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Aggregate production planning (APP) is a method to make several decisions simultaneously on 

production, inventory, and workforce levels over a finite time horizon, aiming to maximize the 

profit or minimize the cost while meeting fluctuating demands. Building mathematical models 

that reflect real-world problems is often difficult, as the constraints are usually intricate and may 

interact with each other. Decomposing the interconnected system into a number of independent 

phases could simplify the problem; however, it may not guarantee the optimality of the best 

solutions due to the missed constraints between stages. In this study, two mixed integer 

programming models for the manufacturing of reusable plastic containers are presented. One is 

based on the flow of the material and the other is based on the level of the workforce at each period. 

The proposed models are able to (i) deal with varying demand, (ii) reflect various regulations and 

restrictions of public and private warehouses for storing materials, and (iii) identify the importance 

of subcontracting when demand increases dramatically. Both mathematical models are 

implemented in the case of packaging manufacturing. A comprehensive sensitivity analysis are 

conducted on different parameters of the problem to test the effect of their changes. To sum up, 

the general framework of the mathematical models not only can be used for the reusable container 

manufacturing but also the manufacturing of any type of product with a similar supply chain 

network.
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It is generally a challenging task to manage a multiple-stage manufacturing process to meet 

customer needs while keeping costs as low as possible through mathematical modeling, as each 

process may have its considerations (e.g., particular machinery, process capacity, plant capacity, 

and trained workforce), and the complexity of the various constraints. Aggregating all steps such 

that there will not be any shortage or surplus in terms of material and/or workforce at each stage 

and period of manufacturing increase the size of the modeling to reflect the real-world situations. 

Modeling the phases separately could simplify the problems because it could reduce the number 

of constraints and variables involved. However, the result may not be accurate due to the lost 

connection between various segments of the processes. 

Most of the existing researching papers mathematically model such problems based on 

material flow. In this work, two mixed-integer programming models are presented, one based on 

material flow and the other based on working hours, to determine the optimal material and working 

time flow between the stages of the manufacturing process and the optimal workforce assigned to 

each phase. The models are applied to a case of packaging manufacturing. The consistent results 

obtained from both models prove the feasibility of the model based on working hours. Besides, 

the models reflect various considerations for public and private storage. Finally, a comprehensive 

analysis is performed to examine the effect of various parameters, such as the length of the 

planning horizon, the number of available extruders, the annual increase in the raw material price, 

the labor costs, and the subcontracting cost on the optimal solution. The labor costs are proved to 

be the most sensitive factor, and the investment of extra extruders over the planning horizon is not 

so necessary in the test condition. The influence of subcontracting on optimal solutions during the 
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planning period is also signified. The general framework of the mathematical models can be used 

not only for the manufacturing of reusable containers but also for any type of product with a similar 

supply chain network. 
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APP is a method of making multiple decisions about production, inventory, and workforce levels 

simultaneously over a finite time horizon (Pan and Kleiner, 1995; Wang and Yeh, 2014). The 

decisions can be made at the long-, intermediate-, and short-term levels (Sultana et al., 2014). The 

APP problem aims to minimize total costs while satisfying time-varying demand assuming fixed 

sales and production capacity (Nam and Logendran,1992; Pan and Kleiner, 1995). Although APP 

is more appreciated when demand is fluctuating, or resources are scarce, it is not recommended in 

cases of excess capacity (Gansterer, 2015).  

Nam and Logendran (1992) classified the existing APP methods into exact or heuristic 

methods based on the optimality of the solutions. The exact solution approaches include linear 

programming model, linear decision rule, lot size model, goal programming, etc. The category of 

heuristic (near-optimal) solutions consists of search decision rule, production switching heuristics, 

management coefficient model, and simulation model. Pan and Kleiner (1995) proposed a 

classification of APP models based on the solution techniques, including informal approaches, 

mathematical models, linear programming models, linear decision rules, heuristic techniques, 

management coefficients models, and search procedures using computer simulation.  

Various approaches have been developed to solve the APP problems, but very few of them 

have been implemented on real-world problems. Nam and Logendran (1992) point out that these 

approaches have more theoretical, rather than practical, value. The models have assumptions, for 

example, the deterministic demands and workforce with the same level of expertise, that do not 

reflect on the actual situations (Gilgeous, 1987; DuBois and Oliff, 1991; Pan and Kleiner, 1995; 
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García et al., 2009). Also, frequent change in the level of the workforce may be unappreciated in 

reality. The indirect cost, such as human resources, marketing, and finance are not integrated into 

the formulation of the APP models (García et al., 2009). Lot size models incorporate scheduling 

issues associated with lot size indivisibilities into capacity planning decisions, but they require 

detailed information throughout the planning horizon, which is quite expensive to gather and 

process. Search decision rule methods incorporate a variety of cost functions that vary periodically 

as capacity levels changes, adapting to changes in operational conditions, and flexibly replicating 

multiple types of planning objectives. However, the cost of the methods is quite high. Moreover, 

particular expertise is required to accomplish such a complex task (Gilgeous, 1987; DuBois and 

Oliff, 1991; Pan and Kleiner, 1995). Dejonckheere et al. (2003) cited obstacles to applying APP 

methods, including formulating the model, interpretation of results, and disaggregating from the 

overall optimal results. The management coefficient models help to reduce the inconsistency of 

management decisions by eliminating the variability of managers’ behavior. Eilon (1975) stated 

that simulation models can resolve some real scheduling issues and are well adapted to specific 

supply chains. However, this method is quite costly, and the results are not guaranteed to be 

optimal (Nam and Logendran,1992).  

Various models have been proposed to facilitate the use of APP in the industry. Ebert (1976) 

presented a method for the APP in a variable productivity setting. Apart from the administrative, 

initial investment, materials, and overhead costs, the planning costs are also considered in the 

model. Kamien and Li (1990) introduced a multi-period production planning model that integrates 

subcontracting as a production planning strategy. The authors also demonstrated the smoothing 

effect of outsourcing by reducing the fluctuation of production and inventory levels. Van Mieghem 

(1999) used a single-period, competitive stochastic investment game model in a stochastic demand 
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setting to examine the interaction between capacity, inventory, and pricing decisions. 

Dejonckheere et al. (2003) utilized the filter theory to connect the dynamics of order replenishment 

to production planning strategies. Techawiboonwong and Yenradee (2003) offered a multi-product 

APP model where the workforce can be exchanged between different production lines.  

Jain and Palekar (2005) provided a configuration-based formulation, where a product line 

consisting of several stages is used for manufacturing various products at different rates. Moreover, 

machines at each stage are allowed to combine to form various production lines. Tian and 

AbouRizk (2010) developed a simulation-based model that modeled the dynamics and constraints 

of the production, storage, and distribution processes of the whole process. The model was applied 

successfully in searching for the best production plan for asphalt production operations; however, 

varying demand made the production planning quite challenging. Sillekens et al. (2011) built a 

mixed-integer programming model for the APP in the automotive industry. The model is focused 

on the adaption of the capacity of a single production line by adjusting the workforce and working 

times. Chinguwa et al. (2013) explored the APP problem for a specific furniture firm. The best 

solution was obtained using the informal trial and error method on spreadsheets. Sadeghi et al. 

(2013) developed a fuzzy grey goal programming model in which the grey numbers were adopted 

to deal with the uncertainty of parameters. The model could provide a range of APP scenarios with 

flexibility for planners.  

In the APP model of a cable company regarding transportation, the concept of “dummy 

sources” or “dummy destinations” was developed innovatively to control the situation in which 

demand does not match with the supply (Sultana et al, 2014). Mendoza et al. (2014) developed a 

simulation modeling approach for the APP in a two-level intensive supply chain by applying 

system dynamics. Gongbing and Kun (2014) established a data envelopment analysis-based APP 
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model that dealt with the uncertainty of demand with the normal distribution. Wang and Yeh (2014) 

proposed a modified particle swarm optimization method for solving an integer linear 

programming APP problem. Davizón et al (2015) formed a mathematical model to achieve optimal 

control, which includes the level of production, inventory, capacity, as well as related costs of the 

workforce in the same formulation. Gholamian et al. (2015) built a fuzzy multi-objective mixed-

integer nonlinear programming model of the APP problems under the context of some uncertain 

parameters, where multiple suppliers, manufacturers, and customers are involved. Modarres and 

Izadpanahi (2016) proposed a multi-objective linear programming model that integrates energy 

saving into the APP with uncertain product demand. The objective function of their model consists 

of various terms: operational cost, energy, carbon emission, and uncertainty related to demand and 

capacity. Rosero-Mantilla et al (2017) summarized the general process of applying the APP to 

solve a real-world problem. Entringer and Ferreira (2018) proposed a conceptual reference model 

of typical business planning modules that aimed to connect existing processes and aggregate 

planning. Yaghin (2018) presented a non-linear APP model to address the effect of varying prices 

and marketing expenditures in the setting of multi-site manufacturing systems and multiple 

demand classes. Mahmud et al. (2018) developed a multi-product and multi-period APP problem 

in the interactive probabilistic environment, in which some main costs, such as production, 

backorder, labor level, and demand are uncertain. Recently, Ruangngam and Wasusri (2019) 

constructed a mixed-integer linear programming model that incorporates setup time, setup cost, 

capacity restrictions, perishable product shelf life, and perishable supply restrictions in their 

formulation for a newly built fruit juice concentrated factory.  

It is noted that all models in the literature are based on material flow, however, the working 

hour may be more practical as it can bring convenience for work scheduling and the possibility for 
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adding constraints. Also, the fixed cost at the private warehouse is not addressed yet in the existing 

research about APP, where contracts should be signed with the pre-determined rental area and 

usage period and payment.  
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Forecasting in Supply Chain Planning 

Forecasting customers’ demands is fundamental to supply chain planning. Push and pull processes 

are two different ways of meeting customer needs. In the pull process, production actions are 

driven by customers’ actual orders; However, the activities in the push process - a strategy used 

by most modern corporations - are based on a long-term prediction of customer needs before the 

real order arises.  

Forecasting has some basic characteristics. One is that it does not always match the real data. 

This is why the forecast errors should be considered and measured. Another feature is that the 

long-term forecast is normally less accurate than the short-term prediction, this is because the 

longer the time, the more factors are assumed to emerge and influence the result. At last, the 

aggregate forecast typically has fewer errors than the disaggregate forecast, as it tends to have a 

smaller standard deviation for the errors. 

Before selecting an appropriate forecasting method, it is necessary to conduct a thorough 

investigation of the factors including historical demand, lead time of product replenishment, 

planned promotion activities, economic situation, and competitors’ strategies (Chopra, 2017). It 

also requires cooperation at the level of the entire supply chain. This is because the activities of 

each party in the supply chain are interrelated. Forecasting at an appropriate level of aggregation 

can effectively lower error since it is usually more precise than disaggregated forecasts. 

Forecasting must be monitored, and its error measured for further decision-making.  
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Forecasting methods are divided into two categories, qualitative and quantitative. Qualitative 

forecasting methods are primarily implemented when less historical information is available that 

only human judgment with expertise can be used for the forecasts. Time series, causal, simulation 

are the main methods that fall under the category of quantitative method. Time-series forecasting 

methods are suitable where historical demand implies its future trend well. Causal forecasting 

methods are established on the assumption that the demand forecast is highly correlated with 

certain environmental factors, such as policy and interest rate. Simulation forecasting is a method 

in which imitating the consumer choices that induce demand. Forecasting using a combination of 

several methods is deemed to have a better performance than forecasting with one method. The 

time-series methods are applied in this research. 

Forecasting Techniques 

Any observed demand can be considered as a combination of the systematic- and random 

component. The goal of forecasting is to achieve the systematic part, instead of the random portion 

that is hardly predictable. Three factors are taken to define the predicting model of the systematic 

component: (i) level: the systematic element, (ii) trend: the change rate of demand for the next 

period, and (iii) seasonality: the predictable seasonal fluctuations in demand.  

There are three common types of equations reflecting the relation between the systematic 

component and the factors: (i) multiplicative: systematic component = level × trend × seasonal 

factor; (ii) additive: systematic component = level + trend + seasonal factor; and (iii) mixed: 

systematic component = (level + trend) × seasonal factor. The mixed equation is selected for the 

calculation of this project as it is considered the most accurate (Chopra, 2017). 
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Static and adaptive forecasting models are based on distinct assumptions of the factors. Static 

methods presume the estimated level, trend, and seasonality constant, whereas adaptive models 

integrate the varying effect of these parameters. Four common adaptive forecast techniques are 

listed and compared in Table 3.1. 

Table 3.1: Comparison of adaptive forecasting methods 
 Forecasting methods Application 

Moving average No trend, or seasonality 

Simple exponential smoothing No trend, or seasonality 

Holt’s model Trend, but no seasonality 

Winter’s model Trend and seasonality 

Before presenting the forecasting methods, some basic definitions, as shown in Table 3.2, are 

necessary to be introduced. 

Table 3.2: Definition of factors in the systematic component 
L The estimate of the level at t = 0 (the deseasonalized demand estimate during Period t = 0)  

T The estimate of the trend (increase or decrease in demand per period) 

St The estimate of the seasonal factor for Period t 
Dt Actual demand observed in Period t 
Ft Forecast of demand for Period t 

Et = Ft − Dt  Forecast error in Period t 

In the static forecasting method, the forecast demand in Period 𝑡 +  𝑙 is thus given as (Chopra, 

2017): 

𝐹𝑡+𝑙 = (𝐿 + (𝑡 + 𝑙)𝑇)𝑆𝑡+𝑙   (1) 

, where 𝑡 is the number of pieces of historical data available. 

The first step is to estimate the level and trend for Period 0. This begins with deseasonalizing 

the demand data. That is, to reduce the seasonal fluctuations in the original demand data. Below 

are two equations for obtaining the deseasonalized demand (�̅�𝑡), one when 𝑝 is even and the other 

when 𝑝 is odd. In which each historical data is given equal weight. 
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�̅�𝑡 =

{
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∑
𝐷𝑖

𝑝

𝑖=𝑡+(
𝑝−1

2
)

𝑖=𝑡−(
𝑝−1

2
)

; 𝑓𝑜𝑟 𝑝 𝑖𝑠 𝑜𝑑𝑑

  (2) 

, where 𝑝 is the periodicity which is the number of periods after which the seasonal cycle 

repeats (Chopra, 2017). 

The level and trend for Period 0 can then be retained by applying a linear equation for the 

period (𝑡) and the deseasonalized demand data (�̅�𝑡). 

�̅�𝑡 = 𝐿 + 𝑇𝑡   (3) 

The next step is to estimate seasonal factors with the following formula. The seasonal factor 

for Period 𝑡 is the ratio of actual demand �̅�𝑡 to the deseasonalized demand and is given as: 

𝑆�̅� =  
𝐷𝑡 

�̅�𝑡
   (4) 

The seasonal factors are then averaged for each season: 

𝑆𝑖 = 
∑ 𝑠̅𝑗𝑝+𝑖
𝑟−1
𝑗=0  

𝑟
   (5) 

Where, 𝑟, is the seasonal cycles in the data, for all periods of the form 𝑝𝑡 + 𝑖, and 1 ≤ 𝑖 ≤ 𝑝. 

In adaptive forecasting, the forecasting demand for Period 𝑡 + 𝑙 is expressed as follows: 
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𝐹𝑡+𝑙 = (𝐿𝑡 + 𝑙𝑇𝑡)𝑆𝑡+𝑙  (6) 

Unlike in the static forecasting methods, an additional step of revising factors is required in 

adaptive forecasting techniques to compensate for the forecast value after minimizing the 

forecasting error of historic data. The error for Period 𝑡 + 1 is stated as Eq. (7). 

𝐸𝑡+1 = 𝐹𝑡+1 − 𝐷𝑡+1   (7) 

Four adaptive forecasting methods are introduced in this portion. The moving average method 

is used when the trend and seasonality are absent. In this method, the level for Period 𝑡 is estimated 

as the averaged demand over the most recent 𝑁  periods. Since it is assumed that nearby 

observations in past are likely to be close to the future demand. The equation for the N-period 

moving average is presented as follows:  

𝐿𝑡 =
𝐷𝑡+𝐷𝑡−1+⋯+𝐷𝑡−𝑁+1

𝑁
  (8) 

The forecast is evaluated as: 

𝐹𝑡+1 = 𝐿𝑡 , and 𝐹𝑡+𝑛 = 𝐿𝑡  (9) 

The new moving average is calculated by adding the latest observation of demand and 

dropping the oldest one. The revised moving average serves as the next forecast.  



13 

 

The simple exponential smoothing method is suitable when demand demonstrates no trend or 

seasonality. The initial estimate of level, 𝐿0, is taken to be the average of all historical data with 

the following equation (Chopra, 2017).  

𝐿0 =
1

𝑛
∑ 𝐷𝑖
𝑛
𝑖=1    (10) 

, where 𝑛 is the total number of given demand data. 

The current forecast for all future periods is given as: 

 𝐹𝑡+1 = 𝐿𝑡, and 𝐹𝑡+𝑛 = 𝐿𝑡 (11) 

After observing the demand (𝐷𝑡+1) for Period 𝑡 + 1, the estimate of the level is revised as 

follows: 

𝐿𝑡+1 = 𝛼𝐷𝑡+1 + (1 − 𝛼)𝐿𝑡  (12) 

, where 𝛼 is the smoothing factor for level,  ∈ [0, 1]. 

Trend-Corrected Exponential Smoothing (Holt’s model): The method runs a linear regression 

equation between historical demands (𝐷𝑡), and time (Period 𝑡), so that from which the initial 𝐿0 

and 𝑇0 could be obtained. Forecasting for Period 𝑡, is expressed as (Chopra, 2017): 

𝐹𝑡+1 = 𝐿𝑡 + 𝑇𝑡 and 𝐹𝑡+𝑛 = 𝐿𝑡 + 𝑛𝑇𝑡  (13) 
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After observing the demand for Period 𝑡, the estimates for the level and trend are revised as 

follows: 

𝐿𝑡+1 = 𝛼𝐷𝑡+1 + (1 − 𝛼)( 𝐿𝑡 + 𝑇𝑡)   (14) 

𝑇𝑡+1 = 𝛽(𝐿𝑡+1 − 𝐿𝑡) + (1 − 𝛽)𝑇𝑡  (15) 

, where 𝛼 and 𝛽 are the smoothing factors for the level and trend, respectively. , ∈ [0, 1] 

Winter’s Model: Initial estimates of the level (𝐿0), trend (𝑇0), and seasonal factors (𝑆1, ..., 𝑆𝑝) 

are obtained with the same procedure as those for static forecasting (Chopra, 2017). 

In Period 𝑡, given estimates of level, 𝐿𝑡, trend, 𝑇𝑡, and seasonal factors, 𝑆𝑡, ..., 𝑖. 

𝐹𝑡+1 = (𝐿𝑡 + 𝑇𝑡)𝑆𝑡+1 and 𝐹𝑡+1 = (𝐿𝑡 + 𝑙𝑇𝑡)𝑆𝑡+𝑙 (16) 

On observing demand for Period 𝑡 + 1, the estimates for the level, trend, and seasonal factors 

are revised as follows: 

𝐿𝑡+1 = 𝛼 (
𝐷𝑡+1

𝑆𝑡+1
) + (1 − 𝛼)(𝐿𝑡 + 𝑇𝑡)  (17) 

𝑇𝑡+1 = 𝛽(𝐿𝑡+1 − 𝐿𝑡) + (1 − 𝛽)𝑇𝑡  (18) 

𝑆𝑡+𝑝+1 = 𝛾 (
𝐷𝑡+1
𝐿𝑡+1

) + (1 − 𝛾)𝑆𝑡+1  (19) 
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, where ,   and   are smoothing constants for the level, trend, and the seasonal factor, 

,,  ∈ [0, 1]. 

Measurement of forecast errors is essential to assessing the accuracy of forecasting methods. 

There are a variety of measures to assess the error. 

One is mean squared error (𝑀𝑆𝐸). The 𝑀𝑆𝐸 penalizes large errors much more significantly 

than small ones as all errors are squared. Thus, it is more appropriate in situations where the cost 

of a large error is much larger than the gains from very accurate forecasts. It is appropriate to be 

exploited when forecast error has a distribution that is symmetric about zero. 

𝑀𝑆𝐸𝑛 =
1

𝑛
∑ 𝐸𝑡

2𝑛
𝑡=1    (20) 

Another measurement is the mean absolute deviation (𝑀𝐴𝐷), which refers to the average of 

the absolute deviation over all periods. It is expressed by the following equation: 

𝑀𝐴𝐷𝑛 =
1

𝑛
∑ |𝐸𝑡|
𝑛
𝑡=1    (21) 

The 𝑀𝐴𝐷  can be employed to estimate the standard deviation of the random component 

assuming that the random component is normally distributed. In this case, the standard deviation 

of the random component is: 

𝜎 = 1.25𝑀𝐴𝐷  (22) 
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The mean absolute percentage error (𝑀𝐴𝑃𝐸) is the average absolute error as a percentage of 

demand and is given by:  

𝑀𝐴𝑃𝐸𝑛 =
∑ |

𝐸𝑡
𝐷𝑡
|100𝑛

𝑡=1

𝑛
   (23) 

The 𝑀𝐴𝑃𝐸 can be considered as a good choice when the underlying forecast has significant 

seasonality, and demand varies considerably from one period to the next. However, it is not good 

as 𝑀𝐴𝐷 if the forecast error is asymmetrically distributed. 

In general, one needs a method to track and control the forecasting method. One approach is 

to use the sum of forecast errors to evaluate the bias, where the following holds: 

𝑏𝑖𝑎𝑠𝑛 = ∑ 𝐸𝑡
𝑛
𝑡=1    (24) 

The tracking signal (𝑇𝑆) is the ratio of the bias and the 𝑀𝐴𝐷 and is given as:  

𝑇𝑆𝑡 =
𝑏𝑖𝑎𝑠𝑛

𝑀𝐴𝐷𝑡
   (25) 
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Aggregate production planning plays an important role in industries. Managers want to fulfill as 

many customer orders as possible to make more profit; however, this is difficult because the 

volume of orders from customers is usually uneven, as well as there are always various resource 

and condition constraints. For example, lead times are typically long; manufacturers may need to 

start production before they receive orders; capacity costs often do not amount to outsourcing costs; 

hiring and layoff costs are often high; inventory can be expensive. 

Aggregate production planning, as an approach to schedule a company’s capacity, production, 

subcontracting, inventory, stockouts, and pricing over a finite time horizon at an overall level, can 

help planners achieve their goal of minimizing the total costs or maximizing the profits while 

meeting non-constant demands simultaneously. Specifically, it determines the levels of production, 

inventory, capacity (internal and outsourced), and any backlogs (unmet demand) for each period, 

that maximize the firm’s profit over the whole planning horizon based on the forecast demands 

are fully met (Chopra, 2017). 

The aggregate planning acts as a broad scheme for production management and builds the 

boundaries within which production and distribution decisions can be made. The aggregate plan 

enables the supply chain to adapt to the capacity distributions and business agreement. It is 

concentrated on solving problems at the aggregate level, rather than the detailed stock-keeping-

unit (SKU) level decisions. It is usually applied in advance of 3 - 18 months. In such a period, 

determining production levels by SKU is unrealistic as it is too early, adding production capacity 

may be also too late. Therefore, aggregate planning is generally limited to searching for optimal 

production options based on existing facilities (Chopra, 2017). 
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It is critical to collaborate with other parties throughout the supply chain for the effective 

practice of aggregate planning, as other partners are important inputs for the planning (Chopra, 

2017). Moreover, many constraints lie outside these companies. Such as the vendors or customers 

of their warehousing, logistics service, which are also crucial. If a manufacturing company has 

determined to adjust its production, its vendor, transportation, warehousing service must be 

informed of the plan and integrate the change into their schedules. Without engagement from 

upstream and downstream of the supply chain, the aggregation planning can hardly generate its 

complete power. 

The planning horizon should be specified before starting the aggregate planning. It indicates 

a timeframe over which the aggregate plan produces a solution. Another element that ought to be 

specified is the duration of each period within the planning horizon, e. g., weeks, months, or 

quarters.  

A variety of information should be gathered before employing the aggregate production 

planning: (i) production rate, (ii) workforce, (iii) overtime, (iv) machine capacity level, (v) 

subcontracting, (vi) backlog, (vii) inventory on hand. The planners should also identify other key 

information: (i) aggregate demand forecast, 𝐹𝑡, for each Period 𝑡 in a planning horizon that extends 

over 𝑇 periods, (ii) production costs; (iii) labor costs, regular time ($/hour), and overtime costs 

($/hour), (iv) cost of subcontracting production ($/unit or $/hour), (v) cost of changing capacity, 

specifically, cost of hiring/laying off workforce ($/worker) and cost of adding or reducing machine 

capacity ($/machine), (vi) labor/machine hours required per unit (vii) inventory holding cost 

($/unit/period), (viii) stockout or backlog cost ($/unit/period), and (ix) constraints on overtime, 

layoffs, capital, stockouts and backlogs, and from suppliers to the enterprise (Chopra, 2017). 
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The aggregate production planning can determine (i) the production quantity from regular time, 

overtime, and subcontracted time, (ii) inventory held, (iii) backlog or stockout quantity, (iv) 

workforce hired/laid off, and (v) machine capacity increase or decrease (Chopra, 2017). 

The quality of the aggregate production planning affects profitability because the loss can be 

caused not only by insufficient or late supply but also by excess inventory and capacity. There are 

several noteworthy principles about implementing high-quality aggregate production planning. 

First, aggregate units for production and time should be selected at a proper level. This is 

because the final schedule will be disaggregated at the product level, although the production 

planning is carried out in aggregation. Another notable point is the bottleneck of any 

manufacturing facility, as it is likely to be the most constraining area that may fail the aggregated 

planning. The setups and maintenance should also be considered in the model since it occupies 

capacity but results in no production. Otherwise, the aggregate plan will misjudge the production 

capacity available, resulting in a plan that cannot be achieved in practice (Chopra, 2017).  

Trade-offs must be made among capacity, inventory, and backlog costs to achieve the best 

plan (Chopra, 2017). The chase strategy, the flexibility strategy, and the level strategy are three 

common tactics, which are generally combined or tailored in practices. The chase strategy deals 

with the demands with the adjustable machine or labor. The problem with this approach is that 

there is a high expense for the company and it hurts the employees due to the frequent hiring or 

laying-off of workers; thus, it is only useful when the inventory cost is higher than changing the 

level of machine and workforce. The flexibility strategy depends on the varying utilization rate of 

machines and of the workforce’s working time to meet the fluctuating demand. This tactic avoids 

the issues associated with the chase strategy but presents a new problem of low machine utilization. 
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In the level strategy, machine capacity and workforce are kept at a constant output rate, while 

inventory is used as the lever. Backlogs and surpluses are the main challenges to be dealt with 

under this scheme. 

Thinking beyond the firm to the entire supply chain may facilitate producing better results of 

aggregate production planning. This is due to many factors outside the enterprise that may have a 

significant impact on the optimal aggregate plan. Not only should the firm communicate with 

downstream partners for a better forecast of future demand, but also, they should work with 

upstream partners to review the constraints, and with other parts of the supply chain to improve 

the performance of the aggregate plan (Chopra, 2017). 

Another key principle is that an aggregate planner must make the plan flexible enough as 

forecasts are always inaccurate. Aggregate planning is an overall blueprint in advance of a 

specified horizon before orders emerge. The firm should be prepared for the forecast error. A 

sensitivity analysis of the inputs is a recommended solution to the issue as it can evaluate how the 

varying parameters impact the optimal solution (Chopra, 2017).  

The third rule is that the aggregate plan should be rerun as new data becomes available. This 

is because the updated inputs may have a radical influence on the previously obtained results. 

Therefore, it is important to use the latest input to run again the aggregate planning to check if any 

adjustments should be made (Chopra, 2017).  

The final point is that a firm needs to perform aggregate planning as capacity utilization 

increases (Chopra, 2017). It may be unnecessary when the utilization rate is low since they can 

arrange production as order received. However, when the utilization rate is high and capacity is an 
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issue, it may be too late to fit the order into the busy production line. Thus, it is necessary to apply 

aggregate planning in production for a firm in situations of high utilization.  
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Problem Statement 

Polystyrene is widely used in the packaging industry because of its various advantages. The 

material is economical, transparent, easy to mold, rigid, recyclable, and with good dimensional 

stability. This research is mainly focused on polystyrene resins that are used for manufacturing 

plastic containers in the forms of black and clear. The raw material is purchased quarterly in the 

form of resin pellets. Extrusion and thermoforming are the main processes to convert polystyrene 

resin pellets into plastic containers.  

Extrusion is a high-volume manufacturing process in which the raw plastic is melted and 

formed into a continuous profile through a die. The raw material is fed into a preheated extruder 

via a hopper. The material is then compressed to the exit side by a rotating conical screw. Heating 

devices surround the barrel, softening, and melting the polymer. The melted material pumping out 

of the die is cooled to a solid shape in the air or through a stream of water, which is finally cut into 

various shapes. The shape of the product is determined by the die at the end of the extruder. Dyes 

can be also added in the process to have colored products. Extrusion is generally applied to 

thermoplastics which refer to materials whose polymeric structure will not change drastically after 

multiple cycles of heating and cooling; such a character promotes its recycling. The extruded 

products can be further molded by other processes, such as blow molding or thermoforming, to 

expand their usages.  
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Figure 5.1: A principal scheme of an extruder 

Thermoforming is a manufacturing process, where a thermoplastic material or preform is 

heated to a forming temperature, stretched to a specific shape in a mold, and trimmed to a finished 

product.  
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Figure 5.2: A scheme for mechanical thermoforming press 

In this case, the black and clear plastic sheets from the extrusion process are wrapped into rolls. 

The option of subcontracting extruded sheets is available when the customer's needs exceed the 

extrusion capacity. The rolls are sent either to the thermoforming presses or the warehouses for 
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future use. Of note, two types of warehouses, i.g. public and private warehouse, are available in 

the setting.  
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Figure 5.3:  The manufacturing process of plastic containers 

Suppose quarterly historical demand for plastic containers is given. Let 𝑑𝑖 denote the demand 

forecast for containers in quarter 𝑖 (see Table 5.1 for the summary of notations). The raw material 

is quarterly purchased at $𝑐𝑝𝑢𝑟 per 1,000 lb. to match the planned production. Extruders produce 

rolls of plastic sheets. There are 𝑛𝑒  number of extruders in the facility. Each extruder has a 

processing capacity of 𝑄𝑒 ’000 pounds per hour. Each extruder requires 𝑤𝑒 workers. The amount 

required is passed forward to thermoforming presses, while the rest is stored at a public and/or 

private warehouse. There are 𝑛𝑡  number of thermoforming presses in the plant. Each 

thermoforming press has a processing capacity of 𝑄𝑡 and requires 𝑤𝑡 workers. Each worker is paid 

$𝑟 per hour for a regular-time salary and $𝑜 per hour for overtime. Workers are limited to 𝑂 

overtime hours per quarter. The training cost per person is $𝑡. During any quarter, extruders and 

thermoforming presses may be idled. In this case, the associated workers should be laid off. Laying 

off each worker costs $𝑙. If an idled extruder/thermoforming press is brought online, a training 

cost of $𝑡 per worker is required. 
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It is assumed that the manufacturer has the option of subcontracting the production of plastic 

sheets to one of its supply chain partners. Sufficient production capacity is deemed always 

available by the subcontractor to make up for the shortage of plastic sheets for the thermoforming 

process. The manufacturer spends $𝑠 per 1,000 lb. of the plastic sheet produced by a subcontractor.  

Surplus plastic sheets are sent for storage. Transportation is needed to bring the sheets back 

from the warehouse (when they are needed) to feed the thermoforming presses. Let $𝑐𝑡𝑟 denote 

the total transportation cost of 1,000 lb. of plastic sheet. If the option of public warehousing is 

selected, material handling and storage charge the manufacturer $𝑐𝑚ℎ&𝑠 per 1,000 lb. at the end of 

each quarter. If the option of private warehousing is selected, two types of cost incur: (i) fixed cost: 

as a contract of a certain area must be signed before use and the least leasing period is three years. 

It means the leasing area must be paid whether it is used or not. Suppose one square foot is required 

per 1,000 lb. of plastic sheets in storage. Then, lease rates average $𝑐𝑓 per square foot per quarter; 

(ii) variable cost: private warehousing charges the manufacturer a variable operating cost of $𝑐𝑣 

per 1,000 lb. of plastic sheet stored per quarter. The supply chain network is illustrated in Figure 

5.3.  

Table 5.1: Notations used for both mathematical programming models 
Parameters Definition 

di  Demand forecast for plastic containers in quarter i (in ’000 pounds) 

cpur  Raw material cost per 1,000 pounds (in dollars) 

ne  Number of extruders 

Qe  Processing capacity of an extruder (in ’000 pounds) per hour 

we  Number of required workers to work on an extruder 

nt  Number of thermoforming presses 

Qt  Processing capacity of a thermoforming press (in ’000 pounds) per hour 

wt  Number of required workers to work on a thermoforming press 

r  Regular time salary (in dollars per hour) 

o  Overtime salary (in dollars per hour) 

O  Limited overtime hours per quarter (in hours) 

t  Training cost per person (in dollars) 

l  Laying off cost per person (in dollars) 

s  Cost of subcontracting plastic sheets per 1,000 pounds (in dollars) 
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Table 5.1 (cont’d) 
Parameters Definition 

ctr 
Transportation cost per 1,000 pounds of the plastic sheet from extruding plant to a warehouse (in 

dollars) 

cmh&s  
Cost of material handling and storage of plastic sheets per 1,000 pounds in a public warehouse (in 

dollars) 

cf  Fixed leasing cost (for three years) per square foot per quarter at a private warehouse 

cv  Variable leasing cost of 1,000 pounds of plastic sheet per quarter at a private warehouse 

u  The utilization rate of private warehouses 

φm
i   Incidence matrix to relate quarter i to mth 3-year leasing contract. The elements are either 0 or 1. 

Based on this premise, this investigation aims to answer the following questions: 

1. How many pounds of the plastic sheet should be produced by regular time/overtime 

working at each quarter? i.e., how many regular/overtime hours should extruders work 

each quarter? 

2. How many extruder workers should be laid off/hired at each quarter? 

3. How many extruders should work at each quarter? 

4. How many pounds of plastic containers should be produced by regular/overtime time 

working at each quarter? i.e., how many regular/overtime time hours should the 

thermoforming presses work at each quarter? 

5. How many thermoforming workers should be laid off/hired at each quarter? 

6. How many thermoforming presses should work at each quarter? 

7. How many pounds of plastic sheets should be sent to public or private warehousing or 

should be subcontracted? How many square feet of the private warehouse should be leased 

if it is involved? 
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To address these questions, two mixed-integer programming models, based on the material 

flow and the level of the workforce, along each segment of the manufacturing process are presented.  

Production Planning Optimization 

A mathematical model based on the flow of material  

The mixed-integer programming model corresponding to the aggregate planning of reusable 

container manufacturing based on the material flow is shown in this sector (see Table 5.2 for 

notations). 

min∑[Cpur(xi
R + xi

O) + syi
Sub +

rwe

Qe
xi
R +

rwt

Qt
zi
R +

owe

Qe
xi
O +

owt

Qt
zi
O

i

+wetxi
H +wttzi

H + welxi
L +wtlzi

L + (yi
Pu + yi

Pr)Ctr

+ Cmh&syi
Pu +∑cfφm

i ym
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m

+ yivPrC  ] 
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O ∀i (10) 
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R + zi

O = di ∀i (11) 

uym
′ ≥ φm

i yi
Pr ∀i, ∀m (12) 

Objective function (1) includes several terms: 𝑐𝑝𝑢𝑟(𝑥𝑖
𝑅 + 𝑥𝑖

𝑂) is the raw material purchasing 

cost, 𝑠𝑦𝑖
𝑆𝑢𝑏 is the cost of subcontracting, 

𝑟𝑤𝑒

𝑄𝑒
𝑥𝑖
𝑅 is the labor cost during the regular time working 

at the extruding plant, 
𝑟𝑤𝑡

𝑄𝑡
𝑧𝑖
𝑅 is the labor cost during the regular time working at the thermoforming 

plant, 
𝑜𝑤𝑒

𝑄𝑒
𝑥𝑖
𝑂 is the labor cost during overtime working of the extruding plant, 

𝑜𝑤𝑡

𝑄𝑡
𝑧𝑖
𝑂 is the labor 

cost during overtime working of the thermoforming plant, 𝑤𝑒𝑡𝑥𝑖
𝐻 is the cost of training workers 
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when a new extruder is brought online, 𝑤𝑡𝑡𝑧𝑖
𝐻  is the cost of worker training when a new 

thermoforming press is brought online, 𝑤𝑒𝑙𝑥𝑖
𝐿 is the cost of laying off workers when one extruder 

is idle, 𝑤𝑡𝑙𝑧𝑖
𝐿  is the cost of laying off workers when a thermoforming press becomes idle, 

𝑐𝑡𝑟(𝑦𝑖
𝑃𝑢 + 𝑦𝑖

Pr) is the cost of transporting plastic sheets to a public/private warehouse, 𝑐𝑚ℎ&𝑠𝑦𝑖
𝑃𝑢 

is the cost of material handling and storage cost of plastic sheets at a public warehouse, 𝑐𝑓𝜑𝑚
𝑖 𝑦𝑚

′  

is the fixed leasing cost of a private warehouse, and 𝑐𝑣𝑦𝑖
𝑃𝑟 is the variable leasing cost of a private 

warehouse. It is noted that 𝑖 ∈ {1, 2,… , 12} is related to 𝑚 = 1 (the first 3-year leasing contract), 

𝑖 ∈ {13, 14,… , 24} is related to 𝑚 = 2 (the second 3-year leasing contract), and so on. Parameter 

𝜑𝑚
𝑖  is 1 is 𝑖 is related to 𝑚, and 0 otherwise. 

Consider that there are 8 working hours per day and 63 working days per quarter (a total of 

504 hours per quarter). Constraint (2) shows the connection between the plastic sheets in ’000 

pounds produced by regular time working of extruders and the total number of working extruders 

at each quarter. Constraint (3) shows the connection between the plastic sheets in ’000 pounds 

produced by overtime working of extruders and the total number of working extruders at each 

quarter. Constraint (4) shows the connection between the containers in ’000 pounds produced by 

regular time working of the thermoforming process and the total number of working 

thermoforming presses at each quarter. Constraint (5) shows the connection between the containers 

in ’000 pounds produced by overtime working of thermoforming presses and the total number of 

working thermoforming presses at each quarter. Constraint (6) guarantees that the total number of 

working extruders does not exceed the total number of extruders. Constraint (7) guarantees that 

the total number of working thermoforming presses does not exceed the total number of 

thermoforming presses. Constraint (8) guarantees that the total number of working extruders at 

quarter 𝑖 is equal to the total number of working extruders at quarter 𝑖 − 1 plus the total number 
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of newly hired extruders at quarter 𝑖 minus the total number of laid-off extruders at quarter 𝑖. 

Similarly, constraint (9) guarantees that the total number of working thermoforming presses at 

quarter 𝑖 is equal to the total number of working thermoforming presses at quarter 𝑖 − 1 plus the 

total number of newly hired thermoforming presses at quarter 𝑖 minus the total number of laid-off 

thermoforming presses at quarter 𝑖. Constraint (10) ensures the flow balance of materials between 

extruding plant, storage warehouses, and thermoforming plant. Finally, constraint (11) guarantees 

that the containers (in ’000 pounds) produced by thermoforming presses at quarter 𝑖 are equal to 

the demand of quarter 𝑖. Constraint (12) ensures that the level of inventory at the private warehouse 

at each period is less than the preset inventory level leased at the beginning of the corresponding 

3-year leasing contract. The utility rate of the private warehouse is also considered.  

Table 5.2: Variables used for the mathematical modeling of the aggregate planning based on the 

material flow 
Variables Definition 

xi
R  ’000 pounds of the plastic sheet produced by regular time working at quarter i 

xi
O  ’000 pounds of the plastic sheet produced by overtime working at quarter i 

xi
L  Number of laid off (idled) extruders in quarter i 

xi
H  Number of newly hired extruders in quarter i 

xi
W  Number of working extruders in quarter i 

zi
R  ’000 pounds of containers produced in regular time in quarter i 

zi
O  ’000 pounds of containers produced in overtime in quarter i 

zi
L  Number of laid off (idled) thermoforming presses in quarter i 

zi
H  Number of newly hired thermoforming presses in quarter i 

zi
W  Number of working thermoforming presses in quarter i 

yi
Pr  ’000 pounds of plastic sheets stored in a private warehouse in quarter i 

yi
Pu  ’000 pounds of plastic sheets stored in a public warehouse in quarter i 

yi
Sub  ’000 pounds of plastic sheets subcontracted in quarter i  

ym
′   

Area (proportional to ’000 pounds of plastic sheets) leased at the private warehouse for mth 3-year 

leasing contract 



30 

 

A mathematical model based on the working hours of machines. 

The mixed-integer programming model corresponding to the aggregate planning of plastic 

container manufacturing based on the working hours of the equipment is presented (see Table 5.3 

for notations). 
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Objective function (13) includes several terms: 𝑐𝑝𝑢𝑟𝑄𝑒(𝑥𝑖
𝑅 + 𝑥𝑖

𝑂)  is the raw material 

purchasing cost, 𝑠𝑦𝑖
𝑆𝑢𝑏 is the cost of subcontracting, 𝑟𝑤𝑒𝑥𝑖

𝑅 is the labor cost during the regular 

time working at the extruding plant, 𝑟𝑤𝑡𝑧𝑖
𝑅 is the labor cost during the regular time working at the 

thermoforming plant, 𝑜𝑤𝑒𝑥𝑖
𝑂 is the labor cost during overtime working of the extruding plant, 

𝑜𝑤𝑡𝑧𝑖
𝑂 is the labor cost during overtime working of the thermoforming plant, 𝑤𝑒𝑡𝑥𝑖

𝐻 is the cost of 

training workers when a new extruder is brought online, 𝑤𝑡𝑡𝑧𝑖
𝐻 is the cost of training workers 

when a new thermoforming press is brought online, 𝑤𝑒𝑙𝑥𝑖
𝐿 is the cost of laying off workers when 

an extruder becomes idle, 𝑤𝑡𝑙𝑧𝑖
𝐿 is the cost of laying off workers when a thermoforming press 

becomes idle, 𝑐𝑡𝑟(𝑦𝑖
𝑃𝑢 + 𝑦𝑖

Pr)  is the cost of transporting plastic sheets to a public/private 

warehouse, 𝑐𝑚ℎ&𝑠𝑦𝑖
𝑃𝑢 is the cost of material handling and storage cost of plastic sheets at a public 
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warehouse, 𝑐𝑓𝜑𝑚
𝑖 𝑦𝑚

′  is the fixed leasing cost of a private warehouse, and 𝑐𝑣𝑦𝑖
𝑃𝑟the variable leasing 

cost of a private warehouse.  

Constraint (14) shows the connection between the regular time working hours of extruders and 

the total number of working extruders at each quarter. Constraint (15) shows the connection 

between the overtime working hours of extruders and the total number of working extruders at 

each quarter. Constraint (16) shows the connection between the regular time working hours of the 

thermoforming process and the total number of working thermoforming presses at each quarter. 

Constraint (17) shows the connection between the overtime working hours of thermoforming 

presses and the total number of working thermoforming presses at each quarter. Constraint (18) 

guarantees that the total number of working extruders does not exceed the total number of 

extruders. Constraint (19) guarantees that the total number of working thermoforming presses does 

not exceed the total number of thermoforming presses. Constraint (20) guarantees that the total 

number of working extruders at quarter 𝑖 is equal to the total number of working extruders at 

quarter 𝑖 − 1 plus the total number of newly hired extruders at quarter 𝑖 minus the total number of 

laid-off extruders at quarter 𝑖 . Similarly, constraint (21) guarantees that the total number of 

working thermoforming presses at quarter 𝑖 is equal to the total number of working thermoforming 

presses at quarter 𝑖 − 1 plus the total number of newly hired thermoforming presses at quarter 𝑖 

minus the total number of laid-off thermoforming presses at quarter 𝑖. Constraint (22) ensures the 

flow balance of materials between extruding plant, storage warehouses, and thermoforming plant. 

Finally, constraint (23) guarantees that the containers (in ’000 pounds) produced by thermoforming 

presses at quarter 𝑖 are equal to the demand of quarter 𝑖. Constraint (24) ensures that the level of 

inventory at the private warehouse at each period is less than the preset inventory level leased at 
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the beginning of the corresponding 3-year leasing contract. The utility rate of the private 

warehouse is also considered.  

Table 5.3: Variables used for the mathematical modeling of the aggregate planning based on the 

working hours of the equipment 
Variables Definition 

xi
R  Number of regular time working hours of extruders at quarter i 

xi
O  Number of overtime working hours of extruders at quarter i 

xi
L  Number of laid off (idled) extruders in quarter i 

xi
H  Number of newly hired (brought online) extruders in quarter i 

xi
W  Number of working extruders in quarter i 

zi
R Number of regular time working hours of thermoforming presses at quarter i 

zi
O Number of overtime working hours of thermoforming presses at quarter i 

zi
L Number of laid off (idled) thermoforming presses in quarter i 

zi
H Number of newly hired (brought online) thermoforming presses in quarter i 

zi
W Number of working thermoforming presses in quarter i 

yi
Pr ’000 pounds of plastic sheets stored in a private warehouse in quarter i 

yi
Pu ’000 pounds of plastic sheets stored in a public warehouse in quarter i 

yi
Sub ’000 pounds of plastic sheets subcontracted in quarter i  

ym
′  

Area (proportional to ’000 pounds of plastic sheets) leased at the private warehouse for mth 3-year 

leasing contract 

Finally, it is noted that one can evaluate various storage strategies, i.e., using either public or 

private storage (but not both at the same time), and a combination of both warehouses. The 

following constraints provide such flexibility to the model: 

∑yi
pu

i

≤ Mα  (25) 

∑yi
pr

i

≤ Mβ  (26) 

α + β = b  (27) 

, where 𝛼 and 𝛽 are binary variables and 𝑀 is a large number. Constraints (25), (26), and (27) 

with 𝑏 = 1 guarantee that using either public or private storage is used and not both. Constraints 

(25), (26), and (27) with 𝑏 = 2 guarantee that using a combination of each storage is acceptable.  
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Historical demand data and the value of some parameters are adopted from Chopra (2017). 

Historical demands for black and clear plastic containers from the year 2005 to 2009 are presented 

in Figure 6.1 and Table 6.1.  

 

Figure 6.1: Historical demand data 

Table 6.1: Historical demand data 

Year Quarter 
Black Plastic 

Demand (’000 lb) 

Clear Plastic Demand 

(’000 lb) 

2005 

I 2,250 3,200 

II 1,737 7,658 

III 2,412 4,420 

IV 7,269 2,384 

2006 

I 3,514 3,654 

II 2,143 8,680 

III 3,459 5,695 

IV 7,056 1,953 

2007 

I 4,120 4,742 

II 2,766 13,673 

III 2,556 6,640 

IV 8,253 2,737 

2008 

I 5,491 3,486 

II 4,382 13,186 

III 4,315 5,448 

IV 12,035 3,485 

2009 

I 5,648 7,728 

II 3,696 16,591 

III 4,843 8,236 

IV 13,097 3,316 
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In Figure 6.1, the trend and seasonality can be observed for the demands of both plastics. The 

demands for clear plastic containers peak every summer which is assumed to relevant to the 

demand for cold drinks in the season, and the demands for black ones reach the highest-level 

during winters. The demands for both containers have an increasing trend. It is assumed the 

demands will continue to increase in the following three years at historical rates. Winter’s model, 

which considers trend and seasonality, is expected to give the best forecast among all other 

forecasting methods. 

Forecasting Demands with the Static Method 

In the static forecasting method, level, trend, and seasonal factors are assumed to be constant. The 

first step of forecasting with the static method is to deseasonalize the historical data series. It is 

observed that periodicity 𝑝 = 4 which is an even number. Therefore, the first row of Eq. (2) is 

taken to calculate the deseasonalized demand for quarter 3 to quarter 19 (�̅�3 to �̅�19).  

The second step is to obtain a linear equation between deseasonalized demands (�̅�3 to �̅�19 ) 

and quarter number ( 𝑡3 to 𝑡20) Which can be obtained by running a linear regression analysis in 

Excel or adding a linear trendline to the data series. The equations of the obtained linear trendlines 

are shown in Figure 6.2 and 6.3.  
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Figure 6.2: Linear regression for the deseasonalized demands of black plastics and the quarter 

number 

 

Figure 6.3: Linear regression for the deseasonalized demands of clear plastics and the quarter 

number 

Table 6.2: Input range for obtaining trendline  
Series Values 

x B4:B19 

y D4:D19 

As the coefficients of the regression equation are round, the equations for deseasonalized 

demand data of both containers are as follows.  

�̅�𝑡  =  227𝑡 +  2593  (3A) 

�̅�𝑡  =  264𝑡 +  3612  (3B) 

= 226.86t + 2592.7

R² = 0.9128
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The deseasonalized demands for both plastics during all quarters can be calculated with the 

above equations.  

All seasonal factors are calculated by Eq. (4) (in Column F) and then averaged by Eq. (5) (in 

Column G). Originally, there are 20 values of seasonal factors, where they are considered five 

cycles (each year is considered a cycle). Seasonal factors at the quarter I, II, III, IV, are averaged 

respectively because the four seasonal factors are assumed to be repeated every year. For example, 

𝑆1 = 𝑆5 = 𝑆9  = 𝑆13 = 𝑆17, 𝑆2 = 𝑆6 = 𝑆10  = 𝑆14 = 𝑆18, etc. 

At last, the forecast is calculated by Eq. (1). Results for both black and clear containers are 

presented in Figure 6.4 and Figure 6.5. The formulas involved are also listed in Table 6.3. Note 

that the symbol “$” in the middle of the cell number is used to lock the referenced cell so that it 

will not be changed automatically. 
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Figure 6.4: Forecast demands for black plastic containers using the static method 

 

 
Figure 6.5: Forecast demands for clear plastic containers using the static method 
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Table 6.3: Formulas for forecasting demands using the static method 
Cell Formula Eq. No. Copied down to 

D4 =(C2+C6+2*(C3+C4+C5))/(2*4) 2 D19 

E2 =2593+227*B2 3A E21 

F2 =C2/E2 4 F21 

G2 =AVERAGE(F2,F6,F10,F14,F18) 5 G5 

G6 =G2 5 G21 

H2 2593 coefficient from 3A H21 

I2 227 coefficient from 3A I21 

J2 =(H2+B2*I2)*G2 1 J33 

K2 =J2-C2 7 K21 

L2 
=SUMPRODUCT(ABS($K$2:K2),

POWER($C$2:C2,-1))*100/B2 
23 L21 

M2 =SUMSQ($K$2:K2)/B2 20 M21 

N2 =SUM(ABS($K$2:K2))/B2 21 N21 

O2 =1.25*N21 22 - 

P2 =SUM($K$2:K2) 24 P21 

Q2 =SUM($K$2:K2)/N2 25 Q21 

 

Forecasting Demand with Adaptive Methods 

In this section, various adaptive methods which have been mentioned in Chapter 3, are used to 

forecast the demands for black and clear plastics in the next three years. The values of forecasting 

error, 𝑀𝐴𝑃𝐸, Squared 𝑀𝑆𝐸, 𝜎, 𝑏𝑖𝑎𝑠, and 𝑇𝑆 are accordingly calculated. Values of 𝑀𝐴𝑃𝐸 and 𝜎 

are compared among different methods to evaluate the accuracy of each method. 

Forecasting demands with moving average method 

The moving average method does not consider trend or seasonality. Eq. (8) is used to calculate the 

level from period 𝑡 = 5 to 𝑡 = 20 by taking the average of the previous four periods. Eq. (9) is 

then used to calculate the forecasting demand which is equal to the level of the previous quarter. 

The forecasting results for the demand for black and clear plastics are presented in Figure 6.6 and 

Figure 6.7, respectively. Formulas used to forecast demands are presented in Table 6.4. 
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Figure 6.6: Forecast demands for black plastic containers using four-period moving average 

method 
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Figure 6.7: Forecast demands for clear plastic containers using four-period moving average 

method 

Table 6.4: Formulas for forecasting demands using the moving average method 
Cell Formula Eq. No. Copied down to 

D5 =AVERAGE(C2:C5) 8 D21 

E6 =D5 9 E21 

E22 =$D$21 7 E33 

F6 =E6-C6 7 F21 

G6 

=SUMPRODUCT(ABS($F$6:

F6),POWER($C$6:C6,-

1))*100/(B6-4) 

23 G21 

H6 =SUMSQ($F$6:F6)/(B6-4) 20 H21 

I6 =SUM(ABS($F$6:F6))/(B6-4) 21 I21 

J6 =1.25*I21 22 - 

K6 =SUM($F$6:F6) 24 K21 

L6 =SUM($F$6:F6)/I6 25 L21 
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Forecasting demands with the simple exponential smoothing method 

The simple exponential smoothing forecasting method does not take trend or seasonality into 

consideration. 

Initial level (𝐿0) is calculated by averaging all the historical demands by Eq. (10). The levels 

over the periods from 1 to 20 (𝐿1 to 𝐿20) are calculated by Eq. (12). Demands for the historical 

periods are then calculated by Eq. (11), and forecasting demands for the whole forecasting horizon 

is equal to the value of the last observed level (𝐿20). Value of smoothing constant 𝛼 in Cell M2 is 

obtained by minimizing the 𝑀𝐴𝐷12. The results are presented in Figure 6.8 and Figure 6.9. The 

formulas involved in the calculation are listed in Table 6.5. 
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Figure 6.8: Forecasting results for black plastic containers using the simple exponential 

smoothing method 
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 Figure 6.9: Forecasting results for clear plastic containers using the simple exponential 

smoothing method 

Table 6.5: Formulas for forecasting with simple exponential smoothing method 
Cell Formula Eq. No. Copied down to 

D2 =AVERAGE(C3:C22) 10 D22 

D3 =$M$2*C3+(1-$M$2)*D2 12 E22 

E3 =D2 11 E22 

E23 =$D$22 11 E34 

F3 =E3-C3 7 F22 

G3 

=SUMPRODUCT(ABS($

F$3:F3),POWER($C$3:C3

,-1))*100/B3 

23 G22 

H3 =SUMSQ($F$3:F3)/B3 20 H22 

I3 =SUM(ABS($F$3:F3))/B3 21 I22 

J3 =1.25*I22 22 - 

K3 =SUM($F$3:F3) 24 K22 

L3 =SUM($F$3:F3)/I3 25 L22 
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Forecasting demands with Holt’s model 

Holts Model includes the element of trend. The initial level (𝐿0) and trend (𝑇0) is acquired through 

running a linear regression between historical demands (from 𝐷1 to 𝐷20 ) and quarter No. (𝑡1 to 

𝑡20). The results for the black plastic containers are 𝐿0 = 2043, 𝑇0 = 287, while 𝐿0 = 4134, 

𝑇0 = 211 for the clear ones. 

The level and trend for Quarters 1 to 20 are calculated by Eq. (14) and Eq. (15), respectively. 

Finally, forecasting demands during historical periods and future time are calculated. Two 

smoothing constants are set as 𝛼  and 𝛽  in Cell N2 and Cell O2 by minimizing the 𝑀𝐴𝐷12 . 

Formulas applied in these calculations are listed in Table 6.6. The results are shown in Figure 6.10 

and Figure 6.11 
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Figure 6.10: Forecasting results for black plastic containers using Holt’s model 
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Figure 6.11: Forecast demands for clear plastic containers using Holt’s model 

Table 6.6: Formulas for forecasting demands using Holt’s model 
Cell Formula Eq. No. Copied down to 

D2 4134 
Linear 

Regression 
- 

D3 =$N$2*C3+(1-$N$2)*(D2+E2) 14 D22 

E2 211 
Linear 

Regression 
- 

E3 =$O$2*(D3-D2)+(1-$O$2)*E2 15 E22 

F3 =D2+E2 13 F22 

F23 =$D$22+(B23-$B$22)*$E$22 13 F34 

G3 =F3-C3 7 G22 

H3 
=SUMPRODUCT(ABS($G$3:G3),POWER(

$C$3:C3,-1))*100/B3 
23 H22 

I3 =SUMSQ($G$3:G3)/B3 20 I22 

J3 =SUM(ABS($G$3:G5))/B5 21 J22 

K3 =1.25*J22 22 - 

L3 =SUM($G$3:G8) 24 L22 

M3 =SUM($G$3:G8)/J8 25 M22 
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Forecasting demands with Winter’s model 

Winter’s model takes not only trend but also seasonality into consideration. Initializing values 

obtained from the static method are used in this method. The coefficients obtained from Eq. (3A) 

and (3B) represent the initial level and trend. For black plastic, 𝐿0 = 2593, 𝑇0 = 227; for clear 

plastic, 𝐿0 = 3612, 𝑇0 = 264. Four seasonal factors obtained by Eq. (4) and Eq. (5) for each 

plastic, are used as initializing values of seasonal factors. For black plastic 𝑆1 = 0.90, 𝑆2 = 0.60, 

𝑆3 = 0.70,𝑆4 = 0.80; and for clear plastic 𝑆1 = 0.76, 𝑆2 = 1.90, 𝑆3 = 0.95,𝑆4 = 0.41. 

Eq. (17), Eq. (18) are used to estimate the level, trend, forecast of demand in Cells D3, E3, 

and F7 for the historical periods. Eq. (19) is applied to calculate seasonal factors for period 𝑡 =

5 to 𝑡 = 24 as the initial seasonal factors for the first cycle have already been obtained. Therefore, 

the forecasting values of demand for historical periods can be calculated by Eq. (16). 

The smoothing constants 𝛼, 𝛽, and 𝛾 are decided by minimizing the 𝑀𝐴𝐷12.The results are 

shown in Figure 6.12 and Figure 6.13. The detailed formulas to build the worksheet are shown in 

Table 6.7.  



48 

 

 

Figure 6.12: Forecast results for black plastic containers using Winter’s model 
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Figure 6.13: Forecast results for clear plastic containers using Winter’s model 

Table 6.7: Formulas for forecasting demands using Winter’s model 
Cell Formula Eq. No. Copied down to 

D2 2593 3A - 

D3 =$O$2*(C3/F3)+(1-$O$2)*(D2+E2) 17 D22 

E2 227 3A - 

E3 =$P$2*(D3-D2)+(1-$P$2)*E2 18 E22 

F3 0.899 from the static method - 

F4 0.5987 from the static method - 

F5 0.6973 from the static method - 

F6 1.7997 from the static method - 

F7 =$Q$2*(C3/D3)+(1-$Q$2)*F3 19 F22 

G3 =(D2+E2)*F3 16 G22 

G23 =($D$22+(B23-B22)*$E$22)*F23 16 G26 

H3 =G3-C3 7 H22 

I3 
=SUMPRODUCT(ABS($H$3:H3),PO

WER($C$3:C3,-1))*100/B3 
23 I22 

J3 =SUMSQ($H$3:H3)/B3 20 J22 

K3 =SUM(ABS($H$3:H3))/B3 21 K22 

L3 =1.25*K22 22 - 

M3 =SUM($H$3:H3) 24 M22 
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Table 6.7 (cont’d) 
Cell Formula Eq. No. Copied down to 

N3 =SUM($H$3:H3)/K3 25 N22 

O2 0.1 - - 

P2 0.2 - - 

Q2 0.05 - - 

The mean absolute percentage error (𝑀𝐴𝑃𝐸), which represents the average absolute error as 

a percentage of demand, is selected to evaluate the forecast error. This is because the demand data 

have seasonality and relatively high variations from one quarter to the next. 

Error Measurement for the Forecasting 

The forecasting demand for black and clear containers over the past five years using the 

aforementioned methods is presented in Figure 6.14 and 6.15. Smoothing constants in the simple 

exponential smoothing method, Holt’s model, and Winter’s Model are determined by minimizing 

the value of 𝑀𝐴𝐷. 

  

Figure 6.14: Comparison of different adaptive methods for black containers 
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Figure 6.15: Comparison of different adaptive methods for clear containers 

From Figure 6.14 and 6.15, it is clear that the demand forecast of Winter’s model fits best with 

the historical data comparing to the results obtained through other methods. Table 6.8 also presents 

𝑀𝐴𝐷 and 𝑀𝐴𝑃𝐸 of different adaptive methods and confirms the aforementioned claim.  

Table 6.8: Estimation of errors using adaptive methods 

Forecasting method 

Black plastic demand Clear plastic demand 

𝐌𝐀𝐃 
𝐌𝐀𝐏𝐄 

(%) 

𝐓𝐒 Range 

(%) 
𝐌𝐀𝐃 

𝐌𝐀𝐏𝐄 

(%) 
𝐓𝐒 Range (%) 

Four-period moving average 2069 36 -4.72 to 2.72 3238 60 -4.91 to -0.49 

Simple exponential 

smoothing 
1949 50 -3.91 to 4.98 3109 59 -3.13 to 4.62 

Holt's model 2159 44 -2.27 to 3.00 3096 63 -1.95 to 2.04 

Winter's model 445 10 -3.52 to 4.52 656 12 -3.91 to 3.5 

The demand forecast for black and clear containers using Winter’s model for the coming 3 

years are presented in Figure 6.16 and 6.17, as well as in Table 6.9. Of note, the forecasting horizon 

is extended to 18 years, since three scenarios with various planning horizons as long as 18 years 

will be tested in the segment of sensitivity analysis. The results are presented in APPENDIX A. 
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Figure 6.16: Estimated historical and forecasting future demands for clear plastic containers 

using Winter’s model (for the coming 3 years) 

  

Figure 6.17: Estimated historical and forecasting future demands for black plastic containers 

using Winter’s model (for the coming 3 years) 

Table. 6.9: Forecasting demands using Winter’s model 
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Year Quarter 
Black plastic 

demand (’000 lbs.) 

Clear plastic 

demand (’000 lbs.) 

2010 

I 6,693 6,972 

II 4,599 17,889 

III 5,492 9,180 

IV 14,625 4,125 

2011 

I 7,543 7,776 

II 5,164 19,894 

III 6,148 10,181 

IV 16,321 4,563 

2012 

I 8,393 8,580 

II 5,730 21,900 

III 6,804 11,182 

IV 18,016 5,001 
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Computational Result 

The parameters adopted from Chopra (2017), and the predicted demands using Winter’s model, 

are shown in Table 6.10. Of note, the demands for both colors of plastic containers are combined 

since they are compatible with each other at the same production line. The utilization rate of the 

area at the private warehouses is taken 80%, which is a common value. 

Table 6.10: Parameters used in both models 

 

 

 

 

A high-level modeling system for mathematical programming and optimization, e. g. General 

Algebraic Modeling System (GAMS), of distribution 30.3.0, is used to solve the problem due to 

its large size. The code is enclosed in APPENDIX C and D. Given the forecasted demands for two 

types of plastic containers over the coming three years, the optimal solutions of the proposed APP 

models (one based on the flow of materials and the other based on working hours) are obtained. 

The results from both models are consistent, which confirms the achievability of the model based 

on the working hour. The details of planning outcomes are included in APPENDIX B and an 

illustration of each in Figure 6.18-6.21. The first column at each quarter represents the forecasted 

demands, and the second column represents the production amount in ’000 pounds (or equivalently 

working hours). Regular and overtime working hours are distinguished by two types of filled 

Parameter Value Parameter Value Parameter Value 

d1 13665 d11 17986 o 22.5 

d2 22487 d12 23017 O 60 

d3 14672 cpur 10 t 3000 

d4 18750 ne 14 l 2500 

d5 15319 Qe 2.85 s 60 

d6 25059 we 6 ctr 2 

d7 16329 nt 25 cmh&s 16 

d8 20884 Qt 2 cf 4 

d9 16973 wt 1 cv 4 

d10 27630 r 15 u 0.8 

https://www.researchgate.net/publication/343815249_Aggregate_production_planning_material_flow_based
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patterns. Subcontracting is also demonstrated in the second column. Finally, the information 

related to the storage (public and private) is illustrated in the third column.  

 

Figure 6.18: The optimal solution for the extruding and warehousing processes obtained from 

solving the APP model based on the flow of the material 

 

Figure 6.19: The optimal solution for the thermoforming process from solving the APP model 

based on the flow of the material 
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Figure 6.20: The optimal solution for the extruding and warehousing processes obtained from 

solving the APP model based on the working hour 

 

Figure 6.21: The optimal solutions for the thermoforming process from solving the APP model 

based on the working hour 

In the experiments, the regular time production can meet the demand for most of the periods, 

while for several periods with relatively-high-demand that cannot be met by regular time capacity 

and storage from the previous quarter, overtime working become essential. Subcontracting is the 

last option to fill the gap between capacity and customers' needs due to its relatively high cost. 

Note that it is only used in Period 10 when the elevated demand cannot be satisfied by the full 

running of the current machines, i.e., the full capacity of regular and overtime working, plus the 
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inventory from period 9. Overtime and outsourcing are great options to provide high leveled 

flexibility to meet customers’ demands (Mendoza et al., 2014). It is also noteworthy that the sheets 

extruded during overtime hours have neither been stored in the public nor the private warehouses. 

This is because a cheaper alternative, i.e., subcontracting, is assumed always available in the 

problem setting. The sheets produced during the regular working time are still appreciated to be 

stored for their competitive price (compared to subcontracting). The occurrence is because of the 

cost difference of products from the sources. 

The private warehouse is more preferred than the public warehouse because of its low price, 

despite the fixed leasing area needs to be confirmed ahead of a leasing period. However, the 

unstable demands lead to low utilization of the public warehouse during low-demand seasons. The 

situation promotes adopting both types of warehousing to deal with the fluctuating demand for 

storage. Taking advantage of the flexibility from the public warehouse can reduce the storage cost 

during high inventory seasons, as it requires no fixed cost, despite it has a higher unit price. In 

other words, the surplus sheets should be sent to the private warehouse in priority unless it becomes 

full.  

The workforce level varies from one period to another to adapt to the varying demand. The 

workforce level in the thermoforming process fluctuates more drastically than in the extruding 

process. This is because only one worker will be laid off or trained when idling/initiating a 

thermoforming press, while the cost becomes six times when the same activities occur for the 

extruding process because each extruder requires six operators. Therefore, it is less appreciated to 

lay off workers in the extruding department.  
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In this part, the effect of a range of parameter variations on the optimal solution is analyzed. The 

factors being examined are demonstrated in Figure 7.1: (i) forecasting horizon (i.e., 3 years, 6 

years, 9 years, and 18 years), (ii) number of extruders (i.e., 14, 16, 18, and 20), an annual increase 

of (iii) raw material price, (iv) labor costs, and (v) subcontracting cost with the following rates: 

0%, 5%, 10%, 20%, 50% and 100%. The baseline scenario is a 3-year planning horizon, 14 number 

of extruders, 0% annual increase rate of raw material price, labor cost, and subcontracting price.  
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Figure 7.1: Sensitivity analysis over various parameters 

The results of the sensitivity analysis are summarized in Table 7.1. Of note, to obtain the best 

possible solutions, the number of thermoforming presses is modified to be 32, 39, and 59, 

respectively, in scenarios where the length of horizons is 6-, 9-, and 18-year as the demands are 

assumed to keep increasing and exceed the offered capacity. It is not considered that purchasing 

or any other costs regarding the new machine in the objective function.  

Table 7.1: Results of sensitivity analysis. 

Parameters Value 

𝐦th 3-year 

leasing 

contract 

Total cost ($) 

Subcontracting 

(’000 lb.) 
Public 

warehouse 

Private 

warehouse 

Planning 

horizon 

(Years) 

3 1 12,390,594.15 1,856.40 ✓ ✓ 

6 
1 

28,768,443.72 
1,856.40 ✓ ✓ 

2 43,653.60 ✓  

9 
1 

50,040,452.47 
1,856.40 ✓ ✓ 

2 43,653.60 ✓  
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Table 7.1 (cont’d) 

Parameters Value 

𝐦th 3-year 

leasing 

contract 

Total cost ($) 

Subcontracting 

(’000 lb.) 
Public 

warehouse 

Private 

warehouse 

Planning 

horizon 

(Years) 

9 3  107,011.80   

18 

1 

143,471,482.47 

1,856.40 ✓ ✓ 

2 43,653.60 ✓  

3 107,011.80   

4 179,151.80   

5 251,293.80   

6 323,432.80   

Number of 

extruders 

14 1 12,390,594.15 1,856.40 ✓ ✓ 

16 1 12,390,594.15 1,856.40 ✓ ✓ 

18 1 12,390,594.15 1,856.40 ✓ ✓ 

20 1 12,390,594.15 1,856.40 ✓ ✓ 

Increasing 

rate of raw 

material 

price 

0% 1 12,390,594.15 1,856.40 ✓ ✓ 

5% 1 12,516,618.27 4,486.20 ✓ ✓ 

10% 1 12,642,701.26 4,486.20 ✓ ✓ 

20% 1 12,901,574.51 7,664.00 ✓ ✓ 

50% 1 13,758,080.51 14,196.20 ✓ ✓ 

100% 1 15,973,673.75 232,771.00   

Increasing 

rate of labor 

cost 

0% 1 12,390,594.15 1,856.40 ✓ ✓ 

5% 1 12,890,133.61 7,664.00 ✓ ✓ 

10% 1 13,388,795.16 9,887.00 ✓ ✓ 

20% 1 14,415,659.16 14,196.20 ✓ ✓ 

50% 1 17,212,612.50 232,771.00   

100% 1 18,816,635.00 232,771.00   

Increasing 

rate of 

subcontract 

price 

0% 1 12,390,594.15 1,856.40 ✓ ✓ 

5% 1 12,417,768.09 0.00 ✓ ✓ 

10% 1 12,417,768.09 0.00 ✓ ✓ 

20% 1 12,417,768.09 0.00 ✓ ✓ 

50% 1 12,417,768.09 0.00 ✓ ✓ 

100% 1 12,417,768.09 0.00 ✓ ✓ 

From Table 7.1, a combination of public and private storage is indicated as the most favorable 

option in most scenarios. However, there are some exceptions. In the second 3-year of the 6/9-year 

planning horizon, public storage is solely recommended. This is because the demands are more 

volatile over the 2nd or 3rd leasing period within which the demand is assumed to keep increasing. 

Private storage then becomes less attractive because it requires a minimum 3-year lease, which 

causes more losses due to the unused area during low-demand seasons than it would have saved 

by not using the public warehouse. During the third leasing period (only under the scenario of the 

9-year planning horizon) where the demand is relatively high, subcontracting becomes an 
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appealing strategy due to the significant insufficiency of the capacity. There would be no need for 

storage, neither in public nor in private storage.  

Increases in raw material prices or labor costs also make subcontracting very appealing, 

because it is assumed that the subcontracting price remains the same. In other words, the extruding 

facility will be idle, and the supply completely relies on the subcontracting, so neither public nor 

private storage will be needed. Once subcontracting becomes costly, manufacturing the product at 

the facility becomes more appealing, that is why both private and public warehouses are important 

in such cases. Labor cost is the most sensitive parameter in the examination, as it is the dominating 

component of the production costs.  
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This study addresses an important optimization problem of aggregate production planning for the 

case of manufacturing reusable plastic containers. Such a problem aims to coordinate various 

segments of the supply chain such as production, inventory, and workforce levels together. 

Operations planning for these segments separately would be much less complex since fewer 

variables and constraints that connect these segments will be dealt with; however, it does not 

guarantee that resources (e.g., raw materials, storage space, machines, workforce) are used 

optimally. The manufacturing of reusable containers involves two main processes: extruding 

plastic sheets and thermoforming. Besides these processes, one can decide to store extra sheets 

extruded from the first phase (extrusion) to use for the second phase (thermoforming) in future 

periods. This can significantly reduce the concern of shortage when demand increases during a 

season. In the experiment, there are two options for storage: public and private warehouses. Each 

has its regulations. In the meantime, the option of subcontracting with unlimited production 

capacity exists to make up the limited production capacity.  

This complicated production planning problem is mathematically modeled in two different 

ways: one based on the flow of materials and the other based on the level of the workforce. Both 

models produce the same results. The problem is coded with GAMS, distribution 30.3.0, and a 

comprehensive sensitivity analysis under various scenarios is carried out. In the sensitivity analysis, 

the impacts of various factors are examined, including the length of the planning horizon, the 

number of extruders, the annual increase rate of raw material price, annual labor costs, and 

subcontracting cost on the optimal solution. The proposed framework can be used not only for 
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reusable container manufacturing but also for the manufacturing of any type of product with a 

similar supply chain network.  

Future exploration can be directed toward case studies in which various constraints for 

manufacturing phases, as well as limitations and regulations on subcontracting/third-party logistics 

and warehousing, be reflected on the APP models. This investigation provides a better 

understanding of the complicated APP models and presents a great tool for practitioners who 

would like to apply such decision support systems for their production lines. 
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APPENDIX A: Forecasted demand for Black and Clear Containers 

Table A: Forecasted demand for black and clear containers over 18 years 

Year Quarter 

Black container 

demand forecast 

(’000 lb.) 

Clear container 

demand forecast 

(’000 lb.) 

Year Quarter 

Black container 

demand forecast 

(’000 lb.) 

Clear container 

demand forecast 

(’000 lb.) 

2010 

I 6,693 6,972 

2019 

I 15,192 15,013 

II 4,599 17,889 II 10,258 37,943 

III 5,492 9,180 III 12,050 19,190 

IV 14,625 4,125 IV 31,581 8,504 

2011 

I 7,543 7,776 

2020 

I 16,042 15,817 

II 5,164 19,894 II 10,824 39,948 

III 6,148 10,181 III 12,706 20,191 

IV 16,321 4,563 IV 33,277 8,942 

2012 

I 8,393 8,580 

2021 

I 16,892 16,621 

II 5,730 21,900 II 11,390 41,954 

III 6,804 11,182 III 13,362 21,192 

IV 18,016 5,001 IV 34,972 9,379 

2013 

I 9,243 9,384 

2022 

I 17,742 17,425 

II 6,296 23,905 II 11,956 43,959 

III 7,460 12,183 III 14,017 22,193 

IV 19,712 5,439 IV 36,668 9,817 

2014 

I 10,093 10,188 

2023 

I 18,592 18,230 

II 6,862 25,910 II 12,522 45,964 

III 8,115 13,184 III 14,673 23,195 

IV 21,408 5,876 IV 38,363 10,255 

2015 

I 10,943 10,993 

2024 

I 19,442 19,034 

II 7,428 27,916 II 13,088 47,970 

III 8,771 14,185 III 15,329 24,196 

IV 23,103 6,314 IV 40,059 10,693 

2016 

I 11,793 11,797 

2025 

I 20,292 19,838 

II 7,994 29,921 II 13,653 49,975 

III 9,427 15,186 III 15,985 25,197 

IV 24,799 6,752 IV 41,755 11,131 

2017 

I 12,643 12,601 

2026 

I 21,142 20,642 

II 8,560 31,927 II 14,219 51,981 

III 10,083 16,187 III 16,641 26,198 

IV 26,494 7,190 IV 43,450 11,569 

2018 

I 13,493 13,405 

2027 

I 21,992 21,446 

II 9,126 33,932 II 14,785 53,986 

III 10,739 17,188 III 17,296 27,199 

IV 28,190 7,628 IV 45,146 12,007 
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APPENDIX B: The Optimal APP Solutions 

Table B1: The optimal solution for the APP model based on the flow of materials 

Period 

i 

Extruding process Subcontract Warehousing Thermoforming process 

’000 lb. of sheets Extruders ’000 lb. of sheets Thermoforming presses 

xi
R xi

O xi
W xi

H xi
L yi

Sub yi
Pu yi

Pr xi
R xi

O xi
W xi

H xi
L 

1 17,236.80 -_ 12 12 - - 1,228 2,344 13,104.00 561.00 13 13 - 

2 17,236.80 1,678.40 12 - - - - - 20,160.00 2,327.00 20 7 - 

3 17,236.80 - 12 - - - 221 2,344 14,112.00 560.00 14 - 6 

4 17,236.80 - 12 - - - - 1,052 17,136.00 1,614.00 17 3 - 

5 18,673.20 - 13 1 - - 2,062 2,344 15,120.00 199.00 15 - 2 

6 18,673.20 1,980.00 13 - - - - - 23,184.00 1,875.00 23 8 - 

7 18,673.20 - 13 - - - - 2,344 16,128.00 201.00 16 - 7 

8 18,673.20 - 13 - - -  133 19,152.00 1,732.00 19 3 - 

9 20,109.60 - 14 1 - - 926 2,344 16,128.00 845.00 16 - 3 

10 20,109.60 2,394.00 14 - - 1,856 - - 25,200.00 2,430.00 25 9 - 

11 20,109.60 - 14 - - - - 2,124 17,136.00 850.00 17 - 8 

12 20,109.60 783.80 14 - - - - - 22,176.00 841.00 22 5 - 

Selection of public warehouse 

α 
1 

Fixed leasing area for private 

warehouse (ft2) 
2,930 

Selection of private 

warehouse β 
1  Total costs ( 12,390,594.15 
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Table B2: The optimal solution for the APP model based on workforce level 

Perio

d 

i 

Extruding process Subcontract Warehousing Thermoforming process 

Working hours Extruders ’000 lb. of sheets Working hours 
Thermoforming 

presses 

xi
R xi

O xi
W xi

H xi
L yi

Sub yi
Pu yi

Pr xi
R xi

O xi
W xi

H xi
L 

1 6,048.00  - 12 12 - - 
1,22

8 
2,344 6,552.00 280.50 13 

1

3 
- 

2 6,048.00  588.91 12 - - - - - 10,080.00 1,163.50 20 7 - 

3 6,048.00  - 12 - - - 221 2,344 7,056.00 280.00 14 - 6 

4 6,048.00  - 12 - - - - 1,052 8,568.00 807.00 17 3 - 

5 6,552.00  - 13 1 - - 
2,06

2 
2,344 7,560.00 99.50 15 - 2 

6 6,552.00  694.74 13 - - - - - 11,592.00 937.50 23 8 - 

7 6,552.00  - 13 - - - - 2,344 8,064.00 100.50 16 - 7 

8 6,552.00  - 13 - - - - 133 9,576.00 866.00 19 3 - 

9 7,056.00  - 14 1 - - 926 2,344 8,064.00 422.50 16 - 3 

10 7,056.00  840.00 14 - - 1,856 - - 12,600.00 1,215.00 25 9 - 

11 7,056.00  - 14 - - - - 2,124 8,568.00 425.00 17 - 8 

12 7,056.00  275.02 14 - - - - - 11,088.00 420.50 22 5 - 

Selection of public warehouse 

α 
1  

Fixed leasing area for private warehouse 

(ft2) 
2,930 

Selection of private warehouse 

β 
1  Total costs ($) 12,390,594.15 
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APPENDIX C: GAMS Programming Code for the APP Model Based on the Material Flow 

 

1 Aggregate planning in packaging manufacturing based on production amount, all production 

units are in 1000 pounds 

Compilation 

 2  

 3  Options MIP = LINDO; 

 4  set i Qurter number/1*12/; 

 5  Parameter Value_i(i) Value of i 

 6    / 

 7    1 1 

 8    2 2 

 9    3 3 

 10    4 4 

 11    5 5 

 12    6 6 

 13    7 7 

 14    8 8 

 15    9 9 

 16    10 10 

 17    11 11 

 18    12 12 

 19    /; 

 20  parameter d(i) Demand in quarter i 

 21    / 

 22  1  13665 

 23  2  22487 

 24  3  14672 

 25  4  18750 

 26  5  15319 

 27  6  25059 

 28  7  16329 

 29  8  20884 

 30  9  16973 

 31  10  27630 

 32  11  17986 

 33  12  23017 

 34    /; 

 35   

 36   

 37  Parameter N_e  'Number of extruders available' /14/; 

 38  Parameter Q_e  'Production capacity of each extruder per hour, in 1000 pounds' /3/; 

 39  Parameter R_ef 'The efficiency rate of production capacity of each extruder' /0.95/; 

 40  Parameter Q_ef 'The efficient production capacity of each extruder per hour'; 

 41    Q_ef = R_ef * Q_e; 
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 42  Parameter R  'Workers salary in regular time' /15/; 

 43  Parameter O_rate 'Rate of overtime salary to regular time' /1.5/; 

 44  Parameter O  'Workers salary in overtime'; 

 45    O = O_rate * R; 

 46  Parameter O_m  'Max overtime working hours per quarter' /60/; 

 47  Parameter W_e  'Number of workers needed for each extruder' /6/; 

 48  Parameter C_h  'Training cost of a new worker' /3000/; 

 49  Parameter C_l  'Laying off cost of an existed worker' /2500/; 

 50  Parameter N_t  'Number of thermoforming presses available' /25/; 

 51  Parameter W_t  'Number of workers needed for each thermoforming press per hour' /1/; 

 52  Parameter Q_t  'Production capacity of each thermoforming press per hour' /2/; 

 53  Parameter C_sub 'The subcontracting price of 1000pounds of plastic sheet ($)' /60/; 

 54  Parameter C_rm 'Price of 1000 pounds of raw materials' /10/; 

 55  Parameter C_tr 'Transportation cost of 1000 pounds of plastic sheet  

  from public warehouse to thermoforming presses'/2/; 

 56  Parameter C_mh 'Unloading cost of 1000 pounds of plastic sheet at public warehouse' /5/; 

 57  Parameter C_st 'Storage cost of 1000 pounds of plastic sheet at public warehouse' /11/; 

 58  Parameter C_f  'Fixed leasing cost of 1 square foot per quarter in private warehouse' /4/; 

 59  Parameter C_v  'Variable operating 1000 pounds of plastic stored per 

  quarter in private warehouse' /4/; 

 60  Parameter M  'Constant of 1 billion' /1000000000/; 

 61  Parameter R_Pr Utilization rate of private warehouse /0.8/; 

 62  

 63  

 64  Variable z  objective function; 

 65  

 66  Binary variables 

 67    a    Whether public warehousing is chosen 

 68    b    whether private warehousing is chosen; 

 69  Nonnegative variables 

 70    x_R(i)   Amount of extruded produced during regular working hours in period i 

 71    x_O(i)   Amount of extruded produced during overtime in period i 

 72    y_pu(i)   Amount of plastic sheets stored in public warehouse at the end of period i 

 73    y_pr(i)   Amount of plastic sheets stored in private warehouse at the end of period i 

 74    y_sub(i)   The amount of plastic sheet produced by subcontractor (in 1000 pounds) in 

period i 

 75    y_max   Fixed leased area in private house 

 76    z_R(i)   Amount of thermoformed products during regular working hours in period i 

 77    z_O(i)   Amount of thermoformed products during overtime in period i ; 

 78  Integer variables 

 79    x_w(i)   Number of working extruders in period i 

 80    x_H(i)   Number of newly hired extruders in period i 

 81    x_L(i)   Number of laid off extruders in period i 

 82    z_w(i)   Number of workers in period i 

 83    z_H(i)   Number of newly hired workers in period i 

 84    z_L(i)   Number of laid off thermoforming workers in period i; 
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 85  Equations 

 86    obj_fn   Objective function 

 87    e_reg(i)   Capacity of extruders working time in regular time in period i 

 88    e_over(i)   Capacity of extruders working time on overtime in period i 

 89    t_reg(i)   Capacity of thermoforming presses working time in regular time in period i 

 90    t_over(i)   Capacity of thermoforming presses working time on overtime in period i 

 91    max_e(i)   Max number of working extruders in period i 

 92    max_t(i)   Max number of working thermoforming presses in period i 

 93    num_e_w(i)  Number of working extruders in period i 

 94    num_t_w(i)  Number of working thermoforming presses in period i 

 95    flow_balance(i) Flow balance of materials in period i 

 96    demand_sat(i)  Demand satisfaction in period i 

 97    one_time_lease(i) Once y_max is decided in period 1 it should be fixed for the whole 3 

years 

 98    pu_lmt   Public warehousing limit 

 99    pr_lmt   Private warehousing limit 

 100    a_b    Sum of a and b should be equal to 2; 

 101  

 102    obj_fn   .. z =e= sum(i,(x_R(i)+x_O(i)) * C_rm 

 103          + y_sub(i) * C_sub 

 104          + W_e * x_R(i)/Q_ef * R 

 105          + W_t * z_R(i)/Q_t * R 

 106          + W_e * x_O(i)/Q_ef * O 

 107          + W_t * z_O(i)/Q_t * O 

 108          + x_H(i) * W_e * C_h 

 109          + z_H(i) * W_t * C_h 

 110          + x_L(i) * W_e * C_l 

 111          + z_L(i) * W_t * C_l 

 112          + y_pu(i) * C_tr 

 113          + y_pu(i) * C_mh 

 114          + y_pu(i) * C_st 

 115          + y_pr(i) * C_tr 

 116          + y_pr(i) * C_v 

 117          + y_max * C_f); 

 118    e_reg(i)   .. x_R(i)/Q_ef =e= x_W(i) * 504; 

 119    t_reg(i)   .. z_R(i)/Q_t =e= z_W(i) * 504; 

 120    e_over(i)  .. x_O(i)/Q_ef =l= x_W(i) * O_m; 

 121    t_over(i)  .. z_O(i)/Q_t =l= z_W(i) * O_m; 

 122    max_e(i)   .. x_W(i) =l= N_e; 

 123    max_t(i)   .. z_W(i) =l= N_t; 

 124    num_e_w(i)  .. x_W(i) =e= x_W(i-1)+x_H(i)-x_L(i); 

 125    num_t_w(i)  .. z_W(i) =e= z_W(i-1)+z_H(i)-z_L(i); 

 126    flow_balance(i) .. (x_R(i)+x_O(i)) + y_sub(i)-(y_pr(i) + y_ pu(i)) + (y_pr(i-1) + y_pu(i-

1)) =e= (z_R(i) + z_O(i)); 

 127    demand_sat(i) .. (z_R(i)+z_O(i)) =e= d(i); 

 128    one_time_lease(i).. y_max * R_Pr =g= y_pr(i); 
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 129    pu_lmt   .. sum(i,y_pu(i)) =l= M * a; 

 130    pr_lmt   .. sum(i,y_pr(i)) =l= M * b; 

 131    a_b    .. a+b =l= 2; 

 132  

 133  

 134  Model aggregate_planning /ALL/; 

 135  Solve aggregate_planning using MIP minimizing z; 

 136  Display z.l, x_R.l, x_O.l, x_W.l, x_H.l, x_L.l, y_max.l,y_sub.l, y_pu.l, y_pr.l, z_R.l, 

z_O.l, z_W.l, z_H.l, z_L.l; 
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APPENDIX D: GAMS Programming Code for the APP Model Based on the Flow of 

Workforce Level 

 

 

1 Aggregate planning in packaging manufacturing based on working hours, all production 

units are in 1000 pounds; 

Compilation 

 2  Options MIP = LINDO; 

 3  set i 'Qurter number'/1*12/; 

 4  Parameter Value_i(i) 'Value of i' 

 5    / 

 6    1 1 

 7    2 2 

 8    3 3 

 9    4 4 

 10    5 5 

 11    6 6 

 12    7 7 

 13    8 8 

 14    9 9 

 15    10 10 

 16    11 11 

 17    12 12 

 18    /; 

 19  parameter D(i) 'Demand in quarter i' 

 20    / 

 21  1  13665 

 22  2  22487 

 23  3  14672 

 24  4  18750 

 25  5  15319 

 26  6  25059 

 27  7  16329 
 28  8  20884 

 29  9  16973 

 30  10  27630 

 31  11  17986 

 32  12  23017 

 33    /; 

 34   

 35   

 36  Parameter N_e  'Number of extruders available' /14/; 

 37  Parameter Q_e  'Production capacity of each extruder per hour, in 1000 pounds' /3/; 

 38  Parameter R_ef 'The efficiency rate of production capacity of each extruder' /0.95/; 

 39  Parameter Q_ef 'The efficient production capacity of each extruder per hour'; 

 40    Q_ef = R_ef * Q_e; 



71 

 

 41  Parameter R  'Workers salary in regular time' /15/; 

 42  Parameter O_rate 'Rate of overtime salary to regular time' /1.5/; 

 43  Parameter O  'Workers salary in overtime'; 

 44    O = O_rate * R; 

 45  Parameter O_m  'Max overtime working hours per quarter' /60/; 

 46  Parameter W_e  'Number of workers needed for each extruder' /6/; 

 47  Parameter C_h  'Training cost of a new worker' /3000/; 

 48  Parameter C_l  'Laying off cost of an existed worker' /2500/; 

 49  Parameter N_t  'Number of thermoforming presses available' /25/; 

 50  Parameter W_t  'Number of workers needed for each thermoforming press per hour' /1/; 

 51  Parameter Q_t  'Production capacity of each thermoforming press per  hour' /2/; 

 52  Parameter C_sub 'The subcontracting price of 1000pounds of plastic sheet ($)' /60/; 

 53  Parameter C_rm 'Price of 1000 pounds of raw materials' /10/; 

 54  Parameter C_tr 'Transportation cost of 1000 pounds of plastic sheet from public 

warehouse to thermoforming presses'/2/; 

 55  Parameter C_mh 'Unloading cost of 1000 pounds of plastic sheet at public warehouse' /5/; 

 56  Parameter C_st 'Storage cost of 1000 pounds of plastic sheet at public warehouse' /11/; 

 57  Parameter C_f  'Fixed leasing cost of 1 square foot per quarter in private warehouse' /4/; 

 58  Parameter C_v  'Variable operating 1000 pounds of plastic stored per quarter in private 

warehouse' /4/; 

 59  Parameter M  'Constant of 1 billion' /1000000000/; 

 60  Parameter R_Pr Utilization rate of private warehouse /0.8/; 

 61  

 62  Variable z  'objective function'; 

 63  

 64  Binary variables 

 65    a    'Whether public warehousing is chosen' 

 66    b    'whether private warehousing is chosen'; 

 67  Nonnegative variables 

 68    x_R(i)   'Regular working hours for all working extruders in period i' 

 69    x_O(i)   'Overtime working hours for all working extruders in period i' 

 70    y_pu(i)   'Amount of plastic sheets stored in public warehouse at the end of period i' 

 71    y_pr(i)   'Amount of plastic sheets stored in private warehouse at the end of period i' 

 72    y_sub(i)   'The amount of plastic sheet produced by subcontractor (in 1000 pounds) in 

period i' 

 73    y_max   'Fixed leased area in private house' 

 74    z_R(i)   'Total working hours of regular for thermoforming in period i' 

 75    z_O(i)   'Total working hours of overload for thermoforming in period i'; 

 76  Integer variables 

 77    x_w(i)   'Number of working extruders in period i' 

 78    x_H(i)   'Number of newly hired extruders in period i 

  ' 

 79    x_L(i)   'Number of laid off extruders in period i' 

 80    z_w(i)   'Number of workers in period i' 

 81    z_H(i)   'Number of newly hired workers in period i' 

 82    z_L(i)   'Number of laid off thermoforming workers in period i'; 
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 83  Equations 

 84    obj_fn   Objective function 

 85    e_reg(i)   Capacity of extruders working time in regular time in period i 

 86    e_over(i)   Capacity of extruders working time on overtime in period i 

 87    t_reg(i)   Capacity of thermoforming presses working time in regular time in period i 

 88    t_over(i)   Capacity of thermoforming presses working time on overtime in period i 

 89    max_e(i)   Max number of working extruders in period i 

 90    max_t(i)   Max number of working thermoforming presses in period i 

 91    num_e_w(i)  Number of working extruders in period i 

 92    num_t_w(i)  Number of working thermoforming presses in period i 

 93    flow_balance(i) Flow balance of materials in period i  

 94    demand_sat(i)  Demand satisfaction in period i 

 95    one_time_lease(i) Once y_opt is decided in period 1 it should be fixed for the whole 3 

years 

 96    pu_lmt   Public warehousing limit 

 97    pr_lmt   Private warehousing limit 

 98    a_b    Sum of a and b should be equal to 2; 

 99  

 100    obj_fn  .. z =e= sum(i,(x_R(i)+x_O(i)) * Q_ef * C_rm 

 101          + y_sub(i) * C_sub 

 102          + W_e * x_R(i) * R 

 103          + W_t * z_R(i) * R 

 104          + W_e * x_O(i) * O 

 105          + W_t * z_O(i) * O 

 106          + x_H(i) * W_e * C_h 

 107          + z_H(i) * W_t * C_h 

 108          + x_L(i) * W_e * C_l 

 109          + z_L(i) * W_t * C_l 

 110          + y_pu(i) * C_tr 

 111          + y_pu(i) * C_mh 

 112          + y_pu(i) * C_st 

 113          + y_pr(i) * C_tr 

 114          + y_pr(i) * C_v 

 115          + y_max * C_f); 

 116    e_reg(i)   .. x_R(i) =e= x_W(i) * 504; 

 117    t_reg(i)   .. z_R(i) =e= z_W(i) * 504; 

 118    e_over(i)  .. x_O(i) =l= x_W(i) * O_m; 

 119    t_over(i)  .. z_O(i) =l= z_W(i) * O_m; 

 120    max_e(i)   .. x_W(i) =l= N_e; 

 121    max_t(i)   .. z_W(i) =l= N_t; 

 122    num_e_w(i)  .. x_W(i) =e= x_W(i-1)+x_H(i)-x_L(i); 

 123    num_t_w(i)  .. z_W(i) =e= z_W(i-1)+z_H(i)-z_L(i); 

 124    flow_balance(i) .. (x_R(i)+x_O(i)) * Q_ef + y_sub(i)-(y_pr(i) + y_pu(i)) + (y_pr(i-1) + 

y_pu(i-1)) =e= (z_R(i) + z_O(i)) * Q_t; 

 125    demand_sat(i) .. (z_R(i)+z_O(i)) * Q_t =e= d(i); 

 126    one_time_lease(i).. y_max * R_Pr =g= y_pr(i); 
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 127    pu_lmt   .. sum(i,y_pu(i)) =l= M * a; 

 128    pr_lmt   .. sum(i,y_pr(i)) =l= M * b; 

 129    a_b    .. a+b =l= 2; 

 130  Model aggregate_planning /ALL/; 

 131  Solve aggregate_planning using MIP minimizing z; 

 132  Display z.l, x_R.l, x_O.l, x_W.l, x_H.l, x_L.l, y_max.l,y_sub.l, y_pu.l, y_pr.l, z_R.l, 

z_O.l, z_W.l, z_H.l, z_L.l; 
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