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ABSTRACT 

WILDFIRE IMPACTS ON SOIL CARBON POOLS AND MICROBIAL COMMUNITIES IN 

MIXED-CONIFER FORESTS OF CALIFORNIA 

 

By 

 

Jaron Adkins 

 

 Forest ecosystems are important reservoirs for long term carbon (C) storage. Forests of 

the western United States account for 20-40% of total U.S. carbon C sequestration, and nearly 

half of the total C in these forests is stored in soil. However, many forests in the western U.S are 

experiencing wildfire conditions that diverge from historical fire regimes. Prior to Euro-

American settlement, California’s mixed-conifer forests typically experienced frequent surface 

fires of low to moderate burn severity, but, due to the combined effects of altered forest structure 

and climate change, now experience fires that are larger and more severe than historical 

conditions. Fires have numerous direct and indirect effects on the soil biological, chemical, and 

physical characteristics that influence the soil C cycle. Understanding how altered soil 

characteristics influence the cycling and persistence of soil C, and how they vary with severity, is 

important for managing forests for C storage and for predicting fire-climate feedbacks. My 

dissertation work incorporates observational and manipulative experiments to understand the 

direct and indirect effects of burn severity on soil C cycling and microbial communities over the 

short to intermediate term, with a particular focus on the distribution of soil C between active 

and slow cycling pools.  

 Soil C can be conceptualized as discrete pools of variable persistence in soil. The active 

C pool is quickly decomposed, contributing to the return of CO2 to the atmosphere, whereas the 

non-active C pool is more stable and contributes to long term C storage. I leveraged a burn 



 

 

severity gradient resulting from a wildfire in a California mixed-conifer forest to determine the 

structure and kinetics of these C pools at an intermediate time point in post-fire recovery (i.e. 

three years). I found that the size of the non-active C pool was smaller in burned areas than 

unburned areas, and the kinetic rate of the non-active C pool was negatively related to burn 

severity. I also characterized the soil microbial communities across this severity gradient and 

identified the environmental characteristics responsible for differences. I found that fungal-to-

bacterial ratio and oligotroph-to-copiotroph bacteria ratio decreased with burn severity, and these 

effects were driven by differences in live and dead tree basal area, soil nutrients, and pH. 

Leveraging another burn severity gradient, I then determined whether differences in microbial 

communities and soil C pools were related one-year post-fire in a mixed-conifer forest. I again 

found lower non-active C pool kinetic rates, and higher abundances of copiotrophic bacteria in 

burned compared to unburned areas. Differences in soil C pool kinetics were related to tree basal 

area, soil nutrients, and bacterial communities. 

 I determined the short-term impacts of fire on soil C pools and cycling using lab 

experiments in which I manipulated soil heating intensity and pyrogenic organic matter (PyOM) 

additions. I found that high intensity soil heating can decrease microbial biomass C (MBC) 

accumulation, whereas PyOM had minimal effects on MBC in the short-term. Finally, I found 

that the size of the active C pool increased with soil heating intensity, while the kinetic rate of 

the non-active C pool decreased; PyOM primarily increased the size of the non-active C pool. 

Taken as a whole, my research suggests that fire induces short-term soil C losses by increasing 

the size of the active C pool, but, over the intermediate-term, residual soil C is more persistent. 

Fire severity is predicted to increase globally throughout the 21st century, and my research 

contributes to understanding how forest C storage will be affected by disrupted wildfire regimes. 
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CHAPTER 1: 

SOIL CARBON POOLS AND FLUXES VARY ACROSS A BURN SEVERITY 

GRADIENT THREE YEARS AFTER WILDFIRE1 

1.1 ABSTRACT 

 Carbon (C) storage in soils contributes to the strength and stability of total ecosystem C 

sinks, but both aboveground and belowground C is vulnerable to loss during fire. The 

distribution of soil C and nitrogen (N) among various defined pools – e.g., active, slow and 

resistant C, and ammonium and nitrate as forms of inorganic N – determines the C storage 

capacity of forests and the nutrient availability for plant communities recovering from wildfires. 

Projections of increased wildfire severity due to a warming climate and frequent droughts raise 

concerns about parallel increases in fire’s impacts on the sizes and mineralization kinetics of soil 

C and N pools, with potentially long-lasting effects on the strength of the forest C sink and on 

the ability of forests to recover from disturbance. Therefore, I sought to determine how the sizes 

and mineralization rates of soil C and N pools vary across a gradient of fire severity three years 

after the Chips Fire burned 30,500 ha of Sierra Nevada mixed-conifer forest. I measured total C 

and N in forest floor and mineral soil (0-5 cm), the pool sizes and mean residence times of the 

active, slow, and resistant C in mineral soil, and the pool sizes and mineralization rates of 

inorganic N in mineral soil. Forest floor total C was lower in areas that experienced high severity 

fire than in unburned reference areas, an effect likely attributable to greater combustion of forest 

floor material in high severity areas. Mineral soil C content did not vary with fire severity. Over 

 
1 Originally published as: Adkins J., Sanderman J., Miesel J.R., 2019. Soil carbon pools and fluxes vary across a 

fire severity gradient three years after a wildfire burned Sierra Nevada mixed-conifer forest. Geoderma 333, 10-22.  
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a 300-day lab incubation, mineral soil CO2-C efflux rates were consistently lower in soils from 

areas that experienced high severity fire relative to unburned reference areas and were associated 

with longer mean residence times of the slow C pool. Forest floor N content was lower in high 

severity areas than unburned areas, whereas mineral soil total N did not vary with vary with fire 

severity. Mineral soil ammonium and total inorganic N concentrations increased significantly 

with fire severity in field-fresh soils, but this trend was no longer apparent after a 300-day lab 

incubation, indicating that site-specific factors control N availability among fire severity levels. 

My results indicate that future increases in wildfire severity in mixed-conifer forest may alter the 

strength of the forest C sink by impacting the amount C stored in forest floor, the stability of 

mineral soil C, and the availability of N to recovering plant communities.  

1.2 INTRODUCTION 

 Changes to the size and persistence of soil carbon (C) pools in temperate forests have the 

potential to influence atmospheric CO2 concentrations (Trumbore 2000; Lutzow et al. 2006) 

because of the major role these ecosystems play in global C dynamics. For example, temperate 

forests accounted for ~30% of the global forest C sink from 1990-2007 (Pan et al. 2011), and 

store 48% of ecosystem C in their soils (Pan et al. 2011). The majority of soil C is stored as soil 

organic matter (SOM), a continuum of materials that remains in soil for days to centuries, 

depending on the physiochemical properties of the SOM and the surrounding matrix, and the 

physical accessibility of the organic compounds to decomposers (Schmidt et al. 2011). The SOM 

continuum is often modelled as three distinct C pools with variable turnover times: an active C 

pool (Ca) with a mean residence time (MRT) of days to months, a slow pool (Cs) with a MRT of 

years to decades, and a resistant pool (Cr), potentially stable for centuries (Trumbore 1997; Paul 

et al. 2006). The turnover rates and distribution of C among these three C pools are sensitive to 
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changes in environmental conditions and disturbance regimes (Trumbore 1997; Jackson et al. 

2017) and influence the strength of the ecosystem C sink (Luo and Weng 2011).  

 Wildfires are one of the most common forest disturbances in the conterminous United 

States, burning more than 17,000 km2 y-1 and causing 13.40 Tg C y-1 of direct C emissions 

during 1990-2012 (Chen et al. 2017). In addition to causing combustion emissions, high-severity 

wildfires can transform forest stands from C sinks to C sources when C losses via decomposition 

exceed photosynthetic C gains during post-fire forest recovery (Kashian et al. 2006). When 

climate and fire regimes are stable, wildfire emissions are balanced by the C uptake of vegetative 

regrowth during ecosystem recovery, ecosystems transition from C sources back to C sinks, and 

the net ecosystem C flux is zero (Bowman et al. 2009; Loehman et al. 2014). However, altered 

disturbance regimes disrupt this equilibrium by affecting the magnitude of C losses and temporal 

patterns of ecosystem recovery (Luo and Weng 2011). Fire regimes have shifted in ecosystems 

worldwide: for example, the global average area burned increased by more than 20% in the 

second half of the 20th century compared to the first half (Flannigan et al. 2013). In western 

United States forests (west of 102º W longitude), wildfire frequency increased four-fold, total 

area burned increased six-fold, and the length of the fire season increased by 78 days during 

1987-2003 compared to 1970-1986 (Westerling et al. 2006). In the Sierra Nevada mountain 

range, the proportion of burned area that experienced high severity fires nearly doubled between 

1984 and 2006 (Miller et al. 2009b).  

 Wildfire severity is a measure of the magnitude of effects of wildfire on ecosystem 

biomass (Keeley 2009), and is correlated with C stock losses from aboveground vegetation and 

dead wood in mixed-conifer (Campbell et al. 2007; Meigs et al. 2009) and ponderosa pine (Pinus 

ponderosa) forests (Meigs et al. 2009). The increasing occurrence of high burn severity in an 



4 

 

ecosystem that historically experienced frequent fires of primarily low to moderate severity has 

the potential to alter forest composition and successional pathways and destabilize forest C 

stocks, particularly when coupled with the warming temperatures and increased drought 

frequency expected in climate projections (Earles et al. 2014; Liang et al. 2017b). Landsat-

derived spectral data available since 1982 have greatly expanded the scale and ease with which 

burned areas can be mapped (García and Caselles 1991). The increasing availability of fire 

severity data has expanded both interest in and ability to assess the impacts of fire on 

aboveground components of the ecosystem, whereas the ability to determine effects on 

belowground C stocks remains challenging because Landsat imagery is more sensitive to 

changes in vegetation than soil (Miller and Thode 2007; Miller et al. 2009a). The storage of C in 

pools with long residence times increases the strength and stability of the total ecosystem C sink 

(Luo and Weng 2011). Thus, the size, structure, and turnover times of soil C pools have potential 

to influence the transition of forests from C sources to C sinks during recovery from wildfire and 

may either moderate or exacerbate the response to shifting patterns of fire severity. 

 Meta-analyses have indicated that wildfires in general decrease soil C stocks in the forest 

floor layer (Nave et al. 2011), but the response of mineral soil C varies with climatic zones, 

forest type, soil depth, fire type (i.e., wildfire vs. prescribed fire), and time since fire (Johnson 

and Curtis 2001; Nave et al. 2011; Wang et al. 2012). Wildfire-induced changes in soil N stocks 

generally mirror those of soil C stocks in temperate regions, in which forest floor N stocks 

generally decrease (Nave et al. 2011; Wang et al. 2012), whereas the effects on mineral soil N 

vary with soil depth and fire type (Wan et al. 2001; Nave et al. 2011). None of the meta-analyses 

to date have directly assessed the impacts of fire severity or fire intensity (i.e., energy flux 

resulting from a fire) on soil C and N, a shortcoming acknowledged by several researchers (Nave 
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et al. 2011; Wang et al. 2012). However, studies that separate the effects of prescribed fires and 

wildfires on soil C and N have found that wildfires cause greater losses to forest floor C and N 

stocks and mineral soil C concentrations than prescribed fires (Nave et al. 2011; Wang et al. 

2012). Because prescribed fires are often of lower intensity and result in lower severity relative 

to wildfires, the differences in impacts between prescribed fires and wildfires reported to date 

suggest that soil C and N storage may also differ across contrasting levels of fire severity 

(Alcañiz et al. 2018).  

  Because of the large proportion of C stored in soil, the size and turnover times of the Ca, 

Cs, and Cr pools determines the strength and stability of the ecosystem C sink in recovering 

forests (Luo and Weng 2011). Fernández et al. (1999) used a two-pool model to assess the 

impacts of wildfire on labile and recalcitrant soil C pools and their associated kinetics in P. 

sylvestris and P. pinaster forests in northwest Spain and found that wildfire increased the size 

and mineralization rate of the labile C pool in soils to 5 cm depth, an effect that persisted for 

several months, but was no longer apparent after one year. Two years after the wildfire, the labile 

C pools in burned soils and their mineralization rates were lower than or equal to those in 

unburned soils; meanwhile, the mineralization rate of the recalcitrant C pool in burned soils was 

consistently lower than that of unburned soils over the two year study (Fernández et al. 1999). 

The study sites Fernández et al. (1999) used experienced only high intensity fires, and the effects 

of fire severity level were not considered. To my knowledge, the relationship between wildfire 

severity and the Ca, Cs, and Cr pools and their associated kinetics has yet to be assessed: this 

information is important for understanding long term effects of wildfire on forest C storage 

(Birdsey et al., 2006). For example, lower mineralization rates and larger sizes of the Cr and Cs 
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pools may partially offset total ecosystem C losses by increasing the overall MRT, and thus the 

sink strength, of forest C (Luo and Weng 2011).  

 Fire directly influences the soil C pool structure through the formation of pyrogenic 

carbon (i.e., carbon associated with char; PyC), which is generated via the thermal 

decomposition of biomass and encompasses a spectrum of materials from slightly charred plant 

matter to highly condensed soot and micrographine sheets (Bird et al. 2015). PyC was initially 

viewed solely as a resistant C pool, but emerging evidence shows that PyC consists of an active, 

slow, and resistant pool (Kuzyakov et al. 2014). The relative sizes of these PyC pools depends on 

combustion temperature (Bird et al. 2015) and source material (Hatton et al., 2016, Michelotti 

and Miesel 2015), and the amount of PyC generated during fires has been shown to increase with 

fire severity (Miesel et al. 2015; Maestrini et al. 2017) and fire intensity (Czimczik et al. 2003; 

Sawyer et al. 2018). Pyrogenic C contributes directly to soil total C pools, but also influences 

soil C pools indirectly via impacts on mineralization kinetics of native soil C. For example, PyC 

induces short-term positive and long-term negative priming effects (Maestrini et al. 2015), and 

soil C mineralization rates decrease with increasing PyC concentrations (Michelotti and Miesel 

2015). Thus, severity-based differences in PyC accumulation may have downstream impacts on 

C flux rates from the soil to the atmosphere.  

 Low soil inorganic N content often limits plant productivity in coniferous forests 

(Vitousek and Howarth 1991), whereas enhancing N availability can increase soil C stocks by 

increasing soil C inputs (Nave et al. 2009) and decreasing C loss via respiration (Janssens et al. 

2010). Therefore, the sizes of inorganic N pools in post-fire soils are likely to affect the recovery 

of aboveground (Grogan et al. 2000) and belowground C stocks. Increases in soil ammonium 

(NH4
+) and nitrate (NO3

-) concentrations are typical after wildfires, across a variety of ecosystem 
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types (Wan et al. 2001). Maximum increases in soil NH4
+ and NO3

- concentrations are 

approximately tenfold greater than pre-fire conditions, generally returning to pre-fire levels after 

one year for NH4
+, and within five years for NO3

- (Wan et al. 2001). Studies ranging from two 

days to 26 months after fires have variously attributed the N pulse to pyrolysis of forest floor 

material (Covington and Sackett 1992), ash deposition (Christensen 1973), decreased uptake by 

vegetation due to plant mortality (Ficken and Wright 2017), and decreased uptake by microbes 

(Koyama et al. 2012).  

 Fire also impacts N cycling in soil, over short- and longer time periods after fire. For 

example, a meta-analysis of N mineralization response to fires showed that fires stimulate a short 

term (< 3 months) increase in N mineralization, but decrease N mineralization rates over the long 

term (at least 3 years), a decrease that is greater for prescribed fires than wildfires (Wang et al. 

2012). In addition to the direct effects of increased N availability on N mineralization rates, 

changes to N mineralization may result from changes to soil moisture and temperature that in 

turn influence microbial activity (Turner et al. 2007), or from increases in PyC concentrations 

(Michelotti and Miesel 2015). Together, results from these studies suggest that fire severity level 

may have an important influence on N mineralization rates in a recovering forest. 

 Direct assessments of soil C and N pools and dynamics after wildfires are needed to 

improve estimates of the amount and stability of C stored in forest ecosystems (Birdsey et al. 

2006). Meta-analyses separating the effects of wildfire and prescribed fire on soil C and N 

content, as well as research on the influence of fire severity on soil PyC suggest that the 

distribution of soil C and N among different pools may be influenced by severity (Nave et al. 

2011; Wang et al. 2012; Miesel et al. 2015; Maestrini et al. 2017). However, specific estimates 

of the sizes and turnover rates of the Ca, Cs, and Cr pools are lacking. Therefore, I conducted a 
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field study to investigate patterns in soil C and N across a fire severity gradient three years after 

wildfire. My specific objectives were to quantify: 1) total C and N content in forest floor and 

mineral soil, 2) the sizes of the char pool in forest floor and the PyC pool in mineral soil, 3) the 

sizes and MRTs of mineral soil Ca, Cs, and Cr pools, 4) the sizes and mineralization rates of 

inorganic N pools in mineral soil, and 5) the influence of mineral soil PyC on C and N 

mineralization rates, across contrasting fire severity levels, including unburned reference areas.  

1.3 MATERIALS AND METHODS 

1.3.1 Site description  

 I investigated the area affected by the Chips Fire (Lat: 40.095 Long: -121.199; Fig.1.1), 

which was ignited by lightning on July 28, 2012 and burned 30,500 ha of the Plumas and Lassen 

National Forests prior to containment on August 31, 2012 by United States Forest Service 

wildland firefighting crews. Fire severity estimates based on the Relative Differenced 

Normalized Burn Ratio (RdNBR), which is calculated from Landsat imagery (Eidenshink et al. 

2007), indicate that approximately 6,300 ha burned at high severity, 9,600 ha at moderate 

severity, and 12,500 ha at low severity (MTBS 2017). RdNBR based severity estimates are 

sensitive to changes to soil color and moisture, but primarily detect changes to vegetation 

chlorophyll and water content and is therefore considered an aboveground severity metric (Miller 

and Thode 2007; Safford et al. 2008; Miller et al. 2009a). RdNBR values are calibrated to the 

amount of basal area mortality, resulting in a three-level severity classification where < 25% 

basal area mortality is classified as low severity, 25-75% basal area mortality is classified as 

moderate severity, and >75% mortality is classified as high severity (Miller et al. 2009a). The 

forest type of my study area is classified as California mixed-conifer (Ruefenacht et al. 2008), 

consisting of P. ponderosa, P. lambertiana, P. jeffreyi, Abies concolor, Pseudotsuga menziesii, 
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Calocedrus decurrens, and Quercus kelloggii. Ceanothus spp. and Arctostaphylos spp. shrub 

species are also common.  

 

Figure 1.1 Locations of field plots at different fire severity levels in the Chips Fire. The 

Chips Fire burned mixed-conifer forest in the Plumas and Lassen National Forests, California, 

USA in 2012. The border denotes the fire perimeter, the color gradient indicates different 

severity levels, and the symbols indicate the location of field plots. Unburned plots were sited 

outside of the fire perimeter in mixed-conifer stands of similar composition.  

 

 Prior to Euro-American settlement in the mid-19th century, the mean fire return interval 

of the region’s mixed-conifer forests ranged from 11 to 34 years (Mallek et al. 2013), and less 

than 10% of annual burned area experienced high severity fires (Mallek et al. 2013; Miller and 
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Safford 2017). However, a policy of fire suppression has been in place in the United States since 

the early 20th century (Dombeck et al. 2004), leading to greater tree and fuel density in mixed-

conifer forests, and  the percentage of burned area that  experienced high severity fire increased 

to 25% by 1984-2009 (Mallek et al. 2013). At the Plumas National Forest Supervisor’s Office in 

Quincy, CA, the 30 year mean annual precipitation is 1080 mm, more than 75% of which occurs 

in winter and spring, and mean annual temperature is 10.6º C (NCEI-NOAA 2017).  

 My field plots were established in 2014 as part of a broader forest inventory performed 

by the USDA Forest Service. Between July 6, 2015 and July 28, 2015 (i.e., three years post-fire), 

I sampled 17 plots (4 unburned, 5 low severity, 4 moderate severity, 4 high severity) for forest 

floor and mineral soil (Fig 1.2). I selected plots that had relatively similar topographic 

characteristics across severity levels. Selected plots had an elevation range of 1217-1641 m, 

slopes < 50%, and a variety of slope aspects (Table 1.1). Plots were established 100-1000 m 

from roads and trails in areas without post-fire salvage logging to minimize the influence of 

direct human activity on my research plots. Unburned reference plots were located within 2000 

m of the fire perimeter in mixed-conifer stands of similar composition. The average distance 

between any two plots was 6.4 km, with a minimum distance of 400 m. A portion of the forest 

burned by the Chips Fire had been burned previously by the Storrie Fire in 2000 and was 

excluded from this study. Most of the area burned by the Chips Fire had not burned in the last 

century. My field sites comprised two soil series: Skalan, a loamy-skeletal, isotic, mesic 

Vitrandic Haploxeralf, and Kinkel, a loamy-skeletal, mixed, superactive, mesic Ultic Palexeralf. 

These acidic soils are gravelly loams that form from metamorphic parent material and are free of 

calcium and carbonates. Typical pedons consist of 2.5-5 cm thick O horizons, 7.5-17.5 cm thick 

A horizons, and Bt horizons to bedrock (Soil Survey Staff). 
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Table 1.1 Topographic characteristics of research plots for each wildfire severity level. 

Aspect count shows number of plots per aspect category.  

Severity Elevation (m) Slope (%) 

Aspect (count) 

N E S W 

Unburned 1359-1593 22-29 0 2 1 1 

Low 1217-1399 12-36 1 0 1 3 

Moderate 1466-1591 18-43 0 1 2 1 

High 1451-1641 31-49 0 4 0 0 

 

 

Figure 1.2 Photographs depicting aboveground (a-d) and soil surface (e-h) characteristics of 

unburned mixed-conifer forest stands, and stands that had experienced low, moderate, and high 

severity fire, respectively, three years previously. The high severity stand in image d had 

accumulated patchy leaf litter, whereas the high severity stand in image h exhibited bare mineral 

soil. Image h illustrates the high gravel content of the soils.  

 

1.3.2 Field methods 

 At each plot, I sampled forest floor and mineral soil 17 m from the plot center at azimuths 

of 0º, 120º, and 240º, for a total of 51 forest floor samples and 51 mineral soil samples. The 

forest floor includes the plant litter and duff layers, and is equivalent to the combined Oi, Oe, and 

Oa horizons in the USDA Soil Taxonomy classification system (Perry et al. 2008). I collected all 

forest floor material from within a 15 cm radius circular sampling frame and then collected 

mineral soil to 5 cm depth using a stainless-steel scoop. I collected one additional volumetric 
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mineral soil sample from each plot to estimate bulk density by collecting mineral soil to 5 cm 

using a 10 cm diameter sampling cylinder. Samples were shipped within one week to the 

laboratory for processing. Forest floor samples were air-dried, and mineral soils were stored and 

shipped on ice and then refrigerated (4 ºC) until processing.  

1.3.3 Lab methods 

Soil processing and C and N analysis 

 Small amounts of gravel were present in the lower duff layer in the forest floor samples, 

likely due to mixing with the mineral soil surface over time as the forest floor layer developed 

after past fires, as a result of annual freeze/thaw cycles, erosion from wind and spring snowmelt, 

or bioturbation (Fig. 1.2h). I removed any gravel present in the forest floor by hand to the 

maximum extent possible, and then processed each sample at 22,000 RPM for 60 second cycles 

in a Waring commercial lab blender (Conair Inc., Stamford, CT, USA) until all the material 

passed a 2 mm mesh screen. A blender was used rather than a plant mill to avoid damaging mill 

blades with any residual mineral material present in the forest floor samples that was impossible 

to remove by hand. I then pulverized a subsample of the blended forest floor in a SPEX 8000D 

Mixer/Mill (SPEX Sample Prep LLC, Metuchen, NJ, USA) for further analysis. I oven-dried the 

pulverized forest floor material at 60º C and subsampled for determination of total C, total N, 

and char content. I sieved the field-moist mineral soil samples (2 mm mesh screen), and 

subsampled to determine total C, total N, PyC, Cr, inorganic N (NH4
+ and NO3

-), and to establish 

the laboratory incubation to determine Ca, Cs, and soil CO2 efflux. The subsamples for mineral 

soil total C, total N, and PyC analysis were oven dried at 105º C to completely remove moisture 

and pulverized as described above. Subsamples for Cr analysis were oven dried at 60º C. I 
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measured total C and N in forest floor and mineral soil samples using a Costech dry combustion 

elemental analyzer (Costech Analytical Technologies Inc., Valencia, CA, USA). 

Determination of forest floor char 

 Throughout this article, I use the term “char” to refer to pyrogenic (charred) material in 

the forest floor, for which associated C was not determined, whereas I use “PyC” to denote C 

associated with pyrogenic material in the mineral soil, determined through chemical oxidation. 

Char concentrations in forest floor samples were predicted from a Fourier transform infrared 

spectroscopy-based chemometric model developed from a series of laboratory-based standards. 

Mid-infrared spectra were acquired on dried and finely ground samples on a Bruker Vertex 70 

(Bruker Optics, Billerica, MA USA) equipped with a Si-based wide-range beam-splitter and 

detector with cesium iodide windows. Samples were run neat (i.e., undiluted) using a Pike 

Autodiff diffuse reflectance accessory (Pike Technologies, Madison, WI). I acquired spectra 

from 6000-180 cm-1 at a 4 cm-1 resolution. For each set of samples, a background spectrum was 

obtained (average of 60 scans) and this was subtracted from the sample reflectance spectra (also 

an average of 60 scans). A previously validated, partial least squares regression (PLSR) model 

developed using The Unscrambler X software (CAMO Inc.) was used to predict char 

concentration. This model was developed using known mixtures of pine needle litter and char 

produced from pine needles or pine wood at temperatures of 300 and 550° C, so that char 

concentrations varied from 0 to 100% in 5% increments (J. Miesel, personal communication). A 

two-factor PLSR model successfully captured this variance in char with 20-fold cross-validation 

indicating an R2 of 0.97 with a root mean square error (RMSE) of 5.0%. Two sub-samples from 

separate low severity plots and one sub-sample from a high severity plot were poorly represented 
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(i.e., fell outside of 2 s.d.) by the calibration model as determined by Mahalanobis and inlier 

distance metrics. These three samples were excluded from further analysis.  

Determination of mineral soil PyC 

 I measured mineral soil PyC concentrations using a weak nitric acid digestion technique 

(Kurth et al. 2006). I digested 0.5 g mineral soil in 10 mL 1 M nitric acid + 20 mL 30% 

hydrogen peroxide at 100º C in a block digester (SEAL Analytical Inc., United Kingdom). The 

soil C present after digestion is considered PyC and was measured by elemental analysis as 

described above.  

Determination of mineral soil C pools and CO2-C efflux 

 I incubated soils to determine potential soil CO2-C efflux rates and the size and kinetics 

of the Ca and Cs pools. I weighed 30 g subsamples of fresh (field-moist), sieved mineral soil into 

120 mL specimen cups and adjusted soil moisture to 40% water filled pore space (WFPS). The 

cups were placed in 1 L glass jars, 5 mL DI water was added to the bottom of each jar to 

maintain humidity, and the soils were incubated in the dark for 300 days at ambient temperature 

(22º C). Soil moisture change was determined bi-weekly via change in microcosm mass and was 

readjusted to 40% WFPS. I measured CO2 evolution on days 10, 14, 28, 42, 58, and 90 and every 

30 days thereafter until day 300. This incubation length is similar to the length recommended by 

Robertson et al. (1999) for determining mineral soil C pool sizes. At each measurement event, I 

flushed the air in jars to ambient CO2 concentrations, then tightly sealed them for 24-48 hours 

before sampling a 1 mL gas aliquot through septa fitted to the jar lids. I measured CO2 

concentration of the aliquot using a LI-COR LI-820 CO2 gas analyzer (LI-COR Inc., Lincoln, 

NE, USA), which was continuously flushed with CO2-free air. I determined CO2 concentrations 

via comparison to a calibration curve constructed using standards of known CO2 concentration. I 



15 

 

calculated CO2-C efflux rates as the increase in CO2-C concentrations in the jars during the time 

they were sealed. I standardized CO2-C efflux rates to the total amount of soil C present in each 

microcosm. 

Determination of resistant mineral soil C 

 I estimated mineral soil Cr concentrations as non-hydrolysable C using a modified 

version of the acid digestion method described by Paul et al. (1997). Briefly, I slaked 5 g oven-

dried soil in 20 mL DI water with eight 4 mm glass beads overnight to disrupt soil aggregates. 

Undecomposed plant material is resistant to hydrolysis and can bias estimates of Cr (Paul et al. 

1997), so I passed the soil solution through a 53 µm sieve to remove plant residues. Thereafter, 

0.5 g of the sieved soil was refluxed with 10 mL 6 M hydrochloric acid at 116º C for 2 hours in a 

Mars 6 microwave digester (CEM Corporation, Matthew, NC, USA). The C present after 

digestion is considered Cr and was measured by elemental analysis as described above. 

Determination of mineral soil inorganic N pools and mineralization rates 

 I extracted fresh mineral soils for NH4
+-N and NO3

--N by shaking 10 g field-moist soils 

in 50 mL 2 M potassium chloride (KCl) on a shaker table for 1 hour. I then separated the extract 

from the soil via filtration with Whatman grade 5 (2.5 µm) filter paper (GE Healthcare UK 

Limited, Little Chalfont, Buckinghamshire, UK). I determined the extract NH4
+-N concentration 

spectrophotometrically by reacting the extracts with ammonia salicylate and ammonia cyanurate 

in a 96-well plate (Sinsabaugh et al. 2000), after which I measured absorbance at 595 nm 

(BioTek Elx800, BioTek Instruments Inc., Winuski, VT, USA). I determined the concentration 

of NO3
--N in the extracts spectrophotometrically by reacting the extracts with vanadium (III), 

sulfanilamide, and N-(1-naphthyl)-ethylenediamine dihydrochloride in a 96-well plate, after 

which I measured absorbance at 540 nm (Doane and Horwáth 2003). I converted absorbance 
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values to concentrations via comparison to standard curves produced using (NH4)2SO4 and KNO3 

reference solutions. I calculated total inorganic nitrogen (TIN) as the sum of NH4
+-N and NO3

--

N. I repeated this procedure after the 300-day lab incubation, and calculated net ammonification, 

net nitrification, and net N mineralization over the course of the incubation.  

1.3.4 Statistical analysis 

 I used linear mixed models to assess the responses of soil C and N pools to fire severity. 

All models included fire severity, elevation, slope, and aspect as explanatory variables. I 

conservatively assumed the azimuth subsamples within each plot were non-independent by 

including a plot-identifier as a random effect. Models assessing inorganic N concentrations 

included total N as an additional covariate. Models assessing instantaneous CO2-C efflux rates 

during the lab incubation included fixed effects of incubation day, severity, day by severity 

interactions, and a random day effect. Models assessing cumulative CO2-C efflux during the lab 

incubation included a fixed effect of log incubation day, day by severity interactions, and a 

random day effect. Models assessing the influence of PyC on mineral soil CO2-C efflux and N 

transformations included fire severity as a random effect rather than as a fixed effect. For all 

models, the statistical significance of each explanatory variable was assessed using Type 3 Sums 

of Squares, and variables that were non-significant at α = 0.05 were sequentially removed from 

models until all remaining explanatory variables were significant or no variables remained. If 

severity was not significant at α = 0.05, but exhibited p-values ≤ 0.10, I pooled low, moderate, 

and high severity treatments into a single burned treatment to determine whether fire had a 

significant effect on the response variable even if differences in severity did not. For each model, 

I tested my assumption of non-independence among subplots by comparing Aikake Information 

Criterion (AIC) values and residual standard errors between models that did or did not include 
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plot-identifier random effects (Pinheiro and Bates 2000). If the model without the random effect 

had both a lower AIC value (∆AIC ≥ 2) and improved residual standard errors, I considered 

subplots independent. When assumptions of normality were not met for a model, I box-cox 

transformed the response variable using the car package (Fox and Weisberg 2011) in the 

statistical programming software R (R Core Team 2019) to select an appropriate value for λ. If 

the 95% confidence interval for λ included 0, the response variable was log transformed. Linear 

mixed-models were performed in R using the nlme package (Pinheiro et al. 2019). When Type 3 

Sums of Squares indicated that fire severity or aspect were significant model parameters, I 

performed means separations tests using Tukey’s adjustment for multiple comparisons using the 

lsmeans package (Lenth 2016). 

 I used non-linear regression to fit a three-pool constrained model to CO2 evolution data 

resulting from the lab incubation according to the method of Paul et al. (2001) to determine the 

size and kinetics of mineral soil Ca and Cs pools. Briefly, CO2 evolution was fit to the following 

first-order kinetics model: 

dC/dt = Ca × kae
(-ka × day) + Cs × kse

(-ks × day) + Cr × kr
(-kr × day) (eq 1.1) 

where Ca is the size of the active C pool, and ka is its mineralization rate coefficient, Cs is the 

slow C pool and ks is its mineralization rate coefficient, and Cr is the size of the resistant C pool 

and kr is its mineralization rate coefficient. In this model, Ca, ka, and ks are determined via non-

linear regression, the Cr pool is determined by acid hydrolysis prior to model fitting, and kr is 

based on an assumed MRT of 1000 years. Cs is constrained to be (Csoc – Cr – Ca), where Csoc is 

total soil organic C content. Mineralization rate constants are also presented as MRT (1/k) for 

ease of interpretation and are scaled to field values using a Q10 value of 2.0 and a MAT of 10.6º 

C. The respiration rates for soils from one of the unburned plots did not decrease over the 300-
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day incubation and were not fit to the model nor included in any subsequent statistical analyses. 

Non-linear regression was performed with SAS software using PROC NLIN (SAS software, 

version 9.3, SAS Institute Inc., Cary, NC, USA). Bonferroni adjusted comparisons of resulting 

parameters (e.g. Ca, ka) among severity levels were performed using PROC GLIMMIX in SAS.  

1.4 RESULTS 

1.4.1 Total carbon and nitrogen content 

 I found significant differences among fire severity levels in forest floor total C content (p 

= 0.014). High severity areas had 82% less forest floor mass and 71% lower forest floor total C 

content than unburned areas (Table 1.2, Fig. 1.3a). Aspect was the only significant predictor of 

forest floor C concentrations: plots located on eastern aspects had a mean forest floor C 

concentration of 47.3% compared to a grand mean of 43.0% for all plots (Table 1.3). Forest floor 

N contents were 85% smaller in high severity areas than in unburned areas (p = 0.014; Fig. 

1.3b), whereas there were no differences in forest floor N concentrations. Forest floor C:N ratios 

varied with fire severity (p = 0.003): high severity areas had higher C:N ratios than unburned 

and moderate severity areas (Table 1.2).  

 For mineral soil samples, there were no differences in total C or N content (Fig. 1.3), total 

C or total N concentrations, or C:N ratios among severity levels (Table 1.2). Mineral soil C 

content increased with elevation at a rate of 0.12 ± 0.05 g C m-2 per 100 m increase in elevation 

on the log response scale (p = 0.038; Table 1.3), and mineral soil N content increased with 

elevation at a rate of 0.11 ± 0.03 g N m-2 per 100 m increase in elevation on the log response 

scale (p = 0.003). 
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Table 1.2 Forest floor mass, carbon concentrations, nitrogen concentrations, C:N ratios, 

char mass fraction, and total char mass; and mineral soil (0-5 cm) carbon concentrations, 

nitrogen concentrations, C:N ratios, pyrogenic carbon mass fraction, and total pyrogenic carbon 

mass among fire severity levels. Values are means ± SE. Lowercase letters within rows indicate 

significant differences among fire severity levels at α = 0.05. 
 Unburned 

(N = 4) 

Low 

(N = 5) 

Moderate 

(N = 4) 

High 

(N = 4) 

Forest Floor     

Mass (kg m-2) 4.57 ± 1.46 a 1.63 ± 0.33 ab 1.71 ± 0.58 ab 0.80 ± 0.41 b 

C Concentration (%) 42.39 ± 1.28 a 39.98 ± 2.25 a 41.71 ± 3.87 a 48.85 ± 1.40 a 

N Concentration (%) 0.80 ± 0.09 a 0.73 ± 0.03 a 0.86 ± 0.08 a 0.63 ± 0.07 a 

C:N  60.77 ± 4.88 b 64.27 ± 1.54 ab 54.70 ± 5.50 b 90.52 ± 8.52 a 

Char Mass Fraction (mg g-1) 180.72 ± 26.64 ab 294.44 ± 53.15 a 273.13 ± 75.42 a 160.75 ± 6.56 b 

Total Char Mass (g m-2) 739.51 ± 246.82 a 580.24 ± 200.91 a 621.02 ± 356.27 a 120.55 ± 63.42 a 

Mineral Soil (0-5 cm)     

C Concentration (%) 4.98 ± 0.48 a 4.69 ± 0.22 a 5.02 ± 0.29 a 6.33 ± 0.46 a 

N Concentration (%) 0.20 ± 0.02 a 0.20 ± 0.12 a 0.20 ± 0.03 a 0.26 ± 0.02 a 

C:N  28.92 ± 4.00 a 27.73 ± 2.10 a 28.45 ± 1.62 a 28.63 ± 1.53 a 

PyC Mass Fraction (mg g-1) 10.56 ± 1.88 a 8.42 ± 2.56 a 10.50 ± 2.04 a 11.70 ± 2.68 a 

Total PyC Mass (g m-2) 310.79 ± 56.54 a 201.83 ± 45.44 a 358.83 ± 80.15 a 299.23 ± 57.8 a 
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Figure 1.3 Mean (± SE) carbon (a) and nitrogen (b) stocks in forest floor and 0-5 cm mineral 

soil for each severity level three years after the 2012 Chips wildfire burned mixed-conifer forest 

in northern California. Stocks are presented as mass per unit area. Lowercase letters indicate 

significant differences among fire severity levels at α = 0.05. 

 

1.4.2 Carbon and nitrogen pools 

Pyrogenic carbon in forest floor and mineral soil 

 Low and moderate severity areas had higher mass fraction of char in the forest floor than 

high severity areas (p = 0.008; Table 1.2), but there were no differences in total content of forest 

floor char among severity levels (Table 1.2). Forest floor char mass fraction decreased by 5.1 ± 

2.2 mg g-1 for every percent increase in slope (p = 0.038; Table 1.3). There were no differences 

in mineral soil PyC mass fraction or total PyC content among severity levels (Table 1.2), but 

there was a significant effect of aspect on PyC mass fraction (p = 0.005; Table 1.3). Eastern 

aspects had higher PyC mass fractions (1.19 ± 0.15 mg g-1) than western aspects (0.64 ± 0.09 mg 

g-1). Mineral soil total PyC content increased with elevation at a rate of 0.16 ± 0.08 g m-2 per 100 

m increase in elevation on the log response scale.  
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Table 1.3 Model parameters for models for which a topographic explanatory variable was 

statistically significant. Prior to log transformation, elevation parameter estimates are change in 

response variable ± SE per 100 m increase in elevation. Aspect parameter estimates are 

untransformed means. Lowercase letters for aspect parameter estimates represent significant 

differences at α = 0.05.  

 

Mineral soil C pools and CO2-C efflux 

 Non-linear regression indicated that there were differences in the sizes and kinetics of 

soil C pools among fire severity levels (Fig. 1.4a; Table 1.4). High severity areas had 

significantly larger Ca pools than low and moderate severity areas when estimated on a soil mass 

fraction basis (Table 1.4), and when estimated as a proportion of Csoc, Ca pools were smaller in 

burned areas than unburned areas (Table 1.4). My statistical models indicated that the size of the 

Cs pools varied with severity when estimated on a soil mass fraction basis (p = 0.011), but mean 

comparisons indicated that differences between severity levels were not significant, despite high 

severity areas exhibiting Cs pools that were 64% larger than those in unburned areas (p = 0.078; 

 Parameter Estimate F p 

Forest Floor     

C Concentration (%) Aspect: North 42.80 ± 4.64 ab - - 

 Aspect: East 47.26 ± 0.99 a - - 

 Aspect: South 41.08 ± 2.12 ab - - 

 Aspect: West 38.74 ± 1.80 b - - 

Char Mass Fraction (mg g-1) Severity See main text   

 Slope (%) -5.12 ± 2.20 5.43 0.038 

Mineral Soil (0-5 cm)     

Total C Content (g m-2)* Intercept 6.92 ± 0.13 2833.23 < 0.001 

 Elevation (100 m) 0.12 ± 0.05 5.30 0.038 

Total N Content (g m-2)* Intercept 3.77 ± 0.08 2347.67 < 0.001 

 Elevation (100 m) 0.11 ± 0.03 12.87 0.003 

PyC Mass Fraction (mg g-1)
†
 Aspect: North 

Aspect: East 

Aspect: South 

Aspect: West 

0.71 ± 0.15 ab 

1.19 ± 0.23 a 

1.26 ± 0.32 ab 

0.64 ± 0.09 b 

- 

- 

- 

- 

- 

- 

- 

- 

Total PyC Content (g m-2)* Intercept 

Elevation (100 m) 

5.09 ± 0.19 

0.16 ± 0.08 

3693.09 

4.40 

< 0.001 

0.042 

NO3
- Concentration (µg g-1) Intercept 

Elevation (100 m) 

-1.10 ± 0.77 

0.87 ± 0.30 

2.04 

8.50 

0.162 

0.011 

*Response log transformed; parameter estimates on log scale 

†Response box-cox transformed; parameter estimates on original scale 
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Table 1.4). There were no differences in Cr pools among severity levels. The mineralization rate 

coefficient (ka) associated with the Ca pool did not vary significantly with severity, but high 

severity areas had the smallest ks (corresponding to a longer MRTs), and low severity areas had a 

smaller ks than unburned areas (Table 1.4).  

 

 
Figure 1.4 Mean (± SE) CO2-C efflux rate (points) over a 300-day laboratory incubation of 

mineral soils (0-5 cm) fit with 3-pool carbon models (lines) using non-linear regression (a) and 

mean (± SE) cumulative CO2-C efflux over the incubation period(b). Soils were collected from 

contrasting levels of fire severity three years after the Chips wildfire, which burned California 

mixed-conifer forest in 2012. CO2-C efflux rateis presented as carbon respired per unit dry soil 

mass per day, and cumulative CO2-C efflux is carbon respired per unit soil carbon.  
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Table 1.4 Size of active (Ca), slow (Cs), and resistant (Cr) soil carbon pools, their sizes 

proportional to total soil organic carbon (Ca:Csoc, Cs:Csoc, Cr:Csoc), and corresponding 

decomposition rate constants (kx) and mean residence times (MRTx; 1/kx) for 0-5 cm mineral soil 

for each wildfire severity. Ca, Cs, and Cr are expressed on a dry soil mass basis, ka and MRTa are 

expressed as days, and ks, kr, MRTs are expressed as years. Ca, ka, and ks were determined via 

non-linear regression of CO2 evolution data from a 300 day lab incubation, Cr was determined 

via acid hydrolysis, and Cs is assumed to be the difference between total soil organic carbon and 

Ca + Cr. Lab-based values of MRT were scaled to field conditions using a Q10 correction of 2.0. 

Values are means ± SE. Lowercase letters within rows represent significant differences among 

severity levels at α = 0.05. 
 Unburned 

(N = 3) 

Low 

(N = 5) 

Moderate 

(N = 4) 

High 

(N = 4) 

Ca (g kg-1) 0.99 ± 0.15 ab 0.67 ± 0.08 b 0.64 ± 0.08 b 1.08 ± 0.11 a 

Cs (g kg-1) 28.89 ± 3.49 b* 35.81 ± 5.22 ab 36.40 ± 6.18 ab 46.96 ± 5.14 a* 

Cr (g kg-1) 10.79 ± 0.68 a 11.59 ± 1.23 a 15.05 ± 1.65 a 15.30 ± 1.21 a 

Ca:Csoc (%) 2.68 ± 0.33 a 1.58 ± 0.16 b 1.39 ± 0.25 b 1.68 ± 0.19 b 

Cs:Csoc (%) 69.90 ± 2.01 a 73.91 ± 0.97 a 68.95 ± 1.83 a 73.80 ± 1.52 a 

Cr:Csoc (%) 27.42 ± 1.98 a 24.51 ± 0.90 a 29.66 ± 1.80 a 24.52 ± 1.50 a 

ka (d-1) 0.030 ± 0.006 a 0.044 ± 0.009 a 0.040 ± 0.010 a 0.035 ± 0.005 a 

ks (y-1) 0.102 ± 0.011 a 0.055 ± 0.006 b 0.074 ± 0.007 ab 0.031 ± 0.005 c 

kr(y-1) 0.0025a 0.0025a 0.0025a 0.0025a 

Lab MRT     

MRTa (d) 33.40 ± 6.90 a 22.81 ± 4.56 a 24.94 ± 6.18 a 28.43 ± 4.16 a 

MRTs (y) 9.82 ± 1.06 c 18.26 ± 1.95 b 13.43 ± 1.25 bc 31.86 ± 5.19 a 

Field MRT     

MRTa (d) 84.55 ± 17.46 a 57.73 ± 11.54 a 63.15 ± 15.65 a 71.96 ± 10.54 a 

MRTs (y) 24.86 ± 2.67 c 46.24 ± 4.93 b 34.00 ± 3.17 bc 80.65 ± 13.13 a 
aBased on an assumed MRT of 1000 years and constrained in non-linear regression model.  

*p = 0.071 

 

 I fit a non-linear regression to all the plots within each severity level, obtaining a single 

estimate for each C pool and associated kinetics at each severity level (Fig. 1.4a, Table 1.4). I 

were thus unable to estimate the influence of topographic variables on these parameters, except 

for the Cr pool, which was measured separately using acid hydrolysis. However, I calculated 

instantaneous CO2-C efflux rates (Fig. 1.4a) and cumulative CO2-C efflux (Fig. 1.4b) over the 

duration of the incubation and determined the influence of severity and topography on these 

parameters. For instantaneous efflux rates, there were significant effects of incubation day (p < 

0.001), severity (p < 0.001), severity by day interaction (p = 0.001), and hillslope (p = 0.004). 

For cumulative CO2-C flux, there were significant effects of incubation day (p < 0.001), severity 

(p = 0.032), severity by day interaction (p < 0.001), and aspect (p = 0.008). The significant 
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severity by day interaction indicates the need to examine severity-based differences on each 

measurement day. When analyzing CO2-C efflux over time, analyses based on instantaneous 

efflux rates are more statistically valid than those based on cumulative C flux (Hess and Schmidt 

1995), so I limit my reporting of differences in cumulative C flux to those present only on the 

final incubation day (i.e., day 300), in contrast to a more detailed reporting of differences in 

instantaneous CO2-C efflux rates (Table 1.5).  

Table 1.5 Table of F and p-values for determining statistically significant differences in 

instantaneous CO2-C efflux rates during a lab incubation of mineral soils (0-5 cm) collected three 

years after the 2012 Chips Fire in Sierra Nevada mixed-conifer forest. 
   Severity 

Incubation day F p Unburned 

(N = 3) 

Low 

(N = 5) 

Moderate 

(N = 4) 

High 

(N = 4) 

10 2.07 0.118 -- -- -- -- 

14 1.18 0.328 -- -- -- -- 

28 7.22 <0.001 a b b b 

42 4.26 0.010 a b b b 

58 2.27 0.095 -- -- -- -- 

90 2.68 0.060 -- -- -- -- 

120 3.62 0.021 a ab ab b 

150 5.64 0.003 a b b b 

180 4.53 0.008 a b ab b 

210 3.18 0.034 a ab ab b 

240 2.83 0.050 a ab ab b 

270 3.86 0.016 a* ab b* b 

300 4.22 0.011 a* ab b* b 

* p < 0.10. 

 

 On incubation days 28, 42, and 150, soils from unburned areas exhibited higher CO2-C 

efflux rates than burned soils from all severity levels (Table 1.5, Fig. 1.4a). Carbon efflux rates 

for unburned soils were significantly greater than low and high severity soils on day 180 and 

were greater than soils from high severity areas on day 120, and from day 210 until the end of 

the incubation. At the conclusion of the incubation, cumulative CO2-C efflux for unburned soils 

was significantly greater than for soils from low and moderate severity areas (Fig. 1.4b). Despite 

exhibiting the lowest overall mean cumulative CO2 –C efflux, soils from high severity areas were 

not significantly different from any other areas.  
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Mineral soil inorganic N pools 

 There were significant differences among severity levels in mineral soil TIN and NH4
+-N 

concentrations in fresh, pre-incubated (i.e., incubation day 0) mineral soils (p = 0.003 and p = 

0.009, respectively; Fig. 1.5). There was a general trend of greater TIN and NH4
+-N 

concentrations at higher severity, although there were no differences between low severity areas 

and unburned or moderate severity areas, and high and moderate severity soils were not 

significantly different from one another (Fig. 1.5a and 1.5c). Mineral soil total N concentration 

was a significant covariate explaining TIN; TIN increased by 4.3 ± 1.8 µg g-1 for every percent 

increase in total N concentration (p = 0.020). There were no significant differences in NO3
--N 

concentrations among severity levels for day 0 soils (Fig. 1.5c), but NO3
--N concentrations 

increased with elevation at a rate of 0.87 µg g-1 100 m-1. After the 300-day lab incubation, there 

were no longer differences in NH4
+-N, NO3

--N, or TIN concentrations (Fig. 1.5b and 1.5c). 

There were no differences in net ammonification, net nitrification, or net N mineralization rates 

among severity levels over the course of the incubation (Fig. 1.6).  
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Figure 1.5 Concentration of ammonium nitrogen (a), nitrate nitrogen (c), and total 

inorganic nitrogen (e) in fresh mineral soils (0-5 cm), and concentration of ammonium nitrogen 

(b), nitrate nitrogen (d), and total inorganic nitrogen (f) after a 300 day lab incubation. Soils were 

collected from contrasting levels of fire severity three years after the Chips wildfire, which 

burned northern California mixed-conifer forest in 2012. Means (± SE) for each severity level 

are displayed. Concentrations are presented on a dry soil mass basis. Lowercase letters indicate 

significant differences among severity levels at α = 0.05. NS indicates there were no significant 

differences among severity levels. 
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Figure 1.6 Mean (± SE) net ammonification (a), net nitrification (b), and net nitrogen 

mineralization (c) for mineral soil (0-5 cm) for each severity level over the course of a 300 day 

lab incubation. Soil were collected three years after the 2012 Chips wildfire burned mixed-

conifer forest in northern California mixed-conifer forest. NS indicates there were no significant 

differences among severity levels.  

 

1.4.3 Influence of pyrogenic carbon on mineral soil carbon and nitrogen pools and fluxes 

 There was a significant positive correlation between PyC mass fraction and Cr mass 

fraction (p < 0.001, Pearson’s r = 0.64). The PyC pool was 58% of the size of the Cr pools on 

average. There was no relationship between either PyC mass fraction or total PyC mass and 



28 

 

inorganic N concentrations, C efflux, net ammonification, net nitrification, or net N 

mineralization rates over the course of the lab incubation (data not shown).  

1.5 DISCUSSION 

1.5.1 Soil carbon and nitrogen content 

 The smaller forest floor total C and N contents in high severity areas can be attributed to 

differences in forest floor mass, because C and N concentrations did not significantly vary 

among severity levels. The loss of forest floor may have long-term impacts on soil C and N 

cycling because the litter layer is a source of C and N inputs to mineral soil (Heckman et al. 

2013), and less forest floor insulation may result in higher temperatures and lower moisture 

content in mineral soils (Kasischke and Johnstone 2005), thereby influencing soil microbial 

activity. Higher soil temperatures will have a tendency to increase microbial activity, whereas 

moisture limitation will decrease microbial activity (Chapin et al. 2011). This may result in 

bursts of microbial activity following precipitation events that are more intense but shorter in 

duration in areas that experienced high severity fire compared to lower severity and unburned 

areas. California’s mixed-conifer forests may be especially sensitive to the effects of temperature 

and moisture, because they are seasonally dry and prone to frequent drought. Changes to soil 

temperature and moisture may affect the amount of C retained in microbial biomass versus lost 

to respiration (i.e., carbon use efficiency). Carbon use efficiency declines with increasing 

temperature due to greater respiratory costs and heat stress (Manzoni et al. 2012) and declines 

with increasing soil moisture variability due to physiological and osmotic stress (Tiemann and 

Billings 2011). Loss of the litter layer may also alter the soil microbial community structure. 

Forest litter is preferentially colonized by fungi (Chapin et al. 2011), and loss of the litter layer 
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may shift the microbial community towards bacterial dominance, thereby altering decomposition 

pathways.  

1.5.2 Pyrogenic carbon pools 

 The lower char mass fraction in high severity areas compared to low and moderate 

severity areas may have resulted from greater forest floor combustion efficiency, or from 

increased inputs of killed but uncharred biomass in the years following the fire. Despite the 

lower char mass fraction in high severity areas, there were no differences in total forest floor 

char content. This is likely due to decreased forest floor mass in high severity areas offsetting the 

greater char mass fraction. I did not directly measure PyC concentration of forest floor char, but 

C concentrations are generally greater for charred material than for uncharred biomass (Czimczik 

et al. 2002; Maestrini and Miesel 2017). The magnitude of C enrichment in char depends on 

source material and pyrolysis temperature; for example, C concentrations range from 

approximately 60% for charred pine needles pyrolyzed at 300º C to more than 90% for charred 

pine wood pyrolyzed at 550º C (Maestrini and Miesel 2017). The digestion-resistant C fraction 

(i.e. PyC) ranges from approximately 10% for pine needles charred at 300º C to approximately 

90% for pine wood charred at 550º C. Using these values as constraints, this would translate to 

forest floor char-C contents ranging from 73 to 109 g char-C m-2 (12 to 109 g PyC m-2) for high 

severity areas and contents ranging from 444 to 666 g char-C m-2 (44 to 599 g PyC m-2) for the 

unburned areas. The greater mass fraction of char in forest floor from low and moderate severity 

areas may eventually lead to changes in C pool structure and dynamics as the char becomes 

incorporated into the mineral soil. An experiment in a beech-dominated temperate forest 

indicated that the MRT of charred biomass in soil is one to two orders of magnitude longer than 

unburnt biomass; the same experiment indicated that PyC can promote the formation of SOM-
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stabilizing aggregates (Singh et al. 2014). Furthermore, a meta-analysis by Maestrini et al., 

(2015) indicated that upon incorporation into mineral soil, PyC induces a positive priming effect 

to the native soil C over short time periods (20-200 days), but results in an overall negative 

priming effect over the long term (> 200 days). Longer MRTs, promotion of aggregate 

formation, and a negative priming effect should all serve to increase the size and MRTs of the Cs 

and Cr pools as charred biomass becomes incorporated into the mineral soil.  

1.5.3 Mineral soil carbon pools and CO2-C efflux 

 Wildfires release stored C immediately through combustion, but can also cause delayed C 

losses as fire-killed plant biomass decomposes, thereby transforming forests from C sinks to C 

sources until losses are offset by C accumulation during forest regeneration (Kashian et al. 

2006). Using a Differenced Normalized Burn Ratio (dNBR) severity classification, Meigs et al., 

(2009) determined that the amount of time required for forest stands to transition from C source 

to sink is shorter for stands that experienced low or moderate severity fire than high severity fire, 

where net primary production is lower due to greater plant mortality. The structure and dynamics 

of mineral soil C pools govern the amount of C lost via respiration versus the amount retained in 

the mineral soil (Post and Kwon 2000; Six and Jastrow 2002). Soil C pools thus determine the 

magnitude of overall C losses following wildfires and the time required to transition forests back 

to C sinks. The low soil CO2-C efflux rates I observed in soils from high severity areas indicate 

that these stands are experiencing similar C losses to low and moderate severity stands, three 

years after fire. I also found that the MRT for the Cs pool increased following wildfire, a trend 

that was most pronounced among high severity areas, suggesting that soil C stability is greater in 

soils from high severity areas than other burned and unburned areas. The Cs pool accounts for 

more than 70% of soil C in high severity areas, indicating that CO2-C efflux is likely to remain 
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low in these soils until more labile C is incorporated into the Cs pool. The greater C stability and 

corresponding lower CO2-C efflux in high severity soils suggests that the strength of the C 

source is not enhanced by soil respiration in these stands, and supports Meigs et al., (2009) 

finding that the sink-source relationship in recovering forests is driven by plant production rather 

than soil respiration. There was no relationship between PyC and CO2-C efflux, but the absence 

of differences in mineral soil PyC pools among burned and unburned areas suggests that PyC 

had not been incorporated into the mineral soil three years after the wildfire. Previous research in 

sites impacted by the Chips fire has indicated that high severity areas contain a greater 

proportion of PyC in aboveground C pools than low-to-moderate severity areas (Maestrini et al. 

2017), but lateral transport of PyC due to erosion may exceed the rates of vertical mixing 

following wildfires in the region (Abney et al. 2017), perhaps accounting for the lack of 

differences in soil PyC pools among severity levels.  

 Of the three C pools addressed in this study, Ca is most accessible for microbial 

processing (Bremer et al. 1994; Six and Jastrow 2002), and thus strongly influences soil 

biological activity and site fertility (Mandal et al. 2008). The Ca pool is sensitive to 

environmental change and is an early indicator of the impact of changing environmental 

conditions on soil C dynamics (Bremer et al. 1994). Large Ca pools are indicative of labile (i.e., 

easily decomposable) C inputs from plant residues and root exudates (Paul et al. 1999; Collins et 

al. 2000; Hoosbeek et al. 2006). According to the severity classification system I used, high 

severity wildfire results in 75-100% basal area mortality (Miller et al. 2009a), yet I found that 

high severity areas had proportionally similarly sized Ca pools compared to soils from low and 

moderate severity areas, and larger Ca pools than low and moderate severity areas when 

estimated on a soil mass fraction basis. The larger Ca pools in high severity areas relative to low 
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and moderate areas could result from greater incorporation of root necromass into mineral soils 

in these areas. Tree root survival is low following high severity fire in mixed-conifer forests 

(Meigs et al. 2009), stimulating root decomposition (Campbell et al. 2016), and perhaps 

providing a sustained source of belowground Ca inputs. Root decomposition could also account 

for the tendency for Cs pool size to increase with severity and for the longer MRTs in the burned 

plots. Root-derived C has been shown to account for a greater proportion of soil C and have 

longer MRT values than C derived from aboveground biomass (Rasse et al. 2005). In fact, my 

field-scaled MRTs values are similar to the estimated MRT for Pseuodotsuga menziesii coarse 

root necromass of approximately 50 years (Janisch et al. 2005).  

 Another possible explanation for the larger Ca pools in high severity plots is the potential 

for fast-growing, early successional plant species to incorporate labile C and N into the soil, a 

possibility that is supported by the greater TIN and NH4
+-N concentrations in the high severity 

plots. Nitrogen-fixing shrubs are often early colonizers following wildfires in mixed-conifer 

forests (Conard et al. 1985), and high severity patches create canopy openings that favor shrub 

establishment (Meigs et al. 2009; Knapp et al. 2012; Collins and Roller 2013). In fact, I observed 

a greater proportion of Ceanothus cordulatus, an early successional N-fixing shrub, in high 

severity areas than other areas (personal observation; Knapp et al. 2012). 

 My results are novel because they are the first to describe the structure and dynamics of 

mineral soil C pools—properties that determine the status of soils as C sources or sinks—among 

contrasting levels of fire severity. Fernández et al. (1999) described two mineral soil C pools 

following wildfire in Galician pine forest, but they did not account for fire severity nor 

differentiate between the slow and resistant C pools. Nevertheless, my finding of greater MRT 

for the Cs pool agrees with the observation of Fernández et al. (1999) of decreased mineralization 
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rates in a recalcitrant C pool. My findings of a larger Ca pool in high severity areas than in low 

and moderate severity areas three years after wildfire contrasts with Fernández et al. (1999) 

finding decreases in the size of the labile C pool during a two-year post-fire monitoring period. I 

also found no differences in the MRT of the Ca pool among severity levels, whereas Fernández et 

al. (1999) found decreases in the mineralization of the labile C pool that persisted for at least two 

years. These contrasting results highlight the need for additional studies assessing the 

mineralization kinetics and distribution of soil C among different pools following wildifres 

across contrasting ecoystem types and on short and long timescales.  

1.5.4 Inorganic nitrogen pools 

 Fires have been known to create a pulse of inorganic N to the soil (DeBano et al. 1979), 

because NH4
+ is a product of forest floor pyrolysis (Covington and Sackett 1992). However, the 

resulting spike in NH4
+-N generally dissipates after about a year as NH4

+ is transformed to NO3
-
 

(Wan et al. 2001). My observations of a persistent six-fold increase in both NH4
+-N and TIN in 

high severity soils relative to unburned soils three years after fire suggests either that high 

severity fires directly induce a more persistent increase in NH4
+-N than low and moderate 

severity fires, or that indirect, post-fire effects drive soil inorganic N pools. For example, 

elevated TIN could have resulted from increased N inputs from colonization by N-fixing plants 

(e.g., from the C. cordulatus plants I observed; Oakley et al. 2003), decreased N uptake by plants 

due to greater plant mortality in areas of higher severity (Grogan et al. 2000; Ficken and Wright 

2017), continuous root decomposition, or differences in the activity rates of soil microbial 

communities (Smithwick et al. 2005). If the loss of forest floor resulted in drier soils in high 

severity areas, the elevated NH4
+-N could also be the result of decreased nitrification rates 

(Turner et al. 2007). A sustained increase in TIN may support forest regeneration after severe 
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wildfires because N is a limiting nutrient in coniferous forests (Vitousek and Howarth 1991). 

Furthermore, fertilization experiments suggest that increased TIN may strengthen the soil C sink 

by increasing SOM formation (Bradford et al. 2008) and by decreasing soil C respiration, effects 

postulated to result from microbial groups switching energy sources from N-containing 

recalcitrant C sources to N-poor but more labile C substrates that can be metabolized more 

efficiently (Janssens et al. 2010). However, elevated TIN may also have undesirable effects on 

the ecosystem if lower N-uptake by plants in high severity areas leads to increased leaching of 

NO3
- from soil, resulting in contamination of streams and groundwater (Vitousek et al. 1979). 

After my 300-day lab incubation, there were no longer any differences in NH4
+-N or TIN 

concentrations, nor were there differences in ammonification, nitrification, or N mineralization 

rates, suggesting that site characteristics are the dominant drivers of differences in inorganic N 

pools. However, my lab incubation did not include living plant biomass, therefore I could not 

account for the effects of plant N uptake on soil N mineralization, or competition between plants 

and microbes for inorganic N. Because I measured initial and day 300 inorganic N 

concentrations, my calculations of net mineralization that occurred represent a relatively coarse 

time scale, and therefore did not capture any patterns of short term mineralization that may have 

differed among severity levels 

1.6 CONCLUSIONS 

 My study found that wildfire severity influences soil C and N pool structure and 

dynamics. I found that less soil C is stored in areas of high fire severity, but that C may be more 

stable as evidenced by longer MRTs. The large Ca pools and TIN concentrations indicate soils in 

high severity areas maintain the nutrient cycling processes necessary to support forest 

regeneration, and low CO2-C efflux rates and long MRT of the Cs pool indicate future soil C 
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losses will be low. This suggests that the recovery of forest C will likely be constrained by 

vegetation regeneration rather than soil C cycling processes. If fires in mixed-conifer forests 

continue to occur with increasingly high-severity effects, these forests may not completely 

reaccumulate C stored in aboveground and belowground pools. Further research is needed to 

determine whether greater soil sink strength in high severity areas will offset lower aboveground 

production under future severity scenarios. Determining the mechanisms responsible for greater 

soil C stability in high severity areas (e.g. PyC inputs, shrub colonization, root decomposition, 

etc.) will aid in managing forests for C sequestration. Whether high severity fire consistently 

leads to larger and/or more persistent increases in TIN than low and moderate severity fire and 

the role of TIN in driving forest recovery also warrants further investigation. 
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CHAPTER 2: 

HOW DO SOIL MICROBIAL COMMUNITIES RESPOND TO FIRE IN THE 

INTERMEDIATE TERM? INVESTIGATING DIRECT AND INDIRECT EFFECTS2 

2.1 ABSTRACT 

 Fires transform soil microbial communities directly via heat-induced mortality and 

indirectly by altering plant and soil characteristics. Emerging evidence suggests the magnitude of 

changes to some plant and soil properties increases with burn severity, but the persistence of 

changes varies among plant and soil characteristics, ranging from months to years post-fire. 

Thus, which environmental attributes shape microbial communities at intermediate time points 

during ecosystem recovery, and how these characteristics vary with severity, remains poorly 

understood. I identified the network of properties that influence microbial communities three 

years after fire, along a burn severity gradient in Sierra Nevada mixed-conifer forest. I used 

phospholipid fatty acid (PLFA) analysis and bacterial 16S-rDNA amplicon sequencing to 

characterize the microbial community in mineral soil. Using structural equation modelling, I 

applied a systems approach to identifying the interconnected relationships among severity, 

vegetation, soil, and microbial communities. Dead tree basal area, soil pH, and extractable 

phosphorus increased with severity, whereas live tree basal area, forest floor mass, and the 

proportion of the ≥53 µm soil fraction decreased. Forest floor loss was associated with decreased 

soil moisture across the severity gradient, decreased live tree basal area was associated with 

 
2 Originally published as: Adkins J., Docherty K., Gutknecht J., Miesel J.R., 2020. How do soil microbial 

communities respond to fire in the intermediate term? Investigating direct and indirect effects associated 

with fire occurrence burn severity. Science of The Total Environment 745, 140957. 

.  
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increased shrub coverage, and increased dead tree basal area was associated with increases in 

total and inorganic soil nitrogen. Soil fungal abundance decreased across the severity gradient, 

despite a slightly positive response of fungi to lower soil moisture in high severity areas. 

Bacterial phylogenetic diversity was negatively related to severity and was driven by differences 

in nutrients and soil texture. The abundance of Bacteroidetes increased and the abundance of 

Acidobacteria decreased across the severity gradient due to differences in soil pH. Overall, I 

found that the effects of burn severity on vegetation and soil physicochemical characteristics 

interact to shape microbial communities at an intermediate time point in ecosystem recovery. 

2.2 INTRODUCTION 

 Wildfire activity has increased globally over the past several decades (Flannigan et al. 

2013). In the western United States, wildfire frequency increased four-fold and total burned area 

increased six-fold during 1987-2003 compared to 1970-1986 (Westerling et al. 2006); from 

1984-2011, total wildfire area in the region increased by >350 km2 y-1, and the number of 

wildfires > 405 ha increased by seven fires per year (Dennison et al. 2014). Burn severity, which 

is a measure of the magnitude of fire’s impact to aboveground and belowground organic matter 

(Keeley 2009), has also increased. In the mixed-conifer forests of California’s Sierra Nevada 

mountain range, the proportion of high severity fire has more than quadrupled compared to pre-

settlement (Miller and Safford 2017), including approximately doubling between 1984-2006 

(Miller et al. 2009b). Fire disturbances can influence ecosystem functions for months to years by 

impacting plant and microbial communities (Treseder et al. 2004; Holden et al. 2016; Pérez-

Valera et al. 2019). Soil microbial community structure may affect the resilience of the 

community to future disturbances (Jansson and Hofmockel 2020), and has been linked to key 

soil ecosystem processes, including CO2 flux (Bier et al. 2015). Responses of  microbial 
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communities to fire may thus affect ecosystem stability and  govern the transition of an 

ecosystem from a C source to a C sink during forest recovery (Balser et al. 2006), but the 

timescale over which these impacts persist remains poorly characterized.  

 Knowledge of the plant and soil characteristics that shape microbial communities at 

intermediate time points during post-fire recovery is currently limited (Dove et al. 2020; 

McLauchlan et al. 2020). Most existing publications describing impacts of fire on microbial 

communities focus on changes that occur within one year (e.g. Weber et al., 2014; Whitman et 

al., 2019; Xiang et al., 2014) or several decades (e.g. Cutler et al., 2017; LeDuc et al., 2013; 

Treseder et al., 2004) post-fire, and boreal forests are currently over-represented (Xiang et al. 

2014a; Holden et al. 2016; Whitman et al. 2019) relative to other ecosystem types. Furthermore, 

despite decades-long calls for studies assessing the role of burn severity in shaping microbial 

communities (Hart et al. 2005; Pressler et al. 2018), relatively few publications have accounted 

for severity (but see Holden et al., 2016; Sáenz de Miera et al., 2020; Weber et al., 2014; 

Whitman et al., 2019; Xiang et al., 2014). Therefore, it is relatively unknown how forecasted 

increases in fire activity will influence the environmental drivers and characteristics of microbial 

communities at intermediate time points during post-fire recovery. This is a critical knowledge 

gap, as the response of microbial communities to changing fire regimes may either exacerbate or 

modulate the magnitude of fire feedbacks to climate change. For example, fire can cause 

decreases in fungal biomass and increases in copiotrophic bacteria, which may lead to increases 

in post-fire soil C efflux because bacterial biomass has faster turnover times compared to fungal 

biomass (Rousk and Bååth 2011), and copiotrophic bacteria are associated with faster 

decomposition rates compared to oligotrophic taxa (Orwin et al. 2018). 
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 Immediate, direct effects of fire on soil microbial communities are driven by soil heating, 

which alters community structure via differential survival of heat-sensitive versus heat-resistant 

microbes. For example, lower fungal biomass is frequently observed in recently burned 

ecosystems relative to unburned controls (Dooley and Treseder 2012; Pressler et al. 2018), as 

fungi may be more sensitive to soil heating than bacteria (Neary and DeBano 2005). Relatedly, 

the spore-forming ability of the bacterial phyla Firmicutes and Actinobacteria may convey heat 

resistance and explain the increase in their dominance in the immediate aftermath of fires 

(Prendergast-Miller et al. 2017; Whitman et al. 2019). Fire also appears to favor microorganisms 

that exhibit a copiotrophic growth strategy. Predicted 16S-rRNA gene copy number, a trait 

associated with rapid growth rates, increases in response to fire in environments ranging from 

Mediterranean shrubland (Pérez-Valera et al. 2019) to Canadian boreal forests (Whitman et al. 

2019). As post-fire ecosystem succession progresses, the direct impacts of fire on microbes may 

become less important as environmental characteristics become dominant drivers of microbial 

communities (Hart et al. 2005; Ferrenberg et al. 2013). Fires may influence microbial 

communities over intermediate (i.e. 1-10 years) and long timescales (>10 years) by changing the 

soil environment (i.e. soil pH, nutrient status, organic matter pools, texture, moisture, and 

temperature) (Certini 2005; Hart et al. 2005; Neary and DeBano 2005). Fire induced losses to 

plant biomass can indirectly influence the soil environment and microbial community by leading 

to less soil nutrient and water uptake by plants, fewer litter inputs, and decreased influence of 

plant canopy on soil temperature (Hart et al. 2005; Neary et al. 2005; Ficken and Wright 2017).  

 The persistence of fire-induced changes varies for different plant and soil properties and 

can range from months or years (e.g. pH, nutrient status; Certini, 2005; Wan et al., 2001) to 

decades (e.g. plant canopy coverage, soil organic matter pools; Fornwalt et al., 2018; Neary et 
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al., 2005). The magnitude of these changes likely depends on burn severity, but only a few 

studies have investigated the links between severity and soil properties or how plant 

communities modulate these changes. Studies that have directly assessed relationships between 

burn severity and soil properties in mixed-conifer forests have found that severity affects the 

magnitude of change to pH (Weber et al. 2014), total inorganic nitrogen (TIN) concentrations, 

forest floor (i.e. organic horizon) mass (Adkins et al. 2019b), forest floor pyrogenic C (i.e. 

charcoal associated C; PyC) concentrations (Maestrini et al. 2017), and soil texture (Ulery and 

Graham 1993). Differential impacts of burn severity on soil properties may lead to differences in 

microbial communities across severity gradients. For example, soil pH affects microbial 

diversity and community structure (Lauber et al. 2009; Rousk et al. 2010; Docherty et al. 2015), 

loss of forest floor may decrease habitat availability for fungi (Joergensen and Wichern 2008; 

Baldrian et al. 2012), and increases in PyC may favor lignolytic microbes adapted to 

decomposing aromatic substrates (Czimczik and Masiello 2007).  

 The direct and indirect effects of fire on soils represent a system level change to the 

microbial environment. A systems approach to assessing changes in microbial communities will 

improve understanding of the linkages between fire and microbial communities by disentangling 

the interconnected effects of fire on soil and vegetation. Previous research on the impacts of fire 

on soil microbial communities has tended to focus solely on soil characteristics, and researchers 

have called for studies that consider vegetation, soil, and microbes as an interacting network 

(Pressler et al. 2018). Here, I examined the impacts of burn severity on soil microbial community 

structure via plant and soil properties three years after a wildfire burned California mixed-conifer 

forest in the Sierra Nevada mountain range. I took a systems approach to understanding the 

impacts of burn severity by utilizing structural equation models (SEM) that accounted for 
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impacts of severity, plant coverage, and soil properties on microbial communities. My 

overarching hypothesis is that soil microbial community structure varies with burn severity, and 

that such differences can be explained by severity-associated differences in mineral soil nutrient 

concentrations, soil moisture content, and soil texture. I also hypothesized that plant coverage 

would influence microbial communities only indirectly via impacts on soil nutrients. Lastly, I 

hypothesized that accounting for burn severity instead of fire occurrence only would better 

explain changes to the microbial community by accounting for more of the variability in plant 

and soil characteristics in the post-fire environment. I used two methodological approaches 

which examine different characteristics of soil microbial communities. I used phospholipid fatty 

acid (PLFA) analysis to quantify total microbial biomass and the abundance of ecologically 

distinct guilds of microbes, including general fungi, Gram-positive bacteria, and Gram-negative 

bacteria. I used 16S-rDNA amplicon sequencing to examine bacterial communities at a finer 

resolution, characterizing the abundance of bacteria at the phylum level, bacterial phylogenetic 

diversity, and the ratio of oligotrophic-to-copiotrophic (O:C) bacterial taxa.  

2.3 METHODS 

2.3.1 Site description and field methods 

 My study was conducted in mixed-conifer forest (Ruefenacht et al. 2008) in the northern 

Sierra Nevada mountain range, California, USA (Plumas and Lassen National Forests; Fig. 

S2.1). The forest is dominated by Pinus ponderosa Lawson & C. Lawson, P. lambertiana 

Douglas, P. jeffreyi Balf., Abies concolor (Gord. & Glend.) Lindl. ex Hildebr., Pseudotsuga 

menziessi (Mirb.) Franco, and Calocedrus decurrens (Torr.) Florin, with lesser cover by Quercus 

kelloggi Newberry. Soils in my plots were from the Skalan soils series, a loamy-skeletal, isotic, 

mesic Vitrandic Haploxerlaf, and the Kinkel series, a loamy-skeletal, mixed, superactive, mesic 
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Ultic Palexeralf. During the period from approximately 1500-1850 C.E., the mean fire rotation in 

the region was 23 years for dry mixed-conifer forests and 31 years for moist mixed-conifer 

forests of the Sierra Nevada and Cascade mountain ranges in California; between 6-8% of 

burned forest experienced high severity fires on average (Mallek et al. 2013). The proportion of 

high severity fires in mixed-conifer forests increased to 25-30% for the period from 1984-2009 

(Mallek et al. 2013). The 30 year mean annual precipitation is 1080 mm and mean annual 

temperature is 10.6 ºC (determined at the nearest weather station, Quincy, CA). My study 

focuses on the Chips Fire (Lat: 40.095 Long: -121.199), which was ignited by lightning and 

burned approximately 32,000 ha between July 28 to August 31, 2012.  

 Extended differenced Normalized Burn Ratios (dNBR) fire severity estimates, 

determined via Landsat TM imagery at a 30 m resolution, are collected in the growing season 

after fire occurrence, and are sensitive to post- versus pre-fire changes in vegetation and soil 

exposure (Parsons et al. 2010). The dNBR metric is correlated with absolute change in biomass 

and thus the magnitude of soil heating (i.e. more biomass burned equals greater heat flux) 

(Safford et al. 2008). dNBR therefore represent a combination of effects to both vegetation and 

soil, so I refer to dNBR as “total burn severity” throughout this paper. dNBR values (including 

unburned pixels) are continuous, but can be thresholded into severity categories: approximately 

20% of the area affected by the Chips Fire was classified as high severity, 30% as moderate 

severity, 38% as low severity, and 12% as unburned (MTBS 2017). Immediately after wildfires, 

the USDA Burned Area Emergency response team often assesses soil burn severity (SBS). 

During the SBS mapping process, dNBR maps are modified based on field assessment of soil 

conditions, including loss to soil litter and duff layers, ash color and depth, soil structure, soil 

water repellency, and damage to fine roots (Parsons et al. 2010). 
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 The USDA Forest Service established permanent plots and evaluated forest composition 

and structure across categories of total burn severity in summer 2014 (Alvey 2016; Maestrini et 

al. 2017). I randomly selected 17 of these plots (4 unburned, 6 low SBS, 5 moderate SBS, and 2 

high SBS; dNBR range 1-1004) for soil and tree basal area sampling in summer 2015 (i.e. three 

years post-fire; Fig. S2.1). Plot level shrub coverage estimates were provided by USDA Forest 

Service staff based on measurements performed in 2014 (i.e. two years post-fire) within a 16 m 

sampling radius following a standard protocol for the Common Stand Exam (USDA 2015). 

Although it is possible that small changes in shrub cover may have changed between 2014 and 

2015, shrub data from 2014 were the only data available as they were not assessed at the plot 

level during my soil sampling. Because the shrub species present at this site are perennial 

species, I assumed that shrub cover in 2014 represented cover in 2015. Plot characteristics and 

sampling methods have been described in detail previously (Maestrini et al. 2017; Adkins et al. 

2019b). Briefly, plot elevation ranged from 1217-1641 m asl and were located on a variety of 

aspects with slopes < 50%. At each plot, I measured tree diameters at breast height (DBH) for all 

live and dead stems >10 cm DBH within an 11.3 m sampling radius, and I used these values to 

calculate live and dead tree basal areas at the plot level. I collected forest floor and mineral soil 

at azimuths of 0º, 120º, and 240º at 17 m from the plot center, resulting in a total of 51 forest 

floor samples and 51 mineral soil samples. The forest floor comprises the plant litter and duff 

layers, and is equivalent to the combined Oi, Oe, and Oa horizons in the USDA Soil 

classification system (Perry et al. 2008). At each sampling azimuth, I measured forest floor 

depth, collected all forest floor material from within a 15 cm diameter circular sampling frame, 

and collected mineral soil to 5 cm using a stainless-steel scoop. I stored mineral soils on ice for 

2-7 days after collection and shipped them to the lab on ice. Subsamples for PLFA and DNA 
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analysis were stored at -80 ºC, and the remainder of the soils were refrigerated at 4 ºC until 

processing.  

2.3.2 Laboratory methods 

Soil processing and chemical analyses 

 Detailed  methods for bulk sample processing and chemical analysis have been described 

previously (Adkins et al. 2019b). Briefly, I determined total forest floor dry mass, and pulverized 

forest floor subsamples by sequentially processing in a Waring commercial lab blender (Conair 

Inc., Stamford Ct, USA) and a ball mill (SPEX Sample Prep LLC, Metuchen, NJ, USA). I oven-

dried the pulverized forest floor at 60 ˚C and determined C and N concentrations via elemental 

analysis (Costech Analytical Technologies Inc., Valencia, CA, USA). I sieved field-moist 

mineral soils (2 mm ) and subsampled for determination of total C, N, PyC, ammonium (NH4), 

nitrate (NO3), extractable phosphorus (P), pH, proportion of sand + particulate organic matter 

(sand+POM), soil moisture, PLFA, and 16S-rDNA analysis. For C, N and PyC analysis, I oven-

dried subsamples at 105 ˚C (C and N) or 60 ˚C (PyC) and pulverized in a ball mill prior to 

analysis. I used field-moist subsamples for NH4, NO3, and extractable P analysis, and air-dried 

subsamples for pH determination. I oven-dried subsamples at 60 ˚C for determination of 

sand+POM proportion. I determined soil moisture gravimetrically as the mass difference 

between subsamples oven-dried at 105 ˚C and field-moist samples. I determined PyC 

concentrations using weak nitric acid digestion (Kurth et al. 2006; Maestrini et al. 2017). I 

measured NH4 and NO3 concentrations spectrophotometrically following extraction with 2 M 

KCl (Sinsabaugh et al. 2000; Doane and Horwáth 2003). I measured P concentration after 

extraction with 0.5 M NaHCO3 (Olsen et al. 1954). I determined pH using a 1:2 (w:v) soil slurry 

(Oakton pH 700, Oakton Instruments, Vernon Hills, IL, USA). I quantified sand+POM as the 
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mass proportion of dispersed soil that did not pass through a 53 µm sieve during wet sieving 

(Cambardella and Elliott 1993).  

PLFA analysis  

 I performed PLFA analysis using a modified version of the Bligh and Dyer method 

(Bligh and Dyer 1959; Schmidt et al. 2015). I freeze-dried 6 g mineral soil subsamples and 

extracted fatty acids three times using a 0.9:1:2 mixture of 0.15 M citrate 

buffer:chloroform:methanol. I separated the phases using a 0.9:1 ratio of citrate 

buffer:chloroform to isolate lipids in the chloroform phase. I separated lipid classes via silica 

acid chromatography, followed by methylation of phospholipids through alkaline methanolysis.  

 I analyzed the isolated FAMEs on a Gas Chromatograph System (Agilent 7890, Agilent 

Technologies Inc., Santa Clara, CA, USA). I converted peak areas to nmol lipid g soil-1 using 

internal standards. I used the sum of all lipids with less than 19 carbons as an index for microbial 

biomass. I used specific lipids as biomarkers to distinguish microbial groups within the 

community. I considered the sum of 18:1 ω9c and 18:2 ω6,9c lipids as general fungal indicators, 

the sum of monounsaturated (excluding 16:1 ω5c) and cyclopropyl lipids as Gram-negative 

bacterial indicators, and the sum of all iso- and anteiso-branched lipids as Gram-positive 

bacterial indicators. I considered the sum of 14:0, 15:0, 16:0, and 18:0 lipids as non-specific 

bacterial indicators. I used the ratio of mean abundances of fungal biomarkers to bacterial 

biomarkers (excluding 16:1 ω5c) as an index for fungal:bacterial lipid ratio (F:B). Two soil 

subsamples (one from a high severity plot and one from an unburned plot) were lost during 

PLFA processing and were excluded from further analysis. 
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DNA extraction and sequence analysis 

 I extracted DNA from 0.25 g of fresh soil using a DNA isolation kit (MoBIO PowerSoil, 

MoBIO laboratories, Carlsbad, CA), according to the manufacturer's instructions. I used 

Illumina-MiSeq to amplify the V4 region of the 16S-rRNA gene using 515f/806r universal 

primers (Caporaso et al. 2010). DNA sequences were processed using the QIIME (v 1.9) 

bioinformatics pipeline (Caporaso et al. 2010). I merged forward and reverse sequence reads 

using the pandaseq (v 2.6) algorithm (Masella et al. 2012), and I removed chimeric sequences de 

novo using the USEARCH (v 6.1) algorithm (Edgar 2010). I clustered sequences into operational 

taxonomic units (OTUs) using a 97% similarity threshold via comparison to the SILVA SSURef 

database (v 128) (Quast et al. 2013). I removed contaminant OTUs using the 

filter_otus_from_otu_table.py command, and I removed OTUs associated with Archaea, 

mitochondria, and chloroplasts using the filter_taxa_from_otu_table.py command. I calculated 

OTU relative abundance at the phylum level using the summarize_taxa.py command. I 

determined Faith’s phylogenetic diversity for each sample by passing the PD_whole_tree option 

to the alpha_diversity.py command (Faith 1992). I calculated O:C as the ratio of the sum of 

relative abundances of all taxa classified within the phyla Acidobacteria and Verrucomicrobia to 

the sum of the relative abundances of all taxa classified within Actinobacteria, β-proteobacteria, 

Firmicutes, and Bacteroidetes (Fierer et al. 2007; Fierer et al. 2012a; Ramirez et al. 2012). After 

sequence processing, there were 19,527-45,893 sequences per sample (mean=30,570; SD=4827). 

I did not rarefy my samples because rarefying reduces statistical power and is not useful when 

library size varies by less than ten-fold (McMurdie and Holmes 2014; Weiss et al. 2017). Raw 

sequence data are accessible from the NCBI Sequence Read Archive (SRA) under project ID 

PRJNA632607, accession numbers SAMN14195883-5931.  
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2.3.3 Statistical methods 

Univariate relationships between fire, soil, vegetation, and microbial characteristics 

 I assessed univariate relationships using maximum-likelihood linear mixed models 

constructed in the nlme package (v 3.1.140) (Pinheiro et al. 2019) in the R statistical computing 

environment (v 3.6.1) (R Core Team 2019). My linear models included a plot-identifier as a 

random effect, and either fire occurrence, total burn severity, or SBS as the explanatory variable; 

I treated fire occurrence and SBS as categorical variables and total burn severity as a continuous 

variable. The four unburned plots were included in my severity models. I examined residual 

distributions to assess the assumption of normality and determined that lipid-derived absolute 

abundance and microbial biomass values should be log-transformed. I determined whether fire 

occurrence, total burn severity, or SBS best explained each response by comparing Akaike 

Information Criterion (AIC) values among the models. For models assessing the response of 

vegetation, I compared only fire occurrence and total burn severity models. I performed 

differential expression analysis and assessed the log2-fold change in individual bacterial OTUs in 

response to fire occurrence using the edgeR package (v 3.28.1) (Robinson et al. 2010). I 

aggregated OTUs within bacterial families and calculated mean log2-fold change to identify 

families that exhibited different abundances in burned and unburned areas. 

Multivariate relationships between fire, soil, vegetation, and microbial communities 

 I assessed the relationships between fire occurrence, burn severity, and lipid-based and 

16S-based communities by performing permutational analysis of variance (PERMANOVA) 

analysis on Bray-Curtis dissimilatory matrices. Dissimilatory matrices were based on the relative 

abundances (%) of lipids and bacterial phyla, and PERMANOVAs were performed using the 

adonis2 function within the vegan package (v 2.5.6) (Oksanen et al. 2019). I assessed 
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relationships of fire occurrence and severity, vegetation, soil characteristics, and whole microbial 

communities using PCoA analysis within the vegan package. I calculated the correlations of 

variables with the resulting principle coordinates using the envfit function in vegan.  

System scale relationships between fire, soil, vegetation, and microbial communities using 

structural equation modelling 

 I constructed SEMs using the piecewiseSEM package (v 2.1.0) (Lefcheck 2016) and the 

nlme package (Pinheiro et al. 2019). Piecewise SEM is a multivariate statistical technique that 

incorporates multiple explanatory and response variables into a single causal network, 

represented as a set of regression equations (Lefcheck 2016). SEMs quantify path coefficients for 

direct and indirect drivers of an explanatory variable on a response variable, which can be 

combined into a single compound coefficient to assess the overall effect (Grace 2006). I used 

SEMs to determine direct and indirect drivers of the absolute abundance (nmol lipid g-1 soil) of 

lipid-derived microbial guilds and the absolute abundance (count of sequences within phyla) of 

the four most abundant bacterial phyla determined using 16S-rDNA analysis. I recognize that 

there are potential issues with the use of absolute rather than relative abundance of 16S-rDNA 

due to differences in sample sequence depth and rRNA gene copy number among phyla. 

However, due the similarity in library sizes among my samples, using absolute versus relative 

abundance is unlikely to affect my results. Moreover, the use of proportional abundance for 

analyzing microbiome data has been found to increase false positive rates and spurious 

correlations (Friedman and Alm 2012; McMurdie and Holmes 2014).  

 I also constructed SEMs for microbial biomass, F:B, bacterial phylogenetic diversity, and 

O:C. I constructed an initial SEM metamodel composed of multivariate linear mixed models 

with vegetation and soil characteristics as response variables. The component linear mixed 
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models assessing the response of vegetation included total burn severity as the explanatory 

variable, and the mixed model assessing shrub cover also initially included live and dead tree 

basal area as explanatory variables. Component mixed models assessing soil characteristics 

included total burn severity and the three plot-level vegetation characteristics as explanatory 

variables. The model assessing mineral soil moisture also included the overlaying forest floor 

mass as an explanatory variable. After initial fit, the SEM metamodel was modified by 

sequentially removing explanatory variables that exhibited p-values ≥ 0.15. The resulting SEM 

metamodel was then used as a starting model to construct SEMs describing drivers of individual 

microbial community characteristics.  

 All initially fit SEMs included a direct link between the microbial characteristic of 

interest and total burn severity, and direct links from each soil and vegetation variable to the 

microbial characteristic. SEMs describing lipid-derived microbial groups also included a direct 

link to microbial biomass, and SEMs describing 16S-derived microbial groups included a direct 

link to F:B. All SEM paths were initially fit using linear mixed models that included a plot 

identifier as a random effect. I evaluated the assumption of conditional independence between 

explanatory variables in my SEMs by examining the significance of correlation coefficients 

provided in the output of the psem function in the piecewiseSEM package. If the correlation 

between explanatory variables was highly significant (i.e. p ≤ 0.005) I specified correlated errors 

between those variables in my SEMs. I then sequentially removed the least significant path from 

the SEM until all paths exhibited p-values ≤ 0.15. I assessed the goodness of fit for each SEM 

using Fisher’s C-value. A non-significant Fisher’s C-value (p>0.05) indicates that the modeled 

relationships are supported by the data (Lefcheck 2016). I then fitted an alternate version of the 

SEM  in which fire occurrence was substituted for total burn severity, and the relative support for 
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these models was compared using the full-model AIC (Shipley and Douma 2020). I considered 

an SEM including severity versus fire occurrence to have more support if the full-model ΔAIC 

between the models was ≥ 2. Path coefficients in all SEMs are presented on the standardized 

scale implemented in the piecewiseSEM package, which standardizes coefficients by multiplying 

the raw coefficient by the ratio of the standard deviation of the explanatory variable to the 

standard deviation of the response variable. I considered path coefficients statistically significant 

at α=0.05. 

2.4 RESULTS 

2.4.1 Relationships between vegetation and soil characteristics and fire occurrence and 

severity 

Univariate analyses 

 Live and dead tree basal area and shrub coverage were significantly related to fire 

occurrence and total burn severity (Fig. 2.1). AIC values indicated that total burn severity had 

more support than fire occurrence for explaining dead tree basal area, which increased with total 

burn severity (Fig 2.1b). AIC values did not indicate a preference for total burn severity versus 

fire occurrence for explaining live tree basal area or shrub coverage. Live tree basal area was 

~3.7 times lower in burned areas compared to unburned areas (Fig. 2.1c), and shrub coverage 

was ~3.9 times higher in burned areas compared to unburned areas (Fig. 2.1e). 

 AIC values indicated that fire occurrence had more explanatory power than total burn 

severity for differences in forest floor mass. Forest floor mass was ~3.5 times lower in burned 

areas compared to unburned areas (Fig. 2.2a). Total burn severity was supported over fire 

occurrence for explaining differences in mineral soil sand+POM proportion, pH, total C, total N, 

TIN, and extractable P (Figs. 2.2 and 2.3). Sand+POM was negatively associated with total burn 
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severity (Fig. 2.2d), and pH was positively associated with total burn severity (Fig. 2.2f). Total 

soil N, TIN, and extractable P all increased with total burn severity (Figs. 2.3d, 2.3f, and 2.3h). 

For all univariate models (including for microbial groups), AIC values indicated that SBS only 

had more explanatory power than both fire occurrence and total burn severity for TIN 

concentrations (Fig. S2.2), so I do not discuss SBS extensively in the remainder of this paper 

(but see supplemental figures).  

 

Figure 2.1 Relationship of fire occurrence (column 1) and dNBR (column 2) to live tree 

basal area, dead tree basal area, and shrub coverage in 17 plots within the Chips Fire 

perimeter.  
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Figure 2.2 Relationship of fire occurrence (column 1), soil burn severity (column 2), and 

total burn severity (column 3) to forest floor mass, mineral soil sand+POM (5 cm) and 

mineral soil pH. Marginal r2 values are provided for soil properties that linear mixed models 

indicated were significantly affected by the explanatory variable of interest at α=0.05. Capital 

letters in soil burn severity figures denote Tukey-adjusted significant differences among severity 

levels. Slope values are provided in total burn severity figures for properties that were 

significantly affected at α=0.05.  
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Figure 2.3 Relationship of fire occurrence (column 1), soil burn severity (column 2), and 

total burn severity (column 3) to soil properties for mineral soils collected to 5 cm depth. 

Marginal r2 values are provided for soil properties that linear mixed models indicated were 

significantly affected by the explanatory variable of interest at α=0.05. Capital letters in soil burn 

severity figures denote Tukey-adjusted significant differences among severity levels. Slope 
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values are provided in total burn severity figures for properties that were significantly affected at 

α=0.05.  

SEM analyses 

 My SEM metamodel revealed direct and indirect drivers of severity on soil characteristics 

(Fig. 2.4), some of which were not captured by univariate analyses. Similar to my univariate 

analyses, SEM revealed direct relationships between total burn severity and live tree basal area, 

dead tree basal area, extractable P, and pH. Additionally, I found a direct, negative link between 

total burn severity and sand+POM that was tempered by a negative relationship between live tree 

basal area and sand+POM, leading to a compound path coefficient between total burn severity 

and sand+POM of -0.40. For other characteristics, the relationship with severity was entirely 

indirect. Total burn severity affected forest floor mass indirectly via a negative association with 

live tree basal area (compound coefficient=-0.42). Forest floor mass was positively associated 

with soil moisture, leading to an indirect negative relationship between moisture and total burn 

severity (compound coefficient=-0.20). The positive relationship between total burn severity and 

shrub coverage was driven by the negative relationship between live tree basal area and shrub 

coverage (compound coefficient=0.31). The positive relationship between total burn severity and 

total N was driven by a positive relationship with dead tree basal area (compound 

coefficient=0.30). The positive relationship between total burn severity and TIN was driven by 

total N and a negative relationship between TIN and live tree basal area (compound path 

coefficient=0.31).  
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Figure 2.4 General model depicting initially fitted structural equation model of direct and 

indirect links between fire severity metrics and PLFA-based microbial group absolute 

abundance and 16S-based bacteria phylum absolute abundance. Microbial biomass was also 

included as an explanatory variable of PLFA-based microbial group abundance, and fungal-to-

bacterial ratio (F:B) was included as an explanatory variable for 16S-based models. Paths were 

fit using linear mixed models with a random plot effect. Standardized coefficients are displayed 

for links between total burn severity (dNBR) and endogenous variables. Forest floor mass was 

negatively related to soil burn severity; soil burn severity is a categorical variable, so a 

coefficient is not displayed. Abbreviations: N= nitrogen concentration, PyC = pyrogenic carbon 

concentration, C = carbon concentration, TIN = total inorganic nitrogen concentration, P = 

phosphorus concentration, POM + Sand  = proportion of particulate organic matter plus sand soil 

fraction 

 

2.4.2 Relationships between soil microbial communities and fire occurrence and severity 

Microbial abundance based on lipid indicators 

 Fire affected lipid communities primarily by impacting fungal lipids. PERMANOVAs of 

a Bray-Curtis dissimilatory matrix indicated that lipid communities were significantly related to 

fire occurrence (r2=0.11; p=0.002) and total burn severity (r2=0.14; p=0.001). Based on AIC, 
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total burn severity best explained the relative abundance of general fungal lipids and F:B. Fire 

occurrence had more explanatory power for the relative abundance of Gram-negative bacteria; 

neither fire occurrence nor total burn severity had more power for explaining the relative 

abundance of total bacterial lipids, Gram-positive lipids, or total microbial biomass. Despite 

differences in AIC values, based on univariate analyses, the only lipid group significantly related 

to fire occurrence or burn severity was the relative abundance of general fungal lipids, which 

exhibited a negative relationship with total burn severity (Fig. 2.5a; slope=-0.008; marginal 

r2=0.17; p=0.038).  

 

Figure 2.5 Relative abundance of microbial groups based on PLFA analysis (a and b) and 

the nine most abundant bacterial phyla (c and d) across a gradient of soil burn severity and 

total burn severity in mineral soils (0-5 cm). Total burn severity is grouped by approximate 

dNBR quartiles in my data.  

 

Bacterial composition and diversity based on 16S-rDNA analysis 

 Fire occurrence and burn severity had numerous effects bacterial communities, analyzed 

with 16S-rDNA methods. Each soil sample harbored bacterial sequences representing 3,959.49 ± 

153.69 bacterial OTUs. PERMANOVAs of bacterial communities indicated that they were 

significantly related to fire occurrence (r2=0.12; p=0.002) and total burn severity (r2=0.24; 
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p=0.001). AIC values indicated that neither fire occurrence nor total burn severity better 

explained Faith’s phylogenetic diversity, which was negatively related to fire occurrence (Fig. 

2.6c). Total burn severity best explained differences in O:C ratio, which was negatively related 

to burn severity (Fig. 2.6f). 

 Among all soil samples, the most abundant bacterial groups were Bacteroidetes (18.65 ± 

1.35%), α-Proteobacteria (13.89 ± 0.56%), Acidobacteria (12.50 ± 1.44%), and Actinobacteria 

(9.65 ± 0.40%) (Fig. 2.5b). Based on AIC values, total burn severity better explained differences 

in Bacteroidetes and Acidobacteria relative abundance, whereas fire occurrence best explained 

α-Proteobacteria and Actinobacteria relative abundance. Bacteroidetes relative abundance 

increased with total burn severity (slope=0.012; marginal r2=0.42; p < 0.001). The mean log2-

fold change in abundance of Bacteroidetes OTUs in response to fire was 0.58 ± 0.06 (Fig S2.4). 

The five most abundant families in Bacteroidetes (Chitinophagaceae, Cytophagaceae, 

Sphingobacteriaceae, Flavobacteriaceae, and unclassified env.OPS 17) all exhibited 

significantly positive log2-fold change in abundance in response to fire occurrence. 

 α-Proteobacteria relative abundance was not significantly related to fire occurrence at the 

class level (p=0.48). The mean log2-fold change in abundance of α-Proteobacteria OTUs in 

response to fire was 0.20 ± 0.05 (Fig. S2.5). Acidobacteria relative abundance was negatively 

related to burn severity (Fig. 2.5b; slope=-0.015; marginal r2=0.49; p<0.001); the mean log2-fold 

change in abundance of Acidobacteria OTUs in response to fire was -0.59 ± 0.05 (Fig. S2.6). All 

four identified families within Acidobacteria exhibited negative log2-fold response to fire 

occurrence. Actinobacteria relative abundance decreased from 11.06 ± 0.40% in unburned areas 

to 9.22 ± 0.45% in burned areas (marginal r2=0.08; p=0.007); the mean log2-fold change in 

abundance of Actinobacteria OTUs in response to fire was 0.03 ± 0.05 (Fig. S2.7). At the family 
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level, OTUs within some families (e.g., Frankiaceae and Mycobacteriaceae) exhibited negative 

log2-fold response to fire occurrence, while Micrococcaceae exhibited a positive response.  

  

Figure 2.6 Relationship of microbial community characteristics including lipid-based 

fungal-to-bacterial ratio,16S-based Faith’s phylogenetic diversity, and 16S-based 

oligotrophic:copiotrophic bacterial taxa ratio, with fire occurrence (column 1), soil burn 

severity (column 2), and total burn severity (column 3) in mineral soils (0-5 cm). Marginal r2 

values are provided for microbial community characteristics that linear mixed models indicated 

were significantly affected by the explanatory variable of interest at α=0.05. Capital letters in soil 

burn severity figures denote Tukey-adjusted significant differences among severity levels. Slope 
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values are provided in total burn severity figures for characteristics that were significantly 

affected at α=0.05. 

2.4.3 Direct and indirect soil and vegetation drivers of soil microbial community 

characteristics 

Principle coordinates analysis 

 For lipid communities, the first and second PCoA axes explained 33.59% and 22.06% of 

community variation, respectively (Fig. 2.7a). In addition to fire occurrence (r2=0.14; p=0.001) 

and total burn severity (r2=0.47, p=0.001), four environmental variables were significantly 

correlated with the PCoA ordination: dead tree basal area (r2=0.22; p=0.009), pH (r2=0.48; 

p=0.001), sand+POM (r2=0.28; p=0.003), and extractable P (r2=0.19; p=0.011).  

 For 16S-rDNA-based soil microbial communities, the first and second PCoA axes 

explained 48.87% and 11.13% of community variation, respectively (Fig. 2.7b). In addition to 

fire occurrence (r2=0.15; p=0.004) and total burn severity (r2=0.47; p=0.001), eight 

environmental variables were significantly correlated with the PCoA ordination: dead tree basal 

area (r2=0.19; p=0.005), shrub coverage (r2=0.15; p=0.033), pH (r2=0.60; p=0.001), soil moisture 

(r2=0.25; p=0.001), sand+POM (r2=0.25; p=0.002), TIN (r2=0.16; p=0.031), extractable P 

(r2=0.16; p=0.024), and forest floor mass (r2=0.15; p = 0.033). 
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Figure 2.7 Principle coordinates analysis (PCoA) plots of lipid-based communities (a) and 

16S-rDNA based bacterial communities at the phylum level (b) in mineral soils (0-5 cm). 

Vectors represent variables that are significantly correlated with one of the PCoA axes, and 

vector lengths are scaled based on r2 values. Solid vectors represent environmental or edaphic 

variables, and dashed vectors in a) represent microbial groups based on lipid groupings. 

Abbreviations: F:B = fungi-to-bacteria ratio, FF Mass = forest floor mass, P = extractable 

phosphorus concentration, TIN = total inorganic nitrogen concentration, DT-BA = dead tree 

basal area, SC = shrub coverage 
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SEM analysis 

 SEM models revealed relationships between severity and microbial communities that 

were not captured by univariate analysis, and full-model AIC values indicated that SEMs 

including total burn severity had more explanatory power than fire-occurrence models for every 

microbial characteristic measured (Table 2.1). Microbial biomass was positively related to live 

tree basal area, shrub coverage, sand+POM, and total N, resulting in a negative relationship with 

total burn severity that was not captured by univariate analysis. Absolute fungal abundance was 

directly, negatively related to total burn severity. Additionally, fungal abundance responded 

negatively to soil moisture, leading to an indirect, positive relationship between total burn 

severity and fungal abundance. There was also an indirect negative relationship between fungal 

abundance and burn severity via the relationship of total burn severity with total microbial 

biomass. My SEMs also revealed relationships between severity and F:B, total bacterial, Gram-

negative, and Gram-positive bacterial abundances that were not captured by univariate analyses. 

F:B was directly, negatively influenced by total burn severity, and indirectly influenced via soil 

moisture and total N. Total bacterial lipid abundance was negatively influenced by total burn 

severity via the total microbial biomass path. Gram-negative bacteria had a direct positive link to 

total burn severity, but relationships with live tree basal area, P, and microbial biomass resulted 

in an overall negative relationship between severity and Gram-negative bacteria. Gram-positive 

bacteria was indirectly linked to total burn severity via relationships with live tree basal area, soil 

moisture, TIN, pH, and microbial biomass, leading to a negative relationship with severity. 

 SEMs revealed that total burn severity affected the absolute abundances of Bacteroidetes 

and Acidobacteria directly and indirectly via pH mediated impacts. There was an indirect, 

positive relationship between total burn severity and Bacteroidetes via the positive response of 
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Bacteroidetes to pH, and an indirect, negative relationship between total burn severity and 

Acidobacteria due to the negative response of Acidobacteria to pH. The abundance of 

α−Proteobacteria was indirectly related to severity via the influence of pH, live tree basal area, 

and TIN. Actinobacteria absolute abundance was associated with dead tree basal area and 

sand+POM, effects that offset one another and resulted in an essentially neutral relationship 

between severity and Actinobacteria. There was an indirect, negative relationship between total 

burn severity and bacterial phylogenetic diversity via associated decreases in sand+POM and 

increases in TIN and P.  Total burn severity negatively influenced O:C via a direct, negative link 

and an indirect, negative link via pH; these negative links were tempered by an indirect, positive 

link via shrub coverage. 
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Table 2.1. Structural equation models describing drivers of soil microbial communities three years after fire in mixed-conifer 

forest. Standardized coefficients are presented for paths that were significant at α=0.05, but non-significant paths were retained in the 

final model at p≤0.15. The compound coefficient between total burn severity (dNBR) and the microbial characteristic of interest 

represents the combined direct and indirect effects of severity. Abundance of microbial groups determined via PLFA are presented on 

the log scale, and abundance of microbial groups determined via 16S-rDNA are sequence counts. Full-model AIC values are presented 

for the final models that included severity and for models in which fire occurrence (burned versus unburned) was substituted for 

severity. Abbreviations: C = total carbon, DBA = dead tree basal area, F:B = fungal-to-bacterial ratio, FFM = forest floor mass, LBA 

= live tree basal area, MB = microbial biomass, N = total nitrogen concentration, O:C = oligotroph-to-copiotroph ratio, P = extractable 

phosphorus, PyC = pyrogenic carbon SC = shrub coverage, , SM = soil moisture, SP = sand+POM, TIN = total inorganic nitrogen 
Response Variable Structural Equation Model dNBR Compound 

Coefficient 

Model Fisher’s C (p-

value) 

Full-Model AIC 

Microbial Biomass Biomass=0.57LBA + 0.42N + 0.49SC + 0.31SP 

LBA=-0.64dNBR 

N=0.49DBA 

SC=-0.48LBA 

SP=-0.70dNBR – 0.47LBA 

DBA=0.61dNBR 

 

-0.22 30.54 (0.062) Severity: 216.13 

Fire Occurrence: 224.53 

General Fungi Abundance =– 0.14dNBR + 0.93MB − 0.11SM  

MB=0.57LBA + 0.42N + 0.49SC + 0.31SP 

SM=0.47FFM 

LBA=−0.64dNBR 

N=0.49DBA 

SC=−0.48LBA 

SP=−0.70dNBR – 0.47LBA 

FFM=0.66LBA 

DBA=0.61dNBR 

 

-0.32 

 

70.16 (0.41) Severity: 216.18 

Fire Occurrence: 230.41 
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Gram Positive 

Bacteria 

Abundance=–0.10LBA + 1.02MB − 0.08pH + 0.05SM 

− 0.08TIN  

LBA=−0.64dNBR 

MB=0.57LBA + 0.42N + 0.49SC + 0.31SP  

pH=0.56dNBR 

SM=0.47FFM 

TIN=−0.30LBA + 0.24N 

N=0.49DBA 

SC=−0.48LBA 

SP=-0.70dNBR – 0.47LBA 

FFM=0.66LBA 

DBA=0.61dNBR 

 

-0.24 

 

78.76 (0.75) Severity: 119.18 

Fire Occurrence: 134.09 

Gram Negative 

Bacteria 

Abundance=0.11dNBR+ 0.16LBA + 0.95MB + 0.08P  

LBA=−0.64dNBR 

MB=0.57LBA + 0.42N + 0.49SC + 0.31SP  

P=0.41dNBR 

N=0.49DBA 

SC=−0.48LBA 

SP=–0.70dNBR – 0.47LBA 

DBA=0.61dNBR  

 

-0.17 54.11 (0.32) Severity: 193.52 

Fire Occurrence: 213.36 

Total Bacteria Abundance = 1.00MB 

MB=0.57LBA + 0.42N + 0.49SC + 0.31SP 

LBA=−0.64dNBR 

N=0.49DBA 

SC=−0.48LBA 

SP=-0.70dNBR – 0.47LBA 

DBA=0.61dNBR 

 

-0.22 64.88 (0.20) Severity: 157.97 

Fire Occurrence: 169.5 

Fungal−to− 

Bacterial Ratio 

F:B=−0.51dNBR+ 0.33N − 0.40SM  

N=0.49DBA 

SM=0.66FFM 

DBA=0.61dNBR 

FFM=0.66LBA 

LBA=−0.64dNBR 

 

 

-0.33 66.66 (0.52) Severity: 420.23 

Fire Occurrence: 454.55 
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Bacteroidetes Abundance=0.29dNBR + 0.48pH   

pH=0.56dNBR 

0.56 0.00 (1.00) Severity: 761.37 

Fire Occurrence: 768.15 

α−Proteobacteria Abundance=0.42LBA + 0.39pH − 0.38PyC + 0.49TIN   

LBA=−0.64dNBR 

pH=0.56dNBR 

TIN=−0.30LBA + 0.24N 

N=0.49DBA 

DBA=0.61dNBR 

 

0.10 44.27 (0.38) Severity: 797.49 

Fire Occurrence: 812.71 

Acidobacteria Abundance=−0.47dNBR − 0.44pH − 0.18PyC + 

0.21SP  

pH=0.56dNBR 

SP=–0.70dNBR – 0.47LBA 

LBA=−0.64dNBR 

 

-0.80 19.81 (0.34) Severity: 782.2 

Fire Occurrence: 804.83 

Actinobacteria Abundance=0.39DBA + 0.54SP  

DBA=0.61dNBR 

SP=−0.70dNBR− 0.47LBA 

LBA=−0.64dNBR 

 

0.02 3.78 (0.71) Severity: 829.24 

Fire Occurrence: 837.64 

Bacterial 

Phylogenetic 

Diversity 

BPD=0.34C − 0.43P + 0.36SP – 0.43TIN  

P=0.41dNBR 

SP=−0.70dNBR − 0.47LBA 

TIN=−0.30LBA + 0.24N 

LBA=−0.64dNBR 

N=0.49DBA 

DBA=0.61dNBR 

 

-0.45 

 

86.23 (0.59) Severity: 837.10 

Fire Occurrence: 853.86 

Oligotroph−to− 

Copiotroph Ratio 

O:C=−0.36dNBR − 0.66pH − 0.24SC 

pH=0.56dNBR 

SC=−0.48LBA 

LBA=−0.64dNBR 

-0.80 35.47 (0.49) Severity: 18.49 

Fire Occurrence: 37.02 
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2.5 DISCUSSION 

2.5.1 A systems approach revealed direct and indirect drivers of severity on plant, soil, and 

microbial characteristics 

 My results demonstrate that burn severity influences microbial communities at the 

ecosystem scale via simultaneous and interacting effects on plant and soil characteristics. I found 

evidence to support my overarching hypothesis that severity shapes microbial communities 

primarily via soil properties, both through direct linkages and indirectly by altering vegetation 

characteristics. My PCoA analyses identified severity, and vegetation and soil properties related 

to severity, as drivers of microbial community structure. My results agree with a previous study 

that found that bacterial communities were related to soil NH4, pH, and moisture one year after a 

wildfire in boreal forest in China, but that study did not find that microbial community structure 

differed between the two burn severity categories they considered  (Xiang et al. 2014a). The 

absence of a relationship with severity in Xiang’s et al. (2014) study could suggest that one year 

after fire, fire occurrence alone is sufficient for explaining differences in microbial communities. 

Severity may become more important later through the trajectory of forest recovery if impacts of 

severity on plant communities become more dominant drivers of soil properties (e.g. by three 

years post-fire as in my study) (Hart et al. 2005). This illustrates the importance of taking an 

ecosystem recovery approach by simultaneously assessing plant and soil effects on microbial 

communities. 

 By leveraging a systems approach to assessing impacts of burn severity on microbial 

communities, after enough time for differentiation of stands recovering to different burn 

severities, I disentangled direct versus indirect drivers of soil microbial communities. I found 

some support for my hypothesis that vegetation characteristics functioned as indirect, rather than 
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direct, drivers of soil microbial communities via an influence on soil properties, however there 

were several instances where vegetation properties were directly linked to microbial groups 

(Table 2.1). Direct links between vegetation and microbial groups could be caused by differences 

in the amount or type of litter inputs to soil, mutualistic relationships with mycorrhizae and 

rhizospheric bacteria, or losses in canopy shading affecting soil temperature (Hart et al. 2005). 

 I found support for my hypothesis that accounting for burn severity instead of fire 

occurrence only would better explain changes to the microbial community. Full-model AICs 

indicated that SEMs that included severity had more explanatory power than fire occurrence in 

every instance, despite univariate model AICs indicating that fire occurrence was more 

supported for explaining differences in some microbial groups. This may be because severity-

based linear models capture more of the variability of the responses of soil and vegetation 

characteristics to fire and tend to exhibit lower AIC values than fire-occurrence linear models 

(for example, see Figs 2.1- 2.3).  

2.5.2 Burn severity has direct and indirect effects on fungal abundance 

 My systems approach provided evidence that the direct negative impacts of fire on fungal 

abundance persist three years post-fire and that these impacts are modulated by indirect effects of 

burn severity on soil moisture via live tree basal area and forest floor mass. The direct negative 

link between total burn severity and absolute fungal abundance could be due to soil heating 

causing increased fungal mortality (Neary and DeBano 2005) or slower fungal recovery 

compared to bacteria (D’Ascoli et al. 2005; Mabuhay et al. 2006). The greater tolerance of 

bacteria compared to fungi for high soil pH has been invoked to explain decreases in fungal 

abundance in recently burned ecosystems (Dooley and Treseder 2012), but I did not observe 
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relationships between pH and fungal abundance. Instead, I found that soil moisture and total N 

were the only edaphic characteristics directly related to fungal abundance. 

 The negative relationship between soil moisture and fungi may result in stronger 

decreases in fungal abundance in high severity areas during the wetter winter and spring months 

compared to the drier summer and fall. This is because fire-induced changes to forest structure 

can affect soil moisture in two different ways that may vary in importance seasonally. Decreased 

plant biomass can reduce soil water uptake and evapotranspiration, thereby increasing soil 

moisture (Neary and DeBano 2005). Conversely, decreases in canopy and forest floor cover can 

increase soil exposure to solar radiation, increasing evaporation (Holden et al. 2015). More than 

75% of the annual precipitation in my study area occurs during the winter and spring (NCEI-

NOAA 2017); thus, in the spring months when snowmelt and precipitation is abundant, 

decreased plant evapotranspiration may lead to greater soil moisture in high severity stands 

compared to lower severity stands, whereas in the summer and fall months when precipitation is 

limited, increased evaporation may lead to lower soil moisture. As a result, fungal abundance 

may be even lower in high severity areas during the wet months than the dry months when I 

collected my samples. Changes in soil fungal abundance could impact the soil C cycle by 

altering the types of C substrates utilized and because fungal biomass has slower turnover than 

bacterial biomass (Rousk and Bååth 2011). Therefore, decreases in fungal abundance may 

increase the post-fire CO2 efflux, acting as a positive feedback between fire and climate change.  

2.5.3 Burn severity impacts on bacterial communities are driven by nutrients, pH, and soil 

texture  

 Bacterial phylogenetic diversity was lower in burned areas than unburned areas, but the 

impacts of severity on diversity only became clear when accounting for soil nutrients and 



 

78 

 

texture. This provides context to a meta-analysis by Pressler et al. (2018), which found no 

significant effects of fire on bacterial diversity, although individual studies have found negative 

relationships between fire and bacterial diversity (Pérez-Valera et al. 2017; Sáenz de Miera et al. 

2020). The apparent lack of response of bacterial diversity to fire in many studies may be due to 

those studies not accounting for indirect effects of fire on diversity via soil nutrients. Fire-

induced increases in extractable soil P and TIN are ephemeral, often dissipating within two years 

(Wan et al. 2001; Certini 2005). Therefore, decreases in bacterial diversity in response to fire 

may be short-lived and difficult to detect, especially following low-severity fires where the 

nutrient spike is smaller or dissipates earlier (Adkins et al. 2019b). Links between microbial 

communities and soil nutrients may result in seasonally dynamic community characteristics. 

Increased liberation of P and TIN from plant litter during periods of greater decomposition (e.g. 

in warm, wet spring months; Dove et al., 2020) could lead to apparently lower phylogenetic 

diversity compared to periods when low decomposition limits nutrient availability. Decreases in 

bacterial biodiversity may affect soil C and nutrient cycles by decreasing functional diversity and 

redundancy (Wagg et al. 2019). For example, a meta-analysis of studies that manipulated soil 

microbial diversity indicated that soil respiration rates increase with diversity; however, the 

diversity levels in manipulative experiments may not match the high biodiversity present in 

natural ecosystems, and thus may overestimate the impacts on the C cycle (de Graaff et al. 

2015). In contrast to the effects of post-fire decreases in fungal abundance, decreases in 

microbial diversity may down-regulate the post-fire CO2 efflux. 

 Soil pH was a primary correlate of changes in abundance of the two most abundant 

bacterial phyla in my study (i.e. Bacteroidetes, Acidobacteria). The relationship to pH may 

explain the commonly observed increases of Bacteroidetes abundance (Weber et al. 2014; Xiang 
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et al. 2014a; Pérez-Valera et al. 2019) and decreases of Acidobacteria abundance (Weber et al. 

2014; Rodríguez et al. 2018; Whitman et al. 2019) in response to fire, because increased soil pH 

is a typical response to fire (Certini 2005). Bacteroidetes and Acidobacteria phyla are among the 

most dominant bacterial phyla in biomes across the globe (Janssen 2006; Fierer et al. 2012b; 

Docherty et al. 2015), and due to the different growth strategies of these phyla (Fierer et al. 2007; 

Ho et al. 2017), their relative abundances likely play an important role in soil C cycling (e. g. 

Fierer et al., 2007). The changes in Bacteroidetes and Acidobacteria abundance drove the 

decrease in O:C I observed across the severity gradient. This is a contrast to suggestions by other 

authors that copiotrophic taxa should give way to oligotrophic taxa as soon as 16 weeks after 

wildfire (Ferrenberg et al. 2013). However, rather than the pH driven changes I observed, the 

shift to oligotrophic taxa in other burned systems may be due to losses in soil organic matter 

(Ferrenberg et al. 2013). Nutrient availability was not a primary driver of O:C as others have 

found (Fierer et al. 2007; Fierer et al. 2012a; Ramirez et al. 2012), which may reflect increased 

competition by plants for soil nutrients in burned ecosystems. Indeed, I found that TIN was 

negatively related to live tree basal area.   

 Although bacterial taxa are often classified as oligotrophic or copiotrophic at the phylum 

level, lower taxonomic rankings (e.g. family and genera) can exhibit variable growth strategies 

(Ho et al. 2017), and divergent responses to fire (Whitman et al. 2019). For example, although I 

found that the average log2-fold change of Bacteroidetes OTUs in burned versus unburned areas 

was positive, OTUs within the most abundant Bacteroidetes families exhibited both positive and 

negative responses to fire occurrence. Chitinophagaceae, Cytophagaceae, Sphingobacteriaceae, 

and Flavobacteriaceae OTUs exhibited higher abundance in burned areas, agreeing with 

research that has identified OTUs from these families as positive fire responders within one year 
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post-fire in a boreal forest in Canada (Whitman et al. 2019) and ponderosa pine and mixed-

conifer forests in New Mexico (Weber et al. 2014). The response of groups within the 

Acidobacteria phylum have varied among studies. I and others found that Acidobacteria OTUs 

from Blastocatellaceae (subgroup 4) and Solibacteraceae (subgroup 3) displayed lower 

abundance in burned areas (Whitman et al. 2019), but subgroup 4 genera have also been 

associated with burned soils (Weber et al. 2014). Likewise, my finding that Acidobacteriaceae 

(subgroup 1) OTUs displayed lower abundance in burned areas supports previous observations 

(Weber et al. 2014), but others have identified a positive response of OTUs from this family 

(Whitman et al. 2019). Although I found Actinobacteria phylum abundance was lower in burned 

areas, OTUs from my study’s most abundant Actinobacteria family, Micrococcaceae, exhibited 

greater abundance in burned areas, as others have found (Weber et al. 2014; Sáenz de Miera et 

al. 2020). Mycobacteriaceae OTUs exhibited lower abundance in burned areas, in contrast to a 

study that found that Mycobacteria were dominant in both burned and unburned soils in a pine-

oak forest in New Jersey, USA (Mikita-Barbato et al. 2015). Some Mycobacteria are effective 

degraders of aromatic compounds (Bastiaens et al. 2000), and thus might exhibit higher 

abundance when fire increases soil PyC. However, Mycobacteria abundance is also higher at low 

pH (Norby et al. 2007), so fire-driven increases in pH may limit this response.  

2.6 CONCLUSIONS 

 I found that that burn severity affects the magnitude of persistent effects on the soil 

microbial community by influencing vegetation and soil characteristics in mixed-conifer forest. I 

also found that remotely sensed severity estimates (dNBR) mostly outperformed field-validated 

soil burn severity estimates for explaining changes in soil properties, for soil samples at an 

intermediate (three years) time point after fire. This is an important finding that has potential to 
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expand research capabilities at intermediate post-fire time points because dNBR can be easily 

calculated in areas where Landsat imagery is available. I linked changes to microbial 

communities to environmental properties that correlate with severity and are slow to recover 

from fire (e.g. forest floor mass, live tree basal area). This suggests that changes to microbial 

communities may persist for years after fire, which may lead to broad-scale effects on ecosystem 

functions, especially if forecasted increases in fire activity result in greater extent of high 

severity burns. My systems approach to addressing the influence of fire on microbial 

communities demonstrates the importance of considering the interconnectedness of 

environmental characteristics for understanding drivers of microbial community recovery from 

fire, and I recommend that researchers apply this approach to future studies. The systems 

approach could also be extended to investigate how plant, soil, and microbial characteristics 

interact to influence ecosystem functions over multiple timescales. For example, previous 

research has demonstrated that fire alters soil C flux rates for years to decades (Adkins et al. 

2019b; Dove et al. 2020). The fire-induced changes to microbial communities I observed—

particularly the decreased fungal abundance and O:C—could have long-term impacts on the soil 

C cycle across the severity gradient by replacing slow C cycling microbial groups with fast C 

cycling groups. A systems approach could elucidate whether changes in C flux are driven by 

microbial community changes or whether other environmental characteristics are dominant 

drivers.  
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SUPPLEMENTAL FIGURES 

 

 

Figure S2.1 Locations of field plots within a burn severity matrix resulting from the Chips 

Fire. dNBR values are grouped into unburned, low, moderate, and high severity thresholds 

identified by the Monitoring Trends in Burn Severity team.  
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Figure S2.3 Relationship of lipid-based fungal-to-bacterial ratio, 16S-based Faith’s 

phylogenetic diversity, and 16S-based oligotrophic:copiotrophic bacterial taxa ratio with 

soil burn severity in mineral soils (0-5 cm). Soil burn severity values of 1 are unburned plots, 2 

are low SBS, 3 are moderate SBS, and 4 are high SBS.  Marginal r2 values are provided for 

microbial community characteristics that linear mixed models indicated were significantly 

affected by soil burn severity α=0.05. Capital letters in figures denote Tukey-adjusted significant 

differences among soil burn severity levels. 
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Figure S2.2 Relationship of soil burn severity with soil properties. Soil burn severity values 

of 1 are unburned plots, 2 are low SBS, 3 are moderate SBS, and 4 are high SBS. Marginal r2 

values are provided for soil properties that linear mixed models indicated were significantly 

affected by the soil burn severity at α=0.05. Capital letters denote Tukey-adjusted significant 

differences among soil burn severity levels.  
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Figure S2.3 Log2-fold response to fire for OTUs grouped by family within Bacteroidetes for 

mineral soils collected to 5 cm three years after the Chips Fire burned mixed-conifer forest in the 

Sierra Nevada Mountain Range, California, USA in 2012. 

 

 

 

Figure S2.4 Log2-fold response to fire for OTUs grouped by family within α-Proteobacteria 

for mineral soils collected to 5 cm. 
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Figure S2.5 Log2-fold response to fire for OTUs grouped by family within Acidobacteria for 

mineral soils collected to 5 cm. 

 

 

 

 
Figure S2.6 Log2-fold response to fire for OTUs grouped by family within Actinobacteria 

for mineral soils collected to 5 cm. 
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CHAPTER 3: 

DETERMINING LINKS BETWEEN BACTERIAL LIFE-STRATEGIES AND SOIL 

CARBON POOLS ONE-YEAR POST-FIRE 

3.1 ABSTRACT 

 Wildfire and burn severity influence soil microbial community structure during post-fire 

recovery. If post-fire differences in microbial communities affect the dynamics of soil carbon (C) 

pools, these altered microbial communities could govern the transition of forests from C sources 

to C sinks during post-fire recovery. For example, fire may change the abundance of 

copiotrophic and oligotrophic bacterial taxa, which have the potential to influence the kinetic 

rates of soil C pools due to differences in C-acquisition strategies and nutrient requirements.  

I assessed differences in soil bacterial community structure and soil C pool kinetics one year 

after a wildfire in a mixed-conifer forest in northern California, USA. I determined whether 

differences in bacterial communities and C pool kinetics were related to copiotrophic versus 

oligotrophic life history strategies. Specifically, I assessed how bacterial taxa were related to the 

availability of inorganic nitrogen, phosphorus, and the active C pool. I further assessed whether 

bacterial taxa that have traditionally been classified as oligotrophs or copiotrophs were correlated 

with C pool kinetic rates. I found that bacteria classified as copiotrophs at the phylum level 

exhibited greater abundance in burned areas compared to unburned areas, whereas oligotrophic 

phyla exhibited lower abundance in burned versus unburned areas. I found that soil C persistence 

increased with burn severity, as evidenced by decreases in the kinetic rate of the non-active C 

pool. The kinetic rate of the non-active C pool was positively related to Elusimicrobia 

abundance, a suspected oligotrophic phylum. At the phylum level, copiotrophs were positively 

correlated with nutrient availability and the active C pool, but genera within the same phylum 

exhibited both positive and negative relationships with nutrient and labile C availability 
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(assessed as active C pool size). Overall, my results suggest that bacterial life-strategies are 

related to soil C pool kinetics, but phylum-level life-strategy classifications do not capture the 

breadth of bacterial metabolic diversity. Phylum-level classifications may therefore be 

ineffective at predicting how changes in bacterial communities influence ecosystem functions.  

3.2 INTRODUCTION 

 Wildfire frequency and severity have increased in the forests of the western United states 

over the past several decades (Westerling 2006; Dennison et al. 2014), a trend that is predicted to 

continue (Flannigan et al. 2009). Increased burn severity influences soil carbon (C) cycling for 

years to decades post-fire by altering soil C pool structure, efflux rates, and decomposition 

(Holden et al. 2016; Adkins et al. 2019b; Dove et al. 2020). Understanding drivers of post-fire 

soil C flux is important because the balance between soil C efflux and photosynthetic C gains 

governs the transition of ecosystems from C sources to C sinks during ecosystem recovery 

(Kashian et al. 2006). Because soil microbes drive the soil C cycle, it is important to understand 

how microbial communities are affected by wildfire. 

Linking microbial community composition to ecosystem function is an important 

research direction in microbial ecology (Prosser and Martiny 2020), but is challenging for broad 

scale ecosystem functions, because such functions are the integrative results of reactions 

performed by a wide swath of microbial groups (Treseder et al. 2012; Fierer 2017). Additionally, 

broad scale functions are dependent on other biotic and abiotic mechanisms (Schmidt et al. 

2011). In the case of soil C flux, it has been posited that microbial access to substrates, rather 

than microbial community structure, dictates flux rate and magnitude (Schmidt et al. 2011; 

Schimel and Schaeffer 2012). However, emerging evidence suggests that microbial structure 

influences the soil C cycle. A meta-analysis of studies that manipulated microbial diversity 
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indicated that C respiration was positively related to bacterial diversity (de Graaff et al. 2015). 

Microbial diversity and community complexity have been shown to influence decomposition and 

ecosystem multifunctionality in an experimental grassland (Wagg et al. 2019) and C use 

efficiency in an experimental forest (Domeignoz-Horta et al. 2020).  

 The amount of C respired versus retained in soils is dependent on the structure and 

stability of soil C pools (Trumbore 2000; Kuzyakov 2011; Torn et al. 2013). Soil C can be 

conceptualized as distinct C pools with variable turnover times: an active C pool (Ca) with a 

mean residence time of days to months and a non-active pool (Cs) with a mean residence time of 

years to decades (Paul et al. 2006). The sizes of the active and non-active C pools and their 

associated kinetic rates (ka and ks, respectively) can be quantified by measuring soil C respiration 

over long-term lab incubations (Collins et al. 2000; Kuzyakov 2011). In this approach, C pools 

are a function of biological processes rather than intrinsic chemical characteristics (see Schmidt 

et al., 2011). Microbial activity therefore reflects soil C pool kinetics, but whether differences in 

microbial community structure influence the respective cycling rates of the two C pools is 

unknown.  

Disturbance-induced changes to microbial communities could alter ecosystem processes 

if the microbial community is not resistant or resilient to disturbance or not functionally 

redundant with the pre-disturbance community (Allison and Martiny 2008; Treseder et al. 2012). 

In the case of fires, microbial community composition in forest soil is often not resistant or 

resilient over the short- to intermediate-term, as they exhibit decreases in diversity and changes 

in community composition that persist from months to years post-fire (Weber et al. 2014; 

Rodríguez et al. 2017; Rodríguez et al. 2018; Whitman et al. 2019; Sáenz de Miera et al. 2020; 

Adkins et al. 2020). Altered microbial community composition may not lead to changes in soil 
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function if sufficient functional redundancy exists between pre-fire and post-fire soils. However, 

post-fire soil microbial communities appear to be functionally distinct, becoming predominated 

by more copiotrophic bacterial taxa compared to oligotrophic taxa, an effect that increases with 

burn severity (Ferrenberg et al. 2013; Adkins et al. 2020). Furthermore, due to changes to soil pH 

and differential heat tolerance, bacteria are more predominant than fungi in post-fire soils for a 

decade or more post-fire (Dooley and Treseder 2012; Pressler et al. 2018), so bacterial 

communities may play a particularly important role in ecosystem processes in recovering forests 

over the short- to intermediate-term. 

The classification of bacterial taxa as copiotrophic or oligotrophic represents a trait-based 

framework for describing bacterial community structure (Fierer 2017), and these taxa may differ 

in their effects on the soil C cycle. Copiotrophs consume labile C, have high nutrient 

requirements, and exhibit high growth rates. In contrast, oligotrophs exhibit slow growth rates, 

but have high substrate affinity and may outcompete copiotrophs when nutrient content and/or 

organic matter quality is low (Fierer et al. 2007; Ramirez et al. 2012). These ecological strategies 

are reflected at the gene level: metagenomic and metabolic approaches have revealed that soils 

abundant in copiotrophs harbor more genes associated with carbohydrate utilization and protein 

degradation, and fewer genes and enzymes associated with recalcitrant C degradation, organic N 

decomposition, and P scavenging (Fierer et al. 2012a; Ramirez et al. 2012; Hartman et al. 2017). 

The combined influences of oligotroph vs. copiotroph abundance, nutrient content, and organic 

matter quality may thus alter soil C pool kinetics. For example, if two soils have equally large 

stocks of labile C (i.e. easily decomposable C), but differ in their abundance of copiotrophic taxa 

(for example due to differences in soil nutrient contents), the soil with greater copiotroph 

abundance might exhibit larger ka values due the capacity of copiotrophs for rapid growth. In 
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contrast, soils with large stocks of recalcitrant C (e.g. lignin, pyrogenic C) might exhibit larger ks 

values when oligotroph abundance is high due to their higher substrate affinity and their greater 

ability to mine nutrients.  

 Consistent patterns have emerged in post-fire differences in phylum-level bacterial 

community composition among many ecosystem types, and these differences are often reflected 

by divergent responses of oligotrophic and copiotrophic taxa to fire and burn severity. The 

copiotrophic phyla Bacteroidetes, Actinobacteria, and Firmicutes tend to exhibit higher 

abundance post-fire, whereas the oligotrophic phylum Acidobacteria exhibits lower abundance 

(Weber et al. 2014; Xiang et al. 2014b; Pérez-Valera et al. 2019; Whitman et al. 2019).  

Changes in bacterial phyla abundance are likely due to a combination of direct and indirect 

effects of fire on soils. For example, spore-forming, heat resistant taxa such as Actinobacteria 

and Firmicutes are more likely to survive soil heating events (Prendergast-Miller et al. 2017). 

These and other copiotrophic phyla (e.g. Bacteroidetes, Proteobacteria) may also positively 

respond to the fire-induced increases in total inorganic nitrogen (TIN), active C pools, and 

dissolved organic C (Fernández et al. 1997; Wan et al. 2001; Wang et al. 2012). Changes to both 

microbial communities and nutrient availability have been demonstrated to scale with burn 

severity in mixed-conifer forests (Adkins et al. 2019b; Adkins et al. 2020); thus, C-cycling 

processes that are driven by microbial community structure likely vary with burn severity. 

Consistent responses to fire among certain bacterial genera have also emerged. The genera 

Masillia, a potential aromatic-C degrader, Arthrobacter, a fast-growing and stress-tolerant taxa, 

and Flavisolibacter have frequently been found to increase in abundance following fires (Weber 

et al. 2014; Pérez-Valera et al. 2017; Rodríguez et al. 2017; Whitman et al. 2019; Sáenz de Miera 

et al. 2020). Although a few studies have accounted for the role of burn severity in shaping 
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microbial communities (Weber et al. 2014; Whitman et al. 2019; Sáenz de Miera et al. 2020), 

most have not, and identifying the influence of severity on post-fire microbial communities has 

been identified as a key information need in fire ecology research (Hart et al. 2005; Pressler et al. 

2018). 

The numerous interacting direct and indirect effects of fire and burn severity on soil and 

bacterial properties highlights the importance of employing a systems approach to understanding 

disturbance effects on the soil C cycle. Understanding the relationships between soil 

characteristics and the C cycle will improve predictions of the impacts of changing fire regimes 

on the C sink strength of forests, and understanding the influence of bacterial communities on 

soil functions is necessary for improving ecosystem models (Schimel and Schaeffer 2012; 

Treseder et al. 2012; Graham et al. 2016). Additionally, the variability in soil biological, 

physical, and chemical properties across burn severity gradients make fire-prone forests valuable 

ecological systems for testing trait-based frameworks of bacterial communities (see Fierer, 

2017b). Here, my overarching objectives are to 1) determine how C pool structure and kinetics 

are related to soil properties and bacterial communities one-year post fire, and 2) how the 

oligotroph-copiotroph framework can explain post-fire differences in soil bacterial communities. 

In service of these objectives, I addressed four hypotheses. I hypothesized that 1) changes in C 

pool structure in kinetics across a burn severity gradient can be explained by accounting for soil 

properties; 2) bacterial OTUs that have previously been identified as positive fire responders will 

be positively correlated with burn severity; 3) bacterial taxa that are more abundant in burned 

areas will primarily be copiotrophs and therefore positively related to nutrient availability and Ca 

size; and 4) copiotrophic taxa abundance will be positively associated with ka, whereas 

oligotrophic taxa abundance will be positively associated with ks.  
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3.3 MATERIALS AND METHODS 

3.3.1 Site description  

 My study was conducted in mixed-conifer forest in the Klamath National Forest, located 

in northern California, USA. The forest type is a California mixed-conifer forest (Ruefenacht et 

al. 2008), which consists of Pinus ponderosa Lawson & C. Lawson, P. lambertiana Douglas, P. 

jeffreyi Balf., Abies concolor (Gord. & Glend.) Lindl. ex Hildebr., Pseudotsuga menziessi 

(Mirb.) Franco, Calocedrus decurrens (Torr.) Florin, Arbutus menziesii Pursh. and Quercus 

kelloggi Newberry. Soils of my study area belong to the Skalan series and its associates (Soil 

Survey Staff 2015); Skalan is a loamy-skeletal, isotic, mesic Vitrandic Haploxeralf that forms in 

weathered gneiss residuum and is slightly acidic (Soil Survey Staff 2018). The mean annual 

precipitation is 1290 mm and mean annual temperature is 9.0 °C (NCEI-NOAA 2017). My study 

focuses on areas affected by the Beaver Fire (Lat: 41.88993, Long: -122.87056; Fig. S3.1), a 

wildfire that burned ~13,000 ha between July 30, 2014 to August 31, 2014. Burn severity 

estimates based on the Differenced Normalized Burn Ratio (dNBR) indicate that the Beaver Fire 

resulted in ~4800 ha of burned area classified as high severity, ~4600 ha classified as moderate 

severity, ~3700 ha classified as low severity, and ~750 ha within the fire perimeter was unburned 

(MTBS 2017). dNBR severity estimates are based on Landsat reflectance images collected in the 

growing seasons immediately before and after fire occurrence, and reflect post- versus pre-fire 

changes in vegetation and soil exposure (Parsons et al. 2010), resulting in continuous dNBR 

values assigned to both burned and unburned plots. dNBR values for unburned plots are typically 

< 100, whereas the upper limit for burned plots can exceed 1000.  
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3.3.2 Field methods 

 Between August 3, 2015 and August 10, 2015 (i.e. one-year post-fire), I sampled 10 plots 

(4 unburned, 6 burned; dNBR 0-863). At each plot, I determined live and dead tree basal area 

and sampled for forest floor and mineral soil. I measured tree diameters at breast height (DBH) 

for all live and dead trees >10 cm DBH within an 11.3 m sampling radius, and I used these 

values to calculate live and dead tree basal area at the plot level. I sampled forest floor and 

mineral soil 15 m from the plot center at azimuths of 0º, 90º, 180 º and 270º, for a total of 40 

forest floor and 40 mineral soil samples collected. The forest floor includes the plant litter and 

duff layers, and is equivalent to the combined Oi, Oe, and Oa horizons in the USDA Soil 

Taxonomy classification system (Perry et al. 2008). I collected all forest floor material from 

within a 15 cm radius circular sampling frame. I inserted a 5 cm radius metal cylinder into the 

mineral soil to 5 cm and collected mineral soil using a stainless-steel scoop. I collected one 

additional volumetric mineral soil sample from the center of each plot to estimate bulk density 

using the same sampling method. Forest floor samples were stored at ambient temperature for 

~14 days prior to being transported to the lab. Mineral soil samples were stored under 

refrigeration for 2-7 days and shipped to the lab on ice. Upon arrival at the lab, the forest floor 

samples were air-dried, and mineral soils were sieved (2 mm) and sub-sampled for DNA 

analysis. Sub-samples for DNA analysis were stored at -80 ºC, and the remainder of the mineral 

soils were refrigerated at ~4º C until analyses. 

3.3.3 Lab methods 

Soil processing and chemical analyses 

 I processed the forest floor in a blender to pass a 2 mm mesh screen and then pulverized a 

subsample of the blended material in a ball mill (SPEX Sample Prep LLC, Metuchen, NJ, USA). 
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I oven-dried the pulverized forest floor material at 65º C and prior to determination of total C and 

N. I used the sieved mineral soil for determination of total C, N, pyrogenic-C (PyC), NO3-N, 

NH4-N, extractable P, and pH. I oven-dried the mineral soil sample to be used for C and N 

analysis at 105º C and then pulverized the subsamples as described above. I analyzed one forest 

floor sample and one mineral soil sample from each subplot for total C and N concentrations on 

a dry combustion elemental analyzer (Costech Analytical Technologies Inc., Valencia, CA, 

USA), using atropine as the quantification standard. I quantified mineral soil PyC concentrations 

by digesting 0.5 g mineral soil from each subplot in 10 mL 1.0 M HNO3 + 20 mL 30% H2O2 at 

100˚ C for 16 hours (Kurth et al. 2006) and analyzing post-digested soils for residual C and N.  

I extracted a 10 g sample of fresh mineral soil from each subplot for NH4
+-N and NO3

--N 

in 50 mL 2.0 M KCl for 1 hour. I filtered the resulting soil extracts through 2.5 µm pore-size 

filter paper (GE Healthcare UK Limited, Little Chalfont, Buckinghamshire, UK). I determined 

the extract NH4
+ concentrations spectrophotometrically by reacting with ammonia salicylate and 

ammonia cyanurate (Sinsabaugh et al. 2000), and measuring absorbance at 595 nm (BioTek 

Elx800, BioTek Instruments Inc., Winuski, VT, USA). I determined the concentrations of NO3
- 

in the extracts spectrophotometrically by reacting the extracts with vanadium (III) chloride, 

sulfanilamide, and N-(1-naphthyl)-ethylenediamine dihydrochloride and measuring absorbance 

at 540 nm (Doane and Horwáth 2003). I extracted 2.5 g subsamples of fresh mineral soils for 

phosphorus (P) in 40 mL 0.5 M NaHCO3 and determined P concentration using the Olsen 

method (Olsen et al. 1954). I measured mineral soil pH of a 1:2 (w:v) soil slurry with a benchtop 

pH meter (Oakton pH 700, Oakton Instruments, Vernon Hills, IL, USA). 
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Determination of carbon pool structure and kinetics 

 I incubated soils to determine the size and kinetic rates of the Ca and Cs pools and 

potential soil C flux rates. I adjusted a 30 g sample of fresh mineral soil from each subplot to 

40% water filled pore space (WFPS) in 120 mL specimen cups. The specimen cups were placed 

in 1 L glass jars, and the soils were incubated in the dark for 300 days at ambient temperature 

(~23 ºC) with biweekly adjustments of soil moisture to 40% WFPS. I measured CO2 evolution on 

days 10, 14, 28, 42, 58, 90, and every 30 days thereafter until day 300. Prior to each 

measurement event, I flushed the jars to ambient CO2 concentrations, then tightly sealed the jars 

for 24-48 hours before sampling a 1 mL gas aliquot through septa fitted to the jar lids. I 

measured CO2 concentration of the aliquot using an infrared gas analyzer (LI-COR Inc., Lincoln, 

NE, USA), and calculated CO2-C efflux as the difference in CO2-C concentrations between the 

soil containing jars and blank jars that contained only a specimen cup and DI water. 

DNA extraction and bioinformatic analysis 

 DNA was extracted from 0.25 g of soil using the MoBIO PowerSoil DNA isolation kit 

(MoBIO laboratories, Carlsbad, CA), according to the manufacturer's instructions. Illumina-

MiSeq was used to amplify the V4 region of the 16S-rRNA gene using 515f/806r universal 

primers (Caporaso et al. 2010) at the Michigan State University Genomics Core. I processed 

DNA sequences using the QIIME2 bioinformatics pipeline (Bolyen et al. 2019). I denoised, 

merged forward and reverse reads, and removed chimeras using the q2-DADA2 plugin (Callahan 

et al. 2016). I inferred phylogenetic trees by applying MAFFT multiple sequence alignment 

(Katoh and Standley 2013) and FastTree 2 (Price et al. 2010) using the q2-phylogeny plugin. 

With the q2-diversity plugin, I used the phylogenetic tree to calculate OTU richness, Faith’s 

phylogenetic diversity (Faith 1992), Shannon’s diversity, Pileou’s evenness, and a weighted 
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UniFrac distance matrix (Lozupone and Knight 2005). I used the q2-feature-classifier plugin 

(Bokulich et al. 2018) with the classify_sklearn action (Pedregosa et al. 2011) to classify 

taxonomic composition of my samples employing a Naïve Bayes classifier trained on the SILVA 

SSURef database version 132 using a 99% similarity threshold (Quast et al. 2013). I filtered 

OTUs associated with Archaea, Eukaryotes, mitochondria, and chloroplasts. I calculated 

oligotroph-to-copiotroph ratio at the phylum level as the ratio of the sum of relative abundances 

of all taxa classified within the phyla Acidobacteria and Verrucomicrobia to the sum of the 

relative abundances of all taxa classified within the phyla Actinobacteria, Firmicutes, and 

Bacteroidetes (Fierer et al. 2007; Fierer et al. 2012a; Ramirez et al. 2012).  

 I predicted metagenomic functional potential of soil bacterial communities using the 

PICRUST2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States) software (Douglas et al. 2019). PICRUST2 uses HMMER software (hmmer.org) to 

perform multiple sequence alignment via hidden Markov models, places reads in a reference tree 

using EPA-ng (Barbera et al. 2018), and outputs a tree file with Gappa (Czech et al. 2020). 

PICRUST2 then performs hidden-state prediction of gene families (Louca and Doebeli 2017), 

and uses MinPath (Ye and Doak 2009) to infer the relative abundance of MetaCyc metabolic 

pathways (Caspi et al. 2018). MetaCyc is a metabolic pathway database in which pathways are 

hierarchically grouped according to metabolic function. I focused my analysis on degradation 

pathway groups related to C cycling, including carbohydrate degradation, alcohol degradation, 

amine degradation, amino acid degradation, aromatic compound degradation, carboxylate 

degradation, fatty acid and lipid degradation, nucleoside and nucleotide degradation, and 

secondary metabolite degradation pathways.  
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3.3.4 Statistical analysis 

Fire and severity effects on soil properties and tree basal area 

 I performed all statistical analysis in the R statistical computing environment (R Core 

Team 2019). I used linear mixed models (R Package: nlme; Pinheiro et al., 2016) to determine 

the impacts of wildfire occurrence and burn severity (dNBR) on live and dead tree basal area, 

total C and N, C:N ratio, PyC, NH4
+-N, NO3

--N, TIN, extractable P, pH, gravimetric soil 

moisture, and forest floor mass. To account for legacy effects of soil properties related to 

topography, all models initially included elevation, slope, and aspect as covariates. Topographic 

variables that were not significant at α < 0.05 were sequentially removed from the models. All 

models included plot-identifier as a random effect, and the NH4
+-N, NO3

--N, and TIN models 

included total N as a covariate. I determined that inorganic N variables did not meet assumptions 

of normality, so I normalized these variables using Box-Cox transformations (Box and Cox 

1964). I determined whether wildfire occurrence or dNBR was a better predictor of differences 

by fitting separate models that included either fire occurrence (burned or unburned) or burn 

severity as an explanatory variable and comparing model AIC values. I selected fire occurrence 

or severity as the better predictor if the model containing that variable was ≥ 2.0 AIC points 

lower than the alternative model.  

Fire and severity effects on soil C pools and fluxes 

 I assessed the impacts of fire and severity on soil C flux rates and cumulative soil C flux 

over my soil incubation using the following fixed effects portion of linear mixed models: 

C Flux (cumulative or rate) = βo + β1×Incubation Day + β2×ln(Incubation Day) + β3×Fire 

Variable + β4×ln(Incubation Day)×Fire Variable  (1) 



 

109 

 

where βi represents the model-fitted intercept or slope coefficient and fire variable is either fire 

occurrence or burn severity. Each model also initially included all topographic variables and a 

plot-identifier random effect. Non-significant topographic variables were sequentially removed, 

and selection of fire occurrence or severity as a more suitable predictor was performed using 

AIC values as described above.  

 I assessed the size and mineralization rates of the Ca and Cs pools using non-linear mixed 

models. I assessed the sizes of the Ca and Cs pools and their mineralization rate constants using 

the following fixed effects portion a two-compartment first-order kinetics model (Kuzyakov 

2011): 

RateCO2 = Ca × kae
(-ka×day) + Cs × kse

(-ks×day) (eq. 2) 

where RateCO2 is the soil CO2 efflux rate at each measurement event, Ca is the size of the active C 

pool, ka is its mineralization coefficient, Cs is the size of the non-active C pool and ks is its 

mineralization rate coefficient. In this model, Cs is constrained to be CSOC – Ca, where CSOC is 

total soil organic C content. I did not include a passive pool in this model because research 

shows that methods of isolating passive C pools do not result in biologically meaningful 

estimates (Greenfield et al. 2013). 

 I determined whether fire occurrence or severity affected soil C pools by first fitting a 

global non-linear model that included all 40 incubation replicates. I performed model selection 

procedures for random effects in non-linear models as described by Pinhero and Bates (2000), 

which resulted in the inclusion of a plot identifier as a random effect associated with Ca and ks, 

and no random effect associated with ka. I assessed how wildfire impacted the size or kinetic 

rates of the Ca and Cs pools by adding fire occurrence or severity as a covariate to the non-linear 

models. Selection of fire occurrence or severity as a more suitable predictor variable was 
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performed using AIC values as previously described. In addition to the global model, I fit 

separate non-linear models for each incubation replicate to obtain independent estimates of Ca, 

ka, and ks for use in elastic net regularization analysis and structural equation modelling 

(described below). Five incubation replicates (two replicates from separate unburned plots, and 

one each from plots with dNBR values of 108, 350, and 478) did not converge during non-linear 

regression due to consistently high respiration rates throughout the incubation and were excluded 

from further analysis. After exclusion, each of the ten plots still had C pool parameter estimates 

from at least three subplots. 

Fire and severity effects on soil bacterial communities and imputed metagenomes 

 I assessed the impacts of wildfire and burn severity on Faith’s phylogenetic diversity, 

OTU richness, Shannon’s diversity, Pielou’s evenness, O:C, and the relative abundance of the 

ten most abundant bacterial phyla using linear mixed models and AIC model-selection as 

described above. The ten most abundant bacterial phyla represented all phyla that exhibited 

>0.5% relative abundance and 94.1% of the total abundance. I used multivariate statistical 

approaches (R Package: vegan; Oksanen et al., 2017) to determine the impacts of fire 

occurrence, burn severity, and soil properties on bacterial community structure. Using a 

weighted UniFrac distance matrix of the bacterial community, I employed principle coordinates 

analysis (PCoA), and full and partial Mantel tests to determine the relationships between plant 

and soil characteristics and bacterial communities. Additionally, I performed PCoA and Mantel 

tests on a Bray-Curtis distance matrix of imputed MetaCyc metabolic pathways, hierarchically 

grouped into common C-degradation pathways.  

 I identified positive and negative fire responsive bacterial OTUs using species indicator 

analysis with fire occurrence as the explanatory variable, relative abundance of OTUs as 
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response variables, and point biserial correlation as the output statistic (R Package: indicspecies; 

De Caceres and Legendre, 2009). I assessed which positive fire-responder OTUs were also 

positively related to severity by performing linear mixed-model analysis on the relative 

abundance of each fire-responsive OTU with dNBR as the explanatory variable and unburned 

plots excluded from the analysis.  

Links between ecosystem characteristics and soil carbon pools 

 I determined properties linked to the size and kinetic rates of soil C pools using structural 

equation modeling. I constructed an initial SEM meta-model composed of linear mixed models 

that included live tree basal area, dead tree basal area, forest floor mass, total C, PyC, total N, 

TIN, extractable P, pH, and soil moisture as response variables (R Package: piecewiseSEM; 

Lefcheck, 2016). All component linear mixed models initially included explanatory variables of 

severity and any topographic variable (i.e. elevation, slope, aspect) that my previous analyses 

(see above) indicated was significantly related to the response variable of interest. All edaphic 

response variables initially also included live and dead tree basal area as explanatory variables. 

The TIN linear model also included total N as an explanatory variable, and the soil moisture 

model included overlying forest floor mass as an explanatory variable. All linear-mixed models 

included a plot-identifier as a random effect. I used severity instead of fire occurrence in my 

SEMs, because AIC values indicated that severity had more explanatory power for more soil 

variables (Table 3.1), and previous research indicates that severity-based SEMs outperform fire 

occurrence SEMs (Adkins et al. 2020). The initial SEM model was modified by sequentially 

removing paths that exhibited p-values > 0.05, resulting in an SEM meta-model upon which all 

further models were based.  
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 I assessed relationships of soil properties, live and dead tree basal area, and topography 

with C pools using separate SEMs for each C pool parameter (i.e. Ca, ka, ks). Each SEM included 

Ca, ka, or ks as the response variable, and the initial explanatory variables included all soil and 

topography variables, and live and dead tree basal area. Variables that were not significant at 

α=0.05 were sequentially removed from the model. I did not construct SEMs for Cs because this 

pool dominated the total C stock so SEMs would likely identify factors impacting total C stock 

size rather than Cs pool size. My SEMs satisfy the recommendations of 5 observations per 

variable (Grace et al. 2015), and local-estimation approaches to SEM like those used here have 

smaller sample size requirements since there only need to be enough degrees of freedom to fit 

any component model (Shipley et al. 2001). 

Relationships between bacteria, C pools, and soil nutrients 

 I used correlation analyses and elastic net regularization to assess relationships between 

log2 bacterial abundance at the levels of phylum and genus with C pools, soil TIN and P, and pH, 

soil variables that are commonly associated with bacterial copiotrophic versus oligotrophic life-

strategies. I considered Ca pools size an indicator of labile C availability. I performed univariate 

correlations between all bacterial phyla and the selected soil variables. At the genus level, I 

performed correlations within phyla that my linear mixed-models indicated were related to burn 

severity and that previous research indicates exhibit either copiotrophic or oligotrophic life 

strategy (i.e. Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria, and 

Verrucomicrobia). All correlations were performed using Spearman’s rank correlation to account 

for non-normality of bacterial abundance data and I considered correlations significant at α=0.05. 

 I also  performed elastic net regularization (R Package: glmnet; Friedman et al., 2010) to 

identify bacteria phyla and metabolic pathways that are predictive of C pool parameters. Elastic 
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net regularization selects the best set of predictors (i.e. phyla or metabolic pathways) for a given 

response by using LASSO and ridge regression, but does not assign significance values to 

selected predictors; elastic net regularization is frequently used with sparse datasets when the 

number of potential predictors is larger than the number of observations, as is often the case for 

genomic data (Friedman et al. 2010; Wagg et al. 2019).  

3.4 RESULTS 

3.4.1 Relationships between fire, tree basal area, and soil properties 

Linear mixed models 

 My AIC-based model selection indicated that fire occurrence had more explanatory 

power for models assessing total soil C, NH4
+-N and TIN, whereas severity had more 

explanatory power for dead tree basal area, forest floor mass, total N, pH, and soil moisture 

(Table 3.1). Neither explanatory variable had more power for live tree basal area, C:N, NO3
--N, 

and extractable P.  

 Concentrations of NH4
+-N, NO3

--N, and TIN were higher in burned stands than unburned 

stands (Table 3.1). Additionally, total N was a significant covariate for NH4
+-N, NO3

--N, and 

TIN, all of which were all positively related to total N (p<0.001, p=0.041, and p<0.001, 

respectively). Univariate relationships between total N and NH4
+-N, NO3

--N, and TIN were not 

significant indicating total N was not the primary driver of changes to inorganic N. Dead tree 

basal area increased with both severity (p=0.005) and elevation (p=0.017). Live tree basal area 

was not related to severity and increased with elevation (p=0.034). Forest floor mass was 

negatively associated with severity (p=0.002) and positively related to elevation (p=0.001). 

Mineral soil gravimetric moisture was negatively related to severity (p=0.004), and positively 

related to elevation (p<0.001). Soil pH increased in association with severity (p=0.007). Mineral 
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soil total C and N, C:N, PyC, and extractable P were not significantly affected by fire occurrence 

or burn severity. Total N was positively related to elevation (p=0.012) and C:N was negatively 

related to elevation (p=0.045). Hillslope and aspect were not related to any of the considered 

properties. 

Table 3.1 Relationship of fire occurrence and burn severity (dNBR) to soil properties as 

determined via linear mixed models. Linear mixed models also included elevation, hillslope, and 

aspect as topographic covariates. Relationships between soil properties and topographic variables 

are described in the main text. Lowercase letters represent differences in soil properties between 

unburned and burned forest stands at α=0.05. dNBR coefficient is the model-determined slope 

parameter and represents change in soil property per unit increase in dNBR. Bold text indicates 

that ΔAIC was ≥ 2 between models that included burn status versus dNBR, indicating that one of 

these variables should be preferred for predicting change in the relevant soil property.  
 Unburned  

mean ± SE  

(n=4) 

Burned  

mean ± SE 

(n=6) 

dNBR 

coefficient  

 

Fire 

occurrence 

model AIC 

dNBR 

model 

AIC 

Live Tree Basal Area (m2 ha-1) 77.7 ± 26.5 a 33.3 ± 11.6 a -0.046 100.19 98.79 

Dead Tree Basal Area (m2 ha-1) 5.4 ± 5.4 b 21.6 ± 5.6 a 0.044* 78.60 76.07 

Forest floor Mass (kg m-2)) 2.60 ± 0.48 a 0.95 ± 0.39 b -0.0026* 485.46 463.69 

Total C (g kg-1) 66.2 ± 13.3 a 68.8 ± 10.3 a 0.0043  206.30 208.35 

Total N (g kg-1) 2.7 ± 0.5 a 2.8 ± 0.8 a -0.0011  -61.16 -64.56 

C:N 34.0 ± 11.5 a 37.9 ± 8.0 a 0.023  356.07 357.73 

PyC Proportion (% Total C) 14.3 ± 3.3 a 12.8 ± 2.0 a -0.000065 -94.95 -96.16 

NH4
+-N (µg g-1)Ψ 1.28 ± 0.52 a 11.9 ± 4.6 b 0.0016* 45.06 49.90 

NO3
--N (µg g-1) Ψ 0.29 ± 0.29 a 5.21 ± 3.18 b 0.00057* 16.28 15.97 

TIN (µg g-1) Ψ 1.57 ± 0.75 a 17.1 ± 7.7 b 0.0019* 61.20 65.88 

Extractable P (µg g-1) 35.0 ± 4.2 a 45.0 ± 4.6 a 0.0084  334.54 336.47 

pH 6.14 ± 0.05 a 6.54 ± 0.11 b 0.00090* 64.11 58.43 

Soil Moisture (g kg-1) 88.9 ± 16.0 a 56.6 ± 20.7 a -0.0041* 216.60 208.42 

Bulk Density (kg m-3) 1.17 ± 0.19 a 1.26 ± 0.16 a -0.000045 13.05 13.18 
Ψ Response variables for inorganic N models were box-cox transformed prior to statistical analysis and slope 

value is on box-cox scale. Unburned/burned means are on original scale. Inorganic N models included total N 

concentration as a covariate.  

* Coefficient significantly different from zero at α = 0.05. 

 

Structural equation models 

 My SEM meta-model revealed relationships between severity and soil properties that 

were not captured by my linear mixed-models (Fig 3.1). Soil moisture was directly, negatively 

linked to severity (p=0.03), indirectly, negatively linked via forest floor mass (p=0.001), and 

indirectly, positively linked via dead tree basal area (p=0.047), leading to a standardized 
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compound path coefficient of -0.52 between severity and soil moisture (marginal r2=0.63). 

Although my univariate analysis did not reveal a relationship between severity and total N 

(section 2.1.1), my SEM indicated that N was negatively linked to severity, a relationship that 

was partially offset by a positive relationship between N and dead tree basal area, leading to 

compound path coefficient of -0.40 between N and severity (marginal r2=0.69). After accounting 

for dead tree basal area, elevation was no longer a significant predictor of total N. 

 

 

Figure 3.1 Causal diagram depicting structural equation model of direct and indirect links 

between burn severity, topography, live and dead tree basal area, and soil properties. Paths 

were fit using linear mixed models with a random plot effect. Standardized coefficients are 

displayed for all links. All retained paths exhibited p-values ≤ 0.05. 

 

3.4.2 Relationship of wildfire and burn severity to soil C pools and fluxes 

 AIC-based comparisons of mixed-models assessing soil CO2 efflux rate over my 300-day 

incubation did not suggest a preference for fire occurrence versus severity-based models (Fig. 

3.2). However, AIC values indicated fire occurrence had more explanatory power when 

assessing the same data as cumulative CO2-C flux (Fig S3.2). There was a negative main effect 

of fire occurrence on flux rate (p=0.01) and a positive interaction effect of fire occurrence × 
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ln(day) (p=0.007) (Fig. 3.8). Together, these effects indicate that initial flux rates were lower in 

burned soils, and, over the course of the incubation, flux rates decreased more slowly in burned 

soils compared to unburned soils. Flux rates were positively related to elevation, but, when the 

data was assessed as cumulative CO2-C flux, elevation was not a significant predictor. 

 AIC-based model selection of my global non-linear mixed models quantifying soil C pool 

structure and kinetics indicated that a fire occurrence model had more explanatory power than a 

severity model (ΔAIC=3.08). ks decreased from 0.00017 in unburned soils to 0.000070 in burned 

soils (p=0.002). This is equivalent to Cs MRT increasing from 16.1 years to 39.2 years. The sizes 

of the Ca and Cs pools and ka were not significantly different between burned and unburned soils. 

Modeled Ca was 1220 ± 210 mg kg soil-1 (2.08 ± 0.37% of total C), and ka was 0.028 ± 0.002 

(MRT=35.7 days).  

 The SEMs indicated that Ca was directly positively related to severity, but the 

relationship was offset by dead tree basal area, forest floor mass, and total N such that there was 

only a minimal change in Ca with severity (Table 3.2). SEMs indicated that ka was indirectly 

linked to severity via a relationship with pH. SEMs indicated that ks was indirectly linked to 

severity via the path between dead tree basal area and total N. ks was directly positively related 

to live tree basal area and PyC. 

  



 

117 

 

 

Figure 3.2 Mean (± SE) CO2-C efflux rate (points) over a 300-day laboratory incubation of 

mineral soils (0-5 cm) grouped by fire-occurrence (a) and severity (b). Colored lines 

represent change in CO2-C efflux rates between sampling days and vertical bars represent 

standard errors. In panel a, SE is based on n=4 unburned plots and n=6 burned plots. In panel b, 

SE is based on n=3 or 4 subplots per plot.
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Table 3.2 Structural equation models explaining direct and indirect links to C-pool 

parameters. Path coefficients were standardized and only coefficients exhibiting p-values ≤ 0.05 

were retained in the models. Abbreviations: DBA=dead tree basal area; FFM= forest floor mass; 

LBA=live tree basal area; N=total nitrogen; PyC=pyrogenic carbon 
Response 

Variable 

Structural Equation Model dNBR Compound 

Coefficient 

Fisher’s C  

(p-value) 

Ca Ca=1.68dNBR − 1.45DBA + 0.63FFM + 0.70N +0.85ELEV 

(m. r2=0.54) 

FFM=−0.37dNBR + 0.46ELEV (m. r2=0.84) 

N=−0.92dNBR + 0.89DBA (m. r2=0.69) 

DBA=0.93dNBR + 0.79ELEV (m. r2=0.72) 

 

0.03 6.29 (0.39) 

ka ka=0.51pH (m. r2=0.24)  

pH=0.51dNBR (m. r2=0.35) 

 

0.26 1.64 (0.44) 

ks ks=0.26LBA + 0.40N + 0.56PyC (m. r2=0.63) 

LBA=0.79ELEV (m. r2=0.62) 

N=−0.92dNBR + 0.89DBA (m. r2=0.69) 

DBA=0.93dNBR + 0.79ELEV (m. r2=0.72) 

-0.04 25.30 (0.12) 

 

3.4.3 Relationships between wildfire, burn severity, bacterial communities, and imputed 

metabolic pathways 

Bacterial diversity 

 Fire occurrence and severity negatively impacted Faith’s phylogenetic diversity, with 

AIC values indicating no preference for fire occurrence or severity-based models (Figs. 3.3a and 

3.3b). AIC-based model selection indicated that the severity model better explained OTU 

richness, which was negatively correlated with severity (Figs. 3.3c and 3.3d). Shannon’s 

diversity and Pielou’s evenness were not associated with either fire occurrence or severity (data 

not shown). Fire occurrence had more explanatory power for changes in phyla-level oligotroph-

to-copiotroph ratios, which decreased from 1.08 in unburned soils to 0.48 in burned soils (Figs 

3.3e and 3.3f).  
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Figure 3.3 Relationship between fire occurrence and severity for selected microbial 

community characteristics, including Faith’s phylogenetic diversity (a and b), OTU richness (c 

and d), and oligotrophic-to-copiotrophic taxa ratio (e and f).  

 

Bacterial community structure 

 I performed PCoA on a weighted UniFrac distance matrix and found that the first axis 

explained 54.9% of variation, and the second axis explained an additional 8.7% (Fig. 3.4). Fire 

occurrence (r2=0.24, p<0.001) and severity (r2=0.57, p<0.001) were both significantly correlated 

with the PCoA ordination. Several soil properties were also significantly correlated with the 

ordination, including NH4-N concentration (p=0.002), TIN concentration (p=0.008), P 

concentration (p=0.009), pH (p<0.001), soil moisture (p=0.010), and forest floor mass (p=0.003). 
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Mantel tests between the weighted UniFrac matrix and a Bray-Curtis matrix of soil properties 

indicated the two matrices were significantly related (Mantel statistic r=0.246, p=0.008).  

 

Figure 3.4 Principle coordinates analysis (PCoA) plots based on a weighted UniFrac 

distance matrix of bacterial communities in mineral soils (0-5 cm). Each point represents the 

bacterial community from a single subplot. Vectors represent variables that are significantly 

correlated with one of the PCoA axes, and vector lengths are scaled based on r2 values. Solid and 

dashed hulls depict the ordination space that encompasses all burned and unburned samples, 

respectively.  

 

I assessed the relationship between wildfire occurrence and severity and the relative 

abundances of the ten most abundant bacterial groups using univariate linear mixed models. AIC 

values indicated that the fire occurrence models had more explanatory power for assessing 

differences in Bacteroidetes, Acidobacteria, Verrucomicrobia, and Planctomycetes relative 

abundance. The relative abundances of Bacteroidetes, Actinobacteria, and Firmicutes were 
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higher in burned areas than unburned areas (Fig. 3.5). The relative abundances of Acidobacteria, 

Verrucomicrobia, and Planctomycetes relative abundance were lower in burned areas than 

unburned areas. There was no significant effect of fire occurrence or burn severity on α-

Proteobacteria, γ-Proteobacteria, δ-proteobacteria or Gemmatimonadetes relative abundance. 

 
Figure 3.5 Relative abundance of the ten most abundant bacterial phyla across a gradient of 

burn severity in mineral soils (0-5 cm). The ten most abundant phyla accounted for ~94% of the 

total bacterial community. Abundances at each dNBR level are the means of four subplots. 

 

Bacterial OTUs 

 Indicator species analysis identified 53 OTUs as indicators of burned soils (i.e. positive 

fire responders) and 74 OTUs as indicators of unburned soils (i.e. negative fire responders) (data 

not shown). The positive fire responders most commonly belonged to the Actinobacteria and 

Bacteroidetes phyla, as well as to the α-proteobacteria class, which respectively accounted for 

28.6%, 23.2%, and 26.8% of the positive responder OTUs. The seven OTUs that exhibited the 
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strongest positive response to fire (point biserial correlation >0.60) came from the genera 

Massilia (γ-proteobacteria), Roseomonas (α-proteobacteria), Segetibacter (Bacteroidetes; 2 

OTUs), Blastoccus (Actinobacteria), unclassified Micrococcaceae genus (Actinobacteria), and 

unclassified Burkholderiaceae genus (γ-proteobacteria). The negative fire responders most 

frequently belonged to the Planctomycetes phylum, which accounted for 14.7% of these 

responders, and to the α-proteobacteria and γ-proteobacteria classes, which accounted for 18.7% 

and 17.3%, respectively. The five OTUs that exhibited the strongest negative response came 

from the genera Cytophaga (Bacteroidetes), IS-44 (γ-proteobacteria), Mycobacterium 

(Actinobacteria), uncultured Elsteraceae genus (α-proteobacteria), and uncultured 

Gemmataceae genus (Planctomycetes).  

I identified 15 OTUs as positively associated with severity based on linear mixed models 

(Fig. 3.6). Of the 15 OTUs, six were from the Bacteroidetes phylum, two were from 

Actinobacteria, and one was from Verrucomicrobia. Four severity responders were from the α-

proteobacteria class, one was from the γ-proteobacteria class, and one was from the δ-

proteobacteria class. The abundances of all of the severity-associated OTUs were positively 

correlated with either TIN or P (data not shown). 
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Figure 3.6 Heat map of showing z-transformed relative abundance of bacterial OTUs 

identified as severity responders. Severity responders were identified by performing indicator 

species analysis and linear mixed modelling. Abundances at each dNBR level are the means of 

four subplots.
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 Carbon degradation metabolic pathways 

 

 Using PICRUST2, I identified 135 MetaCyc metabolic pathways associated with C-

degradation functions. PCoA on a Bray-Curtis matrix of the MetaCyc pathways grouped into 

common C-degradation functions indicated that the first axis explained 45.1% of variation and 

the second axis explained 22.1% (Fig. 3.7). Fire occurrence (r2=0.16, p<0.001) and severity 

(r2=0.41, p<0.001) were significantly correlated with the ordination. Additionally, several soil 

properties were significantly correlated with the ordination, including total C (p=0.009), C:N 

ratio (p=0.044), NH4-N (p=0.008), TIN (p=0.047), extractable P (r2=0.32, p=0.002), pH 

(p=0.010), and forest floor mass (p=0.007). Partial mantel tests between the distance matrix, a 

dNBR distance matrix, and a soil properties distance matrix indicated that, after accounting for 

soil properties, there was a significant correlation between severity and the metabolic pathways 

(Mantel statistic r=0.18, p=0.008).  

 AIC-based model comparisons for linear mixed models indicated that severity had more 

explanatory power for differences in carbohydrate degradation, alcohol degradation, amine and 

polyamine degradation, carboxylate degradation, and nucleotide and nucleoside degradation. 

Severity positively impacted the relative abundance of imputed pathways associated with 

carbohydrate degradation, alcohol degradation, amine and polyamine degradation, carboxylate 

degradation, and secondary metabolite degradation (Fig. 3.8). The relative abundance of amino 

acid degradation pathways was higher in burned areas than unburned areas (p=0.021). The 

relative abundances of aromatic compound degradation pathways and fatty acid and lipid 

degradation pathways were not related to fire occurrence or severity.  
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Figure 3.7 Principle coordinates analysis (PCoA) plots based on a Bray-Curtis distance 

matrix of imputed MetaCyc pathways grouped into common C-degradation functions. Vectors 

represent variables that are significantly correlated with one of the PCoA axes, and vector 

lengths are scaled based on r2 values. Solid and dashed hulls depict the ordination space that 

encompasses all burned and unburned samples, respectively. 
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Figure 3.8 Relationships between burn severity and imputed C-degradation pathways 

estimated using PICRUST2. 
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3.4.4 Relationships between bacterial taxa, soil C pools, and soil nutrients 

 At the phyla level, Proteobacteria, Latescibacteria, and Bacteroidetes were positively 

correlated with Ca, whereas Firmicutes was negatively correlated with Ca (Fig 3.9). Firmicutes 

was also positively correlated with ka, while several relatively rare bacterial phyla were 

negatively correlated with ka. Omnitrophicaeota and Elusimicrobia were positively correlated 

with ks, and no phyla were negatively correlated with ks. Firmicutes, FBP, Bacteroidetes and 

Actinobacteria were the only phyla positively correlated with TIN or P. Several bacterial phyla 

were negatively correlated with these nutrients, including the relatively abundant 

Verrucomicrobia, Planctomycetes, and Acidobacteria. GLMs constructed using elastic net 

regularization selected seven bacterial phyla as associated with Ca, two phyla associated with ka, 

and one phylum associated with ks (Table S3.1).  

 Various relationships between bacteria, C pools, and nutrients emerged at the genera 

level (Table 3.3). Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria are traditionally 

considered copiotrophic phyla. Within Proteobacteria and Bacteroidetes, more genera were 

positively correlated with Ca than were negatively correlated. More genera within these two 

phyla were positively correlated with TIN than were negatively correlated, but nearly 10% of 

genera within both phyla were negatively correlated with TIN. Within Proteobacteria, more 

genera were negatively correlated with P, and within Bacteroidetes, an equal proportion of 

genera were positively and negatively correlated with P. 46.8% of Proteobacteria genera and 

45.8% of Actinobacteria genera were not significantly correlated within any of the considered 

variables. 

 Within Firmicutes and Actinobacteria, more genera were negatively correlated with Ca 

than were positively correlated, while more genera were positively correlated with TIN than 
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were negatively correlated. More Firmicutes genera were positively correlated P than were 

negatively correlated, whereas more Actinobacteria genera were negatively correlated with P 

than were positively correlated. For both phyla, more genera were positively correlated pH than 

were negatively correlated. 45.8% of Firmicutes genera and 42.7% of Actinobacteria genera 

were not significantly correlated with any of the considered variables.  

 Acidobacteria and Verrucomicrobia are typically considered oligotrophic phyla. Within 

both of these phyla, more genera were positively correlated with Ca than were negatively 

correlated.  Additionally, more genera within both phyla were negatively correlated with TIN, P, 

and pH. 38.0% of Acidobacteria genera and 51.9% of Verrucomicrobia genera were not 

significantly correlated with any of the considered variables.  
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Figure 3.9 Correlations between bacterial phyla and active carbon pool size (Ca) and 

kinetic rate (ka), non-active carbon pool kinetic rate (ks), total inorganic nitrogen (TIN), 

phosphorus (P), and pH. Asterisks indicate correlations that were significant at α=0.05. 
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Table 3.3 Proportion of genera within selected phyla that are significantly correlated with soil carbon pools, total inorganic 

nitrogen (TIN), phosphorus (P), or pH. Correlations were performed using Spearman’s rank correlation and were considered 

significant at α=0.05. 
Phylum Genera 

Count 
Ca ka ks TIN P pH 

  Pos. 

(%) 

Neg. 

(%) 

Pos. 

(%) 

Neg. 

(%) 

Pos. 

(%) 

Neg. 

(%) 

Pos. 

(%) 

Neg. 

(%) 

Pos. 

(%) 

Neg. 

(%) 

Pos. 

(%) 

Neg. 

(%) 

Proteobacteria 412 8.99 1.21 0.73 8.98 4.61 0.49 13.1 9.50 6.07 10.4 8.10 14.3 

Bacteroidetes 131 7.63 1.53 0.00 13.0 9.16 2.29 16.0 9.92 6.87 6.87 13.0 12.2 

Actinobacteria 157 3.18 4.46 3.18 6.37 1.91 3.18 12.7 8.28 3.18 15.9 16.6 8.92 

Firmicutes 33 0.00 9.09 12.1 0.00 0.00 9.09 21.1 0.00 12.1 3.03 24.2 3.03 

Verrucomicrobia 52 11.5 0.00 0.00 13.5 5.77 0.00 5.77 19.2 5.77 17.3 5.77 17.3 

Acidobacteria 95 8.42 1.05 0.00 8.42 3.16 0.00 4.21 20.0 0.00 19.0 1.05 25.3 
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3.5 DISCUSSION 

3.5.1 Hypothesis 1: Soil properties are related to differences in carbon pools across a burn 

severity gradient 

 Soil properties including forest floor mass, total N, and pH were related to C pools, but 

live and dead tree basal area also played an important role in explaining differences in C pools 

(Table 3.2). Dead tree basal area was related to several soil properties one-year post-fire, 

exhibiting direct links to total N and soil moisture and an indirect link to TIN (Fig. 3.1). I also 

observed a positive relationship between dead tree basal area and total N in a previous study 

(Adkins et al. 2020), an effect that could be caused by decomposition of dead tree roots leading 

to increased soil N inputs (Fahey et al. 1988). Root dynamics could also explain the direct 

negative link between dead tree basal area and Ca (Table 3.2), a relationship potentially resulting 

from decreased root exudation (Boddy et al. 2007; de Graaff et al. 2010). Along with forest floor 

mass and total N, dead tree basal area offset the direct positive link between severity and Ca, 

suggesting vegetation dynamics play an important role in mediating the response of soil C 

stability to fire. In my previous study performed three years post-fire, I found that forest floor 

mass was directly positively linked to live tree basal area (Adkins et al. 2020), whereas I found 

no such link here. This suggests that by one year post-fire, new litter inputs have not yet led to 

re-accumulation of forest floor, and litter deposition may not substantially increase forest floor 

mass until later in forest recovery. 

 The positive relationships of  total N with Ca, and ks are likely due to faster 

decomposition rates of high N (low C:N) soil organic matter (Aber and Melillo 1980; Melillo et 

al. 1982). Indeed, I found positive relationships between total N and C flux rate, and negative 

relationships between C:N and C flux rate during our soil incubation (data not shown). However, 
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total N did not vary with severity (Table 3.1), and thus does not account for ks decreasing with 

severity. Similarly, although there was a tendency for C:N to increase with severity, this effect 

was not significant and therefore does not account for the decreased ks. Interestingly, TIN was 

not related to C pool dynamics, despite indications that high TIN decreases organic matter 

decomposition rates in forests (Fog 1988; Janssens et al. 2010), and would therefore be expected 

to be negatively associated with ka and/or ks. There are several potential reasons why the impact 

of TIN on C cycling may be tempered in burned forests. First, TIN may primarily influence 

decomposition rates in organic surface horizons rather than in mineral soils (Janssens et al. 

2010). This effect may therefore be minimal when fires lead to decreases in the forest floor layer, 

as I found here. Secondly, decreased decomposition in response to TIN may be partially 

attributable to acidifying effects of TIN on soil (Averill and Waring 2018). Increases in soil pH 

that typically occur following fires may therefore buffer against the acidifying effects of TIN and 

negate the potential impacts on decomposition. Finally, TIN may decrease decomposition by 

suppressing the abundance and activity of mycorrhizal (Phillips and Fahey 2007; Janssens et al. 

2010) and lignolytic fungi (Fog 1988; DeForest et al. 2004; Entwistle et al. 2018). Mycorrhizal 

and saprotrophic fungal abundance is generally lower in burned versus unburned soils due to 

vegetation and litter loss, low tolerance for soil heating, and pH effects (Dooley and Treseder 

2012; Pressler et al. 2018). Decomposition performed by these fungal groups is thus likely 

already lower in burned versus unburned areas, so higher TIN might not have any additional 

effects on their activities.  

 Although my SEMs displayed adequate goodness of fit statistics and identified several 

variables that were significantly related to C pool parameters, these SEMs do not appear to well 

explain the patterns of C pool kinetics across the severity gradient. For example, my non-linear 
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models indicated a strong negative effect of fire occurrence and burn severity on ks, but the SEM 

indicated only a slightly negative effect. This suggests there are other unaccounted-for variables 

necessary for explaining relationships between fire and C pool kinetics. Despite the 

shortcomings of these SEMs, I present them here because they were still successful at identifying 

individual variables that are related to C pool sizes and kinetics, including ecosystem properties 

that are affected by fire and severity. For example, live and dead tree basal area, forest floor 

mass, pH, and pyrogenic C content are all properties that are associated with fire (Certini 2005; 

Hart et al. 2005; Miesel et al. 2018) and were directly linked to one or more C pool parameter in 

my SEMs.  

 Differences in soil organic matter composition across the severity gradient could account 

for the inability of the SEMs to represent the overall relationship between severity and C pool 

kinetics. For example, soil carbohydrate content decreased immediately following wildfires in P. 

pinaster forests of Spain (Martín et al. 2009), and lignin was found to be a more predominant 

component of soil organic matter in areas of high burn severity in coniferous and deciduous 

forests of northern Minnesota, USA (Miesel et al. 2015). The slower decomposition of lignin 

relative to carbohydrates could possibly account for the lower ks in burned areas, especially if 

fire also decreases lignolytic fungal abundance. Accounting for soil organic matter composition 

could also capture the effects of colonization of burned areas by early successional herbs and 

shrubs during post-fire recovery (Hart et al. 2005; Collins and Roller 2013), which likely results 

in greater inputs of high N, low lignin deciduous litter over the short- to intermediate term (Hart 

et al. 2005). Differences in soil texture could also influence soil C pools in ways that were not 

accounted for in my SEMs. For example, fire can lead to altered soil textures by disrupting 

aggregates, degrading clay at high soil temperatures (>400 °C), and due to convective forces 
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generated by fire transporting fine soil particles (Certini 2005; Neary and DeBano 2005; Alcañiz 

et al. 2018). Soil C is stabilized via occlusion in aggregates and associations with clay (Jastrow et 

al. 2007), so changes to these soil physical properties could alter C pool structure and kinetics. In 

the field, soil microclimate differences between burned and unburned areas could also influence 

soil C pool kinetics in ways that are difficult to account for during lab-based soil incubations. For 

example, less canopy shading and decreased insulation from forest floor in high burn severity 

areas could result in higher temperatures and lower soil moisture in mineral soils (Hart et al. 

2005; Kasischke and Johnstone 2005), thereby influencing microbial activity and C pool 

kinetics. 

3.5.2 Hypothesis 2: Bacteria previously identified as fire responders are positively 

associated with burn severity 

 In support of my hypothesis, some of the genera harboring the severity-responsive OTUs 

(Fig. 3.6) have previously been identified as fire-responsive taxa (e.g. Adhaeribacter, 

Roseomonas, and Flavisolibacter) (Weber et al. 2014; Whitman et al. 2019). All of the genera 

harboring the severity-responsive OTUs were positively correlated with either TIN or P, 

suggesting copiotrophic life-strategies. To the best of my knowledge, other OTUs I identified as 

severity-responders have not previously been characterized as fire-responders. For example, 

Segetibacter accounted for two severity-responsive OTUs (and three positive fire-responsive 

OTUs) but has not been identified as fire-responsive in previous studies. However, Segetibacter 

was identified as responding positively to PyC additions in a lab incubation study, suggesting 

post-fire affinity (Woolet and Whitman 2020). I identified several genera as positive fire-

responders (but not severity-responders) that other studies have also identified, including 

Aeromicrobia, Blastococcus, Massilia, Phenylobacterium, and Devosia (Weber et al. 2014; 
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Whitman et al. 2016; Huffman and Madritch 2018). Conversely, other studies have consistently 

identified Arthrobacter as a positive fire-responder (Weber et al. 2014; Huffman and Madritch 

2018; Whitman et al. 2019), but I did not. My identification of unique severity responsive OTUs 

suggests that high burn severity may cause soil function to become dissimilar from pre-fire 

conditions. This is further evidenced by the positive associations of several imputed C-

metabolism pathways with severity. The negative responses of bacterial phylogenetic diversity, 

OTU richness, and phyla-level oligotrophic-to-copiotrophic ratio to fire and burn severity agrees 

with my previous research where I found similar patterns three years post-fire in another mixed-

conifer forest (Fig. 3.3; Adkins et al. 2020). This suggests that short- to intermediate-term 

decreases in bacterial diversity and oligotrophic-to-copiotrophic ratio are common responses to 

fire in mixed-conifer forests. 

3.5.3 Hypothesis 3: Burned areas have a higher abundance of copiotrophic bacteria 

The abundances of several dominant bacterial phyla were associated with fire, and in 

support of my hypothesis, phyla traditionally classified as copiotrophic tended to be more 

abundant and oligotrophic phyla less abundant in burned compared to unburned areas. The 

relative abundance of Bacteroidetes was higher and Acidobacteria was lower in burned areas 

compared to unburned areas, a dynamic that has often been observed following fires (Weber et 

al. 2014; Xiang et al. 2014b; Rodríguez et al. 2018; Pérez-Valera et al. 2019; Whitman et al. 

2019). Actinobacteria and Firmicutes had higher relative abundance in burned areas one-year 

post-fire, which contrasts with my previous research where I found no differences in 

Actinobacteria and Firmicutes abundance three years after fire (Adkins et al. 2020). Other 

studies have found increased Actinobacteria and Firmicutes abundance in burned areas in several 

forest types (Ferrenberg et al. 2013; Weber et al. 2014; Fultz et al. 2016; Prendergast-Miller et al. 
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2017; Huffman and Madritch 2018; Pérez-Valera et al. 2019), and, like the present study, those 

studies all occurred within one year post-fire (range: one day to one year post-fire). The lack of 

studies encompassing longer timeframes makes it difficult to determine whether a parabolic-

shaped response of Actinobacteria and Firmicutes abundance in mixed-conifer forests is typical, 

as suggested by this study and Adkins et al. (2020) together. The increased abundance of 

Firmicutes and Actinobacteria following fires is likely due to spore-forming ability (Prendergast-

Miller et al. 2017), and thus the abundance of these phyla could decrease later in the post-fire 

recovery period as environmental characteristics become more important drivers of microbial 

communities (Ferrenberg et al. 2013; Whitman et al. 2019). The lower abundance of 

Verrucomicrobia and Planctomycetes in burned areas supports a previous study that identified a 

similar pattern in three months post-fire in ponderosa pine and mixed-conifer forest in New 

Mexico (Weber et al. 2014). 

 My hypothesis that greater copiotrophic bacterial abundance is related to post-fire 

increases in nutrient availability is supported by the positive relationships between TIN and 

Bacteroidetes and between P and Firmicutes. Support for my hypothesis that copiotrophic 

bacteria would be associated with higher Ca is mixed: Bacteroidetes and Proteobacteria 

abundance was positively associated with Ca while Firmicutes was negatively associated. The 

positive association of Bacteroidetes with Ca is particularly interesting because Bacteroidetes 

abundance increased with severity, but Ca was unchanged. This suggests that Bacteroidetes do 

not necessarily respond to labile C and nutrient availability simultaneously and that higher TIN 

concentrations maintain the greater Bacteroidetes populations in burned areas. Given that 

Bacteroidetes is the most abundant phylum in these soils, the response of Bacteroidetes to 

greater TIN could influence C cycling in ways that diverge with time post-fire. In the short term, 
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increased TIN could lead to more efficient C use by Bacteroidetes by allowing them to 

preferentially decompose labile C substrates that have high C:N ratios. However, if aboveground 

vegetation losses result in decreased labile C inputs in the long-term, Bacteroidetes may switch 

to recalcitrant C substrates, requiring greater investment in exoenzymes, and consequently, 

greater C mineralization (Malik et al. 2020).  

 Shifting abundances of C degradation pathways also supported the hypothesis that 

bacterial communities are more copiotrophic in burned areas. Higher ratios of genes associated 

with carbohydrate degradation versus aromatic compound degradation is a metagenomic 

indicator of community level copiotrophy (Hartman et al. 2017), and I found that carbohydrate 

degradation pathway abundance increased with severity while aromatic degradation pathway 

abundance was unchanged (Fig. 3.7). This approach can be extended to other compound types. 

Amino acids are labile C substrates, and amino acid degradation pathway abundance increased 

with severity. In contrast, fatty-acids and lipids are slow to decompose, and the abundance of 

pathways associated with their degradation was unrelated to severity, patterns that also suggest 

community-level copiotrophy increases with severity. Inputs of recalcitrant C compounds to soil 

may be high after fire due to the formation of pyrogenic organic matter and wood deposition 

resulting from tree mortality. If the input of this recalcitrant C is not accompanied by increases in 

the metabolic pathways associated with its degradation, recalcitrant C could accumulate in soil, 

leading to larger Cs pools and soil C stocks over the long-term. 

Validity of copiotroph-oligotroph classifications depends on bacterial taxonomic level 

 Although I found support for my hypothesis that phyla-level copiotroph versus oligotroph 

bacterial abundance differed between burned and unburned areas, I also found that these life-

history classification depended on the resource (i.e. nutrients versus C) and taxonomic level 
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considered. Copiotrophic abundance is frequently associated both with labile C and nutrient 

availability, and, when considered at the phylum level, traditional ecological classifications 

appeared to agree with this framework. For example, in addition to Proteobacteria and 

Bacteroidetes increasing in abundance with Ca, the copiotrophic phyla Actinobacteria increased 

in abundance with TIN. Furthermore, the oligotrophic phyla Acidobacteria and Verrucomicrobia 

were negatively associated with nutrient concentrations, suggesting they are outcompeted by 

copiotrophs at high nutrient availability. A notable exception to the phyla-level oligotroph-

copiotroph framework occurred for Firmicutes, which is typically classified as a copiotroph. 

Firmicutes increased in abundance with nutrient concentrations, suggesting copiotrophy, but was 

negatively correlated with Ca, suggesting oligotrophy. The oligotrophic traits of Firmicutes could 

be due to evolutionary tradeoffs related to endospore-forming ability (Malik et al. 2020). 

Maintaining sporulation ability is energetically costly, and, in environments that do not select for 

this trait, Firmicutes often lose the capacity for spore-formation and in turn achieve faster growth 

rates (Filippidou et al. 2016). Greater post-fire abundance of Firmicutes is likely due to the heat-

tolerance of endospores (Ferrenberg et al. 2013; Prendergast-Miller et al. 2017), so post-fire soils 

may be dominated by slow-growing Firmicutes genera that are less able to rapidly respond to 

labile C availability. This indicates, that even at the phylum level, ecological classification of 

bacteria depends on specific environmental characteristics, as well as the resource or trait 

considered, and may oversimplify the metabolic diversity of bacteria within phyla (Hartmann et 

al. 2017; Ho et al. 2017). 

 The limitations of the oligotroph-copiotroph framework became even clearer when 

considered at the genus level. For example, despite their copiotrophic classification, a substantial 

proportion of Proteobacteria and Bacteroidetes genera were negatively related to TIN (Table 
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3.3). Furthermore, more than half of the genera harbored within Proteobacteria and 

Bacteroidetes were not significantly correlated with Ca or nutrient concentrations. This suggests 

that phyla-level ecological classification may be based on a minority of genera and fail to 

encompass taxa that are oligotrophic or neutral in their response to resources, especially if 

responses to C and nutrients are not considered in conjunction. 

 Similar divergence of ecological traits were apparent among genera harbored within the 

oligotrophically classified Acidobacteria and Verrucomicrobia phyla. Although a greater 

proportion of genera exhibited oliogotrophic tendencies in their relationships with nutrient 

availability, more genera were copiotrophic in their relationships with labile C availability. Only 

one of the nine Acidobacteria genera that was positively related to Ca was correlated with 

nutrient concentrations, and 50% of the Verrucomicrobia genera that were positively related to 

Ca were negatively correlated with nutrient concentrations. This suggests tradeoffs in traits 

related to C versus nutrient acquisition at the genus level (Malik et al. 2020), and that genera 

within the same phylum occupy different ecological niches. Niche differentiation among 

Acidobacteria taxa could explain the divergent response of subgroups within this phyla to fire 

(Weber et al. 2014; Adkins et al. 2020). The divergence of ecological strategies at the genera 

level contributes to a growing body of evidence suggesting that ecological classification of 

bacteria should occur at a finer taxonomic resolution than the phylum-scale (Hartmann et al. 

2017; Ho et al. 2017; Sauvadet et al. 2019). Furthermore, my results show that the same taxon 

can exhibit both copiotrophic and oligotrophic traits depending on whether C or nutrients are the 

resources of interest. The oligotroph-copiotroph dichotomy may therefore fail to capture the 

metabolic breadth of bacteria, and a three-dimensional competitor-stress-ruderal framework (Ho 

et al. 2013; Malik et al. 2020) may be a more suitable alternative, especially in disturbed 
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ecosystems. Nevertheless, despite the apparent shortcoming of taxonomy-based life-history 

classifications, the fact that all of the OTUs that were positively associated with burn severity 

were also positively associated with nutrient concentrations supports the hypothesis that bacterial 

communities are more copiotrophic in burned areas than unburned areas.  

3.5.4 Hypothesis 4: Bacterial taxa are associated with carbon pool kinetic rates 

 My hypothesis that ka would be positively associated with copiotrophic bacterial taxa is 

not well supported. Firmicutes was the only phylum that was positively associated with ka, and, 

although Firmicutes is often considered copiotrophic, I found that this phyla exhibited both 

copiotrophic and oligotrophic characteristics. In contrast, I found that ks was positively 

associated with Elusimicrobia abundance. Although Elusimicrobia has not been classified as 

either copiotrophic or oligotrophic, my results and others suggest that Elusimicrobia is 

oligotrophic. Elusimicrobia is a recently defined bacterial phylum that appears to be 

metabolically diverse, with various lineages capable of N-fixation and nitrate reduction (Meheust 

et al. 2019). Elusimicrobia may preferentially utilize recalcitrant forms of C as substrate 

(Chávez-Romero et al. 2016), which may explain its association with ks. In fact, Elusimicrobia 

have been identified as degraders of lignin (Wilhelm 2016), a plant compound that degrades 

slowly when other bioavailable C compounds are not available to provide energy for its 

decomposition (Klotzbücher et al. 2011). Considered with my observed negative relationship of 

Elusimicrobia with TIN and P, this suggests Elusimicrobia is an oligotrophic phylum. 

Elusimicrobia was a relatively rare phyla in my soils, exhibiting a relative abundance of only 

0.21%, so likely is an indicator rather than a driver of higher ks. 
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3.6 CONCLUSIONS 

 My results suggest that soil C is more persistent in burned than unburned areas one year 

after fire (as indicated by lower ks), and that this effect is at least partially influenced by top-

down controls exerted by vegetation on soil properties and bacterial communities. Dead tree 

basal area specifically was directly or indirectly linked to soil moisture, total N, and TIN, and, 

through these linkages, influenced soil bacterial communities. In concert with the positive 

association between live tree basal area and ks, these results suggest that vegetation structure has 

a downstream effect on soil C persistence during post-fire recovery. The increase in C 

persistence may partially offset ecosystem C losses from biomass combustion while vegetation 

recovers, but it is possible that the positive relationship between fire and fast C-cycling 

copiotrophic bacterial taxa may negate some of these effects.  

 Differences in bacterial community structure between burned and unburned areas could 

be explained by the copiotroph-oligotroph life-history framework when considered at the phylum 

level but was less effective in explaining differences at the genus level. This suggests that coarse 

life-history classifications fail to capture the metabolic breadth of bacterial taxa and may 

therefore limit the ability to predict the influence of microbial communities on ecosystem 

function during post-fire recovery. Certain bacterial taxa were associated with C pool and 

kinetics. Although my study cannot disentangle correlation versus causation of bacterial 

communities on soil C pools, these results suggest that post-fire changes in microbial 

composition are linked to soil C cycling. Future research could incorporate isotopic tracing 

techniques to further elucidate which bacterial taxa drive differences in C cycling and whether 

life-history strategy explains these differences. Such information could be incorporated into 
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global ecosystem models to help anticipate the effects of fire regime change on the global C 

cycle. 
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SUPPLEMENTAL FIGURES 

 

 

 

Figure S3.1. Locations of field plots within a burn severity matrix resulting from the 

Beaver Fire. dNBR values are grouped into unburned, low, moderate, and high severity 

thresholds identified by the Monitoring Trends in Burn Severity team.  
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Figure S3.2 Mean (± SE) cumulative CO2-C efflux (points) over a 300-day laboratory 

incubation of mineral soils (0-5 cm) grouped by fire-occurrence (a) and severity (b). In 

panel a, colored lines represent the fitted model, ribbons are the standard error of prediction, and 

vertical lines are standard errors of means (n=4 for unburned, n=6 for burned). In panel b, 

colored lines represent change in cumulative CO2-C efflux between sampling days, and verticals 

bars are standard errors of means (n=3 or 4 per plot).
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SUPPLEMENTAL TABLES 

 

 

 

Table S3.1 Elastic-Net selected Generalized Linear Models explaining C-pool parameters 

based on bacterial phyla abundance.  
Response 

Variable 

 

Elastic-Net Selected Generalized Linear Model 

Ca −888 − 10.6Armatimonadetes + 118.Bacteroidetes + 134FCPU426 − 208Firmicutes + 

209Kiritimatiellaeota + 203.Proteobacteria + 17.1WS2 – 69.0Unclassified 

 

ka 0.020 + 0.0016Firmicutes − 0.00015Omnitrophicaetoa 

 

ks 0.00014 + 2.48×10-6Elusimicrobia – 3.00×10-6Unclassified 
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CHAPTER 4: 

POST-FIRE EFFECTS OF SOIL HEATING INTENSITY AND PYROGENIC ORGANIC 

MATTER ON MICROBIAL ANABOLISM: A LABORATORY-BASED APPROACH 

4.1 ABSTRACT 

 Wildfires result in direct and indirect CO2 emissions due to combustion and post-fire 

decomposition. Approximately half of temperate forest ecosystem carbon (C) is stored in soil, so 

post-fire soil C cycling likely impacts the strength of forest C sinks. Soil C sink strength is in 

part determined by soil microbial anabolism versus catabolism, which dictates the amount of C 

stored in microbial biomass versus respired as CO2. Fires affect soil C availability and 

composition, changes that could alter carbon use efficiency (CUE) and microbial biomass 

production, and thus potentially influence recovery of the forest C sink. Wildfire intensity is 

forecast to increase in forests of the western United States and understanding the impacts of fire 

intensity on the amount of C retained in soil versus respired to the atmosphere is necessary for 

predicting fire-climate feedbacks. My objective was to determine the influence of soil heating 

intensity and pyrogenic organic matter (PyOM) on microbial anabolism. I determined the short-

term impacts of these factors on microbial anabolism by measuring the accumulation of 

microbial biomass carbon (MBC), C mineralization, and a proxy for CUE. I simulated the effects 

of fire intensity by heating soils to 100 or 200 °C for 30 minutes in a muffle furnace, and I 

amended the soils with charred or uncharred organic matter. Higher intensity soil heating (200 

°C) consistently led to lower MBC accumulation, greater metabolic C respiration, and lower 

CUE proxies compared to unheated soils. In contrast, lower intensity soil heating (100 °C) 

resulted in MBC accumulation and estimated CUE that was similar to unheated soils. Soils 

amended with PyOM exhibited similar MBC accumulation compared to the uncharred organic 

matter, but CO2 emissions were lower in soils amended with PyOM. These results indicate that 



 

159 

 

high intensity soil heating decreases soil C-sink strength over the short-term by decreasing the 

amount of microbial anabolism relative to catabolism. These findings suggest that increased 

wildfire intensity will have detrimental impacts of on soil C storage over the short-term. 

4.2 INTRODUCTION 

 Wildfire disturbances are common in mixed-conifer forests of the western United States, 

resulting in direct CO2 emissions during biomass combustion (Flannigan et al. 2009; Chen et al. 

2017). Over the long-term, these emissions have a neutral impact on atmospheric carbon (C) 

concentrations as CO2-C is assimilated by plant regrowth during forest recovery, but, over the 

short-term, represent a decrease in the size of forest C sink (Bowman et al. 2009; Loehman et al. 

2014). Temperate forests store ~50% of ecosystem C in soils (Pan et al. 2011), so losses to soil C 

due to combustion (Campbell et al. 2007), and post-fire necromass decomposition could make 

substantial contributions to fire-induced C emissions (Meigs et al. 2009; Zhao et al. 2012; 

Campbell et al. 2016). Understanding the amount of soil C retained versus respired in the 

aftermath of fire is thus necessary for accurate representation of the influence of fire on the 

strength of the forest C sink.   

 The relative amount of microbial anabolism (biomass production) versus catabolism (C 

mineralization) determines the fate of soil C over both short and long timescales (Schimel and 

Schaeffer 2012; Liang et al. 2017a). Microbial carbon use efficiency (CUE) represents the 

balance between anabolic and catabolic processes over short timeframes (Manzoni et al. 2012; 

Sinsabaugh et al. 2013; Spohn et al. 2016a). An index of the amount of total C uptake that is 

assimilated into microbial biomass during decomposition (Geyer et al. 2016), CUE is the 

proximal driver determining whether C is lost to atmosphere versus retained in soil (Cotrufo et 

al. 2013). High CUE indicates more C accumulated in microbial biomass, whereas low CUE 
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indicates more C respired to the atmosphere. Microbial anabolism also influence C storage over 

longer time scales because microbial necromass is more efficiently stabilized in soils compared 

to other types of organic matter and may account for >50% of total soil C (Liang et al. 2019; Ni 

et al. 2020). The physiological responses of soil microbes to fire may therefore dictate the 

magnitude of post-fire soil emissions in the short term, and affect the size of soil C stocks and 

soil-climate feedbacks over the long-term (Allison et al. 2010; Frey et al. 2013; Wieder et al. 

2013; Liang et al. 2019). Identifying the mechanistic processes that impact C sequestration 

following disturbance has been identified as a key component of managing forests for C storage 

in the future (Birdsey et al. 2006). Determining post-fire patterns in microbial anabolism and 

catabolism will thus contribute to understanding of C source/sink strength of burned ecosystems. 

 CUE and microbial biomass production are influenced by substrate quality and 

complexity, microbial community structure, nutrient availability, and environmental factors such 

as soil temperature and moisture (Frey et al. 2013; Geyer et al. 2016; Spohn et al. 2016b; Liang 

et al. 2019; Domeignoz-Horta et al. 2020). For example, CUE is lower for structurally 

complex/stable molecules (e.g. lignin, aromatic molecules) that require a larger enzyme 

investment compared to simpler, labile molecules (e.g. sugars) (Manzoni et al. 2012; Frey et al. 

2013; Sinsabaugh et al. 2013). Relatedly, CUE decreases when nutrient availability is low due to 

microbial direction of metabolism toward catabolic processes that support nutrient acquisition, 

for example mining of nutrients from complex organic molecules (Geyer et al. 2016; Spohn et al. 

2016b; Chen et al. 2020; Soong et al. 2020). In some cases, CUE increases with microbial 

diversity (Domeignoz-Horta et al. 2020), and may differ for fungi versus bacteria as consequence 

of differences in microbial biomass stoichiometry (Six et al. 2006; Keiblinger et al. 2010; 

Manzoni et al. 2012; Sinsabaugh et al. 2013).  
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 Fire alters soil C chemistry, nutrient availability, and microbial community structure, 

with potentially contrasting impacts on microbial biomass production. Fire induces temporary 

pulses in soil dissolved organic carbon (Wang et al. 2012) and inorganic nitrogen (N) (Wan et al. 

2001), potentially increasing microbial biomass production and CUE via positive effects on 

labile C and N availability. However, fire also generates pyrogenic organic matter (PyOM), 

which is more chemically stable and aromatic than its precursor material (Preston and Schmidt 

2006; Bird et al. 2015), and thus may be used less efficiently. The conversion of organic matter 

to PyOM may therefore lead to less bioavailable C and lower microbial biomass production. 

There is a dearth of information on the influence of PyOM on microbial anabolism in burned 

systems, but biochar amendment studies can provide some insight. Biochar is a form of PyOM 

produced under controlled pyrolysis conditions and applied as a soil amendment in agricultural 

systems. Biochar additions to soil have frequently been found to increase microbial biomass, 

potentially via beneficial effects on soil nutrient retention, pH, soil moisture, and by providing 

microhabitat (Lehmann et al. 2011). A study in temperate pastures found that biochar-CUE was 

lower than values typically reported for non-biochar feedstock (Fang et al. 2018), but other 

studies have found that biochar increases overall CUE via beneficial effects on soil bio-

physiochemical properties (Jiang et al. 2016; Guo et al. 2020). In addition to influencing C and N 

chemistry, fire increases the predominance of bacteria relative to fungi (Dooley and Treseder 

2012; Pressler et al. 2018), in part due lower sensitivity of bacteria to soil heating (Neary and 

DeBano 2005). Bacteria may use simple C substrates more efficiently than fungi when N is 

abundant, exhibit rapid growth rates, and act as the primary decomposers of the labile fraction of 

PyOM; in contrast, fungi may more efficiently decompose the recalcitrant fraction of PyOM and 
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PyOM derived from wood (Steinbeiss et al. 2009; Lehmann et al. 2011; Yu et al. 2018; Pérez‐

Guzmán et al. 2020).  

Fire intensity is predicted to increase in ecosystems across the globe (Flannigan et al. 

2009), and there are reasons to suspect that effects of fire on microbial anabolic and catabolic 

processes vary with fire intensity and/or severity. For example, the amount of PyOM generated 

has been shown to increase with fire intensity (Czimczik et al. 2003; Sawyer et al. 2018) and 

severity (Miesel et al. 2015), which could have negative impacts on microbial anabolism by 

decreasing C bio-availability, or positive impacts via beneficial effects on soil properties. 

Changes to labile C and nutrient availability could also influence microbial anabolism, but there 

is a dearth of information regarding the immediate impacts of fire intensity on salt-water 

extractable organic carbon (EOC) and inorganic-N pools. Used as an alternative to field-based 

research, lab-based soil heating studies have indicated that EOC increases with soil heating 

temperature up to at least ~300 °C (Bárcenas-Moreno and Bååth 2009). Various experiments 

have found that inorganic-N concentrations exhibit no changes to moderate increases in soils 

heated from 150-210 °C (Serrasolsas and Khanna 1995; Choromanska and DeLuca 2002; Prieto-

Fernández et al. 2004; Guerrero et al. 2005), with larger increases beginning to occur at ~400 °C 

(Raison 1979; Choromanska and DeLuca 2002). Laboratory-based heating studies have also 

assessed the effects of heating intensity on microbial biomass carbon (MBC), and microbial 

community structure (Serrasolsas and Khanna 1995; Díaz-Raviña et al. 1996; Fernández et al. 

1997; Prieto-Fernández et al. 1998; Guerrero et al. 2005; Bárcenas-Moreno and Bååth 2009), but 

whether these characteristics lead to post-heating changes in the balance between microbial 

anabolism and catabolism is not well studied. 
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Small changes in the balance between microbial anabolism and catabolism can have 

substantial impacts on soil C emissions and stocks (Allison et al. 2010; Schimel and Schaeffer 

2012; Wieder et al. 2013; Liang et al. 2017a), potentially exacerbating or modulating the effects 

of fire intensity on ecosystem C loss. Here, my objectives are to determine 1) how a proxy for 

CUE and the balance of MBC accumulation versus C mineralization vary with soil heating 

intensity and 2) whether PyOM influences these processes differently in soil subjected to 

contrasting soil heating intensities. I hypothesized that 1) estimated CUE and MBC accumulation 

will increase with soil heating intensity due to greater EOC availability, and 2) estimated CUE 

and MBC accumulation will be higher in soils amended with uncharred organic matter compared 

to charred organic matter regardless of soil heating intensity. I used factorial incubation 

experiments in which I subjected a forest soil to two levels of heating intensity and applied two 

C substrates in charred and uncharred form and multiple types of charred and uncharred plant 

litter to determine a proxy for CUE and the level of MBC accumulation versus C mineralization.  

4.3 MATERIALS AND METHODS 

4.3.1 Site description and sample collection 

 I collected soil and litter samples from the Plumas National Forest in the Sierra Nevada 

Mountain Range, California, USA. The ecosystem is a dry mixed-conifer forest dominated by 

Pinus ponderosa, P. lambertiana, P. jeffreyi, Abies concolor, Pseudotsuga menziesii, and 

Calocedrus decurrens, with lesser cover by Quercus kelloggii. Dry mixed-conifer forests of the 

region are fire-adapted, having exhibited a mean fire rotation of 23 years prior to Euro-American 

settlement (1500-1850 C.E.) (Mallek et al. 2013). Soils in my plots are from the Skalan series, a 

loamy-skeletal, isotic, mesic Vitrandic Haploxerlaf (Soil Survey Staff 2018). The 30 year mean 

annual precipitation is 1080 mm and mean annual temperature is 10.6 ºC. 
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 From four sites within the forest that did not exhibit evidence of recent fire activity (i.e. 

no charred biomass), I collected mineral soil at two sampling points located 40 m apart. At each 

sampling location, I removed the litter (Oi) and duff (Oe + Oa) layers overlying the mineral soil, 

and then collected mineral soil to 10 cm depth using a 10 cm diameter soil auger. I then collected 

three types of litter from the forest, including Q. kelloggii (black oak), P. ponderosa (ponderosa 

pine), and mixed litter. I collected black oak and ponderosa pine litter samples from the litter 

surface directly under a tree of each species, and I collected only leaf material that was 

recognizable as belonging to the target tree species. The mixed litter sample included litter 

recognizable as deriving from P. ponderosa and litter that was derived from either A. concolor, 

P. menziesii or both. Mineral soils and litter samples were stored on ice until being transported to 

the lab, after which mineral soils were stored at -20 °C, and litter samples were air-dried and 

stored at ambient temperature until the commencement of the lab experiments.  

4.3.2 Generation of pyrogenic organic matter 

 I generated PyOM from two simple C substrates (glucose, ascorbic acid) and from the 

three litter types collected in the field. Glucose is commonly used in CUE and substrate induced 

respiration experiments, and ascorbic acid has been demonstrated to effectively induce 

differential respiration responses among soil types (Degens and Harris 1997). I charred glucose 

(210 °C) and ascorbic acid (200 °C) at temperatures at the lower end of their thermal degradation 

ranges (Örsi 1973; Jingyan et al. 2013). I weighed ~5 g of each substrate into a small aluminum 

dish, covered the dish with aluminum foil, and heated in a muffle furnace by ramping to the 

target temperature over 30 minutes and then holding at temperature for another 30 minutes.  

I sterilized the litter via autoclave (121 °C) for 30 minutes and then oven-dried overnight 

at 65 °C. I charred the litter by placing aluminum-foil wrapped sterile litter in a muffle furnace 



 

165 

 

that had been pre-heated to 200 °C and held at temperature for one hour. I then ramped the 

temperature to 300 °C and held at temperature for another hour. The litter was then homogenized 

using a mortar and pestle to pass a 500-micron sieve. I measured charred substrate and litter C 

and N concentrations of single replicates using a dry-combustion elemental analyzer (Costech 

Analytical Technologies Inc., Valencia, CA, USA), with acetanilide as the quantification 

standard. 

4.3.3 Experimental design 

I conducted two experiments to assess the amount microbial anabolism versus catabolism 

after a soil heating disturbance. In one experiment, I measured a proxy for community-scale 

CUE which quantifies gross production efficiency of the microbial community over short 

timescales (up to 48 hours) before biomass turnover occurs (Geyer et al. 2016). In the second 

experiment, I measured net MBC accumulation and net C mineralization over 14 days. To 

account for potential heterogeneity of soil across my sampling sites, I composited equal masses 

of sieved (2 mm) mineral soil from the plots before evaluating the short-term impacts of soil 

heating and PyOM on CUE and MBC accumulation.  

Carbon use efficiency experiment 

 I determined impacts of soil heating and substrate pyrolysis on a CUE  proxy using a 

fully-factorial experiment in which I applied two levels of soil heating (plus unheated controls) 

and two labile substrate types (glucose, ascorbic acid) in charred and uncharred form. Each 

treatment was replicated 18 times, equally divided between two incubation blocks that were 

performed consecutively. For each incubation block, I pre-incubated nine soil replicates for 

seven days. For each replicate, I weighed 130 g (dry mass equivalent (DME)) of soil into 0.473 L 
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mason jars, added water to bring soil moisture to 40% water-holding capacity (WHC), and 

incubated in the dark at ambient temperature (~23 °C). 

 After pre-incubation, I applied heat treatments of 100 °C or 200 °C by covering the 

mason jars with aluminum foil and heating the jars in a muffle furnace for 45 minutes. Following 

heating, I weighed 5 g (DME) subsamples into 50 mL centrifuge tubes, adjusted soil moisture to 

50% WHC, capped the tubes with septa-fitted lids, and incubated in the dark at ambient 

temperature. Before adding substrates, I measured CO2-C respiration daily until respiration rates 

differed by <10% among soil heating treatments, which occurred after five days. I waited until 

respiration rates were similar so that CUE estimates would not be influenced by differences in 

basal respiration. I measured soil respiration rates by flushing the incubation tubes with ambient 

air, tightly capping, and measuring CO2-C concentrations of 1 mL gas aliquots after ~30 minutes 

and again after ~6 hours using an infrared gas analyzer (LI-COR Inc., Lincoln, NE, USA).  

On the sixth day after heating, I added charred and uncharred substrates to the incubation 

tubes at 1 mg substrate-C g-1 soil in 0.5 mL DI water. I monitored respiration rates over 24 hours 

by measuring CO2-C concentrations after ~1.5, 4, 8, 12, and 24 hours. I extracted three replicates 

per treatment in each block for determination of EOC immediately after substrate addition, and I 

extracted the remaining six replicates after 24 hours. I performed EOC extractions by adding 25 

mL K2SO4 directly to the incubation tubes, agitating on a reciprocating shaker for 1 hour, and 

filtering through 11 µm pore-size filters (Whatman Grade 1). I determined EOC concentrations 

in the extracts spectrophotometrically after potassium-dichromate oxidation (Cai et al. 2011). I 

calculated CUE over the 24 hours after substrate addition as: 

𝐶𝑈𝐸 =
(∆𝐸𝑂𝐶−𝛴𝐶𝑂2 𝐶)

∆𝐸𝑂𝐶
 (1)  
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where ΔEOC is the change in EOC over the 24 hours after substrate addition and is assumed to 

represent total microbial C uptake; ΣCO2-C is cumulative C respired over the 24 hours (Tiemann 

and Billings 2011; Geyer et al. 2016). This calculation is a proxy for CUE because I did not 

apply isotopically labeled substrates and so cannot directly quantify the amount of substrate-C 

uptake and respiration.  

Microbial biomass carbon accumulation experiment 

 I determined impacts of soil heating and substrate pyrolysis on MBC accumulation and 

cumulative C mineralization using a fully-factorial experiment in which I applied two levels of 

soil heating (plus unheated controls) and three litter types (ponderosa pine, black oak, and mixed 

litter) in charred and uncharred form. Each treatment was replicated 18 times, equally divided 

between two incubation blocks that were performed consecutively, except for mixed litter 

treatments which were replicated nine times and incubated in a single block.  

Soil pre-incubation was performed as described above, except that replicates were 150 g 

(DME) and pre-incubated for ten days. After pre-incubation, I applied heat treatments of 100 °C 

or 200 °C as described above. I then weighed 10 g (DME) subsamples into 50 mL centrifuge 

tubes, added 80 ± 5 mg charred or uncharred litter to each tube, mixed by vortexing for 30 

seconds, and added water to bring soil moisture to 50% WHC. I incubated the soils for 14 days, 

measuring respiration on days 1, 2, 3, 4, 5, 7, 9, and 13.  

Twenty-four hours after heat treatments, I extracted a subset of unamended samples (n=6 

per heat treatment) for EOC and microbial biomass C (MBC) using direct chloroform fumigation 

(Witt et al. 2000). 14 days after applying treatments, I extracted the remaining soils (n=12 per 

treatment combination). I measured MBC as the difference in EOC between fumigated and 
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unfumigated samples, divided by a correction factor of 0.33 (Cai et al. 2011). I calculated net 

accumulation of MBC as the difference in MBC between days 1 and 14 of the incubation. 

 For one incubation block, I determined fungal and bacterial activity in a subset of soils < 

24 hours after heating (n=6 per heat treatment) using selective respiratory inhibition (Anderson 

and Domsch 1973). Additionally, I incubated an extra set of heated and unheated soils amended 

with uncharred or charred pine material (n=6) to determine post-incubation differences in fungal 

and bacterial activity. For selective respiratory inhibition, I weighed four equal soil masses (2.5 g 

DME) from each incubation tube into septa-capped 20 mL scintillation vials, applied glucose at 

8 mg g-1 in 0.2 mL DI water, and agitated on a reciprocating shaker for 1 hour. I then applied one 

of four biocide treatments to each of the vials: no biocide addition, the bactericide bronopol at 

100 µg g-1, the fungicide cycloheximide at 8 mg g-1, or the addition of both biocides at these 

concentrations. Vials were capped and placed on a reciprocating shaker for 6 hours, after which 

accumulated CO2-C was measured with an infrared gas analyzer. Fungal and bacterial activity 

was determined as: 

𝐹𝑢𝑛𝑔𝑎𝑙 (𝑜𝑟 𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙) 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐴−𝐵(𝑜𝑟 𝐶)

𝐴−𝐷
 (3) 

Where A is respiration in the absence of inhibitors, B is respiration in the presence of the 

fungicide, C is respiration in the presence of bactericide, and D is respiration in the presence of 

both biocides. The inhibitor additivity ratio (IAR), a measure of non-target or antagonistic effects 

of the antibiotics was determined as:  

𝐼𝐴𝑅 =
(𝐴−𝐵)+(𝐴−𝐶)

𝐴−𝐷
 (4) 

The concentrations of glucose and antibiotics for determination of bacterial and fungal activity 

were selected based on the optimization procedures described by Bailey et al. (2003) using the 
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same soil as was used for the CUE experiments. These preliminary procedures yielded an IAR of 

1.01 ± 0.07 (SD). An IAR of 1.0 indicates no non-target or antagonistic effects. 

4.3.4 Statistical analysis 

 I performed all statistical analysis in the R statistical computing environment (v 3.6.1) (R 

Core Team 2019). I applied linear mixed-models using the nlme package (v 3.1.140) (Pinheiro et 

al. 2019) to assess the response of C respiration, EOC, MBC, and CUE to my experimental 

treatments. All models initially included soil heating level, litter or substrate type, and char status 

as main effects, all possible two- and three-way interaction effects, and incubation block as a 

random effect. Interaction effects that exhibited p-values ≥ 0.15 were sequentially removed from 

the models. For main effects that were significant at α=0.05, I compared marginal means using 

Tukey-adjusted p-values using the emmeans package (v.1.4.4) (Lenth 2020). For the MBC 

accumulation experiment, I also applied general linear models to determine impact of soil 

heating and uncharred and charred pine litter on fungal and bacterial activity.  

4.4 RESULTS 

4.4.1 Carbon use efficiency experiment 

 Soil heating caused an immediate increase in soil respiration rate that was positively 

associated with heating intensity (p<0.001; Table 4.1). Compared to unheated soils, heating soils 

to 100 °C caused a pulse in respiration that lasted two days, and heating soils to 200 °C caused a 

pulse that lasted four days. By five days after heating, the heated soils did not differ in 

respiration rates compared to unheated soils. Over five days post-heating, soils heated to 100 °C 

respired 8.6% more CO2-C, and soils heated to 200 °C respired 58.9% more CO2-C compared to 

unheated soils. 
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Table 4.1 Respiration rate by day and cumulative CO2-C respired over five days after soil 

heating and prior to adding substrates for the carbon use efficiency experiment (mean ± SE). 

Lower-case letters indicate Tukey-adjusted significant differences in respiration among soil 

heating treatments (α=0.05).  
Respiration Rate (mg CO2-C kg -1 d-1) Unheated (n=84) 100 °C (n=84) 200 °C (n=84) 

Day 1 22.7 ± 0.4 a 31.4 ± 0.5 b 43.7 ± 3.1 c 

Day 2 25.5 ± 0.5 a 30.2 ± 1.2 b 56.4 ± 1.2 c 

Day 3 22.5 ± 0.4 a 23.5 ± 0.6 a 40.4 ± 0.4 b 

Day 4 27.3 ± 0.6 a 27.7 ± 0.6 a 36.6 ± 0.6 b 

Day 5 31.6 ± 1.9 a 28.2 ± 1.9 a 28.7 ± 1.8 a 

Cumulative Respired (mg CO2-C kg -1) 130 ± 2.6 a 141 ± 2.7 b 206 ± 3.4 c 

 

Table 4.2 Carbon and nitrogen concentrations for uncharred and charred carbon 

substrates and litters used in the carbon use efficiency and microbial biomass carbon 

accumulation experiment.  
 C (%) N (%) 

 Uncharred Charred Uncharred Charred 

Glucose 40.0 42.6 − − 

Ascorbic Acid 40.9 41.1 − − 

P. Ponderosa Litter 50.6 63.6 0.25 0.43 

Q. Kellogii Litter 47.2 65.8 2.54 3.31 

Mixed Litter 35.0 52.9 0.59 0.75 
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 Charring of glucose and ascorbic acid resulted in visual changes in appearance (Fig. 

S4.1) and slight increases in C concentration (Table 4.2). There were significant effects of soil 

heating (p<0.001) and a heating × substrate identity interaction (p<0.001) on the CUE proxy, but 

no main effects of substrate identity or charring on the estimate (Fig. 4.1). Soils heated to 200 °C 

exhibited ~68% lower estimated CUE in response to ascorbic acid application than the other soil 

heating treatments. The CUE proxy is driven by the level of EOC uptake and CO2-C respired, so 

I separately assessed the response of these metabolic functions to the treatments. There were 

significant effects of soil heating (p<0.001) and a charring × substrate interaction (p<0.001) on 

EOC uptake. Additionally, there were marginally significant differences of substrate identity 

(p=0.070) and a heating × substrate interaction (p=0.067). For soils receiving ascorbic acid, 

differences in EOC uptake were driven by heating effects: soils heated to 200 °C exhibited ~42% 

less EOC uptake than unheated soils (Fig. 4.2). In contrast, EOC uptake in soils that received 

glucose was driven by both charring and soil heating: within heating treatments, EOC uptake 

was ~32-56% lower for charred glucose than uncharred glucose. Within charring treatments, 

EOC uptake was ~27-30% lower for soils heated to 100 °C compared to unheated soils. For 

CO2-C respired, there were significant effects of soil heating (p<0.001) and a charring × 

substrate interaction (p<0.001). Similar to EOC uptake, drivers of differences in CO2-C 

respiration varied among substrate type. For soils receiving ascorbic acid, differences in 

respiration were driven by heating, with soils heated to 100 °C respiring ~28% less CO2-C than 

the other treatments. Soils that received glucose exhibited differences in respiration due to both 

substrate charring and soil heating. Within heating treatments, soils respired ~28-60% less CO2-

C in response to charred glucose application, and, within charring treatments, soils heated to 100 

°C respired ~6-40% less CO2-C. 
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Figure 4.1 A proxy for carbon use efficiency (CUE) for unheated soils and soils heated to 100 

°C and 200 °C that received ascorbic acid (a) or glucose (b) in uncharred or charred form. 

Shading of boxplots indicates whether soils received uncharred or charred substrates. Each 

boxplot represents the distribution of 12 replicates. Upper-case letters indicate Tukey-adjusted 

significant differences among the heating × charring treatment combinations within substrate 

types (α=0.05).  
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Figure 4.2 Uptake of extractable organic carbon (a and c) and 24-hour cumulative respired 

CO2-C (b and d) for unheated soils and soils heated to 100 °C and 200 °C that received ascorbic 

acid or glucose in uncharred or charred form. Shading of boxplots indicates whether soils 

received uncharred or charred substrates. Each boxplot represents the distribution of 12 

replicates.  Upper-case letters indicate Tukey-adjusted significant differences among the heating 

× charring treatment combinations within substrate types (α=0.05). 

 

4.4.2 Microbial biomass accumulation experiment 

 Soil heating led to increases in EOC in soils extracted 24 hours after heating: unheated 

soils contained 40.4 ± 3.1 mg kg-1 EOC compared to 60.6 ± 2.2 and 121 ± 2.0 mg kg-1 for soils 

heated to 100 °C and 200 °C, respectively. Microbial biomass was decreased only in soils heated 

to 100 °C, where MBC was 85.1 ± 12.2 mg kg-1 compared to 138 ± 13.5 and 134 ± 8.0 mg kg-1 
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for unheated soils and soils heated to 200 °C, respectively. Litter charring led to increases in C 

and N concentrations compared to uncharred litter (Table 4.2).  

 MBC decreased over the incubation period in soils heated to 200 °C for all litter types 

(Fig. 4.3), while CO2-C respiration was elevated by ~6-105% compared to unheated soils 

(p=0.001). CO2-C respiration was also elevated in soils heated to 100 °C for soils that received 

no litter, uncharred oak, and uncharred pine by ~32-59%, but these soils also accumulated 28-

390% more MBC over the incubation. Within soils that received oak or pine litter, the charred 

version induced 33-61% less CO2-C respiration compared to the uncharred counterpart and 

exhibited similar MBC accumulation. Within soils that received mixed litter, CO2-C respiration 

and MBC accumulation were similar between charred and uncharred forms. After the 14-day 

incubation, soils heated to 200 °C had 28-76% less MBC than unheated soils, and soils heated to 

100 °C had similar MBC to unheated soils. MBC was similar between charred and uncharred 

litter among all soil heat treatments. 

 EOC uptake over the 14-day incubation increased with soil heating intensity for soils that 

did not receive litter inputs (p<0.001). EOC uptake was 3.9 ± 1.2 mg kg-1 for unheated soils, 21.4 

± 1.5 mg kg-1 for soils heated to 100 °C, and 40.5 ± 1.3 mg kg-1 for soils heated to 200 °C. When 

considered on a relative basis, EOC uptake was similar for soils heated to 100 °C (34.7 ± 2.4% 

of initial EOC) and 200 °C (33.5 ± 1.0%), both of which exhibited greater EOC uptake than 

unheated soils (9.7 ± 2.9%). Cumulative 14-day respiration was positively correlated with EOC 

uptake only for soils heated to 100 °C (r=0.61, p=0.037), and MBC accumulation was positively 

correlated with EOC uptake only for soils heated to 200 °C (r=0.71, p=0.014).  

 Despite my IAR values being very near the target value of 1.0 during preliminary 

optimization procedures (see methods), the IAR values I observed during the CUEE experiment 
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were substantially higher. Immediately post heating, IAR was 1.42 ± 0.03, and after the 14-day 

incubation IAR was 1.27 ± 0.04. These values indicate non-target effects of one of the antibiotics 

(Bailey et al. 2003; Rousk et al. 2009). The bactericide was very likely responsible for the non-

target effects because the inhibition resulting from bactericide application alone was similar to 

the inhibition that resulted from application of both biocides in conjunction. Thus, I limit the 

dissemination of my results to the impacts of treatments on fungal activity only. Immediately 

after heating, fungal activity did not differ among the soil heating treatments. After the 14-day 

incubation, there were significant main effects of soil heating (p=0.017) and litter charring 

(p=0.047) on fungal activity, but no interaction effects (p=0.12). Fungi contributed to 31.4 ± 

3.5% of respiration in soils heated to 200 °C, which was significantly less than 47.7 ± 5.5% in 

unheated soils. At 40.4 ± 5.2%, fungal respiration in soils heated to 100 °C did not differ from 

the other treatments. Although the results of my general linear model indicated that soils 

amended with charred versus uncharred pine litter exhibited higher fungal activity, pairwise 

means comparisons did not uncover differences in fungal activity between these treatments. 

Fungal activity did not significantly affect cumulative C respired or change in MBC.  
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Figure 4.3 Change in microbial biomass carbon (a, c, e, g) and 14-day cumulative respired 

CO2-C (b, d, f, h) for unheated soils and soils heated to 100 °C and 200 °C that no litter, Q. 

kelloggii (Oak), P. ponderosa (Pine), or mixed leaf litter in uncharred or charred form. Shading 

of boxplots indicates whether soils received uncharred or charred litter. Each boxplot represents 

the distribution of 12 replicates, except for mixed litter treatments which had 6 replicates. Upper-

case letters indicate Tukey-adjusted significant differences among the heating × charring 

treatment combinations within litter treatments (α=0.05). 
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4.5 DISCUSSION 

4.5.1 Soil heating intensity underlies estimated carbon use efficiency and microbial 

biomass accumulation 

 I did not find support for my hypothesis that the CUE proxy and MBC accumulation 

would be positively correlated with soil heating intensity. Rather, heating soils to 200 °C 

decreased the CUE proxy and led to net negative MBC accumulation. Interestingly, in the MBC 

accumulation experiment, MBC content measured 24 hours after heating was lower in soils 

heated to 100 °C than those heated to 200 °C. This suggests rapid microbial growth in the 24 

hours after heating in soils heated to 200 °C. EOC content increased with heating intensity, and 

the assimilation of this flushed EOC by the surviving microbial community could have fueled the 

rapid growth in the soils heated to 200 °C. Indeed, a laboratory heating study performed on soils 

collected from Pinus halepensis forest in Spain found that bacterial growth was several times 

higher in soils heated between 80 and 400 °C than unheated controls within 2-4 days of soil 

heating (Bárcenas-Moreno and Bååth 2009). Furthermore, Bárcenas-Moreno and Bååth (2009) 

found that peak growth rate was greater and occurred earlier in soils heated to higher 

temperatures, an effect that correlated with greater initial increases in EOC.  

Differences in the balance between anabolism versus catabolism in heated soils are likely 

due to the combined effects of heating on labile C availability, nutrient availability, and 

microbial biomass stoichiometry. For example, the greater MBC accumulation in soils heated to 

100 °C versus 200 °C could be related to the combined effects of microbial cell lysis and 

threshold effects of heating on organic molecules impacting the quality of available C. Microbial 

lysis during heating results in the release of labile organic molecules, for example carbohydrates, 

proteins, and amino acids (González-Pérez et al. 2004). Such molecules are likely to be 
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efficiently utilized by the surviving microbial populations in the absence of nutrient limitation 

(Cotrufo et al. 2013), potentially explaining why MBC accumulation sometimes increased in 

soils heated to 100 °C compared to unheated soils. Additionally, protein and amino acids 

represent labile forms of organic N (Jones et al. 2004; Schimel and Bennett 2004; Kielland et al. 

2007), and 100 °C is below the threshold of N volatilization (Bodí et al. 2014). Thus, low 

intensity soil heating could potentially increase labile organic N availability and allow fast-

growing microorganisms with high nutrient demands to rapidly increase in biomass. 

Concurrently, increased N availability could suppress less efficient decomposition of complex 

and recalcitrant organic matter (Janssens et al. 2010) and decrease the need for N-mining 

(Moorhead and Sinsabaugh 2006; Craine et al. 2007).  

In contrast, heating soils to 200 °C likely caused greater mortality to the microbial 

community (Pingree and Kobziar 2019) and thus greater input of organic molecules, but 200 °C 

is above or near the threshold at which these labile organic molecules are destructively distilled, 

volatized, or pyrolyzed (González-Pérez et al. 2004; Massman et al. 2010). Thus, although there 

was an overall increase in EOC after 200 °C heating, this C may be in a less bioavailable form. 

Studies assessing chemical changes of plant biomass during pyrolysis indicate that loss of 

thermally labile compounds and aromatization reactions occur at 200 °C (Hatton et al. 2016), and 

carbohydrate loss and transformation is one of the first processes to occur (Chatterjee et al. 

2012). Moreover, soil carbohydrate content derived from both plants and microbes has been 

found to decrease immediately following wildfire, and remain depressed for at least 15 months 

(Martín et al. 2009). Greater carbohydrate loss and increased dominance of lignin and pyrogenic 

compounds appears to occur at higher fire severity (Miesel et al. 2015), and water-extractable 

organic matter is more aromatic after both prescribed fires and wildfires (Vergnoux et al. 2011; 
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Hobley et al. 2019). Thus, at higher soil heating intensity, the low MBC accumulation could be 

due to low availability of labile C that can be efficiently transformed into MBC.  

In addition to the potential effects on C quality, 200 °C represents the lower threshold for 

N-volatilization and loss of soil proteins (Russell et al. 1974; Bodí et al. 2014; Lozano et al. 

2016), potentially leading to decreased N availability and increasing the need for N-mining and 

investment in extracellular enzymes. For example, Prieto-Fernández et al. (2004) found that 

chemically labile (acid hydrolysable) organic N was not impacted when soils were heated to 150 

°C, but decreased by >50% when heated to 210 °C and by a similar amount in soils collected 

immediately after a wildfire. Some of this organic N will be converted to inorganic N and 

retained in soil as available N, but substantial increases in inorganic N might not occur until soil 

is heated at much higher temperatures (~400 °C) than I employed (Raison 1979; Choromanska 

and DeLuca 2002; Guerrero et al. 2005). Even if N availability increased slightly in soils heated 

to 200 °C, changes in microbial community composition in response to soil heating could affect 

CUE and MBC accumulation by leading to a disconnect between microbial biomass 

stoichiometry and nutrient availability. If soil heating induces a shift in the microbial community 

from fungi and oligotrophic bacteria with high C:N biomass ratios—and thus lower nutrient 

requirements—towards copiotrophic bacteria with lower C:N ratios and higher nutrient 

requirements (Fierer et al. 2007; Sinsabaugh et al. 2013), decomposition of labile C could be 

coupled to ex vivo catabolic processes in order to obtain limiting nutrients from complex organic 

matter (Moorhead and Sinsabaugh 2006; Craine et al. 2007; Manzoni et al. 2017). Microbial 

communities that have lower fungal-to-bacterial ratios and/or a greater abundance of 

copiotrophic bacteria are less efficient at scavenging for limiting nutrients from complex organic 

matter, leading to greater C mineralization per unit biomass and therefore lower CUE and MBC 
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accumulation. In fact, I found that fungal activity was significantly decreased in soils heated to 

200 °C, and research has shown that the relative abundance of bacterial phyla typically classified 

as copiotrophic increase within one day to one week post-fire (Pérez-Valera et al. 2017; 

Prendergast-Miller et al. 2017), suggesting shifts to microbial communities with higher nutrient 

requirements. Indeed, the high respiration rates and lack of associated MBC accumulation (Fig. 

4.3) supports the explanation that catabolic, rather than anabolic, processes are dominant in soils 

heated to 200 °C. Similarly, the lower CUE proxy in 200 °C soils that received ascorbic acid 

could be due to the decomposition of this labile C substrate being coupled to nutrient acquisition.  

Importantly, higher MBC accumulation in soils heated to 100 °C does not necessarily 

reflect increased C sequestration compared to unheated soils. In fact, greater C respiration in the 

absence of new C inputs reflects a net loss of C, regardless of an associated accumulation of 

MBC. Thus, the increased C respiration in soils heated to 100 °C compared to unheated soils 

indicates a net loss of soil C during the immediate post-heating period (Table 4.1 and Fig. 4.3). 

However, the high MBC accumulation does represent efficient C recycling, limiting the 

contribution of microbial mortality to post-fire emissions and suggests microbial anabolism is 

high following low-intensity soil heating. In contrast, soils heated to 200 °C exhibited high post-

heating respiration rates, continuing decreases in microbial biomass, and lower estimated CUE 

even in soils amended with a relatively labile C source (Figs. 4.1 and 4.3). This suggests that the 

effects of high-intensity soil heating results in high microbial catabolism which exacerbates C 

emissions after heating, at least in the short term.  

4.5.2 Pyrogenic organic matter decreases soil respiration 

I did not find support for my hypothesis that estimated CUE and MBC accumulation 

would be higher in soils amended with uncharred organic matter compared to charred organic 
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matter. In most cases, regardless of soil heating intensity, application of PyOM led to decreases 

in C respiration without negatively affecting EOC uptake or MBC accumulation compared to the 

uncharred counterpart (Figs 4.2 and 4.3). These findings indicate that PyOM addition decreases 

microbial catabolism in soils without negatively impacting anabolism. The decrease in 

catabolism was likely not due to pyrolysis releasing labile C that could be used more efficiently, 

because EOC extractions of charred and uncharred litter indicated that there was ~90% less 

extractable C in charred litter. One possible explanation for these patterns is that PyOM additions 

positively affected soil properties in ways that increased the efficiency of decomposition. For 

example, PyOM has been shown to increase CUE and microbial abundance by increasing 

nutrient availability, soil oxygen concentrations, pH, and by providing sorption sites for bacteria 

(Lehmann et al. 2011; Jiang et al. 2016; Fang et al. 2018). Alternatively, low-intensity soil 

heating could select for microbial groups that are adapted to efficient use of PyOM (Whitman et 

al. 2019). The lower amounts of catabolism in response to PyOM addition could also be due to 

low bio-availability of the charred biomass. However, low microbial use of PyOM may depend 

on the availability of an alternative labile C pool, and EOC can remain depressed for decades 

following wildfire (Prieto-Fernández et al. 1998). In the case of high intensity fires, aboveground 

plant mortality and biomass combustion may be high, removing a source of future labile soil C 

inputs from litter deposition and root inputs (González-Pérez et al. 2004; Grady and Hart 2006; 

Kavanagh et al. 2010). In these cases, the microbial community may switch to use of PyOM after 

the residual labile C pool is depleted, leading to less efficient C use over the intermediate or long 

term. An analogous substrate-limitation mechanism has been found to explain lignin degradation 

when soil carbohydrate pools becomes depleted (Hall et al. 2020).  
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There was a clear negative impact of soil heating on fungal activity, supporting other 

research finding that fungal biomass is more negatively affected by fire than bacterial biomass 

(Dooley and Treseder 2012). Although I did not observe a relationship between fungal 

respiration and MBC accumulation, decreased fungal biomass could negatively impact MBC 

accumulation in soils with high PyOM concentrations because fungi may be better able to utilize 

organic matter characterized by high aromaticity and C:N (Jastrow et al. 2007; Keiblinger et al. 

2010; Dungait et al. 2012). 

4.6 CONCLUSIONS 

High intensity soil heating decreases the strength of soil C sink over the short term by 

decreasing the microbial anabolism and increasing catabolism. Higher soil heating intensity 

likely increases the amount of C lost to combustion during fire events. My results suggest that 

this effect may be exacerbated by low CUE, low accumulation of MBC, and high soil respiration 

rates over the short-term in soils that experience high heating intensity. In addition to 

exacerbating short-term C losses, the decreased anabolism could lead to long-term reductions in 

soil C storage via less microbial necromass, which is a persistent stock of C. Fire intensity is 

predicted to increase in many fire-prone ecosystems, and a negative relationship between 

intensity and microbial anabolism could lead to positive fire-climate feedbacks. Disrupted fire 

regimes are already being observed in temperate coniferous forests of the western United States, 

and if these altered fire regimes lead to lower anabolism and decreased CUE, the C sequestration 

ability of these forests could be permanently reduced. I found some beneficial impacts of PyOM 

in ameliorating C losses via decreased respiration, but over longer timeframes, PyOM could 

either negatively influence CUE due to its chemical recalcitrance, or positively influence CUE 

via beneficial effects on soil physicochemical properties. My study used lab-based soil heating to 
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estimate direct effects of fire on a CUE proxy and MBC accumulation, but field-based research 

is needed to determine whether the influences of soil heating and PyOM on CUE and MBC 

accumulation persist over the long-term. 
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  SUPPLEMENTAL FIGURES  

 

 

Figure S4.1 Glucose (a) and ascorbic acid (b) after charring in a muffle furnace at 210 °C 

and 200 °C, respectively.  
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CHAPTER 5: 

SOIL HEATING INTENSITY AND PYROGENIC ORGANIC MATTER HAVE 

IMMEDIATE IMPACTS ON THE STRUCTURE AND KINETICS OF SOIL CARBON 

POOLS 

5.1 ABSTRACT 

 Increases in tree density and fuel loads in the mixed-conifer forests of California (USA) 

have led to increases in wildfire intensity, potentially leading to positive feedbacks between 

carbon (C) emissions and climate. In addition to emissions resulting from combustion, high 

intensity fires could alter soil C mineralization rates immediately post-fire due to direct impacts 

of soil heating on soil properties; however, high intensity fires could also produce more 

pyrogenic organic matter (PyOM), a source of persistent C. The influence of soil heating and 

PyOM on the relative sizes and stability of the active and slow cycling soil C pools could have 

long-lasting effects on forest C storage and determine the strength of fire-climate feedbacks. 

Here, I disentangle the impacts of soil heating intensity and PyOM on the size and kinetic rates 

of the active (Ca) and non-active (Cs) C pools in forest soils. I hypothesized that Ca size and 

mineralization rate will increase with soil heating intensity, Cs size will increase with PyOM 

additions, and that Cs mineralization rates will be inversely related to temperature of PyOM 

formation. I conducted a laboratory experiment in which I manipulated soil heating temperature 

(unheated, 200 °C, 300 °C, 400 °C) and char formation temperature (uncharred, 300 °C, 550 °C), 

and incubated soils for 390 days to determine the sizes and kinetic rates of the Ca and Cs pools. 

The Ca pool size and mineralization rate increased at the two highest soil heating intensities, and 

char additions increased Cs pool size. Char formation temperature did not influence the size or 

mineralization rates of either the Ca or Cs pools. My results suggest that soil C pools are resistant 

to low intensity soil heating, whereas high intensity soil heating leads to immediate decreases in 
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soil C persistence. Over the long term, the impacts of high intensity soil heating could be offset 

by the persistence of PyOM. This research advances understanding of C persistence in fire-prone 

forests, and suggests that forest C accounting should consider the impacts of fire intensity on soil 

C. 

5.2 INTRODUCTION 

 Carbon (C) stored in temperate forest soils accounts for ~50% of the ecosystem C stock 

(Pan et al. 2011), so disturbance-induced changes to the persistence of soil C could have 

substantial impacts on the global C balance (Luo and Weng 2011). In California’s mixed-conifer 

forests, selective logging and fire suppression have resulted in forests that are more densely 

populated with small, fire-sensitive trees and have higher surface fuel loads compared to 

historical reference conditions (Skinner and Taylor 2006; Earles et al. 2014; Taylor et al. 2014). 

These structural changes have led to increased wildfire intensity (Taylor et al. 2014), which, 

coupled with greater surface fuel loads, can result in greater heat flux to soil during wildfires 

(Neary and DeBano 2005; Massman et al. 2010; Busse et al. 2013). Soil heating can directly 

impact the amount and composition of soil organic matter (González-Pérez et al. 2004; Knicker 

2007), potentially influencing both the size and persistence of the soil C sink. Understanding the 

effects of soil heating intensity on soil C dynamics is important for predicting the feedbacks 

between fire and climate under disrupted fire regimes, as well as for determining whether fuel 

removal treatments designed to decrease fire severity and intensity are also effective at 

promoting resilience of soil functions. 

The magnitude, depth, and duration of soil heating during a fire can vary substantially, 

largely depending on pre-fire fuel load and moisture content. Temperatures of 100-300 °C are 

typical at the soil surface, but instantaneous temperatures can exceed 700-1000 °C under heavy 
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fuel loads (Certini 2005; Neary and DeBano 2005). Mineral soil is a poor heat conductor, so 

temperatures at 5 cm below the mineral soil surface are generally less than 150 °C (Certini 

2005), but can exceed temperatures of 200 °C for several hours under wood piles or smoldering 

duff (Neary and DeBano 2005; Busse et al. 2013). Soil heating intensity likely influences soil C 

cycling due to progressive changes in soil chemistry and biology with temperature (González-

Pérez et al. 2004). For example, soluble organic C content has been shown to increase with soil 

heating temperature up to ~300 °C, and then exhibit rapid declines (Bárcenas-Moreno and Bååth 

2009). Protein denaturation begins at temperatures <100 °C (Knicker 2007), cellulose and 

hemicellulose are lost or transformed at temperatures ~200 °C, and lignin appears to be lost at 

temperatures >300 °C (Fernández et al. 1997; González-Pérez et al. 2004). From a biological 

standpoint, microbial biomass losses increase with soil heating temperature (Choromanska and 

DeLuca 2002; Bárcenas-Moreno and Bååth 2009), and soil heating leads to lower fungal-to-

bacterial ratios due to greater heat-sensitivity of fungi (Dunn et al. 1985; Guerrero et al. 2005). 

Soil C can be conceptually modeled as discrete pools that vary in persistence: an active C 

pool (Ca) with a mean residence time (MRT) of days to months, and a non-active C pool (Cs) 

with an MRT of years to decades. The Cs pool can be an order of magnitude larger than the Ca 

pool, so fire-induced changes to its size or persistence may be especially important for 

determining the strength of the soil C sink. Some C pool models include a third “passive” or 

“resistant” C pool, but research indicates that methods for isolating such a pool result in 

inaccurate estimates (Greenfield et al. 2013). Pyrogenic organic matter (PyOM) encompasses a 

range of fire-affected organic matter, from slightly charred biomass to highly condensed 

aromatic compounds (Masiello 2004; Bird et al. 2015), and tends to exhibit longer MRT in soils 

compared to uncharred biomass (Kuzyakov et al. 2009; Santos et al. 2012; Kuzyakov et al. 
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2014). PyOM may therefore primarily contribute to the Cs pool, representing a persistent C sink 

that offsets C losses resulting from biomass combustion (Jones et al. 2019). However, a portion 

of PyOM decomposes relatively quickly in soil, and the size of this fast-cycling PyOM pool is 

inversely related to pyrolysis temperature (Nguyen et al. 2010; Bird et al. 2015), indicating that 

fire intensity may influence the persistence of PyOM. Furthermore, PyOM decomposition can be 

primed by labile C (Kuzyakov et al. 2009), and fungi may decompose PyOM more efficiently 

than bacteria (Zimmermann et al. 2012), suggesting that the impacts of heating intensity on soil 

chemical and biological properties can indirectly influence PyOM decomposition dynamics. 

Previous research has indicated that wildfire can lead to immediate increases in the size 

of the Ca pool and the kinetic rates of both the Ca and Cs pools (Fernández et al. 1997; Fernández 

et al. 1999). However, by months to years post-fire in Pinus sylvestris (Fernández et al. 1997; 

Fernández et al. 1999) and Sierra-Nevada mixed-conifer forests (Adkins et al. 2019b), the 

opposite trend is apparent: Ca pool size and mineralization rates of the Ca and Cs pools are lower 

in burned areas versus unburned areas. This suggests that fire has immediate and distinct impacts 

on soil C pool dynamics that are not captured by assessments later during ecosystem recovery. 

The immediate impacts of fire intensity on soil C pool dynamics has not been investigated, nor 

has it been determined whether changes are related to soil chemical or biological properties. A 

better understanding of the immediate impacts of fire on soil C persistence could improve forest 

C accounting and inform the management of fire-prone forests for C storage under novel fire 

regimes. Here, I performed a laboratory study to disentangle the direct and indirect impacts of 

fire on the structure and persistence of Ca and Cs pools by manipulating soil heating intensity, 

PyOM additions, and microbial communities independently of one another. I hypothesized that 

1) Ca pool size and kinetic rates would progressively increase with soil heating intensity due to 
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increases in extractable C; 2) Cs size would increase with PyOM additions; and 3) Cs kinetic 

rates would be inversely related to the temperature of PyOM formation.  

5.3 MATERIALS AND METHODS 

5.3.1 Site description and sample collection 

 I collected soil samples from the Lassen National Forest in the Sierra Nevada Mountain 

Range, California, USA. The forest is a dry mixed-conifer forest dominated by Pinus ponderosa, 

P. lambertiana, P. jeffreyi, Abies concolor, Pseudotsuga menziesii, Calocedrus decurrens, and 

Quercus kelloggii. Soils at my sites are from the Skalan soils series, a loamy-skeletal, isotic, 

mesic Vitrandic Haploxerlaf (Soil Survey Staff). From five sites within the forest, I collected soil 

along a transect with sampling locations spaced ~15 cm apart until I collected ~10 L of mineral 

soil. At each sampling location, I removed the organic horizon, inserted a 15.7 cm diameter 

cylinder to 5 cm, and collected mineral soil using a stainless-steel scoop. I sieved (4 mm) and air 

dried the soil at time of sampling. After transport to the lab, I composited equal masses of soils 

from each of the five sampling sites and sieved to 2 mm. 

 I collected P. taeda (loblolly pine) wood samples from the Duke Forest in Durham, North 

Carolina, USA. The forest is dominated by P. taeda, with an understory of Liquidambar 

styracifua, Acer rubrum, Cercis canadensis, and Cornus florida (Hobbie et al. 2014). Within 

each plot, I collected five pieces of wood (2.54-7.62 cm diameter) from the surface of the forest 

floor. Duke Forest is a former Free Air Carbon Enrichment (FACE) site, and wood produced 

under CO2 fumigation is depleted in 13C compared to wood produced under CO2 natural 

abundance. I collected wood samples from Duke Forest instead of Lassen National Forest to 

trace accumulation of C from wood and char into microbial biomass, but I do not report those 

results here.  
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5.3.2 Experimental design 

 I performed a full-factorial experiment in which I manipulated soil heating intensity 

(unheated soil, and soil heated to 200 °C, 300 °C, or 400 °C), wood/char additions (no addition, 

uncharred wood addition, and addition of char generated at 300 °C or 550 °C), and soil inoculum 

type to manipulate microbial communities (250-2000 µm soil fraction and a ≤250 µm soil 

fraction). Each treatment combination was replicated 18 times (N=576), and replicates were 

divided between four incubation blocks that were destructively sampled after incubating for 30, 

100, 200, and 390 days.  

Treatment applications and soil incubation 

I created char by individually wrapping ~15 cm lengths of loblolly pine wood in 

aluminum foil and heating in a muffle furnace for four hours at the target temperature. I then 

pulverized charred and uncharred wood to pass a 250 µm sieve. For soil heating treatments, I 

weighed ~1600 g of soil into an aluminum baking dish, added DI water to bring soils to 25% 

water-filled pore-space (WFPS), and mixed the soil to achieve even moisture throughout. I then 

covered the dish with aluminum foil and heated in a muffle furnace for 90 minutes at the target 

temperature. I measured C and N concentrations of soil, wood, and char using a dry-combustion 

elemental analyzer (Costech Analytical Technologies Inc., Valencia, CA, USA), using 

acetanilide as the quantification standard. 

I weighed 31.0 ± 1.0 g replicates of the post-heated soils into 90 mL specimen cups. For 

microcosms receiving wood or char additions, I added 0.310 ± 0.010 g of material to the soils 

and stirred to mix. I readjusted the soils to 25% WFPS, capped the specimen cups, and sterilized 

the samples by autoclaving at 121 °C for 30 minutes. Following sterilization, I sought to 

manipulate the soil microbial community by reinoculating the sterilized soils with either 0.75 ± 
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0.10 g of unsterilized soil that had passed a 250 µm sieve, or 1.50 ± 0.10 g of soil that did not 

pass the sieve (i.e. 250-2000 µm fraction). The different masses of the two inoculum types were 

selected to apply approximately equal microbial biomass, determined via substrate-induced 

respiration in preliminary experiments. Previous research indicates that soil fractions differ in 

microbial community composition (Wagg et al. 2014; Wagg et al. 2019), and preliminary 

experiments based on selectively-inhibited substrate-induced respiration suggested that the 0-250 

µm fraction had a higher fungal-to-bacterial ratio than the 250-2000 µm fraction (1.45 ± 0.34 vs 

0.68 ± 0.06; p=0.024; Fig. S5.1). After soil inoculation, I adjusted soil moisture of each 

microcosm to 50% WFPS, placed each specimen cup in a loosely capped 0.473 L glass jar, and 

incubated in the dark at ambient temperature (23 °C).  

Determination of extractable organic carbon and microbial biomass carbon 

I destructively sampled incubation blocks at 30, 100, 200, and 390 days for determination 

of extractable organic carbon (EOC) and microbial biomass carbon (MBC). From each 

microcosm, I weighed four ~5 g subsamples into 50 mL centrifuge tubes. Two subsamples were 

immediately extracted for EOC, and the other two were directly exposed to chloroform for 24 

hours to lyse microbial cells prior to extraction (Witt et al. 2000). I also determined EOC from 

each soil heating treatment at day 0 by extracting three autoclaved and unamended soil 

replicates. I extracted EOC by adding 25 mL of 0.5 M K2SO4 to the centrifuge tubes, agitating on 

a reciprocating shaker for 1 hour, and filtering through 11 µm pore-size filters (Whatman Grade 

1). I determined EOC concentrations spectrophotometrically after potassium-dichromate 

oxidation (Cai et al. 2011). Wet-oxidation methods have been shown to underestimate EOC 

concentrations compared to combustion methods (Bolan et al. 1996), but conversion factors 

between methods are not available in the published literature. MBC was determined as the 
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difference in EOC between fumigated and unfumigated subsamples, divided by a correction 

factor of 0.33 (Cai et al. 2011). 

My original intent was to measure fungal-to-bacterial ratios using selectively-inhibited 

substrate-induced respiration on each sampling date to determine whether the two soil inoculum 

treatments affected microbial community structure (Anderson and Domsch 1973; Bailey et al. 

2003). Prior to initiating the experiment, I optimized the selective-inhibition procedure on 

unheated and unsterilized soils collected from the same site and achieved acceptable results. 

However, when I applied the procedure on day 30, the inhibition additivity ratio was too high 

(>1.3) to accept the results. Thus, I did not continue using this technique on the remaining 

sampling dates. Selectively-inhibited substrate-induced respiration requires extensive 

optimization, and different soils require different inhibitor types and concentrations to produce 

acceptable results (Bailey et al. 2003; Rousk et al. 2009). This suggests that differences in soil 

biological characteristics affect the performance of this procedure, and I suspect that changes in 

the soil biological community over the course of the incubation impacted its efficacy.  

Determination of carbon mineralization rates  

For one incubation block, I measured C mineralization rates on incubation days 9, 11, 21, 

31, 40, 50, 60, 74, 90, 102, 119, 143, 180, 221, 265, 305, 347, and 389. On measurement days 9 

and 11, I determined CO2-C production by tightly capping each jar with a septum-fitted lid and 

measuring the CO2 concentrations of 13 mL gas aliquots using a gas chromatograph (Thermo 

Fisher Scientific Inc., Waltham, MA, USA). Measurements were taken ~30 minutes and 6 hours 

after capping. Due to equipment malfunction, not all replicates were measured on day 21, so this 

data were not analyzed. For the remaining sampling days, I measured CO2 concentrations of 1 

mL gas aliquots using an infrared gas analyzer (LI-COR Inc., Lincoln, NE, USA). For these 
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sampling days, CO2 was allowed to accumulate in the capped jars for 24-96 hours prior to 

measurement, with the longer accumulation times occurring later in the incubation when C 

mineralization rates were low.  

Carbon Pool Models 

 I applied single- and double-pool decay models to my C mineralization data to determine 

the size and rate constants of soil C pools (Kuzyakov 2011). The single-pool model was fit as: 

𝐶𝑡 = 𝐶𝑚(1 − 𝑒−𝑘𝑚∗𝑡) (1) 

where Ct is cumulative CO2-C respired at day t, Cm is the initial size of the carbon pool available 

for mineralization, and km is its kinetic rate constant. The double-pool model was fit as: 

𝐶𝑡 = 𝐶𝑎(1 − 𝑒−𝑘𝑎∗𝑡) +  𝐶𝑠(1 − 𝑒−𝑘𝑠∗𝑡) (2) 

where Ca is the size of the active (or fast cycling) pool, Cs is the size of the non-active pool, and 

ka and ks are the respective kinetic rate constants. In this model, Cs is constrained to be the 

difference between total C in the microcosms (soil C + char C) and Ca. The soil and char C 

values used for this constraint were treatment means. I used both single- and double-pool decay 

models because visual inspection of cumulative C mineralization curves suggested that two 

treatment combinations (unheated soil + uncharred wood, 200 °C soil + uncharred wood) would 

be better estimated by single-pool models. I did not include a passive C pool in my models, 

because methods for isolating such a pool do not provide biologically meaningful estimates 

(Greenfield et al. 2013). 

5.3.3 Statistical Analysis 

 I performed all analyses in the R statistical computing environments (v 3.6.1) (R Core 

Team 2019) using the nlme package (v 3.1.140) (Pinheiro et al. 2019). I used general linear 

models to assess the responses of EOC and MBC and linear mixed models to assess the 
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responses of C mineralization rate and cumulative C mineralization. Models initially included 

main effects of time, soil heating, char type, and inoculum type, and all possible two- and three-

way interactions. The mixed models also included a microcosm identifier as a random effect. 

Non-significant three-way interactions were removed from the models. Additionally, inoculum 

treatment main and interactive effects were never significant and were removed from all models, 

but all other effects were retained. Model residuals for the two C mineralization models were not 

normally distributed. For the C mineralization rate model, this was rectified by specifying time 

as a continuous covariate and adding a log(time) term. For the cumulative C mineralization 

model, residual non-normality was rectified by specifying time as a factor and an autoregressive 

correlation structure to account for non-independence of within-group (microcosm) observations 

(Pinheiro and Bates 2000).  

 I fit the single- and double-pool decay models by first performing separate non-linear 

regressions for each incubation replicate, with cumulative C mineralization in units of mg kg-1 

soil. To fit a single model encompassing all replicates, I then used data visualization approaches 

as described by Pinheiro and Bates (2000) to determine which parameters were associated with 

random and interactive effects. These procedures resulted in models that included random 

intercepts and two-way interactions associated with Ca and ks, whereas ka was associated only 

with main effects. I then fit additional models with cumulative C mineralization in units of 

percent total microcosm C to obtain estimates of pool sizes on both a soil mass fraction basis and 

relative to total C. Because Cs is constrained in the double-pool models, it is not estimated 

independently of Ca. I therefore calculated 95% confidence intervals for Cs by subtracting the 

confidence limits of Ca from total microcosm C, and I considered differences in Cs to be 

significant if the confidence intervals did not overlap. For all other parameters, if main effects 
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were significant at α ≤ 0.05, I performed pairwise comparisons of marginal means using Tukey’s 

adjustment in the emmeans package (v 1.4.4) (Lenth 2020). 

5.4 RESULTS 

5.4.1 Soil and char carbon concentrations 

 There were no statistically significant effects of soil heating on C concentrations (p=0.79; 

n=3), although soils heated to 400 °C had slightly lower C concentrations than the pooled 

average (3.7 ± 0.4% and 3.9 ± 0.2%, respectively). C concentrations were 48.7% for uncharred 

wood, 66.1% for 300 °C char, and 71.7% for 550 °C char.  

5.4.2 Extractable organic carbon and microbial biomass carbon 

 Soil heating had immediate impacts on EOC concentrations (p<0.001; Fig. 5.1). EOC 

increased with heating temperature up to 300 °C, then decreased in soils heated to 400 °C. 

Compared to unheated soils, EOC concentrations were 45.0% higher in soils heated to 300 °C 

and 12.5% lower in soils heated to 400 °C. There were significant main and interactive effects on 

both EOC and MBC measured over the incubation (Table 5.1). EOC was lowest in soils heated 

to 400 °C on all four sampling dates regardless of char treatment (Fig. 5.2). Averaged across all 

char × time combinations, soils heated to 400 °C exhibited 50.2%-55.0% less EOC than the other 

soil heating treatments. On day 30, unheated soils generally exhibited higher EOC than soils 

heated to 400 °C, and soils heated to 200 °C and 300 °C exhibited intermediate values. On day 

100, soils heated to 200 °C exhibited the greatest EOC for soils that with uncharred wood or no 

addition, while unheated soils exhibited greatest EOC for soils with 550 °C char. Although there 

were temperature-based differences in EOC on days 200 and 390, these differences did not 

exhibit a clear pattern.  
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 Soils with uncharred wood tended to have greater EOC than the soils with char or no 

addition throughout the incubation. Averaged across all soil heating × time combinations, soil 

that received uncharred wood exhibited 8.6%-18.2% more EOC than the other addition 

treatments. In soils that were heated to 200 °C, EOC was lowest in soils that received 550 °C 

char at all sampling dates, averaging 23.9%-31.3% less EOC than the other char treatments.  

On day 30, unheated soil generally exhibited lower MBC than heated soils (Fig. 5.3). 

Averaged across all char treatments, MBC was 39.1%-67.6% lower in unheated soils at this time 

point compared to the other soil heat treatments. Soils heated to 300 °C and 400 °C exhibited 

MBC that was higher than the other heat treatments by 1.7-2.1 fold on day 30. Soil heating 

impacted patterns in MBC over time. MBC decreased by 55.4% between days 30 and 390 in 

soils heated to 300 °C and by 74.9% in soils heated to 400 °C. In contrast, MBC in soils heated 

to 200 °C only decreased by 16.9% and increased by 48.4% in unheated soils. The impacts of 

charcoal on MBC did not exhibit a clear pattern.  

 

Figure 5.1 Extractable organic carbon of pre-incubated soils exposed to four different 

heating intensities and then autoclaved. The heights of the bars are treatment means (n=3) and 

error bars are 95% confidence intervals. Letters above bars represent pairwise significant 

differences among treatments.
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Table 5.1 ANOVA tables for extractable organic carbon (EOC) and microbial biomass 

carbon (MBC) for soils destructively sampled four times over the 390 day incubation.  
 Explanatory Variable F-value P-value 

EOC Intercept 527.45 <0.001 

 Time 0.16 0.686 

 Soil Heat Treatment 52.03 <0.001 

 Char Treatment 5.16 0.002 

 Time × Soil Heat 1.81 0.144 

 Time × Char 6.37 <0.001 

 Soil Heat × Char 4.08 <0.001 

 Time × Soil Heat × Char 4.59 <0.001 

    

MBC Intercept 33.01 <0.001 

 Time 2.83 0.038 

 Soil Heat Treatment 30.02 <0.001 

 Char Treatment 0.07 0.978 

 Time × Soil Heat 7.72 <0.001 

 Time × Char 2.24 0.019 

 Soil Heat × Char 23.48 <0.001 

 Time × Soil Heat × Char 6.51 <0.001 
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Figure 5.2 Extractable organic carbon on four destructive sampling days of soils exposed to different heating intensities and 

receiving different char additions. The top row of figures (a-d) displays char treatments grouped into levels of soil heating, and the 

bottom row of figures (e-h) displays soil heating treatments grouped into levels of char treatments. Points are treatment means (n=9) 

and error bars are 95% confidence intervals. 
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Figure 5.3 Microbial biomass carbon on four destructive sampling days of soils exposed to different heating intensities and 

receiving different char additions. The top row of figures (a-d) displays char treatments grouped into levels of soil heating, and the 

bottom row of figures (e-h) displays soil heating treatments grouped into levels of char treatments. Points are treatment means (n=9) 

and error bars are 95% confidence intervals.
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5.4.3 Carbon mineralization 

 Cumulative C mineralization (mg CO2-C kg-1 soil C) was not influenced by main effects 

of soil heating or char treatments, but all interactions involving time were significant (Table 5.2). 

By the end of the incubation, soil heating impacted cumulative C mineralized only for the 

uncharred wood or 300 °C char treatments (Fig. 5.4). For soils with uncharred wood, the 

unheated and 200 °C treatments resulted in 34.8%-44.6% more C mineralized than the other soil 

heating treatments. For soils with 300 °C char, the 400 °C treatment led to 27.6% more C 

mineralized than the unheated treatments. Char treatments impacted cumulative C mineralization 

at all soil heating intensities. In unheated and soils heated to 200 °C, soils with uncharred wood 

mineralized 1.5-2.1 times more C than the other char treatments. In soils heated to 300 °C, 

uncharred wood resulted in ~ 33% more total C mineralization than either char type; and in soils 

heated to 400 °C, uncharred wood led to 25.8% more C mineralization than 550 °C char. For all 

soil heating temperatures, soils with char exhibited total C mineralization that was less than or 

equal to soils that received no addition. 

All main and interactive effects impacted C mineralization rate (mg CO2-C kg-1 soil C d-1) 

(Table 5.2). The effect of soil heating on C mineralization changed over time. Early in the 

incubation, mineralization rate was positively associated with soil heating intensity, with the 300 

°C and 400 °C treatments consistently exhibiting the highest mineralization rates, regardless of 

char treatment. The opposite pattern was present late in the incubation, with the 300 °C and 400 

°C heating treatments typically exhibiting lower mineralization rates compared to the unheated 

and 200 °C treatments. The effect of char treatments on mineralization rates depended on levels 

of soil heating and varied with time. Early in the incubation, soils with no additions exhibited the 

highest mineralization rates for unheated and 200 °C treatments. Within the 400 °C heat 
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treatment, soils with no additions or uncharred wood exhibited higher mineralization rates than 

soils with char. Late in the incubation, uncharred wood treatments exhibited the highest 

mineralization rates in soils that were unheated or heated to 200 °C or 300 °C. Soils that received 

char did not differ in mineralization rates from those that received no additions.  

Table 5.2 ANOVA tables for carbon mineralization rate and cumulative carbon 

mineralization over the 390 day incubation. 
 Explanatory Variable F-value P-value 

C Mineralization Rate  

(mg CO2-C kg-1 soil C d-1) Intercept 2307.01 <0.001 

 Time 63.55 <0.001 

 log(Time) 1774.87 <0.001 

 Soil Heat Treatment 8.99 <0.001 

 Char Treatment 12.61 <0.001 

 Time × Soil Heat 11.80 <0.001 

 Time × Char 17.33 <0.001 

 Soil Heat × Char 6.66 <0.001 

 Time × Soil Heat × Char 20.43 <0.001 

    

Cumulative C Mineralization  

(mg CO2-C kg-1 soil C) Intercept 20.04 <0.001 

 Time 69.66 <0.001 

 Soil Heat Treatment 0.36 0.78 

 Char Treatment 0.73 0.54 

 Time × Soil Heat 11.70 <0.001 

 Time × Char 10.32 <0.001 

 Soil Heat × Char 0.36 0.95 

 Time × Soil Heat × Char 5.96 <0.001 
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Figure 5.4 Carbon mineralization over 390 days of soils exposed to different heating intensities and receiving different char 

additions. The top row of figures (a-d) displays char treatments grouped into levels of soil heating, and the bottom row of figures (e-h) 

displays soil heating treatments grouped into levels of char treatments. Points are treatment means of cumulative C mineralization 

(n=9) and error bars are 95% confidence intervals. The slope of the lines between points represent mineralization rates. Letters 

represent pairwise significant differences in cumulative carbon mineralization at the end of the incubation. 



 

214 

 

5.4.4 Carbon pools: single pool model 

 Cm was impacted by char treatments and by a soil heat × char interaction, and km was 

impacted by all main and interactive effects (Table 5.3). Uncharred wood increased Cm by ~4.5-

5.5 times in unheated soils and by ~4.1-4.3 times in soils heated to 200 °C (Fig. 5.5; Table S5.1). 

This pattern was consistent whether Cm pool size was considered on a soil mass fraction basis or 

relative to total C. Cm was otherwise unaffected by soil heat and char treatments. Similarly, km 

decreased in response to uncharred wood additions in unheated soils and soils heated to 200 °C 

but was otherwise unchanged.  

Table 5.3 ANOVA tables for single and double carbon pool models. Values are from models 

fit to cumulative respiration per g soil data. ANOVAs for models fits to cumulative respiration 

per g soil C are not presented but are similar to the results provided here.  
 Explanatory Variable F-value P-value 

Single Pool Model    

Cm Intercept 59.40 <0.001 

 Soil Heat Treatment 0.25 0.859 

 Char Treatment 66.69 <0.001 

 Soil Heat × Char  30.60 <0.001 

    

km Intercept 85.02 <0.001 

 Soil Heat Treatment 10.17 <0.001 

 Char Treatment 12.93 <0.001 

 Soil Heat × Char  5.51 <0.001 

Double Pool Model 

Ca Intercept 146.01 <0.001 

 Soil Heat Treatment 6.85 <0.001 

 Char Treatment 23.26 <0.001 

 Soil Heat × Char  13.03 <0.001 

    

ka Intercept 456.37 <0.001 

 Soil Heat Treatment 19.78 <0.001 

 Char Treatment 32.78 <0.001 

    

ks Intercept 74.38 <0.001 

 Soil Heat Treatment 2.72 0.043 

 Char Treatment 90.73 <0.001 

 Soil Heat × Char  21.18 <0.001 
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Figure 5.5 Bar charts illustrating the parameters of the single carbon pool model. The size 

of the potential mineralizable C pool (Cm) is presented in both absolute size (a) and relative to 

total soil C (b). The kinetic rate constant (km) is presented as d-1 (c). The heights of the bars 

represent the marginal means of the parameter estimates, and the error bars represent the 95% 

confidence intervals of the estimates. Letters above bars indicate pairwise significant differences 

between char treatments within soil heating levels. Pairwise comparisons for soil heating levels 

within char treatments are provided in table S1.  

 

5.4.5 Carbon pools: double pool model 

Pool sizes on soil mass fraction basis 

 Ca was affected by both soil heating and char treatments (Table 5.3). Within soils that 

received no additions, Ca was 22.6%-38.9% larger in soils heated to 400 °C than the other heat 

treatments (Fig. 5.6; Table S5.2). For soils with uncharred wood, Ca was 8.9-13.1 times larger in 

the 300 °C and 400 °C treatments than the other heating treatments. For char soils with char, Ca 

was 1.5-2.1 times larger in the 300 °C and 400 °C treatments than the other heating treatments. 

Ca generally did not differ between soils that received char additions from those that received no 
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additions. An exception occurred in soils heated to 200 °C, where Ca was 29.2% smaller for the 

300 °C char treatment compared to the no addition treatment. Among all char treatments, Cs was 

smallest in soils heated to 400 °C and largest for soils heated to 300 °C. Cs showed a consistent 

pattern of increasing with char treatments as follows: no addition < uncharred < 300 °C < 550 

°C.  

Pool sizes relative to total carbon 

 Soils heated to 400 °C had Ca pools that were 1.5-6.2 times larger than the other heat 

treatments (Fig. 5.6; Table S5.2). For soils with wood or char additions, soils heated to 300 °C 

had 1.5-4.9 fold larger Ca pools than the unheated and 200 °C treatments. For soils with 

uncharred wood, unheated soils and soils heated to 200 °C had the largest Cs pools. For soils that 

received char, the 400 °C heat treatment resulted in the smallest Cs pools, and the 300 °C 

treatment had smaller Cs pools than the unheated and 200 °C treatments. Within unheated and 

200 °C heated soils, uncharred wood led to the largest Cs pools. Char additions increased Cs pool 

size compared to no additions in soils heated to 200 °C. 

Kinetic rate constants 

 Soils heated to 400 °C exhibited larger ka values than the other soil heating treatments. 

Compared to unheated soils, the larger ka values in these soils represent a decrease in Ca mean 

residence time (MRT) of 9.8-18.6 days. Soils with uncharred wood exhibited the largest ka 

values at all soil heating treatments, representing a decrease of 16.0-24.9 days in Ca MRT. In 

addition to significant main effects, ks was affected by a soil heat × char interaction. For soils 

with uncharred wood, ks was largest in the unheated soils and 200 °C treatments, representing a 

decrease of 25.8-34.2 years in Cs MRT. For soils with 300 °C char, ks was higher in soils heated 

to 200 °C than in soils heated to 400 °C, representing a 27.1 year difference in MRT. Within 
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soils that received 550 °C char, ks was higher for the unheated treatments than for the 200 °C and 

400 °C treatments, representing a difference in Cs MRT of 17.9-36.6 years. Soils with uncharred 

wood had the largest ks values in soils that were unheated or heated to 200 °C, representing a 

22.9-37.7 year decrease in Cs MRT compared to the two higher soil heating treatments.  
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Figure 5.6 Bar charts illustrating the parameters of the double carbon pool model. The 

sizes of the active (Ca) and non-active (Cs) pools are presented in both absolute size (a and c) and 

relative to total soil C (b and d). The active C pool kinetic rate constant (ka) is presented as d-1 

(e), and slow C pool kinetic rate constant (ks) is presented as y-1 (f). The heights of the bars 

represent the marginal means of the parameter estimates, and the error bars represent the 95% 

confidence intervals of the estimates. Letters above bars indicate pairwise significant differences 

between char treatments within soil heating levels. Pairwise comparisons for soil heating levels 

within char treatments are provided in table S2.  
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5.5 DISCUSSION 

5.5.1 High intensity soil heating decreases soil carbon persistence over the short term  

I found support for my hypothesis that Ca pool size and kinetic rates would increase with 

soil heating intensity. The two highest intensity soil heating treatments increased km, ka and Ca 

pool size, and the highest intensity decreased Cs pool size, all of which indicate lower soil C 

persistence over the short term. Thus, in addition to causing greater C emissions during the 

combustion event itself, high intensity fires could increase soil C emissions via impacts on the 

structure and stability of soil C pools. My results support previous, field-based research that 

found increased Ca pools and ka values in burned vs unburned mineral soils collected 

immediately (1 day) after wildfires in P. sylvestris dominated forests in northwestern Spain 

(Fernández et al. 1997; Fernández et al. 1999). My previous research found that Ca size is lower 

in burned areas than unburned areas three years post-fire (Adkins et al. 2019), suggesting the 

direct effects of soil heating on Ca are transient. My experiment suggests that the immediate 

changes to Ca size and persistence are likely due to the direct effects of heat flux on soil 

characteristics. For example, soil heating can directly affect soluble C content (Certini 2005; 

Knicker 2007), which could in turn influence Ca pool size and kinetics, because soluble C is a 

fast-cycling C source that is often positively correlated with soil respiration rates (Neff and 

Asner 2001; Wang et al. 2003). However, contrary to my hypothesis, increases in Ca and ka in 

heated soils do not appear to be related to EOC: soils heated to 400 °C had the largest Ca and ka 

values, but the lowest EOC. This suggests that nutrient availability may be a stronger driver of 

active C cycling in heated soils. For example, N volatilization increases with temperature from 

200 to 500 °C, at which point >50% of N is lost (Knicker 2007; Bodí et al. 2014). Lower N 

availability could increase the need for N-mining from organic matter (Moorhead and 
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Sinsabaugh 2006), a C inefficient process that could lead to higher C mineralization rates. In 

addition to changes to C and nutrient availability, soil heating could influence C pools by 

destabilizing soil aggregates and degrading clay (Certini 2005; Mataix-Solera et al. 2011). Soil 

aggregation and clay associations are important mechanisms of C stabilization (Jastrow et al. 

2007), so disruption of these mechanisms could explain the higher Ca and ka.  

Additionally, the higher mineralization rates and ka values in soils heated to 300 °C and 

400 °C could be due to indirect effects of soil heating on MBC via changes to soil abiotic 

properties. Microbes drive heterotrophic respiration and MBC may account for a portion of Ca 

(Wang et al. 2003; Lawrence et al. 2009), and, early in the incubation, MBC was greatest in soils 

subjected to high heating intensity. Soil heating can directly impact MBC by inducing microbial 

mortality (Choromanska and DeLuca 2002; Certini 2005; Bárcenas-Moreno and Bååth 2009); 

however, I sterilized and reinoculated the microcosms to ensure similar initial microbial biomass 

among soil heating treatments. Thus, differences in MBC were likely indirectly affected by soil 

heating. Furthermore, although soil heating can directly impact microbial community structure 

via differential survival of fungi vs bacteria and by selecting for heat-resistant bacterial taxa 

(Dooley and Treseder 2012; Prendergast-Miller et al. 2017), the lack of difference in C pool 

structure or kinetics between my two inoculation treatments indicates that initial differences in 

microbial community structure did not drive C cycling. These results further support the 

interpretation that top-down impacts of heating on soil abiotic characteristics determine C pool 

structure and kinetics.  

5.5.2 Char increases the size and persistence of the non-active carbon pool 

I found support for my hypothesis that Cs would increase with PyOM additions, but not 

for my hypothesis that ks would be inversely related to the temperature of PyOM formation. My 
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findings that char increased the size of the Cs pool on a soil mass fraction basis suggest that char 

generated during fires can ameliorate the negative influence of soil heating on C persistence. 

This is further supported by my finding that high intensity soil heating decreased ks only in soils 

with charred or uncharred wood. Previous research has shown that a high intensity wildfire had 

minimal immediate impacts on ks (Fernández et al. 1997). However, research performed months 

to years following wildfires in mixed-conifer (Adkins et al. 2019b) and P. sylvestris forests 

(Fernández et al. 1999) indicate that the absolute size of Cs was higher and ks lower at these 

intermediate time points in post-fire recovery in burned vs unburned areas. Considered with my 

present results, this suggests that increased Cs size and persistence is an indirect effect of fire that 

may emerge later during ecosystem recovery as char formed from aboveground biomass 

becomes incorporated into soil (Abney et al. 2017). Charcoal production increases with fire 

intensity and severity (Czimczik et al. 2003; Miesel et al. 2015; Sawyer et al. 2018), and I found 

that Cs size increased with charring temperature. Therefore, high intensity fire could result in a 

large and persistent C pool that offsets the negative direct effects of high intensity soil heating on 

C persistence. 

Previous research has shown that char can contribute to the Ca pool (Abney et al. 2019), 

because a portion of char-associated C is easily decomposed (Kuzyakov et al. 2014; Bird et al. 

2015), and char can induce positive priming of native soil C (Maestrini et al. 2015). However, I 

observed no statistically significant effects of char on Ca or ka, again suggesting that char 

primarily led to higher soil C persistence. This effect may be partially attributable to the 

relatively high charring temperatures I employed, as previous research has indicated that forest 

soils amended with char generated at 200 °C exhibited larger Ca pools than soils amended with 

higher temperature chars (Abney et al. 2019). Additionally, the chemical properties of char, and 



 

222 

 

the influence of char on soil respiration varies with source material (Michelotti and Miesel 2015; 

Hatton et al. 2016). In contrast, adding uncharred wood often increased both ka and ks, indicating 

less persistent Ca and Cs pools. Although wildfires cause immediate declines in woody debris at 

the soil surface (Miesel et al. 2018), uncharred wood could reaccumulate over time via fallen 

branches and stems of fire-killed trees. For example, by 4-5 years after a wildfire in P. 

ponderosa dominated forest in Oregon, USA, woody debris accounted for a larger proportion of 

aboveground C stocks in burned areas compared to unburned areas (Meigs et al. 2009). 

5.6 CONCLUSIONS 

 High intensity fires likely result in greater ecosystem C losses due to combustion. My 

results suggest that this effect may be exacerbated over the short term by increases in the size 

and kinetic rate of the active C pool. However, over the long term, these losses could be offset by 

char incorporation into soil, which increases the size of the non-active C pool. The non-active C 

pool is an order of magnitude larger than the active C pool and exhibits MRT of decades, so char 

incorporation could substantially increase the strength of the soil C sink during forest recovery. 

These results suggest that accurate estimates of the impacts of disrupted fire regimes on forest C 

stocks and persistence should account for the influence of fire intensity on the soil C cycle. Low 

intensity soil heating had minimal impacts on soil C pools and MBC, suggesting that soils are 

resistant and/or resilient to low intensity fires. Therefore, fuel reduction treatments that decrease 

soil heating intensity could effectively promote resilience of soil functions. Additionally, low 

intensity prescribed fires could be an effective management tool for reducing forest fuel loads 

and restoring forest structure without adversely affecting soil C storage. Previous research has 

shown that the reductions in fire severity resulting from fuel removal treatments enhance 

permanence of aboveground forest C stocks (North and Hurteau 2011); my results suggest that 
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fuel removal that decreases soil heating intensity could also contribute to maintaining the 

persistence of soil C.  
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SUPPLEMENTAL FIGURES 

 

  

Figure S5.1 Fungal-to-bacterial activity ratio for the two soil fractions used to reinoculate 

sterilized soil microcosms. Fungal-to-bacterial activity ratio was determined using selectively 

inhibited substrate-induced respiration. 
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 SUPPLEMENTAL TABLES 

 

Table S5.1 Parameters estimated from single pool carbon models. Pool size parameters 

expressed in mg kg-1 are derived from models fit to cumulative respiration per g soil, and pool 

size parameters expressed in percent total C are from models fit to respiration per g soil C. 

Ranges are 95% confidence intervals. Lower-case letters indicate significant differences between 

soil heating treatments within levels of char treatments. Data is the tabular form of the data 

shown in figure 5.5.  
Single Pool Models   

 Cm (mg kg-1) Cm (%) km (d-1)  

No Addition      

Unheated Soil 1630.37-2733.38 a 4.31-6.85 a 0.0046-0.0071 b  

200 °C Soil 1782.96-2952.22 a 4.69-7.38 a 0.0046-0.0073 b  

300 °C Soil 1525.99-2626.69 a 3.74-6.28 a 0.0065-0.0091 b  

400 °C Soil 1488.64-2587.81 a 4.30-6.83 a 0.0090-0.0115 a  

Uncharred Wood      

Unheated Soil 9727.08-12046.08 a 21.82-27.17 a -0.0001-0.0023 b  

200 °C Soil 8966.37-10928.08 a 18.07-22.15 a 0.0001-0.0025 b  

300 °C Soil 2036.83-3136.63 b 4.32-6.86 b 0.0075-0.0100 a  

400 °C Soil 1848.34-2947.23 b 4.49-7.03 b 0.0098-0.0123 a  

300 °C Char     

Unheated Soil 1408.86-2513.14 a 3.03-5.58 a 0.0046-0.0071 b  

200 °C Soil 1768.12-2878.11 a 3.79-6.35 a 0.0036-0.0061 b  

300 °C Soil 1524.94-2624.76 a 3.05-5.59 a 0.0070-0.0095 a  

400 °C Soil 1563.46-2662.53 a 3.61-6.15 a 0.0092-0.0117 a  

550 °C Char     

Unheated Soil 1843.00-2955.72 a 3.89-6.46 a 0.0029-0.0053 c  

200 °C Soil 1867.29-2983.54 a 3.92-6.50 a 0.0040-0.0065 c  

300 °C Soil 1617.30-2717.82 a 3.18-5.72 a 0.0064-0.0089 b  

400 °C Soil 1506.79-2605.96 a  3.40-5.94 a 0.0098-0.0123 a  
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Table S5.2 Parameters estimated from double pool carbon models. Pool size parameters expressed in mg kg-1 are derived from 

models fit to cumulative respiration per g soil, and pool size parameters expressed in percent total C are from models fit to respiration 

per g soil C. Ranges are 95% confidence intervals. Lower-case letters indicate significant differences between soil heating treatments 

within levels of char treatments. Data is the tabular form of the data shown in figure 5.6.  
Double Pool Models  

 Ca (mg kg-1) Ca (% Total C) Cs (mg kg-1) Cs (% Total C) ka (d-1) ks (y-1) 

No Addition       

Unheated Soil 807.19-1116.94 b 2.06-2.78 b 37983.06-38292.81 b 97.22-97.94 a 0.011-0.014 b 0.020-0.032 a 

200 °C Soil 875.44-1201.66 b 2.25-3.02 b 38028.34-38354.56 b 96.98-97.75 a 0.012-0.014 b 0.023-0.036 a 

300 °C Soil 968.37-1266.18 b 2.34-3.04 b 40203.82-40501.63 a 96.96-97.75 a 0.012-0.014 b 0.015-0.027 a 

400 °C Soil 1261.72-1552.01 a 3.54-4.22 a 35077.99-35368.28 c 95.78-98.46 a 0.015-0.016 a 0.012-0.024 a 

Uncharred Wood       

Unheated Soil 19.20-293.05 b 0.05-0.68 c 43740.95-44014.80 b 99.32-99.95 a 0.015-0.018 b 0.074-0.085 a 

200 °C Soil -14.72-258.74 b -0.02-0.61 c 43845.23-44118.69 b 99.39-100.02 a 0.015-0.018 b 0.072-0.084 a 

300 °C Soil 1246.56-1533.40 a 2.67-3.33 b 44767.48-45054.32 a 96.67-97.33 b 0.016-0.018 b 0.020-0.032 b 

400 °C Soil 1458.23-1741.11 a 3.56-4.22 a 39865.78-40148.66 c 95.78-96.44 c 0.019-0.020 a 0.016-0.027 b 

300 °C Char       

Unheated Soil 700.43-1003.07 b 1.50-2.19 c 44561.97-44864.61 c 97.81-98.50 a 0.011-0.014 b 0.014-0.026 ab 

200 °C Soil 588.18-883.22 b 1.26-1.94 c 44893.58-45188.62 b 98.06-98.74 a 0.012-0.014 b 0.020-0.032 a 

300 °C Soil 1103.95-1404.03 a 2.26-2.94 b  46610.47-46910.55 a 97.06-97.74 b 0.013-0.014 b 0.011-0.023 ab 

400 °C Soil 1349.35-1639.80 a 3.11-3.79 a 41677.56-41968.01 d 96.21-96.89 c 0.015-0.017 a 0.010-0.021 b 

550 °C Char       

Unheated Soil 563.34-865.99 b 1.18-1.86 c  45476.68-45779.33 b 98.14-98.82 a 0.010-0.013 b  0.020-0.032 a 

200 °C Soil 617.36-920.20 b 1.30-1.99 c 45459.69-45762.53 b 98.01-98.70 a 0.011-0.013 b 0.019-0.030 a 

300 °C Soil 1103.51-1408.03 a 2.22-2.92 b 47268.30-47572.82 a 97.08-97.78 b 0.012-0.013 b 0.011-0.023 ab 

400 °C Soil 1364.11-1665.19 a 3.08-3.78 a 42351.51-42652.59 c 96.22-96.91 c  0.014-0.015 a 0.007-0.019 b 
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CHAPTER 6: 

MANAGEMENT IMPLICATIONS: POST-FIRE FOREST MANAGEMENT MAY 

IMPROVE RECOVERY OF SOIL CARBON STORAGE 

Altered forest structure in forests of the western United States has led to increased forest 

ecosystem carbon (C) stocks due to greater tree density and dead fuel accumulation (North et al. 

2009; Earles et al. 2014; Hurteau et al. 2014). Forest densification has allowed these forests to 

act as strong C sinks and offset a substantial portion CO2-C emissions (Goodale et al. 2002; Pan 

et al. 2011). However, compared to forests that are structurally similar to historical (i.e. pre fire-

suppression) forests, these C stocks are inherently less stable because dense forests are more 

susceptible to C losses due to drought and insect-based disturbances (Earles et al. 2014; Hurteau 

et al. 2014; Stephens et al. 2020) and could transition to C sources under future climate scenarios 

(Loudermilk et al. 2013; Liang et al. 2017c). Furthermore, these dense forests are more 

susceptible to stand-replacing fires that lead to immediate losses of forest C stocks and are slow 

to recover the lost stocks due to low post-fire net ecosystem productivity (Kashian et al. 2006; 

Meigs et al. 2009). High-severity fires can therefore act as “tipping-point” disturbances in which 

centuries of accumulated C are rapidly lost, and the large magnitude of change to the ecosystem 

prevents the forest from fully recovering the lost C stocks (Adams 2013). Approximately half of 

ecosystem C in temperate forests is stored in soils (Pan et al. 2011), so understanding the impacts 

of fire and fire-management on soil C storage is important for managing forests for C 

sequestration and climate change mitigation (Birdsey et al. 2006). Here, I discuss the 

implications of my research on fire’s impacts on soil C storage and soil microbial communities 

for forest and fire management.  

My research shows soil C storage is lower in burned compared to unburned forest stands, 

likely due to forest floor mass loss, and this effect increases in magnitude with burn severity 
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(Fig. 1.3). High intensity soil heating also induces short-term increases in soil C mineralization 

and decreases C stored in microbial biomass (Table 4.1 and Fig. 4.3). Together, these results 

indicate that increased burn severity has negative impacts on soil C storage. However, despite the 

short-term effects of soil heating on mineral soil C, total mineral soil C storage does not vary 

among severity levels by three years post-fire (Fig 1.3), and, in fact, may be more stable (Table 

1.4). This indicates that recovery of forest soil C storage is primarily dependent on re-

accumulation of forest floor.  

The importance of forest floor for dictating post-fire soil C storage suggests that 

managing forests for vegetation recovery will have associated benefits on soil. I found that live 

tree coverage is substantially lower in high severity areas (Fig. 2.1d), and previous research has 

indicated that a negative relationship between severity and tree coverage is common in 

California mixed-conifer forests (Miller et al. 2016). Considered with my finding that forest floor 

mass is positively associated with live tree basal area (Fig. 2.4), this further supports the idea that 

vegetation management is necessary for achieving recovery of soil C storage in high burn 

severity areas. This has implications for both pre- and post-fire forest management. From a pre-

fire perspective, it suggests forest management practices designed to limit the incidence of high-

severity fires will have a positive impact on soil C storage. Severity-reduction treatments (e.g. 

prescribed fire, stand thinning, fuel removal) have been shown to have numerous positive 

outcomes, including promoting biodiversity, increasing water availability, and stabilizing 

aboveground C stocks (Stephens et al. 2020). Severity-reduction treatments stabilize 

aboveground C stocks by limiting tree mortality when wildfires burn treated areas, decreasing 

combustion emissions and allowing for post-fire photosynthetic C gains (Liang et al. 2018). My 

research suggests that the stabilizing effects of severity-reduction treatments may also apply to 



 

237 

 

soil C: lower fire severity leads to more C retained in forest floor and faster re-accumulation due 

to greater tree survival. Additionally, treatments that decrease soil heating (e.g. coarse woody 

debris removal) could have marginal benefits on soil C storage by limiting losses to soil C via 

microbial biomass loss and post-fire increases in C mineralization. Fire exclusion has led to 

forest floor accumulation in some forest stands, and prescribed fires in these areas could result in 

high intensity soil heating due to forest floor combustion. In these cases, prescribed fires may 

have a temporary negative impact on soil C storage, but, over the long term, could have a 

positive impact if prescribed fires lead to lower wildfire severity. 

From a post-fire perspective, my results suggest that management decisions designed to 

increase tree regeneration in areas of high burn severity could increase the rate of soil C 

recovery. Management strategies that promote C storage and are compatible with other goals 

such as forest restoration or timber production have been identified as integral for forest C 

management in the 21st century (Birdsey et al. 2006). Post-fire seedling planting may represent a 

management application with multi-faceted benefits by improving forest regeneration following 

wildfires (Ouzts et al. 2015), with corollary benefits on the recovery of soil C storage. Post-fire 

tree planting is controversial because successful establishment from these practices can be low, 

and dense plantations can promote high severity fires (Thompson et al. 2007; Ouzts et al. 2015). 

However, natural tree regeneration can be low or absent in areas of high burn severity due to 

poor site conditions and greater distance to seed sources (Crotteau et al. 2013; Feddema et al. 

2013; Lopez Ortiz et al. 2019), potentially precipitating a “state-change” shift to a different 

vegetation type (Barton 2002; Savage and Mast 2005; Roccaforte et al. 2012; Tepley et al. 2017). 

Due to negative impacts of high severity fire on natural forest recovery, the need for post-fire 

restoration is becoming increasingly recognized, especially during a critical 3-5 year post-fire 
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window when regeneration is most likely to be successful (Tepley et al. 2017; Stewart et al. 

2020). My research indicates that certain site conditions in areas of high burn severity may have 

a positive influence on artificial regeneration efforts. Shrub coverage was positively correlated 

with severity three years post-fire (Fig. 2.1f), and inorganic nitrogen concentrations were greater 

in areas of high burn severity at 1-3 years post fire (Fig. 1.5 and Table 3.1) Shrubs can positively 

influence regeneration by acting as “nurse objects” that improve soil microclimate conditions 

(Keyes et al. 2009), and greater nitrogen availability ameliorates nutrient limitation (Taboada et 

al. 2017). However, previous research has shown that elevated inorganic nitrogen in burned 

stands generally does not persist longer than approximately five years post-fire (Wan et al. 

2001). This suggests that artificial regeneration efforts are more likely to be successful in this 

timeframe, supporting arguments that the 3-5 year post-fire window is key for successful 

regeneration (Tepley et al. 2017; Stewart et al. 2020). By focusing restoration efforts in high 

severity areas with elevated nutrient concentrations and shrub coverage, forest managers could 

maximize the success of artificial regeneration efforts and increase the rate of soil C recovery.  

Changes to soil microbial communities could have consequences for post-fire forest 

management. Using phospholipid fatty acid (PLFA) analysis, I found that fungal biomass was 

negatively related to severity three years post-fire (Fig. 2.5a). The change in fungal biomass 

could reflect losses to ectomycorrhizal fungi, which are known to be sensitive to fire (Dahlberg 

et al. 2001; Holden et al. 2013). Loss of ectomycorrhizal fungi could negatively impact both 

natural regeneration and artificial restoration efforts because these fungi form symbiotic 

associations with conifer roots, improving nitrogen and phosphorus acquisition in exchange for 

carbohydrates (Heijden et al. 2015). This suggests that artificial regeneration efforts that use 

seedling transplants, which already have developed mycorrhizal networks, may be more 
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effective than direct seeding, which depend on an existing soil bank of ectomycorrhizal spores. 

Indeed, in situ mycorrhizal colonization decreases following fires (Dove and Hart 2017). 

Moreover, transplant of seedlings that have been inoculated with ectomycorrhiza has been shown 

to improve seedling performance during reforestation following a variety of disturbance types, 

including for post-fire restoration in Pinus pinaster stands (Policelli et al. 2020). 

Differences in soil bacterial communities in areas of high burn severity also highlight the 

importance of actively managing areas of high burn severity for forest regeneration and C 

recovery. The abundance of copiotrophic bacteria, which have higher nutrient requirements than 

oligotrophic bacteria (Fierer et al. 2007; Ho et al. 2017), was positively correlated with severity 

1-3 years post-fire (Figs. 2.6f and 3.3f). Plants and microbes compete for nutrients (Kaye and 

Hart 1997; Kuzyakov and Xu 2013), and the higher nutrient requirements of copiotrophic 

bacteria could result in increased competition between plants and microbes. Increased 

competition could decrease plant performance following fire, hindering natural forest 

regeneration and the recovery of both aboveground and soil C stocks. Additionally, copiotrophs 

exhibit faster decomposition rates than oligotrophs (Orwin et al. 2018), potentially leading to 

continued soil C losses in the years post-fire. This further highlights the importance of 

inoculating seedling transplants with ectomycorrhizal fungi, which improve the competitive 

ability of plants for nutrients.  

Overall, my results indicate that high burn severity has detrimental impacts on soil C 

storage and that microbial communities are altered in ways that could hinder natural forest 

recovery. Fortunately, these negative effects can be overcome by vegetation management 

practices that are already common in forest ecosystems, and the development of new soil-

specific management tools does not appear necessary. However, achieving recovery of soil C 
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storage in areas of high burn severity likely requires active forest management rather than relying 

on natural regeneration. 
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