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ABSTRACT 

PULSE VOLUME SENSING AND ANALYSIS FOR 

ADVANCED BLOOD PRESSURE MONITORING  

 

By 

Keerthana Natarajan 

Approximately a quarter of the world’s population is affected by high blood pressure (BP). 

It is a major risk factor for stroke and heart disease, which are leading causes of mortality. 

Management of hypertension could be improved by increased accuracy and convenience of BP 

measurement devices. Existing devices are not convenient or portable enough. In this work, we 

investigate three approaches to improve the accuracy and convenience of BP measurement.  

A physiologic method was developed to further advance central BP measurement. A 

patient-specific method was applied to estimate brachial BP levels from a cuff pressure waveform 

obtained during conventional deflation via a nonlinear arterial compliance model. A 

physiologically-inspired method was then employed to extract the PVP waveform from the same 

waveform via ensemble averaging and calibrate it to the brachial BP levels. A method based on a 

wave reflection model was thereafter employed to define a variable transfer function, which was 

applied to the calibrated waveform to derive central BP. This method was evaluated against 

invasive central BP measurements from patients. The method yielded central systolic, diastolic, 

and pulse pressure bias and precision errors of −0.6 to 2.6 and 6.8 to 9.0 mmHg. The conventional 

oscillometric method produced similar bias errors but precision errors of 8.2 to 12.5 mmHg 

(p ≤ 0.01). The new method can derive central BP more reliably than some current non-invasive 

devices and in the same way as traditional cuff BP. 



 

 

We then developed an iPhone X application to measure cuff-less BP via the “oscillometric 

finger pressing method”. The user presses her fingertip on both the front camera and screen to 

increase the external pressure of the underlying artery, while the application measures the resulting 

variable-amplitude blood volume oscillations via the camera and applied pressure via the strain 

gauge array under the screen. The application also visually guides the fingertip placement and 

actuation and then computes BP from the measurements just like many automatic cuff devices. 

We tested the application, along with a finger cuff device, against a standard cuff device. The 

application yielded bias and precision errors of −4.0 and 11.4 mmHg for systolic BP and −9.4 and 

9.7 mmHg for diastolic BP (n = 18). These errors were near the finger cuff device errors. This 

proof-of-concept study surprisingly indicates that cuff-less and calibration-free BP monitoring 

may be feasible with many existing and forthcoming smartphones.  

Finally, we developed easy-to-understand models relating PPG waveform features to BP 

changes (after a single cuff calibration) and determined conclusively whether they provide added 

value or not in BP measurement accuracy. Stepwise linear regression was employed so as to create 

parsimonious models for predicting the intervention-induced BP changes from popular PPG 

waveform features, pulse arrival time (PAT, time delay between ECG R-wave and PPG foot), and 

subject demographics. The finger b-time (PPG foot to minimum second derivative time) and ear 

STT (PPG amplitude divided by maximum derivative), when combined with PAT, reduced the 

systolic BP change prediction RMSE of reference models by 6-7% (p<0.022). The ear STT 

together with the pulse width reduced the diastolic BP change prediction RMSE of the reference 

model by 13% (p=0.003). Hence, PPG fast upstroke time intervals can offer some added value in 

cuff-less measurement of BP changes. 
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INTRODUCTION 

 

This dissertation uses in partial or in full material from the following publications for which 

all appropriate copyright permissions were granted: 

1. Natarajan K, Block RC, Yavarimanesh M, Chandrasekhar A, Mestha LK, Inan OT, Hahn JO, 

Mukkamala R. PPG fast upstroke time intervals can be useful features for cuff-less 

measurement of blood pressure in humans. In Preparation. 

2. Chandrasekhar A*, Natarajan K*, Yavarimanesh M*, Mukkamala R. An iPhone application 

for blood pressure monitoring via the oscillometric finger pressing method. Scientific Reports, 

2018. (*equally contributing authors)  

3. Natarajan K, Cheng HM, Liu J, Gao M, Sung SH, Chen CH, Hahn JO, Mukkamala R. Central 

blood pressure monitoring via a standard automatic arm cuff. Scientific Reports, 2017. 

 

Cardiovascular diseases account for the largest percent of preventable morbidity and 

mortality worldwide [1]. Elevated blood pressure (BP), called hypertension, is the single largest 

risk factor for mortality from cardiovascular disease [2] and affects about a quarter of the world’s 

adult population [3]. Hypertension can be treated with lifestyle changes and medication. Medical 

therapy is associated with a 35-40% reduction in the risk of stroke and a 15-25% reduction in the 

risk of heart disease [4]. Yet, hypertension awareness and control rates are unacceptably low [5], 

and deaths due to these maladies remain far too common. According to statistics from the 

American Heart Association, on average, someone in the US dies of cardiovascular disease 

(exclusive of stroke) every 40-sec and dies of stroke every 4-min [6]. Only ~55% of hypertensives 

in developed nations and ~45% of hypertensives in developing nations are aware of their condition, 

and only an abysmal ~15% of hypertensives overall have their BP under control. Ubiquitous BP 

monitoring technology could improve hypertension awareness by providing serial measurements 

from the mass population during daily life [7], and hypertension control by providing continual 

feedback to the individual patient [8].  
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Several non-invasive methods are available for monitoring BP. However, none afford 

anytime, anywhere measurement of BP. Auscultation is the standard clinical method [9]. This 

method measures systolic BP (SP) and diastolic BP (DP) by occluding the brachial artery with an 

inflatable cuff and detecting the Korotkoff sounds using a stethoscope and manometer during cuff 

deflation. The first sound indicates the initiation of turbulent flow and thus SP, while the fifth 

sound is silent and indicates the renewal of laminar flow and thus DP. The method requires a 

skilled operator. 

 
Figure 1: Conventional oscillometric BP monitoring using a cuff. Oscillometry is widely 

employed for automatic BP monitoring but has required a cuff. The cuff applies external pressure 

to an artery, and the device measures this pressure and the resulting variable-amplitude blood 

volume oscillations to construct an oscillogram and compute BP via population average algorithms 

(e.g., fixed-ratio algorithm). 

 

Oscillometry is the most popular non-invasive and automatic method [10], [11]. This 

method, which is depicted in Fig. 1, measures mean BP, SP, and DP using a cuff that includes a 

sensor to record the pressure inside it. The cuff is placed over an artery, inflated to a supra-systolic 

level, and then slowly deflated to a sub-diastolic level. The cuff pressure rises and falls with 

inflation and deflation but also shows tiny oscillations indicating the pulsatile blood volume within 

the artery. The amplitude of these oscillations varies with the cuff pressure, as the arterial blood 
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volume-transmural pressure relationship is nonlinear. (Transmural pressure of an artery is defined 

as the internal pressure (i.e., BP) minus the external pressure (cuff pressure here).) The BP values 

are computed from the oscillogram (i.e., the oscillation amplitudes, as indicated via the vertical 

difference between the two orange envelopes in Fig. 1, versus the cuff pressure,) using a population 

average algorithm. The standard algorithm is to estimate mean BP as the cuff pressure at which 

the oscillogram is maximal (see AM in Fig. 1) and SP and DP as the cuff pressures at which the 

oscillogram are fixed ratios of its maximal value (see AS/AM and AD/AM in Fig. 1) [10], [12], [13]. 

Volume clamping is a non-invasive and automatic method used in research [14], [15]. This 

method measures a BP waveform via a finger cuff with a photoplethysmography (PPG) sensor 

built-in to measure the pulsatile blood volume [16]. First, the cuff pressure is slowly increased to 

obtain mean BP via the oscillometric principle. Then, the cuff pressure is continually varied to 

maintain the “unloaded” blood volume (i.e., the blood volume at which the cuff pressure equals 

the mean BP) throughout the cardiac cycle via a fast servo-control system. The cuff pressure may 

therefore yield the finger BP waveform. This BP waveform is then typically converted to brachial 

BP, which is the proven cardiovascular risk factor, via an empirical algorithm [17]. However, the 

method is expensive.  

Tonometry is another research method [18], [19]. This method measures a BP waveform 

by pressing a manometer-tipped probe on an artery. The probe must flatten or “applanate” the 

artery so that its wall tension is perpendicular to the probe. However, manual and automatic 

applanation have proven difficult. As a result, while the method should not require any calibration, 

the measured waveform has been routinely calibrated with a cuff in practice [20]. 

A major contributing factor to the high incidence of cardiovascular disease mortality is that 

the current BP measurement devices do not provide precise enough information. Oscillometry is 
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the most popular non-invasive and automatic method [10], [11]. However, these oscillometry 

devices generally algorithms based on population-averages that are less accurate in patients with 

atypical BP levels. Oscillometric device accuracy degrades in patients with high pulse pressure 

(PP = SP –DP) due to large artery stiffening, which occurs with aging and disease [12], [21]. The 

inaccuracy is clinically significant in that more than 45% of patients with pre-hypertension or 

Stage 1 hypertension and about 25% of patients with normotension and Stage 2 hypertension end 

up being misclassified. A patient-specific algorithm to estimate brachial BP from an oscillogram 

[22] was recently developed and it was shown that this algorithm can be significantly more 

accurate than widely used oscillometric devices [23]. 

 

Figure 2: Central BP is more clinically relevant than brachial BP. Standard automatic arm cuff 

devices estimate BP at the brachial artery and not near the heart (i.e., central BP), which is more 

relevant. (a) Central SP (SP) and pulse pressure (PP = SP –DP) are lower than brachial SP and PP 

due to arterial wave reflection [11]. So, it is central BP that truly indicates cardiac performance. 

(b) Central BP is therefore a better cardiovascular risk stratifier than brachial BP [12]. 

 

Furthermore, standard automatic cuff devices estimate BP only at the brachial artery. 

However, as shown in Fig. 2a, central BP is not the same as brachial BP [24]. Most notably, central 

SP and PP are lower than brachial SP and PP. This well-known but counter-intuitive phenomenon 

is mainly caused by peripheral wave reflection in the arteries. Hence, it is central BP that truly 

determines cardiac performance. As a result, as shown in Fig. 2b, central BP is a better indicator 

of cardiovascular risk than brachial BP [25].  
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We developed a physiologic algorithm to estimate central BP using a standard 

oscillometric arm cuff device and showed – for the first time – that central BP can be measured 

reliably and in the exact same way as traditional brachial BP [26]. These studies were based on 

off-line, but blinded, analyses of previously recorded cuff pressure waveforms and invasive 

reference brachial and central BP measurements from patients. Successful completion of this task 

could ultimately help lead to reduced cardiovascular mortality and events as well as healthcare 

costs. This work was published in Scientific Reports [26]. 

Common to all these BP measurement methods is the requirement of a cuff. Cuffs are not 

readily available and therefore do not permit ubiquitous BP monitoring. That is, people in low 

resource settings may not have any access to cuff-based devices; others must go out of their way 

(e.g., to a pharmacy) to use these devices; and even people who own a device cannot carry it with 

them wherever they go. As a result, cuff-less BP monitoring devices are now being widely pursued. 

Pulse transit time (PTT) is the most popular method [16]. PTT often varies inversely with BP in a 

person and can be measured simply as the relative timing between proximal and distal waveforms 

indicative of the arterial pulse. Hence, PTT could potentially permit ultra-convenient BP 

monitoring. However, PTT in units of milliseconds must be calibrated to BP in units of mmHg, 

and PTT, as a single value, cannot independently track SP and DP. As a result, accuracy is the 

concern for the PTT-based approach. Ultrasound may allow for other methods. The most popular 

ultrasound method is to measure an arterial diameter waveform along with the local PTT (in the 

form of pulse wave velocity) and then apply the Bramwell-Hill equation to compute the absolute 

pulse pressure (PP = SP – DP) [27]–[29]. DP may also be measured by calibrating the measured 

PTT. However, ultrasound systems are generally much less convenient than automatic cuff 

devices.  
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We proposed a method for cuff-less and calibration-free BP monitoring via a smartphone 

using a custom PPG-force sensor unit affixed to the back of the smartphone to implement the 

“oscillometric finger pressing method” and showed that the device can be usable and accurate 

compared to cuff devices [30]. The method represents an extension of the time-honored 

oscillometric cuff BP measurement principle. However, the need for special sensors above and 

beyond the smartphone limits the accessibility of the method. Here, we developed a smartphone 

application that leverages PPG and force sensors already in the phone to implement the 

oscillometric finger pressing method. We then tested the application against cuff BP measurements 

for a proof-of-concept demonstration [31]. This work was published in Scientific Reports [31]. 

While the smartphone application implementation of the “oscillometric finger pressing 

method” is far more accessible and convenient than standard cuff devices while still being 

accurate, the drawback of this approach is that is requires user interaction to perform a 

measurement. Hence, it is not suitable for passive and seamless BP monitoring. PPG is a highly 

convenient, simple measurement of arterial blood-volume oscillations. The ease of obtaining this 

signal, along with the increased popularity and access to machine learning techniques, have led to 

an increased interest in PPG waveform analysis approaches for cuff-less BP monitoring. However, 

the efficacy of this data-driven approach and the useful features and models remain largely unclear. 

The objectives were to develop easy-to-understand models relating PPG waveform features to BP 

changes (after a single cuff calibration) and to determine conclusively whether they provide added 

value or not in BP measurement accuracy. The study data comprised finger, toe, and ear PPG 

waveforms, electrocardiogram (ECG) waveforms, and reference manual cuff BP measurements 

before and after slow breathing, mental arithmetic, cold pressor, and nitroglycerin. The data was 

from 32 normotensive and hypertensive humans. 
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Stepwise linear regression was employed so as to create parsimonious models for 

predicting the intervention-induced BP changes from popular PPG waveform features, pulse 

arrival time (PAT, time delay between ECG R-wave and PPG foot), and subject demographics. 

Leave-one-out cross validation was applied to compare the BP change prediction RMSEs of the 

resulting models to reference models in which PPG waveform features were excluded as input. 

The finger b-time (PPG foot to minimum second derivative time) and ear slope transit time or STT 

(PPG amplitude divided by maximum derivative), when combined with PAT, reduced the systolic 

BP change prediction RMSE of reference models by 6-7% (p<0.022). The ear STT together with 

the pulse width reduced the diastolic BP change prediction RMSE of the reference model by 13% 

(p=0.003). Hence, PPG fast upstroke time intervals can offer some added value in cuff-less 

measurement of BP changes. This work is in preparation and will be published. 
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CENTRAL BLOOD PRESSURE MONITORING VIA 

A STANDARD AUTOMATIC ARM CUFF 

 

The contents presented in this chapter were originally published as: 

1. Natarajan K, Cheng HM, Liu J, Gao M, Sung SH, Chen CH, Hahn JO, Mukkamala R. Central 

blood pressure monitoring via a standard automatic arm cuff. Scientific Reports, 2017. 

 

Current oscillometric devices for monitoring central BP maintain the cuff pressure at a 

constant level to acquire a pulse volume plethysmography (PVP) waveform and calibrate it to 

brachial BP levels estimated with population average methods. A physiologic method was 

developed to further advance central BP measurement. A patient-specific method is applied to 

estimate brachial BP levels from a cuff pressure waveform obtained during conventional deflation 

via a nonlinear arterial compliance model. A physiologic method is then employed to extract the 

PVP waveform from the same waveform via ensemble averaging and calibrate it to the brachial 

BP levels. A method based on a wave reflection model is thereafter employed to define a variable 

transfer function, which is applied to the calibrated waveform to derive central BP. This method 

was evaluated against invasive central BP measurements from patients. The method yielded central 

SP, DP, and PP bias and precision errors of -0.6 to 2.6 and 6.8 to 9.0 mmHg. The conventional 

oscillometric method produced similar bias errors but precision errors of 8.2 to 12.5 mmHg 

(p0.01). The new method can derive central BP more reliably than some current non-invasive 

devices and in the same way as traditional cuff BP. 

 

Introduction 

Tonometric devices for non-invasive monitoring of central BP have been available for 

many years now. These devices either acquire a carotid artery tonometry waveform and calibrate 
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it with brachial cuff BP levels for a “direct” measurement of central BP or obtain a similarly 

calibrated, but easier-to-measure, radial artery tonometry waveform and then apply a generalized 

transfer function (GTF) to the peripheral BP waveform for an indirect measurement of central BP. 

The devices have even been shown to provide added clinical value over traditional brachial cuff 

BP measurements in several research studies [25]. Yet, because applanation tonometry of any 

artery is nontrivial, they have not reached patient care.  

 
 (a)  

 
(b) 

Figure 3: Conventional and physiological methods for central BP estimation. (a) Conventional 

method for monitoring central BP via a special automatic arm cuff device. The oscillogram is the 

variable cuff pressure oscillation amplitude versus cuff pressure function; PVP, pulse volume 

plethysmography. and (b) Physiologic method for monitoring central BP via a standard automatic 

arm cuff device. The sub-methods are shown in Figs. 17-19. 
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As a result, oscillometric devices for more convenient monitoring of central BP have 

recently been introduced [32], [33]. As indicated in Fig. 3a, these devices employ a special 

automatic arm cuff to derive central BP generally in four steps. First, brachial BP levels are 

obtained in the standard way by slowly deflating (or inflating) the cuff and then estimating the 

values from the oscillogram (i.e., the variable cuff pressure oscillation amplitude versus cuff 

pressure function). Second, a fixed amplitude cuff pressure oscillation or “pulse volume 

plethysmography (PVP)” waveform is measured by maintaining a constant cuff pressure around 

the DP for up to 30 sec [34]–[38] or even above the SP level by up to 35 mmHg [39], [40]. Third, 

a brachial BP-like waveform is derived by calibrating the PVP waveform with the brachial BP 

levels. Fourth and finally, central BP is computed from the peripheral waveform typically via a 

GTF.  

The error in the measured central BP can be substantial [32]. Like the tonometric devices, 

the main error source is the error in the brachial BP levels used for calibration [32], [41], [42]. This 

latter error can be large, because automatic arm cuffs employ population average methods to 

estimate the brachial BP levels [10], [12], [21]. A secondary error source may be error arising from 

the use of a one-size-fits-all GTF.  

Our broad objective is to achieve accurate central BP monitoring via a standard automatic 

arm cuff. In recent studies, we developed a patient-specific method for estimating brachial BP 

levels from the oscillogram by leveraging physiologic modeling [22] and showed that this method 

can be more accurate than widely used population average methods [23]. In this study, we 

conceived simple, yet physiologic, methods to extract the PVP waveform from the variable 

amplitude cuff pressure oscillation waveform and to vary the transfer function relating calibrated 

PVP to central BP with BP-induced changes in arterial stiffness. We then assessed the integrated 
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method against a high-fidelity aortic catheter in a challenging set of patients. Our results indicate 

that the physiologic method can derive central BP more reliably than some current non-invasive 

devices and in the exact same way as traditional brachial cuff BP. 

 

Materials and Methods 

Physiologic Method for Central BP Monitoring via a Standard Automatic Arm Cuff 

The developed method is based on physiologic modeling and knowledge and is overviewed 

in Fig. 3b. This method computes the central BP waveform from a cuff pressure waveform 

obtained only during conventional deflation (or inflation). First, a patient-specific method is 

applied to an oscillogram (derived from the waveform) to yield brachial SP and DP. Then, an 

ensemble averaging/calibration method is applied to the variable amplitude cuff pressure 

oscillation waveform (obtained by high pass filtering the cuff pressure waveform) to extract a 

“deflation PVP” waveform and scale it to the brachial BP levels. Finally, a variable transfer 

function (VTF) method is employed to convert the brachial BP-like waveform to the central BP 

waveform. Each of the three sub-methods is described below. 

 

Patient-Specific Method for Estimation of Brachial SP and DP  

The patient-specific method is shown in Fig. 4 and described in detail elsewhere [22]. As 

briefly explained in [23], the oscillogram (difference between the upper and lower envelopes in 

red) is represented with a physiologic model accounting for the nonlinear brachial artery blood 

volume-transmural pressure relationship (see Eq. (1) in Fig. 4). The model parameters represent 

brachial SP and DP and brachial artery mechanics [a, b, c, e]. In terms of the brachial artery 

compliance curve (derivative of the nonlinear relationship with respect to transmural pressure), a 
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denotes the transmural pressure at which the curve is maximal; b and c indicate the width of the 

curve and extent of asymmetry about its maximum; and e goes with the amplitude of the curve. 

The parameter e is also determined by the reciprocal of the cuff compliance [k], which is assumed 

to be constant in accordance with experimental data.  

 
Figure 4: Overview of the patient-specific method for estimating brachial BP. Patient-specific 

method for estimating brachial BP levels from a cuff pressure waveform obtained during 

conventional deflation by leveraging a physiologic model and parameter estimation. The method 

is described in detail in [22]; and figure reproduced from [23]. 

 

As buttressed by directly measured compliance curves [11], a is fixed so that the curve peaks near 

zero transmural pressure, and b is constrained by the value of c such that the curve is right-skewed. 

The remaining four patient-specific parameters (i.e., brachial SP, brachial DP, c, e) are then 

estimated by least squares fitting of the model to the oscillogram (see Eq. (2) in Fig. 4). The user-

selected variables (most notably, the a and b constraints) were established using a training dataset 

comprising cuff pressure waveforms for analysis and invasive reference brachial BP waveforms 
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from cardiac catheterization patients. 

Ensemble Averaging/Calibration Method for Estimation of the Brachial BP Waveform 

The patient-specific method also outputs the entire brachial BP waveform via additional 

steps dictated by its underlying model. While this waveform is suitable for estimating mean BP 

(MP), it contains artifact caused by inter-beat cuff pressure variations. Hence, another method is 

applied to extract a brachial BP-like waveform from the variable amplitude cuff pressure 

oscillation waveform. This method is simpler but still founded in physiology. Specifically, each 

beat of the waveform not only varies in amplitude but also in shape. The shape variations are 

likewise due (in part) to the brachial artery compliance changes with transmural pressure [11]. 

Since this compliance may be relatively constant at higher transmural pressures wherein elastin 

fibers play a greater role in arterial wall mechanics [16], the shape of a beat of the waveform may 

better reflect that of the brachial BP waveform at lower cuff pressures. Hence, a deflation PVP 

waveform is extracted from the variable amplitude waveform over the lower cuff pressure range 

via robust ensemble averaging and calibrated to the brachial BP levels. 

The ensemble averaging/calibration method is shown in Fig. 5. The variable amplitude cuff 

pressure oscillation waveform is extracted from the minimum cuff pressure analyzed by the 

patient-specific method minus 40 mmHg to this minimum cuff pressure (red shading). The 

waveform beats are detected. To eliminate anomalies, all waveform beats of lengths within 30% 

of the average beat length are selected. If fewer than three waveform beats meet this criterion, then 

the three waveform beats with lengths closest to the average beat length are selected. Each selected 

waveform beat, including 250 msec intervals before the first foot and after the last foot, is equalized 

by normalization to peak amplitude of one and feet amplitudes of zero. (Time normalization could 

also be employed, if necessary, to further equalize the waveform beats.) To further eliminate 



 

 

14 

anomalies, a template waveform beat is constructed by computing the ensemble median of all 

selected waveform beats over the minimum beat length and then applying the same normalization. 

The three waveform beats with root-mean-squared-error (RMSE) < 0.5 relative to the template 

waveform beat that are nearest to the minimum cuff pressure are selected (red traces). If less than 

three waveform beats meet this criterion, then the three waveform beats with the lowest RMSEs 

are selected. The ensemble average of the selected waveforms beats is computed over the 

minimum beat length and likewise normalized to yield the deflation PVP waveform. This 

waveform is then scaled to brachial SP and DP to yield a brachial BP-like waveform. All user-

selected variables (e.g., 30% beat length and 0.5 RMSE thresholds) were defined with a training 

dataset.  

 

Figure 5: Overview of the ensemble averaging method for extraction of deflation PVP 

waveform. Ensemble averaging/calibration method for extracting a brachial BP-like waveform 

from the cuff pressure waveform obtained during conventional deflation. The method extracts a 

deflation PVP waveform by normalizing and then averaging similar waveform beats from the 

deflation end (wherein PVP and BP waveform shapes may better agree due to relatively constant 

brachial artery compliance) and then scales the waveform to brachial SP and DP. 
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VTF Method for Estimation of the Central BP Waveform 

The VTF method is shown in Fig. 6. The method is based on a physiologic model of arterial 

wave reflection. This tube-load model is described in detail elsewhere [43]. Briefly, the tube 

accounts for the inertance [L] and compliance [C] of the large artery segment between the 

ascending aorta and brachial artery and thus offers constant characteristic impedance [Zc = (L/C)] 

and permits waves to travel along it with constant pulse transit time [Td = (LC)]. The load 

accounts for the small artery resistance [R]. Waves traveling in the forward direction along the 

tube are reflected in the opposite direction at the terminal load with a constant reflection coefficient 

[Γ = (R-Zc)/(R+Zc)] so as to mimic the well-known amplification of brachial PP relative to central 

PP. 

 
Figure 6: Variable transfer function (VTF) method for converting the brachial-like BP 

waveform to the central BP waveform. The method defines the transfer function in terms of the 

pulse transit time (Td) and wave reflection coefficient () parameters of an arterial tube-load model 

and then varies Td based on its well-known inverse relationship with mean BP (MP). MP is 

estimated as the time average of the brachial BP-like waveform. The model parameter values were 

defined via the training dataset (see Table 1). Td is in units of msec; MP, mmHg. 

 

According to this model, the transfer function relating the brachial BP waveform [pb(t)] 

(i.e., BP at the tube end) to the central BP waveform [pc(t)] (i.e., BP at the tube entrance) may be 
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defined in terms of two parameters, Td and Γ (see transfer function equation in the time-domain in 

Fig. 6). As explained elsewhere [43], this transfer function is often insensitive to Γ. Hence, this 

parameter could be fixed to a nominal value without significantly compromising accuracy. On the 

other hand, Td is a vital transfer function parameter. In particular, application of the transfer 

function predicts high PP amplification (ratio of brachial PP to central PP) when Td is large and 

low PP amplification when Td is small. It is well known that pulse transit time is strongly related 

to MP and other variables. Hence, Td may be reasonably predicted from readily available 

measurements and thereby adapt to some extent to the inter-subject and temporal variations in PP 

amplification. The nominal value for Γ and the prediction equation for Td were established using 

a training dataset (see Fig. 6). The Td prediction equation capitalizes on the inverse relationship 

between pulse transit time and MP, which is due to slack collagen fibers in the arterial wall and 

aging [16]. This equation is simple enough that it may generally hold. 

So, first, MP, computed as the time average of the brachial BP waveform over its foot-to-

foot interval, is used to predict Td. Then, the fully defined VTF is applied in the time-domain to 

the entire brachial BP waveform to compute the central BP waveform. 

 

Patient Data 

To investigate the physiologic method, patients admitted for diagnostic cardiac 

catheterization at Taipei Veterans General Hospital (Taiwan) were studied. The study procedures 

were approved by the hospital’s IRB and conformed to the principles of the Declaration of 

Helsinki. Written, informed consent was obtained from each patient. 

The data collection procedures are described in detail elsewhere [44], [45]. Briefly, all 

patients had inter-arm cuff BP differences of no more than 3 mmHg. A high-fidelity catheter with 
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one or two micromanometers (SPC-320 or SSD-1059, Millar Instruments, USA) was positioned 

in the ascending aorta and brachial artery to sequentially or simultaneously measure gold standard 

reference central and brachial BP waveforms.  

Table 1: Measurement and Patient Characteristics 
   

Training Testing 

      Cohort 1 Cohort 2 

Measurements 
    

 
Device Microlife Omron Microlife 

 Device measurements deflation cuff pressure waveform + office 

brachial BP levels + sub-diastolic PVP 

waveform  
Reference invasive brachial and central BP waveforms  

# of subjects 36 43 8  
# of baseline measurements 36 38 8  

# of nitroglycerin 

measurements 

36 13 8 

 
# of repeated measurements 70 0 10 

  Total # of measurements 142 51 26 

Patients 
    

 Type cardiac catheterization  
Age [years] 64.9±12.6 57.1±13.9 71.2±12.7  
Weight [kg] 75.7±13.1 69.7±12.1 69.3±14.9  
Height [cm] 161.8±8.2 163.5±8.8 161.2±10.5  

Waist circumference [cm] 90.4±12.5 92.6±11.5 94.5±11.0  
Men [%] 75.7 75.0 75.0 

  Smoking [%] 18.9 20.5 25.0  
Hypertension [%] 59.5 56.8 87.5  

Type 2 Diabetes mellitus [%] 29.7 31.8 50.0  
Dyslipidemia [%] 37.8 40.9 37.5  

Coronary artery disease [%] 59.5 56.8 62.5 

  Chronic renal failure [%] 2.7 2.3 12.5  
α-Blockers [%] 13.5 11.4 25.0  
β-Blockers [%] 43.2 38.6 62.5  

Calcium channel blockers [%] 48.6 40.9 25.0  
Diuretics [%] 18.9 20.5 37.5 

  Antiplatelet agents [%] 86.5 70.5 87.5 

 

An appropriately sized, inflatable cuff of a special office device (WatchBP Office, 
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Microlife AG, Switzerland or VP-1000, Omron Colin, Japan) was placed over the other brachial 

artery to measure the cuff pressure waveform via conventional deflation, a PVP waveform via 

maintenance of the cuff pressure at 60 mmHg (“sub-diastolic PVP” waveform) for 30 sec, and the 

brachial BP levels estimated by the device. All these cuff measurements were obtained during each 

sequential BP waveform measurement or the simultaneous BP waveform measurement under 

baseline and/or sublingual nitroglycerin conditions. Repeated cuff measurements were made per 

condition for the Microlife device. 

All sets of cuff pressure and BP measurements were screened for possible exclusion from 

subsequent analysis. The exclusion criteria for a measurement set were: (a) substantial artifact due 

to motion or otherwise in at least one waveform as determined by visual inspection; (b) MP 

difference in sequentially measured brachial and central BP waveforms exceeding 5 mmHg; or (c) 

sequentially measured BP waveforms during the transient nitroglycerin condition. The latter two 

criteria ensured that the central and brachial BP waveforms were indicative of the same physiologic 

state. About 120 patients were included for study, and a total of 209 measurement sets from 87 

patients remained for analysis. The measurement sets from 36 of the patients were previously used 

to develop the patient-specific method for estimating brachial BP levels, so these data constituted 

the training dataset. The measurement sets from the other 51 patients formed the testing dataset. 

Table 1 shows the measurement and patient characteristics for the datasets. Note that the testing 

dataset included Omron and Microlife cohorts. 

 

Data Analysis 

The training dataset was analyzed to develop the physiologic method. The patient-specific 

method was rigorously developed as described elsewhere [22], whereas simple, but sub-optimal, 
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approaches were applied here to develop the ensemble averaging and VTF methods. For 

comparison, the training dataset was also used to build the conventional method of Fig. 3a. 

To develop the ensemble averaging method, the variable amplitude cuff pressure 

oscillation waveforms and sub-diastolic PVP waveforms were analyzed. In particular, the user-

selected variables of the method were established so that the RMSE of the deflation PVP waveform 

extracted from the variable amplitude waveform with respect to the corresponding sub-diastolic 

PVP waveform (formed by conventional ensemble averaging and amplitude normalization for the 

average waveform beat but not the individual waveform beats) was < 0.1.  

To develop the VTF method, the sub-diastolic PVP waveforms, simultaneously measured 

central BP waveforms, and invasive brachial BP waveforms were analyzed. The sub-diastolic PVP 

waveforms were first calibrated to invasive brachial DP and SP to avoid over-fitting the transfer 

function to random calibration error. For each pair of brachial BP-like and central BP waveforms, 

 and Td were estimated by least squares fitting of the model predicted central BP waveform (see 

Fig. 6) to the measured central BP waveform. The value of  was then set to the average of the  

estimates. A Td prediction equation was created using the Td estimates as the dependent variable 

and various measurements as the independent variables. The investigated independent variables 

included the invasive brachial BP levels (to likewise prevent overfitting of the equation), the 

brachial artery compliance parameter estimates of the patient-specific method, pulse rate, and 

patient anthropomorphic data such as age, height, and arm circumference. Multivariate linear 

regression was employed, and the utility of the independent variables was assessed using a 

stepwise approach. MP was concluded to be the only independent variable in the final prediction 

equation (see Fig. 6). The correlation coefficient between the predicted and measured Td was 

almost 0.6. PTT limits were thereafter added to the Td prediction equation to protect against gross 
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MP estimation error (see Fig. 6).  

To develop the conventional method, the averages of the aforementioned  and Td 

estimates were employed to define a tube-load model GTF method. Note that this approach is 

justifiable, because the sub-diastolic (rather than deflation) PVP waveform was used and calibrated 

to invasive (instead of patient-specific) brachial SP and DP in the development of the VTF method. 

Also note that other possible implementations of the conventional method such as calibrating the 

sub-diastolic PVP waveform to invasive brachial DP and MP, defining the GTF using the sub-

diastolic PVP waveforms calibrated to office brachial DP and SP, and building an autoregressive 

exogenous input GTF [43], did not improve the central BP waveform estimates in the training or 

even testing datasets (results not shown). 

The testing dataset was then analyzed to assess and compare the accuracy of the developed 

methods. The physiologic method as well as the physiologic method with the VTF replaced by the 

GTF were applied to the standard cuff pressure waveforms, whereas the conventional method was 

applied to the additional, sub-diastolic PVP waveforms calibrated to the brachial SP and DP 

estimated by the office device from the standard cuff pressure waveforms. Note that the office 

devices were developed based on reference auscultation BP measurements (which underestimate 

invasive brachial SP and overestimate invasive brachial DP [46]). Hence, prior to PVP waveform 

calibration, the office brachial BP levels were adjusted so that their bias errors were the same as 

those of the patient-specific method for each of the two patient cohorts. This bias correction 

allowed the GTF to serve its intended purpose of reducing PP amplification and could easily be 

implemented in practice. The errors between the resulting brachial and central SP, MP, DP, and 

PP measurements and the gold standard reference BP levels were quantified using conventional 

bias [] and precision [] statistics. The bias and precision errors for the lower, middle, and upper 
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tertile PP amplification subgroups were also computed to investigate the added value of the VTF 

method. Finally, the bias and precision errors of two methods were compared via paired t-tests and 

Pitman-Morgan tests [47], respectively. To account for multiple comparisons, a p  0.01 was 

considered significant. 

 

Results 

The training dataset was needed to develop the methods for investigation. However, the 

results from this dataset carry little meaning and did not offer additional insight. Hence, only the 

testing dataset results are provided. 

Table 2: Reference BP Parameters in the Testing Dataset 

 SP  

[mmHg] 

MP  

[mmHg] 

DP  

[mmHg] 

PP  

[mmHg] 

PP Amplification 

[unitless] 

Brachial  
134±21 (99 – 

192) 
96±13 (72 – 129) 71±11 (43 – 101) 63±19 (33 – 113) 

1.2±0.15 (0.99 – 

1.7) 
Central 

125±23 (85 – 

190) 
95±13 (69 – 128) 73±10 (47 – 101) 53±20 (26 – 108) 

Values are average ± SD (minimum – maximum). PP amplification is the ratio of brachial PP to 

central PP. 

 

Table 3: Brachial BP Bias Errors () and Precision Errors () in the Testing Dataset 

Method 

Brachial SP 

[mmHg] 

Brachial DP 

[mmHg] 

Brachial PP 

[mmHg] 

μ σ μ σ μ σ 

Omron -5.7 10.7 2.7 9.5 -8.4 12.9 

Patient-

specific 
0.7* 8.8* 3.5 7.3* -2.8* 9.4* 

Microlife -4.5 10.6 4.4 5.4 -8.9 13.2 

Patient-

specific 
-3.4 7.5* -1.1* 5.8 -2.3* 10.0* 

*p ≤ 0.01 compared to corresponding office device via paired t-test for  and Pitman-Morgan 

test for . 

 

Table 2 shows the averagestandard deviation (SD) and range of reference brachial and 
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central SP, MP, DP, and PP as well as PP amplification (ratio of brachial PP to central PP). All the 

BP parameters varied widely. Most notably, central SP and PP ranged over 105 and 82 mmHg, 

respectively. Table 3 shows the brachial SP, DP, and PP bias and precision errors of the patient-

specific method and the office devices. The patient-specific method yielded significantly lower 

precision errors than the office devices and thereby afforded superior calibration. As expected, the 

patient-specific method also produced significantly lower bias errors. However, the office device 

bias errors could be corrected in practice (by e.g., adding and subtracting constant values from 

brachial SP and DP). Hence, in this study, the BP levels of the office devices were adjusted to 

make their bias errors equal to those of the patient-specific method.  

 
Figure 7: Central BP bias and precision errors. Central SP, pulse pressure (PP), and DP bias 

errors () and precision errors () of the patient-specific method versus the office device (a 

population average method) and the physiologic method versus the conventional method in the 

testing dataset. *p ≤ 0.01 compared to corresponding method via paired t-test for  and Pitman-

Morgan test for . 

 

Fig. 7 shows the central SP, PP, and DP bias and precision errors of the patient-specific 

method versus the office device (top) and of the physiologic method versus the conventional 

method (bottom) aggregated over both cohorts. (The precision errors for each cohort were along 

the lines of Table 3.) The central BP errors of the patient-specific method and office device 
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represent the “starting point” errors prior to applying the transfer function. As expected, the central 

SP and PP bias errors were large and positive. While the two methods yielded the same bias errors 

due to the bias correction, the patient-specific method produced significantly lower precision 

errors.  

 
Figure 8: Bland-Altman plots of central BP errors. Bland-Altman plots of the central SP, PP, 

and DP errors of the physiologic method and conventional method in the testing dataset. 

 

Comparing the precision errors to those in Table 3, it can be inferred that the main source 

of these errors is the calibration error rather than PP amplification variability. Application of the 
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transfer function reduced the central SP and PP bias errors greatly but not the corresponding 

precision errors (compare top to bottom). The physiologic method afforded central BP bias errors 

of -0.6 to 2.6 mmHg and precision errors of 6.8 to 9.0 mmHg. These errors were significantly 

lower than those of the conventional method by 22% in terms of average RMSE. This error 

reduction was mainly due to improved PVP waveform calibration.  

 
Figure 9: Bias errors of the brachial and central BP. Central SP, PP, and DP bias errors of the 

patient-specific method versus the physiologic method versus the physiologic method with VTF 

replaced by GTF for different PP amplification (ratio of reference brachial PP to central PP) 

subgroups in the testing dataset. *p ≤ 0.01 between physiologic method and other method via 

paired t-test. The precision errors of the methods were similar for the subgroups.  

 

Fig. 8 shows Bland-Altman plots of the errors of the two featured methods for comparison. 
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Fig. 9 shows the central SP, PP, and DP bias errors of the patient-specific method versus the 

physiologic method versus the physiologic method with the VTF replaced by the GTF for the low, 

middle, and high PP amplification subgroups. (The precision errors were similar amongst the 

methods.) As expected, the patient-specific method yielded central SP and PP bias errors that were 

large and positive when PP amplification was high and that decreased appreciably with PP 

amplification. As also expected, the GTF significantly decreased the central SP and PP bias errors 

by mitigating the overestimation of these BP levels when PP amplification was higher but 

substantially increased the errors by underestimating central SP and PP when PP amplification was 

low. The VTF provided significantly lower central SP and PP bias errors over the whole PP 

amplification range by decreasing the pulse transit time parameter of the tube-load model transfer 

function with increasing MP. However, it was not always superior.  

 

While the VTF reduced or maintained the central SP and PP bias errors of the GTF, its 

added value overall was not large due to the higher precision errors of both methods (see Fig. 7). 

On the other hand, the patient-specific method yielded significantly lower central DP bias errors. 

Hence, the patient-specific DP could instead be used to improve central DP accuracy to a mild 

extent. Secondary results are as follows. The ensemble averaging method yielded a RMSE of the 

deflation PVP waveform with respect to the corresponding sub-diastolic PVP waveform of 

0.070.03. The time average of the deflation PVP waveform calibrated with patient-specific 

brachial SP and DP yielded MP bias and precision errors of 4.3 and 7.8 mmHg. Finally, the Td 

prediction equation produced a correlation coefficient between predicted and measured Td of 0.5.  
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Discussion 

We proposed a physiologic method to monitor the central BP waveform via a standard 

automatic arm cuff (see Fig. 3b). First, a patient-specific method that we recently introduced [22] 

is employed to estimate brachial BP levels from a cuff pressure waveform obtained during 

conventional deflation by leveraging a physiologic model and parameter estimation (see Fig. 4). 

This method can yield more accurate brachial BP levels than current population average methods, 

as we showed previously [23] and herein (see Table 3), and may thus reduce the major calibration 

error of current tonometric and oscillometric devices for non-invasive monitoring of central BP 

[32], [41], [42]. Then, an ensemble averaging/calibration method is applied to the same cuff 

pressure waveform to extract a “deflation PVP” waveform and scale it to patient-specific brachial 

SP and DP (see Fig. 5). This simple, yet physiology-based, method may eliminate the need for the 

additional step performed by the available oscillometric devices in which the cuff is re-inflated to 

a constant pressure to measure the PVP waveform, which is then calibrated to the population 

average brachial BP levels (see Fig. 3a). Finally, a VTF method is employed to convert the brachial 

BP-like waveform to the central BP waveform. The method defines the transfer function in terms 

of the pulse transit time (Td) and wave reflection coefficient () parameters of a physiologic model 

(see Fig. 6). The reflection coefficient is set to a nominal value, as the transfer function is often 

insensitive to this parameter, while the pulse transit time, which has significant impact on the 

extent to which the transfer function reduces PP amplification, is predicted based on its well-

known inverse relationship with MP (see Fig. 6). This simple, physiologic modeling method may 

thus adapt the transfer function to BP-induced changes in arterial stiffness unlike the GTF, which 

is utilized by most of the current tonometric and oscillometric devices (see Fig. 3a). In this way, 

central BP could be measured – for the first time – both reliably and in the exact same way as 
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traditional brachial cuff BP. 

We developed and evaluated the physiologic method using data from cardiac 

catheterization patients (see Table 1). These data included the cuff pressure waveform obtained 

during conventional deflation, the brachial BP levels estimated from this waveform by popular 

office devices, a “sub-diastolic PVP” waveform obtained during constant inflation at 60 mmHg, 

and gold standard invasive reference central and brachial BP waveforms. In the testing dataset, the 

reference BP parameters varied widely (e.g., central SP ranged from 85 to 190 mmHg) mainly due 

to differing degrees of patient arterial stiffness (see Table 2). The precision errors between the 

brachial SP and PP computed by the office device and reference central SP and PP were 11.3 and 

13.2 mmHg, respectively (see Fig. 10). These high “starting point” errors together with the wide 

BP parameter range underscored the challenge presented by the testing dataset. 

The physiologic method yielded central SP, DP, and PP bias errors within 2.6 mmHg in 

magnitude and precision errors within 9 mmHg (see diastolic PVP waveform calibrated with office 

brachial BP levels to derive the central BP waveform (see Fig. 3a) [34], [35], [38]. Since the office 

devices were built using auscultation rather than invasive BP as the reference and since there is 

systematic error between the two reference methods [46], the bias errors of the office brachial BP 

levels (see Table 3) were first corrected to be the same as the patient-specific method. A GTF 

defined by the tube-load model in Fig. 6, but with nominal values for both parameters, was then 

applied. Note that other possible implementations of the conventional method did not perform 

better. 

Compared to the conventional method, the physiologic method produced significantly 

lower central SP, DP, and PP errors (see Figs. 13 and 14). Overall, the physiologic method yielded 

a 22% error reduction. The improved calibration afforded by the patient-specific method was the 
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main contributor to the reduction (see Table 3 and Fig. 7). The transfer function adaptation to BP-

induced arterial stiffness changes offered by the VTF method was a secondary contributor and was 

most helpful relative to the GTF method in patients with low PP amplification (see Fig. 9) where 

it was able to reduce the average central BP RMSE by 10%. The VTF method did not reduce the 

error compared to the GTF method in patients with high PP amplification, as the Td prediction via 

MP actually underestimated Td on average. Further, the deflation PVP waveforms produced by the 

ensemble averaging method were similar enough to the sub-diastolic PVP waveforms that they 

hardly impacted the central BP errors (results not shown). 

Other methods for central BP monitoring via an automatic arm cuff are available that 

instead obtain a supra-systolic PVP waveform and/or compute central BP from a calibrated PVP 

waveform without using a GTF. One method applies a transfer function based on the tube-load 

model in Fig. 6 to a calibrated, supra-systolic PVP waveform to derive the central BP waveform 

[39]. The interesting idea is that, when the brachial artery is occluded by the supra-systolic cuff 

inflation, the forward and backward waves will be equal in magnitude [48]. In this way,  is 

correctly determined as unity. However, the transfer function is often insensitive to  [43], as we 

have mentioned, and whether the more important Td can be well determined from the proposed 

time delay between systolic PVP peaks or not is less certain. Further, the main source of error is 

the calibration rather than the transfer function, and the supra-systolic PVP waveform is small and 

thus susceptible to noise. Another method, which some of us developed, applies a multiple 

regression equation to several features of a calibrated, sub-diastolic PVP waveform of about 30 

sec in duration to predict central SP and PP [44], [49], [50]. This equation can yield significantly 

smaller central PP errors than a GTF by effectively reducing the calibration error [50]. The reported 

precision errors of the method are also lower than those herein for the physiologic method [49], 
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but the patient data for evaluation were not the same. The error differences could also be explained 

by the fact that the central BP waveforms derived by the physiologic method were obtained from 

single cuff deflation measurements, whereas the central BP levels predicted by the regression 

method represented the average of two cuff deflation measurements. Such averaging can reduce 

the precision error by a factor of up to 1/2. In any case, future comparisons of the physiologic 

method with other methods should be performed using the same data and analyses to obtain a 

conclusive assessment of their relative accuracy. 

Even if other methods prove more accurate than the physiologic method in head-to-head 

comparisons, the difference would presumably have to be large enough to justify their additional 

cuff inflation. Automatic arm cuffs are already cumbersome enough to use [16]. Requiring a 

prolonged sub-diastolic PVP waveform measurement, which could approximately double the 

measurement period, or a supra-systolic PVP waveform measurement, which is uncomfortable to 

the subject, may reduce patient compliance for using the device. Conversely, a method for 

measuring central BP with an acceptable level of error, but without changing the traditional 

measurement procedure, could increase the adoption of central BP.  

This study has limitations. One limitation is that the data were not homogeneous (see Table 

1). For example, two office devices (Microlife and Omron) were employed. Such heterogeneity 

could have added variability to our results. On the other hand, any variability introduced by the 

use of two devices may not have been substantial (see Table 3). Another limitation pertains to the 

VTF method. This transfer function neither accounts for differences in the shapes of brachial PVP 

and BP waveforms due to viscoelastic effects [51] nor is truly adaptive. That said, a superior 

transfer function method would not have made a major difference here, as the calibration error 

dominated. Adaptive transfer functions, such as those proposed by some of us [43], [51], [52] may 
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offer greater value when calibration error is not a factor such as when invasive peripheral BP 

waveforms are available or when calibrated radial artery tonometry waveforms are converted to 

likewise calibrated carotid artery tonometry waveforms.  

In conclusion, PP and SP are amplified in the brachial artery relative to the central aorta. 

So, it is central BP that truly affects cardiac performance. Moreover, central BP rather than brachial 

BP is a major determinant of the degenerative changes that occur in aging and hypertension [53]. 

Hence, central BP could provide greater clinical value than brachial BP. While several studies 

have demonstrated the added value of central BP [25], the extent of the difference may be 

considered unsatisfying. One possible explanation is that non-invasive central BP measurements 

suffer from substantial error due to the error introduced by the calibration step, which can be 

similar in magnitude to the difference between central and brachial BP levels. Another explanation 

is that the tonometric devices that have long been available for non-invasive central BP monitoring 

are not convenient enough for central BP to be studied broadly. We introduced a physiologic 

method to both mitigate the calibration error and obtain central BP measurements in the exact same 

way as traditional automatic cuff BP measurements. We showed that this method can yield central 

BP measurements that agree with gold standard reference measurements to a significantly greater 

degree than some current non-invasive devices. Future investigations may be worthwhile to 

confirm the accuracy of the new method, especially in a real-time device, and apply it broadly to 

determine the full clinical potential of central BP. 
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AN IPHONE APPLICATION FOR BLOOD PRESSURE MONITORING VIA THE 

OSCILLOMETRIC FINGER PRESSING METHOD 

 

The contents of this chapter were originally published as: 

1. Chandrasekhar A*, Natarajan K*, Yavarimanesh M*, Mukkamala R. An iPhone application 

for blood pressure monitoring via the oscillometric finger pressing method. Scientific Reports, 

2018. (*equally contributing authors) 

 

We developed an iPhone X application to measure BP via the “oscillometric finger pressing 

method”. The user presses her fingertip on both the front camera and screen to increase the external 

pressure of the underlying artery, while the application measures the resulting variable-amplitude 

blood volume oscillations via the camera and applied pressure via the strain gauge array under the 

screen. The application also visually guides the fingertip placement and actuation and then 

computes BP from the measurements just like many automatic cuff devices. We tested the 

application, along with a finger cuff device, against a standard cuff device. The application yielded 

bias and precision errors of -4.0 and 11.4 mmHg for SP and -9.4 and 9.7 mmHg for DP (n = 18). 

These errors were near the finger cuff device errors. This proof-of-concept study surprisingly 

indicates that cuff-less and calibration-free BP monitoring may be feasible with many existing and 

forthcoming smartphones. 

 

Introduction 

High BP is a major, modifiable cardiovascular risk factor [4], [54], yet hypertension 

awareness and control rates are low [5]. Ubiquitous BP monitoring could improve these rates, but 

existing devices require inflatable cuffs and thus do not afford such monitoring. While cuff-less 

BP measurement methods are being widely pursued, many of the methods require calibrations with 

cuff BP measurements [16], [55]. 
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Recently, we proposed a method for cuff-less and calibration-free BP monitoring via a 

smartphone [30]. The method represents an extension of the time-honored oscillometric cuff BP 

measurement principle. The idea is for the user to serve as the actuator (instead of the cuff) by 

pressing her fingertip against the phone to steadily increase the external pressure of the underlying 

artery, while the phone, embedded with PPG and force transducers, serves as the sensor (rather 

than the cuff) to measure the resulting variable-amplitude blood volume oscillations and applied 

pressure. The phone also visually guides the finger actuation and then computes BP from the 

measurements just like a cuff device. We developed a device in the form of a custom PPG-force 

sensor unit affixed to the back of a smartphone to implement the “oscillometric finger pressing 

method” and showed that the device can be usable and accurate compared to cuff devices. 

However, the need for special sensors above and beyond the smartphone limits the accessibility of 

the method. 

Here, we developed a smartphone application that leverages PPG and force sensors already 

in the phone to implement the oscillometric finger pressing method. We then tested the application 

against cuff BP measurements for a proof-of-concept demonstration. 

 

Materials and Methods 

We performed two sets of human studies under protocols approved by the Michigan State 

University Institutional Review Board and in accordance with relevant guidelines and regulations. 

We obtained written, informed consent from each subject. The purpose of the first study was to 

develop the iPhone application and a method for estimating the finger pressing contact area. The 

purpose of the second study was to conduct a proof-of-concept evaluation of the application 

against cuff devices. Note that the application did not output BP or a try-again message in real 
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time for the sake of convenience (as the BP computation algorithm of our previous device was 

implemented as an Android application [30] instead of an iOS application needed here). We thus 

applied the code for the BP computation algorithm of the previous device off-line to the finger 

measurements from the application while blinded to the cuff BP measurements.  

 

Application Development  

We studied 22 healthy subjects (age, 27±3 years; height, 169±12 cm; weight, 73±11, kg; 

45% females). For each subject, we took two or three measurements of the fingertip “rectangular 

box” width (w) and height (h) via the application and three fingerprints via an inkpad and graph 

paper. For each fingerprint, the subject pressed firmly and uniformly in the normal direction. We 

averaged the w (mm) and h (mm) measurements and computed the reference finger pressing 

contact area (A, mm2) as the average of the number of squares of fingerprint ink on the graph paper 

that were 2.7 mm (distance from the camera center to the screen edge) above the middle of the 

fingertip (see rationale in Results). We plotted A versus each of w, h, and wh. After excluding 

two outlier data points, each set of 20 data points appeared to be well fit by a line. We found that 

A was best predicted from wh (see line formula presented under Results).  

 

Application Testing  

Experimental Protocol 

We studied 20 different subjects (age, 33±10 (18-55) years; height, 169±7 cm; weight, 

66±10, kg; 45% females). This number of subjects is congruent with many other published studies 

on cuff-less BP measurement [16]. We recruited most of these subjects from the cohort employed 

for testing our previous device [30]. Sixteen of the subjects had never used the iPhone application, 
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whereas the other four subjects were experienced users of the application. The inclusion criteria 

were: (i) ages 18 to 60 years and (ii) normotensive or hypertensive. The exclusion criteria were (i) 

cardiovascular disorders other than hypertension or (ii) problems with fine motor control. 

We commenced study of each subject by making the same measurements as the first human 

study. However, in this evaluation study, the application estimated the finger pressing contact area 

by applying the average of the w and h measurements to the line formula. For the new users, we 

then gave demonstrations on how to use the application to make finger measurements. We allowed 

them to perform three to six practice trials. We concluded study of each subject with a series of 

measurements as follows. We obtained three reference BP measurements via a standard 

oscillometric arm cuff device (BP786, Omron, Japan). We then had the new users make four finger 

measurements with the iPhone application and the experienced users make two finger 

measurements while holding the phone well below heart level to raise BP. We next measured the 

brachial BP waveform with a finger cuff device based on the volume-clamp method (Finometer 

Model 2, Finapres Medical Systems, The Netherlands). We thereafter obtained two more reference 

BP measurements using the standard cuff device. We also had the experienced users make two 

more measurements while holding the phone at heart level later. 

 

Data Analysis 

We applied the same code employed by our previous device [30] off-line to compute 

brachial BP from the entire finger blood volume oscillation and pressure recordings from the 

application or output a try-again message. We documented the number of BP measurements and 

try-again messages. We averaged all BP measurements from the iPhone application for each new 

user and each experienced user holding the device below the heart and averaged the last four BP 
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measurements from the arm cuff device. For the experienced users, we added a gh measurement 

provided by the finger cuff device (where  is the known blood density (near that of water), g is 

gravity, and h is the vertical distance between the heart and device) to the SP and DP measurements 

of the reference arm cuff device. We also likewise measured the reference finger pressing contact 

area via the fingerprinting.  

As in our previous study [30], we used standard analyses to assess the SP and DP 

measurements from the iPhone application as well as the finger cuff device, each against the 

reference BP measurements from the arm cuff device. We assessed accuracy qualitatively in terms 

of correlation and Bland-Altman plots and quantitatively in terms of the correlation coefficient (r), 

bias error (µ, mean of the errors), and precision error (, standard deviation of the errors). We also 

assessed BP measurement repeatability via the mean absolute difference of successive 

measurements at heart level per subject in mmHg and evaluated the finger pressing contact area 

estimates via the mean absolute difference relative to the reference measurements in percent. Note 

that we only assessed the repeatability of BP measurements made with the iPhone at heart level, 

as it was not easy to perform BP measurements with the device well below the heart. 

 

Results 

iPhone Application 

Fig. 1 illustrates the oscillometric cuff BP measurement principle, and Fig. 10a shows the 

application developed to extend the principle to measure BP with the latest iPhone (X model). The 

front of this phone is all screen, except for a small notch that includes the camera for taking 

“selfies”. The application employs this front camera as the PPG sensor where the light source is 

ambient light and/or screen light (bright setting, which we anecdotally found to suffice in the dark). 
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Spatial averaging followed by band-pass (1.8-4.3 Hz) filtering of the red video channel is applied 

to extract the blood volume oscillations. 

 
Figure 10: iPhone application implementation of the oscillometric finger pressing method 

for BP measurement. (a) Photograph of an iPhone X application to implement the “oscillometric 

finger pressing method” by measuring finger pressure via the strain gauge array under the screen 

and finger blood volume oscillations via the front camera. Reproduced from reference [56]. (b) 

Photograph of a user initializing the application by measuring fingertip width and height from the 

top of the fingertip to the artery near the middle of the fingertip. (c) Photograph of the user making 

a measurement by placing the fingertip within a rectangular box of the measured width and height; 

holding the phone horizontally at heart level while resting the fingertip flat on the phone; and 

pressing to increase the pressure within the two target blue lines. 
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The application employs the strain gauge array under the sphone screen (but not the notch) 

for employing “peek and pop” via “3D Touch” [56] as the force sensor. Apple’s UIKit is used to 

extract the strain gauge output [57]. Through placement of high density weights on the screen 

adjacent to the camera, the application derives force (F, grams) from the strain gauge output (V) 

as F=443.75V, where V takes on 400 levels from 0 to 0.83 (firm setting). Like our previous device 

[30], the application plots the data as they are recorded to visually guide the finger actuation. 

Fig. 10b shows that the application also includes measurement of the user fingertip 

dimensions. One purpose of this measurement is to guide fingertip placement on the screen when 

measuring BP such that the underlying transverse palmar arch artery (at about the middle of the 

fingertip) is above the camera. Another purpose is to estimate the finger pressing contact area on 

the screen, which is needed to compute finger pressure as force divided by area. This measurement 

need only be made once per user, as finger dimensions and pressing contact area hardly change 

throughout adulthood [58]. Based on a training dataset comprising index fingertip width and height 

measurements via the application and reference finger pressing contact area measurements via 

fingerprinting from 20 subjects, the screen finger pressing contact area (A, mm2) is calculated as 

A=0.56wh-5.67, where w and h are specifically the fingertip width at the base of the nail and half 

the height of the fingertip starting from the crease at the top knuckle minus 2.7 mm (distance from 

the camera center to the screen edge). Note that the fingerprints were obtained during firm pressing 

and may thus be valid around the maximum blood volume oscillation regime, which includes mean 

BP and is mainly used for BP computation [22]. Based on fingerprint dimensions from thousands 

of subjects [58] and the force measurement specifications above, we estimate that 95% of people 

could achieve finger pressure at maximum of >178 mmHg and resolution of <2 mmHg with the 

application. These specifications are largely congruent with BP measurement.  
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Usage 

The user initializes the application by placing her index fingertip so that the crease at the 

top knuckle is aligned with the black horizontal line (Fig. 10b). The user or another person then 

moves the red vertical and horizontal lines to measure the fingertip width and height (Fig. 10b). 

The user may then measure BP, as shown in Fig. 10c. The user places her fingertip so that it is 

tightly encompassed by the rectangular box of width w and height h near the camera when viewing 

from directly above; holds the phone horizontally at heart level while resting her fingertip flat on 

the phone for uniform, normal direction force application; and presses to keep the finger pressure 

within the target blue lines until enough data have been obtained. Using the algorithm employed 

by our previous device [30], brachial BP is then computed from the finger measurements or a try-

again message is outputted.  

 

Accuracy 

We tested the iPhone application in 20 different subjects. These users were mainly from 

the cohort employed for testing our previous device (to facilitate comparisons) and included four 

experienced users of the application. Each new user performed three to six practice trials followed 

by four measurements. Each experienced user performed two measurements holding the phone 

well below heart level to raise BP and two normal measurements.  

The application yielded BP in about half the measurements for the new users and outputted 

BP in 18 of the users. However, the application did not yield BP in the other two users due to 

poorly estimated finger pressing contact area (29-43% error relative to fingerprinting compared to 

<7% mean absolute error in the 18 subjects). The BP measurements from each new user and 
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experienced user holding the device below the heart were averaged and assessed against BP 

measurements from a standard arm cuff device.  

 
Figure 11: Bland-Altman and scatter plots of BP estimation errors. Application accuracy 

results (n = 18 users). Correlation and Bland-Altman plots comparing the brachial SP 

measurements from the (a)-(b) iPhone application and (c)-(d) a finger cuff device to those from a 

standard arm cuff device. The closed circles are data from new users holding the finger devices 

at heart level, and the open circles are data from experienced users holding the finger devices 

below the heart to increase BP. r, correlation coefficient; , mean of errors (bias error); , 

standard deviation of errors (precision error). 

Fig. 11a-b shows correlation and Bland-Altman plots for the SP measurements from the 

18 users. The bias errors (µ) and precision errors (σ) of the application were -4.0 and 11.4 mmHg 

for SP over about a 50 mmHg range of BP. Fig. 11c-d shows corresponding plots for a finger 

cuff device, which is FDA-cleared for measuring brachial BP [59]. The application showed 

errors that were only about 2 mmHg higher on average than the finger cuff device. 
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Figure 12: Application accuracy results (n = 18 users). Correlation and Bland-Altman plots 

comparing the brachial DP measurements from the (a)-(b) iPhone application and (c)-(d) a finger 

cuff device to those from a standard arm cuff device. The closed circles are data from new users 

holding the finger devices at heart level, and the open circles are data from experienced users 

holding the finger devices below the heart to increase BP. r, correlation coefficient; , mean of 

errors (bias error); , standard deviation of errors (precision error). 

 

Fig. 2a-b shows correlation and Bland-Altman plots for the SP measurements from the 18 

users. The bias errors (µ) and precision errors () of the application were -4.0 and 11.4 mmHg for 

SP and -9.4 and 9.7 mmHg for DP over about a 50 mmHg range of BP. Fig. 2c-d shows 

corresponding plots for a finger cuff device, which is FDA-cleared for measuring brachial BP [59]. 

The application showed errors that were only about 2 mmHg higher on average than the finger 

cuff device. 

Discussion 

The iPhone application errors are close to our previous device [30]. However, the 
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application did not yield BP in two users due to finger pressing contact area mis-estimation, which 

is not a factor for the device. The application also yielded more try-again messages (about 50 

versus 40%) and less repeatable BP measurements (e.g., mean absolute difference between 

successive measurements at heart level of about 7 versus 5 mmHg) likely due to variability in 

fingertip positioning despite the rectangular box guide. Hence, not surprisingly, the application 

may be less effective than our device, which employs application-specific sensors. 

However, any reduction in effectiveness may be offset by the increased accessibility of a 

smartphone application. An estimated 50 million iPhone X models have already been sold [60]. 

Moreover, other smartphones have 3D Touch capability including iPhone models 6S and higher 

[56] and the Huawei Mate S model [61]. Hence, applications for these phones may likewise be 

developed (with appropriate modifications for differing arrangements of the camera/PPG sensor 

and screen). In 2017, 328 million iPhones with 3D Touch capability (excluding iPhone 8 and X) 

were being used [62]. Hence, it is conceivable that the oscillometric finger pressing method could 

reach about 500 million smartphones already in use. 

Our iPhone application should be improved. Most importantly, the finger pressing contact 

area was mis-estimated in two subjects and variably estimated in some other subjects due to 

fingertip mis-positioning. In practice, when the application consistently outputs try-again 

messages or unusual BP measurements, the area could be determined with just one cuff BP 

measurement (as opposed to periodic cuff calibrations required by competing methods [16], [55]). 

The application could also output a running average of the past several BP measurements (instead 

of individual BP measurements) to mitigate random variability resulting from fingertip mis-

positioning and other factors [55]. In this way, the application may be able to yield BP errors that 

are closer to the putative bias and precision errors limits of 5 and 8 mmHg [63] than the results 



 

 

42 

reported herein. However, there may be better solutions. One possibility is to measure the area 

(even at different finger pressures) via the fingerprint sensor under the screen for authentication in 

upcoming smartphones including the 2019 iPhone X [64]. The optimal solution is if Apple were 

to provide access to an accurate area measurement as the user performs the actuation via the 

capacitive sensor array also under the screen [56]. Such access may be possible, as superior area 

assessment may be obtained with Android devices [65]. In addition, the infrared camera also on 

the notch of the iPhone X (Fig. 10a) for authentication may be used to provide higher-fidelity 

blood volume oscillations in cold and other low signal conditions [66]. Finally, the BP computation 

algorithm needs further development to satisfy the accuracy requirements of a regulatory test [63].  

In summary, this proof-of-concept study surprisingly indicates that cuff-less and 

calibration-free BP monitoring may be feasible with many existing and forthcoming smartphones 

by leveraging sensors built-in for other purposes. Such ubiquitous BP monitoring may improve 

hypertension awareness and control rates and thereby help reduce the incidence of cardiovascular 

disease and mortality.  
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PPG FAST UPSTROKE TIME INTERVALS CAN BE USEFUL FEATURES FOR CUFF-

LESS MEASUREMENT OF BLOOD PRESSURE CHANGES IN HUMANS 

 

The content of this chapter is pending publication as: 

1. Natarajan K, Block RC, Yavarimanesh M, Chandrasekhar A, Mestha LK, Inan OT, Hahn JO, 

Mukkamala R. PPG fast upstroke time intervals can be useful features for cuff-less 

measurement of blood pressure in humans. In Preparation. 

 

PPG waveform analysis is being increasingly investigated for continuous, non-invasive, and 

cuff-less BP measurement. However, the efficacy of this data-driven approach and the useful 

features and models remain largely unclear. The objectives were to develop easy-to-understand 

models relating PPG waveform features to BP changes (after a single cuff calibration) and to 

determine conclusively whether they provide added value or not in BP measurement accuracy. 

The study data comprised finger, toe, and ear PPG waveforms, electrocardiogram (ECG) 

waveforms, and reference manual cuff BP measurements before and after slow breathing, mental 

arithmetic, cold pressor, and nitroglycerin. The data was from 32 normotensive and hypertensive 

humans.  

Stepwise linear regression was employed so as to create parsimonious models for predicting 

the intervention-induced BP changes from popular PPG waveform features, pulse arrival time 

(PAT, time delay between ECG R-wave and PPG foot), and subject demographics. Leave-one-out 

cross validation was applied to compare the BP change prediction RMSEs of the resulting models 

to reference models in which PPG waveform features were excluded as input. The finger b-time 

(PPG foot to minimum second derivative time) and ear slope transit time or STT (PPG amplitude 

divided by maximum derivative), when combined with PAT, reduced the systolic BP change 

prediction RMSE of reference models by 6-7% (p<0.022). The ear STT together with the pulse 

width reduced the diastolic BP change prediction RMSE of the reference model by 13% (p=0.003). 
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Hence, PPG fast upstroke time intervals can offer some added value in cuff-less measurement of 

BP changes. 

 

Introduction 

PPG is a simple yet effective technique for measuring pulsatile blood volume changes in 

small arteries. Since blood volume is related to BP, PPG waveform analysis is believed to be a 

potential approach for achieving continuous, non-invasive, and cuff-less BP measurement 

(typically in between periodic cuff measurements). PPG waveform analysis is more convenient 

than the PTT approach [16], which nominally requires two sensors for measurement. Alternatively, 

it can be combined with PTT, which is often detected via a PPG waveform, to seamlessly improve 

its accuracy.  

However, unlike PTT, PPG waveform analysis for BP measurement may have little 

theoretical basis. The Kelvin-Voigt model of viscoelasticity, which is profound in small arteries 

[16], provides a simple relationship between the AC components of same site BP and PPG 

waveforms in the frequency-domain (∆𝑃(𝜔) and ∆𝑉(𝜔)) as follows: 

 ∆𝑉(𝜔) =
1

𝑗𝜔𝜂+𝐸
∆𝑃(𝜔),  

where 𝐸 and 𝜂 are the elastic modulus and coefficient of viscosity of the arterial wall [67]. The 

transfer function here is a lowpass filter with gain of 1/𝐸 and cutoff frequency of 𝐸/𝜂. Hence, the 

PPG waveform is a lowpass filtered version of the BP waveform. In this way, the PPG waveform 

is embedded with BP information. However, the lowpass filter changes with BP variations and 

smooth muscle contraction, which is modulated by the brain on the time scale of seconds and can 

occur independently of BP changes [16]. So, for example, the PPG amplitude can vary with BP or 
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viscoelastic parameters. For this reason, as shown in Fig. 13, the PPG amplitude has little value in 

predicting BP changes during different physiologic interventions [68]. 

  

 
Figure 13: Average BP and PPG amplitude changes. The peak-to-peak amplitude of the photo-

plethysmography (PPG) waveform does not track intervention-induced blood pressure (BP) 

changes [68]. SB is slow breathing; MA, mental arithmetic; CP, cold pressor; and NTG, 

nitroglycerin. Bars are mean±standard error (SE). 

 

Nevertheless, PPG waveform analysis for cuff-less BP monitoring is being increasingly 

investigated [69]–[75] due to its ultra-convenience and the current era of data-driven, machine 

learning. However, the accuracy of this approach, especially in terms of added value over 

demographic and other basic information or PTT, and the useful features and models relating the 

features to BP remain largely unclear. Knowledge of useful features is particularly important given 

that a rigorous theory may be lacking. Furthermore, many of the studies have not invoked diverse 

interventions to change BP [73]–[75], which is crucial for assessing the more viable “cuff-
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calibrated, cuff-less” approach, or have used surgery or intensive care data [69], [70], which 

include challenging BP changes but may not be germane to interesting hypertension applications. 

We investigated PPG waveform analysis in terms of tracking BP changes induced by a 

battery of diverse BP interventions in normotensive and hypertensive human volunteers. We 

specifically aimed to create readily interpretable models relating PPG waveform features to BP 

changes and to determine conclusively whether they provided added value or not in BP 

measurement. The models that we reveal with accompanying results herein suggest that PPG fast 

upstroke time intervals can offer some added value in cuff-less measurement of BP changes. 

 

Materials and Methods 

 

We analyzed physiologic data that we previously collected from human subjects. Our 

overall approach was to apply stepwise linear regression to create models for predicting 

intervention-induced BP changes from popular PPG waveform features, PTT, and demographics 

and use leave-one-out cross validation to compare the BP change prediction errors of the resulting 

models to reference models in which PPG waveform features were excluded as input. Physiologic 

data was collected from human subjects under a protocol approved by, and in accordance with the 

relevant guidelines and regulations of, the Institutional Review Boards of University of Rochester 

and Michigan State University. All subjects gave written, informed consent prior to their 

participation in the study. 

 

 Human Physiologic Data 

We described the human physiologic data for study in detail previously [68]. Briefly, we 

performed the procedures under IRB approval and with written, informed consent from the 
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subjects. We recorded finger, toe, and ear PPG waveforms, an ECG waveform, and manual cuff 

BP before and after slow breathing (SB), mental arithmetic (MA), a cold pressor test (CP), and 

sublingual nitroglycerin (NTG, for the majority of subjects). As shown in Fig. 14, these 

interventions increased or decreased systolic and diastolic BP (SP and DP) to varying extents via 

distinct physiologic mechanisms.  

We extracted 214 sets of the four waveform segments with minimal artifact and reference 

cuff BP values from 32 subjects (see characteristics in Results) for analysis. We previously 

analyzed these data to compare conventional PTTs as markers of BP and found that the best 

correlation by a significant extent was between toe pulse arrival time (PAT), which is the time 

delay between the ECG R-wave and toe PPG trough or foot, and SP (subject average r = -

0.63±0.05) [68]. 

 
Figure 14: The subjects underwent a battery of interventions to change their BP. A battery 

of challenging interventions were employed to change BP differently via distinct physiologic 

mechanisms [76]–[79]. SP and DP are systolic and diastolic BP. Periods of recovery were included 

before each intervention to obtain a starting-point measurement for each intervention. Slow 

breathing and nitroglycerin produced decreases in BP while mental arithmetic and cold pressor 

increased BP. 

 

Data Analysis 

 We further analyzed the data to determine if incorporating PPG waveform features could 

improve the tracking of the intervention-induced BP changes. Our strategy for this data-driven 

investigation was to employ methods intended for when the number of subjects is not high. 
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Pre-Processing 

We first applied bandpass filters with cutoff frequencies of 0.5 and 6 Hz to the finger and 

toe PPG waveforms and 0.5 and 9 Hz to the ear PPG waveform. These cutoff frequencies 

represented a good trade-off between removing noise and retaining features. We detected the peaks 

of the PPG waveform via ECG-gating and then the waveform feet using the intersecting tangent 

method [16]. After subtracting the amplitude at the leading foot of each PPG waveform beat from 

the entire beat, we computed the median of the leading foot to lagging foot time interval, amplitude 

and timing of the peak, and amplitude of the lagging foot of each beat in a segment. We selected 

the five beats with features closest to the median values for the segment. 

 

Feature Extraction  

We limited the candidate PPG waveform features to popular or promising ones. Fig. 15 

shows the 31 candidate features that we considered. The amplitudes, timings, and areas of the PPG 

waveform and its first and second derivatives are perhaps the most widely studied [80], while 

“slope transit time (STT)” has been shown to be inversely correlated with BP during respiratory 

maneuvers [81]. While other features were also used in literature, many were not well-defined or 

did not always exist, even in a PPG waveform of high signal quality. We also detected ear, finger, 

and toe PAT as the time delay between the ECG R-wave and the PPG waveform foot as another 

waveform feature that would also require an ECG measurement. We extracted all of these features 

from each of the five beats of a segment and then took the mean of the three middle values for 

each feature.  
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Figure 15: 31 PPG waveform features considered. A total of 31 popular or promising PPG 

waveform features [80], [81] were considered as candidates for predicting the intervention-induced 

BP changes. Subject demographic information and pulse arrival time (PAT, the time delay between 

the R-wave of the ECG waveform and the leading foot of the PPG waveform) were also possible 

features. While other features were also commonly used in literature, many of them were not well-

defined and did not always exist, even in a PPG waveform of high signal quality. We used the 

features that were able to be well-defined. 

 

Model Development 

We sought to develop linear regression models to predict the BP changes relative to the 

first or “baseline” cuff BP measurement of each subject. We thus subtracted the baseline cuff 

BP/waveform feature value from the remaining cuff BP/waveform features values of each subject. 

We also normalized each waveform feature change with the baseline feature value (unless it was 

near zero). In addition, we allowed age, gender (1 or 2), height, weight, and the baseline cuff BP 

values as possible person features. The models for mapping waveform features (𝑤) and person 

features (𝑝) to BP (𝑃𝑥 with 𝑥 = 𝑠 for systolic and 𝑥 = 𝑑 for diastolic) via linear parameters (𝛼) 

thus took on the following form: 
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𝑃𝑥
𝑖,𝑗
− 𝑃𝑥

1,𝑗
= ∑𝛼𝑘 (

𝑤𝑘
𝑖,𝑗
− 𝑤𝑘

1,𝑗

𝑤𝑘
1,𝑗 or 𝑝𝑘

𝑗
) + 𝑒𝑥

𝑖,𝑗

𝑚

𝑘=1

, 

where the superscripts 𝑖 and 𝑗 denote ith value of the jth subject; the subscript 𝑘 signifies the kth 

feature; 𝑚 indicates the number of features (model order); and 𝑒 is the model residual error. For 

gender, we used two features to effectively define one model intercept for males and another model 

intercept for females.   

We selected the features and estimated the model parameters and order using forward 

stepwise regression with an “elbow” method. We added one feature at a time to the model, starting 

with zero features and ending with six features, and selected the new feature at each iteration as 

the one that minimized the mean square of the residual error. We conservatively chose six as the 

maximal model order, as 20-30 data points are typically needed to estimate one parameter and 

about 180 data points were available to estimate the BP change prediction model. In post hoc 

analysis, the results proved to be insensitive to small changes to the maximal model order. We 

then fitted two lines to the monotonically decreasing curve relating mean squared residual error to 

the model order and selected the order, and thus the final model, via the intersection of the two 

lines. We found that this empirical method to identify the curve elbow yielded more parsimonious 

models than other methods such as lasso and ridge regression. 

We employed the above steps in a leave-one-out cross validation framework. We 

specifically estimated 32 models using data from all combinations of 31 of the subjects and left 

the remaining subject data for testing each model. In this way, we leveraged as much data as 

possible for training while also allowing testing on all subjects without using the same data for 

training and testing. We created separate models for the finger, toe, and ear PPG waveforms to 

predict the different changes in SP and DP and thus arrived at six PPG waveform feature models.   
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 For comparison, we also created three reference models. The first model is to use the 

baseline cuff BP value as the predictor of the ensuing BP (i.e., no BP changes) in the subject 

(“baseline BP reference model”). The second model is to predict the BP changes from the person 

features using the stepwise regression, elbow, and leave-one-out methods (“demographic reference 

model”). The third model is to predict the BP changes from only 1/PAT, which correlated slightly 

better than PAT to BP here, for each PPG waveform using regression and leave-one-out methods 

(“PAT reference model”). 

 

Model Evaluation 

  We evaluated the 182 pooled BP change predictions of each model against the reference 

cuff measurements from the 32 leave-one-out test subjects using standard correlation and Bland-

Altman analyses. We computed the Bland-Altman bias and precision errors ( and ) via the basic 

sample mean and SD of the errors, as mixed effects modeling to account for the repeated measures 

per subject [82] hardly impacted the . To conveniently quantify the overall error, we used the 

RMSE = (2+2).  

We used the RMSE metric to perform statistical comparisons of two models (i.e., PPG 

waveform feature model versus a reference model). We applied non-parametric cluster 

bootstrapping to calculate confidence intervals and make the comparisons [83]. We took 10,000 

random samples of the 32 subjects with replacement of the subjects. The number of subjects in 

each sample was 32, and we included all BP change errors from a subject per sample. For each 

sample, we computed the RMSE as described above for each model and the difference between 

the RMSEs of the two models for comparison (model 1 – model 2). We calculated both 95% CIs 
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of each RMSE and of each RMSE difference from the corresponding distribution of 10,000 values 

via a standard percentile bootstrap. 

Table 4: Root-mean-squared-errors (RMSEs) of the intervention-induced blood pressure 

(BP) changes predicted by the models against the reference cuff BP measurements 

 

Models  

RMSE (lower and upper 95% CIs) 

(Mean () ± SD ()) 

 SP (Systolic BP) DP (Diastolic BP) 

Baseline BP Reference 
10.9 (9.5 - 12.4) 6.5 (5.6 - 7.3) 

(3.7 ± 10.2) (0.9 ± 6.4) 

Demographic Reference 
10.8 (9.2 - 12.7) 6.6 (5.7 - 7.5) 

(0.5 ± 10.8) (0.0 ± 6.6) 

Finger PAT Reference 
10.1 (8.6 - 11.8) 6.3 (5.5 - 7.1) 

(2.8 ± 9.7) (0.6 ± 6.3) 

Ear PAT Reference 
10.2 (8.6 - 11.9) 6.5 (5.6 - 7.4) 

(1.7 ± 10.1) (0.6 ± 6.5) 

Toe PAT Reference 
9.1 (7.6 - 10.9) 6.2 (5.3 - 7.1) 

(2.1 ± 8.9) (0.4 ± 6.2) 

    
  

  

Finger PPG Waveform Feature 

SPi = 80.6 (
1

PAT
)
i

+ 50.4(b⁃timei)+ SP
1 

9.5 (7.9 - 11.5)*† 

(2.3 ± 9.3) 

7.0 (6.1 - 7.7) 

(0.5 ± 7.0) 

Ear PPG Waveform Feature 

SPi = 30.2(
1

PAT
)
i

+ 26.2(STTi)+ SP
1 

 

DPi = 30.6(STTi) − 40.4(PWi)+ DP
1 

9.5 (7.8 - 11.4)*† 

(0.7 ± 9.5) 

5.7 (5.0 - 6.3)* 

(0.2 ± 5.7) 

Toe PPG Waveform Feature 

SPi = 141.9 (
1

PAT
)
i

+ SP
1 

9.1 (7.6 - 10.9)* 

(2.1 ± 8.9) 

6.5 (5.6 - 7.4) 

(0.2 ± 6.5) 

*denotes statistical significance (p < 0.05 with Holm’s correction for multiple comparison) versus 

baseline BP reference model (which predicts BP during the interventions simply via the baseline 

cuff BP measurement) and † denotes statistical significance versus corresponding pulse arrival 

time (PAT) reference model (which predicts the BP changes via 1/PAT alone). The demographic 

reference model (which predicts the BP changes via subject age, height, weight, gender, and 

baseline cuff BP) did not offer value and was not compared. The PPG waveform feature models 

are shown only if they provided added value. Each feature (1/PAT, b-time, STT, and PW as defined 

in Fig. 14) actually represents the current feature minus the baseline feature divided by the baseline 

feature as shown in Fig. 15. 
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If the upper CI for the RMSE difference were less than zero, then model 1 would be 

considered superior to model 2. Since we made six comparisons, we applied a Holm’s correction 

[84] such that a two-sided p < 0.05/(6+1-k), where k is the comparison with the kth lowest p-value 

(i.e., X = 99.17 for k = 1), was considered statistically significant. 

 

 
Figure 16: Correlation and Bland-Altman plots of estimated and reference BP. Correlation 

and Bland-Altman plots of BP changes predicted by the PPG waveform feature models that offered 

added value versus the reference cuff BP measurements. M = 182 measurements from N = 32 

subjects. The dashed line in the correlation plots is the best-fit line; r is the correlation coefficient; 

and  and  are bias and precision errors respectively in mmHg. While the toe PPG waveform 

feature model shows most correlation with the reference cuff BP, the ear PPG waveform PPG 

model produced a more significant improvement from the baseline BP reference. 
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Results 

 A total of 214 PPG-BP measurement sets from 32 subjects (50% female; 52 (17) (mean 

(SD)) years of age; 166 (10) cm in height; 89 (34) kg in weight; 25% with treated hypertension; 

31% with smoking history; and 9% with LDL cholesterol >=190 mg/dL) formed the study data. 

The baseline SP and DP (mean± standard error (SE)) were 121±3 and 79±2 mmHg (N=32). Table 

4 shows the results of the PPG waveform feature models versus reference models in leave-one-out 

prediction of the intervention-induced BP changes relative to the subject baseline values (M=182). 

This table also presents those models that proved to be useful. Each of the useful models was stable 

across the 32 leave-one out training sets in the sense that 97-100% of the 32 models yielded the 

same features, and the models displayed in the table are representative ones resulting from training 

on all 32 subject datasets.  

The baseline BP reference model, which simply employs the baseline cuff BP of each 

subject to predict the ensuing BP, yielded RMSEs of 10.9 mmHg for SP and 6.5 mmHg for DP. 

While these error levels are near or within the regulatory limits of 5 and 8 mmHg bias and precision 

errors [63], the BP change prediction models must yield lower errors to offer any value. The 

demographic reference model, which includes subject age, gender, height, weight, and the baseline 

cuff SP and DP as candidate features, provided no such value. The PAT reference models, which 

include the time delay as the sole feature, were helpful in predicting changes in SP but not DP. As 

shown previously [68], toe PAT was clearly the best in tracking the SP changes.  

 Three of the six PPG waveform feature models afforded added value over the reference 

models. The finger and ear PPG waveform feature models for predicting SP changes included 

1/PAT as the primary feature and the b-time (time to the minimum second derivative of the PPG 

waveform) or STT (amplitude divided by the maximum derivative of the PPG waveform) as a 
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secondary feature, all with positive regression parameters. These models yielded RMSEs of 9.5 

mmHg (p < 0.022 versus baseline BP and finger and ear PAT reference models). The ear PPG 

waveform feature model for predicting DP changes included STT as the primary feature with 

positive regression parameter and PW (pulse width) as a secondary feature with negative 

regression parameter. This model produced an RMSE of 5.7 mmHg (p = 0.003 versus baseline BP 

reference model). Note that the toe PPG waveform feature model for predicting SP changes 

included only 1/PAT as input. However, this model yielded an RMSE of 9.1 mmHg (p = 0.004 

versus baseline BP reference model).  

 Fig. 16 shows correlation and Bland-Altman plots of the BP change predictions of the four 

useful PPG waveform feature models versus the reference cuff BP measurements (M=182). These 

results allow visualization of the key numerical results in the Table and also indicate that the 

correlation coefficients between the predicted and reference BP changes were 0.39-0.49.  

In sum, the b-time and STT, which are time intervals of the fast upstroke, of ear and finger 

but not toe PPG waveforms were the only useful features in tracking changes in BP. For SP, these 

PPG fast upstroke time intervals were helpful in conjunction with PAT but not as standalone 

features. For DP, STT of the ear PPG waveform was useful by itself. The PPG fast upstroke time 

intervals were positively rather than negatively related to the BP changes. They reduced the BP 

change RMSEs of the reference models by 6-13%.  

 

Discussion 

 PPG waveform analysis is being increasingly investigated for ultra-convenient BP 

monitoring [69]–[75]. However, this data-driven approach is not well understood in terms of both 

efficacy and useful features and models. In this study, we sought to develop easy-to-understand 
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models relating PPG waveform features to BP changes (after a single cuff calibration) and to 

determine conclusively whether they provide added value or not in BP measurement accuracy. 

 We analyzed finger, toe, and ear PPG waveforms along with ECG waveforms and 

reference manual cuff BP measurements from 32 normotensive and hypertensive volunteers during 

a battery of challenging interventions that changed SP and DP differently (see Figs. 13 and 14). 

These data thus allowed us to create six PPG waveform feature models for predicting intervention-

induced BP changes corresponding to the three PPG waveforms and two BP levels.  

 
Figure 17: The PPG waveform feature models that were useful in predicting BP changes. 

The b-time and STT, which are PPG fast upstroke time intervals (see Fig. 15 for definitions), 

reduced the BP change RMSE relative to reference models not including PPG waveform features 

as input by about 10% (see Table 4). The superscript i is the ith measurement; i=1, baseline 

measurement for cuff calibration. 

 

 

 We chose analysis tools to create models that are readily interpretable and effective when 

the subject number is not high. More specifically, we limited the candidate features to popular or 

promising PPG waveform features (see Fig. 15) plus subject demographic information and PAT 

(time delay between ECG R-wave and PPG foot); applied stepwise linear regression for forward 

selection of the features and estimation of the model parameters; used a parsimonious elbow 
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method for determining the number of features; and employed leave-one-out cross validation to 

leverage the data as much as possible for independent training and testing. We also verified our 

approach in terms of robustness to user-selected variables and overfitting relative to other tools. 

 We assessed the BP changes relative to the subject baseline BP predicted by the PPG 

waveform feature models against the reference cuff BP measurements using standard Bland-

Altman and correlation analysis. Crucially, to ascertain added value, we compared the BP change 

RMSEs of these models to reference models without PPG waveform features as input (e.g., 

demographic or PAT models). We performed these comparisons statistically via cluster 

bootstrapping while reducing the significance level for multiple comparisons.  

 Fig. 17 presents the four PPG waveform feature models that showed added value in 

predicting BP changes. Note that the toe PPG waveform feature model included only PAT as input. 

The other three models each included a PPG waveform feature and reduced the RMSE of the 

reference models by about 10% (see Table 4). The correlations between the predicted BP changes 

of the four models and the reference measurements were about 0.4-0.5 (see Fig. 16).  

Hence, almost all of the 31 candidate features for study were of no value in tracking the 

BP changes despite their popularity [80]. In fact, a number of these features were often not well 

defined (e.g., tc, td, te, tf, AmpDN, and AmpDP) and thus suffered from substantial variability, which 

surely reduced their utility. This limitation of the considered features has been noted before [80], 

[85]. Only the b-time (tb) and STT, which were generally well defined and reflect the fast upstroke 

time interval of the PPG waveform, showed value in BP measurement.  

However, the PPG fast upstroke time intervals were positively related to the BP changes. 

This finding opposes conventional thinking that an increase in cardiac contractility or preload (via, 

e.g., exercise) would increase BP while reducing the PPG upstroke interval to create a negative 
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relationship. STT was also introduced as a single-site measurement of PTT and shown to be 

positively related to PTT and thus inversely related to BP [81]. The positive relationship that we 

found may be due to small artery viscoelasticity. As we previously found [86], as BP increases, 

the cutoff frequency of the viscoelastic lowpass filter may decrease such that the PPG upstroke 

time interval increases (see Equation in Introduction). This viscoelastic mechanism could be most 

important over a range of BP interventions, especially for fast upstroke time intervals in which the 

lowpass filtering effect would be more pronounced. Note that, even if the PPG fast upstroke time 

interval decreases during exercise, the models in Fig. 17 may still correctly predict BP increases 

via the other feature in these models. 

 
Figure 18: Subject average trends of reference cuff BP changes and predicted BP changes 

with the models shown in Fig. 17 over the interventions shown in Fig. 14. Each feature in each 

model is also shown after scaling by its model parameter to yield the component of BP in units of 

mmHg predicted by that feature. These trends help explain how the PPG fast upstroke time 

intervals add value to BP measurement accuracy. Values are mean±SE. 
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  In fact, a PPG fast upstroke time interval was only of added value in predicting changes 

in SP when combined with PAT. Fig. 18 shows the subject average trends of the reference SP and 

DP changes and of each feature, scaled by its associated model parameter, of each of the four 

models over the interventions. The so-calibrated finger and ear 1/PAT trends appear to track the 

SP trend well except for the nitroglycerin (NTG) intervention, and the calibrated PPG fast upstroke 

time interval seems to be of most value for this intervention without significantly compromising 

the other interventions. The steep decline in the PPG fast upstroke time interval after NTG may be 

due to the reduction in SP as well as smooth muscle relaxation, which could both conceivably 

increase the viscoelastic lowpass filter cutoff frequency. However, PPG waveform features alone 

did add value in predicting changes in DP. The calibrated PW (pulse width) appears to help STT 

in tracking of the DP trend during a few interventions including mental arithmetic (MA) and NTG, 

which both increased the heart rate. For SP or DP, Fig. 18 shows that STT, which again stands for 

“slope transit time”, is not negatively related to BP in general and may thus benefit from a name 

change. 

However, the PPG fast upstroke time interval is not always of added value and the precise 

definition matters. Fig. 19 illustrates typical toe, ear, and finger PPG waveform beats over a 

segment and their first and second derivatives. The toe PPG waveform tended to be noisier than 

the other two PPG waveforms, so the fast upstroke time intervals were more variable and thus not 

selected for the toe PPG waveform feature model. The ear PPG waveform tended to have a wider 

peak region such that the b-time was more variable than STT, and the latter feature was selected 

for the ear PPG waveform feature model. Both the b-time and STT were relatively consistent for 

the finger PPG waveform, but the b-time happened to provide more value. Hence, PPG waveform 

analysis for tracking BP changes depends importantly on the measurement site. While back-of-
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the-wrist PPG waveforms are popular due to their convenience in watch form factors [75], these 

waveforms are notoriously poor in quality. It is thus difficult to imagine that they could have 

yielded more or as useful features for tracking BP changes in this study.  

 
Figure 19: Example of toe, ear, and finger PPG waveform beats from an intervention 

indicating the typical extent of variability of the fast upstroke time intervals. This example 

helps explain why measurement site and precise definition of the fast upstroke time interval made 

a difference.  

 

 In this laboratory investigation, the PPG sensor contact pressure (the external pressure 

applied by the sensor on the skin) was likely maintained throughout the BP changes. However, in 

practice, PPG sensor contact pressure can vary with, for example, replacement of a fingertip on a 

smartphone PPG sensor for on-demand measurement or putting a smartwatch with PPG sensor on 

the wrist each day for continuous measurement. We previously showed that the maximum change 

in finger PAT over a physiologic range of finger PPG sensor contact pressures (30-80 mmHg) was 
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22±2 ms despite no change in BP in 17 healthy subjects [86]. We applied the finger PPG waveform 

feature model in Fig. 17 to the same data here to gain some quantitative understanding of the 

impact of PPG sensor contact pressure variations on PPG waveform analysis for BP measurement. 

We found that the maximum change in SP predicted by the finger PPG waveform feature model 

over the physiologic contact pressure range was 12.0±1.7 mmHg. For comparison, the maximum 

predicted SP change of the finger PAT reference model found in this study (see Table 4) was 

7.2±0.7 mmHg. Hence, as expected, PPG waveform analysis is significantly more impacted by 

PPG sensor contact pressure variations than PAT (67% here). Since the regulatory bias and 

precision error limits are again 5 and 8 mmHg [63], these additional findings underscore the 

importance of controlling for PPG sensor contact pressure when applying PPG waveform analysis 

for BP tracking in practice. 

 A strength of this study is the use of challenging interventions to change BP in subjects 

relevant to hypertension applications. At the same time, these interventions, especially NTG, are 

not simple to employ and limited the number of subjects for study. As a result, we had to confine 

our analysis tools and could not explore more exhaustive candidate feature sets and nonlinear 

models. Including more features and nonlinear combinations of features would result in overfitting 

here and thus false alarms in the selected features. While we also could not investigate calibration-

free prediction of BP from PPG waveforms, this approach is far less viable based on first 

principles. Another limitation of this study is that we did not record the DC component of the PPG 

waveforms. Normalizing the AC component by the DC component could improve the value of 

features involving the PPG amplitude (but not PPG time intervals) by mitigating the variability in 

environmental conditions (which were largely controlled in this study) or skin pigmentation. 
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However, such normalization would likely not have helped improve the PPG peak-to-peak 

amplitude in tracking the BP changes here (see Fig. 13). 

 In conclusion, we have explicitly presented readily interpretable models to relate PPG 

waveform features to BP changes in human subjects and have clearly shown that they can afford 

some added value in BP measurement accuracy. Future investigations should test the 

generalizability of these models, especially the PPG fast upstroke intervals therein, as well as 

create extensive and relevant training datasets to more fully explore the value of PPG waveform 

analysis in cuff-less BP measurement. 
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CONCLUSION 

 

Current oscillometric devices for monitoring central BP maintain the cuff pressure at a 

constant level to acquire a pulse volume plethysmography (PVP) waveform and calibrate it to 

brachial BP levels estimated with population average methods. A physiologic method was 

developed to further advance central BP measurement. A patient-specific method is applied to 

estimate brachial BP levels from a cuff pressure waveform obtained during conventional deflation 

via a nonlinear arterial compliance model. A physiologic method is then employed to extract the 

PVP waveform from the same waveform via ensemble averaging and calibrate it to the brachial 

BP levels. A method based on a wave reflection model is thereafter employed to define a variable 

transfer function, which is applied to the calibrated waveform to derive central BP. This method 

was evaluated against invasive central BP measurements from patients. The method yielded central 

SP, DP, and PP bias and precision errors of -0.6 to 2.6 and 6.8 to 9.0 mmHg. The conventional 

oscillometric method produced similar bias errors but precision errors of 8.2 to 12.5 mmHg 

(p0.01). The new method can derive central BP more reliably than some current non-invasive 

devices and in the same way as traditional cuff BP. 

We developed an iPhone X application to measure BP via the “oscillometric finger pressing 

method”. The user presses her fingertip on both the front camera and screen to increase the external 

pressure of the underlying artery, while the application measures the resulting variable-amplitude 

blood volume oscillations via the camera and applied pressure via the strain gauge array under the 

screen. The application also visually guides the fingertip placement and actuation and then 

computes BP from the measurements just like many automatic cuff devices. We tested the 

application, along with a finger cuff device, against a standard cuff device. The application yielded 
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bias and precision errors of -4.0 and 11.4 mmHg for SP and -9.4 and 9.7 mmHg for DP (n = 18). 

These errors were near the finger cuff device errors. This proof-of-concept study surprisingly 

indicates that cuff-less and calibration-free BP monitoring may be feasible with many existing and 

forthcoming smartphones. 

Finally, we developed easy-to-understand models relating PPG waveform features to BP 

changes (after a single cuff calibration) and determined conclusively whether they provide added 

value or not in BP measurement accuracy. Stepwise linear regression was employed so as to create 

parsimonious models for predicting the intervention-induced BP changes from popular PPG 

waveform features, pulse arrival time (PAT, time delay between ECG R-wave and PPG foot), and 

subject demographics. The finger b-time (PPG foot to minimum second derivative time) and ear 

STT (PPG amplitude divided by maximum derivative), when combined with PAT, reduced the 

systolic BP change prediction RMSE of reference models by 6-7% (p<0.022). The ear STT 

together with the pulse width reduced the diastolic BP change prediction RMSE of the reference 

model by 13% (p=0.003). Hence, PPG fast upstroke time intervals can offer some added value in 

cuff-less measurement of BP changes.  

A strength of this study is the use of challenging interventions to change BP in subjects 

relevant to hypertension applications. At the same time, these interventions, especially NTG, are 

not simple to employ and limited the number of subjects for study. As a result, we had to confine 

our analysis tools and could not explore more exhaustive candidate feature sets and nonlinear 

models. Including more features and nonlinear combinations of features would result in overfitting 

here and thus false alarms in the selected features. While we also could not investigate calibration-

free prediction of BP from PPG waveforms, this approach is far less viable based on first 

principles. Another limitation of this study is that we did not record the DC component of the PPG 
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waveforms. Normalizing the AC component by the DC component could improve the value of 

features involving the PPG amplitude (but not PPG time intervals) by mitigating the variability in 

environmental conditions (which were largely controlled in this study) or skin pigmentation. 

However, such normalization would likely not have helped improve the PPG peak-to-peak 

amplitude in tracking the BP changes here (see Fig. 13). 

 In conclusion, we have explicitly presented readily interpretable models to relate PPG 

waveform features to BP changes in human subjects and have clearly shown that they can afford 

some added value in BP measurement accuracy. 
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FUTURE WORK 

 

We introduced a physiologic method to both mitigate the calibration error and obtain 

central BP measurements in the exact same way as traditional automatic cuff BP measurements. 

We showed that this method can yield central BP measurements that agree with gold standard 

reference measurements to a significantly greater degree than some current non-invasive devices. 

Future investigations may be worthwhile to confirm the accuracy of the new method, especially in 

a real-time device, and apply it broadly to determine the full clinical potential of central BP. 

The iPhone application errors are close to our previous device [30]. However, the 

application did not yield BP in two users due to finger pressing contact area mis-estimation, which 

is not a factor for the device. The application also yielded more try-again messages (about 50 

versus 40%) and less repeatable BP measurements (e.g., mean absolute difference between 

successive measurements at heart level of about 7 versus 5 mmHg) likely due to variability in 

fingertip positioning despite the rectangular box guide. Hence, not surprisingly, the application 

may be less effective than our device, which employs application-specific sensors. 

However, any reduction in effectiveness may be offset by the increased accessibility of a 

smartphone application. An estimated 50 million iPhone X models have already been sold [60]. 

Moreover, other smartphones have 3D Touch capability including iPhone models 6S and higher 

[56] and the Huawei Mate S model [61]. Hence, applications for these phones may likewise be 

developed (with appropriate modifications for differing arrangements of the camera/PPG sensor 

and screen). In 2017, 328 million iPhones with 3D Touch capability (excluding iPhone 8 and X) 

were being used [62]. Hence, it is conceivable that the oscillometric finger pressing method could 

reach about 500 million smartphones already in use. 
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Our iPhone application should be improved. Most importantly, the finger pressing contact 

area was mis-estimated in two subjects and variably estimated in some other subjects due to 

fingertip mis-positioning. In practice, when the application consistently outputs try-again 

messages or unusual BP measurements, the area could be determined with just one cuff BP 

measurement (as opposed to periodic cuff calibrations required by competing methods [16], [55]). 

The application could also output a running average of the past several BP measurements (instead 

of individual BP measurements) to mitigate random variability resulting from fingertip mis-

positioning and other factors [55]. In this way, the application may be able to yield BP errors that 

are closer to the putative bias and precision errors limits of 5 and 8 mmHg [63] than the results 

reported herein. However, there may be better solutions. One possibility is to measure the area 

(even at different finger pressures) via the fingerprint sensor under the screen for authentication in 

upcoming smartphones including the 2019 iPhone X [64]. The optimal solution is if Apple were 

to provide access to an accurate area measurement as the user performs the actuation via the 

capacitive sensor array also under the screen [56]. Such access may be possible, as superior area 

assessment may be obtained with Android devices [65]. In addition, the infrared camera also on 

the notch of the iPhone X (Fig. 10a) for authentication may be used to provide higher-fidelity 

blood volume oscillations in cold and other low signal conditions [66]. Finally, the BP computation 

algorithm needs further development to satisfy the accuracy requirements of a regulatory test [63].  

In summary, this proof-of-concept study surprisingly indicates that cuff-less and calibration-free 

BP monitoring may be feasible with many existing and forthcoming smartphones by leveraging 

sensors built-in for other purposes. Such ubiquitous BP monitoring may improve hypertension 

awareness and control rates and thereby help reduce the incidence of cardiovascular disease and 

mortality. 
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We have explicitly presented readily interpretable models to relate PPG waveform features 

to BP changes in human subjects and have clearly shown that they can afford some added value in 

BP measurement accuracy. Future investigations should test the generalizability of these models, 

especially the PPG fast upstroke intervals therein, as well as create extensive and relevant training 

datasets to more fully explore the value of PPG waveform analysis in cuff-less BP measurement. 
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