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ABSTRACT 

SEEING WITHIN THE CANOPY: MEASURING THREE-DIMENSIONAL FOREST TRAITS  

AND PROCESSES ACROSS ECOSYSTEMS AND SPATIAL SCALES 

By 

Aaron Giusti Kamoske 

From the bottom of their roots to the tops of their canopies, forests provide benefits for all 

of Earth’s inhabitants including cultural and spiritual significance, economic opportunities, clean 

air and water, habitat for flora and fauna, and recreation and aesthetic values. Yet these important 

ecosystems are being lost at an alarming rate due to resource extraction and urbanization. With 

forests’ irreplaceable services to humans, flora, and fauna alike, and their central role in carbon 

mitigation strategies, forest loss could have severe impacts on Earth’s biodiversity and humanity.  

However, not all forests are the same. Instead, they consist of a diversity of species, ages, 

and structures which directly impact the processes that drive carbon sequestration. For example, 

light use efficiency, photosynthetic capacity, and trace gas exchange are affected by within-canopy 

radiation regimes and turbulence environments which are directly and indirectly regulated by the 

horizontal and vertical distribution of foliage within the canopy. Functional traits (e.g., leaf mass 

per area and foliar nitrogen content) and structural traits (e.g., leaf area density) drive these 

processes while showing significant variation between and within plant functional types and 

vertically through forest canopies. These plant functional types and forest traits also appear in 

different locations across the landscape due to soils, topography, climate, historic landscape 

conditions, and management activities which directly impacts forest biodiversity. 

To improve our estimates of processes related to carbon cycling and biodiversity, a better 

understanding of the three-dimensional variation of forest canopy traits is needed. Airborne remote 

sensing platforms that make use of hyperspectral and lidar data have recently been operationalized, 



which provide an opportunity to examine forest functional and structural traits across spatial 

extents not possible by field surveys alone. This dissertation utilizes these airborne platforms and 

explicit field testing to estimate three-dimensional forest traits across ecosystems while 

quantifying the effects of biodiversity, topography, and biogeography on the spatial variation and 

distribution of these traits. 

Chapter 1 introduces the concepts and questions raised in this dissertation. Chapter 2 

addresses the impacts of spatial scale, pulse density, and canopy penetration on forest structure 

estimates from two airborne lidar systems, while offering solutions to enhance the accuracy of 

these estimates by standardizing spatial grains, limiting understory inflation, and utilizing Beer-

Lambert coefficients. Chapter 3 assesses the influence of lidar derived forest structure, abiotic 

gradients, and management regions on the spatial patterns of remotely sensed top-of-canopy and 

total canopy nitrogen showing that total canopy estimates correspond to different ecological 

processes and exhibit unique spatial patterns than traditional top-of-canopy nitrogen estimates. 

Chapter 4 examines how taxonomic, functional, and phylogenetic diversity vary across eastern US 

forests, while assessing to what degree remotely sensed metrics are correlated with in situ 

biodiversity measures concluding that canopy structure is a critical predictor of forest biodiversity 

when combined with forest functional and topographic metrics. Chapter 5 summarizes the results 

and charts a path forward for research on forest structure, function, and diversity.  

Overall, this dissertation shows that it is critical to consider forest structural and functional 

traits together to accurately estimate the spatial distribution and variation of canopy processes and 

biodiversity, while helping to paint a clearer picture of how forests function in a time of rapid 

global change.
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This thesis is dedicated to the trees. 

“…so that the several hundred kinds of hawthorn will not have to laugh  

at the single name they’re forced to share.” 

 – Richard Powers
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CHAPTER 1. INTRODUCTION 

 

Research Context 

A fundamental goal in biogeography, developed over 250 years ago by Alexander von 

Humboldt, is to blend empirical field research with quantitative methods to understand how 

environmental and anthropogenic changes affect the distribution, abundance, and biodiversity of 

plant species across the globe (Nicolson 1987; Schaefer 1953). This objective has been further 

developed by community ecologists using advanced statistical methodologies, contemporary 

technologies, and empirical field research to not only understand – as von Humboldt set out to do 

– but also to predict the spatial distributions of species, traits, and biodiversity across ecosystems 

(Keddy 1992). This ability to predict spatial distributions of key ecosystem process, species, and 

traits is especially critical in forested ecosystems as they link the atmosphere and the vast majority 

of Earth’s terrestrial biomass (Ozanne et al. 2003), as well as provide key ecosystem functions 

including habitat for most of Earth’s biodiversity, clean water and air, and a plethora of uses related 

to medicine, spirituality, recreation, and local economies. Also, forested ecosystems store ~45% 

of terrestrial carbon (Bonan 2008; Bunker et al. 2005; Tilman et al. 2006) and contribute ~50% of 

terrestrial net primary production (Bonan 2008; Hooper at al 2012; Isbell et al. 2015). Moreover, 

tree species, canopy traits, and forest biodiversity are not constant in space and instead show 

significant heterogeneity across landscapes (Chambers et al. 2007; Asner et al. 2014) and within 

the full vertical and horizontal extent of the canopy (the ‘canopy volume’; Ellsworth et al. 1993). 

This heterogeneity can be measured by the variation of canopy structural and functional 

traits in three-dimensional space. These structural traits include leaf area density (LAD; the total 

leaf area per unit of volume) which explains the horizontal and vertical spatial variation of leaf 

area within a canopy (Weiss et al. 2004) and canopy clumping (e.g., a measure of foliage 
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aggregation relative to a random spatial distribution of leaf material within the canopy; Pisek et al. 

2018). Important leaf functional traits such as leaf mass per area (LMA; the ratio between leaf dry 

mass and leaf area) and foliar nitrogen (foliar N; g/mL
2; mL = meter of leaf area) have been 

identified as key predictors of plant functional diversity (Diaz et al. 2016) and show strong 

relationships to photosynthetic carbon assimilation (Field and Mooney 1986), primary 

productivity (Ollinger and Smith 2005), and other photosynthetic parameters (Niinemets et al. 

2015) within the canopy volume (Poorter et al. 2009, Niinemets, 2007). This relationship between 

three-dimensional forest structure and canopy function drives important processes such as net 

photosynthetic carbon assimilation (Niinemets 2007), resource use and efficiency (Hardiman et al. 

2013), and woody growth (Stark et al. 2012). For example, trees with high LMA and low nitrogen 

content produce leaves that will likely survive longer, but require more resources during growth, 

while trees with low LMA and high nitrogen content will produce leaves that do not survive as 

long but are cheap to grow (the leaf economics spectrum; Wright et al. 2004). At the same time, 

leaves alter their orientation to maximize the amount of light they receive, which can change the 

local light environment by casting shade on neighboring leaves and other plants, leading to changes 

in LMA and nitrogen content to maximize photosynthesis in response to light conditions (e.g., 

lower LMA values in the shaded parts of canopy and higher LMA in sunlit areas; Niinemets 2007). 

However, this variation of traits within the canopy volume and across landscapes is usually 

simplified by traditional remote sensing products and Earth System Models (ESMs). 

Spaceborne remote sensing has played a significant role in understanding the terrestrial 

carbon cycle for decades (Tucker and Sellers 1986; Schimel 1995). Insights from NASA satellite 

missions, such as the Advanced Very High Resolution Radiometer (AVHRR), Landsat, and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) have shaped our understanding of how 
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ecosystems function, driving the development of global carbon models (DeFries et al. 1999; 

DeFries et al. 2002). Yet these satellite systems and models often assume a two-dimensional world 

(Bonan et al. 2014; Fisher et al. 2018) – ignoring critical information about the three-dimensional 

structure of forest canopies, which is vital to ecological processes related to carbon sequestration 

(Parker et al. 2004; Hardiman et al. 2011; Niinemets 2007; Bonan et al. 2008; Lawrence et al. 

2007). For instance, the Community Earth System Model assigns the canopy two layers – sunlit 

and shaded – and applies the same model parameters to one of 15 non-crop plant functional types 

(PFTs; Hurrell et al. 2013) and then uses these models at global scales with very little consideration 

for differences within the canopy volume (Braghiere et al. 2019). However, functional and 

structural trait variation within PFTs has been shown to be critically important to ecosystem 

functioning by maximizing resource use efficiency through adaptation to local environmental 

conditions (Williams et al. 2017). With new spaceborne and airborne technologies, we have an 

opportunity to think about the terrestrial carbon cycle in three-dimensions allowing for more 

realistic estimations of the variation of forest structural and functional traits within PFTs, across 

landscapes, and throughout the canopy volume (Taylor et al. 2015; Stark et al. 2012). This will 

also help unlock important insights into how forests function in a time of rapid anthropogenic 

change (Antonarakis et al. 2014; Hardiman et al. 2013) while improving the performance of ESMs 

(Bonan et al. 2014; Bonan et al. 2012).  

These new spaceborne and airborne remote sensing technologies can measure critical 

canopy functional and structural traits in three-dimensions – which are ignored by traditional 2D 

remote sensing platforms (Figure 1) – through the fusion of lidar and hyperspectral data (Asner 

and Martin 2009; Dahlin et al. 2013; Asner et al. 2010). Lidar has been used to measure three-

dimensional forest structural traits such as LAD across landscapes at scales relevant to forest 



4 

 

managers and ecologists (e.g., at scales equal to or finer than an individual tree’s canopy; Kamoske 

et al. 2019). At the same time, hyperspectral data have been used extensively to measure plant 

functional traits such as foliar N and LMA across entire landscapes with high degrees of accuracy 

and precision (Martin et al. 2008; Asner et al. 2011). The fusion of these two data types can capture 

the diversity of traits and processes vital to canopy photosynthetic capacity, light use efficiency, 

exchange of water vapor and gases, and the within-canopy light regime – all of which play critical 

roles in carbon sequestration and are directly related to the three-dimensional structure of forest 

canopies (Asner et al. 2009; Dahlin et al. 2013). 

 

Figure 1. Traditional 2D Remote Sensing and 3D Remote Sensing. 3D remote sensing allows 

for the collection of information about the entire forest canopy volume that is ignored by 

traditional 2D remote sensing techniques. 

 

This dissertation aims to determine how airborne remote sensing platforms can be used to 

measure forest functional and structural traits within the canopy and biodiversity across 

landscapes. This leads to a question in community and forest ecology that remains unanswered: 

Do landscape scale patterns of forest traits and biodiversity vary when whole plant structure is 

considered? 
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Dissertation Focus and Organization 

The goal of this work is to address questions about the ability of airborne remote sensing 

platforms to accurately measure and map forest traits within the canopy volume and biodiversity 

across eastern US temperate forests. Chapters 2 through 4 are self-contained studies that address 

the following interrelated research questions:  

1) Can new publicly available airborne platforms be used to accurately measure forest 

structural traits within the canopy volume? 

2) Are leaf-level functional traits within the canopy volume able to be estimated using a 

combination of field data and remotely sensed airborne lidar and hyperspectral data? 

3) Across eastern United States temperate forests, can taxonomic, phylogenetic, and 

functional diversity be predicted using topographic, spectral, and structural diversity data 

derived from airborne remote sensing platforms?  

Chapter 2 examines the ability of two contemporary airborne lidar systems – the National 

Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) and NASA 

Goddard’s Lidar, Hyperspectral, and Thermal Imager (NASA G-LiHT) – to estimate the three-

dimensional structure of forest canopies in a temperate forest ecosystem. These two systems vary 

greatly in their survey and instrument specifications, collection goals, and laser pulse densities, 

leading to statistically significant differences in the lidar point clouds (e.g., high-density point 

clouds from NASA G-LiHT and low-density point clouds from the NEON AOP) that impact the 

accuracy of forest structural estimates. Based on these findings, a reproducible and open-source 

methodology to overcome these differences was developed to address the impacts of the spatial 

scale of analysis and differences in lidar pulse density on structure estimates. This standardized 

approach helps to bridge the gap between ecologists and forest managers who could use lidar data 
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in research and management plans and remote sensing scientists who use these data on a regular 

basis.  

Chapter 3 presents remote sensing-based estimates of within-canopy functional traits in 

multiple forest ecosystem types. With a fusion of hyperspectral and lidar data from the NEON 

AOP and field-collected foliar trait data, the impacts of forest structure on spatial patterns of foliar 

nitrogen are assessed across a landscape consisting of a mosaic of open longleaf pine and dense 

broadleaf deciduous forests. In addition, the influence of abiotic gradients and management 

regimes on top-of-canopy percent nitrogen and total canopy nitrogen are examined. Resulting 

maps suggest that in contrast with top-of-canopy values which show high LMA and low N values 

in needleleaf species and low LMA and high N values in broadleaf species, total canopy nitrogen 

variation is dampened across this landscape resulting in relatively homogeneous spatial patterns 

due to broadleaf and needleleaf species having more similar total amounts of nitrogen within their 

canopies. 

Chapter 4 addresses the persistent goal in community ecology to understand and predict 

the spatial distributions of species, traits, and biodiversity across ecosystems (Keddy 1992). This 

chapter assesses the ability of fine grain remotely sensed metrics related to vegetation health, forest 

structure, spectral diversity, and topography to predict biodiversity across eastern US temperate 

forests. Results show that these commonly used remotely sensed metrics do not completely capture 

the spatial patterns observed in the biodiversity variables, suggesting that new remote sensing 

metrics may need to be developed to better capture this variation. Moreover, different forest 

regions (e.g., Southern mixed (oak-pine), mesophytic (Appalachian oaks), Oak-hickory, Northern 

hardwoods; Dyer 2006) exhibit high and low diversity field plots, but both high and low diversity 
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plots may not be different between each forest region (e.g., a high diversity oak-hickory plot is not 

significantly different than a high diversity oak-pine plot).  

Chapter 5 summarizes and discusses these data and findings from the three preceding 

chapters, offers suggestions for future research, and identifies contributions these works offer to 

the disciplines of community ecology and remote sensing. 
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CHAPTER 2. LEAF AREA DENSITY FROM AIRBORNE LIDAR: 

COMPARING SENSORS AND RESOLUTIONS IN A TEMPERATE BROADLEAF 

FOREST ECOSYSTEM. 

 

Citation: Kamoske, A.G., K.M. Dahlin, S.C. Stark, and S.P. Serbin. 2019. Leaf area density from 

airborne Lidar: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem. 

Forest Ecology and Management 433: 364-375. 

 

 

Introduction 

With terrestrial ecosystems storing around 11 gigatonnes of atmospheric carbon dioxide (CO2) per 

year, approximately one third of anthropogenic emissions, forests are a critical component of the 

Earth’s carbon cycle (Le Quere et al. 2015; Pan et al. 2011b). Forest processes that play an essential 

role in carbon sequestration are closely related to the three-dimensional structure of forest canopies 

(Parker et al. 2004; Hardiman et al. 2011). The horizontal and vertical distribution of foliage within 

a canopy directly and indirectly regulates the canopy-scale light use efficiency (LUE, Ellsworth 

and Reich 1993; Kitajima et al. 2005), photosynthetic capacity, and exchanges of water vapor, 

CO2, and other trace gases (Baldocchi et al. 1988) in a number of important ways, including by 

defining the within-canopy radiation regime (Meir et al. 2002; Niinemets 2007) and turbulence 

environment. This variability, in turn, has significant impacts on forest productivity and thus 

carbon storage (Hardiman et al. 2013). However, these relationships are not static in 2- or 3-

dimensional space; leaf physiological traits vary across landscapes (Serbin et al. 2014) and leaves 

at varying vertical positions within the canopy are physiologically unique due to differing light 

environments (Poorter et al. 2009). Given differences in leaf physiology and morphology, a better 

knowledge of how these properties vary vertically and horizontally within the canopy will provide 

a better estimate of carbon storage (Niinemets et al. 2015). Due to this within-canopy variation of 

light and foliar traits, inclusion of the three-dimensional structural diversity of a forest canopy is 
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critical to making improvements to carbon storage estimates by Earth system models (ESMs) 

(Bonan et al. 2012). 

 The structural diversity within a canopy and across a landscape is a critical component of 

ecological models that scale processes from leaf to landscape (Jarvis and McNaughton, 1986). 

Currently, many of these models, such as the Community Land Model, treat the canopy as only 

having two types of leaves – sunlit and shaded (Bonan et al. 2014). This lack of information about 

the three-dimensional canopy is one of a host of factors contributing to the uncertainty and 

disparity in predicting carbon uptake by terrestrial ecosystems (Fisher et al. 2017). By 

incorporating this vertical and horizontal structure, models can provide a better representation of 

forested landscapes, thus reducing model uncertainty and improving estimates of ecosystem 

productivity and landscape-scale functions (Bonan et al. 2014). However, the benefits of 

accurately measuring the three-dimensional structure of a forest canopy are not limited to ESMs. 

Understanding the effects of disturbances on forested ecosystems is vital to long-term 

quantification of carbon storage (Goodale et al. 2002; Pan et al. 2011a). Defoliation from invasive 

insects and pathogens (Hummel and Agee 2003), stand replacement and thinning from fire (Collins 

et al. 2011), stress and mortality from drought (Anderegg et al. 2013), gap creation from wind 

(Hanson and Lorimer 2007), and a host of other disturbance impacts can affect the structure of a 

forest. Moreover, these changes in forest structure can significantly affect ecosystem processes 

related to carbon uptake (Gough et al. 2013). With forest managers facing increasingly complex 

disturbances, the ability to map and measure forest structure across landscapes is critical to 

developing forest management plans that consider the impacts of these disturbances on forest 

health, resilience, and function (Becknell et al. 2015). 
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While well-established field-based methods to measure the vertical and horizontal 

distribution of leaves within an individual tree’s canopy exist, applying these methods at a 

landscape scale is challenging due to time, labor, and access constraints (Zheng and Moskal 2009). 

These measurements are made primarily by two methodologies (Hosoi and Omasa 2007); by 

lowering a probe through the canopy and recording the height and frequency of foliage contact 

with the probe (e.g., inclined point quadrat method; Wilson 1960) or by using a telephoto lens to 

measure the proportion of leaves in a given area at set height intervals looking up into the canopy 

(e.g., canopy closure method; MacArthur and Horn 1969). These methodologies are ultimately 

used to estimate leaf area index (LAI; the one-sided leaf area per unit of ground area; Chen and 

Black 1992) and leaf area density (LAD; the total leaf area per unit of volume; Weiss et al. 2004) 

which provide critical information about ecosystem processes and functions related to forest 

structure (Detto et al. 2015). The estimation of these variables is influenced by a variety of factors, 

including the assumption that leaves are distributed randomly throughout the canopy and the scale 

at which the measurements were taken. For example, the distribution of clusters of leaves, stems, 

and branches, the spatial structure of gaps in the forest, and the disturbance histories of a landscape 

(Silva et al. 2017) may influence the error and bias of forest structural estimates depending on the 

sampling scale used (e.g., an individual tree, a plot, or a forest stand; Roussel et al. 2017). 

However, emerging technologies present opportunities to evaluate factors influencing LAI and 

LAD estimates and to overcome prior limitations to extracting this critical information across 

landscapes, at varying temporal resolutions and with high accuracy. 

 Airborne light detection and ranging (Lidar) directly measures the distance between a 

sensor and an object using laser pulses. Lidar sensors provide a high repetition rate of these 

measurements (as high as 33,000 pulses per second) and when applied to forests these lidar pulses 
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act as a canopy probe, allowing for the estimation of the three-dimensional internal structure of a 

forest canopy (Lefsky et al. 2002). In contrast, traditional passive optical remote sensing systems 

(e.g., Landsat) produce two-dimensional images of sunlight reflected off the top of the canopy, 

which does not capture the complex vertical and horizontal structure of a forest canopy (Morsdorf 

et al. 2006). Lidar derived structural measurements have the potential to improve the accuracy and 

resolution of studies that have traditionally relied on two-dimensional remote sensing or field 

surveys, including estimates of defoliation from invasive pests and pathogens (Meng et al. 2018), 

predicting above ground carbon dynamics (Taylor et al. 2015; Stark et al. 2012; 2015), measuring 

forest stand successional stages (Falkowski et al. 2009), within-canopy habitat modeling (Smart et 

al. 2012), and ecosystem trait upscaling (Antonarakis et al. 2014). Additionally, with a host of 

applications lidar data are becoming more widely available at larger spatial and temporal scales. 

In the United States, two airborne systems are acquiring publicly available lidar data at a 

wide-range of locations covering many ecoregions with increasing frequency. The National 

Ecological Observatory Network’s Airborne Observation Platform (Kampe et al. 2010; NEON 

AOP) is collecting airborne data at more than 60 sites throughout the United States in 2018 (its 

first year of full operations), with survey areas ranging from 100 to 300 km2 around each site. Data 

will be collected at NEON sites on a semi-annual basis for the next 30 years, offering an 

unprecedented opportunity to address long-term ecological questions (Hinckley et al. 2016). 

NASA Goddard’s Lidar, Hyperspectral & Thermal Imager (NASA G-LiHT) is another airborne 

system, which currently flies site-specific missions for NASA-funded studies (Cook et al. 2013), 

with data publicly available in over 30 US states and territories and several countries dating back 

to 2011. With the launch of the NEON AOP and the continuing collection by NASA G-LiHT, lidar 

is becoming more readily available than ever before. This abundance of data will further grow with 
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the launch of NASA’s Global Ecosystem Dynamics Investigation (GEDI) system on the 

International Space Station, which will provide waveform lidar coverage of temperate and tropical 

forests between 51 degrees North and South, beginning in late 2018 (Stavros et al. 2017). While 

lidar data are becoming more available at wider spatial extents and temporal scales, a critical gap 

remains between landscape and macrosystem ecologists who want to ask questions at broad spatial 

scales and remote sensing scientists who are more familiar with the opportunities and challenges 

of using these data (Turner et al. 2015; Pettorelli et al. 2014; Mairota et al. 2015).  

In this study, we help address this gap by describing a reproducible and open-source 

methodology for estimating LAD and LAI from airborne lidar. We compare LAD estimates 

derived from publicly available point cloud data produced by the NEON AOP and NASA G-LiHT 

lidar systems, which differ in survey and instrument specifications, collection goals, and laser 

pulse densities. Furthermore, we use hemispherical photographs as a means to calibrate our lidar 

derived LAD and LAI estimates. We also address the impacts of the spatial scale of analysis and 

differences in canopy penetration and pulse density on LAD and LAI estimates while offering 

potential solutions to enhance the accuracy of these estimates. 

 

Materials and Methods 

Study Site 

Field measurements and lidar data were acquired at the Smithsonian Environmental Research 

Center (SERC), approximately 16 km south of Annapolis, Maryland, USA (Figure 2). SERC is a 

relocatable terrestrial NEON (neonscience.org) site and contains a mixed-species deciduous forest 

with American sweetgum (Liquidambar styraciflua) and tulip tree (Liriodendron tulipifera) 

dominating the overstory. Mockernut hickory (Carya tomentosa), white oak (Quercus alba), and 
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American beech (Fagus grandifolia) are also common, with ironwood (Carpinus caroliniana) and 

other small tree species forming a dense understory (Parker 1995). SERC contains approximately 

11 km2 ranging in elevation from zero to 40 meters above sea level, and with slopes ranging from 

zero to 34 degrees. 

 

 

Figure 2. Map of Study Area at SERC. The study area (solid line) is an overlapping subset of the 

NEON AOP (long dashed line) and NASA G-LiHT (short dashed line) flight boundaries. The 

noncontiguous boundary of SERC is shown in white with a dotted outline, while NEON plot 45 is 

shown by a small dashed box within the SERC boundary. 

 

Hemispherical Photography for LAI Estimation 

We collected hemispherical photographs between July 23 and August 7, 2017 to coincide with G-

LiHT and NEON flights, using a Canon EOS Rebel T6 camera with an 8 mm circular fish-eye lens 

(180-degree angle of view). We placed the camera on a leveled tripod one meter above the ground 
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to reduce the influence of ground vegetation and provide a vertical picture of the canopy. Each 

location was recorded using a Trimble GEO7x GPS. We took a single hemispherical photograph 

at 48 different locations along six transects and three plots within half a kilometer of the NEON 

flux tower (38.89° N, -76.56° W), with all photographs taken before sunrise or under uniformly 

cloudy conditions. Using the Digital Hemispherical Photography (DHP) software (Leblanc et al. 

2005), we processed the hemispherical photographs for effective plant area index (PAIe), which 

includes leaf and woody material in the gap fraction calculation (Miller 1967). Most studies use 

PAIe as a proxy for LAI due to the difficulty of correcting for non-foliage elements in these 

photographs (Richardson et al. 2009), and hereafter we refer to PAIe as LAI. Further, we set the 

zenith angle within the DHP software to match the scanning angle of each lidar sensor, to better 

relate the ground measured LAI to lidar derived LAI (Sabol et al. 2014; Richardson et al. 2009; 

Solberg et al. 2006; Korhonen et al. 2011). 

 

Lidar Acquisition and Processing  

NASA G-LiHT and NEON AOP collected lidar data on July 31, 2017 and between July 20 and 

August 10, 2017, respectively. NASA G-LiHT data were collected using a Riegl VQ-480i lidar 

sensor, operating at a wavelength of 1550 nm, with a scan angle of +/-30 degrees, a pulse repetition 

frequency of 300 kHz, a beam divergence of 0.3 mRad, and an average point density of 15.86 

pts/m2. NEON AOP data were collected using an ALTM Gemini lidar sensor, operation at a 

wavelength of 1064 nm, with a scan angle of +/-18 degrees, a pulse repetition frequency (PRF) of 

100 kHz, a beam divergence of 0.8 mRad, and an average point density of 3.15 pts/m2. Differences 

in the specifications of lidar systems can have substantial impacts on subsequent LAD and LAI 

estimations. Below we describe these parameters and how they relate to measuring forest canopies.  
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The scan angle is the range of angles at which the sensor scans the landscape (Figure 3A). 

By increasing the scan angle, the lidar pulses will cover a larger area and have a greater change of 

encountering a gap in the canopy, thus having a higher probability of penetrating a dense forest 

canopy. The pulse repetition frequency (PRF; Figure 3C) is the number of pulses per second that 

a sensor produces, measured in cycles per second or kilohertz (kHz). A lower PRF results in fewer 

pulses produced per second, thus negatively affecting the density of the point cloud and the 

probability of penetrating a dense canopy. A related measure is beam divergence (Figure 3B), 

which is an angular measure describing how the laser beam widens as the distance between the 

sensor and the ground grows, measured in milliradians (mRad). A large mRad value will cause the 

laser’s energy to be spread across a wider area, likely reducing its ability to penetrate a dense forest 

canopy and producing a lower signal-to-noise ratio (Gatziolis and Andersen 2008). Together, these 

parameters are pivotal to producing a high-quality lidar dataset with precise and accurate 

information about the internal structure of the forest canopy. Combined, these parameters 

determine point cloud density, forest canopy penetration, and the proportion of ground returns in 

the dataset, the latter of which is an essential measurement in the estimation of LAI and LAD.  

We downloaded lidar point clouds as .las and .laz files through the NEON (National 

Ecological Observatory Network 2017) and NASA (Cook et al. 2013) data portals. Lidar pulses 

within the point cloud were classified as ground or not-ground by NEON and NASA prior to 

downloading. The code to reproduce these analyses is available as an R package on GitHub 

(canopyLazR; see Data Availability Statement). Using the R programming language (R Core 

Team, 2016), we loaded the lidar files into the workspace as individual datasets using the rlas 

library (Roussel, 2016). Due to the different spatial footprints of the NEON AOP and NASA G-

LiHT flights, we took a subset of the overlapping data, thus returning two datasets (NEON AOP 
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and NASA G-LiHT) with matching spatial extents, each with an area of 7.2 km2 (Figure 2). Next, 

we transformed the point clouds into voxelized arrays using the R libraries plyr (Wickham, 2011) 

and fields (Nychka et al. 2015). The first slice of the voxelized array contains the lowest ground 

height for each column of voxels. While using the lowest ground height might introduce some 

amount of uncertainty (Khosravipour et al. 2015), we choose the lowest ground height rather than 

the mean ground height so that we would not eliminate any understory vegetation that occurred 

below the mean ground elevation. The next slice contains the height of the canopy and each 

subsequent slice contains the number of pulses that occur in the given voxel. We set the voxel 

height to one meter but used multiple horizontal resolutions for this study: 1x1m, 2x2m, 5x5m, 

10x10m, 20x20m (NEON vegetation plot resolution; National Ecological Observatory Network, 

2017), and 30x30m (Landsat pixel resolution). If there is not a ground return present in the vertical 

column, we assigned it a NA value, and this column was not used in subsequent analyses. We 

removed these voxels because we wanted to account for the total canopy LAD and not just the 

upper canopy. In addition, the data were voxelized at each of these spatial resolutions 

independently, not by aggregating finer resolutions together. For instance, a 10x10 meter voxel 

contains all lidar returns that occur within the given spatial extent, whereas aggregating finer 

spatial resolutions together would result in the removal of many voxels that have upper canopy 

returns but no ground returns, which would result in a NA value for the entire vertical column. To 

better compare the voxelized data independent of changes in topography across the study site, we 

created a voxelized canopy height model from the lidar array so that each column of voxels was 

scaled to the distance from the ground, thus the ground has a height of zero. This eliminates the 

effects of topography on the dataset making comparisons between voxel columns easier (Lovell et 

al. 2003).  
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Leaf Area Density from Airborne Lidar 

We estimated LAD from voxelized lidar data using an approach based on the method established 

by MacArthur and Horn (1969) and similar to other published methods (Stark et al. 2012; Zhao 

and Popescu, 2009; Solberg et al. 2006; Sumida et al. 2009; Bouvier et al. 2015) (Figure 3). With 

this methodology, we calculated LAD by counting the number of lidar pulses that enter and exit 

each voxel in a given vertical column. Within each voxel, LAD is estimated as:  

𝐿𝐴𝐷𝑖−1,𝑖 = 𝑙𝑛⁡ (
𝑆𝑒
𝑆𝑡
)

1

𝑘∆𝑧
 

where for each vertical column of voxels, i is a voxel in a sequentially ordered vertical column of 

the canopy, Se is the number of pulses entering the given voxel, St is the number of pulses exiting 

the same voxel, k is an extinction coefficient, and z represents the height of a voxel. The term k 

represents a Beer-Lambert Law extinction coefficient, which describes the attenuation of light by 

a medium or an object. When applied to forest canopies this derived value includes a correction 

for the non-random distribution and orientation of the foliage and the thickness of the leaf material 

and the forest canopy. Thus, as the canopy becomes denser and more leaves are encountered, the 

penetration of lidar pulses will diminish causing sample sizes for estimating LAD to decrease and 

error to increase.  
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Figure 3. LAD Methodology. Lidar pulses from the airborne sensor penetrate the forest canopy 

and either bounce off leaf or woody material, or hit the ground, and return to the plane (1). These 

height measurements are then voxelized at the desired spatial resolution (2). The MacArthur and 

Horn method is then applied to voxelized columns of lidar returns (3) returning a LAD profile of 

the given area (4). The sum of LAD values in a column of voxels with a ground return is equal to 

the LAI of that vertical column. Further, the scan angle (A), beam divergence (B), and point density 

(C) sensor-survey parameters are highlighted.  

 

An extinction coefficient can be used to better relate field measured LAI with lidar 

estimated LAD or LAI. To estimate the extinction coefficient, we first estimated LAD from the 

lidar data with the extinction coefficient set to one. We removed vertical columns of voxels without 

at least one ground return from further analysis since this indicates that some of the canopy column 

was not sampled by the lidar sensor, thus preventing estimation of LAD in unsampled voxels and 
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LAI which relies on the sum of all column voxels. We then extracted the lidar estimated LAI 

values at the same coordinates the hemispherical photographs were taken, using the field recorded 

GPS locations. Next, we plotted each extracted lidar estimated LAI value against the same LAI 

estimate from a hemispherical photograph. The slope of the linear model fit without an intercept, 

which is used because the Beer-Lambert law assumes that there is a true zero intercept, estimates 

the extinction coefficient (Klingberg et al. 2017). We then estimated LAD from the lidar array 

again, this time including the extinction coefficient in the above equation, resulting in a LAD 

estimate for each voxel in a given vertical column that is adjusted to more closely resemble the 

hemispherical photography approach. We repeated this process for both sensors at each of the six 

spatial resolutions, resulting in 12 voxelized arrays containing LAD estimates.  

 

LAD Profile Extraction 

To extract LAD vertical profiles for individual point locations, we converted the adjusted LAD 

arrays to raster stacks with each raster layer representing a 1-meter interval of the forest canopy 

using the raster package (Hijmans 2016) in R. We then generated 50 random 20x20m plots across 

the study area to compare LAD estimates from each of the airborne systems. At each plot, the 

mean LAD estimate of all raster cells, at all heights within the canopy, that were either completely 

or partially within the plot was extracted. We repeated this for each of the 12 raster stacks 

previously generated (each sensor and six spatial resolutions). To better visualize this information, 

we extracted this same data from a permanent NEON forest plot (NEON plot 45; see Fig 1), using 

coordinates from the NEON data portal.  
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Comparing LAD Estimates 

To compare the LAD estimates from NEON AOP and NASA G-LiHT, we used linear regression 

to model the relationship between the estimates from each sensor and each spatial resolution. We 

split the data into two categories, ground to the top of the canopy (TOC) (all data) and 10 meters 

above the ground to TOC (removing understory data), due to inflated LAD values that may occur 

in the understory of the canopy at coarser spatial resolutions (Stark et al. 2012). We speculate that 

this happens due to topographic effects within a given cell, where the range of ground elevations 

is greater than the voxel height. Point returns from the understory vegetation at these higher 

elevations will be counted in a voxel higher in the canopy than where they actually occur, due to 

a cell containing only a single ground elevation. Moreover, the vertical distribution of leaf area 

can change with the age of a forest stand, causing higher LAD values in the understory of younger 

and older stands, with LAD values peaking in the upper canopy in middle-aged stands (Brown and 

Parker 1994). While 10 meters might not be the best height to address LAD estimate uncertainty 

for a single spatial resolution, we chose this value to easily compare results across multiple spatial 

resolutions; studies conducted with a single spatial resolution should choose a height cutoff based 

on the data present. Next, we calculated R2, 95% confidence intervals, lines of best fit, slopes, and 

Spearman’s ρ, along with standard deviations for LAD estimations for each of the 6 spatial 

resolutions using the R programming language. 

 

Comparing LAI and Total Leaf Area Estimates 

To compare LAD estimates across the landscape, we calculated the mean LAI and total leaf area 

across the study area (TLA, km2) by taking the sum of all LAI estimates across the study area. We 

did this for only the 10x10m resolution, because it was the finest resolution that produced the most 
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stable results between sensors. Due to the NEON AOP data having a large number of pixels with 

no ground returns, and thus a larger number of NA values, our estimates are slightly biased when 

compared to NASA G-LiHT. We have left these NA values in the analysis to better represent the 

results one could achieve if only a single data set was available. To better understand the 

differences between sensor estimates, we calculated LAI and TLA for three height subsets: ground 

to TOC, 10 to 20 meters above the ground, and 20 meters above the ground to TOC. We calculated 

the mean difference in LAI across the study area and between each sensor by calculating the mean 

of absolute values at each pixel of NASA G-LiHT LAI minus NEON AOP LAI. We also calculated 

the difference in TLA between each sensor by taking the difference in TLA estimates from NASA 

G-LiHT and NEON AOP. We calculated the percent difference by subtracting the NEON AOP 

values from the G-LiHT values and dividing by G-LiHT values. While mean LAI and TLA yield 

similar results, particularly if LAI values are normally distributed, here we present both, as mean 

LAI represents the average expected value at the local scale, while TLA represents the aggregated 

leaf area across the landscape. While TLA across a landscape may seem overly coarse for studies 

of fine scale variation in forest structure, TLA measurements will connect to scales relevant to 

global land surface models and eddy covariance towers. 

 

Results 

Lidar Penetration of Forest Canopies 

Lidar ground return counts increase with the coarsening of spatial resolution for both the NASA 

G-LiHT and NEON AOP platforms (Figure 4). However, there were notable differences between 

the two systems at finer spatial resolutions. At a 1x1 meter resolution within the study area, NASA 

G-LiHT had ground returns in 75.53% of the raster cells, while NEON AOP had 37.52%. While 
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differences persist, both sensors were within 10% of each other at a 10x10 meter resolution where 

NASA G-LiHT had 99.17% ground returns and NEON AOP had 90.98% ground returns.  

 

 

Figure 4. Lidar Spatial Resolutions. Six different spatial resolutions were used for this study, 

which are shown here. The percentage of ground returns for each spatial resolution are shown, 

which increase with the coarsening of spatial resolution. Black pixels are locations of ground 

returns and light gray pixels do not have ground returns. 

 

These two airborne systems also exhibit differences in the depth of canopy penetration 

(Figure 5). Within NEON plot 45, a 20x20 meter NEON vegetation plot, NASA G-LiHT had 

20,475 lidar returns while NEON AOP had 1,299, or 94% less returns than NASA G-LiHT. When 

we binned these returns by height, the 25th, 50th, 75th, and 90th percentiles occurred at similar 

heights above the ground. However, the 10th percentile of returns for NASA G-LiHT occurred 
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much deeper in the canopy at 11.5 meters above the ground, while the 10th percentile of returns 

for NEON AOP occurred at 20.3 meters above the ground. These findings highlight the differences 

in canopy penetration between the two sensors, as the distribution of lidar returns is skewed more 

deeply into the canopy in the G-LiHT data. 

 

 

Figure 5. Lidar Within Canopy Returns. We used a permanent 20x20 meter NEON vegetation 

plot (NEON plot 45) to extract lidar point return information. The left plots show all lidar pulses 

within the plot, with NASA G-LiHT having 20,475 returns and the NEON AOP having 1,299 

returns within the same plot area. The right plots show the proportion of returns at each meter 

above the ground. The dotted lines show the ground (0 meters), 10th percentile, 25th percentile, 

50th percentile, 75th percentile, and 90th percentile. The 10th percentile is shown as a slightly darker 

dotted line to highlight the differences between sensors deep in the canopy. 

 

 

Beer-Lambert Coefficients 

Using the field-measured LAI together with the lidar LAI estimates, we calculated a broad 

range of Beer-Lambert coefficients at different spatial resolutions (Table 1). We found that Beer-

Lambert coefficients decrease with the coarsening of spatial resolutions regardless of airborne 

system. These coefficients approach 0.5, which is commonly used in closed-canopy forest 



24 

 

ecosystems (Stark et al. 2012; Vose et al. 1995; Burton et al. 1991), at these coarser spatial 

resolutions. 

 

Table 1. SERC Beer-Lambert Coefficients. Beer-Lambert coefficients for each lidar sensor at 

each spatial resolution based on relationships with hemispherical photographs. 

 

 

 

LAD Profile Estimates  

We observed a general increase in the agreement between NASA G-LiHT and the NEON 

AOP LAD values with coarsening spatial resolution in both sets of data (ground to TOC and 10 

meters above the ground to TOC) (Figure 6). When the entire dataset is considered (row A, Figure 

6), R2 values increase and the 95% confidence interval becomes narrower as the spatial resolution 

becomes coarser while the line of best fit changes drastically based on the position of the spuriously 

large values in the lower canopy, as discussed in Section 2.6. However, while row B in Figure 6 

(10 meters above ground to TOC) shows a similar loosely correlated relationship at finer spatial 

resolutions and R2 values increasing as the spatial resolution becomes coarser, the line of best fit 

approaches the 1:1 line as the spatial resolution coarsens, signifying a stronger relationship 

between these two datasets. The tightening of this relationship begins to occur at a 10-meter spatial 

resolution (R2 = 0.87), which is also the spatial resolution where over 90% of cells have a ground 

return value in both datasets.  

 

1x1 2x2 5x5 10x10 20x20 30x30

NASA G-LiHT 1.01 0.87 0.83 0.67 0.58 0.48

NEON AOP 1.34 1.12 0.85 0.68 0.63 0.56

Beer-Lambert Coefficients
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Figure 6. SERC LAD Profiles. All spatial resolutions considered are shown for NEON Plot 45 

with NASA G-LiHT and NEON AOP LAD profiles in the first row of plots. LAD values were cut 

off at 0.5 for visualization, so that differences in the upper canopy can be seen. Plots in row A 

show the relationship between NASA G-LiHT and NEON AOP LAD data at each spatial resolution 

from the ground to TOC. Plots in row B, show the same relationship, but only including data from 

10 meters above ground to TOC. All R2 values are significant at p < 0.001. 

 

To consider the broader landscape variation and patterns, we generated 50 random 20x20 

plots and extracted the same data as in the case of NEON Plot 45. At these 50 randomly located 

plots, we observed the same general relationships described above when all the data from the 

ground to TOC were employed (Table 2) and when only the data from 10 meters above the ground 

to the TOC were employed (Table 3). These findings show that NEON Plot 45 is not an anomaly 
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and instead is representative of the relationships between these two lidar datasets across the 

landscape. 

 

Table 2. SERC Whole Canopy Statistics. LAD profiles (for all voxels) for 50 random 20x20m 

plots from each spatial resolution and for each sensor (NASA and NEON) were extracted. For 

every plot at each spatial resolution and for each sensor, R2, RMSE, and slope were calculated 

from a linear regression. Spearman’s ρ was also calculated. SD = standard deviation.  

 

 

 

Table 3. SERC Reduced Canopy Statistics.  LAD profiles (for voxels 10 meters above the ground 

to TOC) for 50 random 20x20m plots from each spatial resolution and for each sensor (NASA and 

NEON) were extracted. For every plot at each spatial resolution and for each sensor, R2, RMSE, 

and slope were calculated from a linear regression. Spearman’s ρ was also calculated. SD = 

standard deviation. 

 

 

 

 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

R2 0.66 0.27 0.76 0.19 0.85 0.17 0.89 0.15 0.95 0.07 0.93 0.10

RMSE 0.01 0.01 0.02 0.01 0.03 0.02 0.05 0.04 0.05 0.05 0.08 0.07

Slope 0.36 0.23 0.53 0.22 0.91 0.38 1.04 0.52 1.22 1.26 0.91 0.46

Spearman's ρ 0.83 0.13 0.90 0.08 0.95 0.04 0.97 0.05 0.97 0.05 0.98 0.03

LAD Estimates: Ground to Top of Canopy

30x301x1 2x2 5x5 10x10 20x20

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

R2 0.55 0.22 0.67 0.17 0.83 0.13 0.90 0.05 0.93 0.05 0.91 0.08

RMSE 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01

Slope 0.35 0.19 0.46 0.22 1.01 0.29 1.08 0.31 1.05 0.22 0.92 0.21

Spearman's ρ 0.76 0.18 0.80 0.18 0.93 0.05 0.94 0.11 0.98 0.02 0.96 0.06

LAD Estimates: 10 Meters Above Ground to Top of Canopy

30x301x1 2x2 5x5 10x10 20x20
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Total Leaf Area Estimates 

Across the entire study area, results reflect our findings at the plot level (Figure 7). From 20 meters 

to TOC, NEON AOP has slightly higher LAI and TLA estimates than NASA G-LiHT due to the 

point cloud being skewed towards the top of the canopy. Even with these differences, there was 

less than a 5% difference in TLA between the two sensors at this height interval. Between 10 and 

20 meters above the ground, there was a 10% difference between in TLA between the sensors, 

with NASA G-LiHT having slightly higher estimates due to the point cloud being skewed lower 

in the canopy than NEON AOP. When 10 meters above the ground to TOC is considered, there is 

a 2% difference between TLA estimates between the two sensors. However, when the ground to 

top of canopy is considered there is a much larger difference between TLA estimates at 17%.  
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Figure 7. SERC LAD Spatial Patterns. Total leaf area (TLA; km2) was estimated at three different 

canopy height intervals (ground to TOC, 10m-20m, 20m to TOC, at the 10x10 meter resolution 

across the entire study area. A subset of the study area is shown here for visualization purposes, 

but LAI and TLA values are calculated from the entire study area. Differences between the G-
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LiHT estimates and NEON estimates were also calculated. Mean LAI differences were calculated 

as the mean of the absolute values of the differences. NEON Plot 45 is shown as an orange square 

for reference. TLA is the total km2 of leaf for the study area (7.2 km2, solid line in Fig 1). 

 

Discussion  

Measuring Leaf Area Density from Above 

While there are differences between these two airborne systems, our analysis can serve as a case 

study on how to estimate LAD at the appropriate spatial resolution for a given airborne lidar data 

set. Since these total canopy calculations are limited by the need to have a ground return in a given 

raster cell, this is often the most significant limiting factor in the estimation of LAD. The lack of 

ground returns can severely limit the spatial coverage of LAD estimates across the landscape, 

which can result in missing data within the study area, thus finding a balance between spatial 

resolution and spatial coverage is often the first step in these calculations. While it would be ideal 

to compare these datasets for other research sites, this is often not possible because only one of the 

datasets is available for a given area, thus the need to have comparable LAD estimates between 

sensors. By excluding voxels that lack ground returns we ensure that the entire canopy is accounted 

for in our LAD estimates, while providing forest structural estimates at an ecologically relevant 

scale (10x10 meters is similar to a canopy dominant tree crown) to help answer landscape- and 

macro-scale questions. 

We have shown that even low pulse density NEON AOP lidar data can be used to 

successfully estimate LAD, but these measurements come at the expense of spatial resolution. 

LAD estimates from between sensors began to stabilize at around a 10-meter resolution; however, 

there is still the need to remove a portion of the understory for close agreement, likely due to errors 

related to topographic changes inflating LAD estimates near the ground. Such understory inflation 
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is particularly evident with NASA G-LiHT due to its high pulse density and canopy penetration. 

On the other hand, because of this high pulse density and canopy penetration LAD estimates from 

NASA G-LiHT can be calculated at finer spatial resolutions, allowing for the consideration of the 

full LAD profile. However, there is a tradeoff between high data density (NASA G-LiHT) and 

spatial extent and temporal coverage (NEON AOP). With NEON AOP flying the same sites on a 

semiannual basis, the ability to have yearly, landscape scale analyses might outweigh the need for 

finer resolutions of LAD estimates. While NASA G-LiHT has a higher pulse density and greater 

canopy penetration, which allows for finer resolution analysis, traditionally the flights have 

covered smaller areas, are not conducted on a yearly basis, and are project driven. That said, the 

G-LiHT archive is extensive with data in over 30 US states and territories and several countries at 

the time of this study (https://gliht.gsfc.nasa.gov/), highlighting the potential to generate broad 

spatial estimates across a range of vegetation types at fine spatial scales. 

We show that the low-density point cloud from the NEON AOP can be used to estimate 

LAD within the forest canopy, with minimal differences (around 2%), as long as the inflated 

understory estimates are removed. While removing the understory of the canopy from the dataset 

is not ideal, the temporal and spatial coverage of the NEON AOP provide a unique opportunity to 

monitor forest ecosystems in ways that were not previously possible. Additionally, our LAD 

estimates per voxel from 10 meters above the ground to the top of canopy are within the ranges 

found by other research conducted at SERC (LAI of 4 to 7; LAD of 0.1 to 0.5) using field-based 

techniques (Parker and Tibbs 2004; Brown and Parker 1994). This offers additional evidence that 

we can obtain accurate LAD estimates from airborne lidar systems with differing parameters and 

from point clouds with varying degrees of density and canopy penetration. While we show that 
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these measurements are accurate in the dense forests of SERC, more research is needed in different 

biomes to further test the abilities of airborne lidar to estimate LAD across landscapes. 

 

Lidar System Considerations 

All lidar collections are not the same. Lidar sensor specifications (beam divergence, scan angle, 

etc.) have large impacts on the density and quality of the data and are tuned to the specific data 

collection goal. These specifications are important to consider before processing the data and can 

help the researcher determine how to best use the data. Specifications such as scan angle determine 

how LAI estimates from hemispherical photographs need to be constrained during processing (see 

Section 2.2), while beam divergence and pulse repetition frequency can help determine the quality 

of the point cloud and canopy penetration. Likewise, differences in the wavelength the lidar sensor 

operates at can affect how pulses are reflected within the canopy. For instance, leaves typically 

have a higher reflectance at 1064 nm (NEON AOP) than at 1550 nm (NASA G-LiHT), while bark 

has a higher reflectance at 1550 nm; this could lead to bark and branches having a slightly higher 

impact on returned pulses for NASA G-LiHT and leaves having a slightly higher impact for the 

NEON AOP. While the extent of the impact due to these differences would be difficult to quantify 

without ray tracing and a well-defined architecture, this would most likely lead to slightly different 

point clouds if all other variables were held constant. Examining the underlying metadata and 

understanding what the goals of the data collection mission are can help determine how the 

resulting lidar data can be used for a specific research project. For example, we have shown here 

that NEON AOP lidar data are adequate for measuring LAD in the forest canopy at a 10-meter 

resolution, but not for detecting variations in the understory if the understory is dense. 
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Ecological Implications 

While it would be ideal to use a spatial resolution that mimics the fine scale variation found within 

a forest canopy (e.g., 1x1 meters), this may not always be possible due to data availability.  

Since the lidar data available for ecological studies differs from site to site, it is challenging to 

compare studies and combine analyses over such heterogeneous collections. By developing 

standardized approaches for LAD and LAI estimation that are accurate and consistent regardless 

of the sensor used, analyses can more easily compare multiple studies while encompassing varied 

data sources, resulting in an opportunity for robust quantitative comparison and hypothesis testing. 

We have shown that LAD and LAI estimates at 10x10 meters, that are fine-tuned with 

hemispherical photographs, are in line with field-based measurements across two very different 

airborne lidar systems. Thus, we propose a resolution of 10x10 meters to estimate LAD and LAI, 

with inflated understory LAD estimates removed, as a viable standard resolution for landscape to 

macro-scale studies that use lidar data collected with lower pulse densities (e.g., less than 20 pulses 

per m2). While a 10x10 meter resolution will not be fine enough to investigate leaf level processes 

or the structural components of individual trees, airborne lidar with moderate to low pulse densities 

is still well situated for the investigation of landscape to macro-scale trends. When higher pulse 

densities are available from airborne, ground, and drone based lidar systems, there is the potential 

to model biophysical processes occurring at the leaf level (Wu et al. 2018), to investigate the role 

of fine-scale heterogeneity on canopy function (Atkins et al. 2018), and to consider the structural 

components of individual trees (Hosoi and Omasa 2006). As these types of high-density lidar data 

become more readily available, additional detailed analyses will be needed to quantify structural 

and functional processes at these finer scales.  
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Looking Forward 

With lidar data becoming more readily available, it is important to consider the end user and their 

needs. Airborne and spaceborne platforms like NASA G-LiHT, NEON AOP, and GEDI are 

collecting and will continue to collect a large catalog of lidar data across a variety of ecoregions, 

allowing researchers the opportunity to ask and answer new questions about forest structure at 

large spatial scales. To support these new lines of research, we present a reproducible workflow 

and encourage other researchers to do the same, so that the scientific community as a whole can 

use these data in a consistent and standardized manner. While there are many other approaches to 

estimating LAD from airborne lidar (e.g., McNeil et al. 2016; Detto et al. 2015), we have shown 

that our methodology produces accurate estimates that are based on well-established field-based 

methodologies. With this large influx of data, we have a unique opportunity to not only use lidar 

data in new ways, but also to incorporate the resulting products into research projects that may 

have never considered using lidar data previously. 

 

Conclusion 

Lidar has become a common data type in the remote sensing community and with this large influx 

of data, there are many unique opportunities to incorporate it into different ecological studies. Here 

we have presented a reproducible methodology to produce LAD and LAI estimates from airborne 

lidar with R code available for other researchers to use. We also highlight the importance of 

airborne lidar survey parameters that dictate pulse return density and ultimately determine the 

coverage of LAD and LAI estimates within survey areas, while providing ideas on how this data 

can be used in ecological and forest studies. Furthermore, we show that a spatial resolution of 

10x10 meters can successfully estimate LAD with either of these two moderate to low pulse 
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density airborne sensors. While lidar data has been used to inform management and conservation 

decisions related to the estimation of aboveground biomass and productivity (Hughes et al. 2018; 

Socha et al. 2017), the response of forests to large-scale disturbances (Hoffman et al. 2018), the 

impacts of drought on forest health (Paz-Kagan et al. 2018), and the conservation of biodiversity 

(Garabedian et al. 2017; Mao et al. 2018), these methodologies can be difficult to reproduce. To 

help bridge this gap between ecologists and forest managers who could use lidar data in research 

and management plans and remote sensing scientists who use this data on a regular basis, we 

provide an open source, reproducible, and standardized workflow to calculate LAD and LAI from 

airborne lidar data.  
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Data Availability 

Lidar point clouds are available at: http://data.neonscience.org and https://glihtdata.gsfc.nasa.gov. 

R package to estimate LAD and LAI from airborne lidar data is provided through GitHub at: 

https://github.com/akamoske/canopyLazR. Hemispherical photographs and shapefile with 

locations can be found on figshare at: https://doi.org/10.6084/m9.figshare.6955142.v1. 
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CHAPTER 3. LEAF TRAITS AND CANOPY STRUCTURE TOGETHER EXPLAIN 

CANOPY FUNCTIONAL DIVERSITY: AN AIRBORNE REMOTE SENSING 

APPROACH 

 

Citation: Kamoske, A.G., K.M. Dahlin, S.P. Serbin, and S.C. Stark. 2020. Leaf Traits and 

Canopy Structure Together Explain Canopy Functional Diversity: An Airborne Remote Sensing 

Approach. Ecological Applications e2230. 

 

 

Introduction 

The relationship between forest structure and function is a major focus of ecosystem 

ecology; however, most studies have focused on measurements within traditional forest plots 

(Ellsworth and Reich 1993; Parker et al. 2004; Gough et al. 2019; Atkins et al. 2018; Fahey et al. 

2015; Pedro et al. 2017). These studies have shown that the integral relationship between structure 

and function drives important canopy processes such as net photosynthetic carbon assimilation 

(Niinemets 2007), resource use and efficiency (Hardiman et al. 2013), and woody growth (Stark 

et al. 2012), as well as critical ecosystem processes such as net primary production (Scheuermann 

et al. 2018; Hardiman et al. 2011). Since the individual traits that drive this structure-function 

relationship are not constant in space and instead show significant heterogeneity across landscapes 

(Chambers et al. 2007; Asner et al. 2014), a core question in ecosystem ecology is: Do landscape 

scale patterns of forest functional traits change when whole plant structure is considered? 

In addition to this significant spatial variation, plant functional and structural traits also 

vary in three-dimensional space due to a host of different long-term abiotic growth conditions, 

crown position within the canopy and competition for light, as well as within-canopy fluctuating 

light environments across the full vertical and horizontal extent of the canopy (the ‘canopy 

volume’; Ellsworth et al. 1993). These differing light and growth environments drive variation of 

important leaf functional traits including leaf mass per area (LMA; the ratio between leaf dry mass 
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and leaf area) and foliar nitrogen (foliar N; g/mG
2; mG = meter of ground) within the canopy volume 

(Poorter et al. 2009, Niinemets, 2007). Moreover, horizontal and vertical patterns of these traits in 

growth environments create heterogeneous distributions of leaves in three dimensions causing 

significant variation in canopy-scale carbon assimilation across plant functional types (Niinemets 

2015). This variation can be attributed to differing light environments related to the effects of 

multiple scattering, within-canopy shading, and the density of plant material above and around a 

given leaf (Stark et al. 2012; Harding et al. 2001).  Resulting tradeoffs between light interception, 

photosynthetic capacity, and construction costs (e.g., the leaf economics spectrum) leads to 

broadly predictable variation in photosynthetic strategies across the plant species comprising 

global terrestrial biomes (Reich et al. 1997; Wright et al. 2004).  

At the canopy scale, forest structural traits can be used to describe the architectural 

properties that define a leaf’s growth environment. These traits include leaf area density (LAD; 

the total leaf area per unit of volume) which characterizes the horizontal and vertical spatial 

variation of leaf area within a canopy (Weiss et al. 2004) and canopy clumping (a measure of 

foliage aggregation relative to a random spatial distribution of leaf material within the canopy; 

Pisek et al. 2018). When combined with information on plant function, structural diversity yields 

important insights into vegetation growth and carbon cycling (Niinemets 2012), however both can 

be challenging to quantify at scales larger than vegetation plot without advanced remote sensing 

technologies (Asner and Martin 2009). 

Remote sensing has played a significant role in understanding the global terrestrial carbon 

cycle for decades (Tucker and Sellers 1986; Schimel 1995; Running et al. 2004; Schimel et al. 

2015), with a more recent focus on the use of hyperspectral imagery and lidar to measure forest 

function and structure. By utilizing hundreds of narrow spectral bands, airborne passive optical 
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hyperspectral imagery (HSI; also known as imaging spectroscopy) provides detailed two-

dimensional (2D) information on the spectral and functional properties of leaves at the top of the 

canopy (Ollinger et al. 2002; Townsend et al. 2003; Asner et al. 2015; Singh et al. 2015; Dahlin et 

al. 2013). Lidar is an active remote sensing system that utilizes laser pulses to measure distance, 

which can then be used to accurately estimate the three dimensional (3D) and internal structure of 

forest canopies across a range of plants in different biomes (Stark et al. 2012; Kamoske et al. 2019; 

Shao et al. 2019; Smith et al. 2019). While passive optical data can also be used to estimate 

variables related to forest structure, including clumping index (Pisek et al. 2018) and 3D point 

clouds through structure-from-motion methods (Dandois et al. 2013; Iglhaut et al. 2019), the 

results are not as robust as active methods like lidar for generating 3D plant information. Compared 

to HSI data, lidar can yield detailed insights into plant architecture but does not provide the 

information necessary to map leaf functional traits across space and time, a combination of these 

data sources is required to provide a complete picture of vegetation structural and functional 

diversity.  However, few publicly available opportunities and platforms exist for the simultaneous 

collections of these two complementary technologies (Cook et al. 2013, Kampe et al. 2010), 

limiting our ability to combine landscape-scale information about forest structural and functional 

traits that play critical roles in whole-canopy processes like carbon assimilation.  

In this study, we take steps towards addressing the question of how leaf traits and structural 

heterogeneity determine whole canopy function by considering how spatial patterns of top-of-

canopy and total canopy traits vary across a heterogeneous landscape. We detail a reproducible 

methodology for estimating functional and structural diversity within the canopy volume from 

airborne lidar and hyperspectral data from the National Ecological Observatory Network’s 

Airborne Observation Platform (NEON AOP; Kampe et al. 2010). We compare the spatial patterns 
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of 3D whole canopy traits derived from our fusion of lidar and hyperspectral data with traditional 

2D remote sensing derived top-of-canopy traits. In addition, we examine the influence of 

topography, geology, and management regimes on these two measurements of functional diversity 

at a NEON site consisting of patches of open longleaf pine and dense broadleaf deciduous forests, 

located in Alabama, USA. These insights could lead to a better understanding of how we scale 

fine-resolution ecological processes to landscape, continental, and global models (Schimel et al. 

2019). 

 

Materials and Methods 

Site Description 

Field measurements and remote sensing data were acquired in Talladega National Forest – 

Oakmulgee Ranger District (TALL) in west-central Alabama, USA (Figure 8). TALL is a core 

NEON site covering 5,300 hectares with a mean annual temperature of 17° C and a mean annual 

precipitation of 1350 mm. TALL consists of a mosaic of forest types, with higher elevation areas 

containing an overstory of longleaf pine (Pinus palustris) and loblolly pine (Pinus taeda), while 

white oak (Quercus alba), Southern red oak (Quercus falcata), chestnut oak (Quercus montana), 

blackjack oak (Quercus marilandica), mockernut hickory (Carya tomentosa), pignut hickory 

(Carya glabra), sweetgum (Liquidambar styraciflua), and tulip tree (Liriodendron tulipifera) are 

present in lower elevation bottomlands. TALL is an actively managed site with ongoing logging, 

restoration, and prescribed burning projects (USDA Forest Service 2005). 
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Figure 8. Map of Study Area at TALL. Location of field site. Purple rectangle represents the 

extent of the aerial data collection of the NEON AOP. Inset map shows the extent of the larger 

map view within the southeastern United States. 

 

Airborne Remote Sensing Data 

The NEON AOP collected remotely sensed data from April 27 to April 29, 2018 at TALL. The 

NEON AOP employs a full-range hyperspectral sensor (380 to 2500 nm; 5 nm bands), a high-

resolution RGB camera, and a lidar system (Kampe et al. 2010). Flights occurred at an altitude of 

1000m, resulting in hyperspectral measurements at a one-meter resolution. The lidar system for 

this collection was a Riegl Q780 Laser Measurement System operated at a scan angle of +/- 18 

degrees, and a beam divergence of 0.8 mRad, resulting in an average point density of 9.48 pts/m2. 
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Field Data Collection and Lab Methodologies 

In May 2018, shortly after the AOP collection, we collected leaves from throughout the canopy 

volume, targeting the dominant species at TALL (10 species total; listed in section 2.1). Foliar 

samples were collected using a Big Shot line launcher (SherrillTree, Greensboro, NC) and a pole 

pruner, with each sample’s height estimated using a laser range finder and meter marks on the set 

line. We collected sample locations using a Trimble GEO7x GPS (Trimble, Sunnyvale, CA), 

which were later differentially corrected with Trimble’s GPS Pathfinder Office software. As we 

collected samples from the canopy, they were wrapped in a damp paper towel, sealed in a plastic 

bag, and placed in a cooler with ice packs. In total we collected 156 foliar samples from the canopy 

dominant species (Appendix A.1 and Appendix A.2). In addition to leaf samples, we took 120 

hemispherical photographs across the site, following the protocol described in Kamoske et al. 

(2019). 

            Leaf samples were processed the same day in our mobile laboratory. For each sample (a 

small branch with multiple leaves) we took three reflectance measurements from different leaves 

with a SVC HR-1024i Spectroradiometer with an attached LC-RP-Pro leaf clip foreoptic (Spectra 

Vista Corporation, Poughkeepsie, NY) , which collects data from 340 to 2500 nm with a bandwidth 

of approximately 2 nm. Leaves from broadleaf samples were placed directly into the leaf clip, 

while we created mats from needleleaf samples by laying the needles vertically next to one another 

while taping the ends together. For needleleaf samples, only the needles and not the taped ends 

were placed into the leaf clip. After each sample, the instrument was recalibrated using a white 

Spectralon panel. We then collected a minimum of 500 mg of leaf material from the sample using 

a pair of scissors that were sterilized between each sample. These pieces of leaf material were 

imaged on a flatbed scanner and processed for area using imageJ software (Schneider et al. 2012). 
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We placed the leaf material in a paper coin envelope and dried the samples at 70° C for at least 48 

hours. After drying, we weighed the leaf samples and calculated leaf mass per leaf area (LMA; 

g/mL
-2; mL = meter of leaf material). A subset of these samples (n = 40, ~4 per species) were re-

dried, ground to a fine powder using a ball mill (2000 Geno Grinder; Spex Sample Prep, 

Cridersville, OH, USA), with 1.50-2.50 mg weighed in 0.1-mil tin foil vials (AX26DR; Mettler 

Toledo, Columbus, OH, USA), and used to determine the C:N ratio and elemental N content (g 

N/g leaf, %) employing a CHNS/O elemental analyzer operated in CHN mode, according to the 

manufacturer’s instructions (2400 Series II CHNS/0 Analyzer; Perkin Elmer, Waltham, MA, 

USA) at Brookhaven National Laboratory (Upton, NY). 

         To build a leaf-scale model of %N to apply to the remaining samples in lieu of determining 

foliar N in the lab, we used the laboratory calculated %N values and the associated mean 

reflectance values for each wavelength, to train a partial least squares regression model (PLSR; 

Serbin et al. 2014; Singh et al. 2015). We withheld 20% of the samples using a weighted random 

approach, based on the %N values, as validation data (n = 8) that wasn’t used to develop the model 

and used the remaining samples (n = 32) as model training data. Using a jackknife approach that 

randomly withholds 20% of the training data through 50 iterations, we calculated a PRESS statistic 

(up to 15 components) for each iteration. We then selected the number of components for our final 

model using the lowest PRESS statistic that balanced predictive accuracy between the training and 

validation datasets. We applied these equations to the validation data to assess model accuracy. 

We then applied the final PLSR coefficients to the reflectance measurements of all 156 leaf 

samples to determine PLSR derived %N values. We used the PLSR predicted values in subsequent 

analysis. This methodology follows the process and code described in Serbin et al. (2014), with 

all analysis performed in R using the pls package (Mevik and Wehrens 2015). 
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Lidar Methods 

Lidar data was processed for LAD (mL
2/mG

3; mG = meter of ground) at a 10x10 meter spatial 

resolution using the canopyLazR package on GitHub (Kamoske et al. 2019). The canopyLazR 

package uses the methods described by MacArthur and Horn (1969) and is similar to other 

published methods (Stark et al. 2012; Zhao and Popescu 2009; Solberg et al. 2006; Sumida et al. 

2009). By normalizing the point cloud to height above ground, LAD is calculated by counting the 

number of lidar pulses that enter and exit each voxel in each vertical column of data that has at 

least one ground return. After removing the bottom 10 meters of the canopy due to noise caused 

by topographic variation (Kamoske et al. 2019), a stack of rasters containing LAD estimates for 

each 1-meter slice of the canopy above this threshold is returned (mean canopy height at TALL is 

25 meters). LAI is then calculated by taking the sum of LAD values within a given column of 

voxels within the canopy. While the TALL lidar data set has a considerably higher point density 

than the NEON lidar data used in Kamoske et al (2019), here we elected to keep this relatively 

conservative approach to aggregating and filtering these data as these lidar point clouds were 

processed as part of a larger study where we wanted to maintain data uniformity across sites. 

Moreover, topographic issues have been shown to be common when using lidar data for DEM 

generation (Bater and Coops 2009), which are further amplified when using low-density lidar data. 

To calibrate the lidar derived LAI estimates to field collected data, we processed field-collected 

hemispherical photographs for LAI using the DHP software (Leblanc et al. 2005). We then 

calculated the slope of a regression equation between these measurements and the lidar derived 

LAI estimates (Appendix A.8; Sabol et al. 2014; Richardson et al. 2009). This slope is used as an 

extinction coefficient in the Beer-Lambert portion of the LAD equation described in Kamoske et 

al. (2019) and in Appendix A.8. For TALL we used an extinction coefficient of 0.4982. Here we 
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opted to use a single extinction coefficient for the entire site, rather than separate coefficients for 

broadleaf, needleleaf, and mixed species pixels due to difficulties in detecting species differences 

with lidar data. 

 Based on our previous work in Kamoske et al. (2019), we then applied a canopy height and 

LAI mask to each processed LAD raster to minimize noise in the lidar dataset. Using Tukey’s 

outlier test (k = 1.5), we removed all outliers from the upper end of the dataset, which resulted in 

all pixels with a canopy height greater than 44 meters being removed as well as all pixels with a 

LAI value greater than 6 (0.002% of pixels). While a LAI value of 6 is a statistical output, it is also 

greater than our highest field-collected plot-scale LAI value of 4.35. We also removed all pixels 

with a LAI value equal to 0. Using these masked LAD tiles, we calculated 26 lidar derived forest 

structural attributes in raster format at a 10x10 meter resolution. These include filled canopy 

volume, canopy porosity, and canopy distribution metrics described in Hardiman et al. (2013), top-

of-canopy rugosity, and canopy euphotic, oligophotic, and empty zone metrics described in Lefsky 

et al. (1999), canopy height metrics described in Shi et al. (2018), and within canopy rugosity 

described in Hardiman et al. (2011). All code to calculate these metrics is provided in the 

canopyLazR package on our GitHub page (https://github.com/akamoske/canopyLazR; 

http://doi.org/10.5281/zenodo.3987340). An overall diagram of our workflow is shown in Figure 

9. 
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Figure 9. Total Canopy Modeling Methodology. Workflow diagram showing our methodology 

for within canopy trait modeling. LAD = leaf area density (mL
2/mG

3), LMA = leaf mass per area 

(g/mL
-2), N = foliar nitrogen content (g N/g leaf %), total canopy N = total canopy nitrogen content 

(g/m2). Field collected sunlit top-of-canopy %N & LMA refers to leaf samples that were collected 

at the top of the canopy, were constantly sunlit, and had no leaves above (i.e., no sun impediment). 

Field collected within canopy %N & LMA refer to leaf samples that were collected within the 

canopy (i.e., not constantly sunlit, shaded, and with other leaves surrounding them). 
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Hyperspectral Imagery Methods 

We processed the atmospherically corrected, HSI reflectance data before analysis. First, we 

removed all flight lines from April 27 due to cloudiness, as well as the horizontal (east-west) flight 

lines from April 29 and April 30. The remaining north-south flight lines covered the entire TALL 

site (April 29 and April 30 flights covered the same area as the April 27 flights). Next, we visually 

identified noisy bands in the dataset and removed all bands that were below 500 nm, between 1350 

and 1450 nm, between 1800 and 2000 nm, and all bands above 2400 nm. We then calculated a 

narrowband NDVI mask (red = 674 nm; NIR = 830 nm; NDVI > 0.5) to remove all non-vegetated 

pixels from further analysis (Dahlin et al. 2014). We used this relatively high NDVI value of 0.5 

in order to leave only healthy green vegetated pixels during the subsequent corrections and 

analysis. We also calculated a brightness mask to remove all shaded pixels using Tukey’s outlier 

test (k = 1.5), where all pixels that have a reflectance below this cutoff at 800 nm are considered 

outliers and removed. This is a modified version of the methodologies presented by Clark et al. 

(2005) and Gougeon (1995), which removes all pixels that are less than the mean reflectance value 

at 800nm. Following this, we applied a topographic correction to reduce the effects of terrain, 

view, and illumination on the reflectance data by normalizing the sunlit area within a pixel without 

changing the sun and sensor positions or the orientation, geometry, and structure of the canopy 

while also accounting for diffuse radiation (Soenen et al. 2005). Lastly, we applied a bidirectional 

reflectance distribution function effects correction (BRDF) with a thick Ross kernel and a dense 

Li kernel to remove the anisotropic scattering properties of vegetation that result in flight line 

artifacts (Colgan et al. 2012; Collings et al. 2010; Schlapfer et al. 2015; Wanner et al. 1995; 

Weyermann et al. 2015). Annotated R code to apply these corrections is available on our GitHub 

page as the hypRspec package  
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(https://github.com/akamoske/hypRspec; https://zenodo.org/record/3987336). 

From the resulting images, we extracted reflectance data for all top of canopy field samples. 

Due to potential image orthorectification errors, GPS uncertainty, and field challenges, we visually 

assessed GPS point locations and, when necessary, moved the GPS locations, by hand, 1-2 meters 

to the most appropriate pixel based on a canopy height model and pixel brightness. Due to flight 

line overlap, many samples had multiple reflectance values. In these cases, we kept the reflectance 

data from whichever image produced the brightest total reflectance across all bands. We choose to 

take the brightest reflectance value rather than the median here, in order to filter pixels that were 

possibly affected by collection issues related to adverse weather conditions that would not be 

resolved during the topographic and BRDF correction process. 

            Once reflectance spectra for all top of canopy samples (n = 52) were extracted, we 

developed PLSR models for top-of-canopy %N and LMA (Ollinger et al. 2002; Townsend et al. 

2003; Singh et al. 2015) using the same methodology and code described for the laboratory data. 

For the LMA model, we removed all lab measured LMA values that were greater than 259 g/m2 

based on the results from a Tukey’s extreme outlier test (k = 3). This outlier test removed 6 samples 

from the dataset. We removed these outliers from the dataset prior to fitting our models, due to 

PLSR being sensitive to outliers during the calibration and validation process (Martens and 

Martens 2000). Once PLSR coefficients were calculated for top-of-canopy LMA and %N, we 

applied them to the corrected HSI data, resulting in a 1x1 meter raster for each trait (%N and 

LMA). We then filtered the trait maps to remove all extreme outlier pixels (k = 3) and values less 

than 0 from each 1x1 meter raster that result from the errors associated with reflectance values 

collected during image collection. This resulted in 0.09% of the pixels being removed from the 

final raster. Next, we resampled the mosaicked image to a 10x10 meter spatial resolution using the 
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mean value within a given kernel, to match the spatial resolution of the lidar derived rasters. 

Following this, we mosaicked the flight line rasters together with the mean of overlapping pixels 

used in the final raster. All analysis was performed in the R programming language and is available 

on our GitHub page as the hypRspec package (https://github.com/akamoske/hypRspec 

https://zenodo.org/record/3987336). 

 

Remote Sensing Fusion: Total Canopy N 

To model within canopy LMA, we extracted data from the 26 previously calculated lidar structural 

attribute rasters, and top-of-canopy %N and LMA rasters, for all 156-field sample locations. We 

also included the height and depth (e.g., distance from the top of canopy) for each of the samples 

in the model. We then removed all top-of-canopy samples (n = 52) since these were used in 

previous steps and were predicted using the HSI data and PLSR. We then tested the correlation 

(Pearson’s R) between each variable and within canopy LMA. To avoid multicollinearity, 

variables with correlations greater than 0.5 to each other were considered too correlated and the 

predictor most correlated with LMA was kept for further analysis. We then split the dataset into 

validation data (20%; n = 20) and training data (80%; n = 84) using a weighted approach based on 

species sample counts. Using the previously determined variables we developed an ordinary least 

squares (OLS) regression model from the training data. To determine the best combination of 

variables for our final model predicting within canopy LMA, we used backwards stepwise AIC 

model selection (Burnham et al. 2011; Mascaro et al. 2011). We then applied the resulting 

coefficients to the validation dataset to examine the overall predictive accuracy of our model. 

Because we did not see a substantial variation of within canopy %N in our data (Appendix A.1) 
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or in the literature (Serbin et al. 2014; Bachofen et al. 2020), we used top-of-canopy %N values 

for our within canopy %N values in lieu of creating another predictive model. 

            We then applied the final model coefficients to the raster data to create a three-dimensional 

model of within canopy LMA (g/mL
2), with any value less than zero set to NA (due to predictive 

inaccuracy and noise in the raster data). Lastly, we used these three-dimensional models to 

calculate within canopy N per meter of ground area (g/mG
2; mG = meter of ground) using the 

following equation: 

𝑁𝑡𝑜𝑡 = ∑ 𝑁𝑇𝑂𝐶 ∗ 𝐿𝑀𝐴𝑖 ∗ 𝐿𝐴𝐷𝑖

ℎ

𝑖=10

 

where Ntot is the total canopy N (g/mG
2) for each 10x10 meter pixel, i refers to each 1 m layer of 

the canopy, starting at 10 m (layers below 10 m were not considered in this analysis), h is the 

maximum height of each column of voxels, NTOC is the top-of-canopy N (%), LMAi is the LMA at 

each voxel i (g/mL
2) and LADi is the LAD at each voxel i.  This resulted in a two-dimensional 

raster for the entire AOP collection area that summarizes functional and structural traits within the 

canopy volume. We also calculated foliar biomass using the same equation described above but 

withholding the NTOC values. Lastly, we removed all extreme outliers from the raster images using 

Tukey’s outlier test (k = 3). All analysis was performed in the R programming language. 

 

Raster Differences Across Scales 

To test whether the distinction between leaf-level and canopy traits was scale dependent, we tested 

the differences between the top-of-canopy and total canopy N rasters at multiple spatial grains. 

First, we scaled the original 10x10 meter data to 30x30 and 250x250 meter resolutions to match 

Landsat and MODIS pixels using the raster package in R (Hijmans 2019). Next, we randomly 



50 

 

extracted 10,000 points from the 10x10 m and 30x30 m rasters and 1,000 points from the 250x250 

m raster. We then used a linear regression to test the correlations between the two rasters at each 

spatial resolution. To compare the spatial patterns of the two rasters, we scaled and centered the 

rasters using the scale function in the raster package and then subtracted the normalized total 

canopy N raster from the normalized top-of-canopy %N raster.  

To compare the overall spatial patterns of the two maps, we extracted 10,000 random points 

from the top-of-canopy and total canopy rasters at the 10x10 m resolution and fit variograms to 

these samples.  We compared estimates of spatial autocorrelation as well as differences in the 

nugget, sill, and range of the variograms. 

 

Environmental Driver Analysis 

To understand the influence of abiotic gradients and management practices on the spatial patterns 

of top-of-canopy %N and total canopy N (g/mG
2), we assessed and analyzed the spatial patterns of 

the data, using multiple regression and Moran’s I to test these relationships. 

To quantify the abiotic gradients and management practices, we calculated 26 topographic, 

geologic, and management variables using ArcGIS, QGIS, and R (Appendix A.7). Topographic 

variables were calculated from the 10x10 meter lidar data, geologic variables were downloaded 

from the USGS (Horton 2017), and management variables were downloaded from the US Forest 

Service (https://data.fs.usda.gov/geodata/edw/datasets.php). All variables were transformed into 

rasters for subsequent analysis. 

We performed a Monte Carlo test with 1,000 simulations to calculate a distribution of 

model coefficients, Moran’s I of the residuals, and R2. During each simulation, we extracted 

10,000 random points from the rasters. We then standardized all non-binary variables (Gelman 
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2007; mean = 0, standard deviation = 0.5) to allow direct comparison between model coefficients. 

We developed two regression models, one for top-of-canopy %N and one for total canopy N 

(g/mG
2). For each simulation and for each regression model we used the following methodology. 

First, we tested the correlation between each variable (Pearson’s R) to avoid multicollinearity, with 

correlations greater than 0.5 considered to be too correlated and the predictor most correlated with 

N kept for further analysis. Using the remaining variables, we developed an OLS regression 

equation. With these results, we used backwards stepwise AIC model selection to determine the 

best combination of variables for each of our final models. Any remaining variables with non-

significant coefficients (p-value > 0.05) were then removed. We then used these variables in a final 

OLS regression. To test for spatial autocorrelation, we calculated Moran’s I on the model residuals. 

All analysis was performed with the R programming language. 

 

Results 

Trait Prediction with PLSR: From Leaf to Canopy 

To predict leaf level %N, we used a PLSR model with five components to produce the best results 

between training and validation data (Table 4; Appendix A.3). This model had an R2 of 0.90 for 

the training data, an R2 of 0.78 for the validation data, and an R2 of 0.87 when applied to all the 

data. All models had a p-value < 0.001. Across the lab-measured %N samples, values ranged from 

0.55 to 2.64% and PLSR-predicted values ranged from 0.40 to 2.64%. For subsequent steps, we 

used PLSR-predicted values. 
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Table 4. TALL PLSR Model Results. PLSR model results (R2). All models have p-values <0.001. 

  

Training 

Data 

Validation 

Data 

All 

Data 

Lab %N PLSR 0.9 0.78 0.87 

HSI %N PLSR 0.61 0.57 0.56 

HSI LMA PLSR 0.72 0.77 0.73 

 

To predict the top-of-canopy %N from the HSI data, we used a PLSR model with five 

components. This model had an R2 of 0.61 for the training data, an R2 of 0.57 for the validation 

data, and an R2 of 0.56 when applied to all the data (Table 4; Appendix A.4). All models had a p-

value < 0.001. After applying the PLSR coefficients across the images and removing extreme 

outliers using a Tukey’s outlier test (k = 3), %N values ranged from 0.004 to 3.048% (Figure 10a), 

which is comparable to the ranges of %N found in Eastern US temperate forests by Serbin et al. 

(2014).  
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Figure 10. Canopy Functional Trait Maps. Maps of functional and structural traits derived from 

NEON AOP HSI and lidar data. TOC = top-of-canopy; mL
2 refers to square meters of leaf 

material, while mG
2 refers to square meters of ground. Call out circle is a 1km radius around the 

NEON flux tower at this site, shown as a star. 

To predict LMA from the HSI data, we used a PLSR model with eight components. This 

model had an R2 of 0.72 for the training data, an R2 of 0.77 for the validation data, and an R2 of 

0.73 when applied to all the data (Table 4; Appendix A.5). All models had a p-value < 0.001. 

Across the field measured samples, LMA values ranged from 20.72 to 326.02 g/mL
2. After 

applying the PLSR coefficients to the images and removing extreme outliers using a Tukey’s 

outlier test (k = 3), LMA values ranged from 0.041 to 356.7 g/mL
2 (Figure 10b). While these values 
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are extrapolated outside of the range of values used in our PLSR model, they are comparable to 

LMA ranges found globally by Poorter et al. (2009).  

 

Within Canopy Leaf Traits: Lidar and HSI 

To predict within canopy LMA, our final model consists of four lidar-derived metrics. These 

metrics included top-of-canopy %N, sample height, euphotic zone depth, and standard deviation 

of LAD within a column of voxels. Our final model for within canopy LMA had an R2 of 0.51 for 

the training data and an R2 of 0.50 for our validation data (Appendix A.6). Both models had a p-

value < 0.001. 

After summing all within canopy values we calculated the total amount of N (g/mG
2; Figure 

11), foliar biomass (g/mG
2; Figure 10d), and LAI (mL

2/mG
2; Figure 10c) for each pixel. We then 

removed extreme outliers using Tukey’s outlier test (k = 3). Values greater than 15 g/mG
2 were 

removed from the total canopy N raster (0.03% of raster pixels), values greater than 2465 g/mG
2  

were removed from the foliar biomass raster (0.46% of raster pixels), and values greater that 7 

mL
2/mG

2 were removed from the LAI raster (0.03% of raster pixels). 
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Figure 11. Total Canopy N Map. Map of total canopy N (g/mG
2) and within canopy N (g/mG3) 

profiles from white oak (total foliar N = 6.99 g/mG
2) and longleaf pine (total foliar N = 7.93 g/mG

2). 

Locations were extracted based on the GPS positions of field samples. Call out circle is a 1km 

radius around the NEON flux tower at this site, show as a star. 

To illustrate the differences in canopy profiles of within canopy N (g/mG
3) we extracted 

data from the total canopy rasters using the GPS locations of a white oak (Figure 11a) and longleaf 

pine (Figure 11b) sample from our field data. The total amount of N in the white oak sample was 

6.99 g/mG
2 while there was 7.93 g/mG

2 in the canopy of the longleaf pine sample. Moreover, the 

profiles of each sample illustrate differing within canopy allocation strategies for the two species. 
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Top-of-Canopy and Total Canopy N: Differing Spatial Patterns 

After normalizing (mean = 0, SD = 1) the top-of-canopy %N and total canopy N (g/mG
2) rasters 

for equal comparison, there was no relationship between the two variables at any of the spatial 

resolutions, showing that these differences are not scale dependent (Figure 12, panels a, b, & c). 

Prior to normalization, we used linear regression to test the relationship between the two variables 

at each spatial resolution (Figure 12, panels d, e, & f). All linear regressions were significant (p-

value < 0.05), but the largest R2 value was 0.02 showing a very weak relationship between top-of-

canopy and total canopy N across spatial resolutions. This lack of relationship shows that as data 

is aggregated together at coarser spatial resolutions, resulting in pixels containing multiple PFTs 

rather than single species, there are still distinct differences between top-of-canopy and total 

canopy N. 

 

 

 



57 

 

 

Figure 12. Top-of-Canopy N and Total Canopy N Differences. Maps of the scaled and centered 

differences between top-of-canopy %N and total canopy N (g/mG
2) at three different spatial 

resolutions: 10x10 m (NEON AOP lidar), 30x30 m (Landsat), 250x250 m (MODIS). Regression 

results showing no relationship between the two measurements. 

 

 To assess differences in spatial patterns across the landscape, we calculated variograms for 

the top-of-canopy %N and total canopy N (g/mG
2) datasets (Figure 13). A comparison of Moran’s 

I values for the two normalized (mean = 0, SD = 1) datasets showed that the top-of-canopy %N 

map was substantially more spatially autocorrelated (Moran’s I = 0.026) than the total canopy N 

map (Moran’s I = 0.014). For the non-normalized datasets, top-of-canopy %N samples exhibit 

spatial autocorrelation up to a distance of 1200 meters, while total canopy N (g/mG
2) samples are 

spatially autocorrelated up to a distance of 700 meters. Partial sill measurements also differ 
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substantially, showing differences in variability between pairs of points, with top-of-canopy %N 

having a value of 0.23 and total canopy N (g/mG
2) having a value of 0.09. The shapes of the 

variograms indicate that top-of-canopy %N is grouped into clusters of similar values (lower 

nugget, longer range), while the total canopy N values are more evenly distributed (higher nugget, 

shorter range). 

 

Figure 13. Canopy N Variograms. Variograms for normalized (mean = 0, SD = 1) Top-of-Canopy 

%N and Total Canopy N (g/mG
2). 10,000 random samples were extracted from both datasets.  

 

Regional Patterns and Environmental Drivers: Assessing Spatial Structure 

Elevation visually appeared to be a strong driver of leaf trait spatial distributions in our maps 

(Figure 10). To quantify this relationship, we looked at the influence of elevation on top-of-canopy 

%N, total canopy N (g/mG
2), and the normalized difference between these two datasets (Figure 

14). Top-of-canopy %N was related to elevation (R2 = 0.13), while total canopy N (g/mG
2) was 

not related to elevation (p > 0.05). Therefore, the correlation between the normalized difference of 

these two estimates and elevation (R2 = 0.06) is mostly due to the stronger correlation between 

elevation and top-of-canopy %N.  



59 

 

 

Figure 14. Influence of Elevation on Canopy N. Heatmaps showing the relationship between top-

of-canopy %N, total canopy N (g/mG
2), the normalized difference between these two 

measurements, and elevation. Y-axis units for each plot is given at the top of the plot. 

 

To more broadly understand the effects of abiotic gradients and management regimes on 

leaf and canopy functional traits, we performed a Monte Carlo simulation on the abiotic and 

management rasters to compile a distribution of results. Models predicting top-of-canopy %N had 

a mean R2 of 0.24 with a standard deviation of 0.009. Eleven of the predictors appeared in over 

20% of the models (Figure 15), seven variables appeared in no models, and 7 variables appeared 

in all the models (Table 5).  
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Figure 15. TALL Model Coefficients. Coefficients from standardized variables (mean = 0, SD = 

0.5) from Monte Carlo simulations with variables that appeared in at least 20% of the regressions. 

All coefficients have a p-value of <0.05.  
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Table 5. TALL Model Coefficients. Mean standardized coefficients (mean = 0, SD = 0.5), 

standard deviation of coefficients, and percent of models each variable was present from Monte 

Carlo simulations. All coefficients have a p-value of <0.05.  

 

  
Top-of-Canopy Total Canopy 

  

Mean 

Coefficient 

Standard 

Deviation 

Models 

Present 

(%) 

Mean 

Coefficient 

Standard 

Deviation 

Models 

Present 

(%) 

T
O

P
O

G
R

A
P

H
IC

 

DTM -0.259 0.027 100.0 -0.057 0.013 99.8 

Easting 0.047 0.023 30.9 0.114 0.013 100.0 

Eastness 0.044 0.009 99.8 0.024 0.005 20.9 

Flow 

Accumulation 
0.023 0.004 35.3 -0.017 0.018 11.2 

Northing 0.047 0.017 85.1 -0.034 0.009 70.0 

Northness NA NA 0.0 0.027 0.006 4.7 

Surface Roughness NA NA 0.0 NA NA 0.0 

Slope NA NA 0.0 NA NA 0.0 

Solar Radiation – 

Summer Solstice 
NA NA 0.0 -0.111 0.013 100.0 

Solar Radiation – 

Winter Solstice 
-0.249 0.011 100.0 -0.032 0.007 44.3 

Soil Wetness Index 0.178 0.009 100.0 NA NA 0.0 

Topographic 

Position Index 
-0.162 0.009 100.0 -0.040 0.009 97.1 

Topographic 

Ruggedness Index 
NA NA 0.0 NA NA 0.0 

G
E

O
L

O
G

IC
 Alluvial -0.091 0.151 1.3 0.153 0.158 8.3 

Coker -0.144 0.015 18.1 -0.065 0.017 86.6 

Eutaw 0.146 0.013 18.1 0.021 0.036 5.7 

Gordo -0.023 0.008 7.9 0.038 0.009 7.6 
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Table 5. continued 
M

A
N

A
G

E
M

E
N

T
 

Prescribed Burn 

2018 
-0.157 0.014 100.0 0.034 0.020 3.0 

Times Burned NA NA 0.0 0.025 0.010 7.8 

Years Since Last 

Burn 
-0.071 0.010 100.0 -0.036 0.010 90.9 

Times Chemically 

Treated 
-0.009 0.020 4.8 -0.017 0.017 4.3 

Years Since Last 

Chemical 

Treatment 

-0.021 0.003 2.1 -0.002 0.023 2.5 

Times Clearcut -0.013 0.020 7.5 -0.015 0.019 2.4 

Years Since Last 

Clearcut 
-0.023 0.008 17.3 -0.024 0.004 24.6 

Times Thinned -0.052 0.009 100.0 -0.046 0.009 98.2 

Years Since Last 

Thinning 
NA NA 0.0 -0.041 0.006 1.8 

 

The only major topographic predictor (coefficient > 0.1) with a positive coefficient was soil 

wetness index (SWI), while major topographic predictors with a negative coefficient included 

elevation (DTM), solar radiation at the winter solstice (SR.WS), and TPI (topographic position 

index). The only major geologic predictor (coefficient > 0.1) with a negative coefficient was Coker 

substrate, while Eutaw substrate had a positive coefficient and was a major geologic predictor. The 

only major management variable (coefficient > 0.1) was areas burned in 2018 and it had a negative 

coefficient.  

 Total canopy N (g/mG
2) models had a mean R2 of 0.03 with a standard deviation of 0.003. 

Eleven of the predictors appeared in over 20% of the models (Figure 15), 4 variables appeared in 

no models and 2 variables appeared in all the models (Table 5). Solar radiation at the summer 

solstice was the only major topographic predictor (coefficient > 0.1) with a negative coefficient, 
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while the only major topographic predictor with a positive coefficient was distance from western 

collection boundary (easting). Alluvial substrate was the only major geologic predictor (coefficient 

> 0.1) and it had a positive coefficient. There were no major management (coefficient > 0.1) 

predictors in the total canopy regressions. 

For both regression models many of the management variables appeared in only a small 

percentage of the total models. This is because these management practices were only completed 

across a small fraction of the entire landscape, and these areas were not randomly sampled in each 

iteration of the Monte Carlo simulation. 

The residuals of both regression models exhibited some spatial autocorrelation with top-

of-canopy %N having a mean Moran’s I of 0.03 with a standard deviation of 0.001 and total canopy 

N (g/mG
2) having a mean Moran’s I of 0.008 with a standard deviation of 0.0006. While this spatial 

autocorrelation of the residuals would indicate that there is a trend present that we are not 

capturing, the aim of these regression was not predictive, but instead to compare the influence of 

these abiotic and management variables between the two functional traits estimates.  

 

Discussion 

We used airborne remote sensing and field-collected trait data to show that when three-

dimensional forest structure is considered, different patterns of N appear across this landscape than 

are produced by two-dimensional top-of-canopy functional trait estimates. This analysis 

demonstrates that canopy functional diversity is not equivalent to leaf functional diversity, which 

illustrates the dampened variation in total canopy N between PFTs and across this landscape when 

compared to the heterogeneous spatial patterns produced by leaf functional diversity. This suggests 

that these two measurements correspond to different ecological processes and that relationships 
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between plant carbon assimilation and leaf functional traits must be considered in the context of 

canopy vertical structural heterogeneity. 

 

Scaling and Mapping Leaf and Canopy Traits 

Many studies have used HSI data to estimate plant functional traits and lidar data to measure forest 

structure, with much success across a wide variety of ecoregions (Dahlin et al. 2013; Asner et al. 

2015; Stark et al. 2015; Smith et al. 2019). By combining 3D structural traits from lidar and 2D 

functional traits from HSI, we show that a fusion of these two data types can be used to model 

traits within the canopy volume. Moreover, our findings are within the ranges reported in field-

based studies for LAD (Parker and Tibbs, 2003; Brown and Parker, 2004), %N (Serbin et al. 2014), 

LMA (g/mL
2; Poorter et al. 2009), and total canopy N (g/mG

2; Cole and Rapp 1981; Figure 16). 
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Figure 16. Total Overstory Foliar N Comparison. North American Foliar N values vs. TALL 

Foliar N values. TC = Temperate Coniferous, TD = Temperate Deciduous. North American N 

(NA) values come from Cole and Rapp (1981). Because our values calculated at TALL do not 

include the lowest 10 meters of the canopy, ANOVA results (p < 0.001) show a significant 

difference between NA and TALL values but not between Forest Types (TC and TD). 

 

Our study focuses on an ecoregion consisting of closed-canopy broadleaf stands and 

sparser needleleaf forests, with our within-canopy trait estimates being reliable across these two 

plant functional types (PFTs). In addition, our within-canopy model utilizes variables related to 

the differences in PFTs (top-of-canopy %N), the local light environment (standard deviation of 

LAD within a column of voxels), and light capture (euphotic zone depth). These variables have 

been shown to be critical to canopy level processes (Field and Mooney 1986; Hardiman et al. 2001; 

Lefsky et al. 1999). 
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While our results show that we can accurately model foliar functional traits within the 

canopy volume in this ecosystem, more research is needed in different biomes to test the ability of 

HSI and lidar to accurately estimate within-canopy traits. 

 

 Measuring Ecosystem Function: Top-of-Canopy %N vs. Total Canopy N 

While both foliar N and LMA have been identified as key drivers of plant functional diversity 

(Díaz et al. 2016) and have shown strong correlations with leaf photosynthesis in temperate 

ecosystems (Field and Mooney 1986; Evans 1989), we show that the spatial patterns of leaf-level 

top-of-canopy %N are not equivalent to those of total canopy N (g/mG
2). Top-of-canopy leaf-level 

traits reflect key differences between PFTs, with needleleaf species exhibiting low %N and high 

LMA, while broadleaf species have higher %N and lower LMA (Appendix A.1). These 

fundamental differences in functional and structural traits between PFTs produce distinct dendritic 

patterns across this landscape corresponding to topographic features including drainages, which 

are dominated by broadleaf species, and slopes and ridges, which are dominated by pines (Figure 

10a, b. c. & d). However, when three-dimensional canopy structure is considered (i.e., total canopy 

N), these distinct landscape patterns are dampened (Figure 11). 

Figure 14 further shows that these distinct spatial patterns related to elevation are not 

reflected in our estimates of total canopy N (g/mG
2). This may suggest that canopy architectural 

differences between PFTs are causing unique distributions of N within the canopies of individual 

trees (Figure 11a & b), and that these differences represent trade-offs since different PFTs exhibit 

similar total quantities of N (g/mG
2) in their canopies (Figure 16). In this case, differences over a 

leaf function-structural architecture trade-off produces the dampened spatial patterns we see in this 

landscape (Figure 11).  



67 

 

Given the importance of N for photosynthesis, these dampened spatial patterns may not be 

surprising. By varying LMA, individual trees will distribute N (g/mL
2) throughout their canopies 

in ways to maximize their nitrogen use efficiency, utilizing as much of the available N (g/mG
2) as 

possible. Lower total N (g/mG
2) within the canopy volume would imply lower production, a 

disadvantage that would be hard to reconcile between PFTs in the same ecosystem. While N-fixing 

trees could change these patterns, we observed no N-fixing trees in this landscape and overall, this 

area appears to have low N-fixing tree abundance (Staccone et al. 2020).  

 

Abiotic and Management Drivers of Foliar and Canopy N 

Following community assembly theory (Keddy 1992), abiotic drivers have been shown to predict 

species and leaf trait distributions within landscapes with both remote sensing and field 

observations (Dahlin et al. 2012; Kraft et al. 2008). We show that these same types of drivers can 

be used to predict top-of-canopy %N in this system, but not total canopy N (g/mG
2).  

 Top-of-canopy %N patterns have consistently strong topographic, substrate, and 

management predictors, with many of these predictors being related to the distribution of PFTs 

across this landscape. For example, higher elevation areas that receive more solar radiation during 

the winter months and that were treated with a prescribed burn in 2018 prior to NEON AOP flights 

had consistently lower top-of-canopy %N values. This describes the spatial distribution of 

needleleaf species in this ecosystem. Conversely, lower elevation areas with a high soil water 

content had consistently higher top-of-canopy %N values, describing the distribution of broadleaf 

species in this environment. These relationships suggest that the spatial patterns of top-of-canopy 

%N are closely related to the spatial distribution of species within this ecosystem.  
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In contrast, variables related primarily to forest structural changes and water availability 

were the main drivers of total canopy N (g/mG
2), even though these relationships were considerably 

weaker, though still significant. For instance, areas that had been clear-cut, thinned, or burned had 

lower total canopy N (g/mG
2) estimates than areas that did not have a documented management 

history. This relationship is most likely due to management activities resulting in significant 

structural changes to forest stands and the removal of foliar biomass during these activities. 

Furthermore, areas that received high solar radiation in the summer months also had lower 

estimates of total canopy N (g/mG
2). This could be due to microclimatic effects. Water stress in 

these sunnier, drier areas may cause a reduction in growth and, therefore, total canopy N (g/mG
2), 

as light availability is not likely to be a limiting factor in this system. 

 

Model Uncertainty and Data Concerns 

There are many possible sources of error and uncertainty to consider when scaling traits from leaf 

to landscape, including those related to field and GPS collections, laboratory equipment, remote 

sensing sensors, and statistical methodologies. While we did not conduct a formal assessment of 

uncertainty as it propagates through this study, our findings are within the ranges reported in many 

field-based studies (see section 4.1). Our final PLSR models did show a systematic bias of slightly 

underestimating N and LMA in needleleaf species (Appendix A.3 and Appendix A.4), which could 

partially explain the differing landscape-scale relationships between total canopy and top-of-

canopy N. This could possibly be improved by the inclusion of forest structure metrics such as 

LAI in the PLSR models. However, due to the low density lidar data we are forced to estimate 

structural traits at a coarser spatial resolution (10x10 meters) than the HSI data (1x1 meter). 
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Because some field samples are closer than 10 meters to one another, and thus exist within the 

same pixel, the inclusion of structural traits did not correct this bias. 

While understory shade tolerant plants play an important role in ecosystem functioning 

(Valladares et al. 2016), we ignored the lowest 10 meters of the forest canopy where many of these 

species occur due to limitations with the lidar data from the NEON AOP (Kamoske et al. 2019). 

As current lidar sensors within the NEON AOP are upgraded, we will be able to ask important 

questions about the role of the understory in ecosystem functioning.  

In this study we only considered healthy green forest vegetation, which may partially 

explain the weaker relationships between environmental variables and canopy functional and 

structural traits. More research is needed into how HSI and PLSR perform in stressed terrestrial 

environments and across more heterogeneous landscapes. 

The development of a universal model to predict leaf- and canopy-level traits was beyond 

the scope of this project; however, as more within-canopy foliar traits are collected across a 

diversity of ecosystems, PFTs, and tree species, these models will become more robust and can be 

applied to other regions. 

 

Looking Forward 

With airborne and spaceborne platforms like the NEON AOP, NASA Goddard’s Lidar, 

Hyperspectral, & Thermal Imager (G-LiHT; Cook et al. 2013), the Global Ecosystem Dynamics 

Investigation (GEDI; Stavros et al. 2017), and the proposed Surface Biology and Geology Mission 

(SBG; National Academies of Sciences, Engineering, and Medicine 2018) collecting HSI and lidar 

data across a variety of ecoregions, there is a unique opportunity for researchers to ask and answer 



70 

 

questions related to how forest canopies function across landscapes and continents, rather than just 

the leaves at the top of the canopy.  

In support of these new questions about ecosystem function, we present a reproducible 

methodology to model foliar traits throughout the entire canopy volume. We also show that the 

spatial patterns produced by traditional top-of-canopy measurements of %N are dramatically 

different than those produced when three-dimensional forest structure is considered. While more 

research is needed to test these relationships in different ecoregions and across latitudinal 

gradients, this ever-increasing availability of HSI and lidar data will provide new and exciting 

opportunities.  

These opportunities may raise several questions about the drivers of canopy function. For 

example: A) What is the role of soil nutrient availability and heterogeneity in canopy function? 

and B) How are these relationships affected by latitudinal gradients and climate regimes? Further 

research is needed into these questions to better understand the drivers behind ecosystem 

functioning in horizontal and vertical space as well as through time. 

 

Conclusions 

Forest structural and functional diversity drive critical canopy processes related to carbon 

sequestration; however, structure and function are rarely considered in unison at ecosystem scales. 

Here we show that when forest structure is considered, the patterns produced by the total amount 

of N (g/m2) within the canopy volume are substantially different from the patterns produced by 

top-of-canopy %N. Furthermore, since total canopy N variation is dampened relative to leaf-level 

variation over a landscape characterized by variable PFT dominance, we find evidence of canopy 

architecture and leaf function tradeoffs. Patterns of total N are driven by different abiotic gradients 
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and management regimes, further showing the differences between these two estimates of 

ecosystem function.  

These differing spatial patterns, as well as differing abiotic and management drivers, show 

that canopy functional diversity is not equivalent to leaf functional diversity. By not considering 

structure and function together, there could be impacts on how we scale fine-resolution ecological 

processes to landscape, continental, and global models. However, with new space- and airborne 

remote sensing platforms collecting HSI and lidar data across a variety of ecoregions, we have an 

opportunity to think about the terrestrial carbon cycle in three dimensions. This new approach will 

potentially unlock important insights into how forests function in a time of rapid anthropogenic 

and environmental change. 
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Data Availability 

Lidar and HSI data are available at: http://data.neonscience.org. R package to estimate structural 

traits from airborne lidar data is provided through our GitHub at: 

https://github.com/akamoske/canopyLazR and as a stable DOI at 

http://doi.org/10.5281/zenodo.3987340. R package to pre-process HSI data, extract reflectance 

data, and apply PLSR coefficients is provided through our GitHub at: 

https://github.com/akamoske/hypRspec and as a stable DOI at 

https://zenodo.org/record/3987336. Reflectance spectra and trait data are available through the 

ECOSIS database at: https://data.ecosis.org/dataset/2018-talladega-national-forest--leaf-level-

reflectance-spectra-and-foliar-traits. Laboratory measured trait data are available through the 

TRY database (dataset ID = 714) at: www.try-db.org. 
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CHAPTER 4. MAPPING MULTIPLE DIMENSIONS OF BIODIVERSITY WITH 

AIRBORNE HYPERSPECTRAL AND LIDAR REMOTE SENSING 

 

The following co-authors contributed to this study: K.M. Dahlin, Q.D. Read, S. Record, S.P. 

Serbin, S.C. Stark, and P.L. Zarnetske. 

 

Introduction 

A fundamental goal in community ecology is to understand and predict the spatial 

distributions of species, traits, and biodiversity across ecosystems (Keddy 1992). However, there 

are many ways of measuring distinct dimensions of biodiversity, including taxonomic, functional 

phylogenetic. Each dimension of biodiversity may be determined by different abiotic and biotic 

drivers and ecological processes, while following unique spatial and temporal patterns (Gaston 

2000; Lomolino et al. 2010). For example, taxonomic diversity, the relative abundance of species, 

is affected by environmental change due to management practices and disturbance regimes (Baiser 

et al. 2012; Olden and Rooney 2006, Li et al. 2020) and has been linked to carbon storage in forest 

biomes (Cavanaugh et al. 2014). Functional diversity, the community-wide variation in structure 

or functional traits that affect how species interact with their environment (e.g., leaf nutritional or 

physiological properties, shade tolerance, canopy height, leaf area index, etc.), is critical for 

determining biodiversity-ecosystem function relationships (Baiser and Lockwood 2011; Flynn et 

al. 2011). Phylogenetic diversity, the overall relatedness of species in a community (Srivastava et 

al. 2012) is influenced by the spatial clustering of closely related species that occupy similar 

environments (Cavender-Bares et al. 2009).  

The impacts of these different dimensions of biodiversity on the observable properties of 

forest canopies is not well known, but is critical because forest canopies link the atmosphere and 

the vast majority of Earth’s terrestrial biomass (Ozanne et al. 2003; Bonan 2008), provide key 
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ecosystem services such as carbon sequestration (Bunker et al. 2005; Hooper et al. 2012; Isbell et 

al. 2015), and are severely impacted by rapid global change (Parmesan and Yohe 2003; Cardinale 

et al. 2012; Hooper et al. 2012; Brook et al. 2008; Urban 2015; Stocker et al 2013; Smith et al. 

2015). By considering these different dimensions of biodiversity in forest ecosystems, we may be 

able to advance our understanding of the impacts of global change on the spatial and temporal 

patterns of biodiversity.  

Much of the current understanding of the spatial distribution of these dimensions of 

biodiversity at continental scales has come from satellite remote sensing products (Turner et al. 

2003; Pettorelli et al. 2014; Bush et al. 2017; Duro et al. 2007). Remotely sensed products have 

helped clarify the scale-dependence of topography and biogeography as drivers of patterns of 

biodiversity (Zarnetske et al. 2019; Read et al. 2020; Record et al. 2020). Even though these remote 

sensing products have provided critical insights and standardized measurements over a range of 

spatial scales for decades (e.g., from individual forest stands to continents; He et al. 2015), there 

are important differences between these measurements and ground-based biodiversity 

observations due to differences in scale (Tews et al. 2004). Coarse-scale ecological observations 

(e.g., MODIS data at 250x250 meters) can cause dominant landscape features to homogenize 

measurements (Boyce 2006; Cooper et al. 2019), leading to the omission of fine-scale (e.g., an 

individual field plot or tree canopy) heterogeneity. This has been shown to have critical impacts 

on ecosystem functioning due to maximizing resource use efficiency. However, high-resolution 

airborne remote sensing platforms may help resolve these issues related to the spatial scale of 

observation. 

The National Ecological Observatory Network’s Airborne Observation Platform (NEON 

AOP) provides a unique opportunity to determine the role of remotely sensed metrics on the 
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prediction of biodiversity by collecting airborne lidar and hyperspectral data (e.g., 380-2500nm; 5 

nm bands) across a variety of ecosystems at fine spatial grains (i.e., pixel resolution of 1 meter). 

NEON also collects ground data at individual field plots within the footprint of these landscape-

scale airborne observations across a network of 81 systematically sampled sites across the US 

(Kampe et al. 2010; Thorpe et al. 2016; Barnett et al. 2019). Airborne lidar has been used to 

measure metrics critical to mapping biodiversity across landscapes, such as the structural 

heterogeneity of forests (Stark et al. 2015; Kamoske et al. 2019; Shao et al. 2019; Cosovic et al. 

2020) and topographic diversity (Dahlin et al. 2012). Hyperspectral imagery has recently been 

used to measure the spectral diversity of ecosystems at fine spatial scales, which can be related to 

plant biodiversity (Gholizadeh et al. 2019; Dahlin 2016; Laliberté et al. 2020; Cavender-Bares et 

al. 2017; Wang and Gamon 2019). 

While enthusiasm for the application of hyperspectral and lidar remote sensing to map 

biodiversity has grown in recent years (Jetz et al. 2019; Stavros et al. 2017) most studies have 

focused on within-site diversity mapping in a single biome (Dahlin 2016; Gholizadeh et al. 2018; 

Gholizadeh et al. 2019; Wang et al. 2018). Yet, for a biodiversity mapping program to be 

operationalized (e.g., the Group on Earth Observations Biodiversity Observation Networks 

Essential Biodiversity Variables; Jetz et al. 2019), methods must work across multiple sites and 

biomes and address multiple dimensions of biodiversity. Resolving relationships between canopy 

observations and biodiversity within and among ecosystems is essential to advance our 

understanding of the patterns of and changes in biodiversity as well as the nature of diversity-

function relationships due to the rapid acquisition at global scales of remotely sensed data that is 

not reproducible with field methods alone (LaRue et al. 2019).  
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In this study, we ask how well commonly used remotely sensed spectral and forest structural 

heterogeneity metrics can explain different dimensions of alpha diversity at multiple sites across a 

wide (i.e., 10o) latitudinal gradient within one biome – temperate broadleaf forests – consisting of 

multiple forest regions (e.g., Dyer 2006; Southern mixed (oak-pine), mesophytic (Appalachian 

oaks), Oak-hickory, Northern hardwoods, etc.). We also consider whether topographic variability 

and biogeographic differences more broadly influence these relationships between remote sensing 

metrics and biodiversity. We aim to address three questions critical to understanding forest 

biodiversity in this temperate forest biome: (1) Which remotely sensed metric, or combination of 

metrics, best predicts alpha taxonomic, functional, and phylogenetic diversity across a latitudinal 

gradient of temperate forest regions, (2) how do these different dimensions of biodiversity vary 

within and among these forest regions, and (3) do remote sensing metrics capture this variation? 

We also detail a replicable methodology for estimating the structural, spectral, and topographic 

heterogeneity of temperate forests from airborne lidar and hyperspectral data.   

 

Materials and Methods 

Study Sites 

Field measurements and remote sensing data were acquired from five climatically and 

ecologically diverse NEON sites located along a latitudinal gradient of eastern US temperate forest 

regions (Figure 17). These sites include, from south to north and followed by their four-letter 

NEON site abbreviations, Talladega National Forest (TALL), Oak Ridge National Laboratory 

(ORNL), Mountain Lake Biological Station (MLBS), the Smithsonian Environmental Research 

Center (SERC), and Harvard Forest (HARV). Across all sites, mean annual precipitation ranges 
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from 967-1350 mm, mean annual temperature ranges from 8-17 °C, mean canopy height ranges 

from 18-38 meters, elevation ranges from 15-1126 meters, and airborne imagery collections range 

from 110-355 km2 (individual site information in Appendix B.1). 

 

Figure 17. NEON Field Sites Map. Map showing NEON field sites used in this study (orange 

squares) and three of the most common tree species for each site based on field observations 

(individual site information in Appendix B.1). 

 

 

Calculating Tree Diversity Metrics within NEON Field Plots 

To quantify tree taxonomic, functional, and phylogenetic diversity at the NEON plot scale (i.e., 

40x40m), we downloaded woody-plant species data from the NEON data portal (National 

Ecological Observatory Network 2020) for the same year that the NEON AOP flights and our field 

work were conducted (i.e., 2018 for all sites, except 2017 for SERC) and filtered it to retain only 
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living tree growth forms. We then used the stem diameters of each individual tree to calculate the 

relative abundance of each species per plot by summing the total basal area of each species and 

dividing it by the total basal area of all species in each plot (Auclair and Cottam 1971; Whitehead 

1978). To quantify alpha taxonomic diversity within each field plot we used these abundance 

weighted species richness measurements to calculate Shannon’s Diversity Index (Spellerberg and 

Fedor 2003). To calculate phylogenetic and functional diversity, we compiled widely available 

functional trait data from Kattge et al. (2020) and Stevens et al. (2020) and tree species phylogeny 

from Potter and Woodall (2012) and Potter and Koch (2014) for all species present in the field 

plots described above using the basal area abundance weights (Appendix B.2) and resolved any 

discrepancies in species names using the most recent taxonomy listed by IUCN (iucnredlist.org). 

Since most species had at least one missing functional trait value, we used the phylogeny to impute 

the missing values with the Rphylopars R package and then created a Gower distance matrix of 

normalized functional traits using the imputed trait dataset and phylogeny for all the species (Read 

et al. 2020). We then created a cophenetic distance matrix based on the tree species phylogeny 

data. Next, we calculated a community-level mean pairwise distance (MPD) metric for both 

functional and phylogenetic datasets. While there are many different methods to calculate alpha 

taxonomic, functional, and phylogenetic diversity (Jost 2006; Jost 2007), we used the above 

metrics because they are widely used and easily interpreted due to averaging all pairwise distances 

so that very distantly related species are more heavily weighted (Read et al. 2020).  

Since several of the plots only had one species present, we could not calculate these 

functional and phylogenetic diversity metrics as they cannot be defined with only one data point 

(Read et al. 2020). After removing these plots from the dataset, there were 19 plots for TALL, 14 

plots for ORNL, 32 plots for MLBS, 14 plots for SERC, and 17 plots for HARV. 
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Remote Sensing Data 

To better understand the role of canopy observations on different dimensions of biodiversity we 

processed airborne lidar and hyperspectral data (e.g., 1m spatial resolution) from the NEON AOP 

into 43 metrics related to spectral diversity, vegetation health, canopy structure, and topography 

(Appendix B.3, B.4, & B.5). We used remotely sensed data from 2018 for all sites except for SERC 

(2017), all of which was collected during peak greenness as defined by MODIS NDVI (Kampe et 

al. 2010). Two different lidar systems operated at the same specifications were used for these 

collections (Appendix B.1; Kamoske et al. 2019). We calculated each metric at its nominal 

resolution, and then aggregated the results to produce a single value for each NEON plot, 

calculating the mean, minimum, maximum, range, and standard deviation of each metric that did 

not already produce a single value (e.g., convex hull volume). 

 

Forest Structural and Topographic Diversity from Lidar Remote Sensing 

To calibrate lidar structural diversity estimates with Beer-Lambert extinction coefficients, we 

collected hemispherical photographs across each site at locations representing the diversity of tree 

species and stand structures in conjunction with NEON AOP flights following the methodology 

outlined in Kamoske et al. (2019). We then calculated plant area index (hereafter referred to as 

LAI; Miller 1967), which is widely used as a proxy for LAI due to the difficulty of correcting for 

non-foliage elements (Richardson et al. 2009), using the Digital Hemispherical Photography 

software (DHP; Leblanc et al. 2005) and setting the zenith angle to match the scanning angle of 

each lidar sensor (Appendix B.1; Sabol et al. 2014; Richardson et al. 2009; Solberg et al. 2006; 

Korhonen et al. 2011). 
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To estimate three-dimensional canopy structural diversity, we processed the lidar data for 

leaf area density (LAD; the total leaf area per unit of volume) at a 10x10m spatial resolution using 

our canopyLazR R package (Kamoske et al. 2019; github.com/akamoske/canopyLazR), which is 

similar to other published methods (MacArthur and Horn 1969; Stark et al. 2012; Zhao and 

Popescu 2009; Solberg et al. 2006; Sumida et al. 2009). First, we normalized the point cloud to 

height above the ground and then calculated LAD by counting the number of lidar pulses that enter 

and exit each voxel in each vertical column of data that has at least one ground return. Due to this 

relatively coarse lidar data exhibiting noise caused by topographic variation in the LAD results 

and to have an easily comparable dataset, we removed the LAD estimates from the bottom 5m of 

the canopy (Kamoske et al. 2019). We then calibrated the LAD estimates for each individual site 

using a Beer-Lambert extinction coefficient derived by calculating the slope of a regression 

equation between hemispherical photograph derived LAI and lidar estimated LAI (e.g., Appendix 

B.6; Sabol et al. 2014; Richardson et al. 2009). To remove non-forest pixels, we applied a canopy 

height and LAI mask to the upper end of to each LAD dataset using Tukey’s outlier test (k=1.5) 

and then removed all pixels where LAI equals zero (Kamoske et al. 2019). With these masked 

LAD rasters, we calculated 21 forest structural metrics at a 10x10m resolution for each field-plot 

(Appendix B.4). 

To quantify topographic diversity at each site, we calculated nine variables using QGIS 

and the 10x10m lidar derived digital terrain model (Appendix B.5).  
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Hyperspectral Remote Sensing Reflectance Metrics 

We processed the atmospherically corrected 1m resolution hyperspectral imagery from the NEON 

AOP before analysis using our hypRspec R package on GitHub (Kamoske et al. 2020; 

github.com/akamoske/hypRspec). After removing all flight lines re-flown due to cloudiness and 

keeping the less cloudy ones, we visually identified noisy bands in the data and removed all 

wavelengths that were below 500nm, between 1350 and 1450nm, between 1800 and 2000nm, and 

above 2400nm. We then calculated a narrowband NDVI mask (red = 674nm; NIR = 830nm; NDVI 

> 0.5) to remove all unlikely-to-be-vegetated pixels from further analysis (Dahlin et al. 2014). To 

remove all shaded pixels, we used Tukey’s outlier test (k = 1.5), where all pixels that have a 

reflectance below the lower threshold are considered outliers and removed (Kamoske et al. 2020). 

We then applied a topographic correction to reduce the effects of terrain, view, and illumination 

(Soenen et al. 2005) and a bidirectional reflectance distribution function effects correction (BRDF) 

with a thick Ross kernel and a dense Li kernel to remove the anisotropic scattering properties of 

vegetation that result in flight line artifacts (Colgan et al. 2012; Collings et al. 2010; Schlapfer et 

al. 2015; Wanner et al. 1995; Weyermann et al. 2015; Wang et al. 2020).  

 Using this corrected hyperspectral data, we calculated 13 hyperspectral reflectance and 

principal component analysis (PCA) derived metrics (Appendix B.3) by extracting reflectance 

spectra from all pixels within each field plot and using the mean value if a pixel occurred in 

multiple flight lines. To calculate the PCA based metrics, we used the extracted data from all sites 

as a single dataset and PCA to reduce the dimensionality of this data (Venables and Ripley 2002). 

We used the first two principal components (PCs), which captured 97.6% of the overall variation 

in the dataset, in subsequent analyses.  
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Influence of Remote Sensing Metrics on Biodiversity  

To quantify the relative importance of our 43 remote sensing derived metrics related to the 

structural, spectral, and topographic heterogeneity of eastern temperate forests on different 

dimensions of alpha diversity we used a combination of linear mixed effect modeling (LME; 

Pinheiro and Bates 2000; Gotelli and Ellison 2013) and stepwise AIC model selection (Burnham 

et al. 2010; Mascaro et al. 2011). To allow for direct comparison between model coefficients, we 

standardized all 43 metrics and the three diversity variables (Gelman 2008; mean = 0, standard 

deviation = 0.5). For each dimension of biodiversity, we calculated a single model for each 

predictor type individually (i.e., hyperspectral, lidar, and topography) and a single model with all 

predictors combined. 

First, to avoid multicollinearity, defined here as variables with a Pearson’s R greater than 

0.5, we tested the correlation between each pair of predictor variables and kept the variable most 

correlated with each dimension of biodiversity for further analysis. Using the remaining variables, 

we developed a LME model using each of these variables as a fixed effect and site (i.e., TALL, 

ORNL, etc.) as a random effect to allow for inferences to extend to differences between sites in 

general rather than between the five sites for which we had data (Pinheiro and Bates 2000; Gotelli 

and Ellison 2013). We included these site level differences to help account for critical large-scale 

biogeographical and management differences between sites (Dupouey et al. 2002; Bengtsson et al. 

2000; Reich et al. 2001; Dambrine et al. 2007). 

 We then used stepwise AIC model selection to determine the best combination of predictor 

variables for each of our models (Safken et al. 2018). We tested backward, forward, and both 

direction stepwise variable selection, all of which resulted in the same predictor variables for each 

model. We then removed any remaining variables with non-significant coefficients (p-value > 
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0.05) and developed final LME models with site as a random effect. Lastly, we performed LME 

partial regression analysis using the final metrics in each model grouped by type (i.e., 

hyperspectral, lidar, and topography) to determine the percentage of the final model’s R2 value 

that each group of metrics represents (i.e., metric R2 / final model R2). 

 

Detecting Biodiversity and Remote Sensing Metric Variation 

The preceding analyses indicated that plot-scale biodiversity within sites might vary as much or 

more than biodiversity among sites. To better understand and quantify this biodiversity variation 

and to determine if remotely sensed metrics follow the same general patterns, we used a 

combination of PCA, k-means clustering (Ding and He 2004; Wagstaff et al. 2001), and analysis 

of variance (ANOVA; Girden 1992; Tabachnick and Fidell 2007). 

 First, we used PCA on the three dimensions of biodiversity to reduce the dimensionality of 

the field data and then used k-means to cluster the observations together by calculating Euclidean 

distances between all the observations. Because it can be difficult to determine how many clusters 

are needed to meaningfully group a dataset, we computed the within-group sum of squares for 

each set of clusters ranging from 2 to 18. We then generated a scree plot from these results and 

determined the appropriate number of clusters to be between two and five; however, using a set of 

two clusters was easily interpreted based on having a relatively large cluster mean within each 

cluster. Using a k-means with 10 random starting points, with the assignment with the lowest 

within-cluster variation used for further analysis, and two centers, we clustered the PC values while 

avoiding clumping the values together in space. We then assigned a cluster value to each field plot 

based on these two groups which represent high and low diversity plots (i.e., a high diversity 
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plot/cluster has high taxonomic, functional, and phylogenetic diversity) and used ANOVA and 

Tukey’s post hoc tests to examine the inter- and intra-site differences between the dimensions of 

biodiversity and remotely sensed metrics.  

 

Results 

Variation of Biodiversity and Remote Sensing Metrics 

In sites with spatially distinct broadleaf and needleleaf stands (i.e., TALL; Kamoske et al. 

2020) there were a wider range of values across spectral and structural diversity metrics compared 

to sites dominated by broadleaf species (i.e., SERC, ORNL, and MLBS; Figure 18). However, 

topographic variables did not follow these same patterns, showing variation independent of 

broadleaf or needleleaf dominated stands. Functional diversity variation was uniform between 

sites, but phylogenetic diversity showed a wider range of values within sites consisting of a 

significant number of both broadleaf and needleleaf individuals (i.e., TALL and HARV) than the 

other broadleaf dominated sites (Figure 18). Moreover, the three dimensions of biodiversity exhibit 

wide ranging values within the same site. 
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Figure 18. Biodiversity and Remote Sensing Metric Variation. Boxplots showing variation of 

normalized metrics used in final models. Metric abbreviations found in Table 6, with the last 

symbol signifying mean (m), minimum (-), maximum (+), range (r), or standard deviation (s). 
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LME Models 

Models that included metrics derived from all three predictor types (i.e., hyperspectral, lidar, and 

topography) performed better than each individual predictor type (Figure 19; Table 6). In the best 

performing models, fixed effects explained all the variation in the taxonomic and functional 

diversity models, whereas random effects (i.e., site) had the largest influence on the phylogenetic 

model with the model R2 value increasing from 0.33 to 0.70 with the inclusion of site (Table 6). 

The three best models included significant hyperspectral, lidar, and topographic metrics (Table 6); 

however, of the individual models, lidar explained the most taxonomic and functional diversity 

variation (Appendix B.7), showing the importance of forest structure to different dimensions of 

biodiversity. Given the improved model performance using all three predictor types in a single 

model, we used these to further examine the ability to predict different dimensions of biodiversity. 
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Figure 19. Marginal and Conditional R2 Values. Marginal (only fixed effects) and Conditional 

(fixed and random effects) R2 values for each model representing each sensor individually and all 

sensors combined. 

 

 

 

 

 



88 

 

Table 6. LMER Model Results. Final LMER Full Model results, showing marginal R2, conditional 

R2, and RMSE. Airborne remote sensing derived predictor variables used in final models. Metrics 

may include range, minimum, maximum, mean, or standard deviation and are signified as such in 

subsequent tables and figures. All metrics calculated in this study with references can be found in 

Appendix B.3, B.4, & B.5. 

 

 

 

To further understand model performance we examined the residuals, normalized 

coefficient values, and the performance of each group of metrics in the final models (Figure 20). 

All models showed randomly dispersed residuals that were not clustered by functional group (i.e., 

broadleaf, needleleaf, or mixed forest) or by site (Figure 20A; Appendix B.7). All models included 

the range of maximum LAD heights metric, and several of the models included similar metrics 

(i.e., minimum slope and the minimum first PC). Moreover, metrics representing an individual 

Marginal R
2

Conditional R
2 RMSE Type Variable Symbol Description

Maximum Leaf Area 

Density Height
LAH

Height (m) of the largest leaf area density measurement 

within a column of the canopy

Within Canopy Rugosity WIC
The standard deviation of the central cell and the 8 

surrounding pixels based on their LAD SD measurement

Canopy Filled Voxel Ratio FVR
Ratio (%) of voxels within a column of the canopy that 

contain plant material

Eastness EAS
How eastward a pixel's slope is facing: derived from 

sin(aspect)

Digitial Surface Model DSM Elevation (m) of all objects on Earth's Surface

Slope SLO Slope of pixel (degrees)

Hyperspectral Principal Component 1 PC1 Value of the first principal component

Lidar
Maximum Leaf Area 

Density Height
LAH

Height (m) of the largest leaf area density measurement 

within a column of the canopy

Topographic
Topographic Roughness 

Index
TRI

The mean difference between the central cell and the 8 

surrounding cells

Normalized Difference 

Vegetation Index
NDV Vegetation health remote sensing index

Red-Edge Normalized 

Difference Vegetation Index
RND Vegetation health remote sensing index

Maximum Leaf Area 

Density Height
LAH

Height (m) of the largest leaf area density measurement 

within a column of the canopy

Canopy Porosity Ratio CPR
Ratio (%) of voxels within a column of the canopy that do 

not contain plant material

Topographic Slope SLO Slope of pixel (degrees)

Hyperspectral Principal Component 1 PC1 Value of the first principal component

Functional 

Diversity
0.31 0.31 0.03

Lidar

Phylogenetic 

Diversity

Taxonomic 

Diversity
0.46 0.46 0.30

Lidar

Topography

0.33 0.70 75.18

Hyperspectral
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sensor were not universally positive or negative, instead showing a wide range of influence on 

each of the final models (Figure 20B; Appendix B.7). For example, the phylogenetic diversity 

model's hyperspectral metrics had positive coefficients, while both taxonomic and functional 

diversity model's hyperspectral metrics had negative coefficients. Within the final taxonomic and 

functional diversity models, lidar metrics had the largest influence representing 65% and 52% of 

the total model R2 respectively, while site had the largest influence on the phylogenetic model 

representing 60% of the total model R2 (Figure 20C). 
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Figure 20. Final LMER Model Results. Results of final LMER Models showing (A) residuals, (B) 

model coefficients, and (C) model percentage of R2 of each sensor. BL = > 66% broadleaf species, 

NL = > 66% needleleaf species, Mixed = mixed broadleaf and needleleaf species (i.e., between 33 

and 66% broadleaf). Row B is labeled by metric abbreviations found in Table 6, with the last 

symbol signifying mean (m), minimum (-), maximum (+), range (r), or standard deviation (s). 
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Clustering Diversity and Remote Sensing Metrics 

 

To better understand the variation within the biodiversity data we performed a PCA on the 

biodiversity metrics, cluster analysis, and ANOVA. PCA results showed that the first PC explained 

75.83% of the variation in the field-derived biodiversity data and consisted of taxonomic, 

phylogenetic, and functional diversity values representing low diversity field plots (Appendix 

B.8). While we used only the first PC in our analysis, the inclusion of additional PCs did not 

change the clustering results. Moreover, we opted to use the first PC rather than the individual 

biodiversity values, because we were interested in biodiversity pattens in general and not each 

dimension of biodiversity individually for this analysis. K-means clustering resulted in two 

clusters, which for the first PC represented low-diversity plots (cluster 1) and high-diversity plots 

(cluster 2) and showed that there were high and low diversity field plots within each individual 

site (Appendix B.8). 

To better visualize the inter- and intra-site variation of the three dimensions of biodiversity, 

we plotted histograms classified by cluster (Figure 21). Visual interpretation showed distinct 

differences between low and high diversity field plots within each site and across all sites together. 

Statistical analysis using ANOVA and Tukey’s post hoc test confirmed that within each site, and 

across all sites together, these high and low diversity clusters were significantly different from one 

another (Appendix B.9). However, when field plot differences between individual sites were 

examined, there were no significant differences between taxonomic and functional diversity, and 

very few significant differences between phylogenetic diversity (Appendix B.9). 

These relationships were not as clear when examining the variation of remote sensing 

variables in the high and low diversity field plots. For example, visual interpretation of Figure 21 
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showed almost no differences between three representative remote sensing metrics in low and high 

diversity field plots within each site and between all sites (additional metrics can be found in 

Appendix B.10, B.11, & B.12). Within each site, and across all sites together, statistical analysis 

confirmed that remote sensing metrics in high and low diversity field plots were not significantly 

different from one another with minor exceptions (e.g., metrics at TALL, one lidar variable across 

all sites, and several hyperspectral variables at certain sites; bolded values in Appendix B.13). 

Moreover, when differences between individual sites were examined a similar pattern emerges, 

with most metrics not showing significant differences between high and low diversity field plots 

(Appendix B.13). 
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Figure 21. Clustered Metric Variation. Histograms of each dimension of biodiversity classified 

by each cluster and histograms of three remote sensing variables (one for each sensor) classified 

by each cluster. Histograms for all remote sensing variables found in the final models can be found 

in Appendix B.10, B.11, and B.12. 
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Discussion 

We used airborne remote sensing to measure different dimensions of biodiversity across Eastern 

US temperate forest ecosystems, showing that spectral diversity, canopy structural heterogeneity, 

and topography together predict the spatial distribution of biodiversity metrics. This analysis 

demonstrates that, within the temperate forest biome explored here, while there are high and low 

diversity field plots within each site representing a given forest region, there are not significant 

differences in a high or low diversity field plot between each forest regions.  

 

Using Remote Sensing to Measure Biodiversity 

Many studies have used hyperspectral (Cavender-Bares et al. 2016; Asner and Martin 2016; Feret 

and Asner 2014) or lidar (Bergen et al. 2009; Cosovic et al. 2020; Simonson et al. 2012) data to 

measure biodiversity in a range of ecosystems; however, far fewer have relied on the fusion of 

these data (Leutner et al. 2012; Zhao et al. 2018). While most of these studies have focused on 

taxonomic diversity or leaf functional traits, we show that an integration of these two data types 

can be used to explain variation in different dimensions of alpha diversity. 

Unsurprisingly, our models show that a combination of lidar, hyperspectral, and 

topographic metrics better explain biodiversity patterns than each predictor type alone (Fig. 2; 

Appendix B.7). However, the influence of metrics derived from each individual predictor type 

show that lidar derived three-dimensional forest structure has the largest influence on the estimates 

of taxonomic and functional biodiversity in this biome (Fig. 3C). Site-level differences had a large 

influence on our phylogenetic model suggesting that there are important biogeographic factors 
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were not possible to include in this analysis, such as species distribution maps or fine-scale soils 

data. 

For example, while our results show that we can explain a large fraction of field plot 

biodiversity across this eastern temperate forest biome (Table 6), the inclusion of metrics related 

to soils, forest age, disturbance history, and climate could provide greater context for the results 

but are either not currently available across all sites or are measured at coarse spatial grains that 

an unsuitable for this fine-grain study. For instance, there are known differences in current and 

historic land use across NEON sites, which influence vegetation (e.g., prescribed burns at TALL 

and historic land-use at HARV (Foster 1992)). 

  

Biodiversity Variation Across Eastern Temperate Forests 

While there are significant differences between high and low biodiversity clusters within an 

individual site or forest region, there are very limited significant differences between individual 

sites (Appendix B.8 & B.9). Moreover, our PCA and clustering analysis shows that there are both 

high and low diversity field plots located within each site or forest region (Figure 21; Appendix 

B.8). This suggests that at this spatial scale and within eastern US temperate forests, biodiversity 

is dependent on intra-site differences related to the spatial distribution of plant functional types 

(i.e., broadleaf, mesic, and needleleaf dominated forest stands) within a given forest region and 

not differences between these same forest regions. This means that even though these forest 

regions consist of different combinations of tree species and traits, a given forest region is not any 

more or less diverse than another region and instead distributions of species and traits within a 

forest region drive biodiversity differences.     
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Remote Sensing Metrics and Biodiversity Heterogeneity  

The spatial variability of remotely sensed metrics shows a complicated picture in their ability to 

detect differences between high and low diversity field plots (Fig. 5; Appendix B.13; Appendix 

B.10, B.11, & B.12). This may partially explain why our predictive models did not do a better job 

at detecting biodiversity within eastern US temperate forests. For example, the lidar derived 

variable that explains the range of maximum LAD heights is significant in all three biodiversity 

models. However, when considering the variation between field plots there are only significant 

differences at TALL, which exhibits distinct spatial patterns related to the distribution of 

needleleaf and broadleaf species across the landscape (Kamoske et al. 2020), and across all sites 

together. This suggests that in more broadleaf-dominated closed canopy forests, there are not 

significant differences between the distribution of leaf material within the canopy in high and low 

diversity plots. 

Similar patterns of variation, as described above, are found across all other lidar, 

hyperspectral, and topographic metrics used in our study (Appendix B.13; Appendix B.10, B.11, 

& B.12). These differing relationships may be driven by a combination of the remotely sensed data 

being collected during peak greenness at each site, making subtle differences in lidar and 

hyperspectral derived metrics more difficult to detect due to each site being collected at different 

months, and by our study only focusing on a single biome consisting of a similar mix of tree species 

between field sites. Further research into the impacts of including other unique and diverse biomes 

and forest regions, using remotely sensed data collected at different times of the year to capture 

phenological differences, and the development of additional remote sensing-based metrics is 

needed to better explain the relationship between canopy observations and dimensions of 

biodiversity. 
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Model Uncertainty and Data Concerns 

Remote sensing studies can contain many possible sources of error and uncertainty related to scale, 

sensors, and statistical methodologies and the remote sensing data used in this study was collected 

over multiple years using two different lidar sensors. Using lower pulse density lidar data also 

requires a coarser spatial resolution (i.e., 10x10m; Kamoske et al 2019) than the hyperspectral data 

(i.e., 1x1m). While these data are derived at these nominal resolutions, they are ultimately 

aggregated to match the spatial grain of the field plots (i.e., 40x40m) and may be representing 

processes occurring at different scales.  

Due to these limitations with the lidar data we ignored the lowest 5m of the forest canopy 

(Kamoske et al. 2019), which is where many important understory shade tolerant plant species 

occur (Valladares et al. 2016); however, our LAD estimates are within the ranges reported in field-

based studies (Parker and Tibbs, 2003; Brown and Parker, 2004). As current lidar sensors within 

the NEON AOP are upgraded, we will be able to ask important questions about the role of the 

understory in these different dimensions of biodiversity.  

In this study we filtered all field data for only living trees to match our remote sensing 

variables which only considered healthy green forest vegetation. This may partially explain the 

weaker statistical relationships between our field derived biodiversity metrics and our remote 

sensing variables due to this reduced heterogeneity. More research will be needed into how 

unhealthy vegetation and stressed and/or disturbed environments impact these relationships.  
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Looking Forward 

There is a unique opportunity for researchers to ask and answer questions related to the spatial 

distribution of different dimensions of biodiversity not only within a given biome, but also across 

continents with airborne and spaceborne hyperspectral and lidar platforms like the NEON AOP, 

NASA Goddard’s Lidar, Hyperspectral, & Thermal Imager (G-LiHT; Cook et al. 2013), the Global 

Ecosystem Dynamics Investigation (GEDI; Stavros et al. 2017), and the proposed Surface Biology 

and Geology Mission (SBG; National Academies of Sciences, Engineering, and Medicine 2018).  

To support these ongoing questions about remote sensing of biodiversity, we present a 

reproducible methodology to calculate lidar, hyperspectral, and topographic derived metrics that 

we show are related to different dimensions of alpha diversity within this temperate forest biome 

representing different forest regions. We show that a fusion of metrics derived from these different 

remote sensing sensors perform better at measuring biodiversity than each predictor type alone 

and that forest structure plays a significant role in all models. Moreover, our results suggest that 

while there are significant intra-site differences between our biodiversity variables due to differing 

local forest stand types (i.e., broadleaf, mesic, and needleleaf), there are also very few significant 

differences across individual sites or forest regions. While more research is needed to test these 

relationships across different ecoregions and at continental scales, the ever-increasing availability 

of hyperspectral and lidar data will provide new and exciting opportunities. 

 

Conclusions 

Lidar derived metrics related to three-dimensional forest structure, hyperspectral derived spectral 

diversity metrics related to foliar chemistry and health, and lidar derived topographic variables can 
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be used to estimate different dimensions of alpha diversity within this eastern US temperate forest 

biome, with forest structure having a large influence on all models. Further examination of the 

variation of remote sensing metrics within high and low diversity field plots shows a complicated 

relationship that does not mimic the patterns found in the biodiversity metrics. This suggests that 

these commonly used remotely sensed metrics do not completely explain the effects of each 

dimension of biodiversity on observable canopy properties.   

While this study focuses on a single biome representing multiple forest regions at the fine 

spatial grain of individual field plots, these findings can be applied to studies focused on 

continental scales. With an abundance of hyperspectral and lidar data being collected across a 

variety of biomes with new space- and airborne remote sensing platforms, we have an opportunity 

to expand these methodologies to unlock important insights into how different dimensions of 

biodiversity vary and respond to global change. 
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CHAPTER 5. CONCLUSIONS 

 

Summary of Results 

The preceding chapters present several new findings which utilize contemporary 

technologies and novel methodologies. These findings support the use of airborne hyperspectral 

and lidar remote sensing for monitoring and measuring critical forest processes and biodiversity. 

At the same time, these findings support the field of Geography by building upon the 

biogeographical framework laid out by Alexander von Humboldt, developing new geospatial 

methodologies that can be utilized by GIScientists, and acknowledging and quantifying the role of 

human development in temperate forest ecosystems. 

 Chapter 2 indicates that moderate and low pulse density point clouds derived from 

airborne lidar can be used to successfully estimate three-dimensional forest structure in closed 

canopy forest ecosystems (Kamoske et al. 2019). Chapter 3 shows that within-canopy functional 

traits can be predicted from airborne remote sensing and that, in contrast with traditional 

measurements of top-of-canopy N values, total canopy N variation is dampened across the 

landscape resulting in relatively homogenous spatial patterns (Kamoske et al. 2020). Chapter 4 

suggests that commonly used remotely sensed metrics do not completely explain the effects of 

biodiversity on observable canopy properties. Moreover, there are high and low diversity field 

plots within each site representing a given forest region, but no significant differences in measures 

of taxonomic, phylogenetic, or functional diversity between these field plots across forest regions. 

Together these findings from Chapters 2, 3, and 4 address a fundamental goal in 

community ecology – to understand and predict the spatial distributions of species, traits, and 

biodiversity across ecosystems (Keddy 1992) – by showing that airborne lidar and hyperspectral 

remote sensing data can be used to estimate the variation of forest functional and structural traits 
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across landscapes and within forest canopies, while examining the influence of biogeographic and 

management regimes on these traits. Moreover, forest structural and functional diversity drive 

critical canopy processes related to carbon sequestration (Parker et al. 2004; Hardiman et al. 2001; 

Ellsworth and Reich 1993; Baldocchi et al. 1998; Hardiman et al. 2013) and are directly impacted 

by different dimensions of biodiversity (Baiser et al. 2012; Olden and Rooney 2006; Cavanaugh 

et al. 2014; Baiser and Lockwood 2011; Flynn et al. 2011; Cavender-Bares et al. 2009). In previous 

work, structure and function have rarely been considered together at ecosystem scales (Kamoske 

et al 2020). By not considering forest structural and functional traits together, landscape, 

continental, and global models may be misrepresenting these fine resolution ecological processes 

(Bonan et al. 2014; Bonan et al. 2012). New space- and airborne remote sensing platforms 

collecting hyperspectral and lidar data across the world offer an exciting opportunity to expand on 

this dissertation’s findings to think about the terrestrial carbon cycle in three dimensions and 

unlock important insights into how forests function in a time of rapid anthropogenic and 

environmental change (Cook et al. 2013; Kampe et al. 2010; Stavros et al. 2017; National 

Academies of Sciences, Engineering, and Medicine 2018; Jetz et al. 2019). 

This dissertation offers a field and remote sensing based assessment of the role of three-

dimensional observable canopy traits on forest processes and biodiversity, the results from which 

indicate that airborne remote sensing can be used in a variety of novel methodologies to better 

understand the spatial distribution of forest processes and dimensions of biodiversity. Suggestions 

for future research outlined in the next section could expand upon and solidify these findings. 

Recommendations for Future Research 

While more research is needed to test the findings described throughout this dissertation 

in different biomes and across larger latitudinal gradients, the ever-increasing availability of 
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hyperspectral and lidar data will provide new and exciting opportunities. These opportunities 

will raise several questions related to the drivers of canopy functioning and different dimensions 

of biodiversity. For example: A) What is the role of soil nutrient availability, unhealthy 

vegetation, disturbed environments, and changing climates on critical canopy processes driven 

by biodiversity and biogeography? And B) Do these relationships hold when other unique 

biomes are considered such as boreal forests, grasslands, or savanna ecosystems? By addressing 

these questions in future research, we can continue to assess the importance of considering forest 

structural and functional diversity together to depict canopy and ecosystem processes with more 

detail, accuracy, and precision.  
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Chapter 3 Supplementary Materials
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Figure A.1. Field data from TALL. This shows within canopy variation of LMA and %N. 

Canopy positions (Bottom, Middle, Top) were designated via visual assessment in the field. 
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Table A.2. Mean and SD for field samples (%N and LMA). These are categorized by general 

position in the canopy which was determined by visual assessment. 

 
Bottom Middle Top All  

 
%N LMA %N LMA %N LMA %N LMA 

Carya glabra - pignut 
hickory 

1.71 
± 

0.43 

47.7 ± 
10.69 

1.98 
± 

0.06 

48.28 ± 
5.24 

1.91 
± 0.2 

90.29 ± 
18.93 

1.94 
± 

0.18 

53.59 ± 
16.53 

Carya tomentosa -
mockernut hickory 

1.95 
± 

0.15 

54.83 ± 
13.88 

1.96 
± 

0.11 

55.8 ± 
10.11 

1.86 
± 

0.18 

72.5 ± 
17.1 

1.93 
± 

0.15 

60.72 ± 
15.2 

Liquidambar styraciflua 
- sweetgum 

2.04 
± 

0.22 

42.41 ± 
9.11 

2.12 
± 

0.15 

52.98 ± 
10.75 

1.85 
± 

0.42 

78.61 ± 
8.41 

2 ± 
0.29 

58 ± 
18.01 

Liriodendron tulipifera - 
tulip tree 

2.48 
± 

0.13 

45.77 ± 
8.15 

2.49 
± 

0.09 

52.78 ± 
8.7 

2.25 
± 

0.12 

64.42 ± 
13.37 

2.41 
± 

0.16 

54.33 ± 
12.45 

Pinus palustris - longleaf 
pine 

0.99 
± 

0.29 

260.81 
± 27.96 

0.83 
± 

0.34 

291.18 
± 42.26 

0.72 
± 

0.26 

281.82 
± 25.47 

0.86 
± 0.3 

276.86 
± 33.01 

Pinus taeda - loblolly 
pine 

1.06 
± 

0.24 

235.75 
± 56.97 

0.96 
± 

0.29 

225.36 
± 14.15 

1.1 ± 
0.18 

253.72 
± 25.74 

1.04 
± 

0.23 

239.24 
± 35.94 

Quercus alba - white oak 

1.92 
± 0.1 

57.13 ± 
2.31 

1.87 
± 

0.15 

66.02 ± 
9.03 

1.78 
± 

0.12 

82.15 ± 
9.24 

1.86 
± 

0.13 

68.43 ± 
12.81 

Quercus falcata - 
Southern red oak 

1.81 
± 

0.28 

53.11 ± 
6.47 

2 ± 
0.13 

78.54 ± 
14.33 

1.88 
± 0.2 

90.89 ± 
7.2 

1.9 ± 
0.21 

74.18 ± 
18.71 

Quercus marilandica - 
blackjack oak 

1.83 
± 

0.12 

76.52 ± 
19.18 

1.87 
± 

0.11 

94.46 ± 
21.19 

1.61 
± 

0.17 

111.82 
± 17.51 

1.77 
± 

0.17 

94.26 ± 
23.31 

Quercus montana - 
chestnut oak 

1.97 
± 

0.12 

47.95 ± 
6.68 

2.06 
± 0.1 

54.89 ± 
15.37 

1.99 
± 

0.19 

77.23 ± 
14.1 

2.01 
± 

0.14 

60.02 ± 
17.44 
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Figure A.3. PLSR output from laboratory %N estimation. 
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Figure A.4. PLSR output from HSI %N estimation. 
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Figure A.5. PLSR output from HSI LMA estimation. 
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Figure A.6. Output from within-canopy trait prediction model. Observed vs. predicted. 
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Table A.7. Abiotic and management variables. Names and references. 

 
Variable Source 

To
p

o
gr

ap
h

ic
 V

ar
ia

b
le

s 

Digital Terrain Model NEON AOP Lidar; R programming language 

Eastness - Aspect NEON AOP Lidar; QGIS programming language 

Flow Accumulation NEON AOP Lidar; ArcGIS programming language 

Meters from Northern Collection Boundary NEON AOP Lidar; R programming language 

Meters from Western Collection Boundary NEON AOP Lidar; R programming language 

Northness - Aspect NEON AOP Lidar; QGIS programming language 

Slope NEON AOP Lidar; QGIS programming language 

Soil Wetness Index NEON AOP Lidar; QGIS programming language 

Solar Radiation - Summer Solstice NEON AOP Lidar; ArcGIS programming language 

Solar Radiation - Winter Solstice NEON AOP Lidar; ArcGIS programming language 

Surface Roughness NEON AOP Lidar; QGIS programming language 

Topographic Position Index NEON AOP Lidar; R programming language 

Topographic Roughness Index NEON AOP Lidar; R programming language 

G
e

o
lo

gi
c 

V
ar

ia
b

le
s Alluvial Substrate Horton 2017; https://doi.org/10.5066/F7WH2N65 

Coker Substrate Horton 2017; https://doi.org/10.5066/F7WH2N65 

Eutaw Substrate Horton 2017; https://doi.org/10.5066/F7WH2N65 

Gordo Substate Horton 2017; https://doi.org/10.5066/F7WH2N65 

M
an

ag
e

m
e

n
t 

V
ar

ia
b

le
s 

Area burned in 2018 before NEON AOP 
flights 

https://data.fs.usda.gov/geodata/edw/datasets.php 

Times burned since 2007 (first year of data) https://data.fs.usda.gov/geodata/edw/datasets.php 

Times chemically treated since 2011  https://data.fs.usda.gov/geodata/edw/datasets.php 

Times clear cut since 1991 (first year of data) https://data.fs.usda.gov/geodata/edw/datasets.php 

Times thinned since 1993 (first year of data) https://data.fs.usda.gov/geodata/edw/datasets.php 

Years since last chemical treatment https://data.fs.usda.gov/geodata/edw/datasets.php 

Years since last clear cut https://data.fs.usda.gov/geodata/edw/datasets.php 

Years since last forest thinning treatment https://data.fs.usda.gov/geodata/edw/datasets.php 

Years since last prescribed burn https://data.fs.usda.gov/geodata/edw/datasets.php 
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Figure A.8. LAI plots. Top Figure shows the relationship between LAI derived from 

hemispherical photographs and raw LAI derived from lidar, used to calculate a Beer Lambert 

extinction coefficient (R2 = 0.7181). Bottom figure shows the relationship between Beer-Lambert 

adjusted LAI derived from lidar and LAI derived from hemispherical photographs (R2 = 0.8629). 

LAD is calculated as the following: 

 

Within each voxel, LAD is estimated as:  

LADi−1,i = ln⁡ (
Se
St
)

1

k∆z
 

where for each vertical column of voxels, i is a voxel in a sequentially ordered vertical column of 

the canopy, Se is the number of pulses entering the given voxel, St is the number of pulses exiting 

the same voxel, k is an extinction coefficient, and z represents the height of a voxel. Together, 

the term 1/k∆z represents a Beer-Lambert Law extinction coefficient, which relates reflectance 

and absorbance of light to the thickness and angle of a surface. Thus, as the canopy becomes 

denser and more leaves are encountered, the penetration of lidar pulses will diminish causing 

sample sizes for estimating LAD to decrease and error to increase.  
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Appendix A.8. Continued. 
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APPENDIX B 

 

Chapter 4 Supplementary Materials 
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Table B.1. Field site information. Names and locations, abbreviations, and attributes, listed 

from south to north. MAP = mean annual precipitation (mm); MAT = mean annual temperature 

(ᐤC); MCH = mean canopy height (m); Area = total area of AOP collection (km2); Collection 

dates refer to when the NEON AOP collected airborne remote sensing data; Lidar System refers 

to the lidar sensor brand. 
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Table B.2. Functional traits and phylogeny. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trait Unit Reference

Bark Thickness cm Kattge et al. 2020; Stevens et al. 2020

Specific Leaf Area mm
2
 mg

-1
Kattge et al. 2020; Stevens et al. 2020

Leaf N Content by Mass mg g
-1

Kattge et al. 2020; Stevens et al. 2020

Leaf P Content by Mass mg g
-1

Kattge et al. 2020; Stevens et al. 2020

Leaf Thickness mm
2
 mg

-1
Kattge et al. 2020; Stevens et al. 2020

Stomatal Conductance per unit Leaf Area mmol m
-2

 s
-1

Kattge et al. 2020; Stevens et al. 2020

Photosynthetic Rate per unit Leaf Area umol m
-1

 s
-1

Kattge et al. 2020; Stevens et al. 2020

Specific Stem Density (Wood Density) mg mm
-3

Kattge et al. 2020; Stevens et al. 2020

Seed Dry Mass mg Kattge et al. 2020; Stevens et al. 2020

Rooting Depth m Kattge et al. 2020; Stevens et al. 2020

Maximum Lifespace years Kattge et al. 2020; Stevens et al. 2020

Tree Species Phylogeny NA Potter and Koch 2014; Potter and Woodall 2012
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Table B.3. Hyperspectral variables. 
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Table B.4. Lidar derived variables. 
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Table B.5. Topographic variables. 
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Table B.6. Beer Lambert coefficients. 
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Table B.7. Results from individual models. 
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Table B.8. Results from PCA and Cluster Analysis 
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Table B.9. ANOVA results for dimensions of biodiversity. Bolded values represent p-values 

<= 0.05 meaning that these sites are significantly different from one another. 
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Figure B.10. Hyperspectral variables histograms. Histograms of all hyperspectral remote 

sensing variables that appear in final models. 
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Figure B.11. Lidar variable histograms. Histograms of all lidar remote sensing variables that 

appear in final models. 
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Figure B.12. Topography variables histograms. Histograms of all topographic remote sensing 

variables that appear in final models. 
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Table B.13. ANOVA results for remote sensing variables. Bolded values represent p-values 

<= 0.05 
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