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ABSTRACT 

CHEMOENZYMATIC SYNTHESIS OF HEPARAN SULFATE PROTEOGLYCAN AND 
MIMETICS 

By  

Jia Gao 

Proteoglycans (PGs) are an important class of glycoproteins widely distributed in mammals. 

They are involved in numerous biological events, including tumor progression, inflammation, and 

cellular communication. Generally, a PG is composed of a core protein and one or more 

glycosaminoglycan (GAG) polysaccharide chains. The GAG chain is covalently attached to the 

core protein via a serine residue in the consensus sequence -Ser-Gly-X-Gly- (X being any natural 

amino acid residue but proline) by a common tetrasaccharide linkage. Heparan sulfate 

proteoglycans (HSPGs), along with chondroitin sulfate proteoglycans (CSPGs) and keratan sulfate 

proteoglycans (KSPGs), are main subtypes of the PG family. Naturally existing HSPGs, due to 

complex post-translational modifications (PTMs) on the GAG chains, are highly heterogeneous. 

That makes direct isolation of homogeneous HSPGs from natural sources almost impossible. To 

date, preparing structurally defined HSPGs solely relies on formidable and tedious chemical 

synthesis.  

In this dissertation, two novel approaches have been investigated to expedite the synthesis of 

HSPGs. The convergent chemoenzymatic approach takes advantage of efficient enzymatic 

synthesis of heparan sulfate (HS) oligosaccharides and well-developed solid phase supported 

peptide synthesis (SPPS). By substituting the non-functional tetrasaccharide linkage, the GAG 

chain and peptide were conjugated through a flexible artificial linker to make a syndecan-1 

mimetic, which mimics the natural structures of syndecan-1, an important member of HSPG 

family.  The mimetic binds strongly to integrin αvβ3, a key cell-surface protein that plays an active 



 

role in tumor proliferation process. Furthermore, the mimetic compound is able to inhibit the 

migration of breast cancer cells MDA-MB-231. 

In the native form of PGs, the core protein and GAG chains are connected through a common 

tetrasaccharide linkage consisted of GlcA-β(1→3)-Gal-β(1→3)-Gal-β(1→4)-Xyl-β(1→O)-Ser to 

efficiently prepare native heparan sulfate glycopeptides and glycoproteins, enzymes involved in 

the PG linkage biosynthesis were investigated and developed as synthetic tools. Human β-1,4-

galactosyltransferase 7 (β4GalT7) was used to catalyze the transfer of galactose units and 

synthesize galactose-xylose (Gal-Xyl) bearing PG glycopeptides. Human xylosyltransferase I 

(XT-I), the enzyme that initiates PG biosynthesis in nature, was then studied and applied towards 

the synthesis of PG linkage region. 
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Chapter 1 Recent Advances on Glycosyltransferases Involved in the 
Biosynthesis of Proteoglycan Linker Region 

1.1 Introduction  

Proteoglycans are an essential family of glycoproteins consisting of a core protein with one 

or multiple glycosaminoglycan (GAG) chains, which are covalently attached to the protein through 

a common tetrasaccharide linkage consisted of GlcA-β(1→3)-Gal-β(1→3)-Gal-β(1→4)-Xyl-

β(1→O)-Ser (Figure 1.1). PGs are widely present on cell surface and extracellular matrix. Their 

functions are critically important to numerous biological events, including cell adhesions, cellular 

signaling and interactions with growth factors.1-4  

  

 

Figure 1.1 Schematic demonstration of the structure of proteoglycans. The tetrasaccharide linkage 
is highlighted.5  

 

The biosynthesis of the PG linkage tetrasaccharide involves the deployment of four 

glycosyl transferases: xylosyltransferase-I/II (XT-I/II), β-1,4-galactosyltransferase 7 (β4GalT7), 

β-1,3-galactosyltransferase 6 (β3GalT6) and β-1,3-glucuronyltransferase 3 (β3GAT3) (Figure 
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1.2). The first successful expressions and characterizations of β3GalT6 were reported by the 

Furukawa and Esko groups two decades ago.6, 7 The Sugahara group reported the first molecular 

cloning and expression of β3GAT3, and subsequent characterizations of this enzyme in 1990s.8, 9 

The follow-up investigations on β3GalT6 and β3GAT3 have been rather limited.10, 11 Therefore, 

this current review will focus on the recent progress made on the expression, characterization and 

applications of the PG linkage glycosyltransferases XT-I/II and β4GalT7.  

      

Figure 1.2 Biosynthetic assembly of the PG linkage region.12  

 

1.2 Xylosyltransferase-I/II (XT-I/II) 

To the best of my knowledge, the review article published by Wilson in 2004 is the first to 

comprehensively summarize the contemporary understandings towards UDP-α-D-

xylose:proteoglycan core protein β-D-xylosyltransferases (XT-I and XT-II).13 In 2007, Götting, 

Kuhn, and Kleesiek published a review emphasizing the impact of mammalian xylosyltransferases 
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on PG-related diseases and human health.14  Since then, significant amounts of progress have been 

made to gain insights on this key enzyme. 

1.2.1 Expression and Purification of XT-I/II 

The discovery of peptide O-xylosyltransferase dates back to the 1960s.15-19 Afterwards, 

this GAG-synthesis-initiating enzyme has been isolated from multiple sources.15-24 In 2000, 

Götting and co-workers reported the first molecular cloning and expression of XT-I and its 

isoform.25 In their study, the recombinant XT-I proteins from humans, mice and rats were 

successfully expressed in Chinese Hamster Ovary (CHO-K1) cells.  

In 2003, the Kleesiek group described high-level expression of a soluble histidine-tagged 

recombinant XT-I using the High Five/pCG255-1 insect cell expression system.26 Stable clones 

that express XT-I-V5-His (rXT-I-His) were generated. The human XT-I was purified by heparin 

affinity chromatography using a POROS 20 HE2 column followed by Nickel affinity column. The 

purified protein was verified by Western blot using polyclonal anti-XT-I antibodies. 

Shortly after, Götting and co-workers prepared a series of XT-I enzymes with point 

mutations on the aspartate-any residue-aspartate (DXD) motifs by transient expression in High 

Five insect cells.27 A stable clone of High Five/pCG255-1 that expresses the soluble form of 

histidine- and V5-tagged recombinant human XT-I with N-terminal 1-148 sequence truncated, 

rXT-I-(Δ1–148)-V5-His, was also made in this study. 

Müller et al., in 2005, carried out individual site-directed mutagenesis of all 14 cysteine 

residues into alanine.28 The recombinant wild-type human XT-I and the single mutants were 

successfully expressed in High Five insect cells to assist the structure-activity study of XT-I. A 

year later, in the work published by the same group, multiple N-terminal truncated human XT-I 

enzymes were smoothly produced with the same insect cell expression system. 
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With the successes from CHO mammalian cell and High Five insect cell expression system, 

the expressions of xylosyltransferases were extended to the human embryonic kidney 293 (HEK-

293), human osteosarcoma (SaOS-2) mammalian system, and Pichia pastoris yeast system.29, 30 In 

2006, Götting group reported the first recombinant expressions of GFP-fused human XT-I and 

multiple GFP-tagged XT-I/II mutants using mammalian HEK-293 and SaOS-2 cells.29 In the same 

year, Brunner et al. expressed two invertebrate and two vertebrate xylosyltransferases, Drosophila 

peptide O-xylosyltransferase (OXT), Caenorhabditis peptide O-xylosyltransferase (SQV-6), and 

human xylosyltransferase I/II (XT-I/II), with Pichia pastoris expression system.30 Two years later, 

another successful story with Pichia pastoris expression system was reported by the Götting 

group.31  

1.2.2 Acceptor Specificity of XT-I/II 

The first description of the acceptors for XT-I dates back to roughly five decades ago.15-17, 

32-34  In the pioneering studies, various uncharacterized exogenous or endogenous proteins were 

validated to be acceptors of xylosyltransferases. Since then, understandings on the acceptor 

specificity of XT-I/II have been significantly expanded.  

In addition to acceptor proteins, diverse peptide acceptors have been derived from the 

amino acid sequence around glycosaminoglycan attachment sites of different proteoglycans.13, 20, 

21, 30, 32, 34-39  Among the reported acceptors of XT-I/II, bikunin protein is known to be one of the 

best acceptors based on the Michaelis-Menten constants (Km). The bikunin peptide sequence 

derived from the bikunin GAG-attachment site has later on been extensively used to study the 

acceptor recognition properties of XT-I/II.20, 25, 30, 31, 35, 37, 40-42 

As the acceptor scope of XT-I expands, considerable effort has been put to determine its 

minimal binding motif, Gly-Ser-Gly or Ser-Gly-x-Gly, where x = any amino acid.14, 38, 43-46 
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Meanwhile, some evidence indicates that the presence of serine residue may not be absolutely 

required.35, 47 Beyond the minimal motif of acceptor binding, a consensus favored acceptor 

sequence for XT-I, a-a-a-a-Gly-Ser-Gly-a-b-a, where ‘a’ being Glu or Asp and ‘b’ being Gly, Glu 

or Asp, was deduced by Brinkmann and co-workers in 1997, based on the peptide sequence of 

reported acceptors of xylosyltransferases.20 Shortly thereafter, the common sequence was refined 

by the same research group to a-a-a-x-Ser-Gly-x-Gly, where a = Glu or Asp and x = any amino 

acid.21 

With the successful expression of XT-1, research focus was subsequently extended to XT-

II. Roch and co-workers discovered that XT-II possesses a consensus sequence analogous to that 

for XT-I, a-a-a-a-Gly-Ser-Gly-a-a/Gly-a, where a = Asp or Glu.42 

Lately, to investigate the acceptor recognition property of XT-I, Briggs and Hohenester 

performed detailed analysis using a comprehensive bikunin-derived 12-amino-acid peptide 

acceptor library in which the amino acid residue at each position had been mutated to one of all 

the 20 common natural amino acids.41 Although a serine residue is highly preferred at the 

xylosylation site, peptides with a threonine residue at position 0 also show noticeable activity 

levels. The -1 position, originally a glycine, can accept a wide variety of uncharged amino acids. 

While the -2, -3 and -4 sites generally favor acidic amino acids, individual replacement of the 

glutamic acid residues does not exert strong influence on the enzymatic activity. The preference 

for the acidic amino acids at positions preceding the xylosylation site has been attributed to non-

specific charge-charge interactions with the positively charged residues around the binding pocket. 

For the +1 position, small amino acids including glycine, alanine, serine and threonine are strongly 

favored. Surprisingly, a valine residue at +2 site enhances the activity level considerably, as 

opposed to the native glycine. Overall, XT-I does not strictly require a certain acceptor peptide 
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sequence for the activity and exhibits a greater structure tolerance than previously described 

(Figure 1.3). This recent discovery furthers contemporary understanding towards XT-I acceptor 

recognition properties and implies vast application potentials attributing to the relaxed acceptor 

requirements. 

 

Figure 1.3 XT-I acceptor specificity. Eight peptides complexed with XT-I are superimposed.41  

 

1.2.3 Donor Specificity of XT-I/II 

Unlike the extensive study of acceptor promiscuity, investigations on the donor specificity 

of XT-I/II are rather limited and, until recently, both xylosyltransferases were considered 

monofunctional to UDP-xylose. In a study done by the Götting group, various non-native UDP-

sugars, including UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetyl-
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glucosamine were examined with a soluble XT-II to test its donor promiscuity.31 However, there 

were no observable transfers of the non-native sugar to the selected peptide acceptors under testing. 

It suggests that the donor substrate scope of human XT-II is rather limited and may be restricted 

to UDP-xylose. 

In 2018, Briggs and Hohenester provided an in-depth structural investigation of XT-I with 

high-resolution crystal structures.41 In the crystal structure of the ternary complex of XT-I with 

both UDP-xylose and a peptide substrate, the presence of residue W392 in the UDP-xylose binding 

site restricts the available space around the C5 of xylose, which potentially restricts the donor 

scope of XT-I (Figure 1.4). This finding further supports the belief that XT-I/II could be 

monofunctional to UDP-xylose.  

 

Figure 1.4 UDP-xylose binding pocket of XT-I. Residue W392 is in close proximity to the C5 of 
xylose.41 

 

Nevertheless, a contradictory outcome was reported by Hendig group in 2015.40 In their 
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work, they discovered that XT-I was able to recognize the UDP-4-azido-4-deoxyxylose (UDP-

XylAz) and transferred the 4-azido-4-deoxy-xylose to the bikunin-like peptide 

QEEEGSGGGQKK. In comparison, the glycosylation activity from XT-II using UDP-XylAz was 

not observed. This is the first reported differentiation of XT-I/II activity and also, to the best of 

our knowledge, the only example showing that XT-I could accept non-native UDP-sugar as a 

donor substrate.   

Since XT-I could tolerate the azido-modification on the C4 position, other small alterations 

on xylose may potentially be accepted by the enzyme. To better understand the donor profile of 

XT-I, more follow-up investigations are in great need. 

1.2.4 Determination of XT-I/II Activity and Product Characterization 

In the past decades, a variety of tools has been developed or applied to determine the XT-

I/II activity.  Dating back to 1960s, the Neufeld group and Dorfman group documented the first 

measurements of the XT-I activity with 14C radioactive-labelled UDP-xylose sugar donor 

substrate.15-17 In 2006, Brunner and co-workers applied matrix-assisted laser desorption ionization 

– time of flight mass spectrometry (MALDI-TOF MS) and reverse-phase high performance liquid 

chromatography (RP-HPLC) to analyze products of xylosyltransferase reactions.30 To obtain 

detailed structural information, electrospray ionization (ESI) tandem mass spectrometry was 

applied for the first time to pinpoint the location of the xylose unit.30  

To confirm the β-glycosylated linkage, Götting and co-workers examined the XT-I 

glycosylated products with linkage-specific cleavage by α- and β-xylosidase and base promoted 

release of the glycan from the glycopeptide.25 The results clearly indicated a β-linkage between 

xylose and serine. This method was later extended to XT-II-catalyzed reactions by Casanova and 
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co-workers.31 In their study, the linkage-specific digestion of the reaction products reveals that 

XT-II is also a β-xylosyltransferase.  

Recently, Briggs and Hohenester utilized a commercialized glycosyltransferase kit to 

quantify the XT-I activity by monitoring the release of UDP from the sugar donor. The 

luminescence was then measured to correlate the readout with the enzymatic activity.41 

Until now, the involvement of modern nuclear magnetic resonance (NMR) technique to 

characterize the product structures has yet been reported. Likely in the near future, with 

improvements on reaction scale and sample preparation, the conformation of the linkage would be 

decisively defined by NMR experiments.  

1.2.5 Structure-Activity Relationships (SAR) 

With advances on efficient expression and purification of XT-I, substantial progress on the 

structure-activity relationships of this important enzyme has been achieved during the past two 

decades. Especially, the high-quality crystal structures of XT-I and its ternary complex with UDP-

xylose and peptide acceptors have drastically enhanced the current understanding of how XT-I 

interacts with the substrates and offer valuable insights on the catalytic mechanism.41 

In 2004, Götting et al. first investigated the functions of XT-I DXD motifs with mutants 

that carried point mutations on the two short segments, 314DED316 and 745DWD747.27 Mutations on 

the first 314DED316 motif do not affect the XT-I function. In contrast, the D745G mutation abolishes 

the catalytic function of XT-I, even though the alterations on 745DWD747 do not strongly affect the 

donor substrate bindings. 

A year later, with 14 mutants carrying individual point mutations of cysteine into alanine, 

Müller and co-workers investigated the importance of available cysteine residues to XT-I 

functions.28 In terms of enzymatic activity, mutations on 5 of the 14 cysteine residues resulted in 



 10 

over 90% loss of XT-I function. These findings imply the importance of the 5 Cys residues to the 

XT-I activity. Interestingly, alanine replacement of the cysteine residues close to the C-terminus 

did not exhibit any considerable effects on XT-I catalysis. The treatment of the cysteine-targeting 

N-phenylmaleimide reagent induced concentration-dependent inhibitions on all enzymatically 

active cysteine-to-alanine mutants but not the wild-type XT-I. These results indicate that all the 14 

cysteine residues may exist in form of cystine and there are no free thiol groups available in wild-

type XT-I. In addition, the enzymatic activity of wt XT-I and its single mutants could also be 

effectively reduced under the treatment of high-dose UDP or glycosaminoglycans. Meanwhile, all 

the mutants demonstrated comparable binding to the immobilized UDP and heparin as the wild-

type XT-I. Taken together, it is likely that the cysteine residues present in XT-I do not directly 

participate in UDP or GAG bindings and mutations on them triggered no drastic conformational 

changes in the corresponding binding sites. 

Shortly after, Müller and co-workers furthered their investigations with a series of N-

terminal truncated forms of human XT-I.48 According to their results, the first 260 amino acids at 

the N-terminus of the wild type are not required for the enzymatic activity. However, the XT-I 

catalytic function would be abolished with an additional deletion of 12 amino acids, 

G261KEAISALSRAK272, from the N-terminus. Since the individual replacement of each non-

aliphatic residue in the 12 amino-acid sequence by alanine did not exert substantial influence on 

the enzyme activity in their study, it was suggested that this motif could be crucial to maintain the 

proper conformation of the enzyme. Interestingly, the truncation of P721KKVFKI727 motif, which 

is similar to the heparin-binding consensus sequence identified by Cardin and Weintraub,49 does 

not affect the heparin binding of XT-I but dramatically impairs the proper enzymatic function, 

implying the necessity of this motif to the protein conformation.48  
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Over a decade later, in 2018, Briggs and Hohenester provided an in-depth structural 

investigation of XT-I with high-resolution crystal structures.41 The structures in complex with 

UDP-xylose and peptide acceptors offer valuable insights on how the enzyme recognizes and 

interacts with the substrates. To obtain the ternary complex of XT-I with both UDP-xylose and a 

peptide substrate, the serine residue originally in the acceptor peptide sequence was replaced by 

alanine to abolish its acceptor function. The UDP diphosphate moiety of the donor binds with 

positively charged amino acid residues R598 and K599, instead of a divalent metal ion. The 

presence of residue W392 in the UDP-xylose binding site restricts the available space around the 

C5 of xylose, providing an explanation for the limited donor scope of XT-I (Figure 1.5).  

 

Figure 1.5 Active site of XT-I in complex with UDP-xylose donor and a peptide acceptor.41 
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The crystal structure around the peptide-binding site suggests that the network of hydrogen 

bonds is not sequence specific. Ten out of the eleven hydrogen bonds between the acceptor peptide 

and the catalytic domain occur on the carbonyl and amide groups along the peptide backbone. To 

gain insights into the characteristic C-terminal domain of XT-I (Xylo_C domain), a variety of 

single mutants was expressed. Results demonstrated that point mutations on the Xylo_C structure 

in contact with the catalytic GT_A domain did not impede the XT-I enzymatic functions. Briggs 

and Hohenester suggest that the presence of the Xylo_C domain, instead of being directly required 

for xylosylation activity, likely facilitates the recruitment of enzymes involved in subsequent GAG 

biosynthesis. 

1.3 β-1,4-Galactosyltransferase 7 (β4GalT7) 

1.3.1 Expression and Purification of β4GalT7 

The β4GalT7 enzyme represents the seventh member of human β-1,4-galactosyltransferase 

family. Its molecular cloning and expression were first achieved by the Clausen group in 1999.50 

The full-length β-1,4-galactosyltransferase and a truncated version containing amino acid residues 

63-327 were prepared using the Sf9 and High Five insect cell expression systems. The purification 

of β4GalT7 was then accomplished by sequential DEAE/Amberlite and S-Sepharose 

chromatography.51 

The Lattard group, in 2009, successfully expressed the membrane form of β4GalT7 in 

HeLa cells and a soluble maltose-binding protein (MBP)-β4GalT7 fusion protein with an N-

terminal truncation in E. Coli BL21 cells.52 The MBP-fused β4GalT7 was purified by an amylose 

column. The desired protein was eluted out with 20 mM maltose in buffer A (20mM MOPS 

containing 150 mM NaCl at pH 7.0), and further dialyzed against the same buffer. 

In a research work published by Ramakrishnan and Qasba in 2010, the catalytic domain of 
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Drosophila melanogaster β4GalT7, in its native form or with a variety of modifications, was 

individually prepared crystallization studies.53 The variants included an enzyme with an 11-amino 

acid truncation from the C-terminus (Cd7ΔC) and ones carrying additional bovine β4GalT1 

peptide fragments at the N-terminus (P-Cd7ΔC and P1-Cd7ΔC). 

Since the MBP-β4GalT7 fusion protein produced in previous work only exhibited modest 

solubility and was prone to aggregation after the release of MBP fusion partner by protease, in 

2010, the Qasba group designed a soluble form of human β4GalT7 using galectin-1 as the fusion 

partner to facilitate the folding and improve its stability and solubility.54 This fusion form of 

β4GalT7 was expressed with an E. coli expression system. The initial purification was achieved 

with an alpha-lactose column and the target protein, galectin-1-human-β4GalT7, was eluted out 

with 100 mM lactose. Subsequently, the galectin-1 was cleaved off the protein with the Tobacco 

Etch Virus (TEV) protease. In this study, another MBP-fusion form of human β4GalT7 plasmid, 

pmal-2x-hum-β4GalT7, was constructed, and the enzyme, MBP-human-β4GalT7, was expressed 

effectively in E. Coli. The MBP-tag assisted the purification with an amylose column as previously 

reported.55 Factor Xa protease cleaved off the MBP tag. The soluble form of human β4GalT7 was 

eventually purified with UDP-agarose columns. 

In direct comparison to the two MBP-fusion forms, the galectin-1-human-β4GalT7 created 

exhibits great solubility and is less prone to aggregation, displaying its superior stability.  It is the 

first documented success of galectin-1 as a fusion partner acting as a chaperone for the preparation 

of human β4GalT7 in E. Coli cells.  

Meanwhile, in a study reported by Talhaoui and co-workers, HeLa cells or CHO pgsB-618 

cells were transfected with either wild-type human β4GalT7 plasmid or single-mutant plasmids, 

individually, to aid the determination of catalytically active residues.56 In addition, E. coli 
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BL21(DE3) cells were also used to prepare a soluble GST-fusion form of β4GalT7. Its purification 

was attained via the GST tag with glutathione-Sepharose 4B packed affinity column. 

In 2013, the Qasba group unveiled the crystal structures of Drosophila β4GalT7 and a 

single mutant D211N β4GalT7 in complex with UDP-galactose as the donor and xylobiose as the 

acceptor, respectively.57 In this study, the plasmid of an N-terminally truncated human β4GalT7 

(β4GalT7Δ81) was constructed and the preparation of this truncated protein was carried out 

following previously reported conditions.54 

The Fournel-Gigleux group, in 2015, constructed multiple vectors for different forms of 

human β4GalT7 and successfully expressed N-terminus truncated GST-tagged human β4GalT7 

(β4GalT7ΔNt60) using E.coli BL21 (DE3) cells.58 This is the most recent report of unique 

expression of human β4GalT7. 

1.3.2 Acceptor Specificity of β4GalT7 

 The early report on β4GalT7 acceptor specificity dates back to 1994.59  Esko and co-workers 

examined the priming of heparan sulfate using a variety of xylosides carrying non-native 

aglycones. This is the first demonstration that certain galactosyltransferase accepts xylosides as its 

substrates to enable heparan sulfate biosynthesis. In the following years, an increasing number of 

chemically modified xylosides were tested and the β4GalT7 acceptor scope expanded as 

investigations continued.60-62  

In 2007, a library of thio-xylosides was prepared by the Ellervik group to examine the 

effect on GAG chain priming.63 In the study, for the first time, they demonstrated that thio-

xylosides could be tolerated by the enzymes for GAG biosynthesis. Shortly after, Abrahamsson et 

al. assessed GAG priming capability of various xylosylated naphthoic acid-amino acid 

conjugates.64 Only the most nonpolar analog initiated the GAG biosynthesis in T24 cells. Two 
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years later, Victor and co-workers built a library of metabolically stable click-xylosides with 

hydrophobic groups attached. Priming activities were observed with this novel group of xylosides 

using CHO cell line.65 The in vitro studies unveiled that aglycone moieties of xylosides affect 

sulfation, GAG chain composition and length. These results demonstrated that multiple O-, S-, and 

C-xylosides could be processed by β4GalT7 in vitro. 

In a research work published by the Fernandez-Mayoralas and Garcia-Junceda groups in 

2011, a collection of decoy xyloside acceptors was chemically synthesized and tested with a 

recombinant soluble β4GalT7. This was the first demonstration that recombinantly expressed 

β4GalT7 is promiscuous in the aglycon moieties of the xylose acceptor.66  

Three years later, the Ellervik group further explored the substrate promiscuity of the 

enzyme with a truncated GST-β4GalT7 and chemically modified xyloside analogs.67 In contrast 

to the great tolerance on aglycones, the truncated GST-β4GalT7 failed to process most of the 

xyloside analogs to any significant extent. Only a few xyloside analogs carrying modifications on 

C2 or C5 positions were galactosylated. Subsequent molecular modeling revealed that the binding 

pocket of β4GalT7 is narrow. Xylose, as the optimal substrate, is required to match with the precise 

set of hydrogen bond acceptors in the pocket.  

In 2015, more in-depth investigations were carried out to gain understandings on acceptor 

structure requirements.68 In this study, xylosides with varied aglycon size, anomeric configuration, 

linker length and electronic properties were carefully examined and compared. In general, only 

xylosides with the β-anomeric configuration would be smoothly converted by β4GalT7. The 

galactosylation capability of substrate can be enhanced by replacing the anomeric oxygen with 

sulfur. Substituting it with carbon reduces the enzymatic activity. In line with prior findings, bulky 

aglycons could be accepted.   
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Recently, a variety of xylosides and xyloside analogues carrying 2-naphthyl (Nap) or 4-

methylumbelliferyl (MU) aglycone was synthesized by the Ellervik group and the Wagner 

group.69-73 From the assay results, xyloside analog 2-naphthyl β-D-GlcNAc functioned as an 

acceptor substrate.70 And analogs having an endocyclic sulfur atom proved to be great substrates 

for the enzyme.72  

1.3.3 Donor Specificity of β4GalT7 

In comparison with acceptor specificity, investigations on β4GalT7 donors are limited.52, 

56 The first detailed examination on β4GalT7 donor scope was reported in 2009 by the Lattard 

group. Several non-native UDP-sugars, including UDP-Xyl, UDP-Glc, UDP-Man, UDP-GlcA, 

UDP-GalNAc and UDP-GlcNAc, were individually incubated with purified MBP-β4GalT7. 

Among them, UDP-Xyl and UDP-Glc were accepted by the enzyme, although with much lower 

activities with 27-fold and 11-fold decreases as opposed to UDP-Gal, respectively.52   

Fournel-Gigleux group reported similar results a year later.56 Using 4-MU xyloside as 

acceptor, wild-type β4GalT7 was able to process UDP-Xyl and UDP-Glc, even though the 

observed activity levels were low. The W224H mutant failed to retain the donor promiscuity. 

1.3.4 Determination of β4GalT7 Activity and Product Characterization 

Back to 1990s, in cellulo GAG priming with β-D-xylosides was probed using radioactive 

[35S]SO42- and [6-3H] D-glucosamine.59 Later, UDP-[14C]-Gal was used to track the activity of 

secreted β4GalT7 enzyme.60, 74, 75 Almeida and co-workers performed one-dimensional 1H NMR, 

two-dimensional 1H-1H TOCSY, and 13C-decoupled 1H-13C HSQC and HMBC experiments to 

analyze the product structure in details. The NMR data confirmed the newly formed 

Galβ1→4Xylβ linkage.60 In 2009, the Lattard group applied NMR techniques, including 1H, 13C, 

HSQC, TOCSY, COSY and NOESY, to thoroughly characterize the reaction products.52 The 
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significant chemical shift changes on H-4 and C-4, together with a large 3JH1’,H2’ value, supported 

the desired β1→4 linkage.  

In 2005, RP-HPLC equipped with a C18 column was for the first time applied to monitor 

the β4GalT7 reactions by Gulberti and co-workers.76 This analytical method was then optimized 

and more routinely used to assess β4GalT7 enzymatic activity.52, 66-68 A phosphatase-coupled 

glycosyltransferase assay, in which a phosphatase is used to convert the released UDP into 

inorganic phosphate for subsequent colorimetric quantification, was lately developed and applied 

to kinetic studies of β4GalT7.70, 77  

1.3.5 Structure-Activity Relationships 

Pioneering investigations into the β4GalT7 catalytic domain trace back to 2010.53, 56 With 

the first high-resolution crystal structure of Drosophila β4GalT7 catalytic domain resolved, 

Boopathy and Pradman discovered a new Mn2+-binding motif (241HXH243), in addition to the DXD 

motif common in β4GalT family.53 Based on the molecular docking result, the O4 hydroxyl group 

in xylose is expected to form a strong hydrogen bond with the Asp211 side-chain carboxylate 

oxygen atom for acceptor activation. The presence of Tyr177 greatly limits the space in the binding 

pocket (Figure 1.6). The steric hindrance imposed by this bulky residue may explain why β4GalT7 

rejects most of the chemically modified xyloside analogs as acceptors.  
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Figure 1.6 Molecular docking of glucose into the binding pocket of Drosophila β4GalT7. O2, O3 
and O4 hydroxyl groups of docked glucose molecule are in close proximity to catalytic residue 
D211/D212. Residue Y177 imposes steric hindrance on the C6/O6 atom of the glucose molecule, 
implying only xylose would be accommodated by the enzyme.53 

 

In the same year, the Fournel-Gigleux group reported the first detailed SAR investigation 

on the active site of human β4GalT7.56 Canonical motifs 163DVD165 and 221FWGWGEDDE230 were 

identified in hβ4GalT7 (Figure 1.7). D163A or D165A point mutation completely abolished the 

enzyme activity. In comparison, replacement of D165 with glutamic acid retained, albeit reduced 

the hβ4GalT7 activity. For the N-terminus of conserved 221FWGWGEDDE230 region, F221A 

mutation may affect the conformation of acceptor-binding site, as reflected by a 13-fold in the Km 

value of 4-MU-xylose. Meanwhile, W222F mutation did not show apparent effects on the affinity 

of either the donor or the acceptor. W224F and G225A mutants failed to demonstrate any 

observable enzyme activities, while G223A mutant maintained roughly 40% of the enzyme 

function. Further investigations suggested residue W224 plays a critical role in the donor and 

acceptor substrate binding. For the C-terminus of the peptide region, E227D/E230A did not impact 
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the donor or acceptor binding. In contrast, E227A/D228A/D229A/D229E mutants abolished the 

catalytic activity. 

 

Figure 1.7 Molecular modeling of human β4GalT7 in complex with UDP-Gal. a) Predicted 
complex formed with UDP-Gal, Mn2+, and 163DVD165/257HLH259; b) Predicted interaction between 
β-phosphate of UDP-Gal and residue W224. The protein α-carbon backbone is colored in green. 
Key residues in the active sites, UDP-Gal, and Mn2+ are highlighted.56  

 

In 2013, the co-crystal structure of Drosophila D211N β4GalT7 mutant in the closed 

conformation with donor UDP-Gal and acceptor xylobiose was published by Tsutsui and co-

workers.57 In their study, an additional hydrogen bond is observed between Tyr177 side-chain -

OH group and the β-phosphate oxygen atom of the UDP-Gal donor. The catalytic base Asp211 

interacts with O3 and O4 atoms of the bound xylose acceptor via hydrogen bonds (Figure 1.8). 

Although the acceptor binding site is hydrophobic due to the presence of Tyr194, Tyr196, Tyr199 

and Trp224, its neighboring region is highly positively charged to provide a high affinity to the 

acidic-residue-rich xylose attachment sites of native proteoglycans. 

a b 
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Figure 1.8 Xylobiose binding to Drosophila β4GalT7 in a closed conformation. The active site is 
colored in green.57 

 

The Ellvervik group later studied the enzyme-substrate interactions with their synthesized 

xyloside analogs.68 Despite the steric effect imposed by the chemical modifications of the aglycon, 

O2, O3, and O4 from the xylosides form a hydrogen bonding network with the catalytic residues 

N211 and D212 (Figure 1.9).  
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Figure 1.9 D211N β4GalT7 in complex with UDP-Gal, Mn2+ and a xyloside analog. The protein 
is colored in blue. UDP-Gal and the xyloside analog are highlighted in grey.68 

 

Recently, Fournel-Gigleux group extended the computational analysis to human 

β4GalT7.58 Their docking simulation results identified a hydrophobic region, formed by Tyr194, 

Tyr196 and Tyr199, that provides stacking interactions with the aglycone and the xylopyranoside 

sugar ring. The acceptor xyloside is oriented and activated through a hydrogen bond network with 

Asp228, Asp229 and Arg226 (Figure 1.10). 
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Figure 1.10 The active site of human β4GalT7 in complex with UDP-Gal, Mn2+ and 4-MUX. The 
protein α-carbon backbone is colored in grey. Key residues in the active site and substrates are 
highlighted.58 

 

 

Figure 1.11 Overview of proposed binding pattern of xylosides and UDP-Gal in the β4GalT7 
binding pocket.71 
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1.4. Future Outlook 

While significant progress has been made on the key glycosyltransferases involved in 

proteoglycan linkage region synthesis, application of these biocatalysts is in its infancy. From the 

perspective of synthesis, deploying the four enzymes may lead to a highly efficient 

chemoenzymatic preparation of the PG linkage bearing glycopeptides. Together with well-

developed GAG synthesis enzymes,78, 79 it may pave the road towards native homogeneous PG 

glycopeptides and glycoproteins. A library as such would be highly valuable for in-depth structure-

activity relationship investigations. As traditional chemical synthesis can be highly tedious and 

labor intensive, PG enzymatic synthesis would serve as a disruptive approach to dramatically 

reduce the time, effort, and materials required to prepare PG compounds, making the process 

faster, easier, and ‘greener’. 

In addition, enabled by advanced computational technology, biocatalytic enzymes could 

be re-designed or re-purposed to tailor specific research needs. Among the four enzymes needed 

to make the PG linkage, XT-I is a particularly promising target. With its ability to recognize certain 

binding motifs, a properly engineered XT-I variant could potentially transfer non-native sugars, 

for instance, an azido-sugar, to a wide range of biological proteins. The labelled proteins may then 

be functionalized with a variety of fluorescent probes or affinity tags to support diverse research 

aspirations. If the other enzymes involved in PG linkage assembly could tolerate the chemically 

modified glycoproteins as their substrates, they would become a highly valuable biocatalytic 

toolkit to facilitate investigation of the multifaceted biological functions of PGs. 
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Chapter 2 Convergent Chemoenzymatic Synthesis and Biological Evaluation of 
a Heparan Sulfate Proteoglycan Syndecan-1 Mimetic  

2.1 Introduction 

Heparan sulfate proteoglycan (HSPG) consists of one or more heparan sulfate (HS) chains 

linked to serine residues in the core protein.1 Ubiquitous on mammalian cell surface and in the 

extracellular matrix, HSPGs are involved in a wide variety of important biological processes, 

including regulations of growth factors, cell adhesions and cell-cell communications.2-5 While 

heparan sulfate (HS) is generally considered to be the main determinant of HSPG activities, the 

core protein of HSPG can have significant impacts as well.6, 7 However, due to the extreme 

heterogeneity of HS structures in nature, it is highly challenging to purify homogenous HSPGs 

from natural sources, presenting significant hurdles to decode the roles of HS and the core protein 

in HSPG functions. Chemical synthesis of HS glycopeptide has been reported, which is highly 

challenging due to instabilities of the HS glycan under typical peptide synthesis conditions.8-10 In 

this chapter, I have developed a new convergent strategy integrating chemical synthesis with 

enzymatic reactions to synthesize a well-defined glyco-polypeptide mimicking the complex 

structure of HSPG such as syndecan-1. 

Syndecan-1, a prototypical HSPG on the mammalian cell surface, can bind with integrins 

mediating cell adhesion, signaling, and migration. Synstatin (SSTN), a 36 amino acid long 

polypeptide corresponding to residues 92-117 of human syndecan-1, has been identified as the 

binding sites of αvβ3 and αvβ5 integrins.11 While HS is known to interact with integrins, it is not 

clear how displaying HS in the context of a glycoprotein impacts its function. To more closely 

mimic the structural complexity of syndecan-1, we designed glyco-polypeptide analog 1, which 

contains a 48 amino acid residue polypeptide backbone containing the full length synstatin 
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sequence, as well as a HS glycan chain bearing the full structural features of HS encountered in 

nature, including iduronic acid, glucuronic acid, O-sulfation and N-sulfation. 

2.2. Results and Discussions 

 

Figure 2.1 Structure of the HSPG syndecan-1 mimetic 1. 

 

To prepare the complex structure of HSPG mimetic 1, retrosynthetically, the target 

molecule is divided into glycopeptide module 2 and synstatin92-117 peptide 3 bearing a pentaglycine 

at its N-terminus (Scheme 2.1), which would be joined through an irreversible sortase A-mediated 

ligation. The glycopeptide 2 containing the ‘LPETG’ sorting sequence at the C-terminus would be 

assembled through the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) of azido-

oligosaccharide 4 and alkynyl peptide 5.  

 

Scheme 2.1 Retrosynthetic analysis of HSPG syndecan-1 mimetic 1. 
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Scheme 2.1 (cont’d) 

 

 

The heparin octasaccharide 6 was synthesized by the Liu group.12 To prepare the HS 

oligosaccharide 4, the nitro moiety in the aglycon of heparin octasaccharide 6 (Scheme 2.2) was 

reduced by catalytic hydrogenation.12 This was followed by the installation of the azide linker at 

the reducing end with 6-azidohexanoic acid NHS ester 8 leading to azide functionalized HS 

octasaccharide 4 (Scheme 2.2). 

 

Scheme 2.2 Synthesis of HS octasaccharide 4. Reagents and conditions: (a) Pd/C, H2, H2O, 95%; 
(b) 6-azidohexanoic acid NHS ester 8, aq. NaHCO3, 78%. 
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With the glycan in hand, alkynyl peptide 5 was synthesized via microwave-assisted solid 

phase supported peptide synthesis (SPPS) starting from Fmoc-glycine loaded resin 9 (Scheme 

2.3). The peptide 5 is terminated with pentaglycine at its N-terminus. Because of the synthetic 

difficulties of certain homooligopeptides, the Fmoc-protected pentaglycine building block Fmoc-

pentaglycine 10 was prepared in a separate reaction and purified with preparative HPLC.13, 14  10 

was then introduced to the N-terminus of the growing peptide chain attached to the solid phase 

(Scheme 2.3). Subsequent acidic treatment (TFA/TIPS/H2O) cleaved the Fmoc-Gly5 terminated 

peptide 11 off the resin with all acid-labile protecting groups removed. After treatment of 11 with 

the propargyl alkyne NHS ester 12, the target peptide 5 was obtained in 18% overall yield. In a 

similar manner using microwave assisted SPPS, the 33-mer synstatin peptide 3 with the N-

terminus pentaglycine was prepared with an overall yield of 24% (Appendix Scheme 2.5). 

To obtain the glycopeptide mimetic, azido-oligosaccharide 4 and alkynylpeptide 5 (1:1 

molar ratio) were subjected to copper catalyzed alkyne azide cycloaddition (CuAAC) and the 

desired product module 2 was obtained in 88% yield following diethylaminoethyl cellulose 

(DEAE)-HPLC purification (Scheme 2.3). The CuAAC condition is mild, which did not affect the 

structural integrity of the HS glycan or the glyco-polypeptide.  
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Scheme 2.3 Microwave-assisted synthesis of alkyne-functionalized SorTag-containing peptide 5 
and formation of glycopeptide mimetic 2 through the CuAAC. Reagents and conditions: (a) Fmoc- 
deprotection: 20% piperidine/DMF, 50 °C, 2 min, microwave; (b) Amino acid coupling: 5 eq. 
Fmoc-AA-OH, HBTU, HOBt, DIPEA, DMF, 50 °C, 10 min, microwave; (c) Oligopeptide 
coupling: 5 eq. Fmoc-pentaglycine 10, HATU, DIPEA, DMF, 50 °C, 10 min, microwave; (d) Resin 
cleavage: TFA/TIPS/H2O (95:2.5:2.5, v/v/v); (e) Propargyl alkyne NHS ester 12, aq. NaHCO3, 
18% overall. (f) CuSO4, THPTA, Na ascorbate, H2O, 88%. 

 

To extend the peptide backbone, the key ligation between glycopeptide module 2 and Gly5-

SSTN92-119 3 was carried out under the catalysis of sortase A (SrtA), a transpeptidase that crosslinks 

the pilin subunits to assemble pili on the surface of gram-positive bacteria (Scheme 2.4).15, 16 To 

achieve effective ligations, SrtA from Staphylococcus aureus (SrtAstaph) typically requires a 

LPXTG-containing peptide donor (X can be any natural amino acid) and an acceptor peptide 

having oligoglycine fragment at its N-terminus.17 SrtAstaph is able to irreversibly couple peptide 
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fragments in the presence of nickel (II) sulfate if the donor peptide carries a Gly-His-Gly tripeptide 

at the C-terminus of the ‘LPETG’ sorting signal (SorTag). This results from a Nickel-peptide 

complex with the histidine residue at the GGHG motif, thus reducing the nucleophilicity and the 

reversible coupling of the cleaved peptide.16  

The SrtAstaph-mediated ligation has been tested using GAGALPETGGHG as the donor 

peptide and GGGGGLPAG as the acceptor peptide. Reaction conditions, including buffer, pH, 

temperature, reaction time and the amount of NiSO4 were carefully optimized (Appendix Table 

2.2) to minimize the undesired hydrolytic activities and improve the coupling efficiency. 

Incubation of SrtAstaph with the peptide donor at weakly acidic or neutral pH (pH 6.0 – 7.0) at 37 

°C led to rapid hydrolysis of the donor. Increasing the pH of the reaction media to slightly basic 

(pH 8.0-8.5) and lowering the reaction temperature to 25 °C in the presence of 1.5 equivalent 

nickel (II) sulfate completely shut down the hydrolysis side reaction, while retaining a comparable 

rate of ligation reaction with the acceptor. In the presence of the donor substrate, a quantitative 

conversion of the substrate into the product was observed in 10 hours as monitored by LC-MS. 

When the optimized reaction condition was applied to the ligation of glycopeptide module 2 and 

the synstatin peptide 3 (Scheme 2.4), the desired ligation product 1 was obtained in 86% isolated 

yield on a milligram scale. 1H NMR and HPLC analysis confirmed the product identity and purity. 

Glyco-polypeptide 1 has a Fmoc moiety at the N-terminus, which can be potentially deprotected 

and serve as a new acceptor for further peptide backbone extension via another sortase mediated 

ligation if necessary.  
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Scheme 2.4 Sortase A-Mediated Ligation. Reagents and conditions: (a) SrtAstaph (5 mol%), 50 mM 
Tris-HCl buffer, 150 mM NaCl, 5 mM CaCl2, 0.5 mM mercaptoethanol, NiSO4 (1.5 equiv to 2), 
pH 8.5, 25°C, 4 hours, 86%. 

 

With the glyco-polypeptide mimetic 1 in hand, we investigated its binding with integrin 

through biolayer interferometry (BLI). The glyco-polypeptide mimic 1, Gly5SSTN92-119 3, and HS 

glycan 4 were biotinylated and immobilized onto streptavidin-coated sensors. Their bindings with 

soluble integrin αvβ3 were measured via BLI. While all three compounds were able to bind with 

integrin αvβ3, interestingly, little dissociation was observed in all cases under the conditions 

examined (Figure 2.2). Kinetic analysis indicated that the glyco-polypeptide mimetic 1 was able 

to bind integrin faster, with a kon rate more than 2-fold greater than the rates of glycan or synstatin 

peptide (Table 2.1). 
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Figure 2.2 BLI sensorgrams of immobilized (a) HS octasaccharide 4, (b) Gly5SSTN92-119 3 and 
(c) glyco-polypeptide mimetic 1 binding with integrin αvβ3. Each set of binding curves was 
generated with integrin concentration 104.7 nM, 52.4 nM, and 13.1 nM, from top to bottom. Fitting 
curves were generated using the 2:1 binding model from Octet Data Analysis 9.0.0.12. 

 

 
Table 2.1 The on-rates (kon) of 1, 3, and 4 with integrin αvβ3. 

 

As the glyco-polypeptide mimetic 1 can bind with integrin strongly, we next measured its 

effect on cancer cells. MDA-MB-231 breast carcinoma cells activate the cell-surface integrin αvβ3 

through the complex formation of syndecan-1, insulin-like growth factor-1 receptor, and integrin 

to migrate.18 In addition to syndecan-1 mimetic 1 and Gly5SSTN92-119 3, heparin, which binds more 

 Syndecan-1 Mimetic 1 Gly5SSTN92-119 3 HS glycan 4 

kon (1/Ms) 5.08 x 104 1.98 x 104 9.60 x 103 

(a) 

(b) 

(c) 
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tightly with integrin than heparan sulfate, was chosen to test the inhibitory effect on the migration 

of MDA-MB-231 using wound-healing assays (Appendix Figure 2.4).3, 19 Over 20 hours, heparin 

and Gly5-SSTN92-119 peptide reached the maximal inhibitory effect at the highest testing 

concentration of each (6 μM). The maximal inhibition from heparin is ~18% reduction in relative 

migration. Among the analytes, the syndecan-1 mimetic 1 at 6 μM achieved the strongest 

inhibition, >30% reduction in relative migration (Figure 2.3 and Appendix Table 2.3). 

 

 

Figure 2.3 Wound-healing assay results of (a) Gly5SSTN92-119 3, (b) heparin, and (c) syndecan-1 
mimetic 1. Each plot is displayed as mean ± S.D. of six biological replicates. T test was used for 
statistical analysis. *p<0.05, **p<0.01, ***p<0.001. The p values were determined through a two-
tailed unpaired t-test using GraphPad Prism. 

(a) (b) 

(c) 
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It is possible that the enhanced efficacy of the HSPG mimic 1 compared to glycan or 

peptide alone was due to the ability of the mimic to simultaneously engage multiple binding sites 

on the integrin. To gain insights on the integrin αvβ3 binding process, in silico molecular docking 

simulations were performed, and potential integrin binding sites of Gly5SSTN92-119 peptide 3 and 

HS oligosaccharide 5 on the integrin were identified (Appendix Figure 2.5 and Figure 2.6).20, 21 

The syndecan-1 mimetics 1 was found to be large enough to bridge the synstatin and HS binding 

sites at the same time (Appendix Figure 2.7, Table 2.4 and Table 2.5). This finding supports a 

potential synergy from SSTN92-119 and HS in integrin binding. 

2.3 Conclusions 

In conclusion, with the tremendous structural complexity of HSPG, access to homogeneous 

HS glycopeptides with defined structures is highly challenging. In this chapter, I developed an 

expedient approach to produce an HSPG mimetic, which contain a 48 amino acid residue 

polypeptide backbone and the glycan chain with the full structural features of HS in nature 

including iduronic acid, glucuronic acid, 2-O, 6-O and 3-O sulfations, and N-sulfation. The 

deployment of HS synthetic enzymes, CuAAC and sortase A-mediated ligation greatly shortens 

the synthetic routes and enhances the overall efficiency of the synthesis. The synthetic strategy is 

convergent, which can offer great potential flexibility in varying the glyco-polypeptide structures 

with other peptide or glycan sequences.  

The interaction of the glyco-polypeptide mimic 1 with integrin was investigated.  Binding 

study showed that the glycopeptide was able to engage integrin αvβ3 faster than either the HS 

glycan or synstatin peptide alone. Although, for all three ligands, dissociations are slow, the higher 

on-rate of HSPG mimetic suggested a cooperation of HS oligosaccharide and synstatin in integrin 

binding. Furthermore, the glycopeptide 1 inhibited the migration of triple negative breast cancer 
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cell MDA-MB-231, opening up the door to investigate the cellular functions of HSPG with 

structurally well-defined mimetics. 

2.4 Experimental Section 

2.4.1 Materials 

Sortase A-expressing BL21 cells were obtained from Prof. Xue-long Sun (Cleveland State 

University, OH). Gibco LB broth and LB agar were purchased from Thermo Fischer Scientific 

(Waltham, MA). Nickel columns and Nickel resins were purchased from Bio-rad (Hercules, CA). 

SDS-PAGE gels and 10x Tris/Glycine/SDS electrophoresis buffer were purchased from Bio-rad 

(Hercules, CA). Tris-HCl buffer was purchased from MilliporeSigma (St. Louis, MO). Sephadex 

G-15 and G-25 were purchased from MilliporeSigma (St. Louis, MO). EZ-LinkTM Sulfo-NHS-

LC-Biotin was purchased from Thermo Fischer Scientific (Waltham, MA). Recombinant human 

integrin αvβ3 was purchased from R&D Systems (Minneapolis, MN). Heparin sodium salt was 

purchased from MilliporeSigma (St. Louis, MO). MDA-MB-231 breast carcinoma cells were 

obtained from Prof. Kathy Gallo (Michigan State University, MI). Dulbecco’s Modified Eagle 

Medium (DMEM) was purchased from MilliporeSigma (St. Louis, MO). Fetal Bovine Serum was 

purchased from Thermo Fischer Scientific (Waltham, MA). Human EGF was purchased from 

Alomone labs Ltd. (Jerusalem, Israel). Human vitronectin protein was purchased from R&D 

Systems (Minneapolis, MN).  

2.4.2 Preparation of Oligosaccharide 7 

The octasaccharide compound 6 was dissolved in H2O (5 mg/ml), to which Pd/C (10 

mg/ml) was added. The mixture was then placed under a hydrogen balloon and stirred at room 

temperature for 1 h. After completion of the reaction, the mixture was filtered through a PTFE 
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syringe filter (0.2 mm, 13 mm). The filtrate was concentrated, and the desired product was purified 

by a Sephadex G-10 column. 

2.4.3 Preparation of Oligosaccharide 4 

Compound 7 was dissolved in aqueous solution of NaHCO3 at pH 8.5, after which 1.5 

equivalents of 6-azidohexanoic acid NHS ester in anhydrous DMF were added. The reaction was 

then stirred at room temperature for 6 hours. Upon completion, the reaction mixture was directly 

loaded onto a Sephadex G-10 column for purification. 

2.4.4 General Procedure for Automated Solid-Phase Peptide Synthesis 

All the peptides reported were synthesized on a Liberty BlueTM Automated Microwave 

Peptide Synthesizer following standard Fmoc-based solid-phase peptide synthesis protocol. The 

2-chlorotrityl resins with or without Fmoc-amino acid loaded were purchased from Chem-Impex 

(Wood Dale, IL). The Liberty Blue software from CEM Corporation (Matthews, NC) was used to 

program the synthesis, including resin swelling, amino acid loading, couplings and Fmoc- 

removals. Commercially available N,N-dimethylformamide (DMF) from Fischer Chemical 

(Hampton, NH) was supplied to the synthesis module as reaction and washing solvent. Peptide 

synthesis was enabled by sequential couplings of Fmoc-amino acid, purchased from Chem-Impex 

(Wood Dale, IL), which was preactivated by N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl) 

uronium hexafluorophosphate (HBTU), N-hydroxybenzotriazole (HOBt), N,N-

diisopropylethylamine (DIPEA), at 50 °C for 10 min, and the deprotections with 20% piperidine 

in DMF at 60 °C for 4 min. In-between each coupling/deprotection step, resin-bound peptide was 

thoroughly washed with DMF. For the synthesis of Fmoc-Gly5-OH peptide, Fmoc-glycine was 

preactivated by 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU) and DIPEA instead. Resin-bound peptides were cleaved off the 
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solid support with a cocktail solution of trifluoroacetic acid (TFA), triisopropylsilane (TIPS) and 

water (TFA/TIPS/H2O, 95:2.5:2.5). The crude peptides were then purified with reverse-phase C18 

preparative HPLC. Compound purity for each peptide was confirmed with chromatograms from 

C18 analytical HPLC. 

2.4.5 High-Performance Liquid Chromatography  

LC-8A Solvent Pumps, DGU-14A Degasser, SPD-10A UV-Vis Detector, SCL-10A 

System Controller (Shimadzu Corporation, JP) and Vydac 218TP 10 μm C18 Preparative HPLC 

column (HICHROM Limited, VWR, UK) or 20RBAX 300SB-C18 Analytical HPLC column 

(Agilent Technologies, CA) were used for HPLC purifications with HPLC-grade acetonitrile 

(EMD Millipore Corporation, MA) and Milli-Q water (EMD Millipore Corporation, MA). A 

variety of eluting gradients were set up with the LabSolutions software. Dual-wavelength UV 

detector was set to 220 nm and 254 nm for monitoring the absorbance of the amide and Fmoc, 

respectively. The eluted compounds were checked with ESI-MS to confirm their identities. Then 

aqueous solutions of purified compounds were lyophilized to obtain the dry solid. 

2.4.6 Sortase A Expression, Purification and Quantification 

An aliquot of 2 μL sortase A-expressing BL21 competent cell culture was transferred to a 

kanamycin/chloramphenicol petri dish. The culture was incubated at 37 °C overnight. One colony 

of BL21 cells was picked to start a 10 mL culture, containing kanamycin (35 mg/L). The cell 

culture was incubated at 37 °C for 12-16 h until OD600 value reached 0.85. The starter culture was 

transferred into sterilized culture medium (1L containing 35 mg/L kanamycin). After roughly 5 

hours, the OD600 reached 0.85. 0.5 mM IPTG was added to induce protein expression. The cell 

culture was incubated for another 4 hours at 37 °C. The cells were centrifuged at 4 °C, 5000 rpm 

for 10 min. The cells were then resuspended in 40 mL lysis buffer (20 mM Tris, 250 mM NaCl, 
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pH 8.0) and lysed by sonication. The lysate was centrifuged (20,000 g for 20 min). The supernatant 

was loaded onto a Ni-affinity column and sortase A was purified by Nickel column, using the 

following elution profile: a. washing buffer: 20 mM Tris, 0.5 M NaCl; b. eluting buffer: 20 mM 

Tris, 0.5 M NaCl and 250 mM imidazole. Dialysis was used to remove the imidazole against 2L 

of buffer (20 mM Tris, 150 mM NaCl, pH 8.0). Protein purity was confirmed by SDS-PAGE and 

the standard Bradford assay determined the concentration and expression yield of sortase A. 

2.4.7 General Procedure for Sortase A-Mediated Ligation 

10X Tris-HCl reaction buffer for the sortase A-mediated ligation was prepared in advance 

following the recipe of 500 mM Tris-HCl, 1.5 M NaCl, 50 mM CaCl2, 5 mM mercaptoethanol, 

and 2 mM Ni(II) sulfate. The pH of the 10X reaction buffer was adjusted to 8.5 with addition of 

NaOH or HCl. Proper amounts of ligation substrates were dissolved and added into Tris-HCl 

reaction buffer, followed by the addition of sortase A. The reaction vessel was then kept at 25 °C 

until reaction completion. Reaction progress was monitored with LC-MS. After the reaction, 

enzyme was deactivated and precipitated out by addition of ethanol. The reactions were clarified 

by centrifugation and the supernatant was loaded onto G-15/G-25 size exclusion column for 

purification.   

2.4.8 Size-Exclusion Purification of HS Glycopeptide 

Samples were prepared in minimal amounts of distil water and then slowly transferred to 

a G-15/G-25 size-exclusion column. Fractions of 1 mL eluent were collected. Fractions that 

contain desired compounds were identified by ESI-MS analysis. Purified compounds were 

lyophilized to obtain the dry solid. 

2.4.9 BLI Binding Experiment  

BLI Octet K2 instrument (ForteBio, Molecular Devices, CA) was used for binding
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experiments.  Polypropylene black 96-well plates (Greiner Bio-one, Austria) and streptavidin (SA) 

sensor chips (ForteBio, Molecular Devices, CA) were used to assist sample preparations and 

detections of binding activities. The assay buffer was phosphate buffered saline (PBS) unless 

otherwise noted. Integrin αvβ3 protein solutions were prepared according to the assay design. To 

prepare biotinylated analytes, 1 mM of each amine-containing ligand compound and EZ-LinkTM 

Sulfo-NHS-LC-Biotin (1.2 equiv.) were added to 0.1 M NaHCO3 solution (pH 8.5). The reaction 

was proceeded overnight. Upon completion, reaction mixture was passed through G-10 column to 

remove the unconjugated biotin reactant. Sensors were then loaded with the biotin-labelled 

compounds. The binding activity (including association and dissociation) between the ligand and 

protein was measured by BLI monitoring. Biotin was used as the negative control for all BLI 

assays. The assay results were then processed by the Octet software. Various concentrations of 

protein were tested against each ligand to obtain the kinetic data. The curve fitting was achieved 

using a 2:1 heterogenous ligand binding model provided by the data-processing software.  

2.4.10 Wound-Healing Assay 

MDA-MB-231 breast carcinoma cells were cultivated in the 6-well plate until 90% 

confluent. After 24-hour starvation with serum-free medium, wounds were created by scratching 

the monolayer with sterile P200 pipet tips. This process was done carefully to make sure that all 

wounds were similar in size. A Zeiss Axionvert 200 Pred Axio Observer microscopy (Boston 

Industries, Inc.) was used to take microscopic images. T = 0 images were taken right after the 

wounding process. Then the serum-free medium was replaced by the growth medium that 

contained varying analyte concentrations. Growth medium without analytes was treated as the 

control group. Human EGF was added to stimulate cancer cell migrations. After a 20-hour 

incubation at 37 °C, T = 20 microscopic images were collected. Images at the same site for T = 0 
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and T = 20 were processed with GraphPad Prism Version 5.0c to interpret the T = 20 cell migration 

results. 

2.4.11 Identification of Ligand Binding Sites  

To initiate the search for ligand binding sites on the integrin αvβ3 protein surface, synstatin 

peptide SSTN92-119 model was constructed de novo using an open computation platform developed 

by Tuffery group.20 Integrin protein (PDB:4G1M) was used as the receptor reference to facilitate 

the model construction and improve the subsequent docking simulations. Independent model 

simulations (200 rounds) with sOPEP force field were applied to get quality peptide conformation 

predictions. The best candidate models were selected for the ligand-receptor molecular docking 

simulations.  

Hot spots on the protein surface for synstatin binding were identified through examining 

the docking results.  For the heparan sulfate binding simulations, a generic heparan sulfate 

tetrasaccharide structure was utilized to identify potential HS binding sites on integrin αvβ3. After 

uploading the integrin coordinate file to ClusPro docking platform, binding simulations were 

initiated under the built-in ‘Heparin Ligand’ mode.22 Simulation results were then visualized and 

processed with UCSF Chimera software to pinpoint potential HS binding sites.23 

2.4.12 Biomolecule Visualization 

The construction of syndecan-1 mimetic started with the heparan sulfate octassachride 

moiety. Its structure was prepared through ‘GAG Builder’ program at GLYCAM-Web.24 Counter 

ions were added to the negatively charged sulfate groups and the HS octassachride was solvated 

into a cube of water molecules. Structural optimization was accomplished with GLYCAM force 

field. The generated PDB file of HS octassachride was later used to construct the glycopeptide. 
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Ab initio modeling of the peptide backbone was achieved with QUARK program.25 Top 

model that adopted a more extended conformation was selected for the syndecan-1 mimetic 

construction. The structure coordinates of HS octassachride and peptide backbone were input into 

Maestro software.26 The artificial linkage connecting HS and peptide backbone was manually 

created. The resulted syndecan-1 mimetic structure was then optimized using all-atom 

minimization function to approximate its conformation. The dimensions of syndecan-1 mimetic 

and integrin αvβ3 were measured with UCSF Chimera to provide an estimation of their sizes.  
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APPENDIX A: Supplementary Schemes, Figures and Tables 

 

Solid-Phase Synthesis of Synstatin Peptide 3 

 

Scheme 2.5 Solid-phase synthesis of Gly5-SSTN92-117 peptide. Reagents and conditions: (a) 
Amino acid Loading: Fmoc-Glu(O-tBu)-OH, DIPEA, DMF; (b) Fmoc cleavage: 20% 
piperidine/DMF, 50 °C, 2 min, microwave; (c) Amino acid coupling: 5 equiv Fmoc-AA-OH, 
HBTU, HOBt, DIPEA, DMF, 50 °C, 10 min, microwave; (d) Oligopeptide coupling: 5 equiv 
Fmoc-Gly5-OH, HATU, DIPEA, DMF, 50 °C, 10 min, microwave; (e) Resin cleavage: 
TFA/TIPS/H2O (95:2.5:2.5, v/v/v), 24 % overall. 
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MDA-MB-231 Wound Healing Assay Images 

(a)                                                                          (b) 

 

Figure 2.4 Microscopy images of MDA-MB-231 treated with (a) PBS as control and (b) synthetic 
HS glycopeptide (6 μM) after 20-hour incubation (solid lines for cell frontiers at T=0 and dashed 
lines for T=20; 10X magnification; scale bar, 200 μm).  
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Computer Docking Simulation Result and Biomolecule Visualization 

 

Figure 2.5 Identified synstatin peptide binding site (as circled) on the surface of integrin αvβ3 
(PDB: 4G1M). 

 

 

Figure 2.6 One of the identified heparan sulfate binding sites (as circled) on the surface of integrin 
αvβ3 (PDB: 4G1M). 
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Figure 2.7 Biomolecule visualization and approximate size comparison of syndecan-1 mimetic 
(lower structure) and integrin αvβ3 (PDB: 4G1M). Predicted binding areas of synstatin peptide 
and heparan sulfate tetrasaccharide are highlighted with orange circles. 
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Screening Conditions for Sortase A Ligation Reaction 

 

Sortase Reaction Condition 
 

Buffer mol% 
Sortase  

Reaction 
Time 

Reaction 
Temperature 

% 
conversion 

Hydrolyzed 
Donor/Product 

pH 7.0 

300 mM 
Tris-HCl 6 10 h 37 °C 

67.9 0.01:1 

pH 7.5 59.8 N/A 

pH 8.0 71.9 N/A 

pH 8.5 71.0 N/A 

 

 
Table 2.2 Screening of sortase A ligation conditions. 

 

Substrate Concentration (µM) 
Peptide 1: GAGALPETGGHG 250 
Peptide 2: GGGGGLPAG 250 
Product  
Peptide: GAGALPETGGGGGLPAG  

Sortase Reaction Condition 
 

Buffer mol% 
Sortase  

Reaction 
Time 

Reaction 
Temperature 

% 
conversion 

Hydrolyzed 
Donor/Product 

pH 7.0 

300 mM 
Tris-HCl 12 10 h 37 °C 

67.9 0.13:1 

pH 7.5 69.0 0.01:1 

pH 8.0 67.4 0.05:1 

pH 8.5 N/A N/A 
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Table 2.2 (cont’d) 

 

 

 

 

 

 

 

Sortase Reaction Condition 

 Buffer mol% 
Sortase 

Reaction 
Time 

Reaction 
Temperature 

% 
conversion 

Hydrolyzed 
Donor/Product 

pH 7.0 

300 mM 
Tris-HCl 24 10 h 37 °C 

60.5 0.26:1 

pH 7.5 62.6 0.14:1 

pH 8.0 66.7 0.11:1 

pH 8.5 68.7 0.13:1 

Sortase Reaction Condition 

 Buffer mol% 
Sortase 

Reaction 
Time 

Reaction 
Temperature 

% 
conversion 

Hydrolyzed 
Donor/Product 

pH 7.0 

50 mM 
Tris-HCl 24 10 h 37 °C 

51.5 0.39:1 

pH 7.5 59.4 0.15:1 

pH 8.0 64.6 0.15:1 

pH 8.5 62.7 0.19:1 
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Table 2.2 (cont’d) 

 

  

Sortase Reaction Condition 

 Buffer mol% 
Sortase 

Reaction 
Time 

Reaction 
Temperature 

% 
conversion 

Hydrolyzed 
Donor/Product 

pH 7.0 

300 mM 
Tris-HCl 12 45 h 37 °C 

26.8 1.23:1 

pH 7.5 46.1 0.44:1 

pH 8.0 44.9 0.18:1 

pH 8.5 45.7 0.16:1 
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Wound Healing Assay Result 

Gly5-SSTN 

Concentration (µM) Relative Migration Area (Unit) 

6 103.92 99.61 100.60 107.91 98.96 96.18 

2 102.01 102.77 99.73 97.85 122.89 109.22 

1 111.56 109.67 118.42 115.84 115.74 113.54 

0 100.70 98.40 94.45 99.88 103.13 100.35 

 

Heparin 

Concentration (µM) Relative Migration Area (Unit) 

6 82.62 95.3 83.28 80.77 73.85 81.61 

2 88.3 83.49 85.63 83.17 82.23 79.42 

1 97.95 98.89 88.91 83.87 88 83.28 

0 100.70 98.40 94.45 99.88 103.13 100.35 

 

Syndecan-1 Mimetic 

Concentration (µM) Relative Migration Area (Unit) 

6 65.04 65.37 80.11 52.96 65.27 71.59 

2 82.81 84.61 92.50 81.69 82.47 80.88 

1 82.26 85.77 103.42 94.08 106.81 84.19 

0 100.70 98.40 94.45 99.88 103.13 100.35 

  
Table 2.3 Summary of wound-healing assay results. 
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 Estimated Center-to-Center Distance 

The Spotted Binding Sites 6 nm 
 
Table 2.4 Measured estimated distance of the spotted synstatin and heparan sulfate binding sites. 

 

 
Table 2.5 Measured approximate dimensions of integrin αvβ3 and syndecan-1 mimetic. 

 
  

 Longitudinal Transversal 

Syndecan-1 Mimetics 9 nm 3 nm 



 59 

APPENDIX B: Product Characterization Spectra 

   

 

 

The purity of glycopeptide 1 was verified with analytical C-18 HPLC (5-100% acetonitrile/water; 

0.1% trifluoroacetic acid). 1H-NMR (900 MHz, D2O), δ 8.35 (m, 2H), 7.88 – 7.67 (m, 1H), 7.64 – 

7.52 (m, 1H), 7.42 – 7.30 (m, 1H), 7.30 – 7.23 (m, 1H), 7.18 – 7.07 (m, 1H), 5.37-5.27 (m, 1H), 

5.18-5.11 (m, 1H), 5.11-5.03 (m, 1H), 5.01-4.94 (m, 1H), 4.92-4.88 (m, 4H), 4.86-4.82 (m, 3H), 

4.82-4.77 (m, 16H), 4.61– 4.55 (m, 3H), 4.55 – 4.42 (m, 3H), 4.41-4.39 (m, 1H), 4.39 – 4.22 (m, 

6H), 4.22 – 4.03 (m, 8H), 4.02-3.97 (m, 3H), 3.97 – 3.92 (m, 4H), 3.92-3.88 (m, 6H), 3.87 – 3.83 

(m, 6H), 3.78-3.76 (m, 4H), 3.75-3.72 (m, 5H), 3.72 – 3.65 (m, 14H), 3.65 – 3.61 (m, 12H), 3.61-

3.59 (m, 7H), 3.59-3.56 (m, 10H), 3.56 – 3.53 (m, 13H), 3.53-3.51 (m, 51H), 3.50 – 3.45 (m, 12H), 

3.45 – 3.38 (m, 5H), 3.28-3.22 (m, 1H), 3.22-3.16 (m, 1H), 3.13 – 3.09 (m, 6H), 3.08 – 3.04 (m, 

1H), 3.04-2.99 (m, 1H), 2.98 – 2.86 (m, 2H), 2.64 – 2.60 (m, 1H), 2.57-2.49 (m, 1H), 2.34 – 2.28 

(m, 1H), 2.24 – 2.12 (m, 6H), 2.10-2.03 (m, 2H), 2.00 – 1.91 (m, 7H), 1.90 – 1.83 (m, 16H), 1.81-

1.76 (m, 71H), 1.76 – 1.65 (m, 4H), 1.64 – 1.54 (m, 3H), 1.53 – 1.42 (m, 4H), 1.42-1.33 (m, 4H), 

1.33 – 1.31 (m, 2H), 1.28-1.27 (m, 2H), 1.27 – 1.22 (m, 43H), 1.22 – 1.15 (m, 3H), 1.13 – 1.02 

(m, 3H), 0.88-0.70 (m, 8H). 13C-NMR (225 MHz, D2O), δ 152.3, 152.3, 152.2, 148.0, 147.7, 147.6, 

147.5, 147.3, 147.2, 147.1, 147.0, 146.9, 146.8, 146.5, 145.9, 129.1, 128.6, 128.6, 128.5, 128.0, 

127.4, 127.2, 127.1, 125.0, 123.5, 123.4, 120.2, 116.8, 101.6, 101.6, 100.2, 100.1, 99.0, 98.4, 98.3, 
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97.6, 96.9, 96.5, 96.4, 95.6, 95.3, 95.2, 93.1, 79.9, 76.5, 76.4, 76.2, 75.9, 75.8, 75.7, 75.4, 75.3, 

75.1, 74.0, 73.4, 73.3, 73.2, 72.5, 72.1, 71.8, 71.7, 71.4, 71.3, 71.1, 70.7, 70.2, 70.1, 69.8, 69.6, 

69.5, 69.4, 69.1, 69.0, 68.9, 68.8, 68.6, 67.5, 67.4, 67.3, 67.2, 67.1, 66.8, 66.5, 66.2, 66.1, 66.0, 

65.6, 65.4, 64.3, 64.0, 62.9, 62.8, 62.5, 62.4, 62.0, 61.2, 61.1, 60.5, 60.4, 60.3, 59.6, 59.4, 59.2, 

59.2, 59.1, 59.0, 58.8, 58.5, 58.3, 58.2, 58.0, 57.7, 57.5, 55.8, 55.7, 55.2, 55.1, 55.0, 54.4, 54.3, 

54.2, 53.8, 53.7, 53.6, 53.5, 53.4, 53.3, 52.0, 51.9, 51.7, 51.6, 50.3, 50.2, 50.1, 49.8, 49.6, 49.5, 

47.9, 47.4, 46.8, 46.7, 44.5, 44.4, 43.6, 43.6, 43.2, 43.2, 43.6, 42.6, 42.4, 42.3, 40.4, 39.9, 39.8, 

39.1, 39.0, 38.9, 38.9, 38.7, 38.6, 37.1, 37.0, 36.0, 35.9, 34.4, 34.0, 33.8, 33.7, 33.5, 33.4, 30.5, 

30.2, 30.0, 29.3, 29.2, 28.9, 28.6, 27.1, 26.2, 24.7, 24.6, 24.4, 24.3, 24.2., 24.1, 24.0, 23.3, 23.0, 

22.7, 22.4, 22.4, 22.0, 22.0, 21.9, 21.7, 21.4, 20.9, 20.6, 20.0, 19.3, 18.8, 18.7, 18.6, 18.4, 18.2, 

18.2, 18.0, 17.9, 17.8, 17.7, 17.2, 16.7, 16.6, 16.5, 16.5, 16.4, 15.7, 13.3, 12.9, 12.8, 12.3, 12.2, 

12.1. ESI-MS: C277H411N65O145S9 [M+10H]4- calcd: 1451.0859, obsd: 1451.0818 (2.84 ppm). 
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Figure 2.8 HPLC chromatogram of 1. 
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Figure 2.9 1H-NMR of 1 (900 MHz D2O). 
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Figure 2.10 1H-13C gHSQCAD of 1 (900 MHz D2O). 
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Figure 2.11 1H-13C coupled gHSQCAD of 1 (900 MHz D2O). 

 

  

N
H

N
H

OH

O

H
N

O
H
N

N
H

O

O

H
N

O

N
H

O

H
N

O

N

O

H
N

O

N
H

OH

O

O
O

O

HN

O
H
N

O

N
H

O
H
N

O

N
H

O
FmocHN

O

O O
O

O

O

O
O O

O

O
O

O

O O
O

N
H

O

OSO3

HOHO
NH

H3COC

O2C

HO
OH

OSO3

HO
NH

O3S

O2C OH

O3SO

HO

OSO3

NH
O3S

O2C OH

O3SO

HO

OSO3

NH
O3S

O2C

HO
OH

N
NN

H
N Gly5SSTN92-119

O

O

O

-1012345678910
f2 (ppm)

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150
f1

 (
p
p
m

)

glycopeptideB_SSTN.8.ser

1 

 



 65 

 

 

 

 

 

Figure 2.12 ESI-MS of 1. 

  

N
H

N
H

OH

O

H
N

O
H
N

N
H

O

O

H
N

O

N
H

O

H
N

O

N

O

H
N

O

N
H

OH

O

O
O

O

HN

O
H
N

O

N
H

O
H
N

O

N
H

O
FmocHN

O

O O
O

O

O

O
O O

O

O
O

O

O O
O

N
H

O

OSO3

HOHO
NH

H3COC

O2C

HO
OH

OSO3

HO
NH

O3S

O2C OH

O3SO

HO

OSO3

NH
O3S

O2C OH

O3SO

HO

OSO3

NH
O3S

O2C

HO
OH

N
NN

H
N Gly5SSTN92-119

O

O

O

1 

 



 66 

 

 

The purity of glycopeptide 2 was verified with analytical C-18 HPLC (5-100% acetonitrile/water; 

0.1% trifluoroacetic acid). 1H-NMR (900 MHz, D2O), δ 8.61-8.57 (m, 2H), 7.91 – 7.80 (m, 6H), 

7.67-7.63 (m, 3H), 7.62-7.55 (m, 1H), 7.46-7.42 (m, 4H), 7.39-7.35 (m, 4H), 7.34-7.28 (m, 3H), 

7.27-7.19 (m, 4H), 7.17 – 6.99 (m, 4H), 5.63-5.59 (m, 1H), 5.45-5.41 (m, 1H), 4.40-4.34 (m, 2H), 

4.32 – 4.12 (m, 3H), 4.05 – 3.95 (m, 10H), 3.95-3.89 (m, 24H), 3.87-3.81 (m, 8H), 3.80 – 3.67 (m, 

14H), 3.66-3.62 (m, 5H), 3.60-3.56 (m, 3H), 3.46-3.42 (m, 1H), 3.41 – 3.23 (m, 5H), 3.22-3.18 

(m, 2H), 3.08-3.04 (m, 4H), 2.53 – 2.40 (m, 4H), 2.38-2.34 (m, 4H), 2.29-2.25 (m, 5H), 2.13-2.09 

(m, 2H), 2.02-1.98 (m, 6H), 1.91-1.87 (m, 2H), 1.86-1.82 (m, 3H), 1.77 – 1.65 (m, 4H), 1.64 – 

1.51 (m, 9H), 1.44 – 1.30 (m, 17H), 1.30 – 1.12 (m, 14H), 0.91 (m, 12H). 13C-NMR (225 MHz, 

D2O), δ 174.6, 174.2, 174.0, 172.7, 171.8, 171.3, 171.1, 170.8, 153.8, 143.8, 143.6, 140.8, 133.5, 

131.8, 128.1, 128.0, 127.4, 125.0, 124.7, 124.5, 123.4, 120.1, 117.5, 116.9, 1018, 100.2, 97.6, 97.0, 

77.3, 77.0, 76.3, 76.2, 75.8, 73.4, 72.4, 70.5, 70.0, 69.3, 69.0, 68.8, 67.0, 66.8, 66.2, 66.1, 65.8, 

62.8, 61.0, 60.4, 59.0, 58.0, 57.9, 57.5, 55.8, 53.9, 53.6, 53.5, 52.2, 50.2, 50.1, 49.9, 49.3, 47.7, 

46.7, 43.6, 43.2, 42.5, 42.3, 42.3, 39.0, 38.9, 36.0, 35.8, 32.3, 30.3, 29.2, 28.8, 27.7, 26.9, 26.6, 

24.8, 24.6, 24.4, 24.3, 22.4, 22.3, 21.9, 20.5, 18.7, 16.6, 16.3. ESI-MS: C146H207N31O99S9 

[M+11H]4- calcd: 1066.4901, obsd: 1066.4874 (2.51 ppm). 
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Figure 2.13 HPLC chromatogram of 2. 
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Figure 2.14 1H-NMR of 2 (900 MHz D2O).  
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Figure 2.15 13C-NMR of 2 (225 MHz D2O). 
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Figure 2.16 1H-1H gCOSY of 2 (900 MHz D2O). 
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Figure 2.17 1H-13C gHSQCAD of 2 (900 MHz D2O). 
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Figure 2.18 1H-13C coupled gHSQCAD of 2 (900 MHz D2O). 
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Figure 2.19 1H-13C gHMBC of 2 (900 MHz D2O). 
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Figure 2.20 ESI-MS of 2. 
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The purity of peptide 3 was verified with analytical C-18 HPLC (5-100% acetonitrile/water; 0.1% 

trifluoroacetic acid). ESI-MS: C143H226N40O51 [M+4H]4+ calcd: 829.9075, obsd: 829.9052 (2.77 

ppm). 
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Figure 2.21 HPLC chromatogram of 3. 
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Figure 2.22 ESI-MS of 3. 
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The purity of peptide 5 was verified with analytical C-18 HPLC (5-100% acetonitrile/water; 0.1% 

trifluoroacetic acid). ESI-MS: C84H118N23O29 [M+4H]4+ calcd: 1912.8461, obsd: 1912.8388 

(3.82ppm). 
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Figure 2.23 HPLC chromatogram of 5. 
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Figure 2.24 ESI-MS of 5. 
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Chapter 3 Chemoenzymatic Synthesis of Glycopeptides bearing Galactose-
Xylose Disaccharide from the Proteoglycan Linkage Region 

3.1 Introduction 

Proteoglycans (PGs) are ubiquitous in the mammalian system with important roles in many 

biological events including cancer development, inflammation, and immune modulation.1-5 PGs 

are composed of a core protein linked with one or more glycosaminoglycan (GAG) chains through 

a tetrasaccharide linkage of glucuronic acid (GlcA)-β-1,3-galactose (Gal)-β-1,3-Gal-β-1,4-xylose 

(Xyl) covalently conjugated with serine residues of serine-glycine dipeptides.6 As naturally 

existing PGs are highly heterogeneous due to complex enzymatic post-translational modification 

of the GAG chain, synthesis becomes important to provide the much needed, well-defined PGs to 

expedite their characterization in biological studies. Recently, chemical syntheses of several PG 

glycopeptides have been reported, which have opened up the possibilities of accessing 

homogeneous glycopeptides.7, 8 However, the overall synthesis is tedious due to the need for 

multistep chemical manipulations. We have become interested in developing a chemoenzymatic 

strategy to access these glycopeptides by taking the first step to investigate the utility of human β-

1,4-galactosyltransferase 7 (β4GalT7) in synthesis of Gal-Xyl bearing glycopeptides.  

β4GalT7 can transfer a Gal unit from the uridine diphosphate (UDP)-Gal donor to the 4-

OH of a Xyl acceptor.9-11 Xylosides bearing hydrophobic aglycons have been shown to be 

competent acceptors for β4GalT7.12 This knowledge has led to the fascinating utility of xylosides 

as a tool to prime cellular synthesis of glycosaminoglycans and modulate cellular functions. In 

addition, various xyloside analogs have been synthesized to probe the catalytic sites of β4GalT7.13-

17 However, to the best of our knowledge, β4GalT7 has not been explored for glycopeptide 

synthesis. Herein, for the first time we report that human β4GalT7 enzyme can be utilized to 

catalyze the formation of native glycopeptides bearing Gal-Xyl disaccharide on a milligram scale, 
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enhancing the understanding of substrate selectivities of β4GalT7 and expediting the synthesis 

toward structurally well-defined PGs.  

3.2 Results and Discussions 

To establish the feasibility of β4GalT7 promoted glycopeptide synthesis, I first synthesized 

the glycopeptide 1 QEEEG(Xyl-O)SGGGQGG bearing a xylose as a potential acceptor 

corresponding to bikunin amino acid residues 5-14.18 The key building block Fmoc-Ser(O-Xyl)-

OH 2 was prepared from xylosyl serine 319, 20 through protecting group manipulations with a 91% 

overall yield for the two steps (Scheme 3.1a). With Xyl-O-Ser carboxylic acid 2 in hand, 

automated solid phase peptide synthesis (SPPS) was carried out following Fmoc-based peptide 

chemistry on a chlorotrityl (Cl-TCP) ProTide resin under microwave heating at 50 ºC (Scheme 

3.1b). The protected glycopeptide 4 was obtained in 14.8% overall yield. Following cleavage from 

the resin, the ester protective groups on the xylose and the N-terminus Fmoc moiety were removed 

giving the xylosylated bikunin glycopeptide 1. 
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Scheme 3.1 a) Synthesis of Fmoc-Xyl-serine 2; b) SPPS synthesis of xylosylated bikunin 
glycopeptide (aa: 5-14) 1. 

 

With the glycopeptide acceptor 1 prepared, we moved to express the polyhistidine-tagged 

human β4GalT7 (EC 2.4.1.133, Appendix Figure 3.3),15 which was cloned into a pET plasmid and 

expressed in E. coli BL21 cells. The protein was purified by a Ni Sepharose column (Appendix 

Figure 3.4) with an expression yield of 5 mg/L. A solution of bikunin glycopeptide 1 and UDP-

Gal was incubated with β4GalT7 at 37 ºC overnight (Scheme 3.2). High performance liquid 

chromatography analysis of the product mixture showed that the acceptor 1 was completely 

consumed. The desired Gal-Xyl disaccharide bearing glycopeptide 5 was obtained in 75% yield at 

milligram scales following purification by size exclusion chromatography. The product structure 
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was validated by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Heteronuclear 

NMR analysis showed a coupling constant of 1JC1, H1 = 161.6 Hz from anomeric position of Gal 

unit, which confirmed the newly formed β-glycosyl linkage between the Gal and Xyl units.21 

 

Scheme 3.2 β4GalT7-catalyzed galactosylation of glycopeptide 1 to Gal-Xyl bearing glycopeptide 
5. 

 

To test the scope of the galactosylation reaction catalyzed by hβ4GalT7, xylosylated 

glycopeptides 6 - 11 from several other naturally existing PGs were prepared via SPPS (Figure 

3.1). These substrates include sequences from bikunin as well as members of the syndecan family 

PGs, representing common PGs from nature including glycopeptides with multiple Xyl moieties 

(glycopeptides 8 – 11). These glycopeptides contain aromatic, hydrophobic and also hydrophilic 

amino acid residues adjacent to the glycosylation sites, which enhanced the structural diversity of 

the acceptors for hβ4GalT7. To prepare the glycopeptides, I first followed the same SPPS protocol 

used to make glycopeptide 1, starting from the chlorotrityl ProTide resin. However, several 

glycopeptides were obtained in low overall yields (<10%) (Appendix Table 3.3). As the 

chlorotrityl resin can be unstable under heating,22 we tested an alternative of using the more heat 

stable Cl-MPA ProTide resins. Together with a lowered reaction temperature from 50 °C to 30 °C 

for amino acid coupling, yields of the glycopeptides were significantly improved (Appendix Table 

3.3).  
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β4GalT7-catalyzed galactosylation reactions were carried out on glycopeptides 6-11 to 

examine the scope of this transferase. Inspiringly, all enzymatic reactions successfully produced 

the desired products. Glycopeptides 8-11 bearing multiple Xyl units could be successfully 

galactosylated in all Xyl sites when 2 equiv of UDP-Gal donor per Xyl was added to the reaction 

mixture (Table 3.1). This suggests with an excess of UDP-Gal donor, β4GalT7 can drive the 

reaction to completion including on substrates with multiple glycosylation sites in close proximity 

to each other. 

 

Figure 3.1 Structures of glycopeptides 6-11 with the serine glycosylation sites underlined. 
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Acceptor Product Yield (%) 
6 12 82 
7 13 91 
8 14 81 
9 15 81 
10 16 77 
11 17 78 

 
Table 3.1 Yield summary of β4GalT7-catalyzed galactosylation. 

 

How β4GalT7 interacts with the native glycopeptide substrates is not yet well understood. 

To gain deeper insights, we performed kinetics analysis of the enzyme on selected substrates using 

a modified phosphatase-coupled transferase assay.23 The Km value of hβ4GalT7 for UDP-Gal was 

calculated to be 0.04 mM (Appendix Figure 3.7). For glycopeptides 1 and 7 containing a single 

Xyl, the Km values were about 0.1 mM. Glycopeptides 8 and 9 have two Xyl per chain, which have 

higher Km values, approximating a weaker binding by the enzyme (Table 3.2, Appendix Figures 

3.8-3.11).  

Substrate Km  
(mM) Vmax (pmol/min/μg) kcat (min-1) kcat/Km  

(min-1mM-1) 

1 0.07 ± 0.01 158 10 144 

7 0.10 ± 0.01 460 28 281 

8 0.39 ± 0.09 70 4 11 

9 0.28 ± 0.06 159 9 34 
 
Table 3.2 Summary of kinetic results from glycopeptide substrates. 
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For substrates with two Xyl units, we next investigated whether there were site preferences 

by the enzyme when the reaction was performed with sub-stoichiometric quantities of the donor 

UDP-Gal. Glycopeptide 9 was subjected to hβ4GalT7-catalyzed galactosylation in the presence of 

1 equiv of UDP-Gal. The glycopeptides bearing only one Gal-Xyl disaccharide were observed 

with electrospray ionization (ESI)-MS. To determine the site of galactosylation, analysis of the 

glycopeptides was performed by tandem MS fragmentation of the glycopeptides. Successes in this 

analysis critically depended on retaining the glycan during peptide fragmentation in MS2, which 

was challenging due to the lability of the glycosidic linkage with the peptide backbone. Through 

a collaboration with Dr. Lingjun Li (University of Wisconsin)’s laboratory, after exploring multiple 

fragmentation methods, the electron-transfer/higher-energy collision dissociation (EThcD) hybrid 

fragmentation technique, an integrated dissociation method combining electron-transfer 

dissociation (ETD) and higher-energy collision dissociation (HCD), was found suitable.24 

Following fragmentation of the peptide backbone in MS2, fragment ions corresponding to 

glycopeptide fragments with the Gal-Xyl disaccharide at either Ser5 or Ser7 site were identified. 

The cumulative total ion count values of the respective peaks exhibited a 1:3 ratio of these two 

regio-isomers (Appendix Table 3.4), suggesting a preference for Ser7 galactosylation by β4GalT7. 

To better understand the site preference, computational studies were performed by docking 

the glycopeptide 1 into the crystal structure of the complex of D211N mutant of β4GalT7 with the 

donor and the acceptor (PDB: 4M4K).25 Earlier studies showed that D211 is a key catalytic residue. 

D211N mutation enabled a catalytically stalled ternary complex to form. The docking structure 

obtained showed that the glycopeptides with 4-OH of xylose pointing towards the center of the 

active site and being oriented by N211 explaining the preference for glycosylation at the 4-OH 

(Figure 3.2a).  For glycopeptide 9 with two Xyl reaction sites, the Xyl at Ser7 preferentially forms 
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hydrogen bonds with Asn211/Asp212 in the active site and orients itself for the galactosylation 

(Figure 3.2b). The energy difference between Ser7 and Ser5 in the reactive site was calculated to 

be ≥ 0.3 kcal/mol, providing a potential explanation for higher reactivity of the Xyl unit on Ser 7 

over that on Ser5 for β4GalT7 promoted galactosylation. 

 

 

Figure 3.2 a) Docking structure of QEEEG(Xyl-O)SGGGQGG 1 with D211N mutant of β4GalT7 
(PDB: 4M4K). (Catalytic residues Glu210/Asn211/Asp212 are highlighted in the protein 
backbone; Xylose unit is centered and colored in orange red; Galactose unit is colored in light 
blue; Heteroatoms are colored differently as H in white, O in red and N in deep blue; Hydrogen 
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Figure 3.2 (cont’d) bonds potentially involved in the catalytic process are labeled with 
corresponding inter-atomic distance. b) Docking structure of YASA(Xyl-O)SG(Xyl-O)SGADE 9 
with β4GalT7 suggests a preference toward Ser7 site by the enzyme (Xylose unit on Ser7 site is 
centered and colored in khaki). 

 

3.3 Conclusion 

In conclusion, human β4GalT7 (EC 2.4.1.133) has been found to be able to transfer the Gal 

unit to a xylosylated glycopeptide acceptor. Diverse native glycopeptides bearing Gal-Xyl 

disaccharides have been prepared via β4GalT7 catalysis at milligram scale in good yields for the 

first time. Glycopeptides with multiple Xyl units can be effectively galactosylated as well. The 

high efficiency, broad substrate scope, and operational simplicity of β4GalT7 render it a useful 

tool toward the synthesis of homogeneous PGs. 

3.4 Experimental Section 

3.4.1 Materials 

β4GalT7-expressing BL21 cells were obtained from Prof. Ulf Ellervik (Lund University, 

Sweden). Gibco LB broth, LB agar and Coomassie Brilliant Blue G-250 were purchased from 

Thermo Fischer Scientific (Waltham, MA). Nickel columns and Nickel resins were purchased from 

Bio-rad (Hercules, CA). SDS-PAGE gels, 10x Tris/Glycine/SDS electrophoresis buffer, prestained 

protein ladder, sample loading buffer, and Coomassie Blue R-250 were purchased from Bio-rad 

(Hercules, CA). Tris-HCl buffer was purchased from MilliporeSigma (St. Louis, MO). UDP-

galactose was purchased from Complex Carbohydrate Research Center (Athens, GA). Amino acid 

building blocks were purchased from Chem-Impex International, Inc (Wood Dale, IL). 

Glycosyltransferase Activity Kit was purchased from R&D Systems. All other chemical reagents 

were purchased from commercial sources and used without additional purifications unless 

otherwise noted. 
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3.4.2 General Information 

High-performance liquid chromatography was carried out with LC-8A Solvent Pumps, 

DGU-14A Degasser, SPD-10A UV-Vis Detector, SCL-10A System Controller (Shimadzu 

Corporation, JP) and Vydac 218TP 10 μm C18 Preparative HPLC column (HICHROM Limited, 

VWR, UK) or 20RBAX 300SB-C18 Analytical HPLC column (Agilent Technologies, CA) using 

HPLC-grade acetonitrile (EMD Millipore Corporation, MA) and Milli-Q water (EMD Millipore 

Corporation, MA). A variety of eluting gradients were set up on LabSolutions software (Shimadzu 

Corporation, JP)). The dual-wavelength UV detector was set at 220 nm and 254 nm for monitoring 

the absorbance from amide and Fmoc-, correspondingly. 3D structure of glycopeptide compounds 

was prepared with Maestro software. Docking simulations were acquired with AutoDock Vina and 

UCSF Chimera (UCSF, CA). Enzymatic activity was quantified by absorbance at 620 nm using a 

SpectraMax M3 96-well plate reader (Molecular Devices, CA). Enzymatic glycosylation sites 

were analyzed by Orbitrap FusionTM TribridTM Mass Spectrometer (Thermo Fischer Scientific, 

MA). LC-MS2 data was processed with ByonicTM search engine (Protein Metrics, CA). NMR data 

were obtained with DirectDrive2 500 MHz and Varian 900 MHz NMR spectrometer (Agilent, CA) 

at ambient temperature. 

3.4.3 β4GalT7 Expression, Purification and Characterization 

hβ4GalT7-expressing BL21 competent cell were cultured onto 

kanamycin/chloramphenicol containing petri dish, which was incubated at 37 °C overnight. One 

colony of BL21 cells was picked and inoculated into 10 mL starter culture containing kanamycin 

at concentration of 30 mg/L. The cell culture was incubated at 37 °C overnight. The starter culture 

was then transferred into autoclaved 1L culture medium (with 30 mg/L kanamycin) and incubated 

at 37 °C with shaking at 250 rpm. After roughly 3-4 hours, the OD600 reached 0.5. IPTG (0.56 mM, 
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MilliporeSigma, MO) was added to induce protein expression at 32 °C for 20 hours. Cells were 

centrifuged at 4 °C, 5,000 g for 10 min. Cell pellet was lysed using Cellytic in 20 mM Tris buffer, 

pH 7.6, 50 U/mL benzonase, 0.2 mg/mL lysozyme and 1mM PMSF (MilliporeSigma, MO) for 20 

min at ambient temperature. Clarified lysate was purified by nickel column (Cytiva, MA) (a. 

washing buffer: 20 mM phosphate, 0.5 M NaCl and 40 mM imidazole; b. eluting buffer: 20 mM 

phosphate, 0.5 M NaCl and 40-250 mM imidazole). Protein purity was confirmed with SDS-PAGE 

gel electrophoresis and the concentration and expression yield were determined by standard 

Bradford assay. 

3.4.4 Glycosyl Amino Acid Building Block Preparation 

The glycosyl amino acid building block 3 was prepared following the previously reported 

conditions.26, 27 

 

N-Fluorenylmethyloxycarbonyl-O-(2,3-di-O-benzoyl-4-O-acetyl-b-D-xylopyranosyl)-L-serine 

(2). Compound 3 (227 mg, 0.3 mmol) was dissolved into pyridine (2 mL), followed by the addition 

of acetic anhydride (61 μL, 0.6 mml). The reaction mixture was stirred at room temperature 

overnight. It was then diluted with DCM and washed against dilute HCl solution. The reaction 

intermediate was concentrated and dissolved into MeOH/DCM (1:1, v/v, 10 mL), followed by 

Pd(OH)2/C (50 mg) and HCOONH4 (21.2 mg, 0.898 mmol). The mixture was stirred under H2 at 

ambient temperature for 30 min and then filtered via a PTFE membrane (pore size 0.22 μm). The 

filtrate was concentrated under vacuum without further purification to afford compound 2 (193.6 
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mg, 91%). [ɑ]D20 = - 3.7 o (c = 14.18, methanol). 1H-NMR (500 MHz, CD3OD), 1.96-2.00 (s, 3 H), 

3.50-3.59 (m, 1 H), 3.85-3.92 (m, 1 H), 4.02-4.11 (m, 2 H), 4.11-4.21 (m, 2 H), 4.24-4.31 (m, 1 

H), 4.46-4.51 (m, 1 H), 4.83-4.87 (m, 1 H), 5.02-5.16 (m, 3 H), 5.21-5.26 (m, 1 H), 5.51-5.57 (m, 

1 H), 7.22-7.30 (m, 5 H), 7.31-7.39 (m, 3 H), 7.39-7.45 (m, 2 H), 7.45-7.54 (m, 1 H), 7.55-7.62 

(m, 3 H), 7.76-7.81 (m, 1 H), 7.90-7.95 (m, 3 H); 13C-NMR (500 MHz, CD3OD), 19.0, 54.1, 60.9, 

66.6, 66.7, 68.0, 68.4, 70.7, 71.1, 99.9, 119.5, 124.8, 124.9, 126.7, 127.3, 127.4, 127.9, 127.9, 

128.1, 128.1, 128.2, 128.9, 129.1, 129.4, 133.1, 133.2, 135.6, 141.1, 141.1, 143.6, 143.8, 156.8, 

165.2, 165.4, 169.7, 170.0. ESI-MS: C39H36NO12 [M+H]+ calcd: 710.2232, obsd: 710.2243 (1.55 

ppm). 

3.4.5 General Procedure for Automated Solid-Phase Glycopeptide Substrate Synthesis 

All the glycopeptides were synthesized on a Liberty BlueTM Automated Microwave Peptide 

Synthesizer following the standard Fmoc-based solid-phase peptide synthesis protocol. The Cl-

TCP(Cl) ProTide resins were purchased from CEM Corporation. The Liberty Blue software (CEM 

Corporation, NC) was used to program the synthesis, including resin swelling, amino acid loading, 

couplings and Fmoc- removal. Commercially available N,N-dimethylformamide (DMF) from 

Fischer Chemical was supplied to the synthesis module as a reaction and washing solvent. Peptide 

synthesis was enabled by sequential couplings of Fmoc-amino acid (purchased from Chem-Impex, 

Wood Dale, IL), which was preactivated by DIC, Oxyma Pure and DIPEA, at 50 °C for 10 min, 

and deprotections with 20% piperidine in DMF at 60 °C for 4 min. In-between each 

coupling/deprotection step, resin-bound peptide was thoroughly washed with DMF. For the 

incorporation of the glycosyl amino acid 2, double coupling was applied by recycling the unreacted 

glycosyl amino acid building block. Resin-bound peptides were cleaved off the solid support with 

a cocktail solution of trifluoroacetic acid (TFA), triisopropylsilane (TIPS) and water 
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(TFA/TIPS/H2O, 95:2.5:2.5). The crude peptides were then purified with reverse-phase C18 

preparative HPLC. Compound purity was confirmed by C18 analytical HPLC analysis. 

3.4.6 General Procedure for Glycopeptide Deprotection 

Partially protected glycopeptide was first dissolved in H2O (0.85 mL). An 80% hydrazine 

hydrate solution (hydrazine, 51%, 0.15 mL) was then added slowly to initiate the reaction. The 

resulting mixture was stirred at ambient temperature overnight. The desired fully deprotected 

glycopeptide product was purified with a Sephadex G-10 column. 

3.4.7 General Procedure for β4GalT7-Catalyzed Glycosylation 

10x MES reaction buffer for β4GalT7-catalyzed glycosylation was prepared in advance 

following the recipe of 200 mM MES, 100 mM MnCl2. The pH of the 10x reaction buffer was 

adjusted to 6.2 by adding concentrated NaOH solution. A solution of 1 mM glycopeptide substrate 

and 1.5 mM UDP-galactose (1.5 equiv per glycosylation site) was made with the reaction buffer. 

The addition of β4GalT7 enzyme (0.5 mol%) initiated the glycosylation. The reaction solution was 

kept at 37 °C overnight. The reaction progress was monitored with LC-MS. After the reaction, the 

enzyme was deactivated and precipitated out of the reaction mixture by adding ethanol. The 

mixture was centrifuged, and the supernatant was loaded onto a G-10 size exclusion column for 

purification. 

3.4.8 General Procedure for Enzyme-Substrate Docking 

3D structure of the substrate was prepared with ChemDraw 16.0 and Schrodinger Maestro 

software. After importing the substrate structure from ChemDraw into Maestro, it was 

energetically optimized via the built-in function “Minimize-All Atoms”. The optimized structure 

was then output as a mol2 file for the subsequent molecular dynamic docking. To initiate the 

docking experiments, a high-resolution enzyme crystal structure as a PDB file, along with the 
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substrate structure as a mol2 file, was imported into UCSF Chimera software. The enzyme-

substrate molecular docking was achieved with AutoDock Vina, an integrated program in UCSF 

Chimera.28, 29   For the docking set-up, the enzyme was chosen as the “Receptor” and the substrate 

was selected as “Ligand”. The “Receptor search volume” was defined to ensure that space around 

the catalytic binding pocket was included for a proper docking simulation, while balancing the 

demand towards computation resource. Default settings of “Receptor options” and “Ligand 

options” were used. “Number of binding modes”, “Exhaustiveness of search” and “Maximum 

energy difference (kcal/mol)” options were adjusted to the maximum level to ensure the quality of 

the simulation. The docking experiment was then executed via Opal web service. Computation 

results were available upon completion of the experiment. 

3.4.9 Phosphatase-Coupled Enzymatic Kinetic Assay 

The kinetic assay protocol follows the general assay conditions reported by R&D Systems 

Inc. with modifications.23  

30 µL reaction solutions of UDP-galactose, glycopeptide acceptor and β4GalT7 enzyme 

were prepared in the 96-well plate. The plate was covered with a plate sealer and incubated at 37 

°C for 20 min. 12 µL 10x phosphatase assay buffer, 3 µL MnCl2 solution (100 mM), 3 µL MilliQ 

water and 2 µL coupling phosphatase 1 (20 ng/µL), were quickly added to a total volume of 50 

µL. The plate was covered with a plate sealer again and incubated at 37 °C for 20 min. After the 

incubation, 30 μL of Malachite Green Reagent A was quickly added to each well. The solutions 

were gently mixed by tapping the plate. 100 μL of deionized or distilled water was added to each 

well. 30 μL of Malachite Green Reagent B was then added to each well. Solutions were mixed 

gently by tapping the plate. The plate was incubated for 5 minutes at room temperature to have 

consistent color development. The optical density of each well was determined using a microplate 
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reader set to 620 nm, and the OD was adjusted by subtracting the reading of the negative control. 

Product formation was calculated using the conversion factor determined from the phosphate 

standard curve. 

3.4.10 LC/ESI-MS/MS Analysis and Data Processing 

The glycopeptide sample was first desalted using a Hydrophilic-Lipophilic-Balanced 

(HLB) cartridge (Waters, Milford, MA). The desalted sample was dissolved in 0.1% FA and 

analyzed on the Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer (Thermo Fisher 

Scientific, San Jose, CA) coupled to a Dionex UPLC system. A binary solvent system composed 

of 0.1% formic acid in H2O (A) and 0.1% formic acid in ACN (B) was used for all analyses. 

Samples were loaded and separated on a 75 μm x 15 cm homemade column packed with 1.7 μm, 

150 Å, BEH C18 material obtained from a Waters UPLC column (part no. 186004661). The LC 

gradient for intact glycopeptides was set as the following: 3%-30% A (18-33 min), 85% A (33-43 

min), and 3% A (43-53 min). The mass spectrometer was operated in data dependent mode using 

a top-speed approach (cycle time of 3 s). HCD triggered EThcD was employed. MS1 scan was 

acquired from m/z 300–2000 (120,000 resolution, 4e5 AGC, 50 ms injection time) followed by 

EThcD MS/MS acquisition of the selected precursors in the Orbitrap (60,000 resolution, 2e5 AGC, 

250 ms injection time) with an optimized user-defined charge-dependent reaction time (+2 50 ms; 

+3 25 ms; +4-5 15 ms; +6-8 10 ms) supplemented by 25% HCD activation. 

All raw data files were searched against the known peptide sequence using PTM-centric 

search engine Byonic (version 3.3, Protein Metrics, San Carlos, CA). Searches were performed 

with a precursor mass tolerance of 10 ppm and a fragment mass tolerance of 0.03 Da. 

Xylose(Pent(1)) and Xylose-Galactose(Hex(1)Pent(1)) were embedded in Byonic as the glycan 

database. Only these O-glycopeptides with PSMs with an FDR ≤ 1% and Byonic score over 150 
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were considered as a reliable identification. The ratio of coeluted glycopeptides with different 

glycoforms (regio-isomers) was calculated by manually checking their MS2 spectra and 

cumulatively counting the intensities of c, z ions bearing specific glycans.   
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APPENDIX A: Supplementary Schemes, Figures and Tables 

 

 

Figure 3.3 β4GalT7 amino acid and gene sequence. 

 

Figure 3.4 SDS-PAGE gel of purified β4GalT7. 
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Figure 3.5 Schematic demonstrations of the original and the modified kinetic assay set-up.3 

 
Figure 3.6 Phosphate conversion factor measurement. Conversion factor was calculated as 3541 
pmol/OD (Plot is displayed as mean ± S.D. of two replicates, phosphate standard concentration = 
50 μL). 
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Figure 3.7 Phosphatase-coupled assay result of UDP-Gal.  kcat = 27.5 min-1, Km = 0.04 mM, kcat/Km 
= 635 mM-1min-1. 

 

 

Figure 3.8 Phosphatase-coupled assay result of QEEEGSGGGQGG 1. kcat = 10 min-1, Km = 0.07 
mM, kcat/Km = 144 mM-1min-1. 
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Figure 3.9 Phosphatase-coupled assay result of GGPSGDFE 7.  kcat = 28 min-1, Km = 0.10 mM, 
kcat/Km = 281 mM-1min-1. 

 

 
Figure 3.10 Phosphatase-coupled assay result of DFELSGSGDLD 8. kcat = 4 min-1, Km = 0.39 
mM, kcat/Km = 11 mM-1min-1. 
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Figure 3.11 Phosphatase-coupled assay result of YASASGSGADE 9. kcat = 9 min-1, Km = 0.28 
mM, kcat/Km = 34 mM-1min-1. 

 

Sequence SPPS Yield (%) 
(Cl-TCP Resin, 50 °C) 

SPPS Yield (%) 
 (Cl-MPA Resin)* 

Deprotection 
Yield (%) 

QEEEGS(O-Xyl)G 6 14.6 N/A 75 

GGPS(O-Xyl)GDFE 7 12.8 N/A 87 

DFELS(O-Xyl)GS(O-Xyl)GDLD 8 5.6 30 78 

YASAS(O-Xyl)GS(O-Xyl)GADE 9 7.4 25 82 

DNFS(O-Xyl)GS(O-Xyl)GAG 10 11.5 26 75 

DLYS(O-Xyl)GS(O-Xyl)GS(O-Xyl)GYFE 11 2.6 13 63 

 
Table 3.3 Summary of synthesized glycopeptides and the corresponding yields. (N/A: not 
performed) (*Coupling of the glycosyl amino acid was performed at 50 ºC and the couplings of 
non-glycosylated amino acids were performed at 30 ºC)



 107 

SDC2_Human 
51 
YASASGSGADE 

 

 

 

 

 
Fragmentation: EThcD; Data Searching: Byonic software 

LC-MS2 Result Summary 

Analysis #1 

MS2 ions of YASAS[+294.09508]GS[+132.04226]GADE  MS2 ions of YASAS[+132.04226]GS[+294.09508]GADE 

Ions m/z Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6  Ions m/z Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6 

y6 667.2417 1.53E+04 3.72E+04 1.20E+05 6.50E+02 0.00E+00 0.00E+00  y6+Gal 829.2945 4.65E+04 7.53E+05 7.72E+04 1.27E+04 2.89E+03 9.12E+02 

y5 610.2202 0.00E+00 0.00E+00 1.27E+04 0.00E+00 0.00E+00 0.00E+00  y5+Gal 772.273 8.16E+03 8.79E+04 0.00E+00 1.02E+03 0.00E+00 0.00E+00 

b6 831.3254 5.15E+03 6.48E+04 3.14E+04 0.00E+00 0.00E+00 0.00E+00  b6-Gal 669.2726 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

c6 848.352 4.36E+04 1.16E+05 5.65E+05 1.35E+03 5.82E+02 0.00E+00  c6-Gal 686.2992 6.23E+04 9.15E+05 1.24E+05 2.12E+04 3.13E+03 1.29E+03 

c5 791.3305 0.00E+00 0.00E+00 5.18E+04 0.00E+00 0.00E+00 0.00E+00  c5-Gal 629.2777 0.00E+00 7.17E+04 3.34E+04 0.00E+00 0.00E+00 0.00E+00 

   Auto-annotated MS2 ions intensity Auto-annotated MS2 ions intensity  Total intensity 

       1.07E+06 2.22E+06    3.29E+06 

 Relative Ratio of YASAS[+294.09508]GS[+132.04226]GADE Relative Ratio of YASAS[+132.04226]GS[+294.09508]GADE 

       32.41% 67.59%     

Table 3.4 LC-MS2 characterization of glycosylation intermediates. 
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Table 3.4 (cont’d) 

Analysis #2 

MS2 ions of YASAS[+294.09508]GS[+132.04226]GADE MS2 ions of YASAS[+132.04226]GS[+294.09508]GADE 

ions m/z Scan 1 Scan 2 Scan 3 Scan 4 Scan 5   ions m/z Scan 1 Scan 2 Scan 3 Scan 4 Scan 5   

y6 667.2417 3.07E+04 1.19E+05 1.07E+05 4.65E+04 2.03E+03   y6+Gal 829.2945 9.18E+04 1.31E+06 2.23E+05 2.84E+04 4.64E+04   

y5 610.2202 0.00E+00 3.30E+04 0.00E+00 0.00E+00 0.00E+00 
  y5+Gal 772.273 1.40E+04 2.05E+05 9.25E+04 0.00E+00 7.26E+03 

  

b6 831.3254 1.41E+04 8.95E+04 5.58E+04 1.39E+04 2.12E+03   b6-Gal 669.2726 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.54E+03   

c6 848.352 7.24E+04 2.81E+05 5.75E+05 7.99E+04 6.09E+03 
  c6-Gal 686.2992 1.21E+05 1.88E+06 8.18E+05 3.47E+04 6.23E+04 

  

c5 791.3305 2.66E+04 7.13E+04 6.45E+04 1.20E+05 1.40E+03   c5-Gal 629.2777 8.71E+03 1.59E+05 2.00E+05 1.15E+04 5.81E+03   

   Auto-annotated MS2 ions intensity Auto-annotated MS2 ions intensity  Total intensity  

    1.81E+06  5.09E+06    6.90E+06  

 Relative Ratio of YASAS[+294.09508]GS[+132.04226]GADE Relative Ratio of YASAS[+132.04226]GS[+294.09508]GADE    

    26.27%  73.73%        

Analysis #3 

MS2 ions of YASAS[+294.09508]GS[+132.04226]GADE  MS2 ions of YASAS[+132.04226]GS[+294.09508]GADE  

ions m/z Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6  ions m/z Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6 

y6 667.241 1.89E+04 6.48E+04 2.70E+05 0.00E+00 3.28E+03 5.22E+03 
 

y6+Gal 829.2945 5.67E+04 1.09E+06 2.26E+05 2.24E+04 4.99E+04 1.68E+04 

y5 610.2202 0.00E+00 1.22E+04 1.70E+04 0.00E+00 0.00E+00 0.00E+00 
 

y5+Gal 772.273 9.08E+03 1.77E+05 5.02E+04 0.00E+00 8.53E+03 1.17E+03 

b6 831.3254 1.47E+04 7.13E+04 5.71E+04 0.00E+00 1.63E+03 0.00E+00 
 

b6-Gal 669.2726 0.00E+00 1.25E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

c6 848.352 5.49E+04 1.21E+05 1.01E+06 0.00E+00 5.50E+03 7.63E+03 
 

c6-Gal 686.2992 8.37E+04 1.47E+06 6.70E+05 6.12E+04 7.83E+04 1.24E+04 

c5 791.3305 1.62E+04 2.37E+04 8.80E+04 9.02E+03 1.85E+03 1.84E+03 
 

c5-Gal 629.2777 1.22E+04 1.12E+05 1.34E+05 0.00E+00 4.68E+03 1.66E+03 

   Auto-annotated MS2 ions intensity Auto-annotated MS2 ions intensity Total intensity   

       1.88E+06 4.36E+06   6.24E+06 

  Relative Ratio of YASAS[+294.09508]GS[+132.04226]GADE Relative Ratio of YASAS[+132.04226]GS[+294.09508]GADE 

     30.08% 69.92%     
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APPENDIX B: Product Characterization Spectra 

 

 

1 

The purity of glycopeptide was verified with analytical C-18 HPLC (0-10% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = - 1.53 o (c = 0.08, H2O). 1H-NMR (500 MHz, D2O), δ 4.50 (t, 

J = 4.8 Hz, 1H), 4.30 – 4.17 (m, 3H), 4.17 – 3.98 (m, 4H), 3.91 – 3.67 (m, 15H), 3.60 (d, J = 2.0 

Hz, 4H), 3.42 (td, J = 9.9, 5.5 Hz, 2H), 3.34 – 3.20 (m, 3H), 3.19 – 3.01 (m, 3H), 2.21 (t, J = 7.5 

Hz, 3H), 2.18 – 2.05 (m, 8H), 2.07 – 1.95 (m, 3H), 1.93-1.87 (m, 4H), 1.87 – 1.74 (m, 5H), 1.74 

(s, 8H). 13C-NMR (225 MHz, D2O), δ 177.9, 177.0, 174.3, 173.8, 173.4, 172.1, 171.6, 170.9, 

103.0, 75.5, 72.9, 72.8, 69.5, 69.1, 68.7, 65.2, 53.9, 53.8, 53.7, 53.7, 53.2, 52.4, 52.2, 44.5, 43.2, 

42.7, 42.4, 42.4, 33.6, 31.0, 30.1, 27.7, 27.6, 27.5, 26.7, 26.6, 26.6, 25.1, 23.2, 22.2, 21.4. ESI-MS: 

C45H70N14O26 [M+H]+ calcd: 1223.4659, obsd: 1223.4637 (1.8 ppm). 
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Figure 3.12 HPLC chromatogram of 1.  
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1 

 
Figure 3.13 1H-NMR of 1 (500 MHz, D2O). 
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1 

 
Figure 3.14 13C-NMR of 1 (225MHz, D2O). 
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1 

 
Figure 3.15 COSY NMR of 1 (900MHz, D2O). 
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1 

 
Figure 3.16 HSQC NMR of 1 (900MHz, D2O). 
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1 

 
1JC1, H1 = 159.5 Hz 

 
Figure 3.17 HSQC-coupled NMR of 1 (900MHz, D2O). 
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1 

 
Figure 3.18 HMBC NMR of 1 (900MHz, D2O). 
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[ɑ]D20 = - 3.7 o (c = 0.20, methanol). 1H-NMR (500 MHz, CD3OD), δ 7.95 – 7.90 (m, 3H), 7.78 

(dd, J = 7.6, 3.4 Hz, 2H), 7.62 – 7.52 (m, 3H), 7.52 – 7.45 (m, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.36 

(dq, J = 15.5, 7.5 Hz, 3H), 7.30 – 7.22 (m, 5H), 5.55 (q, J = 6.8, 5.7 Hz, 1H), 5.24 (dd, J = 8.0, 6.0 

Hz, 1H), 5.13 (d, J = 12.3 Hz, 1H), 5.09 – 5.01 (m, 2H), 4.85 (d, J = 6.0 Hz, 1H), 4.49 (t, J = 4.6 

Hz, 1H), 4.28 (dd, J = 10.4, 6.8 Hz, 1H), 4.21 – 4.11 (m, 2H), 4.11 – 4.01 (m, 2H), 3.89 (dd, J = 

10.4, 4.3 Hz, 1H), 3.54 (dd, J = 12.1, 7.8 Hz, 1H), 1.98 (s, 3H). 13C-NMR (125 MHz, CD3OD), δ 

170.0, 169.8, 165.4, 165.2, 156.8, 143.8, 143.6, 141.1, 141.1, 135.6, 133.2, 133.2, 129.4, 129.1, 

128.9, 128.2, 128.1, 128.1, 127.9, 127.9, 127.4, 127.4, 126.8, 124.9, 124.8, 119.5, 99.9, 71.1, 70.7, 

68.4, 68.0, 66.7, 66.7, 61.1, 54.2, 48.2, 48.1, 47.9, 47.7, 47.6, 47.4, 47.2, 47.1, 46.8, 19.2. ESI-MS: 

C39H36NO12 [M+H]+ calcd: 710.2232, obsd: 710.2243 (1.55 ppm). 
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Figure 3.19 1H NMR (500 MHz, CD3OD). 
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Figure 3.20 13C NMR (125 MHz, CD3OD). 
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Figure 3.21 COSY NMR of 2 (500MHz, CD3OD). 
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Figure 3.22 HSQC NMR of 2 (500MHz, CD3OD). 
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Figure 3.23 HMBC NMR of 2 (500MHz, CD3OD). 
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5 
 
 

 

The purity of glycopeptide was verified with analytical C-18 HPLC (0-10% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = -1.57 o (c = 0.14, H2O). 1H NMR (900 MHz, D2O), δ 5.83 (s, 

2H), 4.29 (m, 3H), 4.23 (s, 4H), 4.08 (s, 2H), 3.85 (s, 10H), 3.76 (s, 4H), 3.70 – 3.62 (m, 4H), 3.59 

(m, 3H), 3.55 (s, 3H), 3.49 (dd, J = 11.2, 6.0 Hz, 5H), 3.45 (s, 2H), 3.35 (t, J = 8.9 Hz, 2H), 3.24 

(t, J = 12.4 Hz, 1H), 3.16 (s, 1H), 2.30 (s, 1H), 2.24 (s, 1H), 2.03 (s, 1H), 1.86 (s, 1H), 1.25 – 0.95 

(m, 3H). 13C NMR (225 MHz, D2O) δ 102.4, 92.1, 88.4, 72.5, 70.6, 68.8, 62.9, 61.0, 53.5, 42.6, 

30.9, 26.6. ESI-MS: C51H80N14O31 [M+H]+ calcd: 1385.5187, obsd: 1385.5135 (3.75 ppm). 
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Figure 3.24 HPLC chromatogram of 5.  
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Figure 3.25 1H NMR of 5 (900 MHz, D2O). 
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Figure 3.26 COSY NMR of 5 (500 MHz, D2O).  
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Figure 3.27 HSQC NMR of 5 (500 MHz, D2O). 
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1JC1, H1 = 160.0 Hz, 161.6 Hz 

 

Figure 3.28 HSQC-coupled NMR of 5 (900 MHz, D2O). 
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-10% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = - 1.570 o (c = 0.14, H2O). 1H-NMR (900 MHz, D2O), δ 4.60 (t, 

J = 5.1 Hz, 1H), 4.30 (d, J = 7.8 Hz, 2H), 4.23 – 4.18 (m, 3H), 4.10 (m, 1H), 3.97 – 3.88 (m, 3H), 

3.87 – 3.80 (m, 3H), 3.72 – 3.63 (m, 3H), 3.51 (m, 2H), 3.49 – 3.44 (m, 1H), 3.33 (m, 1H), 3.23 – 

3.15 (m, 3H), 3.05 (t, J = 5.8 Hz, 1H), 2.29 – 2.12 (m, 10H), 2.02 – 1.93 (m, 4H), 1.90 – 1.79 (m, 

6H), 1.67 (p, J = 5.8 Hz, 1H), 1.56 (m, 1H). 13C-NMR (225 MHz, D2O), δ 181.4, 178.2, 176.3, 

174.3, 173.8, 173.7, 171.3, 170.7, 164.3, 160.3, 103.2, 102.8, 75.4, 72.8, 72.8, 69.1, 69.0, 68.9, 

66.0, 65.1, 65.1, 53.9, 53.8, 53.7, 53.4, 53.3, 44.5, 43.4, 42.5, 33.6, 33.5, 30.9, 27.7, 27.6, 27.6, 

22.2, 21.5. ESI-MS: C32H50N8O20 [M+H]+ calcd: 867.3214, obsd: 867.3209 (0.58 ppm). 
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Figure 3.29 HPLC chromatogram of 6.  
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Figure 3.30 1H NMR of 6 (900 MHz, D2O). 
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Figure 3.31 13C NMR of 6 (225 MHz, D2O). 
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Figure 3.32 COSY NMR of 6 (900 MHz, D2O). 
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Figure 3.33 HSQC NMR of 6 (900 MHz, D2O). 
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1JC1, H1 = 164.9 Hz 

 
Figure 3.34 HSQC-coupled NMR of 6 (900 MHz, D2O). 
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Figure 3.35 HMBC NMR of 6 (900 MHz, D2O). 

  

N
H

H2N
O

H
N

O H
N N

H

O

O

H
N

O

N
H O

OH

O

O NH2

O OH

O OH

O OH
OO

OHHO
OH

-1.00.01.02.03.04.05.06.07.08.09.010.0
f2 (ppm)

0

20

40

60

80

100

120

140

160

180

200

220

f1
 (

p
p
m

)

QEEEGS(O-Xyl)G-OH.4.ser
HMBC



 137 

 

7 

 

The purity of glycopeptide was verified with analytical C-18 HPLC (5-30% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = - 3.4 o (c = 0.16, H2O). 1H-NMR (900 MHz, D2O), δ 7.28 – 

7.12 (m, 5H), 4.69 – 4.61 (m, 2H), 4.61 – 4.51 (m, 3H), 4.46 (dt, J = 8.7, 4.4 Hz, 1H), 4.37 (dd, J 

= 8.7, 5.1 Hz, 1H), 4.31 (m, 1H), 4.12 – 4.05 (m, 2H), 4.06 – 3.94 (m, 3H), 3.88 – 3.75 (m, 5H), 

3.60 – 3.39 (m, 4H), 3.42 – 3.26 (m, 3H), 3.22-3.16 (m, 2H), 3.16 – 3.07 (m, 1H), 2.91 (m, 1H), 

2.48 (m, 1H), 2.36 – 2.26 (m, 1H), 2.24 – 2.16 (m, 1H), 2.05 (t, J = 8.3 Hz, 3H), 1.99 – 1.85 (m, 

4H), 1.85 – 1.72 (m, 2H); 13C-NMR (225 MHz, D2O) δ 182.0, 178.0, 177.4, 174.5, 172.8, 171.9, 

171.3, 170.4, 169.4, 163.1, 163.0, 162.8, 162.7, 160.5, 136.3, 129.2, 128.5, 126.9, 118.1, 116.8, 

115.5, 114.2, 103.0, 75.4, 72.7, 69.0, 68.6, 65.0, 60.6, 55.1, 54.6, 53.4, 51.4, 46.9, 42.9, 42.3, 41.5, 

38.2, 36.9, 33.8, 29.3, 28.5, 24.3. ESI-MS: C37H52N8O16 [M+H]+ calcd: 897.3473, obsd: 897.3443 

(3.34 ppm). 
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Figure 3.36 HPLC chromatogram of 7.  
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Figure 3.37 1H NMR of 7 (900 MHz, D2O). 
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Figure 3.38 13C-NMR of 7 (225 MHz, D2O). 
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Figure 3.39 COSY NMR of 7 (500 MHz, D2O). 
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Figure 3.40 HSQC NMR of 7 (900 MHz, D2O).  
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1JC1, H1 = 164.2 Hz 

 

 
Figure 3.41 HSQC-coupled NMR of 7 (900 MHz, D2O).  
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Figure 3.42 HMBC NMR of 7 (900 MHz, D2O). 
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = + 0.01 o  (c = 0.10, H2O). 1H-NMR (500 MHz, D2O) δ 7.26 – 

7.01 (m, 5H), 4.51-4.46 (m, 3H), 4.30 (t, J = 6.3 Hz, 1H), 4.27 – 4.15 (m, 3H), 4.03-3.98 (m, 2H), 

3.92 – 3.67 (m, 7H), 3.27 (t, J = 9.2 Hz, 1H), 3.20 – 3.06 (m, 3H), 2.58-2.54 (m, 7H), 2.15 (t, J = 

7.4 Hz, 2H), 1.50-1.46 (m, 7H), 0.92 – 0.40 (m, 14H); 13C-NMR (125 MHz, D2O) δ 175.6, 163.1, 

162.8, 162.8, 129.0, 129.0, 129.0, 128.7, 128.7, 128.7, 119.7, 117.4, 115.1, 115.1, 103.0, 75.4, 

72.8, 72.7, 69.1, 69.0, 65.1, 50.4, 24.2, 24.1, 22.3, 22.2, 20.8, 20.8, 20.4. ESI-MS: C58H87N11O30 

[M+2H]2+ calcd: 1418.5693, obsd: 1418.5635 (4.09 ppm). 
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Figure 3.43 HPLC chromatogram of 8.   
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Figure 3.44 1H-NMR of 8 (500 MHz, D2O). 
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Figure 3.45 13C-NMR of 8 (125 MHz, D2O). 
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Figure 3.46 COSY NMR of 8 (500 MHz, D2O). 
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Figure 3.47 HSQC NMR of 8 (500 MHz, D2O).  
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1JC1,H1 = 162.9 Hz  

 
 
Figure 3.48 HSQC NMR of 8 (500 MHz, D2O).  
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Figure 3.49 HMBC NMR of 8 (500 MHz, D2O).  

O
O

OHHO
OH

N
H O

H
N

O

NH
O

H
N

O

OH

HO
O

HO
O

H
N

O OH
N

O
N
H

O
N
H

OH
N

HO O

O
N
H

O
H2N

O

HO

O
O

HOHO
OH

-0.50.51.52.53.54.55.56.57.58.5
f2 (ppm)

0

20

40

60

80

100

120

140

160

180

200

220
f1

 (
p
p
m

)

DFELS_O-Xyl_GS_O-Xyl_GDLD-OH_20190605_gHMBCAD_01



 153 

 
                                                               

9 

 

The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = - 0.003 o  (c = 0.06, H2O). 1H-NMR (500 MHz, D2O), δ 7.06 – 

6.93 (m, 2H), 6.73-6.68 (m, 2H), 4.58 – 4.40 (m, 3H), 4.35 – 4.12 (m, 6H), 4.11 – 3.94 (m, 4H), 

3.93 – 3.67 (m, 12H), 3.43 (d, J = 8.8 Hz, 2H), 3.27 (m, 2H), 3.20 – 3.08 (m, 5H), 3.08 – 2.87 (m, 

3H), 2.64 – 2.59 (m, 2H), 2.48 – 2.44 (m, 2H), 2.11 (t, J = 7.9 Hz, 3H), 1.98 – 1.86 (m, 2H), 1.82 

– 1.67 (m, 2H), 1.30 – 1.18 (m, 14H); 13C-NMR (125 MHz, D2O) δ 174.6, 172.3, 159.9, 142.0, 

131.8, 130.8, 130.8, 122.3, 115.7, 108.9, 82.7, 74.3, 69.0, 65.1, 60.5, 49.4, 42.7, 30.1, 18.0, 17.4, 

16.6.  ESI-MS: C55H83N11O33 [M+H]2+ calcd: 1278.4856, obsd: 1278.4772 (6.57 ppm). 
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Figure 3.50 HPLC chromatogram of 9.  
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Figure 3.51 1H-NMR of 9 (500 MHz, D2O). 
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Figure 3.52 13C-NMR of 9 (125 MHz, D2O).  
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Figure 3.53 COSY NMR of 9 (500 MHz, D2O).  
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Figure 3.54 HSQC NMR of 9 (500 MHz, D2O).  
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1JC1,H1 = 162.2 Hz 

 
Figure 3.55 HSQC-coupled NMR of 9 (500 MHz, D2O). 
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Figure 3.56 HMBC NMR of 9 (500 MHz, D2O).  
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = + 0.020 o  (c = 0.03, H2O). 1H-NMR (500 MHz, D2O) δ 7.19 - 

7.13 (m, 5H), 4.66 (s, 5H), 4.58 – 4.39 (m, 3H), 4.24 – 4.20 (m, 3H), 4.01 (m, 2H), 3.91 – 3.67 (m, 

11H), 3.68 – 3.51 (m, 4H), 3.46 3.41 (m, 5H), 3.32 – 3.19 (m, 3H), 3.18 – 3.05 (m, 4H), 2.99 – 

2.94 (m, 2H), 2.63 – 2.37 (m, 3H), 1.23 (t, J = 7.3 Hz, 4H); 13C-NMR (125 MHz, D2O) δ 207.4, 

174.2, 170.7, 166.6, 151.8, 129.1, 128.7, 110.0, 103.0, 101.5, 72.8, 69.0, 65.1, 43.2, 24.0. ESI-MS: 

C42H62N10O23 [M+H]+ calcd: 1075.4062, obsd: 1075.4014 (4.46 ppm). 
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Figure 3.57 HPLC chromatogram of 9.   
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Figure 3.58 1H-NMR of 10 (500 MHz, D2O).  
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Figure 3.59 13C-NMR of 10 (125 MHz, D2O).  
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Figure 3.60 COSY NMR of 10 (500 MHz, D2O). 
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Figure 3.61 HSQC NMR of 10 (500 MHz, D2O). 

  

N
H O

H
N

O

N
H

H
N

O

O
N
H

OH
N

O
N
H

OH
N

O

OH

O
NH2

O
H2N

O
HO

O

OHHO
OH

O
O

OHHO
OH

O

-0.50.51.52.53.54.55.56.57.58.5
f2 (ppm)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

f1
 (

p
p
m

)

DNFS_O-Xyl_GS_O-Xyl_GAG-OH_20190617_HSQCAD_01



 167 

 
 

10 

 
Figure 3.62 HMBC NMR of 10 (500 MHz, D2O). 
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = + 0.013 o  (c = 0.02, H2O). 1H-NMR (500 MHz, D2O), δ 7.21 – 

7.09 (m, 3H), 7.05 (d, J = 7.2 Hz, 2H), 6.97 (d, J = 7.0 Hz, 2H), 6.84 (d, J = 8.1 Hz, 2H), 6.63 (m, 

4H), 4.93 – 4.62 (m, 32H), 4.56 – 4.39 (m, 3H), 4.31 (t, J = 7.6 Hz, 1H), 4.25 – 4.12 (m, 3H), 4.04 

– 3.94 (m, 2H), 3.93 – 3.62 (m, 14H), 3.42 (d, J = 11.5 Hz, 3H), 3.30 – 3.18 (m, 3H), 3.09 (m, 

5H), 3.03 – 2.87 (m, 1H), 2.85 – 2.61 (m, 2H), 2.61 – 2.40 (m, 1H), 1.99 (t, J = 8.3 Hz, 2H), 1.85 

(d, J = 9.6 Hz, 1H), 1.74 (s, 1H), 1.33 (s, 1H), 0.69 (m, 6H); 13C-NMR (125 MHz, D2O) δ 160.3, 

153.8, 136.8, 128.5, 128.4, 128.1, 117.9, 117.2, 115.3, 99.1, 95.2, 89.7, 24.5, 21.3. ESI-MS: 

C72H101N12O34 [M+H]+ calcd: 1677.6538, obsd: 1677.6555 (1.0 ppm). 
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Figure 3.63 HPLC chromatogram of 11. 
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Figure 3.64 1H-NMR of 11 (500 MHz, D2O).  
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Figure 3.65 COSY NMR of 11 (500 MHz, D2O).  
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Figure 3.66 HSQC NMR of 11 (500 MHz, D2O).  
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The purity of glycopeptide was verified with analytical C-18 HPLC (water; 0.1% trifluoroacetic 

acid). [ɑ]D20 = -1.530 o  (c = 0.08, H2O). 1H-NMR (500 MHz, D2O), δ 4.53 (t, J = 5.0 Hz, 1H), 4.34 

– 4.14 (m, 6H), 4.05 – 4.01 (m, 2H), 3.99 – 3.85 (m, 3H), 3.86 – 3.71 (m, 7H), 3.72 – 3.60 (m, 

3H), 3.61 – 3.50 (m, 3H), 3.51 – 3.38 (m, 3H), 3.26 – 3.07 (m, 3H), 2.41 – 2.19 (m, 10H), 2.07 – 

1.90 (m, 6H), 1.90 – 1.75 (m, 4H). 13C NMR (225 MHz, D2O) δ 102.0, 76.3, 72.9, 70.5, 68.7, 63.0, 

61.0, 53.0, 44.6, 42.5, 30.1, 26.4. ESI-MS: C38H60N8O25 [M+H]+ calcd: 1029.3743, obsd: 

1029.3717 (2.53 ppm). 
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Figure 3.67 HPLC chromatogram of 12.   
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Figure 3.68 1H-NMR NMR of 12 (500 MHz, D2O). 
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Figure 3.69 COSY NMR of 12 (900 MHz, D2O). 
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Figure 3.70 HSQC NMR of 12 (500 MHz, D2O). 
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1JC1, H1 = 159.9 Hz, 161.7 Hz 

 

Figure 3.71 HSQC-coupled NMR of 12 (900 MHz, D2O). 
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Figure 3.72 HMBC NMR of 12 (900 MHz, D2O). 
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The purity of glycopeptide was verified with analytical C-18 HPLC (5-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = -3.400o (c = 0.16, H2O). 1H-NMR (500 MHz, D2O) δ 7.84 – 

7.75 (m, 1H), 7.26 – 7.02 (m, 5H), 5.88 – 5.71 (m, 2H), 4.65 (d, J = 5.0 Hz, 1H), 4.53 (s, 1H), 4.47 

(d, J = 9.3 Hz, 1H), 4.27 (t, J = 8.7 Hz, 2H), 4.24 – 4.14 (m, 3H), 4.11 (s, 1H), 4.08 – 3.94 (m, 

4H), 3.91 (d, J = 11.2 Hz, 2H), 3.87 – 3.76 (m, 3H), 3.73 (d, J = 7.7 Hz, 4H), 3.69 – 3.55 (m, 5H), 

3.54 – 3.38 (m, 6H), 3.33 (t, J = 8.4 Hz, 1H), 3.26 – 3.06 (m, 3H), 3.06 – 2.95 (m, 1H), 2.94 – 2.82 

(m, 1H), 2.68 (m, 1H), 2.55 (m, 1H), 2.22 (t, J = 6.3 Hz, 2H), 2.14 (s, 1H), 2.00 (s, 1H), 1.86 – 

1.82 (m, 4H); 13C-NMR (125 MHz, D2O) δ 140.8, 129.2, 128.6, 102.8, 102.6, 95.8, 95.7, 88.6, 

88.3, 82.8, 73.8, 73.6, 73.6, 71.8, 71.8, 70.0, 69.5, 69.2, 69.0, 68.9, 68.9, 68.9, 68.3, 68.3, 68.2, 

66.0, 65.8, 64.9, 64.8, 60.9, 60.8, 52.4, 52.1, 52.1, 47.2, 46.7, 33.9. ESI-MS: C43H62N8O23 [M+H]+ 

calcd: 1059.4001, obsd: 1059.3901 (3.34 ppm). 
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Figure 3.73 HPLC chromatogram of 13.   

H2N
H
N

O

O

N
O

H
N

O

N
H O

H
N

O

NH
O

H
N

O

OH

O
OH

O O
HOO

OHO
OH

O
HO

HO

OH

OH

min

mV

0 5 10 15 20 25 30 35 40

0

250

Detector A Channel 1 220nm

13

Retention time (min)

In
te

ns
ity

(m
V)

Solvent 
front



 182 

 

13 

 

 
Figure 3.74 1H-NMR NMR of 13 (500 MHz, D2O). 
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Figure 3.75 COSY NMR of 13 (900 MHz, D2O). 
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Figure 3.76 HSQC NMR of 13 (500 MHz, D2O). 
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1JC1, H1 = 158.6 Hz, 158.6 Hz 

 

Figure 3.77 HSQC-coupled NMR of 13 (500 MHz, D2O).  
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = + 0.900 o (c = 0.01, H2O). 1H-NMR (900 MHz, D2O) δ 7.79 

(m, 1H), 7.31 – 7.06 (m, 5H), 5.82 (m, 1H), 4.40 – 4.25 (m, 2H), 4.22 (s, 1H), 4.12 (m, 2H), 4.01 

(m, 3H), 3.94 (m, 5H), 3.88 – 3.78 (m, 5H), 3.76 (d, J = 4.2 Hz, 4H), 3.71 – 3.62 (m, 7H), 3.59 (d, 

J = 11.9 Hz, 5H), 3.55 (t, J = 6.5 Hz, 5H), 3.49 – 3.45 (m, 8H), 3.38 – 3.33 (m, 4H), 3.31 – 3.20 

(m, 4H), 3.18 (t, J = 9.3 Hz, 3H), 3.04 - 2.99 (m, 2H), 2.91 (d, J = 10.1 Hz, 1H), 2.11 – 2.07 (m, 

2H), 1.87 – 1.84 (m, 2H), 1.78 – 1.73 (m, 1H), 1.64 – 1.60 (m, 1H), 1.52 – 1.49 (m, 6H), 1.41 – 

1.37 (m, 2H), 1.20 -1.16 (m, 2H), 1.15 – 1.11 (m, 1H), 1.09 – 1.05 (m, 1H), 0.90 – 0.59 (m, 14H); 

13C-NMR (225 MHz, D2O) δ 143.2, 128.9, 114.8, 111.9, 102.5, 97.2, 88.3, 82.3, 77.6, 73.5, 70.8, 

68.7, 60.8, 44.9, 28.8, 22.1, 18.4, 8.7.  ESI-MS: C70H107N11O40 [M+2H]2+ calcd: 871.8412, obsd: 

871.8452 (4.59 ppm). 

O
O

OHO
OH

O
HO

HO

OH

OH

N
H O

H
N

O

NH
O

H
N

O

OH

HO
O

HO
O

H
N

O OH
N

O
N
H

O
N
H

OH
N

HO O

O
N
H

O
H2N

O

HO

O
O

OHO
OH

O
HO

HO

OH

OH



 187 

 
 

14 

 

 

Figure 3.78 HPLC chromatogram of 14. 
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Figure 3.79 1H-NMR NMR of 14 (900 MHz, D2O). 
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Figure 3.80 COSY NMR of 14 (900 MHz, D2O). 
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Figure 3.81 HSQC NMR of 14 (900 MHz, D2O). 
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1JC1, H1 = 160.9 Hz, 156.4 Hz, 158.8 Hz, 149.8 Hz 

 

Figure 3.82 HSQC-coupled NMR of 14 (900 MHz, D2O). 
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = + 1.200 o (c = 0.01, H2O). 1H-NMR (500 MHz, D2O) δ 6.97 

(m, 2H), 6.68 (m, 2H), 5.99 – 5.71 (m, 6H), 4.69 – 4.46 (m, 24H), 4.25 – 4.21 (m, 8H), 3.89 – 3.85 

(m, 9H), 3.74 – 3.70 (m, 6H), 3.68 – 3.56 (m, 9H), 3.54 (d, J = 5.8 Hz, 7H), 3.42 – 3.38 (m, 7H), 

1.26 – 1.22 (m, 3H), 1.21 – 1.12 (m, 3H); 13C NMR (225 MHz, D2O) δ 138.3, 130.8, 104.8, 101.9, 

98.3, 95.0, 91.0, 88.4, 77.4, 72.8, 71.2, 68.6, 62.7, 60.8, 59.5, 29.2, 22.0, 18.5, 16.6. ESI-MS: 

C62H95N11O38 [M+2H]2+ calcd: 801.7993, obsd: 801.8046 (1.62 ppm). 
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Figure 3.83 HPLC chromatogram of 15. 
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Figure 3.84 1H-NMR of 15 (500 MHz, D2O). 
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Figure 3.85 COSY NMR of 15 (900 MHz, D2O). 
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Figure 3.86 HSQC NMR of 15 (900 MHz, D2O). 
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1JC1,H1 = 158.9 Hz,162.5 Hz; 159.7 hz,159.7 Hz 

 

Figure 3.87 HSQC-coupled NMR of 15 (900 MHz, D2O). 
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = + 1.100 o  (c = 0.01, H2O). 1H-NMR (900 MHz, D2O), δ 7.83 – 

7.79 (m, 1H), 7.29 – 7.05 (m, 5H), 5.86 – 5.82 (m, 5H), 5.71 (d, J = 4.5 Hz, 1H), 4.77 – 4.74 (m, 

3H), 4.35 – 4.08 (m, 7H), 4.06 – 4.03 (m, 1H), 3.96 – 3.84 (m, 8H), 3.84 -3.80 (m, 1H), 3.76 (d, J 

= 3.5 Hz, 2H), 3.73 – 3.61 (m, 11H), 3.61 – 3.56 (m, 11H), 3.55 (d, J = 9.3 Hz, 3H), 3.51 – 3.46 

(m, 6H), 3.35 (q, J = 7.8 Hz, 2H), 3.26 – 3.22 (m, 2H), 1.26 – 1.22 (m, 4H); 13C-NMR (225 MHz, 

D2O) δ 128.9, 102.0, 101.7, 88.2, 72.5, 70.8, 68.7, 61.9, 60.8, 46.9, 42.6, 16.6. ESI-MS: 

C54H82N10O33 [M+H]+ calcd: 1399.5119, obsd: 1399.5148 (2.07 ppm). 
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Figure 3.88 HPLC chromatogram of 16. 
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Figure 3.89 1H- NMR of 16 (900 MHz, D2O). 
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Figure 3.90 COSY NMR of 16 (900 MHz, D2O). 
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Figure 3.91 HSQC NMR of 16 (900 MHz, D2O). 
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1JC1,H1 = 161.0 Hz,159.9 Hz; 160.4 hz,158.5 Hz   

 

Figure 3.92 HSQC-coupled NMR of 16 (900 MHz, D2O). 
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water; 

0.1% trifluoroacetic acid). [ɑ]D20 = + 1.100 o (c = 0.01, H2O). 1H-NMR (800 MHz, D2O), δ 7.82 – 

7.78 (m, 2H), 7.18 – 7.14 (m, 3H), 7.08 – 7.04 (m, 1H), 7.00 – 6.98 (m, 2H), 6.87 – 6.83 (m, 1H), 

6.67 -6.63 (m, 3H), 5.85 – 5.81 (m, 5H), 4.47 – 4.43 (m, 3H), 4.38 – 4.17 (m, 12H), 4.16 – 4.12 

(m, 6H), 4.05 – 4.01 (m, 8H), 3.89 – 3.84 (m, 11H), 3.82 – 3.70 (m, 12H), 3.63 – 3.58 (m, 20H), 

3.55 – 3.50 (m, 3H), 3.49 – 3.38 (m, 8H), 3.36 – 3.31 (m, 3H), 3.20 – 3.16 (m, 5H), 2.72 – 2.67 

(m, 4H), 1.32 – 1.28 (m, 7H), 0.71 – 0.67 (m, 5H). 13C-NMR (200 MHz, D2O) δ 133.1, 132.0, 

118.0, 105.5, 104.3, 98.5, 90.8, 79.0, 77.9, 76.3, 75.2, 73.1, 71.2, 67.9, 65.6, 63.6, 57.6, 56.1, 45.1, 

31.1, 28.0, 26.5, 24.6, 23.5, 19.9, 10.9. ESI-MS: C90H132N12O49 [M+2H]2+ calcd: 1082.4098 obsd: 

1082.4048 (4.62 ppm). 
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Figure 3.93 HPLC chromatogram of 17.  
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Figure 3.94 1H-NMR of 17 (800 MHz, D2O). 
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Figure 3.95 COSY NMR of 17 (800 MHz, D2O). 
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Figure 3.96 HSQC NMR of 17 (800 MHz, D2O). 
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1JC1,H1 = 159.7 Hz, 159.7 Hz, 159.7 Hz; 162.8 Hz, 161.8 Hz, 167.5 Hz   

 

Figure 3.97 HSQC-coupled NMR of 17 (800 MHz, D2O).  
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Chapter 4 Exploration of Human Xylosyltransferase for Chemoenzymatic 
Synthesis of Proteoglycan Linkage Region 

4.1 Introduction 

Proteoglycans (PGs) are an essential class of glycoproteins that are ubiquitous in the 

mammalian systems. They are directly involved in numerous biological processes including tumor 

progression, cell adhesion, and regulation of growth factors.1-3 Structurally, PGs consist of a core 

protein and one or more glycosaminoglycan (GAG) chains, which are linked through glucuronic 

acid (GlcA)-β-1,3-galactose (Gal)-β-1,3-Gal-β-1,4-xylose (Xyl) tetrasaccharide linkages attached 

to serine residues of serine-glycine dipeptides.4 Due to the complexity of post-translational 

modifications on the GAG chains, PGs from natural sources are highly heterogeneous. To date, 

structurally defined proteoglycan glycopeptides can only be prepared through chemical synthesis. 

However, the general synthetic process is highly challenging and tedious, owing to the presence 

of many sensitive functional groups, thus requiring meticulous designs of the protective group 

strategy and the synthetic route.5-7 To expedite the PG preparations, we have become interested in 

developing a synthetic strategy deploying the enzymes involved in biosynthetic assembly of the 

tetrasaccharide linkage. Herein, I report my results on the utility of human xylosyltransferase I 

(XT-I), the enzyme responsible for initiating PG synthesis in humans. 

XT-I natively catalyze the transfer of the Xyl from UDP-Xyl to the side chain of certain 

serine residues in the PG core protein.8-10 A consensus sequence for peptide acceptors has been 

deduced as Gly-Ser-Gly or Ser-Gly-x-Gly (x being any natural amino acid), with acidic residues 

commonly present near the GAG attachment site.8, 11, 12 Till now, XT-I has not been utilized for 

synthetic purposes of the PG. I report for the first time that human XT-I enzyme can be used to 

efficiently synthesize native xylosylated PG glycopeptides at milligram scale, and the combination 

of human XT-I with human β-4-galactosyl transferase 7 (β4GalT7)13-15 enabled one pot synthesis 
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of glycopeptides bearing Gal-Xyl disaccharides. Moreover, I investigated XT-I donor promiscuity. 

Its ability to transfer an unnatural donor such as 6-azidoglucose (6AzGlc) opens the door to 

introduce a biorthogonal handle to label peptide and protein substrates. 

4.2 Results and Discussions 

To explore the synthetic potential and capability of XT-I, we selected a bikunin-like 

peptide sequence QEEEGSGGGQGG as the initial peptide substrate.16, 17 The preparation of 

QEEEGSGGGQGG was achieved with Fmoc-based solid-phase peptide synthesis (SPPS) using 

Cl-MPA ProTide resin under microwave condition. Acidic treatment of the peptide loaded resins 

cleaved the peptide off the resin followed by Fmoc-removal from the N-terminus leading to 43.2% 

isolated yield of bikunin peptide 1 (Appendix Scheme 4.4). 

To express the polyhistidine-tagged human XT-I (EC 2.4.2.26),12 plasmid encoding signal 

peptide-His6-XT-I was constructed and used to transfect HEK-293F cells (Appendix Figure 4.3). 

Secreted XT-I protein was purified using a Ni Sepharose affinity column with an expression yield 

of 5 mg/L. Xylosylation was then initiated by sequentially adding UDP-Xyl (1.2 equiv), peptide 1 

(1 equiv), and XT-I (0.025 mol%) to the MES reaction buffer. After overnight incubation at 37 ºC, 

quantitative conversion of 1 to xylosylated glycopeptide 2 (Scheme 4.1) was confirmed with high-

resolution mass spectrometry (HRMS) and high-performance liquid chromatography (HPLC). The 

desired glycopeptide product 2 was isolated via G-10 size exclusion chromatography in 89.2% 

yield at milligram scales. HRMS and nuclear magnetic resonance (NMR) analyses confirmed the 

structure of β-glycosylated product (1JC1, H1 =159.5 Hz),18 which was identical to the chemically 

synthesized glycopeptide 2.19 
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Scheme 4.1 XT-I-catalyzed xylosylation of bikunin peptide 1. 

 

Investigation furthered with peptide substrates 3-6 (Figure 4.1 and Table 4.5),20-23 which 

contain diverse residues, including hydrophilic or hydrophobic residues flanking the glycosylation 

site. In addition, peptides 4 and 5 have two potential sites of glycosylation, while peptide 6 has 

three sites. Excitingly, XT-I enzyme smoothly converted all the peptide substrates to the 

glycosylated products with desired stereoselectivity (Table 4.1). All glycopeptide structures were 

confirmed through HPLC, NMR, and MS comparisons with glycopeptides synthesized 

chemically.19 In addition, a recombinant polyhistidine-tagged human CD44 hyaluronic acid 

binding domain protein (hCD4420-178)24 was successfully xylosylated by XT-I demonstrating that 

XT-I can utilize a protein as an acceptor as well (Figure 4.39 and 4.40).  
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Figure 4.1 Structures of peptide 3-6 and glycopeptide 7-10 with the serine xylosylation site 
highlighted. 

 

 
Table 4.1 Summary of XT-I catalyzed peptide glycosylation yields. 
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To attain more in-depth understandings on XT-I activity and its substrate preference, 

enzyme kinetics were measured for multiple peptide acceptors using a modified phosphatase-

coupled glycosyltransferase assay.25 Among the analytes, XT-I demonstrates the highest affinity 

and catalytic efficiency towards the bikunin peptide 1 (Table 4.2). The differential kcat/Km values 

for various peptide sequences suggest that presence of acidic residues N-terminal to the xylose 

attachment site may facilitate enzyme activities. 

 
Table 4.2 Summary of kinetic data from peptide substrate 3-6. 

 

I next investigated the donor selectivity of XT-I. While XT-I was believed to be 

monofunctional to UDP-Xyl.26 A variety of UDP-sugars were tested as XT-I donors, including 

UDP-Xyl, UDP-glucose (Glc), UDP-Galactose (Gal), UDP-N-acetyl glucosamine (GlcNAc) and 

UDP-6-azidoglucose (6AzGlc) with peptide 1 as the acceptor. UDP-Gal and UDP-GlcNAc were 

not transferred at detectable amounts. Examination of the crystal structure of XT-I (PDB code: 

6EJ7)12 shows that axial 4-OH of galactoside would clash with Asp494 and Glu529 (the catalytic 

base) in the active site of the enzyme (Figure 4.2). For UDP-GlcNAc, the 2-N-acetyl group of 

UDP-GlcNAc could be accommodated, but it could not form the hydrogen bond to Arg598 as 

present when UDP-Xyl was bound. 

Substrate Km (μM) Vmax (pmol/min/μg) kcat (min-1) kcat/Km (min-1mM-1) 

1 49.8 ± 4.9 350.9 ± 30.6 28 562 

3 308.0 ± 69.4 45.4 ± 4.8 3 10 

4 133.8 ± 27.0 196.7 ± 16.3 16 120 

5 164.4 ± 23.0 183.8 ± 10.7 15 91 
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Figure 4.2 Structure of the active site of XT-I bound with UDP-Xyl and the peptide acceptor 
derived from the crystal structure (PDB code: 6EJ7). The 2-OH and 4-OH of UDP-Xyl have been 
labeled with the numbers 2 and 4 in circles. The key residues in the active site interacting with the 
UDP-Xyl have been highlighted. The structure 6EJ7 is a ternary complex of XT-I, UDP-Xyl and 
the acceptor peptide with a Ser-to-Ala mutation (to prevent Xyl transfer occurring in the crystal). 
To generate this figure, the serine was inserted back into the peptide acceptor to demonstrate the 
geometry of the acceptor complex. (Docking simulation was performed by Po-han Lin) 

 

Interestingly, besides UDP-Xyl, noticeable enzymatic activities were observed with UDP-

Glc and UDP-6AzGlc (Table 4.3). The successful transfer of 6AzGlc to bikunin peptide 11 by 

XT-I indicates its potential to be developed as a valuable biolabeling tool. As a proof of concept, 

azide-tagged glycopeptide 12 and alkynyl sulfo-Cy5 were subject to copper (I)-catalyzed azide-

alkyne cycloaddition (CuAAC). The desired Cy5 conjugated glycopeptide 13 was successfully 

produced (Scheme 4.2). 

 

 

 



 220 

Substrate Km (μM) Vmax (pmol/min/μg) kcat (min-1) kcat/Km (min-1mM-1) 

UDP-Xyl 43.4 ± 6.9 165.9 ± 6.4 13 266 

UDP-Glc 84.0 ± 26.6 20.4 ± 1.9 2 20 

UDP-6AzGlc 23.4 ± 10.5 11.0 ± 1.0 1 39 
 
Table 4.3 Summary of kinetic results from UDP-sugar donors. 

 

 

Scheme 4.2 XT-I catalyzed transfer of non-native 6AzGlc to bikunin peptide 11, followed by 
incorporation of Cy5 fluorescent dye via ‘Click’ reaction. 

 

To test whether the enzymatically prepared xylosyl peptide is a viable substrate for 

β4GalT7, xylosylated peptide 8 was treated with β4GalT7 and UDP-Gal To further the potential 

of XT-I to adopt UDP-6AzGlc, gatekeeper residue W392 in human XT-I (PDB: 6EJ7) was 
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replaced by alanine using UCSF Chimera program.12, 27  As the result from docking simulation 

showed improved but sub-optimal binding between the enzyme and UDP-6AzGlc, in addition, 

R598 was swapped with Lysine to provide more space in the binding pocket. After local energy 

minimization, the resulted double mutant shows the potential to accept UDP-6AzGlc as its native 

donor substrate (Figure 4.3).  

 

Figure 4.3 a) Wild-type human XT-I (PDB:6EJ7) in complex with UDP-Xyl (in brown color) or 
UDP-6AzGlc (in light blue color) and an acceptor peptide (as in Figure 4.2, in yellow color). C5 
of xylopyranose is in close proximity with residue W392 (in green color); b) in silico engineered 
human XT-I W392A/R598K double mutant in complex with UDP-Xyl (in brown color) or UDP-
6AzGlc (in light blue color) and the acceptor peptide (in yellow color).  

 

As proteoglycans can contain long glycan chains, it is important that the glycan of the 

synthetic xylosyl peptides can be extended. In nature, a glycosyl transferase such as the β4GalT7 

is responsible for adding a galactose unit to the xylose from the UDP galactose (UDP-Gal) 

donor.13-15 Recently, β4GalT7 has been shown to be able to galactosylate chemically synthesized 

xylosylated peptides.19 To test whether the enzymatically prepared xylose peptide is a viable 

substrate for β4GalT7, xylosylated peptide 8 was treated with β4GalT7 and UDP-Gal (Scheme 
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W392 
A392 

a) b) 

K599 
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4.3a). The glycopeptide 1419 with two Gal-Xyl disaccharide was successfully produced in 77% 

yield. Thus, the overall yield for the stepwise conversion of 4 to 14 with XT-I glycosylation 

followed by β4GalT7 reaction was 53%. To further improve the synthetic efficiency, one pot 

synthesis was explored with XT-I and β4GalT7. Peptide 4, UDP-Xyl, UDP-Gal, XT-I, and 

β4GalT7 were incubated together in the MES reaction buffer at 37 ºC overnight (Scheme 4.3b). 

Encouragingly, a full conversion of acceptor peptide 4 was observed with an isolated yield of 68% 

for glycopeptide 14. Besides peptide 4, this one-pot two-enzyme (OP2E) protocol smoothly 

converted peptides 3, 5, and 6 to the corresponding glycopeptides 15-1719 (Figure 4.4) with higher 

yields compared to the stepwise synthesis (Table 4.4). The polyhistagged hCD4420-178 protein was 

also glycosylated by the OP2E method to yield the Gal-Xyl modified CD44 (Appendix Figure 

4.42).  

 

Scheme 4.3 a) Galactosylation of glycopeptide 8 by β4GalT7 to form glycopeptide 14 bearing 
galactose-xylose disaccharide; b) OP2E synthesis of 14 from peptide 4 by one pot reaction with 
XT-I and β4GalT7. 

 



 223 

 

Figure 4.4 Structures of OP2E glycopeptide products 15-17. Glycosylated serine sites are 
highlighted. 

 

 
Table 4.4 Yield summary of OP2E synthesis.  
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Enzymatic synthesis of glycopeptide such as 14 is more efficient than the corresponding 

chemical synthesis. Due to the need for multiple protecting group manipulation to prepare the two 

strategically protected monosaccharide building blocks followed by the technically challenging 

chemical glycosylations and deprotection reactions, it would have taken over 20 synthetic steps to 

access a glycopeptide such as 14 via chemical glycosylation from commercially available 

monosaccharides.28 Thus, the OP2E protocol can significantly improve the overall synthetic 

efficiencies.  

In the OP2E protocol for glycopeptide synthesis, XT-I presumably installed the xylose onto 

the peptide first, followed by β4GalT7 promoted galactosylation of the xylosylated peptide as in 

the case for stepwise synthesis. Alternatively, β4GalT7 may galactosylate UDP-Xyl first with 

subsequent transfer of the UDP disaccharide donor to the peptide acceptor catalyzed by XT-I.  

However, the formation of disaccharide donor in OP2E reaction is unlikely to occur at an 

appreciable rate as β4GalT7 prefers β-xyloside acceptors.29 The UDP-Xyl has an α-anomeric 

configuration and the UDP moiety would clash with the active site of β4GalT7 enzyme. 

Furthermore, the crystal structure of XT-I (PDB code: 6EJ7)12 shows that the active site of XT-I 

(Figure 4.2) is not sufficiently large to accommodate a disaccharide donor.  

4.3 Conclusions 

In conclusion, for the first time, human XT-I (EC 2.4.2.26) enzyme has been utilized to 

efficiently synthesize structurally diverse xylosylated glycopeptides at milligram scales with a 

range of peptide acceptors as well as the His tag bearing hCD4420-178 protein. XT-I was found 

tolerant toward several non-native UDP-sugar donors, particularly UDP-6AzGlc, rendering it 

potentially a valuable tool to label biological proteins. The one-pot two-enzyme method developed 
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further enhanced the synthetic efficiency and the overall yield, paving the way toward efficient 

chemoenzymatic synthesis of PG glycopeptides and glycoproteins. 

4.4 Experimental Section 

4.4.1 Materials 

Signal peptide-His6-XT-I gBlocks gene was purchased from Integrated DNA 

Technologies (Coralville, IA). FreeStyle 293 Expression Medium and Coomassie Brilliant Blue 

G-250 were purchased from Thermo Fischer Scientific (Waltham, MA). Nickel columns and 

Nickel resins were purchased from Bio-rad (Hercules, CA). SDS-PAGE gels, 10x 

Tris/Glycine/SDS electrophoresis buffer, prestained protein ladder, sample loading buffer, and 

Coomassie Blue R-250 were purchased from Bio-rad (Hercules, CA). Tris-HCl buffer was 

purchased from MilliporeSigma (St. Louis, MO). UDP-xylose was purchased from Complex 

Carbohydrate Research Center (Athens, GA). Amino acid building blocks were purchased from 

Chem-Impex International, Inc (Wood Dale, IL). Cy5-alkyne was purchased from MilliporeSigma 

(St. Louis, MO). Glycosyltransferase Activity Kit was purchased from R&D Systems. All other 

chemical reagents were purchased from commercial sources and used without additional 

purifications unless otherwise noted. 

4.4.2 General Information 

High-performance liquid chromatography was carried out with LC-8A solvent pumps, 

DGU-14A degasser, SPD-10A UV-Vis detector, SCL-10A system controller (Shimadzu 

Corporation, JP) and Vydac 218TP 10 μm C18 preparative HPLC column (HICHROM Limited, 

VWR, UK) or 20RBAX 300SB-C18 analytical HPLC column (Agilent Technologies, CA) using 

HPLC-grade acetonitrile (EMD Millipore Corporation, MA) and Milli-Q water (EMD Millipore 

Corporation, MA). A variety of eluting gradients were set up on LabSolutions software (Shimadzu 
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Corporation, JP)). The dual-wavelength UV detector was set at 220 nm and 254 nm for monitoring 

the absorbance from amide and aromatic groups correspondingly. 3D structure of glycopeptide 

compounds was prepared with Maestro software. Docking simulations were acquired with 

AutoDock Vina and UCSF Chimera (UCSF, CA). Enzymatic activity was quantified by 

absorbance at 620 nm using a SpectraMax M3 96-well plate reader (Molecular Devices, CA). 

NMR data were obtained with DirectDrive2 500 MHz (Agilent, CA) at ambient temperature. 

4.4.3 XT-I Expression, Purification and Characterization  

HEK-293F cells were grown in FreeStyleTM 293 Expression Medium on a platform shaker 

in humidified 37 °C CO2 (5%) incubator with rotation at 150 rpm. When the cell density reached 

between 4 x 105 and 3 x 106 cells/ml, cells were split to a density of 1 x 106 cells/ml and cultured 

overnight in the same condition. Cells were then transfected with His6-XT-I gene 24 hours after 

they were split. Before transfection, cells were harvested by centrifugation at 1200 rpm for 10 min 

at room temperature and re-suspended in fresh pre-warmed media. To transfect the cells, a final 

concentration of 2-3 µg/ml of the XT-I gene and 9 µg/ml of PEI were added. PEI stock solution 

was prepared at the concentration of 1 mg/ml in a buffer containing 25 mM HEPES and 150 mM 

NaCl, pH 7.4. The flask was returned to the shaker platform in the incubator. Cells were diluted 

1:1 with pre-warmed media supplemented with valproic acid (VPA) to a final concentration of 2.2 

mM. Four to six days after the transfection, cells were harvested. Clarified lysate was purified by 

nickel column (Cytiva, MA) (a. washing buffer: 20 mM Tris, 0.5 M NaCl and 40 mM imidazole; 

b. eluting buffer: 20 mM Tris, 0.5 M NaCl and 40-250 mM imidazole). Protein purity was 

confirmed with SDS-PAGE gel electrophoresis and the concentration and expression yield were 

determined by standard Bradford assay. 
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4.4.4 General Procedure for Automated Solid-Phase Peptide Substrate Synthesis 

All the peptides were synthesized on a Liberty BlueTM Automated Microwave Peptide 

Synthesizer following the standard Fmoc-based solid-phase peptide synthesis protocol. The Cl-

MPA ProTide resins were purchased from CEM Corporation. The Liberty Blue software (CEM 

Corporation, NC) was used to program the synthesis, including resin swelling, amino acid loading, 

couplings and Fmoc- removal. Commercially available N,N-dimethylformamide (DMF) from 

Fischer Chemical was supplied to the synthesis module as reaction and washing solvent. Peptide 

synthesis was enabled by sequential couplings of Fmoc-amino acid (purchased from Chem-

Impex), which was preactivated by DIC, Oxyma Pure and N,N-diisopropyl-N-ethyl amine at 50 

°C for 10 min, and deprotections with 20% piperidine in DMF at 60 °C for 4 min. In-between each 

coupling/deprotection step, resin-bound peptide was thoroughly washed with DMF. Resin-bound 

peptides were cleaved off the solid support with a cocktail solution of trifluoroacetic acid (TFA), 

triisopropylsilane (TIPS) and water (TFA/TIPS/H2O, 95:2.5:2.5). The crude peptides were then 

purified with reverse-phase C18 preparative HPLC. Compound purity was confirmed by C18 

analytical HPLC analysis. 

4.4.5 General Procedure for XT-I-Catalyzed Glycosylation 

The 10x 2-(N-morpholino)ethanesulfonic acid (MES) reaction buffer for XT-I-catalyzed 

glycosylation was prepared in advance following the recipe of 250 mM MES, 250 mM KCl, 50 

mM KF, 50 mM MgCl2, 50 mM MnCl2. The pH of the 10x reaction buffer was adjusted to 6.5 by 

adding concentrated NaOH solution. A solution of 1 mM peptide substrate and 1.1-3.0 mM UDP-

Xyl (1.1-3.0 equiv. per glycosylation site, depending on peptide acceptors) was made with the 

reaction buffer. The addition of XT-I enzyme (0.02 mol%) initiated the glycosylation. The reaction 

solution was kept at 37 °C overnight. The reaction progress was monitored with LC-MS. After the 
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reaction, the enzyme was deactivated and precipitated out of the reaction mixture by addition of 

ethanol. The mixture was centrifuged, and the supernatant was loaded onto a G-10 size exclusion 

column for purification.   

4.4.6 General Procedure for Enzyme-Substrate Docking and In Silico Enzyme Engineering 

3D structure of the substrate was prepared with ChemDraw 16.0 and Schrodinger Maestro 

software. After importing the substrate structure from ChemDraw into Maestro, it was 

energetically optimized via the built-in function “Minimize-All Atoms”. The optimized structure 

was then output as a mol2 file for the subsequent molecular dynamic docking. To initiate the 

docking experiments, a high-resolution enzyme crystal structure as a PDB file, along with the 

substrate structure as a mol2 file, was imported into UCSF Chimera software. The enzyme-

substrate molecular docking was achieved with AutoDock Vina, an integrated program in UCSF 

Chimera. 22, 23   For the docking set-up, the enzyme was chosen as the “Receptor” and the substrate 

was selected as “Ligand”. The “Receptor search volume” was defined to ensure that space around 

the catalytic binding pocket was included for a proper docking simulation, while balancing the 

demand towards computation resource. Default settings of “Receptor options” and “Ligand 

options” were used. “Number of binding modes”, “Exhaustiveness of search” and “Maximum 

energy difference (kcal/mol)” options were adjusted to the maximum level to ensure the quality of 

the simulation. The docking experiment was then executed via Opal web service. Computation 

results were available upon completion of the experiment. 

Human XT-I crystal (PDB:6EJ7) was selected for in silico enzyme engineering. R598 

residue was replaced by lysine through Chimera built-in function ‘Rotamers’. Lysine residue poses 

with highest predicted possibilities were selected to examine potential clashes/contacts. If contacts 

with nearby residues were detected, residues in contact, together with K598, were processed 
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through ‘Minimize Structure’ function. All other atoms, except the selected ones, were fixed to 

reduce the computation workload. The resulted clash-free XT-I mutant structure was then used to 

perform the enzyme-substrate docking simulation.  

4.4.7 General Procedure for XT-I-Catalyzed Transfer of UDP-6-Azidoglucose 

A solution of 0.5 mM peptide substrate and 2.5 mM UDP-xylose (5 equiv. per 

glycosylation site) was made with the MES reaction buffer. The addition of XT-I enzyme (0.1 

mol%) initiated the glycosylation. The reaction solution was kept at 37 °C overnight. The reaction 

progress was monitored with LC-MS. After the reaction, the enzyme was deactivated and 

precipitated out of the reaction mixture by addition of ethanol. The mixture was centrifuged, and 

the supernatant was carried over without further purification. 

4.4.8 General Procedure for Copper (I)-Catalyzed Azide-Alkyne Cycloaddition 

To a solution of azide-tagged glycopeptide 12 (100 µM), CuSO4 (20 mM), (tris-

hydroxypropyltriazolylmethylamine) (THPTA) ligand (10 mM), aminoguanidine (100 mM), Cy5-

alkyne (1 mM), and Na ascorbate (100 mM) were added. The reaction tube was attached to a 20 

round-per-minute (rpm) end-over-end rotator. The reaction was allowed to proceed for 2 hours at 

room temperature. The formation of Cy5 conjugated glycopeptide 13 was confirmed using LC-

MS (ESI-MS: C91H131N22O36S32-, calcd: 734.6092, obsd: 734.5991 (13.7ppm)) 

4.4.9 General Procedure for One-Pot Two-Enzyme (OP2E) Glycosylation 

The 10x MES reaction solution for XT-I and β4GalT7 OP2E glycosylation was prepared 

following the recipe of 225 mM MES, 125 mM KCl, 25 mM KF, 25 mM MgCl2, 75 mM MnCl2. 

A solution of 1 mM peptide and 1.5-3.0 mM UDP-xylose (1.5-3.0 equiv. per glycosylation site, 

depending on peptide acceptors) and 2.0 mM UDP-galactose (2.0 equiv. per glycosylation site) 

was made with the reaction buffer. XT-I enzyme (0.05 mol%) and β4GalT7 enzyme (0.5 mol%) 
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were added to initiate the glycosylation reactions. The reaction tube was kept in an incubator at 37 

°C overnight. The reaction progress was monitored via LC-MS. Upon reaction completion, the 

reaction mixture was directly injected into HPLC, and the reaction yield was quantified from peak 

areas of HPLC chromatograms.  

4.4.10 Phosphatase-Coupled Enzymatic Kinetic Assay 

The kinetic assay protocol follows the general assay conditions reported by R&D Systems Inc. 

with modifications.20  

30 µL reaction solutions of UDP-galactose, glycopeptide acceptor and β4GalT7 enzyme were 

prepared in the 96-well plate. The plate was covered with a plate sealer and incubated at 37 °C for 

20 min. 12 µL 10x phosphatase assay buffer, 3 µL MnCl2 solution (100 mM), 3 µL MilliQ water 

and 2 µL coupling phosphatase 1 (20 ng/µL), were quickly added to a total volume of 50 µL. The 

plate was covered with a plate sealer again and incubated at 37 °C for 20 min. After the incubation, 

30 μL of Malachite Green Reagent A was quickly added to each well. The solutions were gently 

mixed by tapping the plate. 100 μL of deionized or distilled water was added to each well. 30 μL 

of Malachite Green Reagent B was then added to each well. Solutions were mixed gently by 

tapping the plate. The plate was incubated for 5 minutes at room temperature to have consistent 

color development. The optical density of each well was determined using a microplate reader set 

to 620 nm, and the OD was adjusted by subtracting the reading of the negative control. Product 

formation was calculated using the conversion factor determined from the phosphate standard 

curve. 
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APPENDIX A: Supplementary Figures, Schemes and Tables 

 

Signal peptide-His6-XT-I Sequence  

 

5’AAGACACCGGGACCGATCCAGCCTCCGGACTCTAGAGCCGCCACCATGGGTTGGA
GTTGTATCATCCTTTTCCTGGTAGCTACCGCAACCGGTGTTCATTCACATCACCACCA
TCATCATGACGTAAGTCGACCTCCTCACGCAAGAAAGACGGGTGGCTCTAGCCCGG
AGACTAAGTATGACCAGCCGCCGAAGTGCGACATTAGCGGTAAAGAAGCGATCTCT
GCCCTGAGCCGGGCAAAATCAAAACACTGCAGACAGGAGATTGGTGAGACGTATTG
CCGACACAAACTGGGGCTCCTCATGCCAGAGAAGGTAACCAGATTTTGTCCGCTGG
AGGGGAAGGCCAACAAAAACGTCCAATGGGACGAGGATAGCGTCGAATACATGCCT
GCGAATCCCGTCAGGATCGCGTTTGTCCTTGTCGTTCATGGCCGAGCGAGCAGACAA
CTTCAGCGCATGTTTAAAGCAATCTACCACAAAGACCATTTCTATTATATTCATGTCG 

Figure 4.5 XT-I gene sequence.  
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Figure 4.5 (cont’d) 

ATAAGCGGTCAAACTACCTGCACCGGCAGGTACTCCAGGTTTCACGCCAATACTCCA
ACGTTCGCGTAACTCCATGGCGGATGGCCACGATCTGGGGTGGGGCTTCACTCCTCT
CAACGTATTTGCAGAGCATGCGAGACCTTCTGGAAATGACTGACTGGCCATGGGACT
TTTTCATCAATTTGAGCGCAGCCGACTATCCAATCCGAACCAATGATCAGCTTGTAG
CATTTCTGAGTCGCTATAGGGACATGAATTTCCTGAAGAGCCATGGGCGGGATAACG
CGCGGTTCATACGAAAGCAAGGGCTGGATAGGCTGTTTCTTGAATGCGACGCACAC
ATGTGGAGGCTTGGGGATAGAAGGATTCCCGAGGGGATCGCCGTGGATGGAGGAAG
CGACTGGTTCCTTCTGAATCGACGGTTTGTCGAGTATGTCACGTTCAGCACGGATGA
TTTGGTCACGAAAATGAAACAATTCTACAGTTATACGCTCCTGCCCGCTGAGAGCTT
CTTCCACACGGTGTTGGAAAACTCCCCGCATTGTGATACAATGGTTGATAATAATTT
GAGGATTACAAATTGGAATCGAAAACTTGGGTGCAAATGTCAGTATAAGCATATAG
TGGACTGGTGTGGATGTTCTCCTAATGACTTTAAACCTCAGGATTTTCATCGATTCCA
GCAGACAGCACGGCCTACTTTTTTTGCGCGAAAATTCGAAGCAGTCGTCAATCAAGA
GATTATCGGACAATTGGATTACTACCTGTATGGAAACTATCCTGCCGGTACGCCTGG
GCTCCGCTCCTATTGGGAGAATGTCTATGATGAACCTGACGGAATACATTCCCTTAG
TGACGTCACCCTCACTCTTTATCATAGTTTTGCACGCTTGGGTCTGAGACGGGCCGA
AACTTCTCTTCATACAGACGGCGAAAACAGTTGTCGCTATTACCCGATGGGCCACCC
CGCATCAGTGCACCTTTATTTCCTGGCCGATCGATTCCAGGGGTTTCTGATCAAGCAT
CATGCGACAAACCTCGCAGTGAGCAAATTGGAAACTCTTGAAACCTGGGTGATGCC
CAAAAAAGTGTTCAAAATCGCTAGTCCTCCCTCCGACTTTGGTAGGTTGCAGTTCTC
CGAAGTAGGGACAGATTGGGACGCGAAGGAGAGACTGTTTCGGAACTTCGGCGGGT
TGTTGGGACCGATGGATGAGCCAGTTGGCATGCAAAAGTGGGGCAAAGGGCCTAAC
GTCACTGTAACAGTGATCTGGGTGGATCCAGTCAACGTCATCGCCGCAACTTACGAT
ATACTGATTGAGAGTACAGCTGAATTCACCCACTATAAACCGCCCTTGAACCTTCCC
CTGCGACCTGGAGTGTGGACCGTTAAGATTCTTCACCACTGGGTACCTGTGGCGGAG
ACGAAATTTTTGGTGGCCCCGTTGACTTTTTCCAATCGACAACCTATAAAGCCTGAA
GAGGCCCTTAAACTGCACAACGGTCCACTGCGAAACGCGTATATGGAACAGTCTTTC
CAGTCTCTGAACCCTGTACTTAGTCTTCCAATAAATCCGGCCCAAGTTGAGCAAGCC
CGGCGGAATGCCGCTTCCACTGGAACAGCGCTCGAAGGATGGCTTGATAGCCTGGTT
GGAGGTATGTGGACAGCCATGGACATCTGCGCCACCGGACCGACCGCGTGTCCGGT
GATGCAAACTTGTTCTCAGACTGCGTGGTCTAGCTTCTCACCTGATCCAAAGTCCGA
GCTGGGCGCAGTGAAACCCGACGGTAGACTTAGGTGATATCTCGACAATCAACCTCT
GGATTACAAAATTT 3' 
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Figure 4.6 SDS-PAGE gel of purified XT-I.  

 

 

Figure 4.7 Schematic demonstrations of the original20 and the modified kinetic assay set-up.  
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Phosphate Standard  

 

Figure 4.8 Phosphate conversion factor measurement. Conversion factor = 3541 pmol/OD (Plot 
is displayed as mean ± S.D. of two replicates, phosphate standard volume = 50 µL).  

 

  

Figure 4.9 Phosphatase-coupled assay result of QEEEGSGGGQGG 1. kcat = 28 min-1, Km = 49.8 
mM, kcat/Km = 562 mM-1 min-1.  
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Figure 4.10 Phosphatase-coupled assay result of GGPSGDFE 3. kcat = 3 min-1, Km = 308.0 mM, 
kcat/Km = 10 mM-1 min-1.  

 

 
Figure 4.11 Phosphatase-coupled assay result of DNFSGSGAG 4. kcat = 16 min-1, Km = 133.8 
mM, kcat/Km = 120 mM-1 min-1.  
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Figure 4.12 Phosphatase-coupled assay result of DFELSGSGDLD 5. kcat = 15 min-1, Km = 164.4 
mM, kcat/Km = 91 mM-1 min-1.  
 

 
Figure 4.13 Phosphatase-coupled assay result of UDP-xylose. kcat = 13 min-1, Km = 43.4 mM, 
kcat/Km = 266 mM-1 min-1.  
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Figure 4.14 Phosphatase-coupled assay result of UDP-glucose. kcat = 2 min-1, Km = 84.0 mM, 
kcat/Km = 33 mM-1 min-1.  
 

 
Figure 4.15 Phosphatase-coupled assay result of UDP-6-azido-glucose. kcat = 1 min-1, Km = 23.4 
mM, kcat/Km = 18 mM-1 min-1.   
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Scheme 4.4 SPPS synthesis of bikunin glycopeptide (QEEEGSGGGQGG) 1.  
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Table 4.5 Summary of synthesized peptide acceptors and the corresponding yields. 

 

 

 

 

 

Sequence SPPS Yield (%) 

QEEEGSGGGQGG 1 43.2 

GGPSGDFE 3 47.7 

DNFSGSGAG 4 61.7 

DFELSGSGDLD 5 38.2 

DLYSGSGSGYFE 6 33.1 

QEEEGSGGGQKK 11 47.8 



 241 

APPENDIX B: Product Characterization Spectra 

 

 
 

The purity of peptide 1 was verified with analytical C-18 HPLC (water, 0.1% trifluoroacetic acid). 

[α]D20= + 28 (c 0.1, H2O, specific rotation was collected by Po-han Lin). 1H-NMR (500 MHz, 

D2O) δ 4.37 – 4.15 (m, 2H), 3.99 – 3.65 (m, 5H), 3.05 – 2.93 (m, 9H), 2.47 – 2.14 (m, 5H), 2.06 – 

1.89 (m, 2H), 1.90 – 1.76 (m, 2H), 1.60 (m, 10H), 1.52 – 1.45 (m, 5H); 13C-NMR (125 MHz, D2O) 

δ 60.9, 60.9, 56.7, 55.7, 55.6, 53.1, 52.9, 52.9, 52.1, 46.6, 45.3, 44.6, 44.3, 44.3, 43.3, 42.6, 42.3, 

42.1, 42.1, 42.1, 41.3, 40.0, 31.5, 30.7, 29.9, 29.9, 29.7, 28.7, 27.4, 27.2, 26.4, 26.2, 26.0, 25.2, 

24.5, 24.4, 23.2, 22.0, 22.0, 21.7, 21.2, 21.1, 20.4, 19.7, 17.7, 16.9, 14.4. ESI-MS: C40H63N14O22 

[M+H]+ calcd: 1091.4236, obsd: 1091.4216 (1.8 ppm) 

  

1 
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Figure 4.16 HPLC chromatogram of 1. 
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Figure 4.17 1H-NMR of 1 (500 MHz, D2O).  

1 
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Figure 4.18 COSY NMR of 1 (500 MHz, D2O).  
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Figure 4.19 HSQC NMR of 1 (500 MHz, D2O). 
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The purity of peptide 3 was verified with analytical C-18 HPLC (5-100% acetonitrile/water, 0.1% 

trifluoroacetic acid). [α]D20= - 111  (c 0.1, H2O, specific rotation was collected by Po-han Lin). 1H 

NMR (500 MHz, D2O) δ 7.19 (m, 2H), 7.17 – 7.11 (m, 1H), 7.11 – 7.07 (m, 2H), 4.53 (m, 1H), 

4.46 (m, 1H), 4.34 – 4.26 (m, 2H), 4.23-4.19 (m, 1H) 4.09 – 3.92 (m, 2H), 3.85 – 3.64 (m, 6H), 

3.53 – 3.42 (m, 2H), 3.03-2.99 (m, 1H), 2.92 – 2.83 (m, 1H), 2.72 – 2.63 (m, 1H), 2.58-2.53 (m, 

1H), 2.25-2.21 (m, 2H), 2.15-2.11 (m, 1H), 2.05 – 1.94 (m, 1H), 1.90 – 1.72 (m, 4H); 13C NMR 

(125 MHz, D2O) δ 177.0, 174.5, 174.5, 173.8, 172.5, 172.2, 171.7, 170.8, 169.1, 167.4, 136.1, 

129.1, 128.6, 127.0, 60.9, 60.5, 55.6, 54.8, 51.9, 49.8, 47.0, 42.4, 41.6, 40.5, 40.2, 36.6, 35.0, 29.7, 

29.3, 25.7, 24.3. ESI-MS: C32H45N8O14 [M+H]+ calcd: 765.3050, obsd: 755.3022 (3.7 ppm) 
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Figure 4.20 HPLC chromatogram of 3.   
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Figure 4.21 1H-NMR of 3 (500 MHz, D2O). 
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Figure 4.22 COSY NMR of 3 (500 MHz, D2O). 
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Figure 4.23 HSQC NMR of 3 (500 MHz, D2O). 
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The purity of peptide 4 was verified with analytical C-18 HPLC (5-100% acetonitrile/water, 0.1% 

trifluoroacetic acid). [α]D20= - 329 (c 0.1, H2O, specific rotation was collected by Po-han Lin). 1H 

NMR (500 MHz, D2O) δ 7.24 – 7.08 (m, 5H), 4.56-4.52 (m, 2H), 4.32 (t, J = 5.1 Hz, 1H), 4.27 (t, 

J = 5.2 Hz, 1H), 4.20 (q, J = 7.2 Hz, 1H), 4.13 (t, J = 6.3 Hz, 1H), 3.86-3.84 (m, 1H), 3.82 – 3.80 

(m, 2H), 3.78 (d, J = 12.8 Hz, 3H), 3.75 (d, J = 6.1 Hz, 1H), 3.74 – 3.62 (m, 4H), 3.03-3.01 (m, 

1H), 2.92-2.88 (m, 1H), 2.78 – 2.71 (m, 2H), 2.62-2.60 (m, 1H), 2.52-2.50 (m, 1H), 1.22 (d, J = 

7.2 Hz, 3H); 13C NMR (125 MHz, D2O) δ 129.1, 129.1, 128.7, 127.1, 60.9, 60.9, 60.9, 55.6, 55.4, 

55.0, 50.3, 49.6, 49.4, 42.3, 42.3, 41.9, 41.9, 41.2, 36.7, 36.7, 35.9, 35.9, 35.1, 16.5. ESI-MS: 

C32H47N10O15 [M+H]+ calcd: 811.3217, obsd: 811.3207 (1.2 ppm)  

 

4 
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Figure 4.24 HPLC chromatogram of 4 (500 MHz, D2O).  
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Figure 4.25 1H-NMR of 4 (500 MHz, D2O).  

4 
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Figure 4.26 COSY NMR of 4 (500 MHz, D2O). 
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Figure 4.27 HSQC NMR of 4 (500 MHz, D2O). 
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The purity of peptide 5 was verified with analytical C-18 HPLC (5-100% acetonitrile/water, 0.1% 

trifluoroacetic acid). [α]D20= + 76 (c 0.1, H2O, specific rotation was collected by Po-han Lin). 1H 

NMR (500 MHz, D2O) δ 7.24 – 7.18 (m, 2H), 7.18 – 7.12 (m, 1H), 7.12 – 7.06 (m, 2H), 4.55 (s, 

1H), 4.52 – 4.45 (m, 1H), 4.32 – 4.26 (m, 1H), 4.24 – 4.08 (m, 3H), 3.92 – 3.77 (m, 4H), 3.77 – 

3.66 (m, 4H), 2.92 (t, J = 8.5 Hz, 2H), 2.86 – 2.70 (m, 5H), 2.70 – 2.61 (m, 1H), 2.26 – 2.19 (m, 

2H), 1.92 – 1.81 (m, 1H), 1.74 (dt, J = 14.1, 7.3 Hz, 1H), 1.53 – 1.42 (m, 6H), 1.16 (d, J = 1.2 Hz, 

1H), 0.85 – 0.74 (m, 10H), 0.72 – 0.67 (m, 4H). ESI-MS: C48H72N11O22 [M+H]+ calcd: 1154.4848, 

obsd: 1154.4822 (2.3 ppm)  

 

5 
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Figure 4.28 HPLC chromatogram of 5.  
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Figure 4.29 1H-NMR of 5 (500 MHz, D2O). 
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Figure 4.30 COSY NMR of 5 (500 MHz, D2O). 
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Figure 4.31 HSQC NMR of 5 (500 MHz, D2O). 
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The purity of peptide 6 was verified with analytical C-18 HPLC (5-100% acetonitrile/water, 0.1% 

trifluoroacetic acid). [α]D20 = -36 (c 0.1, H2O, specific rotation was collected by Po-han Lin). 1H 

NMR (500 MHz, D2O) δ 7.21 – 7.08 (m, 3H), 7.07 – 7.01 (m, 2H), 6.96 – 6.90 (m, 2H), 6.85 – 

6.79 (m, 2H), 6.67 – 6.57 (m, 4H), 4.43-4.40 (m, 2H), 4.35 – 4.22 (m, 4H), 4.16 – 4.08 (m, 3H), 

3.92-3.88 (m, 1H), 3.84 – 3.71 (m, 5H), 3.71 – 3.64 (m, 6H), 3.61 (dd, J = 11.9, 5.2 Hz, 2H), 2.92-

2.88 (m, 2H), 2.84 – 2.62 (m, 7H), 2.55 (s, 1H), 2.20 (t, J = 7.4 Hz, 2H), 1.97-1.93 (m, 1H), 1.76-

1.72 (m, 1H), 1.36 – 1.29 (m, 2H), 1.27-1.23 (m, 2H), 0.70-0.66 (m, 6H). 13C NMR (125 MHz, 

D2O) δ 135.9, 130.9, 130.8, 130.4, 130.3, 129.1, 128.4, 127.0, 117.0, 115.5, 115.3, 115.2, 114.3, 

113.0, 111.2, 110.2, 88.8, 65.2, 62.7, 62.1, 61.1, 60.2, 59.9, 58.6, 58.1, 57.9, 55.9, 55.7, 55.6, 55.4, 

55.1, 54.9, 54.7, 54.6, 52.9, 52.6, 51.3, 51.1, 49.6, 42.5, 42.3, 39.6, 39.5, 38.6, 37.0, 36.2, 36.0, 

35.7, 32.2, 29.9, 27.7, 25.9, 25.7, 24.0, 21.9, 20.7, 20.7, 16.6. ESI-MS: C57H77N12O22 [M+H]+ 

calcd: 1281.5270, obsd: 1281.5206 (5.0 ppm)  
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Figure 4.32 HPLC chromatogram of 6. 
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Figure 4.33 1H-NMR of 6 (500 MHz, D2O). 
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Figure 4.34 COSY NMR of 6 (500 MHz, D2O). 
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Figure 4.35 HSQC NMR of 6 (500 MHz, D2O). 
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The purity of peptide 11 was verified with analytical C-18 HPLC (water, 0.1% trifluoroacetic acid). 

[α]D20 = + 31 (c 0.1, H2O). 1H NMR (500 MHz, D2O) δ 4.35 – 4.08 (m, 3H), 3.98 – 3.81 (m, 3H), 

3.81 – 3.67 (m, 2H), 3.08 – 2.92 (m, 8H), 2.83 (s, 2H), 2.41 – 2.16 (m, 6H), 2.07 – 1.70 (m, 6H), 

1.64-1.56 (m, 10H), 1.55 – 1.45 (m, 7H), 1.31-1.27 (m, 3H). 13C NMR (125 MHz, D2O) δ 60.9, 

56.7, 55.6, 54.1, 53.3, 52.9, 52.1, 46.6, 45.5, 45.3, 44.8, 44.6, 44.3, 44.1, 43.6, 43.5, 43.3, 42.6, 

42.3, 42.1, 40.8, 39.3, 39.1, 38.1, 36.8, 34.0, 32.2, 31.8, 31.3, 30.7, 30.2, 29.9, 29.7, 28.7, 27.4, 

27.2, 27.0, 26.4, 26.2, 26.0, 25.9, 24.5, 23.7, 23.2, 22.9, 22.0, 21.7, 21.4, 21.2, 21.1, 20.4, 19.7, 

17.7. ESI-MS: C48H81N16O22 [M+H]+ calcd: 1233.5706, obsd: 1233.5679 (2.2 ppm) 
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Figure 4.36 HPLC chromatogram of 11.  
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Figure 4.37 1H-NMR of 11 (500 MHz, D2O). 
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Figure 4.38 COSY NMR of 11 (500 MHz, D2O). 
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Figure 4.39 HSQC NMR of 11 (500 MHz, D2O). 
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Figure 4.40 ESI-MS of recombinant CD44. 
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Figure 4.41 ESI-MS of CD44 (O-Xyl). 
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Figure 4.42 ESI-MS of CD44 (O-Xyl-Gal).  
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