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ABSTRACT

PRIVACY CHARACTERIZATION AND QUANTIFICATION IN DATA
PUBLISHING

By

Mohamed Hossam Afifi Ibrahim

The increasing interest in collecting and publishing large amounts of individuals’ data
to public for purposes such as medical research, market analysis and economical measures
has created major privacy concerns about their sensitive information. To deal with these
concerns, many Privacy-Preserving Data Publishing (PPDP) schemes have been proposed
in literature. However, they lack a proper privacy characterization. As a result, the existing
schemes fail to provide reliable privacy loss quantification metrics and thus fail to correctly
model the utility-privacy tradeoff.

In this thesis, we first present a novel multi-variable privacy characterization model.
Based on this model, we are able to analyze the prior and posterior adversarial beliefs about
attribute values of individuals. Then we show that privacy should not be measured based
on one metric. We demonstrate how this could result in privacy misjudgment. We propose
two different metrics for quantification of privacy loss. Using these metrics and the proposed
framework, we evaluate some of the most well-known PPDP techniques.

The proposed metrics and data publishing framework are then used to build a negotiation-
based data disclosure model to jointly address the utility requirements of the Data User
(DU) and the privacy and, possibly, the monetary requirements of the Data Owner (DO).
The data utility is re-defined based on the DU’s rather than the DO’s perspective. Based
on the proposed model, we present two data disclosure scenarios that satisfy a given privacy

constraint while achieving the DU’s required data utility level. The variation in a DO’s flat



or variable monetary rate objective motivates the data disclosure scenarios. This model fills
the gap between the existing theoretical work and the ultimate goal of practicality.

The data publisher is required to provide guarantees that users’ records cannot be de-
identified from datasets. This reflects directly on the levels of data generalization and tech-
niques by which data is anonymized. While Machine Learning (ML), one of the most rev-
olutionary technologies nowadays, relies mainly on data, it is unfortunate that the more
generalized the data is, the less accurate the ML model becomes. Although this is a well
understood fact, we lack a model that quantifies such degradation in ML models’ accuracy,
as a consequence to the privacy constraints. To model this tradeoff, we provide the first
framework to quantify, not only the privacy losses in data publishing, but also the utility
losses in machine learning applications as a result of meeting the privacy constraints.

To further expand our research and reflect its applicability to real industry applications,
the proposed tradeoff management framework is then applied on a large-scale employee
dataset from Barracuda Networks, a leader cybersecurity company. A privacy-preserving
Account Takeover (ATO) detection algorithm is then proposed to predict the fraudulence of
email account logins and thus detect possible ATO attacks. The results express variations
in models’ accuracy in binary classification of logins when trained on different datasets
that satisfy different privacy constraints. The proposed framework enables a data owner
to quantitatively manage the utility-privacy tradeoff and provide deeper insights about the

value of the released data as well as the potential privacy losses upon publishing.
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Chapter 1

Introduction

1.1 Overview

Nowadays, datasets are considered a valuable source of information for the medical research,
market analysis and economical measures. These datasets can include information about
individuals that contain social, medical, statistical, and customer data. Many organizations,
companies and institutions publish privacy related datasets. While the shared dataset gives
useful societal information to researchers, it also creates security risks and privacy concerns
to the individuals whose data are in the table. To avoid possible identification of individuals
from records in published data, uniquely identifying information such as names and social
security numbers are generally removed from the table. While the obvious personal identifiers
are removed, the quasi-identifiers such as zip-code, age, and gender may still be used to
uniquely identify a significant portion of the population since the released data makes it
possible to infer or limit the available options of individuals than would be possible without
releasing the table. In fact, [1,2] showed that by correlating this data with the publicly
available side information, such as information from voter registration list for Cambridge
Massachusetts, medical visits about many individuals could be easily identified. This study
estimated that 87% of the population of the United States could be uniquely identified using

quasi-identifiers through side information based attacks, including the medical records of the



governor of Massachusetts in the medical data.

Research on data privacy has purely been focused on privacy definitions, such as k-
anonymity, /-diversity, and t-closeness. These models only consider minimizing the amount of
privacy loss without directly measuring what the adversary may learn. There is a motivation
to find consistent measurements of how much information is leaked to an adversary by
publishing a dataset. Therefore, a privacy characterization model that is able to properly
analyze the existing data publishing techniques is essential. Moreover, while privacy rules
are inevitable, data owners will always seek a data disclosure model that can maximize data
utility within the frame of the imposed privacy rules. A data disclosure model that jointly
addresses the utility requirements of the Data User (DU) and the privacy and, possibly, the

monetary requirements of the Data Owner (DO).

1.2 Related Work

The spate of privacy related incidents has spurred a long line of research in privacy notions
for data publishing and analysis, such as k-anonymity, /-diversity and ¢-closeness, to name
a few [2H11]. A table satisfies k-anonymity if each quasi-identifier attribute in the table is
indistinguishable from at least k — 1 other quasi-identifier attributes; such a table is called a
k-anonymous table. While k-anonymity protects identity disclosure of individuals by linking
attacks, it is insufficient to prevent attribute disclosure with side information. By combining
the released data with side information, it makes it possible to infer the possible sensitive
attributes corresponding to an individual. Once the correspondence between the identifier
and the sensitive attributes is revealed for an individual, it may harm the individual and

the distribution of the entire table. To deal with this issue, ¢-diversity was introduced in [4].



(-diversity requires that the sensitive attributes contain at least ¢ well-represented values in
each equivalence class. As stated in [5], ¢-diversity has two major problems. One, is that
it limits the adversarial knowledge, while it is possible to acquire knowledge of a sensitive
attribute from generally available global distribution of the attribute. Another problem is
that all attributes are assumed to be categorical, which assumes that the adversary either
gets all the information or gets nothing for a sensitive attribute.

In [5], authors propose a privacy notion called t-closeness. They first formalize the idea of
global background knowledge and propose the base model t-closeness. This model requires
the distribution of a sensitive attribute in any equivalence class to be close to the distribution
of the attribute in the overall table (i.e., the distance between the two distributions should
be no more than a threshold ¢). This distance was introduced to measure the information
gain between the posterior belief and prior belief through the Earth Mover Distance (EMD)
metric [12], which is represented as the information gain for a specific individual over the
entire population. However, the value t is an abstract distance between two distributions that
does not have any intuitive relation to the privacy loss. Moreover, as we show in this thesis,
the distance between two distributions cannot be easily quantified by a single measurement.
t-closeness also has many limitations that will be described later. The state of the art PPDP
techniques will be further analyzed in more details in section [2.2.3] Our work is mainly
focused on datasets where only a single attribute is considered sensitive. In [13-19], models
for anonymizing datasets with multiple sensitive attributes are proposed.

Furthermore, many approaches have been proposed in literature to address the utility-
privacy tradeoff. Data anonymization under privacy and utility constraints has been intro-
duced in [20-22]. A threat model for protecting against specified inferences has been explored

in Pufferfish privacy [23] and Blowfish privacy [24]. Information theoretic approaches such



as quantifying the mutual information, have been introduced in [25H30|. These approaches
provide a better modeling of the tradeoff by incorporating the statistics of the dataset, as-
suming reasonable restrictions on the capabilities of the adversary, and modeling the side
information. However, as shown in [31], since they require learning the parameters of a
coding scheme by minimizing a loss function, these approaches lack the practicality when
dealing with real data. A machine learning approach to address the utility-privacy tradeoff
was presented in [32]. However, due to the lack of a proper utility and privacy characteri-
zation, we believe the used metrics do not provide a justifiable quantification of both utility
and privacy losses where they deal with the quantification as a single dimension problem.
Thus, the existing techniques of modeling the tradeoff are mostly either inapplicable or just

intuitive rather than practical.

1.3 Summary of Contributions

A summary of our thesis milestones and contributions is shown in Fig. [I.1]

1.3.1 Privacy Characterization and Quantification in Data Pub-
lishing

In this thesis, we begin by introducing our novel data publishing framework. The proposed
framework consists of two parts. First, we model attributes in a dataset as a multi-variable
model. Based on this model, we are able to re-define the prior and posterior adversarial beliefs
about attribute values of individuals. Then we characterize privacy of these individuals based
on the privacy risks attached with combining different attributes. This model is indeed a

more precise model to describe privacy risk of publishing datasets.



We contend that without a proper privacy characterization and quantification framework
it is impossible to address the potential privacy loss issues. Our proposed framework can
serve as an enabler to address the privacy losses for big data publishing [33}34]. Having a
solid framework for privacy characterization and quantification is indeed the first step on the
track to tackle these issues. It also enables the big data publisher to determine the tradeoft
between data utility and privacy losses.

For a given dataset, before it is released, we want to determine to what extent we can
achieve privacy. Therefore, we introduce a new set of privacy quantification metrics to
measure the gap between prior information belief and posterior information belief of an
adversary, from both local and global perspectives. Specifically, we introduce two privacy loss
metrics: distribution loss and entropy loss. We discuss the rationale for these two metrics and
illustrate their advantages through examples and simulations on US Adult Census dataset.
We show how considering only one metric ignoring the effect of the other leads to insufficient
privacy quantification. In fact, we show that distribution and entropy loss are two distinct
metrics. We show that a minimized distribution loss between sensitive attribute values
distributions of the original and the published datasets does not essentially achieve the
minimum entropy loss that an adversary could gain. We believe that for a published dataset

to achieve better privacy, both metrics have to be taken into consideration.

1.3.2 UBNB-PPDP: Utility-Boosting Negotiation-Based Privacy
Preserving Data Publishing

Based on our privacy characterization and quantification framework we propose a practical

data disclosure model that introduces data utility as a function of the DU’s requirements,



namely, attributes of interest. The model incorporates a negotiation process between the DO
and the DU in order to reach a data disclosure deal. The DU represents their requirements as
utility patterns of the attributes of interest while the DO’s requirements are represented as
generalization policies. Based on this model we propose two Utility-Boosting Negotiation-
Based Privacy Preserving Data Disclosure (UBNB-PPDD) protocols that are guided by
the DO’s objective. The protocols provide a set of rules for the communication sessions
between the DO and the DU in order to reach a data disclosure deal. The first protocol
manages a negotiation process to disclose any generalized dataset that matches the DU’s
utility requirements and meanwhile satisfies the DO’s privacy constraints. In the second

protocol, the DO links the utility level of the disclosed dataset to a profit function.

1.3.3 Privacy Preserving Data Publishing for Machine Learning
Applications

The appealing need for privacy measures has imposed various constraints on data pub-
lishing. The data publisher is required to provide guarantees that users’ records cannot
be de-identified from datasets. This reflects directly on the levels of data generalization
and techniques by which data is anonymized. While Machine Learning (ML), the most
revolutionary technology nowadays, relies mainly on data, it is unfortunate that the more
generalized the data is, the less accurate the ML model becomes. Although this is a well
understood fact, we lack a model that quantifies such degradation in ML models’ accuracy,
as a consequence to the privacy constraints. In this thesis, we provide the first framework to
quantify, not only the privacy losses in data publishing, but also the utility losses in machine

learning applications as a result of meeting the privacy constraints.
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1.3.4 Privacy Preserving ATO Detection

Furthermore, we apply the proposed framework on a large-scale employee dataset from Bar-
racuda Networks, a leader cybersecurity company, to predict the fraudulence of email account
logins and thus detect possible Account Takeover (ATO) attacks. The results express varia-
tions in models’ accuracy in binary classification of logins when trained on different datasets
that satisfy different privacy constraints. The proposed framework enables a data publisher
to quantitatively manage the utility-privacy trade-off and provide deeper insights about the

value of the released data as well as the underlying privacy losses.



1.4 Thesis Organization

The rest of the thesis is structured as follows. In Chapter [2], we present the proposed privacy
characterization. The proposed privacy quantification metrics are provided in Chapter 3]
In Chapter [d, we introduce our utility loss metrics that enable us to formalize the utility-
privacy tradeoff problem based on our data publishing model and propose a utility-boosting
negotiation-based PPDP model. The utility-privacy tradeoff management framework for
machine learning applications and a privacy preserving ATO detection model are proposed

in Chapter b Finally, the thesis is concluded and future work is provided in Chapter [0}



Chapter 2

The Proposed Publishing Model and

Privacy Characterization

2.1 Introduction

All previous approaches to characterize and quantify privacy have only investigated the
privacy risks of publishing a sensitive attribute by focusing only on the change of belief
of an adversary about the probability distribution of this attribute. However, we believe
that any attribute by itself is not sensitive. The sensitivity of an attribute comes from
combining it with other attributes. For example, cancer in a medical records dataset, and
high or low salaries in an employees dataset, are not sensitive unless they are linked to a
certain geographical area, age-range, or race. To obtain a meaningful definition of data
privacy, it is necessary to characterize and quantify the knowledge about sensitive attributes
that the adversary gains from observing the published dataset taking into consideration the
combinational relation of different attributes. In our approach to characterize privacy, we
employ a multi-dimensional scheme of privacy risk analysis attached with combining different
attributes. Thus, in this chapter, after providing some essential preliminaries in Section [2.2]

we introduce our combinational characterization of privacy in Sections [2.3] 2.4 and 2.5



2.2 Preliminaries

In this section, we provide some technical background about the privacy preserving data
publishing. We start by introducing the data publishing scenarios and explain how data
is generally published. We then discuss different types of attacks on published datasets.

Finally, a detailed analysis of the state-of-the-art existing PPDP techniques is presented.

2.2.1 Data Publishing

Privacy-Preserving Data Publishing Datasets publishing naturally consists of two
phases. Different parties first collect data from record owners in a phase known as the data
collection phase. It is then managed by the data publisher and released in a phase known as
the data publishing phase. This data is published to a certain data recipient for the purpose
of data mining or to the public for the purpose of providing useful societal information that
could be utilized in different areas including research.

Data is commonly published in two models, untrusted and trusted model. In the un-
trusted model, the data publisher attempts to extract or manipulate sensitive information
about record owners. To avoid such attempts, record owners apply cryptographic operations
on the published data to prevent the publisher from accessing sensitive information. In the
trusted model, the data publisher is assumed to be honest. In this model, record owners are
not concerned about exposing their records, including the sensitive information, to the pub-
lisher. However, when data is released to the public, the publisher guarantees that sensitive
information or identity of the record owner is not revealed to any possible adversary.

Utility-privacy Tradeoff Data utility is in a natural conflict with data privacy. It is

trivial that, from the perspective of data utility, it is best to publish a dataset as is, while

10



from the perspective of data privacy, it is best to publish a mostly generalized dataset or
even an empty one. Although this is easy to understand, as far as we know, including the
information theoretic approaches proposed in [25] and [35], there is not yet a tight closed
form relationship that fully model the utility-privacy trade off. We believe that the first step
on the track of finding such a relationship is to better characterize and quantify both sides
of the trade off. We note that the importance of studying data utility is undeniable and of
great value as it definitely contributes to resolving the tradeoff modeling. In this thesis, we
focus on providing more precise and practical approaches to quantify both data privacy and
data utility and, in turn, lay out a reliable modeling of the tradeoff.

Data Disclosure Model Data is usually released in the format of tables, where the rows
are the records of individuals and columns are their corresponding attributes. Some of the
attributes are for information only and are not sensitive, while other attributes are individual
sensitive attributes. For the information that is not being viewed as sensitive, when multiple
records or maybe side information are combined, the individual maybe potentially identified.
These attributes are generally referred to as quasi-identifiers, which may include information
such as Zip — Code, Age, and Gender. The sensitive information may include attributes
that can uniquely identify the individuals such as the social security or the driving license
numbers. These attributes are called explicit-identifiers. Another type of information being
considered sensitive may include information such as Disease and Salary. When datasets
are published, all explicit-identifiers are removed. Sensitive attribute disclosure occurs when
the adversary learns information about an individual’s sensitive attribute(s). This form of
privacy breach is different and incomparable to learning whether an individual is included
in a database, which is the focus of differential privacy [36].

Differential Privacy Since differential privacy has been grabbing a lot of attention

11



recently in the data privacy world, we would like to emphasize more on the irrelevance of our
work to differential privacy efforts. Differential privacy is a classic privacy notion that has
been widely investigated in literature. Although differential privacy has been attracting a lot
of attention in the research community, there is a fundamental difference between the differ-
ential privacy and the syntactic privacy models such as k-anonymity, ¢-diversity, t-closeness,
as well as our proposed work, which focus on protecting sensitive attribute disclosure, while
the goal of differential privacy is membership privacy.

In PPDP, once the data is published, it is available for any type of analysis, which is
mainly targeted by syntactic privacy models. A typical scenario of PPDP is the impatient
data release for public research purposes. A hospital possesses the data and is responsible
for the privacy of patients participating in the dataset. The hospital’s goal is to publish
privacy preserving data regardless what kind of analysis or querying will be later applied to
it.

Differential privacy models, on the other hand, typically target Privacy Preserving Data
Mining (PPDM) [37-40]. In PPDM models, a data user aims at performing some data
mining task on a set of private databases owned by different parties. The general idea of
PPDM is to allow data mining from a modified version of the data that contains no sensitive
information. In PPDM, as opposed to PPDP, the query that needs to be answered must be
known prior to applying the privacy-preserving techniques. In the typical PPDM scenario,
the data owner maintains control over the data and does not publish it. Instead, the owner
responds to queries on the data, and ensures that the answers provided do not violate the
privacy of the data subjects. In differential privacy, this is typically achieved by adding noise
to the data, and it is necessary to know the analysis to be performed in advance in order to

adjust the level of added noise. This approach contradicts with the main objective of data
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publishing. In contrast, PPDP techniques ought to make the published data less precise
than the original data but semantically truthful and hence preserve the integrity of the data.

In conclusion, syntactic privacy models are suitable for PPDP while differential privacy
models are suitable for PPDM.

Generalization and Anonymization As the original dataset contains abundant in-
formation that could help an adversary link records to certain individuals, datasets are not
published before being modified. Modifications could be accomplished in many ways. In gen-
eral, all modifications are listed under the anonymization operations. These operations might
be in the form of generalization, suppression, anatomization, permutation, or perturbation.
Values of quasi-identifiers are somehow relaxed in case of generalization, or suppressed in
case of suppression, to increase the range of individuals that carry the same quasi-identifier
values and therefore increase the uncertainty of a possible adversary about certain individ-
ual’s record [41-48]. On the other hand, anatomization and permutation operations achieve
anonymization by dissociation of quasi-identifiers and sensitive attributes [49-52]. Pertur-
bation mainly adds some noise to the whole dataset based on the statistical properties of
the original data [53-57].

However, unlike statistical databases [50,58|, publishing individuals’ data, also known
as micro-data, requires that data remains intact after being released. Therefore not all the
previously mentioned techniques are good candidates for anonymization of micro-data. To
keep data intact, and as much useful as possible, it is obvious that, in most scenarios, only
generalization and suppression operations could be applied in privacy-preserving micro-data

publishing techniques.
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2.2.2 Attacks on Datasets

Generally, there are two types of attacks on datasets, record linkage and attribute linkage.
The record linkage occurs when some values of quasi-identifier attributes can lead to the
identification of a smaller number of records in the published dataset. In this case, an
individual having these attribute values is vulnerable to being linked to a limited number of
records. On the other hand, attribute linkage occurs if some sensitive values are predominate
in a group, where an attacker has no difficulty to infer such sensitive values for the record
owner belonging to this group.

Attribute linkage mainly consists of two types, homogeneity and background knowledge
attacks. In homogeneity attacks, anonymization model may create groups that leak informa-
tion due to lack of diversity in the sensitive attribute. In fact, some anonymization process is
based on generalizing the quasi-identifiers but does not address the sensitive attributes that
can reveal information to an attacker. In background knowledge attacks, an attacker can
have prior knowledge that enables him to guess sensitive data with high confidence. These
kinds of attacks depend on other information available to an attacker. Using this back-
ground knowledge, an adversary can disclose information in two ways, positive and negative
disclosure. In positive disclosure, an adversary can correctly identify the value of a sensitive
attribute with high probability. On the other hand, in negative disclosure, the adversary can
correctly eliminate some possible values of sensitive attribute with high probability. We also
note that a background knowledge attack is difficult to prevent as compared to homogeneity
attack.

In the next subsection we introduce a thorough analysis of the existing privacy-preserving

data publishing techniques that attempt to combat these types of attacks on privacy.
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2.2.3 Analysis of the Existing PPDP Schemes

In order to protect data privacy from different attacks, many privacy-preserving techniques
and strategies have been proposed to meet different individual’s privacy and utility require-
ments. All privacy-preserving techniques typically aim at protecting individual privacy, with
minimizing impact on published data utility. k-anonymity, ¢-diversity, and t-closeness are
the techniques of most interest. In this section, to get an idea of how they overcome different
attacks, we provide an overview of these privacy-preserving data publishing techniques. We
discuss the design models for each technique, provide examples of how and to which extent

privacy is achieved, and analyze their limitations.

2.2.3.1 k-anonymity

A table satisfies k-anonymity if every record in the table is indistinguishable from at least
k — 1 other records with respect to every set of quasi-identifier QID attributes; such a table
is called a k-anonymous table. To satisfy this condition, the original table is generalized
before being published. The generalized table forms groups with combinations of values of
quasi-identifiers. Each group is named as an equivalence class [C] and individuals within
this class share the same combination of quasi-identifiers. Hence, for each combination of
these values of the quasi-identifiers in the k-anonymous table, there are at least k records
that share those values.

The idea of k-anonymity was proposed to combat record linkage attacks. An adversary
who knows only the quasi-identifier values of one individual cannot identify the record cor-
responding to that individual with confidence greater than 1/k. In [49,59,60], authors show
that k-anonymity adds some protection against record linkage where it restricts the record

linkage threats to a certain level. However it does not provide sufficient protection against
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Table 2.1: Original table

ZIP Code | Age Disease
1 47677 29 | Heart Disease
2 47602 22 | Heart Disease
3 47678 27 | Heart Disease
4 47905 43 Flu
5 47909 49 | Heart Disease
6 47906 47 Cancer
7 47605 30 | Heart Disease
8 47673 36 Cancer
9 47607 32 Cancer

Table 2.2: A 3-anonymous version

ZIP Code | Age Disease
1 476** 2* | Heart Disease
2 476%* 2* | Heart Disease
3 476%* 2* | Heart Disease
4 4790%* > 40 Flu
5 4790* > 40 | Heart Disease
6 4790* > 40 Cancer
7 476%* 3* | Heart Disease
8 476%* 3* Cancer
9 476** 3* Cancer

attribute linkage. k-anonymity is proved to be vulnerable against the homogeneity attack

and the background knowledge attack.

Example 1 (Homogeneity and Background Knowledge Attacks). Table represents the
original data table and Table is an anonymized version of it satisfying 3-anonymity. The
Disease attribute is sensitive. Suppose Alice knows that Bob is a 27-year old man living in
Zip — Code = 47678 and Bob’s record is in the table. From Table[2.2] Alice can conclude that
Bob is the owner of one of the first three records, and thus, must have Heart — Disease. This
is the homogeneity attack. For an example of the background knowledge attack, suppose
that by knowing Carl’s Age and Zip — Code, Alice can conclude that Carl corresponds to

a record in the last equivalence class in Table 2.2 Furthermore, suppose that Alice knows
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that Carl has a very low risk for Heart — Disease. This background knowledge enables Alice

to conclude that Carl most likely has Cancer.

To address the limitations of k-anonymity, [59] introduced ¢-diversity as a stronger notion

of privacy.

2.2.3.2 [(-diversity

An equivalence class is said to have (-diversity if there are at least ¢ well-represented values
for the sensitive attribute. A table is said to have f-diversity if every equivalence class of
the table has (-diversity. [59] gave a number of interpretations of the term well-represented.
The simplest understanding of well-represented would be to ensure that there are at least ¢
distinct values for the sensitive attributes in each equivalence class.

(-diversity represents an important step beyond k-anonymity in protecting against at-
tribute linkage. However it has several limitations and vulnerabilities to different attacks.
First of all, distinct ¢-diversity does not prevent probabilistic inference attacks. An equiva-
lence class [C] may have one attribute value that appears more frequent than other values.
This enables an adversary to conclude that an individual u in [C] is very likely to have that
value. Therefore, [59] introduced more restrictive versions of ¢(-diversity such as entropy /(-
diversity and recursive (c, £)-diversity. These versions add more constraints on the published
dataset. Thus, depending on the original dataset, the published dataset that satisfies these
constraints may not always be achievable. Moreover (-diversity is susceptible to attacks such
as skewness and similarity attacks. We now briefly introduce these two attacks on ¢-diversity
using examples from [5].

When the overall distribution is skewed, satisfying the ¢-diversity does not prevent at-

tribute linkage. Consider the following example:
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Example 2 (Skewness Attack). Suppose that the original dataset has only one sensitive
attribute, which is the test result for a particular virus. The virus takes two values either
positive or negative. For a table that has 10,000 records, with 99% of them being negative
and only 1% being positive. To satisfy distinct 2-diversity, any equivalence class [C] must
carry the two attribute values. If one of the equivalence classes has an equal number of
positive and negative records, although it is 2-diverse, it presents a serious privacy risk. Any
individual in this class has probability 50% to be infected compared to a 1% of the whole
original population. Now, consider another extreme case. An equivalence class that has 49
positive records and only 1 negative record. Any individual in the equivalence class is 98%

positive, compared to 1% of the whole original population.

When the sensitive attribute values in an equivalence class are distinct but semantically

similar, an adversary can learn important information. Consider the following example:

Example 3 (Similarity Attack). In the original Table[2.3/and an anonymized version satisfy-
ing distinct 3-diversity Table [2.4] consider Salary and Disease as the two sensitive attributes.
An adversary is interested in finding the sensitive attribute value of an individual u. Based on
the quasi-identifier values of u, an adversary is able to determine that the individual belongs
to the first equivalence class. Therefore they know that their salary is in the range [3K, 5K].
This also applies to categorical attributes such as the Disease. The adversary would also
know that the individual of interest indeed has a stomach-related disease. This loss of sensi-
tive information occurs because ¢-diversity does not take into account the semantic closeness

of attribute values.

To prevent such attacks, authors in [5] proposed a privacy model, known as t-closeness.
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Table 2.3: Original dataset

Zip Code | Age | Salary Disease
1 AT677 29 3K gastric ulcer
2 47602 22 4K gastritis
3 47678 27 5K stomach cancer
4 47905 43 6K gastritis
5 47909 52 11K flu
6 47906 47 SK bronchitis
7 47605 30 K bronchitis
8 47673 36 9K pneumonia
9 47607 32 10K stomach cancer
Table 2.4: A 3-diverse version
Zip Code | Age | Salary Disease
1 476%* 2% 3K gastric ulcer
2 476%* 2% 4K gastritis
3 A76%* 2% 5K stomach cancer
4 4790* > 40 6K gastritis
5 4790%* > 40 11K flu
6 4790%* > 40 8K bronchitis
7 476%* 3* 7K bronchitis
8 476%* 3* 9K pneumonia
9 476%* 3% 10K | stomach cancer
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Table 2.5: 0.167-closeness w.r.t. Salary and 0.278-closeness w.r.t. Disease

Zip Code | Age | Salary | Disease
AT6T* <40 3K gastric ulcer
4767* < 40 5K stomach cancer
4767* <40 9K pneumonia
4790* > 40 6K gastritis
4790%* > 40 11K flu
4790%* > 40 8K bronchitis
4760* <40 4K gastritis
4760%* <40 K bronchitis
4760%* <40 | 10K | stomach cancer

© 00 O UL ix|Ww N =

2.2.3.3 t-closeness

An equivalence class is said to have t-closeness if the distance between the distribution of a
sensitive attribute in this class and the distribution of the attribute in the whole table is no
more than a threshold . A table is said to have t-closeness if all equivalence classes have
t-closeness. The distance used in this publishing technique is the Earth Mover’s Distance
(EMD). EMD is simply the minimal amount of work needed to transform one distribution
to another by moving distribution mass between each of them. Table [2.5| shows another
anonymized version of Table that has 0.167-closeness w.r.t. Salary and 0.278-closeness
w.r.t. Disease. The similarity attack is prevented in Table where, Revisiting Example [3]
Alice can neither infer that Bob has a low salary nor he has a stomach-related disease.

As we previously mentioned, in ¢-closeness the value of ¢ lacks any practical interpretation.
In other words, we can hardly find any relation between ¢ and the privacy loss. In k-
anonymity and ¢-diversity, given a k or ¢ value, the data publisher will have some intuition
on its practical meaning in the real application and hence can effectively choose k£ and
¢ values to process the dataset. Unlike k-anonymity and /¢-diversity, in t-closeness, the
value t is merely an abstract distance between two distributions, that could have different

meanings in different contexts. t-closeness also has several other limitations and weaknesses
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[61]. First, it does not offer the flexibility of having different protection levels for different
sensitive attribute values. Second, the EMD function, used to measure the distance between
distributions, is not suitable for protection against attribute linkage on numerical sensitive
attributes [62]. Third, as the case for (-diversity, enforcing t-closeness would greatly affect
the data utility where it requires the distribution of sensitive attribute values to be the same
in all ¢ equivalence classes. This would significantly damage the correlation between the
set of quasi-identifiers QID and sensitive attributes. Finally, and the most important, we
believe that the distance ¢t measured as the EMD is unreliable to quantify the amount of
privacy loss. More specifically, if we have two published tables T { and T: 2’ with ¢1 < to, then
table T 1’ is not necessarily more privacy-preserving than 7: 2’ In other words, two published
classes might have the same EMD distance relative to an original distribution, however they

correspond to different levels of privacy loss. Consider the following example:

Example 4. A medical dataset has the Disease as a sensitive attribute. Distribution of
attribute values Cancer, Heart-Disease and Flu in the original table is (0.1,0.5,0.4). The
published table is divided into two equivalence classes, denoted as [C7] and [C3]. In [Cq],
distribution of attribute values is given as (0.2,0.4,0.4), while in [Co] the distribution is
(0,0.6,0.4). This table achieves an 0.1-closeness w.r.t. Disease. Although the EMD in the
two equivalence classes is the same, it is obvious that attribute values of individuals in [C5]

are more prone to be inferred.

In section [3.4] supported by an analyzed example on ¢-closeness, we show how our pro-

posed privacy metrics enable us to deliberately characterize and quantify this loss.
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2.3 Generalization Model

In our privacy characterization we assume that any individual in a given table T" only owns
one record. Thus we, interchangeably, use the notion u to represent the record or the record
owner. Let U = {un}fyzl be N individuals participating in the data table T\, A = {AZ}ZL:1
be the set of L attributes, and up[A;] be the value of attribute A; for individual u,. We
denote the set of quasi-identifiers as QID C A. We also assume that any record is represented
as a function of multi-variables V' = {'UZ}ZL:p where V' corresponds to the set of attributes
A= {AZ}ZL:1 in the original dataset. The order of each variable v;, denoted as ord(v;) = |v;],
is the number of all possible attribute values.

To satisfy the privacy constraints, data disclosure techniques apply some generalizations
to the quasi-identifiers QIDs to avoid linking individuals to records in the table. Any value in
the original table is mapped to a generalized value in the disclosed table following a certain
mapping function. Records are generalized and represented as functions of multi-variables
V= {vg }lel’ where V' is the generalization of V. The order of each generalized variable vl/ is
defined as ord(v]) = ‘vﬂ After generalization, different combinations of v)’s in the disclosed
table T/ naturally divide the table into a set C = {[Cq]}qul of @ equivalence classes.

Consider two tables (T, T"), their corresponding attributes (V, V') and a mapping function

f: T — T'. We define table generalization as follows:

Definition 1 (Table Generalization). For (T,7”) and (V,V’), table generalization is a
mapping f : T — T’ that maps any table T to a table T'. This mapping function implies

the following properties
e Value Mapping: Vv; € T and v; € T', any value u[v;] in T' is mapped to u'[v]] in T".

e Record Mapping: For the twosets V = {vy,v9,--- ,vr} € Tand V' = {U’l,vé, e ,U'L} €
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T’, any record u[V] in T is mapped to «/[V'] in T".
e For any variable v; and its generalization vf, it always holds that ord(v;) > ord(v)).

o After generalization, different combinations of v{ s in the published Table 7" naturally

divide the table into a set C = {[C1],[C3],- - - , [Cg]} of @ equivalence classes.

Table generalization, represented in the mapping function, is the tool that controls privacy
level of individuals and data utility of the published dataset. This mapping function is the
key for designing any data publishing technique. Furthermore, privacy loss is directly linked
to the combination of different variables. Hence, any publishing technique should consider
the privacy risk attached with the combination of any of these variables.

Publishing a table 7" gives different privacy risks for each combination of the generalized
variables < v;,v;- >. For example, < Age, Disease > mapped to < v],vh > is a combination
of two variables that represents privacy risk of individuals of specific Age (age-range) and
suffering from a specific Disease, while < Zip — Code, Salary > mapped to < vé,vﬁl > is
a combination that represents privacy risk of individuals living at a certain geographical
area and are paid certain salary. Similarly, < Age, Zip — Code, Salary, Disease > mapped to
< v’l,vé,vfpvé > represents the risk of individuals with certain Age U’l, living at certain
location with Zip — Code Ué, suffering from Disease vé and are paid an annual Salary vﬁl. As
the number of combined variables increases, the privacy risk of an individual increases and
it would be easier for an adversary to identify an individual of interest from the published

table. The order of any combination of variables could be easily derived as ngl |vﬂ, where

t is the number of combined variables.
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Figure 2.1: Our privacy and utility characterization approach
2.4 The Adversarial Prior and Posterior Beliefs

The adversary is given the published table 7" generated from an original table T', and
assumed to know quasi-identifier values u[QID] of an individual u of interest. The individual
of interest is assumed to be in the table with probability 1. Hence, the membership disclosure
problem, i.e., learning whether a given individual is present in the published dataset, is a

different, incomparable privacy property and is out of the scope of this thesis.

2.4.1 The Adversarial Prior Belief

In our approach of characterizing privacy, shown in Fig. [2.1] an adversary is generally
assumed to be aware of all the public information that might be available. Therefore, an
adversary is believed to possess the original distribution of all the attributes. Moreover, for
a dataset with L attributes, while some attributes are entirely independent, others could be
correlated. Thus, an adversary possibly has an estimate of the joint distributions of these
attributes. We now introduce the definition of the adversarial prior belief, that is the general

public belief of all the distributions of attributes combinations.

Definition 2 (Adversarial Prior Belief). For the set of attributes A = {Aq, Ao, --- , A}
mapped to variables V' = {vy,vg, -+ ,vp}, an adversarial prior belief is modeled as

Original Distribution of Attributes: Vu; € V, the original distribution of any
random variable v; given as av; s previously known by an adversary.

Estimated Conditional Distribution of Attributes: Vv; € V, an estimate of the
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conditional distribution 0, of any combination of random variables is previously known

by an adversary and is defined as

aUZ',’Uj = p(vi‘vj)a hj=1,--,L,

~ P(v; Nvj) = : : . .
where P(v; [v;) = PO and P(v; M v;) is the estimated joint probability of any two

attribute values.

For example, the distribution of a population over attributes such as Gender, Age and
Disease is publicly available. Typically, within any geographical location, information such
as percentage of males and females, percentages of individuals lying in a specific age-range
and percentage of population suffering from a specific disease, are considered as adversarial
prior information. Moreover, based on general trivial information, an adversary could have
a very good estimate of joint distributions of some attributes. For instance, individuals
suffering from a disease such as Breast Cancer are generally much more likely to be females,
while individuals suffering from diseases such as Alzheimer and Arthritis are more likely to be
above 60. Similarly, individuals living in a richer neighborhood are more likely to be paid

higher salaries.

2.4.2 The Adversarial Posterior Belief

We believe that any adversarial model should take such information into consideration.
Consequently, any privacy quantification approach that ignores this adversarial knowledge
is not precise and lacks sufficiency. Any further information gained by an adversary after
observing a published table is considered privacy loss and is represented as the adversarial

posterior belief and is defined as follows,
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Definition 3 (Adversarial Posterior Belief). In a published table 77, for the set of
attributes A = {Aj, Ag, -, A} mapped to variables V' = {v], v}, - - ,U}J}, an adversarial
posterior belief is modeled as

Published Conditional Distribution of Attributes: VUZ/- € V, the conditional dis-
tribution z ;s of any combination of random variables is defined as

7]

xvgﬂ}; = P(vg | vé-),i,j =1,---,L,

Il
P(viﬂvj)

where P() | v;) = 50
J

and P(v) N vé) is the published joint probability of any two

attribute values.

As any published table 77 is eventually formed of a subset of all possible combinations

of generalized attributes v}, each of these combinations represents an equivalence class [Cy].

While Qv 0, and x s s represent the prior and posterior beliefs of an adversary about an
7]

attribute v; given an attribute v;. We are generally interested in Qy, [Cy] and xvf,[(]q]’ that

are the prior and posterior beliefs of an adversary about an attribute v; given a combination

of generalized attributes represented in the specific class [Cy] they form.

2.5 Defining Privacy Loss

The goal of any privacy-preserving technique is to minimize the privacy loss between prior
and posterior belief as much as possible while maintaining a sufficient level of published data

utility. As shown in Figure [2.2] we define this loss as the conditional privacy loss.

Definition 4 (Conditional Privacy Loss). The privacy loss of an individual u belonging

to an equivalence class [Cy] with respect to an attribute v; is the amount of information

26



15! state of knowledge 274 state of knowledge
a > x
Publicly known

distributions of attributes
in original dataset T

Access granted to the
published dataset T”

Figure 2.2: Definition of privacy loss

gained by an adversary represented as the change of the belief after publishing the table 7”.
This loss Lp(v;|[Cy]) is typically the change of an adversarial belief about an attribute’s

distribution from Uy, [Cy] to Ty, [Cql-

Consider, an original table T" having only 100 records described over two attributes, Age

and Disease. If P(5*) = zlp P(Cancer) = 1% and an adversary has an estimate of their

joint probability to be P(Cancer N 5%) = flm, then the estimated conditional probability
P(Cancer | 5%) = % = % However, in the published table T”, the adversary

observes that the published joint probability P(Cancer N 5x%) = 7 , which gives the published
conditional probability P(Cancer | 5%) = % = % Now an adversarial belief
about individuals of the age-range (5%) and suffering from Cancer has changed from a prior
belief of 16/100 to a posterior belief of 28/100. This change of belief is the amount of
information gained by an adversary. That is, the amount of privacy loss of individuals in a
specific class (5%) and having a certain attribute value (Cancer). Similarly we can find the
privacy loss of individuals having other attribute values (other diseases) within the same

class. One of our goals is to precisely quantify this loss. In the next chapter, we propose two

privacy metrics that are able to measure privacy loss from two different perspectives.
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We reemphasize that in our privacy quantification approach we only consider the loss
between the two knowledge states. For example, let 10% of the individuals in a medical
record’s table T have HIV. If at the second state of knowledge, the adversary finds that an
individual uy, has HI'V with probability 10%, the information loss for this scheme should be
0 since this sensitive attribute’s distribution is always considered public. Based on this, we

introduce a generic definition of privacy-preserving data publishing as follows.

Definition 5 (Privacy-Preserving Data Publishing). Let A = {A{, Ay,--- AL} be
the set of all attributes. A published table T is said to be privacy-preserving for set of

individuals U = {uy,u9, - ,upn} if for any individual u,, € U:

p(un[v)]) = p(un[v)] | T"), n=1,--- N, l=1,--- L,

where each u, € U represents an individual from the population, p(uy[v;]) denotes the
probability of u, on attribute v; and p(up[v]]|T’) denotes the conditional probability of

up[vy] after the table T is published.

In this definition, for a published table 7" to be considered as privacy-preserving, the
publishing technique strictly prohibits any privacy loss in the published data. While this
conservative definition is practically impossible to achieve, any publishing technique should
attempt to be as close as possible to achieve it. Privacy loss should, therefore, be quantified

to be able to decide how far any given published data is from being privacy-preserving.
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2.6 Summary

In this chapter, we introduced a comprehensive characterization of privacy to pave the way
for solving the problem of privacy quantification in privacy-preserving data publishing. In
order to consider the privacy loss of combined attributes, we presented data publishing as a
multi-relational model. We re-defined the prior and posterior beliefs of the adversary. The
proposed model and adversarial beliefs contribute to a more precise privacy characterization

and quantification.
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Chapter 3

The proposed Privacy Quantification

Metrics

3.1 Introduction

There is an immense amount of existing privacy loss quantification metrics in literature [7].
The state-of-the-art approaches to measure privacy can be mainly sub-categorized into un-
certainty, information gain or loss, similarity and diversity, and indistinguishability met-
rics [63,64]. Uncertainty metrics measure the uncertainty in the adversarial estimate. The
more uncertain the adversary is, the higher the achieved privacy in the published dataset.
Information gain or loss metrics quantify the amount of information gained by the adver-
sary, or the amount of information lost by users after data publishing. High adversarial
gain and high user’s loss of information corresponds to low privacy. Similarity and diversity
metrics measure the similarity or diversity between the original and the published dataset.
High similarity or low diversity between the two datasets corresponds to low privacy. Indis-
tinguishability measures the ability of an adversary to distinguish between two outcomes of a
privacy preserving data publishing technique. Privacy is high if it is hard for an adversary to
distinguish between any pair of outcomes. Examples of such metrics are differential privacy,

computational privacy, and distributed differential privacy [65].
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In this chapter, we introduce our privacy loss quantification approach. Based on this ap-
proach we propose two different loss metrics. We explain the intuition behind these metrics,
prove their correctness, and describe how they successfully contribute to the quantification
of different privacy loss instances. We also define the threshold conditions to these metrics
in order to be further used in the utility-privacy tradeoff problem formulation. Finally, we
show the effectiveness of the proposed privacy characterization and quantification metrics

through extensive empirical analysis and simulations results.

3.2 The Intuition Behind the Proposed Metrics

Our approach to quantify privacy mainly depends on understanding when information loss
happens and how this loss could be measured. To have a better understanding of when
loss occurs, we revisit the two states of knowledge of an adversary before and after a table
T is published. At the first state of knowledge, based on public information of sensitive
attribute’s distribution, an adversary has some prior belief about the attribute value of an
individual. This prior belief is in the form of probability distributions of attributes and
joint distributions of their combinations. After publishing the table, an adversary moves to
the second state of knowledge to gain some more information about the individual. This
amount of information is the loss that we need to capture where it enables us to measure the
extent to which this data publishing model minimizes privacy loss. We now analyze this loss
and find a set of appropriate metrics that contribute to a better quantification of privacy
represented in the amount of uncertainty an adversary has about an individual’s sensitive
attribute value after a table is published.

Before we introduce our two proposed privacy quantification metrics, namely, distribution
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loss and entropy loss, we show the reason behind adopting these metrics.

The intuitive expectation of the proposed metrics is to compute the change in the data
user’s belief about an individual’s sensitive attribute value before and after data disclosure.
To find suitable metrics, we seek the distance measures based on two criteria. First is the
sensitivity meaning that the metric should be sensitive to variations in the distributions.
Second is the independence meaning that the metrics should be independent. That is, if two
metrics independently measure the distance between two distributions, they both contribute
to two different types of losses. As shown in Fig. [3.1], the Ly and the Euclidean distances
are the most sensitive metrics in comparison to others. However, the L distance has the
problem of not being robust under simple transformations such as rotation of the coordinate
system. Therefore, it is not a good metric so we choose the Euclidean distance as our first
distance metric. From Fig. we can also see that entropy distance is the only metric that
is independent of the other metrics which makes us speculate that the entropy loss metric
will potentially account to some privacy loss instances that other metrics fail to represent.
This qualifies it to be our second adopted metric.

We now introduce these two proposed privacy metrics and show how they are able to

quantify the privacy loss from two different perspectives.

3.3 The Proposed Privacy Quantification Metrics

Let S = {s;}/" be the set of all m attribute values of a sensitive attribute S € A (e.g.
Disease in a medical dataset). The estimated initial distribution of S for equivalence class
[Cy] is given as a S[Cq = (a1,a9, -+ ,am). The disclosed distribution of S in an equivalence

class [Cy] is given as TS [Cq = (x1,29, -+ ,xm). Throughout the rest of this thesis, we
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Figure 3.1: Comparison of different statistical distance metrics

denote ag [Cq) 38 @ and zg (Cq] 3 T We note that all of the concepts in this thesis are easily
explained in the single sensitive attribute setting, but can also be extended to multiple

sensitive attributes.

3.3.1 The Distribution Privacy Loss Metric

The distribution privacy loss could be viewed as a measure of the overall divergence of
attribute values distribution from one state to the other. Generally, any privacy-preserving
data publishing technique modifies the original dataset into a set of equivalence classes. The
loss is measured between the original distribution of sensitive attribute values in the original

and the published dataset for each given equivalence class. We, therefore, give the following

definition.

Definition 6 (Distribution Loss). For an individual u belonging to an equivalence class

[Cy], the distribution loss of attribute S given an equivalence class [Cy| is defined as the
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Euclidean distance between the two distributions a and z

Zp (S, [Cg]) = (| D (ai — ),
=1

Since it is a Euclidean distance function, the distribution loss .Z; Pp (S, [Cyq]) defined above
is indeed a distance metric, i.e. it satisfies all metric conditions.

As some privacy-preserving publishing techniques, falsely, assume that a uniform pub-
lished distribution of attribute values achieves optimal privacy. It is interesting to find the
distribution loss for this specific scenario. We find that the distribution loss is closely related
to the standard deviation of the original distribution a, and the number of attribute values

m in the sensitive attribute S.

Theorem 1. Let S = {s1,s9, -+ ,sm} be the set of all sensitive attribute values of a
given dataset and a = (ay,a9, - ,am) is the corresponding probability distribution. An
individual u, belonging to an equivalence class [Cy], has probability distribution on S of
x = (21,29, -+ ,2m). The distribution loss of an attribute S in the published table T" with

respect to uniform distribution is

Zrpis.1c =3 (-5 =eam

where o, is the standard deviation of a.

Proof. While the distribution loss is given as

Zpp,(5,1Cq)) = f: (ai = %)2,
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and

m
2
(ai - :ua) )
=1

1
Oq — i
m

m_ .
where i, is the mean of the distribution a. Since pq = # then,

Since 1" | a; = 1, then,

Therefore we have

]

Zp, (S5, [Cq]) reaches a minimum value of 0 when a; = % It reaches a maximum value of
\/@ when a; = 1 for some attribute value ¢ and 0 for other attribute values. It is obvious
that the distribution loss depends on the standard deviation of the original distribution.
Thus, a uniform distribution of published attribute values is not essentially optimal. We
believe that matching the published distribution to the original estimated distribution would
indeed achieve better privacy.

It is worth to study the effect of the size of m as it might be of concern that can lead to a
curse-of-dimensionality as it grows. However, as the size of m corresponds to the number of
attribute values of the sensitive attribute, in most practical scenarios, the value m will not

be very large. If it happens to be high, the proposed metric will depend on the distribution
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of the attribute values. For instance, in an extreme case, a published class might have a
single attribute value. Assuming that this attribute value is the least represented in the
original dataset, the distribution metric will still be approximately bounded by the v/2. Also
assuming that this attribute is uniformly distributed in the original dataset, the distance
between the two distributions will be \/@ which tends to 1 as m increases.

Considering the more interesting case, for an arbitrary original distribution a; and any
two arbitrary published class distributions x; and y; where i = 1,--- ,m. As m increases it
is natural that the privacy loss in the two classes will get closer. That is, Dist(a;, x;) and
Dist(a;, y;) will tend to be small. This means that the privacy loss could be small measured
based on this sensitive attribute, which is close to the reality. For example, if the attribute is
age. It would be much easier to determine the right sensitive attribute value if there is only
a few in the observed equivalence classes, such as every 10 years. When the range increases,
it could be hard to determine the right sensitive attribute value, for example, on a yearly
basis, or more difficult on a combined year and monthly basis since even if you know the age
of someone, you may still get the month incorrect.

We believe that attempts of normalization will disorder our metric, rendering unequal
privacy loss instances to be considered equal. In other words, normalization can lead to
an unprecedented equalization between two extremely different privacy loss instances. For
example, consider two datasets T7 and To with two sensitive attributes S7 and S9. S7 has
5 different sensitive attribute values while So has 50. Let [C] and [C3] be two published
classes, in the published tables T{ and T. é, each with a single represented attribute value
corresponding to S7 and So respectively. From [C]], an observer can infer that the sensitive
attribute value of an individual of interest is 1 out of 5. However, in [C5], the observer infers

that the sensitive attribute value is 1 out of 50 which preserves more privacy. A random
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guess will have probability 20% and 2% to get the right equivalence class for these two cases
respectively. Therefore, normalization in such case will render both instances with the same
privacy loss.

When publishing a table 7', it is optimum to maintain the same original distribution
over the set of equivalence classes. That is, distribution loss XPD(S, [C]) is desired to be
zero. However it is natural that the distance between distributions will change. This change
contributes to the privacy loss. Therefore, an objective of minimizing privacy loss is to keep

the distribution loss among equivalence classes below a predetermined level.

Definition 7 (s-Distribution Loss). A published table 7" is said to have an e-distribution

loss if it has distribution loss Zp (S,[C]) < € for the set of all equivalence classes. That is

max(pr(S, [CQD) < €, q= 1727"' JQ‘

3.3.2 The Entropy Privacy Loss Metric

Considering only one metric ignoring the effect of other potential metrics leads to insufficient
privacy quantification. An intuitive example for this problem is reviewing a blood work. The
medical status of a patient cannot be determined based on only one measure even if this
particular measure is the most sensitive one. Instead, a physician has to review the relation
between combinations of all measures in the blood work.

While the distribution loss captures the amount by which privacy of an attribute is leaked,
it does not give a sufficient implication about privacy loss of individuals carrying different
attribute values. Specifically, a small distribution loss in the published table might lead to a

critical decrease in the amount of uncertainty of an adversary about the attribute value of a
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certain individual of interest. This motivates us to think of an information theoretic metric
that would capture this change of adversarial uncertainty before and after table publishing.

Hence, we propose the following distance metric that will serve as our second privacy metric.

Definition 8 (Entropy Distance). Let S = {s1, s9,- - , s;n} be the discrete set of attribute
values of a sensitive attribute, & = (aj,a9, -+ ,amy) and B = (b1, ba, - ,by) be two
probability distributions on S. The entropy distance between .o and £ is defined as the

difference of the entropy of the two distributions. That is,
“ 1 & 1
,%pE(%,%) = Zai logs - Zbi logs ol
i=1 =1 ¢

The entropy distance typically measures the difference of uncertainty of an adversary
about the sensitive attribute value of an individual from one state to the other. We now give

the following theorem about entropy distance.

Theorem 2 (Triangle Inequality). For the proposed entropy distance, the triangle in-

equality holds true, that is

Proof. We split the proof into four cases.
Case 1: 37" a;logga; < 3570  bilogg b and 3777 biloga by < 3 ¢jlogy ¢;.

Then we have
m

m
> ajlogga; <Y cilogsc,

i=1 1=1
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and

m m m m
Lp (A, B)+ Lp,(B,C) = = ajloggai+ Y bilogabi— Y bilogabi+ Y cilogyci
i=1 i=1 i=1 i=1
m m
= |- Z a; logy a; + Z ¢; logoy ¢;
i=1 i=1
= Lp (4.%).

Case 2: ) /" a;logga; > 370 bilogg by and 377" bilogg b; > 37 cilogy ¢;.

Then we have

m m
> ajlogga; > cilogyc;,

and
m m m m
XPE(,Q%, B) + ZPE(%, C) = Z a;logo a; — Z b; logo b; + Z b; logo b; — Z ¢ilogg ¢;
1=1 1=1 1=1 i=1
m m
= |- Z a; logy a; + Z c; logy ¢;
1=1 i=1
= Lp,(4,F).

Case 3: > " a;logga; < > bjlogg by and Y1 bilogo by > 1" ¢;logs ¢;.

Then we have

m m m m
[T < TIv ana TT6 =TT <7
=1 =1 =1 i—1
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and

Lpp (A, B)+ Lp,(#8,€) = —Zazloggaz%—Zb logs b; +Zb logs b; —ZCi10g2Cz‘
= 1=1
b, b, m b‘ m Ci
b.t bt b." .
~ o T ) = o 1T ) 2 (1T 25
i=1"1 i=1"1 i=1"1
m

= — Z a; logy a; + Z c; logy ¢;.
i=1 =1

Similarly, we also have

Lpp (A, B) + Lp,(B,E) > log <H ai)

G
=1

m
= Z a; logy a; — Z ¢; logy ¢;.
1=1 =1

Therefore, we have

LA B) + Lp(B.C) > Lp (.F).

Case 4: > /" a;logga; > 370 bilogg by and 377" bilogg b; < 377" cilogy ¢;.

Then we have

m
H Hf,andeZ<Hc
=1 =1 _
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and

m
Lpp (A B)+ Lp,(B.C) = Zal logy a; — Zb logy b; — Zb logo b; + ZCZ logy ¢;
=1 =1 =1 =1
m a; @ Cci ai
= H b H 5, | = los H
=1 z bi =1 b bi 1= 1
m m
= Z a; 10g2 a; — Z C; 10g2 C;.
1=1 1=1
Similarly, we also have
LA
Lp (A, B) + Lp,(B,E) = log H%Z_ e
i=10;" b
m C'L m Cl
>log | [[ = | > log (HL&Z)
1=1 biZ 1=1"1
m m
> — Z a; logy a; + Z c; logy ¢;
1=1 1=1
Therefore, we have
XPE(%,,@)—FXPE(@,%) ZZPE(JM,%). O

Based on Theorem 2] we have the following theorem.
Theorem 3. Entropy loss is a distance metric and has the following properties:
1. Non-negativity: XPE(SE,ZU) > 0.
2. Definiteness: ng<£L', y)=0ifand only if z =y
3. Symmetry: XPE(x,y) = XPE(y,:E).
4. Triangle inequality: Zp, (x,2) < Zpp (x,y) + XPE(y,z).
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The proof of this theorem is straight forward. We note that maximum entropy of attribute
values in the published dataset does not achieve the maximum privacy. While the maximum
entropy corresponds to the uniform distribution of attribute values, this kind of distribution
can be optimum if the background information of an adversary is ignored. However, given
that an adversary has some prior belief about original attribute values distributions, it is best
to maintain the same entropy level after publishing. Therefore, we introduce the following

privacy metric.

Definition 9 (Entropy Loss). For an individual u, belonging to an equivalence class [Cy],

the entropy loss is defined as

= 1 & 1
ZLpy(S,[Cq)) = D ailog ol > xilogy —l
i=1 b=l !

We define the entropy loss of an individual as the entropy loss of the equivalence class
that the individual belongs to. Note that the entropy loss reaches maximum logg m when the
original distribution is uniform and the published distribution is x; = 1 for some attribute
value 7« and 0 for other attribute values. This is easily explained as a transition in the
adversarial belief, from a state where the adversarial uncertainty about the attribute value
of an individual of interest in a given class is maximum, to a state where they become 100%
confident about the attribute value of this individual. Given the knowledge of the distribution
of sensitive attribute values of the original distribution, an adversary has a certain level of
uncertainty about individuals attribute values. Any change in this level of uncertainty is
considered a loss. An objective of any data publishing technique would be minimizing this
loss.

Note that the entropy loss metric is convex in our case since » ;" a;logy % is a fixed
(3
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number that can be computed based on the prior knowledge ahead of time. Therefore, the
optimal value always theoretically exists.
m
Let Z = > a;logy %, then for our application, Z is a fixed number that can be easily
_ 1

i=1
computed based on the prior knowledge ahead of time. The maximum value of

o 1

Z xrilogg — — Z
; €q

=1

is logg m — Z. Then to minimize entropy loss is equivalent to minimize

= 1 = 1
H%i-n inloggf—Z , if inlogg—_ > 7,
i \iog T Ly

1=1

or

= 1 i 1
max inlong—Z , if inlogz—.gZ.
" \iz1 i o

i=1 !
m
For any Z, 121 x; logy x% — Z is convex. Therefore, the optimal value always exists theo-
retically. Moreover, for this metric, we also think that normalization will lead to an un-
precedented equalization between two extremely different privacy loss instances as we have
demonstrated in the previous metric.

As previously mentioned, many PPDP techniques assume that a uniform published dis-
tribution of attribute values achieves optimal privacy. Thus, we also find the entropy loss
for this specific scenario. For a published uniform distribution x of a dataset, the entropy
is logg m. Using Definition [9] the entropy loss between the original dataset distribution and
the uniform distribution is given as logo m — 1" | a; logo a%_.

We also introduce a threshold condition on the entropy privacy loss metric which can be

used by a DO to express the privacy loss expectations. This threshold condition will also be
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later used in formalization and management of the utility-privacy trade-off.

Definition 10 (a-Entropy Loss). A published table T" is said to have an a-entropy loss

if it has entropy loss Zp, (S, [C]) < a for the set of all equivalence classes. That is

maX(XPE(S7 [CqD) <a, g= 1a27 tee 7@'

We argue that distribution loss and entropy loss are two different metrics. To justify
this argument, let us assume the case when the published attribute values’ distribution, in a
specific class, is a permutation of the original distribution. Unless the original distribution
is uniform, whatever the distribution loss is, the entropy loss will always be zero. More
examples are presented in the next section to support our argument.

Meanwhile, we do not know how many metrics would be sufficient to quantify privacy.
However, we believe that any further proposed independent metrics that would contribute to
reaching an optimum and provably sufficient set of measures, can be added to the proposed

quantitative measurement framework.

3.4 Empirical Analysis and Simulation Results

This section is divided into two parts. In the first part, based on our findings, we introduce
a wide set of empirical examples for different case scenarios that support our findings. The
provided examples aim to help understand the implications of the proposed metrics and
show how these metrics contribute to analyzing, comparing and evaluating the previously
mentioned existing privacy-preserving data-publishing techniques. In the second part of

this section, aided with our simulation results, we focus on instances where different PPDP
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techniques assume to achieve an intended privacy level. However, based on our proposed
metrics, they fail to express, and therefore fail to avoid, a considerable amount of privacy
loss. Throughout this section, we assume that an adversary has no other side information
about dataset statistics or the user of interest other than the determined quasi-identifier

values.

3.4.1 Empirical Analysis

We begin by giving examples to show how the distribution and the entropy losses are two

different measures of privacy loss.

Example 5. As demonstrated in Fig. and Fig. [3.3] consider a dataset T" with sensitive
attribute S containing m = 3 attribute values. The original attribute values distribution
of S is given as (1—72, %, %) The published table 77 is divided into a set of ¢ = 3 equiv-
alence classes with attribute values distributions of (%, 211, 0), (%, 211, O) and (zlp zll’ %) The
distribution loss Zp, (5, [C]) and the entropy loss Zp (S, [C]) for the attribute values are
[—1‘%@, %g, \/—1—?} and [0.57,0.57,0.11] respectively. We notice that [C3] has the highest distri-
bution loss however it provides the least entropy loss. It is obvious that a high distribution
loss does not necessarily provide a high entropy loss and vice versa. This motivates us to
further think of the implication of the large distribution loss of [C3]. The third attribute

value is fully represented in this class. Therefore, an adversary has a 100% confidence that

any individual that has the third attribute value is in [C3].

While a published table with uniform attribute values distribution naturally has the high-
est output entropy (not entropy loss), it is sometimes, falsely, assumed to be optimal. We

believe that matching the published distributions with the original distribution would cer-
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Figure 3.2: Example to show insufficiency of distribution loss for privacy quantification

Publishing Distribution
Original Distribution

( )

—~
~—

—
e Ll N [V Y
o Ll N N o
sy O O
N—

3
) 120

o~
el

~—~
~—

Lpp(5,0) is [ V5,45, ¥ |
Ly (5,C) is [0.57,0.57,0.11]

[Cs5] has the highest Zp, (S5, C) however it provides the least Zp, (5, C)

A high distribution leakage does not necessarily provide a high entropy leakage
and vice-versa.

Figure 3.3: Example to show the distinction of the proposed privacy metrics
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tainly achieve a better privacy protection. This can be justified using the following example.

Example 6. Consider a dataset T with sensitive attribute S containing m = 4 attribute
values. The original attribute values distribution of S is given as (% % % %) The
published table 7" is divided into a set of Q = 4 equivalence classes with attribute values
distributions of <%, 1%, %,%), <T 1_6’0 0) (%,0, 1%,0) , and <%,0,0, %) The dis-
tribution loss Zp (S5, [C]) and the entropy loss Zp, (S,[C]) for the attribute values are
[@ A4 1%] and [0.45,0.73,0.73,0.73] respectively. It is obvious that the first equiva-

lence class [C1] has a uniform distribution, however it does not achieve the best distribution

loss.

Another example that shows how a uniform distribution of published attribute values for
an equivalence class might, at some cases, even give a large distance and a worse entropy

loss than other distributions.

Example 7. Consider a dataset 7" with sensitive attribute S containing m = 4 attribute
values. The original attribute values distribution of S is given as <%, %, 1%, %) The
published table 7" is divided into a set of Q = 4 equivalence classes with attribute values

) (i

tribution loss Zp (S,[C]) and the entropy loss Lpy (S,[C]) for the attribute values are

distributions of (%, 1% %

<:7s|*p
cmloo

1t 16:0), (12, 15.0,0) , and (12.0,0, ). The dis-

(o3
@l

[\{g, ‘{g, ‘{g, \{(?] and [0.33,0.16,0.85,0.85] respectively. We notice here that the first
equivalence class having a uniform distribution has the highest distribution loss and does

not achieve the best entropy loss.

Apparently, the distribution loss maybe considered as a reflection of the extent to which
privacy of attribute values are leaked. On the other hand, the entropy loss is a reflection of

the extent to which privacy of individuals within an equivalence class is leaked compared to
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the initial entropy from the original distribution. We stress that both losses contribute to
the overall privacy loss of individuals in the published dataset.

Based on the previous examples, it is obvious that while designing any publishing tech-
nique, to achieve a better level of privacy, the data publisher should not only consider the
distribution loss but also the entropy loss. Now we use our proposed metrics to analyze some

existing schemes.

Example 8. In the example from [4], the original impatient dataset is given in Table
and the 4-anonymous impatient dataset is given in Table [3.2l For these two tables, the
probability distribution of the sensitive attribute, Disease, is (%, %, 1—%) In this case, the
distribution loss XPD(S, [C]) for individuals within the first, second and third equivalence
classes is [0.5137,0.2357, 0.7619], while the entropy loss is [0.5546, 0.0546, 1.5546] respectively.

Our findings for Table can be summarized as follows:

1. Patients under 30 have Heart-Disease or Virus-Infection with equal probability. The
scheme provides distribution loss XPD(S, [C1]) = 0.5137 and entropy loss equals

Zp (< 30) = 0.5546.

2. For patients over 40, 21; have Cancer, %1 have Heart-Disease and % have Virus-Infection.
The scheme provides distribution loss Zp (S,[C9]) = 0.2357 and entropy loss is

Zp,, (> 40) = 0.0546.

3. Patients in their 30s, all have Cancer. The individual gets distribution loss XPD(S, [C3])

0.7619 and entropy loss £p,(30s) = 1.5546.

Example 9. For the same original impatient dataset from last example given in Table [3.1]
the 3-diverse impatient dataset is given in Table|3.3| For these two tables, the probability dis-

tribution of the sensitive attribute, Disease, is (137, 142, 157) In this case, the distribution loss
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Table 3.1: Original dataset

Non-Sensitive Sensitive
Zip Code | Age | Nationality Condition
1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Virus Infection
4 13053 23 American Virus Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Virus Infection
8 14850 49 American Virus Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer

Table 3.2: 4-anonymous impatient micro-data

Non-Sensitive Sensitive
Zip Code | Age | Nationality Condition
1 130%* <30 * Heart Disease
2 130%* <30 * Heart Disease
3 130%* <30 * Virus Infection
4 130%* <30 * Virus Infection
5 1485* >40 * Cancer
6 1485* >40 * Heart Disease
7 1485* >40 * Virus Infection
8 1485* >40 * Virus Infection
9 130%* 3* * Cancer
10 130** 3* * Cancer
11 130%* 3* * Cancer
12 130** 3* * Cancer
Table 3.3: 3-diverse impatient micro-data
Non-Sensitive Sensitive
Zip Code | Age | Nationality Condition
1 1305%* <40 * Heart Disease
2 1305* <40 * Virus Infection
3 1305* <40 * Cancer
4 1305* <40 * Cancer
5 1485* >40 * Cancer
6 1485* >40 * Heart Disease
7 1485* >40 * Virus Infection
8 1485* >40 * Virus Infection
9 1306* <40 * Heart Disease
10 1306* <40 * Virus Infection
11 1306* <40 * Cancer
12 1306* <40 * Cancer
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Table 3.4: Original dataset Table 3.5: 4-anonymous, 2-diverse dataset

Non-Sensitive Sensitive Non-Sensitive Sensitive
Zip Code | Age Disease Zip Code | Age Disease
1 49012 25 Flu 1 4901* 2% Flu
2 49013 28 Flu 2 4901* 2% Flu
3 49013 29 | Heart Disease 3 4901°* 2% Flu
4 49970 39 Flu 4 4901°* 2% | Heart Disease
5 48823 49 Cancer 5 4997* 3* Flu
6 49971 34 Flu 6 4997* 3% Flu
7 48824 48 | Heart Disease 7 4997* 3* Flu
8 48823 45 Cancer 8 4997* 3* | Heart Disease
9 48824 46 Flu 9 4882%* 4% Flu
10 49971 37 | Heart Disease 10 4882%* 4* | Heart Disease
11 49012 22 Flu 11 4882* 4* Cancer
12 49970 32 Flu 12 4882* 4* Cancer

for individuals within the first, second and third equivalence classes is [0.1179,0.2357,0.1179],
while the entropy loss is [0.0546, 0.0546, 0.0546] respectively. Our findings for Table can

be summarized as follows:

1. Patients under 40 and living in Zip-Code = 1305* have Heart-Disease, Virus-Infection
or Cancer. Therefore, the scheme provides distribution loss XPD(S, [C1]) = 0.1179

and entropy loss XPE(1305 x N < 40) = 0.0546.

2. For patients over 40 and living in Zip-Code = 1485*, having Heart-Disease, Virus-Infection
or Cancer. The scheme provides distribution loss Zp (S5, [C2]) = 0.2357 and entropy

loss Zp,, (1485 % N > 40) = 0.0546.

3. For patients under 40 and living in Zip-Code = 1306*, having Heart-Disease, Virus-Infection
or Cancer. The individual gets distribution loss KPD(S, [C3]) = 0.1179 and entropy

loss Zp, (1306 + N < 40) = 0.0546.

Example 10. In this example, the original impatient dataset is given in Table [3.4, The

4-anonymous, 2-diverse, 0.67-closeness impatient dataset is given in Table[3.5] For these two
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tables, the original probability distribution for the three diseases is <%, 13—2, %) In this case,
the EMD is [%, %, 32’5], distribution loss pr(S, [C]) for individuals within the first, second
and third equivalence classes is [\{—Qg, \1/_2§7 @}, while the entropy loss is [0.57,0.57,0.11],

respectively.

We finally show how EMD in t-closeness is not reliable and insufficient to measure privacy
loss.

For the original impatient dataset from [5] given in Table an 0.167-closeness, w.r.t
Salary, impatient dataset is given in Table 2.4 The values of the sensitive attribute Salary
in the original table are {3K,4K,5K,6K,7K,8K,9K,10K,11K}. The values of the same at-
tribute in the published table T” are given as {3K,5K,9K }, {6 K, 11K,8K } and {4K, 7K, 10K}
for the three equivalence classes [C1], [Ca] and [C3]. In this case, the EMD for the three classes
is given as [0.167,0.167,0.083]. The EMD, proposed in t-closeness, is a semantic metric. It
gives a weight to the attribute values based on their sensitivity in the original distribution.

However, as we will show, it fails to give a correct measurement of the privacy loss.

Example 11. Consider a 27 records dataset with same attribute values having the same
uniform distribution. After publishing, this dataset is divided into 9 equivalence classes. We
consider two possible equivalence classes, [C] and [C9]. Assuming that the sensitive attribute
values in [C1] and [Co] are {3K,4K,5K} and {TK, 7K, 7K} respectively. The EMD for both
classes is calculated as [0.375,0.278]. Based on the EMD, [Cs] achieves better privacy level
among the two equivalence classes. However, it is obvious that the adversarial general belief
about the attribute values before and after publishing has changed more dramatically in
[C5] compared to [C1]. This change of belief is properly characterized in the value of our

distribution loss metric pr(S, [C]) which is given as [0.22,0.89]. Furthermore, we can
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easily notice that [Co] suffers from a higher privacy loss where all individuals have the
same sensitive attribute value (7K). Thus, an adversary would know the attribute value of
an individual in this class with probability 1. This change of adversarial certainty about
individual’s attribute values is indeed a privacy loss. This loss is very well represented in

our entropy loss metric XPE(S, [C]) which is given as [0.158, 3.16].

3.4.2 Simulation Results

In our simulations, we investigate the effectiveness of different PPDP techniques based on
our privacy metrics. Simulation results give us a more insightful understanding of privacy
loss. Specifically, our analysis gives a spotlight on several instances where published tables
are believed to achieve privacy based on the utilized PPDP techniques, while based on our
metrics, they do leak valuable private information about users in the datasets. We also show
how our proposed metrics enable a data publisher to have more control over the privacy of
a specific group of users having certain sensitive attribute values.

Simulations are done on a sample of the US census dataset from the UC Irvine machine
learning repository [66]. After eliminating records with missing values, we have a total of
30,162 records. Following the work in [4], as shown in Table we utilize only 9 attributes,
7 of which form the set of possible quasi-identifiers while Occupation and Salary form the
set of possible sensitive attributes. We adopt the incognito algorithm [41] for generating the
anonymized tables that satisfy the privacy measures of different PPDP techniques. Through-
out the simulations, we consider the Occupation as the sensitive attribute. The number of
quasi-identifiers QIDs is represented by the variable e that takes values from 1 to 7 with
the same order in Table While evaluating privacy of different PPDP techniques, it is

essential to maintain the same level of data quality, i.e. unifying the level by which data is
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Table 3.6: Description of adults census database

’ \ Attribute \ Type \ Domain Size \ Height ‘

1 Age Numeric 74 4
2 | Work Class | Categorical 7 2
3 Education Categorical 16 3
4 Country Categorical 41 2
5 | Marital Status | Categorical 7 2
6 Race Categorical ) 1
7 Gender Categorical 2 1
8 Salary Sensitive 2

9 | Occupation Sensitive 14

generalized to achieve the privacy constraint of the compared techniques.

We start by considering a published table that satisfies 0.5-closeness, 6-diversity, and
k > 6-anonymity at e = 2. Quasi-identifiers are chosen to be Age and WorkClass where
QID = (1,2). From the results shown in Fig. [3.4(a)] an observed instance has a considerably
high entropy loss at [C7]. This clearly identifies a major privacy loss in the published table
for users in this class Age = [75,100], WorkClass = Gov. To further understand the reason
behind this loss, we refer back to the distribution of the sensitive attribute at this specific class
before and after publishing. Fig. shows the original versus the published distribution
of the sensitive attribute. It is obvious that [C7] has some unrepresented attribute values.
Hence, an observer can eliminate these values and thus gain an increased confidence about
the sensitive attribute value of the user of interest. Specifically, an observer, knowing that
a certain user of interest falls in the age-range Age = [75,100] and work class category
WorkClass = Gov, can eliminate 8 possible attribute values from the Occupation’s domain.

Based on the existing techniques explained earlier, a published table T’ satisfying 0.1-
closeness, 13-diversity and £ > 13-anonymity at e = 2 is assumed to be privacy-preserving

with these near optimum values of parameters for each PPDP technique. However, observing
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the published table, we find that there is a noticeable privacy loss in [C]. More specifically,
an observer, with just knowing that the user of interest is more than 50 years old, will have
100% confidence that this user’s Occupation is not Armed-Forces. This privacy loss could
be noticed using our privacy metrics. The distribution and entropy loss values of [Cs] are
relatively high, where XPD(S, C) = [0.0125,0.0477] and XPE(S,C) = [0.0015,0.0306]. The
increased distribution loss is due to a fully non-represented attribute value in [C3] of the
published table.

It is not necessarily an unrepresented attribute value that causes privacy loss. Fig. [3.5(b)
demonstrates the original versus the published distribution for [Cg] of a published table sat-
isfying 0.5-closeness, 7-diversity and k > 7-anonymity at e = 3. We can see the noticeable
variation in published distributions of the 8" and 10" attribute values [0.0369, 0.3871] com-
pared to their original distribution [0.1077,0.1339]. This is expressed in our distribution loss
metric shown in Fig. [3.5(a)| where its value is relatively high for this specific class at 0.2853.

In addition to comparing privacy loss of different privacy levels of PPDP techniques, our
work also provides a quite useful tool to compare data utility and privacy losses of different
combinations of chosen quasi-identifiers in PPDP techniques. For example, let us consider
four versions of a published table T at e = 2. In Fig. we compare distribution and
entropy losses of the four tables while choosing a different combination of quasi-identifiers
for each table, where quasi-identifiers are chosen to be QID = [(1,2),(2,3),(2,4),(3,4)].
To satisfy the privacy conditions of the PPDP techniques, the anonymization process would
decrease the number of classes in the published table and hence, the data utility decreases. In
particular, Fig. shows that anonymization process ended up with 8 classes at QID = (1, 2),
6 classes at QID = [(2,3),(3,4)], and 4 classes at QID = (2,4). The figure illustrates the

number of classes () at each chosen combination and different levels of privacy represented in
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distribution and entropy losses for each class. Depending on the sensitivity of different classes
formed by different combinations of quasi-identifiers, this tool gives an interesting option to
adjust parameters by which a data publisher achieves the desirable privacy level with the
requested data utility. Specifically, if a data publisher is more concerned about privacy of
certain users that fall into [C3], then, as shown in Fig. [3.6] choosing QID = [2, 3] would leak
too much private information about these users. Hence, according to our proposed metrics,
a data-publisher can not only design the suitable data publishing technique for all users in

a dataset, but also for a certain set of them.

3.5 Summary

In this chapter, we introduced two novel privacy loss quantification metrics. We elaborated
the intuition behind the proposed metrics and analytically proved their correctness. Sup-
ported by insightful examples, we then showed that privacy could not be quantified based on
a single metric. Based on the proposed metrics, the privacy losses of state-of-the-art PPDP
techniques have been evaluated. The provided experiments demonstrate how we could gain
a better judgment of existing techniques and help analyze their effectiveness in reaching

privacy.
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Chapter 4

Utility-Boosting Negotiation-Based

PPDD

4.1 Introduction

Privacy concerns severely limit the information provided about certain sensitive attributes.
Meanwhile, DOs, sticking to privacy laws such as Health Insurance Portability and Ac-
countability Act (HIPAA), favor individuals privacy over the public beneficiary. This results
in a minimized utilization of the existing data. However, the main reason behind such
miss-utilization is the lack of data disclosure techniques that provide a satisfactory tradeoff
between privacy and utility of disclosed data. Data utility inevitably conflicts with data
privacy. From the data utility perspective, it is best to disclose a dataset as is, while from
the perspective of data privacy, it is best to disclose a mostly generalized dataset.

In some scenarios, a data recipient is in crucial need for certain attributes of interest for
some decision making problems. A data recipient is usually just interested in subset of the
dataset that contains the attributes of interest. These attributes will help the data recipient
in making the correct decision. Consider the example of preventive prophylactic surgeries
that remove an organ or gland that shows no signs of cancer in an attempt to prevent high

risk individuals from developing the disease. If a patient obtains accurate information of the
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Figure 4.1: Negotiation-based data disclosure model

infection risks, they would then be able to evaluate the risks and take suitable precautions
to avoid this disease.

In this chapter we propose a Utility-Boosting Privacy-Preserving Data Disclosure model
(UBNB-PPDD) that redefines data utility as a function of the DU’s requirements, namely,
attributes of interest. The model shown in Fig. incorporates a negotiation process
between the DO and the DU in order to reach a data disclosure deal. The DU represents
their requirements as utility patterns of the attributes of interest while the DO’s requirements
are represented as generalization policies. Based on this model we propose two UBNB-
PPDD protocols that are guided by the DO’s objective. The protocols provide a set of
rules for the communication sessions between the DO and the DU in order to reach a data
disclosure deal. The first protocol manages a negotiation process to disclose any generalized
dataset that matches the DU’s utility requirements and meanwhile satisfies the DO’s privacy
constraints. In the second protocol, the DO links the utility level of the disclosed dataset to
a profit function. In the proposed model, we assume no collusion attacks. Disclosed data is
protected by copyright. Data disclosure to a user is not a grant of ownership.

We propose two utility loss metrics, distribution and entropy utility loss. We exploit
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Figure 4.2: Definition of utility loss

these metrics together with the privacy loss metrics proposed in Chapter |3| to formulate the

utility-privacy tradeoff and help the DO manage the decision making in data disclosure.

4.2 The Proposed Utility Quantification Metrics

It is trivial that from the data user perspective, an optimal disclosed table is a table with
number of classes equal to the number of individuals in the original dataset. However, being
subject to the privacy rules, the disclosed dataset loses utility in generalizing the disclosed
table. Based on our model, shown in Fig. [£.2] in order to quantify the utility loss resulting
from data generalization, we propose two utility metrics that build up the loss of each
individual in the dataset to find the total utility loss of the disclosed table.

The first metric measures the entropy distance between the original individual distribu-
tion and the disclosed distribution of the sensitive attribute. That is, it typically measures
the difference in the data user’s uncertainty about the sensitive attribute value of a certain
individual between two cases. In the first case, access to the original dataset is granted. In
the second case, the data user only has access to the disclosed dataset which is the typical

case. In other words, the utility loss metric measures how much uncertainty about sensitive
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attribute value is gained after data disclosure. In this case, the original distribution b; of an
individual is a vector of zeros except for a one at the sensitive attribute value. We define

the utility loss for an individual in the disclosed dataset due to generalization as follows.

Definition 11 (Individual Entropy Utility Loss fUE(S, [1])). The utility loss of an

individual located in a certain class as a result of table generalization. This loss is given as

il 1 & 1
Ly (S [1]) = Zbi10g2g—zl‘i10g2;-
i=1 o= v

m
1
= 5 x;logg —.
: €y
1=1

As a matter of fact, if access is granted to the original dataset, the data user will have
zero uncertainty about the individual’s sensitive attribute value. Therefore, as shown in
Definition [11} the first term of the utility loss metric is ignored. This definition can be easily
extended to measure the utility loss for a class [Cy]. The loss of all individuals in a class

[Cy] is the same. Therefore, we give the following definition.

Definition 12 (Class Entropy Utility Loss .2,.(S, [C4])). The utility loss of all indi-
viduals falling in a certain class [Cy] as a result of table generalization. This loss is given

as

ul 1 & 1
gUE(S; [Cq) = Zbi logo b sz logo |
i=1 =1 ¢

m
1
= E x;logg —.
; €
1=1

We also simply extend this definition to measure the total utility loss of a disclosed

table as a result of generalization. Assuming a disclosed table T" comprises @) equivalence
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classes and the number of individuals in a class [Cy] is denoted as N, we give the following

definition.

Definition 13 (Total Entropy Utility Loss XUE(S, T")). The total utility loss of a

disclosed table T' as a result of table generalization. This Loss is given as

m

1 & 1
Ny ZbilOng_i_inlong_i .
i=1 =1

Q

2

q=1 =
Q

2

q=1

Ly (S.(T") =

==

m

1 1
1

We refer to the proof in our previous work in Chapter |3| to prove that the proposed
utility measurement is a distance metric. Since this metric will be exploited in our model to
quantify the utility loss it is also useful to have the following threshold definition as it will

express each entity’s constraints.

Definition 14 (y-Entropy Utility Loss). A disclosed table T” is said to have an v-entropy
utility loss if it has entropy utility loss fUE(S ,C) <~ for the set of all equivalence classes.

That is,

maX("E/pUE(S? [C(JD) S Y, 4= 1727"' 7Q-

As we previously mentioned, a single metric is never sufficient to measure the utility
loss in a multidimensional dataset. We propose another utility metric that depends on the
euclidean distance between the disclosed distributions of the sensitive attribute at each class
and the original conditional distributions of the sensitive attribute for each individual given
these classes. The entropy metric measures the change in uncertainty of a data user about an
individual’s sensitive attribute value after data disclosure. The distribution metric, on the

other hand, measures the deviation of the disclosed sensitive attribute values for an attribute
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of interest in a certain class than the individual’s attribute value.

Definition 15 (Individual Distribution Utility Loss ,,%UD(S, [1])). For an individual
u belonging to an equivalence class [Cy], the distribution utility loss of attribute S given an
equivalence class [Cy] is defined as the Euclidean distance between the two distributions b

and z

Ly (S, 10) = | Y (b — ).
i=1

To measure the distribution utility loss, we simply sum the utility loss of each individual

in the class. The distribution utility loss in a class can then be defined as follows.

Definition 16 (Class Distribution Utility Loss XUD(S, [Cq]))- The distribution utility

loss in an equivalence class [Cy] of attribute S is defined as

m
.,?UD q N Z Z (bj,i — xi)Q
7=1 1

Z.:

Building up the distribution utility loss due to generalization, the loss for the whole
disclosed dataset is the sum of losses in all classes. The total distribution utility loss in a

disclosed table is defined as follows.

Definition 17 (Total Distribution Utility Loss .£7;, (S5, [T"])). The distribution utility

loss in a disclosed table T' of attribute S is defined as

Ny

1 @ i 2
p(S N;; > (bji— )

=1

The threshold condition for the distribution utility loss is given as follows.



Definition 18 (J-Distribution Utility Loss). A disclosed table 77 is said to have an
0-Distribution Utility Loss if it has distribution utility loss "?UD (S, calC) < § for the set of

all equivalence classes. That is,

max(Zyp (5. [Cg)) £ 6, g =1,2,++,Q,

4.3 Utility-Privacy Tradeoff Characterization

Data owners are usually opposed by the privacy concerns that result from publishing data.
The data owners, therefore, have to stick to privacy constraints that protect individuals
data from being revealed to adversaries. To satisfy such constraints, the published data is
generalized. As the number of attributes increases this generalization optimization process
becomes computationally hard. Our approach in privacy characterization and quantification
not only can be used to evaluate, but can also be used to design scalable data publishing
techniques.

Our goal in this section is to provide the formalization of the generalization optimization
problem to achieve an optimum publishing distribution for different classes. If each of these
classes achieves this publishing distribution, the privacy and utility losses are minimized for
a given privacy or utility constraint. It is well understood that the generalization process
might not be able to find a dataset generalization that corresponds to the recommended
publishing distribution. However, we believe that providing the generalization process with
such a guiding solution will substantially reduce the search scope and render the process

practical.
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Figure 4.3: Minimum utility loss privacy-constrained data disclosure

4.3.1 Problem Formulation

So far, we have used our model to evaluate or guide the existing publishing techniques.
We now investigate the more challenging task, that is formalization of the utility-privacy
tradeoff in light of our proposed privacy and utility metrics. That is, we intend to use our
recommended publishing distributions to solve the ultimate impracticality problem of the
generalization process especially when dealing with large datasets.

Privacy and utility losses have to be considered jointly. There are three ways to ap-
proach this problem. First is the Minimum Utility Loss Privacy-Constrained Data
Disclosure. As shown in Fig. [4.3] for a given privacy constraint ¢, the goal is to find the
recommended publishing distribution x that minimizes the utility loss subject to the privacy
constraint.

minimize £y, (S, [C]) and Ly (S, [CT)

X

subject to .i”pD (S, [Cj]), XPE(S, [Cj]) <e,
m
Z €Ty = 1.
1=1
Second is the Minimum Privacy Loss Utility-Constrained Data Disclosure. As

shown in Fig. for a given utility constraint J, the goal is to find the recommended

publishing distribution x that minimizes the privacy loss subject to the utility constraint.
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Figure 4.4: Minimum privacy loss utility-constrained data disclosure
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Figure 4.5: Utility-privacy loss constrained data disclosure

minixmize XPD(S, [C;]) and XPE(S, [C5])

subject to 2y, (S,[C)), Ly, (S, [C]) <4,
m
Zmi =1
1=1

Alternatively, we may explore the feasible range of x by jointly considering the e-privacy
and J-utility losses ranges, as illustrated in Fig. where the feasible range is the area with
green background. Thus, the third is the Optimal Utility-Privacy Loss Constrained
Data Disclosure. As depicted in Fig. [4.5] for any given privacy and utility constraints
(€,9), the goal is to find the feasible region that provides solutions for z where both privacy
and utility constrains are satisfied. An optimum solution that minimizes both privacy and
utility losses may then be achieved by exhaustively searching the feasible region space for

an optimum candidate solution z.
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minizmize Ly, (5,[C]) and 2y, (S, [C])

subject to JPD(S, [C]), fPE(Sa [C]) <,

m

and
minixmize KPD(S, [C]) and ng(S, [C5])

subject to L4y, (S, [C1), Lurg(5.(C) <6,

These three cases are vector optimization problems. Solving these problems reveals the
disclosed data distribution x that if achieved by the generalization algorithm, will lead to an
optimal solution to our problem.

Losses can be computed on either an equivalence class or total losses basis to be then
compared to the thresholds (¢, «) and (7,0). In the case of class loss basis, the thresholds
are applied to each class where, the loss in each class should not exceed the threshold. In

this case, the threshold is defined as the maximum accepted loss for each disclosed class. In
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the case of total loss basis, the loss in the whole table should not exceed threshold. In this

case, the threshold is defined as the maximum accepted loss for the disclosed table.

4.3.2 The Data Generalization Management

In order to preserve privacy, the subset dataset is then generalized according to a Multi-
Objective Optimization Problem (MOOP). The generalization process takes as input the
recommended publishing data distribution x and tries to find a generalization with a corre-
sponding publishing distribution. Consequently, there exist two possible scenarios. In the
first scenario, a generalization is found that corresponds to the recommended x. This gen-
eralization can be considered an optimum solution according to our privacy model. In the
second scenario, the objective of the generalization process would be to find the generaliza-
tion that will result in the nearest publishing distribution to the recommended .

On one hand, this can guarantee an optimum solution in case the generalization process
was able to output the recommended published distribution or a sub-optimal solution in case
the output is close to the recommendations. On the other hand, these recommendations
substantially reduce the amount of time and computations needed by the generalization

process in case of an exhaustive search.

4.4 The Proposed UBNB-PPDD Model

The proposed negotiation-based data disclosure model manages a negotiation process where
a set of communication sessions is held between the DO and the DU in order to set a data
disclosure deal. More specifically, it redefines the data utility and adjusts the disclosure

rules accordingly. The ultimate goal of the proposed model is to provide the DU with the
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expected data utility while satisfying the privacy rules of the DO. Therefore, the proposed
model simply reformulates the tasks of entities in order to express their needs.

The DU might give more priority to certain attributes than others. In order to boost the
data utility, the DU seeks not just the highest possible data utility in general, but rather
the highest possible data utility for the attributes of interest. To express these needs, the
data utility is manifested as the DU’s attributes of interest divided into levels with different
priorities. These priorities can be represented in a requirements priority diagram namely,

the utility pattern.

Definition 19 (Utility Pattern U/). A layered hierarchy that ranks the DU’s attributes
of interest. The attributes with highest priority level are located at the top layers while the

attributes with the least priority level are located at the bottom.

The utility pattern can be modified by either promotion or demotion of different attrib-
utes according to their priority. As shown in Fig. the promotion operation is done by
the DU during the negotiation process in order to upgrade the priority level of an attribute of
interest. On the other hand, the demotion operation is done by the DU in order to degrade
the priority level of an attribute of interest.

For example, as shown in Fig. [4.8] if the DU is a medical researcher that wants to
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Figure 4.8: Example showing the negotiation using the utility pattern U4

evaluate the effect of some demographics such as Age, Gender, Zip-code, Race, Nationality
and Occupation on a disease such as Breast Cancer. In the first negotiation attempt, the
DU will have all the attributes of interest in the first priority level. If disclosing the table
with these attributes of interest, as is, satisfies the DO’s privacy constraints, the deal is set.
Otherwise, the DU will have to rearrange the priority level orders in the second negotiation
attempt by the demotion of some attributes. For instance, in our example, the researcher
might have an essential need to more specific data in terms of Age, Gender and Race as
compared to other attributes. Therefore, other attributes can be demoted to the second
priority level in the second negotiation attempt.

In response to a DU’s requested utility pattern U, the DO recommends a generaliza-
tion policy that matches ¢ in compliance with the privacy constraint €. For all possible

generalizations G satisfying ¢, we define this generalization policy as follows.

Definition 20 (Generalization Policy P). A policy P € G proposed by the DO as a re-
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sponse to the utility pattern U requested by the DU. This policy comprises the generalization

values of each attribute of interest in U.

Consider a utility pattern & with d attributes of interest {vi,va,-- ,v4}. The general-
ization policy is a mapping function f: v — v’ that maps any attribute v to a generalized
attribute v’. For example the Age attribute in Table consists of 12 values corresponding
to the ages of 12 individuals. These values are mapped to 3 classes in Table Similarly,
for all the attributes of interest, the generalization policy defines the mapping of each value
from the original to the disclosed table.

The generalization policy recommended by the DO will not essentially satisfy the DU’s
expected data utility. Therefore, using our proposed utility pattern, generalization policy,
utility and privacy loss metrics, both the DO and the DU go through a negotiation process
to set the data disclosure deal. Details of this negotiation process are elaborated in Section
4.0l

Throughout the rest of this section, for the reader’s convenience, we will merge the two
privacy loss metrics terms pr(S, C) and pr(S, C) into Zp(S,C), and the two utility loss
metrics terms £77, (5, C) and £y, (5, C) into Z37(S5,C). We will also use € instead of (¢, @)
to express the privacy thresholds, and + instead of (v, d) to express the utility thresholds.

To decide whether an offer can be accepted or not, the DO computes the privacy and
utility losses in order to check if the response P to a DU’s offer satisfies the requirements
and constraints. Losses can be computed on either an equivalence class or total losses basis
to then be compared to the thresholds € and . In the case of class loss basis, the thresholds
are applied to each class where the loss in each class should not exceed the threshold. In the
case of total loss basis, the loss in the whole table should not exceed the threshold.

Suppose that for a given privacy threshold e, there exist g possible generalizations G
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that satisfy the privacy constraint. The ultimate goal is to find, out of these generalizations,
the one that satisfies the DO’s objective. After satisfying this objective, the DO now has a
recommended generalization policy that is guided by the DU’s utility pattern and meanwhile
satisfies the objective.

For a given ¢, the DO has two possible objectives. The first is to disclose the data with
the best (or any) utility corresponding to the least (or any) possible generalization within
the privacy threshold. The second is to control the utility loss of the disclosed data for the
purpose of linking it to a profit function.

The first proposed scenario is disclosing the dataset that satisfies the privacy constraints
disregarding how much utility loss it provides as long as it satisfies the DU’s requested
utility pattern . We name this the Flat Rate Objective. Another proposed scenario is
linking the data utility loss to a profit function. That is, for a requested DU’s utility
pattern U and privacy constraint e, there exist g possible generalizations G that satisfy
the privacy constraint. Each of these generalizations provides a different level of data utility
loss .27 (S,[C]). As shown in Fig[d.9] the profit decreases with the increase in the data
utility loss. We name this the Variable Rate Objective. The profit is hence a function of the
data utility loss,

Profit = f(Zy (5, [C]))-

The profit function is typically determined by the DO depending on the data value in the
market. These two objectives will drive the design of our two UBNB-PPDD protocol versions

proposed in Section {4.5|
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4.5 The Proposed UBNB-PPDD Protocol

In this section we describe two variants of the proposed UBNB-PPDD protocol. Based on
the proposed model, the protocol relies on a negotiation process between the DO and the
DU guided by both entities’ needs and expectations. These rules control the design of the
previously mentioned tools, namely, the utility pattern ¢/ and generalization policy P.

Let z =1, , Z represent the 2th negotiation session between the DO and the DU where
Z is the maximum number of negotiation sessions. Throughout the negotiation process, DU
modifies the requested utility pattern U, by either promoting or demoting different required
attributes according to their priority level. Also the DO modifies the generalization policy
P. through modifying the mapping function by either increasing or decreasing the range
by which each attribute is generalized. This continues until both entities set on a data
utility level that matches the DU requirements on one hand and a data privacy level that
satisfies the DO constraints on the other hand. We note that both entities can terminate

the negotiation at any time.

We introduce the two variants of the UBNB-PPDD protocol shown in Fig. [4.10, In
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Figure 4.10: The UBNB-PPDD protocols

the first version, we employ the flat rate DO’s objective while in the second we employ the

variable rate DO’s objective.

4.5.1 The Flat Rate UBNB-PPDD

The DU submits an offer by sending a requested data utility pattern U,. If the DO accepts
the requested U, as is, the DO sends any generalization policy P, that satisfies the privacy
constraint Zp(S,C) < e. The DU then reviews P, and either responds with an offer accept
to make a deal or an offer reject to refuse it and sends a modified utility pattern if interested.
If no P, that matches the ¢ is found for the requested U, the DO refuses U,. The DU either
modifies the utility pattern and presents a new offer or does a negotiation termination due
to the failure of reaching a suitable deal. The flat rate UBNB-PPDD protocol is summarized
in Algorithm [1}
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Algorithm 1 Flat rate UBNB-PPDD
1. DU sends a request U, to the DO.

2. DO responds with any P, € G that matches the requested U, and satisfies Zp(S,C) <
€.

3. If satisfied by P, DU responds with an offer accept.
4. Otherwise, DO responds with another P, 1 € G as a counter offer.
5. If no P,41 exists, DO responds with an offer reject or a negotiation termination.

6. If the response is an offer reject, if interested, the DU sends a new relaxed request
U,+1. Otherwise, DU does a negotiation termination.

7. Repeat steps 2, 3, 4, 5, and 6.

4.5.2 The Variable Rate UBNB-PPDD

In the variable rate UBNB-PPDD scenario, the DU submits an offer by sending a requested
U,. The DO finds the set G of the generalization policies that matches the requested U,
and meanwhile satisfies Zp(S,C) < €. The DO can either accept the requested U, as is,
or refuse it. In the first case, if the request is accepted, the DO computes the utility loss
Z7(S,C) and the Profit. The DO then sends an optimized P, that satisfies the privacy
constraint Zp(S5,C) < ¢ and matches the expected profit. The DU then reviews P, and
either responds with offer accept to make a deal or offer reject to refuse it and sends a
modified utility pattern if interested. In the second case, if the DO refuses due to the non-
existence of a generalization policy that matches the privacy constraint for the requested
U, the DU either modifies the utility pattern and presents a new offer or does a negotiation
termination. The variable rate UBNB-PPDD protocol is summarized in Algorithm [2]

We note that a flat rate objective saves computations at the DO’s side where the DO
is not required to optimize the generalization process to be linked to the profit function.

However, this does not have any guarantees about neither achieving the best possible data
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Algorithm 2 Variable rate UBNB-PPDD
1. DU sends a request U, to the DO.

2. DO finds the set G, computes Z77(S,C) and the Profit, and responds with an optimized
P..

3. DU reviews P, and either responds with an offer accept or offer reject and sends a
modified U, if interested.

4. If no P, € G exists, DO responds with an offer reject or a negotiation termination.

5. If the response is an offer reject, if interested, the DU sends a new relaxed U, 1.
Otherwise, DU does a negotiation termination.

6. Repeat steps 2, 3, 4 and 5.

utility for the DU nor the best possible profit for the DO.

4.6 Empirical Analysis and Simulation Results

This section is divided into two parts. In the first part, based on our findings, we introduce
an empirical example to help understand the implications of the proposed utility metrics. In
the second part, through simulations on the US census dataset from the UC Irvine machine
learning repository [66], we show how the proposed metrics can enable the DO to evaluate

the privacy and utility of a disclosed dataset.

4.6.1 Empirical Analysis

In this subsection we introduce an empirical example to help understand the capabilities of

the utility and privacy metrics in evaluating the utility and privacy losses of disclosed classes.

Example 12. In the example from [4], the original impatient dataset is given in Table[t.1]and

the 4-anonymous impatient dataset is given in Table[4.2] For these two tables, the probability
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Table 4.1: Original dataset

Non-Sensitive Sensitive
Zip Code | Age | Nationality Condition
1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Virus Infection
4 13053 23 American Virus Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Virus Infection
8 14850 49 American Virus Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer

Table 4.2: 4-anonymous impatient micro-data

Non-Sensitive Sensitive
Zip Code | Age | Nationality Condition
1 130%* <30 * Heart Disease
2 130%* <30 * Heart Discase
3 130%* <30 * Virus Infection
4 130** <30 * Virus Infection
5 1485* >40 * Cancer
6 1485* >40 * Heart Disease
7 1485* >40 * Virus Infection
8 1485* >40 * Virus Infection
9 130** 3* * Cancer
10 130%* 3* * Cancer
11 130%* 3* * Cancer
12 130** 3* * Cancer

78




distribution for the three diseases is (%, 14—2, %) In this case, the privacy loss Zp(S,C) for
individuals within the first, second and third equivalence classes is [0.5137,0.2357,0.7619],
while the utility loss Z77(S,C) is [0.707,0.77, 0] respectively.

Our findings for Table reveal that patients under 30 have Heart-Disease or Virus-
Infection with equal probability. The scheme provides Zp(S, [C1]) = 0.51 and Z; (S, [C4]) =
0.707. For patients over 40, 21[ have Cancer, }1 have Heart-Disease and % have Virus-Infection.
The scheme provides .Zp(S, [C2]) = 0.23 and £}7(S, [C2]) = 0.77. Finally, patients in their

30s, all have Cancer. The scheme returns Zp(S, [C3]) = 0.76 and £ (S, [C3]) = 0.

4.6.2 Simulation Results

Simulation results give us an insightful understanding of utility and privacy losses and how
the negotiation can be handled in our proposed UBNB-PPDD protocol. Specifically, the
DO is able to analyze the utility and privacy losses for different combinations of QIDs and
interpret the losses in each class to determine which classes leak more privacy or provide
more utility. Simulations are done on a sample of the US census dataset. After eliminating
records with missing values, we have a total of 30,162 records. Following the work in |4], as
shown in Table [3.6] we utilize only 9 attributes, 7 of which form the set of possible quasi-
identifiers while Occupation and Salary form the set of possible sensitive attributes. We
adopt the Incognito algorithm [41] for generating the generalized tables with Occupation as
the sensitive attribute. The number of quasi-identifiers QIDs is represented by the variable
e that takes values from 1 to 7 with the same order in Table [3.6

We start by considering a disclosed table satisfying 0.5-closeness, 6-diversity, and 6-
anonymity at e = 2. Quasi-identifiers are chosen to be Age and WorkClass where QID = (1, 2).

From the results shown in Fig. |4.11(a)|, an observed instance has a considerably high privacy
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loss for individuals in [C7]. To further understand the reason behind this loss, we refer to Fig.
4.11(b)|showing the distribution of the Occupation in the original table versus the distribution
at this specific class after disclosure. It is obvious that [C7] has some unrepresented attribute
values. Hence, an observer can eliminate these values and thus gain an increased confidence
about the Occupation of the individual of interest. Specifically, an observer, knowing that a
certain individual of interest falls in the age-range Age = [75,100] and work class category
WorkClass = Gov, can eliminate 8 possible attribute values from the Occupation domain.
Also as shown in Fig. this class has the least utility loss. This is also justifiable
by the fact that the DU gains a high level of certainty about the sensitive attribute values
of individuals in this class where only 6 out of 14 sensitive attribute values are represented.
Thus, the DO can use the privacy and utility metrics to manage the negotiation process.
In particular, the DO is able to control the privacy and utility loss levels of different classes
depending on the threshold values and the expected profit.

For the requested DU’s utility patterns Us, the DO can analyze the utility and pri-
vacy losses of any dataset generalization before disclosure. For example, in Fig. [£.12] we
compare privacy and utility losses of four disclosed tables at e = 2 while choosing a dif-
ferent combination of quasi-identifiers for each table. Quasi-identifiers are chosen to be
QID = [(1,2),(2,3),(2,4),(3,4)].

To satisfy the privacy constraints, for different requested utility patterns with different
attributes of interest, the generalization would decrease the number of classes in the disclosed
table and hence, the data utility decreases. Fig. also illustrates the number of classes
@ at each chosen combination of QIDs and different levels of privacy and utility loss for
each class. The generalization ended up with 8 classes at QID = (1,2), 6 classes at QID =

[(2,3),(3,4)], and 4 classes at QID = (2,4). Depending on the sensitivity of different classes
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formed by different combinations of QIDs, the DO can select the generalization that achieves
the desirable privacy level for a requested /. For instance, if a DO is more concerned about
privacy of certain users that fall into [C3], then choosing QID = [2, 3] would leak considerable
private information. Also for these specific QIDs the class [C3] has a low utility loss level.
Hence, according to the metrics, a DO can not only design the suitable data disclosure
technique for all individuals in a dataset, but also for a subset of them.

Let us also consider 3 versions of a disclosed table 77, with different privacy loss levels,
at e = 3,5 and 7. As shown in Fig. [4.13] QIDs are chosen to be QID = [(1,2,3),(1,2,3,4,6),
(1,2,3,4,6,7,8)]. This is useful where we can see the tradeoff between the utility and privacy
and how different utility patterns can affect the disclosed data utility levels for a given privacy

constraint.

4.7 Summary

In this chapter, we introduced two data utility loss metrics. Using these metrics and the pre-
viously proposed privacy loss metrics we were able to practically address the utility-privacy
tradeoff problem. An optimization problem was formulated to find a set of recommended
publishing class distributions that provide an optimally minimized data utility loss for a
given privacy constraint or vice versa. The generalization process of the published dataset
can then be guided by the recommended class distributions. A utility-boosting privacy-
preserving data disclosure model that redefines the data utility based on the DU’s perspec-
tive is then proposed. Based on this model we incorporate our utility and privacy metrics
to propose two versions of a privacy-preserving data disclosure protocol. The protocol sets

rules for the negotiation between the DO and the DU in order to set a data disclosure deal.
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The proposed protocol inherently boosts the data utility from the DU’s perspective with the

satisfaction of the DO’s privacy constraint and monetary objectives.
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Chapter 5

Privacy Preserving Data Publishing

for Machine Learning Applications

5.1 Introduction

There are many examples, where sharing a public dataset could benefit the publisher as
well as the broader community, including sharing security incidents, genetic information,
demographic data [67/69]. However, including individuals’ data in published datasets comes
with its own risks and concerns. After a series of privacy loss incidents that took place
over the previous years, the research community started to shed some light on this problem
and uncover the hidden risks of publishing datasets without having a clear understanding
of the possible unprecedented privacy losses. Not long after the researchers recognized the
importance of data privacy, did the governments and international community start to put
restrictions and pass laws to manage data publishing.

In order to protect data privacy from different attacks, many privacy-preserving tech-
niques and strategies have been proposed to meet different individual’s privacy and utility
requirements. In PPDP, once the data is published, it is available for any type of analy-
sis. The concern then becomes the sensitive attribute disclosure of individuals participating

in the dataset. All syntactic privacy-preserving data publishing techniques typically aim

85



at protecting individual’s privacy against sensitive attribute disclosure. This form of pri-
vacy breach is different and incomparable to learning whether an individual is included in
the dataset, which is the focus of differential privacy [36]. k-anonymity, ¢-diversity, and
t-closeness, as well as our proposed privacy framework, are examples of syntactic privacy
models that attempt to protect individual’s privacy while minimizing impact on published
data utility.

The fear of exposing private user data has constrained the ability to publish informative
datasets and share them with other entities. Machine learning, for example, a technology
that relies solely on data, will intuitively be negatively affected by such privacy restrictions.
In ML, existing data is used to train different models which are then used for purposes of
prediction, regression, or clustering of new data. The more informative the existing data
is, the more accurate the trained model becomes at performing the specified task on new
data. Thus, while certain levels of data privacy can be achieved using different approaches
such as anonymization, perturbation, or anatomization, no matter what approach is used,
it is generally believed to directly influence the accuracy of the trained ML models. It is
unfortunate that this intuition, to the best of our knowledge, has never been translated
into a solid framework with quantifiable measures. This is a scheme that, if exists, would
help both data owners and users, that are willing to incorporate data in ML systems, to
understand the value of the data after being generalized to satisfy privacy constraints. That
is, enabling the evaluation of published data utility in ML systems and formally expressing
the utility-privacy tradeoff.

A typical dataset would comprise 3 kinds of attributes; personally identifying, quasi-
identifiers, and sensitive attributes. Personally identifying attributes are typically removed

from datasets. To satisfy the privacy constraints, quasi-identifiers are generalized to avoid
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de-identification of individuals in datasets. The generalization will naturally lead to dividing
the dataset into classes. According to our characterization of data privacy in |70, maxi-
mizing data privacy aims at minimizing the distribution and entropy distances between the
distribution of the sensitive attributes in the original dataset and its distribution in each
published class. Maximizing data utility, on the other hand, aims at maximizing the accu-
racy of the ML model trained on generalized data as to, optimally, reach the accuracy of a
model that is trained on original data. Our ultimate goal is to provide the metrics by which
a data owner can quantify both data privacy and utility losses and can then manage the
utility-privacy tradeoff in ML applications.

Our work answers some essential questions such as; what is the effect of data privacy
preservation on results of machine learning models?, how to quantify data utility loss from
a machine learning perspective?, how can the data utility-privacy tradeoff be quantitatively
expressed using solid metrics?, and, most interestingly, if two datasets provide almost the
same accuracy, why publish the more privacy leaking dataset?

In this chapter, we provide a framework to manage privacy preserving data publishing
for machine learning applications. We also propose a quantifiable approach to measure the
privacy and utility losses from a ML perspective. As shown in Figure the approach
incorporates an iterative algorithm that trains ML models on different datasets that satisfy
different levels of data privacy constraints. A classification accuracy based data utility met-
ric is also formulated to measure the drop in data utility as a result of obeying the privacy
constraints. The framework is finally tested on an employees’ Office365 login dataset, from
Barracuda Networks. The dataset is used to train a proposed privacy preserving ATO detec-
tor where a ML model is designed to classify the fraudulence of login attempts. The results

express variations in models’ accuracy in binary classification of logins when trained on dif-
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Figure 5.1: The proposed system model

ferent datasets that satisfy different privacy constraints. The proposed privacy framework
enables a data publisher to quantitatively manage the utility-privacy tradeoff and provide
answers to some interesting research questions.

The rest of this chapter is arranged as follows. In Section [5.2] we conduct a qualitative
review of the literature. Section [5.3| presents some preliminaries. In Section [5.4] we introduce
our privacy loss interpretation and the utilized privacy metrics. A brief explanation of
machine learning models and their evaluation is introduced in Section [5.5] The proposed
model to compute data utility loss for ML applications is presented in Section In
Section [5.7, we introduce our privacy preserving ATO detector and demonstrate the results
of applying the proposed data publishing framework on real industry data. We finally draw

our conclusion and suggest some open problems for future work in Section [5.8|

5.2 Related Work

Machine learning is an application of Artificial Intelligence (AI) that uses experience to

make accurate predictions. This experience is represented in the form of data that a ML
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model learns from. While this data might, in some cases, be non-sensitive, it is otherwise in
most cases. This is generally the case with ML applications that include individuals’ data.
In order to shield individual privacy in the context of big data, different anonymization
techniques have conventionally been used. The most relevant techniques are k-anonymity, ¢-
diversity, and ¢-closeness [26]. While k-anonymity protects identity disclosure of individuals
by linking attacks, it is insufficient to prevent attribute disclosure with side information. By
combining the released data with side information, it makes it possible to infer the possible
sensitive attributes corresponding to an individual. To deal with this issue, ¢-diversity was
introduced in [4]. However, as stated in [5], ¢-diversity limits the adversarial knowledge,
while it is possible to acquire knowledge of a sensitive attribute from generally available
global distribution of the attribute. In [5], the Earth Mover Distance (EMD) [12] is used as
a metric to compute privacy loss, which is represented as the information gain for a specific
individual over the entire population. However, the value ¢ is an abstract distance between
two distributions that does not have an intuitive relation with privacy loss. Moreover, we
believe that the privacy loss cannot be just quantified by a single metric. In [70], authors
provide a tuple of privacy loss metrics that tackle the limitations of all the mentioned metrics.
Cryptographic approaches to achieve privacy preserving machine learning have been widely
investigated in literature [71-75]. However, they mostly fail to provide practical and scalable
solutions.

As a result of applying privacy constraints, the published data loses some of its value.
Thus, it becomes essential to study the data utility loss resulting from these constraints
and attempt to find quantifiable frameworks that can, reliably, capture these losses. Con-
sequently, the tradeoff between utility and privacy has recently grabbed the research com-

munity’s attention. Multiple approaches have been proposed to model this tradeoff |76
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77]. Information-theoretic frameworks that promise an analytical model guaranteeing tight
bounds of how much utility is possible for a given level of privacy and vice-versa are presented
in [78] and [25]. In |79], a game theoretic approach is presented where the authors model
the interactions among data owners and users as a game, and propose a general approach
to find the Nash equilibrium of the game. An interactive algorithm for data publishing is
proposed in [80], where the tradeoff is managed through negotiable offers between DOs and
DUs.

Although, the mentioned approaches provide solid frameworks for different use cases,
none of them address the tradeoff from a machine learning perspective. While the vast ma-
jority of the published datasets are expected to be included in some sort of machine learning
application, it is very appealing to understand the real value of generalized data when a
ML model is conducted upon them. Moreover, finding a quantifiable set of metrics that
can capture the degradation in models’ performance due to privacy preservation techniques

becomes crucial.

5.3 Preliminaries

Data Disclosure Model Some attributes can uniquely identify the individuals such as
the social security or the driving license numbers. These attributes are referred to as explicit-
identifiers. Some of the attributes are non-sensitive. These attributes are generally referred
to as quasi-identifiers. Sensitive attributes may include information such as Disease and
Salary. When datasets are published, all explicit-identifiers are removed.

It is worth to note that differential privacy models focus on membership privacy. As

described in [81], differential privacy aims at answering queries while simultaneously ensur-
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ing privacy of individual records databases. These models serve Privacy Preserving Data
Mining (PPDM) which aims at performing data mining tasks on a set of private databases
owned by different parties. In a typical PPDM scenario, the data owner maintains control
over the data and does not publish it. Instead, the owner responds to previously known types
of queries on the data, and ensures that the answers provided do not violate the privacy of
the data subjects. This is typically achieved by adding noise to the data, and it is necessary
to know the analysis to be performed in advance in order to adjust the level of added noise.
This approach contradicts with the main objective of the PPDP techniques that ought to
make the published data less precise than the original data but semantically truthful and
hence preserve the integrity of the data. Differential privacy in different machine learning
applications is investigated in [82H90].

Table Generalization To satisfy the privacy constraints, data publishing techniques
apply some generalizations to the quasi-identifiers QIDs to avoid linking individuals to records
in the table. Any value in the original table is mapped to a generalized value in the published
table following a certain mapping function. After generalization, the published Table T is
divided into a set C = {[C(J]}qul of @ equivalence classes. Let S = {s;}/"; be the set of all
m attribute values of a sensitive attribute S € A. The estimated initial distribution of S for
equivalence class [Cy] is given as a S[Cq = (a1,a9,- -+ ,am). The published distribution of S
in an equivalence class [Cy] is given as x SiCy = (x1,29, -+ ,xm). Throughout the rest of

this chapter, we denote a S[Cq) 38 @ and x S[Cq) 3 T
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5.4 The Privacy Loss Metrics

Following our work in [70], our approach to quantify privacy depends on quantifying the
information loss between two adversary’s states of knowledge. At the first state, based on
public information of sensitive attribute’s distribution, an adversary has some prior belief
about the sensitive attribute value of an individual. This prior belief a is based on the
probability distributions of attributes and joint distributions of their combinations. After
publishing, an adversary moves to the second state of knowledge, the posterior belief x,
that is the conditional distribution of sensitive attribute given combinations of published
attributes. The amount information gained by the adversary after publishing is the privacy
loss that we need to capture. We believe that matching the published distribution = to the
original distribution a would indeed achieve better privacy. Therefore we give the following

definition.

Definition 21 (Distribution Privacy Loss XPD(S, [C4])). For an individual u;, in an
equivalence class [Cy], the privacy loss of attribute S given an equivalence class [Cy] is defined

as the Euclidean distance between the two distributions a and =,

ZLpp (S, [Cq)) = | D (ai — ). (5.1)
i=1

While the distribution privacy loss measures the overall divergence of attribute values
distribution from one state to the other and thus, captures the amount by which privacy
of an attribute is leaked, it does not give a sufficient implication about privacy loss of
individuals carrying different attribute values. Specifically, a small distribution loss in the

published table might lead to a critical decrease in the amount of uncertainty of an adversary
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about the attribute value of a certain individual of interest. This motivates us to think of
an information theoretic metric that would capture this change of adversarial uncertainty

before and after publishing. Hence, we propose the following privacy metric.

Definition 22 (Entropy Privacy Loss Lpp (S,[Cq])). For an individual u, belonging to

an equivalence class [Cy], the entropy loss is defined as

m

1 & 1
Lpy(S,[Cq)) = D ailogy o > xilogy — (5.2)
i=1 ¢

i=1 v

Note that the entropy privacy loss reaches maximum logy m when the original distribution
is uniform and the published distribution is x; = 1 for some attribute value ¢ and 0 for
other attribute values. This is easily explained as a transition in the adversarial belief,
from a state where the adversarial uncertainty about the attribute value of an individual of
interest in a given class is maximum, to a state where they become 100% confident about
the attribute value of this individual. We note that maximum entropy of attribute values
in the published dataset, which corresponds to uniform distribution, does not necessarily
achieve the maximum privacy. This kind of distribution can be optimum if the background
information of an adversary is ignored. However, given that an adversary has some prior
belief about original attribute values distributions, it is best to maintain the same entropy
level after publishing.

Upon data publishing, the DO’s objective is to keep the privacy loss below a predeter-

mined level.

Definition 23 ((¢, a)-Privacy Loss). A published table 7" has an (g, a)-privacy loss
if XPD(S,C) < ¢ and .pr(S, C) < « for the set of all equivalence classes. That is
max(ZLp, (5, [Cq])) < €, and max(Lp,(5,[Cy])) <o, ¢=1,2,---,Q.
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5.5 Machine Learning Algorithms and their Evaluation

5.5.1 Training the Classifier

Learning algorithms typically rely on some existing labeled data points to train a classifier
that is intended to classify some future, unlabeled, data points. As shown in Fig. [5.2]
a classifier’s training process starts by splitting labeled data into training and test data.
Through cross-validation, training data is then split into validation and training samples.
The training samples are then input to the feature extraction and selection phase. After
features are selected, data feature vectors and validation data samples are fed into the
clagsifier for training and hyper-parameter optimization, if exists, depending on the chosen
machine learning classification algorithm. The performance of the classifier is then evaluated

based on the accuracy in classifying test data points.

5.5.2 Machine Learning Algorithms

In most scenarios, multiple learning models are experimented and classification evaluation
metrics are further compared to pick the classifier that performs best and meanwhile satis-
fies the time, complexity, and cost constraints. However, there always exist some insights
about the problem in hand that can help guide the designer to exclude or include different
algorithms. In our application, we only address the pool of learning algorithms that, to the
best of our knowledge, we think is widely used across ML applications.

The selection of learning algorithm is inspired by Occam’s Razor principle which states
that, out of all possible models that provide similar results, the simplest one should be
selected as the final model. Thus the criteria by which we choose the adopted learning

algorithm is based on its simplicity and speed as compared to other algorithms.
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5.5.3 Evaluation Metrics

As any other binary classification problem, there exist two possible kinds of classification
errors. In a False Positive (Fp) decision, a negative class is classified as positive while in a
False Negative (Fy) decision, a positive class is classified as negative. A positive instance
that is correctly classified is a True Positive (Tp), while a negative instance that is correctly
classified is a True Negative (Th).

Accuracy (A), the most widely used evaluation metric, is the ratio of points correctly

classified.

. Tp+1Tn
TP—FFN—FTN-FFP’

Recall (R) is the percentage of positives classified and Precision (P), the degree to which

the classified positives are indeed positives. Recall and Precision are given as,

T
R=-—-L
Tp—f—FN
and
T
p=-_-P
Tp—i—Fp

5.6 The Utility Loss Metric

We measure the data utility based on the accuracy of the trained ML model. As shown
in Algorithm [3] we first train a model using the original data then we re-train it using the
generalized data. Comparing the classification accuracy in both scenarios gives an intuitive
quantification of the utility loss resulting from privacy constrained data publishing.

The maximum data utility is achieved when a model is trained on the original dataset
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without any generalization. The least data utility corresponds to a model that is trained
using the most generalized dataset. Based on these bounds, the data utility loss is defined

as follows.

Definition 24 (Utility Loss #7;,.). For a machine learning model M trained on published,
generalized, dataset D, corresponding to a privacy constraint €, the utility loss, that is the
cost of privacy, is defined as the drop in the model’s accuracy A, from a model trained on
the original dataset D with an accuracy Apqz,

Ly = Amaz — Az

T

, (5.3)

Amam

where Aynqz is the model’s accuracy when trained on the original dataset, while A, is
the model’s accuracy when trained using the generalized dataset Dy. The utility loss £,
is simply 0 when the model is trained using the original dataset which results in an accuracy
Amaz- The utility loss metric can be exploited to describe a publishing model’s tolerance as

follows.

Definition 25 (A-Utility Loss Tolerance). A data publishing model is said to be A-utility-
loss-tolerant if it tolerates up to A utility loss for a machine learning model M trained on
a published dataset D,. That is, for any published dataset D, derived from the original

dataset D, the utility loss £, < A.

The proposed metrics are intended to serve as foundation for utility-privacy tradeoff
management in systems that conduct machine learning algorithms on the published data.

Data publishers can use the proposed model to express the tradeoff as follows.

Definition 26 (\-(e, a)-Utility-Privacy Tradeoff). A publishing model is said to have
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Algorithm 3 The proposed iterative learning algorithm
For a given machine learning model M:

e Train M using the original data D

e Measure the model’s accuracy Apqx

Generalize data based on a privacy loss constraint ¢,

Train M using the generalized data D,

Measure the model’s accuracy A

Compute the data utility loss £,

A-(g, a)-utility-privacy tradeoff if the distribution and entropy privacy losses are constrained

to € and « respectively, and the utility loss tolerance is constrained to A.

5.7 Privacy Preserving ATO Detection

In this section we introduce a privacy preserving machine-learning-driven classifier, designed
to detect Account Takeover (ATO), a class of the most sensitive attacks in the field of
email security. Specifically, we apply the proposed data publishing framework on a sample
of the Microsoft Azure Active Directory data for employees in organizations that adopt
Barracuda Networks’ Sentinel as an advanced threat protection solution. The provided
detailed implementation aims to help understand, analyze, and evaluate the capabilities of
the proposed privacy framework.

We first provide a brief explanation of the ATO attacks and then introduce the proposed
algorithm to utilize data from Barracuda’s wide customer base in building an AI model that
can tackle such attacks. We then describe the dataset and define its interesting attributes

then identify which attributes can be considered personally identifying and which can be
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considered quasi-identifiers or sensitive attributes. These attributes are then used to build
the volumetric features that will be used to train the machine learning model which detects
ATO attacks. To elaborate the idea behind the proposed framework, we then generalize the
dataset, by generalizing the quasi-identifiers, and compute the utility and privacy losses in
multiple scenarios to show how data owner and users can manage the utility-privacy tradeoff

based on the proposed framework.

5.7.1 Account Takeover Attacks

Account Takeover (ATO) attack is one of the most sensitive attacks in the world of email
security. According to |91], identity fraud hit all time high with 16.7 Million U.S. victims
in 2017 only. During this year, businesses reported around $5.1 billion of losses due to ATO
attacks. In an ATO, attackers get illegitimate access to users’ accounts through a malicious
login. Detection of compromised accounts and stopping the attackers before data is ex-
filtrated, destroyed, or the account is used in any nefarious actions is the ultimate goal for
ATO detectors. Examining a sample of compromised accounts from multiple data sources,
one prior study of account takeover discovered that attackers mostly use these accounts to
send targeted phishing emails to the account’s contacts [92]. Since these phishing emails
are sent from legit contacts’ accounts, they are extremely hard to detect using the existing
phishing detectors at the recipients’ side. This renders the phishing attacks undetected and
results can be very costly.

An ATO can be detected through monitoring organizations’ internal email traffic and
classifying lateral phishing, that is malicious emails sent from one employee to another within
the same organization [93]. As proposed in [94], ATO can also be detected using statistical

behavior features extracted from graph topology including, success out-degree proportion,
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reverse page-rank, recipient clustering coefficient and legitimate recipient proportion. While
those two approaches are very effective, they are solely based on the email traffic. In other
words, if the attacker compromises an account and only spies on the compromised users,
then those detection classifiers will never be triggered. Another method of detection, that
can handle this case, is monitoring the login attempts for employees and building models
to find suspicious activity such as irregular login locations, times, devices, or browsers. By
extracting timely sign-in data from Office365 logs, Sentinel builds multiple models that detect
suspicious logins and alerts system admins accordingly.

Our work introduces a new class of ATO detection using login data. The proposed
approach relies on assessing the fraudulence confidence level of login [P-addresses and user-
agents to classify each login. The IP-address, and the User Agent, a field that provides
information about the device and browser used in the login, are the interesting fields for this
class. As we will show later, these two attributes make it possible to ascertain if a login
instance is suspicious. This class works best with detecting a kind of attack where password-
spraying login attempts are performed to compromise accounts. Password-spraying attacks
are performed by using a large number of usernames and combining them with a single
password. Unlike brute-force attacks, where one username is used with many password
variations, password-spraying attacks avoid account lock-out because they look like isolated
failed logins. Attackers exploit the large credential dumps to find common variations of

usernames and passwords.

5.7.2 Data Exploration

Office365 is becoming a repository of valuable organizational information. The proposed

model exploits a sample of the Microsoft Office365 Azure Active Directory data for employ-
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Table 5.1: Description of Microsoft azure active directory dataset

Attribute Type
1 ClientIP QID
2 Organizationld QID
3 Country QID
4 | ExtendedProperties QID
5 Operation QID
6 CreationTime QID
7 Fraudulence Sensitive

ees in organizations that adopt Barracuda Networks” Sentinel as advanced threat protection
solution. The dataset records express all login attempts to office365 accounts. The dataset
comprises a total of 20 fields that provide information about company, user, date, device,
browser, authentication, and login IP-address. As shown in Table after removing Per-
sonally Identifying Information (PII) such as name and email, we utilize only 7 attributes,
6 of which form the set of possible quasi-identifiers and the 7" is the sensitive attribute.
Namely, quasi-identifiers are the ClientlP which is the IP-address that an employee logged-in
from, the Organizationld that the employee belongs to, the Country of the login, CreationTime
of the login, the Operation result that states if the login was successful or not, and finally the
ExtendedProperties that provide information about the browser, device, and authentication
used in the login. The Fraudulence is an added field to represent the label that decides the
legitimacy of a login and this is the sensitive attribute. All attributes are defined in [95].
The raw data is processed to yield an augmented dataset that provides statistical fea-
tures for each logging IP-address. The augmented dataset serves as the original dataset of
publishing interest. We study the effect of publishing this dataset, and different generalized

versions of it, on the data privacy as well as the data utility losses.
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5.7.3 Feature Extraction

The proposed model relies on a set of features to detect the reputation of the IP-addresses.
This reputation is then utilized to classify users’ logins. We augment the raw-data’s attrib-
utes to extract a set of features that would be useful in machine learning model’s training.
This set relies mainly on the statistical data that we extract from logins across the wide
customer range. [ PBadLogins and I PGoodLogins are the total counts of failed and suc-
cessful logins from the IP-address respectively. IPBadUsers and [ PGoodUsers are the
total counts of distinct users with failed and successful login attempts from the IP-address
respectively. IPBadOrgs and 1 PGoodOrgs are the total counts of distinct organizations
with failed and successful logins from an IP-address respectively.

We parse the feature ExtendedProperties to extract the user agent. The user agent
is then processed to generate the last feature, UserAgentFlag. The UserAgentFlag is
a binary feature that takes the value 1 if the user agent is suspicious and 0 otherwise.
Exploring the data, we found that there are some user agents that are usually connected
with brute force ATO attacks. An example of such user agents is the CBAInPROD. While
there isn’t a confirmed explanation of the nature of such user agent, it is generally believed to
be connected with logins that utilize IMAP (Internet Message Access Protocol) to perform
password-spraying attacks. IMAP is a legacy authentication protocol that makes it possible
for an account to be accessed from multiple devices. The protocol that does not support
MFA is often used by desktop email clients to retrieve emails from the email servers. It is
also worth to mention that the user-agent field can be easily manipulated by the attackers.
This implies that, in some cases, this class of attacks will not necessarily come from a

CBAInPROD user-agent.
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Figure 5.3: The proposed ATO detection Model

5.7.4 Training on Original and Generalized Data

Datasets and Labeling Three types of datasets are generated in our work. First is the
raw-data, where we exploit a sample of Barracuda’s entire raw login data over the period
of 3 months. This sample contains, approximately, 700M data points. A sample of the
raw-data’s structure is shown in Table[5.2] The raw-data is used to generate the second type
of datasets, IP-data. The IP-data is generated by grouping the raw-data by ClientlP (also
named IP for the sake of consistency) and aggregating the statistical features described in the
previous subsection. The resulting dataset contains, approximately, 8M data points, where
each data point is a distinct IP-address and the corresponding columns are the statistical
data connected with this IP. A sample of the IP-data’s structure is shown in Table 5.3} Now

that we generated a dataset that reflects the behaviour by which each IP-address is used, we

103



Table 5.2: Sample raw-data

Userld ‘Organizationld‘ CreationTime ‘ UserAgent ‘ Operation ‘ IP ‘Country

user@domain.com ‘ ABCDXX ‘ 2020-03-26T12:00:007Z ‘ Mac OS X - Chrome ‘ UserLoggedIn ‘ XIXIX:X ‘ Us

can start finding criteria by which we can build an IP reputation Model.

We adopt two classes of IP reputation; Bad and Good. To learn how to decide whether an
IP should be reputed as Bad or Good, we collect few random samples of known IP-addresses
that are connected with ATO incidents that exploit the password spraying behavior. Sta-
tistical feature values for these IP-addresses are then collected from the raw-data. Based
on these samples and their collected feature values, we train a K-Nearest Neighbor (KNN)
model to capture more data points and thus more Bad reputation IP-addresses. Another
KNN model is also trained on a random sample of known legit logins from IP-addresses
that are known to be safe. The collected data for both classes aided in setting the criteria,
represented in a rule set, by which we split the 8M IP-dataset into the two classes. Ap-
proximately, 16K IP-addresses were marked as Bad reputation IPs, while the remaining IPs
where marked as Good.

The IP-data with the corresponding reputation is then used to form our third dataset;
the labeled dataset. To generate this dataset, we collect random samples of logins that
took place from each set of Bad and Good reputation IP-addresses. A login is labelled as
Fraudulent if it took place from a Bad reputation IP-address, otherwise, it is labelled as
a Legit login. The resulting labelled data contains 1M Legitimate, and 0.13M Fraudulent
logins, respectively. The users in the labelled dataset are spread across 1886 companies.
This dataset is used to train the proposed ATO-detection ML Model. Figure describes
the transition and means by which the labelled data is generated from the raw login data

passing through the generated IP-data.
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Table 5.3: Sample [P-data

IP ‘ IPBadLogins ‘ I PGoodLogins ‘ IPBadUsers ‘ 1 PGoodUsers ‘ IPBadOrgs ‘ 1 PGoodOrgs ‘ UserAgentFlag

Model Training and Classification Labeled Data is split into training and test
with a ratio 0.75 and 0.25 respectively, where 850854 data points are used in training the
model while 283619 are test points. A Random Forest [96] classifier is trained using the
labelled data. Most machine learning models, including Random Forest, require the user
to set various hyper-parameters that govern the model’s training process. To determine
the optimal set of hyper-parameters for our classifier, we followed machine learning best
practices by conducting a three-fold cross-validation grid search over all combinations of the

hyper-parameters listed below [97].

e Number of trees: 10200, in steps of 5 (i.e., 15, 20, 25, . . . , 175, 200)

e Maximum tree depth: 10-100, in steps of 5 (i.e., 15, 20, 25, . . . , 95, 100)

e Minimum leaf size: 1, 2, 4, 8, 16

Our model used a Random Forest model with 75 trees, a maximum depth of 15, a
minimum leaf size of 8 elements. Once the classifier has been trained, given a new login,

the features are extracted by joining the login IP with the IP-data. The new login and the

extracted features are then fed into the trained classifier which then outputs the decision.

5.7.5 Utility-Privacy Tradeoff Management

We aim at computing the privacy losses resulting from publishing the generalized dataset
as well as the drop in the ML model’s accuracy as a result of the dataset generalization.

After generalization, a dataset is split into ) classes. Each class brings on its own privacy
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Figure 5.4: Feature importance of original-data trained model

losses. Collectively, these losses will contribute to the total privacy loss of the published
dataset. For example, if the distribution of the sensitive attribute in the original dataset is
(0.88,0.12). A published class with sensitive attribute distribution (0.1,0.9) would reveal an
accountable information about users that fall in this class. If this class involves all logins
from some country X, then knowing that a user logs in from this country would drastically
affect the belief about the login’s fraudulence.

We study two variants of generalization. First is using the IP sub-net rather than the
[P-address. Second is using the Country and omitting the IP from the dataset. Table
[b.4] expresses the features used in each variant. Figures [5.4] and [5.6] show the feature
importance in 3 different models trained using the original dataset, sub-net generalized
dataset, and the country generalized dataset. As shown in Table [5.6] after generalization,
the original dataset is split into () = 21368 classes in the sub-net dataset and ) = 272 classes

in the country dataset.
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Table 5.4: Feature sets from different generalized datasets

Original Features

Sub-net Features

Country Features

IPBadLogins Subnet BadLogins | CountryBadLogins
I PGoodLogins SubneGoodLoginst | CountryGoodLogins
IPBadUsers Subnet BadU sers CountryBadU sers
I PGoodU sers SubnetGoodUsers | CountryGoodU sers
IPBadOrgs Subnet BadOrgs CountryBadOrgs
I PGoodOrgs SubnetGoodOrgs CountryGoodOrgs

UserAgentFlag UserAgentFlag UserAgentFlag

SubnetBadLogins SubnetBadUsers SubnetBadOrgs SubnetGoodLogins SubnetGoodUsers SubnetGoodOrgs

Features

UserAgentFlag

Figure 5.5: Feature importance of subnet-generalized-data trained model
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Accuracy, precision, and recall are computed for the three variants and shown in Table
5.5l Privacy losses are computed according to Equations and while the loss in data
utility is computed based on Equation (5.3)). The results show that maximum, minimum,
and average privacy losses maintain a consistently decreasing pattern as models are trained
using more generalized datasets. However, as predicted, data utility loss shows an increasing
pattern. Although this inverse relation between privacy and utility losses is expected, it is
very interesting to notice the relative change in both metrics. According to Table [5.6 if the
sub-net generalized dataset is published rather than the original dataset, average privacy
loss drops from maximum value to (0.1338, 0.1661) at the expense of only an 0.045% drop
in data-utility. Additionally, if the country generalized dataset is published instead of the
sub-net generalized dataset, average privacy loss drops to (0.0333, 0.0224) at the expense
of 0.46% drop in data utility. While in many scenarios data utility loss is intolerable, these
low data utility loss values might very well be negligible in most of the applications. This
answers one of our most crucial questions; why would a data publisher release datasets
that would leak a considerable amount of private information, when they could publish

generalized versions of these datasets in an attempt to leak less private information at an
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Table 5.5: Model results of training on original and generalized datasets

Original Data | Sub-net Generalized | Country Generalized

Tp 33581 33509 33256
TN 249996 249960 249006

Fp 40 994

Fy 110 341
Precision(%) 99.98% 99.88% 97.09%
Recall (%) 99.95% 99.67% 98.98%
Accuracy (%) 99.99% 99.94% 99.52%

Table 5.6: Tradeoff results when training on original vs. generalized datasets

Original Data

Sub-net Generalized

Country Generalized

#ofClasses

21368

272

Mazx.PrivacyLoss (g, «)

(0.87, 0.5293)

(0.87, 0.5293)

MinPrivacyLoss (g, )

(7.79¢-7, 3.436¢-6)

(1.73¢-7, 1.78¢-7)

AveragePrivacyLoss (g, «)

(0.1338, 0.1661)

(0.0333, 0.0224)

DataUtilityLoss(%)

0%

0.045%

0.46%

inconsiderable data utility loss?. The proposed framework exactly answers this question by

providing quantifiable measures that are intended to aid the data publishers in making their

decision.

Our PySpark Random Forest classifier provides a built-in estimate of each feature’s rel-

ative importance [98], where each feature receives a score between 0.0-1.0 and the sum of

all the scores adds up to 1.0. We notice that in case of training the model on the original

dataset, Figure [5.4] shows that the most important feature is the count of I PBadLogins. As

the dataset is more generalized, the classification tends to rely more on the UserAgentFlag

feature. This can be noticed by checking the gradual increase in this feature’s importance
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shown in Figures and As shown in Table [5.5] this results in an increased false
positive and false negative rates and therefore, a minimized accuracy, precision, and recall.
While using a model that is trained on the country generalized dataset does not provide
a significant data utility loss, the high false positive and false negative rates might not be
accepted in an application that protects users’ security. Rates such as 994 false positive
alerts and 341 missed ATO attacks might not be what a global security product is looking to
provide to its customers. Thus, using the proposed framework, a designer can easily quantify,
understand, and communicate the tradeoff and select the appropriate levels of utility and

privacy loss depending on the application’s expected performance.

5.7.6 Ethics

In this work, our team, consisting of researchers from academia and a large security company,
developed privacy preserving ATO detection techniques using a dataset of historical account
logins and reported ATO incidents from 1886 organizations who are customers of Barracuda
Networks. These organizations granted Barracuda permission to access their Office 365
employee mailboxes. Per Barracuda’s policies, all fetched emails and login data are stored
encrypted. Only authorized employees at Barracuda were allowed to access the data (under
standard, strict access control policies). No personally identifying information or sensitive
data was shared with any non-employee of Barracuda. Once Barracuda deployed a set of
ATO detectors to production, any detected attacks were reported to customers in real time

to prevent financial loss and harm.
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5.8 Summary

A framework to address the utility-privacy tradeoff in machine learning applications was
proposed. The framework provided a quantification of the data utility loss from a ML per-
spective as a result of applying privacy constraints in data publishing. The proposed work
showed how a data owner is able to manage the utility-privacy tradeoff and gain deeper
insights about the value of the released data as well as the potential privacy losses. To
demonstrate how the proposed framework can be applied in real life applications, an em-
ployees email login dataset from a top cybersecurity company was utilized. The ATO attacks
were introduced together with a proposed ML-based detection algorithm. Results showed
that almost same detection accuracy levels can be achieved when using anonymized data
instead of the original data. We also showed that, depending on the DO’s and DU’s require-
ments including application’s expected performance, the tradeoff can be easily quantified,

understood, and communicated using our proposed framework.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we introduced a comprehensive characterization and novel quantification meth-
ods of privacy to deal with the problem of privacy quantification in privacy-preserving data
publishing. In order to consider the privacy loss of combined attributes, we presented data
publishing as a multi-relational model. We re-defined the prior and posterior beliefs of the
adversary. The proposed model and adversarial beliefs contribute to a more precise privacy
characterization and quantification. Supported by insightful examples, we then showed that
privacy could not be quantified based on a single metric. We proposed two different privacy
loss metrics.

Based on these metrics, the privacy loss of any given PPDP technique could be evalu-
ated. We introduced two data utility loss metrics. Using these metrics, we were able to
practically address the utility-privacy tradeoff problem. We then propose a utility-boosting
privacy-preserving data disclosure model that redefines the data utility based on the DU’s
perspective. Based on this model we incorporate our utility and privacy metrics to propose
two versions of a privacy-preserving data disclosure protocol. The protocol sets rules for the
negotiation between the DO and the DU in order to set a data disclosure deal. The proposed

protocol inherently boosts the data utility from the DU’s perspective with the satisfaction
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of the DO’s privacy constraint and monetary objectives. Our experiments demonstrate how
we could gain a better judgment of existing techniques and help analyze their effectiveness
in reaching privacy.

Furthermore, a framework to address the utility-privacy tradeoff in machine learning
applications was proposed. The framework provided a quantification of the data utility loss
from a ML perspective as a result of applying privacy constraints in data publishing. The
proposed work showed how a data owner is able to manage the utility-privacy tradeoff and
gain deeper insights about the value of the released data as well as the potential privacy
losses.

To demonstrate how the proposed framework can be applied in real life applications, an
employees email login dataset from a top cybersecurity company was utilized. The ATO
attacks were introduced together with a proposed ML-based detection algorithm. Results
showed that almost same detection accuracy levels can be achieved when using anonymized
data instead of the original data. We also showed that, depending on the DO’s and DU’s
requirements including application’s expected performance, the tradeoff can be easily quan-

tified, understood, and communicated using our proposed framework.

6.2 Future Work

There is a continuous interest in building privacy preserving data publishing models that
satisfy the privacy constraints and meanwhile provide the maximum data utility. Our work
opens doors to a wide range of research directions that raise some problems and interesting
questions. In the following, we highlight some of those research directions that can build on

the work presented in this thesis.
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o Sufficiency of the proposed metrics We raise a question regarding the sufficiency of
different utility and privacy metrics in terms of fully accounting to the losses. Mean-
while, we do not know how many metrics would be sufficient to quantify privacy and
utility losses. However, we believe that any further proposed independent metrics that
would contribute to reaching an optimum and provably sufficient set of measures, can

be added to the proposed quantitative measurement framework.

o Achieving an optimal data disclosure model Another open problem is the optimiza-
tion of the original data generalization as to achieve maximum privacy based on our
proposed metrics. Typically, we believe that equivalence classes should be designed in
such a way that keeps both the entropy loss and the distribution loss below a certain
pre-determined level. This motivates us to think of a typical publishing scenario. More-
over, exploiting the proposed metrics, the utility-privacy tradeoff can be extensively
researched as an optimization problem to reach a provably optimum data disclosure

model.

o Designing publishing models with adjustable class privacy We also leave as an open
problem for further research, optimization of the chosen set of quasi-identifiers with an
objective of minimizing distribution and entropy losses within the published table or

specific classes of higher privacy concerns.

o Game theoretic approach to model the tradeoff based on our proposed metrics Our for-
malization to the data privacy and data utility including the proposed metrics can be
further used to provide a game theoretic approach to manage the utility-privacy trade-
off. In this model, data users are interested to run some machine learning algorithm on

the provided data. The data user provides some tolerance threshold on the data utility
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loss represented as the drop in the ML model’s accuracy. The released data is useful
only if the data utility loss does not go below the specified tolerance threshold. Data
Collectors are willing to maintain the privacy constraints promised to data providers.
Thus, the data collector and the data user are looking forward to find a generalized
version of the dataset that satisfies both privacy and utility constraints. The model
would be a sequential game with perfect and complete information. More specifically,
both players know the provider’s behavior model. The data user also knows the data
collector’s available actions and preferences. The game starts with an offer from the
data user to the data collector. In the offer, the required value for privacy parameters

and the price must be specified. The game is held until an equilibrium is found.

Collaborative privacy preserving ATO detection The proposed privacy preserving ATO
detection framework could be extended to design a collaborative privacy preserving
ATO detection algorithm where multiple security companies are interested to share IP
reputation datasets in order to get a better precision and recall. This algorithm should
provide strong guarantees on privacy of each company’s dataset and also guarantees on
the collective usability of the aggregated data. It would also be interesting to provide
a monetary framework to incentive different companies based on their contribution to

the data utility.
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