ∅ . (5.6.13)

To see this, suppose that K ⊂ A and K /∈ CA. Then K ⊂ A′ for some A′ ∈ CA (A), and

so if there is J ′ ∈ ΠK2 P , then
(
J ′
)z ⊂ K ⊂ A′ , which implies that J ′ /∈ CG,shiftA , which

contradicts ΠK2 P ⊂ C
G,shift
A . We now observe from (5.6.13) that we may also write the

initial size functional as

Sα,Ainitsize (P)2 ≡ sup
K∈Πbelow1 P∩C′A

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2 ∥∥∥∥Qω,b∗ΠK2 P
x

∥∥∥∥♠2

L2(ω)

. (5.6.14)

However, we will also need to control certain pairs (I, J) ∈ P using testing cubes K

which are strictly smaller than Jz, namely those K ∈ CA such that K ⊂ Jz ⊂ π
(2)
D K. For

this, we need a second key fact regarding the cubes Jz, that will also play a crucial role in

controlling pairs in the indented corona below, and which is that J is always contained in

one of the inner 2n grandchildren of Jz. For M ∈ D, denote by M↘ and M↗ any of the

inner and outer respectively grandchildren ofM and byMJ andM [ the child and grandchild

respectively of M that contains J , provided they exist.

Key Fact #2:

3J ⊂ J[ and J[ is an inner grandchild of Jz (5.6.15)

To see this, suppose that the child JzJ of Jz contains J (JzJ exists because J is good in
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Jz). Then observe that J is by definition ε− bad in JzJ , i.e.

dist
(
J, bodyJzJ

)
≤ 2 |J |

ε
n
∣∣∣JzJ ∣∣∣1−εn

and so cannot lie in any of the 4n − 2n outermost grandchildren Jz↗. Indeed, if J ⊂ Jz↗,

then

dist
(
J, bodyJz

)
= dist

(
J, bodyJzJ

)
≤ 2 |J |

ε
n
∣∣∣JzJ ∣∣∣1−εn

= 2ε |J |
ε
n
∣∣∣Jz∣∣∣1−εn < 2 |J |

ε
n
∣∣∣Jz∣∣∣1−εn

contradicting the fact that J is ε − good in Jz. Thus we must have J ⊂ J[, and of course

we get that J[ is an inner grandchild of Jz, (where the body of Jz does not intersect the

interior of J[, thus permitting J to be ε− good in Jz). Finally, the fact that J is ε− good

in Jz implies that 3J ⊂ J[.

This second key fact is what underlies the construction of the indented corona below, and

motivates the next definition of augmented projection, in which we allow cubes K satisfying

J ⊂ K $ Jz ⊂ π
(2)
D K, as well as K ∈ CA, to be tested over in the augmented size condition

below.

Definition 5.6.8. Suppose P is an A-admissible collection.

(1). For K ∈ Π1P, define the augmented projection of P relative to K by

Π
K,aug
2 P ≡

{
J ∈ Π2P : J ⊂ K and Jz ⊂ π

(2)
D K

}
.

266



(2). Define the corresponding augmented size functional Sα,Aaugsize (P) by

Sα,Aaugsize (P)2 ≡ sup
K∈Πbelow1 P∩C′A

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

2∥∥∥∥∥Qω,b∗Π
K,aug
2 P

x

∥∥∥∥∥
♠2

L2(ω)

We note that the augmented projection Π
K,aug
2 P includes cubes J for which J ⊂ K $

Jz ⊂ π
(2)
D K, and hence J need not be ε−good insideK. Then by the second key fact (5.6.15),

and using that the boundaries of Jz↘ lie in the body of Jz, we have two consequences,

K ∈
{
JzJ , J

[
}

and 3J ⊂ J[ ⊂ 3J[ ⊂ Jz for J ∈ Π
K,aug
2 P ,

which will play an important role below.

The augmented size functional Sα,Aaugsize (P) is a ‘decoupled’ form of the stopping energy

Xα (CA) restricted to P , in which the cubes J appearing in Xα (CA) no longer appear in the

Poisson integral in Sα,Aaugsize (P), and it plays a crucial role in Lacey’s argument in [27]. We

note two essential properties of this definition of size functional:

1. Monotonicity of size: Sα,Aaugsize (P) ≤ Sα,Aaugsize (Q) if P ⊂ Q,

2. Control by energy and Muckenhoupt conditions: Sα,Aaugsize (P) . Eα2 +
√

Aα2 .

The monotonicity property follows from Πbelow1 P ⊂ Πbelow1 Q and ΠK2 P ⊂ ΠK2 Q. The

control property is contained in the next lemma, which uses the stopping energy control for

the form BAstop (f, g) associated with A.

Lemma 5.6.9. If PA is as in (5.6.2) and P ⊂ PA, then

Sα,Aaugsize (P) ≤ Xα (CA) . Eα2 +
√

Aα2 .
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Proof. We have

Sα,Aaugsize (P)2 = sup
K∈Πbelow1 P∩C′A

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2 ∥∥∥∥∥Qω,b∗ΠK2 P∪Π
K,aug
2 P

x

∥∥∥∥∥
♠2

L2(ω)

. sup
K∈C′A

1

|K|σ

Pα (K,1Aσ)

|K|
1
n

2

‖x−mK‖2L2(1Kω)
≤ Xα (CA)2 ,

which is the first inequality in the statement of the lemma. The second inequality follows

from (5.1.31).

There is an important special circumstance, introduced by M. Lacey in [27], in which we

can bound our forms by the size functional, namely when the pairs all straddle a subpartition

of A, and we present this in the next subsection. In order to handle the fact that the cubes in

Πbelow1 P ∩C′A need no longer enjoy any goodness, we will need to formulate a Substraddling

Lemma to deal with this situation as well. See Remark on lack of usual goodness after

(5.6.41), where it is explained how this applies to the proof of (5.6.40). Then in the following

subsection, we use the bottom/up stopping time construction of M. Lacey, together with

an additional ‘indented’ top/down corona construction, to reduce control of the sublinear

stopping form |B|A,Pstop,4ω (f, g) in inequality (5.6.7) to the three special cases addressed by

the Orthogonality Lemma, the Straddling Lemma and the Substraddling Lemma.

5.6.3 [Straddling, Substraddling, Corona-Straddling Lemmas

We begin with the Corona-straddling Lemma in which the straddling collection is the set of

A-children of A, and applies to the ‘corona straddling’ subcollection of the initial admissible
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collection PA - see (5.6.2). Define the ‘corona straddling’ collection PAcor by

PAcor ≡
⋃

A′∈CA(A)

{
(I, J) ∈ PA : J ⊂ A′ & Jz ⊂ π

(2)
D A′

}
. (5.6.16)

Note that PAcor is an A-admissible collection that consists of just those pairs (I, J) for which

Jz is either the D-parent or the D -grandparent of a stopping cube A′ ∈ CA (A). The bound

for the norm of the corresponding form is controlled by the energy condition.

Lemma 5.6.10. We have the sublinear form bound

N
A,PAcor
stop,4ω ≤ CEα2 .

Proof. The key point here is our assumption that J ⊂ A′ & Jz ⊂ π
(2)
D A′ for (I, J) ∈ PAcor,

which implies that in fact 3J ⊂ A′ since J ∩ body
(
π

(2)
D A′

)
= ∅ because J is ε − good in

π
(2)
D A′. We start with

|B|A,P
A
cor

stop,4ω (f, g) =
∑

J∈Π2PAcor

Pα
(
J,

∣∣∣∣ϕPAcorJ

∣∣∣∣1A\IPAcor (J)σ

)
|J |

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

=
∑

A′∈CA(A)

∑
J∈Π2PAcor

3J⊂A′

Pα
(
J,

∣∣∣∣ϕPAcorJ

∣∣∣∣1A\IPAcor (J)σ

)
|J |

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

where

ϕ
PAcor
J ≡

∑
I∈Π1PAcor: (I,J)∈PAcor

bAE
σ
I

(
�̂σ,[,bπI f

)
1A\I .
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If J ∈ Π2PAcor and J ⊂ A′ ∈ CA (A), then either A′ = J[ or A′ = JzJ and we have

Pα
(
J,1A\I

PAcor
(J)σ

)
|J |

1
n

≈



Pα

(
A′,1A\I

PAcor
σ

)

|A′|
1
n

≤
Pα
(
A′,1Aσ

)
|A′|

1
n

if A′ = J[

Pα

(
A′J ,1A\IPAcor

σ

)
∣∣∣A′J ∣∣∣ 1n

.
Pα
(
A′,1Aσ

)
|A′|

1
n

if A′ = JzJ

Since
∣∣∣∣ϕPAcorJ

∣∣∣∣ . αA (A) 1A by (5.6.4), we can then bound |B|A,P
A
cor

stop,4ω (f, g) by

αA (A)
∑

A′∈CA(A)

Pα
(
A′,1Aσ

)
|A′|

1
n

∥∥∥∥Qω,b∗Π2PAcor;A′
x

∥∥∥∥♠
L2(ω)

∥∥∥∥Pω,b∗Π2PAcor;A′
g

∥∥∥∥F
L2(ω)

≤ αA (A)

 ∑
A′∈CA(A)

Pα
(
A′,1Aσ

)
|A′|

1
n

2 ∥∥∥x−mσ
A′
∥∥∥2

L2
(
1A′σ

)


1
2

·

·

 ∑
A′∈CA(A)

∥∥∥∥Pω,b∗Π2PAcor;A′
g

∥∥∥∥F2

L2(ω)


1
2

≤ Eα2 αA (A)
√
|A|σ

∥∥∥∥Pω,b∗Π2PAcor
g

∥∥∥∥F
L2(ω)

≤ Eα2 αA (A)
√
|A|σ

∥∥∥∥∥Pω,b∗CshiftA

g

∥∥∥∥∥
F

L2(ω)

where in the last line we have used the strong energy constant Eα2 in (5.1.8).

Definition 5.6.11. We say that an admissible collection of pairs P is reduced if it contains

no pairs from PAcor, i.e.

P ∩ PAcor = ∅.
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Recall that in terms of J[ we rewrite

Π
K,aug
2 P =

{
J ∈ Π2P : J ⊂ K and Jz ⊂ π

(2)
D K

}
=

{
J ∈ Π2P : J ⊂ K and J[ ⊂ K

}

Definition 5.6.12. Given a reduced admissible collection of pairs Q for A, and a subpar-

tition S ⊂ Πbelow1 Q ∩ C′A of pairwise disjoint cubes in A, we say that Q [ straddles S if

for every pair (I, J) ∈ Q there is S ∈ S ∩ [J, I] with J[ ⊂ S. To avoid trivialities, we

further assume that for every S ∈ S, there is at least one pair (I, J) ∈ Q with J[ ⊂ S ⊂ I.

Here [J, I] denotes the geodesic in the dyadic tree D that connects JD to I, where JD is the

minimal cube in D that contains J .

Definition 5.6.13. For any dyadic cube S ∈ D, define the Whitney collection W (S) to

consist of the maximal subcubes K of S whose triples 3K are contained in S. Then set

W∗ (S) ≡ W (S) ∪ {S}.

The following geometric proposition will prove useful in proving the [ Straddling Lemma

5.6.15 below. For S ∈ S, let QS ≡
{

(I, J) ∈ Q : J[ ⊂ S ⊂ I
}
.

Proposition 5.6.14. Suppose Q is reduced admissible and [ straddles a subpartition S of

A. Fix S ∈ S. Define

ϕQ
S

J [h] ≡
∑

I∈Π1QS : (I,J)∈QS
bAE

σ
I

(
�̂σ,[,bπI h

)
1A\I ,

assume that h ∈ L2 (σ) is supported in the cube A, and that there is a cube H ∈ CA with

271



H ⊃ S such that

EσI |h| ≤ CEσH |h| , for all I ∈ Πbelow1 Q∩ C′A with I ⊃ S.

Then

∑
J∈Π2Q: J[⊂S

Pα
(
J,
∣∣∣ϕQJ [h]

∣∣∣1A\IQ(J)σ
)

|J |

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

. αH (H)
Pα
(
S,1A\Sσ

)
|S|

∥∥∥∥∥Qω,b∗Π
S,aug
2 Q

x

∥∥∥∥∥
♠

L2(ω)

∥∥∥∥∥Pω,b∗Π
S,aug
2 Q

g

∥∥∥∥∥
F

L2(ω)

+αH (H)
∑

K∈W(S)

Pα
(
K,1A\Kσ

)
|K|

∥∥∥∥∥Qω,b∗Π
K,aug
2 Q

x

∥∥∥∥∥
♠

L2(ω)

∥∥∥∥∥Pω,b∗Π
K,aug
2 Q

g

∥∥∥∥∥
F

L2(ω)

.

The sum over Whitney cubes K ∈ W (S) is only required to bound the sum of those terms

on the left for which J[ ⊂ S′′ for some S′′ ∈ C
(2)
D (S).

Proof. Suppose first that J[ = S ∈ C′A. Then 3S = 3J[ ⊂ Jz ⊂ IQ (J) and using (5.6.4)

with αH (H) in place of αA (A), we have

Pα
(
J,
∣∣∣ϕQJ ∣∣∣1A\IQ(J)σ

)
|J |

1
n

. αH (H)
Pα
(
J,1

A\Jzσ
)

|J |
1
n

. αH (H)
Pα
(
S,1

A\Jzσ
)

|S|
1
n

≤ αH (H)
Pα
(
S,1A\Sσ

)
|S|

1
n

.
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Suppose next that J[ = S′ ∈ CD (S). Then 3S′ = 3J[ ⊂ Jz ⊂ IQ (J) and (5.6.4) give

Pα
(
J,
∣∣∣ϕQJ ∣∣∣1A\IQ(J)σ

)
|J |

1
n

. αH (H)
Pα
(
J,1

A\Jzσ
)

|J |
1
n

. αH (H)
Pα
(
S′,1

A\Jzσ
)

|S′|
1
n

≤ αH (H)
Pα
(
S′,1A\Sσ

)
|S′|

1
n

≈ αH (H)
Pα
(
S,1A\Sσ

)
|S|

1
n

.

Thus in these two cases, by Cauchy-Schwarz, the left hand side of our conclusion is bounded

by a multiple of

αH (H)
Pα
(
S,1A\Sσ

)
|S|

1
n


∑

J∈Π2Q
J[⊂S

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)


1
2


∑
J∈Π2Q
J[⊂S

∥∥∥�ω,b∗J g
∥∥∥F2

L2(ω)


1
2

= αH (H)
Pα
(
S,1A\Sσ

)
|S|

1
n

∥∥∥∥∥Qω,b∗Π
S,aug
2 Q

x

∥∥∥∥∥
♠

L2(ω)

∥∥∥∥∥Pω,b∗Π
S,aug
2 Q

g

∥∥∥∥∥
F

L2(ω)

Finally, suppose that J[ ⊂ S′′ for some S′′ ∈ C
(2)
D (S). Then Jz ⊂ S, and Key Fact

#2 in (5.6.15) shows that 3J[ ⊂ Jz, so that 3J[ ⊂ Jz ⊂ S ⊂ IQ (J). Thus we have

J[ ⊂ K = K [J ] for some K ∈ W (S) and so by (5.6.4) again,

Pα
(
J,
∣∣∣ϕQJ ∣∣∣1A\IQ(J)σ

)
|J |

1
n

. αH (H)
Pα
(
J,1A\Sσ

)
|J |

1
n

. αH (H)
Pα
(
K,1A\Sσ

)
|K|

1
n

≤ αH (H)
Pα
(
K,1A\Kσ

)
|K|

1
n

.

Now we apply Cauchy-Schwarz again, but noting that J[ ⊂ K this time, to obtain that the
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left hand side of our conclusion is bounded by a multiple of

αH (H)
∑

K∈W(S)

Pα
(
K,1A\Kσ

)
|K|

1
n


∑

J∈Π2Q
J[⊂K

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)


1
2


∑
J∈Π2Q
J[⊂K

∥∥∥�ω,b∗J g
∥∥∥F2

L2(ω)


1
2

= αH (H)
∑

K∈W(S)

Pα
(
K,1A\Kσ

)
|K|

1
n

∥∥∥∥∥Qω,b∗Π
K,aug
2 Q

x

∥∥∥∥∥
♠

L2(ω)

∥∥∥∥∥Pω,b∗Π
K,aug
2 Q

g

∥∥∥∥∥
F

L2(ω)

.

This completes the proof of Proposition 5.6.14.

Recall the family of operators
{
�σ,π,bI

}
I∈CAA

, where for I ∈ CAA , the dual martingale

difference �σ,π,bI is defined in (5.1.41), and satisfies

�σ,π,bI f =

 ∑
I′∈C(I)

Fσ,π,b
I′ f

− Fσ,bI f =
∑

I′∈C(I)

Fσ,bA
I′ f − Fσ,bAI f .

Since �σ,π,bI is the transpose of 4σ,π,bI for I ∈ CAA , the first line of Lemma 5.1.22 (where

the superscript π is suppressed for convenience) shows that
{
�σ,π,bI

}
I∈CAA

is a family of

projections, and the second line of Lemma 5.1.22 shows it is an orthogonal family, i.e.

�σ,π,bI �σ,π,bK =


�σ,π,bI if I = K

0 if I 6= K

, I,K ∈ CAA .

The orthogonal projections

P
σ,π,b
π(Π1Q)

≡
∑

I∈π(Π1Q)

�σ,π,bI =
∑

I∈Π1Q
�σ,π,bπI ,

where π (Π1Q) ≡ {πDI : I ∈ Π1Q} and Π1Q ⊂ C
A,′
A ,
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thus satisfy the equalities

�σ,π,bπI f = �σ,π,bπI P
σ,π,b
π(Π1Q)

f and �̂σ,π,bπI f = �̂σ,π,bπI P
σ,π,b
π(Π1Q)

f (5.6.17)

for I ∈ Π1Q ⊂ CArestrictA , which will permit us to apply certain projection tricks used for

Haar projections in the proof of T1 theorems.

However, in our sublinear stopping form |B|A,Qstop,4ω , the dual martingale projections in

use in the function

ϕQ
S

J ≡
∑

I∈Π1QS : (I,J)∈QS
bAE

σ
I

(
�̂σ,[,bπI f

)
1A\I , (5.6.18)

given in Proposition 5.6.14 above, are the modified pseudoprojections
{
�̂σ,[,bπI

}
I∈Π1Q

, where

�σ,[,bπI differs from the orthogonal projection �σ,π,bπI for I ∈ Π1Q by

�σ,[,bπI f −�σ,π,bπI f

=


 ∑
I′∈Cnat(πI)

Fσ,bA
I′ f

− Fσ,bAπI f

−

 ∑
I′∈C(πI)

Fσ,bA
I′ f

− Fσ,bAπI f


= −

∑
I′∈Cbrok(πI)

Fσ,bA
I′ f.

But the "box support" Suppbox of this last expression
∑

I′∈Cbrok(πI)

Fσ,bA
I′ f consists of the

broken children of πI, Cbrok (πI), and is contained in the set

⋃
I∈C′A

⋃
I′∈CA(A)∩CD(πI)

{
I ′
}
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i.e.

Suppbox

 ∑
I′∈Cbrok(πI)

Fσ,bA
I′ f

 ⊂ {I ′ ∈ CA (A) : I ′ ∈ Cbrok (πI) for some I ∈ C′A
}

=
⋃
I∈C′A

⋃
I′∈CA(A)∩CD(πI)

{
I ′
}
.

But I ∈ Π1QS ⊂ C′A is a natural child of πI, and so

I ∩ Suppbox

 ∑
I′∈Cbrok(πI)

Fσ,bA
I′ f

 = ∅

It now follows that we have

EσI

(
�̂σ,[,bπI f

)
= EσI

(
�̂σ,π,bπI f

)
, for I ∈ C′A (5.6.19)

Returning to (5.6.18), we have from (5.6.17) and (5.6.19) the identity

ϕQ
S

J ≡
∑

I∈Π1QS : (I,J)∈QS
bAE

σ
I

(
�̂σ,π,bπI f

)
1A\I (5.6.20)

=
∑

I∈Π1QS : (I,J)∈QS
bAE

σ
I

(
�̂σ,π,bπI

(
P
σ,π,b
π(Π1Q)

f
))

1A\I

which will play a critical role in proving the following [Straddling and Substraddling lemmas.

The [Straddling Lemma is an adaptation of Lemmas 3.19 and 3.16 in [27].

Lemma 5.6.15. Let Q be a reduced admissible collection of pairs for A, and suppose that

S ⊂ Πbelow1 Q ∩ C′A is a subpartition of A such that Q [straddles S. Then we have the
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restricted sublinear norm bound

N̂
A,Q
stop,4ω ≤ Cr sup

S∈S
Sα,A;S
locsize (Q) ≤ CrSα,Aaugsize (Q) , (5.6.21)

where Sα,A;S
locsize is an S-localized size condition with an S-hole given by

Sα,A;S
locsize (Q)2 ≡ sup

K∈W∗(S)∩C′A

1

|K|σ

Pα
(
K,1A\Sσ

)
|K|

1
n

2 ∑
J∈Π

K,aug
2 Q

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

(5.6.22)

Proof. We begin by using that the reduced collection Q [straddles S to write

|B|A,Qstop,4ω (f, g) =
∑

J∈Π2Q

Pα
(
J,
∣∣∣ϕQJ ∣∣∣1A\IQ(J)σ

)
|J |

1
n

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

=
∑
S∈S

∑
J∈Π

S,aug
2 Q

Pα
(
J,

∣∣∣∣ϕQSJ ∣∣∣∣1A\IQ(J)σ

)
|J |

1
n

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

where ϕQ
S

J ≡
∑

I∈Π1QS : (I,J)∈QS
bAE

σ
I

(
�̂σ,[,bπI f

)
1A\I .

At this point we invoke the identity (5.6.20),

ϕQ
S

J =
∑

I∈Π1QS : (I,J)∈QS
bAE

σ
I

(
�̂σ,π,bπI

(
P
σ,π,b
π(Π1Q)

f
))

1A\I ,

so that

|B|A,Qstop,4ω (f, g) = |B|A,Qstop,4ω (h, g) , where h ≡ P
σ,π,b
π(Π1Q)

f .
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We will treat the sublinear form |B|A,Qstop,4ω (h, g) with h = P
σ,π,b
π(Π1Q)

f using a small variation

on the corresponding argument in Lacey [27]. Namely, we will apply a Calderón-Zygmund

stopping time decomposition to the function h = P
σ,π,b
π(Π1Q)

f on the cube A with ‘obstacle’

S ∪ CA (A), to obtain stopping times H ⊂ CA with the property that for all H ∈ H\{A}

we have

H ∈ CA is not strictly contained in any cube from S,

EσH |h| > ΓEσπHH
|h| ,

Eσ
H′ |h| ≤ ΓEσπHH

|h| for all H $ H ′ ⊂ πHH with H ′ ∈ CA.

More precisely, define generation 0 of H to consist of the single cube A. Having defined

generation n, let generation n + 1 consist of the union over all cubes M in generation n of

the maximal cubes M ′ in CA that are contained in M with Eσ
M ′ |h| > ΓEσM |h|, but are not

strictly contained in any cube S from S or contained in any cube A′ from CA (A) - thus the

construction stops at the obstacle S ∪CA(A). Then H is the union of all generations n ≥ 0.

Denote by

CHH ≡
{
H ′ ∈ CA : H ′ ⊂ H but H ′ 6⊂ H ′′ for any H ′′ ∈ CH (H)

}

the usual H-corona associated with the stopping cube H, but restricted to CA, and let

αH (H) = EσH |f | as is customary for a Calderón-Zygmund corona. Since these coronas CHH

are all contained in CA, we have the stopping energy from the A-corona CA at our disposal,
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which is crucial for the argument. Furthermore, we denote by

QH ≡
{

(I, J) ∈ Q : J ∈ CH,[shiftH

}
, with CH,[shiftH ≡

{
J ∈ Π2Q : J[ ∈ CHH

}
(5.6.23)

the restriction of the pairs (I, J) in Q to those for which J lies in the flat shifted H-corona

CH,[shiftH . Since the H-stopping cubes satisfy a σ-Carleson condition for Γ chosen large

enough, we have the quasiorthogonal inequality

∑
H∈H

αH (H)2 |H|σ . ‖h‖
2
L2(σ)

, (5.6.24)

which below we will see reduces matters to proving inequality (5.6.21) for the family of

reduced admissible collections {QH}H∈H with constants independent of H:

N̂
A,QH
stop,4ω ≤ Cr sup

S∈S
Sα,A;S
locsize (QH) ≤ CrSα,Aaugsize (QH) , H ∈ H.

Given S ∈ S, define HS ∈ H to be the minimal cube in H that contains S, and then

define

HS ≡ {HS ∈ H : S ∈ S} .

Note that a given H ∈ HS may have many cubes S ∈ S such that H = HS , and we denote

the collection of these cubes by SH ≡ {S ∈ S : HS = H }. We will organize the straddling

cubes S as

S =
⋃

H∈HS

⋃
S∈SH

S

where each S ∈ S occurs exactly once in the union on the right hand side, i.e. the collections

{SH}H∈HS are pairwise disjoint.
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We now momentarily fix H ∈ HS , and consider the reduced admissible collection QH ,

so that its projection onto the second component Π2QH of QH is contained in the corona

CH,[shiftH . Then the collection QH [straddles the set SH = {S ∈ S : HS = H }. Moreover,

QH =
⋃

S∈S: S⊂H
QSH and Π2QSH = Π

S,aug
2 QH .

Recall that a Whitney cube K was required in the right hand side of the conclusion of

Proposition 5.6.14 only in the case that J[ ⊂ S′′ for some S′′ ∈ C
(2)
D (S), which of course

implies 3J[ ⊂ Jz ⊂ S. In this case we claim that K ∈ CA. Indeed, suppose in order to

derive a contradiction, that K 6∈ CA. Then Jz 6⊂ K, and hence 3Jz 6⊂ S. Since Jz ⊂ S, it

follows that Jz shares a common part of the boundary with S (since if not, then 3Jz ⊂ S,

a contradiction). Now Key Fact #2 in (5.6.15) implies that the inner grandchild containing

J , J[, is contained in K where K 6∈ CA. This then implies that the pair (I, J) belongs to

the corona straddling subcollection PAcor, contradicting the assumption that Q is reduced.

Thus we have S ∈ Πbelow1 Q∩C′A and K ∈ W (S)∩C′A and we can use Proposition (5.6.14)

with H = HS to bound |B|A,Qstop,4ω (f, g) by first summing over H ∈ HS and then over S ∈

SH . Indeed, QH [straddles SH ≡ {S ∈ S : HS = H }, so that
∣∣∣ϕQHJ ∣∣∣ . αH (H) 1A\IQH (J)

by (5.6.4), and so the sum over S ∈ SH of the first term on the right side of the conclusion
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of Proposition (5.6.14) is bounded by

αH (H)
∑
S∈SH

√
|S|σ

1√
|S|σ

Pα
(
S,1A\Sσ

)
|S|

1
n

∥∥∥∥∥Qω,b∗Π
S,aug
2 QH

x

∥∥∥∥∥
♠

L2(ω)

∥∥∥∥∥Pω,b∗Π
S,aug
2 QH

g

∥∥∥∥∥
F

L2(ω)

≤ αH (H)

 sup
S∈SH

1√
|S|σ

Pα
(
S,1A\Sσ

)
|S|

1
n

∥∥∥∥∥Qω,b∗Π
S,aug
2 QH

x

∥∥∥∥∥
♠

L2(ω)

 ·
·
∑
S∈SH

√
|S|σ

∥∥∥∥∥Pω,b∗Π
S,aug
2 QH

g

∥∥∥∥∥
F

L2(ω)

≤ αH (H)

{
sup
S∈SH

Sα,A;S
locsize (QH)

}√
|H|σ

∥∥∥Pω,b∗Π2QH
g
∥∥∥F
L2(ω)

where Π
K,aug
2 QH is as in Definition 5.6.8, and the corresponding sum over S ∈ SH of the

second term is bounded by

αH (H)
∑
S∈SH

∑
K∈W(S)∩C′A

√
|K|σ√
|K|σ

Pα
(
K,1A\Sσ

)
|K|

1
n

∥∥∥∥∥Qω,b∗Π
K,aug
2 QSH

x

∥∥∥∥∥
♠

L2(ω)

∥∥∥∥∥Pω,b∗Π
K,aug
2 QSH

g

∥∥∥∥∥
F

L2(ω)

. αH (H) sup
S∈SH

Sα,A;S
locsize (QH)

∑
S∈S

∑
K∈W(S)

|K|σ

1
2 ∥∥∥Pω,b∗Π2QH

g
∥∥∥F
L2(ω)

≤

{
sup
S∈SH

Sα,A;S
locsize (QH)

}
αH (H)

√
|H|σ

∥∥∥Pω,b∗Π2QH
g
∥∥∥F
L2(ω)

Using the definition of |B|A,Qstop,4ω (f, g), we now sum the previous inequalities over the

cubes H ∈ HS to obtain the following string of inequalities (explained in detail after the
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display)

|B|A,Qstop,4ω (f, g) ≤
{

sup
S∈S
Sα,A;S
locsize (Q)

} ∑
H∈HS

αH (H)
√
|H|σ

∥∥∥Pω,b∗Π2QH
g
∥∥∥F
L2(ω)

≤
{

sup
S∈S
Sα,A;S
locsize (Q)

}√ ∑
H∈HS

αH (H)2 |H|σ

√√√√ ∑
H∈HS

∥∥∥Pω,b∗Π2QH
g
∥∥∥F2

L2(ω)

.

{
sup
S∈S
Sα,A;S
locsize (Q)

}
‖h‖

L2(σ)

√√√√ ∑
H∈HS

∥∥∥Pω,b∗Π2QH
g
∥∥∥F2

L2(ω)

≤
{

sup
S∈S
Sα,A;S
locsize (Q)

}∥∥∥Pσ,π,bπ(Π1Q)
f
∥∥∥
L2(σ)

∥∥∥Pω,b∗Π2Q
g
∥∥∥F
L2(ω)

.

{
sup
S∈S
Sα,A;S
locsize (Q)

}∥∥∥Pσ,bπ(Π1Q)
f
∥∥∥F
L2(σ)

∥∥∥Pω,b∗Π2Q
g
∥∥∥F
L2(ω)

where in the first line we have used Q =
⋃

H∈HS
QH , which follows from the fact that each J[

is contained in a unique S ∈ S; in the third line we have used the quasiorthogonal inequality

(5.6.24); in the fourth line we have used that the sets Π2QH ⊂ C
H,[shift
H are pairwise disjoint

in H and have union Π2Q =
·⋃

H∈HS

Π2QH . In the final line, we have used first the equality

(5.1.43), second the fact that the functions �σ,π,bI,brokf have pairwise disjoint supports, third

the upper weak Riesz inequality and fourth the estimate (5.1.44) - which relies on the reverse
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Hölder property for children in Lemma 5.1.9 - to obtain

∥∥∥Pσ,π,bπ(Π1Q)
f
∥∥∥2

L2(σ)
=

∥∥∥∥∥∥
∑

I∈π(Π1Q)

�σ,bI f −
∑

I∈π(Π1Q)

�σ,π,bI,brokf

∥∥∥∥∥∥
2

L2(σ)

.

∥∥∥∥∥∥
∑

I∈π(Π1Q)

�σ,bI f

∥∥∥∥∥∥
2

L2(σ)

+

∥∥∥∥∥∥
∑

I∈π(Π1Q)

�σ,π,bI,brokf

∥∥∥∥∥∥
2

L2(σ)

.
∥∥∥Pσ,bπ(Π1Q)

f
∥∥∥2

L2(σ)
+

∑
I∈π(Π1Q)

∥∥∥�σ,π,bI,brokf
∥∥∥2

L2(σ)

.
∑

I∈π(Π1Q)

∥∥∥�σ,bI f
∥∥∥2

L2(σ)
+

∑
I∈π(Π1Q)

∥∥5σI f∥∥2
L2(σ) (5.6.25)

.
∥∥∥Pσ,bπ(Π1Q)

f
∥∥∥F2

L2(σ)

We now use the fact that the supremum in the definition of Sα,A;S
locsize (Q) is taken over

K ∈ W∗ (S) ∩ C′A to conclude that

sup
S∈S
Sα,A;S
locsize (Q) ≤ Sα,Aaugsize (Q) ,

and this completes the proof of Lemma 5.6.15.

In a similar fashion we can obtain the following Substraddling Lemma.

Definition 5.6.16. Given a reduced admissible collection of pairs Q for A, and a D-cube

L contained in A, we say that Q substraddles L if for every pair (I, J) ∈ Q there is

K ∈ W (L) ∩ C′A with J ⊂ K ⊂ 3K ⊂ I ⊂ L.

Lemma 5.6.17. Let L be a D-cube contained in A, and suppose that Q is an admissible
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collection of pairs that substraddles L. Then we have the sublinear form bound

N̂
A,Q
stop,4ω ≤ CSα,Aaugsize (Q) .

Proof. We will show that Q [straddles the subset WL of Whitney cubes for L given by

WQ (L) ≡
{
K ∈ W (L) ∩ C′A : J ⊂ K ⊂ 3K ⊂ I ⊂ L for some (I, J) ∈ Q

}
.

It is clear that WQ (L) ⊂ Πbelow1 Q ∩ C′A is a subpartition of A. It remains to show that for

every pair (I, J) ∈ Q there is K ∈ WQ (L) ∩ [J, I] such that J[ ⊂ K. But our hypothesis

implies that there is K ∈ WQ (L) with J ⊂ K ⊂ 3K ⊂ I ⊂ L. We now consider two cases.

Case 1: If π(3)
D K ⊂ L, then since K is maximal Whitney cube, it is contained in an

outer grandchild of π(3)
D K and π(1)

D K has to share an endpoint with L. Then so does π(3)
D K.

Recall, from Key Fact #2 in (5.6.15), 3J ⊂ J[, an inner grandchild of Jz. We thus have

Jz ⊂ π
(2)
D K (If not; π(2)

D K ⊂ Jz which implies that J[ has the same endpoint as L, a

contradiction). This implies that J[ ⊂ K .

Case 2: If π(3)
D K ' L , then K ⊂ 3K ⊂ I ⊂ L implies that I = L = π

(2)
D K. Thus we

have Jz ⊂ I = π
(2)
D K, which again gives J[ ⊂ K.

Now that we know Q [straddles the subsetWQ (L), we can apply Lemma 5.6.15 to obtain

the required bound N̂
A,Q
stop,4ω ≤ CSα,Aaugsize (Q).

5.6.4 The bottom/up stopping time argument of M. Lacey

Before introducing Lacey’s stopping times, we note that the Corona-straddling Lemma 5.6.10

allows us to remove the ‘corona straddling’ collection PAcor of pairs of cubes in (5.6.16) from
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the collection PA in (5.6.2 ) used to define the stopping form BAstop (f, g). The collection

PA\PAcor is of course also A-admissible.

We assume for the remainder of the proof that all admissible collections P are reduced,

i.e.

PA ∩ PAcor = ∅, as well as P ∩ PAcor = ∅ for all A-admissible P . (5.6.26)

For a cube K ∈ D, we define

G [K] ≡ {J ∈ G : J ⊂ K}

to consist of all cubes J in the other grid G that are contained in K. For an A-admissible

collection P of pairs, define two atomic measures ωP and ω[P in the upper half space Rn+1
+

by

ωP ≡
∑

J∈Π2P

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
δ(
c
Jz

,`
(
Jz
)) (5.6.27)

and

ω[P ≡
∑

J∈Π2P

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
δ(
c
J[
,`
(
J[
)), (5.6.28)

where J[ is the inner grandchild of Jz that contains J

Note that each cube J ∈ Π2P has its ‘energy’
∥∥∥4ω,b∗J x

∥∥∥♠2

L2(ω)
in the measure ω[P assigned

to exactly one of the 2n points
(
c
J[
, 1

4`
(
Jz
))

in the upper half plane Rn+1
+ since J is

contained in one of Jz↘, namely in J[, by Key Fact #2 in (5.6.15). Note also that the atomic

measure ω[P differs from the measure µ in (.0.20) in Appendix below - which is used there to

control the functional energy condition - in that here we bundle together all the J ′s having a

common J[. This is in order to rewrite the augmented size functional in terms of the measure
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ω[P . We can get away with this here, as opposed to in Appendix , due to the ‘smaller and

decoupled’ nature of the augmented size functional to which we will relate ω[P .

Define the tent T (L) over a cube L to be the convex hull of the cube L×{0} and the point

(cL, ` (L)) ∈ Rn+1
+ . Then for J ∈ Π2P we have J ∈ Π

K,aug
2 P iff

{
J ⊂ K and Jz ⊂ π

(2)
D K

}
iff J[ ⊂ K iff

(
c
J[
, `
(
J[
))
∈ T (K). We can now rewrite the augmented size functional

of P in Definition 5.6.8 as

Sα,Aaugsize (P)2 ≡ sup
K∈Πbelow1 P∩C′A

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2

ω[P (T (K)) . (5.6.29)

It will be convenient to write

Ψα (K;P)2 ≡

Pα
(
K,1A\Kσ

)
|K|

1
n

2

ω[P (T (K)) ,

so that we have simply

Sα,Aaugsize (P)2 = sup
K∈Πbelow1 P∩C′A

Ψα (K;P)2

|K|σ
.

Remark 5.6.18. The functional ω[P (T (K)) is increasing in K, while the functional
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Pα
(
K,1A\Kσ

)
|K|

1
n

is ‘almost decreasing’ in K: if K0 ⊂ K then

Pα
(
K,1A\Kσ

)
|K|

1
n

=

∫
A\K

dσ (y)(
|K|

1
n + |y − cK |

)n+1−α

.
∫
A\K

(
√
n)n+1−αdσ (y)(

|K0|
1
n +

∣∣∣y − cK0

∣∣∣)n+1−α

≤
∫
A\K0

Cα,n dσ (y)(
|K0|

1
n +

∣∣∣y − cK0

∣∣∣)n+1−α = Cα,n
Pα
(
K0,1A\K0

σ
)

|K0|
1
n

since |K0|+
∣∣∣y − cK0

∣∣∣ ≤ |K|+ |y − cK |+ 1
2 diam (K) for y ∈ A\K.

Recall that if P is an admissible collection for a dyadic cube A, the corresponding sub-

linear form in (5.6.7) is given by

|B|A,Pstop,4ω (f, g) ≡
∑

J∈Π2P

Pα
(
J,
∣∣∣ϕPJ ∣∣∣1A\IP (J)σ

)
|J |

1
n

∥∥∥4ω,b∗J x
∥∥∥♠
L2(ω)

∥∥∥�ω,b∗J g
∥∥∥F
L2(ω)

;

where ϕPJ ≡
∑

I∈C′A: (I,J)∈P

bAE
σ
I

(
�̂σ,[,bπI f

)
1A\I .

In the notation for |B|A,Pstop,4ω , we are omitting dependence on the parameter α, and to avoid

clutter, we will often do so from now on when the dependence on α is inconsequential.

Recall further that the ‘size testing collection’ of cubes Πbelow1 P for the initial size testing

functional Sα,Ainitsize (P) is the collection of all subcubes of cubes in Π1P , and moreover, by

Key Fact #1 in (5.6.13), that we can restrict the collection to Πbelow1 P ∩C′A. This latter set

is used for the augmented size functional.
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Assumption

We may assume that the corona CA is finite, and that each A-admissible collection P

is a finite collection, and hence so are Π1P , Πbelow1 P ∩ C′A and Π2P , provided all of

the bounds we obtain are independent of the cardinality of these latter collections.

Consider 0 < ε < 1, where ρ = 1 + ε will be chosen later in (5.6.37). Begin by defining

the collection L0 to consist of the minimal dyadic cubes K in Πbelow1 P ∩ C′A such that

Ψα (K;P)2

|K|σ
≥ εSα,Aaugsize (P)2 .

where we recall that

Ψα (K;P)2 ≡

Pα
(
K,1A\Kσ

)
|K|

1
n

2

ω[P (T (K)) .

Note that such minimal cubes exist when 0 < ε < 1 because Sα,Aaugsize (P)2 is the supremum

over K ∈ Πbelow1 P ∩ C′A of Ψα(K;P)2

|K|σ
. A key property of the minimality requirement is that

Ψα
(
K ′;P

)2
|K ′|σ

< εSα,Aaugsize (P)2 , (5.6.30)

whenever there is K ′ ∈ Πbelow1 P ∩ C′A with K ′ & K and K ∈ L0.

We now perform a stopping time argument ‘from the bottom up’ with respect to the

atomic measure ωP in the upper half space. This construction of a stopping time ‘from the

bottom up’, together with the subsequent applications of the Orthogonality Lemma and the

Straddling Lemma, comprise the key innovations in Lacey’s argument [27]. However, in our

situation the cubes I belonging to Πbelow1 P are no longer ‘good’ in any sense, and we must
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include an additional top/down stopping criterion in the next subsection to accommodate

this lack of ‘goodness’. The argument in [27] will apply to these special stopping cubes,

called ‘indented’ cubes, and the remaining cubes form towers with a common endpoint, that

are controlled using all three straddling lemmas.

We refer to L0 as the initial or level 0 generation of stopping cubes. Set

ρ = 1 + ε. (5.6.31)

As in [64], [66] and [67], we follow Lacey [27] by recursively defining a finite sequence of

generations {Lm}m≥0 by letting Lm consist of the minimal dyadic cubes L in Πbelow1 P ∩C′A

that contain a cube from some previous level L`, ` < m, such that

ω[P (T (L)) ≥ ρω[P


⋃

L′∈
m−1⋃
`=0

L`: L′⊂L

T
(
L′
)
 . (5.6.32)

Since P is finite this recursion stops at some level M . We then let LM+1 consist of all the

maximal cubes in Πbelow1 P ∩C′A that are not already in some Lm with m ≤M . Thus LM+1

will contain either none, some, or all of the maximal cubes in Πbelow1 P . We do not of course

have (5.6.32) for A′ ∈ LM+1 in this case, but we do have that (5.6.32) fails for subcubes

K of A′ ∈ LM+1 that are not contained in any other L ∈ Lm with m ≤ M , and this is

sufficient for the arguments below.

We now decompose the collection of pairs (I, J) in P into collections P[small and P[big

according to the location of I and J[, but only after introducing below the indented corona

H. The collection P[big will then essentially consist of those pairs (I, J) ∈ P for which there
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are L′, L ∈ H with L′ & L and such that J[ ∈ CH
L′ and I ∈ C

H
L . The collection P[small will

consist of the remaining pairs (I, J) ∈ P for which there is L ∈ H such that J[, I ∈ CHL ,

along with the pairs (I, J) ∈ P such that I ⊂ I0 for some I0 ∈ L0. This will cover all pairs

(I, J) in P ⊂ PA, since for such pairs, I ∈ C′A and J ∈ CGshiftA , which in turn implies I ∈ CHL

and J[ ∈ CH
L′ for some L,L′ ∈ H. But a considerable amount of further analysis is required

to prove (5.6.7).

First recall that L ≡
M+1⋃
m=0

Lm is the tree of stopping ωP -energy cubes defined above. By

the construction above, the maximal elements in L are the maximal cubes in Πbelow1 P ∩C′A.

For L ∈ L, denote by CLL the corona associated with L in the tree L,

CLL ≡
{
K ∈ D : K ⊂ L and there is no L′ ∈ L with K ⊂ L′ $ L

}
,

and define the [ shifted L-corona by

CL,[shiftL ≡
{
J ∈ G : J[ ∈ CLL

}
.

Now the parameter m in Lm refers to the level at which the stopping construction was

performed, but forL ∈ Lm, the corona children L′ of L are not all necessarily in Lm−1, but

may be in Lm−t for t large.
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At this point we introduce the notion of geometric depth d in the tree L by defining

G0 ≡ {L ∈ L : L is maximal} , (5.6.33)

G1 ≡ {L ∈ L : L is maximal wrt L $ L0 for some L0 ∈ G0} ,

...

Gd+1 ≡ {L ∈ L : L is maximal wrt L $ Ld for some Ld ∈ Gd} ,

...

We refer to Gd as the dth generation of cubes in the tree L, and say that the cubes in Gd are

at depth d in the tree L (the generations Gd here are not related to the grid G), and we write

dgeom (L) for the geometric depth of L. Thus the cubes in Gd are the stopping cubes in L

that are d levels in the geometric sense below the top level. While the geometric depth dgeom

is about to be superceded by the ‘indented’ depth dindent defined in the next subsection, we

will return to the geometric depth in order to iterate Lacey’s bottom/up stopping criterion

when proving the second line in (5.6.36) in Proposition 5.6.19 below.

5.6.5 The indented corona construction

Now we address the lack of goodness in Πbelow1 P ∩ C′A. For this we introduce an additional

top/down stopping time H over the collection L. Given the initial generation

H0 = {maximal L ∈ L} =
{
maximal I ∈ Πbelow1 P

}
,
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define subsequent generations Hk as follows. For k ≥ 1 and each H ∈ Hk−1, let

Hk (H) ≡ {maximal L ∈ L : 3L ⊂ H}

consist of the nextH-generation of L-cubes below H, and setHk ≡
⋃

H∈Hk−1

Hk (H). Finally

set H ≡
∞⋃
k=0
Hk. We refer to the stopping cubes H ∈ H as indented stopping cubes since

3H ⊂ πHH for all H ∈ H at indented generation one or more, i.e. each successive such H

is ‘indented’ in its H-parent. This property of indentation is precisely what is required in

order to generate geometric decay in indented generations at the end of the proof. We refer

to k as the indented depth of the stopping cube H ∈ Hk, written k = dindent (H), which is a

refinement of the geometric depth dgeom introduced above. We will often revert to writing

the dummy variable for cubes in H as L instead of H. For L ∈ H define the H-corona CHL

and H-[shifted corona CH,[shiftL by

CHL ≡
{
I ∈ D : I ⊂ L and I 6⊂ L′ for any L′ ∈ CH (L)

}
,

CH,[shiftL ≡
{
J ∈ G : J[ ∈ CHL

}
.

We will also need recourse to the coronas CHL restricted to cubes in L, i.e.

CHL (L) ≡ CHL ∩ L =
{
T ∈ L : T ⊂ L and T 6⊂ L′ for any L′ ∈ H with L′ $ L

}
.

and

T (L) ≡ CH,restrictL (L) = CHL (L)\{L}
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We emphasize the distinction ‘indented generation’ as this refers to the indented depth rather

than either the level of initial stopping construction of L, or the geometric depth. The point

of introducing the tree H of indented stopping cubes, is that the inclusion 3L ⊂ πHL for

all L ∈ H with dindent (L) ≥ 1 turns out to be an adequate substitute for the standard

‘goodness’ lost in the process of infusing the weak goodness of Hytönen and Martikainen in

Subsection 5.2.1 above.

5.6.5.1 Flat shifted coronas

We now define the [shifted admissible collections of pairs P[HL,t using the coronas

CH,[shiftL ≡
{
J ∈ Π2P : J[ ∈ CHL

}
and CL,[shiftL ≡

{
J ∈ Π2P : J[ ∈ CLL

}
.

In these flat shifted H and L coronas, we have effectively shift the cubes J two levels ‘up’ by

requiring J[ ∈ CLL , but because P is admissible, we always have Jz ∈ CA,restrictA . We define

P[HL,t ≡
{

(I, J) ∈ P : I ∈ CHL , J ∈ C
H,[shift
L′ for some L′ ∈ Hdindent(L)+tL

′ ⊂ L
}
,

P[HL,0 =
{

(I, J) ∈ P : I ∈ CHL and J ∈ CH,[shiftL

}

and

P[HL,0 = P[H−smallL,0 ∪̇P[H−bigL,0 ;

P[H−smallL,0 ≡
{

(I, J) ∈ P[HL,0 : there is no L′ ∈ T (L) with J[ ⊂ L′ ⊂ I
}

=
{

(I, J) ∈ P[HL,0 : I ∈ CL
L′\
{
L′
}
, J ∈ CL,[shift

L′ for some L′ ∈ T (L)
}
,

P[H−bigL,0 ≡
{

(I, J) ∈ P[HL,0 : there is L′ ∈ T (L) with J[ ⊂ L′ ⊂ I
}
,

293



with one exception: if L ∈ H0 we set P[H−smallL,0 ≡ P[HL,0 and P[H−bigL,0 ≡ ∅ since in this case

L fails to satisfy (5.6.32) as pointed out above. Finally, for L ∈ H we further decompose

P[H−smallL,0 as

P[H−smallL,0 =
·⋃

L′∈T (L)

P[L−small
L′,0

where P[L−small
L′,0 ≡

{
(I, J) ∈ P : I ∈ CL

L′\
{
L′
}

and J ∈ CL,[shift
L′

}

Then we set

P[big ≡

 ⋃
L∈H

P[H−bigL,0

⋃
⋃
t≥1

⋃
L∈H

P[HL,t

 ; (5.6.34)

P[small ≡
⋃
L∈L
P[L−smallL,0

We observed above that every pair (I, J) ∈ P is included in either Psmall or Pbig, and it

follows that every pair (I, J) ∈ P is thus included in either P[small or P[big, simply because

the pairs (I, J) have been shifted up by two dyadic levels in the cube J . Thus the coronas

P[L−smallL,0 are now even smaller than the regular coronas PL−smallL,0 , which permits the

estimate (5.6.35) below to hold for the larger augmented size functional. On the other hand,

the coronas P[H−bigL,0 and P[HL,t are now bigger than before, requiring the stronger straddling

lemmas above in order to obtain the estimates (5.6.36) below. More specifically, we will

see that stopping forms with pairs in P[big will be estimated using the [ Straddling and

Substraddling Lemmas (Substraddling applies to part of P[H−bigL,0 and [Straddling applies to

the remaining part of P[H−bigL,0 and to P[HL,t), and it is here that the removal of the corona-

straddling collection PAcor is essential, while forms with pairs in P[small will be absorbed.
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5.6.6 Size estimates

Now we turn to proving the size estimates we need for these collections. Recall that the

restricted norm N̂
A,P
stop,4ω is the best constant in the inequality

|B|A,Pstop,4ω (f, g) ≤ N̂
A,P
stop,4ω

∥∥∥Pσ,bΠ1P
f
∥∥∥F
L2(σ)

∥∥∥Pω,b∗Π2P
g
∥∥∥F
L2(ω)

where f ∈ L2 (σ) satisfies EσI |f | ≤ αA (A) for all I ∈ CA, and g ∈ L2 (ω).

Proposition 5.6.19. Suppose ρ in (5.6.31) is greater than 1, and P is a reduced admissible

collection of pairs for a dyadic cube A. Let P = P[big∪̇P[small be the decomposition satisfying

above, i.e.

P =

 ⋃
L∈H

P[H−bigL,0

⋃
⋃
t≥1

⋃
L∈H

P[HL,t

 ⋃ ⋃
L∈L
P[L−smallL,0



Then all of these collections P[L−smallL,0 , P[H−bigL,0 and P[HL,t are reduced admissible, and we

have the estimate

Sα,Aaugsize

(
P[L−smallL,0

)2
≤ (ρ− 1)Sα,Aaugsize (P)2 , L ∈ L (5.6.35)

and the localized norm bounds,

N̂

A,
⋃

L∈H
P[H−bigL,0

stop,4ω ≤ CSα,Aaugsize (P) , (5.6.36)

N̂

A,
⋃

L∈H
P[HL,t

stop,4ω ≤ Cρ−
t
2Sα,Aaugsize (P) , t ≥ 1.

Using this proposition on size estimates, we can finish the proof of (5.6.7), and hence the
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proof of (5.6.1).

Corollary 5.6.20. The sublinear stopping form inequality (5.6.7) holds.

Proof. Recall that N̂A,P
stop,4ω is the best constant in the inequality (5.6.10). Since{

P[L−smallL,0

}
L∈L

is a mutually orthogonal family of A-admissible pairs, the Orthogonality

Lemma 5.6.4 implies that

N̂

A,
⋃
L∈L

P[L−smallL,0

stop,4ω ≤ sup
L∈L

N̂
A,P[L−smallL,0
stop,4ω

Using this, together with the decomposition of P and (5.6.36) above, we obtain

N̂
A,P
stop,4ω ≤ sup

L∈H
N̂

A,
⋃

L∈H
P[H−bigL,0

stop,4ω +
M+1∑
t=1

sup
L∈H

N̂

A,
⋃

L∈H
P[HL,t

stop,4ω + N̂

A,
⋃
L∈L

P[L−smallL,0

stop,4ω

. Sα,Aaugsize (P) +

M+1∑
t=1

ρ−
t
2

Sα,Aaugsize (P) + sup
L∈L

N̂
A,P[L−smallL,0
stop,4ω

Since the admissible collection PA in (5.6.2) that arises in the stopping form is finite, we

can define L to be the best constant in the inequality

N̂
A,P
stop,4ω ≤ LSα,Aaugsize (P) for all A-admissible collections P .

Now choose P so that

N̂
A,P
stop,4ω

Sα,Aaugsize (P)
>

1

2
L =

1

2
sup

Q is A-admissible

N̂
A,Q
stop,4ω

Sα,Aaugsize (Q)
.
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Then using
M+1∑
t=1

ρ−
t
2 ≤ 1
√
ρ− 1

we have

L < 2
N̂
A,P
stop,4ω

Sα,Aaugsize (P)
≤
C 1√

ρ−1S
α,A
augsize (P) + C sup

L∈L
N̂
A,P[L−smallL,0
stop,4ω

Sα,Aaugsize (P)

≤ C
1

√
ρ− 1

+ C sup
L∈L

L
Sα,Aaugsize

(
P[L−smallL,0

)
Sα,Aaugsize (P)

≤ C
1

√
ρ− 1

+ CL
√
ρ− 1

where we have used (5.6.35) in the last line. If we choose ρ > 1 so that

C
√
ρ− 1 <

1

2
, (5.6.37)

then we obtain L ≤ 2C 1√
ρ−1 . Together with Lemma 5.6.9, this yields

N̂
A,P
stop,4ω ≤ LSα,Aaugsize (P) ≤ 2C

1
√
ρ− 1

(
Eα2 +

√
Aα2

)

as desired, and completes the proof of inequality (5.6.7).

Thus, in view of Conclusion 5.6.4, it remains only to prove Proposition 5.6.19 using the

Orthogonality and Straddling and Substraddling Lemmas above, and we now turn to this

task.

Proof of Proposition 5.6.19. We split the proof into three parts.

Proof of (5.6.35): To prove the inequality (5.6.35), suppose first that L /∈ LM+1. In

the case that L ∈ L0 is an initial generation cube, then from (5.6.30) and the fact that every
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I ∈ P[L−smallL,0 satisfies I $ L, we obtain that

Sα,Aaugsize

(
P[L−smallL,0

)2
= sup

K′∈Πbelow1 P[L−smallL,0 ∩C′A

Ψα
(
K ′;P[L−smallL,0

)2

|K ′|σ

≤ sup
K′∈Πbelow1 P∩C′A: K′&L

Ψα
(
K ′;P[L−smallL,0

)2

|K ′|σ

≤ εSα,Aaugsize (P)2

Now suppose that L 6∈ L0 in addition to L /∈ LM+1. Pick a pair (I, J) ∈ P[L−smallL,0 . Then

I is in the restricted corona CL,
′

L and J is in the [shifted corona CL,[shiftL . Since P[L−smallL,0

is a finite collection, the definition of Sα,Aaugsize

(
P[L−smallL,0

)
shows that there is an cube

K ∈ Πbelow1 P[L−smallL,0 ∩ C′A so that

Sα,Aaugsize

(
P[L−smallL,0

)2
=

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2

ω[P (T (K)) .

Note that K $ L by definition of P[L−smallL,0 . Now let t be such that L ∈ Lt, and define

t′ = t′ (K) ≡ max
{
s : there is L′ ∈ Ls with L′ ⊂ K

}
,

and note that 0 ≤ t′ < t. First, suppose that t′ = 0 so that K does not contain any L′ ∈ L.

Then it follows from the construction at level ` = 0 that

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

2

ω[P (T (K)) < εSα,Aaugsize (P)2 ,
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and hence from ρ = 1 + ε we obtain

Sα,Aaugsize

(
P[L−smallL,0

)2
< εSα,Aaugsize (P)2 = (ρ− 1)Sα,Aaugsize (P)2 .

Now suppose that t′ ≥ 1. Then K fails the stopping condition ( 5.6.32) with m = t′ + 1,

since otherwise it would contain a cube L′′ ∈ Lt′+1 contradicting our definition of t′, and so

ω[P (T (K)) < ρω[P (V (K)) where V (K) ≡
⋃

L′∈
t′⋃
`=0
L`: L′⊂K

T
(
L′
)
.

Now we use the crucial fact that the positive measure ω[P is additive and finite to obtain

from this that

ω[P (T (K) \V (K)) = ω[P (T (K))− ω[P (V (K)) ≤ (ρ− 1)ω[P (V (K)) . (5.6.38)

Now recall that

Sα,Aaugsize (Q)2 ≡ sup

K∈Πbelow1 Q∩C′A

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2 ∥∥∥∥∥Qω,b∗Π
K,aug
2 Q

x

∥∥∥∥∥
♠2

L2(ω)

.

We claim it follows that for each J ∈ Π
K,aug
2 P[L−smallL,0 the support

(
c
J[
, `
(
J[
))

of the

atom δ(
c
J[
,`
(
J[
)) is contained in the set T (K), but not in the set

V (K) ≡
⋃T

(
L′
)

: L′ ∈
t′⋃
`=0

L` : L′ ⊂ K

 .
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Indeed, suppose in order to derive a contradiction, that
(
c
J[
, `
(
J[
))
∈ T

(
L′
)
for some

L′ ∈ L` with 0 ≤ ` ≤ t′. Recall that L ∈ Lt with t′ < t so that L′ $ L. Thus
(
c
J[
, `
(
J[
))
∈

T
(
L′
)
implies J[ ⊂ L′, which contradicts the fact that

J ∈ΠK2 P
[L−small
L,0 ⊂ Π2P[L−smallL,0 =

{
(I, J) ∈ P : I ∈ CLL\ {L} and J ∈ CL,[shiftL

}

implies J[ ∈ CLL - because L′ /∈ CLL .

Thus from the definition of ω[P in (5.6.28), the ‘energy’

∥∥∥∥∥Qω,b∗Π
K,aug
2 P[L−smallL,0

x

∥∥∥∥∥
♠2

L2(ω)

is

at most the ω[P -measure of T (K) \V (K). Using now

ω
[P[L−smallL,0

(T (K)) = ω
[P[L−smallL,0

(T (K) \V (K)) ≤ ω[P (T (K) \V (K))

and (5.6.38), we then have

Sα,Aaugsize

(
P[L−smallL,0

)2
≤

sup

K∈Πbelow1 P[L−smallL,0 ∩C′A

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2

ω[P (T (K) \V (K))

≤ (ρ− 1) sup

K∈Πbelow1 P[L−smallL,0 ∩C′A

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2

ω[P (V (K))

and we can continue with

Sα,Aaugsize

(
P[L−smallL,0

)2
≤ (ρ− 1) sup

K∈Πbelow1 P∩C′A

1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2

ω[P (T (K))

≤ (ρ− 1)Sα,Aaugsize (P)2 .
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In the remaining case where L ∈ LM+1 we can include L as a testing cube K and the

same reasoning applies. This completes the proof of (5.6.35).

To prove the other inequality (5.6.36) in Proposition 5.6.19, we will use the [ Straddling

and Substraddling Lemmas to bound the norm of certain ‘straddled’ stopping forms by

the augmented size functional Sα,Aaugsize, and the Orthogonality Lemma to bound sums of

‘mutually orthogonal’ stopping forms. Recall that

P[big =

 ⋃
L∈H

P[H−bigL,0

⋃
⋃
t≥1

⋃
L∈H

P[HL,t

 ≡ Q[H−big0

⋃
Q[H−big1 ;

Q[H−big0 ≡
⋃
L∈L
P[H−bigL,0 , Q[H−big1 ≡

⋃
t≥1

P[H−bigt , P[H−bigt ≡
⋃
L∈H

P[HL,t

Proof of the second line in (5.6.36): We first turn to the collection

Q[H−big1 =
⋃
t≥1

⋃
L∈H

P[HL,t =
⋃
t≥1

P[H−bigt ;

P[H−bigt ≡
⋃
L∈L
P[HL,t , t ≥ 1,

where

P[HL,t =
{

(I, J) ∈ P : I ∈ CHL , J ∈ C
H,[shift
L′ for some L′ ∈ Hdindent(L)+t, L

′ ⊂ L
}
.

We now claim that the second line in (5.6.36) holds, i.e.

N̂
A,P[H−bigt
stop,4ω ≤ Cρ−

t
2Sα,Aaugsize (P) , t ≥ 1, (5.6.39)

which recovers the key geometric gain obtained by Lacey in [27], except that here we are
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only gaining this decay relative to the indented subtree H of the tree L.

The case t = 1 can be handled with relative ease since decay is not relevant here. Indeed,

P[HL,1 straddles the collection CH (L) of H -children of L, and so the localized [Straddling

Lemma 5.6.15 applies to give

N̂
A,P[HL,1
stop,4ω ≤ CSα,Aaugsize

(
P[HL,1

)
≤ CSα,Aaugsize (P) ,

and then the Orthogonality Lemma 5.6.4 applies to give

N̂
A,P[H−big1
stop,4ω ≤ sup

L∈H
N
A,P[HL,1
stop,4ω ≤ CSα,Aaugsize (P) ,

since
{
P[HL,1

}
L∈L

is mutually orthogonal as P[HL,1 ⊂ C
H
L × C

H,[shift
L′ with L ∈ Hk and

L′ ∈ Hk+1 for indented depth k = k (L). The case t = 2 is equally easy.

Now we consider the case t ≥ 2, where it is essential to obtain geometric decay in t. We

remind the reader that all of our admissible collections P[HL,t are reduced by Conclusion 5.6.4.

We again apply Lemma 5.6.15 to P[HL,t with S = CH (L), so that for any (I, J) ∈ P[HL,t, there

is H ′ ∈ CH (L) with J[ ⊂ H ′ $ I ∈ CHL . But this time we must use the stronger localized

bounds Sα,A;S
locsize with an S-hole, that give

N̂
A,P[HL,t
stop,4ω ≤ C sup

H′∈CH(L)

Sα,A;H′
locsize

(
P[HL,t

)
, t ≥ 0;

Sα,A;H′
locsize

(
P[HL,t

)2
= sup
K∈W∗(H′)∩C′A

1

|K|σ

Pα
(
K,1A\H′σ

)
|K|

1
n

2 ∑
J∈Π

K,aug
2 P[HL,t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
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It remains to show that

∑
J∈Π

K,aug
2 P[HL,t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
≤ ρ−(t−2)ω[P (T (K)) , (5.6.40)

for t ≥ 2, K ∈ W∗
(
H ′
)
∩ C′A, H

′ ∈ CH (L)

so that we then have

1

|K|σ

Pα
(
K,1A\H′σ

)
|K|

1
n

2 ∑
J∈Π

K,aug
2 P[HL,t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

≤ ρ−(t−2) 1

|K|σ

Pα
(
K,1A\Kσ

)
|K|

1
n

2

ω[P (T (K)) ≤ ρ−(t−2)Sα,Aaugsize (P)2

by (5.6.29), and hence conclude the required bound for N
A,P[HL,t
stop,4ω , namely that

N̂
A,P[HL,t
stop,4ω (5.6.41)

≤ C sup
H′∈CH(L)

sup
K∈W∗(H′)∩C′A

√√√√√√√ 1

|K|σ

Pα
(
K,1A\H′σ

)
|K|

1
n

2 ∑
J∈Π

K,aug
2 P[HL,t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

≤ C

√
ρ−(t−2)Sα,Aaugsize (P) = C ′ρ−

t
2Sα,Aaugsize (P) .

Remark on lack of usual goodness: To prove (5.6.40), it is essential that the cubes

Hk+2 ∈ Hk+2 at the next indented level down from Hk+1 ∈ CH (L) are each contained

in one of the Whitney cubes K ∈ W
(
Hk+1

)
∩ C′A for some Hk+1 ∈ CH (L). And this is

the reason we introduced the indented corona - namely so that 3Hk+2 ⊂ Hk+1 for some
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Hk+1 ∈ CH (L), and hence Hk+2 ⊂ K for some K ∈ W
(
Hk+1

)
. In the argument of

Lacey in [27], the corresponding cubes were good in the usual sense, and so the above triple

property was automatic.

So we begin by fixing K ∈ W∗
(
Hk+1

)
∩ C′A with Hk+1 ∈ CH (L), and noting from the

above that each J ∈ Π
K,aug
2 P[HL,t satisfies

J[ ⊂ Hk+t ⊂ Hk+t−1 ⊂ ... ⊂ Hk+2 ⊂ K

for Hk+j ∈ Hk+j uniquely determined by J[. Thus for t ≥ 2 we have

∑
J∈Π

K,aug
2 P[HL,t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
=

∑
Hk+t∈Hk+t

Hk+t⊂K

∑
J∈Π

K,aug
2 P[HL,t

J[⊂Hk+t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

≤
∑

Hk+t∈Hk+t

Hk+t⊂K

ω[P
(
T
(
Hk+t

))

In the case t = 2 we are done since the final sum above is at most ω[P (T (K)).

Now suppose t ≥ 3. In order to obtain geometric gain in t, we will apply the stopping

criterion (5.6.32) in the following form,

∑
L′∈CL(L0)

ω[P
(
T
(
L′
))

= ω[P

 ⋃
L′∈CL(L0)

T
(
L′
) ≤ 1

ρ
ω[P (T (L0)) , for all L0 ∈ L

(5.6.42)

where we have used the fact that the maximal cubes L′ in the collection

m−1⋃
`=0

{
L′ ∈ L` : L′ ⊂ L0

}
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for L0 ∈ Lm (that appears in (5.6.32)) are precisely the L-children of L0 in the tree L (the

cubes L′ above are strictly contained in L0 since ρ > 1 in (5.6.32)), so that

⋃
L′∈Γ

L′ =
⋃

L′∈CL(L0)

L′ where Γ ≡
m−1⋃
`=0

{
L′ ∈ L` : L′ ⊂ L0

}
.

In order to apply (5.6.42), we collect the pairwise disjoint cubes Hk+t ∈ Hk+t such

that Hk+t ⊂ Hk+2 ⊂ K, into groups according to which cube Lk
′+t−2 ∈ Gk′+t−2 they

are contained in, where k′ = dgeom

(
Hk+2

)
is the geometric depth of Hk+2 in the tree L

introduced in (5.6.33). It follows that each cube Hk+t ∈ Hk+t is contained in a unique cube

L
dgeom

(
Hk+2

)
+t−2 ∈ G

dgeom

(
Hk+2

)
+t−2

. Thus we obtain from the previous inequality

that

∑
J∈Π

K,aug
2 P[HL,t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
≤

∑
Hk+t∈Hk+t

Hk+t⊂K

ω[P
(
T
(
Hk+t

))

≤
∑

Hk+2∈Hk+2

Hk+2⊂K

∑
Lk
′+t−2∈Gk′+t−2

Lk
′+t−2⊂Hk+2

where k′=dgeom
(
Hk+2

)
ω[P

(
T
(
Lk
′+t−2

))
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and this last expression is equal to

∑
Hk+2∈Hk+2

Hk+2⊂K

∑
Lk
′+t−3∈Gk′+t−3
k′+t−3⊂Hk+2

where k′=dgeom
(
Hk+2

)



∑
Lk
′+t−2∈Gk′+t−2

Lk
′+t−2⊂Lk

′+t−3

where k′=dgeom
(
Hk+2

)
ω[P

(
T
(
Lk
′+t−2

))


≤
∑

Hk+2∈Hk+2

Hk+2⊂K

∑
Lk
′+t−3∈Gk′+t−3

Lk
′+t−3⊂Hk+2

where k′=dgeom
(
Hk+2

)

{
1

ρ
ω[P

(
T
(
Lk
′+t−3

))}

where in the last line we have used (5.6.42) with L0 = Lk
′+t−3 on the sum in braces. We

then continue (if necessary) with

∑
J∈Π

K,aug
2 P[HL,t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
≤ 1

ρ

∑
Hk+2∈Hk+2

Hk+2⊂K

∑
Lk
′+t−3∈Gk′+t−3

Lk
′+t−3⊂Hk+2

where k′=dgeom
(
Hk+2

)
ω[P

(
T
(
Lk
′+t−3

))

≤ 1

ρ2

∑
Hk+2∈Hk+2

Hk+2⊂K

∑
Lk
′+t−4∈G

k′+t−4

Lk
′+t−4⊂Hk+2

where k′=dgeom
(
Hk+2

)
ω[P

(
T
(
Lk
′+t−4

))

...

≤ 1

ρt−2

∑
Hk+2∈Hk+2

Hk+2⊂K

∑
Lk
′
∈Gk′ : L

k′⊂Hk+2

where k′=dgeom
(
Hk+2

)
ω[P

(
T
(
Lk
′))
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Since Lk
′ ⊂ Hk+2 implies Lk

′
= Hk+2, we now obtain

∑
J∈Π

K,aug
2 P[HL,t

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
≤ 1

ρt−2

∑
Hk+2∈Hk+2: Hk+2⊂K

ω[P
(
T
(
Hk+2

))

≤ 1

ρt−2
ω[P (T (K))

which completes the proof of (5.6.40), and hence that of (5.6.41). Finally, an application of

the Orthogonality Lemma 5.6.4 proves (5.6.39).

Proof of the first line in (5.6.36): At last we turn to proving the first line in (5.6.36).

Recalling that T (L) = CHL (L)\{L}, we consider the collection

Q[H−big0 =
⋃
L∈H

P[H−bigL,0

where P[H−bigL,0 =
{

(I, J) ∈ P[HL,0 : there is L′ ∈ T (L) , J[ ⊂ L′ ⊂ I
}
, L ∈ H

and P[HL,0 =
{

(I, J) ∈ P : I ∈ CHL J ∈ C
H,[shift
L for some L ∈ H

}
, L ∈ H

and begin by claiming that

N̂
A,P[H−bigL,0
stop,4ω ≤ CSα,Aaugsize

(
P[H−bigL,0

)
≤ CSα,Aaugsize (P) , L ∈ H. (5.6.43)

To see this, we fix L ∈ H and order the cubes of T (L) =
{
Lk,i

}
k,i

, where 1 ≤ i ≤ nk

where L0 = L and L1,i are the maximal cubes in L0 and then Lk+1,i are the maximal cubes

inside a cube Lk,j of some previous generation. Then P[H−bigL,0 can be decomposed as follows,
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remembering that J[ ⊂ I ⊂ L for (I, J) ∈ P[H−bigL,0 ⊂ P[HL,0:

P[H−bigL,0 =
·⋃
k,i

{
R[L
L
k,i
out,out

∪̇ R[L
L
k,i
out,in

∪̇ R[L
L
k,i
in

}

=

 ·⋃
k,i

R[L
L
k,i
out,out

 ∪̇
 ·⋃
k,i

R[L
L
k,i
out,in

 ∪̇
 ·⋃
k,i

R[L
L
k,i
in

 ;

R[L
L
k,i
out,in

≡
{

(I, J) ∈ P[H−bigL,0 : I ∈ CL
Lk−1,i and J

[ ⊂ L
k,i
out,in

}
,

R[L
L
k,i
out,out

≡
{

(I, J) ∈ P[H−bigL,0 : I ∈ CL
Lk−1,i and J

[ ⊂ L
k,i
out,out

}
,

R[L
L
k,i
in

≡
{

(I, J) ∈ P[H−bigL,0 : I ∈ CL
Lk−1,i and J

[ ∈ CL
Lk−1,i and J

[ ∩ Lk,i = ∅
}

=
{

(I, J) ∈ P[H−bigL,0 : I = Lk−1,i and J[ ∈ CL
Lk−1,i and J

[ ∩ Lk−1,i
out = ∅,

}
,

where by Lk,iin we denote the union of the children of Lk,i that do not touch the boundary of

L, by Lk,iout,in the union of the grandchildren of Lk,i that do not touch the boundary of L while

their father does, and by Lk,iout,out the grandchildren of Lk,i that touch the boundary of L and

where in the last line we have used the fact that if I, J[ ∈ CL
Lk−1,i and there is L′ ∈ T (L)

with J[ ⊂ L′ ⊂ I, then we must have I = Lk−1,i. All of the pairs (I, J) ∈ P[H−bigL,0 are

included in either R[L
L
k,i
out,in

, R[L
L
k,i
out,out

or R[L
L
k,i
in

for some k, since if J[ ⊃ Lk,i , then J[ shares

boundary with L, which contradicts the fact that 3J[ ⊂ Jz ⊂ I ⊂ L.

We can easily deal with the ‘in’ collection Qin ≡
·⋃∞
k=1R[L

L
k,i
in

by applying a trivial case

of the [Straddling Lemma to R[L
L
k,i
in

with a single straddling cube, followed by an application

of the Orthogonality Lemma to Qin. More precisely, every pair (I, J) ∈ R[L
L
k,i
in

satisfies

J[ ⊂ Lk−1,i = I, so that the reduced admissible collection R[L
L
k,i
in

[straddles the trivial
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choice S =
{
Lk−1,i

}
, the singleton consisting of just the cube Lk−1,i. Then the inequality

N̂

A,R[L
L
k,i
in

stop,4ω ≤ CSα,Aaugsize

(
R[L
L
k,i
in

)
,

follows from [Straddling Lemma 5.6.15. The collection

{
R[L
L
k,i
in

}
k,i

is mutually orthogonal

since

R[L
L
k,i
in

⊂ CL
Lk−1,i × C

L,[shift
Lk−1,i

∞∑
k=1

nk∑
i=1

1CL
Lk−1,i

≤ 1 and
∞∑
k=1

nk∑
i=1

1
CL,[shift
Lk−1,i

≤ 1.

Since
·⋃
k,i

R[L
L
k,i
in

is reduced and admissible (each J ∈ Π2

 ·⋃
k,i

R[L
L
k,i
in

 is paired with a single

I, namely the top of the L-corona to which J[ belongs), the Orthogonality Lemma 5.6.4

applies to obtain the estimate

N̂

A,
⋃
k,iR

[L
L
k,i
in

stop,4ω ≤ sup
1≤k

1≤i≤nk

N̂

A,R[L
L
k,i
in

stop,4ω ≤ C sup
1≤k

1≤i≤nk

Sα,Aaugsize

(
R[L
L
k,i
in

)
≤ CSα,Aaugsize

(
P[H−bigL,0

)
(5.6.44)

Now we turn to estimating the norm of the ‘out-in’ collection Qout,in ≡
⋃
k,i

R[L
L
k,i
out,in

. First

we note that Lk,iout,in ∈ C
A,restrict
A if (I, J) ∈ R[L

L
k,i
out,in

since R[L
L
k,i
out,in

is reduced, i.e. doesn’t

contain any pairs (I, J) with J[ ⊂ A′ for some A′ ∈ CA (A). Next we note that Qout,in

is admissible since if J ∈ Π2Qout,in, then J ∈ Π2R[L
L
k,i
out,in

for a unique index (k, i), and of

course R[L
L
k,i
out,in

is admissible, so that the cubes I that are paired with J are tree-connected.

Thus we can apply the Straddling Lemma 5.6.15 to the reduced admissible collection Qout,in
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with the ‘straddling’ set S ≡
(⋃

k,i

⋃
L′∈Lk,i L

′
)
∩ CA,restrictA to obtain the estimate

N̂

A,
⋃∞
k=1R

[L
L
k,i
out,in

stop,4ω = N̂
A,Qout,in
stop,4ω ≤ CSα,Aaugsize

(
Qout,in

)
≤ CSα,Aaugsize

(
P[H−bigL,0

)
(5.6.45)

As for the remaining ‘out-out’ form |B|

A,
⋃
k,iR

[L
L
k,i
out,out

stop,4ω (f, g), if the cube pair (I, J) ∈

R[L
L
k,i
out,out

, then either J[ ⊂ L′ ∈ Lk,iout,out $ Jz or Jz ⊂ L′ ∈ Lk,iout,out. But J[ ⊂ L′ $ Jz

implies that either J[ = L′ $ Jz ⊂ I ⊂ L, which is impossible since J[ cannot share

an endpoint with L, or that J[ = L′′ ∈ L′in and Jz = Lk,i. So we conclude that if

(I, J) ∈ R[L
L
k,i
out,out

, then

either Jz ⊂ L
k,i
out,out or {J

z = Lk,i and J ⊂ L
k,i
out,out}. (5.6.46)

In either case in (5.6.46), there is a unique cube K [J ] ∈ W (L) that contains J . It follows

that there are now two remaining cases:

Case 1: K [J ] ∈ C′A,

Case 2: K [J ] ⊂ A′ $ I for some A′ ∈ CA (A).

However, since J[ ⊂ K[J ], as K[J ] is the maximal cube whose triple is contained in

L, and since R[L
L
k,i
out,out

is reduced, the pairs (I, J) in Case 2 lie in the ‘corona straddling’

collection PAcor that was removed from all A-admissible collections in (5.6.26) of Conclusion

5.6.4 above, and thus there are no pairs in Case 2 here. Thus we conclude that K [J ] ∈ C′A.

We now claim that 3K [J ] ⊂ I for all pairs (I, J) ∈
⋃
k,iR[LLkout,out

. To see this, suppose

that (I, J) ∈ R[L
L
k,i
out,out

for some k ≥ 1, 1 ≤ i ≤ nk. Then by (5.6.46) we have both that

K [J ] ⊂ L
k,i
out,out and L

k,i $ I. But then K [J ] ⊂ L
k,i
out,out implies that 3K [J ] ⊂ Lk,i ⊂ I as
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claimed.

Now the ‘out-out’ collectionQout,out ≡
⋃
k,i

R[L
L
k,i
out,out

is admissible, since if J ∈ Π2Qout,out

and Ij ∈ Π1Qout,out with
(
Ij , J

)
∈ Qout,out for j = 1, 2, then Ij ∈ CL

L
kj−1,i for some kj and

i and all of the cubes I ∈ [I1, I2] lie in one of the coronas CL
Lk−1,i for k between k1 and k2.

And of course for those coronas we have J ∈ Lk,iout,out. Thus (I, J) ∈ R[L
Lkout,out

⊂ Qout,out

and we have proved the required connectedness. From the containment 3K [J ] ⊂ I ⊂ L

for all (I, J) ∈
⋃
k,iR[L

L
k,i
out,out

, we now see that the reduced admissible collection Qout,out

substraddles the cube L. Hence the Substraddling Lemma 5.6.17 yields the bound

N̂

A,
⋃
k,iR

[L
L
k,i
out,out

stop,4ω = N̂
A,Qout,out
stop,4ω ≤ CSα,Aaugsize

(
Qout,out

)
≤ CSα,Aaugsize

(
P[H−bigL,0

)
.

(5.6.47)

Combining the bounds (5.6.44), (5.6.45) and (5.6.47), we obtain (5.6.43).

Finally, we observe that the collections P[H−bigL,0 themselves are mutually orthogonal,

namely

P[H−bigL,0 ⊂ CHL × C
H,[shift
L , L ∈ H ,∑

L∈H
1CHL

≤ 1 and
∑
L∈H

1
CH,[shiftL

≤ 1.

Thus an application of the Orthogonality Lemma 5.6.4 shows that

N̂
A,Q[H−big0
stop,4ω ≤ sup

L∈L
N̂
A,P[H−bigL,0
stop,4ω ≤ CSα,Aaugsize (P) .

Altogether, the proof of Proposition 5.6.19 is now complete.

This finishes the proofs of the inequalities (5.6.7) and (5.6.1).
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5.7 Finishing the proof

At this point we have controlled, either directly or probabilistically, the norms of all of the

forms in our decompositions - namely the disjoint, nearby, far below, paraproduct, neighbour,

broken and stopping forms - in terms of the Muckenhoupt, energy and functional energy con-

ditions, along with an arbitrarily small multiple of the operator norm. Thus it only remains

to control the functional energy condition by the Muckenhoupt and energy conditions, since

then, using
∫

(Tασ f) gdω = Θ (f, g) + Θ∗ (f, g) with the further decompositions above, we

will have shown that for any fixed tangent line truncation of the operator Tασ we have

∣∣∣∣∫ (Tασ f) gdω

∣∣∣∣ = EDΩEGΩ

∣∣∣∣∫ (Tασ f) gdω

∣∣∣∣ ≤EDΩEGΩ

3∑
i=1

(|Θi (f, g)|+ |Θ∗i (f, g)|)

≤
(
CηNT Vα + ηNTα

)
‖f‖

L2(σ)
‖g‖

L2(ω)

for f ∈ L2 (σ) and g ∈ L2 (ω), for an arbitarily small positive constant η > 0, and a

correspondingly large finite constant Cη. Note that the testing constants TTα and TTα,∗

in NT Vα already include the supremum over all tangent line truncations of Tα, while the

operator norm NTα on the left refers to a fixed tangent line truncation of Tα. This gives

NTα = sup
‖f‖

L2(σ)
=1

sup
‖g‖

L2(ω)
=1

∣∣∣∣∫ (Tασ f) gdω

∣∣∣∣ ≤ CηNT Vα + ηNTα ,

and since the truncated operators have finite operator norm NTα , we can absorb the term

ηNTα into the left hand side for η < 1 and obtain NTα ≤ C ′ηNT Vα for each tangent line

truncation of Tα. Taking the supremum over all such truncations of Tα finishes the proof

of Theorem 5.1.5.

The task of controlling functional energy is taken up in Appendix, after first establish-
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ing weak frame and weak Riesz inequalities for martingale and dual martingale differences

(except for the lower weak Riesz inequality for the martingale difference 4µ,bQ ).
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Appendix

Control of functional energy

Now we arrive at one of the main propositions used in the proof of our theorem. This

result is proved independently of the main theorem, and only using the results on dual

martingale differences established in the previous appendix. The organization of the proof is

almost identical to that of the corresponding result in [64, pages 128-151], together with the

modifications in [66, pages 348-360] to accommodate common point masses, but we repeat

the organization here with modifications required for the use of two independent grids, and

the appearance of weak goodness entering through the cubes Jz. Recall that the functional

energy constant Fα = Fb
∗
α (D,G) in (5.5.5), 0 ≤ α < n, namely the best constant in the

inequality (see (.0.7) below for the definition of W (F )),

∑
F∈F

∑
M∈W(F )

Pα (M,hσ)

|M |
1
n

2 ∥∥∥∥∥Qω,b∗CG,shiftF ;M
x

∥∥∥∥∥
♠2

L2(ω)

≤ Fα‖h‖L2(σ)
, (.0.1)

depends on the grids D and G, the goodness parameter ε > 0 used in the definition

of Jz through the shifted corona CG,shiftF , and on the family of martingale differences{
4ω,b

∗
J

}
J∈G

associated with x ∈ L2
loc (ω), but not on the family of dual martingale dif-

ferences
{
�σ,bI

}
I∈D

, since the function h ∈ L2 (σ) appearing in the definition of functional

energy is not decomposed as a sum of pseudoprojections �σ,bI h. Finally, we emphasize that
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the pseudoprojection

Q
ω,b∗

CG,shiftF ;M
≡

∑
J∈CG,shiftF : J⊂M

4ω,b
∗

J (.0.2)

here uses the shifted restricted corona in

CG,shiftF =
{
J ∈ G : Jz ∈ CDF

}
, (.0.3)

CG,shiftF ;K ≡
{
J ∈ CG,shiftF : J ⊂ K

}
,

where Jz is defined using the body of a cube as in Definition 5.2.8, and where we have

defined here the ‘restriction’ CG,shiftF ;K to the cube K of the corona CG,shiftF (c.f. ΠK2 P

in Definition 5.6.5, which uses the stronger requirement Jz ⊂ K). Moreover, recall from

Notation in 5.1.13.2 and the definition of 5ωJ in (5.1.39), that for any subset H of the grid

G,

∥∥∥Qω,b∗H x
∥∥∥♠2

L2(ω)
≡

∑
J∈H

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

=
∑
J∈H

(∥∥∥4ω,b∗J x
∥∥∥2

L2(ω)
+ inf
z∈R

∥∥∥5̂ωJ (x− z)
∥∥∥2

L2(ω)

)
,

so that we never need to consider the norm squared

∥∥∥∥∥Qω,b∗CG,shiftF ;M
x

∥∥∥∥∥
2

L2(ω)

of the pseudopro-

jection Q
ω,b∗

CG,shiftF ;M
x, something for which we have no lower Riesz inequality. Note moreover
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that for J ∈ G and an arbitrary cube K, we have by the frame inequality in (5.1.51) ,

∑
J∈G: J⊂K

∥∥∥4ω,b∗J x
∥∥∥2

L2(ω)
.

∥∥x−mω
K

∥∥2
L2(1Kω) , (.0.4)

∑
J∈G: J⊂K

inf
z∈R

∥∥∥5̂ωJ (x− z)
∥∥∥2

L2(ω)
≤

∑
J∈G: J⊂K

∥∥∥5̂ωJ {(x− p) 1K (x)}
∥∥∥2

L2(ω)
(.0.5)

. ‖(x− p)‖2
L2(1Kω)

, p ∈ K,

where the second line follows from (5.1.40).

Important note If J ∈ CG,shiftF , then in particular J bρ,ε F with ρ =
[

3
ε

]
as mentioned

above notation 5.5.8 , and so J ∩M 6= ∅ for a unique M ∈ W (F ).

We will show that, uniformly in pairs of grids D and G, the functional energy constants

Fα (D,G) in (5.5.5) are controlled by Aα2 , A
α,punct
2 and the large energy constant Eα2 -

actually the proof shows that we have control by the Whitney plugged energy constant as

defined in (.0.16) below. More precisely this is our control of functional energy proposition.

Proposition .0.1. For all grids D and G, and ε > 0 sufficiently small, we have

Fb
∗
α (D,G) . Eα2 +

√
Aα2 +

√
Aα,∗2 +

√
A
α,punct
2 ,

F
b,∗
α (G,D) . E

α,∗
2 +

√
Aα2 +

√
Aα,∗2 +

√
A
α,∗,punct
2 ,

with implied constants independent of the grids D and G.

In order to prove this proposition, we first turn to recalling these more refined notions of

energy constants.
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Various energy conditions

In this subsection we recall various refinements of the strong energy conditions appearing in

the main theorem above. Variants of this material already appear in earlier papers, but we

repeat it here both for convenience and in order to introduce some arguments we will use

repeatedly later on. These refinements represent the ‘weakest’ energy side conditions that

suffice for use in our proof, but despite this, we will usually use the large energy constant Eα2

in estimates to avoid having to pay too much attention to which of the energy conditions we

need to use - leaving the determination of the weakest conditions in such situations to the

interested reader. We begin with the notion of ‘deeply embedded’. Recall that the goodness

parameter r ∈ N is determined by ε > 0 in (5.2.16), and that 0 < ε < 1
n+1 <

1
n+1−α .

For arbitrary cubes in J,K ∈ P , we say that J is (ρ, ε)-deeply embedded in K, which we

write as J bρ,ε K, when J ⊂ K and both

` (J) ≤ 2−ρ` (K) , (.0.6)

d (J, ∂K) ≥ 2` (J)ε ` (K)1−ε .

Note that we use the boundary of K for the definition of J bρ,ε K, rather than the skeleton

or body of K, which would result in a more restrictive notion of (ρ, ε)-deeply embedded. We

will use this notion for the purpose of grouping ε− good cubes into the following collections.

Fix grids D and G. For K ∈ D, define the collections,

M(ρ,ε)−deep,G (K) ≡
{
J ∈ G : J is maximal w.r.t J bρ,ε K

}
, (.0.7)

M(ρ,ε)−deep,D (K) ≡
{
M ∈ D : M is maximal w.r.t M bρ,ε K

}
,

W (K) ≡ {M ∈ D : M is maximal w.r.t 3M ⊂ K}
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where the first two consist of maximal (ρ, ε)-deeply embedded dyadic G-subcubes J , respec-

tively D-subcubes M , of a D-cube K, and the third consists of the maximal D-subcubes M

whose triples are contained in K.

Let γ > 1. Then the following bounded overlap property holds where

M(ρ,ε)−deep (K) can be taken to be eitherM(ρ,ε)−deep,G (K) orM(ρ,ε)−deep,D (K) orW (K)

throughout.

Lemma .0.2. Let 0 < ε ≤ 1 < γ ≤ 1 + 4 · 2ρ(1−ε). Then

∑
J∈M(ρ,ε)−deep(K)

1γJ ≤ β1 ⋃
J∈M(ρ,ε)−deep(K)

γJ


(.0.8)

holds for some positive constant β depending only on γ, ρ and ε. In addition γJ ⊂ K for all

J ∈M(ρ,ε)−deep (K), and consequently

∑
J∈M(ρ,ε)−deep(K)

1γJ ≤ β1K . (.0.9)

A similar result holds for W (K).

Proof. We suppose 0 < ε < 1 and leave the simpler case ε = 1 for the reader. To prove

(.0.8), we first note that there are at most 2n(ρ+1)−1
2n−1 cubes J contained in K for which

` (J) > 2−ρ` (K). On the other hand, the maximal (ρ, ε)-deeply embedded subcubes J of K

also satisfy the comparability condition

2` (J)ε ` (K)1−ε ≤ d (J, ∂K) ≤ d (πJ, ∂K) + ` (J) ≤ 2 (2` (J))ε ` (K)1−ε + ` (J)

≤ 4` (J)ε ` (K)1−ε + ` (J) .
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Now with 0 < ε < 1 and γ > 1 fixed, let y ∈ K. Then if y ∈ γJ , we have

2` (J)ε ` (K)1−ε ≤ d (J, ∂K) ≤ γ` (J) + d (γJ, ∂K)

≤ γ` (J) + d (y, ∂K) .

Now assume that `(J)
`(K)

≤
(

1
γ

) 1
1−ε . Then we have γ` (J) ≤ ` (J)ε ` (K)1−ε and so

` (J)ε ` (K)1−ε ≤ d (y, ∂K) .

But we also have

d (y, ∂K) ≤ γ` (J) + d (J, ∂K) ≤ γ` (J) + 4` (J)ε ` (K)1−ε + ` (J) ≤ 6` (J)ε ` (K)1−ε ,

and so altogether, under the assumption that `(J)
`(K)

≤
(

1
γ

) 1
1−ε , we have

1

6
d (y, ∂K) ≤ ` (J)ε ` (K)1−ε ≤ d (y, ∂K) ,

i.e.

(
1

6

d (y, ∂K)

` (K)1−ε

)1
ε

≤ ` (J) ≤

(
d (y, ∂K)

` (K)1−ε

)1
ε

,

which shows that the number of J ’s satisfying y ∈ γJ and `(J)
`(K)

≤
(

1
γ

) 1
1−ε is at most C ′ 1ε .

On the other hand, the number of J ’s contained in K satisfying y ∈ γJ and `(J)
`(K)

>
(

1
γ

) 1
1−ε

is at most C ′ 1
1−ε (1 + log2 γ). This proves (.0.8) with

β =
2n(ρ+1) − 1

2n − 1
+ C ′

1

ε
+ C ′

1

1− ε
(1 + log2 γ) .
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In order to prove (.0.9) it suffices, by (.0.8), to prove γJ ⊂ K for all J ∈M(ρ,ε)−deep (K).

But J ∈M(ρ,ε)−deep (K) implies

2` (J)ε ` (K)1−ε ≤ d (J, ∂K) = d (cJ , ∂K)− 1

2
` (J) .

We wish to show γJ ⊂ K, which is implied by

γ
1

2
` (J) ≤ d (cJ , K

c) = d (J, ∂K) +
1

2
` (J) .

But we have

d (J, ∂K) +
1

2
` (J) ≥ 2` (J)ε ` (K)1−ε +

1

2
` (J) ,

and so it suffices to show that

2` (J)ε ` (K)1−ε +
1

2
` (J) ≥ γ

1

2
` (J) ,

which is equivalent to

γ − 1 ≤ 4` (J)ε−1 ` (K)1−ε .

But the smallest that ` (J)ε−1 ` (K)1−ε can get for J ∈M(ρ,ε)−deep (K) is 2ρ(1−ε) ≥ 1, and

so γ ≤ 1 + 4 · 2ρ(1−ε) implies γ − 1 ≤ 4` (J)ε−1 ` (K)1−ε, which completes the proof.

The reader can easily verify the same argument works for the Whitney collectionW (K).

Now we recall the notion of alternate dyadic cubes from [64], which we rename augmented

dyadic cubes here.
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Definition .0.3. Given a dyadic grid D, the augmented dyadic grid AD consists of those

cubes I whose dyadic children I ′ belong to the grid D.

Of course an augmented grid is not actually a grid because the nesting property fails,

but this terminology should cause no confusion. These augmented grids will be needed in

order to use the ‘prepare to puncture’ argument (introduced in [66]) at several places below.

Now we proceed to recall certain of the definitions of various energy conditions from [62]

and [64]. While these definitions are not explicitly used in the proof of functional energy,

some of the arguments we give to control them will be appealed to later, and so we take the

time to develop these definitions in detail.

Whitney energy conditions

The following definition of Whitney energy condition uses the Whitney decomposition

M(ρ,1)−deep,D (Ir) into D-dyadic cubes in which ε = 1, as well as the ‘large’ pseudoprojec-

tions

Q
ω,b∗
K ≡

∑
J∈G: J⊂K

4ω,b
∗

J . (.0.10)

Definition .0.4. Suppose σ and ω are locally finite positive Borel measures on Rn and fix

γ > 1. Then the Whitney energy condition constant Eα,Whitney
2 is given by

(
Eα,Whitney

2

)2
≡ sup
D,G

sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

Pα
(
M,1I\γMσ

)
|M |

1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)
,

where supD,G supI=∪̇Ir is taken over

1. all dyadic grids D and G,

2. all D-dyadic cubes I,
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3. and all partitions {Ir}N or ∞
r=1 of the cube I into D-dyadic subcubes Ir.

If the parameter γ > 1 above is chosen sufficiently close to 1, then the collection of

cubes {γM}M∈W(Ir) has bounded overlap β by (.0.9), and the Whitney energy constant

Eα,Whitney
2 is controlled by the strong energy constant Eα2 in (5.1.8),

Eα,Whitney
2 . Eα2 . (.0.11)

Indeed, to see this, fix a decomposition of a cube

I =
·⋃

1≤r<∞

·⋃
M∈W(Ir)

M (.0.12)

as in Definition .0.4. Then consider the subdecomposition

I ⊃
·⋃

1≤r<∞

·⋃
M∈W(Ir)

M

of the cube I given by the collection of cubes,

I ≡
·⋃

1≤r<∞
W (Ir) .

We then have

(Eα2 )2 ≥ 1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

Pα (M,1Iσ)

|M |
1
n

2 ∥∥x−mω
M

∥∥2
L2(1Mω) .
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Now Pα (M,1Iσ) ≥ Pα
(
M,1I\γMσ

)
and from (.0.4),

∥∥x−mω
M

∥∥2
L2(1Mω) &

∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)
,

and combining these two inequalities, we obtain that

(Eα2 )2 ≥ c
1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

Pα
(
M,1I\γMσ

)
|M |

1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)
.

Thus we conclude that

1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

Pα
(
M,1I\γMσ

)
|M |

1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)
≤ C

c
β (Eα2 )2 ,

and taking the supremum over all decompositions (.0.12) as in Definition .0.4, we obtain

(.0.11).

There is a similar definition for the dual (backward) Whitney energy conditions that

simply interchanges σ and ω everywhere. These definitions of the Whitney energy conditions

depend on the choice of γ > 1.

Commentary on proofs We now introduce a number of results concerning partial plug-

ging of the hole for Whitney energy conditions.

Note that we can ‘partially’ plug the γ-hole in the Poisson integral Pα
(
J,1I\γJσ

)
for

Eα,Whitney
2 using the offset Aα2 condition and the bounded overlap property (.0.9). Indeed,

324



define

(
Eα,Whitneypartial

2

)2
(.0.13)

≡ sup
D,G

sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

Pα
(
M,1I\Mσ

)
|M |

1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)
.

Recall from (.0.9) that

γM ⊂ Ir for all M ∈ W (Ir) provided γ ≤ 5.

At this point we need the following analogues of the ‘energy Aα2 conditions’ from [66], which

we denote by Aα,energy2 and Aα,∗,energy2 , and define by

A
α,energy
2 (σ, ω) ≡ sup

Q∈P

∥∥∥Qω,b∗Q
x

`(Q)

∥∥∥♠2

L2(ω)

|Q|1−
α
n

|Q|σ
|Q|1−

α
n
, (.0.14)

A
α,∗,energy
2 (σ, ω) ≡ sup

Q∈P

|Q|ω
|Q|1−

α
n

∥∥∥Qσ,bQ x
`(Q)

∥∥∥♠2

L2(σ)

|Q|1−
α
n

.

325



Then if γ ≤ 5, we have

(
Eα,Whitneypartial

2

)2

. sup
D,G

sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

Pα
(
M,1I\γMσ

)
|M |

1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)

+ sup
D,G

sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

Pα
(
M,1γM\Mσ

)
|M |

1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)

.
(
Eα,Whitney

2

)2
+ sup
D,G

sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

A
α,energy
2 |γM |σ (.0.15)

.
(
Eα,deep2

)2
+ βA

α,energy
2 ,

by (.0.9).

Plugged energy conditions

We continue to recall some results from [66] and [67] that we will use repeatedly here.

For example, we will use the punctured Muckenhoupt conditions Aα,punct2 and A
α,∗,punct
2

to control the plugged energy conditions, where the hole in the argument of the Poisson

term Pα
(
M,1I\Mσ

)
in the partially plugged energy condition above, is replaced with the

‘plugged’ term Pα (M,1Iσ), for example

(
Eα,Whitneyplug

2

)2
≡ sup
D,G

sup
I=∪̇Ir

1

|I|σ

∞∑
r=1

∑
M∈W(Ir)

Pα (M,1Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)
.

(.0.16)

By an argument similar to that in (.0.15), we obtain

Eα,Whitneyplug
2 . Eα,Whitneypartial

2 + A
α,energy
2 . (.0.17)
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We first show that the punctured Muckenhoupt conditions Aα,punct2 and Aα,∗,punct2 control

respectively the ‘energy Aα2 conditions’ in (.0.14). We will make reference to the proof of the

next lemma (for the T1 theorem this is from [66, Lemma 3.2 on page 328.]) several times in

the sequel. We repeat the proof from [66, Lemma 3.2 on page 328.] but with modifications

to accommodate the differences that arise here in the setting of a local Tb theorem. Recall

that P(σ,ω) is defined below (5.1.6) above.

Lemma .0.5. For any positive locally finite Borel measures σ, ω we have

A
α,energy
2 (σ, ω) . A

α,punct
2 (σ, ω) ,

A
α,∗,energy
2 (σ, ω) . A

α,∗,punct
2 (σ, ω) .

Proof. Fix a cubeQ ∈ D. Recall the definition of ω
(
Q,P(σ,ω)

)
in (5.1.6). If ω

(
Q,P(σ,ω)

)
≥

1
2 |Q|ω, then we trivially have

∥∥∥Qω,b∗Q
x

`(Q)

∥∥∥♠2

L2(ω)

|Q|1−
α
n

|Q|σ
|Q|1−

α
n
.

|Q|ω
|Q|1−

α
n

|Q|σ
|Q|1−

α
n

≤ 2
ω
(
Q,P(σ,ω)

)
|Q|1−

α
n

|Q|σ
|Q|1−

α
n
≤ 2A

α,punct
2 (σ, ω) .

On the other hand, if ω
(
Q,P(σ,ω)

)
< 1

2 |Q|ω then there is a point p ∈ Q∩P(σ,ω) such that

ω ({p}) > 1

2
|Q|ω ,

and consequently, p is the largest ω-point mass in Q. Thus if we define ω̃ = ω − ω ({p}) δp,
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then we have

ω
(
Q,P(σ,ω)

)
= |Q|ω̃ .

Now we observe from the construction of martingale differences that

4ω̃,b
∗

J = 4ω,b
∗

J , for all J ∈ D with p /∈ J.

So for each s ≥ 0 there is a unique cube Js ∈ D with ` (Js) = 2−s` (Q) that contains the

point p. Now observe that, just as for the Haar projection, the one-dimensional projection

4ω,b
∗

Js
is given by 4ω,b

∗
Js

f =
〈
h
ω,b∗
Js

, f
〉
ω
h
ω,b∗
Js

for a unique up to ± unit vector hω,b
∗

Js
. For

this cube we then have

∥∥∥4ω,b∗Js
x
∥∥∥2

L2(ω)
=

∣∣∣〈hω,b∗Js
, x
〉
ω

∣∣∣2 =
∣∣∣〈hω,b∗Js

, x− p
〉
ω

∣∣∣2
=

∣∣∣∣∫
Js
h
ω,b∗
Js

(x) (x− p) dω (x)

∣∣∣∣2 =

∣∣∣∣∫
Js
h
ω,b∗
Js

(x) (x− p) dω̃ (x)

∣∣∣∣2
≤

∥∥∥hω,b∗Js

∥∥∥2

L2(ω̃)

∥∥1Js (x− p)
∥∥2
L2(ω̃) ≤

∥∥∥hω,b∗Js

∥∥∥2

L2(ω)

∥∥1Js (x− p)
∥∥2
L2(ω̃)

≤ ` (Js)
2 |Js|ω̃ ≤ 2−2s` (Q)2 |Q|ω̃ ,

as well as

inf
z∈R

∥∥∥∇̂ωJs (x− z)
∥∥∥2

L2(ω)
. ‖(x− p)‖2

L2
(
1Jsω

) = ‖(x− p)‖2
L2
(
1Jsω̃

) ≤ ` (Js)
2 |Js|ω̃

≤ 2−2s` (Q)2 |Q|ω̃ ,
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from (.0.4). Thus we can estimate

∥∥∥∥Qω,b∗Q

x

` (Q)

∥∥∥∥♠2

L2(ω)
(.0.18)

≤ 1

` (Q)2

 ∑
J∈D: J⊂Q

∥∥∥4ω,b∗J x
∥∥∥2

L2(ω)
+ inf
z∈R

∥∥∥∇̂ωJs (x− z)
∥∥∥2

L2(ω)


=

1

` (Q)2

( ∑
J∈D: p/∈J⊂Q

∥∥∥4ω̃,b∗J x
∥∥∥2

L2(ω̃)
+
∞∑
s=0

∥∥∥4ω,b∗Js
x
∥∥∥2

L2(ω)

+ inf
z∈R

∥∥∥∇̂ωJs (x− z)
∥∥∥2

L2(ω)

)

.
1

` (Q)2

(∥∥∥Qω̃,b∗Q x
∥∥∥♠2

L2(ω̃)
+
∞∑
s=0

2−2s` (Q)2 |Q|ω̃

)

.
1

` (Q)2

(
` (Q)2 |Q|ω̃ +

∞∑
s=0

2−2s` (Q)2 |Q|ω̃

)
≤ 3 |Q|ω̃ = 3ω

(
Q,P(σ,ω)

)
,

and so

∥∥∥Qω,b∗Q
x

`(Q)

∥∥∥♠2

L2(ω)

|Q|1−
α
n

|Q|σ
|Q|1−

α
n
.

3ω
(
Q,P(σ,ω)

)
|Q|1−

α
n

|Q|σ
|Q|1−

α
n
≤ 3A

α,punct
2 (σ, ω) .

Now take the supremum over Q ∈ D to obtain Aα,energy2 (σ, ω) . A
α,punct
2 (σ, ω). The dual

inequality follows upon interchanging the measures σ and ω.

We isolate a simple but key fact that will be used repeatedly in what follows:

∑
Q∈D: Q⊂P

` (Q)2 |Q|µ . ` (P )2 |P |µ , for P ∈ D and µ a positive measure. (.0.19)

Indeed, to see (.0.19), simply pigeonhole the length of Q relative to that of P and sum. The
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next corollary follows immediately from Lemma .0.5, (.0.15) and (.0.17).

Corollary .0.6. Provided 1 < γ ≤ 5,

Eα,Whitneyplug
2 . Eα,Whitneypartial

2 + A
α,punct
2 . Eα,Whitney

2 + A
α,punct
2 ,

and similarly for the dual plugged energy condition.

Using Lemma .0.5 we can control the ‘plugged’ energy Aα2 conditions:

Aα,energyplug2 (σ, ω) ≡ sup
Q∈P

∥∥∥Qω,b∗Q
x

`(Q)

∥∥∥♠2

L2(ω)

|Q|1−
α
n

Pα (Q, σ) ,

Aα,∗,energyplug2 (σ, ω) ≡ sup
Q∈P

Pα (Q,ω)

∥∥∥Qσ,bQ x
`(Q)

∥∥∥♠2

L2(σ)

|Q|1−
α
n

.

Lemma .0.7. We have

Aα,energyplug2 (σ, ω) . Aα2 (σ, ω) + A
α,energy
2 (σ, ω) ,

Aα,∗,energyplug2 (σ, ω) . Aα,∗2 (σ, ω) + A
α,∗,energy
2 (σ, ω) .
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Proof. We have

∥∥∥Qω,b∗Q
x

`(Q)

∥∥∥♠2

L2(ω)

|Q|1−
α
n

Pα (Q, σ) =

∥∥∥Qω,b∗Q
x

`(Q)

∥∥∥♠2

L2(ω)

|Q|1−
α
n

Pα
(
Q,1Qcσ

)

+

∥∥∥Qω,b∗Q
x

`(Q)

∥∥∥♠2

L2(ω)

|Q|1−
α
n

Pα
(
Q,1Qσ

)

.
|Q|ω
|Q|1−

α
n
Pα
(
Q,1Qcσ

)
+

∥∥∥Qω,b∗Q
x

`(Q)

∥∥∥♠2

L2(ω)

|Q|1−
α
n

|Q|σ
|Q|1−

α
n

. Aα2 (σ, ω) + A
α,energy
2 (σ, ω) .

The Poisson formulation

Recall from Definitions 5.2.8 and 5.5.1 that

CG,shiftF =
{
J ∈ G : Jz ∈ CF

}
,

where F ∈ F is a stopping cube in the dyadic grid D. For convenience we repeat here the

main result of this section, Proposition .0.1.

Proposition .0.8. For all grids D and G, and ε > 0 sufficiently small, we have

Fb
∗
α (D,G) . Eα2 +

√
Aα2 +

√
Aα,∗2 +

√
A
α,punct
2 ,

F
b,∗
α (G,D) . E

α,∗
2 +

√
Aα2 +

√
Aα,∗2 +

√
A
α,∗,punct
2 ,

with implied constants independent of the grids D and G.
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To prove Proposition .0.8, we fix grids D and G and a subgrid F of D as in (5.5.5), and

set

µ ≡
∑
F∈F

∑
M∈W(F )

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)
· δ(cM ,`(M)) and dµ (x, t) ≡ 1

t2
dµ (x, t) , (.0.20)

where W (F ) consists of the maximal D-subcubes of F whose triples are contained in F ,

and where δ(cM ,`(M)) denotes the Dirac unit mass at the point (cM , ` (M)) in the upper

half-space Rn+1
+ . Here M ∈ D is a dyadic cube with center cM and side length ` (M), and

for any cube K ∈ P , the shorthand notation P
ω,b∗
F,K (resp. Q

ω,b∗
F,K ) is used for the localized

pseudoprojection P
ω,b∗

CG,shiftF ;K
(resp. Qω,b

∗

CG,shiftF ;K
) given in (5.5.9):

P
ω,b∗
F,K ≡ P

ω,b∗

CG,shiftF ;K
=

∑
J⊂K: J∈CG,shiftF

�ω,b
∗

J (.0.21)

resp. Qω,b
∗

F,K ≡ Q
ω,b∗

CG,shiftF ;K
=

∑
J⊂K: J∈CG,shiftF

4ω,b
∗

J

 . (.0.22)

We emphasize that all the subcubes J that arise in the projection Q
ω,b∗
F,M are good inside

the cubes F and beyond since Jz ⊂ F . Here Jz is defined in Definition 5.2.8 using the

body of a cube. Thus every J ∈ Q
ω,b∗
F is contained in a unique M ∈ W (F ), so that

Q
ω,b∗
F =

·⋃
M∈W(F )Q

ω,b∗
F,M . We can replace x by x− c inside the projection for any choice of

c we wish; the projection is unchanged. More generally, δq denotes a Dirac unit mass at a

point q in the upper half-space Rn+1
+ .
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We will prove the two-weight inequality

‖Pα (fσ)‖
L2(Rn+1

+ ,µ)
.

(
Eα2 +

√
Aα2 +

√
Aα,∗2 +

√
A
α,punct
2

)
‖f‖

L2(σ)
, (.0.23)

for all nonnegative f in L2 (σ), noting that F and f are not related here. Above, Pα(·)

denotes the α-fractional Poisson extension to the upper half-space Rn+1
+ ,

Pαρ (x, t) ≡
∫
Rn

t(
t2 + |x− y|2

)n+1−α
2

dρ (y) ,

so that in particular

‖Pα(fσ)‖2
L2(R2

+,µ)
=
∑
F∈F

∑
M∈W(F )

Pα (fσ) (c(M), ` (M))2

∥∥∥∥∥∥Qω,b∗F,M

x

|M |
1
n

∥∥∥∥∥∥
♠2

L2(ω)

,

and so (.0.23) proves the first line in Proposition .0.1 upon inspecting (5.5.5). Note also

that we can equivalently write ‖Pα (fσ)‖
L2(R2

+,µ)
=
∥∥∥P̃α (fσ)

∥∥∥
L2(R2

+,µ)
where P̃αν (x, t) ≡

1
tP
αν (x, t) is the renormalized Poisson operator. Here we have simply shifted the factor 1

t2

in µ to
∣∣∣P̃α (fσ)

∣∣∣2 instead, and we will do this shifting often throughout the proof when it

is convenient to do so.

One version of the characterization of the two-weight inequality for fractional and Poisson

integrals in [55] was stated in terms of a fixed dyadic grid D of cubes in R with sides parallel

to the coordinate axes. Using this theorem for the two-weight Poisson inequality, but adapted

to the α-fractional Poisson integral Pα,1 we see that inequality (.0.23) requires checking these

two inequalities for dyadic cubes I ∈ D and boxes Î = I × [0, ` (I)) in the upper half-space

1The proof for 0 ≤ α < 1 is essentially identical to that for α = 0 given in [55].
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Rn+1
+ :

∫
R2

+

Pα (1Iσ) (x, t)2 dµ (x, t) ≡ ‖Pα (1Iσ)‖2
L2(µ)

.
(

(Eα2 )2 +Aα2 +Aα,∗2 + A
α,punct
2

)
σ(I) , (.0.24)

∫
R

[Qα(t1
Î
µ)]2dσ(x) .

(
(Eα2 )2 +Aα2 + A

α,punct
2

)∫
Î
t2dµ(x, t), (.0.25)

for all dyadic cubes I ∈ D, and where the dual Poisson operator Qα is given by

Qα(t1
Î
µ) (x) =

∫
Î

t2(
t2 + |x− y|2

)n+1−α
2

dµ (y, t) .

It is important to note that we can choose for D any fixed dyadic grid, the compensating

point being that the integrations on the left sides of (.0.24) and (.0.25) are taken over the

entire spaces R2
+ and R respectively2.

Poisson testing

We now turn to proving the Poisson testing conditions (.0.24) and (.0.25). Similar testing

conditions have been considered in [62], [64], [66] and [67], and the proofs there essentially

carry over to the situation here, but careful attention must now be paid to the changed

definition of functional energy and the weaker notion of goodness. We continue to circumvent

the difficulty of permitting common point masses here by using the energy Muckenhoupt

constants Aα,energy2 and Aα,∗,energy2 , which require control by the punctured Muckenhoupt

constants Aα,punct2 and A
α,∗,punct
2 . The following elementary Poisson inequalities (see e.g.

2There is a gap in the proof of the Poisson inequality at the top of page 542 in [55]. However, this gap
can be fixed as in [70] or [31].
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[75]) will be used extensively.

Lemma .0.9. Suppose that J,K, I are cubes in Rn, and that µ is a positive measure supported

in Rn \ I. If J ⊂ K ⊂ βK ⊂ I for some β > 1, then

Pα (J, µ)

|J |
1
n

≈ Pα (K,µ)

|K|
1
n

,

while if J ⊂ βK, then

Pα (K,µ)

|K|
1
n

.
Pα (J, µ)

|J |
1
n

.

Proof. We have

Pα (J, µ)

|J |
1
n

=
1

|J |
1
n

∫
|J |

1
n(

|J |
1
n + |x− cJ |

)n+1−αdµ (x) ,

where J ⊂ K ⊂ βK ⊂ I implies that

|J |
1
n + |x− cJ | ≈ |K|

1
n + |x− cK | , x ∈ Rn \ I,

and where J ⊂ βK implies that

|J |
1
n + |x− cJ | . |J |

1
n + |cK − cJ |+ |x− cK | . |K|

1
n + |x− cK | , x ∈ Rn.

Recall that in the case of the T1 theorem in [64], where we assumed traditional goodness

in a single family of grids D, we had a strong bounded overlap property associated with the

projections P
ω,b∗
F,J defined there; namely, that for each cube I0 ∈ D, there were a bounded

335



number of cubes F ∈ F with the property that F % I0 ⊃ J for some J ∈ M(ρ,ε)−deep (F )

with P
ω,b∗
F,J 6= 0 (see the first part of Lemma 10.4 in [64]). However, we no longer have

this strong bounded overlap property when ordinary goodness is replaced with the weak

goodness of Hytönen and Martikainen. Indeed, there may now be an unbounded number of

cubes F ∈ F with F % I0 ⊃ J and P
ω,b∗
F,J 6= 0, simply because there can be J ′ ∈ G with

both J ′ ⊂ I0 and
(
J ′
)z arbitrarily large.

What will save us in obtaining the following lemma is that the Whitney cubes M in

W (F ) that happen to lie in some I ∈ D with I ⊂ F have one of just two different forms:

if I shares an endpoint with F then the cubes M near that endpoint are the same as those

in W (I) - note that F has been replaced with I here - while otherwise there are a bounded

number of Whitney cubes M in I, and each such M has side length comparable to ` (I).

The next lemma will be used in bounding both of the local Poisson testing conditions.

Recall from Definition .0.3 that AD consists of all augmented D-dyadic cubes where K is

an augmented dyadic cube if it is a union of 2 D-dyadic cubes K ′ with `
(
K ′
)

= 1
2` (K).

Lemma .0.10. Let D and G and F ⊂ D be grids and let
{
Q
ω,b∗
F,M

}
F∈F

M∈W(F )

be as in (.0.22)

above. For any augmented cube I ∈ AD define

B (I) ≡
∑

F∈F : F%I′ for some I′∈C(I)

∑
M∈W(F ): M⊂I

Pα (M,1Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)
.

(.0.26)

Then

B (I) .
(

(Eα2 )2 + A
α,energy
2

)
|I|σ . (.0.27)

Proof. We first prove the bound (.0.27) for B (I) ignoring for the moment the possible case

when M = I in the sum defining B (I). So suppose that I ∈ AD is an augmented D-dyadic
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cube. Define

Λ∗ (I) ≡
{
M $ I : M ∈ W (F ) for some F % I ′, I ′ ∈ C (I) with Q

ω,b∗
F,M x 6= 0

}
,

and pigeonhole this collection as Λ∗ (I) =
⋃

I′∈C(I)

Λ
(
I ′
)
, where for each I ′ ∈ C (I) we define

Λ
(
I ′
)
≡
{
M ⊂ I ′ : M ∈ W (F ) for some F % I ′ with Q

ω,b∗
F,M x 6= 0

}
.

Consider first the case when 3I ′ ⊂ F , so that d
(
I ′, ∂F

)
≥ `

(
I ′
)
. Then if M ∈ W (F ) for

some F % I ′ we have ` (M) = d (M,∂F ), and if in addition M ⊂ I ′, then M = I ′. Consider

the sum over all F % I ′ = M :

BM (I) ≡
∑

F∈F : F%M for some M∈C(I)∩W(F )

Pα (M,1Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

≤

Pα (M,1Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)
.

Pα (I,1Iσ)

|I|
1
n

2 ∥∥∥Qω,b∗I x
∥∥∥♠2

L2(ω)

. A
α,energy
2 |I|σ ,

where we have used the definitions (.0.22) and (.0.10). Thus we have obtained the bound

∑
F∈F : F%M for some M∈C(I)∩W(F )

Pα (M,1Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)
. A

α,energy
2 |I|σ .

Now we turn to the case 3I ′ 6⊂ F , i.e. when ∂I ′ ∩ ∂F consists of exactly one boundary

point. In this case, if both M ⊂ I ′ and M ∈ W (F ) for some F % I ′, then we must have

either M ∈ W
(
I ′
)
or M ∈ C

(
I ′
)
, since both M and I ′ are then close to the same boundary

337



point in ∂F . Note that it is here that we use the Whitney decompositions to full advantage.

So again we can estimate

∑
F∈F : F%I′ for some I′∈C(I)

3I′ 6⊂F

∑
M∈W(F ): M⊂I′

Pα (M,1Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

≤
∑

M∈{W(I′)∪C(I′)}∩W(F )

Pα (M,1Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗M x
∥∥∥♠2

L2(ω)
. (Eα2 )2 |I|σ .

Finally, we consider the case M = I. In this case I ∈ D and so F % I ′ implies F ⊃ I

and we can estimate

∑
F∈F : F⊃I

Pα (I,1Iσ)

|I|
1
n

2 ∥∥∥Qω,b∗F,I x
∥∥∥♠2

L2(ω)
≤

Pα (I,1Iσ)

|I|
1
n

2 ∥∥∥Qω,b∗I x
∥∥∥♠2

L2(ω)

. A
α,energy
2 |I|σ .

This completes the proof of Lemma .0.10.

The forward Poisson testing inequality

Fix I ∈ D. We split the integration on the left side of (.0.24) into a local and global piece:

∫
Rn+1

+

Pα (1Iσ)2 dµ =

∫
Î
Pα (1Iσ)2 dµ+

∫
Rn+1

+ \Î
Pα (1Iσ)2 dµ ≡ Local (I) + Global (I)
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where more explicitly,

Local (I) ≡
∫
Î

[Pα (1Iσ) (x, t)]2 dµ (x, t) ; µ ≡ 1

t2
µ, (.0.28)

i.e. µ ≡
∑
F∈F

∑
M∈W(F )

∥∥∥∥Qω,b∗F,M

x

` (M)

∥∥∥∥♠2

L2(ω)
· δ(cM ,`(M)),

where we recall Qω,b
∗

F,M is defined in (.0.22) above. Here is a brief schematic diagram of the

decompositions, used in this subsection:

Local (I)

↓

Localplug (I) + Localhole (I)

↓
(
Eα2
)2

↓

A + B(
Eα2
)2

+ A
α,energy
2

(
Eα2
)2

+ A
α,energy
2

and

Global (I)

↓

A + B + C + D

Aα2
(
Eα2
)2

+ Aα2 + A
α,energy
2 Aα,∗2 Aα,∗2 + A

α,punct
2

As in our earlier papers [59]-[67] that used a single family of random grids, we have the

useful equivalence that

(c (M) , ` (M)) ∈ Î if and only if M ⊂ I, (.0.29)
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since M and I live in the common grid D. We thus have

Local (I) =

∫
Î
Pα (1Iσ) (x, t)2 dµ (x, t)

=
∑
F∈F

∑
M∈W(F ): M⊂I

Pα (1Iσ) (cM , ` (M))2

∥∥∥∥∥∥Qω,b∗F,M

x

|M |
1
n

∥∥∥∥∥∥
♠2

L2(ω)

≈
∑
F∈F

∑
M∈W(F ): M⊂I

Pα (M,1Iσ)2 ‖Qω,b
∗

F,M

x

|M |
1
n

‖♠2

L2(ω)

≈ Localplug (I) + Localhole (I) ,

where

Localplug (I) ≡
∑
F∈F

∑
M∈W(F )): M⊂I

Pα (M,1F∩Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥2

L2(ω)
,

Localhole (I) ≡
∑
F∈F

∑
M∈W(F ): M⊂I

Pα
(
M,1I\Fσ

)
|M |

1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)
.

The ‘plugged’ local sum Localplug (I) can be further decomposed into

Localplug (I) =


∑
F∈F
F⊂I

+
∑
F∈F
F%I


∑

M∈W(F )
M⊂I

Pα (M,1F∩Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

= A+B.
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Then an application of the Whitney plugged energy condition gives

A =
∑

F∈F : F⊂I

∑
M∈W(F )

Pα (M,1F∩Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

≤
∑

F∈F : F⊂I

(
Eα2 +

√
A
α,energy
2

)2

|F |σ .
(
Eα2 +

√
A
α,energy
2

)2

|I|σ ,

since
∥∥∥Qω,b∗F,M x

∥∥∥♠2

L2(ω)
≤
∥∥∥Qω,b∗M x

∥∥∥♠2

L2(ω)
. We also used here that the stopping cubes F satisfy

a σ-Carleson measure estimate,

∑
F∈F : F⊂F0

|F |σ . |F0|σ .

Lemma .0.10 applies to the remaining term B to obtain the bound

B .
(

(Eα2 )2 + A
α,energy
2

)
|I|σ .

Next we show the inequality with ‘holes’, where the support of σ is restricted to the

complement of the cube F .

Lemma .0.11. We have

Localhole (I) . (Eα2 )2 |I|σ . (.0.30)

Proof. Fix I ∈ D and define

FI ≡ {F ∈ F : F ⊂ I} ∪ {I} ,

and denote by πF , for this proof only, the parent of F in the tree FI . Also denote by
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d
(
F, F ′

)
≡ dFI

(
F, F ′

)
the distance from F to F ′ in the tree FI , and denote by d (F ) ≡

dFI (F, I) the distance of F from the root I. Since I \ F appears in the argument of the

Poisson integral, those F ∈ F \ FI do not contribute to the sum and so we estimate

S ≡ Localhole (I) =
∑
F∈FI

∑
M∈W(F ): M⊂I

Pα
(
M,1I\Fσ

)
|M |

1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

by using
∑
F ′∈F : F⊂F ′$I

1

d(F ′)2 ≤ C to obtain

S =
∑
F∈FI

∑
M∈W(F )
M⊂I

 ∑
F ′∈F : F⊂F ′$I

d
(
F ′
)

d (F ′)

Pα
(
M,1πF ′\F ′σ

)
|M |

1
n


2 ∥∥∥Qω,b∗F,M x

∥∥∥♠2

L2(ω)

≤
∑
F∈FI

∑
M∈W(F )
M⊂I


∑
F ′∈F

F⊂F ′$I

1

d (F ′)2

 ·

·


∑
F ′∈F

F⊂F ′$I

d
(
F ′
)2Pα

(
M,1πF ′\F ′σ

)
|M |

1
n

2


∥∥∥Qω,b∗F,M x

∥∥∥♠2

L2(ω)

≤ C
∑

F ′∈FI

d
(
F ′
)2 ∑

F∈F
F⊂F ′

∑
M∈W(F ): M⊂I

Pα
(
M,1πF ′\F ′σ

)
|M |

1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

= C
∑

F ′∈FI

d
(
F ′
)2 ∑
K∈W(F ′)

∑
F∈F
F⊂F ′

∑
M∈W(F )
M⊂I

Pα
(
M,1πF ′\F ′σ

)
|M |

1
n

2 ∥∥∥Qω,b∗F,M∩Kx
∥∥∥♠2

L2(ω)

.
∑

F ′∈FI

d
(
F ′
)2 ∑
K∈W(F ′)

Pα
(
K,1πF ′\F ′σ

)
|K|

1
n

2 ∑
F∈F
F⊂F ′

∑
M∈W(F )
M⊂I

∥∥∥Qω,b∗F,M∩Kx
∥∥∥♠2

L2(ω)
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where in the fifth line we have used that each J ′ appearing in Q
ω,b∗
F,M occurs in one of the

Q
ω,b∗
F,M∩K since each M is contained in a unique K. We have also used there the Poisson

inequalities in Lemma .0.9.

We now use the lower frame inequality applied to the function 1K
(
x−mω

K

)
to obtain

∑
F∈F : F⊂F ′

∑
M∈W(F ): M⊂I

∥∥∥Qω,b∗F,M∩Kx
∥∥∥♠2

L2(ω)
.
∥∥1K (x−mω

K

)∥∥♠2

L2(ω)
.

Since the collection FI satisfies a Carleson condition, namely
∑
F∈FI

∣∣F ∩ I ′∣∣σ ≤ C
∣∣I ′∣∣σ

for all cubes I ′, we have geometric decay in generations:

∑
F∈FI : d(F )=k

|F |σ . 2−δk |I|σ , k ≥ 0. (.0.31)

Indeed, with m > 2C we have for each F ′ ∈ FI ,

∑
F∈FI : F⊂F ′ and d(F,F ′)=m

∣∣F ∩ F ′∣∣σ < 1

2

∣∣F ′∣∣σ , (.0.32)

since otherwise ∑
F∈FI : F⊂F ′ and d(F,F ′)≤m

∣∣F ∩ F ′∣∣σ ≥ m
1

2

∣∣F ′∣∣σ ,

a contradiction. Now iterate (.0.32) to obtain (.0.31).
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Thus we can write

S .
∑

F ′∈FI

d
(
F ′
)2 ∑
K∈W(F ′)

Pα
(
K,1πF ′\F ′σ

)
|K|

1
n

2 ∥∥1K (x−mω
K

)∥∥♠2

L2(ω)

=
∞∑
k=1

k2
∑

F ′∈FI : d(F ′)=k

∑
K∈W(F ′)

Pα
(
K,1πF ′\F ′σ

)
|K|

1
n

2 ∥∥1K (x−mω
K

)∥∥♠2

L2(ω)

≡
∞∑
k=1

Ak ,

where Ak is defined at the end of the above display. Hence using the strong energy condition,

Ak = k2
∑

F ′∈FI : d(F ′)=k

∑
K∈W(F ′)

Pα
(
K,1πF ′\F ′σ

)
|K|

1
n

2 ∥∥1K (x−mω
K

)∥∥♠2

L2(ω)

. k2 (Eα2 )2
∑

F ′′∈FI : d(F ′′)=k−1

∣∣F ′′∣∣σ . (Eα2 )2 k22−δk |I|σ ,

where we have applied the strong energy condition for each F ′′ ∈ FI with d
(
F ′′
)

= k − 1

to obtain

∑
F ′∈FI : πF ′=F ′′

∑
K∈W(F ′)

Pα
(
K,1F ′′\F ′σ

)
|K|

1
n

2 ∥∥1K (x−mω
K

)∥∥♠2

L2(ω)
≤ (Eα2 )2 ∣∣F ′′∣∣σ .

(.0.33)

Finally then we obtain

S .
∞∑
k=1

(Eα2 )2 k22−δk |I|σ . (Eα2 )2 |I|σ ,

which is (.0.30).

Altogether we have now proved the estimate Local (I).
((

Eα2
)2

+A
α,energy
2

)
|I|σ when
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I ∈ D, i.e. for every dyadic cube I ∈ D,

(.0.34)

Local (I) ≈
∑
F∈F

∑
M∈W(F ): M⊂I

Pα (M,1Iσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

.
(

(Eα2 )2 + A
α,energy
2

)
|I|σ , I ∈ D.

The augmented local estimate

For future use in the ‘prepare to puncture’ arguments below, we prove a strengthening of

the local estimate Local (I) to augmented cubes L ∈ AD.

Lemma .0.12. With notation as above and L ∈ AD an augmented cube, we have

(.0.35)

Local (L) ≡
∑
F∈F

∑
M∈W(F ): M⊂L

Pα (M,1Lσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

.
(

(Eα2 )2 + A
α,energy
2

)
|L|σ , L ∈ AD.

Proof. We prove (.0.35) by repeating the above proof of (.0.34) and noting the points requir-

ing change. First we decompose

Local (L) . Localplug (L) + Localhole (L) + Localoffset (L)

where Localplug (L), Localhole (L) are analogous to Localplug (I) and Localhole (I) above,

and where Localoffset (L) is an additional term arising because L \ F need not be empty
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when L ∩ F 6= ∅ and F is not contained in L:

Localplug (L) ≡
∑
F∈F

∑
M∈W(F ): M⊂L

Pα (M,1L∩Fσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)
,

Localhole (L) ≡
∑

F∈F : F⊂L

∑
M∈W(F ): M⊂L

Pα
(
M,1L\Fσ

)
|M |

1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

Localoffset (L) ≡
∑

F∈F : F 6⊂L

∑
M∈W(F ): M⊂L

Pα
(
M,1L\Fσ

)
|M |

1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

We have

Localplug (L) =


∑

F∈F : F⊂ some L′∈C(L)

+
∑

F∈F : F% some L′∈CD(L)


∑

M∈W(F ): M⊂L

×

Pα (M,1F∩Lσ)

|M |
1
n

2 ∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

= A+B.

Term A satisfies

A .

(
Eα2 +

√
A
α,energy
2

)2

|L|σ ,

just as above using
∥∥∥QωF,Mx

∥∥∥2

L2(ω)
≤
∥∥QωMx

∥∥2
L2(ω), and the fact that the stopping cubes F

satisfy a σ-Carleson measure estimate,

∑
F∈F : F⊂L

|F |σ . |L|σ .
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Term B is handled directly by Lemma .0.10 with the augmented cube I = L to obtain

B .
(

(Eα2 )2 + A
α,energy
2

)
|L|σ .

To handle Localhole (L), we define

FL ≡ {F ∈ F : F ⊂ L} ∪ {L} ,

and follow along the proof there with only trivial changes. The analogue of (.0.33) is now

∑
F ′∈FL: πF ′=F ′′

∑
K∈W(F ′)

Pα
(
K,1F ′′\F ′σ

)
|K|

1
n

2 ∥∥1K (x−mω
K

)∥∥♠2

L2(ω)
≤ (Eα2 )2 ∣∣F ′′∣∣σ ,

the only change being that FL now appears in place of FI , so that the energy condition still

applies. We conclude that

Localhole (L) . (Eα2 )2 |L|σ .

Finally, the additional term Localoffset (L) is handled directly by Lemma .0.10, and this

completes the proof of the estimate (.0.35) in Lemma .0.12.

The global estimate

Now we turn to proving the following estimate for the global part of the first testing condition

(.0.24):

Global (I) =

∫
Rn+1

+ \Î
Pα (1Iσ)2 dµ .

(
(Eα2 )2 +Aα,∗2 + A

α,punct
2

)
|I|σ .
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We begin by decomposing the integral above into four pieces. We have from (.0.29):

∫
Rn+1

+ \Î
Pα (1Iσ)2 dµ

=
∑

M : (cM ,`(M))∈Rn+1
+ \Î

Pα (1Iσ) (cM , ` (M))2
∑
F∈F :

M∈W(F )

∥∥∥∥∥∥Qω,b∗F,M

x

|M |
1
n

∥∥∥∥∥∥
♠2

L2(ω)

=


∑

M∩3I=∅
`(M)≤`(I)

+
∑

M⊂3I\I
+

∑
M∩I=∅
`(M)>`(I)

+
∑
M%I

Pα (1Iσ) (cM , ` (M))2 ·

·
∑
F∈F :

M∈W(F )

∥∥∥∥∥∥Qω,b∗F,M

x

|M |
1
n

∥∥∥∥∥∥
♠2

L2(ω)

= A+B + C +D.

We further decompose term A according to the length of M and its distance from I,

and then use the pairwise disjointedness of the projections Qω,b
∗

F,M in F (see the definition in

(.0.22)) to obtain:

A .
∞∑
m=0

∞∑
k=1

∑
M⊂3k+1I\3kI
`(M)=2−m`(I)

(
2−m |I|

d (M, I)n+1−α |I|σ

)2

|M |ω

.
∞∑
m=0

2−2m
∞∑
k=1

|I|2 |I|σ
∣∣∣3k+1I \ 3kI

∣∣∣
ω∣∣3kI∣∣2(n+1−α)
|I|σ

.
∞∑
m=0

2−2m
∞∑
k=1

3−2k


∣∣∣3k+1I \ 3kI

∣∣∣
ω

∣∣∣3kI∣∣∣
σ∣∣3kI∣∣2(1−α)

 |I|σ . Aα2 |I|σ ,

where the offset Muckenhoupt constant Aα2 applies because 3k+1I has only three times the

side length of 3kI.
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For term B we first dispose of the nearby sum Bnearby that consists of the sum over

those M which satisfy in addition 2−ρ` (I) ≤ ` (M) ≤ ` (I). But it is a straightforward task

to bound Bnearby by CAα,energy2 |I|σ as there are at most 2ρ+1 such cubes M . To bound

Baway ≡ B − Bnearby, we further decompose the sum over F ∈ F according to whether or

not F ⊂ 3I \ I:

Baway ≈
∑

M⊂3I\I and `(M)<2−ρ`(I)

Pα (M,1Iσ)

|M |
1
n

2 ∑
F∈F : F⊂3I\I
M∈W(F )

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

+
∑

M⊂3I\I and `(M)<2−ρ`(I)

Pα (M,1Iσ)

|M |
1
n

2 ∑
F∈F : F 6⊂3I\I
M∈W(F )

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

≡ B1
away +B2

away .

To estimate B1
away, let

J ∗ ≡
⋃
F∈F

F⊂3I\I

⋃
M∈W(F )

M⊂3I\I and `(M)<2−ρ`(I)

{
J ∈ CG,shiftF : J ⊂M

}
(.0.36)

consist of all cubes J ∈ G for which the projection 4ω,b
∗

J occurs in one of the projections

Q
ω,b∗
F,M in term B1

away. In order to use J ∗ in the estimate for B1
away we need the following
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inequality. For any cube M ∈ W (F ) we have

(
Pα (M,1Iσ)

|M |

)2 ∥∥∥Qω,b∗F ;Mx
∥∥∥♠2

L2(ω)
=

(
Pα (M,1Iσ)

|M |

)2 ∑
J∈CG,shiftF : J⊂M

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

.
∑

J∈CG,shiftF : J⊂M

(
Pα (J,1Iσ)

|J |

)2 ∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
(.0.37)

since

Pα (M,1Iσ)

|M |
1
n

=

∫
I

1

(` (M) + |x− cM |)n+1−αdσ (x)

.
∫
I

1

(` (J) + |x− cJ |)n+1−αdσ (x) =
Pα (J,1Iσ)

|J |
1
n

for J ⊂M because

` (J) + |x− cJ | . ` (M) + |x− cM | , J ⊂M and x ∈ Rn.

We now use (.0.37) to replace the sum over M ∈ W (F ) in B1
away, with a sum over J ∈ J ∗:

B1
away =

∑
M⊂3I\I and `(M)<2−ρ`(I)

Pα (M,1Iσ)

|M |
1
n

2 ∑
F∈F : F⊂3I\I
M∈W(F )

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

.
∑

M⊂3I\I&`(M)<2−ρ`(I)

∑
F∈F : F⊂3I\I
M∈W(F )

∑
J∈CG,shiftF

J⊂M

Pα (J,1Iσ)

|J |
1
n

2∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

.
∑
J∈J ∗

(
Pα (J,1Iσ)

|J |

)2 ∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
,

where the final line follows since for each J ∈ J ∗ there is a unique pair (F,M) satisfying
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the conditions in the second line.

We will now exploit the smallness of ε > 0 in the weak goodness condition by decomposing

the sum over J ∈ J ∗ according to the length of J , and then using the fractional Poisson

inequality (5.5.22) in Lemma 5.5.10 on the neighbour I ′ of I containing J . Indeed, for

J ⊂ I ′ ⊂ R and I ⊂ R \ I ′, we have

Pα (J,1Iσ)2 .

(
` (J)

` (I)

)2−2(n+1−α)ε

Pα (I,1Iσ)2 , J ∈ J ∗, (.0.38)

where we have used that `
(
I ′
)

= ` (I) and Pα
(
I ′,1Iσ

)
≈ Pα (I,1Iσ), and that the cubes

J ∈ J ∗ are good in I ′ and beyond, and have side length at most 2−ρ` (I), all because

Jz ⊂ F ⊂ 3I \ I and we have already dealt with the term Bnearby. Moreover, we may also

assume here that the exponent 2 − 2 (n+ 1− α) ε is positive, i.e. ε < 1
n+1−α , which is of

course implied by 0 < ε < 1
2 . We then obtain from (.0.38), the inequality

∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)
.

|J |2 |J |ω, the pairwise disjointedness of the M ∈ W (F ), the uniqueness of F with J ∈

CG,shiftF , and since F ⊂ 3I \ I in the sum over J ∈ J ∗, that

B1
away .

∑
J∈J ∗

Pα (J,1Iσ)

|J |
1
n

2 ∥∥∥4ω,b∗J x
∥∥∥♠2

L2(ω)

.
∞∑
m=ρ

∑
J∈J ∗

`(J)=2−m`(I)

(
2−m

)2−2(n+1−α)ε
Pα (I,1Iσ)2 |J |ω

.
∞∑
m=ρ

(
2−m

)2−2(n+1−α)ε

(
|I|σ
|I|1−

α
n

)2 ∑
J⊂3I\I

`(J)=2−m`(I)

|J |ω

.
∞∑
m=ρ

(
2−m

)2−2(n+1−α)ε |I|σ |3I \ I|ω
|3I|2(1−αn )

|I|σ . Aα2 |I|σ ,
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since 2− 2 (n+ 1− α) ε > 0.

To complete the bound for term B = Bnearby + B1
away + B2

away, it remains to estimate

term B2
away in which we sum over F 6⊂ 3I\I. In this case F ' I ′ for one of the two neighbours

I ′ of I, and so we can apply Lemma .0.10, with I there replaced by the augmented cubes

I ′ ∪ I, to obtain the estimate

B2
away .

(
(Eα2 )2 + A

α,energy
2

)
|I|σ .

Next we turn to term D. The cubesM occurring here are included in the set of ancestors

Ak ≡ π
(k)
D I of I, 1 ≤ k <∞. Then D is equal to

∞∑
k=1

Pα (1Iσ) (c (Ak) , |Ak|)2
∑
F∈F :

Ak∈W(F )

∥∥∥∥∥Qω,b∗F,Ak

x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

=
∞∑
k=1

Pα (1Iσ) (c (Ak) , |Ak|)2
∑
F∈F :

Ak∈W(F )

∑
J ′∈CG,shiftF : J ′⊂Ak\I

∥∥∥∥∥4ω,b∗J ′
x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

+
∞∑
k=1

Pα (1Iσ) (c (Ak) , |Ak|)2
∑
F∈F :

Ak∈W(F )

∑
J ′∈CG,shiftF : J ′⊂Ak

J ′∩I 6=∅ and `
(
J ′
)
≤`(I)

∥∥∥∥∥4ω,b∗J ′
x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

+
∞∑
k=1

Pα (1Iσ) (c (Ak) , |Ak|)2
∑
F∈F :

Ak∈W(F )

∑
J ′∈CG,shiftF : J ′⊂Ak

J ′∩I 6=∅ and `
(
J ′
)
>`(I)

∥∥∥∥∥4ω,b∗J ′
x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

≡ Ddisjoint +Ddescendent +Dancestor .

We thus have from the pairwise disjointedness of the projections Q
ω,b∗
F,Ak

in F once again,
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Ddisjoint equals

∞∑
k=1

Pα (1Iσ) (c (Ak) , |Ak|)2
∑
F∈F :

Ak∈W(F )

∑
J ′∈CG,shiftF :

J ′⊂Ak\I

∥∥∥∥∥4ω,b∗J ′
x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

.
∞∑
k=1

(
|I|σ |Ak|
|Ak|n+1−α

)2

|Ak \ I|ω =

{
|I|σ
|I|1−

α
n

∞∑
k=1

|I|1−
α
n

|Ak|2(n−α)
|Ak \ I|ω

}
|I|σ

.

{
|I|σ
|I|1−

α
n
Pα (I,1Icω)

}
|I|σ . A

α,∗
2 |I|σ ,

since

∞∑
k=1

|I|1−
α
n

|Ak|2(n−α)
|Ak \ I|ω =

∫ ∞∑
k=1

|I|1−
α
n

|Ak|2(n−α)
1Ak\I

(x) dω (x)

=

∫ ∞∑
k=1

1

22(n−α)k

|I|1−
α
n

|I|2(n−α)
1Ak\I

(x) dω (x)

.
∫
Ic

 |I|
1
n[

|I|
1
n + d (x, I)

]2


n−α

dω (x) = Pα (I,1Icω) ,

upon summing a geometric series with 2 (n− α) > 0.
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The next term Ddescendent satisfies

Ddescendent .
∞∑
k=1

(
|I|σ |Ak|
|Ak|n+1−α

)2 ∥∥∥∥∥Qω,b∗3I

x

2k|I|
1
n

∥∥∥∥∥
♠2

L2(ω)

=
∞∑
k=1

2−2k(n+1−α)
(
|I|σ
|I|n−α

)2
∥∥∥∥∥Qω,b∗3I

x

|I|
1
n

∥∥∥∥∥
♠2

L2(ω)

.


|I|σ

∥∥∥∥∥Qω,b∗3I
x

|I|
1
n

∥∥∥∥∥
♠2

L2(ω)

|I|2(n−α)


|I|σ . A

α,energy
2 |I|σ .

Lastly, for Dancestor we note that there are at most two cubes K1 and K2 in G having

side length ` (I) and such that Ki ∩ I 6= ∅. Then each J ′ occurring in the sum in Dancestor

is of the form J ′ = A`i ≡ π
(`)
G Ki with J ′ ⊂ Ak for some 1 ≤ ` ≤ k and i ∈ {1, 2}. Now we

write

Dancestor =
∞∑
k=1

Pα (1Iσ) (c (Ak) , |Ak|)2
∑
F∈F :

Ak∈W(F )

∑
J ′∈CG,shiftF : J ′⊂Ak

J ′∩I 6=∅ and `
(
J ′
)
>`(I)

∥∥∥∥∥4ω,b∗J ′
x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

.
∞∑
k=1

(
|I|σ |Ak|
|Ak|n+1−α

)2 2∑
i=1

k∑
`=1

∥∥∥∥∥4ω,b∗A`i

x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

≤ 2
∞∑
k=1

(
|I|σ |Ak|
|Ak|n+1−α

)2 ∥∥∥∥∥Qω,b∗Ak

x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

.

At this point we need a ‘prepare to puncture’ argument, as we will want to derive geometric

decay from
∥∥∥Qω,b∗

J ′ x
∥∥∥♠2

L2(ω)
by dominating it by the ‘nonenergy’ term

∣∣J ′∣∣2 ∣∣J ′∣∣ω, as well as
using the Muckenhoupt energy constant. For this we define ω̃ = ω − ω ({p}) δp where p is

an atomic point in I for which
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ω ({p}) = sup
q∈P(σ,ω): q∈I

ω ({q}) . (If ω has no atomic point in common with σ in I set ω̃ = ω.)

Then we have |I|ω̃ = ω
(
I,P(σ,ω)

)
and

|I|ω̃
|I|1−

α
n

|I|σ
|I|1−

α
n

=
ω
(
I,P(σ,ω)

)
|I|1−

α
n

|I|σ
|I|1−

α
n
≤ A

α,punct
2 .

A key observation, already noted in the proof of Lemma .0.5 above, is that

∥∥∥4ω,b∗K x
∥∥∥2

L2(ω)
=


∥∥∥4ω,b∗K (x− p)

∥∥∥2

L2(ω)
if p ∈ K∥∥∥4ω,b∗K x

∥∥∥2

L2(ω̃)
if p /∈ K

≤ ` (K)2 |K|ω̃ , (.0.39)

and so, as in the proof of (.0.18) in Lemma .0.5,

∥∥∥∥∥∥Qω,b∗Ak

x

|Ak|
1
n

∥∥∥∥∥∥
♠2

L2(ω)

. |Ak|ω̃ .

Then we continue with

∞∑
k=1

(
|I|σ |Ak|
|Ak|n+1−α

)2 ∥∥∥∥∥Qω,b∗Ak

x

|Ak|
1
n

∥∥∥∥∥
♠2

L2(ω)

.
∞∑
k=1

(
|I|σ |Ak|
|Ak|n+1−α

)2

|Ak|ω̃

=
∞∑
k=1

(
|I|σ
|Ak|n−α

)2

|Ak \ I|ω +
∞∑
k=1

(
|I|σ

2k(n−α) |I|n−α

)2

|I|ω̃

.
(
Aα,∗2 + A

α,punct
2

)
|I|σ ,

where the inequality
∑∞
k=1

(
|I|σ
|Ak|n−α

)2

|Ak \ I|ω . A
α,∗
2 |I|σ is already proved above in

the display estimating Ddisjoint.
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Finally, for term C we will have to group the cubes M into blocks Bi. We first split the

sum according to whether or not I intersects the triple of M :

C ≈


∑

M : I∩3M=∅
`(M)>`(I)

+
∑

M : I⊂3M\M
`(M)>`(I)


 |M |

1
n(

|M |
1
n + d (M, I)

)n+1−α |I|σ


2

·

·
∑
F∈F :

M∈W(F )

∥∥∥∥∥∥Qωb∗F,M
x

|M |
1
n

∥∥∥∥∥∥
♠2

L2(ω)

= C1 + C2.

We first consider C1. LetM consist of the maximal dyadic cubes in the collection

{Q : 3Q ∩ I = ∅}, and then let {Bi}∞i=1 be an enumeration of those Q ∈ M whose side

length is at least ` (I). Note in particular that 3Bi ∩ I = ∅. Now we further decompose

the sum in C1 by grouping the cubes M into the ‘Whitney’ cubes Bi, and then using the
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pairwise disjointedness of the martingale supports of the pseudoprojections Qω,b
∗

F,M in F :

C1 ≤
∞∑
i=1

∑
M : M⊂Bi

 1(
|M |

1
n + d (M, I)

)n+1−α |I|σ


2 ∑

F∈F :
M∈W(F )

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

.
∞∑
i=1

 1(
|Bi|

1
n + d (Bi, I)

)n+1−α |I|σ


2 ∑
M : M⊂Bi

∑
F∈F :

M∈W(F )

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

.
∞∑
i=1

 1(
|Bi|

1
n + d (Bi, I)

)n+1−α |I|σ


2 ∑
M : M⊂Bi

|M |
2
n |M |ω

.
∞∑
i=1

 1(
|Bi|

1
n + d (Bi, I)

)n+1−α |I|σ


2

|Bi|
2
n |Bi|ω

.

{ ∞∑
i=1

|Bi|ω |I|σ
|Bi|2(n−α)

}
|I|σ ,

Now since |Bi| ≈ d (x, I) for x ∈ Bi,

∞∑
i=1

|Bi|ω |I|σ
|Bi|2(n−α)

=
|I|σ
|I|1−α

∞∑
i=1

|I|1−α

|Bi|2(n−α)
|Bi|ω ≈

|I|σ
|I|1−

α
n

∞∑
i=1

∫
Bi

|I|1−
α
n

d (x, I)2(n−α)
dω (x)

≈ |I|σ
|I|1−

α
n

∞∑
i=1

∫
Bi

 |I|
1
n[

|I|
1
n + d (x, I)

]2


n−α

dω (x)

≤ |I|σ
|I|1−

α
n
Pα (I,1Icω) ≤ Aα,∗2 ,
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we obtain

C1 . A
α,∗
2 |I|σ .

Next we turn to estimating term C2 where the triple of M contains I but M itself does

not. Note that there are at most two such cubes M of a given side length. So with this in

mind, we sum over the cubes M according to their lengths to obtain

C2 =
∞∑
m=1

∑
M :

I⊂3M\M
`(M)=2m`(I)

 |M |
1
n(

|M |
1
n + dist (M, I)

)n+1−α |I|σ


2 ∑
F∈F :

M∈W(F )

∥∥∥∥∥∥Qω,b∗F,M

x

|M |
1
n

∥∥∥∥∥∥
♠2

L2(ω)

.
∞∑
m=1

(
|I|σ

|2mI|n−α

)2
|(5·2mI)\I|ω =

{
|I|σ
|I|1−

α
n

∞∑
m=1

|I|1−
α
n |(5 · 2mI) \ I|ω
|2mI|2(n−α)

}
|I|σ

.

{
|I|σ
|I|1−

α
n
Pα (I,1Icω)

}
|I|σ ≤ A

α,∗
2 |I|σ ,

since in analogy with the corresponding estimate above,

∞∑
m=1

|I|1−
α
n |(5·2mI)\I|ω
|2mI|2(n−α)

=

∫ ∞∑
m=1

|I|1−
α
n

|2mI|2(n−α)
1(5·2mI)\I(x) dω(x) . Pα (I,1Icω) .

The backward Poisson testing inequality

The argument here follows the broad outline of the analogous argument in [64], but using

modifications from [66] that involve ‘prepare to puncture arguments’, using decompositions

W (F ) in place of (ρ, ε)-decompositions, and using pseudoprojections Qω,b
∗

F,M x (see (.0.22) for

the definition). The final change here is that there is no splitting into local and global parts

as in [64] - instead, we follow the treatment in [63] in this regard.
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Fix I ∈ D. It suffices to prove

Back
(
Î
)
≡

∫
Rn

[
Qα
(
t1
Î
µ
)

(y)
]2
dσ(y)

.

{
Aα2 +

(
Eα2 +

√
A
α,energy
2

)√
A
α,punct
2

}∫
Î
t2dµ(x, t). (.0.40)

Note that for a ‘Poisson integral with holes’ and a measure µ built with Haar projections,

Hytönen obtained in [22] the simpler bound Aα2 for a term analogous to, but significantly

smaller than, (.0.40). Using (.0.29) we see that the integral on the right hand side of (.0.40)

is ∫
Î
t2dµ =

∑
F∈F

∑
M∈W(F ): M⊂I

‖Qω,b
∗

F,M x‖♠2

L2(ω)
. (.0.41)

where Q
ω,b∗
F,M was defined in (.0.22).

We now compute using (.0.29) again that

Qα
(
t1
Î
µ
)

(y) =

∫
Î

t2(
t2 + |x− y|2

)n+1−α
2

dµ (x, t) (.0.42)

≈
∑
F∈F

∑
M∈W(F ): M⊂I

‖Qω,b
∗

F,M x‖♠2

L2(ω)

(|M |+ |y − cM |)n+1−α ,

and then expand the square and integrate to obtain that the term Back
(
Î
)
is

∑
F∈F

M∈W(F )
M⊂I

∑
F ′∈F :

M ′∈W
(
F ′
)

M ′⊂I

∫
R

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

(|M |+ |y − cM |)n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|+

∣∣y − cM ′∣∣)n+1−αdσ (y) .

By symmetry we may assume that `
(
M ′
)
≤ ` (M). We fix a nonnegative integer s, and
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consider those cubes M and M ′ with `
(
M ′
)

= 2−s` (M). For fixed s we will control the

expression

(.0.43)

Us≡
∑

F,F ′∈F

∑
M∈W(F )

M ′∈W
(
F ′
)

M,M ′⊂I, `
(
M ′
)

=2−s`(M)

∫
Rn

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

(|M |+ |y − cM |)n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|+

∣∣y − cM ′∣∣)n+1−αdσ (y)

by proving that

Us . 2−δs
{
Aα2 +

(
Eα2 +

√
A
α,energy
2

)√
A
α,punct
2

}∫
Î
t2dµ, where δ =

1

2
. (.0.44)

With this accomplished, we can sum in s ≥ 0 to control the term Back
(
Î
)
. We now

decompose Us = T
proximal
s + T

difference
s + T intersections into three pieces.

Our first decomposition is to write

Us = T
proximal
s + V remotes , (.0.45)

where in the ‘proximal’ term T
proximal
s we restrict the summation over pairs of cubes M,M ′

to those satisfying d
(
cM , cM ′

)
< 2sδ` (M); while in the ‘remote’ term V remotes we re-

strict the summation over pairs of cubes M,M ′ to those satisfying the opposite inequality

d
(
cM , cM ′

)
≥ 2sδ` (M). Then we further decompose

V remotes = T
difference
s + T intersections ,
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where in the ‘difference’ term T
difference
s we restrict integration in y to the difference R \

B
(
M,M ′

)
of R and

B
(
M,M ′

)
≡ B

(
cM ,

1

2
d
(
cM , cM ′

))
, (.0.46)

the ball centered at cM with radius 1
2d
(
cM , cM ′

)
; while in the ‘intersection’ term T intersections

we restrict integration in y to the intersection Rn∩B
(
M,M ′

)
of Rn with the ball B

(
M,M ′

)
;

i.e.

(.0.47)

T intersections ≡
∑

F,F ′∈F

∑
M∈W(F ), M ′∈W

(
F ′
)

M,M ′⊂I, `
(
M ′
)

=2−s`(M)

d
(
cM ,cM ′

)
≥2s(1+δ)`

(
M ′
)

∫
B(M,M ′)

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

(|M |+ |y − cM |)n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|+

∣∣y − cM ′∣∣)n+1−αdσ (y) .

We will exploit the restriction of integration to B
(
M,M ′

)
, together with the condition

d
(
cM , cM ′

)
≥ 2s(1+δ)`

(
M ′
)

= 2sδ` (M) ,

which will then give an estimate for the term T intersections using an argument dual to that

used for the other terms T proximals and T differences , to which we now turn.
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The proximal and difference terms

We have

T
proximal
s ≡

∑
F,F ′∈F

∑
M∈W(F ), M ′∈W

(
F ′
)

M,M ′⊂I, `
(
M ′
)

=2−s`(M) and d
(
cM ,c

M ′
)
<2sδ`(M)

(.0.48)

×
∫
Rn

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

(|M |+ |y − cM |)n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|+

∣∣y − cM ′∣∣)n+1−αdσ (y)

≤Mproximal
s

∑
F∈F

∑
M∈W(F )
M⊂I

‖Qω,b
∗

F,M z‖♠2
ω =Mproximal

s

∫
Î
t2dµ,

where

Mproximal
s ≡ sup

F∈F
sup

M∈W(F )
M⊂I

Aproximals (M) ;

Aproximals (M) ≡
∑
F ′∈F

∑
M ′∈W

(
F ′
)

M ′⊂I, `
(
M ′
)

=2−s`(M) and

d
(
cM ,c

M ′
)
<2sδ`(M)

∫
Rn

SF
′

(M ′,M) (y) dσ (y) ;

SF
′

(M ′,M) (x) ≡ 1

(|M |+ |y − cM |)n+1−α

∥∥∥Qω
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|+

∣∣y − cM ′∣∣)n+1−α ,
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and similarly

T
difference
s ≡

∑
F,F ′∈F

∑
M∈W(F ), M ′∈W

(
F ′
)

M,M ′⊂I, `
(
M ′
)

=2−s`(M) and d
(
cM ,c

M ′
)
≥2sδ`(M)

(.0.49)

×
∫
Rn\B(M,M ′)

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

(|M |+ |y − cM |)n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|+

∣∣y − cM ′∣∣)n+1−αdσ (y)

≤Mdifference
s

∑
F∈F

∑
M∈W(F )
M⊂I

‖Qω,b
∗

F,M z‖♠2
ω =Mdifference

s

∫
Î
t2dµ;

where

Mdifference
s ≡ sup

F∈F
sup

M∈W(F )
M⊂I

Adifferences (M) ;

Adifferences (M) ≡
∑
F ′∈F

∑
M ′∈W

(
F ′
)

M ′⊂I, `
(
M ′
)

=2−s`(M) and

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
Rn\B(M,M ′)

SF
′

(M ′,M) (y) dσ (y) .

The restriction of integration in Adifferences to Rn \ B
(
M,M ′

)
will be used to establish

(.0.51) below.

Notation .0.13. Since the cubes F,M,F ′,M ′ that arise in all of the sums here satisfy

M ∈ W (F ) , M ′ ∈ W
(
F ′
)
and `

(
M ′
)

= 2−s` (M) and M,M ′ ⊂ I,

we will often employ the notation
∗∑

to remind the reader that, as applicable, these four

conditions are in force even when they are not explictly mentioned.
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Now fix M as inMproximal
s respectivelyMdifference

s , and decompose the sum over M ′

in Aproximals (M) respectively Adifferences (M) by

Aproximals (M) =
∑
F ′∈F

∑
M ′∈W

(
F ′
)

M ′⊂I, `
(
M ′
)

=2−s`(M) and

d
(
cM ,cM ′

)
<2sδ`(M)

∫
Rn

SF
′

(M ′,M) (y) dσ (y)

=
∑
F ′∈F

∗∑
cM ′∈2M

d
(
cM ,cM ′

)
<2sδ`(M)

∫
Rn

SF
′

(M ′,M) (y) dσ (y)

+
∑
F ′∈F

∞∑
`=1

∗∑
cM ′∈2`+1M\2`M

d
(
cM ,cM ′

)
<2sδ`(M)

∫
Rn

SF
′

(M ′,M) (y) dσ (y)

≡
∞∑
`=0

Aproximal,`s (M) ,
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respectively

Adifferences (M) =
∑
F ′∈F

∑
M ′∈W

(
F ′
)

M ′⊂I, `
(
M ′
)

=2−s`(M) and

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
Rn\B(M,M ′)

SF
′

(M ′,M) (y) dσ (y)

=
∑
F ′∈F

∗∑
cM ′∈2M

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
Rn\B(M,M ′)

SF
′

(M ′,M) (y) dσ (y)

+
∞∑
`=1

∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
Rn\B(M,M ′)

SF
′

(M ′,M) (y) dσ (y)

≡
∞∑
`=0

Adifference,`s (M) .

Let m = 2 so that

2−m ≤ 1

3
. (.0.50)

Now decompose the integrals over Rn in Aproximal,`s (M) by

Aproximal,0s (M) =
∑
F ′∈F

∗∑
cM ′∈2M

d
(
cM ,cM ′

)
<2sδ`(M)

∫
Rn\4M

SF
′

(M ′,M) (y) dσ (y)

+
∑
F ′∈F

∗∑
cM ′∈2M

d
(
cM ,cM ′

)
<2sδ`(M)

∫
4M

SF
′

(M ′,M) (y) dσ (y)

≡ Aproximal,0s,far (M) +Aproximal,0s,near (M) ,
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and for ` ≥ 1

Aproximal,`s (M) =
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

d
(
cM ,cM ′

)
<2sδ`(M)

∫
Rn\2`+2M

SF
′

(M ′,M) (y) dσ (y)

+
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

d
(
cM ,cM ′

)
<2sδ`(M)

∫
2`+2M\2`−mM

SF
′

(M ′,M) (y) dσ (y)

+
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

d
(
cM ,cM ′

)
<2sδ`(M)

∫
2`−mM

SF
′

(M ′,M) (y) dσ (y)

≡ Aproximal,`s,far (M) +Aproximal,`s,near (M) +Aproximal,`s,close (M)

Similarly we decompose the integrals over the difference

B∗ ≡ Rn \B
(
M,M ′

)

in Adifference,`s (M) by

Adifference,0s (M) =
∑
F ′∈F

∗∑
cM ′∈2M

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
B∗\4M

SF
′

(M ′,M) (y) dσ (y)

+
∑
F ′∈F

∗∑
cM ′∈2M

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
B∗∩4M

SF
′

(M ′,M) (y) dσ (y)

≡ Adifference,0s,far (M) +Adifference,0s,near (M) ,
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and

Adifference,`s (M) =
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
B∗\2`+2M

SF
′

(M ′,M) (y) dσ (y)

+
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
B∗∩

(
2`+2M\2`−mM

) SF ′(M ′,M) (y) dσ (y)

+
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

d
(
cM ,cM ′

)
≥2sδ`(M)

∫
B∗∩2`−mM

SF
′

(M ′,M) (y) dσ (y)

≡ Adifference,`s,far (M) +Adifference,`s,near (M) +Adifference,`s,close (M) , ` ≥ 1.

We now note the important point that the close terms

Aproximal,`s,close (M) and Adifference,`s,close (M) both vanish for ` > δs because of the decomposition

(.0.45):

Aproximal,`s,close (M) = Adifference,`s,close (M) = 0, ` ≥ 1 + δs. (.0.51)

Indeed, if cM ′ ∈ 2`+1M \ 2`M , then we have

1

2
2`` (M) ≤ d

(
cM , cM ′

)
. (.0.52)

Now the summands in Aproximal,`s,close (M) satisfy d
(
cM , cM ′

)
< 2δs` (M), which by (.0.52) is

impossible if ` ≥ 1 + δs - indeed, if ` ≥ 1 + δs, we get the contradiction

2δs` (M) =
1

2
21+δs` (M) ≤ 1

2
2`` (M) ≤ d

(
cM , cM ′

)
< 2δs` (M) .
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It now follows that Aproximal,`s,close (M) = 0. Thus we are left to consider the term

Adifference,`s,close (M), where the integration is taken over the set Rn \ B
(
M,M ′

)
. But we are

also restricted in Adifference,`s,close (M) to integrating over the cube 2`−mM , which is contained

in B
(
M,M ′

)
by (.0.52). Indeed, the smallest ball centered at cM that contains 2`−mM

has radius 1
22`−m` (M), which by (.0.50) and (.0.52) is at most 1

42`` (M) ≤ 1
2d
(
cM , cM ′

)
,

the radius of B
(
M,M ′

)
. Thus the range of integration in the term Adifference,`s,close (M) is the

empty set, and so Adifference,`s,close (M) = 0 as well as Aproximal,`s,close (M) = 0. This proves (.0.51).

From now on we treat T proximals and T
difference
s in the same way since the terms

Aproximal,`s,close (M) and Adifference,`s,close (M) both vanish for ` ≥ 1 + δs. Thus we will sup-

press the superscripts proximal and difference in the far, near and close decomposi-

tion of Aproximal,`s (M) and Adifference,`s (M), and we will also suppress the conditions

d
(
cM , cM ′

)
< 2sδ` (M) and d

(
cM , cM ′

)
≥ 2sδ` (M) in the proximal and difference terms

since they no longer play a role. Using the pairwise disjointedness of the shifted coronas

CG,shiftF , we have

∑
F ′∈F

∥∥∥Qω,b∗
F ′,Ax

∥∥∥♠2

L2(ω)
. |A|2 |A|ω , for any cube A.

Note that if cM ′ ∈ 2M , then M ′ ⊂ 3M . Then with

Ws
M ≡

⋃
F ′∈F

{
M ′ ∈ W

(
F ′
)

: M ′ ⊂ 3M and `
(
M ′
)

= 2−s` (M)
}
, (.0.53)
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we have

A0
s,far (M) ≤

∑
F ′∈F

∗∑
cM ′∈2M

∫
Rn\4M

SF
′

(M ′,M) (y) dσ (y)

.
∑

A∈Ws
M

∑
F ′∈F : A∈W(F ′)

∫
Rn\4M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

(|M |+ |y − cM |)2(n+1−α)
dσ (y)

.
∑

A∈Ws
M

∫
Rn\4M

|A|2 |A|ω
(|M |+ |y − cM |)2(n+1−α)

dσ (y)

=

 ∑
A∈Ws

M

|A|2 |A|ω

∫
Rn\4M

1

(|M |+ |y − cM |)2(n+1−α)
dσ (y) .

Now we use the standard pigeonholing of side length of A to conclude that

∑
A∈Ws

M

|A|2 |A|ω =
∞∑
k=s

∑
A∈Ws

M : `(A)=2−k`(M)

|A|2 |A|ω

≤
∞∑
k=s

2−2k |M |2
∑

A∈Ws
M : `(A)=2−k`(M)

|A|ω (.0.54)

≤
∞∑
k=s

2−2k |M |2 |3M |ω . 2−2s |M |2 |3M |ω ,

so that combining the previous two displays we have

A0
s,far (M) . 2−2s |M |2 |3M |ω

∫
Rn\4M

1

(|M |+ |y − cM |)2(n+1−α)
dσ (y)

≤ 2−2s |4M |ω
∫
Rn\4M

1

(|M |+ |y − cM |)2(1−α)
dσ (y)

≈ 2−2s |4M |ω
|4M |1−α

∫
Rn\4M

(
|M |

(|M |+ |y − cM |)2

)1−α

dσ (y)

. 2−2s |4M |ω
|4M |1−α

Pα
(

4M,1Rn\4Mσ
)
. 2−2sAα2 .
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To estimate the near term A0
s,near (M), we initially keep the energy

∥∥∥Qω,b∗
F ′,M ′z

∥∥∥2

L2(ω)
and

write

A0
s,near (M) ≤

∑
F ′∈F

∗∑
cM ′∈2M

∫
4M

SF
′

(M ′,M) (y) dσ (y)

≈
∑
F ′∈F

∗∑
c
M ′∈2M

∫
4M

1

|M |n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|

1
n +

∣∣y − cM ′∣∣)n+1−αdσ (y)

=
∑
F ′∈F

1

|M |n+1−α

∗∑
cM ′∈2M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

∫
4M

dσ (y)(
|M ′|

1
n +

∣∣y − cM ′∣∣)n+1−α

=
∑
F ′∈F

1

|M |n+1−α

∗∑
cM ′∈2M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

Pα
(
M ′,14Mσ

)
|M ′|

1
n

.

In order to estimate the final sum above, we must invoke the ‘prepare to puncture’ argument

above, as we will want to derive geometric decay from
∥∥∥Qω,b∗

M ′ x
∥∥∥♠2

L2(ω)
by dominating it by the

‘nonenergy’ term
∣∣M ′∣∣2 ∣∣M ′∣∣ω, as well as using the Muckenhoupt energy constant. Choose

an augmented cube M̃ ∈AD satisfying
⋃

cM ′∈2M
M ′ ⊂ 4M ⊂ M̃ and `

(
M̃
)
≤ C` (M). Define

ω̃ = ω − ω ({p}) δp where p is an atomic point in M̃ for which

ω ({p}) = sup
q∈P(σ,ω): q∈M̃

ω ({q}) .

(If ω has no atomic point in common with σ in M̃ , set ω̃ = ω). Then we have
∣∣∣M̃ ∣∣∣

ω̃
=

ω
(
M̃,P(σ,ω)

)
and

∣∣∣M̃ ∣∣∣
ω̃∣∣∣M̃ ∣∣∣1−αn

∣∣∣M̃ ∣∣∣
σ∣∣∣M̃ ∣∣∣1−αn =

ω
(
M̃,P(σ,ω)

)
∣∣∣M̃ ∣∣∣1−αn

∣∣∣M̃ ∣∣∣
σ∣∣∣M̃ ∣∣∣1−αn ≤ A

α,punct
2 .
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From (.0.39) and (.0.19) we also have

∑
F ′∈F

∥∥∥Qω,b∗
F ′,Ax

∥∥∥♠2

L2(ω)
. ` (A)2 |A|ω̃ , for any cube A.

Now by Cauchy-Schwarz and the augmented local estimate (.0.35) in Lemma .0.12 with

M = M̃ applied to the second line below, and with Ws
M as in (.0.53), and noting (.0.54),

the last sum in (.0.55) is dominated by

1

|M |n+1−α

 ∑
F ′∈F

∗∑
c(M ′)∈2M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)


1
2

(.0.55)

×

 ∑
F ′∈F

∗∑
c
M ′∈2M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

Pα
(
M ′,14Mσ

)
|M ′|

1
n

2


1
2

.
1

|M |n+1−α

 ∑
A∈Ws

M

|A|2 |A|ω̃


1
2 √(

Eα2
)2

+ A
α,energy
2

√∣∣∣M̃ ∣∣∣
σ

.
2−s |M |
|M |n+1−α

√
|4M |ω̃

√(
Eα2
)2

+ A
α,energy
2

√∣∣∣M̃ ∣∣∣
σ

. 2−s
√

(Eα)2 + A
α,energy
2

√√√√√√
∣∣∣M̃ ∣∣∣

ω̃∣∣∣M̃ ∣∣∣n+1−α

∣∣∣M̃ ∣∣∣
σ∣∣∣M̃ ∣∣∣n+1−α

. 2−s
√(

Eα2
)2

+ A
α,energy
2

√
A
α,punct
2 .

Similarly, for ` ≥ 1, we can estimate the far term A`s,far (M) by the argument used for

A0
s,far (M) but applied to 2`M in place of M . For this need the following variant of Ws

M in
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(.0.53) given by

Ws,`
M ≡

⋃
F ′∈F

{
M ′ ∈ W

(
F ′
)

: M ′ ⊂ 3
(

2`M
)

and `
(
M ′
)

= 2−s−``
(

2`M
)}

. (.0.56)

Then we have

A`s,far (M) ≤
∑
F ′∈F

∗∑
c
M ′∈

(
2`+1M

)
\
(

2`M
)
∫
Rn\2`+2M

SF
′

(M ′,M) (y) dσ (y)

.
∑

A∈Ws,`
M

∑
F ′∈F : A∈W(F ′)

∫
Rn\4

(
2`M

)
∥∥∥Qω,b∗

F ′,Ax
∥∥∥♠2

L2(ω)

(|M |+ |y − cM |)2(n+1−α)
dσ (y)

.
∑

A∈Ws,`
M

∫
Rn\4

(
2`M

) |A|2 |A|ω
(|M |+ |y − cM |)2(n+1−α)

dσ (y)

=

 ∑
A∈Ws,`

M

|A|2 |A|ω

∫Rn\4(2`M
) 1

(|M |+ |y − cM |)2(n+1−α)
dσ (y) ,

where, just as for the sum over A ∈ Ws,0
M , we have

∑
A∈Ws,`

M

|A|2 |A|ω =
∞∑
k=s

∑
A∈Ws,`

M : `(A)=2−k−``
(

2`M
) |A|2 |A|ω

≤
∞∑
k=s

2−2k−2`
∣∣∣2`M ∣∣∣2 ∑

A∈Ws,`
M : `(A)=2−k−``

(
2`M

) |A|ω (.0.57)

≤
∞∑
k=s

2−2k−2`
∣∣∣2`M ∣∣∣2 ∣∣∣3(2`M

)∣∣∣
ω
. 2−2s−2`

∣∣∣2`M ∣∣∣2 ∣∣∣3(2`M
)∣∣∣
ω
.
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Now using

∣∣∣2`M ∣∣∣2
(|M |+|y−cM |)2(n+1−α)

≤ 1(∣∣∣2`M ∣∣∣+∣∣∣y−c
2`M

∣∣∣)2(1−α)
for y /∈ 2`+2M , we can con-

tinue with

A`s,far (M) . 2−2s2−2`
∣∣∣2`+2M

∣∣∣
ω

∫
Rn\2`+2M

dσ (y)(∣∣2`M ∣∣+
∣∣∣y − c

2`M

∣∣∣)2(1−α)

≈ 2−2s2−2`

∣∣∣2`+2M
∣∣∣
ω∣∣2`M ∣∣1−α
∫
Rn\2`+2M


∣∣∣2`M ∣∣∣(∣∣2`M ∣∣+
∣∣∣y − c

2`M

∣∣∣)2


1−α

dσ (y)

. 2−2s2−2`


∣∣∣2`+2M

∣∣∣
ω∣∣2`M ∣∣1−αPα

(
2`+2M, 1Rn\2`+2M

σ
) . 2−2s2−2`Aα2 .

To estimate the near term A`s,near (M) we must again invoke the ‘prepare to punc-

ture’ argument. Choose an augmented cube M̃ ∈ AD such that `
(
M̃
)
≤ C2`` (M) and⋃

cM ′∈2`+1M\2`M
M ′ ⊂ 2`+2M ⊂ M̃ . Define ω̃ = ω − ω ({p}) δp where p is an atomic point

in M̃ for which ω ({p}) = sup
q∈P(σ,ω): q∈M̃

ω ({q}) .

(If ω has no atomic point in common with σ in M̃ set ω̃ = ω.) Then we have
∣∣∣M̃ ∣∣∣

ω̃
=

ω
(
M̃,P(σ,ω)

)
, and just as in the argument above following (.0.55), we have from (.0.39)

and (.0.19) that both

∣∣∣M̃ ∣∣∣
ω̃∣∣∣M̃ ∣∣∣1−αn

∣∣∣M̃ ∣∣∣
σ∣∣∣M̃ ∣∣∣1−αn ≤ A

α,punct
2 and

∑
F ′∈F

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)
. `

(
M ′
)2 ∣∣M ′∣∣ω̃ .
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Thus using that m = 2 in the definition of A`s,near (M), we see that

A`s,near (M) ≤
∑
F ′∈F

∗∑
c
M ′∈2`+1M\2`M

∫
2`+2M\2`−mM

SF
′

(M ′,M) (y) dσ (y)

≈
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

∫
2`+2M\2`−mM

1∣∣2`M ∣∣n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|

1
n+
∣∣y − cM ′∣∣)n+1−αdσ (y)

.
1∣∣2`M ∣∣n+1−α

∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

∫
2`+2M

dσ (y)(
|M ′|

1
n+
∣∣y − cM ′∣∣)n+1−α

is dominated by

1∣∣2`M ∣∣n+1−α
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

Pα
(
M ′,1

2`+2M
σ
)

|M ′|
1
n

≤ 1∣∣2`M ∣∣n+1−α

 ∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)


1
2

×

 ∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

Pα
(
M ′,1

2`+2M
σ
)

|M ′|
1
n

2


1
2

.

This can now be estimated as for the term A0
s,near (M), along with the augmented local
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estimate (.0.35) in Lemma .0.12 with M = M̃ applied to the final line above, to get

A`s,near (M) . 2−s2−`

∣∣∣2`M ∣∣∣∣∣2`M ∣∣n+1−α

√∣∣∣M̃ ∣∣∣
ω̃

√(
Eα2
)2

+ A
α,energy
2

√∣∣∣M̃ ∣∣∣
σ

. 2−s2−`
√(

Eα2
)2

+ A
α,energy
2

√√√√√√
∣∣∣M̃ ∣∣∣

ω̃∣∣∣M̃ ∣∣∣1−αn
∣∣∣M̃ ∣∣∣

σ∣∣∣M̃ ∣∣∣1−αn
. 2−s2−`

√(
Eα2
)2

+ A
α,energy
2

√
A
α,punct
2 .

Each of the estimates for A`s,far (M) and A`s,near (M) is summable in both s and `.

Now we turn to the terms A`s,close (M), and recall from (.0.51) that A`s,close (M) = 0 if

` ≥ 1 + δs. So we now suppose that ` ≤ δs. We have, with m = 2 as in (.0.50),

A`s,close (M) ≤
∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

∫
2`−mM

SF
′

(M ′,M) (y) dσ (y)

≈
∑
F ′∈F

∗∑
c
M ′∈2`+1M\2`M

∫
2`−mM

1(
|M |

1
n + |y − cM |

)n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)∣∣2`M ∣∣n+1−α dσ (y)

=

 ∑
F ′∈F

∗∑
cM ′∈2`+1M\2`M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

 1∣∣2`M ∣∣n+1−α

×
∫

2`−mM

1(
|M |

1
n + |y − cM |

)n+1−αdσ (y) .

The argument used to prove (.0.57) gives the analogous inequality with a hole 2`−1M ,

∑
F ′∈F

∗∑
c
M ′∈2`+1M\2`M

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)
. 2−2s

∣∣∣2`M ∣∣∣ 2n ∣∣∣2`+2M \ 2`−1M
∣∣∣
ω
.
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Thus we get that A`s,close (M) is bounded by

. 2−2s
∣∣∣2`M ∣∣∣ 2n∣∣∣2`+2M \2`−1M

∣∣∣
ω

1∣∣2`M ∣∣ 1n (n+1−α)

∫
2`−mM

dσ (y)(
|M |

1
n+|y − cM |

)n+1−α

. 2−2s
∣∣∣2`M ∣∣∣ 2n

∣∣∣2`+2M \ 2`−1M
∣∣∣
ω∣∣2`M ∣∣ 1n (n+1−α)

∣∣∣2`−mM ∣∣∣
σ

|M |
1
n (n+1−α)

. 2−2s2(n+1−α)`

∣∣∣2`+2M \ 2`−1M
∣∣∣
ω∣∣2`+2M

∣∣1−αn
∣∣∣2`−mM ∣∣∣

σ∣∣2`−mM ∣∣1−αn . 2−2s2(n+1−α)`Aα2 ,

provided that m = 2 > 1. Note that we can use the offset Muckenhoupt constant Aα2 here

since 2`+2M \ 2`−1M and 2`−mM are disjoint. If ` ≤ s, then we have the relatively crude

estimate A`s,close (M) . 2−sAα2 without decay in `. But we are assuming ` ≤ δs here, and so

we obtain a suitable estimate for A`s,close (M) provided we choose 0 < δ ≤ 1
n+1−α . Indeed,

we then have

δs∑
l=1

2−2s2(n+1−α)`Aα2 = 2−2s

 δs∑
l=1

2(n+1−α)`

Aα2 . 2−2s2(n+1−α)δsAα2 ≤ 2−sAα2 ,

provided δ ≤ 1
n+1−α , and in particular we may take δ = 1

2 . Altogether, the above estimates

prove

T
proximal
s + T

difference
s . 2−s

(
Aα2 +

√(
Eα2
)2

+ A
α,energy
2

√
A
α,punct
2

)∫
Î
t2dµ,

which is summable in s.
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The intersection term

Now we return to the term T intersections ≡

∑
F,F ′∈F

∑
M∈W(F )

M ′∈W
(
F ′
)

M,M ′⊂I, `
(
M ′
)

=2−s`(M)

d
(
cM ,cM ′

)
≥2s(1+δ)`

(
M ′
)

∫
B(M,M ′)

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

(|M |+ |y − cM |)n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|+

∣∣y − cM ′∣∣)n+1−αdσ (y) .

It will suffice to show that T intersections satisfies the estimate,

T intersections . 2−sδ
√(

Eα2
)2

+A
α,energy
2

√
A
α,punct
2

∑
F ′∈F′

∑
M ′∈M(ρ,ε)−deep

(
F ′
)

M ′⊂I

‖Qω,b
∗

F ′,M ′x‖
♠2

L2(ω)

= 2−sδ
√(

Eα2
)2

+ A
α,energy
2

√
A
α,punct
2

∫
Î
t2µ .
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Recalling B
(
M,M ′

)
= B

(
cM , 1

2d
(
cM , cM ′

))
, we can write (suppressing some notation for

clarity) T intersections as

=
∑
F,F ′

∑
M,M ′

∫
B(M,M ′)

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)(
|M |

1
n + |y − cM |

)n+1−α

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)(
|M ′|

1
n +

∣∣y − cM ′∣∣)n+1−αdσ (y)

≈
∑
F,F ′

∑
M,M ′

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)∣∣cM − cM ′∣∣n+1−α

∫
B(M,M ′)

dσ (y)(
|M |

1
n + |y − cM |

)n+1−α

≤
∑
F ′

∑
M ′

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)

∑
F

∑
M

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)∣∣cM − cM ′∣∣n+1−α

∫
B(M,M ′)

dσ (y)(
|M |

1
n+|y − cM |

)n+1−α

≡
∑
F ′

∑
M ′

∥∥∥Qω,b∗
F ′,M ′x

∥∥∥♠2

L2(ω)
Ss
(
M ′
)
,

and since
∫
B(M,M ′)

dσ(y)(
|M |

1
n+|y−cM |

)n+1−α ≈
Pα
(
M,1

B(M,M ′)σ
)

|M |
1
n

, it remains to show that

for each fixed M ′,

Ss
(
M ′
)
≈

∑
F

∗∑
M : d

(
cM ,c

M ′
)
≥2s(1+δ)`

(
M ′
)
∥∥∥Qω,b∗F,M x

∥∥∥♠2

L2(ω)∣∣cM − cM ′∣∣n+1−α

Pα
(
M,1B(M,M ′)σ

)
|M |

1
n

. 2−δs
√(

Eα2
)2

+ A
α,energy
2

√
Aα2 .
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We write

Ss
(
M ′
)
≈

∑
k≥s(1+δ)

1(
2k |M ′|

)n+1−αS
k
s

(
M ′
)

;

Sks
(
M ′
)
≡

∑
F

∗∑
M : d

(
cM ,c

M ′
)
≈2k`(M ′)

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

Pα
(
M,1B(M,M ′)σ

)
|M |

1
n

,

where by d
(
cM , cM ′

)
≈ 2k`

(
M ′
)
we mean 2k`

(
M ′
)
≤ d

(
cM , cM ′

)
≤ 2k+1`

(
M ′
)
. More-

over, if d
(
cM , cM ′

)
≈ 2k`

(
M ′
)
, then from the fact that the radius of B

(
M,M ′

)
is

1
2d
(
cM , cM ′

)
, we obtain

B
(
M,M ′

)
⊂ C02kM ′,

where C0 is a positive constant (C0 = 6 works).

For fixed k ≥ s (1 + δ), we invoke yet again the ‘prepare to puncture’ argument. Choose

an augmented cube M̃ ′ ∈ AD such that C02kM ⊂ M̃ ′ and `
(
M̃ ′
)
≤ C2k`

(
M ′
)
. Define

ω̃ = ω − ω ({p}) δp where p is an atomic point in M̃ ′ for which

ω ({p}) = sup

q∈P(σ,ω): q∈M̃ ′
ω ({q}) .

(If ω has no atomic point in common with σ in M̃ ′, set ω̃ = ω.) Then we have
∣∣∣M̃ ′∣∣∣

ω̃
=

ω
(
M̃ ′,P(σ,ω)

)
and so from (.0.39) and (.0.19), for any cube A,

∣∣∣M̃ ′∣∣∣
ω̃∣∣∣M̃ ′∣∣∣1−αn

∣∣∣M̃ ′∣∣∣
σ∣∣∣M̃ ′∣∣∣1−αn ≤ A

α,punct
2 and

∑
F∈F

∥∥∥Qω,b∗F,A x
∥∥∥♠2

L2(ω)
. ` (A)2 |A|ω̃

Now we are ready to apply Cauchy-Schwarz and the augmented local estimate (.0.35) in
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Lemma .0.12 with M = M̃ ′ to the second line below, and to apply the argument in (.0.57)

to the first line below, to get the following estimate for Sks
(
M ′
)
defined in (.0.58) above:

Sks
(
M ′
)
≤

∑
F

∑
M : d

(
cM ,cM ′

)
≈2k`(M ′)

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)


1
2

×

∑
F

∑
M : d

(
cM ,cM ′

)
≈2k`(M ′)

∥∥∥Qω,b∗F,M x
∥∥∥♠2

L2(ω)

Pα
(
M,1B(M,M ′)σ

)
|M |

1
n

2


1
2

.

(
22s
∣∣∣M̃ ′∣∣∣2 ∣∣∣M̃ ′∣∣∣

ω̃

)1
2 ([

(Eα2 )2 + A
α,energy
2

] ∣∣∣M̃ ′∣∣∣
σ

)1
2

.
√(

Eα2
)2

+ A
α,energy
2 2s

∣∣∣M̃ ′∣∣∣√∣∣∣M̃ ′∣∣∣
ω̃

√∣∣∣M̃ ′∣∣∣
σ

.
√(

Eα2
)2

+ A
α,energy
2

√
A
α,punct
2 2s

∣∣∣M̃ ′∣∣∣ ∣∣∣M̃ ′∣∣∣1−α
≈

√(
Eα2
)2

+ A
α,energy
2

√
A
α,punct
2 2s2k(1−α)

∣∣M ′∣∣n+1−α
,

because `
(
M̃ ′
)
≈ 2k`

(
M ′
)
.

Altogether then we have

Ss
(
M ′
)

=
∑

k≥(1+δ)s

1(
2k |M ′|

)n+1−αS
k
s

(
M ′
)

.
√(

Eα2
)2

+ A
α,energy
2

√
A
α,punct
2

∑
k≥(1+δ)s

2s2k(1−α)(
2k |M ′|

)n+1−α
∣∣M ′∣∣n+1−α

=

√(
Eα2
)2

+ A
α,energy
2

√
A
α,punct
2

∑
k≥(1+δ)s

2s−k

. 2−δs
√(

Eα2
)2

+ A
α,energy
2

√
A
α,punct
2 ,
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which is summable in s. This completes the proof of (.0.44), and hence of the estimate for

Back
(
Î
)
in (.0.40).

The proof of Proposition .0.1 is now complete.
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