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ABSTRACT

TOWARDS PROPRIOCEPTIVE GRASPING WITH SOFT ROBOTIC HANDS

By

Thassyo da Silva Pinto

Various robotic hands, gloves, and grippers have been developed for manufacturing, prosthet-

ics, and rehabilitation. However, the use of rigid links and joints presents challenges in control

and safe interactions with humans. The emerging field of soft robotics seeks to create machines

that are soft, compliant, and capable of withstanding damage, wear and high stress. This disser-

tation is focused on advancing soft actuators, soft sensors, and perception for ultimately realizing

proprioceptive grasping with soft robotic hands.

In this work, several types of soft pneumatic actuators (SPAs) have been tested, fabricated, and

tested, including one embedded with 3D-printed conductive polylactic acid (CPLA) layer capable

of stiffness tuning and shape modulation. A gripper made of two soft actuators has been prototyped

to demonstrate grasping of objects of different sizes and shapes, with desired posture-holding

capabilities.

Carbon nanotube (CNT)-based flexible sensor arrays have been designed, fabricated, and in-

tegrated to SPAs to provide distributed strain measurements. The presented approach allows cus-

tomized design of stretchable sensor arrays with varied size and shape. Simulation and experimen-

tation have been performed in order to analyze the soft actuator deformation during bending, and

to confirm the capability of the integrated sensor array for capturing the actuator deformation.

3D printing of touch and pressure sensors has been further investigated for potential use in

robotic hands. In particular, a novel process has been introduced for producing soft conductors

and pressure sensors, involving first 3D-printing microchannels in soft substrates and then filling

the channel with liquid metal. With a PolyJet printer, functional straight microchannels have been

fabricated with sizes down to 150 × 150 micrometers in the cross-section area. In addition, spiral-

shaped pressure sensors have been developed with a cross-section size of 350 × 350 micrometers

and overall thickness of 1.5 mm (50A and 70A Shore Hardness). Although the sensors require



a relatively large pressure threshold to operate, they have shown the ability to withstand high

pressures up to 1 MPa and thus have potential to be used in industrial applications among others.

Finally, preliminary computational exploration of intelligent grasping has been performed. In

particular, the classification of soft grasped objects has been examined through a neuroevolution

process for artificial brains. Simulation with SOFA (Simulation Open Framework Architecture)

has been conducted to produce the emulated contact force measurements, which have been used to

train artificial neural networks, including Markov Brains from the Modular Agent-Based Evolver

(MABE) platform, to properly classify the shape and stiffness of the grasped objects.
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PREFACE

Whether its primitive purpose was for throwing rocks or providing enhanced locomotion, the

human hand evolved in a way that allows us to perform very complicated tasks such as playing in-

struments, cooking, crafting and painting. It is true that it takes quite some time to learn fine motor

skills, but the hand’s complex feedback system plays an important role when training our brain for

different manipulation tasks. Moreover, the inherent compliance in human hands provides adap-

tive grasping of objects with different stiffnesses and shapes. Although automated machines are

now capable of executing repetitive manipulation tasks without exhaustion, they can only work

with well-defined settings and in very restricted environments. If it is desired for robots one day to

leave the manufacturing sites and laboratories to work alongside humans at home or workplaces,

advanced manipulation skills will be crucial. The human life has thrived in varying and com-

plex environments, so robots interacting with it will need to have the same dexterous and flexible

grasping that humans do.
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Chapter 1

Introduction

Grippers are widely used by animals and machines in order to interact with their environment.

In biological organisms, different gripper structures were naturally evolved for specific grasping

and manipulation tasks, taking multiple forms such as mouth, hands, pincers, beaks, trunks and

tentacles. Besides using their natural grippers as organs of action, many animals rely on such

mechanisms for exploring their surroundings, which provides the link between a living organism

and the world around it.

As the demand for fast, precise and continuous manufacturing processes increased over the

years, robots were developed for tasks involving grasping and manipulation of objects in dangerous

or unpleasant working conditions in place of human workers. Traditionally, these robotic systems

have been composed of rigid bodies made from stiff materials such as metals (steel, aluminum) and

ceramics. They are widely applied in industry and can be preprogrammed to execute specific tasks

with efficiency, but with constrained adaptability. In order to maintain a safe work environment

inside a factory, robots are placed in a different area than humans since their rigid links and joints

can be harmful for human interaction. The addition of compliant materials in common actuation

mechanisms can lead to the development of safer systems and enable grasping and manipulation

of unknow objects.

Soft robotics is an emerging and continuously growing field, which allows applications where
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robots can interact with humans safely in factories, in the field or at home [1]. A soft robot is pri-

marily made out of soft and extensible materials such as silicone rubbers [2], synthetic fibers [3] or

gels [4], enabling large deformation and absorption of energy generated from impacts. The highly

deformable components allow the robotic system to experience theoretically infinite degrees of

freedom. In addition, the compliant structure mitigates the impact of the environment uncertainty

and produces complex motion with simple control inputs. In contrast to its hard-robotic counter-

parts, soft robots can be fabricated with simple steps and inexpensive and lightweight materials,

and permit mimicry of biological functionalities though their intrinsic elements [5] [6].

Techniques commonly used in robotics for kinematic and dynamic modeling cannot be directly

applied to soft robots due to their continuum structure and highly nonlinear deformations. A

great challenge for dynamic modeling of soft robots remains due to their heterogeneous body

compositions and complex boundary conditions. The investigation of new functional materials

with modulated stiffness properties and proprioceptive sensing, as well as novel control schemes

for soft sensory-motor devices, will be critical in the development of enhanced soft robotic systems.

1.1 Biological Sensory Signals and Natural Grasping

Sensory receptors are the bridges which connects our minds to the outside world. Different kinds

of stimuli (light, sound, temperature, or mechanical deformation) generate electrical signals in the

form of symbols which can be interpreted by the central nervous system [7]. In addition, a given

sensory receptor, biological or engineered, for example, has a well-defined range of stimuli for a

particular response type. Various species have similar underlying sensory mechanisms, but there is

a wide variation in the sensitivity spectrum. Previous studies in crustaceans have shown that stretch

receptor neurons can register the muscle length [8]. When the receptor muscle is stretched, the

detritus become deformed and their membrane potential is reduced. Besides sending information

to the nervous system, stretch receptors have direct effects on motoneurons connected to the same

muscle group. This feedback system is important to regulation of muscle movement.
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The human hand and wrist are comprised of 27 bones, 48 muscles and 22 degrees of freedom

[9]. It is a versatile tool capable of executing a variety of basic grasps which have been discussed

in medical literature [10]. Moreover, it displays conformability on both large and small scales,

since the fingers can curl around objects during grasping, while localized deformation happens at

the finger and palm tissues to adapt its surface. Furthermore, our hands are equipped with a great

sophisticated sensory system. Its complexity level is evident based on the number of nerves in

the hand and the portion of brain dedicated to information processing and movement control [11].

Figure 1.1 shows several skin sensors present on the hand. Sensory receptors located at the hand

tissue (skin, muscle, or joints) provide somatic sensations such as touch, pressure, temperature,

pain, and position. These somatosensory mechanisms allow us to determine the texture and shape

of objects that we palpate.

Figure 1.1: Some of the sensors in the skin of a hand and their respective interpreted stimuli such
as touch, pressure, and heat (Adapted from [12]).

Many other neural structures play a role in additional important aspects of somatic sensation.

The primary motor cortex (M1), which is located in the back of the frontal lobe, is considered

as the main site for motor control. Studies concerned with brain activity measurement through

functional magnetic resonance imaging (fMRI) have shown that the activation of M1 [13] and the

left inferior parietal lobule (IPL) [14] are compulsory for the somatic perception of hand-object

interactive movement. With these low-level and high-level feedback loops, the hand can be said to
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be an organ with a certain amount of distributed control. Clues about higher aspects of sensory and

motor integration involved in human hand grasping tasks will not only contribute to somatosensory

studies, but also lead to insightful design and control approaches for a new generation of robotic

grippers.

1.2 Robotic Grasping and Soft Robotic Grippers

A robotic gripper design can range from a servo-driven claw with multiple fingers to suction cups

powered by vacuum. In industry, grippers may be precise and employed in different workspaces,

but they are designed to perform very particular tasks with well-defined parts [15]. Their flexibility

is very limited since a magnetic gripper will not be able to pick up thermoplastics, and a suction-

based gripper for glass plates is useless for manipulating machined parts. This problem could be

solved by having a collection of grippers for a set of tasks; however, there are a few downsides

for this approach, such as the high cost to keep an inventory of multiple grippers, interruption of

manufacturing process for gripper change, and lack of compatibility for tactile and force sensors

across multiple grippers. In fact, tactile sensing is key to dexterous manipulation since it allows

the application of feedback-based control algorithms that exploit the sensor signals for techniques

such as grasp stability estimation, tactile object recognition and force control [16] (Figure 1.2).

Figure 1.2: The Utah/M.I.T. Dexterous Hand with tendon-driven actuation [16].
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As an alternative to rigid mechanisms, grippers with soft structures can be developed for more

versatile and adaptive grasping. Its compliance allows higher intrinsic robustness to uncertainty in

actuation and perception, reduces the number of elements to be controlled, and offers larger toler-

ance to external perturbations when manipulating a broad range of objects and conforming to the

static environment. Moreover, the fabrication of soft hands is faster and less expensive than their

rigid counterparts. For instance, a universal gripper based on the jamming of granular materials

[17] can be used to pick up a wide range of different objects through vacuum-induced reversible

jamming transitions without sensory feedback. Furthermore, a hydraulic-driven soft gripper for

underwater applications enables delicate manipulation and sampling of fragile marine species on

the deep reef [18]. A soft robotic approach can also be beneficial in the design of wearable de-

vices for human assistive technologies. Soft robotic gloves driven by pneumatic systems [19] or

cable actuation [20] can provide robotic-assisted therapy during post-stroke hand rehabilitation

exercises.

Although compliance allows adaptive grasping, it is difficult to estimate the specific configu-

ration of a soft hand or gripper due to its malleability. The information about a robotic gripper

configuration can be useful for decision making during manipulation. Not only it can determine if

a grasp is successful, but it can also detect a particular object’s shape as well as if it is picked up

in the desired pose. A 3D convolutional neural network (CNN) can be trained to estimate suitable

grasps poses for previously unseen objects by learning features and a classifier from point cloud

data [21]. The combination of bending and force sensors on a soft robotic gripper, along with a

sensor model and grasping algorithm, can identify an object on a single grasp after characterization

and training [22]. Therefore, proprioceptive feedback in soft hands is essential for complex manip-

ulation of objects. This collection of sensory data will enable robots to grasp tools intended for use

on a certain orientation (pose), ensure appropriate grasping forces, and plan interaction between

the grasped object and its workspace. By achieving seamless grasping interaction with similar

dexterity and flexibility as human hands, robots will be able to robustly use tools in different tasks

and scenarios.
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1.3 Integration of Flexible and Stretchable Sensors

An existing challenge is the integration of sensing devices in the structure of a soft mechanism,

for feedback control of the system. Several control schemes for soft robotic systems have been

explored by researchers [23][24][25]; however, feedback control of soft robots using compact, in-

tegrated sensors is generally limited. The most common methods for sensor measurement in soft

robotics are resistive and capacitive technologies [26]. These sensors are usually fabricated using

nanoscale conductive materials deposited over a flexible substrate such as polydimethylsiloxane

(PDMS), which remains one of the best choices for stretchable sensor substrates due to its flexibil-

ity and resistance to high temperatures and chemical processes [27]. 3D microfluidic systems can

be easily created in PDMS with complex geometries and topologies, by taking advantage of the

fact that PDMS is an elastomer and provides a way of controlling bending, weaving, and braiding

through mold templates [28], making them suitable for micro-scale sensor applications. Optical

fibers and piezoresistive materials can also be used as soft sensors. A tactile sensor sleeve based

on fiber-optic light modulation [29] can be incorporated in the body of a soft manipulator for pres-

sure sensing; however, large instrumentation devices are required for measuring the light intensity

variation. Commercially available sensors can be embedded in a soft pneumatic actuator skin [30],

but their size and shape cannot be customized for various applications.

Microfluidic devices are another sensing modality that can be embedded into soft robotic struc-

tures and actuation mechanisms to provide a closed-loop feedback system. Microfluidics is the

science and technology of systems that process or manipulate small amounts of fluids, using chan-

nels with dimensions of tens to hundreds of micrometers [31]. Several microfluidic structures

have been applied extensively in many sensing applications such as force detection [32][33], strain

gauges [34][35], flow rate measurement [36], and noninvasive health analysis [37][38][39]. Cur-

rent research has identified the deformability and mobility of liquid metals (LMs) in deformable

microstructures, which brings significant potential for soft robots and machines [40]. LM alloys

such as EGaIn (75.5 wt% gallium and 24.5 wt% indium) [41] and Galinstan (68.5 wt% gallium,

21.5 wt% indium, and 10 wt% tin) [42], have been extensively applied in the design of soft sen-
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sors due to their capabilities in simultaneously presenting many unique physical properties such as

low melting point, excellent liquidity, high electrical conductivity, good thermal conductivity, low

vapor pressure, and low toxicity in comparison to mercury. Some examples of LM-infused mi-

crofluidic sensors include wearable soft sensors for human gait measurement [43][44], soft gloves

for hand motion detection [45], soft tactile sensors for force feedback in micromanipulation [46],

and soft pneumatic actuators with embedded microfluidic sensing [47][48][49]. A number of other

methods for patterning liquid metals in 2D and 3D allow the creation of metallic microstructures,

stretchable conductors and sacrificial templates for microfluidic channels [50][51][52]. In the near

future, it is believed that LM-based soft machines will play many roles in biomedicine and small

mechanical systems.

1.4 Artificial Intelligence and Evolutionary Robotics

When machines are capable of performing tasks in an intelligent manner, we usually define this

ability as Artificial Intelligence (AI). A vast number of research sub-fields in AI have studied

different techniques in achieving intelligent machines, not only for describing aspects of human

intelligence, but also with aims to create machines with better performance than humans in well-

defined problem settings (playing strategy games, recognize visual or auditory patterns, and driving

a car on a crowded street) [53].

An AI model can learn through training data (machine learning) or evolve desired performance

based on fitness functions (evolutionary algorithms). In evolutionary systems, a machine is capa-

ble of developing other submachines according to their ability to perform tasks in an environment

simulating the real word. The theory of evolution was developed in Charles Darwin’s On the Ori-

gin of Species by Means of Natural Selection (1859), which basically states that variations occur

during reproduction, and they will be preserved in successive generations with approximate pro-

portion to their effect on reproductive fitness. A popular method in evolutionary computation is the

application of genetic algorithms (GA), where a population of artificial chromosomes (genotype),
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encoding the characteristics of an individual (phenotype), selectively reproduces the chromosomes

of individuals with higher performance and applying random changes for several cycles (genera-

tions).

Similarly, autonomous robots can be automatically created based on a technique called Evo-

lutionary Robotics (ER), where artificial organisms can develop their own skills without human

intervention [54]. The general idea behind ER is that an initial population of artificial chromo-

somes, encoding either the control system or the morphology of a robot, are randomly created

and placed in a virtual environment. The fittest robots are selected based on their performance

in various tasks, and then allowed to reproduce while applying genetic operations such as muta-

tion, crossover, and duplication. Multiple cycles of this process are repeated until a robot with the

desired performance is born (Figure 1.3). This technique has been applied in applications rang-

ing from the evolution of self-organizing behavior in a swarm of robots [55] to evolving gaits for

legged robots [56].

Figure 1.3: Artificial evolution of a population of robots without human intervention.
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It is interesting to note that the field of ER is based on a fundamental concept defined as

embodied cognition [57], which, instead of viewing intelligence as merely a matter of symbol

processing within the brain of a living organism or a control system of a robot, perceives the

latter as something arising from the interaction between brain, body, and environment. In addition,

certain processes that would originally be performed by the brain can be outsourced to the body by

means of morphological computation. In this case, a soft robotic hand can grip a complex object

with less control effort due to its material elasticity, providing automatic adaptivity for grasping

unknow objects.

Furthermore, an important process in ER studies is the ability to transfer simulated brains (con-

trollers) to real-word robotic systems (transferability). For instance, a simulation tool with voxel-

resolution soft, actuatable materials, can evolve soft-bodied robots with multiple body-plans and

gaits for different fitness functions, mimic cardiac electrophysiology, generate squeezing for small

spaces, and achieve swimming locomotion [58][59][60][61]. However, the transferability process

in these computational tools is limited or even impossible due to unmatched parameters between

the simulated environment and real-world soft robots. The ability of computational evolution to

develop unexpected novel solutions, combined with simulation of realistic material properties, may

favor the creation of soft robotic grippers with more natural mobility and enhanced sensory-motor

coordination.

1.5 Contributions and Outline

Our vision for achieving robust and adaptable robotic grasping is by means of biological inspira-

tion, sensory feedback (proprioception), soft and stretchable materials (morphological computa-

tion), and computational evolution of control systems (embodied intelligence). Here we present

contributions for each of those areas, tackling specific aspects involved in the overall challenge of

grasping and manipulating objects with a robotic hand. This dissertation is organized as follows:
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• Chapter 2: Materials, Design, Fabrication, Simulation and Controllers for Soft Actua-

tors

This chapter describes the first building block in our system. We explain the materials and

designs used in the fabrication of soft pneumatic actuators (SPAs). Different investigated

processes are described such as soft lithography and 3D-printing, with varied SPA shapes

and actuation modes. In addition, we discuss the simulation of these devices using finite

element method (FEM), which can be used to study their mechanical behavior prior to fab-

rication. A custom-built pneumatic platform is used for controlling the SPAs via graphical

and embedded software in several experiments. A novel approach for modulating the SPA

stiffness is presented, using a 3D-printable conductive PLA (CPLA) material that can be

integrated to the SPA structure and used in grasping tasks.

• Chapter 3: Fabrication, Characterization and Integration of CNT-based Flexible Sen-

sors

The integration of sensors within an SPA should allow the measurement of distributed de-

formation without affecting its advantageous malleability. In line with this reasoning, we

have developed a novel type of sensor arrays made of CNT straing gauges and AgNW elec-

trodes via a screen-printing process. A detailed recipe for fabricating and characterizing

these sensors arrays is provided. Moreover, we have performed experiments on SPAs with

integrated sensor arrays in order to measure each sensor deformation (change in resistance)

and estimate the actual SPA curvature during bending. The results show agreement with the

observed SPA deformation and provide a first step in the implementation of sensor arrays

for localized measurements and feedback control with proprioceptive sensors in soft robotic

mechanisms.

• Chapter 4: 3D-Printing of Liquid Metal-Based Stretchable Conductors and Pressure

Sensors

Microfluidic devices control fluids on the micrometer-scale and are commonly used for lab-
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on-chip applications, such as sensors, micropumps and biological analysis. Commonly re-

ported fabrication methods for achieving flexible microfluidic structures are labor-intensive,

require many cumbersome steps, and have limited options for materials. This chapter presents

a rapid-manufacturing technique using a PolyJet 3D-printer for creating soft microfluidic

substrates embedded with liquid metals to generate stretchable conductors and pressure sen-

sors. By using this novel method, several spiral-shaped soft pressure sensors with multimaterial-

based substrates can be 3D-printed simultaneously in less than six minutes. Experiments

have revealed that these 3D-printed microfluidic pressure sensors are very robust, capable of

withstanding high pressures up to 1 MPa.

• Chapter 5: Computational Evolution of Controllers for Soft Robots

Computationally evolved controllers for soft robotic hands have the potential to identify

object shape and hardness or provide pose estimation for decision making tasks. In this

chapter, we present some preliminary studies for the classification task of soft grasped ob-

jects through neuroevolution processes of artificial brains. A combination of 3D physics

engines and digital evolution tools provided a substrate for investigating the classification of

several grasping conditions from emulated contact force and pressure measurements. Iden-

tified solutions from different evolved AI models are compared. In addition, a road map for

achieving fully proprioceptive soft grasping is discussed.

• Chapter 6: Summary and Discussion

This chapter summarizes our contributions and future lines of work presented in this dis-

sertation. Finally, we conclude with some thoughts regarding the remaining challenges in

proprioceptive grasping with soft robotic hands.
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Chapter 2

Materials, Design, Fabrication, Simulation

and Controllers for Soft Actuators

2.1 Elastomeric Materials for Soft Robots

In order to achieve robots that realize deformation with less energy, their body should be fabricated

with low modulus materials such as elastomers. A method for measuring the rigidity of a certain

material is by determining its Young’s modulus (modulus of elasticity), which defines the ratio

of stress to percent elongation of prismatic bars (homogenous) subject to axial loading and small

deformations [62]. Although soft robots are made from heterogeneous and irregular structures that

undergo large deformations, the Young’s modulus is valuable information for comparing the rigid-

ity of materials used in the fabrication soft robotic systems (see Figure 2.1). Conventional robots

are built out of materials with elastic modulus within the range of 109 to 1012 Pa (metals or hard

plastics). In contrast, natural organisms are often composed of materials within the range of 102

to 108 Pa (skin or muscle tissue), orders of magnitude lower than the range for traditional robots.

This great mismatch prevents rigid robots from interacting directly with humans and biologically

compatible systems, whereas provides soft robots a promising opportunity to address these issues.
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Figure 2.1: Young’s moduli of engineered and biological materials. (a) Elongation of a homoge-
nous prismatic bar, and (b) the elastic (Young’s) modulus scales for various materials. (Adapted
from [62])

Platinum-based silicone-rubbers are often chosen as the basis in the fabrication of soft compo-

nents due to their low moduli (durometer as low as 05-00), allowing high strains and curing pro-

cesses at the room temperature. Nevertheless, the modeling of silicone-based structures presents

challenges due to their nonlinear nature. The nonlinear theory of elasticity, which constitutes the

theoretical basis for the study of hyperelastic materials, uses a strain-energy function to describe in

energetic terms the mechanical behavior of this class of materials [63]. For an isotropic material,

the strain energy can be described as

Ψiso = Ψ(I1, I2, I3) (2.1)

where I1, I2, and I3 are strain invariants

I1 =
3∑

i=1

λ2i , I2 =
3∑

i,j=1

λ2iλ
2
j , I3 =

3∏

i=1

λ2i , i 6= j (2.2)
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with λ1, λ2 and λ3 representing the principal stretches. The hyperelastic material models (Ta-

ble A1) are more suited to explain the nonlinear behavior of elastomers under the assumption of

incompressibility. In the case of uniaxial tension of an incompressible material

λ1λ2λ3 = 1, λ2 = λ3 = λ−1/2, λ1 = λ > 1 (2.3)

and the gradient of deformation is defined as

F =




λ 0 0

0 λ−1/2 0

0 0 λ−1/2




(2.4)

with the right C
∼

and left b
∼

Cauchy-Green tensors,

C
∼

= F TF =




λ2 0 0

0 λ−1 0

0 0 λ−1



, b

∼
= FF T =




λ2 0 0

0 λ−1 0

0 0 λ−1



, C

∼
= b

∼
(2.5)

The invariants (2.2) can be now be defined from the right (deformation) or left (spatial) Cauchy-

Green tensors

I1 = tr(C
∼

) = tr(b
∼

),

I2 =
1

2
((tr(C

∼
))2 − tr(C

∼
)2) =

1

2
((tr(b

∼
))2 − tr(b

∼
)2),

I3 = det(C
∼

) = det(b
∼

)

(2.6)

In Section 2.3, we use a numerical approach to simulate the behavior of soft actuators with the

strain-energy function of different hyperelastic models.
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2.2 Soft Actuator Design Parameters and Fabrication Processes

Many types of actuation mechanisms can be applied in soft robots [64]. The most well-known and

widely used soft actuator is the pneumatic artificial muscle (PAM) developed by J. L. McKibben

in the 1950s [65]. These artificial muscles consist of an inflatable bladder inside a braided mesh.

The actuator can produce axial contraction and radial expansion movement when pressurized by

air gas (Figure 2.2). In present days, this technology is commercialized by many companies which

provide fluidic muscles in different configurations and dimensions for applications that can closely

emulate biological movements.

(a)

(b)

Figure 2.2: Custom-built pneumatic artificial muscles (PAM). (a) Fabricated PAMs with different
dimensions and materials for linear motion, and (b) elongation testing using weight plates.

In our work, we have mostly explored the fabrication of soft pneumatic bending actuators

consisting of fluidic channels in an elastomer (Figure 2.3). When filled with pressurized fluid, the

channels expand, causing the soft actuator to bend towards a strain-limiting layer. The inflatable

structure is made from rubber or elastomer (Table A2), while the material used for the inextensible

layer can be paper, fabric, plastic film or another elastomer with higher durometer.
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(a) (b) (c)

Figure 2.3: Design approach for the soft actuator and mold parts. (a) Cross-section of the SPA
with representative dimensions; (b) core and cavity sides of the 3D-printed mold; (c) inflation state
of the SPA.

Similarly, there are different fabrication processes available for creating compliant robotic com-

ponents such as soft lithography (casting) [66], 3D-printing [67], and photopatterning [68]. A soft

lithography process can be divided into three main steps: material preparation, vacuum degassing,

and curing. The specific shape of the actuator is achieved through the design of cavity and core

parts of a mold. In a specific study [69], we designed a mold using a CAD software (SolidWorks,

Dassault Systemes) with a square cross-section of 25 × 20 mm and length of 100 mm. As shown

in Figure 2.3a, the SPA design included topographical features, a similar concept as in [70], and

with 70◦ angle to allow higher bending. The mold was made of polylactic acid (PLA) thermo-

plastic and fabricated with a 3D printer (MakerBot Replicator, MakerBot Industries). In addition,

we designed a 2-part mold with molded-in assembly features to facilitate the removal of the soft

actuator after the curing process (Figure 2.3b). We first mixed a two-part liquid silicone rubber

(Dragon Skin 30, Smooth-On) and filled the mold with the uncured material. The silicone mixture

was then degassed in a vacuum chamber at -95 kPa and allowed to cure for 16 hours at the room

temperature. The curing time can be shortened by heating up the poured solution over a hot plate

or inside a lab oven in compatible temperature ranges. Once the curing process was completed,

the soft actuator was removed from the mold and a thin layer of silicone was bonded to the SPA

bottom surface for covering the hollow chambers and enabling fluidic actuation. In order to supply

compressed air to the soft actuator chambers (see Figure 2.3c), a silicone-based tubing with similar
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durometer was inserted through the bottom layer of the actuator structure. The fabricated device is

shown in Figure 2.4.

Figure 2.4: The fabricated SPA made of silicone rubber.

2.3 Soft Actuator Simulation

Simulation of soft actuators and flexible sensors is an important process in the study of soft robotic

systems, in order to analyze their mechanical behavior, frequency response and design perfor-

mance. An analytical model can provide some insights into the response of soft components to ex-

ternal forces for a given geometry. However, it cannot capture the interactions of internal elements

with different materials. Finite Element Method (FEM) models provide the nonlinear response

of the system as well as visualization of the soft component deformation and global performance

in multiple configurations. We have simulated several soft bending actuator prototypes, using a

finite element analysis software (Abaqus/CAE, Dassault Systemes). The geometries of the soft

actuator and the sensor substrate were designed as solid bodies and meshed using solid tetrahedral

quadratic hybrid elements (C3D10H element type), with 48,253 nodes and 30,144 elements. The

Dragon Skin 30 and PDMS materials were modeled as an incompressible Yeoh material (µ = 2.38

kPa) [71] and incompressible Neo-Hookean material (µ = 1.84 MPa) [72], respectively. As shown

in Figure 2.5a, the simulated soft bending actuator achieved a quarter bending when a pressure of

40 kPa was applied to its inner chamber. The uniaxial strains values at nodes 4455, 4365 and 4275

were measured from the SPA bottom surface in the converged solution (Figure 2.5b).
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(a) (b)

Figure 2.5: Finite element simulation of the SPA. (a) Contour plot of the SPA FEM model (Drag-
onSkin/PDMS), and its sequential deformation as pressure increases. (b) Graph of the strain values
at each node corresponding to a potential sensor location (S1, S2, and S3 in (a)).

2.4 Pneumatic System Hardware and Control Software

In general, fluid-driven actuators for soft robots can be powered by compressed atmospheric air

[73], hydraulic systems [74], combustion [75], microfluidic logic [76], and through phase chang-

ing of low boiling point fluids [77]. There are many pneumatic energy sources available to power

soft robots, and some important aspects should be considered such as selecting the appropriate

compressor configuration (single, parallel, series) and matching the soft robotic project specifica-

tions (energy density, heat, pressure/flow rate) [78].

A custom-built pneumatic platform has been fabricated based on an open-source design avail-

able from the Soft Robotics Toolkit [79]. This platform allows the control of up to 4 independent

pressure channels for a wide range of soft robotic applications (Figure 2.6). The control board

has as its pressure source a 28 psi dual head miniature compressor (BTC-IIS, Parker Hannifin)

with both positive and negative pressure (vacuum) operation modes. All channels are activated by

a group of 3-way solenoid valves (VQ110U-6M, SMC), receiving amplified control signals from

transistors that are connected to a microcontroller (Mega 2560, Arduino). In order to allow pres-

sure feedback control, pressure gauge sensors (ASDXAVX100PGAA5, Honeywell) with analog
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measurement capabilities are attached to each channel output.

Figure 2.6: A control platform for fluidic soft robotic components. The mini air compressor is the
energy source for fluidic soft actuators.

Using this hardware framework, different control strategies can be implemented via software.

A commonly applied method for controlling the output pressure in a pneumatic system uses PWM

signals. The PWM duty cycle percentage in combination with its wave frequency, can generate

open/close commands to the solenoid valves, thus affecting the outlet pressure value at a certain

time. Although a manual approach can be achieved for selecting output values by using switch-

ers/potentiometers, an autonomous robot requires automatic computation of its desired output in

response to its current input values. Therefore, a proportional-integral-derivative (PID) controller

is designed to minimize the error of the pressure output (PWM duty cycle) at a given outlet based

on a desired setpoint in both static (constant pressure) and dynamic (cyclic wave, trajectory) con-

ditions. A PID controller is defined as
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u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de

dt
,

e(t) = r(t)− y(t)

(2.7)

with Kp, Ki, Kd, being the controller gains for tuning and r(t), y(t), e(t) being the setpoint value,

actual output, and tracking error, respectively.

Multiple control programs were developed using different programming languages, each for a

particular application and compatibility with additional components. A LabVIEW virtual instru-

ment (VI) was created for easy interaction between the experimenter and the pneumatic platform

due to its user-friendly interface (Figure 2.7). Besides being able to select a manual or automatic

control mode, the program can also plot real-time data as well as save reports about collected

measurements. In this method, the microcontroller behaves as a data acquisition board (serial

communication) and all higher-level computation processes are performed by the computer. As an

alternative, the control scheme was also encoded on a single executable file, C++, and as a script,

Python, for compatibility with Linux-based systems. However, all user interactions are instead per-

formed through a terminal window (command line). The main advantages of the aforementioned

methods are the high-speed computation for a multiple-input multiple-output (MIMO) system and

the communication across many devices such as cameras (image tracking), allowed by current

computer architectures. Some drawbacks are the communication delay and potential network

noises (USB, Bluetooth, Wi-Fi), along with parallel processing of competing services. In addi-

tion, an embedded version of the control software was developed for low cost prototyping boards.

This allows an increase in sensor sampling rate and data processing since a cross-communication

between two computer architectures is eliminated (firmware and software), and internal microcon-

troller registers can be manipulated directly. Different filtering techniques were implemented via

software due to the pressure sensor sensitivity and potential environment noise. One approach was

to use a first-order low-pass filter, which has the transfer function
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H(s) =
ω

s+ ω
(2.8)

with ω = 2πfc, and fc as the cut-off frequency. For processing signals in the sampled time domain,

the low-pass filter can be discretized as

y(k) = y(k − 1)e−aT + x(k − 1)(1− e−aT ) (2.9)

where a is the coefficient representing the cut-off frequency in the sampled time domain (radians

per second) and T is the sampling time of the original signal (seconds).

Figure 2.7: Control software with user interface developed in LabVIEW. The software allows
manual and automatic control of all output pressures in the pneumatic board for static or continuous
setpoint values.

2.5 Soft Actuator Stiffness Modulation

A great challenge in the soft robotics research area is the variability and controllability of the de-

formability and compliance of soft robots. Several stiffening approaches are found in the literature,
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such as the use of active actuators arranged in an antagonistic manner and the use of semiactive ac-

tuators that can change their elastic properties [80]. In particular, electrically conductive materials

with stiffness changing properties [81] can also be embedded in soft robotic devices to allow rigid-

ity modulation in specific scenarios where relatively high forces and fixed posture are required. In

[82], a collaborative work with Mohammed Al-Rubaiai, allowed the investigation of integrating

3D-printable conductive polylactic acid (CPLA) material with the SPA structure, using it as an

inextensible layer as well as to actively modulate the soft actuator stiffness at desired locations.

This study has been divided in two parts: (1) characterization of the thermomechanical properties

and FEM simulation of the CPLA material; and (2) fabrication, integration, and experimental val-

idation of SPA-CPLA devices. My contributions are related to the second part of this work. As

shown in Figure 2.8, additional soft actuator designs are developed with 3D-printed resin-based

molds (Form 2, Formlabs). A thin layer of silicone is applied to the SPA bottom surface and cured

for covering the hollow chambers and enabling fluidic actuation. In order to modulate the stiffness

of the SPA, a flat sheet made of CPLA (CDP11705, Proto-pasta) is integrated with the device.

Local indentations are designed in the flat sheet geometry to facilitate bending at the hinge loca-

tions. Since the material is supplied as a filament, a fused deposition modeling (FDM) 3D printer

(QIDITECH I, QIDI Technology) is used to fabricate the conductive sheet.

Thin copper wires are soldered to each hinge using silver paste (Silver Conductive Wire Glue,

Amazon), without affecting the device flexibility. The CPLA sheet is encapsulated through a

silicone rubber bath to allow adhesion with the SPA. A single rectangular (20 mm × 140 mm)

silicone sheet (2 mm thickness) is placed inside a glass container with the CPLA sheet laying

on top. The silicone mixture is poured inside the container up to a margin of 2 mm above the

CPLA sheet. The SPA and encapsulated CPLA are bonded together using uncured silicone. In

order to prevent slippage during grasping experiments, an additional anti-slip feature enabled with

surface texture is included in the design of the SPA-CPLA. This component is molded with the

same silicone material as the SPA. Figure 2.9 shows the picture of a fabricated prototype. The

dimensions of all parts in the actuator are listed in Table A3.
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Figure 2.8: Fabrication of the SPA with a CPLA sheet integrated to its bottom layer. (a) 3D-
printed mold parts forfabricating the SPA components; (b) Following curing, the upper and bottom
parts of the SPA are bonded together; (c) The CPLA is 3D-printed using a FDM 3D-printer; (d)
Thin copper wires are glued to the CPLA using a silver paste; (e) An anti-slip feature to prevent
slippage during grasping; (f) The CPLA is encapsulated with uncured silicone; (g) The SPA and
the encapsulated CPLA are bonded to complete the fabrication; (h) The final SPA-CPLA device
after curing time.
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Figure 2.9: A fabricated soft pneumatic actuator (SPA) prototype with an embedded CPLA layer.

Additional experiments have been conducted to test the CPLA-embedded SPAs in a two-finger

gripper configuration. The stiffness modulation in each finger can be controlled independently, al-

lowing the generation of different bending angles to suit the shape of the object being manipulated.

Multiple objects with various shapes and hardness are tested, where different grasping modes (e.g.,

scooping, pinching, grabbing.) are executed. In Figure 2.10 (a), (b), and (c), the soft gripper is

holding a plastic container using the aforementioned modes, while in Figure 2.10 (d) and (e), a soft

mini football and a plastic cup filled with candies are lifted with a constant pressure of 20 psi. Note

that in these trials, CPLA enables local shape reconfiguration of the actuators for the execution of

different grasping modes.

(a) (b) (c) (d) (e)

Figure 2.10: Grasping of multiple objects using different grasping modes. A plastic container
was grasped using (a) scooping, (b) pinching, and (c) parallel grabbing. Additional tests were
conducted for grasping (d) a plushy mini football, and (e) a cup filled with candies.
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In order to evaluate the payload capacity of the SPA integrated with CPLA, several weights

are placed inside a plastic container, which is held by a single finger. The masses range from 50

g to 500 g (Figure 2.11), and the total carried weight is increased in increments of 50 g. The tests

are performed for a minimum of 50 g and a maximum of 800 g. Two different SPA states are

considered for evaluating the finger strength: pressurized and unpressurized. For the pressurized

case, a constant pressure of 22 psi is applied to the SPA inner chambers, and all hinges are active

(12 V input) throughout the entire experiment. On the other hand, for the unpressurized case,

the SPA is initially supplied with 24 psi pressure, while having all hinges activated, and then the

positive pressure is removed (slow decrease down to atmospheric pressure) after the voltage input

is turned off and the CPLA layer is completely cooled to room temperature. As shown in Figure

19, for both states, the soft finger is able to withstand the maximum payload of 800 g without

causing any device failure or dropping the weights. The ability to hold shape and carry weight

without pressure and electrical inputs (and thus no power consumption) is particularly significant

for applications that involve holding given postures for long periods of time.

Figure 2.11: Metallic weights (50 g - 500 g) used during the single-finger holding experiment.
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(a) (b) (c) (d)

Figure 2.12: Testing load capacity of the SPA integrated with CPLA. A single-finger SPA-CPLA
holding (a) a minimum weight of 50 g, and (b) a maximum of 800 g at 22 psi (inner chambers) and
12 V input at all hinges. Load-carrying tests without pressure input (and hinge voltage inputs off):
(c) under a load of 50 g without pressure and electrical inputs, (d) under a load of 800 g without
pressure and electrical inputs.
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Chapter 3

Fabrication, Characterization and

Integration of CNT-based Flexible Sensors

3.1 Screen-Printing-based Sensor Fabrication

As the first step towards proprioceptive feedback in SPAs, we investigated new methods for achiev-

ing flexible sensors that can detect strains along a soft actuator bottom layer [69]. In Figure 3.1, we

demonstrate how a CNT-based sensor array can be fabricated through simple steps. This design

allows the creation of customizable flexible sensors without geometric constraints.

An array of CNT-based strain gauges was fabricated using a screen-printing process. A poly-

imide film (Kapton, DuPont) was used for designing the pattern of the sensor array and circuit

traces. In the first mask, we cut three equally spaced rectangles (10 × 2 mm) corresponding to

the areas for the distributed sensor array along the device structure. A second mask was created to

assist in the application of the trace material, with each sensor connected to two traces on its ends.

The material used for the sensor substrate was polydimethylsiloxane (PDMS) (Sylgard184, Dow

Corning) with a 10:1 base and agent mix ratio. The substrate (≈2 mm thickness) was fabricated

using two heat-resistant borosilicate glass sheets (150 × 150 mm) clamped together and heated

over a hotplate for 10 min at 150 ◦C. A polyester film was adhered to the inner surface of each
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glass sheet to help in the removal of the PDMS substrate without causing any tear or wrinkles. The

size and shape of the spacer material directly affect the substrate uniformity. In this procedure, we

have used microscope slides with identical width and length to separate the glass sheets at opposite

edges. After fabrication, the substrate was cut in a rectangular shape (120 × 25 mm) and treated

with electric discharge to convert it to a less hydrophobic surface (wetting). The substrate and

the first mask were attached together to allow the application of the sensor material (Figure 3.1a).

A single walled CNT (SWCNT) conductive ink, 1 mg/mL CNTs (VC101, Chasm Technologies),

was applied over the polyimide film (Figure 3.1b), allowing the deposition of the SWCNTs on the

PDMS substrate only through the small cuts. Small variations on ink dispersion can cause devia-

tion in sensing characteristics. A spatula was used to level the CNT paste even with the polyimide

film to obtain an ideal dispersion at each sensor location. The substrate was once again heated (60

◦C) in order to ensure adhesion between both materials. Once dried, the second mask was attached

to the substrate (Figure 3.1c). AgNWs in water (AgNwL50H2O, ACS Material), with 50 nm of

diameter and 200 um of length, was applied through the open cuts using a pipette (see Figure 3.1d).

The traces were dried at 60 ◦C for 1 h. As shown in Figure 3.1e, thin copper wires were attached to

the endpoints of each trace by fixing them with a silver paste, 60% Ag (PELCO Colloidal Silver,

Ted Pella). A second layer of uncured PDMS was applied to the top face of the sensor array to

encapsulate the device (Figure 3.1f).
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Figure 3.1: Fabrication steps of the flexible CNT-based sensor array: (a) the sensor mask is at-
tached to the polymeric substrate; (b) the CNT conductive ink is applied over the mask surface
to create the distributed strain sensors; (c) the trace mask is attached to the substrate; (d) AgNW
solution is applied through the mask gaps using a pipette; (e) thin copper wires are attached to
the endpoint of each trace with a silver paste; (f) encapsulation of the device with PDMS; (g) and
bonding of SPA and sensor array with uncured silicone.

As an example, the sensor array was fabricated with three strain gauges which are referred to

as S1, S2, and S3, in this work, with S1, being closest to the air inlet, and S3, being close to the

distal end of the actuator. The flexible sensor array was characterized and bonded to the bottom

surface of the soft actuator using uncured PDMS (Figure 3.1g). The fabricated devices are shown

in Figure 3.2.
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(a) (b)

Figure 3.2: The fabricated CNT-based sensor array. (a) Sensor array device, and (b) a SPA with
integrated sensors.

3.2 Sensor Array Measurement and Characterization

The CNT conductive ink has a mesh-like nanostructure which can change its electronic character-

istics when subjected to extension or compression. When there is a voltage between both ends of

an individual CNT-based sensor, the latter behaves as a variable resistor that changes its resistance

value during mechanical deformation. A voltage divider circuit can be used to measure the voltage

across the flexible strain gauge sensor and thus its resistance value. By using Ohm’s Law, we have:

Vs = Is ×Rs (3.1)

Is =
Vi

Rref + Rs

(3.2)

where Vi, Vs are the input voltage and the voltage across the sensor, respectively, Is is the current

going through the sensor, and Rs and Rref are the sensor resistance and the reference resistance,

respectively. By combining (3.1) and (3.2), we can get,

Rs =
Rref

Vi/Vs − 1
(3.3)

The resistance Rref is selected based on the minimum and maximum resistance values obtained
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from each individual sensor (denoted as Rs,min and Rs,max, respectively). This relation can be

expressed as:

Rref ≈
√

Rs,min ×Rs,max (3.4)

In order to associate the change in resistance with the amount of strain applied at a sensor

position, multiple measurements of the resistance are recorded as the substrate is subjected to

different values of strain. The axial strain formula is given by:

ε =
∆Ls

Lso

=
Ls − Lso

Lso

(3.5)

where Lso and Ls are the nominal (untensioned) length and the current length of the sensor array,

respectively.

The fabricated CNT-based sensor array was placed on a programmable stretching device with

both ends clamped (80 mm active length). A loading cycle of ≈10 s (stretch and release) was

performed for 60 min for the initial conditioning step of the device (Figure 3.3). The sensor array

was subjected to a stretch of 5% (Ls = 84 mm). This is an important process for stabilizing the

microscale structural change of the nanomaterials. The conditioning phase was performed until

the device achieved rersible and stable electrical signals for a desired range of strain. Although the

sensor array had reached its stability margin after 60 min, the stretching cycle was run up to ≈180

min to ensure measurement repeatability. A data acquisition equipment was used in combination

with an integrated dataflow software (LabVIEW, National Instruments) for collecting the change

in resistance of each strain sensor.

31



Figure 3.3: Continuous measurement of the resistance change in S1 during conditioning phase.
The depicted lines show the difference in the maximum range of the sensor at initial step and after
three time frames: 10, 30, and 60 min of loading cycle.

After the conditioning step, each individual sensor was measured in a sequence. In Figure 3.4,

we show a short sample of the collected data from sensors S1 to S3 after 96 min of stretching.

Each strain gauge experienced different ranges of resistance change since the concentration of the

CNT material and the thickness along the substrate can directly affect their measurement range.

The sensors fabricated in this work were tested only for stretches below 10%. A larger strain

value could increase the number of cracks in the sensors, causing malfunction and unreliable mea-

surements. Other design options that alleviate mechanical stress such as a horseshoe-shape would

allow sensor functionality for larger stretches.
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Figure 3.4: Sensor array measurements after initial conditioning: (a) the amount of strain applied
in the continuous stretch and release test, (b) and the relative change in resistance (∆R/R) for
sensors S1, S2, and S3.

Based on the data collected from the stretching process, we obtained the resistance-strain re-

lation (gauge factor) for each individual CNT-based sensor (Figure 3.5). As is observed, all three

sensors achieve a saturation level at a certain strain value. Since the CNT bundles change their

arrangement when the substrate is under strain, the conductive path within the nanomaterial is

modified. The change in each sensor’s shape during stretching can also contribute to a saturated

strain behavior. For small strain values, the gauge factor of each strain gauge is defined as:

GF =
∆R/R

ε
=

∆Rs/Rso

∆Ls/Lso

=
∆RsLso

Rso(Ls − Lso)
(3.6)
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Figure 3.5: Gauge factor of each strain gauge. (a) Strain and ∆R/R relationship based on different
sets of data (with mean lines) obtained through the cyclic stretching of the sensor array substrate,
and (b) the standard deviation of ∆R/R from the measured samples.

3.3 Soft Actuator with Integrated Sensors Testing

The performance of the integrated soft actuator-sensor was evaluated in experiments. In this pro-

cedure, the sensor S2 was not included since the process of embedding the sensor array substrate

with the SPA caused a malfunction of this sensor. A pressure gauge sensor (ASDX Series, Honey-

well) was used for detecting the inner pressure of the soft pneumatic actuator during the bending

motion. The soft actuator inlet was connected to a 12VDC miniature air compressor (Pmax = 28

psi) through a polyurethane tubing. During this test, we measured the resistance change of S1

and S3. When the sensor array was combined with the soft actuator, the minimum and maximum

resistance values were changed due to the contribution of residual strain from the soft structure.

By measuring Rs1 and Rs3 with a multimeter during the actuator inflation, we registered the new

values as: Rs1,min ≈ 1.3 kΩ and Rs1,max ≈ 2.7 kΩ; Rs3,min and 1.8 kΩ and Rs3,max ≈ 3.6 kΩ.

From (3.4), we obtained the value for the reference resistors as Rref,s1 ≈ 1.8 kΩ, Rref,s3 ≈ 2.4 kΩ,
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and a series circuit was built using trim potentiometers.

The sensor outputs (pressure and strain gauges) were sent to a microcontroller (Mega 2560,

Arduino), which was connected to a computer using USB interface for communication with the

data acquisition software. All measurements were obtained with a sampling time of 25 ms, and

a solenoid valve connected to an air pump was controlled using pulse-modulation width (PWM)

at 50 Hz. As shown in Figure 3.6a, the fabricated soft actuator achieved 90◦ bending angle with

an internal pressure of 60 kPa (≈8.7 psi), which is close to the FEM simulation results. The

curvature of the soft actuator inner radius was captured with a digital camera, recording individual

frames that correspond to a constant pressure value. The percentage of the PWM duty cycle was

computed by a PID function within LabVIEW, with the process variable being the median of the

pressure sensor output after thirty measurements. Various setpoints were tested with the control

system, and the respective resistance values in each strain gauge were captured, as shown in Figure

3.6b.

Figure 3.6: The sequence of images of the SPA with embedded CNT-based sensors, showing the
curvature and sensor values at different applied pressures. (a) Captured images during activation
of the SPA, and (b) the strain gauge array measurement at various constant pressure setpoints.

The SPA can be applied in several tasks such as reaching, grasping and touching. In order
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to have an accurate estimation about the actuator position or curvature, the sensor array must be

able to capture the deformation during motion. In Figure 3.7a, b, we show the measurements of

the difference in the sensor output response (hysteresis) during inflation (loading) and deflation

(unloading), with a range of pressure setpoints varying every 0.8 ms. The total operating time is

16 s, with the setpoint increasing from 0 to 60 kPa, and vice versa (Figure 3.7c).

Figure 3.7: Pressure and resistance relationship for the fabricated SPA with embedded sensor array.
The variation in resistance (with meanlines) for both inflation (loading) and deflation (unloading)
steps are shown for sensors S1 (a) and S3 (b), when the pressure setpoint was varying from 0 to 60
kPa. (c) A sequence of frames showing the actuation steps and the curvature of the SPA.

With the gauge factor obtained during the sensor array characterization process, we estimated

the amount of strain in the SPA at different curvatures. The actual curvature of the SPA was

measured from the captured image frames during bending. An image processing software (Vision
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Assistant, National Instruments) was used to measure the SPA inner radius of curvature for each

pressure setpoint. The arc length of a specific bending shape was measured and inserted in (3.5)

(with Lso = 100 mm) to find its correspondent axial strain value. In Figure 3.8, we compare

both sensor and actual measurements when the curvature increases. These results agree with the

compression observed in the bottom layer of the SPA during positive pressure.

Figure 3.8: The relationship between strain and curvature of the SPA based on the range of resis-
tance values captured by the sensor array. The actual value represents the measured curvature from
the SPA inner radius.

By integrating multiple strain gauges along the soft actuator structure, the sensor array can pro-

vide angular measurement, contact detection or proprioceptive sensing for a soft robotic system.

The distributed measurements allow estimation of the actuator deformation and the locations and

forces of interactions between the actuator and foreign objects. Since the sensors are fabricated

through screen printing process, customization can be applied according to the soft actuator geom-

etry and strain directions of interest. In addition, the number of strain sensors and their position

can be optimally chosen based on the regions which experience large deformations. The sensor

array design presents some constraints regarding the number of sensors that can be fabricated in

a single substrate. Since the trace width can affect the sensor reading, reducing its dimension to

increase the amount of strain gauges can impact the reliability of the sensor measurement. In-
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creasing the thickness of each trace may allow the design of thinner features, but this process was

not investigated in this current work. The manual fabrication method applied in this work brings

challenges for achieving a uniform substrate thickness and CNT ink dispersion. Automated mass

production ultraviolet (UV) curing and screen-printing processes could reduce the uncertainties

and issues identified in the investigated method.
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Chapter 4

3D-Printing of Liquid Metal-Based

Stretchable Conductors and Pressure

Sensors

4.1 Microfluidic Structure Design and Fabrication

4.1.1 Conventional Fabrication Methods

Traditionally, microchannel structures for sensing devices are fabricated using labor-intensive and

cumbersome methods. The literature in its majority has reported microchannel-based sensors by

following fabrication techniques such as laser micromachining to create molds [83], vapor deposi-

tion of hydrophobic monolayers for easy demolding [84], spin coating of PDMS to create thin elas-

tomer films [85], cross-linking of silicones through oven-curing [86], and oxygen plasma treatment

to construct the microchannel cavities [87]. A liquid metal-based soft artificial skin was created

using silicone casting over a 3D-printed mold [88]. Besides many additional fabrication steps, the

silicone curing process took more than three hours. Curvature sensors with microchannels filled

with EGaIn can be produced using a combination of photolithography and replica moldin [89].

However, the entire fabrication process including vapor deposition, silicone cross-linking, oxy-
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gen plasma treatment, and elastomer film bonding is approximately four hours long. Furthermore,

PDMS microchannel tiles in devices tailored to laser axotomy and long-term microelectrode arrays

(MEA) can take more than two days for fabrication when using soft lithography procedures [90].

In addition, a broad range of approaches for the application of 3D printing technology to rapidly

prototype microchannel structures have been explored, accelerating the research and development

of microfluidic sensors and devices [91][92]. On the other hand, some rapid manufacturing tech-

niques such as using polyethylene glycol (PEG) as a sacrificial layer through ink-jet printing re-

quired a 10-hour long curing process of the PDMS-based substrate [93]. Modified photocurable

materials have also been explored for 3D-printing of soft pressure sensors, but a custom-built print-

ing system is required to develop these devices [94]. These previously reported methods present

some disadvantages and challenges such as time-consuming procedures, limited materials selec-

tion, removal of the sacrificial layer, and microchannel device replication. Consequently, there is a

demand for new manufacturing techniques to address these issues.

4.1.2 Microchannel 3D-Printing

The fabrication of the microfluidic structure for the pressure sensing device was inspired based on

the technique presented in [95]. This previous study conducted investigation on 3D-printing en-

closed microfluidic channels without photocurable supports in rigid materials. The method utilizes

a viscous liquid support instead, requiring minimal to no postprocessing to form sealed chan-

nels. In this work, we sought to improve this method by exploring it on soft substrates in order

to achieve flexible and stretchable 3D-printable microchannel-based conductors and sensors. A

PolyJet-based 3D-printer (J750, Stratasys) and a UV-cured resin with post-cured rubber-like prop-

erties (Agilus30, Stratasys) were used to create the microchannel cavities. This fabrication process

followed a three-step procedure: 3D-printing of the bottom substrate containing open microchan-

nel cavities, filling the microchannel cavities with liquid support material, followed by 3D-printing

a top-substrate directly onto the bottom substrate to close the microchannels. These steps can be

repeated several times depending on the number of microchannel or substrate layers.
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Traditionally, 3D-printing of devices with enclosed hollow channels requires initially printing

the channel so that it is filled with a sacrificial photocurable support material. This material is then

manually removed in post-processing, a procedure that can take hours to days, and it is impossible

to remove from small channels with complex geometries (spirals or serpentines). The method used

here allows fabrication of channels without any photocurable support material. The 3D geome-

try design for the microfluidic soft substrate was separated in two parts: a bottom layer with the

microchannel cavities, and a top flat layer with holes in each end of the microchannel for remov-

ing the liquid support material. This design process can be easily stacked, although we did not

investigate sensor designs with these characteristics in this current work. First, the soft substrate

bottom layer was 3D-printed over a transparency film (Premium Transparency, Xerox) to facilitate

the final substrate removal from the 3D-printer bed. Next, once the bottom layer printing process

was finalized, a liquid sacrificial layer, composed of glycerol (Glycerol 99.5%, Sigma-Aldrich)

and isopropanol (2-Propanol 99.5%, Sigma-Aldrich) mixture (70:30 v:v), was manually dispersed

over the microchannel cavities using an 1 ml plastic syringe. A small flexible spatula was used

to distribute the mixture evenly throughout the exposed microchannels. In addition, during the

liquid dispersion phase, the top layer printing process was already initialized, with the 3D-printer

head performing automatic calibration outside the print bed for 30 seconds. This is an important

process to avoid beading of the liquid support material between each layer, which could lead to

clogging or irregular cavities. The entire printing process, including manual liquid dispersion,

took approximately 6 minutes. This method was tested for fabricating up to 6 sensor substrates

simultaneously.

As an initial investigation, we first created a 3D CAD model of a substrate with 2 mm over-

all thickness and multiple straight microchannels (SolidWorks, Dassault Systemes) to determine

the minimum cavity cross-section height and width for 3D-printing microchannels into a soft ma-

terial. We selected several dimensions based on reported results from literature regarding liquid

conductor-based sensors [96][97]. The width of the straight microchannels had a range from 300

µm down to 100 µm, and a height range from 200 µm down to 100 µm. As shown in Figure
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4.1, the smallest achievable microchannel had 150 µm × 150 µm cross-section, with applicable

microfluidics in a soft substrate.

Figure 4.1: 3D-printed straight microchannels over a soft substrate (Agilus30) with 2 mm overall
thickness. The minimum microchannel cross-section size identified was of 150 µm × 150 µm
(height/width).

4.1.3 Pressure Sensor Design Parameters

A microfluidic pressure sensor was developed by designing spiral-shaped microchannels into a

soft substrate. This makes the sensor suitable for pressure detection, since it will not respond to

uniaxial stretches due to counter-balanced electrical resistance change in perpendicular directions

[86]. Although it was found that the minimal microchannel size for the fabrication technique in this

work is 150 µm × 150 µm, this dimension prevents the removal of the glycerol/IPA mixture from

the inner cavities when designed as a spiral. We have identified that microchannel cross-section

sizes higher than 350 µm × 350 µm are better suited for this type of sensor design (Figure 4.2).

The pressure sensor was designed with a 1.5 mm thickness substrate (30 mm × 25 mm rect-

angular shape), and the spiral microchannel was centered at the middle. The microchannel design
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was comprised of a 3-turn spiral (inwards and outwards) and 1.3 mm spacing between channels,

with a total sensor active area of 20 mm in diameter. A mix ratio of 70A durometer between Ag-

ilus30 and VeroClear materials was selected in order to balance the sensor compliance. Since the

bottom layer and cavity structure all combined had a total height of 925 µm, a very thin upper layer

(575 µm) enabled fast sensor production. The complete fabrication process is explained in Figure

4.3.

Figure 4.2: 3D-printed microfluidic spiral-shaped soft pressure sensor with embedded liquid metal
(EGaIn).
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Figure 4.3: Design and fabrication steps of the 3D-printed pressure sensor embedded with LM. (a)
The sensor components: a bottom layer made of pure Agilus30, a top layer made of Agilus30 and
VeroClear mixture (70A Shore Hardness), a microchannel structure for filling with liquid metal
(EGaIn), and two end terminals encapsulated with conductive epoxy; the fabrication steps were:
(b) 3D-printing of the bottom layer with microchannel cavities of cross-section size 350 × 350 µm,
(c) manual dispersion of the glycerol-IPA mixture, (d) 3D-printing of the top layer with outlets at
each end, (e) vacuum-based removal of liquid sacrificial layer, (f) manual injection of EGaIn, and
(g) encapsulation of both terminals and soldering of copper stranded wires with conductive epoxy.
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4.1.4 Liquid Metal Embedding and Encapsulation

The microfluidic electronics in this study are fabricated using EGaIn, which has a high electrical

conductivity (σ = 3.4× 106S m−1), a resistivity of ρ = 29.4× 10−8 Ω m−1, and low toxicity [98].

After completion of the 3D-printing process for the substrate, a small tubing connected to a vacuum

pump was inserted into one of the microchannel ports to extract the glycerol mixture. The removal

process only takes approximately 3 to 5 seconds for each device. Once all the liquid support was

removed, a 1 mL syringe with 22 gauge needle (0.70 mm) was used to inject the liquid-phase alloy

(EGaIn, Sigma-Aldrich), composed of ≥99.9% trace metal basis, inside the microchannel cavities

(Figure 4.3f).

Uncured Agilus30 was initially used to encapsulate the open microchannel ports which were

connected to thin copper wires. However, as it was reported in previous works [89], motion of

the wires interfacing the LM in the microchannels with multimeter probes causes scattering during

pressure testing. Therefore, we have explored an alternative method by sealing the microchannel

ports with conductive epoxy (8331 Silver Conductive Epoxy Adhesive, MG Chemicals), and then

gluing thick braided copper wires to each electrode with the same adhesive. To expedite the man-

ufacturing procedure, a hot plate was used to speed up the adhesive curing process to 10 minutes

at 70◦C. This allowed a great interface between soft and hard conductive materials.

4.2 Pressure Sensor FEM Simulation

Finite elements analysis (FEA) of the 3D-printed soft pressure sensor device was carried out using

a multiphysics software (Abaqus/CAE, Dassault Systemes). The simulation was conducted to un-

derstand the range of compressive strains experienced by the sensor, which will be instrumental in

deriving the gauge factor of the sensor when the latter is treated as a strain gauge sensor. A simple

geometry representing the sensor substrate was created following the same physical dimensions.

In this study, to facilitate computation, we have considered the microchannel cavities and the liq-

uid metal as solid but soft materials with similar properties as the substrate. The material property
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was set as Agilus30 using the Odgen hyperelastic model (Table A1) with parameters µ1 = 0.2127

MPa, α1 = 1.3212, µ2 = 0.0375 MPa, α2 = 4.318, µ3 = 0.001, α3 = 1.0248 which were determined

in previous work [99]. A quasi-static uniaxial strain was simulated by applying a pressure input

of up to 1 MPa with increments of 0.1 MPa per step. The sensor substrate was meshed with 280

quadratic hexahedral elements and 2058 nodes (C3D20RH). A fixed boundary condition was set

on the bottom surface of the sensor to prevent planar rotation and displacement. The pressure

on the top surface was defined by circle with a diameter of 16 mm centered at the sensor active

area in order to replicate the experimental setup. Figure 4.4 shows the obtained contour plots for

von-Mises stress, displacement and logarithmic strain along the load axis. The average strain was

computed among all nodes inside the applied pressure region (Figure 4.5).

Figure 4.4: Contour plots of the simulated soft pressure sensor for an applied pressure of 1 MPa.
(a) Substrate geometry meshed with hexahedral elements of type C3D20RH; (b) cut-view of the
von Mises stress; (c) spatial displacement at z-direction; (d) logarithmic strain at z-direction.
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Figure 4.5: Pressure versus strain plot obtained from the FEA simulation results. The strain values
correspond to the average strain among all nodes inside the applied load region (172 nodes).

4.3 Experimental Setup, Sensor Measurements and Modeling

4.3.1 Experimental Setup

A force testing device was built for conditioning and characterizing the microfluidic pressure sen-

sors. We used a pneumatic cylinder (1.06DPSR02.0, Parker Hannifin) with a bore diameter of

1.0625 inches (≈27 mm) and rod diameter of 0.3125 inches (≈8 mm) and mounted to a rigid

frame in a vertical position. A custom-built metallic force concentrator (6061 Aluminum) of 16

mm in diameter (80% of sensor active area) was threaded to its rod end in order to distribute the
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applied pressure over the sensor top surface. The sensors were adhered to a flat surface under the

air cylinder rod end, while keeping it concentric to the microchannel spiral shape (Figure 4.6).

A miniaturized pneumatic controller board was used to control the pressure of a compressed air

pipeline source. The wall outlet maximum pressure was set to 80 psi with a pneumatic filter regu-

lator. The air pressure at the pneumatic cylinder was controlled by a solenoid valve (VQ110U-6M,

SMC USA) connected to a MOSFET switch, which was modulated via a programmable micro-

controller (Arduino Mega 2560, Arduino) using a PID controller algorithm for pressure setpoint

tracking. Sensor measurements were collected using a voltage divider circuit (Rref = 47Ω) and

connected to the same programming board using its analog-to-digital converter pins with the de-

fault internal voltage of 5 V. Two insulated copper test leads with alligator clips were used to

connect the pressure sensor terminals to the voltage divider circuit. All sensor data was recorded

via serial communication using a Python script running on a workstation computer during both

conditioning and characterization procedures. The total pressure at the sensor top surface, Psurf ,

was determined by

Psurf =
Pgauge × Abore

Apuck

=
Frod

2.01 × 10−4m2
(4.1)

where Pgauge is the total pressure inside the air cylinder, Abore is the bore area, Apuck is the area of

the force concentrator, and Frod is the force generated at the rod.
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Figure 4.6: Test rig for measuring and characterizing the 3D-printed pressure sensors. A vertically
mounted fluidic cylinder with custom-built force concentrator (16 mm diameter) and controlled by
a pneumatic power source.

4.3.2 Pressure Sensor Response

The relative change in electrical resistance of the 3D-printed microchannel filled with liquid con-

ductor, ∆R/R, was recorded as a function of the generated pressure at the force concentrator,

Psurf . The sensor response was first evaluated by applying a step signal of 30 psi at the gauge

(Psurf = 0.6 MPa). The obtained experimental result shows that the sensor can quickly respond to

the pressure input, but then takes about 500 seconds to reach the steady-state, with ∆R/R ≈ 7.2

as shown in Figure 4.7. This observed creep can be partly explained by the viscoelasticity of the

3D-printed resin material as discussed in [100].
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Figure 4.7: Step response collected from the pressure sensor for a constant input of 0.6 MPa. The
top graph shows the input pressure and the bottom graph shows the measured relative change in
resistance.

Further computational study was performed to identify a model with these intrinsic character-

istics. The sensor data obtained during the step response experiment was imported in a software

(MATLAB, Mathworks) to estimate a transfer function model. Equation 4.2 shows the estimated

transfer function model from the time-domain data with a fit to estimated data of 93.23% and rep-

resented as a second order system with two poles and one zero. In Figure 4.8, we can observe a

comparison between the experimental data and obtained transfer function step responses. The step

response characteristics of the identified model were a rise time tr = 150 seconds, a settling time

ts = 272 seconds, and a peak time tp = 512 seconds.
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G(s) =
∆R/R

Psurf

=
1.406s+ 0.07097

s2 + 0.4516s+ 0.005858
(4.2)

Figure 4.8: Comparison of a step response for both the experimental data and the obtained transfer
function through model fitting.

To analyze the sensor response at multiple frequencies, a sinusoidal wave was generated with

frequency fs = 0.1 Hz, 0.25 Hz, 0.5 Hz and 1 Hz, bias of 30 psi and amplitude of 20 psi at the

gauge (0.2 MPa < Psurf < 0.977 MPa). Figure 4.9 shows the relative change in resistance when

this cyclic signal was applied for a period of 2000 seconds at each frequency value. A mean curve

shows the average values of ∆R/R computed at each respective Ts cycle. A close view of each

measurement is shown in Figure 4.10. The particular creep phenomenon is still observed under he
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cylic inputs, and the time it takes the mean curve to reach the steady state is comparable to the case

of a quasi-static input (Figure 4.7). The sensor output versus pressure graphs on Figure 4.11 were

generated by capturing the relative change in resistance after the sensor has reached its steady-state

regime (> 1000 seconds).

Although the electrical characteristics of the sensor have not been investigated during the sim-

ulation analysis, the resistance of the sensor output was collected at different pressure values for

further correlational study between simulation and experimental results. In order to measure the

sensor resistance close to steady-state regime at multiple pressures, a staircase pressure signal with

increment size of 0.1 MPa and duration of 2000 seconds per step was applied to the control board.

An average value for the relative change in resistance at each pressure step was computed for a

range of 100 points along the steady-state regime (Figure 4.12). By combining the simulation

results from Figure 4.5 with the experimental results from Figure 4.12, we have achieved a corre-

lation between the pressure sensor average strain inside the load region and the observed relative

change in resistance for a given applied pressure value (Figure 4.13).
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Figure 4.9: The pressure sensor output under sinusoidal sensor input with range from 0.2 to 0.977
MPa, with four different frequencies (0.1 Hz, 0.25 Hz, 0.5 Hz, and 1 Hz). The dashed lines show
the mean curve of the continuous measurements.
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Figure 4.10: Sinusoidal response for multiple input frequencies (frame view of 20 seconds). Each
measurement was collected for >2000 seconds at 0.1 Hz, 0.25 Hz, 0.5 Hz, and 1 Hz, with a
pressure range of 0.2 MPa to 0.977 MPa.
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Figure 4.11: Graph for each sinusoidal input frequency after reaching the steady-state.
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Figure 4.12: The relative change in resistance versus the pressure input for a staircase input signal.
The average value of ∆R/R was computed for a range of 100 points along the steady-state regime,
with a pressure input from 0 to 1 MPa, increment size of 0.1 MPa, and duration of 2000 seconds
per step.
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Figure 4.13: The correlation between the computed average strain from FEA simulation at the
sensor active area and the relative change in resistance measured from the physical pressure sensor
device.

4.3.3 Further Discussions

Dispersion of the liquid sacrificial material is still a challenge process in the fabrication technique

presented here, since accidental formation of beads can cause clogging or irregular structure design

of the microfluidic channels. Moreover, the manual removal of the liquid support material through

suction with a vacuum pump, and the manual injection of liquid metal using syringes have varied

fabrication time due to non-uniform tool manipulation and material handling. A way to improve

our fabrication method would be to make these procedures automated by the same 3D-printing

mechanism.
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The intrinsic viscoelasticy of the rubber-like photocurable material has shown some impact on

the soft pressure sensor response time, taking up to 500 seconds for the sensor to reach a steady-

state regime. Additional investigations on substrates made of different mixing ratios between soft

and rigid 3D-printable photopolymers and overall thicknesses are required in order to analyze their

impact on the sensor performance.

Encapsulation of the pressure sensor inlets was performed by using silver epoxy as an interface

between the liquid conductor and copper stranded wires. Other methods have been tested initially

such as deposition of uncured Agilus30 on the sensor terminals with thin copper wires attached at

each end, and curing process using UV-light flashlight. However, poor quality deposition or curing

caused leakage of the liquid metal when subjecting the sensor to very high pressure values. 3D-

printing of an encapsulation layer has also been tested, but the attached thin wires and the liquid

metal exposed surface made it a challenging process due to blockage or undesired contamination

of the printer head. Although the selected silver epoxy showed great adhesion and encapsulation

properties, further study is needed to analyze its effect on the sensor characteristics. Also, the

surface oxide skin on a liquid metal can affect the effective surface tension and viscosity (non-

spherical droplets formation), which can reduce its contact with other materials and potentially

impacting its electrical properties.
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Chapter 5

Computational Evolution of Control and

Tactile Perception for Soft Robots

5.1 Evolutionary Robotics with Soft Robots

Although many studies can be performed within a simulated world about robots with evolved con-

trol systems or morphologies, an evolved AI model can potentially be transferred to a real-world

robot to improve its physical functionalities. The limitations of a virtual environment used in the

evolution of robot controllers and body-plans are determined by the simulator capabilities. A real-

world robot with multiple degrees of freedom that will interact with different objects or obstacles

on its workspace requires a simulator that can compute a large number of variables in order to

closely represent the characteristics of the world around it. Physics engines are commonly used in

evolutionary systems since they provide a collection of libraries that can perform real-time com-

putation of rigid body kinematics/dynamics, collision detection, mass-spring systems, and fluid

mechanics in 2D and 3D spaces [101]. As an example, one study approach uses a physics en-

gine (Nvidias PhysX) to coevolve the material properties and locomotive gaits of complex soft

bodies built out of tetrahedral meshes [102]. In addition, evolving soft robots with multiple ma-

terials and generative encoding such a compositional pattern-producing network (CPPN) can lead
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to soft-voxel based systems (VoxCAD) with a large diversity of complex, natural, multi-material

creatures [58][60][103]. Results have shown that this evolutionary process can generate soft robots

with different morphologies and gaits, squishy creatures that can reach or squeeze through tight

apertures, and multiple locomotion strategies for space-exploration. An investigation using Covari-

ance Matrix Adaptation Evolutionary Strategy (CMA-ES) demonstrated that evolving controllers

for a knifefish-inspired soft robot is feasible directly on the physical robot, which was able to out-

perform a hand-designed controller in terms of robot travel speed [104]. Since soft robotics is still

a growing field, new simulation techniques are being developed to overcome some of the ongoing

challenges in real-time computation of soft actuation and sensing mechanisms.

An open-source simulator with multi-model representation shows great potential for simulat-

ing soft robots and their interactions with the outside world. The Simulation Open Framework

Architecture (SOFA) is a computational library primarily targeted for simulating tissues, muscles,

organs, and bones in medical applications [105]. Since programming the interaction of rigid and

deformable materials requires various techniques in geometric modeling, computation mechanics,

numerical analysis, collision detection, and rendering, the SOFA architecture was built based on

a highly modular framework that facilitates collaboration between researchers while being able to

focus on a certain domain of expertise. Each simulated object can be decomposed into multiple

subcomponents describing the model features such as mesh topology, mass, forces, integration

scheme, and constraints, in a scene graph data structure. In particular, a new method was stud-

ied to control soft robots for object manipulation or rolling motion using finite element method

(FEM), friction contacts, and quadratic program with complementarity constraints in SOFA [106].

Moreover, a geometric computing framework which predicts the deformation of continuum soft

bodies under geometric actuations can be tested both in physical and simulated robots, allowing

relationship studies between material properties and shape parameters [107]. The development of

an efficient soft-hand simulator based in SOFA enabled the feasibility study of co-designing mor-

phology of soft hands and their control strategies for grasping, with computation time fast enough

to simulate more than a million grasps per day [108].
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As an initial step towards the evolution of controllers for soft robots, we explored the integra-

tion of standard neural networks (ANN, RNN) with the SOFA platform for computing the desired

behavior of a SPA in a specific task space (curvature, positioning, or grasping). Neural networks

can be described as mathematical models defining a function, or depending on its structure size

(number of layers), a composite function with many subfunctions within it. Some components of

a neural network are neurons, connections, weights, biases, and activation functions. The structure

of a given neural network can be computationally evolved using genetic algorithms. Since the

mathematical modeling of soft robots presents difficulty at many levels (nonlinear material prop-

erties, parameter uncertainties), and it is a crucial process for designing controllers in robotics,

a neural network can potentially be used for converging a simulated soft-bodied robot to a tar-

geted behavior. In one study, a type of recurrent neural network called a long short-term memory

(LSTM) network was used for learning the time series mapping of redundant and unstructured

sensor topology embedded in a soft actuator, enabling the modeling of a soft continuum actuator

in real time while being robust to sensor nonlinearities and drift [109].

Robust object manipulation in unstructured environments is a challenging problem in robotics

due to the uncertainty associated with complex and unpredictable environments, and with object

shape and hardness. Conventional object grasping techniques involve prior knowledge of the robot

workspace such as 3D models of objects and manipulators, as well as their weight and friction

properties. These methods are limited to applications where the robotic hand model is known and

the object shape is well-defined or simplified by geometric primitives. Although rigid articulated

fingers can assist with predicting a specific grasping configuration, these mechanisms can be ex-

pensive to fabricate and control. In addition, they are not suitable for grasping and handling soft,

fragile objects. As an alternative, compliant robotic hands can be fabricated using soft materials,

allowing adaptivity when handling irregularly shaped or delicate objects, and increasing the toler-

ance with uncertainties in perception and actuation. However, specific configuration at a given time

is hard to know due to the hand compliance, requiring advanced internal sensing mechanisms and

novel sensory-motor interface models for soft robots. By training a three-dimensional deep con-
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volutional neural network (3D CNN) for grasping unknown objects with soft hands, a soft robotic

hand was able to estimate suitable grasp poses from multiple grasping directions and wrist orienta-

tions, with 87% successful grasping on previously unseen objects [21]. Proprioceptive capabilities

for soft robotic hands can be achieved by using a clustering algorithm for autonomous object

identification and force-controlled grasping with pose uncertainty [22]. However, this approach is

limited by constrained sensor designs and requires a camera in order to detect approximate object

locations.

In order to evolve controllers for soft robotic hands, which can potentially identify object hard-

ness or provide pose estimation for decision making tasks, it is necessary to use a model that can

facilitate the switching between multiple desired states. A Markov Brain (MB) can be used as the

substrate, where the robot controllers are networks built from individual computational compo-

nents [110]. These components interact with each other and the outside world and can be defined

as deterministic or probabilistic logic gates, thresholding functions, timers and counters. In addi-

tion, an MB is composed of a state buffer (state vector) where each element represents one node.

An MB update applies a set of computations defined by the MB components in this buffer. Mul-

tiple inputs can be written into a part of this buffer before the MB update, and outputs can be

retrieved from a subset of this buffer once an MB computation is completed. The state of an MB

can be changed much more easily, which makes MB a better approach for fine-grained behavior,

and well-suited for the integration of temporal information [111][112].

In this chapter, we have investigated the evolution of MBs using the Modular Agent Based

Evolver (MABE), which is a modular and reconfigurable digital evolution tool for biology and

engineering research [113]. Furthermore, multiple AI models such as ANNs, Cartesian Genetic

Programming (CGPs), and MBs have been evolved in MABE to properly classify the shape and

stiffness of grasped objects as well as the soft hand parameters. These artificial brains can po-

tentially be transferred to real-world soft robots to evaluate their task performance and facilitate

prototyping. Evolved controllers for a given coupled body-plan/actuation mechanism will con-

tribute to building more adaptive and resilient soft machines in the near future.
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5.2 Evolving Markov Brain Controllers for Robotic Grasping

This work involves the evolution of proprioceptive sensing-capable controllers for soft robotic

grippers using MBs for potential transferring the evolved controllers to real-world soft robots. We

first investigated the implementation of an FEM-based curvature feedback control of a SPA using

a PID controller and the SOFA simulator. The control algorithm runs in parallel with the FEM

simulation, which computes the soft actuator mesh deformation in relation to its chamber inner

pressure. The curvature is calculated with respect to the fixed-end and distal-end mesh nodes

(centerline) along the SPA bottom surface (inextensible layer). The PID gains for this experiment

were tuned based on trial and error. As shown in Figure 5.1, the desired SPA curvature is achieved

for the given setpoint value.

Figure 5.1: An FEM-based real-time curvature feedback control of a SPA. The results were
achieved using a PID controller and FEM-based simulation in SOFA with different material prop-
erties.

We have simulated multiple soft pneumatic grippers with different numbers of fingers using

the SOFT ROBOTS plugin (DEFROST Team, INRIA) for SOFA and manually controlled them

with a Human-Machine Interface (HMI) (see Figure 5.2a-d). All geometries have been simulated

with tetrahedron meshes using the TetrahedronFEMForceField component and contact detection
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and handling through the default collision pipeline. In addition, a Python script was developed to

control the soft gripper in real-time, varying the simulated internal pressure based on the feedback

from bending sensors embedded within a soft wearable glove. The sensor analog signals were

processed by a microcontroller (Arduino Uno Rev3, Arduino) and converted to grasping actions

via serial (USB) communication.

(a)

(b) (c) (d)

Figure 5.2: Soft robotic gripper manual control using Human-Machine Interface (HMI) with
SOFA. (a) A soft wearable glove with bending sensors connected to a microcontroller for pro-
cessing the analog signals, (b) soft gripper with three fingers in unactuated state; (b) soft fingers
touching an object with collision detection; (c) object being lifted by the soft gripper with pinching
grasping mode.

Even though external inputs from wearable devices were capable of controlling a simulated

soft robotic gripper in real-time, additional information from the simulation environment is re-

quired for achieving controllers with proprioceptive feedback. For achieving such a goal, we have

defined a classification task challenge for evolving artificial brains capable of determining different

conditions from the simulation environment. In order to detect an object shape and stiffness, force
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values on specified mesh nodes (see Figure 5.3) were measured at the soft pneumatic actuator tip

and saved to a spreadsheet file during each iteration. The simulation run time was set to 1.25 sec-

onds, with a timestep of 10 milliseconds and an increment size of 0.01 for total internal surface

pressure. The following values were recorded in the file: current simulation time, soft finger inter-

nal pressure value, and force values at XYZ directions for all three selected nodes. These 11 data

types were used as inputs for training artificial brains capable of performing a classification task.

Figure 5.3: Soft finger mesh node locations for probing force values during each iteration step in
the simulated workspace. The following mesh node numbers at the SPA tip were selected: 1, 30,
and 59.

The first approach was to test the classification of three distinct soft grasping characteristics:

object shape, object stiffness, and the number of contact fingers. In order to facilitate the evolu-

tionary process, we have constrained the problem to two different object shapes (cube or sphere),

three stiffness levels (soft, medium, or hard), and two types of contacts (one or two fingers). The

stiffness values for each simulated component are presented in Table A4. Figure 5.4 shows the soft

fingers interaction for a cube object, and the respective emulated force measurements are presented

in Figure ??. Similarly, Figure 5.6 shows the soft fingers interaction for a sphere object, and the

respective emulated force measurements are presented in Figure ??. We have used the Modular

Agent-Based Evolver (MABE) platform to evolve multiple artificial brains using different types
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of connecting logics such as standard ANNs, Markov Brains, and Cartesian Genetic Programming

(CGPs). The classification task was evolved offline, with all force measurements stored in spread-

sheets being loaded to the artificial brain for each evaluation case. The loaded files followed a

naming convention according to the simulated conditions (object type, numbers of fingers, and

object stiffness), with each condition represented by a bit value (Table A5). The number of input

neurons and output neurons were defined based on the number of data columns in a spreadsheet

(11 inputs) and the number of conditions (5 outputs), respectively. A scoring was set as 1 point for

each correct output, with a maximum of 5 points in classifying each case correctly. The maximum

fitness value achieved in a solution was defined as 120, where:

Maximum Fitness = 12 cases× 2 runs× 5 conditions = 120 (5.1)

Figure 5.4: Soft fingers at final simulation timestep (maximum inner chamber pressure) in contact
with a cubic object with different stiffness values. Single soft finger in contact with (a) soft, (b)
medium, and (c) hard cube. A dual soft finger gripper in contact with (d) soft, (e) medium, and (f)
hard cube.
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(a)

(b)

Figure 5.5: Force values (XYZ directions) at the SPA tip in contact with a cube. Probed mesh
nodes for a single finger and a dual finger gripper in contact with a soft (a-b), medium (c-d), and
hard (e-f) cubic object.
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Figure 5.5 (cont’d)

(c)

(d)
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Figure 5.5 (cont’d)

(e)

(f)
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Figure 5.6: Soft fingers at final simulation timestep (maximum inner chamber pressure) in contact
with a spherical object with different stiffness values. Single soft finger in contact with (a) soft, (b)
medium, and (c) hard sphere. A dual soft finger gripper in contact with (d) soft, (e) medium, and
(f) hard sphere.
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(a)

(b)

Figure 5.7: Force values (XYZ directions) at the SPA tip in contact with a sphere. Probed mesh
nodes for a single finger and a dual finger gripper in contact with a soft (a-b), medium (c-d), and
hard (e-f) spherical object.
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Figure 5.7 (cont’d)

(c)

(d)
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Figure 5.7 (cont’d)

(e)

(f)
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In this neuroevolution procedure, we have selected Tournament Selection method as the opti-

mizer type, with a tournament size of 25. As an initial test, we have defined a population size of

100 agents with all candidate solutions competing against each other for 1,000 generations. The

initial genome size was defined as 5,000, with a minimum size of 2,000 and maximum size 20,000.

Copy and deletion mutations had an insert rate of 0.00002 and the point mutation rate was set as

0.015 (select genome site and randomize its value). In MABE, the MBs were configured with 8

hidden nodes and a starting number of gates of 6. In addition, their internal gates were set as TRIT

types, where outputs can have values of 1, 0, or -1, and GP types, where outputs are continuous val-

ues generated via mathematical operations and functions. A custom-built world (interface between

brains and simulated states) was designed in MABE to import the spreadsheets corresponding to

each classification case and evaluate the entire population of agents (artificial brains). The evolu-

tionary process followed a sequence of iterations where brain inputs were mapped to world states

(spreadsheet lines), followed by brain updates (input buffer). After completing the file reading for

a specific case a score was calculated (output buffer). Once all files were evaluated, a final fitness

value was computed for the evolved artificial brain. Finally, genetic algorithm operations were

performed based on preset mutation rate parameters. A new sequence of evaluations was initiated

with a new population obtained from the Tournament Selection optimization process (Algorithm

1). The evolved solutions of 50 replicates were exported from MABE with computed scores of the

fittest individual in the population for every 10 generations.

Figure 5.8 shows the evolutionary progression for each brain output neuron (5 environment

conditions) in all 12 cases, with a 95% confidence against replicates. The evolved standard ANN

artificial brains have achieved the highest classification score for all conditions. Although the MB

classifiers have not reached higher scores than ANNs, some replicates have approached similar

solutions for some conditions such as detecting between one or two contact fingers (Figure 5.9e).

The fitness value during each update was calculated using Equation 5.1, and its evolutionary history

is shown in Figure 5.10. The maximum evolved fitness score was 108 points for a single replicate of

ANN brain type. Since better solutions are usually identified with extensive computational runs,

74



a longer neuroevolution attempt was taken to further investigate the classification performance

of all brain types. In this additional trials, we have run the algorithm for 40,000 generations

without modifying any simulation settings. As shown in Figure 5.11, the final fitness value was

MBw ≈ 0.82, CGPw ≈ 0.85, and ANNw ≈ 0.86.
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(a)

(b)

Figure 5.8: Evolutionary progression for each brain output neuron (average of all 12 cases), with
a 95% confidence against replicates. Each graph shows the classification performance of a certain
environment condition: (a) object shape, (b-d) object stiffness, and (e) numbers of contact fingers.
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Figure 5.8 (cont’d)

(c)

(d)
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Figure 5.8 (cont’d)

(e)
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Figure 5.9: Fitness value for each evolved artificial brain type: ANNs, Markov Brains, and CGPs.
The average score was computed from all 12 cases and their respective replicates.
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Figure 5.10: Longer neuroevolution of soft grasping classification task with varied workspace
conditions for 40,000 generations.

5.3 Discussions and Future Work

We have demonstrated some initial steps as well as preliminary results for achieving real-time

simulation of soft actuators with satisfactory computation time and evolution of artificial brains for
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classification tasks in soft grasping using different AI models. The SOFA simulation tool allowed

the use of a PID algorithm to control the bending of a SPA based on its bottom surface curvature.

Moreover, we have shown that it can be used in combination with an HMI device such as a soft

wearable glove to control a soft robotic gripper for grasping and manipulating objects in a sim-

ulated environment. In addition, we have exported force measurements from the tip of multiple

soft fingers when in contact with objects of varied shapes and stiffnesses and used this data to train

artificial brains capable of classifying diverse conditions in a robotic gripper workspace. Simulated

data was imported into MABE platform for evolving standard ANNs, Markov Brains, and CGPs

models to classify three different simulated conditions, object shape, object stiffness, and the num-

ber of fingers in contact during grasping. Obtained results through neuroevolution showed accept-

able classification capabilities for all evolved brain types. A neuroevolution of 40,000 generations

reached a level of fitness up to 0.85 (maximum value of 1) for standard ANNs, while Markov

Brains models found solutions with fitness value around ≈0.8. While these results presented great

classification characteristics in evolved artificial brains using offline method (no interface with

physics engine), additional investigation is needed in order to achieve fully proprioceptive grasp-

ing with real-time feedback sensing.

An intelligent soft grasping technique should be able to recognize object shapes and stiffnesses

by interacting with certain objects on strategic points that provide enough information about its

workspace. Moreover, these representations of elements of the environment within which the soft

gripper operates would provide adaptive behavior during decision-making tasks. A road map for

achieving such goals should involve exhaustive neuroevolution training for thousands of genera-

tions with a certain level of control of the soft grippers by the artificial brains. First, an interface

between SOFA and MABE is required to link output neurons to a group of actions like performing

gripper rotations and individual control of the pressure level for each soft finger. Second, various

pieces of information from the workspace should be passed to input neurons for detecting applied

forces and changes in curvature while manipulating particular objects in each simulation iteration.

A robust artificial brain should be able to decide whether to provide a few pinching actions or
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completely envelope the object of interest in order to infer attributes about it. Furthermore, prior

knowledge of an object characteristics would open up the prospect for robots to efficiently handle

delicate objects or use tools for specific tasks. Future work should include both evolution of con-

trollers for soft robotic hands in simulated environment as well as transferability of artificial brains

with successful solutions to real-word settings, bridging the gap between simulation and reality.

These enhanced manipulation skills would enable robots to have dexterity and adaptative grasping

in complex workspaces alongside human beings.
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Chapter 6

Summary and Discussion

Soft robotic devices can achieve suitable grasping performance with low cost materials and simple

actuation mechanisms, while providing adaptivity for unstructured objects. In this thesis, we have

investigated the design, fabrication and simulation of soft actuators with different geometries and

materials. Our goal was to improve soft robotic grasping through a combination of soft fingers,

stretchable sensors, and intelligent object classification, in order to reach a step closer to dexterity,

stability and fine manipulation in varied scenarios.

A novel approach to stiffness modulation of soft actuators was achieved by using a 3D-printed

CPLA-based component integrated to a SPA for variable stiffness control via electrical signals.

This allowed modulation of the SPA hardness at different joints while grasping objects with ir-

regular structure. A two-fingered gripper, composed of two CPLA-embedded SPAs, demonstrated

the ability to change the grasping posture to suit the shape, size, and texture of the objects being

grasped. Also, the SPA showed that it could be effectively locked in a desired bending configura-

tion while carrying a weight, up to 800 g, even in the absence of pressure or voltage input. This

work can lead to feedback control of stiffness modulated soft grippers to achieve a more arbitrary

desired shape for the SPA under a fixed pressure input, and realize an even broader range of shape

changes for handling different objects.

Moreover, a novel type of CNT-based strain sensors was presented, which can be embedded
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in the structure of a soft robotic component. This array of strain gauges was used as a distributed

sensor network along with the compliant mechanism. The sensor size and shape can be customized

for many different applications. We performed experiments with the CNT-based strain sensor for

detecting deformation at different locations at the bottom surface of an SPA. Both sensor measure-

ments (strain data) and camera recording (image data) agreed with the compression (curvature)

observed in the bottom layer of the SPA during positive pressure. The results provided initial

steps in the implementation of a sensor array for monitoring local deformation on a soft robotic

mechanism.

Furthermore, we have presented new methods for achieving 3D-printed stretchable pressure

sensors and conductors using liquid metal as a circuit component for potential use in robotic

hands. A PolyJet 3D-printer was used to create a microchannel structure inside the soft substrate

in combination with a viscous liquid mixture for the sacrificial layer. Functional straight-shaped

microchannels were fabricated with a cross-sectional area down to 150 × 150 µm. A spiral-shaped

pressure sensor was designed with 350 × 350 µm microchannel cross-section and injected with

liquid metal manually using syringes. Experimental results showed that the multimaterial-based

sensor with the mixture of Agilus30 and VeroClear (70A Shore Hardness) and overall thickness

of 1.5 mm was able to withstand high pressures up to 1 MPa. This pressure sensor is suitable for

applications that require resistance to very high deformations such as in modern electronics for

several fields and industry, including wearable or implantable devices, military and soft robotics.

Finally, we have performed preliminary computational exploration of intelligent grasping us-

ing 3D physics engines and tools for evolving and analyzing digital brains. In particular, we have

analyzed a classification task of soft grasped objects through neuroevolution processes of various

artificial brains. Simulation with the SOFA framework has been conducted to produce the emu-

lated contact force measurements during real-time pressure control of soft fingers. The obtained

data was used to train artificial neural networks by using the MABE platform to properly clas-

sify the shape and stiffness of the grasped objects. Several AI models have been computationally

evolved, such as standard ANNs, Markov Brains, and CGPs, to classify three different simulated
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soft grasping conditions: object’s shape, object’s stiffness level, and the number of fingers in con-

tact during grasping. All evolved brain types showed acceptable classification capabilities using

a neuroevolution offline method, which found solutions higher than 0.8 fitness value after 40,000

generations. These initial results provided guidelines to generate brains that can potentially store

representations of elements from the soft gripper workspace and assist on dexterity and adaptive

behavior during decision-making tasks in complex environments.

We expect the investigation from this dissertation to contribute new control algorithms and

fabrication methods that synergistically use tactile feedback, multimodal object recognition, and

stable grasp estimation, to enhance the performance of dexterous manipulation by soft robotic

hands and grippers operating in the highly varying environments of the real world.
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Table A1: Hyperelastic constitutive models for describing the mechanical behavior of incompress-
ible rubber materials.

Hyperelastic material models Strain-energy functions

Neo-Hookean Ψ = C1(I1 − 3)

Shear Modulus: µ = 2C1

Yeoh Ψ =
∑3

i=1Ci(I1 − 3)i

Shear Modulus: µ = 2C1

Mooney-Rivlin Ψ =
∑2

i=1Ci(Ii − 3)

Shear Modulus: µ = 2(C1 + C2)

Ogden Ψ =
∑N

i=1
µi
αi

(λαi
1 + λαi

2 + λαi
3 − 3)

Shear Modulus: µ = 1
2

∑N
i=1 µiαi

Arruda-Boyce Ψ = C1

∑5
i=1 αiβ

i−1(I i1 − 3i)

Shear Modulus: µ = C1(1 + 3
5λ2m

+ 99
175λ4m

+ 513
875λ6m

+ 42039
67375λ8m

)

β = 1
λ2m

;α1 = 1
2
;α2 = 1

20
;α3 = 11

1050
;α4 = 19

7000
;α5 = 1

673750

Table A2: Mechanical properties of rubber-like materials used in the fabrication of soft actuators,
flexible sensors and structures for soft robots.

Material Density Durometer
Tensile

Strength

Tear

Strength

Elongation

at Break

(g/cm3) (Shore) (N/mm2) (N/mm) (%)

Smooth-On Ecoflex 00-30 1.07 30-00 1.38 6.65 900

Smooth-On Dragon Skin 30 1.08 30A 3.45 18.90 340

Dow Corning Sylgard 184 1.03 44A 7.10 2.00 120
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Table A3: The dimensions of parts in the fabricated SPA with embedded CPLA.

Parameter Dimension

SPA length 140 mm

SPA width 20 mm

SPA wall thickness 2 mm

CPLA length 135 mm

CPLA width 16 mm

CPLA thickness 3 mm

Anti-slip feature thickness 2 mm

Table A4: Stiffness values of each component in the SOFA simulation.

Component Young Modulus (MPa)

Soft Finger Bellows 500

Soft Finger Inextensible Layer 1500

Grasped Object = Soft 1

Grasped Object = Medium 10

Grasped Object = Hard 100
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Table A5: The binary value of each correspondent workspace condition in the simulation environ-
ment of SOFA.

Condition Binary Value

Object Type = Cube 0

Object Type = Sphere 1

Object Stiffness = Soft 0,0,1

Object Stiffness = Medium 0,1,0

Object Stiffness = Hard 1,0,0

Number of Contact Fingers = 1 0

Number of Contact Fingers = 2 1
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Algorithm 1: Fitness Evaluation and Genetic Optimization in MABE
Require: Simulated SPA measurements from SOFA software

Input: Spreadsheet files with force values in XYZ directions at each mesh node

Output: Artificial brains genome sequence and their respective fitness scores

1 initialization;

2 while i ≤ maximum number of generations (updates) do

3 while j ≤ maximum number of cases (files) do

4 get file;

5 reset brain;

6 while not end of j-file do

7 read line at j-file;

8 update brain;

9 end

10 calculate output score;

11 end

12 compute fitness value;

13 run Tournament Selection optimizer;

14 end
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[43] Y. Mengüç, Y.-L. Park, E. Martinez-Villalpando, P. Aubin, M. Zisook, L. Stirling, R. J.
Wood, and C. J. Walsh, “Soft wearable motion sensing suit for lower limb biomechan-
ics measurements,” in 2013 IEEE International Conference on Robotics and Automation.
IEEE, 2013, pp. 5309–5316.
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