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ABSTRACT 

CONTEXTUAL INFLUENCES ON UNDERGRADUATE BIOLOGY STUDENTS’  
REASONING AND REPRESENTATIONS OF EVOLUTIONARY CONCEPTS 

By 

Joelyn de Lima 

Context is the background or the settings of an event or idea. It is only when events or 

ideas are considered within the context in which they occur that they can be fully 

understood.  In education, the application of knowledge communicated in one context to 

a different one is a central feature of learning. However, knowledge transfer can be 

affected by multiple factors including contexts used. Context plays a vital role in both 

shaping students’ learning and in eliciting their knowledge. Therefore, understanding 

how context can help or hinder learning and how context impacts knowledge 

assessment is important for improving science learning outcomes. 

 

For my dissertation, I studied contextual influences on the ways students reason and 

represent their knowledge. My studies explored two types of contexts: surface features 

of prompts provided to students (e.g., organism used) and the mode of response 

requested (e.g., written narratives vs constructed models). I analysed the effect of 

prompt surface features on the content of students’ written responses and on the 

architecture of models they constructed to explain evolution by natural selection. I also 

analysed the effect of mode on the content and level of scientific plausibility of students’ 

responses. In addition, I explored the association between instruction and prior 

achievement and susceptibility to contextual influences. 

 



 
 

My results indicate that prompt contextual features and mode of response are eliciting 

differences in the content of students’ representations. Contextual susceptibility 

decreased with instruction and higher prior academic achievement.  This could indicate 

that they are novice learners and have a fragile understanding of either the subject 

matter (evolution), the alternative representation that was required (constructing 

models), or of both the subject matter and the representation. Incorporating multiple 

contexts and modes of assessment has potential to generate a more holistic view of 

students’ understanding and may promote greater transfer by requiring students to think 

and reason across contexts.    
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INTRODUCTION 

 

The goal of a good science education is to build a scientifically literate populace and to 

ensure that the skills and knowledge gained are useful in the real world (Lave, 1988; 

Lobato, 2006). Pedagogical approaches that have gained traction in recent times ( e.g., 

problem-based learning, place-based education, etc.) leverage the idea that students 

learn best from relatable and relevant examples, which are comparable to situations 

that they might encounter outside the classroom  (Allen & Tanner, 2003; Gentner et al., 

2003; Smith, 2002). However, even though learning is situated - i.e., it takes place at a 

particular time, place, and in a particular setting - the outcomes of that learning are only 

determined in a different time, place, and setting (Gilbert, 2006). Therefore, the 

application of knowledge communicated in one context to a different one is a central 

feature of learning (Barnett & Ceci, 2002; Opfer & Thompson, 2008). In this dissertation, 

I present my research about how context influences the ways students reason and 

represent biological systems.   

  

The inability to transfer concepts learned in one context to another prevents students 

from applying what they have learned in class to their daily lives (Georghiades, 2000; 

Lobato, 2006). Transferring concepts and principles across contexts is important 

because the same principles apply to multiple contexts (Bransford & Schwartz, 1999; 

Morris et al., 1977; Thorndike & Woodworth, 1901), and relearning common principles 

in each new context is inefficient. There are multiple factors that can influence 

knowledge transfer, including overlap (degree of similarity between learning context and 
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assessment context), degree of abstraction (continuum between hyper-contextualised 

to devoid of any contextual details), mode of transfer (active vs. passive), and the 

specific nature of the context ( e.g., instruction vs. assessment) (Gentner et al., 2003; 

Jacobson & Spiro, 1995; Loewenstein et al., 1999; Loewenstein & Gentner, 2001; 

Nehm & Ha, 2011; Vosniadou, 1989). 

  

Contrary to the functionalist view that generalisation of knowledge (and transfer) best 

happens by “freeing oneself from experience” (Lave, 1988), the consensus is that 

knowledge is not created in a vacuum, but is affected by the setting in which it is 

constructed (J. S. Brown et al., 2007; Hall, 1996; Van Oers, 1998). Context plays a vital 

role not only in shaping, but also in eliciting this knowledge (Hofer, 2006). 

Understanding how context both helps and hinders learning and transfer is therefore of 

paramount importance if we are to improve science literacy (National Academies of 

Sciences, Engineering, and Medicine [NASEM], 2016).  

 

By its nature, ‘context’ is difficult to define (Goodwin & Duranti, 1992). The common 

language definition in the Oxford English Dictionary (2020) is, “The whole structure of a 

connected passage regarded in its bearing upon any of the parts which constitute it; the 

parts which immediately precede or follow any particular passage or ‘text’ and 

determine its meaning”. However, technical definitions within and across disciplines are 

substantially broader. It has been described as a type of framework of features that in 

unison give meaning to an action (Van Oers, 1998). Gilbert (2006) considered the 

purpose of context to be that of adding clarity and perspective and defined it as, “the 
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circumstances that form the setting for an event, statement, or idea, and in terms of 

which it can be fully understood”.  

  

Consequently, researchers and educators use the term ‘context’ in a wide variety of 

ways. In science education, ‘context’ generally refers to features of the task stem (i.e., 

the prompt or question) which could include ‘personal perspectives and concrete 

examples’ (Krell et al., 2012; Son & Goldstone, 2009). But it has also been used to refer 

to: a societal and cultural setting (NASEM, 2016), a focal event (Goodwin & Duranti, 

1992), a specific discipline (Nehring et al., 2012; Topcu, 2013), the order in which 

questions are asked (Federer et al., 2015), the types of questions asked (Driver et al., 

1994; Watkins & Elby, 2013), and even the specific words in the question (S. Brown et 

al., 2011; Krell et al., 2015; Nehm & Ha, 2011).  

  

In science education it is accepted that context influences teaching and learning of both 

knowledge and skills, but the nature of that influence is still debated (Gobert et al., 

2011; Hofer, 2006; Krell et al., 2012, 2014; Muis et al., 2006; Nehring et al., 2012; Op ’t 

Eynde et al., 2006; Topcu, 2013). Studies have shown that context influences both the 

way knowledge is integrated into and elicited from mental knowledge structures (J. S. 

Brown et al., 2007; Hall, 1996; Jones et al., 2000; Williams & Hollan, 1981). Teaching 

concepts in a highly contextualised manner (personalised to the learner) has been 

linked to both desirable (Allen & Tanner, 2003; Parker & Lepper, 1992; Wason & 

Shapiro, 1971) and undesirable outcomes (Detterman & Sternberg, 1993; Lave, 1988; 

Son & Goldstone, 2009). Additionally, assessment context has been shown to influence 
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the ideas elicited in student responses (Göransson et al., 2020; Kohn et al., 2018; 

Nehm & Ha, 2011), the way students approach problems and the skills they use 

(Bennett et al., 2020; Chi et al., 1981; Çikla & Çakiroğlu, 2006; Keller & Hirsch, 1998; 

Prevost et al., 2013), as well as their performance (Schurmeier et al., 2010) .  

 

There are still many questions that remain unresolved, such as: Should teaching be 

done in contexts that are ‘typical’ of the discipline rather than contextualized to the 

learner (Driver et al., 1994)? Does context affect all learning and understanding? Or, are 

there generalities that can be used to teach certain concepts (Greeno, 2009; Guerra-

Ramos, 2012; Hofer, 2006; Son & Goldstone, 2009)? Is there a best context in which to 

teach/assess a particular concept for a particular class? Or, should we teach/assess 

concepts in a wide variety of contexts to overcome biases (Leach et al., 2000)?  

 

This dissertation aims to contribute to our understanding of the way context influences 

the ways students both reason about and represent biological systems. And because 

understanding evolution is fundamental to understanding biology, I have used evolution 

as the theme to investigate students’ reasoning and representations. The first two 

chapters explore the influence of specific features of a question prompt (i.e., the task 

stem or the item-feature; Krell et al., 2012, 2015; Nehm & Ha, 2011). While the first 

chapter investigates how changes in the prompt influence the content of students’ 

narrative responses, the second chapter investigates how the same item features 

influence the content and architecture of student’s’ model-based responses. In the third 

chapter, I explore how context, defined as the mode by which students are asked to 
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represent their reasoning (i.e., narrative vs. model), influences the content of students’ 

responses. Collectively, my work on in this dissertation aims to further our 

understanding of contextual influences on students reasoning and representations so 

that we might improve the efficiency and effectiveness of instruction and assessments 

and make education more inclusive. 
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CHAPTER ONE:  

Prompt context influences the content of students’ narratives of evolution by natural 

selection 

 

ABSTRACT 

Despite the importance given to understanding evolutionary theory by scientists and 

educators, students graduate with incomplete and incorrect ideas about evolution. The 

context in which knowledge about evolution and evolutionary processes is obtained and 

elicited can contribute to facilitating or hindering the learning process. Human evolution 

in particular, has been controversial and especially difficult for students to accept and 

understand. Multiple studies have documented the difficulties that arise with respect to 

the acceptance of human evolution. This study contributes to the field that seeks to 

understand how context shapes the way students reason about evolution, including 

human evolution, and the effect of instruction on their reasoning.  

 

We asked students in a large (n=160) introductory biology course how a biologist would 

explain the evolution of traits in humans and in cheetahs. Structural traits (heel/leg 

bones) were contrasted with functional traits (abilities to walk upright/run fast); and 

these were contrasted within each taxon. EvoGrader (an online assessment tool) 

scored students’ responses for the presence of 6 key concepts (variation, heritability, 

competition, limited resources, differential survival, and non-adaptive) and three naïve 

ideas (adapt, need, and use/disuse).  
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We found that taxon was a significant predictor for the number of key concepts in 

students’ responses; responses to prompts about cheetahs had more key concepts and 

were more likely to have only key concepts (no naïve ideas) than responses to prompts 

about humans. Responses to questions about functional traits had more naive ideas 

that than those about structural traits. At the end of a semester of instruction, the 

number of responses with key concepts as well as the number of key concepts per 

response increased, and the number of responses with naive ideas and the number of 

naive ideas per response decreased. 

 

Our results are consistent with prior research that shows a clear effect of contextual 

influences (taxa and trait) on student reasoning about evolution. This suggests that 

students are reasoning differently when thinking about evolutionary processes with 

respect to humans as compared to other non-human animals. Students’ explanations 

are further influenced by instruction, after which students responded with more key 

concepts, fewer naive ideas, and a modest decrease in the difference seen with respect 

to the context of the prompt. This is indicative of instruction having contributed to an 

increased understanding of the evolutionary process which in turn could have resulted 

in a decreasing susceptibility to contextual influences and an increased potential to 

transfer knowledge. 
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INTRODUCTION 

Dobzhansky famously wrote, “Nothing in biology makes sense except in the light of 

evolution” (Dobzhansky, 1973). As such, evolutionary theory provides the needed 

context, underpinnings, and coherence to understand biological complexity (Alters & 

Alters, 2001; Blackwell et al., 2003). Evolution is to biology what plate tectonics is to 

geology, relativity is to time, and heliocentrism is to astronomy (Deniz & Borgerding, 

2018b). However, despite its importance, it is perhaps one of the most controversial and 

polarizing topics in science (Glaze & Goldston, 2015; Pobiner, 2016). Across many 

countries and cultures, a significant proportion of people do not accept evolution as the 

unifying theory that explains the origin and diversity of life (Allmon, 2011; Brenan, 2019; 

Council of Europe, 2017; Deniz & Borgerding, 2018b; Downie & Barron, 2000; Miller et 

al., 2006; Nehm & Schonfeld, 2007; Oliveira & Cook, 2018; Smith, 2010a, 2010b; 

Thagard & Findlay, 2010). 

 

Understanding evolution is a critical component of science literacy and its centrality to 

the biology curriculum is broadly valued by the scientific community. National and 

international reports that provide guidance for science teaching at both the K-12 and 

undergraduate level have stressed inclusion of evolution as a foundational concept 

(American Association for the Advancement of Science [AAAS], 2011; Deniz & 

Borgerding, 2018a; NGSS Lead States, 2013; UK Department of Education, 2015).  

However, a significant number of students graduate from college without an 

understanding of evolution even after rigorous training in science (Alters & Nelson, 

2002; Kalinowski et al., 2010; Pobiner et al., 2018). 
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Students have great difficulty comprehending and explaining evolution and 

misconceptions often persist despite explicit instruction (Bishop & Anderson, 1990; Bray 

Speth et al., 2009; Catley & Novick, 2009; Morabito et al., 2010; Nehm & Reilly, 2007; 

Nehm & Ridgway, 2011; Sinatra et al., 2008; Smith, 2010a, 2010b). Some studies have 

suggested that students are also less likely to retain concepts related evolution than 

non-controversial topics such as photosynthesis (Glaze & Goldston, 2015; Nehm & 

Schonfeld, 2007; Sinatra et al., 2003). 

 

As with any concept, student’s knowledge and understanding of evolutionary theory is 

not created in a vacuum, but is affected by the setting in which it is constructed (Brown 

et al., 2007; Hall, 1996; Van Oers, 1998).  Context plays a vital role not only in shaping, 

but also in eliciting and activating this knowledge (Clark, 2006; Hofer, 2006; Jones et al., 

2000; Sabella & Redish, 2007). Understanding how context both helps and hinders 

learning and knowledge transfer is therefore of paramount importance if we are to 

improve science literacy (National Academies of Sciences, Engineering, and Medicine 

[NASEM], 2016; Nehm & Ha, 2011). 

 

Although ‘context’ can mean many things (e.g., disciplinary perspective, social and 

cultural context in which learning occurs, etc.), in this paper, we restrict the use of 

‘context’ to refer to specific features of a prompt or task stem used in assessment.  

Prompt context has been shown to be an important feature of assessment design. 

Several studies have shown that alternative phrasing can lead students to interpret a 

prompt differently (often incorrectly) or to focus on irrelevant or superficial features 
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unrelated to the intent of an assessment item (diSessa et al., 2004; Nehm & Ha, 2011; 

Ozdemir & Clark, 2009; Prevost et al., 2013). Seemingly minor changes in the wording 

of prompts have been shown to result in major changes in student performance on 

assessments (Chi et al., 1981; Potari & Spiliotopoulou, 1996; Schurmeier et al., 2010). 

Such contextual influences affect both novice and expert learners. For example, Gros, 

Sander, & Thibaut (2019) showed that when presented with certain prompt contexts 

involving daily-life scenarios, even experts could not solve simple mathematical 

problems.  

 

Numerous studies have shown that context is an important factor contributing to the 

difficulty associated with learning and assessing students’ conceptions of evolution 

(Beggrow & Sbeglia, 2019; Evans, 2008; Ha et al., 2006; Kampourakis & Zogza, 2008, 

2009; Prevost et al., 2013). Clough & Driver (1986) observed inconsistent reasoning in 

students’ explanations of evolution by natural selection when asked to reason about the 

origin and prevalence of different colours in caterpillars and in foxes. Nehm and 

Schonfeld (2008) showed performance differences when students were asked 

conceptually equivalent questions that differed with respect to scale, organism and 

evolutionary direction. Nehm & Ha (2011) similarly showed that prompt features such as 

scale, evolutionary direction, lineage, organism, and trait influenced both the number of 

key concepts (e.g., variation, heritability) and naïve ideas (e.g., need, use) students 

used in their explanations of evolution by natural selection.  For example, students 

included more scientific concepts when responding to prompts about trait gains and 
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more naïve ideas when reasoning about trait loss, despite otherwise equivalent prompt 

construction.   

 

Assessing evolutionary knowledge and understanding becomes even more problematic 

when dealing with evolution of humans. Ever since Darwin proposed evolutionary 

theory, human evolution by natural selection has been controversial. The society he 

lived in, including his peers (A.R. Wallace included) took objection to the fact that 

humans were not the exception (Mayr, 1982). Even today, people are more willing to 

accept natural selection as an explanation for evolution for species other than humans 

(Miller et al., 2006). Such trends are seen even among college educated adults 

(Brenan, 2019). Many studies that have explored students’ acceptance of human 

evolution have shown that students reason differently in human vs non-human animal 

contexts (Atran, 1998; Atran et al., 2001; Nettle, 2010) and that acceptance of evolution 

increases when the organism in question is farther in evolutionary distance from 

humans (Evans, 2008; Sinatra et al., 2003).  

 

While we know that evolution acceptance can be influenced when considering human 

vs non-human organisms, we do not know if that difference extends to the content of 

students’ explanations about evolution by natural selection. Beggrow & Sbeglia (2019) 

showed that disciplinary context was more important than prompt context when 

explaining differences in student responses to questions about human and non-human 

evolution.  

 



18 
 

In this study, we aim to contribute to a growing understanding about the role of context 

in influencing students’ reasoning about evolution. Here, our use of ‘context’ is 

consistent with definitions offered by Krell et al. (2015, 2012) and Nehm & Ha (2011), 

where ‘context’ refers to the specific features of a question prompt (i.e., the task stem or 

the item-feature).  In particular, we ask whether students reason differently about 

evolution by natural selection when responding to prompts that vary in context and 

whether differences persist following a semester of active, learner-centred instruction. 

 

METHODS 

Setting and Participants 

This study was conducted at a large, public university in the Midwest with highest 

research activity (The Carnegie Classification of Institutions of Higher Education, n.d.). 

Data for these analyses came from student responses in a large introductory biology 

course for majors (n = 194 students enrolled) that focused on content domains of 

genetics, evolution, and ecology.  The course is second in a 2-course sequence 

required for life science majors; the first course focused on cell and molecular biology. 

Of the enrolled students, 160 completed all required tasks and were included in the 

analysis. The study population was 61% female, 21% first generation college students, 

and 21% non-White, with an average GPA of 3.2 (4.0 scale). The course is targeted 

toward sophomores (59% of students in study) but also includes a significant number of 

juniors (31%) and few freshmen (3%) or seniors (7%). 
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Assessment Design 

We designed four isomorphic prompts based on the ACORNS instrument (Nehm et al., 

2012) to assess students’ explanations about natural selection in human and non-

human animals. The prompts contained the following basal structure: “(Taxon) has 

(trait). How would biologists explain how a (taxon) with (trait) evolved from an ancestral 

(taxon) without (trait)?” Contextual features of prompts varied in taxon (human vs 

cheetah) and type of trait (structural vs functional). Humans and Cheetahs are not very 

distant in evolutionary terms (diverged approximately 96 MYA (Kumar et al., 2017)) and 

prior studies have examined how students reason when the taxon is ‘cheetah’ (Bishop & 

Anderson, 1990; Nehm & Ha, 2011; Nehm & Reilly, 2007).  ‘Structural traits’ in this 

study refer to morphological traits that affect fitness, specifically ‘heel bones’ in humans 

and ‘leg bones’ in cheetahs.  ‘Functional traits’ are behavioural traits or abilities that 

similarly affect fitness, such as ‘walking upright’ in humans and ‘running fast’ in 

cheetahs. All the prompts dealt with trait gain rather than trait loss. Prompts were 

designed as open-ended questions because prior research has shown they provide 

better insights into student thought processes and subject knowledge (Foddy, 1993).  

 

From the four prompts, we created two forms of the assessment, hereafter 

‘Human/Cheetah Assessment’ (or, HCA). Each form contained two prompts that were 

the same with respect to trait type (structural or functional trait) but differed in taxon 

(human or cheetah; Table 1.1). To control for potential influences of order (Federer et 

al., 2015; Schuman & Presser, 1996), each form of the HCA was further divided into 
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sub-forms that differed in the order of appearance of each taxon (i.e., half of the copies 

of each form had cheetah first and half had human first). 

 

Table 1.1. Prompts used in the Human/Cheetah Assessment. Two forms of an assessment were 
developed that differed in trait type (structural vs functional). Each form prompted students (n=182, Form 
1; n=138, Form 2) to explain evolution by natural selection for both human and non-human animals. 

  Trait 

  Form 1: Structural Trait Form 2: Functional Trait 

Taxon 

Human 

Modern humans have 
enlarged heels. How would 
biologists explain how a 
species of humans with 
enlarged heels evolved from 
an ancestral human species 
without enlarged heels? 

Modern humans have the ability 
to walk upright. How would 
biologists explain how a species 
of humans with the ability to 
walk upright evolved from an 
ancestral human species without 
the ability to walk upright? 

Cheetah 

A species of cheetah has 
long leg bones. How would 
biologists explain how a 
species of cheetah with long 
leg bones evolved from an 
ancestral cheetah species 
without long leg bones? 

A species of cheetah has the 
ability to run fast. How would 
biologists explain how a species 
of cheetah with the ability to run 
fast evolved from an ancestral 
cheetah species without the 
ability to run fast? 

 

Students completed the HCA individually during class time for credit. Formative 

assessments were administered regularly in class and awarded credit for 

participation/effort.  Each student provided responses to the same form of the HCA at 

the beginning and end of the semester (i.e., form was held constant). Only students who 

completed the HCA at both times were included in analyses (n = 160). Table 1.1 

provides a summary to show how these were distributed between taxa and trait. The 
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two taxa (human and cheetah) were not referenced during instruction or assessment at 

any point in the course. 

 

Coding Responses 

Students’ narrative responses were coded using the online assessment tool EvoGrader 

(Moharreri et al., 2014).  EvoGrader codes for the presence of six key evolution 

concepts (KCs; Variation, Heritability, Competition, Limited Resources, Differential 

Survival, and non-adaptive) and 3 naïve ideas (NIs; Adapt, Need, and Use/Disuse) 

(Table 1.2). EvoGrader’s reliability and validity have been established in previous 

studies (see Moharreri, Ha, & Nehm, 2014) and demonstrated comparable to that of 

trained human raters (>0.81 Kappa) despite requiring 99% less time for scoring.  It is 

important to note that EvoGrader evaluates presence/absence of concepts; additional 

analyses and coding approaches are necessary in order to make inferences about 

correct applications of concepts. 
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Table 1.2. Description of the six Key Concepts (KCs) and three Naïve Ideas (NIs). Modified from 
Moharreri et al. (2014). 

Concept 
Type 

Concept  
Name 

Concept  
Description 

Key 
Concepts 

Variation The presence and causes of variation 
(mutation / recombination /sex) 

Heritability The heritability of variation (The degree to which 
a trait is transmitted from parents to offspring) 

Competition 
A situation in which two or more individuals 
struggle to get resources that are not available to 
everyone 

Limited Resources 
Limited resources related to 
survival/reproduction, such as food and 
predators, and reproduction (such as pollinators) 

Differential 
Survival/ 
Reproduction 

The differential reproduction and/or survival of 
individuals 

Non-Adaptive Idea Genetic drift and related non-adaptive factors 
contributing to evolutionary change 

Naïve 
Ideas 

Adapt / Acclimation Adjustment or acclimation to circumstances 
(which may subsequently be inherited) 

Need / Goal Goal-directed change; needs as a direct cause of 
evolutionary change 

Use / Disuse The use (or lack of use) of traits directly causes 
their evolutionary increase or decrease 
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Data Analyses 

A total of 640 student responses were included in analyses (n=160 students; 4 

responses per student). Each student provided responses pre- and post-instruction for 

either human or cheetah.  Within taxon (human or cheetah) students responded to two 

prompts regarding evolution of both structural and functional traits.    

 

We used three quantitative approaches to determine the influence of context and 

instruction on student responses.  

 

1. Abundance and diversity of KCs and NIs.  In ecology, abundance indices 

measure the relative frequencies of organisms in a community, while diversity 

indices (e.g., Shannon, Simpson) measure variation in the types of organisms 

(e.g., species) across different communities.  In our analyses, we considered the 

sum of all students’ responses as analogous to a community, and subsets of 

them representing discrete populations (e.g., the population of responses to a 

cheetah prompt pre-instruction). We then explored both the diversity (KCs and 

NIs) and relative abundances of ideas (number of times each KC or NI appears) 

in the respective populations and in the community in general. 

 

2. Regression Analyses for total number of KCs and NIs. We fitted regressions to 

quantify the effects of taxon, trait type, prompt order, and pre/post instruction on 

the total number of KCs and NIs. Since the data is not continuous, we used a 

mixed-effects Poisson distribution. We calculated the 95% confidence intervals 
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on all parameter estimates based on the model standard errors. The models 

showed signs of underdispersion, so we refit the models to account for this in two 

different ways: (i) using a mixed-effects zero-inflated Poisson regression, and (ii) 

using a mixed-effects Conway Maxwell Poisson regression. In both cases, the 

estimated coefficient values and p-values were the same, indicating that 

dispersion was not a major problem. Therefore, we present the results from the 

mixed-effects Poisson here. 

 

3. Multiple logistic regression analysis. Students’ responses were sorted into 4 

groups based on the EvoGrader output:  

a. KC only: These responses had only key concepts. The maximum number 

of key concepts measurable by EvoGrader is 6.  

b. Mixed: These responses had both key concepts as well as naïve ideas. 

c. NI only: These responses had only naïve ideas. The maximum number of 

naïve ideas measurable by EvoGrader is 3. 

d. None: These responses had no key concepts or naïve ideas. 

 

Examples of student responses with accompanying EvoGrader codes and 

corresponding group assignments are provided in Table 1.3. We performed 

multiple logistic regressions to understand how our independent variables (e.g., 

taxon, trait, prompt order, and instruction) contributed to the relative odds of 

belonging to one of the four groups. 
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Table 1.3. Examples of student responses belonging to each of the four groups based on their 
content coded by EvoGrader. The four groups are:  KC only, Mixed (both KCs and NIs present), NI only 
and None (neither KCs nor NIs present). 

Student Response Coded by 
EvoGrader Group 

 

3 KCs: 
Variation, 
Limited 
Resources, 
Differential 
Reproduction 

KC only 

 

1 KC: 
Limited 
Resources. 
 
1 NI:  
Needs, 
Adapt 

Mixed 

 

2 NIs: 
Use, Needs NI Only 

 

 None 
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Software 

All statistical analyses were done using the R statistical environment v 3.6.3 (R Core 

Team, 2020). We made use of the dplyr (Wickham et al., 2020) and tidyr  (Wickham & 

Henry, 2020) packages for data processing, lme4 (Bates et al., 2015) for mixed-effects 

logistic regressions, effects (Fox, 2003) for computing and plotting marginal effects, 

DHARMa (Hartig, 2018) to checking residuals of mixed-effects models for patterns of 

overdispersion and underdispersion and glmmTMB (Brooks et al., 2017) to fit mixed-

effects Poisson regression. 

 

RESULTS 

Our results showed that students’ responses were influenced by both prompt context 

and instruction. Results of our specific analyses are presented with respect to each of 

our original research questions. 

 

Prior research has shown that student performance on assessment tasks is affected by 

the sequence in which the assessment items are presented (Federer et al., 2015; Gray, 

2004; Hambleton & Traub, 1974; MacNicol, 1956; Monk & Stallings, 1970), and general 

recommendations are to take task order into consideration when designing 

assessments (Schuman & Presser, 1996). However, similar to (Weston et al., 2015), in 

our study we did not find any such statistically significant effects. 
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1. How Do Contextual Features Influence the Content of Student Responses to Prompts 

About Evolution by Natural Selection? 

Results of all three analytic approaches indicated that students’ responses were 

significantly influenced by both taxon and trait.  

 

Responses to questions about cheetahs had more KCs and fewer NIs than questions 

about humans (with the exception of Variation). Figure 1.1 shows the percentage of 

responses that contained each of the 6 KCs and 3 NIs for each taxon before and after 

instruction. Limited Resources was the KC most sensitive to the effect of taxon both 

before and after instruction. Pre-instruction, only 24% (n=38) of responses to the 

Human prompt mentioned Limited Resources compared to 62% (n=99) of responses to 

Cheetah. This was virtually unchanged with instruction, with 29% (n=46) and 63% 

(n=101) of responses to Human and Cheetah, respectively, mentioning Limited 

Resources.  In contrast, Variation increased significantly with instruction, but there was 

almost no difference due to taxon. Interestingly, post-instruction Variation is the only 

instance in which we saw a higher frequency of a KC in the Human prompt (~6%, n=10 

more) compared with Cheetah. 
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Figure 1.1. Percentage of responses that contain each of the six Key Concepts and three Naïve 
Ideas. KCs occurred more frequently in Cheetah responses and responses written at the end of the 
semester. NIs occurred less frequently at the end of the semester.  

 

The mixed-effects Poisson regression (Figs. S1.1 and S1.2) and the mixed-effects 

logistic regression (Figs. S1.3 – S1.8) both show that taxa and trait influence the content 

of student narratives. 

 

Overall, responses had an average of 1.7 KCs and 0.4 NIs. Number of KCs differed 

between taxa, with a mean of 1.8 KCs for Cheetah vs 1.4 KCs for Human (p < 0.001; 

Fig. 1.2). Most of the responses did not have any NIs, and the number of NIs differed 

based on type of trait. Responses had an average of 0.3 NIs when the prompt was 

about a Functional trait and 0.2 NIs when the prompt was about a Structural trait (p < 

0.05; Fig. 1.3). 
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Table 1.4. Odds ratios of logistic regression analysis for effect of Taxon (using ‘Human’ as the 
reference taxon) and Trait (using ‘Structural’ as the reference trait). Values with asterisks are 
statistically significant (*** p < 0.001; ** p < 0.01; * p < 0.05, λp < 0.1). Lower and Upper Confidence 
intervals are provided in the brackets. This table provides the coefficients for ‘Taxon’ and ‘Trait’, however 
the model also included ‘Pre/post Instruction’ as a predictor. 

 
NI only 

vs 
None 

Mixed 
vs 

None 

KC only 
vs 

None 

Mixed 
vs 

NI only 

KC only 
vs 

NI only 

KC only 
vs 

Mixed 

Taxon 
‘Human’ 

0.87 
[0.17, 3.02] 

0.06*** 
[0.01, 0.22] 

0.19*** 
[0.08, 0.41] 

0.04*** 
[0.00, 0.19] 

0.17*** 
[0.06, 0.40] 

1.14 
[0.66, 1.99] 

Trait 
‘Structural’ 

0.89 
[0.23, 3.57] 

0.27 
[0.04, 1.29] 

1.21 
[0.45, 3.34] 

0.31 
[0.03, 1.56] 

1.06 
[0.35, 3.15] 

3.97** 
[1.51, 11.65] 

 

Figure 1.2. Average number of KCs 
in responses for each of the two 
taxa, estimated by the fitted model. 

Figure 1.3. Average number of NIs 
in responses for each of the two 
traits, estimated by the fitted model. 
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Students’ responses were even less likely to have either KCs only or a mixture of KCs 

and NIs, than no KCs or no ideas (KCs nor NIs) in their responses to the Human prompt 

(relative to the Cheetah prompt, p < 0.001, Table 1.4) 

 

When responding to the Human prompt (relative to the Cheetah prompt) students were: 

• 50% less likely to include a mixture of KCs and NIs in their responses, as 

opposed to only NIs or no ideas at all (Figs. S1.4 and S1.6) 

• 6% less likely to include only KCs than only NIs (Fig. S1.7) 

• 10% less likely to include only KCs than no ideas (Fig. S1.5) 

 

Students responses were more likely to have only KCs, than a mixture of KCs and NIs 

when they were responding to prompts about a structural trait (relative to a functional 

trait, p < 0.01, Table 1.4). Students included only KCs ~15% more frequently than they 

included a mixture of KCs and NIs when writing about structural traits (Fig. S1.8). 

 

2. How Does a Semester of Active, Learner-Centred Instruction Influence the Content of 

Student Responses to the Same Prompts? 

Results of the abundance and diversity of KCs and NIs in students’ responses (pre and 

post instruction) are shown in Figs. 1.4 and 1.5, respectively (n=640 for both). Although 

6 KCs are possible, we observed no more than 4 within any response (n=47) and a 

majority contained at least 2 (n = 398). No KCs were present in 96 student responses. 

For NIs, the maximum of 3 naïve ideas was present in only a single response and a 

majority had 0 naïve ideas (n = 466).  
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Overall, our results show that instruction increases the number of KCs in responses and 

decreases the number of responses containing no KCs. Similarly, instruction decreases 

the number of NIs per response and increases the frequency of responses with no NIs. 

 

Differential Survival was the most frequently applied KC; it was present in more than 

50% (n=167) of responses pre-instruction and more than 63% (n=207) responses post, 

irrespective of prompt context. The least used KC was Non-Adaptive, which appeared in 

only 1.5% (n=5) of the responses post-instruction (Fig. 1.1). Variation was the KC most 

responsive to instruction, with 33% (n=105) and 47% (n=150) responses including it 

pre- and post-instruction, respectively. Post-instruction, >93% (n=140) of the responses 

that mentioned Variation were in the KC Only group; only 6.6% (n=10) of those 

responses had any NIs at the end of the semester, compared to 14% (n=15) at the 

beginning of the semester (Fig. 1.1). Taxon-specific differences in KCs decreased 

moderately with instruction, with the greatest reductions observed for Heritability (4.4%) 

and Limited Resources (3.7%; Fig. 1.1).  

Figure 1.4. Frequency of the total number of 
KCs pre and post instruction. 

Figure 1.5. Frequency of the total 
number of NIs pre and post. 
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The above trends are further corroborated by regression analyses (Figs. 1.6 and 1.7) 

that show the results of our mixed effects Poisson regressions for significant fixed 

effects (pre/post instruction) for KCs and NIs, respectively. Table 1.5 gives the odds 

ratios of multiple logistic regressions that show the relative odds of belonging to one of 

the four previously mentioned groups (Table 1.3) based on pre/post instruction (post 

instruction as the reference value). 

 

 

Overall, students’ responses contained more KCs following instruction, regardless of 

taxon or trait type. Post instruction had 30% more KCs compared to pre-instruction (1.9 

vs 1.4, respectively; p ≤ 0.001; Fig. 1.6). Additionally, responses had 40% fewer NIs at 

the end of the semester (p ≤ 0.001; Fig. 1.7).  

 

 

Figure 1.6. Average number of KCs in 
responses for pre and post instruction, 
estimated by the fitted model. 

Figure 1.7. Average number of NIs in 
responses for pre and post instruction, 
estimated by the fitted model. 
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Table 1.5. Odds ratios of logistic regression analysis for effect of instruction using ‘post 
instruction’ as the reference point. Values with asterisks are statistically significant (*** p < 0.001; ** p 
< 0.01; * p < 0.05, λp < 0.1). Lower and Upper Confidence intervals are provided in the brackets. This 
table provides the coefficients for ‘Pre/post Instruction’, however the model also included ‘Taxon’ and 
‘Trait’ as predictors.  

 NI only 
vs 

None 

Mixed 
vs 

None 

KC only 
vs 

None 

Mixed 
vs 

NI only 

KC only 
vs 

NI only 

KC only 
vs 

Mixed 

Pre/post 
instruction 

‘post’ 

0.49 
[0.14, 1.47] 

1.13 
[0.36, 3.76] 

2.06* 
[1.03, 4.27] 

3.35λ 
[0.99, 17.29] 

4.62*** 

[2.01, 12.47] 
3.06*** 

[1.75, 5.54] 

 

Students’ responses were even more likely to have KCs only, than a mixture of KCs and 

NIs, or only NIs, or no ideas (KCs nor NIs) in their responses post instruction (relative to 

pre instruction, p ranging from < 0.001 to < 0.05, Table 1.5) 

 

Post instruction (relative to pre instruction) students were: 

• 13% more likely to include only KCs in their responses in their responses, as 

opposed to a mixture of KCs and NIs (Fig. S1.8) 

• 3% more likely to include only KCs than only NIs (Fig. S1.7) 

• 3% more likely to include only KCs than no ideas (Fig. S1.5) 

 

DISCUSSION 

Our results indicate that students’ explanations about evolution by natural selection are 

influenced by both contextual features of prompts (taxon and trait type) and by 

instruction.  In this section, we compare our findings with previous studies and offer 
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some possible explanations for the patterns we see. Additionally, we will discuss the 

implications of our findings on instruction and assessment. 

 

Contextual Effects of the Prompt 

The isomorphic prompts in our study share a common underlying structure and are 

intended to assess equivalent knowledge despite minor variations in superficial features 

unrelated to the construct of interest. Since they have the exact same prompt stem 

(except for the couple of contextual words) they are designed to go beyond defined 

standards of equivalency in difficulty and complexity (Kjolsing & Van Den Einde, 2016). 

Terms such as “explanatory coherence” (Kampourakis & Zogza, 2009), “knowledge 

coherence” (Nehm & Ha, 2011), and “causal flexibility” (Evans, 2008) refer to one’s 

ability to produce similar responses to isomorphic prompts and demonstrate an ability to 

identify a relevant concept despite irrelevant or peripheral details. For example, Weston, 

Haudek, Prevost, Urban-Lurain, & Merrill (2015), found that changing a species on 

questions about photosynthesis did not influence students’ responses. They state that 

students did not consider the species in the prompt to be a relevant detail and therefore, 

did not consider it when formulating their response. In contrast, many studies, including 

our own, have shown that students’ explanations about evolution by natural selection 

are highly susceptible to contextual features of question prompts (Kampourakis & 

Zogza, 2008; Prevost et al., 2013; Schurmeier et al., 2010). In particular, our findings 

are consistent with others that have shown taxon to be particularly influential in shaping 

students’ responses (Beggrow & Sbeglia, 2019; Nehm & Ha, 2011). 
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In each of our analyses, we found that ‘taxon’ was the most important variable 

influencing the number and type of KCs in a response and the group to which the 

response belonged. Responses to prompts about human evolution had fewer KCs and 

were more likely to have NIs despite instruction. This suggests that students are 

reasoning differently about humans compared to non-human animals.  Beggrow & 

Sbeglia (2019) found that even students who study humans as a focal organism (e.g., 

anthropology majors) responded with fewer KCs and more NIs in responses to 

questions about evolution in humans as compared to non-human animals. Similar 

results were obtained by Ha et al. (2006) who found that students were less likely to use 

‘natural selection after mutation’ as an explanation in response to questions about 

human evolution as compared to their responses to questions about plant and other 

animal evolution. It is possible that because students consider humans taxonomically 

unique (Coley, 2007) and not part of the evolutionary tree (AAAS, 2018; Coley & 

Tanner, 2015) that they are willing to reason differently about humans in evolution 

contexts. 

 

Effects of Instruction 

Increased use of KCs and decreased sensitivity to prompt contexts can be important 

indicators of student’s understanding of evolution and acceptable measures of 

instructional efficacy. Our results show that patterns of KCs and NIs changed between 

the start and end of the semester. At the beginning of the semester, all but one of the 

KCs were represented in student responses, albeit fewer per response. With instruction 

however, we observed an increase in the number of KCs and decrease in the number of 
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NIs per response, as well as a modest reduction in response differences due to taxon. 

This indicates that instruction increased the accuracy of students’ explanations of 

evolution but had minimal impact in reducing the influence of context. This finding is 

consistent with research that has examined a variety of instructional methodologies 

targeting students understanding of evolution (Bray Speth et al., 2009, 2014; Halldén, 

1988; Kampourakis & Zogza, 2009; Nehm & Reilly, 2007; Nettle, 2010; Pobiner et al., 

2018). 

 

Of the KCs assessed, Variation was most responsive to instruction. Students’ use of 

Variation increased by 10.6% and 17.5% in cheetah and human contexts, respectively.  

In the course that was the target of this study, variation was a central theme.  Course 

content was organized around the central questions of: how does biological variation 

originate at the molecular level? How is molecular-level variation expressed at the 

organismal level? And what are consequences of organismal variation for evolution of 

populations and ecosystem function? Our data revealed that students gained an 

appreciation of variation during the semester (14% more inclusion of Variation on 

average in the post-semester responses). Our findings are consistent with those of 

Speth et al. (2014) that observed improvement in students’ representations of origin of 

variation using a similar instructional approach. Additionally, in our study, variation was 

elicited at a greater extent by the human prompt post-instruction. This could be an 

artefact of student’s general tendency to categorise by species (not recognise individual 

level variation) when asked about non-human animals as compared to humans (Nettle, 



37 
 

2010), rather than a direct consequence of instruction causing them to appreciate 

variation differentially between the species.  

 

An appreciation of the causes, consequences, and extent of variation is central to 

understanding evolution (Emmons & Kelemen, 2015; Gregory, 2009; Halldén, 1988; 

Shtulman, 2006). Darwin himself recognised the importance of variation (Darwin, 1868, 

Ch. 20, p. 192) and lamented the lack of understanding of its origin (Darwin, 1859, Ch. 

5, p. 167). In our study, few of the responses that included Variation had any naïve 

ideas (9.8%). This is consistent with the findings of Shtulman & Schulz, (2008) who 

showed that students who have a better understanding of within-species variation also 

have an accurate and mechanistic understanding of natural selection.  

 

We observed that although the presence of naïve ideas decreased post instruction, they 

persisted in students’ responses. At the start of the semester 34% of responses had 

naïve ideas compared to the 20% of responses at the end of the semester. Our results 

are consistent with many studies that have shown that naïve ideas, a form of intuitive 

thinking, are remarkable resistant to change and frequently co-exist with correct 

scientific conceptions that are fundamentally mutually exclusive (Bishop & Anderson, 

1990; Bray Speth et al., 2009; Nehm & Reilly, 2007; Nehm & Ridgway, 2011; Shtulman 

& Valcarcel, 2012; Sinatra et al., 2008; Smith, 2010a, 2010b). 
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Linking findings with Existing Theory 

The literature offers several insights that could account for the difficulties associated 

with teaching and learning evolution. Here, we discuss three hypotheses that may 

inform our understanding of the patterns we observed: world-view and intuitive thinking, 

prior knowledge and experience, and scientific expertise.  

 

Students’ world-view and intuitive thinking 

A worldview is a set of deeply entrenched beliefs and expectations that form the 

framework of a person’s individuality and define how they see the world around them 

(Glaze & Goldston, 2015). Worldviews regarding evolution often do not change after 

instruction (Blackwell et al., 2003; Cavallo & McCall, 2008) and can hinder 

understanding and acceptance of evolutionary theory (Alters & Nelson, 2002; Evans, 

2008; Nehm, 2006). Smith (2010a) proposes an alternative hypothesis: a limited 

understanding of evolution, including being exposed to inadequate empirical evidence, 

could be interfering with accepting it as part of one’s worldview. Ingram & Nelson (2006) 

showed that after instruction about evolution students’ positive views towards evolution 

increased and students who showed the greatest gains were those who were initially 

undecided about evolution. Regardless of the specific mechanism, inconsistencies 

between students’ worldviews and tenets of evolutionary theory (especially with respect 

to human evolution) could make students more susceptible to contextual influences. 

 

Intuitive ways of thinking about existing and new information can also pose barriers to 

increasing evolutionary understanding and decreasing contextual susceptibility. Smith 
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(2010b) describes these predictable ways of thinking as ‘rules of thumb’. These are 

default approaches that are ingrained into the brain and are used in situations where 

there is a lack of knowledge. Researchers have documented such expected patterns 

when students reason about biological entities, processes, and phenomena (Coley & 

Tanner, 2015; Inagaki & Hatano, 2006). Coley & Tanner (2015), categorised types of 

biological intuitive thinking into three different types of what they called ‘construals’ 

namely: teleological thinking, essentialist thinking, and anthropocentric thinking. These 

patterns of reasoning are powerful and can pose incredible barriers to learning since 

students do not understand that their reasoning itself is erroneous (Sinatra et al., 2008). 

These patterns include attributing a purpose to all events and attributing their cause to 

intentional agency. Such patterns lead students’ to incorporating naïve ideas like need 

and adapt. The tendency to categorise by type deters students from appreciating 

variation.  

 

Students’ prior evolutionary knowledge and education. 

Students arrive at every course with previous knowledge and prior conceptions about 

evolution that they have gained through their formal education and lived experiences. 

This knowledge often includes evolution misconceptions which have been well 

documented in the literature (e.g., Gregory, 2009; West, El Mouden, & Gardner, 2011).  

Alters & Nelson (2002), listed several factors inconsistent language usage and 

contradictory learning can contribute to misconceptions.  For example, colloquial terms 

such as ‘fitness’ and ‘adaptation’ that have distinct meanings in and out of evolution 

contexts, or seeing humans and dinosaurs coexisting in various media. 
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By the time students reach the undergraduate classroom, their knowledge about 

evolution has also been influenced by their formal education, the quantity and quality of 

which is not consistent. Although evolution is now a part of the required curriculum in 

many countries, it is not required in some and banned outright in others. Even in 

countries that require evolution to be taught, the grades at which it is introduced, the 

perspective from which it is taught, and the focus of evolution education varies widely 

(Deniz & Borgerding, 2018a). In the United States, 20 states have adopted the Next 

Generation Science Standards (NGSS), which are generally more comprehensive than 

other state standards with respect to evolution (Gross et al., 2013). However, in their 

review of the NGSS. Gross et al. (2013) stated that while these standard were better 

than many state standards with respect to evolution, they too had some important 

weaknesses including the way with they dealt with heredity and the links between DNA 

and evolutionary relationships. In terms of our study, the major drawback we noticed 

with the NGSS is that they do not even mention human evolution. 

 

Among the states that have not adopted the NGSS, some do not even mention the word 

‘evolution’ in their standards and others make superficial references to it (Lerner, 2000; 

Vazquez, 2017) Additionally, adopting standards for evolution education does not 

guarantee they are actually being implemented (Glaze & Goldston, 2015) or that they 

are being implemented consistently. In some cases, students continue to be taught 

alternative theories in addition to, or at times instead of evolution (Bowman, 2008). 

Multiple studies have documented troublesome issues with teachers responsible for 

evolution education, ranging from inadequate preparation for teaching evolution (Smith, 
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2010b) to de-emphasising or avoiding teaching it (Glaze & Goldston, 2015) to 

purposefully teaching students that ‘evolution is wrong’ (Boujaoude et al., 2011). Such 

variability and inconsistency in students’ instruction about evolution make it difficult to 

make any sort of assumptions about their prior knowledge before entering the 

undergraduate classroom.  

 

Even at the undergraduate level, evolution is rarely presented as a unifying theme for 

understanding biology, despite its pervasiveness as an explanatory construct across 

biological research. Instead, evolution is generally taught as a distinct topic without 

explicitly making it clear how it plays a role in other biological concepts and processes. 

This is reflected in the structure of textbooks frequently used in undergraduate biology 

instruction and in the syllabi derived from them (Nehm et al., 2009). Additionally in the 

context of this particular study, while ‘Evolution’ is one of the core concepts in Vision 

and Change (AAAS, 2011), the report does not refer to human evolution either (to be 

fair – it does not use any other taxa as a reference either). 

 

Such differences in the quantity and quality of students’ prior evolutionary knowledge at 

both the K-12 and undergraduate levels could explain students’ susceptibility to 

contextual influences as well as the difficulty associated with changing students’ mental 

models of evolution that have been shaped by years of exposure and experiences. 

When it comes to undergraduate education,  
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Students’ scientific expertise 

As novice science learners, students may be more sensitive to contextual influences 

when learning complex concepts, such as evolution. There are major differences 

between the way experts and novices approach problem solving in any field. Experts 

have deeper conceptual understanding of their subject matter which enables them to be 

flexible in identifying and retrieving bits of relevant knowledge. This leads experts to 

intuitively see patterns that novices are unable to discern (National Research Council 

[NRC], 2000). Additionally, experts are more able to identify and focus on the abstract 

principles that underlie a problem’s structure while novices tend to focus on more 

superficial features  (Chi et al., 1981; Hmelo-Silver & Pfeffer, 2004; Nehm & Ridgway, 

2011). As novices, it is not surprising that students are influenced by prompt contexts. 

However, our data suggest that instruction can decrease students’ sensitivity to context, 

perhaps indicating they are making progress in their transition from novice to expert. 

 

Implications for Instruction and Assessment 

Multiple studies that have looked at different instructional strategies and contexts and 

have shown varying levels of improvements in students’ understanding of evolution in 

general and human evolution in particular (Alters & Nelson, 2002; Bray Speth et al., 

2009, 2014; Kalinowski et al., 2010; Kampourakis & Zogza, 2009; Pobiner et al., 2018). 

 

Many researchers have called for evolution to be taught using humans as a focal 

organism. Nettle (2010) showed gains in student understanding of evolution in general 

after students were taught evolution in the context of humans. Pobiner et al. (2018) and 
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Pobiner (2016), propose teaching about human evolution as a direct and effective way 

to decrease barriers to accepting and subsequently understanding evolution. However, 

Beggrow & Sbeglia (2019), did not find any particular affordances offered by teaching 

evolution in a human context. Deeper learning can result when the learner identifies 

with the subject matter and finds it relevant (NRC, 2009). Therefore, since students are 

highly likely to find themselves and their development interesting (Pobiner et al., 2018), 

so teaching evolution in the human context could mean that students find it relevant and 

identify with it. We would like to offer the suggestion that while teaching evolution in a 

solely human context might not be the optimal solution, including humans as one of the 

contexts is very important. 

 

At various institutions and at the national level, numerous efforts are underway to 

renovate and align the biology core curriculum. In particular, there is considerable 

interest in increasing the prominence of science practices as an explicit objective for 

student learning at all levels so as to teach science as it is practised and to thus 

encourage students to think and reason about science similar to the practitioners 

(AAAS, 2011; Cooper et al., 2015).  A lack of scientific accuracy in students’ reasoning 

is often not because of a lack of knowledge of the scientific principles, but due to 

inadequate activation, recruitment, or transfer of those scientific principles across 

contexts (Nehm & Ha, 2011). Pedagogical techniques that include various forms and 

degrees of scientific practises (active learning) in the classroom, have been shown to 

improve learning gains (Freeman et al., 2014). Our study, as well as that of Speth et al. 

(2014) showed gains in student performance in understanding variation after a 
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semester of model-based pedagogy. Perhaps by using scientific practises such as data 

analysis, modelling and argumentation during active learning based instruction, and 

including humans as an instructional context, will lead to a deeper, more conceptual 

understanding of evolution, an increased ability to transfer relevant concepts, and 

thereby decrease susceptibility to contextual influences. 

 

Finally, our findings have clear implications for assessment. A common strategy used in 

assessment is to frame parallel or ‘isomorphic’ prompts. Parallel prompts are framed to 

test concepts in usually using contexts that were not used during instruction and it is 

assumed that they are adequate in measuring learning outcomes. The assumption is 

that students will be able to identify the concepts they are being tested on, recruit the 

relevant knowledge, and transfer it to the new context. However, there are multiple 

difficulties with making such assumptions.  

 

It has been established that ensuring that prompts are parallel in terms of difficulty is 

both, important and difficult to accomplish (Hamp-Lyons & Mathias, 1994; Lee & 

Anderson, 2007; Li, 2018; Sydorenko, 2011). Our findings indicate that while making 

assumptions of equivalence, we should be considering yet another dimension – the 

contexts that are chosen. The prompts used in our study were designed not just to test 

for equivalent content but were truly isomorphic in that they utilised the same prompt 

stem. The words that varies were also remarkable similar, both were mammals, close in 

terms of evolutionary terms (Kumar et al., 2017), and both were familiar to the students 
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(Nehm et al., 2012). However, we still saw differences in student responses based on 

the couple of words that varied. 

 

Perhaps student understanding and reasoning, including with respect to evolution by 

natural selection (Nehm & Ha, 2011), can be comprehensively and accurately assessed 

only when context is taken into consideration. When we use multiple contexts both in 

instruction and in assessment, we can facilitate the students being able to identify the 

important concepts and transfer them across contexts.   
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Figure S1.1. Plots showing the effects of taxon, trait type, prompt order, and pre/post instruction 
on the average number of KCs determined using a mixed-effects Poisson regression. 
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Figure S1.2. Plots showing the effects of taxon, trait type, prompt order, and pre/post instruction 
on the average number of NIs determined using a mixed-effects Poisson regression. 
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Figure S1.3. Predicted probabilities of being in the NI only group vs None group for each of the 
predictors in the multiple logistic regression model.  
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Figure S1.4. Predicted probabilities of being in the Mixed group vs None group for each of the 
predictors in the multiple logistic regression model.  
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Figure S1.5. Predicted probabilities of being in the KC only group vs None group for each of the 
predictors in the multiple logistic regression model.  
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Figure S1.6. Predicted probabilities of being in the Mixed group vs NI only group for each of the 
predictors in the multiple logistic regression model.  
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Figure S1.7. Predicted probabilities of being in the KC only group vs NI only group for each of the 
predictors in the multiple logistic regression model. 
  



55 
 

Figure S1.8. Predicted probabilities of being in the KC only group vs Mixed group for each of the 
predictors in the multiple logistic regression model. 
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CHAPTER TWO:  

Item-feature context influences the content and architecture of student-constructed 

models. 

 

ABSTRACT 

Scientific models are specialised external representations that explain or predict a 

concept, process, or phenomenon. They lend themselves to both authentic instruction 

and assessment. Student-constructed models are partial representations of their mental 

models and can give us insights into student thinking and reasoning that are not 

captured in multiple choice or even narrative responses. Such externalised 

representations are particularly valuable in gauging students' knowledge and 

understanding of complex biological phenomena. Additionally, features of model 

architecture can provide insights into aspects of students’ cognitive structures (CSs), 

such as size and complexity.  

 

In this study, we ask whether item-feature context (i.e., variables in a question prompt) 

impacts the content and network architecture of students’ constructed models of 

evolution by natural selection. Students in two large (n=384) introductory biology 

courses were asked to construct models to explain the evolution of traits in two taxa – 

humans and cheetahs. We coded the model content for the presence/absence of 

evolutionary ideas and quantified model architecture using network metrics for each 

model. Model content and architecture were analysed to determine contextual effects. 
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We also tested for association between prior academic performances and contextual 

effects.   

 

We found that taxon influenced the content of student-constructed models. Cheetah 

models were more likely to have key evolutionary concepts and fewer naïve ideas as 

compared to Human models. Taxon also influenced the architecture of the models - 

Cheetah models were larger and more complex than the Human models. Prior 

academic performance (measured by GPA) was a predictor of model content, 

architecture, and contextual susceptibility.  

 

Our results indicate that contextual features of the prompt are eliciting differences in 

students’ models. This could indicate that students are either using surface cues to 

access their cognitive structures and build their mental models, or that they have a 

piecemeal understanding of evolution which results in a non-robust cognitive structure. 

Decreased susceptibility to context with increasing GPA indicates a progression from 

novice to expert with respect to both modelling and evolutionary knowledge. 

 

INTRODUCTION 

Models in Science  

Models are a “strategy for coping with an extraordinarily complex world” (Odenbaugh, 

2005). They are simplifications or abstractions that can be used to facilitate reasoning or 

communicate specific information about an entity (Gilbert, 2004; Seel, 2003; Wilson et 

al., 2019). An ideal model is an accurate, parsimonious, and coherent representation of 
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an entity, while at the same time, is also as general and useful as possible 

(Constantinou et al., 2019; White et al., 2011).  Scientific models are specialised 

external representations of entities (concepts, processes, phenomena, or systems), 

which help illustrate, explain, or make predictions (Constantinou et al., 2019; Lee et al., 

2017; Osbeck & Nersessian, 2006; Schwarz et al., 2009).  Such models are routinely 

used by scientists to generate, evaluate, and communicate science (Gilbert, 2004; 

Halloun, 2007; Long et al., 2014; Upmeier zu Belzen et al., 2019a). Indeed, the 

inextricable nature of modelling with the practice of science was captured in Gilbert's 

(1991) definition of science as a “process of constructing predictive conceptual models”. 

 

Models in Science Education 

For some time now, there has been increasing desire and pressure to make the 

teaching and learning of science more reflective of the way science is practised (Barab, 

Hay, Barnett, & Keating, 2000; Cooper et al., 2015; Duschl & Gitomer, 1997; Gilbert, 

2004; National Research Council [NRC], 1996, p 214; White, 1993). This involves 

engaging students in scientific skills and practises such as experimental design, 

quantitative reasoning, and modelling as part of instruction (American Association for 

the Advancement of Science [AAAS], 2011). Science educators and education 

researchers agree that models and modelling are not only of great importance in 

science education but should be considered a required skill in the development of 

scientific literacy (Achér et al., 2007; Coll et al., 2005; Gilbert et al., 2000; Halloun, 2007; 

van Driel et al., 2019). Recognising the integral nature of models and modelling in 

science, and thus the requirement that they become similarly integral to science 
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pedagogy, models have been included in the standards and required curricula for 

science at K-12 and university levels in multiple countries (In America: AAAS 2011; 

NRC, 2012; NGSS Lead States, 2013; in Germany: Sekretariat der Ständigen 

Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland [KMK], 

2005b, 2005c, 2005a; in the United Kingdom: UK Department of Education, 2015; in 

Australia: Australian Curriculum Assessment and Reporting Authority [ACARA], 2010) 

 

Several researchers have proposed best practises and described courses that use 

models and modelling either as a component of, or as a framework for instruction 

(Achér et al., 2007; Bennett et al., 2020; Bryce et al., 2016; J. J. Clement & Rea-

Ramirez., 2008; Constantinou et al., 2019; Hung, 2008; Liu & Hmelo-Silver, 2009; Long 

et al., 2014; Schwarz et al., 2009). As a tool, models lend themselves to assessment of 

more than just students’ knowledge and understanding of course material (Bray Speth 

et al., 2014; Hay et al., 2008; Long et al., 2014; Odenbaugh, 2005). For example, 

models and modelling have been used to assess students’ systems thinking (Ben-Zvi 

Assaraf & Orion, 2005; Bergan-Roller et al., 2018; Hmelo-Silver et al., 2017; Hung, 

2008; Tripto et al., 2013), long term retention (Dauer & Long, 2015) and understanding 

of the ‘nature of science’  (Boulter & Buckley, 2000; Cheng et al., 2015; Krell et al., 

2014; Schwarz, 2002). Additionally, several researchers have shown benefits gained by 

students when instruction and assessment use a model-based approach (Baze & Gray, 

2018; Bierema et al., 2017; Dauer et al., 2013; Louca & Zacharia, 2012; Vattam et al., 

2011; Windschitl et al., 2008). A meta-analysis on the effects of active and constant 

engagement with models in class showed that there were associated gains in 
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knowledge retention (Nesbit & Adesope, 2006). In all the studies mentioned above, 

students did not passively view or memorize provided models, but rather actively 

engaged with the process of modelling. Researchers have argued that having students 

construct, evaluate, and modify their own models are desirable ways of engaging 

students in modelling beyond merely reasoning with provided models (Clement, 1989; 

Gilbert, 2004; Windschitl et al., 2008). 

 

What Can We Learn from Student-Constructed Models? 

Student-constructed models are one of the modes by which we can get insight into 

students’ cognitive structures (CSs) (Kinchin et al., 2000; Nesbit & Adesope, 2006). A 

cognitive structure is a mental framework that serves as a way to store and connect 

information about concepts (Ausubel, 1963; Ifenthaler, 2011; Ifenthaler et al., 2011; 

Shavelson, 1974). We add to and modify our CS as we learn and make new 

connections (Rumelhart & Norman, 1978). As we progress from novice to expert, we 

increase both the size and the connections in our CSs (Ifenthaler et al., 2011).  

 

When students are asked to construct a model, their working memory accesses the CS 

in their long term memory using a context that they find relevant and builds a mental 

model (Dauer et al., 2013; Shell et al., 2010). Student-constructed externalized models 

are then partial representations of their mental models, which in turn, are products of 

their CSs (Dauer et al., 2013; Ifenthaler et al., 2011; Seel, 2003). By extension, an 

external model constructed by a student can be considered a limited representation of 

their CS (Greca & Moreira, 2000; Hay et al., 2008; Ifenthaler, 2010). As such, student-
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constructed external models can serve as a source of insight into student thinking, 

particularly in relation to how students are connecting concepts and how their thinking 

changes over time (Dauer et al., 2013; Dauer & Long, 2015; Hmelo-Silver et al., 2007; 

Ifenthaler et al., 2011). Externalised representations are especially useful when eliciting 

biological phenomena that can be conceptually, spatially, and temporally complex 

(Brandstädter et al., 2012; Dauer et al., 2013; Kapteijn, 1990). 

 

Structure-Behaviour-Function (SBF) Models 

One type of model that is used in instruction and assessments is the Structure-

Behaviour-Function (SBF) Model. It is based on the SBF Theory (Goel & Stroulia, 

1996), which originated as way of describing the functions of complex systems as an 

outcome of the components (structures) of the system and their interactions 

(behaviours). The SBF framework synthesises three major components of systems: 

elements, interconnections, and functions (Arnold & Wade, 2015; Meadows, 2008). In 

SBF models (Fig. 2.1), the structures (components, concepts) of a system are put in 

boxes. Pairs of structures are linked with arrows describing a behaviour (relationship) 

that links them. The model (all the structures and behaviours) is designed with a 

particular purpose in mind and therefore has a specific function.  
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Figure 2.1. SBF model of the melanin system responsible for determining hair colour in mammals 
constructed by a student. Structures (boxes) are linked by behaviours (on arrows) that describe 
relationships. This model was constructed in response to a prompt that required students to build a model 
that conveyed two functions: (a) cause of genetic variation, and (b) the consequence of genetic variation 
i.e. phenotypic variation. 

 

Such models are conducive to representing complex systems, particularly in biological 

science, and have been used both in instruction and assessment (Dauer et al., 2013; 

Hmelo-Silver et al., 2007; Lira & Gardner, 2016; Liu & Hmelo-Silver, 2009; Vattam et al., 

2011; Wilson et al., 2019). SBF models are similar to concept maps (both consist of 

components and connections between the components and both are usually 

constructed as boxes with linking arrows) but have some additional constraints and 

affordances: they have to have a function (Sommer & Lücken, 2010), they do not have 

to represent everything the student knows (Jonassen et al., 2005), and do not have to 

be exclusively hierarchical (Hmelo-Silver & Azevedo, 2006). 

 

SBF models have been used by researchers to gain insights into students CSs. 

Changes in student-constructed SBF models over the course of a semester have been 
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used to understand changes to students’ CSs as a result of instruction in biology (Dauer 

et al., 2013). Students’ SBF models have been used to investigate change in their 

understanding of the origin and maintenance of genetic and phenotypic variation (Bray 

Speth et al., 2014).  SBF models have also been used to explore differences between 

experts and novices (Hmelo-Silver et al., 2007) and specifically to make claims about 

the differences in their CSs (Hmelo-Silver & Pfeffer, 2004). Ifenthaler et al. (2011) used 

models similar to SBF to make claims about the size and complexity of students’ CS. 

Additionally, student-constructed SBF models have been used to evaluate long-term 

conceptual retrieval in students (Dauer & Long, 2015), and to  characterize students’ 

deep and surface approaches to modelling (Bennett et al., 2020).    

 

Student-constructed models, such as SBF models, are considered partial 

representations of their CSs (Dauer et al., 2013; Greca & Moreira, 2000), and therefore 

represent modes by which we can assess students’ mental models (Brandstädter et al., 

2012; Evagorou et al., 2009; Ruiz-Primo & Shavelson, 1996; Shute & Zapata-Rivera, 

2008). Williams & Hollan (1981) describe the process students use when asked to 

retrieve knowledge from their CS as progressing from first identifying a context for the 

desired knowledge, to searching their CS for knowledge related to that context, and 

then verifying the match between the knowledge possessed with the knowledge 

requested. Students use cues from question prompts or other instructional contexts as 

an access point for retrieving information; therefore, contextual cues narrow and focus a 

student’s search within their CS (Dauer & Long, 2015; Reiser et al., 1985; Williams & 

Hollan, 1981). When students build models that draw from knowledge in their CS, they 
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explicitly represent and link ideas in an effort to represent the contents of their CS 

(Nesbit & Adesope, 2006) based on the context they used to access it (Williams & 

Hollan, 1981). Models may therefore provide insights into both the structure of a 

student’s CS as well as the sensitivity of that structure to different contextual cues. 

 

Contextual Influences and Models 

Context plays an important role not just in the construction of knowledge and integration 

of new information into the CS, but also in the elicitation of that knowledge (Brown et al., 

2007; Hall, 1996; Jones et al., 2000; Williams & Hollan, 1981). Previous work on how 

context affects modelling has explored students’ epistemological understandings of 

modelling using models that were provided to the students (Gobert et al., 2011; Krell et 

al., 2012, 2015, 2014). Students’ explanations about the purpose of models in biology 

varied across contexts and also varied when presented with contextualised vs 

decontextualised models (Krell et al., 2012, 2014). Schwarz, (2002) reported that 

aspects of meta-modelling knowledge also varied with context. Bennett et al. (2020) 

showed that students’ approaches to modelling were not necessarily unique to the 

student, but dependent on contextual cues from modelling prompts.  

 

In biology instruction, ‘context’ can be defined in multiple ways. For example, context 

can be defined by scientific domain (Gobert et al., 2011; Kohn et al., 2018; Krell et al., 

2015), type of biological model (e.g., a mathematical curve vs functional model vs a 

computer simulation) (Krell et al., 2014),  biological system (Bennett et al., 2020), or as 

specific words or examples used in the question prompt (i.e., item-feature) (Krell et al., 
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2015; Nehm & Ha, 2011). There have been calls to further understand the effect of 

context on modelling tasks. For example, van Driel et al. (2019) stated a need to 

understand the effect of task context with respect to the interaction between task 

difficulty and task completion. Dauer & Long (2015) called for studies that explore the 

influence of item-feature context on students’ model-based responses and ability to 

retrieve information from their CS over short- and long-term time frames. However, 

there have been no controlled experimental studies that explicitly test for the effect of 

item-feature context on student-constructed models. 

 

Contextual effects on the content of student-constructed models  

Multiple studies have analysed the effects of item-feature context on students’ narrative 

data (written or through interviews). Many studies have shown that students find it 

difficult to identify the key principle or content being tested and are easily distracted or 

influenced by irrelevant contextual information provided in question prompts (diSessa et 

al., 2004; Nehm & Ha, 2011; Ozdemir & Clark, 2009; Prevost et al., 2013). In STEM, the 

effect of prompt context on the content of responses has been shown across expertise 

levels (Gross et al., 2013) and domains, including physics (Chi et al., 1981; diSessa et 

al., 2004), chemistry (Schurmeier et al., 2010), and biology (Bennett et al., 2020; 

Göransson et al., 2020; Nehm & Ha, 2011; Prevost et al., 2013). In our previous work, 

we saw that changes in taxon (humans vs cheetahs) and trait (functional vs structural) 

used in prompts elicited differences in the number of key evolutionary concepts and 

naïve ideas in students’ narrative responses when responding to questions about 

evolution by natural selection Studies have shown that students’ find it difficult to accept 
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human evolution (Atran, 1998; Atran et al., 2001; Nettle, 2010) and acceptance of 

evolution increases with increasing evolutionary distance from humans (Evans, 2008; 

Sinatra et al., 2003). In our previous study, we found large contextual influences based 

on the taxon in the prompt even though the evolutionary distance between humans and 

cheetahs is relatively small (diverged approximately 96 MYA (Kumar et al., 2017)).    

 

Like narrative responses, the content of models can reveal the extent of a student’s 

knowledge about a particular concept (Ben-Zvi Assaraf & Orion, 2010; Brandstädter et 

al., 2012; Bray Speth et al., 2014; Dauer et al., 2013; Dauer & Long, 2015; Ruiz-Primo 

& Shavelson, 1996). We can therefore use the differences in the content of students’ 

models constructed in response to different contexts to determine the extent to which 

context affects retrieval of conceptual information. 

 

Contextual effects on the architecture of student-constructed models 

A model is a representation of not only conceptual knowledge, but also the underlying 

architectural organisation (structure) of that knowledge (Halford, 1993; Ifenthaler et al., 

2011). When stripped of their content, SBF models show the network that students 

conceptualize while constructing a model (Fig. 2.2). Just like a graph, this network has 

vertices (structures, boxes) and edges (behaviours, arrows). The combination of 

vertices and edges gives the network a distinctive architecture which approximates the 

architecture of the student’s mental model that they are attempting to externalize. 
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Researchers have used architectural metrics that are commonly used to analyse and 

evaluate networks and graphs, like size and complexity, to quantify and compare the 

architecture of student-constructed models and make claims about the architecture of 

students’ mental model (Ifenthaler, 2008; Ifenthaler et al., 2007; Shute & Zapata-Rivera, 

2008).  Ifenthaler et al. (2011) quantified the numbers of vertices (structures) and edges 

(behaviours) in a model and used this metric as an indicator of size of the CSs that were 

accessed while building the respective models. They estimated development in the size 

and development of students’ CSs by measuring changes in the number of vertices and 

propositions in their models. They also used model complexity, connectedness, and 

ruggedness (number of unlinked subgraphs) as proxies for the depth of understanding 

where higher connectedness and complexity and lower ruggedness indicated greater 

conceptual depth.  Ifenthaler (2011) reported structural differences in student-

constructed causal maps in different disciplines – which he called “externalised 

cognitive structures” – and interpreted this to mean that there were differences in their 

internal CS. Hmelo-Silver & Pfeffer (2004)  used differences in SBF model architecture 

(number of structures and behaviours) to demonstrate differences in expert/novice 

understanding about a biological system and showed that while experts had a more 

functional understanding of the system (meaning, they used the function of the system 

to describe/list the structures), novices did not tend to progress beyond listing the 

structures and simple relationships.  Dauer et al. (2013) used changes in model 

complexity (web-like causality index; Plate, 2010) to illustrate changes in students’ CS 

as they added to and fine-tuned their Gene-to-Evolution models over a semester of 

instruction. 



80 
 

Association of prior academic performance on the content and architecture of student-

constructed models. 

Work by a number of researchers has shown that has shown that students’ prior 

academic performance has a strong impact on current academic performance 

(Brookhart, 1997; Cassidy, 2012; Elias & MacDonald, 2007) and is often the strongest 

or only predictor of future performance (Casillas et al., 2012; Haak et al., 2011; Spinath 

et al., 2006). Although previous research has similarly shown an influence of prior 

achievement on the way students engage with modelling tasks, prior achievement does 

not appear to have the same strength in predicting model-based performance that it 

does in more traditional assessment contexts. Instead, interactions between prior 

achievement and model-based performance are more complex and less well 

established. Bennett et al. (2020) found that although prior performance is associated 

with the way students approach modelling tasks, it was not a reliable predictor.  Dauer 

et al. (2013) showed that after a semester of modelling-based instruction, the highest 

relative gains on modelling tasks were seen in the lowest-achieving students. In a 

follow-up study that assessed long-term knowledge retention in the same student 

population, Dauer & Long (2015) showed mid-achieving students tended to outperform 

their peers on model-based tasks that required knowledge retrieval from a course they 

had taken 2.5 years previously. Model-based instruction and assessment have 

therefore been advocated as potential strategies for reducing achievement gaps and 

engaging students who tend to underperform on standard and rote assessments 

(Bierema et al., 2017; Manthey & Brewe, 2013; Reinagel & Bray Speth, 2016; Verhoeff 

et al., 2008). 
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Research Questions: 

Prior studies have used the content and the architecture of student-constructed models 

to make claims about students’ cognitive structures and explored the effect of prior 

achievement on the way students construct models. Other studies have explored the 

effect of item-feature context on content retrieved from students’ CSs by analysing their 

narrative responses. Particularly, multiple studies have used ‘Cheetah’ as a taxon when 

comparing how prompt context influences the content of students’ responses 

(Göransson et al., 2020; Nehm & Ha, 2011; Nehm & Schonfeld, 2008). Other studies, 

including our own have compared the content of students’ narrative responses when 

asked to reason about evolution by natural selection in Humans vs Cheetahs (Beggrow 

& Sbeglia, 2019; de Lima, 2020, p 12). This study builds on all those previous strands of 

research and seeks to further our knowledge about the way students engage with 

modelling tasks by examining the influence of item-feature context on students’ retrieval 

of conceptual information from their CSs. In particular, we explore how varying the 

taxon of an organism in a prompt (Human vs Cheetah) influences both the architecture 

and content of student-constructed models for students across a range of achievement 

levels. 

 

METHODS 

Setting and Participants 

This study was conducted at a large, public university in the Midwest with highest 

research activity (The Carnegie Classification of Institutions of Higher Education, n.d.). 

Data for these analyses came from student responses (n = 384) in a large introductory 
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biology course for majors that focused on content domains of genetics, evolution, and 

ecology. The course is second in a two-course sequence required for life science 

majors; the first course focused on cell and molecular biology. Data were collected from 

two sections (n = 190 and 194) taught in different semesters by different instructors. 

Students receive explicit instruction on how to construct SBF models and regularly 

construct models on assessments (homework, exams, in-class activities). 

 

Assessment Design 

We used prompts from the ‘Human/Cheetah Assessment’ (or, HCA) described in (de 

Lima, 2020, p 12). In that study, HCA prompts elicited differences in the content of 

students’ narrative responses.  Namely, responses to questions about Cheetah 

evolution were more scientifically accurate than responses to questions about Human 

evolution. Each student responded to two prompts that required them to construct 

models that explained evolution by natural selection. The prompts had the same basal 

structure but differed in the specific taxon of organism - one prompt was about 

Cheetahs, the other about Humans (Table 2.1). Students had not seen these particular 

contexts (Human/Cheetah) on assessments or during instruction. 
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Table 2.1. Example prompts from the Human/Cheetah Assessment. Two forms of an assessment 
item were developed that differed in taxon (Human vs Cheetah). 

Taxon Human Cheetah 

Prompt  

Modern Humans have (trait). How 
would biologists explain how a 
species of Humans with (trait) 
evolved from an ancestral Human 
species without (trait)? 

A species of Cheetah has (trait). How 
would biologists explain how a 
species of Cheetah with (trait) 
evolved from an ancestral Cheetah 
species without (trait)? 

 

In both class sections, the HCA was administered during class hours as part of a routine 

in-class low-stakes assessment following an instructional module on evolution. At this 

point in the course, students had constructed multiple SBF models and received 

feedback. We controlled for potential effects of prompt order by using versions of the 

HCA that differed in the order in which taxon (Human or Cheetah) was presented to 

students. 

 

Data Processing 

Selecting data 

Perhaps owing to the low-stakes nature of the assessment, a large number of students 

(~54%) were excluded from analyses.  A total of 350 model-based responses were 

included in analyses (2 models from each of 175 students, Table 2.2). Students were 

included if their responses to both prompts were in the form of models that were 

codable using SBF criteria. Examples of non-codable responses included 

narratives/essays, pictures of Humans and Cheetahs, and models that failed to include 

relationships (i.e., no connecting lines/arrows between structures).  
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To ensure that we had a representative sample, we compared included and excluded 

student populations to determine whether they differed in terms of demographics 

(Gender, Ethnicity, First Generation Learner) and/or prior academic achievement 

(Number of Credits and cumulative GPA at the start of the semester). Mixed-effects 

multiple logistic regressions did not detect significant differences between the 

populations included and excluded from analyses (Table S2.1). 

 

Table 2.2. Demographic characteristics and prior academic achievement of student subgroups: 
included in study, excluded from study, and total student population. STEM credits are the number 
of STEM credits completed at the beginning of the semester. Start GPA is the cumulative GPA of the 
students (based on a 4-point system) at the beginning of the semester. 

 Students 
included in the 

analysis 

Students 
excluded from 
the analysis 

Students in the 
course 

Gender  
(% Female) 61% 61% 62% 

Ethnicity  
(% white non-Hispanic) 79% 73% 76% 

First Generation 
Learner  
(%) 

24% 28% 26% 

Class Rank  
(% Sophomore / 
%Junior) 

54% / 33% 54% / 34% 54% / 34% 

STEM credits  
(mean) 43.9 44.8 44.4 

Start GPA  
(mean) 3.3 3.2 3.3 
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Content of student models 

Researchers have used automated semantic mapping to evaluate the content of 

student-constructed models (Ifenthaler, 2010; Ifenthaler et al., 2011; Luckie et al., 

2011). While automation can significantly expedite processing of large numbers of 

models, it is dependent on the presence or absence of predetermined entities. 

Specifically, semantic mapping relies on propositional accuracy or comparison with an 

‘expert model’. In this study, we were interested in capturing the ideas present in a 

model rather than evaluating its content or comparing it to a reference model 

 

We coded student-constructed models for conceptual content using a rubric that 

quantifies the presence/absence of concepts related to evolution by natural selection 

and is based on prior studies that explored the effect of item-feature context on the 

content of student’s narratives (see de Lima, 2020, p 160 for details on rubric 

development). The rubric assesses Key Concepts (KCs: Variation, Limited Resources 

and Competition, Differential Survival and Reproduction, and Heritability), Naïve Ideas 

(NIs: Need, Use, Adapt), and Threshold Concepts (TCs: Probability, Randomness and 

multiple Levels of Biological Organisation) (Göransson et al., 2020; Moharreri et al., 

2014).   
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Model architecture 

 

 

Figure 2.2. Example of a transcribed student-constructed model. ‘DNA’ is an example of a vertex, 
‘contains’ is a linking phrase that defines an edge, and ‘DNA – contains – leg bone gene’ is a proposition. 
See Table 2.3 for details on how such models can be analysed using network metrics and for the specific 
calculated metrics for this model.   

 

Student-constructed models were transcribed into a digital format (Fig. 2.2) using 

CmapTools (https://cmap.ihmc.us/cmaptools/), a freely available software designed for 

constructing concept maps (Novak & Cañas, 2006). These were then exported into a 

datasheet as a list of vertices and linking statements. Each vertex (model structure), 

edge (linking phrase), and proposition (vertex-edge-vertex combination) were uniquely 

identified. 

 

 

https://cmap.ihmc.us/cmaptools/
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Data Analyses 

We analysed both the content and architecture of students’ models to explore the 

influence of context (taxon) on students’ model-based explanations in terms of (1) the 

specific ideas elicited, and (2) the scope of ideas represented and connections among 

them. 

 

1. Analysing the content of student-constructed models 

a. Effect of prompt context on the content of student-constructed models. 

We used mixed-effects multiple logistic regressions and multiple ordinal logistic 

regressions to evaluate whether prompt context influenced the presence/absence of 

concepts in student-constructed models. We present the results of these analyses as 

odds ratios and model-predicted conditional probabilities; these essentially compare the 

odds and probabilities of each concept occurring in Cheetah models relative to Human 

models. All models included student ID as a random intercept to account for variation 

due to individual differences. These models also include a covariate to account for 

variation in prior performance (see below).  

 

b. Association between prior performance and model content  

Among the various measures of academic performance, Grade Point Average (GPA) is 

one that is frequently used (Freeman et al., 2014; Freudenthaler et al., 2008). In the 

mixed-effects multiple logistic regression models described above, we included ‘GPA 

tertile’ as a covariate to quantify and account for the association between prior 

performance and the content of student-constructed models. Student’s GPA tertile was 
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determined based on their cumulative GPA at the start of the course. Students were 

evenly binned into three tertiles: low (GPA< 3.22), medium (GPA between 3.23 and 

3.67) and high (GPA > 3.68). 

 

c. Association between prior performance and the consistency in model content across taxa.  

Students were binned into 3 groups based on the consistency with which they included 

evolutionary concepts in each of their two models that differed in taxon. Students who 

included a concept in both models were ‘consistent’, ‘inconsistent’ if they included a 

concept in one of their models but not the other, and ‘absent’ if a concept of interest did 

not appear in either model. For each concept, groups are exclusive. We then conducted 

a descriptive analysis to determine whether differences among consistency groups were 

associated with prior academic performance (GPA tertile).  

 

2. Analysing the architecture of student-constructed models 

a. Effect of prompt context on architecture (size and complexity) of student-constructed models 

To explore the effect of prompt context on the architecture of student-constructed 

models, we analysed the size and complexity of the models by computing four different 

network metrics that had been used previously in research exploring students’ CSs 

(Dauer et al., 2013; Ifenthaler et al., 2011; Table 2.3). Number of Vertices and Surface 

Structure are indicative of the size and development of the CS. Average Degree of 

Vertices and Web-like Causality Index are indicative of the complexity of the CS. We 

calculated network metric values using the R package igraph (Csardi & Nepusz, 2006). 
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Table 2.3. Network metrics used to analyse the architecture of student-constructed models. 
Adapted from Ifenthaler et al. (2011) and Dauer et al. (2013). The last column gives the value for that 
particular metric as calculated for the model shown in Fig. 2.2 

Metric How is it calculated? Range What does it 
indicate? 

Metric 
value 

for 
Fig.2.2 

Number of 
Vertices 
 

Sum of all the Vertices 1 – ∞ 

Higher values 
indicate an 
increase in the 
size of the CS 

8 

Surface 
Structure 
 

Sum of the number of all 
propositions.   0 – ∞ 

Higher values 
indicate higher 
development of 
the CS 

7 

Average 
Degree of 
Vertices 
 

Mean number of edges linked 
to each vertex (incoming and 
outgoing) 

1 – ∞ 

Higher values 
Indicate an 
increase in the 
complexity of the 
CS 

1.75 

Web-like 
Causality 
Index (WCI) 
 

Proportion of vertices with 
more than 1 incoming edge 
added to the proportion of 
vertices with more than 1 
outgoing edge 

0 – 2 

Higher values 
Indicate an 
increase in the 
complexity of the 
CS 

0.125 

 

Each student in the analysis created models for both Cheetahs and Humans. We 

therefore used paired t-tests to evaluate whether the mean value of each network metric 

differed between models of Cheetahs and Humans. 
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b. Association between prior performance and model architecture (size and complexity) 

We fit mixed-effects linear models to explain variation in the different network metrics. 

The predictors we used were: prompt taxon, GPA tertile, and the interaction between 

the two fixed effects. We also used student ID as random intercepts to account for 

variation among individuals. We quantified the variance explained by the models using 

marginal R2 and conditional R2 values. Marginal R2 refers to the proportion of variance 

explained by the fixed effects alone, while the conditional R2 quantifies the variance 

explained by the fixed and random effects together (Nakagawa & Schielzeth, 2013). 

 

Software 

All analyses were done using the R statistical environment v 3.6.3 (R Core Team, 

2020). We used the dplyr (Wickham, François, Henry, & Müller, 2020), tidyr (Wickham & 

Henry, 2020), and stringr (Wickham, 2019) packages for data processing, igraph 

(Csardi & Nepusz, 2006) for network metric calculations and visualisation, lme4 (Bates 

et al., 2015) for mixed effects logistic regressions,  lmerTest (Kuznetsova et al., 2017) 

for mixed-effects linear regressions, ordinal (Christensen, 2019) for mixed effects 

ordinal logistic regressions, MuMIn (Barton, 2018) for calculation of marginal and 

conditional R2 values for mixed models, effects (Fox, 2003) for calculating and plotting 

model output, sjPlot (Lüdecke, 2020) for generating tables, and ggplot2 (Wickham, 

2016) and ggmosaic (Jeppson et al., 2018) for plotting. 
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RESULTS 

We found that student-constructed models were influenced by both prompt context and 

prior performance. Students’ Cheetah models had more Key Concepts (KCs), fewer 

Naïve Ideas (NIs) and were bigger in size and complexity as compared to their Human 

models. Results of our specific analyses are presented with respect to each of our 

original research questions. 

 

1. Analysis of Content of Student-Constructed Models  

a. Effect of prompt context on the content of student-constructed models 

Context had a significant effect on the presence of KCs and NIs, but not on Threshold 

Concepts (TCs) in students’ models. Student-constructed models in response to the 

Cheetah prompt had on average 2.4 KCs and 0.04 NIs. However, those in response to 

the Human prompt had fewer KCs (2.0) and more NIs (0.09) on average. We did not 

see any difference in the average number of TCs with respect to the prompt taxon – the 

average was 0.9 TCs per model for both. The frequency with which the concepts were 

included in student-constructed models differed based on context (Fig. 2.3). Variation 

was the most frequently used KC and was present in both models for 86.3% (n=151) of 

the students, but it occurred more frequently in  Cheetah models (93%, n=163), than in  

Human models (87%, n=153). Differential Resources and Competition was the KC that 

has the next highest frequency of occurrence (present in both the models for 60% 

(n=105) of students), however it occurred in Cheetah models (n=132) more than in 

Human models (n=111). Limited Resources and Survival was the most infrequent KC 

(absent in both the models for 63.4% of the students) and was highly influenced by 
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prompt context, appearing in nearly twice as many Cheetah models (n=58) as Human 

models (n=32). Heritability was similarly infrequent overall (occurred in ~50% of the 

models), but, in contrast, showed little difference based on the prompt context (71 

Cheetah models, 62 Human models).  

 

Due to the low frequency of each of the NIs, we present the data for responses that had 

any NI (Need, Use, Adapt). Most students (91%) did not include any NIs in both their 

responses, but among those that did, NIs were included more frequently in Human 

models (n=13) as compared to Cheetah models (n=5).  In contrast, TCs were prevalent 

in student responses, with nearly 70% of responses containing at least one TC.  

However, unlike NIs, TCs did not appear to be influenced by context.  

 

Figure 2.3. The frequency with which concepts were included in student-constructed models. Bars 
represent the frequency of responses that contain each of the four Key Concepts (Variation, Limited 
Resources and Competition, Differential Survival and Reproduction and Heritability), at least one Naive 
Idea (need, use, adapt), and at least one Threshold Concept (probability, randomness, or at least two 
Levels of Biological Organisation) 
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Results from the mixed-effects logistic regression show that Taxon was a strong 

predictor of the content in student-constructed models. The odds of students including 

KCs was lower in their Human models than their Cheetah models (p ranges from 

<0.001 to <0.1 for different KCs). However, the reverse was true for the odds of them 

including NIs (p < 0.05) (i.e., students had more NIs in their Human Models than in their 

Cheetah models). There was no difference between Cheetah and Human models for 

TCs (Table 2.4). Although the odds ratios for Variation and Naive Ideas are significant, 

the results should be interpreted with caution. This is because 90% of the student-

constructed models had Variation and 95% did not have any Naive Ideas, posing 

algorithmic challenges when fitting the statistical models.  

 

Table 2.4. Odds ratios of mixed-effects logistic regression analysis for Taxon using ‘Human’ as 
the reference taxon. Bolded values are statistically significant (*** p < 0.001; ** p < 0.01; * p < 0.05; λ p < 
0.1). Lower and Upper Confidence intervals are given in the brackets. This table provides the coefficients 
for ‘Taxon’, however the model also included ‘Tertile’ as a predictor. 

 

Key Concepts 

Naïve  
Ideas 

Threshold  
Concepts 

Variation 

Limited  
Resources  

and  
Competition 

Differential  
Survival  

and  
Reproduction 

Heritability 

Taxon 
‘Human’ 

0.16* 
[0.02, 0.61] 

0.19*** 
[0.07, 0.42] 

0.22** 
[0.07, 0.49] 

0.51 λ 
[0.22, 1.1] 

4.82* 
[1.31, 
25.96] 

0.81 
[0.38, 1.69] 

 

Students included ideas about Limited Resources and Competition ~4.5 times as often 

in their Cheetah models than their Human models (Fig. 2.4a). Similarly, they used ideas 

about Differential Survival and Reproduction about 20% more frequently in their 
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Cheetah models as in their Human models (Fig. 2.4b). They also included NIs less 

frequently in their Cheetah models (Fig. 2.4c)  

 

Figure 2.4. Model-inferred marginal probability of concept use in the two taxa Cheetah (C) and 
Human (H): (a) Limited Resources and Competition, (b) Differential Survival and Reproduction, 
and (c) Naïve Ideas occurring in student-constructed models. Note that although the confidence 
intervals appear very wide, inference based on visualisation of the error bars is not very reliable, 
especially because of the presence of additional terms in the model (GPA tertile as fixed effect, and 
student identity as random intercept). Refer to Table 2.5 for additional information relevant to statistical 
inference. 

 

a. b. 

c. 
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b. Association between prior performance and model content. 

Results from our mixed effects logistic regression show that prior academic 

performance (as measured by incoming GPA) was a weak predictor for the presence of 

two of the KCs (Variation and Differential Survival and Reproduction, p ≤ 0.05) and for 

the presence of TCs (p ≤ 0.05) in student-constructed models. With every increase in 

tertile (low → medium achieving and medium → high achieving) the odds of students 

including TCs and ideas related to Variation and Differential Survival and Reproduction 

increased (Table 2.5). 

 

Table 2.5. Odds ratios of mixed effects logistic regression analysis for effect of prior performance. 
The odds shown are for every increase of one tertile. Bolded values are statistically significant (*** p < 
0.001; ** p < 0.01; * p < 0.05; λ p < 0.1). Lower and Upper Confidence intervals are given in the brackets. 
This table provides the coefficients for ‘Tertile’, however the model also included ‘Taxon’ as a predictor 

 

Key Concepts 

Naïve  
Ideas 

Threshold  
Concepts 

Variation 

Limited  
Resources  

and  
Competition 

Differential  
Survival  

and  
Reproduction 

Heritability 

Tertile 
6.8* 
[1.61, 
120.0] 

0.90 
[0.39, 1.96] 

3.18*** 
[1.29, 13.10] 

1.53 
[0.54, 6.4] 

2.02 
[0.86, 
6.26] 

3.42* 
[1.29, 18.23] 

 

The frequency of Differential Survival and Reproduction increased by 13% between the 

1st and 3rd tertiles (Fig. 2.5a), and the frequency of TC use increased by 30% (Fig. 

2.5b). Because of the same algorithmic challenges discussed earlier, we are cautious in 

interpreting the results for Variation. The difference in frequency between the 2nd and 

3rd tertiles (for both TC and Differential Survival and Reproduction) was narrower than 
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that between the 1st and 2nd tertiles (Table S2.4). However, this should be interpreted 

with caution as it may be due to the nature of the model, which is linear on a log-odds 

scale. 

 

Figure 2.5. Effect of prior performance on the probability of a (a) Key Concept Differential Survival 
and Reproduction, and (b) Threshold Concepts occurring in student-constructed models. Prior 
performance was determined on the basis of incoming GPA and students were binned into three tertiles: 
(1) Low-achieving, (2) Mid-achieving, and (3) High-achieving. Shaded region represents the confidence 
bands. 

 

c. Association between prior performance and consistency in model content across taxa. 

Due to the large differences (skew) in the number of individuals in the subpopulations 

who represented concepts consistently (in both models), inconsistently (in one of the 

models) or not at all (absent in both models), we examined associations between 

variables and did not try to make causal statistical inferences.  

 

We found that high-achieving students were more consistent in including KCs and TCs 

in their responses, regardless of taxon of the prompt (Table 2.6). Students who included 

a. b. 
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Variation in both their Cheetah and Human models had an average GPA 0.2 points 

higher than those who included Variation in only one of their models and 0.83 points 

higher than students who did not include Variation in either model. Similarly, students 

who included ideas about Differential Survival and Reproduction in both models had an 

average GPA that was 0.18 points higher than the students who included it in only one 

model, and 0.21 points higher than those who did not include it in either. Fewer students 

included ideas about Limited Resources and Competition and Heritability in their 

responses, and those that included them in both models had average GPAs that were 

only marginally higher than students who did not include them in either of their models 

(0.06 points higher for students who included Limited Resources and Competition and 

0.14 points higher for students who included Heritability). Students who included TCs in 

both their models had an average GPA that was 0.24 points higher than those who 

included TCs in only one model and 0.33 points higher than those who did not include 

TCs in either model. While our results also indicate that the students who consistently 

included NIs also have a higher average GPA than their peers who did not have any NIs 

in their models, this difference is very small (0.03 GPA points), and the number of 

students who included NIs in all their responses is very low (3 students).   
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Table 2.6. Comparison of the number and GPA (mean ± Standard Error) of students who 
expressed an idea consistently (in both Human and Cheetah models), inconsistently (in either 
Human or Cheetah models) or did not include it in both (absent). 

Concept 

 Consistently 
included the 

concept 
(present in both 

responses) 

Inconsistently 
used the concept 
 
(present in one of the 

responses) 

Concept absent 
from all 

responses 

Variation 
N 151 14 10 

GPA 3.42 (± 0.04) 3.22 (± 0.11) 2.59 (± 0.33) 

Limited 
Resources and 
Competition 

N 26 38 111 

GPA 3.43 (± 0.07) 3.27 (± 0.08) 3.37 (± 0.05) 

Differential 
Survival and 
Reproduction 

N 105 33 37 

GPA 3.43 (± 0.05) 3.25 (± 0.09) 3.22 (± 0.08) 

Heritability 
N 52 29 94 

GPA 3.41 (± 0.06) 3.56 (± 0.08) 3.27 (± 0.06) 

Naïve Ideas 
N 3 12 160 

GPA 3.39 (± 0.29) 3.32 (± 0.11) 3.36 (± 0.04) 

Threshold 
Concepts 

N 82 42 51 

GPA 3.51 (± 0.04) 3.27 (± 0.08) 3.18 (± 0.09) 
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2. Analysis of Architecture of Student-Constructed Models 

a. Effect of prompt context on architecture (size and complexity) of student-constructed 

models 

The architecture of student-constructed models differed based on prompt context 

(Cheetah vs Human; Table 2.7). Students’ Cheetah models were significantly larger 

than their Human models (Number of Vertices, p < 0.01, Fig. 2.6a; Surface structure, p 

< 0.01, Fig. 2.6b) and were also more complex (WCI, p < 0.05, Fig. 2.6d; Average 

degree of vertices, p < 0.1, Fig. 2.6c) 
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Table 2.7. Paired t-tests comparing the mean value of each network metric in Cheetah and Human models. Bolded values are statistically 
significant. CI indicates confidence interval. 

Network Metric 

Cheetah  
models 

Human  
models 

Mean 
differences 

between 
Cheetah and 

Human 
Models 

CI t df p 

Mean Range Mean Range 

Number of 
Vertices 5.45 2-14 5.09 2-12 0.36 0.09, 0.62 2.66 174 0.008 

Surface 
structure 4.43 1-14 4.07 1-10 0.36 0.10, 0.36 2.70 174 0.007 

Average degree 
of vertices 1.58 1-2.27 1.54 1-2 0.04 0, 0.06 1.95 174 0.052 

Web-like 
causality index  0.10 0-1 0.07 0-0.43 0.03 0, 0.04 2.20 174 0.029 
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Figure 2.6. Distribution of network metrics for students’ models of Cheetah (in red) and Human (in 
blue). Subplots include: (a) Number of Vertices, (b) Surface structure, (c) Average degree of 
vertices, and (d) Web-like causality index. The black dot indicates the mean value of the metric. 
Number of Vertices and Surface structure are measures of the size. Average degree of vertices and Web-
like causality index are measures of complexity. 

 

c 
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b. Association between prior performance and model architecture (size and complexity) 

The mixed-effects linear models showed that taxa and tertile both affected the 

architecture of student-constructed models (Table 2.8). Regression coefficients for the 

effect of taxa on each network metric show a similar general pattern to that in the paired 

t-tests.  

 

Table 2.8. Regression coefficients, marginal R2 and conditional R2 values from mixed-effects linear 
models explaining variation in network metrics. (See Tables S2.7 – S2.10 for details). Predictors were 
the prompt taxon, GPA tertile, and the interaction between the two (fixed effects), as well as student ID 
(random intercept). Marginal R2 refers to the proportion of variance explained by the fixed effects alone, 
while the conditional R2 quantifies the variance explained by the fixed and random effects together 
(Nakagawa & Schielzeth 2013). Bolded values are statistically significant (*** p < 0.001; ** p < 0.01; * p < 
0.05; λ p < 0.1). 

Network Metric Number of 
Vertices 

Surface 
structure 

Average 
degree of 
vertices 

Web-like 
causality 

index 

Intercept  
(mean of Cheetah-
Tertile 1 group) 

4.88*** 3.93*** 1.55*** 0.11*** 

βHuman -0.33 -0.38 -0.07* -0.05** 

βGPA T2 1.06** 1.06** 0.06 0.001 

βGPA T3 0.63 0.47 -0.002 -0.03 

βHuman:GPA T2 -0.12 -0.09 0.03 0.04 

βHuman:GPA T3 0.01 0.13 0.08* 0.04 λ 

Marginal R2 (fixed 
effects alone) % 4.6 4.6 3.4 1.9 
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Table 2.8. (cont’d) 

Conditional R2 
(fixed + random 
effects) % 

64.6 64.0 49.3 50.8 

 

The four network metrics we used in these analyses measured two main constructs: 

Size was measured by Surface structure and Number of vertices, and complexity was 

measured by Average degree of vertices and Web-like causality index (WCI). Model 

size showed consistent patterns with tertile and taxon across both metrics (Figs. 2.7a 

and 2.7b). For both metrics, the size of students’ Cheetah models was slightly larger 

than their Human models across tertiles (but p > 0.05). Model size increased 

substantially between the low and mid-achievers (p < 0.01) and then decreased slightly 

between the mid and high-achievers.  

 

With respect to complexity, the patterns were less consistent (Figs. 2.7c and 2.7d). 

Cheetah models were generally more complex than Human models, although estimated 

Average degree of vertices for high-achievers for Human models was marginally higher. 

We see a similar pattern as model size between tertiles – complexity tends to increase 

substantially between the low and mid-achievers and decrease between the mid and 

high-achievers. However, low-achievers had a WCI for Cheetah models that was as 

high as the mid-achievers. The low-achievers also showed large differences in 

complexity between the two taxa, while the mid and high-achievers showed small to 

negligible differences based on taxa. Across all metrics, the fixed effects alone 

explained less than 5% of the variance in the data; the random and fixed effects 

together accounted for 30-70% of the variance. 
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Figure 2.7. Association between network metrics and prior performance, for every combination of 
taxon and tertile for Size: a) Number of Vertices, b) Surface Structure; and Complexity: c) Average 
Degree of Vertices, and d) Web-like causality index. Number of Vertices and Surface structure are 
measures of the size. Average degree of vertices and Web-like causality index are measures of 
complexity. Prior performance was determined on the basis of incoming GPA and students were binned 
into three tertiles: (1) Low-achievers, (2) Mid-achievers, and (3) High-achievers. 

 

DISCUSSION 

These analyses provide new insights into the effect of item-feature context on students’ 

model-based responses. Our results indicate that prompt taxon influenced both the 

architectural features and the conceptual content of student-generated models 

explaining evolution by natural selection. Additionally, we found that prior academic 

d 

c a 

b 

Size Complexity 

Cheetah Human 
Taxon Tertile 

Mid-achievers Low-achievers High-achievers 
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achievement is associated with some of the differences we see in our data. In this 

section, we will discuss some plausible explanations for the patterns we see and the 

implications of our findings on instruction and assessment, especially with respect to 

using models for instruction and assessment. 

 

Contextual Effects of the Prompt on the Content of Student-Constructed Models 

A hallmark of understanding a concept is the ability to provide similar responses to 

conceptually equivalent questions testing that concept without being distracted by 

superficial factors in the prompt (Evans, 2008; Kampourakis & Zogza, 2009; Weston et 

al., 2015). The prompts in this study were designed to elicit the same conceptual 

information (evolution by natural selection) although they differed in surface features 

(taxon). Similar responses would indicate that students are using conceptual cues and 

not surface cues to access their cognitive structures and to retrieve relevant information 

while constructing their models. However, our results indicate that prompt context does 

influence the manner in which students access their CSs, build their mental models, and 

construct the required representation. The effect of prompt taxon was seen both in the 

content and the architecture of students’ models.  

 

Differences in the numbers of Key Concepts (KCs) and Naïve Ideas (NIs) in students’ 

Human and Cheetah models show that the content of student-constructed models was 

affected by the context of the prompt. Students’ Cheetah models had more KCs and 

fewer NIs than their Human models. Similar differences in response content due to 

prompt context have been shown by prior research including our own. Prompt context, 



106 
 

especially taxon, has affected students’ narrative responses to questions about 

evolution by natural selection (Beggrow & Sbeglia, 2019; de Lima, 2020, p 12; 

Kampourakis & Zogza, 2008; Nehm & Ha, 2011; Prevost et al., 2013; Schurmeier et al., 

2010). This shows that despite being required to represent their knowledge using a 

different mode of representation (model vs narrative), students demonstrate similar 

sensitivities to prompt context and are using surface features of the prompt as cues to 

access their CSs.  

 

Constructing a response to a prompt based on surface as opposed to the conceptual 

features is indicative of a novice learner (Cheng et al., 2015; Hsu et al., 2012). Previous 

research has shown that when constructing Structure-Behaviour-Function (SBF) 

models, novices tended to include only the most salient structures instead of focusing 

on deeper relationships and emergent functions of the systems they were modelling 

(Hmelo-Silver & Pfeffer, 2004; Vattam et al., 2011). Our results could indicate that 

because these students are novice learners, their CSs for evolution are not particularly 

robust or intact, which could explain differences in the content they included in their 

models. A fragmented CS increases the challenge of retrieving relevant KCs without 

being distracted by irrelevant details and NIs (Dauer & Long, 2015; Hmelo-Silver et al., 

2007). Previous research has shown that students have a hard time understanding 

evolution, especially human evolution, and that misconceptions and naïve ideas persist 

despite instruction (Beggrow & Sbeglia, 2019; Bishop & Anderson, 1990; Bray Speth et 

al., 2009; Nehm & Reilly, 2007).  This is particularly supported by the finding from our 

study that students included fewer KCs and more NIs in their Human models as 
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compared to their Cheetah models. However, we did not detect any differences in the 

frequency of Threshold Concepts in students’ responses based on taxa. Including a TC, 

by definition, is indicative of having an increased understanding of the subject matter 

and provides evidence of crossing a threshold of understanding which therefore would 

lead to decreased susceptibility to contextual influences.  

 

Among the KCs, Variation appeared most frequently in student-constructed models. 

This was not surprising given that the students were enrolled in a course that was 

designed with Variation as a core theme. The course was organized around three 

themes focused on variation:  how does biological variation arise? how is variation 

expressed? and, what are the consequences of variation among organisms?  Variation 

is a central theme of evolution and is key to gaining a deeper understanding of evolution 

as a process (Emmons & Kelemen, 2015; Gregory, 2009; Halldén, 1988; Shtulman, 

2006; Shtulman & Schulz, 2008). Previous studies have shown that students 

demonstrated a deeper understanding of evolution following instruction (Bray Speth et 

al., 2014). However, in our study, only 43% of the students (n=76) included ideas about 

variation at the genetic level. This could be because of an interaction between the 

affordances of the mode in which they were required to respond (construct a model) 

and because the prompt was framed at the organismal level. The spatial level 

referenced in the prompt could be another contextual cue that subsequently influenced 

the content of student-constructed models. Students could have started constructing 

their model at the organismal level and simply chosen not to include the genetic level 

either due to space constraints on the paper or because they assumed the prompt was 
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asking for a response at the organismal level. Alternatively, it is possible that they still 

do not have a keen understanding of the genetic basis of how variation originates and 

therefore did not include the genetic level. Previous studies have shown that 

understanding and articulating the genetic origin of variation is particularly difficult for 

students (Bray Speth et al., 2014). Additional analyses of classroom artifacts could shed 

insight onto whether this is a plausible explanation for this particular population. 

 

In contrast, students were least likely to include the KC Limited Resources and 

Competition in their models (>60% of the students did not include the KC in either 

model). Of those that did include it, only 32 students included it in their Human model 

(as compared to 58 that included it in their Cheetah model). This could indicate that 

while students generally do not understand the role of Limited Resources and 

Competition with respect to evolution, they have an even greater difficulty thinking of it 

as relevant to Human evolution. This may be due to ingrained patterns of thinking (e.g., 

teleological and anthropomorphic thinking) that are notoriously resistant to instruction 

(Coley & Tanner, 2015; Inagaki & Hatano, 2006; Sinatra et al., 2008) or because they 

tend not to conceptualize humans as competing for resources in the ways other 

organisms do, particularly when that competition has consequences for fitness. 

 

Our results also indicate that prior academic performance was associated with 

contextual susceptibility. Students with higher GPA’s tended to include KCs and TCs in 

their models and were more consistent in the manner in which they included them – i.e., 

they included them in both models irrespective of context. Students who were 
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influenced by the context (and therefore included the KC/TC in only one of their models) 

and students who did not include KC/TCs in their models tended to have lower GPAs. 

This could indicate that students with higher GPAs have more robust or intact CSs. In a 

study in which students had to construct three types of models to illustrate the same 

phenomenon, Cheng & Lin (2015) found that students with higher science-learning 

performances also constructed models that were more coherent than their peers. 

Overall, this suggests that higher-performing students may be better at transferring 

concepts across contexts and less susceptible to contextual influences that distract 

from, or are unrelated to the underlying phenomenon. 

 

Contextual Effects on the Architecture of Student-Constructed Models 

Our study shows that the context of the prompt (taxon) affected the architecture of 

students’ models. This is a unique contribution to the literature about the effect of 

context on students’ reasoning and constructed representations. While previous studies, 

including our own, have shown the effect of context on students’ responses, these 

findings are based primarily on analysis of written, text-based, narrative responses. This 

question has been relatively unexplored in model-based assessments, particularly for 

highly controlled prompt features as was the case in this study. Our findings show that 

even when we consider students’ models sans content, we can see the effect of 

contextual influences. In this case, students’ Cheetah models were both larger and 

more complex than their Human models, regardless of the specific content included in 

the models.  
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Our study also revealed differences in the ranges of model metrics for both size and 

complexity. Specifically, while the range for model size was large (Number of vertices, 

2-14; Surface structure, 1-14) the range for complexity was relatively low (Average 

degree of vertices, 1-2.27; WCI, 0-1). This means that complexity was low even in 

larger models. This could be because students are used to linear thinking. Hay et al. 

(2008) postulate that our instructional choices have made students used to linear 

thinking. Because conventional lecturing often involves distilling down complex ideas 

into simple and easy-to-follow bullet points, this tends to emphasise linearity of thinking 

and rote-memorisation rather than engaging the complexity and intricacies of 

knowledge construction that is more reflective of reality, particularly in biological 

systems (Kinchin, 2006b, 2006a; Kinchin & Hay, 2007).  

 

Alternatively, low model complexity could be attributed to the fact that students were 

required to construct these models using pen and paper. Royer & Royer (2004) 

reported that students using paper/pen constructed models that were lower in 

complexity than those that constructed models using a computer. Brandstädter et al. 

(2012) reported that students who used a computer constructed models that had higher 

propositional accuracy than those who constructed them using pen/paper. Lin et al. 

(2016) further showed that students not only learned better when they used computer 

mapping vs pen/paper, but found that computers were better for enabling students to 

collaborate and modify the model in real time as well as keep track of the various 

versions. It is therefore possible that because of the limitations of the medium (not being 
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able to reposition structures, concerns about making errors and cluttering the paper, 

unable to easily edit the model) lead to an overall lover complexity score.  

 

If we consider prior achievement levels to be a proxy for progress on the novice to 

expert continuum, we see that lower-achievers have models that are smaller in size but 

lower in complexity than their higher achieving peers. Previous studies that have 

explored differences in expert-novice CSs based on differences in model architecture 

have similarly found that expert models differ significantly from novice models in both 

size and complexity (Hmelo-Silver & Pfeffer, 2004; Ifenthaler, 2011; Ifenthaler et al., 

2011).  This is to be expected as an expert would have both more information (larger 

model size) and would be better able to identify apparent as well as emergent 

relationships (greater complexity) within a study system/phenomenon. This could 

indicate that since our lower-achievers have fewer structures and propositions in their 

models, they also have smaller CSs on the topic of evolution (i.e., fewer concepts and 

links). Mid- and high-achievers may have better content preparation, more extensive 

prior experience, or more facile connection with material which then results in having a 

larger CS and therefore more concepts to draw from. 

 

In our study, mid-achievers had the largest and most complex models. In a longitudinal 

study by Dauer et al. (2013), they observed that model complexity increased between 

assessments conducted early and mid-course, and then decreased between mid- and 

end-of-course, while model correctness continued to increase throughout. They 

attributed this to major restructuring of students’ CSs that happened early in the 
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semester as students are accruing significant new information and identifying new 

relationships between concepts. In the second half of the semester, students’ CSs then 

undergo minor restructuring as they fine-tune the information and shed unnecessary 

links, thereby making their CSs and models more parsimonious. Pearsall et al. (1997) 

reported similar findings. In their study the most “radical” restructuring of the CS takes 

place in the first part of the semester (first 4 weeks in most cases) and to a much lesser 

extent in the latter part of the semester. Therefore, it is plausible that our middle-

achievers have accreted a lot of information and are on the path to fine-tuning it and 

developing a more parsimonious CS. Other model-based studies have shown that mid-

achievers tend to be better at long-term conceptual retrieval (Bennett et al., 2020; Dauer 

& Long, 2015). This could indicate that the higher complexity of middle-achievers’ 

models reflects a better-connected CS which then might facilitate their ability to retrieve 

relevant information after an extended period of time.  

 

When associating prior performance with susceptibility to contextual effects, we saw 

that the general trend was that Human models were smaller and less complex than 

Cheetah models. The difference is most pronounced for low-achievers, particularly for 

complexity. This could indicate that because lower-achievers have less knowledge 

about the subject matter and/or modelling compared to their higher-achieving peers, 

they are most susceptible to contextual influences. It is also possible that these students 

have the greatest difficulty with the concept of human evolution, and it is this difficulty 

that is causing them to think in a more linear manner reflected in their lower complexity 

scores. Alternatively, it is also possible that they do not recognise that the two prompts 
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are analogous, and therefore feel compelled to produce distinctly different responses 

(Chi et al., 1981; Hmelo-Silver & Pfeffer, 2004; Nehm & Ridgway, 2011). 

 

Implications for Instruction and Assessment 

Models and model building are relevant not only in the scientific context (education or 

practice) but in a wide variety of daily life situations (Halloun, 2007). Recommendations 

from reports such as Vision & Change (AAAS, 2011) and NGSS (NGSS Lead States, 

2013) have led many instructors in the life sciences to increase their use of models and 

modelling in classrooms (see Wilson et al., 2020). Our finding that context affects both 

the content and architecture of students’ models has implications for both instruction 

and assessment. We hypothesize that some of the contextual influences we observed 

are due to the fact that students are novices in the subject matter. The fact that 

evolution, especially human evolution, is a notoriously difficult topic for students (Bishop 

& Anderson, 1990; Catley & Novick, 2009; Morabito et al., 2010; Nehm & Reilly, 2007; 

Smith, 2010b, 2010a), must be acknowledged by instructors while designing their 

curricula/instruction. Instructional strategies that are designed to improve students’ 

understanding of evolution, particularly human evolution, have been proposed by 

multiple researchers (Alters & Nelson, 2002; Bray Speth et al., 2009, 2014; Kalinowski 

et al., 2010; Kampourakis & Zogza, 2009; Pobiner et al., 2018).   

 

Students are also novices to modelling. Therefore, in order to develop expertise in 

modelling, students will have to understand not only how to construct a model, but what 

a model is, how to visualise it, and then how to represent it (Gilbert, 2004). Nicolaou & 
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Constantinou (2014) proposed a framework for developing modelling competence which 

stresses both modelling practises (e.g., creating, validating, etc.) and meta-modelling 

knowledge which includes understanding the nature and purpose of models and the 

modelling process. To facilitate this, students need practice in developing their own 

models in addition to working with provided models (van Driel et al., 2019). They need 

to understand not just what goes into the model, but why it belongs there. In SBF 

language, instruction should focus beyond the structures in a model to include the 

function of the model (Constantinou et al., 2019).  

 

A major problem that multiple researchers have pointed out is that students tend to think 

that there is only one correct model for any system/phenomenon and find it difficult to 

accept the possibility of alternative models (Constantinou et al., 2019; Grosslight et al., 

1991; Grünkorn et al., 2014). This belief reinforces a culture of learning by memorizing 

because there can be only one ‘right’ answer. Bennett et al. (2020) found that students 

who had memorised a model linking genetic variation to phenotype did well when asked 

to respond to the same prompt at a later date, but were unable to transfer concepts 

when asked to construct models of the same phenomenon in different contexts. Dauer 

& Long (2015) reported similar findings – students who relied on memorising models did 

not have a complete understanding of the system, and when asked to reproduce the 

model for a new context, faced difficulties. Grünkorn et al. (2014), suggest that this 

might be because the students have been taught about the historical development of 

models of systems (e.g., the atom) where a series of discoveries progressively 
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increased model accuracy until a ‘final’ model was achieved, and they therefore suggest 

that these examples be used with caution.  

 

A major barrier to including student-constructed models in classrooms – especially on 

assessments – is the perception of increased difficulty in scoring them. However, there 

has been a lot of progress in the effectiveness of automated assessments, particularly 

when students construct models on the computer rather than on paper (Ifenthaler, 2010; 

Ifenthaler et al., 2011; Luckie et al., 2011). Researchers and educators have also 

developed resources and strategies for designing modelling-based instruction and 

assessments and delivering feedback at large scales (Upmeier zu Belzen et al., 2019b; 

Wilson et al., 2019). 

 

Future Steps 

Our findings pose some interesting questions that would be worth exploring in the 

future: 

We have seen that context (taxon) influences both the content and the architecture of 

student-constructed models. Our previous research also showed that context influences 

the content of students’ narrative responses. However, this raises the question – does 

the context of the prompt predict the content of the response irrespective of the mode of 

response? What would be the effect of context on the content of students’ responses if 

they are asked to respond using two different modes of representation (e.g. 

narrative/model/drawing) at the same time? Will we see an interaction between the 

context of the prompt and the mode of representation? 



116 
 

The course in which this study was conducted, uses a lot of collaborative modelling 

activities. However, this particular assessment was conducted by individuals. There is 

evidence to show that when students constructed models collaboratively, they produce 

models that were of a higher quality (Kwon & Cifuentes, 2009), and perform better on 

biology tests (Brown, 2003) as compared to students who construct models individually. 

If this was done as a collaborative activity, we should expect to see an increase in the 

size of the model with respect to an individual model as they would be pooling their 

knowledge, however it would be interesting to explore the effect on the complexity of the 

model and the susceptibility to context. Would the complexity increase with because 

some students recognise relationships that others do not? Or will the models become 

more parsimonious because of an increase in the overall expertise of the group 

 

The study also highlights some of the findings from previous studies that middle 

achievers seem to be interacting with models in a unique way. In our study, these 

students constructed models that were bigger in size and in complexity than their peers, 

and unlike the low-achievers they did not seem to be susceptible to context. It would be 

interesting to determine if they are using cues to access their CSs that are different from 

their peers. Or is their motivation while approaching modelling tasks different?  

 

Answering these questions will pave the way to increasing our understanding of the way 

students engage with modelling and how context affects the way they access their CSs.  
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Table S2.1. Odds ratios of multiple logistic regression for demographic analysis with lower and 
upper confidence intervals (95%) and p-values.  

Predictors Odds Ratios CI p 

(Intercept) 0.29 0.05, 1.59 0.159 

Gender  
[M] 1.03 0.68, 1.57 0.885 

Ethnicity 
[Minority] 0.88 0.29, 2.75 0.827 

Ethnicity  
[White (non-Hispanic)] 1.13 0.40, 3.27 0.816 

First Generation Learner 
[yes] 0.85 0.52, 1.36 0.491 

Start STEM credits 1.00 0.99, 1.01 0.785 

Start GPA 1.40 0.99, 2.05 0.065 

Observations 377 
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Table S2.2. Additional network metrics used to analyse the architecture of student-constructed 
models. Table adapted from Ifenthaler et al. (2011) and Dauer et al. (2013) 

Metric How is it 
calculated? Range What does it 

indicate? 

Metric 
value 

for Fig. 
2.2 

Graphical 
structure 
 

Fewest number of 
edges between most 
distant vertices of 
spanning tree 

0 – ∞ 
Higher values indicate 
broader understanding 
of the subject matter. 

4 

Connectedness 
 

Mean probability of 
reaching every 
vertex from every 
other vertex 

0 – 1 
Higher values indicate 
deeper understanding 
of the subject matter 

0.34 

Ruggedness 
 

Number of unlinked 
subgraphs 1 – ∞ 

Higher values indicate 
a greater lack of 
understanding of the 
subject matter 

1 
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Table S2.3. Network metrics, their operationalisation, and the code used to calculate them for 
each model. 

Metric What does it 
indicate? R igraph code used to calculate it 

Number of 
vertices 

Indicate of size of the 
CS vcount(g) 

Surface structure Indicates development 
of the CS. nrow(subdat) 

Average degree 
of vertices 

Indicates the 
complexity of the CS mean(degree(g, mode = 'all')) 

Web-like 
causality index 

Another indicator of 
complexity 

(length(degree(g, mode = 'in')[degree(g, 
mode = 'in') > 1]) / vcount(g)) + 
    (length(degree(g, mode = 
'out')[degree(g, mode = 'out') > 1]) / 
vcount(g)) 

Graphical 
structure 

Indicates the breadth 
of subject matter 
understanding 

diameter(mst(g)) 

Connectedness 
Indicates depth of 
understanding of the 
subject matter 

sum(distance_table(g, directed = 
TRUE)$res) / (sum(distance_table(g, 
directed = TRUE)$res) + 
distance_table(g, directed = 
TRUE)$unconnected) 

Ruggedness 

Increase in 
ruggedness indicates 
a lack of 
understanding of the 
subject matter 

count_components(g) 
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Figure S2.1. Model-inferred marginal probabilities for each of the fixed effects (a. taxa and b. 
tertile) on the presence of Variation in student-constructed models. Model also included student 
identity as random intercept. 

 

  

a. b. 
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Figure S2.2. Model-inferred marginal probabilities for each of the fixed effects (a. taxa and b. 
tertile) on the presence of Limited Resources and Competition in student-constructed models. 
Model also included student identity as random intercept. 

  

a. b. 
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Figure S2.3. Model-inferred marginal probabilities for each of the fixed effects (a. taxa and b. 
tertile) on the presence of Differential Survival and Reproduction in student-constructed models. 
Model also included student identity as random intercept. 

 

 

  

a. b. 
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Figure S2.4. Model-inferred marginal probabilities for each of the fixed effects (a. taxa and b. 
tertile) on the presence of Heritability in student-constructed models. Model also included student 
identity as random intercept. 

  

a. b. 
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Figure S2.5. Model-inferred marginal probabilities for each of the fixed effects (a. taxa and b. 
tertile) on the presence of Naïve Ideas in student-constructed models. Model also included student 
identity as random intercept. 

 

  

a. b. 
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Figure S2.6. Model-inferred marginal probabilities for each of the fixed effects (a. taxa and b. 
tertile) on the presence of Threshold Concepts in student-constructed models. Model also included 
student identity as random intercept. 

 

  

a. b. 
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Table S2.4. Model-inferred marginal probability of concept use across the three tertiles.   

 

Key Concepts 

Naïve 
Ideas 

Threshold 
Concepts 

Variation 

Limited 
Resources 

and 
Competition 

Differential 
Survival 

and 
Reproduction 

Heritability 

Tertile 
1 0.99 0.09 0.75 0.11 0 0.56 

Tertile 
2 0.99 0.09 0.91 0.17 0 0.81 

Tertile 
3 0.99 0.08 0.97 0.24 0 0.94 
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Table S2.5. Paired t-tests comparing the mean value of each additional network metric in Cheetah 
and Human models.  

Network Metric 

Mean 
differences 

between 
Cheetah and 

Human Models 

CI t df p 

Graphical 
structure 0.09 -0.09, 0.26 0.97 174 0.335 

Connectedness -0.01 -0.02, 0 -1.83 174 0.068 

Ruggedness 0.04 0, 0.09 1.61 174 0.109 
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Figure S2.7. Distribution of network metrics for Cheetah vs Human models. a) Number of Vertices, 
b) Surface structure, c) Average degree of vertices, d) Web-like causality index, e) Graphical 
structure, f) Connectedness, g) Ruggedness 

  



131 
 

Figure S2.8. Violin plots showing distribution of network metrics for Cheetah vs Human models of 
a) Graphical Structure b) Connectedness, and c) Ruggedness. The black dot indicates the mean. 
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Figure S2.9. Plots showing mean (± SE) for each of the network metrics for every combination of 
taxon and tertile for a) Graphical Structure b) Connectedness, and c) Ruggedness. 
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Table S2.6. Regression coefficients, marginal R2 and conditional R2 values from a set of mixed-
effects linear models explaining variation in additional network metrics. (See tables S2.11 – S2.13). 
Predictors were the prompt taxon, GPA tertile, and the interaction between the two (fixed effects), as well 
as student ID (random intercept). Marginal R2 refers to the proportion of variance explained by the fixed 
effects alone, while the conditional R2 quantifies the variance explained by the fixed and random effects 
together (Nakagawa & Schielzeth 2013). Bolded values are statistically significant (*** p < 0.001; **p < 
0.01; * p < 0.05; λ p <0.1).  

Network Metric Graphical 
structure Connectedness Ruggedness 

Intercept  
(mean of Cheetah-Tertile 1 
group) 

3.069*** 0.44*** 1.03*** 

βHuman -0.16 0.01 -0.03 

βGPA T2 0.32 -0.04* 0.05 

βGPA T3 0.15 -0.03 λ 0.11* 

βHuman:GPA T2 0.006 0.004 0.02 

βHuman:GPA T3 0.01 0.13 0.08* 

Marginal R2 (fixed effects alone) 
% 4.6 4.6 3.4 

Conditional R2 (fixed + random 
effects) % 64.6 64.0 49.3 
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Table S2.7. Mixed-effects linear model summary for Number of vertices. Bolded values are 
statistically significant.  

   Number of vertices 

Predictors Estimates CI p 

(Intercept) 4.88 4.34 – 5.42 <0.001 

Taxa [Human] -0.33 -0.79 – 0.14 0.166 

GPA tertile 2 [Mid-achievers] 1.09 0.33 – 1.84 0.005 

GPA tertile 3 [High-achievers] 0.63 -0.13 – 1.39 0.105 

Interaction 1: Taxa [H] * GPA tertile [2] -0.12 -0.77 – 0.54 0.728 

Interaction 2: Taxa [H] * GPA tertile [3] 0.01 -0.64 – 0.67 0.968 

Random Effects 

σ2 1.62 

τ00 Deid 2.75 

ICC 0.63 

N Deid 173 

Observations 346 

Marginal R2 / Conditional R2 0.047 / 0.647 
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Table S2.8. Mixed-effects linear model summary for Surface structure. Bolded values are statistically 
significant. 

  Surface structure 

Predictors Estimates CI p 

(Intercept) 3.93 3.40 – 4.47 <0.001 

Taxa [Human] -0.38 -0.84 – 0.08 0.109 

GPA tertile 2 [Mid-achievers] 1.06 0.30 – 1.81 0.006 

GPA tertile 3 [High-achievers] 0.47 -0.29 – 1.22 0.227 

Interaction 1: Taxa [H] * GPA tertile [2] -0.09 -0.75 – 0.57 0.782 

Interaction 2: Taxa [H] * GPA tertile [3] 0.13 -0.53 – 0.79 0.700 

Random Effects 

σ2 1.62 

τ00 Deid 2.68 

ICC 0.62 

N Deid 173 

Observations 346 

Marginal R2 / Conditional R2 0.046 / 0.640 
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Table S2.9. Mixed-effects linear model summary for Average degree of vertices. Bolded values are 
statistically significant. 

  Average degree of vertices 

Predictors Estimates CI p 

(Intercept) 1.56 1.50 – 1.61 <0.001 

Taxa [Human] -0.07 -0.12 – -0.01 0.016 

GPA tertile 2 [Mid-achievers] 0.06 -0.01 – 0.14 0.100 

GPA tertile 3 [High-achievers] -0.00 -0.08 – 0.07 0.950 

Interaction 1: Taxa [H] * GPA tertile [2] 0.03 -0.05 – 0.10 0.473 

Interaction 2: Taxa [H] * GPA tertile [3] 0.08 0.00 – 0.15 0.046 

Random Effects 

σ2 0.02 

τ00 Deid 0.02 

ICC 0.48 

N Deid 173 

Observations 346 

Marginal R2 / Conditional R2 0.034 / 0.494 
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Table S2.10. Mixed-effects linear model summary for Web-like causality index. Bolded values are 
statistically significant. 

  Web-like causality index 

Predictors Estimates CI p 

(Intercept) 0.11 0.08 – 0.15 <0.001 

Taxa [Human] -0.05 -0.09 – -0.01 0.005 

GPA tertile 2 [Mid-achievers] 0.00 -0.05 – 0.05 0.943 

GPA tertile 3 [High-achievers] -0.03 -0.08 – 0.02 0.257 

Interaction 1: Taxa [H] * GPA tertile [2] 0.04 -0.01 – 0.09 0.124 

Interaction 2: Taxa [H] * GPA tertile [3] 0.04 -0.01 – 0.09 0.093 

Random Effects 

σ2 0.01 

τ00 Deid 0.01 

ICC 0.50 

N Deid 173 

Observations 346 

Marginal R2 / Conditional R2 0.020 / 0.509 
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Table S2.11. Mixed-effects linear model summary for Graphical structure. Bolded values are 
statistically significant. 

  Graphical structure 

Predictors Estimates CI p 

(Intercept) 3.07 2.71 – 3.43 <0.001 

Taxa [Human] -0.16 -0.46 – 0.15 0.318 

GPA tertile 2 [Mid-achievers] 0.32 -0.19 – 0.83 0.218 

GPA tertile 3 [High-achievers] 0.15 -0.36 – 0.66 0.565 

Interaction 1: Taxa [H] * GPA tertile [2] 0.01 -0.43 – 0.44 0.977 

Interaction 2: Taxa [H] * GPA tertile [3] 0.20 -0.23 – 0.63 0.362 

Random Effects 

σ2 0.70 

τ00 Deid 1.26 

ICC 0.64 

N Deid 173 

Observations 346 

Marginal R2 / Conditional R2 0.012 / 0.647 
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Table S2.12. Mixed-effects linear model summary for Connectedness. Bolded values are statistically 
significant. 

  Connectedness 

Predictors Estimates CI p 

(Intercept) 0.44 0.41 – 0.46 <0.001 

Taxa [Human] 0.01 -0.01 – 0.03 0.527 

GPA tertile 2 [Mid-achievers] -0.04 -0.08 – -0.01 0.026 

GPA tertile 3 [High-achievers] -0.03 -0.07 – 0.01 0.091 

Interaction 1: Taxa [H] * GPA tertile [2] 0.00 -0.03 – 0.03 0.796 

Interaction 2: Taxa [H] * GPA tertile [3] 0.01 -0.02 – 0.04 0.528 

Random Effects 

σ2 0.00 

τ00 Deid 0.01 

ICC 0.69 

N Deid 173 

Observations 346 

Marginal R2 / Conditional R2 0.029 / 0.702 
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Table S2.13. Mixed-effects linear model summary for Ruggedness. Bolded values are statistically 
significant. 

  Ruggedness 

Predictors Estimates CI p 

(Intercept) 1.03 0.96 – 1.11 <0.001 

Taxa [Human] -0.03 -0.12 – 0.05 0.428 

GPA tertile 2 [Mid-achievers] 0.05 -0.05 – 0.15 0.319 

GPA tertile 3 [High-achievers] 0.11 0.00 – 0.21 0.044 

Interaction 1: Taxa [H] * GPA tertile [2] 0.02 -0.10 – 0.14 0.773 

Interaction 2: Taxa [H] * GPA tertile [3] -0.04 -0.16 – 0.08 0.556 

Random Effects 

σ2 0.05 

τ00 Deid 0.02 

ICC 0.31 

N Deid 173 

Observations 346 

Marginal R2 / Conditional R2 0.023 / 0.321 
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CHAPTER THREE: 

Model-based and narrative assessments elicit different ideas about evolution by natural 

selection. 

 

ABSTRACT 

Narrative responses are commonly used for assessing students’ reasoning, but models 

are increasingly represented in college biology classrooms. Features of student-

constructed models can provide insights into thinking and reasoning that are not 

captured in multiple choice or narrative responses. However, little is known about 

whether the two modes of response are equivalent in terms of eliciting students’ ideas. 

In this study we explored the contextual influence of response mode on the content of 

students’ explanations about evolution by natural selection.  

  

We asked students in two sections of a large-enrolment introductory biology course to 

respond to prompts about evolution by natural selection by constructing both a model 

and written narrative.  We used qualitative content analysis to develop a rubric for 

analysing the content of student responses. Responses were binned into levels of 

scientific plausibility that reflect inclusion of Key Concepts (KC), Naïve Ideas (NI), and 

Threshold Concepts (TC) that have been reported in research on evolution learning. We 

then used mixed-effects multiple ordinal logistic regressions and multiple logistic 

regressions to assess whether the mode of representation (model vs narrative) affected 

the probability of finding evolutionary concepts in student responses. Additionally, we 

assessed whether students similarly represented concepts across all their responses, 
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and if their prior academic performance was associated with consistency in the content 

of their responses.  

 

We found that mode influenced the content of responses in various ways. Students’ 

narratives were more likely to include the KCs Limited Resources and Competition (p < 

0.001), and Differential Survival and Reproduction (p < 0.01), and the TC Randomness 

(p < 0.001), but were also more likely to contain NIs (Teleological ideas, p < 0.001). 

Students’ models, however, were more likely to include the TC Probability (p < 0.001) 

and the KC Variation (p = 0.69). Other KCs, such as Heritability, were elicited no more 

frequently in narratives or models. We did not find any evidence to support the claim 

that mode of response influenced the consistency with which ideas were included in 

students’ responses, however there was some association detected between prior 

achievement and consistency in the ideas included.  

 

Our findings suggest that mode of response can influence the ideas elicited from 

students and in turn bias our interpretation of students’ understanding of evolution by 

natural selection. Incorporating multiple modes of assessment has potential to generate 

a more holistic view of students’ understanding and may promote greater transfer by 

requiring students to think and reason across contexts. 
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INTRODUCTION 

Representing Knowledge 

Knowledge is both internally stored and externally expressed through representations 

that organise and communicate knowledge about a particular concept (Daniel et al., 

2018). The term ‘representation’ can have multiple meanings (Brachman et al., 2004; 

Pande & Chandrasekharan, 2017). It has been used to refer to internal representations 

(Ifenthaler, 2010), external representations (Gilbert, 2004; Ifenthaler, 2008), or both 

internal and external representations (Daniel et al., 2018; Paivio, 1990). Although 

researchers and educators are most interested in students’ internal representations, 

these are not easily accessible.  We therefore use students’ external representations as 

windows into their internal representations (Daniel et al., 2018; Ifenthaler, 2008; 

Ifenthaler et al., 2011). Some researchers consider verbal representations an 

appropriate form of externalisation (Gilbert, 2004; Paivio, 1990; Tsui & Treagust, 2013) 

while others restrict their definition to ‘pictorial and graphical descriptions of phenomena’ 

(Schonborn & Anderson, 2009). In this study we will adopt a broad definition of external 

representation that includes verbal and text-based modes as well as graphical/pictorial.   

 

Students’ externalised responses to prompts give us a glimpse into their Cognitive 

Structure (CS) – an internal representation. CSs are features of long-term memory and 

act as repositories and hierarchical organisations of conceptual knowledge (Ausubel, 

1963; Dauer & Long, 2015; Shell et al., 2010). As students learn more about a concept, 

their CS changes by adding new and relevant information about that concept, 

organising and reorganising links between pieces of information, and by pruning 
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irrelevant or erroneous information and links (Ifenthaler et al., 2011; Shavelson, 1974). 

Stable and well-organised CSs can facilitate learning, whereas the opposite type of CSs 

can inhibit learning (Ausubel, 1963). Information in the CS can be stored in the form of 

verbal representations (Clariana et al., 2014), visual representations, or as both visual 

and verbal representations (Paivio, 1990). A CS that has multiple types of 

representations will offer multiple access points and could enhance retrieval (Paivio, 

1990; Schnotz & Bannert, 2003).  

 

When responding to a prompt on an assessment, students access their long-term 

memory for a relevant CS by taking cues from a prompt and using these cues as 

specific access points. Dauer & Long (2015) identified three possible types of cues that 

students might use to access their CS: (i) the context of the prompt (i.e., the scenario or 

subject matter being described in the prompt, such as evolution of an insect population 

by natural selection), (ii) the specific task required (i.e., what the students are being 

asked to do, such as construct a model or write an essay), and (iii) specific words in the 

prompt (i.e., concepts that are included in the prompt, such as gene, allele, evolution).  

 

Using these access points to their CS, students then build a relevant mental model 

(Dauer et al., 2013; Ifenthaler, 2008; Johnson-Laird, 1983). Given the same prompt, 

different people will produce different mental models based on both their existing CS 

and the cues they used to access it (Hmelo-Silver et al., 2007; Johnson-Laird, 1983). 

The mental model lives in short term memory, and unlike the CS, is ephemeral 

(Johnson-Laird, 1983; Shell et al., 2010). Additionally, the mental model is not a 
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complete representation of their CS and may not be entirely accurate in order to be 

useful to the task at hand (Johnson-Laird, 1983).  

 

This mental representation (the mental model) can now be externally expressed as a 

response to a prompt through various modes (Dauer et al., 2013; Ifenthaler, 2008). 

However, during the process of building an external representation, students will 

continue to access their CS and modify/update their mental model (Lewis-Peacock & 

Postle, 2008). Gilbert (2004) describes five main modes of external representations: 

concrete, verbal, symbolic, visual, and gestural. Paivio (1990) used a more simplistic 

differentiation – they classified external representations as being ‘language-like’ or 

‘picture-like’. In this study, we consider two modes of external representations: Narrative 

responses (‘verbal’ according to the former classification and ‘language-like’ according 

to the latter), and model-based responses (‘visual’ according to the former and ‘picture-

like’ according to the latter). 

 

Multiple Modes of Representation in Learning and Assessment 

Much research has been directed at understanding the effects of providing  multiple 

modes of representations on student learning (Ainsworth, 2006; Goldman, 2003; 

Schnotz & Bannert, 2003; Schonborn & Anderson, 2009; Someren et al., 1998; Tsui & 

Treagust, 2013). In particular, various researchers have shown that learning is 

enhanced when the same information is presented using multiple modes (Cox, 1999; 

Jaipal, 2010; Mayer, 2003; Schnotz, 2002; Schnotz & Bannert, 2003; Wu & 

Puntambekar, 2012).  By using multiple modes, students have the potential to make 
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new inferences by comparing modes (Gentner & Markman, 1997), enhance the 

robustness and flexibility of their existing CS (Ainsworth et al., 2002; Nesbit & Adesope, 

2006), and facilitate problem solving (de Jong et al., 1998). Ainsworth (2006) argues 

that using multiple modes of representation allows for integration of information which, 

in turn, leads to a deeper understanding of the concept. This deeper understanding can 

then facilitate transfer of knowledge to other unknown but relevant contexts (Ainsworth, 

2006). Chandler & Sweller (1992), however, argue that providing multiple modes might 

actually be detrimental by increasing cognitive load. This detriment can be ameliorated 

by ensuring that the modes are well-integrated, thereby reducing the cognitive load and 

enhancing the potential for learning and transfer.  

 

The ability of a person to use multiple modes of representation “to make sense of and 

communicate understanding” is called representational competence (Daniel et al., 

2018). A person who has representational competence will be able to both receive and 

convey equivalent information using different representations and/or representational 

modes (Kozma & Russell, 1997; Shafrir, 1999). Representational competence includes 

representational fluency, which is the ability to use multiple modes at the same time, 

and “to seamlessly move within and between” them (Daniel et al., 2018). 

Representational competence and fluency, i.e., being able to use, create, and 

manipulate multiple representations of the same concept, has been linked to expertise 

in the field (Ainsworth et al., 2002; Brenner et al., 1999; Kozma et al., 2000; Larkin et 

al., 1980; National Research Council [NRC], 2000; Pande & Chandrasekharan, 2017; 

Schonborn & Anderson, 2009).  
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Other studies have explored students’ choices and preferences with respect to mode of 

representation in response to specific tasks. For example, students preferred using 

tables and graphs to respond to contextualised mathematical problems, but preferred 

equations for non-contextualised problems (Keller & Hirsch, 1998). The same study also 

found that personal preferences for a particular representation influenced students’ 

choices. Çikla & Çakiroğlu (2006) similarly reported that while some students chose the 

same preferred mode of representation in response to all prompts, others chose modes 

depending on the context of the prompt. Negative preference for a particular mode 

(specifically, using number lines) to express fractions was reported by a majority of 

participants in a study conducted by Biber (2014). When given the option to use more 

than one mode, almost 90% of students in a study chose to use only one mode 

(Yerushalmy, 1991). Chi, Feltovich, & Glaser (1981) posit students’ choices of 

representation for a concept can tell us about the way that particular concept is encoded 

in their CSs.  

 

Existing literature, including that mentioned in this introduction, has added to our 

understanding of how students use multiple representations during learning and the 

affordances of different representations in learning and instruction. Researchers have 

also compared modes of representation provided during assessments (Ainsworth & Th 

Loizou, 2003) and discussed pros and cons of each. There is, however, a paucity of 

literature exploring the effect of representational mode used by the student on eliciting 

and assessing students’ knowledge. This gap has been noted by some researchers 

who have called for investigations into the way students interact with representations, 
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including the ways students use and develop them. For example, Daniel et al. (2018) 

posit that increasing our understanding of how students interact with different modes of 

representation will help us to move them along the continuum of novice to expert.  

Ainsworth et al. (2002) specifically proposed using pairs of representations to increase 

our understanding about how different modes can affect what and how content is 

elicited in students’ responses.  

 

Research Questions 

This study addresses the aforementioned gap in the literature by asking two questions: 

(1) How does representational mode influence the conceptual content of students’ 

responses to a prompt about evolution by natural selection? And, (2) to what extent do 

students elicit and represent equivalent knowledge across modes?  Here, we 

specifically compare two modes of representation – narratives and models – that have 

been extensively researched as ways to elicit students’ knowledge and Cognitive 

Structures (O. R. Anderson & Demetrius, 1993; Dauer & Long, 2015; K. Anders 

Ericsson & Simon, 1998; Hmelo-Silver et al., 2007; Ifenthaler et al., 2011; Koubek & 

Mountjoy, 1991; Nesbit & Adesope, 2006; Tsai & Huang, 2002). In addition to exploring 

the influence of response mode, this study builds on previous findings to further 

examine influences of prompt contextual features (e.g., organismal taxon) as factors 

predicting the nature of students’ responses to questions about evolution by natural 

selection (de Lima, 2020 p 12 and p 68). Our study therefore explores the way context – 

defined as both mode of response and prompt contextual features – influences the 

ideas elicited and represented in students’ responses. Although we will classify specific 
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concepts as ‘key’ or ‘naïve’, our goal is not to characterize correctness or quantify 

students’ knowledge about evolution, but rather to describe the conceptual content of 

students’ constructed representations. We assume that both narratives and models are 

reflections of a student’s mental model and are therefore incomplete approximations of 

their CS (Daniel et al., 2018; Dauer et al., 2013). 

 

METHODS 

Setting and Participants 

This study was conducted at a large, public university in the Midwest with highest 

research activity (The Carnegie Classification of Institutions of Higher Education, n.d.). 

Data for these analyses came from student responses in two sections of a large 

introductory biology course for majors (n = 384) that focused on content domains of 

genetics, evolution, and ecology. The course is second in a 2-course sequence required 

for life science majors; the first focused on cell and molecular biology. The course is 

designed for sophomores, but also has a high proportion of juniors (34%) and some 

freshman (3%) and seniors (8%). Data were collected from two different semesters (n = 

190 and 194) and the two sections had different instructors. Both instructors use model-

based instruction and students got practice in constructing and revising models based 

on feedback. 
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Assessment Design 

We used a previously developed ‘Human/Cheetah Assessment’ (HCA) described in in 

(de Lima, 2020, p 12), which was developed based on the ACORNS instrument 

(Assessing COntextual Reasoning about Natural Selection; Nehm, Beggrow, Opfer, & 

Ha, 2012). ACORNS items were developed to elicit students’ reasoning about evolution 

by natural selection using multiple contexts and have been shown to give valid and 

reliable insight into student thinking. HCA items follow the same structure as ACORNS 

items, but were designed to more narrowly explore the role of context.  In this case, 

context varied as taxon of organism (humans vs non-human animals) and trait type 

(functional vs structural morphological traits). 

 

For this study, students responded to two prompts which differed only in the taxon 

referenced (Humans vs Cheetahs). The following is an example of two of the prompts in 

the HCA. For each prompt, students were asked to construct their responses using two 

modes of representation (model and narrative) for a total of 4 responses per student 

(Table 3.1). In both sections, the HCA was administered toward the end of the semester 

during class as part of routine in-class assessment. Students received participation 

points on a scale of 1-3 based on perceived effort. 
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Table 3.1. Example Human/Cheetah Assessment prompts. Pairs of prompts were constructed to 
examine the effect of taxon (human vs non-human animal) and mode (model vs narrative) on students’ 
explanations of evolution by natural selection. 

Human Prompt Cheetah Prompt 

1. Modern humans have enlarged 
heels. How would biologists explain 
how a species of humans with 
enlarged heels evolved from an 
ancestral human species without 
enlarged heels? 
 
1a. Construct a model that answers 

the question. 
1b. Construct a short essay that 

answers the question. 

2. A species of cheetah has long leg 
bones. How would biologists explain 
how a species of cheetah with long 
leg bones evolved from an ancestral 
cheetah species without long leg 
bones? 
 
2a. Construct a model that answers 

the question. 
2b. Construct a short essay that 

answers the question. 

 

We tested for potential effects of prompt order (Federer et al., 2015; Schuman & 

Presser, 1996) by having multiple versions of the assessment (i.e., ‘forms’). Forms 

differed in the order of the taxon (Human or Cheetah) or mode (model or essay) 

presented to students. Order of mode was kept the same in forms testing the effect of 

taxon order; taxon order was kept the same in forms testing the effect of mode order. 

 

Data Processing 

Selecting Data 

Of a total of 384 students in the two class sections, 213 students attempted all four 

tasks (i.e., constructed one model and wrote one narrative for each of the two taxa) and 

were included in analyses. To ensure that the sub-population included in the analysis 

was representative of the entire population, we used a multiple logistic regression to 

assess how well demographic variables (Gender, Ethnicity, First Generation Learner, 
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Rank) and prior academic performance (GPA at the start of the semester) predicted 

whether students were included (Table S3.1). The sub-population included in the 

analysis was very similar to the sub-population excluded for most of the variables (Table 

3.2). However, the sub-population excluded from the analysis had a lower mean GPA (p 

< 0.05), though the difference was driven by a few students with extremely low GPA and 

was marginal in terms of effect size. 

 

Table 3.2. Demographic characteristics and prior academic achievement of the two student sub-
populations (included and excluded from the study), and the total student population. STEM 
credits are the number of STEM credits completed at the beginning of the semester. Start GPA is the 
cumulative GPA of the students (based on a 4-point system) at the beginning of the semester. 

 Students 
included in the 

analysis 

Students 
excluded from 
the analysis 

Students in the 
course 

Gender  
(% Female) 

60.1% 63.7% 61.7% 

Ethnicity  
(% white non-Hispanic) 

81.6% 68.4% 75.7% 

First Generation Learner  
(%) 

24.8% 28% 26.3% 

Class Rank  
(% Sophomore/Junior) 

54%/33% 52%/33% 53%/33% 

STEM credits  
(mean) 

46.29 48.29 47.15 

Start GPA  
(mean) 

3.3 3.2 3.3 
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Coding Responses 

We developed a set of coding rubrics to assess and compare the conceptual content of 

students’ responses related to their understanding of evolution by natural selection.  As 

a guiding framework, we used 6 Key Concepts (KCs: Variation, Heritability, 

Competition, Limited Resources, Differential Survival, and Non-adaptive) and 3 Naïve 

Ideas (NIs: Adapt, Need, and Use/Disuse) described by Moharreri, Ha, & Nehm (2014). 

We coded responses in 2 phases: Emergent coding and Condensed coding. 

 

Phase 1: Emergent Coding 

We developed an emergent coding rubric using qualitative content analysis (Schreier, 

2014) to capture qualitative attributes of students’ responses related to their knowledge 

about natural selection. Table 3.3 shows the categories and guiding questions we used 

to unpack the content of responses and to develop codes. 

 

Table 3.3. Categories and questions used in the process of qualitative content analysis to build 
the emergent coding rubric. Key Concepts (KCs) related to students’ understanding of evolution by 
natural selection informed our development of rubric categories.  Naïve ideas (NIs) are included in our 
approach as they are applied to other categories. 

Category Questions 

Variation 

• Is Variation pre-existing or caused? 

• What is the cause of the Variation? 

• What is the level at which the Variation occurs? 

• What are the consequences of the Variation 

• Other ideas related to Variation? 
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Table 3.3 (cont’d) 

Differential Survival 
and Reproduction 

• Is there a link between the trait and survival of the 
organism/population? 

• Is there a link between the trait and reproduction of the 
organism/population? 

• Does selection act on the trait? 

 

Limited Resources 
and Competition 

• Does the trait influence competition? 

• Does the trait lead to differential access to 
food/resources? 

• Does the trait lead to differential interactions with 
predators/prey? 

• Does the trait offer any additional benefits (e.g. 
abilities)? 

 

Heritability 

• What is the unit of inheritance? 

• Who are the inheritors? 

• What is the mechanism of inheritance? 

• Does the response refer to differential probabilities with 
respect to inheritance? 

• Any other ideas with respect to inheritance? 

 

Holistic 

• Does the response have an accurate explanation for 
the origin of variation, including the mechanism and 
the level? 

• Other ideas not captured in the previous categories? 
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A subset of responses (n = 94) was used to develop the emergent coding rubric. To 

ensure a representative sample of student responses across achievement levels, we 

randomly selected responses across tertile bins based on GPA at the start of class. We 

also ensured that the responses equally represented both taxa. Two independent raters 

reviewed 10 responses and assigned tags to specific conceptual ideas reflective of 

categories described in Table 3.3. The two coders then met and discussed each tag 

and the relevant information it encoded. After reaching consensus, relevant tags 

became codes. Iterative bouts of independent coding and discussion continued until no 

new codes emerged and an acceptable IRR had been achieved (> 75% agreement and 

> 0.7 for Cohens Kappa; Table 3.4). 

 

Table 3.4. Inter-Rater Reliability values during the last round of iterative independent coding by 
two raters indicate achievement of an acceptable IRR. The table gives the range of IRR values for the 
whole category (each category had multiple codes), as well as the mean IRR for the whole category. * 
Cohens K is not meaningful when the data is highly skewed. 

Category 
% Agreement Cohens K 

Range Mean Range Mean 

Variation 81.25 - 100 95.39 0.38* - 1 0.81 

Differential Survival and 
Reproduction 81.25 - 100 95.71 0.33* - 1 0.82 

Limited Resources and 
Competition 90.32 - 100 97.02 0.61 - 1 0.93 

Heritability 75 - 100 92.14 0.30* - 1 0.74 

Holistic 75 - 100 95.71 0.45* - 1 0.89 
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The final codebook for the emergent phase includes 59 codes in 5 categories (Tables 

S3.2 – S3.6). Responses were coded for presence (1) or absence (0) of each code. 

Two raters used the codebook to code 852 responses where a ‘response’ represents a 

unique combination of taxon and mode. Only students who attempted all 4 tasks (one 

model and one narrative for each of the two taxa) were included in analyses (n = 213 

students). Data obtained from the emergent phase were then analysed in the 

condensed coding phase. 

 

Phase 2: Condensed Coding 

In this phase, we developed a rubric to quantify the scientific plausibility of students’ 

ideas. Each of the four KCs (Variation, Differential Survival and Reproduction, Limited 

Resources and Competition, and Heritability) was ranked on a scale from scientifically 

implausible/inaccurate to scientifically plausible/accurate. The number of levels varies 

among KCs and is based on the variation we observed in students’ responses (Table 

3.5). 

 

Logic Statements:  

To bridge the emergent coding rubric (59 distinct presence/absence codes) and the 

condensed coding rubric (levels of scientific plausibility), we developed a series of logic 

statements that used the codes to bin students into levels of scientific plausibility for 

each of the KCs. Similar logic statements were also developed to determine the 

presence/absence of the 3 NIs (Need, Use, Adapt) and to assess the presence of 

Threshold Concepts (TCs) related to evolution (Göransson et al., 2020). For example, 
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we used logic statements to determine the presence/absence of ideas related to 

Probability, Randomness, and Level of Biological Organisation (e.g., Genetic, 

Organismal, and Population). 
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Table 3.5. Condensed coding rubric with examples of student model and narrative responses. 

Category Levels Description Example 

Variation 

Absent No evidence of Variation 
 

The phenotype traits expressed by long leg boned cheetahs 
shows evolution. The ancestors without long leg bones need 
to adapt to their environment and so the offspring of the 
ancestors evolved to longer legs. 
 

 

Level 1 

Criteria: 
Response includes variation 
at the genotypic or 
phenotypic level. 
 
Evidence: 
• Reference to variation in 

traits 
• Reference to variation in 

genes 
• Reference to variation in 

the organisms 
 

The switch from slow cheetahs to fast cheetahs took many 
thousands of years. The switch would of began by a 
mutation. Then members of the population would select 
sexually for that mutation. Eventually the entire population 
would be fast. 
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Table 3.5. (Cont’d)   

Variation 

Level 2 

Criteria: 
• Variation originates 

through a mutation/ 
change. 

• This mutation/change 
originates at the genetic 
level  

• Mutation/change causes 
phenotypic variation or 
genotypic variation 

Biologists would argue that long leg cheetahs evolved 
through selection. A variation in cheetah genetic code may 
have originally resulted in long legs. This variation may have 
proved beneficial to the species because longer legs helps 
them run faster. As a result, more long leg cheetahs are born 
because it is more fit to survive. 

Level 3 

Criteria: 
• Mutation leads to the 

formation of a genetic 
entity (that can be 
inherited) 

• The new genetic entities 
lead to phenotypic 
variation 

Ancestral cheetahs had short lef bones. A mutation occurs to 
bring about an allele that causes the long leg bone 
phenotype. These cheetahs had a higher fitness than their 
short legged counterparts. Over time, short legged cheetas 
were removed from the gene pool by natural selection. 
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Table 3.5. (Cont’d)   

Differential 
Survival and 
Reproduction 

Absent No evidence of differential 
survival and/or reproduction 

The phenotype traits expressed by long leg boned cheetahs 
shows evolution. The ancestors without long leg bones need 
to adapt to their environment and so the offspring of the 
ancestors evolved to longer legs. 

Level 1 

Criteria: 
Response indicates trait 
leads to some sort of benefit 
 
Evidence: 
• Differential ability to 

inhabit the environment 
• Possibility of selection 

pressure 
 

A mutation that was once present allowed for some 
individual cheetahs to run faster than others. They were 
better fit for the environment than most others and were able 
to survive the best. This trait was then inherited by the 
offspring and passed down as this was a favored 
characteristic that benefitted the cheetahs. 
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Table 3.5. (Cont’d)   

Differential 
Survival and 
Reproduction 

Level 2 

Criteria: 
Response identifies what 
benefit is afforded by the trait 
(with respect to survival and 
reproduction) 
 
Evidence: 
• Response indicates that 

the trait leads to 
differential survival and/or 
reproduction either for the 
animal and/or for their 
progeny 

• Correctly use and 
unpacking of terminology 
(e.g. fitness, selection) 

A random mutation gives an individual the ability to function 
on two legs. This makes getting food easier, giving them a 
higher fitness. They pass this trait on to their offspring who 
will have an advantage. This will allow them to better survive 
and reproduce causing the frequency of the trait in the 
population. 

 

 

 

 

 

 



181 
 

Table 3.5. (Cont’d)   

Limited 
Resources 
and 
Competition 

Absent 
No evidence of Competition 
and Limited Resources 
 

The phenotype traits expressed by long leg boned cheetahs 
shows evolution. The ancestors without long leg bones need 
to adapt to their environment and so the offspring of the 
ancestors evolved to longer legs. 

Level 1 

Criteria: 
Responses refer to ideas with 
respect to Competition and 
Limited Resources. 
 
Evidence: 
• Differential access to food 
• Differential access to 

other resources 
• Differential interactions 

with predators/prey 

A mutation caused long leg bones. This made it so the 
cheetahs could run faster and catch all the prey. They 
outcompeted the competition. 
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Table 3.5. (Cont’d)   

Heritability 

Absent No evidence of Heritability 
 

The phenotype traits expressed by long leg boned cheetahs 
shows evolution. The ancestors without long leg bones need 
to adapt to their environment and so the offspring of the 
ancestors evolved to longer legs. 

Level 1 

Criteria: 
Response indicates transfer 
of something from parent to 
offspring, or across 
generations 
 
Evidence: 
• Reference to inheritance 

of traits or mutations 
 

Cheetahs with the ability to run fast evolved because they 
were more fit than the slow cheetahs. Their speed allowed 
them to catch prey and survive longer, allowing them to 
reproduce. The slow cheetahs couldn't catch food and 
eventually starved to death. The fast cheetahs passed along 
their speed trait to their offspring. 

 



183 
 

Table 3.5. (Cont’d)   

Heritability Level 2 

Criteria: 
Response indicates transfer 
of information or material at 
the genetic level from parent 
to offspring, or across 
generations 
 
Evidence: 
• Reference to inheritance 

of alleles or genes 
 

Cheetahs leg size represents the theory of selection. They 
have evolved from short legs to long legs. In the past, there 
must have been a mutation that occurred allwoing a cheetah 
to have longer legs. With longer legs, that cheetah can run 
faster to his prey and therefor have a better chance of 
survival and to pass down his long legged alleles rather than 
that short legged cheetah. 

Naïve Ideas Need 

Responses demonstrate 
teleological thinking. 
(Teleological ideas were 
mostly associated with 
variation and/or heritability)  

Humans began to walk upright rather than being hunch-
backed due to environmental influences of being and looking 
civilized, and having to do activities that required them to 
model good posture. 



184 
 

Table 3.5. (Cont’d) 

Naïve Ideas 

Use 
Responses that have 
Lamarckian ideas about 
evolution.   

Humans began walking upright which caused our heels to 
get bigger. 

Adapt 

Responses that referenced 
adaptation happening in the 
lifetime of an organism. 
(These beneficial adaptations 
could then be passed on to 
offspring) 

Biologist's first explanation would be that a random mutation 
occurred within one of the ancestral cheetah that caused the 
long leg bones.  This could have been enabled the cheetah 
to be better able to adapt in the environment.  As the species 
that the cheetahs were hunting became faster and faster, the 
cheetah needed a way to select for a trait that also makes 
them faster in order to better adapt in their environment.  The 
long bones were selected for and whoever possessed the 
alleles for it was more able to make & produce offspirng.  
Evolution occurred when the frequency of the allele 
increased. 
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Table 3.5. (Cont’d) 

Threshold 
Concepts 

Randomness Responses specifically 
referred to randomness.  

A random mutation occurred giving a cheetah long leg 
bones.  This trait made it easier for the cheetah to survive 
and reproduce.  Since this trait was advantagous to the 
cheetah's survival and reproduction, the trait was passed on. 

 

Probability 

Responses included some 
reference to probability in the 
content. This could be related 
to the probability of survival, 
reproduction, access to 
resources etc. 

Cheetah's overtime would evolve long leg bones because 
this will increase the cheetah's stride length. An increased 
stride length leads to increased ability to successfully hunt. 
Better hunters are more likely to survive and more likely to 
pas on their genes. 
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Table 3.5. (Cont’d) 

Threshold 
Concepts 

Level of 
Biological 
Organisation 

Genetic 

Responses 
referenced 
genetic level 
entities. E.g. 
DNA, genes, 
alleles etc. 

This trait started with genetic variation. As time went on, 
humans with the ability to walk upright wre more fit and so 
had more successful offspring to pass on this genetic 
information. This resulted in a growing population of upright 
humans and shirinking population of non- upright humans. 

Organismal 

Responses 
referenced 
organismal level 
entities. E.g.  
behavioural and 
structural traits, 
and organisms. 

The switch from slow cheetahs to fast cheetahs took many 
thousands of years. The switch would of began by a 
mutation. Then members of the population would select 
sexually for that mutation. Eventually the entire population 
would be fast. 
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Table 3.5. (Cont’d) 

Threshold 
Concepts 

Level of 
Biological 
Organisation 

Population 

Responses 
referenced 
population level 
entities. E.g.  
reference to 
communities, 
the entire 
population, 
future 
generations. 

The ancestral species had some sort of mutation (genetic 
variation, crossing over, etc.) that was passed onto the next 
generations. This mutation caused some of the offspring to 
have enlarged heels. These enlarged heels held some sort 
of survival value and was therefore a trait passed on to 
future generations. This is a case for evolution. 
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Data Analysis 

A total of 852 student responses were included in analyses (n=213 students; 4 

responses per student). Each student provided one narrative and one model-based 

response to each of two prompts that differed in taxon of organism (Human or 

Cheetah). We conducted analyses to test two related research questions: 

 

1. What is the effect of the representational mode on the content of student responses?  

We assessed whether the mode of representation (model vs narrative) affected the 

probability of finding KCs, NIs, and TCs in student responses. Prior studies that have 

used variations of the HCA prompt have shown that ‘taxon’ as a contextual feature of 

prompts affects the content of student responses (de Lima, 2020, p 12 and p 68; 

Göransson et al., 2020; Nehm & Ha, 2011). We therefore also assessed the influence of 

‘taxon’ in this study, as well as its interaction with mode of representation.  

 

We used mixed-effects multiple ordinal logistic regressions and multiple logistic 

regressions to test our questions. We use ordinal models because some of the KCs can 

exist at different levels. We verified results by also using non-ordinal logistic models 

comparing pairs of successive levels. Results are presented as odds ratios and model-

predicted conditional probabilities. All models included random intercepts to account for 

student-level variation in the data. 
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2. Are students’ ideas represented consistently across assessments that vary in mode 

and taxon?  

We assessed whether students similarly represented KCs, NIs, and TCs across their 4 

responses explaining evolution by natural selection. Additionally, we assessed 

differences between groups of individuals (‘subpopulations’) who varied in their 

consistency. To do this, we defined a set of subpopulations based on patterns of 

presence and absence of KCs, NIs, and TCs in their 4 responses (Narrative Human, 

Narrative Cheetah, Model Human, and Model Cheetah). We then compared these 

subpopulations to see whether they differed in their prior academic performance 

(measured by incoming GPA).  

 

Software 

All analyses were done using the R statistical environment v 3.6.3 (R Core Team, 

2020). We used the dplyr (Wickham, François, Henry, & Müller, 2020) and tidyr 

(Wickham & Henry, 2020) packages for data processing, lme4 (Bates et al., 2015) for 

mixed effects logistic regressions, ordinal (Christensen, 2019) for mixed effects ordinal 

logistic regressions, effects (Fox, 2003) for calculating and plotting model output, 

ggplot2 (Wickham, 2016) for plotting, and sjPlot (Lüdecke, 2020) for generating tables. 

 

RESULTS 

1. Effect of Context (Mode and Taxa) on Content and Level of Student Responses.  

Our data showed that almost all the students included Key Concepts (KCs) in their 

responses, most included Threshold Concepts (TCs), and a few included Naïve Ideas 
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(NIs) (Fig. 3.1). While KCs and NIs were represented almost equally across mode of 

representation, narrative responses elicited more NIs than model-based responses. 

Figure 3.1. The number of students who included KCs (at least 1), NIs (at least 1), and TCs 
(Probability, or Randomness, or at least 2 Levels of Biological Organisation) in their narrative and 
model-based responses. These are not exclusive categories. 

 

The results of our ordinal logistic regressions show that the mode of representation was 

a predictor for the presence of the KCs Limited Resources and Competition (p < 0.001), 

and Differential Survival and Reproduction (p < 0.01) (Table 3.6, Figs. 3.2b and 3.2c). 

Students were twice as likely to include ideas about Limited Resources and Competition 

in their narrative responses as compared to their model-based responses with minor 

differences between taxa (Fig. 3.2b). In the case of Differential Survival and 

Reproduction, the logistic regressions and ordinal logistic regressions differ in whether 

the mode is statistically significant (Tables 3.6, 3.7). The general pattern, however, is 

consistent: students are more likely to include Differential Survival and Reproduction in 

their narratives than in their models. In contrast, the odds of students including ideas 
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about Variation were higher in their model-based responses, although this difference 

was not statistically significant (Table 3.6). 

 

For Heritability, the mode did not affect the probability of responses being in the higher 

or lower level of scientific plausibility for Human responses (Table 3.7, Fig. 3.2d). 

However, for Cheetah responses, narratives were 1.5 times more likely to be more 

scientifically plausible as compared to their model-based responses (i.e., students were 

more likely to include references to genetic material being inherited in their narrative 

responses than in their model-based responses). We did not find any significant 

interactions between the mode of representation and the prompt taxon for any of the 

other KCs. 

 

Table 3.6. Odds ratios of ordinal logistic regression analysis for Key Concepts. Bolded values are 
statistically significant (*** p < 0.001; ** p < 0.01; * p < 0.05; λ p < 0.1). Lower and Upper Confidence 
intervals are provided in the brackets. 

 Mode 
[Narrative] 

Taxon 
[Human] 

Interaction 
[Taxa/mode] 

Variation 0.69 
[0.42, 1.12] 

0.58* 
[0.35, 0.94] 

1.11 
[0.56, 2.20] 

Limited Resources 
and Competition 

2.84*** 
[1.63, 5.05] 

0.21*** 
[0.11, 0.39] 

1.01 
[0.44, 2.28] 

Differential 
Survival and 
Reproduction 

2.16** 
[1.34, 3.48] 

0.42*** 
[0.27, 0.66] 

0.82 
[0.42, 1.55] 

Heritability 1.09 
[0.7, 1.71] 

0.75 
[0.48, 1.18] 

1.09 
[0.58, 2.07] 
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Similar to previous studies (de Lima, 2020, p 12 and p 68; Göransson et al., 2020; 

Nehm & Ha, 2011) we saw that item-feature context (i.e., taxon) influenced the 

presence/absence of KCs in responses (Table 3.6, Figs. 3.2a, 3.2b, and 3.2c). Students 

were more likely to include Limited Resources and Competition (~3 times as likely, p < 

0.001), when responding to prompts about Cheetahs as compared to Humans (Table 

3.7, Fig. 3.2b). They were also slightly more likely (~3% more, p < 0.001) to include 

Variation in their Cheetah responses, but since Variation was present in almost every 

response, this difference is not very meaningful (Table 3.7, Fig. 3.2a). Students also 

include ideas about Differential Survival and Reproduction to a greater extent in their 

Cheetah responses, and the difference between the taxa is higher in models (~3.5 times 

as likely) than in narratives (~1.7 times as likely) (p < 0.05, Table 3.7, Fig. 3.2c). When 

we analysed different levels of scientific plausibility, we saw that the significant 

differences were in the Level 1 vs Absent comparison (Table 3.7). We did not see 

significant differences when comparing higher levels. 
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Table 3.7. Odds ratios of logistic regression analysis for Key Concepts. Bolded values are 
statistically significant (*** p < 0.001; ** p<0.01; * p<0.05; λ p<0.1). Lower and Upper Confidence intervals 
are provided in the brackets. 

  Mode 
[Narrative] 

Taxon 
[Human] 

Interaction 
Taxa/mode 

Variation 

Level 1 
v 

Absent 

0.96 
[0.33, 2.78] 

0.16*** 
[0.05, 0.39] 

1.43 
[0.38, 5.34] 

Level 2 
v 

Level 1 

0.99 
[0.32, 2.99] 

1.83 
[0.66, 5.29] 

1.04 
[0.24, 4.47] 

Level 3 
V 

Level 2 

1.41 
[0.32, 7.67] 

0.56 
[0.13, 2.11] 

0.57 
[0.06, 4.05] 

Limited 
Resources and 
Competition 

Level 1 
V 

Absent 

2.84*** 
[1.63, 5.05] 

0.21*** 
[0.11, 0.39] 

1.01 
[0.44, 2.28] 

Differential 
Survival and 
Reproduction 

Level 1 
V 

Absent 

2.37 
[0.64, 9.62] 

0.26* 
[0.06, 0.83] 

2.04 
[0.36, 1.21] 

Level 2 
V 

L 1 

1.34 
[0.60, 3.04] 

0.77 
[0.33, 1.79] 

0.41 
[0.12, 1.26] 

Heritability 

Level 1 
V 

Absent 

0.63 
[0.34, 1.16] 

0.63 
[0.34, 1.14] 

1.95 
[0.82, 4.65] 

Level 2 
v 

Level 1 

3.07* 
[1.20, 8.37] 

1.64 
[0.62, 4.47] 

0.29 λ 
[0.07, 1.10] 
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Figure 3.2. Effect of mode of representation (Model/Narrative) and taxa (Cheetah/Human) on the 
probability of Key Concepts - (a) Variation, (b) Differential Survival and Reproduction, (c) 
Heritability, and (d) Limited Resources and Competition - occurring in student responses based 
on presence and levels of scientific plausibility. Note that in this and all subsequent figures, the 
confidence intervals appear very wide, but inference based on visualisation of the error bars is not very 
reliable. This is especially true because of the presence of additional terms in the model (student identity 
as random intercept). Refer to odds ratio tables for additional information relevant to statistical inference. 

 

As a whole, students were far less likely to include Naïve Ideas in their responses as 

compared to the Key Concepts (Figs. 3.2 and 3.3). However, when they did include NIs, 

they were much more likely to include them in their narrative responses as compared to 

their model-based responses. Most of this was driven by the NI Need (Table 3.8, Fig. 

3.3). Students’ included Need ~8.5 times more in Cheetah narratives as compared to 

Cheetah models, and ~4.5 times more in Human narratives as compared to Human 

models (p < 0.001). In general, they also tended to use Need more when they were 

responding to prompts about Humans as compared to prompts about Cheetahs. Need 

was ~3 times more frequent in Human models as compared to Cheetah models and 

a b 

c d 



195 
 

~1.3 times more in Human narratives as compared to Cheetah narratives (p < 0.05). 

The frequency of occurrence for the other two NIs – Use and Adapt – was very low, and 

we did not find significant differences in their occurrence. We did not find any 

interactions between the mode of representation and the prompt taxon affecting the 

predicted probabilities for Naïve Ideas. 

 

Table 3.8. Odds ratios of logistic regression analysis for Naïve Ideas. Bolded values are statistically 
significant (*** p < 0.001; ** p < 0.01; * p < 0.05; λ p < 0.1). Lower and Upper Confidence intervals are 
provided in the brackets. 

 Mode 
[Narrative] 

Taxon 
[Human] 

Interaction 
Taxa/mode 

Need 9.74*** 
[3.17, 38.7] 

4.02* 
[1.22, 16.3] 

0.60 
[0.12, 2.37] 

Use 3.03 
[0.38, 61.4] 

1.00 
[0.03, 25.6] 

1.34 
[0.04, 45.01] 

Adapt 2.23 
[0.38, 17.88] 

3.65 
[0.73, 27.9] 

0.75 
[0.07, 6.21] 

 

Figure 3.3. Effect of mode of representation (Model/Narrative) and taxa (Cheetah/Human) on the 
probability of Naïve Ideas occurring in student responses. 
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Our results indicate that mode of response highly influences the presence of Threshold 

Concepts in students’ responses (Table 3.9, Fig. 3.4). Ideas relating to Probability were 

more than 3 times as likely to be present in their model-based responses as compared 

to their narratives (Fig. 3.4a). In contrast, students were more likely to talk about 

Randomness in their narrative responses (>4.5 times as likely; Fig. 3.4b). Narrative 

responses were also >1.3 times as likely to refer to entities at all three Levels of 

Biological Organisation (Genetic, Organismal, and Population), whereas model-based 

responses were ~4% more likely to refer to only two Levels of Biological Organisation - 

either Genetic and Organismal or Organismal and Population (Figs.3. 4c and 3.4d). 

Prompt taxon and interactions between mode of representation and prompt taxon did 

not affect predicted probabilities for TCs 

 

Table 3.9. Odds ratios of logistic regression analysis for Threshold Concepts. Bolded values are 
statistically significant (*** p < 0.001; ** p < 0.01; * p < 0.05; λ p < 0.1). Lower and Upper Confidence 
intervals are provided in the brackets. 

 Mode 
[Narrative] 

Taxon 
[Human] 

Interaction 
Taxa/mode 

Probability 0.30** 
[0.14, 0.59] 

0.71 
[0.38, 1.31] 

0.68 
[0.23, 1.91] 

Randomness 6.93*** 
[2.95, 17.3] 

1.73 
[0.74, 4.10] 

0.67 
[0.23, 2.06] 

Any 2 Levels of 
Biological Organisation 

0.42* 
[0.21, 0.82] 

1.07 
[0.51, 2.24] 

1.70 
[0.64, 4.60] 

All 3 Levels of 
Biological Organisation 

2.37* 
[1.21, 4.78] 

0.93 
[0.44, 1.94] 

0.59 
[0.21, 1.57] 
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Figure 3.4. Effect of mode of representation (Model/Narrative) and taxa (Cheetah/Human) on the 
probability of Threshold Concepts - (a) Probability, (b) Randomness, (c) 2 Levels of Biological 
Organisation, and (d) 3 Levels of Biological Organisation - occurring in student responses. 
 

2. Consistency of Key Concepts (KCs), Naïve Ideas (NIs) and Threshold Concepts (TCs) 

in Students’ Responses 

We defined a set of subpopulations based on patterns of presence and absence of KCs, 

NIs, and TCs in students’ 4 responses (Narrative Human, Narrative Cheetah, Model 

Human, and Model Cheetah).  Students were ‘consistent’ if they expressed an idea (by 

virtue of its presence) consistently in all four responses.  Students could also be 

‘consistent within taxon’ if an idea was expressed for only one of the taxa, but included 

across modes, or ‘consistent within mode’ if an idea was expressed only in model-

based or narrative responses regardless of taxon.  Because subpopulations were 

significantly skewed in size (Table 3.10) we did not try to make any statistical inferences 

but looked at trends in the data. 

a b 

c d 
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The most common and consistent KC found in student responses was Variation; 80% 

(n=169) of students included Variation in all their responses and only 3 students did not 

include it in any of their responses. Similarly, almost 50% of students (n=104) 

consistently included ideas about Differential Survival and Reproduction in their 

responses. In contrast, <16% of students were consistent in including ideas about 

Limited Resources and Competition (n=31) and Heritability (n=34) in all their responses. 

Most students (73%, n=155) did not include NIs in their responses and only 2 students 

had an NI in all 4 of their responses. Almost a quarter of the students (n=49) had at 

least one TC in all 4 responses.  

 

We did not find evidence that any of the KCs, NIs, or TCs that we coded were exclusive 

to any mode of representation. Among the students who were consistent only within 

mode or within taxon, mode elicited a greater degree of consistency for TCs, NIs, and 

KCs (except for Limited Resources and Competition).   

 

In general, high-achieving students (highest mean GPA) were most consistent in 

including KCs and not including NIs in their responses. Students with lower mean GPAs 

tended to include NIs and were more inconsistent with including KCs in their responses. 
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Table 3.10. Comparison of the number and GPA (mean ± Standard Error) of students who 
expressed an idea consistently in all four responses, or responses to the same taxa, or in 
responses using the same mode. Since the n for Naïve Ideas and Threshold Concepts was low, we 
aggregated the data. Responses with any NI were counted as having an NI, and responses that had 
either Probability, Randomness, or at least two Levels of Biological Organisation were counted as having 
a TC. We used incoming GPA to calculate the mean. Students whose responses had a concept in all 4 
responses were counted in the ‘Consistently included the concept’ group’. Students who used the 
concept only in both the responses in the same mode or for the same taxa were counted in the 
‘Consistent within mode’ and ‘Consistent within taxa’ groups. Students who were inconsistent in their 
usage of concepts (had it in 1 or 3 of their responses) are not counted in this table. Within each concept, 
the groups are exclusive.   

Concept 

 Consistently 
included the 

concept 
(concept 

present in all 4 
responses) 

Consistent 
within mode 

(concept 
present only in 
both taxa for 
one of the 

modes) 

Consistent 
within taxa 

(concept 
present only in 
both modes for 
one of the taxa) 

Concept 
absent from 

all 
responses 

Variation 
N 169 10 7 3 

GPA 3.44 
(± 0.03) 

2.71 
(± 0.34) 

3.03 
(± 0.30) 

2.47 
(± 0.18) 

Limited 
Resources and 
Competition 

N 31 16 22 81 

GPA 3.41 
(± 0.09) 

3.28 
(± 0.23) 

3.36 
(± 0.11) 

3.32 
(± 0.05) 

Differential 
Survival and 
Reproduction 

N 104 29 16 17 

GPA 3.44 
(± 0.05) 

3.36 
(± 0.08) 

3.38 
(± 0.13) 

3.18 
(± 0.10) 

Heritability 
N 34 34 7 78 

GPA 3.41 
(± 0.06) 

3.46 
(± 0.07) 

3.61 
(± 0.15) 

3.16 
(± 0.07) 

Naïve Ideas 
N 2 13 6 155 

GPA 3.24 
(± 0.44) 

2.95 
(± 0.14) 

3.45 
(± 0.16) 

3.41 
(± 0.04) 

Threshold 
Concepts 

N 49 55 18 37 

GPA 3.48 
(± 0.05) 

3.48 
(± 0.05) 

3.46 
(± 0.10) 

3.02 
(± 0.12) 
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DISCUSSION 

Our results indicate that the content of students’ responses is influenced by the mode of 

representation students use to convey their knowledge and reasoning.  In this section, 

we compare our findings with previous studies and offer some possible explanations for 

the patterns we see. Additionally, we will discuss the implications of our findings on 

instruction and assessment. 

 

Contextual Effects of Mode of Representation 

Our results indicate that while mode of representation did not seem to have an effect in 

eliciting Key Concepts (KCs) or Threshold Concepts (TCs) overall, mode did affect 

particular KCs, TCs, and Naïve Ideas (NIs). We posit that some differences could be 

because of the affordances of the particular mode. For example, students’ model-based 

responses were more likely to include ideas relating to Probability. This could be 

because students often use branching in their modes, and this directly affords a 

comparison between one branch leading to something that has a higher probability of 

occurring than the other branch. Similar affordances of the mode could contribute to 

responses being coded for the presence of certain KCs. The branching in the model 

inherently leads a student to think of variation in the organism/trait, which logically leads 

to representing ideas about Differential Survival and Reproduction. Additionally, arrows 

leading to successive generations implicitly indicate Heritability. We did not detect any 

differences for the presence of Variation (although the trend in the data was to show 

that students included Variation to a higher degree in their models) or Heritability based 

on mode of representation. However, this could either be because students intentionally 
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included both the KCs in their narratives and models, or because architectural 

affordances of the model allowed for the coding of the KC in their model based 

response when they had only included it in their narrative.  

 

However, such architectural affordances are not provided to the TC, Random, and the 

KC, Limited Resources and Competition. Since there is no obvious shortcut for these 

terms (such as an arrow or branch), students would have to explicitly include the term 

‘random’ or write about limited resources and competition in their model (which some 

students did do). Students’ are used to writing the phrase ‘a random mutation’ and 

therefore could have used it in their narratives as a matter of rote and not really by 

intent. Additionally, for this particular KC, the prompt (about heel/leg bones) may not 

directly trigger thoughts about limited resources – unlike, for example, a plate of 

bacteria which have a limited medium to grow on. The relative benefit of the trait with 

respect to the survival and reproduction may not be obvious.  

 

Naïve ideas – especially with respect to teleology - were overrepresented in students’ 

narrative responses. This could be because the affordances of a narrative make it is 

easier to be verbose and descriptive while models are intended to be parsimonious and 

condensed.  

 

For the Threshold Concept, Levels of Biological Organisation, we noticed an interesting 

trend in the number of levels elicited by each mode of representation. While all three 

levels (Genetic, Organismal, and Population) were found most often in students’ 
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narratives, their model-based responses tended to include two levels. We found that 

while almost all models included the Organismal level, students were split in their 

inclusion of Genetic (97 models) or Population (124 models) as their second level. As 

the prompt is directed at the organismal level, it is plausible that students started their 

models at the organismal level and then chose to either move up or down a level 

(Population vs Genetic levels). This could also be due to a limitation of the physical 

space in which they had to construct their model. Repeating the same set of prompts in 

a virtual environment could reveal whether space is a factor since this would not be a 

constraint.  

 

Another consequence of not including the Genetic level in model-based responses was 

that those particular models were then coded as Level 1 (for scientific plausibility) for 

the KC Heritability. In order to get coded as Level 2 for Heritability, the response had to 

indicate transfer of information or material at the genetic level. This could explain why 

we found that the students’ narrative responses were more likely to be at Level 2 for 

Heritability as compared to their model-based responses.   

 

Consistency in the Occurrence of KCs, NIs, and TCs 

We propose that consistency in the occurrence of concepts is indicative of a stable 

Cognitive Structure. We think of consistency in terms of the same concept being 

expressed at the same level in all 4 responses. Students with a fragile or piecemeal 

understanding of a phenomenon (in this case evolution by natural selection) do not 

have a stable CS, are unable to build a robust mental model of the phenomenon, and 
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this is reflected in the inconsistency with which they include concepts in their 

representations.  

 

In this study, we saw that Variation is the most stable KC, with most students including it 

in all 4 responses. This could be because the course they were taking was designed to 

emphasise thinking about variation with respect to evolution, especially in terms of how 

variation arises and is maintained in populations. However, we also saw that an 

increase in the level (plausibility) at which the response was coded does not translate to 

an increase in consistency of KCs. For both Variation and Heritability, consistency is 

highest at the lowest level of plausibility. However, it should be noted that Variation and 

Heritability potentially interact with each other and with additional concepts, namely 

Level of Biological Organisation. We previously noted that students tended to include 

either the population or genetic level in their model-based responses, but infrequently 

included both. Those that did not include the genetic level (by choice or as a 

consequence of spatial constraints on a page) could not be classified at higher levels for 

Heritability and Variation since these explicitly require the response to refer to the 

genetic level. Therefore, allowances should be made while making inferences about the 

stability of students’ CS with respect to consistency and level of response. For example, 

we see the opposite finding for Differential Survival and Reproduction, where higher 

level responses are most consistent across modes. We think that this is because the 

threshold between Level 1 and Level 2 is not a difficult one to cross, so the higher level 

is both more prevalent and more consistent.  
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Additional clues about the robustness of the CS can be gained by the presence/ 

absence of Naïve Ideas and Threshold Concepts. Presence of NIs could indicate an 

unsophisticated understanding of evolution. This is supported by our results. Although 

NIs were present to a much greater extent in students’ narrative responses, they were 

not consistently expressed. Within the two students’ narratives, NIs were often present 

in one response or the other, but rarely in both. Additionally, presence and consistency 

of NIs corresponded with students having lower academic achievement. A study by 

Stenning, Cox, & Oberlander (1995) similarly showed that prior performance had a 

disproportionate influence on students’ performance using multiple representations. 

Higher-achieving students did better when provided with instruction using a novel mode 

of representation, while the performance of lower-achieving students decreased. In 

contrast, Dauer, Momsen, Speth, Makohon-Moore, & Long (2013) showed that given 

repeated practice and feedback, lower-performing students reduced the achievement 

gap with higher-performing students on tasks that involved creation of models that were 

similar to the models used in our study.  

 

It is to be noted that the assessments used in this study were administered at the end of 

a semester of instruction on natural selection. Prior research has shown that Naïve 

Ideas are notoriously difficult to eradicate even after prolonged instruction (Bishop & 

Anderson, 1990; Bray Speth et al., 2009; Nehm & Reilly, 2007). This could explain that 

while students can generate explanations without using NIs such as Need, Use, and 

Adapt, it is at times difficult to overcome this deeply entrenched and intuitive way of 

thinking (Coley & Tanner, 2015). Additionally, it is also possible that students are using 
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these terms as shorthand or as a more colloquial way of speaking.  It is possible that in 

interview contexts, further probing might have yielded a more canonical response.  

 

As with Key Concepts, presence and consistency of Threshold Concepts could indicate 

a well-developed CS with respect to evolution. By definition, TCs indicate that a student 

has mastered a particular baseline level of a concept, and having crossed that threshold 

to a higher level of understanding, is unlikely to go back (Batzli et al., 2016; Harms & 

Fiedler, 2019; Meyer & Land, 2003). With respect to evolution, researchers have 

identified the abstract concepts of Randomness and Probability (Garvin-Doxas & 

Klymkowsky, 2008; Mead & Scott, 2010) and the ability to think at various Levels of 

Biological Organisation (Ross et al., 2010; Tibell & Harms, 2017). While we have 

discussed potential of response mode to confound our interpretation about consistency 

of TCs (specifically, Level of Biological Organisation) in student responses, we still have 

some evidence allowing us to gauge if a student is using a TC just because of a modal 

affordance or because the student has truly crossed a threshold with respect to 

evolutionary understanding. As discussed earlier, Randomness is a TC that is present 

most commonly in narratives. However, when it is present in a student’s models, it is 

also present in their narratives. Additionally, Randomness appears not to be biased by 

taxon (consistent between taxa) and therefore could indicate that consistency in the TC 

Randomness could be indicative of a more developed CS.  
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Possible Explanations 

Students’ whose responses were unaffected by representational mode and consistent in 

the ideas elicited in their responses could be said to have representational competence. 

Conversely, students whose responses were influenced by mode and therefore 

inconsistent in the assemblage of ideas conveyed in their responses could be said to be 

lacking in representational competence. However, it is important to consider a few 

caveats. Many studies have indicated that novices face significant challenges with 

respect to both learning how to use multiple modes and gaining representational 

competence (Ainsworth, 2006; Chi et al., 1981; Kozma & Russell, 1997; Petre & Green, 

1993).  

 

When presented with a novel mode of representation, novices need to understand 

multiple facets of the mode in order to effectively use it as a representation.  These 

include understanding how information is encoded and communicated in the 

representation, linking the mode with the domain that it is being used in, being able to 

identify which situations are appropriate for using it, and knowing how to leverage a 

representation to communicate knowledge using the appropriate level of abstraction 

(Ainsworth, 2006). These are challenging requirements. Research has shown that 

novices experience difficulty using new modes of representation as tools to further their 

learning (Cavallo, 1996) and struggle to select appropriate representations for given 

contexts (Kozma & Russell, 1997) (Chi et al., 1981).  In addition, novices typically fail to 

discern patterns, notice discrepancies (Dufour-Janvier et al., 1987), or perceive and 
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understand perceptual cues not made explicit in a representation (Petre & Green, 

1993). 

 

Novices also face challenges developing representational competence (K. C. Anderson 

& Leinhardt, 2002; Cooper et al., 2010; Daniel et al., 2018; Treagust et al., 2003). 

Learners find it difficult to translate between different modes of representation (Anzai, 

1991; Ferk et al., 2003; Hinton & Nakhleh, 1999; Kozma et al., 2000; Kozma & Russell, 

1997; Wilder & Brinkerhoff, 2007) which could potentially be due to an unstable CS 

(Anzai, 1991; Pande & Chandrasekharan, 2017). Meir, Perry, Herron, & Kingsolver 

(2007) showed that students had misconceptions about a mode of representation 

(evolutionary trees) despite explicit instruction. Nitz et al. (2014) measured 

representational competence before and after a unit (~15 lessons) on photosynthesis 

and found minimal gains in students’ representational competence (5%). Although 

Wilder & Brinkerhoff (2007) observed modest gains in representational competence 

after a 10-week module that involved explicit instruction about a new mode of 

representation (computer-based bimolecular visualisations), students did poorly when 

asked to translate between the new representation and one they were already familiar 

with (graphs). Other researchers have also indicated that developing representational 

competence involves a steep learning curve and requires more time and effort than can 

be fitted into a semester of instruction in one class (Kozma & Russell, 2005).  

 

Our findings are consistent with prior research on novice learners using representations 

and developing representational competence. In our study, students had been taught to 
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use and develop models during the same semester in which our assessment was 

conducted. The differences we noticed in the degree to which narratives and models 

elicited different KCs can be explained by the fact that our population consists of novice 

learners that are on the path to developing representational competence, but are not 

there yet. Additionally, the inherent complexity of biology as discipline (i.e., multi-level 

organisation of systems characterised by dynamic and emergent interactions) makes 

achieving representational competence potentially more challenging than in other STEM 

domains (Pande & Chandrasekharan, 2017).  

 

As novices, it is also likely that students in our study relied on surface features of the 

prompt as cues for accessing their CS and failed to recognize deeper conceptual 

aspects that the prompt was intended to elicit. Bennett, Gotwals, & Long (2020) showed 

that students cue into superficial contextual features of prompts and this changes the 

way they approach constructing required representations. Other researchers have 

similarly shown that novices are more likely to be influenced by surface, rather than 

deeper conceptual features of problems (Chi et al., 1981; Kozma & Russell, 1997; R. K. 

Lowe, 2003; Richard K. Lowe, 1996). These contextual influences are additionally 

influenced by the fact that students use such surface features when constructing their 

CSs in the first place (Chi et al., 1981; Larkin et al., 1980). If students are then using 

contextual cues to access whole or fragmented bits of their CSs that were encoded and 

influenced by different sets of cues, then it is not surprising that varying the contextual 

features of prompts will elicit externalised representations of students’ mental models 

that are inconsistent in the content they convey. 
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Implications for Learning and Assessment 

There is extensive literature on benefits of including multiple representations during 

instruction (Ainsworth, 2006; Ainsworth et al., 2011; Biber, 2014; Bransford & Schwartz, 

1999; Pande & Chandrasekharan, 2017; Schnotz & Bannert, 2003; Spiro & Jehng, 

1990; Tsui & Treagust, 2013). Best practice recommendations to support students’ 

learning with multiple representations include giving explicit instruction about 

representations used (both mode and content), providing sufficient scaffolding to enable 

students to connect representations across scales and domains, and iterating bouts of 

feedback with opportunities for students to revise representations based on the 

feedback provided (Anzai, 1991; Chi et al., 1981; Cooper et al., 2012; Cox, 1999; Dauer 

et al., 2013; Long et al., 2014; Mayer, 2003; Nesbit & Adesope, 2006; Schnotz, 2002; 

Wu & Puntambekar, 2012; Yerushalmy, 1991). 

 

A goal of education is to develop expertise, and one part of increasing expertise is being 

able to communicate using representations that are common to a discipline (NRC, 

2015). Practicing scientists use multiple modes of representation not only to gain 

knowledge, but also to communicate their findings to others – both peers and non-

scientists. Therefore, as part of building representational competence and disciplinary 

expertise in our students, we should not only instruct using multiple modes of 

representation but also assess their ability to communicate their knowledge in more 

than one mode. For example, in the course in which this study was conducted, students 

are expected to construct arguments, graphs, diagrams, models, and narratives that 

build on and support each other. Students must not only construct, but must interpret 
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and reason about diverse representations of the same or related concepts.  Ideally, 

allowing and encouraging students to use more than one mode to respond to a prompt 

might better enable them to communicate their thinking more effectively and support 

their development of representational competence.  

 

Using multiple modes of representation can support students in considering multiple 

perspectives (NRC, 1996) which can then enrich their responses and deepen their 

understanding. Requiring students to access their CSs in diverse ways will help build 

linkages within and among their CSs. This, in turn, will help stabilize connections and 

promote longer-term storage of content as well as subsequent retrieval (Paivio, 1990; 

Verdi & Kulhavy, 2002). From an assessment perspective, if we use the analogy that a 

representation is a window into the student’s CS, having them construct multiple 

representations for the same content will provide multiple windows into their CS, and 

therefore a more holistic idea about its content and organisation.  

 

Next Steps 

diSessa, Hammer, Sherin, & Kolpakowski (1991) explored the way students ‘invented, 

critiqued, improved, applied, and moved fluidly’ between multiple modes of 

representation, and called these abilities meta-representational competence. A logical 

step forward for this study would therefore observe and quantify meta-representational 

competence in the students completing this assessment. For example, one could have 

students compare their representations constructed for different contexts and critique 

their own work. Additionally, students could be asked to modify their representations 
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based on their own critique and asked to explain their choices.  What do they choose to 

include or delete? From which representation? And, what is the subsequent effect on 

the accuracy of the representations? Responses to such questions will provide insights 

about whether the content of a student’s representation is an affordance of the mode or 

a part of their CS, as well as reveal how stable their CS is with respect to a concept of 

interest. 
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Table S3.1. Odds ratios of multiple logistic regression for demographic analysis. Bolded are 
statistically significant (* p < 0.05). 

Predictors Odds Ratios CI p 

(Intercept) 0.25 0.04 – 1.42 0.121 

Gender 
[F] 0.89 0.58 – 1.37 0.611 

Ethnicity 
[Minority] 0.80 0.26 – 2.44 0.695 

Ethnicity 
[White (non-Hispanic)] 1.49 0.53 – 4.22 0.442 

First Generation Learner 
[yes] 0.97 0.60 – 1.57 0.895 

Start STEM credits 1.00 0.99 – 1.01 0.791 

Start GPA 1.59* 1.12 – 2.32 0.012 

Observations 377 
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Table S3.2. Emergent codebook section for Variation 

VARIATION (20 codes) 

Description Code 

Section 1: Linking statement: Cause and consequence of variation 

This set of codes captures the link between the cause and the consequence of 
variation, they only apply when there is a link established and capture the two (or 
more) components of the link. The code is written in two stages (or more). These 
codes are applied when the response specifically talks about the cause of the 
variation. And not just that variation exists. Do not worry about where the 
mutation/change is occurring. If the response is not referring to the cause of variation 
but rather just the presence of variation - look at Section 3 

  

Stage 1: Cause of the variation 

The response specifically talks about mutation being the cause of 
variation.  Mut -> 

The response talks about a change or difference occurring and 
being the cause of variation but does not mention the word 
mutation.  

Chg -> 

The response refers to variation occurring due to mating or 
reproduction.  Mate -> 

Any other cause of variation. Please specify. other-cau-var -> 

  

Stage 2: Consequence of variation 

The cause of variation leads to a genotypic change which in turn 
leads to a phenotypic change  -> GV -> PV  

A cause of variation leads to genetic variation. Code this if 
previous code does not apply -> GV 

The cause of variation leads to a phenotypic change -> PV 

This applies only when the genetic variation has no cause of its 
own - these responses will be coded in Section 3. GV -> PV 
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 Table S3.2 (Cont’d) 

Section 2: Level at which the cause of variation occurs 

Use this set of codes only if something has been captured in stage 1 of Section 1. 
These codes capture the level at which the previously coded cause of variation is 
occurring. These might be most relevant if the response mentions mutations or 
changes. 

The change/mutation is occurring at a genetic level. (DNA/gene/ 
genotype/allele). gen 

The change/mutation is occurring at the phenotypic or the trait 
level. trait 

The change/mutation is at the organismal level org 

The level of the change is not specified  level ns 

  

Section 3: Variation mentioned 

These codes apply only if variation is mentioned as something that 
already exists. And there is no cause attributed to the presence of 
variation. 

  

Genetic variation exists in the population or it is mentioned without 
linking it to a cause or consequence. GV exists 

Phenotypic variation already exists in the population or it is 
mentioned without linking it to a cause or consequence. PV exists 

  

Section 4: Other ideas 

This set of codes looks at other ideas that students might have about the causes and 
consequences of variation. More than one of these ides might occur in the same 
response.  

Mutation or genetic variation specifically referred to as a random 
event. Absence of this code indicates that the response did not 
have this word. 

Rand 

There is a difference in allele frequency. This can be a pre-existing 
condition or can be the result of mutation/evolution alle freq_var 

Evolution is directed towards the phenotype in question evo-dir 
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Table S3.2 (Cont’d) 

Variation is a consequence of activity/behaviour or an organism 
changes within its lifetime to adapt to the environment lamk 

Variation exists because it was needed or because it enabled 
some function teleo-ori_var 

Any other ideas related to the causes or consequences of 
variation. Please write the idea in addition to the code.  other-var 
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Table S3.3. Emergent codebook section for Differential Survival and Reproduction 

DIFFERENTIAL SURVIVAL AND REPRODUCTION (12 Codes) 

Description Code 

Section 1: Causal/mechanistic 

This pair of codes looks for differences in causal and mechanistic reasoning with 
respect to survival. Code only if the response talks about survival. (the difference in 
these 2 could be because of the differences in structural and functional traits) 

The trait leads to increased chances of survival. There is a direct link 
between the trait and survival surv-dir 

The trait leads to something that in turn might lead to survival. Indirect 
link between trait and survival. If this code is given, also make sure to 
look at section 3. 

surv-indir 

 

Section 2: Directionality 

This pair of codes looks at the directionality between survival and reproduction 

Differential survival (of the individual or the population) leads to 
(differential) reproduction surv->repr 

Differential reproduction (of the individual or the population) leads to 
(differential) survival (probably of the population) repr->surv 

 

Section 3: Trait leads to… 

This set of codes captures the other consequences of variation that have not been 
captured under the main codes of limited resources and completion (i.e. Differential 
abilities, differential access to food and resources, and differential interactions with 
predators/prey.) It could be all the indirect reasons for a trait leading to differential 
survival (The trait leads to the coded feature which in turn leads to survival).  

The trait leads to an increase in reproduction or an increase in the rate 
of reproduction (including changes in the number of offspring) diff repr 

The trait leads to the ability to better fit the environment - not to be 
confused with fitness in general diff envt fit 

The trait leads to increased fitness (This is when the term fitness is 
specifically mentioned) diff fit 
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Table S3.3 (Cont’d) 

Section 4: Consequences for Offspring 

This pair of codes considers the differential consequences for the offspring. This could 
be the F1 generation or any subsequent generation. Having more offspring does not 
count - it is captured under the previous section.  

The trait leads to increased survival of the offspring.  off-surv 

The trait leads to increased reproduction in the offspring off - repr 

 

Section 5: Selection 

This set of codes captures ideas related to selection acts on the trait. 

Selection acts on the trait - natural selection not specified. Also, not 
sexual selection.  sel 

Natural selection acts on the trait nat sel 

Sexual selection acts on the trait  sex sel 
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Table S3.4. Emergent codebook section for Limited Resources and Competition 

LIMITED RESOURCES AND COMPETITION (6 codes) 

Description Code 

Section 1: Competition 

This code is applied when competition is specifically mentioned 

is competition mentioned in the response? comp 

 

Section 2: Consequences of Limited Resources 

This set of codes looks at the consequences of Limited resources. This could be 
directly or indirectly. These codes also apply when only one of the phenotypes is 
referenced in the response but it is clear that the phenotype leads to some sort of a 
difference.  

The trait leads to differential access to food specifically.  If the response 
mentions prey - that is not to be coded here. It has a code of its own. diff food 

The trait leads to differential access to all non-food-based resources and 
in cases where just the word 'resources' has been used. (one or more 
resources - coded just once) 

diff res 

The trait leads to differential interactions with prey. Here the assumption is 
that the animal under consideration is the predator.  diff prey 

The trait leads to differential interactions with predators. Here the 
assumption is that the animal under consideration is the prey.  diff pred 

The trait leads to one or more different abilities.  
Before coding this look at the column that tells if the question that was 
asked was a structural or a functional question.  
do not code if it was a functional question and the student mentions:  
> "ability to walk upright" for a Human question, or 
> "ability to run fast" for the Cheetah question. 
If these abilities are mentioned for the opposite animal (i.e. run fast for a 
Human - they get this code.  
Additionally, if these abilities are mentioned for the structural questions, 
they also get a code.  
If there is any ambiguity (i.e. variations of these phrases) make a note of 
them and then they will be sorted out through discussion.  
Any and all other abilities are to be coded.  

diff ab 
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Table S3.5. Emergent codebook section for Heritability 

HERITABILITY (13 codes) 

Description Code 

Section 1: What is inherited? 

This set of codes describes what the response says is being passed down or 
inherited. More than one of these codes can apply to each response. 

Genetic material or DNA is passed down/inherited  what-gen 

A specific allele is inherited what-all 

The trait in question, or an ability is passed down / inherited. Before 
coding this look at the next code what-trait 

The/a mutation is inherited/passed down what-mut 

 

Section 2: Who Inherits?  

This set of codes describes the inheritor(s). These codes are used only when the 
inheritor is specified. If no inheritor is specified, do not code this section. Both the 
codes can be used in one response. 

The offspring inherit. Synonyms like babies, children, F1 generation all 
included here. who-off 

Future generations inherit. who-fut 

 

Section 3: How does inheritance take place? 

How does inheritance take place, or how is 'it' passed down? Both the codes can be 
used in one response. 

The material is passed down through reproduction. how-rep 

The material is passed down by producing offspring. This is to be 
used when the response specifically mentions producing offspring how-off 

The material is passed down through natural selection how-natsel 

  

  



222 
 

Table S3.5 (Cont’d) 

Section 4: Differential Probabilities/Quantities 

These two codes are used when the response quantifies inheritance or what is being 
inherited. 

The response talks about a difference in the likelihood or the 
chance that material is inherited quant-chance 

The trait itself increases or decreases quant-trait 

  

Section 5: Other ideas 

This set of codes looks at other ideas that students might have about heritability. More 
than one of these ides might occur in the same response 

Response specifically mentions the phrase 'heritable 
trait/mutation/material' heritable 

Teleological ideas about heritability teleo-her 
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Table S3.6. Emergent codebook section for the Holistic section 

HOLISTIC (8 codes) 

Description Code 

Section 1: Presence of Genetic variation 

Presence of genetic variation. Since an accurate response will account for variation at 
the genetic level, this set of codes explores if GV has been included in the response 
and if it has been included accurately.  

GV included accurately (plausible cause).  GV + 

GV included inaccurately.  
- Response mentions genetic components but it is used inaccurately. 
- the response does not respond to the question.  
- Variation is shown as a consequence  

GV - 

GV is ambiguous/vague.  
- This includes where responses refer to mutations but do not specify 
the level.  
- Could also include responses where 'mutation' is a noun rather 
than a verb. 

GV 0 

 

Section 2: Other ideas 

This section looks at other ideas that are present in the explanation. These are other 
ideas related to variation/ LR or comp/ diff survival or reproduction/ heritability. 

Other ideas included and they are all accurate/plausible idea + 

Other ideas included and some are plausible or accurate  idea - 

 

Section 3: Other general impressions 

This section looks at general impressions of the response 

The response is teleological teleo-hol 

The response attributes agency to the organism. The organism can 
bring about the desired change by willing/wanting it agency_hol 

The response has some other idea that will not be captured in any of 
the other codes. Please specify. other-hol 
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Figure S3.1. Effect of mode of representation (Model/Narrative) and taxa (Cheetah/Human) on the 
probability of Key Concepts - (a) Variation: Level 2 vs Level 1, (b) Variation: Level 3 vs Level 2, (c) 
Differential Survival and Reproduction: Level 2 vs Level 1, and (d) Heritability: Level 1 vs Absent - 
occurring in student responses. 

 
  

a b 

c d 
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Figure S3.2. Effect of mode of representation (Model/Narrative) and taxa (Cheetah/Human) on the 
probability of Naïve Ideas - (a) Use, (b) Adapt - occurring in student responses. 

a b 
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CONCLUSIONS AND IMPLICATIONS 

 

This dissertation contributes to our understanding of how context influences the way 

students both reason about and represent evolutionary concepts. In this chapter I briefly 

summarise my findings and discuss implications for instruction and assessment.  

 

An idea, event, or phenomenon is fully understood only when considered in context, 

wherein context is the background or setting in which the idea, event or phenomenon 

occurs. In education, contextual influences are of great relevance because while 

learning happens in one context (e.g., instruction in the classroom), the application of 

the skills and knowledge learnt happens in a different context (e.g., in real life or on an 

assessment). When students learn a new concept or a skill, this information is encoded 

into their Cognitive Structures (CS). The process of encoding information into the CS 

(i.e., learning) is affected by the context in which the learning occurs. When students 

are later asked to apply the knowledge or skills, they access their CS to retrieve the 

relevant information. This retrieval process is similarly affected by the context in which 

the information is retrieved.  

 

In this dissertation, I have explored how the context in which information is retrieved, 

affects what is retrieved. In education research, context has been defined in multiple 

ways, from the broad societal/cultural setting (National Academies of Sciences, 

Engineering, and Medicine [NASEM], 2016), to the discipline in question (Nehring et al., 

2012; Topcu, 2013), to the types of questions (Driver et al., 1994; Watkins & Elby, 
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2013), the text used in the question (Brown et al., 2011), and even the order in which 

the questions are asked (Federer et al., 2015). For the purpose of this dissertation, 

context has been defined as the words used in the prompt (i.e., item feature context) 

and the type of representation required in response to the prompt (i.e., mode of 

response). Additionally, I explored the effects of instruction on, and the association of 

prior achievement with, contextual susceptibility.  

 

To answer these questions, I asked students to respond to two isomorphic prompts 

which contained the following basal structure: “(Taxon) has (trait). How would biologists 

explain how a (taxon) with (trait) evolved from an ancestral (taxon) without (trait)?” I 

tested for the effect of item-feature by varying the taxon in the prompts (Cheetah v 

Human) and tested the effect of mode of response by requiring students to respond to 

each prompt by writing a narrative and by constructing a model. All the responses were 

coded for the concepts that were included and the architecture of model-based 

responses was also graphically analysed using network metrics. 

 

I found that taxon – specifically, Cheetah v Human - was a strong predictor of the 

content in students’ responses. Students included more Key Concepts (KCs; concepts 

that are key towards understanding evolution) and fewer Naïve Ideas (NIs; intuitive and 

inaccurate ways of thinking about evolution) in responses to Cheetah prompts than 

Human prompts in both narrative and model-based responses. Cheetah models were 

also more likely to have certain KCs (specifically, Limited Resources, Competition, and 

Differential Survival and Reproduction) in their Cheetah models as compared to their 
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Human models. Additionally, the odds of students including NIs was greater when 

responding to prompts about Humans. Prompt taxon also influenced the architecture of 

students’ model-based responses. Cheetah models were significantly larger and more 

complex than models constructed in response to the Human prompt.   

 

Instruction and prior academic achievement were associated with some decrease in 

contextual susceptibility to the prompt taxon. While instruction had a significant effect on 

the average number of KCs (increased by 30%) and NIs (decreased by 40%) in 

students’ narrative responses, taxon-specific differences in KCs decreased only 

moderately with instruction (e.g., 4.4% for the KC Heritability and 3.7% for Limited 

Resources). With respect to students’ model-based responses, the odds of students 

including certain KCs (Variation and Differential Survival and Reproduction) increased 

with increasing levels of prior academic achievement. Additionally, higher achieving 

students showed decreased susceptibility to prompt taxon and were more consistent in 

including KCs in both models, regardless of taxon of the prompt. However, with regards 

to model architecture, middle achievers in general had models that were larger in size 

and more complex than their peers.  

 

Mode of response was also a significant predictor of the content in students’ responses. 

Students’ narrative responses had more KCs and NIs than their model-based 

responses. However, when I analysed students’ responses for the presence of 

evolutionary Threshold Concepts (TCs; concepts that indicate mastery of the baseline 

level of a concept), we did not see any contextual effects of mode of response. 
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However, presence of individual KCs, NIs, and TCs was influenced by mode of 

response. Students’ narrative responses were more likely to include the KCs, Limited 

Resources, Competition, and Differential Survival and Reproduction, the NI, Need, and 

the TCs, Randomness and Three Levels of Biological Organisation. Conversely, the 

TCs, Probability and Two Levels of Biological Organisation, were more likely to be 

present in their model-based responses.  

 

These results show that students are susceptible to context – both when context is 

defined as item features of the prompt and mode of response. This indicates that 

students face difficulties transferring knowledge and skills from the context in which they 

acquired them to a different context in which they are required to retrieve and apply 

them. Reasons for students’ susceptibility to context are likely to be complex and 

multifaceted. For example, the contextual susceptibility that students demonstrated due 

to prompt taxon could be attributed to the specific taxa that were contrasted in these 

studies (i.e., Cheetah and Human). Acceptance of human evolution by natural selection 

has been historically problematic (Mayr, 1982). Even now, many people, including 

college educated adults, are less accepting of natural selection in humans as compared 

to other animals; acceptance increases however with increasing evolutionary distance 

from humans (Brenan, 2019; Evans, 2008; Miller et al., 2006; Sinatra et al., 2003).  It is 

therefore possible that students’ susceptibility to the contextual influences of taxon 

observed in this study are related to their acceptance of human evolution and 

perceptions that humans are taxonomically unique and apart from the evolutionary tree 
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(American Association for the Advancement of Science [AAAS], 2018; Coley, 2007; 

Coley & Tanner, 2015). 

 

Contextual susceptibility attributed to the mode of response could be explained by the 

affordances of the modes in question. For example, students may have included the 

phrase ‘random mutation’ in their narratives out of habit because they are used to 

saying, hearing, or writing that phrase. However, this lexical affordance is not as easily 

accessible in models where its inclusion might be less reflexive and require more 

purposeful intent. Models similarly have affordances that may explain the occurrence of 

certain ideas that are less prevalent in narratives. For example, most students’ models 

included branches which lend themselves to notions of alternative pathways (i.e., 

Variation) that may differ in their likelihood of occurring (i.e., Probability). Therefore, 

some ideas may be easier to express in models merely on account of the model’s 

architectural features. 

 

Students contextual susceptibility could also be due to the fact that they are novice 

learners. Novices are more likely to have fragmented and fragile knowledge structures 

(diSessa, 1988, 2013; diSessa et al., 2004; Ifenthaler et al., 2011), which increases the 

challenge of retrieving relevant information (e.g., KCs) without being distracted by 

irrelevant details in the prompt or in their CS (e.g., NIs; Dauer & Long, 2015; Hmelo-

Silver et al., 2007). In addition, research has shown that novice learners are unable to 

recognise the deeper conceptual features of prompts and tend to use surface cues 

while accessing their CS to retrieve information (Cheng et al., 2015; Hmelo-Silver & 
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Pfeffer, 2004; Hsu et al., 2012; Vattam et al., 2011). In my studies, contextual 

susceptibility to taxon could be because these students are novices to evolution 

learning.  Evolution is a topic that students have great difficulty understanding and 

multiple studies have shown that despite explicit instruction, students’ explanations of 

evolution often include misconceptions (Bishop & Anderson, 1990; Bray Speth et al., 

2009; Morabito et al., 2010; Nehm & Ridgway, 2011; M. U. Smith, 2010). Similarly, 

contextual susceptibility to the mode of response could be due to the fact that these 

students are also novices to modelling. As undergraduates, most students will have had 

many opportunities to represent their knowledge via narratives, but model-based 

assessments are far less common in both K-12 and undergraduate classrooms. 

Novices require both time and practice to become competent in expressing their ideas 

through novel modes of representation, such as models (Ainsworth, 2006; Chi et al., 

1981; Constantinou et al., 2019; Kozma & Russell, 1997; Petre & Green, 1993). 

 

Understanding students’ contextual susceptibility has implications for both instruction 

and assessment. Instruction aims to help students progress along the continuum from 

being novices to becoming experts. In order to facilitate the development of robust CSs 

which are less susceptible to contextual influences, our instruction should be tailored to 

help students develop deeper conceptual understanding (Chin & Brown, 2000; McNeill 

et al., 2006; Sedikides & Skowronski, 1991; Smith & Colby, 2007; Warburton, 2003). 

For example, one strategy to increase the efficiency of instruction could be to teach 

evolution using humans as examples. Previous studies have shown that students are 

interested in learning about themselves and their development (Pobiner et al., 2018) 
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and that students’ learn best when taught using relatable and relevant examples 

(National Research Council [NRC], 2009).  

 

Instruction that promotes fluency with representations commonly used in the discipline 

can also help advance novices along the continuum toward expertise (NRC, 2015). 

Since models are commonly used by scientists when generating, evaluating, and 

communicating science (Gilbert, 2004; Halloun, 2007; Long et al., 2014; Upmeier zu 

Belzen et al., 2019a), science instruction should help students develop competence in 

modelling as well as in using other representations common to science (S. W. Gilbert, 

1991; Liu & Hmelo-Silver, 2009; Louca & Zacharia, 2012; Verhoeff et al., 2008). 

Fortunately, there is extensive literature to support instruction using modelling and other 

representations (Bierema et al., 2017; Hobbs et al., 2013; Nicolaou & Constantinou, 

2014; Offerdahl et al., 2017; Upmeier zu Belzen et al., 2019b; Wilson et al., 2019; 

Windschitl et al., 2008).  

 

Additionally, instructors are encouraged to teach science the way it is practised (AAAS, 

2011; Cooper et al., 2015). Instruction that encourages students to construct their 

knowledge by engaging in scientific practises has been shown to improve student 

achievement (Armbruster et al., 2009; Blasco-Arcas et al., 2013; Freeman et al., 2007, 

2014; Haak et al., 2011; Jensen et al., 2015; Martin et al., 2007; Oliver-Hoyo et al., 

2004; Pearsall et al., 1997; Pierce & Fox, 2012; Yoder & Hochevar, 2005; Yuretich et 

al., 2001). Other best practise recommendations include providing scaffolding, giving 

explicit instruction about the content and representations used during instruction, and 
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ensuring that students are able to iteratively revise their representations based on 

feedback (Anzai, 1991; Chi et al., 1981; Cooper et al., 2012; Cox, 1999; Dauer et al., 

2013; Hattie & Timperley, 2007; Long et al., 2014; Mayer, 2003; Nesbit & Adesope, 

2006; Schnotz, 2002; Wu & Puntambekar, 2012; Yerushalmy, 1991) 

 

Considering context is also of vital importance when designing assessments. The 

context in which information is retrieved from the CS can affect the transfer of 

knowledge and its subsequent retrieval (Gentner et al., 2003; Jacobson & Spiro, 1995; 

Loewenstein & Gentner, 2001; Vosniadou, 1989). Therefore, if the context used on an 

assessment acts as a barrier to knowledge transfer, the assessment will be an invalid 

measure of students’ knowledge and skills. While designing prompts that are equivalent 

in terms of difficulty levels is, difficult (Hamp-Lyons & Mathias, 1994; Lee & Anderson, 

2007; Li, 2018; Sydorenko, 2011), our study, as well as others (Göransson et al., 2020; 

Nehm & Ha, 2011), shows that even prompts that are truly isomorphic do not elicit the 

same information.  

 

Using multiple contexts, both in terms of the words used in the prompt and the mode of 

response required, could make assessments more holistic and provide better insights 

into students’ knowledge and skills. Additionally, since students’ preferences for mode 

of representation vary, giving them the opportunity to represent their reasoning using 

multiple modes might make instruction more equitable and inclusive. And although the 

task of scoring all these assessments, especially for large-enrolment classes might 

seem daunting, researchers and educators have made tremendous strides in 
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developing automated assessments, even of models (Gray et al., 2013; Ifenthaler, 

2010; Ifenthaler et al., 2011; Luckie et al., 2011; Zhai et al., 2020) 

 

While it is known that context affects the way students reason and represent their 

thinking, my studies contribute to our understanding about how and to what degree 

students are influenced by contextual susceptibility. It is my hope that my findings can 

benefit college biology education by making it more efficient, effective, and inclusive.  
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