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ABSTRACT

SINGLE-REFERENCE COUPLED-CLUSTER METHODS FOR STRONGLY
CORRELATED SYSTEMS

By

Ilias Magoulas

The development of computationally efficient wavefunction methods that can provide an

accurate description of strongly correlated systems and materials is at the heart of electronic

structure theory. In general, strong many-electron correlation effects arise from the entangle-

ment of a large number of electrons and are characterized by the unpairing of many electron

pairs and their subsequent recoupling to low-spin states, as in the case of Mott metal–

insulator transitions where the system traverses from a weakly correlated metallic phase

to a strongly correlated insulating one. Although strong correlations have an intrinsically

multi-reference nature, multi-reference approaches are not applicable due to the enormous

dimensionalities of the underlying model spaces. Therefore, in this dissertation, we focus

on single-reference coupled-cluster (CC) approaches, which are widely recognized as the de

facto standard for high-accuracy electronic structure calculations and whose size extensivity

makes them suitable for the study of extended systems and materials. However, it is well

established that the traditional CC methodologies that are based on truncating the cluster

operator at a given many-body rank, giving rise to the CCSD, CCSDT, CCSDTQ, etc. hier-

archy, fail to provide physically meaningful solutions in the presence of strong correlations.

Thus, in this dissertation, we consider unconventional single-reference CC approaches capa-

ble of providing an accurate description of the entire spectrum of many-electron correlation

effects, ranging from the weakly to the strongly correlated regimes.

In the first part of this dissertation, we examine the approximate coupled-pair (ACP)

theories. The existing ACP methods and their various modifications retain all doubly excited

cluster amplitudes, while using subsets of non-linear diagrams of the CCD/CCSD equations.

This eliminates failures of conventional CC approaches, including CCSD and even CCSDT or



CCSDTQ, in strongly correlated situations created by the Mott metal–insulator transitions,

modeled by linear chains, rings, or cubic lattices of the equally spaced hydrogen atoms, and

the π-electron networks described by the Hubbard and Pariser–Parr–Pople Hamiltonians

that model one-dimensional metallic systems with periodic boundary conditions. However,

typical ACP methods neglect connected triply excited (T3) clusters, which are required to

produce quantitative results in most chemical applications. Previous attempts to incorporate

these clusters using many-body perturbation theory arguments within the ACP framework

have only been partly successful. In this dissertation, we address this concern by employing

the active-space ideas to incorporate the dominant T3 amplitudes in the ACP methods in a

robust, yet computationally affordable, manner. Furthermore, taking into consideration that

the various diagram modifications defining ACP approaches were derived using minimum-

basis-set models, we introduce a novel ACP scheme utilizing basis–set-dependent scaling

factors, denoted as ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ), to extend the ACP methodologies

to larger basis sets.

In the second part of this dissertation, we discuss a novel approach to extrapolating

the exact energetics out of the early stages of full configuration interaction quantum Monte

Carlo (FCIQMC) propagations, even in the presence of strong correlations, by merging

the ACP approaches with the recently proposed cluster-analysis-driven FCIQMC (CAD-

FCIQMC) methodology. In the spirit of externally corrected CC approaches, in the CAD-

FCIQMC methodology, one solves CCSD-like equations for the one- and two-body clusters

in the presence of their three- and four-body counterparts extracted from the FCIQMC

stochastic wavefunction sampling. In this dissertation, we extend CAD-FCIQMC to the

strong correlation regime by repartitioning the CC equations so that selected coupled-pair

contributions are extracted from FCIQMC as well.

For each new methodology described in this thesis, we discuss the relevant mathemat-

ical and computer implementation details and provide numerical examples illustrating its

performance in challenging strongly correlated situations.
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CHAPTER 1

INTRODUCTION

Every attempt to refer chemical questions to math-

ematical doctrines must be considered, now and al-

ways, profoundly irrational, as being contrary to the

nature of the phenomena.

A. Comte, Positive Philosophy, translated by H.

Martineau (Calvin Blanchard, New York, 1858).

The first applications of the Schrödinger equation to molecular systems appeared just one

year after the publication of Schrödinger’s seminal papers [1–6], when Burrau examined the

ground state of the H+
2 species [7] and Heitler and London studied the ground state of H2

[8], the simplest one- and two-electron molecules, respectively, giving birth to the field of

quantum chemistry. The prospect of elucidating the nature of the chemical bond using the

then newly formulated quantum mechanics lead Heitler to exclaim “We can, then, eat Chem-

istry with a spoon” in a letter to London in 1927 [9]. However, it was soon realized that

the application of the Schrödinger equation to many-electron systems leads to formidable

equations that cannot be solved analytically [10]. This can be understood by examining

the electronic Schrödinger equation, the central tenet of quantum chemistry, which, from

the mathematical point of view, is an eigenvalue problem: HΨµ(X; R) = Eµ(R)Ψµ(X; R),

where H is the electronic Hamiltonian for the system of interest, Ψµ is the many-electron

wavefunction characterizing the µth electronic state, with µ = 0 denoting the ground state

and µ > 0 designating excited states, and Eµ is the corresponding total electronic energy.

Thanks to the use of the Born–Oppenheimer approximation [11], which decouples the elec-

tronic and nuclear motions, the electronic Schrödinger equation is somewhat simpler than the

underlying molecular Schrödinger equation from which it is obtained, but it is still a highly

complex multi-dimensional mathematical and numerical problem when realistic systems are
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examined. Indeed, the many-electron wavefunction depends explicitly on the spatial and

spin coordinates of all electrons, collectively denoted as X, and parametrically or implicitly

on the nuclear coordinates, R, while the total electronic energy, when calculated by solving

the electronic Schrödinger equation at multiple values of R, becomes a function of the nu-

clear coordinates. For molecules other than small few-electron systems, solving the electronic

Schrödinger equation becomes a major challenge, even when one is interested in single-point

calculations (calculations at a single nuclear geometry).

In general, the electronic Hamiltonian contains one- and two-body terms. In this dis-

sertation, we focus on a non-relativistic description, where the electronic Hamiltonian for

a system comprised of N electrons and M nuclei takes the form, in atomic units, H =∑N
i=1 zi + ∑N

i<j vij = ∑N
i=1

(
−1

2∇
2
i −

∑M
A=1

ZA
riA

)
+ ∑N

i<j
1
rij

, with ZA denoting the nu-

clear charge associated with the Ath nucleus. The one-body terms, zi, describe the kinetic

energy of the electrons and their coulombic attraction to the fixed nuclei, while the two-

body terms, vij , represent the interelectronic coulombic repulsions. The two-body terms,

r−1
ij ≡

[(
xi − xj

)2 +
(
yi − yj

)2 +
(
zi − zj

)2]−1
2 , inextricably couple the motions of the

electrons and, thus, prohibit closed-form solutions to the many-electron Schrödinger equa-

tion. One can go beyond the non-relativistic theory by extending the Dirac equation [12, 13]

to many-electron systems, adopting, for example, the Dirac–Coulomb or other relativistic

Hamiltonians (see Reference [14] for a review), but in this dissertation we focus on a non-

relativistic case.

The simplest (conceptually and numerically) approach to describing many-electron sys-

tems is offered by the independent-particle models (IPMs), where one replaces electronic

wavefunctions by products of one-electron funcitons called spin-orbitals. The oldest method

in this category was introduced by Hartree in 1928 [15, 16] and the resulting IPM bears

his name. In the Hartree model, the spin-orbitals are determined iteratively through a self-

consistent field (SCF) procedure, invoking the variational principle. To be more precise, they

are optimized by solving a system of coupled one-electron equations, in which an electron
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is moving in the external field of the nuclei and the mean field resulting from the electrons

occupying the remaining spin-orbitals, until self-consistency is reached. The Hartree model

played an important role in the early days of quantum mechanics, but it had to be replaced

by better IPMs, since it has a fundamental deficiency that renders it unsuitable for a more

quantitative description consistent with the fact that electrons in atoms and molecules are

indistinguishable; its many-electron wavefunction, called a Hartree product, violates the

Pauli exclusion principle [17] and the underlying spin-statistics theorem [18], which require

many-electron wavefunctions to be antisymmetric with respect to the exchange of the spatial

and spin coordinates of any pair of electrons.

In 1929, Slater introduced the simplest form of an antisymmetric many-electron wavefunc-

tion in the form of an antisymmetrized product of spin-orbitals, called a Slater determinant

[19]. The following year, Fock improved Hartree’s SCF approach by replacing the Hartree

product with a Slater determinant [20, 21] (see Reference [22] for a similar suggestion by

Slater). This gave rise to the Hartree–Fock (HF) approach, the most widely used IPM to

date (other than the Kohn–Sham density funcitonal theory [23, 24]). Although the numerical

solution of the HF integro-differential equations for orbitals treated as functions of electronic

coordinates, without any reference to basis sets, is possible for atoms and diatomics, it is

generally not tractable in the case of polyatomic species. The routine application of the

HF approach to polyatomic molecules became possible after Hall [25] and Roothaan [26] re-

casted the HF equations in matrix form by introducing finite one-electron basis sets of atomic

spin-orbitals and expressing their molecular counterparts as linear combinations of these

atomic spin-orbitals. The resulting set of molecular spin-orbitals, obtained by solving the

HF equations in a basis set using an SCF procedure, is partitioned into the disjoint subsets

of occupied (hole) and unoccupied (particle) ones, where the antisymmetrized product of the

former defines the underlying HF Slater determinant. In the limit of an infinite-dimensional

one-electron basis, one arrives at the true HF limit corresponding to the aforementioned

integro-differential representation of the HF equations.

3



The HF methodology is capable of recovering the lion’s share of the total electronic energy,

but is far from being a good solution to the many-electron problem, since the error in the

calculated total electronic energy is comparable to the magnitude of various observables of

chemical interest, such as energies of chemical bonds, excitation energies, ionization energies,

and activation barriers. The HF description also neglects important physical effects, such

as dispersion in van der Waals molecules. Furthermore, HF provides a poor description of

fragmentation phenomena when a closed-shell species dissociates into open-shell fragments.

In such cases, the restricted HF (RHF) approach, where each spatial molecular orbital can

be occupied by up to two electrons with opposite spin, significantly overbinds the system.

This is a consequence of the fact that a single RHF Slater determinant overemphasizes ionic

structures. One might resort to unrestricted HF (UHF), using, for example, different spatial

orbitals for different spins, to improve the description of bond breaking phenomena, but UHF

introduces various new problems related to symmetry breaking (see, for example, References

[27] and [28] for the classification of the various symmetry-broken UHF solutions). The single

bond breaking of the F2 diatomic showcases the deficiencies associated with both flavors of

the HF approach. In this case, RHF significantly overbinds the system, since it forces F2 to

dissociate into F+ and F−, while the UHF method of the different orbitals for different spins

type produces a repulsive potential energy curve (PEC), with no minimum on it [29]. The

problems associated with the HF approach stem from the fact that, like its Hartree model

predecessor, it is a mean field approximation and, thus, neglects many-electron correlation

effects, leading to the uncorrelated motion of the electrons, which is unphysical.

It is interesting to note that when Hartree introduced his SCF approach in 1928 he

“hoped that when the time is ripe for the practical evaluation of the exact solution of the

many-electron problem, the self-consistent fields. . . may be helpful as providing first approx-

imations” [16]. Indeed, the HF approach, while having many deficiencies, such as those

mentioned above, often serves as a starting point for constructing correlated many-electron

wavefunctions, which allow us to systematically approach the numerically exact solutions of
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the many-electron Schrödinger equation. To that end, one begins by defining a one-electron

basis set of molecular spin-orbitals, which are usually determined from an SCF mean-field

approach, such as HF, as discussed above. In the exact case, the dimensionality of the

one-electron basis is infinite, but in practice finite-dimensional basis sets are employed. Sub-

sequently, one constructs all possible Slater determinants that can be formed from the finite

basis of molecular spin-orbitals. Using one of these determinants (e.g., the HF determinant)

as a reference state, one can construct the remaining determinants in the electronic wave-

function by particle–hole (ph) excitations starting from singly excited Slater determinants,

where one electron is excited from an occupied molecular spin-orbital to an unoccupied one

in all possible ways, and going all the way to N -tuply excited Slater determinants, in which

all electrons of the N -electron system are excited from the occupied to unoccupied molecular

spin-orbitals. The resulting set of Slater determinants afforded by the chosen one-electron

basis spans the many-electron Hilbert space and, thus, forms a natural many-electron basis

set for constructing many-electron wavefunctions. This implies that, in a given one-electron

basis, the exact wavefunctions can always be expressed as linear combinations of all possible

Slater determinants that this one-electron basis permits. This recasts the many-electron

Schrödinger equation into a purely algebraic matrix eigenvalue problem H · Cµ = EµCµ,

where H is the Hamiltonian matrix involving Slater determinants defining the electronic

wavefunction and Cµ is the vector of coefficients in the expansion of the electronic wave-

function
∣∣∣Ψµ

〉
in terms of Slater determinants. By diagonalizing the resulting Hamiltonian

matrix H in a complete many-electron Hilbert space, one obtains the exact wavefunctions

and total electronic energies corresponding to the one-electron basis used in the calculations.

This procedure is referred to as the full configuration interaction (FCI) approach. To ar-

rive at the numerically exact eigenvalues Eµ and eigenfunctions
∣∣∣Ψµ

〉
of the Hamiltonian,

one needs to employ sufficiently large basis sets that are practically equivalent to the com-

plete basis set (CBS) limit or repeat the calculations using several basis sets of growing size

and extrapolate the CBS limit. If properly executed, the above procedure provides us with
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an exact description of the many-electron correlation effects neglected by HF and similar

approximations and the associated correlation energy.

The first use of the term “correlation energy” can be traced to a paper by Wigner pub-

lished in 1934 [30], while its modern definition as the difference between the exact eigenvalue

of the Hamiltonian and the energy obtained from HF was introduced by Löwdin in 1959 [31].

It is customary to divide correlation effects into dynamic and non-dynamic or static [32],

although the distinction between them is not always possible. Dynamic correlation effects

are associated with the dynamical motion of the electrons, which avoid one another due

to interelectronic repulsion, and typically manifest themselves as numerous excited Slater

determinants having small coefficients in the electronic wavefunction. On the other hand,

static correlation effects characterize situations in which several Slater determinants become

quasi-degenerate, having large CI coefficients, or sometimes even degenerate, as in open-shell

singlet and many other classes of low-spin states.

At this point, it is important to reiterate the fact that although correlation energy is

usually just a fraction of the total electronic energy, its neglect leads to a very poor, some-

times even unphysical, description of chemical properties and phenomena. This showcases

and emphasizes the significance of many-electron correlation effects, which lie at the heart of

modern quantum chemistry effort (see Reference [33] for a historical overview of the electron

correlation problem). At the same time, the computational costs characterizing exact Hamil-

tonian diagonalizations, which would enable us to describe many-electron correlation effects

exactly, render the FCI approach inapplicable to systems with more than a few electrons,

even when smaller basis sets are employed and even when one takes advantage of the state-

of-the-art matrix-diagonalization algorithms and largest supercomputers. To make matters

worse, taking into account the steep scaling of the dimensionality of the FCI problem, which

scales factorially with the system size [34, 35], it is highly unlikely that FCI will be rou-

tinely applied to the majority of problems of chemical interest for a very long time, despite

rapid software and hardware advances. Therefore, efficient alternative quantum chemistry
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methods that can provide an accurate, near FCI, description of many-electron correlation

effects at the small fraction of the computational cost associated with FCI Hamiltonian

diagonalizations are required.

The colossal theoretical and technical advances in the treatment of electron correlation

effects that have taken place since the dawn of quantum chemistry have enabled numerous

high-accuracy quantum mechanical calculations that have successfully addressed problems

of experimental interest. In fact, I benefited from these advances in my own work in the

Piecuch group, where I was involved in computational studies aimed at the virtually exact

determination of the electronic structure of challenging diatomics, such as NaI, Be2, and Mg2,

providing important insights into ultrafast [36] and high-resolution spectroscopy [37–39], and

high-precision calculations for larger polyatomic species, including, for instance, novel super

photobases, such as FR0-SB [40–42], whose light-induced excited-state solvent–to–solute

proton transfer is amenable to spatial and temporal control rendering them perfect candi-

dates for precision chemistry. Nonetheless, there still are situations that remain challenging

for many contemporary quantum chemistry methods, such as quasi-degenerate electronic

states in instances involving biradical and polyradical species, multiple bond breaking, and

excited states characterized by two- and other many-electron transitions, and strongly corre-

lated systems in general. These situations, which are of interest in this dissertation, require

the use of electronic structure methods that are capable of providing FCI-quality results for

the entire spectrum of many-electron correlation effects, including the weakly and strongly

correlated regimes and dynamical and static correlations, while retaining tractable poly-

nomial computational costs. We focus on the development of such methods, which adopt

concepts based on the coupled-cluster (CC) theory [43–48], in this thesis research. The rea-

son we will rely on the CC theory is its well-known efficiency in balancing accuracy and

computational costs.

Historically, the CC theory emerged as an infinite-order generalization of the finite-order

many-body perturbation theory (MBPT) by summing linked wavefunction and connected
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energy diagrams to infinite order, as dictated by the linked [49–52] and connected [51, 52]

cluster theorems. These fundamental theorems guarantee that CC methods, unlike other

wavefunction-based approaches, such as truncated configuration interaction (CI), satisfy

several important conditions of the exact theory. For example, CC methods that rely on

linked wavefunction and connected energy expressions are size extensive, i.e., no loss in

accuracy occurs when the size of the system is increased. Furthermore, as long as the

underlying reference state is separable, the exponential ansatz defining CC wavefunctions,

which was introduced by Hubbard and Hugenholtz in 1957 [51, 52], ensures the separability

or size-consistency of the many-electron wavefunctions in the non-interacting limit, enabling

CC methods to provide a proper description of fragmentation phenomena. Fast convergence

toward FCI as a consequence of representing higher-order correlation effects via products

of low-rank excitation operators is another very important feature of the exponential CC

ansatz. These paramount properties of the CC theory and its other characteristics that

will be stated later in this dissertation have established CC-based methods as the de facto

standard for high-accuracy electronic structure calculations. Nowadays this includes larger

molecular systems with hundreds of correlated electrons and thousands of basis functions,

where the use of size-extensive methods is imperative.

Within the CC framework one can distinguish between two broad classes of formalisms

that depend on the dimensionality of the reference or model space which provides the zeroth-

order description of the many-electron problem of interest. The first and historically old-

est formalism, which is called the single-reference (SR) CC approach, is based on a one-

dimensional model space spanned by a single Slater determinant that serves as the Fermi

vacuum. The second category of CC methods adopts multi-dimensional model spaces and

is called multi-reference (MR) CC. Since, as already mentioned above, we are interested in

an accurate description of quasi-degenerate and strongly correlated electronic states, which

are intrinsically MR problems, it seems natural to turn to MRCC approaches. In MRCC

schemes, a multi-dimensional model space, consisting of multiple reference Slater determi-
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nants, is constructed in such a way that a proper zeroth-order description of the problem

of interest can be attained. The remaining, mostly dynamical, correlation effects are then

captured through ph excitations from each reference determinant. Unfortunately, unlike in

the SRCC formalism, there is no unambiguous way of writing an exponential wavefunction

ansatz within the MR framework, leaving room for a wide variety of MRCC-type ideas, re-

viewed, for example, in References [53–56]. The situation is further complicated by the fact

that MRCC methods cannot match the ease of use and application of their SR counterparts,

which can often be converted into computational “black boxes” that can be used by non-

experts. In particular, many interesting problems in chemistry, especially when transition

metal atoms are involved, require enormous reference spaces, running into similar challenges

to those characterizing FCI. This is particularly true in strongly correlated situations ex-

amined in this dissertation. For these and other reasons, in this dissertation we focus on

SRCC-type ideas, where one recovers strong non-dynamical correlation effects dynamically,

i.e., through conventional ph excitations from a single Slater determinant defining the Fermi

vacuum, e.g., the HF determinant.

In the SRCC formalism [43–48], the exact ground-state N -electron wavefunction is ex-

pressed as |Ψ0〉 = eT |Φ〉, where |Φ〉 is a suitably chosen IPM reference state that serves as

the Fermi vacuum, usually a HF Slater determinant, and the cluster operator T is expressed

in terms of its many-body components as T = ∑N
n=1 Tn. When Tn acts on the reference

Slater determinant |Φ〉, it creates all possible fully connected n-tuply excited components of

the exact ground-state wavefunction |Ψ0〉. Powers of T in eT generate the remaining linked

disconnected components of |Ψ0〉. The study of excited states in the SRCC framework

can be enabled by, for example, the equation-of-motion (EOM) formalism [57–61], where

a linear, CI-like, excitation operator Rµ is applied to the ground-state CC wavefunction

|Ψ0〉, so that excited-state wavefunctions are represented as
∣∣∣Ψµ

〉
= Rµe

T |Φ〉. In anal-

ogy to the cluster operator T , Rµ is expressed in terms of its many-body components as

Rµ = rµ,0 1 + ∑N
n=1Rµ,n (recall that µ = 0 corresponds to the ground state and µ > 0
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means excited states; we use symbol 1 to designate the unit operator). In the conventional

treatment of SRCC theory, a sequence of approximate methods is obtained by truncating T

and Rµ at a particular excitation rank mA < N (usually mA � N), giving rise to the CC

approach with singles and doubles (CCSD) [62, 63], the CC approach with singles, doubles,

and triples (CCSDT) [64, 65], the CC approach with singles, doubles, triples, and quadru-

ples (CCSDTQ) [66–68], etc., and their EOM excited-state extensions, EOMCCSD [59–61],

EOMCCSDT [69–73], EOMCCSDTQ [71, 72, 74, 75], etc. At this point, it is also worth

mentioning that the flexibility of the EOM formalism allows one to formulate particle–non-

conserving theories by replacing the aforementioned particle-conserving Rµ operator by its

particle–non-conserving electron-attachment (EA) [76–82] and ionization (IP) [78, 80–90]

counterparts. These approaches allow the study of ground and excited electronic states of

open-shell species, such as radicals, by attaching an electron to (EA-EOMCC) or removing

an electron from (IP-EOMCC) the underlying closed-shell core. One of the major advantages

of the EA- and IP-EOMCC methodologies is that they automatically lead to orthogonally

spin-adapted wavefunctions of the (N ± 1)-electron system, due to the use of a closed-shell

CC reference wavefunction. The study of species having more than one electron outside the

N -electron closed-shell core is possible by turning to multiple electron-attached and mul-

tiple ionized theories, such as the doubly electron-attached (DEA) EOMCC approach and

its doubly ionized (DIP) counterpart [91–101] that are well-suited for the study of dirad-

icals. Because we are interested in an accurate description of strongly correlated systems

in their ground electronic states, for the remainder of this dissertation we will focus on the

ground-state SRCC methods.

The basic SRCC method, CCSD, performs well in the weakly correlated regime, signifi-

cantly outperforming its CI counterpart, abbreviated as CISD, which is also size inextensive.

One of the main reasons for the superiority of CCSD over CISD is the fact that CCSD

captures higher–than–doubly excited determinants, absent in CISD, such as the 1
2T

2
2 dis-

connected quadruple excitations, which in the weakly correlated regime are more important
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than their connected T4 counterparts and other ways of exciting four electrons (T1T3, 1
2T

2
1 T2,

1
24T

4
1 ) [45, 48, 102–104]. In addition, the relatively low computational cost of CCSD, having

iterative CPU steps that scale as n2
on

4
u or N 6, where no (nu) is the number of correlated

occupied (unoccupied) orbitals and N is a measure of the size of the system, allows its ap-

plication to systems containing hundreds of correlated electrons and basis functions. The

study of even larger systems is possible by turning to local correlation CC approaches (see,

e.g., References [105–118]), which can reduce the computational costs to linear scaling. Un-

fortunately, CCSD provides qualitatively wrong results in situations dominated by larger

non-dynamical correlations, such as bond breaking, because the effects of higher-than-pair

connected clusters, such as T3 and T4, which are completely neglected in CCSD, become

significant. This can be addressed by taking advantage of the fact that the SRCC methods

with a full treatment of higher-than-pair clusters, including CCSDT, CCSDTQ, and their

higher-order counterparts, rapidly converge to the exact, FCI, limit in typical MR situations

in chemistry, allowing one to incorporate the dynamical and non-dynamical correlation ef-

fects dynamically, but the computational costs associated with higher-level SRCC methods,

such as n3
on

5
u (N 8) in the CCSDT case or n4

on
6
u (N 10) in the case of CCSDTQ, limit their

application to systems with a dozen or so correlated electrons and relatively small basis sets.

The key challenge has been how to incorporate higher-rank clusters, especially T3 and T4,

within the SRCC framework in a computationally affordable yet robust manner in order to

handle typical MR situations.

Historically, the contributions of higher-than-pair clusters, such as T3 and T4, were

estimated using MBPT arguments, either iteratively, as in the CCSDT-n [119–122] or

CCSDTQ-n [123] schemes, or non-iteratively, in methods such as CCD + ST(CCD) [124],

CCSD + T(CCSD) ≡ CCSD[T] [125], CCSD(T) [126], and CCSD(TQf) [127], to mention a

few representative examples. Unfortunately, despite the significant reduction of the computa-

tional costs compared to CCSDT and CCSDTQ, these methods, like all finite-order MBPT-

based approaches, break down in MR situations. Among the new generations of SRCC
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methodologies that incorporate the physics of higher-than-pair clusters in a robust manner,

suitable for the description of typical cases of electronic quasi-degeneracies in chemistry,

including single bond breaking, biradicals, and excited states dominated by two-electron

transitions, without turning to genuine MR considerations, are the completely renormalized

(CR) CC/EOMCC schemes resulting from the formalism of the method of moments of CC

equations [128–144] and a broad category of the active-space CC theories [69, 70, 80–82, 98–

100, 145–160]. In the former approaches, one adds non-iterative corrections to the energies

resulting from methods employing a conventional truncation in the cluster operator T , such

as CCSD, for the correlation effects due to the higher-order connected excitations that are ne-

glected in the initial CC calculation without utilizing MBPT. The active-space CC methods

incorporate higher–than–two-body clusters, such as T3 or T3 and T4, in an iterative and yet

relatively inexpensive manner using small subsets of active orbitals, while allowing the lower-

order cluster amplitudes to relax in the presence of the dominant higher-order ones. The

culmination of these efforts, all aimed at eliminating failures of perturbative CC methods,

such as CCSD(T), in typical MR situations in chemistry, while avoiding high computational

costs of CCSDT or CCSDTQ, was the introduction of the deterministic CC(P ;Q) framework

[37, 38, 144, 161–163], which is a merger of the CR-CC and active-space CC ideas, and its

semi-stochastic variant [164–166], where one automates the selection of active spaces utiliz-

ing stochastic wavefunction sampling. In the ground-state CC(P ;Q) formalism, for example,

one corrects the energies obtained with methods relying on a conventional or unconven-

tional truncation in the cluster operator T for the correlation effects due to the higher-rank

determinants neglected in the initial CC calculation. It has been demonstrated that the de-

terministic and semi-stochastic CC(P ;Q) hierarchies not only greatly improve the results of

both the active-space CC and CR-CC methods, but also faithfully and accurately reproduce

the respective parent full CC schemes, such as CCSDT, CCSDTQ, and EOMCCSDT, at a

small fraction of the computational cost [37, 38, 144, 161–166].

Despite all of the aforementioned impressive methodological advances, the CC(P ;Q) hi-

12



erarchy is not a panacea for all the problems facing CC methods, since even the parent

high-level SRCC approaches, such as CCSDT or CCSDTQ, can completely break down in

challenging strongly correlated situations, which are the focus of the present dissertation.

Indeed, it is well established that the conventional CCSD, CCSDT, CCSDTQ, etc. hierar-

chy may exhibit slow or even erratic convergence toward the exact, FCI, limit if the system

under consideration is characterized by strong correlations beyond single, double, or triple

bond breaking or systems with small numbers of electrons outside closed shells. In gen-

eral, strongly correlated systems involve the entanglement of a large number of electrons

and are characterized by the unpairing of many electron pairs and their subsequent recou-

pling to low-spin states, as in the Mott metal–insulator transitions [167–169], which can be

modeled by the Hubbard Hamiltonian [170–172] (see, e.g., References [173] and [174] and

references therein) or linear chains, rings, or cubic lattices of the equally spaced hydrogen

atoms that change from a state with weaker metallic correlations at compressed geometries

to an insulating state with strong correlations in the dissociation region (see, e.g., References

[175–181]). The analogous challenges apply to the strongly correlated π-electron networks

in cyclic polyenes [182, 183], described by the Hubbard and Pariser–Parr–Pople [184–186]

(PPP) Hamiltonians, which can be used to model one-dimensional metallic-like systems with

Born–von Kármán periodic boundary conditions and a half-filled band [187–194]. Molecular

examples of strongly correlated systems can be found in situations involving multiple bond

breaking, typically more than three, as in the dissociation of transition metal diatomics such

as the formidable chromium dimer (see, for example, Reference [195] and references therein).

At the same time, when the numbers of strongly correlated electrons and open-shell sites from

which these electrons originate become larger, traditional MR approaches, relying on model

spaces generated by complete active-space SCF (CASSCF) [196, 197], are no longer appli-

cable due to astronomical dimensionalities of the corresponding model spaces. Capturing

dynamical correlation effects, needed to obtain a quantitative description, on top of CASSCF

is prohibitively expensive too. Even the increasingly popular substitute for CASSCF, namely,
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the density-matrix renormalization group (DMRG) approach [198–203], begins to wear out

when the number of strongly correlated electrons exceeds ∼50 and prospects for incorpo-

rating dynamical correlation effects on top of the large-active-space DMRG references in an

accurate and computationally manageable manner, when one needs to use basis sets much

larger than the minimum one and the generally expensive post-DMRG steps [204–208], re-

main, at least at this time, uncertain. It is, therefore, worth understanding the origin of

the erratic behavior of SRCC approaches, which, as already mentioned, are characterized by

an ease of implementation and application that cannot be matched by MR schemes, in the

presence of strong electron correlation effects and proposing unconventional SRCC schemes

capable of accurately describing both the weak and strong correlation regimes.

The catastrophic failures of the traditional CCSD, CCSDT, CCSDTQ, etc. hierarchy

in all of the aforementioned and similar situations, relevant to condensed matter physics,

materials science, and the most severe cases of multiple bond breaking (e.g., the celebrated

chromium dimer), are related to the observation that in order to describe wavefunctions for

N strongly correlated electrons one is essentially forced to deal with a FCI-level description

of these N electrons, which in a conventional CC formulation requires the incorporation of

virtually all cluster components Tn, including TN . As shown in Figure 2 of Reference [209],

using the 12-site, half-filled attractive pairing Hamiltonian with equally spaced levels, the

higher-order Tn components of the cluster operator, which normally decrease with n, in a

strongly correlated regime remain large for larger n values approaching N . This is not a

problem when the number of strongly correlated electrons N is small (e.g., 2 in single bond

breaking or 4 in double bond breaking), but becomes a major issue when N is larger.

The consequences of the above observations manifest themselves in various, sometimes

dramatic, ways. For example, one experiences a disastrous behavior of the traditional CCSD,

CCSDT, CCSDTQ, etc. hierarchy, which produces large errors, branch point singularities,

and unphysical complex solutions in calculations for strongly correlated one-dimensional sys-

tems modeled by the Hubbard and PPP Hamiltonians or Hn rings, linear chains, and cubic
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lattices undergoing metal–insulator transitions [187–194, 209–212]. One can also show, using

spin-symmetry breaking and restoration arguments, combined with the Thouless theorem

[213, 214] and a subsequent cluster analysis of the wavefunction within a projected UHF

(PUHF) [215–218] framework, similar to Reference [219] and its predecessor [220], that if we

insist on the wavefunction ansatz using a function of low-order cluster components, such as

T2, the resulting strongly correlated PUHF state has a non-intuitive polynomial rather than

the usual exponential form [221–223] (cf., also, References [209, 211, 212]). This means that

in seeking a computationally manageable CC-type solution to a problem of strong correlation

involving many electrons, which would avoid the exponential scaling of FCI, while eliminat-

ing dramatic failures of the traditional CCSD, CCSDT, CCSDTQ, etc. hierarchy, one has to

rely on non-traditional approaches, such as those discussed in References [209–212, 221–223],

replacing the conventional CC exponential wavefunction ansatz with the cluster operator T

truncated at a given many-body rank by entirely different formulations. In our view, one

of the most promising ideas in this area is that of the approximate coupled-pair (ACP)

approaches [187–194, 219, 220, 224–231] and their various recent reincarnations or modifica-

tions, including the 2CC approach and its nCC extensions [232, 233], parameterized CCSD

(pCCSD) [234] and its CCSDT counterpart [235], and distinguishable cluster approximation

with doubles (DCD) or singles and doubles (DCSD) [180, 236–239] (see, also, References

[240] and [241]) and its DCSDT extension to connected triples [235, 242], to name a few

examples (cf. Reference [243] for a review).

The ACP methods and their various modifications retain all doubly excited cluster am-

plitudes of CCD or CCSD in the calculations, i.e., they have the relatively inexpensive n2
on

4
u

(N 6) costs of standard CCD/CCSD, but they use subsets of non-linear diagrams/terms

of the CCD/CCSD amplitude equations. Interestingly, this not only greatly improves the

performance of CCD/CCSD in situations involving single and multiple bond dissociations

[180, 234, 236–240, 244], but also, what is most intriguing, eliminates the complete failures

of conventional SRCC approaches, such as CCSD, CCSDT, and CCSDTQ, in the strongly
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correlated regime of low-dimensional metallic-like systems and symmetrically stretched hy-

drogen rings, linear chains, and cubic lattices [180, 187–194]. As further elaborated on below,

these great improvements in the performance of conventional CC approaches are not a co-

incidence; one can prove that there exist subsets of CCSD diagrams that result in an exact

description of certain strongly correlated minimum-basis-set model systems [191, 219, 220].

Thus, the ACP methodologies provide a rigorous basis for developing relatively inexpensive

SRCC-like approaches for addressing the challenge of strong correlations in many-electron

systems, which lie at the heart of contemporary quantum chemistry effort.

Having stated all of the above, there remain several open problems that need to be ad-

dressed before the ACP methods can be routinely applied to realistic strongly correlated

systems, i.e., systems involving larger numbers of strongly correlated electrons described by

ab initio Hamiltonians and larger basis sets. The main problem is concerned with the neglect

of connected triply excited (T3) clusters in typical ACP methods. Low-dimensional model

systems with small band gaps do not suffer from this a lot, since their accurate descrip-

tion relies on Tn clusters with even values of n > 2, but one cannot produce quantitative

results in the majority of chemistry applications without T3. All previous attempts to incor-

porate connected triply excited clusters using conventional MBPT-like arguments, similar

to those exploited in CCSD[T] [125], CCSD(T) [126], or CCSDT-1 [119, 120], within the

ACP framework have only been partly successful [190, 192, 193, 219, 231]. Another major

problem pertains to the fact that the combinations of diagrams that result in the improved

performance of ACP methods in the strongly correlated regime of minimum-basis-set model

systems are not necessarily optimum when larger basis sets are employed.

In this dissertation, we successfully address both of these problems. We deal with the is-

sue regarding the missing T3 physics by adopting and further developing the active-space CC

ideas [69, 70, 80–82, 98–100, 145–160] to incorporate the dominant T3 amplitudes in the ACP

methods in a robust, yet computationally affordable, manner. As shown in this dissertation,

the active-space triples ACP approaches are immune to the various issues plaguing conven-
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tional MBPT-based connected triples energy corrections, which suffer from vanishingly small

perturbative denominators in the strong correlation regime. Furthermore, the active-space

CC methodologies and their ACP counterparts developed in this thesis research incorporate

the leading higher–than–two-body clusters in an iterative manner, allowing the lower-order

cluster amplitudes to relax in the presence of the dominant higher-order ones. In addition,

the active-space CC and ACP schemes systematically converge to their corresponding par-

ent methods by simply increasing the size of the active space, the limit being reached when

all orbitals become active. Finally, we address the concern of extending the ACP methods

to larger basis sets by proposing a new ACP variant that utilizes basis–set-dependent scal-

ing factors multiplying the pertinent CCSD diagrams. As shown in this dissertation, this

novel ACP scheme reduces to DCSD when a minimum basis set is employed, i.e., it remains

exact for strongly correlated model systems, while becoming asymptotically equivalent to

ACCSD(1,4), i.e., to the original ACP-D14 scheme of Piecuch and Paldus [191] augmented

with singles, in a CBS limit. This is a desired behavior because, based on our numerical

observations, the ACCSD(1,4) approach corrected for connected triples provides, among the

various tested triples-corrected ACP schemes, the most accurate description for the entire

spectrum of correlation effects (from weak to strong correlations) for larger basis sets.

The ACP schemes examined in this dissertation, especially those incorporating connected

three-body clusters, provide an accurate description of electron correlation effects, including

both the weakly and strongly correlated regimes, and become exact in the strong correlation

limit of model minimum-basis-set Hamiltonians or in the atomization limit of lattices of

hydrogen atoms, but they may have limitations in some situations. One of the successes of

this dissertation is the development and implementation of a novel semi-stochastic approach

with CCSD-like computational cost that can provide FCI-quality energetics for the entire

range of correlation effects, including both the weakly and strongly correlated regimes. Before

we proceed with the information about this new semi-stochastic methodology, we give a brief

introduction to quantum Monte Carlo (QMC) approaches, on which the novel semi-stochastic
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approach developed in this thesis research is based.

In general, Monte Carlo (MC) methods provide solutions to problems of either proba-

bilistic or deterministic nature by virtue of stochastic sampling. The original realizations of

MC approaches required scientists to perform a series of experiments, i.e., samplings, and

the overall outcome was inferred by means of statistical analysis. One such example was

the experimental determination of the mathematical constant π in 1873 [245] using Buffon’s

needle [246, 247], but instances of such experimental mathematics can be traced back to

ancient Babylon and Old Testament times [248]. Pivotal in the development of modern MC

approaches was the replacement of costly and sometimes impractical or even impossible ex-

periments by the numerical processing of random or pseudorandom numbers. The invention

of MC in the form that is used today is attributed to Fermi, who used it in his unpublished

work on neutron moderation in the early 1930s [249]. However, the accurate MC study of

complex physical processes, which require the collection of an enormous number of sampling

points, was not possible until the advent of electronic digital computers in the late 1940s.

Around that time, the foundations of modern MC methods were laid down at Los Alamos in

the pioneering works of Ulam, von Neumann, Fermi, Metropolis, and others [249–252]. The

application of MC methods to address problems of quantum mechanical nature are termed

QMC (see, for example, Reference [253] for a review regarding the use of QMC methods to

solve the electronic Schrödinger equation).

We begin our discussion of QMC approaches starting with variational MC (VMC) [254,

255]. In analogy with other variational approaches, one starts with a trial wavefunction for

the problem of interest that contains one or more parameters. Subsequently, one invokes the

variational principle, solving the various integrals using MC integration sampling the wave-

function probability distribution, and evaluating the energy expectation value as the average

of the local energy values, to obtain the optimum parameters that result in the lowest-energy

wavefunction of a given functional form. The accuracy of the resulting VMC wavefunction

and energy depends on the quality of the trial wavefunction. An alternative QMC approach
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that is less sensitive to the quality of trial wavefunction is diffusion MC (DMC). The ba-

sic idea behind the DMC methodology was already stated in 1949, when Fermi recognized

that the time-dependent Schrödinger equation in imaginary time resembles a diffusion equa-

tion that can be solved stochastically [250]. As long as the initial trial wavefunction has a

non-zero overlap with the exact wavefunction, it is guaranteed that by propagating the time-

dependent Schrödinger equation in imaginary time the exact wavefunction will be projected

out in the infinite imaginary time limit. One of the advantages of DMC is that the underly-

ing computer codes are easy to parallelize across multiple nodes and they require relatively

modest computational resources. In addition, DMC schemes directly sample the real space

of 3N electronic coordinates allowing them to recover, in principle, the exact solution to the

Schrödinger equation, unlike conventional quantum chemistry approaches operating in the

N -electron Hilbert space spanned by Slater determinants, which are limited by the size and

quality of the one- and N -electron basis sets.

Unfortunately, the DMC methods outlined above are plagued by a major problem that

makes their applicability to molecular systems difficult. If no constraints are enforced on

the trial wavefunction, propagating the time-dependent Schrödinger equation in imaginary

time will eventually project out a bosonic state, i.e., the true ground state of the spin-

free Schrödinger equation, albeit violating the Pauli exclusion principle. This problem can

be remedied by using what is known as the fixed-node approximation [256–259]. In this

case, one imposes the node structure of an approximate wavefunction, obtained using con-

ventional quantum chemistry approaches, on the trial wavefunction, essentially forcing the

DMC solution to be antisymmetric. Of course, by introducing the nodes of an approximate

wavefunction, the DMC approach can no longer yield the exact solution to the many-electron

Schrödinger equation and the quality of the DMC results may heavily depend on the quality

of the approximate wavefunction and its ability to properly locate the nodes.

Recently, a novel QMC approach was formulated that alleviates the issues introduced

by the fixed-node approximation. This is accomplished by propagating the time-dependent
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Schrödinger equation in the N -electron Hilbert space spanned by Slater determinants, rather

than in the real space of 3N electronic coordinates [260]. The fact that Slater determinants

obey the Pauli exclusion principle by construction ensures that the resulting wavefunction

will be antisymmetric. Similar to the DMC case, the stochastic sampling of the N -electron

Hilbert space is made possible through a walker population dynamics algorithm that places

more walkers on important determinants and less walkers on the less important ones. The

resulting approach is called FCIQMC, since, in analogy to FCI, the walkers are allowed to

explore the entire N -electron Hilbert space, and this provides the numerically exact solution

to the N -electron Schrödinger equation in a basis set equivalent to FCI in the limit of infinite

propagation time [260]. The convergence of the FCIQMC approach can be slow, but this can

be addressed by employing an initiator approach, giving rise to the i-FCIQMC scheme, that

dramatically decreases the total walker population required for obtaining accurate results

[261, 262], and other powerful algorithms, such as the adaptive-shift approach developed in

References [263, 264].

Although the FCIQMC approach is guaranteed to provide the numerically exact solution

in a given basis set, one needs tens or hundreds of thousands of MC time steps, called

MC iterations, for this to be accomplished. Furthermore, in the presence of strong many-

electron correlation effects, the convergence of FCIQMC is decelerated considerably. One

of the major successes of this dissertation is the introduction of a novel semi-stochastic

electronic structure approach that is capable of extrapolating FCI-quality energetics, even

in the strong correlation regime, out of the early stages of FCIQMC propagations. This

methodology, called cluster-analysis-driven FCIQMC (CAD-FCIQMC) [265, 266], is based

on the fact that, for Hamiltonians containing up to two-body terms, as is the case in quantum

chemistry, the correlation energy depends only on the one- and two-body clusters, T1 and

T2, respectively, which, in turn, couple with their three- and four-body counterparts, but no

more than that, through the CC equations projected on singles and doubles. This implies

that extracting the exact T3 and T4 components of the cluster operator T and solving
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CCSD-like equations for T1 and T2 in their presence should yield the exact T1 and T2 and

consequently, the exact, FCI, energy. This observation is the driving force behind externally

corrected CC approaches [219, 220, 230, 243, 267–274] in which one extracts the three- and

four-body clusters from a non-CC source that provides a good description of the many-

electron system of interest. In our case, we take advantage of the i-FCIQMC stochastic

wavefunction sampling as a good source of FCI-quality T3 and T4. Although the original

CAD-FCIQMC approach provides nearly exact energetics out of the early stages of the i-

FCIQMC propagations, even in the presence of electronic quasi-degeneracies such as those

characterizing the double bond dissociation of H2O [265], it may fail or display problems in

the strong correlation regime. In this dissertation, we extend the CAD-FCIQMC approach

to strong many-electron correlation effects by exploiting the ACP ideas within the CAD-

FCIQMC formalism, so that one can obtain FCI-quality energetics for the entire spectrum

of electron correlation effects.
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CHAPTER 2

PROJECT OBJECTIVES

1. Extension of the ACP methodologies, especially those based on the ACP-D13, ACP-

D14, and ACP-D1(3 + 4)/2 ideas, to allow for the explicit incorporation of T3 clusters

via active-space CC considerations.

2. Development and testing of a novel ACP approach using basis–set-dependent scaling

factors, suitable for the study of systems with realistic basis sets.

3. Development and implementation of the semi-stochastic CAD-FCIQMC methodology

and its extension to the strongly correlated regime.

4. Application of the above novel methodologies to low-dimensional model systems rele-

vant to metal–insulator transitions, such as hydrogen clusters, as well as to problems

of chemical interest, such as the double bond dissociation of H2O and the ground-state

energy of C6H6.
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CHAPTER 3

THEORY

3.1 Introduction to Coupled-Cluster Theory

. . . believe it or not, it is taken from one of the

Chemistry Journals!

Remark made by R. McWeeny during his 1967 In-

augural Lecture at the University of Sheffield refer-

ring to the L-CCD diagrams and CCD equations

shown in Reference [45] [quote taken from J. Pal-

dus, in Theory and Applications of Computational

Chemistry: The First Forty Years, edited by C. E.

Dykstra, G. Frenking, K. S. Kim, and G. E. Scuse-

ria (Elsevier, Amsterdam, 2005) pp. 115–147].

As mentioned in the Introduction, in the SRCC formalism the exact ground-state wavefunc-

tion of an N -electron system is expressed as

|Ψ0〉 = eT |Φ〉 , T =
N∑
n=1

Tn, (3.1)

where |Φ〉 is an IPM reference state that serves as the Fermi vacuum (usually a HF Slater

determinant) and T is the cluster operator. The n-body component of T is defined as

Tn =
∑

i1<···<in
a1<···<an

t
i1...in
a1...anE

a1...an
i1...in , (3.2)

where t
i1...in
a1...an are the corresponding cluster amplitudes and E

a1...an
i1...in are the elementary

n-particle–n-hole excitation operators defined as Ea1...an
i1...in = aa1 · · · aanain · · · ai1 , with ap

and ap representing the usual creation and annihilation operators associated with the spin-

orbital |p〉, that generate excited determinants
∣∣∣Φa1...an
i1...in

〉
when acting on |Φ〉. We use the

usual convention regarding spin-orbital indices, so that indices i1, i2, . . . or i, j, . . . (a1, a2, . . .
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or a, b, . . .) denote spin-orbitals that are occupied (unoccupied) in the reference determinant

|Φ〉 and p1, p2, . . . or p, q, . . . designate generic spin-orbitals. By inserting the exponential

ansatz for the wavefunction, Equation (3.1), into the Schrödinger equation and multiplying

from the left by e−T , we obtain the connected cluster form of the Schrödinger equation,

HN |Φ〉 = ∆E0 |Φ〉 , (3.3)

where HN = e−THNe
T =

(
HNe

T
)
C

is the similarity-transformed Hamiltonian, with HN =

H− 〈Φ|H|Φ〉 representing the Hamiltonian in the normal-ordered form and C designating the

connected operator product, and ∆E0 = E0− 〈Φ|H|Φ〉 is the ground-state correlation energy.

By projecting Equation (3.3) on the manifold of excited determinants that correspond to

the content of T , we arrive at an energy-independent system of non-linear equations for the

cluster amplitudes ti1...ina1...an ,

〈
Φa1...an
i1...in

∣∣∣HN
∣∣∣Φ〉 = 0, (3.4)

where i1 < · · · < in, a1 < · · · < an, and n = 1, . . . , N . Taking into account that the

electronic Hamiltonian contains only up to two-body terms, the above system of equations

contains at most quartic terms in the cluster amplitudes. After solving the above system of

non-linear equations, which is usually done by employing an iterative procedure, we calculate

the ground-state correlation energy in a single step by projecting Equation (3.3) on the

reference determinant |Φ〉,

∆E0 = 〈Φ|HN|Φ〉 . (3.5)

Using the facts that one needs to consider only fully contracted terms when computing

expectation values in |Φ〉 and that the electronic Hamiltonian contains only up to two-body

terms, the CC correlation energy, Equation (3.5), depends on the one- and two-body clusters

only, independent of the level of truncation of the cluster operator.

The theory presented so far provides a numerically exact solution of the electronic

Schrödinger equation within a given basis set, i.e., the full CC (FCC) approach, which
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is equivalent to FCI and, therefore, usually prohibitively expensive. Thus, in the vast major-

ity of applications of chemical interest, we truncate the cluster operator T at some excitation

rank mA < N (usually mA � N), replacing the exact T , Equation (3.1), by its approximate

form T (A) = ∑mA
n=1 Tn and limit the projections in Equation (3.4) to excited determinants∣∣∣Φa1...an

i1...in
〉

with n ≤ mA. The correlation energy resulting from such truncated CC cal-

culations will be denoted as ∆E(A)
0 . This procedure results in a hierarchy of conventional

SRCC approaches, such as CCSD, where mA = 2, CCSDT, where mA = 3, CCSDTQ, where

mA = 4, etc. In CCSD, for example, the cluster operator is expressed as T (CCSD) = T1 +T2,

and Equation (3.3) is projected on all singly and doubly excited determinants,
∣∣∣Φai 〉 and∣∣∣Φabij 〉, respectively, to obtain the corresponding amplitude equations.

As already mentioned in the Introduction, the CC theory emerged as an infinite-order

generalization of finite-order MBPT and as such it satisfies important theorems of many-body

physics, including the linked and connected cluster theorems. These theorems guarantee

that the CC approaches satisfy important conditions of the exact theory, independent of

truncation in T . We now proceed to discuss these properties in more detail. We begin with

the fact that the cluster operator T represents connected diagrams only. As a result, the

CC correlation energy is expressed using strictly connected quantities that lead to its size

extensivity. Consequently, unlike truncated CI, methods based on the CC theory lead to

approximations that do not lose accuracy as the system size is increased. The importance

of size-extensive electronic structure methodologies is illustrated in Figure 3.1, where we

examine the ground-state PEC of H2 in the presence of a few non-interacting Ne atoms

using the CCSD and CISD methodologies. Of course, in the absence of Ne atoms, both

CCSD and CISD approaches provide an exact description for the two-electron H2 diatomic.

In the case of CCSD, which is rigorously size extensive, we notice that the PEC obtained by

subtracting the energies of the added Ne atoms remains invariant under the presence of any

number of non-interacting Ne atoms. In particular, CCSD provides the exact PEC for the

single bond dissociation of H2 even when the number of correlated electrons is increased by
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Figure 3.1: The ground-state PECs of H2 in the presence of 0, 2, 4, and 6 Ne atoms as
obtained with (a) CCSD/cc-pVDZ and (b) CISD/cc-pVDZ. The Ne atoms were located
such that they do not interact among themselves and with the H2 molecule. In panel (b),
we also include the RHF PEC for comparison. All PECs have been aligned such that the
corresponding electronic energies at the internuclear separation RH–H = 4.0 Å are identical
and set at 0 kcal/mol.

a factor of more than 30. On the other end of the spectrum, we see that the performance

of the CISD approach, which is not size extensive, gradually deteriorates as the size of the

system is increased. In fact, in the thermodynamic limit, the CISD approach will not recover

any many-electron correlation effects, rendering it equivalent in this example to RHF, which

is a known behavior (see, for example, Reference [275]).

Another important advantage of the CC theory is that it can be made size consistent,

enabling the proper description of fragmentation phenomena, as long as the underlying

reference state is separable. This property is bestowed upon the CC theory due to the

properties of the exponential mapping defining the CC wavefunction. For example, let us

examine the fragmentation of a system into two non-interacting subsystems, denoted as A

and B. The fact that there is no coupling between subsystems A and B suggests that the
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Hamiltonian of the entire system has the form HAB = HA + HB . In this case, using the

fact that TA and TB are defined on different, i.e, orthogonal, many-electron Hilbert spaces,

we have that T = TA + TB and [TA, TB ] = 0. Assuming that the underlying reference is

separable, namely, that |ΦAB〉 = |ΦA〉 |ΦB〉, the wavefunction of the entire system becomes

|ΨAB〉 = eTAB |ΦAB〉

= eTA |ΦA〉 eTB |ΦB〉

= |ΨA〉 |ΨB〉 .

(3.6)

The corresponding energy can then be computed using the asymmetric expression equivalent

to Equation (3.5)

EAB = 〈ΦAB |HAB |ΨAB〉

= 〈ΦA|HA|ΨA〉 〈ΦB |ΨB〉+ 〈ΦB |HB |ΨB〉 〈ΦA|ΨA〉

= EA + EB .

(3.7)

We, thus, see that the CC theory provides a correct description of fragmentation processes,

namely, it correctly predicts the multiplicative nature of the total wavefunction and the

additivity of the total electronic energy of a system consisting of non-interacting subsystems.

Other mainstream correlated electronic structure approaches, such as truncated CI and

finite-order MBPT, are not size consistent, emphasizing once more the significance of CC

approaches.

One of the most important characteristics of the CC exponential ansatz, which is very

useful in practice, is the rapid convergence of the conventional CC hierarchy toward the

exact, FCI, solutions in typical molecular applications relevant to chemistry. This property

becomes apparent when one examines the structure of the FCI and FCC wavefunctions.

Using the intermediate normalization, the FCI wavefunction can be expressed as

|Ψ0〉 = (1 + C) |Φ〉 , C =
N∑
n=1

Cn, (3.8)

where C is a linear excitation operator. The many-body components of C are defined in a

similar manner to Equation (3.4). As mentioned above, the FCI and FCC wavefunctions are
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equivalent, giving rise to the operator equality

1 + C = eT ⇒

1 + C = 1 +
N∑
n=1

Tn

n! ⇒

N∑
m=1

Cm =
N∑
n=1

(∑N
l=1 Tl

)n
n! ⇒

N∑
m=1

Cm =
N∑
n=1

 1
n!

∑
k1+···+kN=n

(
n

k1, . . . , kN

) N∏
j=1

T
kj
j

 .

(3.9)

As a result, the m-body component of C can be expressed in terms of the many-body

components of the cluster operator T as

Cm =
m∑
n=1

 1
n!

∑
k1+···+km=n
k1+···+mkm=m

(
n

k1, . . . , km

) m∏
j=1

T
kj
j

 . (3.10)

Using Equation (3.10) for m = 1, 2, 3, and 4 yields

C1 = T1, (3.11a)

C2 = T2 + 1
2T

2
1 , (3.11b)

C3 = T3 + T2T1 + 1
3!T

3
1 , (3.11c)

and

C4 = T4 + T3T1 + 1
2T

2
2 + T2

1
2T

2
1 + 1

4!T
4
1 . (3.11d)

A simple inspection of Equation (3.11) reveals that CC wavefunctions are substantially richer

than the corresponding CI wavefunctions truncated at the same excitation level. Focusing

on singles and doubles approaches, for example, we see that the CISD wavefunction con-

tains up to doubly excited Slater determinants. On the other hand, due to the exponential

wavefunction ansatz, the CCSD wavefunction already has the dimension of the FCI vector,

the difference between the two being in the coefficients multiplying the Slater determinants,

which in CCSD are parameterized by tia and t
ij
ab amplitudes. A further aspect that points
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to the superiority of CCSD relative to CISD is that the former incorporates higher–than–

doubly excited determinants, absent in CISD, including disconnected quadruples in the form

of 1
2T

2
2 , which are the dominant form of quadruple excitations in a weakly correlated regime.

A final remark is that going from singles and doubles to singles, doubles, and triples is not

bringing a lot of information in the case of CISDT, while CCSDT contains all terms of CIS-

DTQ other than connected quadruples, which in weakly correlated systems are negligible

compared to 1
2T

2
2 , and many classes of higher-order correlations absent in CISDTQ summed

to infinite order. Of course, one must always keep in mind that CCSDT is size extensive

and, thus (putting aside computational costs), allows the study of larger systems without

loss of accuracy, while the performance of the size-inextensive CISDTQ approach will grad-

ually deteriorate with increasing numbers of correlated electrons. All of these observations

corroborate the fact that the traditional hierarchy of CC methods provides fast convergence

toward the FCI limit in weakly correlated situations.

The hierarchy of traditional CC methods exhibits fast convergence toward the FCI solu-

tions in the presence of electronic quasi-degeneracies, such as those characterizing single and

double bond dissociations, as well. This is demonstrated in Figure 3.2 using the symmetric

double bond dissociation of H2O as an example. In this case, we see that the performance

of the CCSD methodology gradually deteriorates as both bonds are stretched from their

equilibrium positions by factors of 1.5 and 2. The CCSDT approach constitutes a dramatic

improvement over CCSD, being characterized with small errors across all geometries shown

in Figure 3.2, and the energetics obtained with CCSDTQ can hardly be distinguished from

their FCI counterparts.
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Figure 3.2: A comparison of the energies resulting from the all-electron CCSD, CCSDT, and
CCSDTQ computations for the H2O molecule, as described by the cc-pVDZ basis set [276],
at the equilibrium and two displaced geometries obtained by simultaneous stretching of both
O–H bonds by factors of 1.5 and 2.0 [277].

3.2 Failure of Conventional Coupled-Cluster Methods in Strongly
Correlated Systems

Thus, we can expect an increasing role to be played

not only by the T4 clusters, but also by the T2n (n ≥

3) clusters in general.

J. Paldus, M. Takahashi, and R. W. H. Cho, Int. J.

Quantum Chem. Symp. 18, 237 (1984).

In the previous section we saw that the conventional hierarchy of CC methods is characterized

by a fast convergence to the FCI solution not only in the weakly correlated regime, but also

in the presence of electronic quasi-degeneracies arising, for example, from single and double

bond dissociations. However, as already mentioned in the Introduction, there exist strongly

correlated systems and materials for which high-level CC schemes, including CCSDT and

CCSDTQ, completely break down. In fact, in severe cases of strong correlation, where a

large number of Slater determinants become degenerate with the reference (e.g., HF) one,

the only meaningful CC approach would be FCC. To gain insights regarding the failures
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plaguing traditional CC methods in the strong correlation regime, we examine a few problems

involving model Hamiltonians.

We begin our discussion with the models of cyclic polyenes, CNHN with N = 4ν + 2

and ν = 1,2, . . . , as described by the Hubbard and the PPP Hamiltonians [187–193, 220].

As shown in Figure 3.3, in the case of the Hubbard and PPP models of cyclic polyenes,

each carbon atom is placed on a vertex of a regular N -gon and is described by a single

2pz electron. Thus, they can model aromatic compounds, the first member of the series

being benzene (N = 6), or, alternatively, and in the case of our work more importantly,

they can be viewed as models of one-dimensional solids with a half-filled band, on which

periodic boundary conditions have been imposed. These model Hamiltonians have several

advantages, such as the availability of analytical or numerically exact solutions as well as

the possibility of achieving a smooth transition from the weakly to the strongly correlated

regime by continuously varying appropriate parameters that dictate the HOMO–LUMO or

band gap.

The PPP Hamiltonian modeling the CNHN cyclic polyenes has the form [35, 187–193,

278]

H = β
N−1∑
µ=0

(
Eµ µ+1 + E

†
µ µ+1

)
+ 1

2

N−1∑
µ,ν=0

γµν
(
Eµµ − 1

) (
E1
νν − 1

)
, (3.12)

where Eµν = ∑
σ a

µσaνσ are the generators of the orbital unitary group U(N) [279], σ = ↑ or

σ = ↓ corresponds to the spin up and spin down function associated with a given 2pz atomic

spin-orbital, i.e., |µσ〉 = |µ〉 |σ〉, with µ = 0, 1, . . . , N − 1. The one-electron part of the PPP

Hamiltonian, Equation (3.12), describes the hopping of an electron between nearest neighbors

and depends on a single parameter β ≤ 0, called the resonance integral. The two-electron

term is an approximation to the interelectronic repulsions, considering only up to two-center

two-electron integrals, γµν = 〈µν|v̂|µν〉. The Hubbard Hamiltonian has the same form as

the PPP one, but employs a more drastic approximation to electron–electron repulsions,

neglecting all but the on-site ones, i.e., γµν = γδµν . The Hubbard and PPP Hamiltonians

provide a framework for examining the entire range of many-electron correlation effects
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(a) (b) (c)
Figure 3.3: Schematic representation of the models of cyclic polyenes CNHN with (a) N = 6,
(b) N = 10, and (c) N = 14. The pertinent molecular orbital diagrams are presented as
well.

by varying the value of the parameter β. The weakly correlated regime is approached as

β → −∞. In this case, the hopping one-body term dominates in Equation (3.12) and the

electrons are essentially free to move from one site to the next without experiencing any

interelectronic repulsions, i.e., the system behaves like a metal. At the other end of the

electron correlation strength, when β → 0− the hoping term is negligible and the whole

system is driven by electron correlation effects, giving rise to a strongly correlated insulating

phase. Note that β ≈ −2.4 eV corresponds to a physical value of the resonance integral that

reproduces experimental spectroscopic data for benzene [185].
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Further insights regarding the implications of β → 0−, especially the various compli-

cations regarding post-RHF approaches, such as CCSD, CCSDT, and CCSDTQ, can be

gained by examining the RHF orbital energies, εP , of the PPP and Hubbard models of

cyclic polyenes [278],

εP = 2β cos
(2πP
N

)
+
N−1∑
µ=0

γ0µ + 1
N

κ∑
J=−κ

N−1∑
µ=0

γ0µe
2πi(P−J)µ

N , (3.13)

where the summation over J extends over the set of 2κ + 1 occupied molecular orbitals

(we use a convention, where capital letters P,Q, . . . represent spatial molecular orbitals,

with I, J, . . . being occupied and A,B, . . . unoccupied). Thus, in analogy to benzene in a

π-electron approximation, the RHF molecular orbitals, which are fully determined by sym-

metry and equivalent to Bloch and Brueckner (T1 = 0) orbitals, are pairwise degenerate,

εP = ε−P , with the exceptions of the lowest- and highest-energy ones (cf. Figure 3.3). An

interesting observation that played an important role in the development of ACP approaches,

including the ones introduced in this dissertation, is that the PPP and Hubbard models of

cyclic polyenes satisfy the Coulson–Rushbrooke pairing theorem for polynuclear hydrocar-

bons [280], which, in the case of cyclic polyenes, states that for every occupied molecular

orbital there exists an unoccupied one with opposite RHF orbital energy, i.e., the system is

characterized by ph symmetry (see Figure 3.3). The ∆εP ≡ εP+1 − εP energy gap is

∆εP = 2β
{

cos
[

2π (P + 1)
N

]
− cos

(2πP
N

)}

+ 1
N

κ∑
J=−κ

N−1∑
µ=0

γ0µ

[
e

2πi(P+1−J)µ
N − e

2πi(P−J)µ
N

]
.

(3.14)

Equation (3.14) reveals that, in the case of the PPP Hamiltonian, when β → 0− the molec-

ular orbitals become quasi-degenerate. When the Hubbard Hamiltonian is considered, the

RHF orbitals become exactly degenerate for β = 0. In addition, according to Equation

(3.14), quasi-degeneracies can also occur for non-zero values of β, as long as one examines

cyclic polyenes CNHN with large enough values of N . A complete orbital degeneracy is

attained in the thermodynamic limit, which, based on numerical observations, is reached
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rather quickly [187, 220]. In fact, it has been shown that the C10H10 electron density re-

sembles more that of an infinite one-dimensional solid than that of the benzene, i.e., N = 6,

analog [281].

The above analysis heralds the catastrophic failure of conventional SRCC approaches,

such as CCSD, CCSDT, CCSDTQ, etc., in the strong correlation regime of cyclic polyenes

as described by the Hubbard and PPP Hamiltonians. For example, Podeszwa et al. [194]

examined the performance of CCSD, CCSDT, and CCSDTQ in reproducing the FCI ener-

getics for the PPP model of cyclic polyenes CNHN with N = 6, 10, 14, and 18, varying

the parameter β from physical values to the fully correlated, i.e., β = 0, limit. A simple

inspection of Figures 1–4 of Reference [194] reveals that the CCSD and CCSDT approaches

quickly begin to overcorrelate upon departing from the range of β values that correspond

to the weakly correlated regime. Furthermore, for rings larger than benzene, CCSD and

CCSDT completely break down and no convergence is obtained after reaching a critical

value of β, βc. Consistent with the analysis presented above, the larger the cyclic polyene

the closer the value of βc is to its physical range. Even the high-level CCSDTQ methodology

is not immune to the onset of strong many-electron correlation effects. Although CCSDTQ

closely reproduces the FCI correlation energies for weaker correlations, it exhibits a similar

catastrophic behavior to CCSD and CCSDT, albeit it is more robust, failing only for the

larger cyclic polyenes studied in Reference [194].

The nature of the singularities that prevent the convergence of traditional SRCC ap-

proaches for values of the resonance integral larger than the critical ones were investigated

as early as 1984 [187]. In their early work, Paldus et al. showed, under certain very plau-

sible assumptions, that no real solutions to the CCSD amplitude equations can be found

for β < βc [187]. In fact, they provided numerical evidence that in the vicinity of βc

correlation energy has the form ∆E(β) ≈ ∆E(βc) + ∆E(1)(β − βc)
1
2 , implying that for

β < βc one obtains complex correlation energies. A few years later, a more detailed study

of this singular behavior, including CCSD (equivalent in this case to CCD) and higher-order
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CC methods with connected triples, revealed that the critical values of the resonance in-

tegral βc correspond to branch point singularities in the complex plane, resulting in real

branches representing multiple solutions of the CC system in the β > βc region becoming

complex when β < βc, so that the correlation energies around βc satisfy the Laurent series

∆E(β) = ∆E(βc)+∆E(1)(β−βc)
1
2 +O(β−βc) [190]. It was also demonstrated, by deriving

the analytical formula for the exact doubly excited cluster amplitudes of the PPP and Hub-

bard Hamitonian models and back substitution, that these exact amplitudes do not satisfy

the CCD system at β = 0 [191].

As a final nail in the coffin of conventional SRCC approaches, we will prove analytically

that in the strong correlation regime the only meaningful CC scheme is FCC. This was

already anticipated since the early 1980s, when Paldus et al. [188, 278] showed that, in the

β → 0− limit of the Hubbard and PPP models of the N = 6 and 10 cyclic polyenes, the

dominant quadruples were the connected ones, by cluster analysis of FCI wavefunctions.

Furthermore, they speculated that T2n clusters with n ≥ 3 would play an important role for

larger cyclic polyenes, since the CISDTQ approach was already struggling with C10H10.

To simplify the mathematical manipulations, we shall examine the 12-site half-filled at-

tractive pairing Hamiltonian [282–284], which constitutes a simple model for superconductiv-

ity by phenomenologically describing the Cooper problem of bound electron pairs [285–287].

The attractive pairing Hamiltonian has the form [209]

H =
∑
P,σ

εP a
PσaPσ −G

∑
PQ

aP↑aP↓aQ↑aQ↓, G ≥ 0, (3.15)

and, as was the case with the Hubbard and PPP Hamiltonians, depends on two parameters,

namely, the orbital energies εP and the interaction strength G. By varying the value of G

from 0 to ∞ one can continuously go from the weakly to the strongly correlated regime. A

simple inspection of Equation (3.15) reveals that the attractive pairing Hamiltonian preserves

the seniority number, which is the number of unpaired electrons. As a result, all odd-number-

excited cluster components, which necessarily break the pairing of electrons, are zero, i.e.,

T2n+1 = 0,∀n ∈ Z+ ∪ {0}, which constitutes a major simplification.
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We begin our proof by examining the fully correlated limit of the attractive pairing Hamil-

tonian. We assume that in this regime all Slater determinants become exactly degenerate

with the RHF one. By examining the structure of the corresponding FCI wavefunction,

|Ψ0〉 =
(
1 +∑

n∈Z+ C2n
)
|Φ〉, we notice that the degeneracy condition forces all determi-

nants to have a weight of 1, namely, cI↑I↓A↑A↓ = 1,∀I ∈ occ., A ∈ unocc., cI↑I↓J↑J↓A↑A↓B↑B↓ = 1,∀I <

J ∈ occ., A < B ∈ unocc., and so on (occ. and unocc. stand for occupied and unoccupied

orbital sets). In the next step, we will compute the values of the cluster amplitudes of the

FCC wavefunction by cluster analyzing the aforementioned FCI wavefunction. To that end,

we need to develop an expression similar to Equation (3.10), this time relating an m-body

connected cluster with the CI excitation operators of rank up to m. This is accomplished in

a similar fashion to Equation (3.9) and the final expression is

Tm =
m∑
j=1

(−1)j−1
j


∑

l1+l2+···+lm=j
l1+2l2+···+mlm=m

(
j

l1, l2, . . . , lm

) m∏
k=1

C
lk
k

 . (3.16)

Using Equation (3.16) for m = 2, 4, 6, 8, 10, and 12 we obtain

T2 = C2, (3.17a)

T4 = C4 −
1
2C

2
2 , (3.17b)

T6 = C6 − C4C2 + 1
3C

3
2 , (3.17c)

T8 = C8 − C6C2 −
1
2C

2
4 + C4C

2
2 −

1
4C

4
2 , (3.17d)

T10 = C10 − C8C2 − C6C4 + C6C
2
2 + C2

4C2 − C4C
3
2 + 1

5C
5
2 , (3.17e)

and
T12 = C12 − C10C2 − C8C4 + C8C

2
2 −

1
2C

2
6 + 2C6C4C2 − C6C

3
2

+ 1
3C

3
4 −

3
2C

2
4C

2
2 + C4C

4
2 −

1
6C

6
2 ,

(3.17f)

where we already took advantage of the fact that for the attractive pairing Hamiltonian

the odd-number-excited clusters vanish. The explicit expressions connecting the cluster and

CI excitation amplitudes can be derived diagrammatically by using Equation (3.17) and
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computing matrix elements of the form
〈

ΦA1↑A1↓...An↑An↓
I1↑I1↓...In↑In↓

∣∣∣∣Tn∣∣∣∣Φ〉. This yields

t
I↑I↓
A↑A↓ = c

I↑I↓
A↑A↓, (3.18a)

t
I↑I↓J↑J↓
A↑A↓B↑B↓ = c

I↑I↓J↑J↓
A↑A↓B↑B↓

−SABc
I↑I↓
A↑A↓c

J↑J↓
B↑B↓,

(3.18b)

t
I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓ = c

I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓

−SAB/CS IJ/Kc
I↑I↓J↑J↓
A↑A↓B↑B↓c

K↑K↓
C↑C↓

+ 2SABCc
I↑I↓
A↑A↓c

J↑J↓
B↑B↓c

K↑K↓
C↑C↓ ,

(3.18c)

t
I↑I↓J↑J↓K↑K↓L↑L↓
A↑A↓B↑B↓C↑C↓D↑D↓ = c

I↑I↓J↑J↓K↑K↓L↑L↓
A↑A↓B↑B↓C↑C↓D↑D↓

−SABC/DS IJK/Lc
I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓c

L↑L↓
D↑D↓

−SAB/CDS IJ/Kc
I↑I↓J↑J↓
A↑A↓B↑B↓c

K↑K↓L↑L↓
C↑C↓D↑D↓

+ 2SAB/C/DS IJ/KLc
I↑I↓J↑J↓
A↑A↓B↑B↓c

K↑K↓
C↑C↓ c

L↑L↓
D↑D↓

− 6SABCDc
I↑I↓
A↑A↓c

J↑J↓
B↑B↓c

K↑K↓
C↑C↓ c

L↑L↓
D↑D↓,

(3.18d)

t
I↑I↓J↑J↓K↑K↓L↑L↓M↑M↓
A↑A↓B↑B↓C↑C↓D↑D↓E↑E↓ = c

I↑I↓J↑J↓K↑K↓L↑L↓M↑M↓
A↑A↓B↑B↓C↑C↓D↑D↓E↑E↓

−SABCD/ES IJKL/M c
I↑I↓J↑J↓K↑K↓L↑L↓
A↑A↓B↑B↓C↑C↓D↑D↓c

M↑M↓
E↑E↓

−SABC/DESIJK/LM c
I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓c

L↑L↓M↑M↓
D↑D↓E↑E↓

+2SABC/D/ES IJK/LM c
I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓c

L↑L↓
D↑D↓c

M↑M↓
E↑E↓

+SAB/CD/ES IJ/KL/M c
I↑I↓J↑J↓
A↑A↓B↑B↓c

K↑K↓L↑L↓
C↑C↓D↑D↓c

M↑M↓
E↑E↓

−6SAB/C/D/ES IJ/KLM c
I↑I↓J↑J↓
A↑A↓B↑B↓c

K↑K↓
C↑C↓ c

L↑L↓
D↑D↓c

M↑M↓
E↑E↓

+24SABCDEc
I↑I↓
A↑A↓c

J↑J↓
B↑B↓c

K↑K↓
C↑C↓ c

L↑L↓
D↑D↓c

M↑M↓
E↑E↓ ,

(3.18e)
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and
t
I↑I↓J↑J↓K↑K↓L↑L↓M↑M↓N↑N↓
A↑A↓B↑B↓C↑C↓D↑D↓E↑E↓F↑F↓ = c

I↑I↓J↑J↓K↑K↓L↑L↓M↑M↓N↑N↓
A↑A↓B↑B↓C↑C↓D↑D↓E↑E↓F↑F↓

−SABCDE/FS IJKLM/N c
I↑I↓J↑J↓K↑K↓L↑L↓M↑M↓
A↑A↓B↑B↓C↑C↓D↑D↓E↑E↓c

N↑N↓
F↑F↓

−SABCD/EFS IJKL/MN c
I↑I↓J↑J↓K↑K↓L↑L↓
A↑A↓B↑B↓C↑C↓D↑D↓c

M↑M↓N↑N↓
E↑E↓F↑F↓

+2SABCD/E/FS IJKL/MN c
I↑I↓J↑J↓K↑K↓L↑L↓
A↑A↓B↑B↓C↑C↓D↑D↓c

M↑M↓
E↑E↓ c

N↑N↓
F↑F↓

−SABC/DEFS IJK/LM c
I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓c

L↑L↓M↑M↓N↑N↓
D↑D↓E↑E↓F↑F↓

+2SABC/DE/FS IJK/LM/N c
I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓c

L↑L↓M↑M↓
D↑D↓E↑E↓ c

N↑N↓
F↑F↓

−6SABC/D/E/FS IJK/LMN c
I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓c

L↑L↓
D↑D↓c

M↑M↓
E↑E↓ c

N↑N↓
F↑F↓

+21
6SAB/CD/EFS IJ/KL/MN c

I↑I↓J↑J↓
A↑A↓B↑B↓c

K↑K↓L↑L↓
C↑C↓D↑D↓c

M↑M↓N↑N↓
E↑E↓F↑F↓

−61
4SAB/CD/E/FS IJ/KL/M/N c

I↑I↓J↑J↓
A↑A↓B↑B↓c

K↑K↓L↑L↓
C↑C↓D↑D↓c

M↑M↓
E↑E↓ c

N↑N↓
F↑F↓

+24SAB/C/D/E/FS IJ/KLMN c
I↑I↓J↑J↓
A↑A↓B↑B↓c

K↑K↓
C↑C↓ c

L↑L↓
D↑D↓c

M↑M↓
E↑E↓ c

N↑N↓
F↑F↓

−120SABCDEF c
I↑I↓
A↑A↓c

J↑J↓
B↑B↓c

K↑K↓
C↑C↓ c

L↑L↓
D↑D↓c

M↑M↓
E↑E↓ c

N↑N↓
F↑F↓ ,

(3.18f)

where the S symbols denote symmetrizing operators with respect to the relevant permu-

tations of given sets of orbital indices. To be precise, symmetrizers of the form SP1...Pn ≡

S P1...Pn incorporate all n! permutations of the n indices, while symmetrizers with slashes ex-

clude permutations of indices belonging to the same group. For instance, the number of per-

mutations included in SP1...Pα/Q1...Qβ/R1...Rγ/S1...Sδ ≡ S
P1...Pα/Q1...Qβ/R1...Rγ/S1...Sδ

is (α+β+γ+δ)!
α!β!γ!δ! . At a first glance, the appearance of symmetrizers instead of antisym-

metrizers might seem surprising, but this is related to the fact that the Hamiltonian pre-

serves the seniority number. As a result, any permutation of orbital indices gives rise to

a product of two permutations over the corresponding spin-orbital indices, resulting in

symmetrizing, rather than antisymmetrizing, operators. For example, SPQR ≡ S PQR =

1 + (PQ) + (PR) + (QR) + (PQR) + (PRQ) ≡ 1 + (P↑Q↑)(P↓Q↓) + (P↑R↑)(P↓R↓) +

(Q↑R↑)(Q↓R↓) + (P↑Q↑R↑)(P↓Q↓R↓) + (P↑R↑Q↑)(P↓R↓Q↓) and SPQ/R ≡ S PQ/R =

1 + (PR) + (QR) ≡ 1 + (P↑R↑)(P↓R↓) + (Q↑R↑)(Q↓R↓).
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We are now in a position to calculate the values of the cluster amplitudes in the strong

correlation limit of the 12-site half-filled attractive pairing Hamiltonian. To that end, we use

Equation (3.18) together with the fact that in this regime all CI excitation amplitudes are

equal to one and obtain

t
I↑I↓
A↑A↓ = 1, ∀I ∈ occ., A ∈ unocc., (3.19a)

t
I↑I↓J↑J↓
A↑A↓B↑B↓ = −1, ∀I < J ∈ occ., A < B ∈ unocc., (3.19b)

t
I↑I↓J↑J↓K↑K↓
A↑A↓B↑B↓C↑C↓ = 4, ∀I < J < K ∈ occ., A < B < C ∈ unocc., (3.19c)

t
I↑I↓J↑J↓K↑K↓L↑L↓
A↑A↓B↑B↓C↑C↓D↑D↓ = −33, ∀I < J < K < L ∈ occ.,

A < B < C < D ∈ unocc.,
(3.19d)

t
I↑I↓J↑J↓K↑K↓L↑L↓M↑M↓
A↑A↓B↑B↓C↑C↓D↑D↓E↑E↓ = 456, ∀I < J < K < L < M ∈ occ.,

A < B < C < D < E ∈ unocc.,
(3.19e)

and
t
I↑I↓J↑J↓K↑K↓L↑L↓M↑M↓N↑N↓
A↑A↓B↑B↓C↑C↓D↑D↓E↑E↓F↑F↓ = −9460, ∀I < J < K < L < M < N ∈ occ.,

A < B < C < D < E < F ∈ unocc.
(3.19f)

This clearly shows that in the fully correlated limit of the half-filled attractive pairing Hamil-

tonian the higher the many-body rank of a connected cluster component the higher its

magnitude is. The same behavior was observed numerically by Degroote et al. in their in-

vestigation of the 12-site half-filled attractive pairing Hamiltonian [209], but, to the best of

our knowledge, this is the first time that this is shown analytically rather than numerically.

Furthermore, the above derivation, although rationalized in the context of the attractive

pairing Hamiltonian, is, in fact, more general, as it applies to any strongly correlated situa-

tion in which all determinants in the FCI expansion have an equal weight and in which the

seniority number is conserved.

The above observations clearly demonstrate that the fabric of traditional SRCC ap-

proaches is utterly destroyed in the strong correlation limit. The enormous success of the

hierarchy of conventional SRCC approaches, including CCSD, CCSDT, and CCSDTQ, in de-
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scribing weakly and moderately correlated systems is based on the fact that in these regimes

T2 > T3 > T4 > · · · > TN . This conventional paradigm is destroyed, being often reversed,

in a strongly correlated regime, so that the only meaningful conventional SRCC approach

capable of properly describing strong correlations is FCC, where all many-body components

of T must be included in the calculations.

3.3 Approximate Coupled-Pair Methods with an Active-Space
Treatment of Three-Body Clusters

. . . the neglect of nonlinear nonfactorizable diagrams

. . . must simulate the higher excited-cluster contri-

butions, such as T4 and T6.

J. Paldus, M. Takahashi, and R. W. H. Cho, Int. J.

Quantum Chem. Symp. 18, 237 (1984).

A crucial step in the discovery and subsequent understanding of ACP schemes was the

development of the orthogonally spin-adapted CC formalism [219, 220, 230, 288–290]. There-

fore, before we proceed to the discussion of ACP approaches, we present the salient features

of singlet spin-adapted CC theory, using the CC with doubles (CCD) [45, 291, 292] as an

example.

The first step in developing an orthogonally spin-adapted CC formalism is to define

the
∣∣∣∣ΦA1...An
I1...In

; {S̃r}SMS

〉
configuration state functions that span the many-electron Hilbert

space, where indices I1, I2, . . . or I, J, . . . (A1, A2 . . . or A,B, . . .) designate orbitals that

are occupied (unoccupied) in the closed-shell (e.g., RHF) reference determinant, S and MS

denote the total spin and its projection on the z-axis, respectively, and S̃r represents the

relevant intermediate spin quantum numbers resulting in the final |S,Ms〉 spin state (note

that the closed-shell reference determinant is singlet spin-adapted by construction). Since we

are interested in singlet spin-adapted CCD, we need to consider doubly excited configuration

state functions of the form
∣∣∣ΦABIJ ; {S̃r}00

〉
, which require the coupling of four s = 1

2 spins

involved in 2-particle–2-hole excitation via the intermediate spins S̃r. Although there exist a
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few ways of coupling the spins of the four spin-orbitals, it has been shown that the particle-

particle–hole-hole (pp-hh) scheme leads to the most symmetric and simple expressions [293].

In the pp-hh approach, one obtains two intermediate spins denoted as Srpp and Srhh by

separately coupling the spins of the two particle and the two hole states, respectively, that

are subsequently coupled to the final S,MS spin state. The fact that the final state is a

singlet imposes the restriction Srpp = Srhh = Sr. Therefore, as one might anticipate from

the branching diagram [294] shown in Figure 3.4, there are two independent classes of doubly

excited configuration state functions, namely, those that arise from an intermediate singlet,

Sr = 0, and those originating from an intermediate triplet, Sr = 1. To distinguish between

the two, the kets representing the singlet pp-hh coupled orthogonally spin-adapted doubly

excited configuration state functions
∣∣∣ΦABIJ ; {SrSr}00

〉
can be designated as

∣∣∣ΦABIJ 〉Sr , where

Sr = 0 or 1.

Having defined the configuration state functions, we now proceed to the discussion of the

cluster operator. In CCD, the cluster operator is approximated by its two-body component,

i.e., T (CCD) = T2. Based on the analysis presented in the previous paragraph, it comes as no

surprise that T2, as a two-body operator, has two independent singlet-coupled components,

i.e., T2 = T
[0]
2 + T

[1]
2 , defined as T [Sr]

2 |Φ〉 = ∑
I≥J,A≥B

[Sr]tIJAB
∣∣∣ΦABIJ 〉Sr . Thus, the CC
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Figure 3.5: Goldstone–Brandow diagrams for the 1
2T

2
2 contributions Λ(2)

k (AB, IJ ;Sr), k =
1–5, to the CC equations projected on the singlet pp-hh coupled orthogonally spin-adapted
doubly excited

∣∣∣ΦABIJ 〉Sr states. The intermediate spin quantum number Sr in defining∣∣∣ΦABIJ 〉Sr and the corresponding doubly excited cluster amplitudes [Sr]tIJAB is 0 or 1. The
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r , and S̃r are summed over.

amplitude equations for singlet spin-adapted CCD are

0 = Sr

〈
ΦABIJ

∣∣∣[HN
(
1 + T2 + 1

2T
2
2
)]
C

∣∣∣Φ〉⇒ (3.20)

0 = Sr

〈
ΦABIJ

∣∣∣[HN (1 + T2)]C
∣∣∣Φ〉+

5∑
k=1

Λ(2)
k (AB, IJ ;Sr), (3.21)

where in the last step resulting in Equation (3.21) we isolated the bilinear Λ(2)
k (AB, IJ ;Sr),

k = 1–5, terms that correspond to 1
2T

2
2 contributions and that form the basis of the various

ACP approaches. In Figure 3.5, we provide the Goldstone–Brandow diagrams associated

with these five non-linear terms.

We now proceed to the discussion of the ACP approaches, especially how they came into

existence, the reasons behind their success in the presence of strong many-electron correlation

effects, and their novel extensions to connected triples and realistic basis sets introduced in

this dissertation. We, thus, begin with a brief historical overview of the development of the

ACP family of methods.

In the late 1970s and early 1980s, Paldus, Jankowski, and Adams performed a series

of investigations aimed at developing reliable approximations to orthogonally spin-adapted
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CCD [224–227]. The motivation behind these efforts can be traced to the following two

facts. First, at that time, the construction of intermediates by diagram factorization (see,

for example, Reference [295]) was still in its infancy and researchers were faced with the

computationally demanding task of solving a system of non-linear CC equations. This lead

Jankowski and Paldus to state that “it seems quite unlikely that” CCD “can be routinely used

in the near future for larger than 10–20 electron systems or even smaller problems requiring

very extensive orbital basis sets” [225]. Second, the performance of the approximations

to CCD that were available at that time was often worse than that of full CCD when

electronic quasi-degeneracies were present (see, for example, References [224] and [225] and

references therein). Among the schemes facing problems were linearized CCD (L-CCD) [45],

which completely neglects the non-linear contributions shown in Figure 3.5, and coupled

electron pair approximation (CEPA) methodologies [296–305] that simplify the quadratic
1
2T

2
2 contributions by considering only the exclusion principle violating terms that can be

expressed as the product of a pair-energy contribution times a T2 matrix element.

To address the above problems, while attempting to avoid the use of full CCD, Paldus and

co-workers devised an approximate CCD approach, abbreviated as ACP-D45, that replaces

the ∑5
k=1 Λ(2)

k (AB, IJ ;Sr) terms in Equation (3.20) by Λ(2)
4 (AB, IJ ;Sr) + Λ(2)

5 (AB, IJ ;Sr)

[224, 225], i.e., only diagrams D4 and D5 shown in Figure 3.5 are retained. In doing so,

they were partly inspired by the CEPA family of methods, since only diagrams D4 and D5

can produce exclusion principle violating terms containing pair energies. In this regard, the

various CEPA schemes can be viewed as approximations to ACP-D45. The same ACP-D45

scheme was rediscovered (under a different name) by Chiles and Dykstra in 1981 [228] (see

also Reference [229]) using different argumentation. By examining the CCD equations in the

limit of separated electron pairs, Chiles and Dykstra proved that diagrams D1–D3 cancel

out and proposed the ACCD approach neglecting diagrams D1–D3, which is identical to

ACP-D45 of Paldus et al.

The performance of the ACP-D45 scheme in the presence of electronic quasi-degeneracies
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was originally tested by Paldus and co-workers on four-electron species, including the Be

atom [226, 227], the minimum-basis-set H4 models [225], and cis-butadiene as described by

the PPP Hamiltonian [225]. The last two systems allow one to examine the entire range of

electron correlation effects, either by changing the nuclear geometry (H4) or by varying the

parameters defining the PPP Hamiltonian (cis-butadiene). In all cases, the CCD method-

ology produced energetics of generally good quality, slightly overcorrelating after the onset

of degeneracies. The performance of the ACP-D45 approach ignoring diagrams D1–D3 was

remarkable, closely reproducing the CCD results in the weakly correlated regime and out-

performing it in the presence of electronic quasi-degeneracies. In fact, ACP-D45 became

practically exact in the strong correlation limit of the PPP model of cis-butadiene. At the

same time, the ACP-D123 scheme, which is the complement of ACP-D45 keeping diagrams

D1–D3 and neglecting the D4 and D5 contributions, became singular in the strong correla-

tion regime, as was the case with L-CCD. Furthermore, Paldus and co-workers searched for

other combinations of the D1–D5 non-linear diagrams that could possibly handle the quasi-

degeneracy present in the case of the Be atom [226]. Among the 32 possible ACP variants,

ACP-D45 performed the best, faithfully reproducing the CCD correlation energy. An addi-

tional interesting observation was that the results of the ACP-D123 calculations were very

close to those obtained with L-CCD. This suggested that a mutual cancellation of diagrams

D1–D3 takes place, explaining why ACP-D45 was an excellent approximation to CCD.

Motivated by the success of the ACP-D45 method, Paldus and co-workers turned their

attention to the Hubbard and PPP models of cyclic polyenes [187, 188, 220], which, as

emphasized in the previous section, exhibit severe electronic quasi-degeneracies as the res-

onance integral β approaches 0. They demonstrated that, unlike CCSD (equivalent in this

case to CCD), which eventually overcorrelates or becomes singular, the ACP-D45 approach

was well-behaved in the entire range of electron correlation effects characterizing the C6H6

and C10H10 cyclic polyenes. In fact, ACP-D45 provided the exact correlation energies in the

strong correlation limit of the Hubbard Hamiltonian, while being very accurate in the case of
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the PPP model. The fact that the T2n components of the cluster operator T with n ≥ 2 be-

come important in the strong correlation regime of these model Hamiltonians suggests that

the ACP-D45 approach provides a mechanism for simulating the effect of these higher–than–

two-body clusters. Indeed, in the spirit of externally corrected CC methodologies, Paldus

and co-workers proved analytically that, as long as the PUHF approach [215–218] is exact

and singles do not contribute, i.e., C1 = T1 = 0, which is the case for the strongly correlated

limit of the Hubbard and PPP models of cyclic polyenes, the Sr
〈
ΦABIJ

∣∣∣(VNT4)C
∣∣∣Φ〉 term with

T4 extracted from PUHF cancels diagrams D1–D3 and multiplies diagram D5 by a factor of

9 when projected on the doubly excited configuration state functions with an intermediate

triplet,
∣∣∣ΦABIJ 〉1, [220]. In principle, the three-body clusters should have been extracted as

well, but the PUHF wavefunction does not contain singlet spin-adapted connected triples.

The resulting approach, which uses Λ(2)
4 (AB, IJ ;Sr) + (2Sr + 1)2Λ(2)

5 (AB, IJ ;Sr) instead

of ∑5
k=1 Λ(2)

k (AB, IJ ;Sr) in Equation (3.20) and is, therefore, almost identical to ACP-D45,

was termed ACP-D459 or ACPQ, to emphasize the de facto presence of T4 contribution

in the latter acronym. The ACPQ approach, being formally an approximation to CCD, is

much better than CCD, becoming exact in the strong correlation limit of cyclic polyenes as

described by the Hubbard and PPP Hamiltonians. Furthermore, in the case of the Hubbard

Hamiltonian, where D5 is zero when projections onto
∣∣∣ΦABIJ 〉1 are considered, ACPQ becomes

equivalent to the original ACP-D45 approach, explaining the exactness of the latter in the

β = 0 limit of the Hubbard Hamiltonian model. As already alluded to above, in their original

derivation [220], Paldus and co-workers assumed that the PUHF wavefunction, expressed in

terms of the RHF Slater determinant using the Thouless theorem, has no singlet monoex-

citation component, which, although correct in the case of the Hubbard and PPP models

of cyclic polyenes since the RHF orbitals are completely determined by symmetry rendering

them simultaneously Brueckner orbitals, is not true in general. Piecuch et al. generalized

the aforementioned derivation for cases where singlet monoexcitations do not vanish [219].

They demonstrated that not only the singlet-coupled three-body clusters continued to be
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absent in the PUHF wavefunction, but also that the diagram cancellation defining the ACPQ

approach augmented for T1 clusters remains valid. The resulting ACCSD′ approach, which

reduces to ACCD′ = ACPQ when T1 = 0, provides exact electronic energetics whenever the

PUHF state offers an exact description.

As it turns out, the combination of D4 and D5 diagrams is not unique in providing exact

results in the β = 0 limit of cyclic polyene models. Paldus and co-workers realized that,

due to the ph symmetry characterizing the Hubbard and PPP models of cyclic polyenes,

diagrams D3 and D4 are equivalent, i.e., Λ(2)
3 (AB, IJ ;Sr) = Λ(2)

4 (AB, IJ ;Sr), suggesting

that ACP-D359 is also exact in the fully correlated limit of these models. In fact, using any

combination of the form

λΛ(2)
3 (AB, IJ ;Sr) + (1− λ)Λ(2)

4 (AB, IJ ;Sr) + (2Sr + 1)2Λ(2)
5 (AB, IJ ;Sr) (3.22)

instead of ∑5
k=1 Λ(2)

k (AB, IJ ;Sr) in Equation (3.20) would be exact in the strong cor-

relation limit of cyclic polyenes described by the PPP and Hubbard Hamiltonians, for

any value of the real parameter λ (the Hubbard Hamiltonian only if the (2Sr + 1)2 fac-

tor at Λ(2)
5 (AB, IJ ;Sr) is ignored). Interestingly, Piecuch and Paldus demonstrated, an-

alytically and numerically, that the exact doubly excited clusters corresponding to the

strong correlation limit of the cyclic polyene models, as extracted by cluster analysis of

the PUHF wavefunction, satisfy the ACPQ equations, but are not a solution of the CCD

ones [191]. As a by-product of their effort, they also demonstrated that in the β = 0 limit

Λ(2)
1 (AB, IJ ;Sr) = (2Sr + 1)2Λ(2)

5 (AB, IJ ;Sr). This observation implies that the ACP-D14

approach proposed in Reference [191], in which one retains only the 1
2T

2
2 terms associated

with diagrams D1 and D4 shown in Figure 3.5, i.e., replacing ∑5
k=1 Λ(2)

k (AB, IJ ;Sr) in

Equation (3.20) by Λ(2)
1 (AB, IJ ;Sr) + Λ(2)

4 (AB, IJ ;Sr), is exact in the fully correlated limit

of cyclic polyene models, too. Piecuch and Paldus implemented the ACP-D14 methodology

and showed that it performs as well as the ACPQ approach for the CNHN systems with

N = 6, 10, 14, 18, and 22 for the entire range of β values. Both are accurate and capable of

removing branch point singularities seen in CCD calculations for N ≥ 14 and both become
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exact when β = 0. In addition, and in light of the ph symmetry, the identical behavior is

anticipated for any ACP scheme using

Λ(2)
1 (AB, IJ ;Sr) + λΛ(2)

3 (AB, IJ ;Sr) + (1− λ)Λ(2)
4 (AB, IJ ;Sr), (3.23)

with λ ∈ R, instead of ∑5
k=1 Λ(2)

k (AB, IJ ;Sr) in Equation (3.20).

A graphical illustration of the above observations is provided in Figure 3.6, where we

examine the performance of all 32 combinations of diagrams D1–D5 in describing the D6h-

symmetric dissociation of the minimum-basis-set (STO-6G [306]) H6 ring using codes in-

terfaced with the integral, RHF and restricted open-shell HF, and CC routines available

in the GAMESS package [307–309], which were developed in this thesis research. In this

and similar hydrogen clusters, which can be viewed as the simplest ab initio analogs of the

PPP and Hubbard Hamiltonian models of cyclic polyenes, one can examine the entire spec-

trum of electron correlation effects by varying the radius R of the ring, transitioning from a

weakly correlated metallic phase at small R values to a strongly correlated insulating phase

as R→∞, mimicking the Mott transitions. To distinguish between the original orthogonally

spin-adapted ACP approaches and their various spin-integrated counterparts implemented

in this thesis research that incorporate T1 clusters as well, we commonly denote the latter

approaches as ACCSD. In each ACCSD approach, the subset of the five 1
2T

2
2 diagrams that

are retained in the CC equations corresponding to projections on doubly excited determi-

nants,
∣∣∣Φabij 〉, is provided inside parentheses. For example, the ACCSD(4,5) scheme incorpo-

rates only diagrams D4 and D5, i.e., it is the spin-integrated analog of the original singlet

spin-adapted ACP-D45 approach extended to singles. Out of the 32 possible ACCSD vari-

ants, only ACCSD(3), ACCSD(4), ACCSD(1,3), ACCSD(1,4), ACCSD(3,4), ACCSD(3,5),

ACCSD(4,5), ACCSD(1,3,4), ACCSD(3,4,5), and ACCSD(1,3,4,5) provide qualitatively cor-

rect PECs. As anticipated in light of the above discussion regarding the Hubbard and PPP

models of cyclic polyenes, only ACCSD(1,3), ACCSD(1,4), ACCSD(3,5), and ACCSD(4,5)

become exact at the symmetric H6 → 6H dissociation, i.e., in the strongly correlated, limit.

47



0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

-2.6

-2.5
 ( )

 

 
E 

(E
h)

RH H (Å)

(a)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

-2.6

-2.5

(b)
E 

(E
h)

RH H (Å)

 (1)
 (2)
 (3)
 (4)
 (5)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

-2.6

-2.5

(c)

E 
(E

h)

RH H  (Å)

 (1,2)   (1,3)
 (1,4)   (1,5)
 (2,3)   (2,4)
 (2,5)   (3,4)
 (3,5)   (4,5)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

-2.6

-2.5

(d)

E 
(E

h)

RH H  (Å)

 (1,2,3)   (1,2,4)
 (1,2,5)   (1,3,4)
 (1,3,5)   (1,4,5)
 (2,3,4)   (2,3,5)
 (2,4,5)   (3,4,5)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

-2.6

-2.5

(e)

E 
(E

h)

RH H  (Å)

 (1,2,3,4)
 (1,2,3,5)
 (1,2,4,5)
 (1,3,4,5)
 (2,3,4,5)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

-2.6

-2.5

(f)

 (1,2,3,4,5)

E 
(E

h)

RH H  (Å)

Figure 3.6: Ground-state PECs characterizing the D6h-symmetric dissociation of the
H6/STO-6G ring, as obtained with the various ACCSD approaches that rely on subsets
of the non-linear diagrams shown in Figure 3.5: (a) diagrams D1–D5 are neglected resulting
in linearized CCSD, (b) all but one of the diagrams D1–D5 are neglected, (c) all but two of
the diagrams D1–D5 are neglected, (d) all but three of the diagrams D1–D5 are neglected,
(e) all but four of the diagrams D1–D5 are neglected, and (f) all diagrams are considered,
i.e., full CCSD. The dashed horizontal line designates the exact dissociation limit for the
employed basis set corresponding to 6 non-interacting H atoms.

It is also interesting to note that any scheme that incorporates D2 is either overcorrelating

or plagued by singularities.

At this point, we would like to recall that three additional classes of ACP approaches

have recently emerged, namely, 2CC [232, 233], pCCSD(α,β) [234], and DCSD [180]. The
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philosophy behind these newer families of ACP schemes is more in line with the original

motivation of Chiles and Dykstra, i.e., it does not focus on the behavior in the strongly

correlated regime as is the case in the work of Paldus, Č́ıžek, Piecuch, and co-workers

summarized above. They were derived by seeking modifications in the diagrams arising

from the 1
2T

2
2 contributions to the CCSD equations that would result in approaches that

are exact for two-electron systems and separated electron pairs. It is, thus, not surprising

that all three classes include ACCSD(4,5) as a special case. In fact, 2CC is the same as

ACCSD(4,5), i.e., there is nothing new about it. The pCCSD(α,β) scheme of Reference

[234], where one replaces the non-linear terms of Equation (3.20) by

β
3∑

k=1
Λ(2)
k (AB, IJ ;Sr) + 1+α

2 Λ(2)
4 (AB, IJ ;Sr) + αΛ(2)

5 (AB, IJ ;Sr), (3.24)

remains exact for two-electron systems and separated electron pairs for any values of the real

parameters α and β. Another parameterization of the terms quadratic in T2 that gives rise

to approaches that are exact for two-electron systems and separated electron pairs is [180]

Λ(2)
1 (AB, IJ ;Sr) + (1 + 2α)Λ(2)

2 (AB, IJ ;Sr) + (1 + α)Λ(2)
3 (AB, IJ ;Sr)

+(1 + β)Λ(2)
4 (AB, IJ ;Sr) + (1 + 2β)Λ(2)

5 (AB, IJ ;Sr).
(3.25)

Note that in this case diagrams D1 and D2 are not necessarily treated on an equal footing.

Setting α = β = −1
2 enforces ph symmetry, even if it is not a real symmetry of the system of

interest, and yields the DCSD ≡ ACCSD(1, 3+4
2 ) methodology, which corresponds to setting

λ in Equation (3.23) at 1
2 . However, one needs to keep in mind that exactness for two-electron

systems and separated electron pairs does not guarantee that a given method can provide

qualitatively, let alone quantitatively, correct results in the presence of strong non-dynamical

correlation effects. In light of the above discussion, it is, thus, not surprising that among

these new generations of ACP methods only DCSD ≡ ACCSD(1, 3+4
2 ) is well-behaved in

situations characterized by electronic quasi-degeneracies, since it satisfies Equation (3.23)

with λ = 1
2 . Furthermore, the extensions of these schemes to connected triples (T3 clusters),

via the 3CC [232, 233], pCCSDT [235], and DCSDT [235, 242] approaches, cannot handle
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strong correlations, because they are based on diagram cancellations/modifications on the

triples projection, i.e., they retain all diagrams of CCSDT corresponding to projections on

doubles, which is not a correct design for strong correlations.

The above discussion implies that the ACP-D13, ACP-D14, ACP-D1(3+4)/2 ≡ DCD,

ACP-D45, and ACPQ approaches, obtained by considering subsets of 1
2T

2
2 diagrams within

the CCD system, Equation (3.20), and their extensions incorporating T1 clusters are more

robust than the traditional CCSD, CCSDT, CCSDTQ, etc. hierarchy in strongly correlated

situations, but the main rationale behind their usefulness is based on considering strongly

correlated limits of highly symmetric, minimum-basis-set, model Hamiltonians. It is far

from obvious that the same combinations of 1
2T

2
2 diagrams are optimum when one uses

ab initio Hamiltonians and larger basis sets, required by quantitative quantum chemistry.

In this dissertation, we address the issue of extending the ACP framework to larger basis

sets and an ab initio description by taking advantage of the fact that Equations (3.22) and

(3.23) define continuous classes of ACP approaches that retain the exactness in the strongly

correlated limit of cyclic polyene models as described by the Hubbard and PPP Hamiltonians

(the Hubbard Hamiltonian only when the (2Sr + 1)2 factor in Equation (3.22) is ignored).

Between the two families, we focus on the one based on diagrams D1, D3, and D4, i.e., we

use Equation (3.23), because such methods are also exact in the β = 0 limit of the more

realistic PPP Hamiltonian.

Among the various ACP and ACCSD approaches originating from the use of Equation

(3.23) instead of ∑5
k=1 Λ(2)

k (AB, IJ ;Sr) in the CCD or CCSD amplitude equations projected

on doubles, only ACP-D1(3+4)/2 and its ACCSD(1,3+4
2 ) or DCSD extension incorporating

T1 clusters, where one uses λ = 1
2 , enforce ph symmetry. Naturally, this is desired for the

Hubbard and PPP models of cyclic polyenes, which have an intrinsic ph symmetry, and is also

justified in the case of strongly correlated systems described by ab initio Hamiltonians, such

as the hydrogen clusters examined in this dissertation, as long as one uses a minimum basis

set, for which ph symmetry is approximately satisfied. However, this does not necessarily
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mean that λ = 1
2 in Equation (3.23) is an appropriate choice for realistic basis sets, especially

when no � nu. By numerically examining several strongly correlated systems treated with

various basis sets, including dissociating rings and linear chains composed of varying numbers

of hydrogen atoms, we have noticed that the ACP-D14 approximation augmented for T1

clusters, i.e., ACCSD(1,4), which uses λ = 0, works better as the basis set becomes larger

than ACCSD(1,3+4
2 ), especially when one incorporates the three-body T3 clusters within

the ACP or ACCSD framework. This numerical observation suggests that one might want

to scale up diagram D4 by decreasing the coefficient λ when nu gets larger. To that end, in

this dissertation project, we introduce the method abbreviated as ACCSD(1,3× no
no+nu +4×

nu
no+nu ), where we set λ = no

no+nu in Equation (3.23) to take into account the effect of the

dimensionality of the basis set in the calculations. This value of λ has two advantages. First,

in the case of no = nu, which is true, for example, in the Hubbard and PPP models of cyclic

polyenes and the various hydrogen clusters as described by a minimum basis set, the novel

method is equivalent to ACCSD(1,3+4
2 ) or DCSD, which is well-behaved in the presence of

strong many-electron correlation effects when the minimum basis set is employed. Second,

as one approaches the CBS limit, the ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ) scheme becomes

ACCSD(1,4), which is a desired behavior as well, since, based on our numerical observations,

ACCSD(1,4), especially when corrected for the connected triples, performs the best out of

all tested ACP approaches.

Another issue that is successfully addressed in this dissertation is the incorporation of

connected triples in the ACP (meaning, ACCSD) approaches. As already mentioned earlier

in this thesis, the PUHF wavefunction, which was used in deriving the ACPQ and ACCSD′

equations and explaining the origin of the exceptional behavior of these ACP schemes in

the presence of strong correlations, does not contain any information regarding the three-

body clusters. Of course, one could incorporate connected triples fully, yielding CCSDT-like

ACP schemes, but the associated computational costs would prohibit the application of such

triples-corrected methods to realistic strongly correlated systems and materials. Histori-
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cally, the T3 physics was incorporated within the ACP framework using MBPT arguments,

similar to those exploited in the CCSDT-1 [119–122] and CCD+ST(CCD) [124] methodolo-

gies. Naturally, the use of MBPT already implies that such schemes will have difficulties

in the presence of electronic quasi-degeneracies due to the vanishingly small perturbative

denominators. Indeed, the resulting ACPTQ [190, 230] and ACPQ+T(ACPQ) [192, 231]

methodologies, which are the ACPQ analogs of CCDT-1 and CCD+T(CCD), respectively,

were only partly successful [190, 192, 193, 219, 231]. Therefore, in this study, we explore the

various diagram selections/modifications characterizing the ACP family of methods within

the active-space CC framework [69, 70, 80–82, 98–100, 145–160], which avoids dangerous

denominators while being computationally affordable.

In the active-space CC methods, the spin-orbitals used in the calculations are partitioned

into four distinct groups, namely, core, active occupied, active unoccupied, and virtual spin-

orbitals, and the higher-order cluster components, such as T3, are approximated with the

help of active orbitals, while the lower-order ones, i.e., T1 and T2, are treated fully. This has

several advantages. By selecting, for example, the T3 cluster amplitudes using active orbitals,

we save a lot in the computer effort without significant loss of accuracy when compared to the

parent full CCSDT approach. At the same time, by keeping the dominant T3 amplitudes in

the calculations, we provide a mechanism for relaxing T1 and T2 amplitudes in the presence

of T3, which is not available in non-iterative triples energy corrections of the CCSD[T] and

CCSD(T) types.

In the CC approach with singles, doubles, and an active-space treatment of triples, ab-

breviated as CCSDt, which is most relevant to this thesis work, we approximate the cluster

operator T as

T ≈ T (CCSDt) = T1 + T2 + t3, (3.26)

where T1 and T2 are the standard one- and two-body components of T , treated fully, and

t3 =
∑

i<j<K
A<b<c

t
ijK
ABCE

Abc
ijK (3.27)
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core (i,j,. . . )

active (I,J,. . . )

active (A,B,. . . )

virtual (a,b,. . . )

Occupied (i,j,. . . )

Unoccupied (a,b,. . . )

Figure 3.7: Schematic representation of the partitioning of orbitals into four disjoint groups,
namely, core (magenta), active occupied (olive), active unoccupied (blue), and virtual (red),
employed in active-space SRCC approaches.

is an approximate form of T3 defined using active orbitals. We use a convention where

uppercase bold letters I,J,K, . . . are the active occupied spin-orbitals, whereas A,B,C, . . .

designate the active unoccupied spin-orbitals. We continue using the lower-case italic indices,

i, j, . . . for the occupied and a, b, . . . for the unoccupied spin-orbitals, if the active/inactive

character is not specified. The tia, tijab, and tAbcijK cluster amplitudes are obtained by solving

the CC amplitude equations, Equation (3.4), projected on the excited Slater determinants

corresponding to the definition of T (CCSDt), i.e., on all singly (
∣∣∣Φai 〉) and doubly (

∣∣∣Φabij 〉)

excited determinants and a subset of the triply excited determinants,
∣∣∣ΦAbc
ijK

〉
, defined us-

ing active orbitals. This simplification on the CC amplitude equations results in significant

CPU time savings. The computational cost associated with the CCSDt method equals that

of CCSD times a small prefactor that depends on the numbers of active occupied (No) and

active unoccupied (Nu) orbitals. To be precise, the most expensive computational steps

of the CCSDt calculations scale as NoNun2
on

4
u. Once the corresponding cluster amplitudes

are computed, the active-space CC energy is obtained, in direct analogy with the conven-

tional SRCC methods, by projecting the connected cluster form of the Schrödinger equation,

Equation (3.3), on the reference determinant, i.e., we continue using Equation (3.5).

The active-space triples extensions of the CCSD-like ACP schemes examined in this

work, namely ACCSD(1,3), ACCSD(1,4), ACCSD(1,3+4
2 ), and ACCSD(1,3× no

no+nu + 4×
nu

no+nu ), are denoted as ACCSDt(1,3), ACCSDt(1,4), ACCSDt(1,3+4
2 ), and ACCSDt(1,3×
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no
no+nu + 4 × nu

no+nu ), respectively. By allowing all orbitals to become active, one obtains

the parent full triples ACP approaches ACCSDT(1,3), ACCSDT(1,4), ACCSDT(1,3+4
2 ), and

ACCSDT(1,3× no
no+nu +4× nu

no+nu ). In extending the various ACP approaches to connected

triples, we focus on modifications of the 1
2T

2
2 diagrams in the CC equations projected on the

doubly excited determinants,
∣∣∣Φabij 〉, to retain the applicability of the resulting CCSDt- and

CCSDT-like ACP schemes in strongly correlated systems. To be precise, the various specifi-

cations given inside parentheses following the ACCSDt and ACCSDT acronyms continue to

designate the modifications of the 1
2T

2
2 diagrams in the CC equations projected on doubles

only, while all terms appearing in the CC equations projected on triples are included.

3.4 Toward the Full Configuration Interaction Limit for Strong
Correlation

The only good Monte Carlos are dead Monte Carlos.

H. F. Trotter and J. W. Turkey, in Symposium on

Monte Carlo Methods, edited by H. A. Meyer (Wi-

ley, New York, 1956) pp. 64–79.

Although the ACP approaches, especially those incorporating T1 and T3 clusters, are

well-suited for the study of strongly correlated systems and can be very accurate in general,

they are not exact, with the exceptions of the fully correlated limit of model Hamiltonians

and the atomization threshold of hydrogen clusters. Here, we discuss the salient features

of a novel semi-stochastic quantum chemistry approach, developed as part of this thesis

research, that is capable of providing FCI-quality energetics, even in the presence of electronic

quasi-degeneracies, at the computational cost of CCSD calculations combined with relatively

inexpensive stochastic and deterministic preparatory steps. This is accomplished by merging

the ACP schemes with the recently proposed semi-stochastic CAD-FCIQMC methodology

[265], which accelerates convergence toward FCI energetics by solving CCSD-like equations in

the presence of the three- and four-body clusters extracted from the early stages of FCIQMC

[260–262] propagations.
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The philosophy behind the CAD-FCIQMC methodology draws heavily from externally

corrected CC approaches [219, 220, 230, 243, 267–274]. It is, thus, based on the observation

that, for Hamiltonians containing up to two-body interactions, the CC correlation energy,

Equation (3.5), depends only on the one- and two-body clusters,

∆E0 = 〈Φ|
[
HN

(
1 + T1 + T2 + 1

2T
2
1
)]
C
|Φ〉 , (3.28)

independent of the level of truncation of the cluster operator, while T1 and T2 directly couple

with their three- and four-body counterparts through the CC equations corresponding to

projections onto singly and doubly excited Slater determinants,

〈Φai |
[
HN

(
1 + T1 + T2 + 1

2T
2
1 + T3 + T1T2 + 1

3!T
3
1
)]
C
|Φ〉 = 0, (3.29)

and 〈
Φabij

∣∣∣ [HN
(

1 + T1 + T2 + 1
2T

2
1 + T3 + T1T2 + 1

3!T
3
1

+T4 + T1T3 + 1
2T

2
2 + 1

2T
2
1 T2 + 1

4!T
4
1
)]
C
|Φ〉 = 0,

(3.30)

respectively. Of course, setting T3 = T4 = 0 in Equations (3.29) and (3.30) and neglecting

projections onto higher–than–doubly excited Slater determinants gives rise to the standard

CCSD approach. What is more interesting, however, is that if one extracts high-quality

T3 and T4 clusters from a well-behaved non-CC source and solves Equations (3.29) and

(3.30) for T1 and T2 in the presence of T3 and T4 obtained in this way, one can obtain

high-quality values of the one- and two-body clusters and, consequently, the much improved

correlation energy. In fact, extracting T3 and T4 from FCI and solving the CCSD-like system

of equations shown in Equations (3.29) and (3.30) would generate the exact T1 and T2 and,

thus, the exact (FCI) correlation energy. Historically, various non-CC sources have been

used for extracting T3 and T4 clusters. For example, in the previous section we discussed

the ACP family of methods that were discovered by extracting the exact four-body clusters

from PUHF (recall that T3 = 0 for PUHF). The PUHF wavefunction was also used in the

design of the ACCSD′ and CCSDQ′ approaches [219]. In the case of the latter approach, no
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assumption was made regarding the exactness of four-body clusters extracted from PUHF.

Other sources of T3 and T4 that have been explored over the years are valence bond theory

[267], CASSCF [268, 269], MRCI [271, 272], and selected CI [270, 273, 274]. In the case of

the CAD-FCIQMC approach, we employ the stochastic FCIQMC methodology of Alavi and

co-workers [260–262] as a source of high-quality T3 and T4 clusters, which are guaranteed to

become exact in the infinite-imaginary-time limit. In what follows, we give a brief overview

of FCIQMC starting with its DMC predecessor.

As mentioned in the Introduction, the DMC approach is capable of producing numerically

exact solutions to the electronic Schrödinger equation by directly sampling the N -electron

wavefunction in the real space of 3N electronic coordinates. This can be accomplished

by realizing that the time-dependent Schrödinger equation resembles a diffusion equation

if expressed in imaginary time, τ = it, so that by propagating the resulting wavefunction

|Ψ(τ)〉 along the imaginary time axis one can project out the exact ground state |Ψ0〉,

lim
τ→∞ |Ψ(τ)〉 = lim

τ→∞ e
−(H−S)τ |Φ0〉 =



c0 |Ψ0〉 , for S = E0

∞, for S > E0 ,

0, for S < E0

(3.31)

where |Φ0〉 is the reference state satisfying 〈Φ0|Ψ0〉 6= 0 (in our case, the RHF determinant

|Φ〉) and S is the energy shift controlling wavefunction evolution.

Unfortunately, traditional DMC approaches run into the notorious Fermion sign prob-

lem, i.e., an unconstrained imaginary-time propagation of |Ψ(τ)〉 in the coordinate space

will cause the trial wavefunction to collapse to a totally symmetric bosonic state, which

is the mathematical ground state of the spin-free non-relativistic electronic Hamiltonian.

To alleviate this problem, the fixed-node approximation is employed in conventional DMC

simulations. In this case, one enforces the nodal structure of an antisymmetric approx-

imate wavefunction, obtained using one of the relatively inexpensive quantum chemistry

approaches, on |Ψ(τ)〉. By doing so the final wavefunction |Ψ0〉 and the corresponding en-
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ergy E0 are not exact anymore and their quality is bound to the quality of the approximate

nodes. This issue is addressed in the FCIQMC approach of Alavi and co-workers, who re-

placed the propagation in the coordinate space by the propagation in the many-electron

Hilbert space spanned by Slater determinants. The fact that Slater determinants satisfy the

proper fermionic antisymmetry by construction ensures that the final projected wavefunction

will be antisymmetric as well, without having to resort to a fixed-node approximation.

The first step in the FCIQMC methodology is to express the N -electron time-dependent

wavefunction |Ψ(τ)〉 as a linear combination of all Slater determinants afforded by the one-

electron basis set, i.e., a FCI-type expansion with the imaginary–time-dependent CI expan-

sion coefficients,

|Ψ(τ)〉 =
∑
K

cK(τ) |ΦK〉 , (3.32)

where |ΦK〉 are the Slater determinants used to represent |Ψ(τ)〉. Inserting this expression

for |Ψ(τ)〉 into the imaginary-time Schrödinger equation, in which we have applied an energy

shift S to the electronic Hamiltonian, yields a system of coupled differential equations for

the cK(τ) coefficients,

∂

∂τ
cK(τ) = − (HKK − S) cK(τ)−

∑
L( 6=K)

HKLcL(τ), (3.33)

where HKL = 〈ΦK |H|ΦL〉 are matrix elements of the Hamiltonian involving Slater determi-

nants engaged in the calculation. In light of Equation (3.31), lim
τ→∞ |Ψ(τ)〉 = c0 |Ψ0〉, as long

as lim
τ→∞S = E0. This implies that in the infinite imaginary-time limit the state becomes

stationary, meaning ∂
∂τ cK(τ) = 0,∀K. As a result, if all Slater determinants are allowed

in the calculations, in the τ = ∞ limit Equation (3.33) becomes equivalent to the FCI

diagonalization of the Hamiltonian matrix in a given basis set, ∑LHKLcL(∞) = E0cK(∞).

A direct numerical integration of the set of coupled differential equations shown in Equa-

tion (3.33) would require the entire set of cK(τ) coefficients to be available at every time

step, resulting in a formidable computational cost of FCI times the number of time steps.

To address this issue, Alavi and co-workers replaced the deterministic approach to Equation
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3.33 by employing a walker population dynamics algorithm, in accord with DMC approaches.

Of course, one needs to keep in mind that in DMC the walkers sample a continuum space

of 3N electronic coordinates, while in FCIQMC the walkers sample the discrete set of Slater

determinants. Walkers can be thought of as fictitious signed particles that populate, in the

case of FCIQMC, the various Slater determinants. In the FCIQMC approach, the CI coeffi-

cient at a given Slater determinant is proportional to the signed sum of walkers residing on

this determinant, i.e.,

cK(τ) ∝ NK =
∑
α
sαδK,Kα , (3.34)

where sα = ±1 is the sign associated with the αth walker and the summation extends over

all walkers. As in the case of CI expansion coefficients, the walker population at a given

determinant can be either positive or negative. On the other hand, the total population

of walkers, Nw, is strictly positive and computed as Nw = ∑
K |NK |. At this point it is

worth mentioning that, although the FCIQMC approach guarantees the proper fermionic

antisymmetry of the final projected state, it does not alleviate completely the fermion sign

problem, since the stochastically determined sign structure of the FCIQMC wavefunction

is not necessarily the same, up to a phase, with the one of the FCI vector. This is why,

in addition to the birth/death and spawning processes controlling walker dynamics, further

elaborated on below, one needs to annihilate walkers with opposite signs at each time τ .

In light of Equation (3.34), the coupled differential equations shown in Equation (3.33)

become

d
dτ NK(τ) = − (HKK − S)NK(τ)−

∑
L( 6=K)

HKLNL(τ). (3.35)

The structure of the coupled differential equations shown in Equation (3.35) reveals that the

walker population dynamics is essentially driven by the matrix elements of the Hamiltonian.

Consequently, two kinds of processes can be identified. On the one hand, the off-diagonal

matrix elements of the Hamiltonian define the spawning of walkers on different determi-

nants. To be precise, for each (parent) walker α residing on a given Slater determinant
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|ΦK〉, a Slater determinant |ΦL〉, coupled to |ΦK〉 through the Hamiltonian, is selected with

probability pgen(L|K) and the spawning of one or more (child) walkers is attempted with

probability ps(L|K) = ∆τ |HKL|/pgen(L|K), where ∆τ designates the imaginary-time step,

compared to a number between 0 and 1 produced by random number generator. The sign

of the matrix element of the Hamiltonian dictates also the sign of the spawned walker; the

spawned walker will have the same sign as the parent walker in the case of HKL < 0 and

opposite otherwise. We also see that this step of the algorithm is responsible for sampling

the many-electron Hilbert space spanned by Slater determinants by placing walkers on new

determinants. Taking into account that the electronic Hamiltonian contains up to two-body

terms, the spawning step at a given time τ can explore Slater determinants |ΦL〉 that differ

from |ΦK〉 by at most two spin-orbitals. On the other hand, the diagonal matrix elements

of the Hamiltonian define the birth or death of walkers, meaning the increase or decrease

of the walker population on a given Slater determinant |ΦK〉. In this step, for each parent

walker residing on |ΦK〉, a probability pd(K) = ∆τ (HKK − S) is computed. If pd > 0

(pd < 0), the walker dies (is cloned) with probability pd (|pd|). It is also apparent that the

growth of the walker population depends on the value of the shift energy S. For example,

in light of Equation (3.31), if a rapid walker population growth is desired, the shift energy

S is set at a value that is larger than E0; this is done in the early stages of the FCIQMC

propagations. On the other hand, once a total walker population becomes sufficiently large,

one starts using the energy shift S to stabilize walker population and reach convergence.

As already alluded to above, the final step of the walker population dynamics algorithm

involves the annihilation of oppositely signed walkers inhabiting a given determinant. As

with birth/death and spawning, this is done at each time τ during the propagation.

Having discussed the key elements of the walker population dynamics algorithm, we

provide a brief outline of a FCIQMC simulation. We start with the original algorithm [260].

We begin by placing a certain number of walkers on one or more reference determinants (in

our case, one, RHF) and setting the energy shift S above the exact ground-state energy E0,
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S > E0, to promote the growth of the walker population [cf. Equation (3.31)]. At every

imaginary-time step τ , the three major processes driving the walker population dynamics

are attempted, namely, spawning, birth/death, and annihilation. Initially, the simulation is

characterized by an exponential growth of the walker population until a plateau is reached,

corresponding to a system-dependent critical population of walkers, Nc. The plateau is

a manifestation of a steady state, where the rate of walker creation equals the combined

rate of death and annihilation. During this stage of the simulation, the annihilation process

“purifies” the FCIQMC wavefunction, leading to a converged sign structure. Once the proper

sign structure is attained, the walker population begins to rise again. At this point, the

energy shift S is allowed to vary in an attempt to stabilize the walker population. Based on

Equation (3.31), a constant walker population implies that S → E0 and, thus, convergence

is reached.

The performance of the FCIQMC methodology was originally tested on the Ne atom

and oligoatomic species, including N2, C2, and H2O, as described by the aug-cc-pVDZ and

cc-pVDZ basis sets, respectively. It was demonstrated that, even when starting with a

single walker inhabiting the RHF Slater determinant, the FCIQMC simulation was able to

converge to the deterministic FCI energy with submillihartree accuracy. What is, perhaps,

more interesting is the fact that this kind of accuracy was obtained with critical walker

populations, which define the computational bottleneck of FCIQMC, less than the total

number of Slater determinants afforded by the one-electron basis, NFCI. This observation

suggests that FCIQMC is capable of providing FCI-quality results without having to sample

the entire many-electron Hilbert space. Although in many cases fc ≡ Nc
NFCI

� 1, in the

original FCIQMC work [260] there were a few challenging situations in which fc was as

large as 0.9, implying that for some systems a population of walkers comparable to the

dimensionality of the FCI problem was required for the convergence of the correct sign

structure of the wavefunction. In addition, despite the fact that the critical number of

walkers was always less than the dimension of the many-electron Hilbert space, Nc < NFCI,
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it still grew exponentially with the size of the system. These observations forced Alavi and

co-workers to remark that the FCIQMC approach should be “perhaps best thought of as an

alternative method to FCI, with a smaller prefactor (proportional to fc), which in some cases

is substantially so”. They also forced them to work on improving the FCIQMC algorithm.

Alavi and co-workers addressed the above issues by augmenting the original FCIQMC

approach with an initiator criterion, giving rise to the initiator FCIQMC (i-FCIQMC) scheme

[261, 262]. To be precise, at a given time step, out of all Slater determinants inhabited by

walkers only a subset of them, called initiators, are allowed to spawn progeny to unpopulated

Slater determinants. For a Slater determinant to become an initiator, it has to be populated

by more than a preset value of walkers, denoted na. During the imaginary-time propagation,

the population of walkers inhabiting each Slater determinant changes, meaning that the set of

initiator determinants is dynamically updated. In fact, as the total number of walkers grows

during a simulation, the i-FCIQMC approach eventually becomes equivalent to FCIQMC,

since each sampled determinant, which contributes to the wavefunction, will eventually have

a walker population greater than na. Of course, the same applies if one sets na = 0, meaning

that as long as a determinant is inhabited by at least one signed walker it can act as an

initiator. As a consequence of the initiator approach, the total number of walkers required

for i-FCIQMC to achieve the same level of accuracy as the original FCIQMC methodology

was significantly reduced, sometimes by a few orders of magnitude, compared to the original

algorithm discussed in Reference [260]. The success of i-FCIQMC can be traced to the

fact that determinants that are populated by more than na walkers have a much higher

probability of having a converged sign structure. Taking into account that the sign of a

child walker depends, in addition to the matrix elements of the Hamiltonian, on the sign

of the parent walker, the initiator approach allows for the sign-coherent sampling of the

many-electron Hilbert space, minimizing the role of annihilation.

Having said all of the above, the initiator approach may introduce a systematic error

related to the undersampling of non-initiator determinants. This is not a major concern for
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small to medium size molecules, but becomes a potential issue in larger systems whose many-

electron Hilbert spaces are characterized by immense dimensionalities. In fact, in some cases

i-FCIQMC fails to converge to the exact, FCI, energetics as a consequence of the initiator bias

(see, for example, References [310] and [263]). To ameliorate the systematic error introduced

by the initiator approximation, Alavi and co-workers modified the algorithm driving the

walker population dynamics, such that for each non-initiator Slater determinant |ΦK〉 a local,

reduced, energy shift SK is applied by scaling the full energy shift S [263, 264]. The scaling

factor depends on the ratio of accepted spawning events from |ΦK〉 over the total attempted

spawns from the same Slater determinant (see Reference [263] for the details). Once a Slater

determinant accumulates more than na walkers, the full shift S is applied. This means that

as the total walker population grows, one always recovers the original FCIQMC algorithm.

This novel FCIQMC approach is called adaptive-shift FCIQMC (AS-FCIQMC) and has

been shown to significantly reduce the errors introduced by the initiator approximation

[263, 264]. Furthermore, it has been demonstrated that one can obtain near-exact energetics

with relatively modest total walker populations, even when the many-electron Hilbert space

is spanned by about 1035 determinants [263, 266].

Having briefly discussed the intricacies of the FCIQMC, i-FCIQMC, and AS-FCIQMC

approaches, we now proceed to the recently proposed CAD-FCIQMC methodology [265, 266].

As already mentioned above, CAD-FCIQMC accelerates convergence toward FCI energetics

by solving a CCSD-like system of equations, Equations (3.29) and (3.30), in which singly and

doubly excited clusters, needed to determine the energy, Equation (3.28), are iterated in the

presence of their three- and four-body counterparts extracted from FCIQMC propagations.

Before performing cluster analysis of a given FCIQMC wavefunction, we need to express it

using intermediate normalization,∣∣∣∣Ψ(MC)
0 (τ)

〉
= [1 +

N∑
n=1

C
(MC)
n (τ)] |Φ〉 . (3.36)

To that end, the walker population of each Slater determinant is divided by the walker

population of the reference determinant |Φ〉 (in our case, the RHF determinant). The cor-
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responding CI excitation operators are expressed as

C
(MC)
n (τ) =

∑
K

cK(τ)EK , cK(τ) = NK
N0

, (3.37)

where EK is the elementary ph excitation operator that generates |ΦK〉 upon acting on the

reference determinant |Φ〉, EK |Φ〉 = |ΦK〉. Subsequently, we cluster analyze the FCIQMC

wavefunction by rewriting it in a CC-like form,

∣∣∣∣Ψ(MC)
0 (τ)

〉
= exp

 N∑
n=1

T
(MC)
n

 |Φ〉 , (3.38)

and use Equation (3.16) for m = 1–4, resulting in

T
(MC)
1 = C

(MC)
1 ,

T
(MC)
2 = C

(MC)
2 − 1

2

(
C

(MC)
1

)2
,

T
(MC)
3 = C

(MC)
3 − C(MC)

1 C
(MC)
2 + 1

3

(
C

(MC)
1

)3
,

T
(MC)
4 = C

(MC)
4 − C(MC)

1 C
(MC)
3 − 1

2

(
C

(MC)
2

)2
+
(
C

(MC)
1

)2
C

(MC)
2 − 1

4

(
C

(MC)
1

)4
,

(3.39)

where the “(MC)” superscripts emphasize the origin of the amplitudes defining the various

excitation operators. In writing Equation (3.39), we dropped the explicit imaginary-time

dependence of the operators for the sake of clarity. As might have been anticipated, all one

needs to extract T (MC)
3 (τ) and T

(MC)
4 (τ) is the knowledge of the FCIQMC wavefunction

up to quadruples (C(MC)
4 contributions). This significantly simplifies the cluster analysis

algorithm and reduces the memory and storage requirements.

The various steps involved in a CAD-FCIQMC calculation are summarized as follows.

First, we initialize a FCIQMC simulation by placing a certain number of walkers on the ref-

erence determinant |Φ〉. At a given time τ , we extract C(MC)
1 (τ), C(MC)

2 (τ), C(MC)
3 (τ), and

C
(MC)
4 (τ) using Equation (3.37) from the instantaneous FCIQMC wavefunction,

∣∣∣Ψ(MC)(τ)
〉
.

Subsequently, we use Equation (3.39) to perform cluster analysis of the FCIQMC wavefunc-

tion at time τ and extract the corresponding triply and quadruply excited clusters, i.e.,
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T
(MC)
3 (τ) and T

(MC)
4 (τ) components, respectively. In the next step, we solve the CCSD-

like system of equations, Equations (3.29) and (3.30), in the presence of T (MC)
3 (τ) and

T
(MC)
4 (τ) to determine the one- and two-body clusters and the ground-state correlation

energy ∆E0(τ). Finally, we check the convergence by recomputing T1, T2, and ∆E0 in

the presence of T (MC)
3 (τ ′) and T

(MC)
4 (τ ′) extracted from a FCIQMC wavefunction at time

τ ′ > τ . It is guaranteed that in the infinite imaginary-time limit ∆E0(τ) approaches the

exact, FCI, ground-state correlation energy. The above procedure is given in graphical form

in Figure 3.8.

It has been demonstrated in our work [265, 266] that the CAD-FCIQMC methodology is

capable of producing FCI-quality energetics out of the early stages of FCIQMC propagations,

even in challenging situations involving electronic quasi-degeneracies, such as those charac-

terizing the C2v-symmetric double bond dissociation of H2O [265]. However, CAD-FCIQMC,

as described above, breaks down in the presence of strong many-electron correlation effects.

A simple inspection of Equations (3.29) and (3.30) reveals the origin behind this failure.

At τ = 0, the FCIQMC wavefunction is equivalent to the reference Slater determinant,

usually the RHF determinant |Φ〉. Thus, T (MC)
3 (τ = 0) = T

(MC)
4 (τ = 0) = 0 and the

CAD-FCIQMC approach reduces to CCSD. Considering the poor, sometimes even singu-

lar, behavior of CCSD in the strong correlation regime, it is natural that CAD-FCIQMC

may struggle with strongly correlated systems involving large numbers of strongly correlated

electrons.

In this dissertation, we extend the CAD-FCIQMC approach to the strong correlation

regime by merging it with the ACP approaches. As discussed in the previous section, the

key to tackling strong many-electron correlation effects lies in the 1
2T

2
2 contributions to the

CC equations projected on doubles. To that end, in order to incorporate the ACP ideas

within the CAD-FCIQMC framework, we repartition Equation (3.30) such that selected
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propagation
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n (τ),

n = 1–4, at a given time
τ using Equation (3.37)
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perform cluster analysis
of the FCIQMC wave-
function at time τ to

extract the corresponding
T

(MC)
3 (τ) and T

(MC)
4 (τ)

Solve CCSD-like system of
equations, Equations (3.29)

and (3.30), to determine
T1 and T2 in the presence
of T (MC)

3 (τ) and T
(MC)
4 (τ)

Compute CAD-FCIQMC
energy at time τ us-
ing Equation (3.28)

Convergence?

∆E0(τ) ≈ ∆E(FCI)
0

yes

No

Figure 3.8: Flowchart outlining the key steps of the CAD-FCIQMC algorithm.
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coupled-pair contributions are extracted from FCIQMC as well,
〈
Φabij

∣∣∣ [HN
(

1 + T1 + T2 + 1
2T

2
1 + T

(MC)
3 + T1T2 + 1

3!T
3
1

+T (MC)
4 + T1T

(MC)
3 + 1

2T
2
1 T2 + 1

4!T
4
1
)]
C
|Φ〉+

5∑
i

[
ξiΛ

(2)
i + (1− ξi) Λ(2),(MC)

i

]
= 0.

(3.40)

In other words, we assume that in addition to T3 and T4, which are extracted from the

FCIQMC wavefunction as summarized above, we extract selected 1
2T

2
2 diagrams responsible

for weak correlations from FCIQMC as well (they are marked in Equation (3.40) as Λ(2),(MC)
i

terms). Like its CAD-FCIQMC predecessor of Reference [265], this new scheme is guaranteed

to provide numerically exact, FCI, energetics in the infinite imaginary-time limit. Further-

more, it offers an additional flexibility that extends its application to the strong correlation

regime. To be precise, the success behind this modification to the original CAD-FCIQMC

algorithm lies in the fact that the 1
2T

2
2 part that is responsible for good behavior in strongly

correlated systems is treated deterministically, while its complement, which is, more or less,

the weakly correlated part of 1
2T

2
2 , is extracted from FCIQMC. For example, setting ξ1 = 1,

ξ2 = 0, ξ3 = ξ4 = 1
2 , and ξ5 = 0 gives rise to the CAD-FCIQMC[1,(3+4)/2] variant, where

the numbers in square brackets designate the 1
2T

2
2 diagrams, shown in Figure 3.5 in the case

of the spin-adapted CC formalism, that are treated deterministically. Consequently, the

starting point of CAD-FCIQMC[1,(3 + 4)/2] is ACCSD(1,3+4
2 )≡ DCSD, which is already

well-behaved in the presence of strong correlations. The remaining many-electron correla-

tion effects are extracted from FCIQMC. Within this framework, the original CAD-FCIQMC

approach is designated us CAD-FCIQMC[1–5].
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CHAPTER 4

NUMERICAL RESULTS

4.1 Application of the Approximate Coupled-Pair Methods with
an Active-Space Treatment of Three-Body Clusters to Model
Metal–Insulator Transitions

We begin the discussion of the numerical results by assessing the performance of the de-

terministic ACP methods, including the ACCSD(1,3), ACCSD(1,4), ACCSD(1,3+4
2 ), and

ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ) approaches and their active-space and full triples ex-

tensions, developed and implemented in this dissertation project, in challenging situations

involving strong many-electron correlation effects. In particular, we examine their ability

to reproduce the exact or nearly exact PECs characterizing the symmetric dissociations of

the H6 and H10 rings and the H50 linear chain of equidistant hydrogen atoms, in which the

degree of entanglement of the electrons is continuously varied as the systems depart their

weakly correlated metallic phases around the respective potential minima and approach the

insulating atomization regions governed by strong correlations of all electrons present in the

system. To facilitate the discussion and emphasize the power of the ACP methods, without

and with the connected triples, in properly handling strong correlations, we also provide the

pertinent CCSD, CCSDt, and CCSDT PECs.

All of the CC calculations reported in this subsection were based on RHF reference

functions. The CCSD, CCSDt, and full CCSDT computations were performed using the

active-space CC codes developed by our group [144, 161, 162] that have been recently incor-

porated in the official GAMESS package [307–309]. The various ACCSD, ACCSDt, and full

ACCSDT calculations were carried out using a local version of GAMESS, where we made

suitable modifications in our CCSD, CCSDt, and CCSDT routines. For the H6 and H10

rings, we employed the largest basis sets that would allow us to perform the exact, FCI
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computations, namely, cc-pVTZ [276] in the case of H6 and DZ [311, 312] in the H10 case.

The pertinent FCI calculations were carried out using the determinantal FCI code [313–315]

available in GAMESS. When considering the symmetric dissociation of the H50 linear chain,

we used the minimum STO-6G [306] basis set, since the nearly exact LDMRG(500)/STO-

6G results are available for it [175] (in this case, FCI calculations, even with minimum basis

sets, are not possible). The active-space CC approaches, including CCSDt and ACCSDt,

employed active spaces that consisted of the orbitals associated with the 1s shells of the

hydrogen atoms, i.e., three active occupied and three active unoccupied orbitals for the H6

ring and 5 active occupied and 5 active unoccupied orbitals in the case of the H10 ring. In

the case of the H50 linear chain, where we used the minimum STO-6G basis set, the only

meaningful active space is that incorporating all occupied and unoccupied orbitals, resulting

in computations with a full treatment of connected triples. Thus, in this case, we performed

the CCSDT and ACCSDT computations, in addition to CCSD and ACCSD. Due to the

fact that the H50/STO-6G system is characterized by no = nu, meaning an approximate

ph symmetry, we only considered the ACCSD(1,3+4
2 ) and ACCSDT(1,3+4

2 ) methods using

λ = no
no+nu in Equation (3.23). All of our calculations for the symmetric dissociations of

the H6 and H10 rings employed the following grid of internuclear separations between neigh-

boring hydrogen atoms: 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0,

2.1, 2.2, 2.3, 2.4, and 2.5 Å. The PECs characterizing the symmetric dissociation of the H50

linear chain were calculated at the geometries reported in Reference [175], namely, 1.0, 1.2,

1.4, 1.6, 1.8, 2.0, 2.4, 2.8, 3.2, 3.6, and 4.2 bohr.

We begin by examining the D6h-symmetric dissociation of the six-membered hydrogen

ring, as described by the cc-pVTZ basis set. The ground-state PECs of the H6/cc-pVTZ

system resulting from the conventional CCSD approach, the various ACP methods, including

ACCSD(1,3), ACCSD(1,4), ACCSD(1,3+4
2 ), and ACCSD(1,3 × no

no+nu + 4 × nu
no+nu ), their

active-space and full triples counterparts, and the exact FCI diagonalization are presented

in Tables 4.1–4.3 and Figure 4.1.
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As shown in Tables 4.1–4.3 and Figure 4.1, the CCSD approach and even the active–

space-based CCSDt scheme and its parent CCSDT counterpart break down rather quickly as

the distance between neighboring hydrogen atoms, RH–H, increases. In fact, CCSD already

overcorrelates around RH–H = 2.0 Å, i.e., at about twice the equilibrium RH–H distance, by

almost 25 mEh, when compared to the exact FCI results. As one stretches the RH–H distance

even further, the deviation from FCI dramatically increases, resulting in an unphysical hump

and the PEC going downhill, so that when the largest H–H distance considered in this work,

namely, RH–H = 2.5 Å, is considered, the unsigned difference between the CCSD and FCI

energies reaches a gargantuan value of more than 237 mEh. Adding triples on top of CCSD

using the full CCSDT approach results in a significant improvement of the PEC around

the equilibrium geometry, with errors relative to the FCI energetics of about 0.1 mEh.

However, as one approaches the strong correlation regime, CCSDT eventually follows the

same catastrophic path as CCSD. On a side note, it is worth mentioning that the active-space

CCSDt approach, using an active space comprised of the six 1s orbitals of the individual

H atoms, faithfully reproduces the parent CCSDT energetics, with deviations from CCSDT

not exceeding ∼2 mEh (see Tables 4.2 and 4.3), but at a small fraction of the computational

effort. To be precise, the CPU time of a CCSDt iteration for the H6/cc-pVTZ system was 6

s, using a single core and without taking advantage of point group symmetry. This should be

contrasted with the 98 s per CCSDT iteration ran the same way as the CCSDt computation.

A quick inspection of Figure 4.1 reveals that all ACP methods examined in this study,

without and with the connected triples, provide qualitatively correct PECs for the D6h-

symmetric dissociation of the H6/cc-pVTZ ring, i.e., they do not overcorrelate as one ap-

proaches the strong correlation limit and remain close to FCI. Focusing on the ACP method-

ologies with up to two-body clusters, meaning the ACCSD approaches, the ACCSD(1,3)

scheme, where λ = 1 in Equation (3.23), performs the best, generating a PEC that closely

reproduces its FCI counterpart, as illustrated by the small mean unsigned error (MUE) and

mean signed error (MSE) values relative to FCI of 0.675 mEh and −0.311 mEh, respec-
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tively (see Table 4.1). At the other end of the spectrum, the ACCSD(1,4) approach, where

one sets λ = 0 in Equation (3.23), does not reproduce the FCI energetics as good as the

ACCSD(1,3) variant, having MUE and MSE values relative to FCI of 9.349 mEh and 9.349

mEh, respectively. As one might have anticipated, the ACCSD(1,3+4
2 ) ≡ DCSD method,

which treats diagrams D3 and D4 shown in Figure 3.5 on an equal footing by setting λ =

0.5 in Equation (3.23), produces a PEC that is more or less the average of the ACCSD(1,3)

and ACCSD(1,4) ones [see panels (a) and (d) of Figure 4.1 and Table 4.1]. Furthermore,

the ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ) PEC characterizing the symmetric dissociation of

the H6/cc-pVTZ system is almost identical, yet slightly better in reproducing the exact FCI

data, to that resulting from the ACCSD(1,4) calculations. Taking into account the size of

the cc-pVTZ basis set, where no = 3 and nu = 81 = 27no, this is not a surprise, since, by

construction, the ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ) approach converges to ACCSD(1,4)

with increasing basis set size (nu
no approaching ∞).

From the above discussion, one might crown the ACCSD(1,3) scheme the best ACP ap-

proach examined in this dissertation. However, we believe that the excellent performance

of the ACCSD(1,3) method in producing the FCI-quality energetics for the metal–insulator

transition in the H6/cc-pVTZ system is rather fortuitous. As already mentioned, the ACP

methods are very effective in recovering non-dynamical correlation effects by taking advan-

tage of various diagram cancellations in the CCD/CCSD equations projected on doubly ex-

cited configuration state functions. However, these diagram cancellations do not describe the

T3 physics, needed to capture dynamical correlations and obtain a quantitative description

of realistic systems described by ab initio Hamiltonians. Before proceeding to the detailed

discussion of the performance of the various ACP methods with the connected triply excited

clusters considered in this work, we note that the ACP approaches with an active-space

treatment of T3 components, i.e., the ACCSDt schemes, closely reproduce their parent full

triples ACCSDT counterparts. At the same time, the active-space triples framework replaces

the expensive n3
on

5
u computational time steps associated with a full treatment of connected
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triply excited clusters by the relatively inexpensive NoNun2
on

4
u ones, i.e., the computational

costs are reduced to those of CCSD times a small prefactor on the order of the number of sin-

gles in the active space. For example, the 98 s per single ACCSDT(1,3× no
no+nu +4× nu

no+nu )

iteration, ran on a single core using C1 point group symmetry, are reduced to just 6 s when

the active-space triples ACCSDt(1,3× no
no+nu +4× nu

no+nu ) approach is employed, consistent

with the computational time savings observed in the CCSDT/CCSDt case. This is an im-

portant observation, especially when one realizes that the ultimate goal of our effort in the

long term is to extend the ACP approaches to large systems, allowing us to study strongly

correlated materials.

The inclusion of connected triples on top of the various ACP schemes examined in this dis-

sertation results in a dramatic improvement of the ACCSD(1,4) and ACCSD(1,3× no
no+nu +

4× nu
no+nu ) energetics when compared to the exact, FCI, data. To be precise, the MSE values

characterizing the H6/cc-pVTZ PECs obtained with the active–space-based ACCSDt(1,4)

and ACCSDt(1,3× no
no+nu + 4× nu

no+nu ) approaches are 2.129 mEh and 1.818 mEh, respec-

tively (cf. Table 4.2). As a result, the ACCSDt(1,4) and, especially, ACCSDt(1,3× no
no+nu +

4 × nu
no+nu ) PECs can be hardly distinguished from the FCI one. To better appreciate the

significance of this finding, we compare the ACCSDt(1,3 × no
no+nu + 4 × nu

no+nu ) and FCI

CPU timings, which are 6 s per iteration on a single core, without taking advantage of

point group symmetry, in the former case, and more than 7 h per iteration, on the same

core, in the latter case, in which we used the D2h symmetry in the calculations. The full

treatment of three-body clusters further reduces the already small deviations from FCI even

further, as illustrated by the MSE values of 1.189 mEh, for ACCSDT(1,4), and 0.875 mEh,

in the case of ACCSDT(1,3 × no
no+nu + 4 × nu

no+nu ) (see Table 4.3). On the other hand,

the PECs characterizing the symmetric dissociation of the H6/cc-pVTZ ring generated by

the connected-triples extensions of the ACCSD(1,3) and ACCSD(1,3+4
2 ) approaches are of a

poorer quality when compared to their λ = 0 [ACCSDt(1,4)/ACCSDT(1,4)] and λ = no
no+nu

[ACCSDt(1,3 × no
no+nu + 4 × nu

no+nu )/ACCSDT(1,3 × no
no+nu + 4 × nu

no+nu )] counterparts.
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Tables 4.1–4.3 reveal the following relationship regarding the ability of the various ACP

schemes considered here to reproduce the FCI energetics: ACCSD(1,3) > ACCSDt(1,3)

≈ ACCSDT(1,3) and ACCSD(1,3+4
2 ) > ACCSDt(1,3+4

2 ) ≈ ACCSDT(1,3+4
2 ). This implies

that the ACCSD(1,3) and ACCSD(1,3+4
2 ) variants of ACP approaches are not systematically

improvable, contrary to their ACCSD(1,4) and ACCSD(1,3× no
no+nu + 4× nu

no+nu ) counter-

parts, where the following accuracy patterns are observed: ACCSD(1,4) < ACCSDt(1,4) ≈

ACCSDT(1,4) and ACCSD(1,3× no
no+nu +4× nu

no+nu ) < ACCSDt(1,3× no
no+nu +4× nu

no+nu )

≈ ACCSDT(1,3× no
no+nu +4× nu

no+nu ). An additional important observation, in favor of the

λ = 0 and λ = no
no+nu variants, is that the ACCSD(1,4) and ACCSD(1,3× no

no+nu +4× nu
no+nu )

approaches recover 94–98% of the exact, FCI, correlation energy characterizing the D6h-

symmetric dissociation of the H6/cc-pVTZ ring and their connected triples extensions are

practically exact, consistently retrieving about 99% of the FCI correlation energy.

To further explore the usefulness of ACP methods, especially those that incorporate

T3 physics, in faithfully reproducing FCI-level energetics in the presence of strong non-

dynamical electron correlation effects, we studied the D10h-symmetric dissociation of the

ten-membered hydrogen ring as described by the DZ basis set. This challenging system

involves the entanglement of 10 electrons, which translates into an about 67% increase in

the number of strongly correlated electrons compared to the smaller H6 hydrogen cluster.

This has a severe effect on the performance of the CCSD, CCSDt, and CCSDT approaches,

which, as illustrated in Tables 4.4–4.6 and Figure 4.2, fail catastrophically; they overcorrelate

rather quickly and no convergence is obtained for distances between neighboring H atoms

beyond 1.7 Å. Nevertheless, as was the case with the smaller H6 ring, all ACP methods

examined in this work, without and with the connected triples, produce qualitatively cor-

rect PECs for the metal–insulator transition in the challenging H10 cluster (see Figure 4.2).

Even though the DZ basis set, where no = 5 and nu = 15, is rather small compared to that

used in the H6 case, which translates into the various ACP schemes behaving more or less

similarly (cf. Tables 4.4–4.6 and Figure 4.2), we still observe the same patterns regarding the
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ability of the ACP methods, without and with the connected triples, to reproduce the FCI

energetics. For example, focusing on the ACP approaches with up to two-body clusters, the

ACCSD(1,3) energetics are the closest to the FCI ones (MUE = MSE = 12.572 mEh), fol-

lowed by ACCSD(1,3+4
2 ) (MUE = MSE = 14.315 mEh), ACCSD(1,3× no

no+nu + 4× nu
no+nu )

(MUE = MSE = 14.980 mEh), and ACCSD(1,4) (MUE = MSE = 15.505 mEh), as was

the case with the smaller H6 ring. The inclusion of a subset of connected triple excitations,

selected via an active space of 1s orbitals, results in a dramatic improvement of the results,

as illustrated by the about 2–4 times reduction in the MUE and MSE values and favors

the ACCSDt(1,3 × no
no+nu + 4 × nu

no+nu ) scheme (see Tables 4.4 and 4.5). Consistent with

the H6 case, ordering the various active-space triples ACP approaches based on their abil-

ity to reproduce the FCI data yields ACCSDt(1,3 × no
no+nu + 4 × nu

no+nu ) > ACCSDt(1,4)

> ACCSDt(1,3+4
2 ) > ACCSDt(1,3), with their MUE and MSE values being 3.770 mEh

and −3.770 mEh for ACCSDt(1,3 × no
no+nu + 4 × nu

no+nu ), 3.790 mEh and −3.790 mEh

for ACCSDt(1,4), 4.110 mEh and −4.110 mEh for ACCSDt(1,3+4
2 ), and 5.793 mEh and

−5.793 mEh in the case of ACCSDt(1,3). The full inclusion of three-body clusters does

not change the scenery, since, due to the small size of the DZ basis set, the active-space

approaches already recover the lion’s share of T3 physics. Finally, the ACCSD(1,4) and

ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ) schemes consistently recover about 96% of the exact,

FCI, correlation energies characterizing the D10h-symmetric dissociation of H10/DZ, with

their connected-triples counterparts being virtually exact, recovering ∼99% of the FCI cor-

relation energies, similar to the smaller H6 ring. Therefore, the H10/DZ results reinforce our

conclusion that the ACCSD(1,4) and ACCSD(1,3× no
no+nu +4× nu

no+nu ) methods are system-

atically improvable by the inclusion of connected triples and exhibit the best performance

in reproducing the corresponding FCI PECs, once connected triples are included.

Having established the ability of the various ACP approaches, especially those incorpo-

rating three-body clusters, to closely reproduce the FCI PECs characterizing the symmetric

dissociation of the six- and ten-membered hydrogen rings, we now proceed to examine the
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symmetric dissociation of the H50 linear chain into individual hydrogen atoms, which is

a problem that involves the entanglement of 50 strongly correlated electrons. As already

mentioned above, even when a minimum basis set, such as STO-6G, is employed, the sheer

dimensionality of the many-electron Hilbert space, which is spanned by 1.21× 1027 singlet-

spin-adapted configuration state functions, renders FCI calculations prohibitively expensive.

As mentioned earlier, in the case of the H50 linear chain, we relied on the nearly exact

LDMRG(500)/STO-6G data of Hachmann et al. [175] in assessing the performance of the

ACP schemes, without and with the connected triples. However, we recall that the various

ACP methodologies provide essentially identical results when applied to hydrogen clusters

described by minimum basis sets, as a consequence of the approximate ph symmetry. Fur-

thermore, the smallest meaningful active space in the case of hydrogen clusters dissociating

into individual atoms is comprised of the 1s orbitals of the hydrogen atoms, suggesting that

only full triples approaches can be applied when minimum basis sets are employed. We, thus,

examined only the ACCSD(1,3× no
no+nu +4× nu

no+nu ) and ACCSDT(1,3× no
no+nu +4× nu

no+nu )

approaches in properly describing the symmetric dissociation of the H50/STO-6G linear

chain, which in this case, where no = nu, are equivalent to ACCSD(1,3+4
2 ) ≡ DCSD and

ACCSDT(1,3+4
2 ).

Figure 4.3 shows the PECs characterizing the symmetric dissociation of the H50 linear

chain into 50 hydrogen atoms using CCSD, CCSDT, ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ),

and ACCSDT(1,3× no
no+nu + 4× nu

no+nu ), along with the nearly exact LDMRG(500) data of

Reference [175]. A quick inspection of Figure 4.3 immediately reveals the complete break-

down of the conventional CCSD and CCSDT approaches, which fail to converge even for

geometries in close proximity to the equilibrium one. On the other hand, the ACCSD(1,3×
no

no+nu + 4× nu
no+nu ) scheme and its connected triples extension provide qualitatively correct

PECs, closely reproducing the LDMRG(500) one. This is a remarkable observation, espe-

cially when one realizes that the number of strongly correlated electrons is five times greater

than in the already challenging H10 ring. Focusing on the ACCSD(1,3× no
no+nu +4× nu

no+nu )
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energetics reported in Table 4.7, we see that the MSE and MUE values with respect to

the nearly exact LDMRG(500) data of Reference [175] are 51.33 mEh. Even though this

is larger than the MSE values relative to FCI characterizing the ACCSD(1,3 × no
no+nu +

4 × nu
no+nu ) PECs in the H6 and H10 cases, this is a very promising result. Even in the

H50 torture test the ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ) approach captures about 97%

of the nearly exact, DMRG, correlation energies. This is an important observation, since

the ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ) scheme consistently recovered approximately 96%

of the exact or nearly exact correlation energies for all examined systems, i.e., indepen-

dent of the number of strongly correlated electrons or the size of the basis set. Fur-

thermore, and more importantly, once three-body clusters are included, there is a signif-

icant improvement of the ACCSD(1,3× no
no+nu + 4× nu

no+nu ) total electronic energies, even

when the symmetric dissociation of the H50 linear chain is considered. To be precise, the

ACCSDT(1,3× no
no+nu + 4× nu

no+nu ) PEC can hardly be distinguished from the nearly exact

LDMRG(500) one, reducing the MUE and MSE values of 51.33 mEh and 51.33 mEh in

the case of ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ) to 19.14 mEh and -6.08 mEh, respectively,

when the ACCSDT(1,3× no
no+nu + 4× nu

no+nu ) approach is used. This is yet another exam-

ple that showcases the importance of T3 physics within the ACP framework in attaining a

quantitative description of strongly correlated systems.
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Table 4.1: A comparison of the energies resulting from the various CC approaches with singles and doubles and the exact FCI
data for the symmetric dissociation of the H6/cc-pVTZ ring at selected bond distances between neighboring H atoms RH–H (in
Å).a

RH–H CCSD ACCSD FCI
(1,3) (1, 3+4

2 ) (1, 3× no
no+nu + 4× nu

no+nu ) (1,4)

0.6 3.422 −0.242 1.557 3.144 3.262 −2.858958
0.7 3.593 −0.320 1.618 3.321 3.448 −3.176147
0.8 3.823 −0.417 1.695 3.541 3.679 −3.331124
0.9 4.103 −0.534 1.788 3.809 3.959 −3.396176
1.0 4.424 −0.665 1.906 4.132 4.297 −3.410069
1.1 4.774 −0.805 2.059 4.522 4.705 −3.394673
1.2 5.139 −0.944 2.263 5.003 5.206 −3.362943
1.3 5.489 −1.068 2.543 5.608 5.833 −3.322850
1.4 5.758 −1.156 2.934 6.381 6.634 −3.279466
1.5 5.802 −1.175 3.479 7.377 7.662 −3.236119
1.6 5.309 −1.088 4.219 8.638 8.960 −3.195040
1.7 3.647 −0.865 5.165 10.165 10.529 −3.157716
1.8 −0.380 −0.508 6.266 11.872 12.280 −3.125051
1.9 −8.826 −0.071 7.388 13.563 14.012 −3.097433
2.0 −24.720 0.350 8.337 14.963 15.445 −3.074787
2.1 −51.331 0.660 8.931 15.813 16.314 −3.056686
2.2 −89.837 0.803 9.073 15.975 16.478 −3.042507
2.3 −137.197 0.782 8.776 15.463 15.951 −3.031571
2.4 −187.824 0.635 8.135 14.417 14.876 −3.023237
2.5 −237.074 0.416 7.277 13.027 13.447 −3.016948

MUEb 39.624 0.675 4.770 9.037 9.349 —
MSEc −34.095 −0.311 4.770 9.037 9.349 —

a The FCI energies are total energies in hartree, whereas all of the remaining energies are errors relative to FCI in millihartree.
b Mean unsigned error.
c Mean signed error.
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Table 4.2: A comparison of the energies resulting from the various active-space triples CC approaches and the exact FCI data
for the symmetric dissociation of the H6/cc-pVTZ ring at selected bond distances between neighboring H atoms RH–H (in Å).a

RH–H CCSDt ACCSDt FCI
(1,3) (1, 3+4

2 ) (1, 3× no
no+nu + 4× nu

no+nu ) (1,4)

0.6 2.548 −1.234 0.615 2.243 2.365 −2.858958
0.7 2.419 −1.660 0.345 2.103 2.235 −3.176147
0.8 2.235 −2.247 −0.043 1.880 2.023 −3.331124
0.9 2.018 −2.962 −0.515 1.608 1.766 −3.396176
1.0 1.804 −3.757 −1.021 1.339 1.514 −3.410069
1.1 1.609 −4.592 −1.519 1.114 1.309 −3.394673
1.2 1.414 −5.454 −1.992 0.953 1.170 −3.362943
1.3 1.111 −6.428 −2.504 0.809 1.053 −3.322850
1.4 0.669 −7.437 −2.974 0.766 1.040 −3.279466
1.5 −0.074 −8.459 −3.375 0.855 1.163 −3.236119
1.6 −1.438 −9.451 −3.673 1.104 1.451 −3.195040
1.7 −4.014 −10.345 −3.837 1.516 1.904 −3.157716
1.8 −8.888 −11.062 −3.852 2.051 2.478 −3.125051
1.9 −17.983 −11.538 −3.744 2.611 3.069 −3.097433
2.0 −34.481 −11.755 −3.576 3.059 3.535 −3.074787
2.1 −62.336 −11.747 −3.432 3.266 3.744 −3.056686
2.2 −102.675 −11.583 −3.387 3.160 3.624 −3.042507
2.3 −150.692 −11.337 −3.483 2.735 3.172 −3.031571
2.4 −199.899 −11.068 −3.726 2.041 2.442 −3.023237
2.5 −246.321 −10.805 −4.094 1.154 1.516 −3.016948

MUEb 42.231 7.746 2.585 1.818 2.129 —
MSEc −40.649 −7.746 −2.489 1.818 2.129 —

a The FCI energies are total energies in hartree, whereas all of the remaining energies are errors relative to FCI in millihartree. All active-space CC
approaches employed three active occupied and three active unoccupied orbitals, corresponding to the 1s shells of the individual H atoms.
b Mean unsigned error.
c Mean signed error.
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Table 4.3: A comparison of the energies resulting from the various full triples CC approaches and the exact FCI data for the
symmetric dissociation of the H6/cc-pVTZ ring at selected bond distances between neighboring H atoms RH–H (in Å).a

RH–H CCSDT ACCSDT FCI
(1,3) (1, 3+4

2 ) (1, 3× no
no+nu + 4× nu

no+nu ) (1,4)

0.6 0.079 −3.952 −1.996 −0.279 −0.151 −2.858958
0.7 0.095 −4.233 −2.123 −0.277 −0.139 −3.176147
0.8 0.116 −4.609 −2.304 −0.295 −0.146 −3.331124
0.9 0.140 −5.074 −2.530 −0.325 −0.162 −3.396176
1.0 0.160 −5.621 −2.792 −0.356 −0.175 −3.410069
1.1 0.166 −6.241 −3.079 −0.374 −0.174 −3.394673
1.2 0.137 −6.932 −3.381 −0.365 −0.143 −3.362943
1.3 0.031 −7.692 −3.686 −0.307 −0.059 −3.322850
1.4 −0.235 −8.512 −3.973 −0.172 0.106 −3.279466
1.5 −0.823 −9.369 −4.213 0.072 0.385 −3.236119
1.6 −2.046 −10.216 −4.371 0.457 0.808 −3.195040
1.7 −4.493 −10.982 −4.411 0.989 1.380 −3.157716
1.8 −9.245 −11.585 −4.316 1.631 2.061 −3.125051
1.9 −18.225 −11.959 −4.109 2.286 2.747 −3.097433
2.0 −34.617 −12.084 −3.855 2.817 3.296 −3.074787
2.1 −62.392 −11.995 −3.635 3.095 3.576 −3.056686
2.2 −102.685 −11.760 −3.526 3.048 3.514 −3.042507
2.3 −150.676 −11.452 −3.567 2.673 3.111 −3.031571
2.4 −199.857 −11.129 −3.764 2.019 2.421 −3.023237
2.5 −246.248 −10.820 −4.092 1.165 1.528 −3.016948

MUEb 41.623 8.811 3.486 1.150 1.304 —
MSEc −41.531 −8.811 −3.486 0.875 1.189 —

a The FCI energies are total energies in hartree, whereas all of the remaining energies are errors relative to FCI in millihartree.
b Mean unsigned error.
c Mean signed error.
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Table 4.4: A comparison of the energies resulting from the various CC approaches with singles and doubles and the exact FCI
data for the symmetric dissociation of the H10/DZ ring at selected bond distances between neighboring H atoms RH–H (in Å).a

RH–H CCSD ACCSD FCI
(1,3) (1, 3+4

2 ) (1, 3× no
no+nu + 4× nu

no+nu ) (1,4)

0.6 2.461 0.412 0.945 1.204 1.458 −4.581177
0.7 2.942 0.498 1.071 1.348 1.619 −5.133564
0.8 3.519 0.708 1.314 1.606 1.890 −5.400721
0.9 4.157 1.053 1.689 1.992 2.285 −5.513021
1.0 4.878 1.591 2.265 2.582 2.886 −5.538852
1.1 5.691 2.435 3.164 3.501 3.821 −5.516586
1.2 6.510 3.744 4.552 4.917 5.257 −5.468944
1.3 7.013 5.701 6.620 7.022 7.388 −5.409818
1.4 6.288 8.451 9.520 9.972 10.370 −5.347723
1.5 1.896 11.987 13.258 13.773 14.209 −5.287756
1.6 −13.106 16.041 17.575 18.168 18.647 −5.232798
1.7 −66.276 20.069 21.930 22.618 23.144 −5.184271
1.8 NCb 23.410 25.650 26.446 27.026 −5.142644
1.9 NCb 25.531 28.163 29.075 29.715 −5.107796
2.0 NCb 26.191 29.172 30.197 30.903 −5.079254
2.1 NCb 25.462 28.691 29.809 30.585 −5.056349
2.2 NCb 23.636 26.967 28.146 28.985 −5.038308
2.3 NCb 21.090 24.372 25.568 26.453 −5.024332
2.4 NCb 18.193 21.298 22.468 23.370 −5.013655
2.5 NCb 15.248 18.087 19.193 20.080 −5.005591

MUEc NAd 12.572 14.315 14.980 15.505 —
MSEe NAd 12.572 14.315 14.980 15.505 —

a The FCI energies are total energies in hartree, whereas all of the remaining energies are errors relative to FCI in millihartree.
b No convergence.
c Mean unsigned error.
d Could not be determined because CCSD does not converge at larger distances.
e Mean signed error.
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Table 4.5: A comparison of the energies resulting from the various active-space CC approaches and the exact FCI data for the
symmetric dissociation of the H10/DZ ring at selected bond distances between neighboring H atoms RH–H (in Å).a

RH–H CCSDt ACCSDt FCI
(1,3) (1, 3+4

2 ) (1, 3× no
no+nu + 4× nu

no+nu ) (1,4)
0.6 0.455 −1.751 −1.181 −0.904 −0.633 −4.581177
0.7 0.554 −2.110 −1.502 −1.209 −0.922 −5.133564
0.8 0.416 −2.726 −2.081 −1.773 −1.473 −5.400721
0.9 0.349 −3.218 −2.541 −2.221 −1.912 −5.513021
1.0 0.181 −3.735 −3.019 −2.686 −2.369 −5.538852
1.1 −0.084 −4.169 −3.399 −3.050 −2.724 −5.516586
1.2 −0.650 −4.477 −3.634 −3.266 −2.933 −5.468944
1.3 −1.956 −4.591 −3.654 −3.266 −2.931 −5.409818
1.4 −4.961 −4.457 −3.399 −2.994 −2.672 −5.347723
1.5 −11.879 −4.091 −2.881 −2.468 −2.182 −5.287756
1.6 −28.679 −3.630 −2.233 −1.824 −1.609 −5.232798
1.7 −81.643 −3.315 −1.692 −1.300 −1.193 −5.184271
1.8 NCb −3.398 −1.510 −1.144 −1.178 −5.142644
1.9 NCb −4.043 −1.862 −1.523 −1.712 −5.107796
2.0 NCb −5.295 −2.810 −2.494 −2.832 −5.079254
2.1 NCb −7.106 −4.333 −4.029 −4.497 −5.056349
2.2 NCb −9.380 −6.355 −6.055 −6.626 −5.038308
2.3 NCb −12.001 −8.762 −8.462 −9.114 −5.024332
2.4 NCb −14.806 −11.381 −11.083 −11.806 −5.013655
2.5 NCb −17.551 −13.966 −13.660 −14.471 −5.005591

MUEc NAd 5.793 4.110 3.770 3.790 —
MSEe NAd −5.793 −4.110 −3.770 −3.790 —

a The FCI energies are total energies in hartree, whereas all of the remaining energies are errors relative to FCI in millihartree. All active-space CC
approaches employed five active occupied and five active unoccupied orbitals, corresponding to the 1s shells of the individual H atoms.
b No convergence.
c Mean unsigned error.
d Could not be determined because CCSDt does not converge at larger distances.
e Mean signed error.
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Table 4.6: A comparison of the energies resulting from the various full triples CC approaches and the exact FCI data for the
symmetric dissociation of the H10/DZ ring at selected bond distances between neighboring H atoms RH–H (in Å).a

RH–H CCSDT ACCSDT FCI
(1,3) (1, 3+4

2 ) (1, 3× no
no+nu + 4× nu

no+nu ) (1,4)

0.6 0.065 −2.167 −1.591 −1.311 −1.037 −4.581177
0.7 0.094 −2.602 −1.986 −1.688 −1.398 −5.133564
0.8 0.110 −3.054 −2.404 −2.093 −1.790 −5.400721
0.9 0.101 −3.485 −2.805 −2.482 −2.172 −5.513021
1.0 0.035 −3.894 −3.175 −2.841 −2.523 −5.538852
1.1 −0.170 −4.262 −3.491 −3.141 −2.815 −5.516586
1.2 −0.703 −4.535 −3.691 −3.323 −2.989 −5.468944
1.3 −1.991 −4.631 −3.693 −3.305 −2.969 −5.409818
1.4 −4.986 −4.487 −3.428 −3.023 −2.700 −5.347723
1.5 −11.897 −4.115 −2.904 −2.490 −2.205 −5.287756
1.6 −28.687 −3.649 −2.251 −1.842 −1.626 −5.232798
1.7 −81.631 −3.330 −1.706 −1.313 −1.206 −5.184271
1.8 NCb −3.408 −1.520 −1.153 −1.187 −5.142644
1.9 NCb −4.049 −1.867 −1.528 −1.717 −5.107796
2.0 NCb −5.296 −2.811 −2.494 −2.833 −5.079254
2.1 NCb −7.101 −4.329 −4.025 −4.493 −5.056349
2.2 NCb −9.371 −6.346 −6.045 −6.618 −5.038308
2.3 NCb −11.988 −8.750 −8.449 −9.100 −5.024332
2.4 NCb −14.790 −11.365 −11.068 −11.791 −5.013655
2.5 NCb −17.533 −13.927 −13.644 −14.459 −5.005591

MUEc NAd 5.887 4.202 3.863 3.881 —
MSEe NAd −5.887 −4.202 −3.863 −3.881 —

a The FCI energies are total energies in hartree, whereas all of the remaining energies are errors relative to FCI in millihartree.
b No convergence.
c Mean unsigned error.
d Could not be determined because CCSDT does not converge at larger distances.
e Mean signed error.
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Table 4.7: A comparison of the energies resulting from the various CC approaches including up to triple excitations and the
nearly exact LDMRG(500) data for the symmetric dissociation of the H50/STO-6G linear chain at selected bond distances
between neighboring H atoms RH–H (in a.u.).a

RH–H CCSD ACCSD(1,3× no
no+nu + 4× nu

no+nu ) CCSDT ACCSDT(1,3× no
no+nu + 4× nu

no+nu ) LDMRG(500)

1.0 11.90 6.30 0.27 −6.68 −17.28407
1.2 16.28 9.12 0.29 −9.08 −22.94765
1.4 20.99 12.78 −0.10 −11.37 −25.59378
1.6 26.01 17.82 −1.71 −13.26 −26.71944
1.8 31.00 24.87 −6.96 −14.62 −27.03865
2.0 34.60 34.30 NCb −15.73 −26.92609
2.4 NCb 59.23 NCb −22.04c −26.16057
2.8 NCb 86.24 NCb −22.47c −25.27480
3.2 NCb 106.45 NCb −18.78c −24.56828
3.6 NCb 113.43 NCb −4.66c −24.10277
4.2 NCb 94.08 NCb 71.86c −23.74971

MUEd NAe 51.33 NAf 19.14 —
MSEg NAe 51.33 NAf −6.08 —

a The LDMRG(500) energies were taken from Reference [175] and are total energies in hartree. The remaining energies are errors relative to
LDMRG(500) in millihartree.
b No convergence.
c We were unable to converge these energies beyond 1× 10−3 hartree. The reported values correspond to the respective last CC iteration.
d Mean unsigned error.
e Could not be determined because CCSD does not converge at larger distances.
f Could not be determined because CCSDT does not converge at larger distances.
g Mean signed error.
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Figure 4.1: Ground-state PECs [panels (a)–(c)] and errors relative to FCI [panels (d)–(f)]
for the symmetric dissociation of the H6 ring resulting from the CCSD and various ACCSD
calculations [panels (a) and (d)], the active-space CCSDt and ACCSDt computations [panels
(b) and (e)], and the full CCSDT and ACCSDT methods [panels (c) and (f)], using the cc-
pVTZ basis set. The active-space triples approaches employed a minimum active space built
from the 1s orbitals of individual hydrogen atoms. The FCI PEC is included in panels (a)–
(c) to facilitate the comparisons.
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Figure 4.2: Ground-state PECs [panels (a)–(c)] and errors relative to FCI [panels (d)–(f)]
for the symmetric dissociation of the H10 ring resulting from the CCSD and various ACCSD
calculations [panels (a) and (d)], the active-space CCSDt and ACCSDt computations [panels
(b) and (e)], and the full CCSDT and ACCSDT methods [panels (c) and (f)], using the DZ
basis set. The active-space triples approaches employed a minimum active space built from
the 1s orbitals of individual hydrogen atoms. The FCI PEC is included in panels (a)–(c) to
facilitate the comparisons.
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Figure 4.3: Ground-state PECs for the symmetric dissociation of the H50 linear chain result-
ing from the CCSD and ACCSD(1,3× no

no+nu + 4× nu
no+nu ) calculations [panel (a)] and their

full triples extensions [panel (b)] using the STO-6G basis set. The nearly exact LDMRG(500)
PEC of Reference [175] is included in both panels to facilitate the comparisons. The insets
show the errors relative to LDMRG(500) in millihartree (cf. Table 4.7).
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4.2 Approaching the Full Configuration Interaction Limit for
Strong Correlation Using Semi-Stochastic Ideas

In this section, we examine the performance of the novel CAD-FCIQMC[1,(3+4)/2]

methodology introduced in this dissertation. In particular, we compare its rate of con-

vergence toward the exact, FCI, energetics against the one characterizing the underlying

FCIQMC simulations in challenging strongly correlated situations. Before we proceed, how-

ever, we first demonstrate that in the absence of strong many-electron correlation effects the

CAD-FCIQMC[1,(3+4)/2] approach yields similar results to the original CAD-FCIQMC[1–

5] scheme. This is a desired behavior since CAD-FCIQMC[1–5] is characterized by a rapid

convergence, much faster than FCIQMC itself, toward the exact energy values for problems

involving weak or moderately strong correlations [265].

To that end, we studied the C2v-symmetric double bond dissociation of H2O as de-

scribed by the cc-pVDZ basis set, which served as the testing ground of the original CAD-

FCIQMC[1–5] algorithm [265]. In particular, we considered two geometries of H2O, namely,

equilibrium, RO–H = Re, and one additional geometry obtained by the simultaneous stretch

of both O–H bonds by a factor of 2.0, RO–H = 2.0Re, while keeping the ∠H–O–H angle

fixed to its equilibrium value. The geometries and corresponding all-electron FCI energy

values where obtained from Reference [277]. The i-FCIQMC propagations, which provided

the source of T (MC)
3 (τ) and T

(MC)
4 (τ) clusters, were performed with the HANDE package

[316]. For each examined geometry of the H2O triatomic, the i-FCIQMC stochastic wave-

function sampling was initiated by placing 1,000 walkers on the RHF Slater determinant,

while the time step used in propagations was ∆τ = 0.0001 a.u. To accelerate convergence,

the na parameter of the initiator algorithm was set at 3, meaning that, at any given time

step τ , only determinants inhabited by more than 3 walkers were allowed to spawn progeny

on unpopulated determinants. At every 1,000 time steps, we cluster analyzed the i-FCIQMC

wavefunction and solved the CCSD-like system of equations, Equations (3.29) and (3.40),

in which T
(MC)
3 (τ), T (MC)

4 (τ), and selected coupled-pair contributions were extracted from
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i-FCIQMC, for T1 and T2 using codes developed by the Piecuch group. Finally, both the

i-FCIQMC calculations and the CC computations were performed using the same set of one-

and two-body molecular integrals extracted from GAMESS [307–309].

The results of the original CAD-FCIQMC[1–5] scheme, the CAD-FCIQMC[1,(3+4)/2]

methodology introduced in this dissertation, and the underlying i-FCIQMC simulations for

the double bond dissociation of H2O are shown in Figure 4.4 and, for selected time steps, in

Table 4.8. As might have been anticipated, the deviation between the two CAD-FCIQMC

variants is largest at the initial steps of the simulation and is gradually bridged as one

approaches the infinite imaginary time limit, owing to the fact that both schemes converge to

the exact, FCI, energetics. At τ = 0, the original CAD-FCIQMC[1–5] methodology becomes

equivalent to CCSD, while its CAD-FCIQMC[1,(3+4)/2] extension to the strong correlation

regime reduces to ACCSD(1,3+4
2 ) ≡ DCSD. At the weakly correlated equilibrium geometry,

the CCSD and ACCSD(1,3+4
2 ) data are already quite close to the pertinent FCI energy

value, the corresponding errors being 3.744 mEh and −0.731 mEh, respectively. It is, thus,

not surprising that the CAD-FCIQMC[1–5] and CAD-FCIQMC[1,(3+4)/2] energetics can

hardly be distinguished from each other at later propagation times (see, for example, Figure

4.4). For the stretched geometry, the deviation between the CCSD and ACCSD(1,3+4
2 )

energetics is more pronounced. Although the double bond dissociation of H2O involves

the entanglement of only four electrons, the presence of quasi-degeneracies has a significant

impact on the CCSD energy value, which is characterized by a more than 20 mEh error

relative to FCI. At the same time, the ACCSD(1,3+4
2 ) variant of the ACP schemes, which

is well-suited for the study of electronic quasi-degeneracies, offers a dramatically improved

description, as is evident by the about 3 mEh error relative to the FCI data. Nevertheless, the

CAD-FCIQMC[1–5] methodology quickly catches up with CAD-FCIQMC[1,(3+4)/2] and

after about 20,000 MC iterations they provide the essentially identical picture (cf. Figure

4.4). Thus, in the absence of strong many-electron correlation effects, both of the examined

flavors of CAD-FCIQMC provide more or less results of similar quality, even in the presence
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of quasi-degeneracies, such as those present in the double bond dissociation of H2O.

We now compare the performance of the CAD-FCIQMC variants of interest with that

of the underlying i-FCIQMC simulations. A simple inspection of Figure 4.4 reveals that

both the original CAD-FCIQMC[1–5] scheme and its CAD-FCIQMC[1,(3+4)/2] extension

to the strong correlation regime are characterized by a rapid convergence to the exact,

FCI, energetics, much faster than in the case of i-FCIQMC, even when both O–H bonds

are stretched to twice their equilibrium value. As shown in Table 4.8, focusing on the

more challenging RO–H = 2.0Re nuclear configuration, both CAD-FCIQMC[1–5] and CAD-

FCIQMC[1,(3+4)/2] are capable of reproducing the deterministic FCI energy to within a

millihartree already at about 40,000 MC iterations, with submillihartree errors achieved at

around 100,000 MC iterations. At the same time, the error relative to FCI characterizing

the underlying i-FCIQMC methodology at 160,000 MC iterations, the last iteration before

we stopped the i-FCIQMC propagation, is 1.328 mEh, which suggests that one needs to keep

sampling the many-electron Hilbert space for the i-FCIQMC methodology to provide results

comparable to CAD-FCIQMC. At this point, it is also interesting to note that the noise

inherent to the purely stochastic i-FCIQMC simulations propagates to the CAD-FCIQMC

calculations through the extracted T
(MC)
2 (τ), T (MC)

3 (τ), and T
(MC)
4 (τ) amplitudes. Al-

though CAD-FCIQMC[1–5] and CAD-FCIQMC[1,(3+4)/2] cannot eliminate the stochastic

noise, they do reduce it, giving rise to considerably smoother energetics (cf. Figure 4.4).

The remarkable performance of the CAD-FCIQMC family of methods can be largely at-

tributed to the ability of the i-FCIQMC stochastic wavefunction sampling to quickly identify

the important triply and quadruply excited Slater determinants that enter the CC system of

equations corrected for connected triples and quadruples, Equations (3.29) and (3.40). This

is most easily quantified by examining the percentages of triples and quadruples captured

by i-FCIQMC as functions of the propagation time τ . As can be seen in Table 4.8, both

variants of CAD-FCIQMC are capable of producing FCI-quality energetics, stable to within

a millihartree, once i-FCIQMC captures about 17% of triples and about 3% of quadruples
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(40,000 MC iterations). This observation implies that not only does i-FCIQMC quickly

capture the dominant triples and quadruples, but also that their walker populations reflect

on the structure of the FCI wavefunction already from the early stages of the propaga-

tion. At the same time, the underlying i-FCIQMC methodology has only explored a tiny

fraction of the many-electron Hilbert space, having captured just 0.02% of the 451,681,246

Sz = 0 totally symmetric Slater determinants, using C2v point group symmetry, spanning

the many-electron Hilbert space. These results indicate that the CAD-FCIQMC methodol-

ogy is capable of producing accurate estimates of the FCI energies out of the early stages of

i-FCIQMC propagations using computationally affordable CCSD-like computations, even in

the presence of quasi-degeneracies such as those characterizing the double bond dissociation

of H2O.

We are now in a position to proceed to the discussion of the performance of CAD-

FCIQMC[1,(3+4)/2] in the presence of strong many-electron correlation effects. To that

end, we examine the D6h- and D10h-symmetric dissociations of the six- and ten-membered

hydrogen rings, respectively. In the case of H6 we used the cc-pVDZ basis set, while for

the larger H10 hydrogen cluster we employed the DZ basis. As already emphasized in this

dissertation, the dissociation of equally spaced hydrogen clusters to individual H atoms is

characterized by a Mott metal–insulator transition as the system traverses from a weakly

correlated metallic phase to a strongly correlated insulating phase, which has a devastating

effect on the performance of the hierarchy of traditional CC approaches, including, for ex-

ample, CCSD and CCSDT. For the sake of completeness, the PECs of the H6/cc-pVDZ and

H10/DZ rings resulting from CCSD, CCSDT, and FCI calculations are presented in Figure

4.5. Although the performance of CCSD and CCSDT in describing the H6 and H10 PECs

was discussed extensively in the previous section, here we make a couple of remarks that are

useful in the context of the CAD-FCIQMC methodology. In Figure 4.5, we see that CCSD

closely reproduces the FCI energetics around the equilibrium geometries of both H6 and

H10. This suggests that the original CAD-FCIQMC[1–5] scheme, which becomes equivalent
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to CCSD for τ = 0, will rapidly converge toward the exact description of both hydrogen

rings when considering, for example, the structures where the distance between neighboring

H atoms is RH–H = 1.0 Å, corresponding to the region of minimum on the FCI PEC (cf.

Figure 4.5). As one departs from the equilibrium region and approaches the atomization

threshold, the performance of CCSD gradually deteriorates, resulting in an unphysical de-

scription of both H6 and H10 systems as a consequence of overcorrelating. As discussed

earlier in this dissertation, the failure of CCSD is much more dramatic in the case of the

H10 cluster, since no convergence was obtained for distances between neighboring hydrogen

atoms larger than 1.75 Å. These observations foreshadow the catastrophe that will befall

CAD-FCIQMC[1–5] in the strong correlation regime. In what follows, we demonstrate that

the novel CAD-FCIQMC[1,(3+4)/2] methodology introduced in this dissertation, where,

out of the five 1
2T

2
2 Goldstone–Brandow diagrams shown in Figure 3.5, diagrams D1 and

an average of diagrams D3 and D4, which are responsible for capturing strong correlations,

are treated deterministically with the rest of 1
2T

2
2 calculated using T (MC)

2 (τ) extracted from

FCIQMC, is practically immune to the presence of strong many-electron correlation effects

and is characterized by the fastest convergence toward FCI among the examined approaches.

As already mentioned, in the computations regarding the symmetric dissociation of the

H6 and H10 rings we employed the cc-pVDZ and DZ basis sets, respectively. The grid of

geometries considered in our calculations consisted of the following distances between neigh-

boring hydrogen atoms: 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, and 2.0 Å. The underlying i-FCIQMC

simulations were performed with HANDE. For both hydrogen clusters and for each geom-

etry of the aforementioned grid, the i-FCIQMC propagation was initiated by placing 1,500

walkers on the RHF Slater determinant and setting the na parameter of the initiator algo-

rithm at 3. The time step used in the simulations was ∆τ = 0.0001 a.u. and we performed

CAD-FCIQMC[1–5] and CAD-FCIQMC[1,(3+4)/2] calculations every 1,000 time steps. The

cluster analysis of the i-FCIQMC wavefunction and the subsequent CCSD-like computations

were performed with codes of the Piecuch group. As was the case with the H2O system,
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the same set of one- and two-body molecular integrals, extracted from GAMESS, was em-

ployed for both the i-FCIQMC simulations and subsequent CCSD-like computations. The

deterministic FCI data, which we needed to judge the performance of its purely stochastic,

i-FCIQMC, and semi-stochastic, CAD-FCIQMC[1–5] and CAD-FCIQMC[1,(3+4)/2], ap-

proximations, were acquired using the determinantal FCI code available in the GAMESS

package.

The results of the CAD-FCIQMC[1–5] calculations, the CAD-FCIQMC[1,(3+4)/2] com-

putations, and the underlying i-FCIQMC simulations for the H6/cc-pVDZ and H10/DZ

systems are summarized in Figures 4.6 and 4.7 and Tables 4.9 and 4.10. We begin our

discussion with the smaller H6 ring, the dissociation of which involves the entanglement

of six electrons. Panels (a) and (b) of Figure 4.6 portray the energies obtained at the i-

FCIQMC, CAD-FCIQMC[1–5], and CAD-FCIQMC[1,(3+4)/2] levels of theory as functions

of the imaginary time τ at the structure characterized by RH–H = 1.0 Å and the geometry in

which each H–H bond is stretched to twice this value, the largest distance considered in our

calculations, respectively. Focusing on the weakly correlated RH–H = 1.0 Å geometry, we

see that both the original CAD-FCIQMC[1–5] and the novel CAD-FCIQMC[1,(3+4)/2] ap-

proaches display a remarkably fast convergence toward the exact, FCI, energy value. In fact,

Table 4.9 reveals that the energetics of both flavors of CAD-FCIQMC are characterized by

stable submillihartree errors relative to FCI already at 20,000 MC iterations or when about

26% of triples and 4% of quadruples are captured by the underlying stochastic wavefunction

sampling. Despite the fact that the i-FCIQMC propagation has a 110 times larger error

relative to FCI at τ = 0 than CAD-FCIQMC[1,(3+4)/2], it reproduces the FCI value to

within about 1.5 millihartree rather quickly (40,000 MC iterations), although the stochastic

noise is quite significant.

The picture changes dramatically when one examines the performance of i-FCIQMC,

CAD-FCIQMC[1–5], and CAD-FCIQMC[1,(3+4)/2] at the stretched geometry in which

RH–H = 2.0 Å. A simple inspection of panel (b) of Figure 4.6 reveals that the original CAD-
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FCIQMC[1–5] scheme is characterized by a slow convergence, comparable to that of the

underlying i-FCIQMC propagation, toward the FCI energy value. Such behavior was more

or less anticipated due to the fact that at τ = 0 CAD-FCIQMC[1–5] ≡ CCSD overcorrelates

by more than 35 mEh. It is, however, interesting to note that, at least for the duration of the

particular simulation shown in Figure 4.6(b), i-FCIQMC approaches FCI from above while

CAD-FCIQMC[1–5] from below. At the same time, the novel CAD-FCIQMC[1,(3+4)/2]

methodology introduced in this dissertation is practically immune to the presence of strong

many-electron correlation effects. As demonstrated in Table 4.9, CAD-FCIQMC[1,(3+4)/2]

faithfully reproduces the FCI energy to within less than 1 mEh already at 60,000 MC iter-

ations or when i-FCIQMC captures about 41% of triples and 10% of quadruples. Although

these percentages are larger than those required for submillihartree accuracy in the case of

the corresponding equilibrium geometry, they are still far from the total numbers of triples

and quadruples. In fact, at 60,000 MC iterations the i-FCIQMC propagation has explored

only 2% of the entire many-electron Hilbert space, which is spanned by 2,123,544 Sz = 0

totally symmetric Slater determinants using D2h point group symmetry. This constitutes a

tremendous acceleration toward FCI even in the presence of strong non-dynamical correla-

tion effects. The remarkable performance of the CAD-FCIQMC[1,(3+4)/2] approach can be

largely attributed to the fact that the 1
2T

2
2 Goldstone–Brandow diagram D1 and the average

of diagrams D3 and D4 (cf. Figure 3.5), which are responsible for capturing strong corre-

lations, are treated deterministically while the rest of 1
2T

2
2 is determined using T

(MC)
2 (τ)

extracted from i-FCIQMC. Consequently, even at τ = 0, CAD-FCIQMC[1,(3+4)/2] is al-

ready much closer to FCI than CAD-FCIQMC[1–5], having an error of less than 9 mEh, and

the gap is rapidly bridged as the simulation progresses.

Further insights into the performance of i-FCIQMC, CAD-FCIQMC[1–5], and CAD-

FCIQMC[1,(3+4)/2] can be gained by examining the convergence of the entire PEC to its

FCI counterpart as a function of MC iterations. This can be found in graphical form in the

case of the H6/cc-pVDZ system in panels (a), (b), and (c) of Figure 4.7 for 50,000, 100,000,
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and 150,000 MC iterations. For the sake of comparison, we also include the information

about the deterministic CCSD, CCSDT, and ACCSD(1,3+4
2 ) calculations. To begin with,

the i-FCIQMC approach provides a more or less exact description of the weakly and moder-

ately correlated portions of the PEC at 100,000 MC iterations. However, the energies of the

two points closest to the dissociation limit, corresponding to distances between neighboring

hydrogen atoms of RH–H = 1.75 and 2.0 Å, respectively, are far from their FCI counter-

parts. In fact, even at 100,000 MC iterations i-FCIQMC is worse than the deterministic

ACCSD(1,3+4
2 ) methodology and one needs to go to at least 150,000 MC iterations for i-

FCIQMC to outperform ACCSD(1,3+4
2 ) in the entire range of geometries examined in this

dissertation.

Moving on to the original CAD-FCIQMC[1–5] scheme, a simple inspection of Figure

4.7(a) reveals that it provides a practically exact description for the weakly correlated struc-

tures corresponding to RH–H distances of 0.6, 0.8, 1.0, 1.25, and 1.5 Å already at 50,000 MC

iterations, as might have been anticipated. However, after the onset of strong correlations,

CAD-FCIQMC significantly overcorrelates even at 50,000 MC iterations, as is evident by

the large negative errors with respect to FCI for the RH–H = 1.75 and 2.0 Å grid points (cf.

inset to Figure 4.7). As was the case with the underlying i-FCIQMC simulations, one needs

to go to 150,000 MC iterations for CAD-FCIQMC[1–5] to provide a PEC of higher quality

than ACCSD(1,3+4
2 ). It is, however, worth mentioning that CAD-FCIQMC[1–5] converges

much faster to the FCI-level energetics at RH–H = 1.75 Å than i-FCIQMC.

As was expected in light of the above discussion, the CAD-FCIQMC[1,(3+4)/2] method-

ology is characterized by the fastest convergence toward the exact, FCI, energetics for the

entire range of electron correlation effects, ranging from the weakly to the strongly corre-

lated regimes. Even at 50,000 MC iterations, the CAD-FCIQMC[1,(3+4)/2] PEC charac-

terizing the D6h-symmetric dissociation of the H6/cc-pVDZ ring is far superior to the one

of ACCSD(1,3+4
2 ), closely reproducing the FCI data. Indeed, at 100,000 MC iterations one

can hardly distinguish the CAD-FCIQMC[1,(3+4)/2] and FCI PECs.
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Now, we turn our attention to the larger H10 ring. As was mentioned earlier in this

dissertation, the D10h-symmetric dissociation of H10 involves the entanglement of 10 elec-

trons, i.e., the number of strongly correlated electrons is increased by more than 66% when

compared to the smaller H6 cluster. Panels (c) and (d) of Figure 4.6 show the energies ob-

tained using i-FCIQMC, CAD-FCIQMC[1–5], and CAD-FCIQMC[1,(3+4)/2] as functions

of the MC iterations at the structure characterized by RH–H = 1.0 Å and the geometry

in which each H–H bond is stretched to twice this value, the largest distance considered

in our calculations, respectively. When considering the weakly correlated RH–H = 1.0 Å

geometry, it comes as no surprise that both CAD-FCIQMC variants examined in this disser-

tation display an equally rapid convergence, faster than that of the underlying i-FCIQMC

propagation, to the exact, FCI, energy value. It is interesting to note, however, that sub-

millihartree accuracies are attained when the i-FCIQMC stochastic wavefunction sampling

has captured about 42% of triples and 9% of quadruples (40,000 MC iterations). This needs

to be contrasted with the 26% of triples and 4% of quadruples that were needed to obtain

the same level of accuracy in the case of the RH–H = 1.0 Å grid point for H6/cc-pVDZ. This

indicates the severity of electron correlation effects in H10, even in the weakly correlated

regime. Nevertheless, it is worth emphasizing that at 40,000 MC iterations the underlying

i-FCIQMC simulation has only captured 0.12% of the entire many-electron Hilbert space,

which is spanned by 60,095,104 Sz = 0 totally symmetric Slater determinants using D2h

point group symmetry. This is a very interesting observation, because it implies that even if

the entire manifolds of triply and quadruply excited Slater determinants need to be captured

by FCIQMC so that CAD-FCIQMC produces FCI-quality energetics, they still constitute a

tiny fraction of all Slater determinants spanning the many-electron Hilbert space.

The onset of strong non-dynamical correlations has a devastating effect on the original

CAD-FCIQMC[1–5] scheme. This is showcased by the fact that no convergence was obtained

for RH–H = 2.0 Å (cf. Table 4.10). In fact, the singularity plaguing the CCSD-like Equations

(3.29) and (3.40) with ξi = 1, i = 1–5, was so severe that it persisted for the entire i-FCIQMC
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simulation, independent of the percentages of captured triples and quadruples, and even when

we used the converged CAD-FCIQMC[1,(3+4)/2] T1 and T2 amplitudes as initial guesses.

Despite the success of the original CAD-FCIQMC[1–5] approach, being able to provide fast

convergence toward FCI in the presence of quasi-degeneracies such as those characterizing

the double bond dissociation of H2O, it completely breaks down in the presence of strong

correlations.

In contrast, the novel CAD-FCIQMC[1,(3+4)/2] methodology is not only well-behaved

in the strong correlation regime, but also capable of providing FCI-quality energetics out of

the early stages of the i-FCIQMC simulation [see, for example, Figure 4.6(d)]. As mentioned

earlier in this dissertation, the success behind the CAD-FCIQMC[1,(3+4)/2] approach lies

in the fact that, by repartitioning the CC equations projected on doubles, the 1
2T

2
2 part

responsible for capturing strong correlations is treated deterministically while its compli-

ment is extracted from FCIQMC. At τ = 0, the error with respect to FCI characterizing

CAD-FCIQMC[1,(3+4)/2] ≡ ACCSD(1,3+4
2 ) amounts to 29.172 mEh. At a first glance,

such a deviation seems rather large, but we need to keep in mind that the FCI correlation

energy at this geometry is −454.768 mEh. This implies that the CAD-FCIQMC[1,(3+4)/2]

scheme introduced in this dissertation captures about 94% of the FCI correlation energy

already at τ = 0. Furthermore, after capturing about 70% of triples and 36% of quadru-

ples, CAD-FCIQMC[1,(3+4)/2] steadily recovers 99–101% of the FCI correlation energy.

Although the percentages of triples and quadruples are quite large, one has to keep in mind

that they constitute a tiny fraction of the entire many-electron Hilbert space. In fact, at this

point of the simulation, less than 2% of the Slater determinants spanning the many-electron

Hilbert space have been captured. It is, thus, astounding that with such a small subspace

of the many-electron Hilbert space recovered, CAD-FCIQMC[1,(3+4)/2] closely reproduces

the FCI energy value. At the same time, the underlying purely stochastic i-FCIQMC ap-

proach is far from attaining such a level of accuracy even at 160,000 MC iterations, the last

iteration before we stopped the simulation, where almost all triples and quadruples have
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been captured.

A comparison of the convergence of the PECs characterizing the D10h-symmetric dissoci-

ation of H10 obtained using i-FCIQMC, CAD-FCIQMC[1–5], and CAD-FCIQMC[1,(3+4)/2]

at 50,000, 100,000, and 150,000 MC iterations can be found in panels (d)–(f) of Figure 4.7,

respectively. As was the case with the smaller H6 ring, one needs to go to 150,000 MC

iterations for the errors relative to the FCI data characterizing the i-FCIQMC energetics

to be consistently smaller than those of the deterministic ACCSD(1,3+4
2 ) approach. The

same applies to the original CAD-FCIQMC scheme, with the exception of the RH–H = 2.0

Å grid point for which no convergence was obtained. The novel CAD-FCIQMC[1,(3+4)/2]

methodology is characterized by a rapid convergence to FCI across all grid points sam-

pling the symmetric dissociation of H10, including both the weakly and strongly correlated

regimes. Indeed, CAD-FCIQMC[1,(3+4)/2] faithfully reproduces the FCI PEC already at

100,000 MC iterations, being characterized by smaller than 1% relative errors.

So far, we have seen that both flavors of CAD-FCIQMC considered in this dissertation

produce FCI-quality energetics based on information extracted out of the early stages of

FCIQMC propagations not only in weakly correlated situations, but also in the presence of

quasi-degeneracies such as those characterizing the C2v-symmetric double bond dissociation

of H2O. Furthermore, we demonstrated that in the strong correlation regime, the original

CAD-FCIQMC[1–5] scheme is characterized by a slow convergence toward the exact energy

values or breaks down completely, depending on the number of entangled electrons. On the

other hand, the novel CAD-FCIQMC[1,(3+4)/2] methodology is practically immune to the

presence of strong correlations and offers a rapid convergence toward FCI-quality energetics

for the entire spectrum of electron correlation effects. As a final illustration of the power

of CAD-FCIQMC approaches in general, we set out to determine the frozen-core FCI total

electronic energy of C6H6, the simplest aromatic compound, as described by the cc-pVDZ

basis set at its equilibrium structure. In this case, the size of the many-electron Hilbert

space, which is spanned by about 1036 Sz = 0 Slater determinants without taking advantage
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of point group symmetry, renders a brute-force FCI computation impossible. In fact, the

dimensionality of the pertinent Hamiltonian matrix exceeds the present-day capabilities of

state-of-the-art super computers and matrix diagonalization algorithms by more than 25

orders of magnitude.

At a first glance, it may appear that the near-exact description of the electronic structure

of the C6H6/cc-pVDZ system at its equilibrium geometry is child’s play, due to the seemingly

absent strong correlations. Although, in general, strong many-electron correlation effects are

almost invariably associated with non-dynamical correlations, the minimum-energy structure

of C6H6 is characterized by strong dynamical correlation effects. This can be illustrated by

examining the convergence of the hierarchy of traditional CC approaches, including CCSD,

CCSDT, and CCSDTQ. For example, the incorporation of three-body clusters, which pre-

dominantly recover dynamical correlations, on top of the basic CCSD approach results in

a lowering of the CCSD correlation energy by −36.45 mEh [266] or −1.215 mEh per elec-

tron. For the sake of comparison, the (∆E(CCSDT)
0 − ∆E(CCSD)

0 )/N correlation energy

difference per electron for the H6/cc-pVDZ system, which is the simplest ab initio model

of the π-electron network of C6H6/cc-pVDZ, is only −0.5368 mEh. The effect of connected

quadruples in the case of C6H6/cc-pVDZ is far from being negligible, as is evident by the

fact that the CCSDTQ correlation energy of ∆E(CCSDTQ)
0 = −862.37 mEh is lower than

the CCSDT one by −2.47 mEh [266, 317].

As already alluded to above, the situation is further complicated by the size of the problem

of distributing the 30 valence electrons of C6H6 to the 108 correlated orbitals arising from the

cc-pVDZ basis. To put it into perspective, the dimension of the many-electron Hilbert space

for C6H6/cc-pVDZ is only a few orders of magnitude smaller than the state space of chess,

i.e., the number of all possible legal positions of chessmen, as estimated by Shannon [318].

Consequently, the numbers of correlated electrons and correlated orbitals render higher-level

SRCC approaches, such as the CC approach with singles, doubles, triples, quadruples, and

pentuples (CCSDTQP; T (CCSDTQP) = T1 +T2 +T3 +T4 +T5) [319], prohibitively expensive
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and the same is true for many other conventional quantum chemistry approaches.

The above discussion showcases the fact that the near-exact description of electron cor-

relations in the C6H6/cc-pVDZ system constitutes a great avenue for testing the power of

CAD-FCIQMC. So far, in performing CAD-FCIQMC computations, we relied on information

extracted from i-FCIQMC propagations. However, in the case of the medium-sized C6H6

molecule that is dominated by strong dynamical correlation effects, i-FCIQMC is anticipated

to face significant difficulties due to the biasing introduced by the initiator approximation.

This becomes apparent once we realize that the proper and accurate description of dynam-

ical correlations requires the stochastic wavefunction sampling to capture a vast number of

excited Slater determinants all of which are inhabited by small walker populations. The

undersampling of the many-electron Hilbert space induced by the initiator algorithm usually

manifests itself in a very slow convergence of i-FCIQMC with respect to the total walker

population, sometimes so slow that it is essentially impossible to approach the exact, FCI,

limit [310]. As a matter of fact, in the case of C6H6, the converged i-FCIQMC/cc-pVDZ pro-

jected energy lies between the CCSD and CCSDT results, being more than 20 mEh higher

than the CCSDTQ correlation energy [310]. Taking into account that in the absence of

strong non-dynamical correlations, as in the case of C6H6 in its equilibrium geometry, CCS-

DTQ provides energetics that are close to their corresponding FCI values, the conventional

i-FCIQMC methodology fails to converge to the exact, FCI, limit for this seemingly docile

system. This clearly indicates that the wavefunction information provided by i-FCIQMC is

unsuitable for initializing CAD-FCIQMC computations for C6H6.

One possibility to account for the systematic error associated with the initiator approach

is to employ a a posteriori energy correction based on second-order perturbation theory. In

the case of C6H6/cc-pVDZ, i-FCIQMC augmented with the aforementioned perturbative

correction significantly bridges the gap between i-FCIQMC and CCSDTQ, as evident by

the converged correlation energy of −860.7 ± 0.7 mEh [310]. However, this result is still

higher than the CCSDTQ one by at least 1 mEh. Taking into consideration the numer-
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ical observations that, in the absence of strong non-dynamical correlations, the high-level

CC approaches, although not variational, converge to FCI from above, the performance of

the perturbation–theory-corrected i-FCIQMC methodology is still not satisfactory. In ad-

dition, and more importantly for the context of this work, the corresponding wavefunction

information is that obtained in the underlying i-FCIQMC simulations, which, as already

emphasized above, constitutes a poor starting point for performing CAD-FCIQMC calcu-

lations. To circumvent all of these difficulties, in our CAD-FCIQMC computations for the

C6H6/cc-pVDZ system, we relied on wavefunctions resulting from the recently proposed

AS-FCIQMC methodology of Alavi and co-workers [263]. As mentioned earlier in this dis-

sertation, the AS-FCIQMC methodology ameliorates the bias introduced by the initiator

approximation in a a priori manner, namely, by making suitable modifications to the ini-

tiator algorithm. As a result, even with a relatively modest walker population of 108, the

AS-FCIQMC methodology produced the correlation energy for C6H6 that was lower than

that of CCSDTQ by about 1 mEh (cf. supporting information to Reference [266]), which is

already very encouraging.

As already mentioned, in the computations for the C6H6 molecule we employed the cc-

pVDZ basis set. The equilibrium geometry of benzene, optimized at the MP2/6-31G* level

of theory, was taken from Reference [320]. The underlying AS-FCIQMC propagations were

performed by Alavi and Ghanem [263] using the NECI code [321, 322]. The various details

of the AS-FCIQMC simulations can be found in the supporting information to Reference

[266]. Here, it suffices to say that the CAD-FCIQMC calculations relied on information ex-

tracted from two instantaneous AS-FCIQMC wavefunctions: the wavefunction obtained at

the last MC iteration of an AS-FCIQMC simulation with 1 billion (1B) walkers, designated

as
∣∣∣∣Φ(AS-FCIQMC)

1B

〉
, and the wavefunction obtained at the end of a AS-FCIQMC propagation

with 2 billion (2B) walkers, abbreviated as
∣∣∣∣Φ(AS-FCIQMC)

2B

〉
. To test the numerical stability

of our highest-level CAD-FCIQMC results using 2B walkers, we performed an additional

CAD-FCIQMC computation in which we replaced the instantaneous
∣∣∣∣Φ(AS-FCIQMC)

2B

〉
wave-
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function by the state obtained by averaging the last 100 time steps of the aforementioned

AS-FCIQMC simulation with 2 billion walkers, denoted as
∣∣∣∣Φ(AS-FCIQMC)

2B (100-avg)
〉

. The

cluster analysis of the AS-FCIQMC wavefunction and the subsequent CCSD-like computa-

tions were performed with codes of the Piecuch group. The same set of one- and two-body

molecular integrals, extracted from the MOLPRO program [323, 324], was employed for both

the AS-FCIQMC simulations and subsequent CCSD-like computations.

The results of our CAD-FCIQMC[1–5] and CAD-FCIQMC[1,(3+4)/2] computations for

the C6H6/cc-pVDZ system are summarized in Table 4.11. The various acronyms shown in

Table 4.11 are augmented by either a (1B) or a (2B) suffix, to indicate the total walker

population used in the pertinent AS-FCIQMC propagation. For the sake of comparison,

we also include the correlation energies obtained from the underlying AS-FCIQMC simu-

lations along with their corresponding error bars. These were obtained by discarding the

data points corresponding to the walker growth and equilibration periods and performing

blocking analysis [325] on the rest (see the supporting information to Reference [266] for the

details). In addition, in Table 4.11, we also report the projective energy corresponding to

each instantaneous AS-FCIQMC wavefunction, designated as CAD-FCIQMC-ext, which is

computed using Equation (3.5) with the information about the one- and two-body clusters

extracted from AS-FCIQMC, T (MC)
1 (τ) and T (MC)

2 (τ), respectively. The difference between

the CAD-FCIQMC-ext and CAD-FCIQMC correlation energies provides a valuable diagnos-

tic of the quality of the underlying instantaneous AS-FCIQMC wavefunction, especially of

its C(MC)
n (τ) with n = 1–4 components. Indeed, if the initial CAD-FCIQMC-ext correlation

energy differs significantly from the final CAD-FCIQMC result, i.e., if the T (MC)
1 (τ) and

T
(MC)
2 (τ) amplitudes extracted from AS-FCIQMC substantially relax during the process of

solving the CCSD-like Equations (3.29) and (3.40) in the presence of their T (MC)
3 (τ) and

T
(MC)
4 (τ) counterparts, we can conclude that the AS-FCIQMC wavefunction is not con-

verged yet. The correlation energies reported in the last two rows of Table 4.11, designated

as CAD-FCIQMC-ext(2B,100-avg) and CAD-FCIQMC[1–5](2B,100-avg), correspond to the
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∣∣∣∣Φ(AS-FCIQMC)
2B (100-avg)

〉
wavefunction that was obtained by averaging the last 100 time

steps of the AS-FCIQMC simulation with 2 billion walkers.

We begin our discussion by focusing on the results arising from the AS-FCIQMC cal-

culation with a total walker population of 1 billion, starting with AS-FCIQMC(1B) itself.

The AS-FCIQMC(1B) correlation energy of −864.8 ± 0.5 mEh is lower than the CCSDTQ

one by at least 2 mEh. At the same time, the CAD-FCIQMC-ext correlation energy is

−867.010 mEh, i.e., about 2 mEh lower than the aforementioned AS-FCIQMC(1B) value.

This observation suggests that the instantaneous AS-FCIQMC(1B) wavefunction is not well

converged. Indeed, letting the T1 and T2 clusters relax in the presence of their T (MC)
3 (τ) and

T
(MC)
4 (τ) counterparts extracted from AS-FCIQMC(1B) increases the correlation energy by

about 3 mEh, as evident by the CAD-FCIQMC[1–5](1B) and CAD-FCIQMC[1,(3+4)/2](1B)

results. Furthermore, both flavors of CAD-FCIQMC provide correlation energies that are

above the upper limit of −864.3 mEh resulting from the underlying AS-FCIQMC(1B) com-

putations by a fraction of a millihartree. This potentially suggests that AS-FCIQMC(1B)

slightly overestimates the correlation energy of the C6H6/cc-pVDZ system. On a side note,

the CAD-FCIQMC[1–5](1B) and CAD-FCIQMC[1,(3+4)/2](1B) correlation energies are in

excellent agreement with each other, as might have been anticipated due to the absence of

strong non-dynamical correlation effects.

We now proceed to the results arising from the largest AS-FCIQMC simulation con-

sidered, namely, the one using a total walker population of 2 billion. A simple inspec-

tion of Table 4.11 reveals that the AS-FCIQMC(2B) correlation energy of −863.7 ± 0.3

mEh is higher than its 1 billion counterpart by about 1 mEh. In fact, there is an ex-

cellent agreement between the AS-FCIQMC(2B) value and the CAD-FCIQMC[1–5](1B)

and CAD-FCIQMC[1,(3+4)/2](1B) data. This should be contrasted with the fact that

the AS-FCIQMC(1B) value is outside the ±0.3 mEh error bars of the more accurate AS-

FCIQMC(2B) result. These observations further showcase the spectacular performance of

CAD-FCIQMC in accelerating convergence toward the exact, FCI, energetics. Moving on
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to our highest-level CAD-FCIQMC results using 2 billion walkers, we notice that the CAD-

FCIQMC-ext(2B) correlation energy is in excellent agreement with its AS-FCIQMC(2B)

counterpart, suggesting that the instantaneous
∣∣∣∣Φ(AS-FCIQMC)

2B

〉
wavefunction, at least its

C
(MC)
1 and C

(MC)
2 components, are well converged. This is further corroborated by the

fact that the CAD-FCIQMC-ext(2B) result can hardly be distinguished from both the

CAD-FCIQMC[1–5](2B) and CAD-FCIQMC[1,(3+4)/2](2B) energetics. Indeed, the CAD-

FCIQMC-ext(2B), CAD-FCIQMC[1–5](2B), and CAD-FCIQMC[1,(3+4)/2](2B) correlation

energies agree with one another to within about 0.02 mEh. This clearly demonstrates that the

T
(MC)
1 (τ) and T

(MC)
2 (τ) clusters extracted from the instantaneous

∣∣∣∣Φ(AS-FCIQMC)
2B

〉
wave-

function hardly relax during the process of solving the CCSD-like system of equations, Equa-

tions (3.29) and (3.40), in the presence of their T (MC)
3 (τ) and T

(MC)
4 (τ) counterparts. In

the spirit of externally corrected CC approaches, the slight relaxation of the one- and two-

body clusters in the presence of their three- and four-body counterparts extracted from the

AS-FCIQMC(2B) wavefunction implies that T (MC)
3 (τ) and T

(MC)
4 (τ) are of FCI quality.

As a final test of the numerical stability of our highest-level CAD-FCIQMC results us-

ing 2 billion walkers, we examine the CAD-FCIQMC correlation energies arising from pro-

cessing the
∣∣∣∣Φ(AS-FCIQMC)

2B (100-avg)
〉

wavefunction. We see that the replacement of the

instantaneous
∣∣∣∣Φ(AS-FCIQMC)

2B

〉
wavefunction by its

∣∣∣∣Φ(AS-FCIQMC)
2B (100-avg)

〉
counterpart,

obtained by averaging the last 100 time steps of the AS-FCIQMC simulation with 2 billion

walkers, has a minor effect on the CAD-FCIQMC-ext and CAD-FCIQMC[1–5] correlation

energies. Indeed, the CAD-FCIQMC-ext(2B,100-avg) and CAD-FCIQMC[1–5](2B,100-avg)

data differ from their counterparts using the instantaneous
∣∣∣∣Φ(AS-FCIQMC)

2B

〉
wavefunction

by about 0.01 mEh. The remarkable consistency between the CAD-FCIQMC energetics

using 2 billion walkers gives us further confidence in our results. It is also worth mention-

ing that the CAD-FCIQMC[1–5](1B) and CAD-FCIQMC[1,(3+4)/2](1B) energetics differ

from their counterparts using 2 billion walkers by only about 0.5 mEh. The fact that all of

our CAD-FCIQMC results reported in this dissertation are within the ±0.3 mEh error bars
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characterizing the largest AS-FCIQMC simulation using 2 billion walkers is also very reas-

suring. Based on our highest-level CAD-FCIQMC[1–5](2B), CAD-FCIQMC[1,(3+4)/2](2B),

and CAD-FCIQMC[1–5](2B,100-avg) results, we estimate the exact, FCI, correlation energy

of the C6H6/cc-pVDZ system at its minimum-energy structure to be −863.4 mEh.

At this point, it is worth mentioning that the calculations for the C6H6/cc-pVDZ system

reported in this dissertation formed part of a blind challenge, reported in Reference [266],

aimed at determining its frozen-core FCI energy. In addition to the aforementioned AS-

FCIQMC and CAD-FCIQMC approaches, the various methodologies that were evaluated in

the blind challenge included adaptive sampling CI (ASCI) [326–329], semi-stochastic heat-

bath CI (SHCI) [330–336], iterative CI with selection (iCI) [337–340], DMRG [198–201, 341–

348], many-body expanded FCI (MBE-FCI) [317, 349–351], and full CC reduction (FCCR)

[352]. One of the major findings of that investigation was that, with the exception of the

ASCI, iCI, and SHCI results, all correlation energies agreed with one another to within 0.9

mEh, ranging from −863.7 mEh to −862.8 mEh. It is also interesting to note that our

CAD-FCIQMC result lies more or less in the middle of the aforementioned interval. Based

on the findings of the blind challenge, the frozen-core FCI correlation energy of the C6H6

species at its equilibrium geometry as described by the cc-pVDZ basis set is estimated to be

in the neighborhood of −863 mEh.
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Table 4.8: Convergence of the energies resulting from the all-electron i-FCIQMC, CAD-
FCIQMC[1–5], and CAD-FCIQMC[1,(3+4)/2] calculations with ∆τ = 0.0001 a.u. toward
FCI for the H2O molecule, as described by the cc-pVDZ basis set, at the equilibrium geom-
etry Re and the geometry obtained by a simultaneous stretching of both O–H bonds by a
factor of 2.0.a The i-FCIQMC calculations were initiated by placing 1,000 walkers on the
RHF determinant and the na parameter of the initiator algorithm was set at 3.

CAD-FCIQMC
Iterations (I) %Tb %Qc %FCId fI

e [1–5] [1,(3+4)/2] i-FCIQMC
RO–H = Re

0 0 0 0.00 0.09 3.744f −0.731g 217.821h

20,000 11.8 1.38 0.01 3.95 −0.073 −0.019 1.596
40,000 16.4 2.28 0.01 6.52 −0.211 −0.126 −2.217
60,000 21.3 3.48 0.02 10.3 −0.046 −0.202 1.911
80,000 26.5 5.12 0.02 16.1 0.189 0.210 −0.686
100,000 32.1 7.47 0.04 25.7 −0.036 −0.032 0.139
120,000 38.0 10.3 0.05 40.0 −0.035 −0.061 0.597
140,000 44.2 14.0 0.08 63.5 0.098 0.087 0.080
160,000 50.4 18.3 0.12 100 0.078 0.114 −0.400
∞ 100 100 100 — −76.241860i

RO–H = 2.0Re
0 0 0 0.00 0.01 22.032f 3.041g 363.954h

20,000 10.6 1.34 0.01 0.55 8.485 5.656 72.650
40,000 16.6 2.72 0.02 1.29 0.138 −0.232 44.627
60,000 24.5 5.03 0.03 2.85 −0.225 1.026 19.660
80,000 33.2 8.46 0.06 6.01 −0.425 0.812 12.611
100,000 42.5 13.2 0.12 12.4 −0.816 1.125 5.680
120,000 51.7 19.2 0.20 25.1 −0.555 0.534 4.041
140,000 60.9 26.6 0.35 50.3 −0.666 0.498 1.981
160,000 69.5 34.9 0.57 100 −0.434 0.398 1.328
∞ 100 100 100 — −75.951665i

a The equilibrium geometry, RO–H = Re, and the geometry obtained by a simultaneous stretching of both
O–H bonds by a factor of 2.0 without changing the ∠(H-O-H) angle, RO–H = 2.0Re, were taken from
[277] and all electrons were correlated. Unless otherwise stated, all energies are errors relative to FCI in
millihartree.
b Percentages of triply excited determinants captured during the i-FCIQMC propagations.
c Percentages of quadruply excited determinants captured during the i-FCIQMC propagations.
d Percentages of all determinants spanning the entire many-electron Hilbert space captured during the i-
FCIQMC propagations.
e Walker populations characterizing the i-FCIQMC propagations reported as percentages of the total walker
numbers at I = Imax = 160, 000, which in the specific i-FCIQMC runs reported in this table and Figure
4.4 were 1,169,396 at RO–H = Re and 10,146,724 at RO–H = 2.0Re.
f Equivalent to CCSD.
g Equivalent to ACCSD(1,3+4

2 ).
h Equivalent to RHF.
i Total FCI energy in hartree taken from [277].
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Table 4.9: Convergence of the energies resulting from the i-FCIQMC, CAD-FCIQMC[1–
5], and CAD-FCIQMC[1,(3+4)/2] calculations with ∆τ = 0.0001 a.u. toward FCI for the
symmetric dissociation of the H6 ring, as described by the cc-pVDZ basis set, at two rep-
resentative values of the distance between neighboring H atoms, including RH–H = 1.0 Å
(the region of the minimum on the FCI PEC shown in Figure 4.5(a) characterized by weaker
correlations) and RH–H = 2.0 Å (the region characterized by strong correlations involving
the entanglement of all six electrons).a The i-FCIQMC calculations were initiated by placing
1,500 walkers on the RHF determinant and the na parameter of the initiator algorithm was
set at 3.

CAD-FCIQMC
Iterations (I) %Tb %Qc %FCId fI

e [1–5] [1,(3+4)/2] i-FCIQMC
RH–H = 1.0 Å

0 0 0 0.00 0.58 3.328f 1.256g 138.122h

20,000 26.4 4.27 0.84 13.3 0.235 0.047 6.029
40,000 31.7 5.77 1.11 18.5 0.276 0.243 0.598
60,000 37.4 7.67 1.44 25.0 −0.124 −0.096 −0.225
80,000 42.8 9.90 1.86 33.5 −0.005 0.047 −1.680
100,000 47.7 12.4 2.29 43.6 −0.129 −0.146 0.511
120,000 53.6 15.8 2.93 58.4 −0.022 −0.050 −1.338
140,000 59.3 19.0 3.61 75.8 −0.107 −0.178 1.500
160,000 64.0 23.3 4.50 100 0.085 0.129 −0.347
∞ 100 100 100 — −3.387731i

RH–H = 2.0 Å
0 0 0 0.00 0.12 −35.048f 8.818g 252.159h

20,000 23.9 3.81 0.83 2.82 −34.263 7.149 119.438
40,000 32.6 6.90 1.51 5.63 −32.884 2.906 70.886
60,000 40.7 10.4 2.33 9.60 −27.807 0.596 43.687
80,000 49.2 14.8 3.41 15.9 −17.090 0.762 26.814
100,000 57.4 20.0 4.77 25.1 −11.815 0.019 16.263
120,000 65.2 26.4 6.61 40.1 −9.077 −0.400 10.560
140,000 72.3 33.4 8.83 63.3 −5.457 −0.114 6.543
160,000 78.5 41.4 11.6 100 −2.401 0.419 4.015
∞ 100 100 100 — −3.062318i

a Unless otherwise stated, all energies are errors relative to FCI in millihartree.
b Percentages of triply excited determinants captured during the i-FCIQMC propagations.
c Percentages of quadruply excited determinants captured during the i-FCIQMC propagations.
d Percentages of all determinants spanning the entire many-electron Hilbert space captured during the i-
FCIQMC propagations.
e Walker populations characterizing the i-FCIQMC propagations reported as percentages of the total walker
numbers at I = Imax = 160, 000, which in the specific i-FCIQMC runs reported in this table and Figures
4.6(a) and 4.6(b) were 257,301 at RH–H = 1.0 Å and 1,271,883 at RH–H = 2.0 Å.
f Equivalent to CCSD.
g Equivalent to ACCSD(1,3+4

2 ).
h Equivalent to RHF.
i Total FCI energy in hartree.
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Table 4.10: Same as Table 4.9 for the symmetric dissociation of the H10 ring, as described
by the DZ basis set. In analogy to the H6 ring, RH–H = 1.0 Å corresponds to the region of
the minimum on the FCI PEC shown in Figure 4.5(b) characterized by weaker correlations,
whereas RH–H = 2.0 Å is the region characterized by strong correlations involving the
entanglement of all ten electrons.

CAD-FCIQMC
Iterations (I) %T %Q %FCI fI

a [1–5] [1,(3+4)/2] i-FCIQMC
RH–H = 1.0 Å

0 0 0 0.00 0.14 4.878 2.265 162.374
20,000 34.3 6.14 0.08 7.07 2.083 1.525 14.503
40,000 42.0 9.12 0.12 11.3 0.774 0.785 3.721
60,000 49.2 12.6 0.18 16.6 0.367 0.457 −0.260
80,000 55.9 16.6 0.25 23.6 0.087 0.015 1.991
100,000 61.8 21.4 0.34 33.3 0.343 0.382 1.096
120,000 68.8 27.8 0.48 49.1 −0.092 0.022 −0.083
140,000 74.7 34.7 0.66 70.4 0.231 0.285 −0.388
160,000 79.3 42.2 0.91 100 0.054 0.051 1.394
∞ 100 100 100 — −5.538852

RH–H = 2.0 Å
0 0 0 0.00 0.00 NCb 29.172 454.768
20,000 37.9 8.92 0.15 0.12 NCb 23.004 253.265
40,000 55.1 21.7 0.68 0.56 NCb 9.377 163.979
60,000 69.8 36.4 1.90 1.77 NCb 3.779 98.996
80,000 80.7 51.7 4.11 4.46 NCb −3.612 63.082
100,000 88.6 65.7 7.54 9.95 NCb −3.565 37.756
120,000 93.5 77.4 12.5 21.4 NCb −3.592 21.909
140,000 96.5 86.0 19.1 45.8 NCb −1.704 11.943
160,000 98.1 91.8 27.3 100 NCb −1.829 7.187
∞ 100 100 100 — −5.079254

a Walker populations characterizing the i-FCIQMC propagations reported as percentages of the total walker
numbers at I = Imax = 160, 000, which in the specific i-FCIQMC runs reported in this table and Figures
4.6(c) and 4.6(d) were 1,093,428 at RH–H = 1.0 Å and 133,246,948 at RH–H = 2.0 Å.
b NC indicates that no convergence was obtained when the solution of the CC equations defining the deter-
ministic part of the CAD-FCIQMC[1–5] procedure [Equations (3.29) and (3.40), in which ξi, i = 1–5, are
all set at 1] was carefully continued from the weakly correlated region.
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Table 4.11:Results of the CAD-FCIQMC calculations based on the AS-FCIQMC wavefunc-
tions obtained after equilibration runs using 1 billion (1B) and 2 billion (2B) walkers.

Calculation ∆E/mEh

1 Billion Walkers
AS-FCIQMC(1B) −864.8± 0.5
CAD-FCIQMC-ext(1B) −867.010
CAD-FCIQMC[1–5](1B) −864.089
CAD-FCIQMC[1,(3+4)/2](1B) −863.861

2 Billion Walkers
AS-FCIQMC(2B) −863.7± 0.3
CAD-FCIQMC-ext(2B) −863.464
CAD-FCIQMC[1–5](2B) −863.453
CAD-FCIQMC[1,(3+4)/2](2B) −863.438
CAD-FCIQMC-ext(2B,100-avg) −863.460
CAD-FCIQMC[1–5](2B,100-avg) −863.439
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Figure 4.4: Convergence of the energies resulting from the all-electron i-FCIQMC, CAD-
FCIQMC[1–5], and CAD-FCIQMC[1,(3+4)/2] calculations with ∆τ = 0.0001 a.u. toward
FCI for the H2O molecule, as described by the cc-pVDZ basis set, at (a) the equilibrium
geometry and (b) the geometry obtained by a simultaneous stretching of both O–H bonds by
a factor of 2 without changing the ∠(H-O-H) angle (both geometries were taken from [277]).
The i-FCIQMC calculations were initiated by placing 1,000 walkers on the RHF determinant
and the na parameter of the initiator algorithm was set at 3. All energies are errors relative
to FCI in millihartree, and the insets show the percentages of triply (%T) and quadruply
(%Q) excited determinants captured during the i-FCIQMC propagations.
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Figure 4.5: Ground-state PECs for the symmetric dissociation of the (a) H6/cc-pVDZ and
(b) H10/DZ systems resulting from the CCSD, CCSDT, and FCI calculations.
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Figure 4.6: Convergence of the energies resulting from the i-FCIQMC, CAD-FCIQMC[1–5],
and CAD-FCIQMC[1,(3+4)/2] calculations with ∆τ = 0.0001 a.u. toward FCI for the sym-
metric dissociation of the H6/cc-pVDZ [panels (a) and (b)] and H10/DZ [panels (c) and (d)]
systems at two representative values of the distance between neighboring H atoms, including
RH–H = 1.0 Å [panels (a) and (c)] and RH–H = 2.0 Å [panels (b) and (d)]. The i-FCIQMC
calculations were initiated by placing 1,500 walkers on the RHF determinant and the na
parameter of the initiator algorithm was set at 3. All energies are errors relative to FCI in
millihartree, and the insets show the percentages of triply (%T) and quadruply (%Q) excited
determinants captured during the i-FCIQMC propagations. The CAD-FCIQMC[1–5] curve
is absent in panel (d), since the solution of the CC equations defining the deterministic part
of the CAD-FCIQMC[1–5] procedure for the H10/DZ system could not be continued beyond
RH–H = 1.75 Å.
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Figure 4.7: A comparison of the energies resulting from the i-FCIQMC, CAD-FCIQMC[1–5],
and CAD-FCIQMC[1,(3+4)/2] calculations at 50,000 [panels (a) and (d)], 100,000 [panels
(b) and (e)], and 150,000 [panels (c) and (f)] FCIQMC iterations using time step ∆τ = 0.0001
a.u., along with the corresponding fully deterministic CCSD, CCSDT, and ACCSD(1,3 ×
no

no+nu +4× nu
no+nu ) data, for the symmetric dissociation of the H6/cc-pVDZ [panels (a)–(c)]

and H10/DZ [panels (d)–(f)] systems at selected distances between neighboring H atoms,
RH–H, ranging from the weakly correlated (smaller RH–H) to the strongly correlated (larger
RH–H) regions. The i-FCIQMC calculations were initiated by placing 1,500 walkers on the
RHF determinant and the na parameter of the initiator algorithm was set at 3. All energies
are errors relative to FCI in millihartree. The insets show the entire range of errors relative
to FCI.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE OUTLOOK

In this dissertation, we presented recent advances in the development of SRCC approaches

for strongly correlated systems, which lie at the heart of contemporary quantum chemistry.

After introducing the concept of strong correlation, we argued that the sheer dimensionalities

of the underlying model spaces render MR schemes inapplicable to the strong correlation

regime, emphasizing the need for robust, yet computationally affordable, single-reference

quantum chemistry methodologies. In this dissertation, we focused on SRCC approaches,

which, over the years, have been established as the de facto standard for high-accuracy

electronic structure calculations, even in the presence of quasi-degeneracies such as those

characterizing single and double bond dissociations. We presented various numerical exam-

ples from the literature that demonstrate that the hierarchy of traditional SRCC approaches,

including CCSD, CCSDT, CCSDTQ, etc., completely breaks down in the strong correlation

regime of model Hamiltonians. Inspired by the work of Scuseria and co-workers [209], we

proved analytically that in the fully correlated limit of the 12-site half-filled attractive pair-

ing Hamiltonian the importance of the many-body components of the cluster operator is

reversed, i.e., T2 = T4 < T6 < T8 < T10 < T12 (recall that T2n+1 = 0,∀n ∈ Z+ ∪ {0} in

the case of the attractive pairing Hamiltonian). Thus, we demonstrated that the fabric of

conventional SRCC methodologies is completely torn apart by the onset of strong correla-

tions. Subsequently, we proceeded to the discussion of novel unconventional classes of CC

approaches capable of providing an accurate description of the entire spectrum of many-

electron correlation effects, ranging from the weakly to the strongly correlated regimes.

In the first part of this dissertation, we examined CC schemes belonging to the family of

ACP methodologies, in which one retains all doubly excited cluster amplitudes while using

subsets of non-linear diagrams of the CCD/CCSD equations. Although the original ACP

schemes were immune to the catastrophic failures exhibited by traditional CC approaches,
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such as CCSD and even CCSDT and CCSDTQ, in strongly correlated model systems, their

application to realistic problems was hindered by two issues. First, typical ACP approaches

neglected the T3 physics, without which one cannot obtain quantitative accuracy for most

problems of chemical interest, while all previous attempts to incorporate the three-body

clusters using conventional MBPT-like arguments were only partly successful. Second, the

various diagram cancellations defining the ACP methodologies were derived using minimum-

basis-set model systems, meaning that they were not necessarily optimum when larger basis

sets were employed. Both of these issues were successfully addressed in this dissertation. As

far as the neglect of T3 physics is concerned, we employed active-space ideas to incorporate

the leading three-body clusters within the ACP framework in a robust, yet computationally

affordable, manner. To extend the ACP schemes to larger basis sets, we introduced a new

ACP variant, abbreviated as ACCSD(1,3 × no
no+nu + 4 × nu

no+nu ), that utilized basis-set-

dependent scaling factors multiplying the pertinent coupled-pair diagrams. We demonstrated

that all of the examined ACP schemes, without and with the connected triples, provided

qualitatively correct PECs for the symmetric dissociation of hydrogen clusters as large as

the H50 linear chain. In addition, we also showed that all active-space ACP approaches

faithfully reproduced their full triples parents, but at a fraction of the computational cost.

Furthermore, among the tested ACP methodologies, the novel ACCSD(1,3 × no
no+nu + 4 ×

nu
no+nu ) scheme corrected for the triples performed the best, consistently recovering about

99–101% of the exact, FCI, or nearly exact, DMRG correlation energies, but at a fraction of

the computational cost.

In the second part of this dissertation, we introduced a new class of semi-stochastic ap-

proaches capable of extrapolating the exact energetics out of the early stages of FCIQMC

simulations, even in the presence of strong many-electron correlation effects. This was accom-

plished by merging the ACP ideas with the recently proposed CAD-FCIQMC methodology,

where, in the spirit of externally corrected CC schemes, one solves CCSD-like equations for

the one- and two-body clusters in the presence of their three- and four-body counterparts
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extracted from FCIQMC. In its original formulation, this approach was able to accurately ex-

trapolate the exact, FCI, energetics based on the early stages of FCIQMC propagations, even

in the presence of quasi-degeneracies such as those characterizing the C2v-symmetric double

bond dissociation of H2O. In this dissertation, however, we showed that this scheme was not

able to handle strongly correlated systems, due to the singular behavior of CCSD in such

situations. Furthermore, we demonstrated that this issue can be remedied by repartitioning

the CC equations, so that selected coupled-pair contributions are extracted from FCIQMC

as well. In doing so, we treated the part of the
〈
Φabij

∣∣∣(VN
1
2T

2
2
)
C

∣∣∣Φ〉 term that is responsi-

ble for the good behavior in strongly correlated systems deterministically and extracted the

information about its complement from the purely stochastic FCIQMC wavefunction sam-

pling, thus, successfully extending the CAD-FCIQMC methodology to the strong correlation

regime. This allowed us to obtain a FCI-quality description of the symmetric dissociation

of hydrogen rings into individual H atoms, using the wavefunction information extracted

from the early stages of i-FCIQMC propagations. As a final illustration of the power of

CAD-FCIQMC, we provided an estimate of the frozen-core FCI correlation energy of the

C6H6 molecule as described by the cc-pVDZ basis at its minimum-energy structure. Our

CAD-FCIQMC value was in excellent agreement with the energetics resulting from AS-

FCIQMC, MBE-FCI, and DMRG calculations that were performed independently of our

CAD-FCIQMC computations.

The ideas and methodologies developed and tested in this dissertation can be expanded

in the future in various ways. Focusing on the deterministic ACP methodologies, it would

be interesting to replace the active-space treatment of three-body clusters by a CR-CC(2,3)-

type non-iterative energy correction. We recall that the CR-CC(2,3) approach [137–140]

belongs to the family of left-eigenstate completely renormalized CC/EOMCC methodolo-

gies, resulting from the formalism of the method of moments of CC equations [128–144], in

which one adds a non-iterative correction to the energies resulting from methods employ-

ing a conventional truncation in the cluster operator T , such as CCSD, for the correlation
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effects due to the higher-order connected excitations that are neglected in the initial CC cal-

culation. Taking into account the ability of the various ACCSD approaches to tame strong

non-dynamical correlation effects and the fact that CR-CC approaches capture a substan-

tial portion of dynamical correlations, the proposed CR-CC–corrected ACCSD schemes are

anticipated to be suitable for the study of the entire spectrum of electron correlation effects.

Depending on the outcomes of such an investigation, one can envision correcting the ACCSDt

energies for the correlation effects due to the missing triples in the spirit of the CC(P ;Q)

framework [37, 38, 144, 161–163], which extends the aforementioned moment expansions to

unconventional truncations of the cluster operator such as those defining active-space CC

approaches.

Another possibility worth exploring would be to replace the user- and system-dependent

active orbitals of ACCSDt schemes by automatically determined active spaces via stochastic

wavefunction sampling, as is done, for example, in the recently proposed semi-stochastic

CC(P ) methodology and its CC(P ;Q) extension [164–166]. It has been demonstrated, for

example, that the semi-stochastic CC(P ) approach is capable of producing CCSDT-level

energetics by utilizing active spaces extracted out of the early stages of i-FCIQMC or even

truncated CI and CC Monte Carlo [353–356], such as CISDT-MC, CISDTQ-MC, and i-

CCSDT-MC [355], simulations while the semi-stochastic CC(P ;Q) method significantly ac-

celerates the convergence [164, 166]. Naturally, the proposed semi-stochastic extension of

the ACCSDt family of methods will be of no use in the study of strongly correlated sys-

tems treated by minimum basis sets, such as the Hm/STO-nG clusters, since the pertinent

active spaces are fully determined by the symmetry of the problem. Nevertheless, such an

approach will certainly prove useful in the study of realistic strongly correlated systems, in-

cluding, for example, complexes involving transition metals. Eventually, in the spirit of the

semi-stochastic CC(P ;Q) hierarchy, one would like to correct the semi-stochastic ACCSDt

results for the correlation effects due to the triples not captured yet by the QMC stochastic

wavefunction sampling.
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An additional aspect of the ACCSD methodologies and their active-space connected

triples extensions that might be interesting to explore in the future is their usefulness as ref-

erences for obtaining accurate excitation energies, ionization potentials, and electron affinities

of strongly correlated systems through the EOM formalism. A straightforward approach in

this regard would be to diagonalize a similarity-transformed Hamiltonian constructed using

the T1 and T2 or T1, T2, and t3 amplitudes resulting from ACCSD or ACCSDt computations,

respectively. To the best of our knowledge, there exists only one such investigation based on

2CC ≡ ACCSD(4,5) and its connected triples extensions, abbreviated as 3CC and 3CCm,

gauging their performance in reproducing the data resulting from their respective EOMCCSD

and EOMCCSDT counterparts, FCI, and experiment, when available, [233]. However, the

authors did not make any comments regarding the possible merits of using such methods for

the treatment excited, ionized, and electron-attached states of systems with strongly corre-

lated electronic ground states. Furthermore, they did not consider ACCSD variants other

than ACCSD(4,5). It would be interesting to examine whether the analogous conclusions

regarding the performance of the various ground-state ACCSD and ACCSDt methodologies

apply to their excited-state, ionized, and electron-attached counterparts. An alternative,

and perhaps more suitable, approach for extending the ACCSD and ACCSDt approaches

to excited, ionized, and electron-attached states of strongly correlated systems would be to

replace the similarity-transformed Hamiltonian of CC theory with an effective Hamiltonian

that reflects on the various diagram cancellations/modifications of a given ACCSD/ACCSDt

variant. To the best of our knowledge, there exists only one such investigation where the au-

thors studied excited electronic states of organic molecules by diagonalizing effective Hamil-

tonians corresponding to 2CC, DCSD, and pCCSD reference states [241]. However, they

did not consider systems whose ground electronic states are characterized by strong many-

electron correlation effects. It would be interesting to examine the performance of the EOM

extensions of the ACCSD approaches, without and with triples, examined in this disserta-

tion in the study of challenging strongly correlated systems, where the underlying CCSD
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approach produces an unphysical description or even becomes singular.

Turning our attention to the semi-stochastic CAD-FCIQMC family of methods, it would

be interesting to attempt to accelerate the convergence toward the exact, FCI, energetics even

further by correcting the CAD-FCIQMC energies for the correlation effects associated with

the triples and quadruples not yet captured by FCIQMC, in the spirit of the aforementioned

CC(P ;Q) hierarchy of methods. Considering that dynamical electron correlation effects

are usually more difficult to capture compared to their non-dynamical counterparts during

the FCIQMC stochastic wavefunction sampling, such CC(P ;Q)-corrected CAD-FCIQMC

approaches are anticipated to accelerate convergence by recovering a substantial portion

of dynamical correlations. For example, in the case of CAD-FCIQMC[1–5], the proposed

scheme would become equivalent to CR-CC(2,4) at τ = 0, which already constitutes a

significant improvement over the CCSD starting point of CAD-FCIQMC[1–5]. The suggested

a posteriori energy corrections are expected to be even more powerful when combined with

the CAD-FCIQMC[1,(3+4)/2] scheme, which, as demonstrated in this dissertation, provides

an accurate description of strong non-dynamical many-electron correlation effects already

from the outset of FCIQMC simulations. Eventually, taking into account that the three-

and four-body clusters extracted from FCIQMC wavefunctions become exact only in the

τ → ∞ limit, one can even contemplate correcting T (MC)
3 (τ) and T

(MC)
4 (τ) themselves, in

addition to the CC(P ;Q)-type corrections for the triples and quadruples not captured by

FCIQMC.

An alternative approach would be to take advantage of the one- and two-body clusters

resulting from our CAD-FCIQMC computations and attempt to accelerate the convergence

toward FCI of the underlying FCIQMC propagations themselves. This could be accom-

plished, for example, using the following algorithm. At a given time step, convert the T1

and T2 clusters obtained in a CAD-FCIQMC calculation to their C1 and C2 counterparts.

Subsequently, translate the C1 and C2 excitation amplitudes back to walker populations

of singly and doubly excited Slater determinants by multiplying them with the population
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of walkers residing in the RHF reference determinant (rounding to the nearest integer, if

necessary, to enforce integer populations of walkers). Finally, use the list of determinants

and updated walker populations to restart the FCIQMC propagation. A much more sophis-

ticated approach that would retain some information regarding the cluster structure of the

many-body wavefunction would be as follows. At a given time step, extract a list of all, i.e.,

up to N -tuply excited, Slater determinants that are captured by the FCIQMC stochastic

wavefunction sampling. Subsequently, cluster analyze the entire FCIQMC wavefunction,

extract T (MC)
1 (τ)–T (MC)

n−1 (τ), and subtract from C
(MC)
3 (τ)–C(MC)

n (τ) all disconnected com-

ponents containing T (MC)
1 (τ) and T

(MC)
2 (τ). After performing a CAD-FCIQMC computa-

tion, restore all disconnected components that were subtracted in the previous step by using

T
(MC)
3 (τ)–T (MC)

n−1 (τ) and the T1 and T2 amplitudes obtained from CAD-FCIQMC. Convert

the T1 and T2 clusters obtained in a CAD-FCIQMC calculation to their C1 and C2 coun-

terparts. Translate all CI excitation amplitudes back to walker populations and restart the

FCIQMC simulation. However, the computational complexity associated with such a scheme

renders the first algorithm a much more attractive approach for potentially accelerating the

convergence of FCIQMC simulations using CAD-FCIQMC.

Another interesting possibility would be to replace the stochastic FCIQMC methodology

as the non-CC source of T1 and T2 clusters by other wavefunction-based schemes that are

also guaranteed to become exact as a given limit is approached. For example, one could

use methods that belong to the general category of selected CI (SCI) approaches [357–362].

A typical SCI computation is initiated by diagonalizing the Hamiltonian within an initial

variational space that is spanned by one or more selected Slater determinants. Subsequently,

the initial variational space is enriched by adding external Slater determinants that satisfy

a predefined importance criterion and the Hamiltonian is diagonalized once more. This

procedure is repeated until self consistency is reached. This algorithm reveals that as the

variational space keeps increasing one arrives at increasingly better approximations to the

exact, FCI, energy, and, eventually, SCI becomes equivalent to a FCI diagonalization of
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the Hamiltonian matrix. A cluster-analysis-driven SCI (CAD-SCI) is anticipated to have a

couple of advantages over the original CAD-FCIQMC family of methods. Unlike the state-

of-the-art i-FCIQMC and AS-FCIQMC schemes, SCI approaches are variational, suggesting

that in every iteration one can extract T3 and T4 clusters of increasing quality from the

wavefunction of the SCI method of interest. Furthermore, in typical SCI methodologies, the

diagonalization of the Hamiltonian matrix is accomplished deterministically, meaning that

CAD-SCI will be free of the stochastic noise characterizing CAD-FCIQMC schemes. Time

will tell whether such CAD-SCI schemes can provide FCI-quality correlation energies at a

smaller computational cost compared to their FCIQMC analogs.

Finally, based on the remarkable performance of CAD-FCIQMC in the case of ground

electronic states, it would be worth to extend such approaches to excited electronic states.

Taking into account that any excited-state wavefunction that has a non-zero overlap with

the HF Slater determinant can be expressed using an exponential ansatz [363], the existing

CAD-FCIQMC algorithm, in fact any externally corrected CC approach, can be used for the

study of such excited electronic states. This is not surprising, especially when one realizes

that the CC equations, which are non-linear, have multiple solutions, some of which corre-

spond to excited electronic states and others that are unphysical [128, 364–376]. However,

the study of excited electronic states whose wavefunctions are orthogonal to the HF Slater

determinant would only be possible by using, for example, the EOM formalism. In that

case, one would need to examine the corresponding EOM equations and identify the Rµ,n

many-body components of the CI-like linear excitation operator Rµ that are necessary to

determine the pertinent vertical excitation energies, ωµ. Subsequently, one would need to

compare the structure of a generic excited-state wavefunction within the FCI and EOM-

FCC formalisms and arrive at a correspondence between the many-body components of the

C = ∑N
n=0Cn operator of FCI and the T and Rµ operators of EOMCC theory. To simplify

the process of such a cluster analysis, one could approximate T ≈ T (CCSD), albeit possibly

sacrificing the size-intensivity of the final excitation energies. Of course, such a simplification
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will be impossible in situations were CCSD is plagued by singularities.
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APPENDIX A

COMPUTER IMPLEMENTATION OF THE APPROXIMATE
COUPLED-PAIR METHODS WITH AN ACTIVE-SPACE TREATMENT OF

THREE-BODY CLUSTERS

The active-space triples ACP approaches were implemented by making suitable modifications

to the spin-integrated active-space CCSDt code of the Piecuch group, generated by Dr. Jun

Shen. The first step in this effort was to identify the five Goldstone–Brandow diagrams asso-

ciated with the 1
2T

2
2 contributions to the CC equations projected on the singlet pp-hh coupled

orthogonally spin-adapted doubly excited configuration state functions, shown in Figure 3.5,

with their spin-integrated counterparts within the existing CCSDt code. As shown in Ta-

ble A.1, in spin-orbital form, the
〈
Φabij

∣∣∣(VN
1
2T

2
2
)
C

∣∣∣Φ〉 term gives rise to four Hugenholtz

diagrams. Thus, we see that the first Hugenholtz diagram of Table A.1 corresponds to the

Goldstone–Brandow diagrams D1 and D2 shown in Figure 3.5, while the second, third, and

fourth Hugenholtz diagrams correspond to the Goldstone–Brandow diagrams D3, D4, and

D5, respectively, of the same figure.
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Table A.1: The spin-orbital Hugenholtz and Brandow diagrams and corresponding algebraic

expressions arising from the
〈
Φabij

∣∣∣(VN
1
2T

2
2
)
C

∣∣∣Φ〉 term. In the last column, we provide

the correspondence between the spin-orbital diagrams presented in this table and the spin-

adapted ones shown in Figure 3.5.

Hugenholtz Brandow Expression Assignment

a

i

b

j

e
m

f
n

Sab

a

i
m

e
n

f
b

j

Sab Aabv
ef
mnt

im
ae t

jn
bf D1 + D2

a
m

f n

e
b
i

j

Sab

a

n
f

m

e

i
b

j

Sab 1
2Aabv

ef
mnt

nm
af t

ji
be D3

i
e

n f

m
b
a

j

S ij

i
f

n

e

m

a
b

j

S ij 1
2A ijv

ef
mnt

ni
ef t

mj
ab D4

122



Table A.1:(cont’d)

Hugenholtz Brandow Expression Assignment

j

i

a

b

e
f

n
m

i

e

m

a

j

f

n

b

1
4v
ef
mnt

mn
ab t

ij
ef D5

Within the spin-integrated formalism, the T2 operator has three independent components,

denoted in this dissertation as T2A, T2B, and T2C, that are defined as T2A |Φ〉 = tIJAB

∣∣∣ΦABIJ 〉,

T2B |Φ〉 = tIJ̃
AB̃

∣∣∣∣ΦAB̃IJ̃
〉

, and T2C |Φ〉 = tĨ J̃
ÃB̃

∣∣∣∣ΦÃB̃ĨJ̃
〉

. Here and for the remainder of the Appen-

dices, we explicitly specify the spin of a given spin-orbital as follows. The absence (presence)

of the “∼” symbol above a given spatial orbital index indicates an α (β) spin-orbital. In

analogy with T2, the two-body term of the electronic Hamiltonian has three distinct compo-

nents as well, namely, VN = VNA +VNB +VNC. Furthermore, when projecting the connected

cluster form of the Schrödinger equation, Equation (3.3), onto doubly excited Slater deter-

minants, one needs to distinguish the following three cases: (a)
〈
ΦABIJ

∣∣∣(HNe
T
)
C

∣∣∣Φ〉 = 0,

(b)
〈

ΦAB̃
IJ̃

∣∣∣∣(HNe
T
)
C

∣∣∣∣Φ〉 = 0, and (c)
〈

ΦÃB̃
ĨJ̃

∣∣∣∣(HNe
T
)
C

∣∣∣∣Φ〉 = 0. The
(
VN

1
2T

2
2
)
C

connected

operator product appearing in these projections gives rise to the terms
(
VN

1
2T

2
2
)
C

=
[
(VNA + VNB + VNC) 1

2 (T2A + T2B + T2C)2]
C

=
[
(VNA + VNB + VNC) 1

2
(
T 2

2A + 2T2AT2B + 2T2AT2C + T 2
2B + 2T2BT2C + T 2

2C
)]
C

=
(
VNA

1
2T

2
2A
)
C

+ (VNAT2AT2B)C + (VNBT2AT2B)C + (VNBT2AT2C)C

+
(
VNA

1
2T

2
2B
)
C

+
(
VNB

1
2T

2
2B
)
C

+
(
VNC

1
2T

2
2B
)
C

+ (VNBT2BT2C)C

+ (VNCT2BT2C)C +
(
VNC

1
2T

2
2C
)
C
,
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where we used the fact that the various components of T2 commute with one another and

terms whose spin combinations integrate to zero were excluded. Depending on the spin of

a particular projection, only a subset of the above terms will be non-zero. Tables A.2, A.3,

and A.4 list all
(
VN

1
2T

2
2
)
C

contributions to the spin-integrated CC equations projected onto

the doubly excited Slater determinants
∣∣∣ΦABIJ 〉,

∣∣∣∣ΦAB̃IJ̃
〉

, and
∣∣∣∣ΦÃB̃ĨJ̃

〉
, respectively.

Table A.2: The spin-integrated Hugenholtz and Brandow diagrams and corresponding al-

gebraic expressions arising from the
〈
ΦABIJ

∣∣∣(VN
1
2T

2
2
)
C

∣∣∣Φ〉 term. In the last column, we

provide the correspondence between the spin-integrated diagrams presented in this table

and the spin-adapted ones shown in Figure 3.5.

Hugenholtz Brandow Expression Assignment〈
ΦABIJ

∣∣∣(VNA
1
2T

2
2A
)
C

∣∣∣Φ〉

A

I

B

J

E
M

F
N

SAB

A

I
M

E
N

F
B

J

SAB AABv
EF
MN t

IM
AE t

JN
BF D1 + D2

A

M
F N

E
B
I

J

SAB

A

N

F

M

E

I
B

J

SAB 1
2AABv

EF
MN t

NM
AF tJIBE D3

124



Table A.2:(cont’d)

Hugenholtz Brandow Expression Assignment

I

E
N F

M
B
A

J

S IJ

I

F

N

E
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B

J

S IJ 1
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E
F
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E
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A

J

F

N

B

1
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MN
AB D5

〈
ΦABIJ

∣∣∣(VNBT2AT2B)C
∣∣∣Φ〉

A
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E
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F̃
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SABS IJ
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Table A.2:(cont’d)

Hugenholtz Brandow Expression Assignment
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J
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SAB
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Ñ
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E

J
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I
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EF̃
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B
A

I

S IJ −A IJvEF̃
MÑ

tIMAB t
JÑ
EF̃

D4

〈
ΦABIJ

∣∣∣(VNB
1
2T

2
2B
)
C

∣∣∣Φ〉

A

I

B

J

Ẽ

M̃

F̃

Ñ

SAB

A

I
M̃

Ẽ
Ñ

F̃
B

J

SAB AABv
ẼF̃
M̃Ñ

tIM̃
AẼ

tJÑ
BF̃

D1 + D2
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Table A.3: The spin-integrated Hugenholtz and Brandow diagrams and corresponding al-

gebraic expressions arising from the
〈

ΦAB̃
IJ̃

∣∣∣∣(VN
1
2T

2
2
)
C

∣∣∣∣Φ〉 term. In the last column, we

provide the correspondence between the spin-integrated diagrams presented in this table

and the spin-adapted ones shown in Figure 3.5.

Hugenholtz Brandow Expression Assignment〈
ΦAB̃
IJ̃

∣∣∣∣(VNAT2AT2B)C
∣∣∣∣Φ〉

A

I

B̃

J̃

E
M

F
N

A

I
M

E
N

F
B̃

J̃

vEFMN t
IM
AE t

NJ̃
FB̃

D1 + D2

A

M
F N

E
B̃

I

J̃

A

N

F

M

E

I
B̃

J̃

1
2v
EF
MN t

NM
AF tIJ̃

EB̃
D3
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Table A.3:(cont’d)

Hugenholtz Brandow Expression Assignment

I

E
N F

M
B̃

A

J̃

I

F

N

E

M

A
B̃

J̃

1
2v
EF
MN t

NI
EF t

MJ̃
AB̃

D4

〈
ΦAB̃
IJ̃

∣∣∣∣(VNBT2AT2C)C
∣∣∣∣Φ〉

A

I

B̃

J̃

E
M

F̃

Ñ

A

I
M

E
Ñ

F̃
B̃

J̃

vEF̃
MÑ

tIMAE t
J̃Ñ
B̃F̃

D1

〈
ΦAB̃
IJ̃

∣∣∣∣(VNB
1
2T

2
2B
)
C

∣∣∣∣Φ〉

A

I

B̃

J̃

F̃

Ñ

E
M

A

I
Ñ

F̃
M

E
B̃

J̃

vEF̃
MÑ

tIÑ
AF̃

tMJ̃
EB̃

D1
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Table A.3:(cont’d)

Hugenholtz Brandow Expression Assignment

J̃

A

I

B̃

M
F̃

Ñ

E

A

M

E

I

J̃

F̃

Ñ

B̃

vEF̃
MÑ

tMJ̃
AF̃

tIÑ
EB̃

D2

A

M
Ẽ F̃

E
B̃

I

J̃

A

Ñ

F̃

M

E

I
B̃

J̃

−vEF̃
MÑ

tMÑ
AF̃

tIJ̃
EB̃

D3

B̃

Ñ

E M

F̃
A
J̃

I

B̃

M

E

Ñ

F̃

J̃
A

I

−vEF̃
MÑ

tMÑ
EB̃

tIJ̃
AF̃

D3
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Table A.3:(cont’d)

Hugenholtz Brandow Expression Assignment

I

E

Ñ F̃

M
B̃

A

J̃

I

Ñ

F̃

E

M

A
B̃

J̃

−vEF̃
MÑ

tIÑ
EF̃

tMJ̃
AB̃

D4

J̃

F̃

M E

Ñ
A
B̃

I

J̃

M

E

F̃

Ñ

B̃
A

I

−vEF̃
MÑ

tMJ̃
EF̃

tIÑ
AB̃

D4

J̃

I

A

B̃

E
F̃

Ñ

M

I

E

M

A

J̃

F̃

Ñ

B̃

vEF̃
MÑ

tIJ̃
EF̃

tMÑ
AB̃

D5
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Table A.3:(cont’d)

Hugenholtz Brandow Expression Assignment〈
ΦAB̃
IJ̃

∣∣∣∣(VNCT2BT2C)C
∣∣∣∣Φ〉

A

I

B̃

J̃

Ẽ

M̃

F̃

Ñ

A

I
M̃

Ẽ
Ñ

F̃
B̃

J̃

vẼF̃
M̃Ñ

tIM̃
AẼ

tJ̃Ñ
B̃F̃

D1 + D2

B̃

M̃

Ñ F̃

Ẽ
A
J̃

I

B̃

Ñ

F̃

M̃

Ẽ

J̃
A

I

1
2v
ẼF̃
M̃Ñ

tIJ̃
AẼ

tÑM̃
B̃F̃

D3

J̃

Ẽ

Ñ F̃

M̃
A
B̃

I

J̃

F̃

Ñ

Ẽ

M̃

B̃
A

I

1
2v
ẼF̃
M̃Ñ

tIM̃
AB̃

tÑ J̃
ẼF̃

D4
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Table A.4: The spin-integrated Hugenholtz and Brandow diagrams and corresponding al-

gebraic expressions arising from the
〈

ΦÃB̃
ĨJ̃

∣∣∣∣(VN
1
2T

2
2
)
C

∣∣∣∣Φ〉 term. In the last column, we

provide the correspondence between the spin-integrated diagrams presented in this table

and the spin-adapted ones shown in Figure 3.5.

Hugenholtz Brandow Expression Assignment〈
ΦÃB̃
ĨJ̃

∣∣∣∣(VNA
1
2T

2
2B
)
C

∣∣∣∣Φ〉

Ã

Ĩ

B̃

J̃

E
M

F
N

S
ÃB̃

Ã

Ĩ
M

E
N

F
B̃

J̃

S
ÃB̃ A

ÃB̃
vEFMN t

MĨ
EÃ

tNJ̃
FB̃

D1 + D2

〈
ΦÃB̃
ĨJ̃

∣∣∣∣(VNBT2BT2C)C
∣∣∣∣Φ〉

Ã

Ĩ

B̃

J̃

E
M

F̃

Ñ

S
ÃB̃

S Ĩ J̃

Ã

Ĩ
M

E
Ñ

F̃
B̃

J̃

S
ÃB̃

S Ĩ J̃
A
ÃB̃

A Ĩ J̃vEF̃
MÑ

tMĨ
EÃ

tJ̃Ñ
B̃F̃

D1
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Table A.4:(cont’d)

Hugenholtz Brandow Expression Assignment

Ã

M̃

F N

Ẽ

B̃

Ĩ

J̃

S
ÃB̃

Ã

N

F

M̃

Ẽ

Ĩ
B̃

J̃

S
ÃB̃ −A

ÃB̃
vFẼ
NM̃

tNM̃
FÃ

tJ̃ Ĩ
B̃Ẽ

D3

Ĩ

Ẽ

N F

M̃

B̃

Ã

J̃

S Ĩ J̃

Ĩ

N

F

Ẽ

M̃

Ã
B̃

J̃

S Ĩ J̃ −A Ĩ J̃vFẼ
NM̃

tNĨ
FẼ

tM̃J̃
ÃB̃

D4

〈
ΦÃB̃
ĨJ̃

∣∣∣∣(VNC
1
2T

2
2C
)
C

∣∣∣∣Φ〉

Ã

Ĩ

B̃

J̃

Ẽ

M̃

F̃

Ñ

S
ÃB̃

Ã

Ĩ
M̃

Ẽ
Ñ

F̃
B̃

J̃

S
ÃB̃ A

ÃB̃
vẼF̃
M̃Ñ

tĨM̃
ÃẼ

tJ̃Ñ
B̃F̃

D1 + D2
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Table A.4:(cont’d)

Hugenholtz Brandow Expression Assignment

Ã

M̃

Ñ F̃

Ẽ

B̃

Ĩ

J̃

S
ÃB̃

Ã

Ñ

F̃

M̃

Ẽ

Ĩ
B̃

J̃

S
ÃB̃ 1

2A
ÃB̃

vẼF̃
M̃Ñ

tÑM̃
ÃF̃

tJ̃ Ĩ
B̃Ẽ

D3

Ĩ

Ẽ

Ñ F̃

M̃

B̃

Ã

J̃

S Ĩ J̃

Ĩ

F̃

Ñ

Ẽ

M̃

Ã
B̃

J̃

S Ĩ J̃ 1
2A Ĩ J̃vẼF̃

M̃Ñ
tÑ Ĩ
ẼF̃

tM̃J̃
ÃB̃

D4

J̃

Ĩ

Ã

B̃

Ẽ

F̃

Ñ

M̃

Ĩ

Ẽ

M̃

Ã

J̃

F̃

Ñ

B̃

1
4v
ẼF̃
M̃Ñ

tĨ J̃
ẼF̃

tM̃Ñ
ÃB̃

D5

As shown in Tables A.2, A.3, and A.4, there are a total of 30 diagrams, 8 in each of

the
〈
ΦABIJ

∣∣∣(VN
1
2T

2
2
)
C

∣∣∣Φ〉 and
〈

ΦÃB̃
ĨJ̃

∣∣∣∣(VN
1
2T

2
2
)
C

∣∣∣∣Φ〉 updates and 14 diagrams in the case
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of
〈

ΦAB̃
IJ̃

∣∣∣∣(VN
1
2T

2
2
)
C

∣∣∣∣Φ〉, that need to be modified in the doubles projections of the spin-

integrated CCSDt code. To that end, five single-precision real variables, namely, diag1,

diag2, diag3, diag4, and diag5, were introduced into the CCSDt code to scale the various

D1, D2, D3, D4, and D5 diagrams. In Figure A.1, we show an excerpt from the Fortran

code that illustrates the implementation of the various scaling factors, using the D3 diagram

arising from the
〈

ΦAB̃
IJ̃

∣∣∣∣(VNAT2AT2B)C
∣∣∣∣Φ〉 term as an example. In particular, on line 1

of the code presented in Figure A.1, there is an “if” statement that skips the computation

of this particular diagram when diag3 = 0. In addition, on line 16, the 0.5 diagrammatic

factor is multiplied by the diag3 scaling factor. Taking into consideration the factorized

form of the spin-integrated CCSDt code, in scaling the various 1
2T

2
2 terms appearing in

the CC equations projected on doubly excited Slater determinants, care was taken not to

scale intermediates that contribute to additional terms outside 1
2T

2
2 . In line 16 of the code

presented in Figure A.1, for example, we see that the Q14 variable, which represents the
1
2v
EF
MN t

NM
AF intermediate, is added to X5, which, in turn, is multiplied by tIJ̃

EB̃
to give the

D3 diagram (not shown). The Q14 variable is then deallocated in line 17, ensuring that only

the desired diagram is scaled by this procedure. Out of the 30 intermediates contributing

to the 30 spin-integrated diagrams presented in Tables A.2, A.3, and A.4, only four of them

were also used in generating additional terms. In each of these four cases, a scaled copy

of the intermediate was created and used to multiply the pertinent pair-cluster amplitude,

while the original, unscaled, version was employed in constructing the intermediates to the

additional terms.

As was anticipated, the spin-integrated diagram D1 and its D2 exchange counterpart

are associated with the same Hugenholtz diagram for terms containing antisymmetrized

matrix elements of VN, namely, vEFMN and vẼF̃
M̃Ñ

(cf. Tables A.2, A.3, and A.4). In such

cases, the scaling of the individual D1 and D2 diagrams was accomplished using an addition

by subtraction procedure, which we outline using the
〈
ΦABIJ

∣∣∣(VNC
1
2T

2
2B
)
C

∣∣∣Φ〉 term as an

example with the corresponding excerpt of the code provided in Figure A.2. In the first
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1
2 i f ( d iag3 . ne . 0 ) then ! sk ip t h i s part i f d iag3=0
3 a l l o c a t e (D1(N0+1:N1 , N0+1:N1 , N1+1:N3 , N1+1:N3) )
4 c a l l r eorder3421 (N1 , N3 , N1 , N3 , N0 , N1 , N0 , N1 ,
5 & N0, N1 , N0 , N1 , N1 , N3 , N1 , N3 ,VAHHPP, D1)
6 a l l o c a t e (D2(N0+1:N1 , N0+1:N1 , N1+1:N3 , N1+1:N3) )
7 c a l l r eorder3412 (N1 , N3 , N1 , N3 , N0 , N1 , N0 , N1 ,
8 & N0, N1 , N0 , N1 , N1 , N3 , N1 , N3 , t2A , D2)
9 a l l o c a t e (Q14(N1+1:N3 , N1+1:N3) )

10 I1=K3
11 I2=K3
12 I3=K3∗K1∗K1
13 c a l l EGEMM( I1 , I2 , I3 , D1 , D2 , Q14)
14 d e a l l o c a t e (D1)
15 d e a l l o c a t e (D2)
16 !
17 c a l l sum21 (N1 , N3 , N1 , N3 , X5 , Q14 , 0 . 5 0 0 ∗ diag3 ) ! s c a l e D3 by diag3
18 d e a l l o c a t e (Q14)
19 e n d i f

Figure A.1: Excerpt of the code that computes the scaled 1
2v
EF
MN t

NM
AF intermedi-

ate, which eventually multiplies tIJ̃
EB̃

and results in the D3 contribution of the〈
ΦAB̃
IJ̃

∣∣∣∣(VNAT2AT2B)C
∣∣∣∣Φ〉 term (cf. Table A.3).

step, we replace the antisymmetrized vẼF̃
M̃Ñ

matrix element by its non-antisymmetrized vEF̃
MÑ

counterpart, essentially eliminating the D2 contribution (line 3 of the code shown in Figure

A.2). In the second step, the D1 diagram is multiplied by a factor of diag1− diag2 (lines 26

and 27 of the code shown in Figure A.2). In the third and final step, an extra D1 + D2 term

is added, this time scaled by diag2 (lines 57 and 58 of the code shown in Figure A.2). The net

result of this process is: (diag1− diag2)×D1+diag2×(D1 + D2) = diag1×D1+diag2×D2.
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1 i f ( d iag1 . ne . d iag2 ) then
2 a l l o c a t e (D1(N0+1:N2 , N2+1:N3 , N0+1:N2 , N2+1:N3) )
3 c a l l r eorder4231 (N2 , N3 , N2 , N3 , N0 , N2 , N0 , N2 , N0 , N2 , N2 , N3 , N0 , N2 , N2 , N3 ,VBHHPP, D1)
4 a l l o c a t e (D2(N0+1:N2 , N2+1:N3 , N1+1:N3 , N0+1:N1) )
5 c a l l r eorder3124 (N2 , N3 , N1 , N3 , N0 , N2 , N0 , N1 , N0 , N2 , N2 , N3 , N1 , N3 , N0 , N1 , t2B , D2)
6 a l l o c a t e ( S40 (N1+1:N3 , N0+1:N1 , N0+1:N2 , N2+1:N3) )
7 I1=K4∗K2
8 I2=K1∗K3
9 I3=K4∗K2

10 c a l l EGEMM( I1 , I2 , I3 , D1 , D2 , S40 )
11 d e a l l o c a t e (D1)
12 d e a l l o c a t e (D2)
13 !
14 a l l o c a t e (D1(N0+1:N2 , N2+1:N3 , N1+1:N3 , N0+1:N1) )
15 c a l l r eorder3412 (N1 , N3 , N0 , N1 , N0 , N2 , N2 , N3 , N0 , N2 , N2 , N3 , N1 , N3 , N0 , N1 , S40 , D1)
16 a l l o c a t e (D2(N0+1:N2 , N2+1:N3 , N1+1:N3 , N0+1:N1) )
17 c a l l r eorder3124 (N2 , N3 , N1 , N3 , N0 , N2 , N0 , N1 , N0 , N2 , N2 , N3 , N1 , N3 , N0 , N1 , t2B , D2)
18 a l l o c a t e (U41(N1+1:N3 , N0+1:N1 , N1+1:N3 , N0+1:N1) )
19 I1=K1∗K3
20 I2=K1∗K3
21 I3=K4∗K2
22 c a l l EGEMM( I1 , I2 , I3 , D1 , D2 , U41)
23 d e a l l o c a t e (D1)
24 d e a l l o c a t e (D2)
25 !
26 c a l l sum1423 (N1 , N3 , N1 , N3 , N0 , N1 , N0 , N1 ,V2A, U41,− diag1+diag2 )
27 c a l l sum1324 (N1 , N3 , N1 , N3 , N0 , N1 , N0 , N1 ,V2A, U41 , diag1−diag2 )
28 d e a l l o c a t e (U41)
29 d e a l l o c a t e ( S40 )
30 e n d i f
31 !
32 i f ( d iag2 . ne . 0 ) then
33 a l l o c a t e (D1(N0+1:N2 , N2+1:N3 , N0+1:N2 , N2+1:N3) )
34 c a l l r eorder4231 (N2 , N3 , N2 , N3 , N0 , N2 , N0 , N2 , N0 , N2 , N2 , N3 , N0 , N2 , N2 , N3 ,VCHHPP, D1)
35 a l l o c a t e (D2(N0+1:N2 , N2+1:N3 , N1+1:N3 , N0+1:N1) )
36 c a l l r eorder3124 (N2 , N3 , N1 , N3 , N0 , N2 , N0 , N1 , N0 , N2 , N2 , N3 , N1 , N3 , N0 , N1 , t2B , D2)
37 a l l o c a t e ( S40 (N1+1:N3 , N0+1:N1 , N0+1:N2 , N2+1:N3) )
38 I1=K4∗K2
39 I2=K1∗K3
40 I3=K4∗K2
41 c a l l EGEMM( I1 , I2 , I3 , D1 , D2 , S40 )
42 d e a l l o c a t e (D1)
43 d e a l l o c a t e (D2)
44 !
45 a l l o c a t e (D1(N0+1:N2 , N2+1:N3 , N1+1:N3 , N0+1:N1) )
46 c a l l r eorder3412 (N1 , N3 , N0 , N1 , N0 , N2 , N2 , N3 , N0 , N2 , N2 , N3 , N1 , N3 , N0 , N1 , S40 , D1)
47 a l l o c a t e (D2(N0+1:N2 , N2+1:N3 , N1+1:N3 , N0+1:N1) )
48 c a l l r eorder3124 (N2 , N3 , N1 , N3 , N0 , N2 , N0 , N1 , N0 , N2 , N2 , N3 , N1 , N3 , N0 , N1 , t2B , D2)
49 a l l o c a t e (U41(N1+1:N3 , N0+1:N1 , N1+1:N3 , N0+1:N1) )
50 I1=K1∗K3
51 I2=K1∗K3
52 I3=K4∗K2
53 c a l l EGEMM( I1 , I2 , I3 , D1 , D2 , U41)
54 d e a l l o c a t e (D1)
55 d e a l l o c a t e (D2)
56 !
57 c a l l sum1423 (N1 , N3 , N1 , N3 , N0 , N1 , N0 , N1 ,V2A, U41,− diag2 )
58 c a l l sum1324 (N1 , N3 , N1 , N3 , N0 , N1 , N0 , N1 ,V2A, U41 , diag2 )
59 d e a l l o c a t e (U41)
60 d e a l l o c a t e ( S40 )
61 e n d i f

Figure A.2: Excerpt of the code that computes the scaled D1 and D2 diagrams arising from
the

〈
ΦABIJ

∣∣∣(VNC
1
2T

2
2B
)
C

∣∣∣Φ〉 term (cf. Table A.2).
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APPENDIX B

COMPUTER IMPLEMENTATION OF THE CLUSTER-ANALYSIS-DRIVEN
FULL CONFIGURATION INTERACTION QUANTUM MONTE CARLO

APPROACH FOR STRONGLY CORRELATED SYSTEMS

The first step in developing CAD-FCIQMC was the extraction of the information about the

FCIQMC wavefunction up to quadruples at a given propagation time τ . To that end, we

utilized the existing infrastructure that Dr. J. Emiliano Deustua, a former graduate student

in the Piecuch research group, generated in the context of the semi-stochastic CC(P ;Q)

methodology. To be precise, Dr. J. Emiliano Deustua created a modified version of the

HANDE code that was printing lists of Slater determinants along with their signed walker

populations at given intervals of the FCIQMC simulation time τ . A small portion of such a

list is given in Figure B.1 in the case of H10/DZ. For example, the first determinant on the

list shown in Figure B.1 is populated by 17,613 walkers, while the second one is inhabited

by −1, 785 walkers.

1 17613 1 2 3 4 5 6 7 8 9 10
2 −1785 1 2 3 4 5 6 7 8 11 12
3 −20 1 3 4 5 6 8 9 10 11 12
4 60 1 2 3 4 7 8 11 12 13 14
5 −62 2 3 4 6 7 8 9 10 11 15
6 −256 1 2 3 4 5 8 9 10 12 15
7 −4 1 2 5 6 7 8 10 11 12 15
8 −255 1 2 4 5 6 8 9 10 13 15
9 −95 2 4 5 6 7 8 9 10 13 15

10 −9 2 3 4 6 7 10 11 12 13 15
· · ·

Figure B.1: Portion of a list containing Slater determinants and numbers of signed walkers
inhabiting them corresponding to the last time step, namely, 160,000 MC iterations, of
a i-FCIQMC simulation for H10/DZ with RH–H = 1.0 Å. The first column contains serial
numbers for each determinant. The second column contains the information about the signed
walker populations while the remaining columns list the spin-orbital indices occupied in a
given determinant. Odd (even) spin-orbital indices correspond to α (β) spin functions.
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The first step in the CAD-FCIQMC algorithm is to scan the list of Slater determinants

and compute their excitation rank with respect to the reference determinant, usually the HF

Slater determinant |Φ〉 (see, for example, the first Slater determinant on the list shown in

Figure B.1). Taking advantage of routines available in the HANDE code, this is most easily

accomplished by encoding each Slater determinant into a binary string, i.e., employing oc-

cupation number representation, and performing a bit-wise exclusive OR operation between

a given binary string and the one representing the reference determinant. The excitation

rank is equal to the count of the number of bits set to 1 divided by two. The signed walker

populations and spin-orbital indices of up to quadruples are stored for processing while the

rest of the information is discarded.

Subsequently, for each excited Slater determinant, we identify the spatial orbitals involved

in the excitation and distinguish between the various spin cases. This step is required, since

the CC routines of the Piecuch group are spin-integrated. Thus, one can distinguish between

two types of singly excited Slater determinants, namely,
∣∣∣ΦAI 〉 and

∣∣∣∣ΦÃĨ
〉

, which are associated

with α → α and β → β spin-orbital excitations, respectively. Similarly, there exist three

kinds of doubly excited Slater determinants within the spin-integrated formalism, denoted

as
∣∣∣ΦABIJ 〉,

∣∣∣∣ΦAB̃IJ̃
〉

, and
∣∣∣∣ΦÃB̃ĨJ̃

〉
, while triply excited Slater determinants have four, namely,∣∣∣ΦABCIJK

〉
,
∣∣∣∣ΦABC̃IJK̃

〉
,
∣∣∣∣ΦAB̃C̃IJ̃K̃

〉
, and

∣∣∣∣ΦÃB̃C̃ĨJ̃K̃

〉
, and quadruply excited Slater determinants have

five, denoted as
∣∣∣ΦABCDIJKL

〉
,
∣∣∣∣ΦABCD̃IJKL̃

〉
,
∣∣∣∣ΦABC̃D̃IJK̃L̃

〉
,
∣∣∣∣ΦAB̃C̃D̃IJ̃K̃L̃

〉
, and

∣∣∣∣ΦÃB̃C̃D̃ĨJ̃K̃L̃

〉
. For example,

within this scheme, the second determinant on the list shown in Figure B.1 is denoted as∣∣∣∣Φ66̃
55̃

〉
.

Based on the above analysis, it comes as no surprise that the CI excitation operators

C1, C2, C3, and C4 have 2, 3, 4, and 5 distinct components within the spin-integrated

formalism, i.e., C1 = C1A + C1B, C2 = C2A + C2B + C2C, C3 = C3A + C3B + C3C + C3D,

and C4 = C4A +C4B +C4C +C4D +C4E. The various components of C1–C4 are defined as

follows:

C1A |Φ〉 = cIA

∣∣∣ΦAI 〉, (B.1a)
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C1B |Φ〉 = cĨ
Ã

∣∣∣∣ΦÃĨ
〉
, (B.1b)

C2A |Φ〉 = cIJAB

∣∣∣ΦABIJ 〉, (B.1c)

C2B |Φ〉 = cIJ̃
AB̃

∣∣∣∣ΦAB̃IJ̃
〉
, (B.1d)

C2C |Φ〉 = cĨ J̃
ÃB̃

∣∣∣∣ΦÃB̃ĨJ̃
〉
, (B.1e)

C3A |Φ〉 = cIJKABC

∣∣∣ΦABCIJK

〉
, (B.1f)

C3B |Φ〉 = cIJK̃
ABC̃

∣∣∣∣ΦABC̃IJK̃

〉
, (B.1g)

C3C |Φ〉 = cIJ̃K̃
AB̃C̃

∣∣∣∣ΦAB̃C̃IJ̃K̃

〉
, (B.1h)

C3D |Φ〉 = cĨ J̃K̃
ÃB̃C̃

∣∣∣∣ΦÃB̃C̃ĨJ̃K̃

〉
, (B.1i)

C4A |Φ〉 = cIJKLABCD

∣∣∣ΦABCDIJKL

〉
, (B.1j)

C4B |Φ〉 = cIJKL̃
ABCD̃

∣∣∣∣ΦABCD̃IJKL̃

〉
, (B.1k)

C4C |Φ〉 = cIJK̃L̃
ABC̃D̃

∣∣∣∣ΦABC̃D̃IJK̃L̃

〉
, (B.1l)

C4D |Φ〉 = cIJ̃K̃L̃
AB̃C̃D̃

∣∣∣∣ΦAB̃C̃D̃IJ̃K̃L̃

〉
, (B.1m)

and

C4E |Φ〉 = cĨ J̃K̃L̃
ÃB̃C̃D̃

∣∣∣∣ΦÃB̃C̃D̃ĨJ̃K̃L̃

〉
. (B.1n)

However, before we are able to extract the corresponding CI excitation amplitudes, we need

to take into consideration the phase factor associated with a given Slater determinant. These

sign factors arise from the action of the elementary annihilation and creation operators on

the antisymmetric Slater determinants, i.e.,

ap
∣∣∣n1 . . . np−1npnp+1 . . .

〉
= (−1)

∑p−1
k=1 nk np

∣∣∣n1 . . . np−1
(
1− np

)
np+1 . . .

〉
(B.2)

and

ap
∣∣∣n1 . . . np−1npnp+1 . . .

〉
= (−1)

∑p−1
k=1 nk

(
1− np

) ∣∣∣n1 . . . np−1
(
1− np

)
np+1 . . .

〉
, (B.3)

respectively, with ni = 0 or 1 denoting the occupation number of spin-orbital i. The sign

factor of a given excited Slater determinant is computed using the following procedure. First,
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we form two strings of pairs of creation and annihilation operators, one for the α and another

for the β excitations. Within each of the two groups, the pairs of creation and annihilation

operators are listed in descending order of spin-orbital indices. Finally, we let the string of

pairs of creation and annihilation operators associated with α spin-orbitals act first on the

reference Slater determinant followed by the β string. This procedure is illustrated using

the second,
∣∣∣∣Φ66̃

55̃

〉
, and third,

∣∣∣∣Φ66̃
41̃

〉
, Slater determinants on the list shown in Figure B.1 as

examples. In the occupation number representation, we obtain

a12a10a
11a9 |1111111111〉 = a12a10a

11 |1111111101〉

= −a12a10 |11111111011〉

= −a12 |11111111001〉

= |11111111001〉

(B.4)

and

a12a2a
11a7 |1111111111〉 = a12a2a

11 |1111110111〉

= −a12a2 |11111101111〉

= a12 |10111101111〉

= − |101111011111〉 .

(B.5)

After assigning the proper phase factor to the population of walkers inhabiting each Slater de-

terminant, the CAD-FCIQMC algorithm extracts the C(MC)
1 (τ)–C(MC)

4 (τ) excitation ampli-

tudes by dividing each walker population by that of the reference determinant. For example,

the CI excitation amplitudes of the aforementioned
∣∣∣∣Φ66̃

55̃

〉
and

∣∣∣∣Φ66̃
41̃

〉
Slater determinants

are c55̃
66̃ = −1785

17613 = −0.101 and c41̃
66̃ = − −20

17613 = 0.00114, respectively. Subsequently, the

C2A, C2C, C3A, C3B, C3C, C3D, C4A, C4B, C4C, C4D, and C4E operators are properly

antisymmetrized.

The next step in the CAD-FCIQMC algorithm is the cluster analysis of the FCIQMC

wavefunction up to quadruples. In complete analogy to the CI excitation operators, the

many-body components of the cluster operator will be denoted as T1 = T1A + T1B, T2 =
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T2A + T2B + T2C, T3 = T3A + T3B + T3C + T3D, and T4 = T4A + T4B + T4C + T4D + T4E.

Using Equation (3.16) with m = 1–4 yields, within a spin-integrated formalism,

T1A = C1A, (B.6a)

T1B = C1B, (B.6b)

T2A = C2A −
1
2C

2
1A, (B.6c)

T2B = C2B − C1AC1B, (B.6d)

T2C = C2C −
1
2C

2
1C, (B.6e)

T3A = C3A − C2AC1A + 1
3C

3
1A, (B.6f)

T3B = C3B − C2AC1B − C2BC1A + C2
1AC1B, (B.6g)

T3C = C3C − C2BC1B − C2CC1A + C1AC
2
1B, (B.6h)

T3D = C3D − C2CC1B + 1
3C

3
1B, (B.6i)

T4A = C4A − C3AC1A −
1
2C

2
2A + C2AC

2
1A −

1
4C

4
1A, (B.6j)

T4B = C4B − C3AC1B − C3BC1A − C2AC2B + 2C2AC1AC1B + C2BC
2
1A − C

3
1AC1B,

(B.6k)

T4C = C4C − C3BC1B − C3CC1A −
1
2C

2
2B − C2AC2C + C2AC

2
1B + 2C2BC1BC1A

+ C2CC
2
1A −

3
2C

2
1AC

2
1B,

(B.6l)

T4D = C4D − C3CC1B − C3DC1A − C2BC2C + 2C2CC1BC1A + C2BC
2
1B − C1AC

3
1B,

(B.6m)
and

T4E = C4E − C3DC1B −
1
2C

2
2C + C2CC

2
1B −

1
4C

4
1B. (B.6n)

The explicit algebraic expressions connecting the cluster and CI excitation amplitudes can

be derived diagrammatically by using Equation (B.6) and computing matrix elements of the

form
〈

ΦA1...An−1An
I1...In−1In

∣∣∣∣TnA

∣∣∣∣Φ〉,
〈

ΦA1...An−1Ãn
I1...In−1Ĩn

∣∣∣∣∣TnB

∣∣∣∣∣Φ
〉

, etc. This procedure gives rise to the

following correspondence between the spin-integrated cluster and CI excitation amplitudes

142



up to quadruples,

tIA = cIA, (B.7a)

tĨ
Ã

= cĨ
Ã
, (B.7b)

tIJAB = cIJAB −A IJcIAc
J
B , (B.7c)

tIJ̃
AB̃

= cIJ̃
AB̃
− cIAc

J̃
B̃
, (B.7d)

tĨ J̃
ÃB̃

= cĨ J̃
ÃB̃
−A Ĩ J̃cĨ

Ã
cJ̃
B̃
, (B.7e)

tIJKABC = cIJKABC −AAB/CA IJ/KcIJABc
K
C + 2A IJKcIAc

J
Bc

K
C , (B.7f)

tIJK̃
ABC̃

= cIJK̃
ABC̃

− cIJABc
K̃
C̃
−AABA IJcIK̃

AC̃
cJB + 2A IJcIAc

J
Bc

K̃
C̃
, (B.7g)

tIJ̃K̃
AB̃C̃

= cIJ̃K̃
AB̃C̃

−A
B̃C̃

A J̃K̃cIJ̃
AB̃

cK̃
C̃
− cJ̃K̃

B̃C̃
cIA + 2A J̃K̃cIAc

J̃
B̃
cK̃
C̃
, (B.7h)

tĨ J̃K̃
ÃB̃C̃

= cĨ J̃K̃
ÃB̃C̃

−A
ÃB̃/C̃

A Ĩ J̃/K̃cĨ J̃
ÃB̃

cK̃
C̃

+ 2A Ĩ J̃K̃cĨ
Ã
cJ̃
B̃
cK̃
C̃
, (B.7i)

tIJKLABCD = cIJKLABCD −AABC/DA IJK/LcIJKABCc
L
D −A IJ/KLAA/CDc

IJ
ABc

KL
CD

+ 2AAB/CDA IJ/K/LcIJABc
K
C c

L
D − 6A IJKLcIAc

J
Bc

K
C c

L
D,

(B.7j)

tIJKL̃
ABCD̃

= cIJKL̃
ABCD̃

− cIJKABCc
K̃
D̃
−AAB/CA IJ/KcIJL̃

ABD̃
cKC −AAB/CA IJ/KcIJABc

KL̃
CD̃

+ 2AAB/CA IJ/KcIJABc
K
C c

K̃
D̃

+ 2AA/BCA IJKcIL̃
AD̃

cJBc
K
C − 6A IJKcIAc

J
Bc

K
C c

L̃
D̃
,

(B.7k)

tIJK̃L̃
ABC̃D̃

= cIJK̃L̃
ABC̃D̃

−A
C̃D̃

A K̃L̃cIJK̃
ABC̃

cL̃
D̃
−AABA IJcIK̃L̃

AC̃D̃
cJB −AABA IJA K̃L̃cIK̃

AC̃
cJL̃
BD̃

− cIJABc
K̃L̃
C̃D̃

+ 2A K̃L̃cIJABc
K̃
C̃
cL̃
D̃

+ 2AABA
C̃D̃

A IJA K̃L̃cIAc
K̃
C̃
cL̃
BD̃

+ 2A IJcIAc
J
Bc

K̃L̃
C̃D̃
− 6A IJA K̃L̃cIAc

J
Bc

K̃
C̃
cL̃
D̃
,

(B.7l)

tIJ̃K̃L̃
AB̃C̃D̃

= cIJ̃K̃L̃
AB̃C̃D̃

−A
B̃C̃/D̃

A J̃K̃/L̃cIJ̃K̃
AB̃C̃

cL̃
D̃
− cJ̃K̃L̃

B̃C̃D̃
cIA −A

B̃/C̃D̃
A J̃/K̃L̃cIJ̃

AB̃
cK̃L̃
C̃D̃

+ 2A
B̃/C̃D̃

A J̃/K̃L̃cK̃L̃
C̃D̃

cJ̃
B̃
cIA + 2A

B̃/C̃D̃
A J̃K̃L̃cIJ̃

AB̃
cK̃
C̃
cL̃
D̃
− 6A J̃K̃L̃cIAc

J̃
B̃
cK̃
C̃
cL̃
D̃
,

(B.7m)
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and
tĨ J̃K̃L̃
ÃB̃C̃D̃

= cĨ J̃K̃L̃
ÃB̃C̃D̃

−A
ÃB̃C̃/D̃

A Ĩ J̃K̃/L̃cĨ J̃K̃
ÃB̃C̃

cL̃
D̃
−A Ĩ J̃/K̃L̃A

Ã/C̃D̃
cĨ J̃
ÃB̃

cK̃L̃
C̃D̃

+ 2A
ÃB̃/C̃D̃

A Ĩ J̃/K̃/L̃cĨ J̃
ÃB̃

cK̃
C̃
cL̃
D̃
− 6A Ĩ J̃K̃L̃cĨ

Ã
cJ̃
B̃
cK̃
C̃
cL̃
D̃
.

(B.7n)

Subsequently, the T2A, T2C, T3A, T3B, T3C, T3D, T4A, T4B, T4C, T4D, and T4E operators

are properly antisymmetrized.

As already mentioned earlier in this dissertation, in the final step of the CAD-FCIQMC

approach, one solves a CCSD-like system of equations, Equations (3.29) and (3.30), for T1

and T2 in the presence of T (MC)
3 (τ) and T

(MC)
4 (τ) resulting from the cluster analysis of the

FCIQMC wavefunction at time τ . To that end, the cluster analysis algorithm was interfaced

with the spin-integrated CCSD code of the Piecuch group corrected for T3 and T4 terms. To

further assist convergence, one also has the option of using T (MC)
1 (τ) and T (MC)

2 (τ) extracted

from the FCIQMC wavefunction as an initial guess.

At this point, it is worth mentioning that the CAD-FCIQMC code is flexible enough that

it can be used for performing externally corrected CC calculations using arbitrary sources

of three- and four-body clusters. The only requirement is a list of up to quadruply excited

Slater determinants and their coefficients, in the format outlined in Figure B.1, originating

from the non-CC approach of interest. One needs to pay attention, however, to the way the

Slater determinants are encoded in different programs, as this might potentially introduce

additional phase factors. For example, the determinantal truncated CI and FCI routines in

GAMESS, like many other CI codes, place the string of α spin-orbitals in front of the β ones.

In interfacing GAMESS with CAD-FCIQMC, one needs to extract lists of coefficients and

determinants, where the latter are represented by alternating α/β pairs, taking into account

any additional sign factors that might arise.

The implementation of the CAD-FCIQMC methodology as outlined above, albeit correct,

suffers from unfavorable memory and disk requirements associated with the handling of the

amplitudes of the C4 = C4A +C4B +C4C +C4D +C4E and T4 = T4A +T4B +T4C +T4D +T4E

operators. The computational resources consumed by the CAD-FCIQMC code are dramat-
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ically reduced by processing quadruples, i.e., C(MC)
4 (τ) and T

(MC)
4 (τ), on-the-fly. To that

end, the
〈
Φabij

∣∣∣[VNT
(MC)
4 (τ)

]
C

∣∣∣Φ〉 contributions to Equation (3.30), whose number equals

that of doubly excited Slater determinants
∣∣∣Φabij 〉, are computed once and stored on the disk.

By doing that, we avoid storing or keeping in memory C(MC)
4 (τ) and T (MC)

4 (τ). The details

of this implementation can be found in Dr. J. Emiliano Deustua’s Ph.D. dissertation. In

principle, a similar approach could be adopted for C(MC)
3 (τ) and T (MC)

3 (τ), especially in the

case of the linear terms
〈
Φai
∣∣∣[VNT

(MC)
3 (τ)

]
C

∣∣∣Φ〉 and
〈
Φabij

∣∣∣[FNT
(MC)
3 (τ)

]
C

∣∣∣Φ〉 terms. The

only problem is how to handle the last T (MC)
3 (τ)-containing term in Equations (3.29) and

(3.30), namely,
〈
Φabij

∣∣∣[VNT
(MC)
3 (τ)T1

]
C

∣∣∣Φ〉, in which T
(MC)
3 (τ) is fixed and T1 is updated.

One possibility would be to approximate this term by replacing T1 by the fixed T
(MC)
1 (τ).

Alternatively, one could precompute and store on the disk the
[
VNT

(MC)
3 (τ)

]
C

intermedi-

ate at the cost of de-vectorizing the CC code. Due to the aforementioned considerations,

the latest implementation of the CAD-FCIQMC methodology precomputes and stores the

T
(MC)
4 (τ)-containing terms while the T (MC)

3 (τ) amplitudes are stored on disk.

The CAD-FCIQMC methodology was extended to the strong correlation regime by taking

advantage of the ACP ideas. Consequently, suitable modifications were made to the spin-

integrated CCSD code corrected for T3 and T4 terms that guaranteed not only the good

behavior in the presence of strong many-electron correlation effects, but also exactness in the

infinite imaginary-time limit. The first step in this direction was to introduce in the CCSD-

like equations projected on doubles the identical modifications to the 1
2T

2
2 terms discussed

in Appendix A. Although this renders the CAD-FCIQMC methodology well-suited for the

description of strong correlation, CAD-FCIQMC is not exact anymore in the τ →∞ limit,

since one is not solving CCSD equations corrected for connected triples and quadruples.

As discussed earlier in this dissertation, to restore exactness in the infinite time limit, each

coupled-pair contribution was augmented by its complement extracted from FCIQMC [cf.

Equation (3.40)].

In Figures B.2 and B.3 we show excerpts of the modified CAD-FCIQMC code, focusing
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on the D3 contribution of the
〈
ΦABIJ

∣∣∣(VNA
1
2T

2
2A
)
C

∣∣∣Φ〉 term, that showcase the changes

that needed to be made to allow for the treatment of strong correlation. In line 30 of the

code presented in Figure B.2, we multiply the 0.5 diagrammatic factor by the real variable

diag3. This is one of the terms responsible for the good behavior in the presence of strong

correlations and is, thus, treated deterministically. In Figure B.3, we show the complement

to the aforementioned term that is treated stochastically. To begin with, the “if” statement

on line 1 of the code shown in Figure B.3 reveals that this term only contributes if this is

an externally corrected calculation (ext cor=.TRUE.) and the diag3 variable is not equal to

1. On lines 8 and 22, we see that the t2a variable appearing in Figure B.2 is replaced by

its stochastically determined counterpart t2a mc. Finally, the 0.5 diagrammatic weight is

multiplied by the (1− diag3) scaling factor. The final result of these particular alterations

to the code is the replacement of the Λ(2)
3 term by diag3 × Λ(2)

3 + (1− diag3) × Λ(2),(MC)
3 .

Similar modifications were made to all diagrams arising from the 1
2T

2
2 contributions to the

CC equations projected on doubly excited Slater determinants.
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1 i f ( d iag3 . eq . 0 ) goto 5001 ! sk ip t h i s term i f diag3=0
2 a l l o c a t e ( d1 ( n0+1:n1 , n0+1:n1 , n1+1:n3 , n1+1:n3 ) )
3 c a l l r eorder2134 ( n0 , n3 , n0 , n3 , n0 , n3 , n0 , n3 ,
4 & n0 , n1 , n0 , n1 , n1 , n3 , n1 , n3 , in t r , d1 )
5 a l l o c a t e ( d2 ( n0+1:n1 , n0+1:n1 , n1+1:n3 , n1+1:n3 ) )
6 c a l l r eorder3412 ( n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 ,
7 & n0 , n1 , n0 , n1 , n1 , n3 , n1 , n3 , t2a , d2 )
8 a l l o c a t e ( q11 ( n1+1:n3 , n1+1:n3 ) )
9 i 1=k3

10 i 2=k3
11 i 3=k3∗k1∗k1
12 c a l l egemm( i1 , i2 , i3 , d1 , d2 , q11 )
13 d e a l l o c a t e ( d1 )
14 d e a l l o c a t e ( d2 )
15 !
16 a l l o c a t e ( b1 ( n1+1:n3 , n1+1:n3 ) )
17 c a l l r eo rder21 ( n1 , n3 , n1 , n3 ,
18 & n1 , n3 , n1 , n3 , q11 , b1 )
19 a l l o c a t e ( d2 ( n1+1:n3 , n1+1:n3 , n0+1:n1 , n0+1:n1 ) )
20 c a l l r eorder1234 ( n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 ,
21 & n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 , t2a , d2 )
22 a l l o c a t e ( z54 ( n1+1:n3 , n0+1:n1 , n0+1:n1 , n1+1:n3 ) )
23 i 1=k3
24 i 2=k1∗k1∗k3
25 i 3=k3
26 c a l l egemm( i1 , i2 , i3 , b1 , d2 , z54 )
27 d e a l l o c a t e ( b1 )
28 d e a l l o c a t e ( d2 )
29 !
30 f a c t o r =−0.500∗ diag3 ! s c a l e D3 by diag3
31 c a l l
32 & sum1342 ( n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 , v2a , z54 , f a c t o r )
33 f a c t o r=−f a c t o r
34 c a l l
35 & sum2341 ( n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 , v2a , z54 , f a c t o r )
36 d e a l l o c a t e ( z54 )
37 d e a l l o c a t e ( q11 )
38 f a c t o r=0

Figure B.2: Excerpt of the code that computes the deterministic diag3 × Λ(2)
3 contribution

of the
〈
ΦABIJ

∣∣∣(VNA
1
2T

2
2A
)
C

∣∣∣Φ〉 term (cf. Table A.2).
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1 ! complementary acc−d3 mc term
2 5001 i f ( e x t c o r . and . diag3 . ne . 1 ) then
3 a l l o c a t e ( d1 mc ( n0+1:n1 , n0+1:n1 , n1+1:n3 , n1+1:n3 ) )
4 c a l l r eorder2134 ( n0 , n3 , n0 , n3 , n0 , n3 , n0 , n3 ,
5 & n0 , n1 , n0 , n1 , n1 , n3 , n1 , n3 , in t r , d1 mc )
6 a l l o c a t e ( d2 mc ( n0+1:n1 , n0+1:n1 , n1+1:n3 , n1+1:n3 ) )
7 c a l l r eorder3412 ( n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 ,
8 & n0 , n1 , n0 , n1 , n1 , n3 , n1 , n3 , t2a mc , d2 mc )
9 a l l o c a t e ( q11 mc ( n1+1:n3 , n1+1:n3 ) )

10 i 1=k3
11 i 2=k3
12 i 3=k3∗k1∗k1
13 c a l l egemm( i1 , i2 , i3 , d1 mc , d2 mc , q11 mc )
14 d e a l l o c a t e ( d1 mc )
15 d e a l l o c a t e ( d2 mc )
16 !
17 a l l o c a t e ( b1 mc ( n1+1:n3 , n1+1:n3 ) )
18 c a l l r eo rder21 ( n1 , n3 , n1 , n3 ,
19 & n1 , n3 , n1 , n3 , q11 mc , b1 mc )
20 a l l o c a t e ( d2 mc ( n1+1:n3 , n1+1:n3 , n0+1:n1 , n0+1:n1 ) )
21 c a l l r eorder1234 ( n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 ,
22 & n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 , t2a mc , d2 mc )
23 a l l o c a t e ( z54 mc ( n1+1:n3 , n0+1:n1 , n0+1:n1 , n1+1:n3 ) )
24 i 1=k3
25 i 2=k1∗k1∗k3
26 i 3=k3
27 c a l l egemm( i1 , i2 , i3 , b1 mc , d2 mc , z54 mc )
28 d e a l l o c a t e ( q11 mc )
29 d e a l l o c a t e ( b1 mc )
30 d e a l l o c a t e ( d2 mc )
31 !
32 f a c t o r =−0.500∗(1.0− diag3 ) ! s c a l e D3ˆ(MC) by 1−diag3
33 c a l l
34 & sum1342 ( n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 , v2a , z54 mc , f a c t o r )
35 f a c t o r=−f a c t o r
36 c a l l
37 & sum2341 ( n1 , n3 , n1 , n3 , n0 , n1 , n0 , n1 , v2a , z54 mc , f a c t o r )
38 d e a l l o c a t e ( z54 mc )
39 f a c t o r=0
40 e n d i f

Figure B.3: Excerpt of the code that computes the stochastic (1− diag3) Λ(2),(MC)
3 contri-

bution of the
〈
ΦABIJ

∣∣∣(VNA
1
2T

2
2A
)
C

∣∣∣Φ〉 term (cf. Table A.2).
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[96] T. Kuś and A. I. Krylov, J. Chem. Phys. 135, 084109 (2011).
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[104] O. Sinanoǧlu, Adv. Chem. Phys. 6, 315 (1964).
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[106] H.-J. Werner and M. Schütz, J. Chem. Phys. 135, 144116 (2011).

[107] J. Yang, G. K.-L. Chan, F. R. Manby, M. Schütz, and H.-J. Werner, J. Chem. Phys.
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