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ABSTRACT

CHEMOENZYMATIC SYNTHESIS OF HEPARAN SULFATE PROTEOGLYCAN AND
MIMETICS

By
Jia Gao

Proteoglycans (PGs) are an important class of glycoproteins widely distributed in mammals.
They are involved in numerous biological events, including tumor progression, inflammation, and
cellular communication. Generally, a PG is composed of a core protein and one or more
glycosaminoglycan (GAG) polysaccharide chains. The GAG chain is covalently attached to the
core protein via a serine residue in the consensus sequence -Ser-Gly-X-Gly- (X being any natural
amino acid residue but proline) by a common tetrasaccharide linkage. Heparan sulfate
proteoglycans (HSPGs), along with chondroitin sulfate proteoglycans (CSPGs) and keratan sulfate
proteoglycans (KSPGs), are main subtypes of the PG family. Naturally existing HSPGs, due to
complex post-translational modifications (PTMs) on the GAG chains, are highly heterogeneous.
That makes direct isolation of homogeneous HSPGs from natural sources almost impossible. To
date, preparing structurally defined HSPGs solely relies on formidable and tedious chemical
synthesis.

In this dissertation, two novel approaches have been investigated to expedite the synthesis of
HSPGs. The convergent chemoenzymatic approach takes advantage of efficient enzymatic
synthesis of heparan sulfate (HS) oligosaccharides and well-developed solid phase supported
peptide synthesis (SPPS). By substituting the non-functional tetrasaccharide linkage, the GAG
chain and peptide were conjugated through a flexible artificial linker to make a syndecan-1
mimetic, which mimics the natural structures of syndecan-1, an important member of HSPG

family. The mimetic binds strongly to integrin avf3, a key cell-surface protein that plays an active



role in tumor proliferation process. Furthermore, the mimetic compound is able to inhibit the
migration of breast cancer cells MDA-MB-231.

In the native form of PGs, the core protein and GAG chains are connected through a common
tetrasaccharide linkage consisted of GlcA-B(1—3)-Gal-B(1—3)-Gal-p(1—4)-Xyl-B(1—0O)-Ser to
efficiently prepare native heparan sulfate glycopeptides and glycoproteins, enzymes involved in
the PG linkage biosynthesis were investigated and developed as synthetic tools. Human f-1,4-
galactosyltransferase 7 (B4GalT7) was used to catalyze the transfer of galactose units and
synthesize galactose-xylose (Gal-Xyl) bearing PG glycopeptides. Human xylosyltransferase I
(XT-I), the enzyme that initiates PG biosynthesis in nature, was then studied and applied towards

the synthesis of PG linkage region.
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Chapter 1 Recent Advances on Glycosyltransferases Involved in the
Biosynthesis of Proteoglycan Linker Region

1.1 Introduction

Proteoglycans are an essential family of glycoproteins consisting of a core protein with one
or multiple glycosaminoglycan (GAG) chains, which are covalently attached to the protein through
a common tetrasaccharide linkage consisted of GlcA-B(1—3)-Gal-f(1—3)-Gal-B(1—4)-Xyl-
B(1—0)-Ser (Figure 1.1). PGs are widely present on cell surface and extracellular matrix. Their
functions are critically important to numerous biological events, including cell adhesions, cellular

signaling and interactions with growth factors.!*
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Figure 1.1 Schematic demonstration of the structure of proteoglycans. The tetrasaccharide linkage
is highlighted.’

The biosynthesis of the PG linkage tetrasaccharide involves the deployment of four
glycosyl transferases: xylosyltransferase-I/II (XT-I/IT), B-1,4-galactosyltransferase 7 (f4GalT7),

B-1,3-galactosyltransferase 6 (3GalT6) and B-1,3-glucuronyltransferase 3 (B3GAT3) (Figure



1.2). The first successful expressions and characterizations of B3GalT6 were reported by the
Furukawa and Esko groups two decades ago.% 7 The Sugahara group reported the first molecular
cloning and expression of B3GAT3, and subsequent characterizations of this enzyme in 1990s.%°
The follow-up investigations on B3GalT6 and B3GAT3 have been rather limited.!% !! Therefore,
this current review will focus on the recent progress made on the expression, characterization and

applications of the PG linkage glycosyltransferases XT-I/Il and f4GalT7.
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Figure 1.2 Biosynthetic assembly of the PG linkage region.!?

1.2 Xylosyltransferase-1/11 (XT-I/II)

To the best of my knowledge, the review article published by Wilson in 2004 is the first to
comprehensively summarize the contemporary understandings towards UDP-a-D-
xylose:proteoglycan core protein B-D-xylosyltransferases (XT-I and XT-II).!* In 2007, Gotting,

Kuhn, and Kleesiek published a review emphasizing the impact of mammalian xylosyltransferases



on PG-related diseases and human health.!* Since then, significant amounts of progress have been
made to gain insights on this key enzyme.
1.2.1 Expression and Purification of XT-I/I1

The discovery of peptide O-xylosyltransferase dates back to the 1960s.!>1? Afterwards,
this GAG-synthesis-initiating enzyme has been isolated from multiple sources.!>?* In 2000,
Gotting and co-workers reported the first molecular cloning and expression of XT-I and its
isoform.? In their study, the recombinant XT-I proteins from humans, mice and rats were
successfully expressed in Chinese Hamster Ovary (CHO-K1) cells.

In 2003, the Kleesiek group described high-level expression of a soluble histidine-tagged
recombinant XT-I using the High Five/pCG255-1 insect cell expression system.?¢ Stable clones
that express XT-I-V5-His (rXT-I-His) were generated. The human XT-I was purified by heparin
affinity chromatography using a POROS 20 HE2 column followed by Nickel affinity column. The
purified protein was verified by Western blot using polyclonal anti-XT-I antibodies.

Shortly after, Gotting and co-workers prepared a series of XT-I enzymes with point
mutations on the aspartate-any residue-aspartate (DXD) motifs by transient expression in High
Five insect cells.?’” A stable clone of High Five/pCG255-1 that expresses the soluble form of
histidine- and V5-tagged recombinant human XT-I with N-terminal 1-148 sequence truncated,
rXT-1-(A1-148)-V5-His, was also made in this study.

Miiller et al., in 2005, carried out individual site-directed mutagenesis of all 14 cysteine
residues into alanine.?® The recombinant wild-type human XT-I and the single mutants were
successfully expressed in High Five insect cells to assist the structure-activity study of XT-I. A
year later, in the work published by the same group, multiple N-terminal truncated human XT-I

enzymes were smoothly produced with the same insect cell expression system.



With the successes from CHO mammalian cell and High Five insect cell expression system,
the expressions of xylosyltransferases were extended to the human embryonic kidney 293 (HEK-
293), human osteosarcoma (SaOS-2) mammalian system, and Pichia pastoris yeast system.?-3 In
2006, Gotting group reported the first recombinant expressions of GFP-fused human XT-I and
multiple GFP-tagged XT-I/Il mutants using mammalian HEK-293 and SaOS-2 cells.?’ In the same
year, Brunner et al. expressed two invertebrate and two vertebrate xylosyltransferases, Drosophila
peptide O-xylosyltransferase (OXT), Caenorhabditis peptide O-xylosyltransferase (SQV-6), and
human xylosyltransferase I/I1 (XT-I/I1), with Pichia pastoris expression system.>® Two years later,
another successful story with Pichia pastoris expression system was reported by the Gotting
group.’!

1.2.2 Acceptor Specificity of XT-I/I1

The first description of the acceptors for XT-I dates back to roughly five decades ago.!>"!”:
32-34 In the pioneering studies, various uncharacterized exogenous or endogenous proteins were
validated to be acceptors of xylosyltransferases. Since then, understandings on the acceptor
specificity of XT-I/II have been significantly expanded.

In addition to acceptor proteins, diverse peptide acceptors have been derived from the
amino acid sequence around glycosaminoglycan attachment sites of different proteoglycans.!3: 2%
21,30,32,34-39 Among the reported acceptors of XT-I/II, bikunin protein is known to be one of the
best acceptors based on the Michaelis-Menten constants (Km). The bikunin peptide sequence
derived from the bikunin GAG-attachment site has later on been extensively used to study the
acceptor recognition properties of XT-I/I1,20: 23 30 31, 35, 37, 40-42
As the acceptor scope of XT-I expands, considerable effort has been put to determine its

minimal binding motif, Gly-Ser-Gly or Ser-Gly-x-Gly, where x = any amino acid.!*® 38 43-46



Meanwhile, some evidence indicates that the presence of serine residue may not be absolutely
required.’ *7 Beyond the minimal motif of acceptor binding, a consensus favored acceptor
sequence for XT-I, a-a-a-a-Gly-Ser-Gly-a-b-a, where ‘a’ being Glu or Asp and ‘b’ being Gly, Glu
or Asp, was deduced by Brinkmann and co-workers in 1997, based on the peptide sequence of
reported acceptors of xylosyltransferases.?’ Shortly thereafter, the common sequence was refined
by the same research group to a-a-a-x-Ser-Gly-x-Gly, where a = Glu or Asp and x = any amino
acid.?!

With the successful expression of XT-1, research focus was subsequently extended to XT-
II. Roch and co-workers discovered that XT-II possesses a consensus sequence analogous to that
for XT-I, a-a-a-a-Gly-Ser-Gly-a-a/Gly-a, where a = Asp or Glu.*

Lately, to investigate the acceptor recognition property of XT-I, Briggs and Hohenester
performed detailed analysis using a comprehensive bikunin-derived 12-amino-acid peptide
acceptor library in which the amino acid residue at each position had been mutated to one of all
the 20 common natural amino acids.*! Although a serine residue is highly preferred at the
xylosylation site, peptides with a threonine residue at position 0 also show noticeable activity
levels. The -1 position, originally a glycine, can accept a wide variety of uncharged amino acids.
While the -2, -3 and -4 sites generally favor acidic amino acids, individual replacement of the
glutamic acid residues does not exert strong influence on the enzymatic activity. The preference
for the acidic amino acids at positions preceding the xylosylation site has been attributed to non-
specific charge-charge interactions with the positively charged residues around the binding pocket.
For the +1 position, small amino acids including glycine, alanine, serine and threonine are strongly
favored. Surprisingly, a valine residue at +2 site enhances the activity level considerably, as

opposed to the native glycine. Overall, XT-I does not strictly require a certain acceptor peptide



sequence for the activity and exhibits a greater structure tolerance than previously described
(Figure 1.3). This recent discovery furthers contemporary understanding towards XT-I acceptor
recognition properties and implies vast application potentials attributing to the relaxed acceptor

requirements.

Figure 1.3 XT-I acceptor specificity. Eight peptides complexed with XT-I are superimposed.*!

1.2.3 Donor Specificity of XT-I/I1

Unlike the extensive study of acceptor promiscuity, investigations on the donor specificity
of XT-I/Il are rather limited and, until recently, both xylosyltransferases were considered
monofunctional to UDP-xylose. In a study done by the Gétting group, various non-native UDP-

sugars, including UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetyl-



glucosamine were examined with a soluble XT-II to test its donor promiscuity.>' However, there
were no observable transfers of the non-native sugar to the selected peptide acceptors under testing.
It suggests that the donor substrate scope of human XT-II is rather limited and may be restricted
to UDP-xylose.

In 2018, Briggs and Hohenester provided an in-depth structural investigation of XT-I with
high-resolution crystal structures.*! In the crystal structure of the ternary complex of XT-I with
both UDP-xylose and a peptide substrate, the presence of residue W392 in the UDP-xylose binding
site restricts the available space around the C5 of xylose, which potentially restricts the donor
scope of XT-I (Figure 1.4). This finding further supports the belief that XT-I/Il could be

monofunctional to UDP-xylose.

Figure 1.4 UDP-xylose binding pocket of XT-I. Residue W392 is in close proximity to the C5 of
xylose.*!

Nevertheless, a contradictory outcome was reported by Hendig group in 2015.%° In their



work, they discovered that XT-I was able to recognize the UDP-4-azido-4-deoxyxylose (UDP-
XylAz) and transferred the 4-azido-4-deoxy-xylose to the bikunin-like peptide
QEEEGSGGGQKK. In comparison, the glycosylation activity from XT-II using UDP-XylAz was
not observed. This is the first reported differentiation of XT-I/II activity and also, to the best of
our knowledge, the only example showing that XT-I could accept non-native UDP-sugar as a
donor substrate.

Since XT-I could tolerate the azido-modification on the C4 position, other small alterations
on xylose may potentially be accepted by the enzyme. To better understand the donor profile of
XT-I, more follow-up investigations are in great need.

1.2.4 Determination of XT-I/II Activity and Product Characterization

In the past decades, a variety of tools has been developed or applied to determine the XT-
I/IT activity. Dating back to 1960s, the Neufeld group and Dorfman group documented the first
measurements of the XT-I activity with '¥C radioactive-labelled UDP-xylose sugar donor
substrate.!>!7 In 2006, Brunner and co-workers applied matrix-assisted laser desorption ionization
— time of flight mass spectrometry (MALDI-TOF MS) and reverse-phase high performance liquid
chromatography (RP-HPLC) to analyze products of xylosyltransferase reactions.’® To obtain
detailed structural information, electrospray ionization (ESI) tandem mass spectrometry was
applied for the first time to pinpoint the location of the xylose unit.*

To confirm the PB-glycosylated linkage, Gotting and co-workers examined the XT-I
glycosylated products with linkage-specific cleavage by a- and B-xylosidase and base promoted
release of the glycan from the glycopeptide.?® The results clearly indicated a B-linkage between

xylose and serine. This method was later extended to XT-II-catalyzed reactions by Casanova and



co-workers.*! In their study, the linkage-specific digestion of the reaction products reveals that
XT-II is also a B-xylosyltransferase.

Recently, Briggs and Hohenester utilized a commercialized glycosyltransferase kit to
quantify the XT-I activity by monitoring the release of UDP from the sugar donor. The
luminescence was then measured to correlate the readout with the enzymatic activity.*!

Until now, the involvement of modern nuclear magnetic resonance (NMR) technique to
characterize the product structures has yet been reported. Likely in the near future, with
improvements on reaction scale and sample preparation, the conformation of the linkage would be
decisively defined by NMR experiments.

1.2.5 Structure-Activity Relationships (SAR)

With advances on efficient expression and purification of XT-I, substantial progress on the
structure-activity relationships of this important enzyme has been achieved during the past two
decades. Especially, the high-quality crystal structures of XT-I and its ternary complex with UDP-
xylose and peptide acceptors have drastically enhanced the current understanding of how XT-I
interacts with the substrates and offer valuable insights on the catalytic mechanism.*!

In 2004, Goétting et al. first investigated the functions of XT-I DXD motifs with mutants
that carried point mutations on the two short segments, 3'*“DED?!¢ and "*DWD’#’.2’ Mutations on
the first 3'*“DED3!6 motif do not affect the XT-I function. In contrast, the D745G mutation abolishes
the catalytic function of XT-I, even though the alterations on 7**DWD#” do not strongly affect the
donor substrate bindings.

A year later, with 14 mutants carrying individual point mutations of cysteine into alanine,
Miiller and co-workers investigated the importance of available cysteine residues to XT-I

functions.?® In terms of enzymatic activity, mutations on 5 of the 14 cysteine residues resulted in



over 90% loss of XT-I function. These findings imply the importance of the 5 Cys residues to the
XT-I activity. Interestingly, alanine replacement of the cysteine residues close to the C-terminus
did not exhibit any considerable effects on XT-I catalysis. The treatment of the cysteine-targeting
N-phenylmaleimide reagent induced concentration-dependent inhibitions on all enzymatically
active cysteine-to-alanine mutants but not the wild-type XT-I. These results indicate that all the 14
cysteine residues may exist in form of cystine and there are no free thiol groups available in wild-
type XT-I. In addition, the enzymatic activity of wt XT-I and its single mutants could also be
effectively reduced under the treatment of high-dose UDP or glycosaminoglycans. Meanwhile, all
the mutants demonstrated comparable binding to the immobilized UDP and heparin as the wild-
type XT-I. Taken together, it is likely that the cysteine residues present in XT-I do not directly
participate in UDP or GAG bindings and mutations on them triggered no drastic conformational
changes in the corresponding binding sites.

Shortly after, Miiller and co-workers furthered their investigations with a series of N-
terminal truncated forms of human XT-1.** According to their results, the first 260 amino acids at
the N-terminus of the wild type are not required for the enzymatic activity. However, the XT-I
catalytic function would be abolished with an additional deletion of 12 amino acids,
G*!'KEAISALSRAK?", from the N-terminus. Since the individual replacement of each non-
aliphatic residue in the 12 amino-acid sequence by alanine did not exert substantial influence on
the enzyme activity in their study, it was suggested that this motif could be crucial to maintain the
proper conformation of the enzyme. Interestingly, the truncation of P”2!KKVFKI’?” motif, which
is similar to the heparin-binding consensus sequence identified by Cardin and Weintraub,* does
not affect the heparin binding of XT-I but dramatically impairs the proper enzymatic function,

implying the necessity of this motif to the protein conformation.*®
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Over a decade later, in 2018, Briggs and Hohenester provided an in-depth structural
investigation of XT-I with high-resolution crystal structures.*! The structures in complex with
UDP-xylose and peptide acceptors offer valuable insights on how the enzyme recognizes and
interacts with the substrates. To obtain the ternary complex of XT-I with both UDP-xylose and a
peptide substrate, the serine residue originally in the acceptor peptide sequence was replaced by
alanine to abolish its acceptor function. The UDP diphosphate moiety of the donor binds with
positively charged amino acid residues R598 and K599, instead of a divalent metal ion. The
presence of residue W392 in the UDP-xylose binding site restricts the available space around the

C5 of xylose, providing an explanation for the limited donor scope of XT-I (Figure 1.5).

Figure 1.5 Active site of XT-I in complex with UDP-xylose donor and a peptide acceptor.*!
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The crystal structure around the peptide-binding site suggests that the network of hydrogen
bonds is not sequence specific. Ten out of the eleven hydrogen bonds between the acceptor peptide
and the catalytic domain occur on the carbonyl and amide groups along the peptide backbone. To
gain insights into the characteristic C-terminal domain of XT-I (Xylo C domain), a variety of
single mutants was expressed. Results demonstrated that point mutations on the Xylo C structure
in contact with the catalytic GT A domain did not impede the XT-I enzymatic functions. Briggs
and Hohenester suggest that the presence of the Xylo C domain, instead of being directly required
for xylosylation activity, likely facilitates the recruitment of enzymes involved in subsequent GAG
biosynthesis.

1.3 B-1,4-Galactosyltransferase 7 (B4GalT7)

1.3.1 Expression and Purification of p4GalT7

The B4GalT7 enzyme represents the seventh member of human f3-1,4-galactosyltransferase
family. Its molecular cloning and expression were first achieved by the Clausen group in 1999.5°
The full-length B-1,4-galactosyltransferase and a truncated version containing amino acid residues
63-327 were prepared using the Sf9 and High Five insect cell expression systems. The purification
of P4GalT7 was then accomplished by sequential DEAE/Amberlite and S-Sepharose
chromatography.>!

The Lattard group, in 2009, successfully expressed the membrane form of B4GalT7 in
HeLa cells and a soluble maltose-binding protein (MBP)-B4GalT7 fusion protein with an N-
terminal truncation in E. Coli BL21 cells.’? The MBP-fused p4GalT7 was purified by an amylose
column. The desired protein was eluted out with 20 mM maltose in buffer A (20mM MOPS
containing 150 mM NaCl at pH 7.0), and further dialyzed against the same buffer.

In a research work published by Ramakrishnan and Qasba in 2010, the catalytic domain of

12



Drosophila melanogaster p4GalT7, in its native form or with a variety of modifications, was
individually prepared crystallization studies.’® The variants included an enzyme with an 11-amino
acid truncation from the C-terminus (Cd7AC) and ones carrying additional bovine p4GalT1
peptide fragments at the N-terminus (P-Cd7AC and P1-Cd7AC).

Since the MBP-B4GalT7 fusion protein produced in previous work only exhibited modest
solubility and was prone to aggregation after the release of MBP fusion partner by protease, in
2010, the Qasba group designed a soluble form of human f4GalT7 using galectin-1 as the fusion
partner to facilitate the folding and improve its stability and solubility.>* This fusion form of
B4GalT7 was expressed with an E. coli expression system. The initial purification was achieved
with an alpha-lactose column and the target protein, galectin-1-human-B4GalT7, was eluted out
with 100 mM lactose. Subsequently, the galectin-1 was cleaved off the protein with the Tobacco
Etch Virus (TEV) protease. In this study, another MBP-fusion form of human f4GalT7 plasmid,
pmal-2x-hum-B4GalT7, was constructed, and the enzyme, MBP-human-p4GalT7, was expressed
effectively in E. Coli. The MBP-tag assisted the purification with an amylose column as previously
reported.> Factor Xa protease cleaved off the MBP tag. The soluble form of human B4GalT7 was
eventually purified with UDP-agarose columns.

In direct comparison to the two MBP-fusion forms, the galectin-1-human-f4GalT7 created
exhibits great solubility and is less prone to aggregation, displaying its superior stability. It is the
first documented success of galectin-1 as a fusion partner acting as a chaperone for the preparation
of human B4GalT7 in E. Coli cells.

Meanwhile, in a study reported by Talhaoui and co-workers, HeLa cells or CHO pgsB-618
cells were transfected with either wild-type human B4GalT7 plasmid or single-mutant plasmids,

individually, to aid the determination of catalytically active residues.’® In addition, E. coli
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BL21(DE3) cells were also used to prepare a soluble GST-fusion form of f4GalT7. Its purification
was attained via the GST tag with glutathione-Sepharose 4B packed affinity column.

In 2013, the Qasba group unveiled the crystal structures of Drosophila f4GalT7 and a
single mutant D211N B4GalT7 in complex with UDP-galactose as the donor and xylobiose as the
acceptor, respectively.®’ In this study, the plasmid of an N-terminally truncated human p4GalT7
(B4GalT7A81) was constructed and the preparation of this truncated protein was carried out
following previously reported conditions.>*

The Fournel-Gigleux group, in 2015, constructed multiple vectors for different forms of
human B4GalT7 and successfully expressed N-terminus truncated GST-tagged human B4GalT7
(B4GalT7ANt60) using E.coli BL21 (DE3) cells.®® This is the most recent report of unique
expression of human p4GalT?7.

1.3.2 Acceptor Specificity of p4GalT7

The early report on 4GalT7 acceptor specificity dates back to 1994.° Esko and co-workers
examined the priming of heparan sulfate using a variety of xylosides carrying non-native
aglycones. This is the first demonstration that certain galactosyltransferase accepts xylosides as its
substrates to enable heparan sulfate biosynthesis. In the following years, an increasing number of
chemically modified xylosides were tested and the P4GalT7 acceptor scope expanded as
investigations continued.%0-62

In 2007, a library of thio-xylosides was prepared by the Ellervik group to examine the
effect on GAG chain priming.®® In the study, for the first time, they demonstrated that thio-
xylosides could be tolerated by the enzymes for GAG biosynthesis. Shortly after, Abrahamsson et
al. assessed GAG priming capability of various xylosylated naphthoic acid-amino acid

conjugates.®* Only the most nonpolar analog initiated the GAG biosynthesis in T24 cells. Two
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years later, Victor and co-workers built a library of metabolically stable click-xylosides with
hydrophobic groups attached. Priming activities were observed with this novel group of xylosides
using CHO cell line.%® The in vitro studies unveiled that aglycone moieties of xylosides affect
sulfation, GAG chain composition and length. These results demonstrated that multiple O-, S-, and
C-xylosides could be processed by p4GalT7 in vitro.

In a research work published by the Fernandez-Mayoralas and Garcia-Junceda groups in
2011, a collection of decoy xyloside acceptors was chemically synthesized and tested with a
recombinant soluble B4GalT7. This was the first demonstration that recombinantly expressed
B4GalT7 is promiscuous in the aglycon moieties of the xylose acceptor.5®

Three years later, the Ellervik group further explored the substrate promiscuity of the
enzyme with a truncated GST-B4GalT7 and chemically modified xyloside analogs.%” In contrast
to the great tolerance on aglycones, the truncated GST-B4GalT7 failed to process most of the
xyloside analogs to any significant extent. Only a few xyloside analogs carrying modifications on
C2 or C5 positions were galactosylated. Subsequent molecular modeling revealed that the binding
pocket of B4GalT7 is narrow. Xylose, as the optimal substrate, is required to match with the precise
set of hydrogen bond acceptors in the pocket.

In 2015, more in-depth investigations were carried out to gain understandings on acceptor
structure requirements.® In this study, xylosides with varied aglycon size, anomeric configuration,
linker length and electronic properties were carefully examined and compared. In general, only
xylosides with the B-anomeric configuration would be smoothly converted by B4GalT7. The
galactosylation capability of substrate can be enhanced by replacing the anomeric oxygen with
sulfur. Substituting it with carbon reduces the enzymatic activity. In line with prior findings, bulky

aglycons could be accepted.
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Recently, a variety of xylosides and xyloside analogues carrying 2-naphthyl (Nap) or 4-
methylumbelliferyl (MU) aglycone was synthesized by the Ellervik group and the Wagner
group.®®”3 From the assay results, xyloside analog 2-naphthyl B-D-GlcNAc functioned as an
acceptor substrate.”” And analogs having an endocyclic sulfur atom proved to be great substrates
for the enzyme.”?

1.3.3 Donor Specificity of p4GalT7

In comparison with acceptor specificity, investigations on f4GalT7 donors are limited.>*
%6 The first detailed examination on B4GalT7 donor scope was reported in 2009 by the Lattard
group. Several non-native UDP-sugars, including UDP-Xyl, UDP-Glc, UDP-Man, UDP-GIcA,
UDP-GalNAc and UDP-GIcNAc, were individually incubated with purified MBP-B4GalT7.
Among them, UDP-Xyl and UDP-Glc were accepted by the enzyme, although with much lower
activities with 27-fold and 11-fold decreases as opposed to UDP-Gal, respectively.>

Fournel-Gigleux group reported similar results a year later.’® Using 4-MU xyloside as
acceptor, wild-type p4GalT7 was able to process UDP-Xyl and UDP-Glc, even though the
observed activity levels were low. The W224H mutant failed to retain the donor promiscuity.
1.3.4 Determination of p4GalT7 Activity and Product Characterization

Back to 1990s, in cellulo GAG priming with f-D-xylosides was probed using radioactive
[*°S]SO4* and [6-*H] D-glucosamine.>® Later, UDP-[!*C]-Gal was used to track the activity of
secreted B4GalT7 enzyme.%® '+ 7> Almeida and co-workers performed one-dimensional 'H NMR,
two-dimensional '"H-'"H TOCSY, and '*C-decoupled 'H-'3C HSQC and HMBC experiments to
analyze the product structure in details. The NMR data confirmed the newly formed
GalpB1—4Xylp linkage.®® In 2009, the Lattard group applied NMR techniques, including 'H, 13C,

HSQC, TOCSY, COSY and NOESY, to thoroughly characterize the reaction products.’? The
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significant chemical shift changes on H-4 and C-4, together with a large *Jui> n2> value, supported
the desired f1—4 linkage.

In 2005, RP-HPLC equipped with a C18 column was for the first time applied to monitor
the p4GalT7 reactions by Gulberti and co-workers.’”® This analytical method was then optimized

52, 66-68

and more routinely used to assess 4GalT7 enzymatic activity. A phosphatase-coupled
glycosyltransferase assay, in which a phosphatase is used to convert the released UDP into
inorganic phosphate for subsequent colorimetric quantification, was lately developed and applied
to kinetic studies of p4GalT7.7% 77
1.3.5 Structure-Activity Relationships

Pioneering investigations into the p4GalT7 catalytic domain trace back to 2010.3 3¢ With
the first high-resolution crystal structure of Drosophila B4GalT7 catalytic domain resolved,
Boopathy and Pradman discovered a new Mn?*-binding motif (**'HXH?*?), in addition to the DXD
motif common in B4GalT family.>® Based on the molecular docking result, the O4 hydroxyl group

! side-chain carboxylate

in xylose is expected to form a strong hydrogen bond with the Asp?!
oxygen atom for acceptor activation. The presence of Tyr!”” greatly limits the space in the binding

pocket (Figure 1.6). The steric hindrance imposed by this bulky residue may explain why 4GalT?7

rejects most of the chemically modified xyloside analogs as acceptors.
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Figure 1.6 Molecular docking of glucose into the binding pocket of Drosophila B4GalT7. 02, O3
and O4 hydroxyl groups of docked glucose molecule are in close proximity to catalytic residue
D211/D212. Residue Y177 imposes steric hindrance on the C6/06 atom of the glucose molecule,
implying only xylose would be accommodated by the enzyme.>?

In the same year, the Fournel-Gigleux group reported the first detailed SAR investigation
on the active site of human B4GalT7.5 Canonical motifs !DVD!'® and 22! FWGWGEDDE?? were
identified in hp4GalT7 (Figure 1.7). D163A or D165A point mutation completely abolished the
enzyme activity. In comparison, replacement of D165 with glutamic acid retained, albeit reduced
the hB4GalT7 activity. For the N-terminus of conserved 22!FWGWGEDDE? region, F221A
mutation may affect the conformation of acceptor-binding site, as reflected by a 13-fold in the Km
value of 4-MU-xylose. Meanwhile, W222F mutation did not show apparent effects on the affinity
of either the donor or the acceptor. W224F and G225A mutants failed to demonstrate any
observable enzyme activities, while G223A mutant maintained roughly 40% of the enzyme
function. Further investigations suggested residue W224 plays a critical role in the donor and

acceptor substrate binding. For the C-terminus of the peptide region, E227D/E230A did not impact
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the donor or acceptor binding. In contrast, E227A/D228A/D229A/D229E mutants abolished the

catalytic activity.

Figure 1.7 Molecular modeling of human B4GalT7 in complex with UDP-Gal. a) Predicted
complex formed with UDP-Gal, Mn?*, and '*DVD!'%5/2"HLH?%; b) Predicted interaction between
B-phosphate of UDP-Gal and residue W224. The protein a-carbon backbone is colored in green.
Key residues in the active sites, UDP-Gal, and Mn?* are highlighted.>¢

In 2013, the co-crystal structure of Drosophila D211N B4GalT7 mutant in the closed
conformation with donor UDP-Gal and acceptor xylobiose was published by Tsutsui and co-
workers.*’ In their study, an additional hydrogen bond is observed between Tyrl77 side-chain -
OH group and the B-phosphate oxygen atom of the UDP-Gal donor. The catalytic base Asp211
interacts with O3 and O4 atoms of the bound xylose acceptor via hydrogen bonds (Figure 1.8).
Although the acceptor binding site is hydrophobic due to the presence of Tyr194, Tyr196, Tyr199
and Trp224, its neighboring region is highly positively charged to provide a high affinity to the

acidic-residue-rich xylose attachment sites of native proteoglycans.
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Figure 1.8 Xylobiose binding to Drosophila f4GalT7 in a closed conformation. The active site is
colored in green.’’

The Ellvervik group later studied the enzyme-substrate interactions with their synthesized
xyloside analogs.® Despite the steric effect imposed by the chemical modifications of the aglycon,
02, 03, and O4 from the xylosides form a hydrogen bonding network with the catalytic residues

N211 and D212 (Figure 1.9).
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Figure 1.9 D211N B4GalT7 in complex with UDP-Gal, Mn?>* and a xyloside analog. The protein
is colored in blue. UDP-Gal and the xyloside analog are highlighted in grey.®®

Recently, Fournel-Gigleux group extended the computational analysis to human
B4GalT7.%® Their docking simulation results identified a hydrophobic region, formed by Tyr194,
Tyr196 and Tyr199, that provides stacking interactions with the aglycone and the xylopyranoside
sugar ring. The acceptor xyloside is oriented and activated through a hydrogen bond network with

Asp228, Asp229 and Arg226 (Figure 1.10).
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Figure 1.10 The active site of human p4GalT7 in complex with UDP-Gal, Mn?* and 4-MUX. The
protein a-carbon backbone is colored in grey. Key residues in the active site and substrates are
highlighted.®
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Figure 1.11 Overview of proposed binding pattern of xylosides and UDP-Gal in the B4GalT7
binding pocket.”!
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1.4. Future Outlook

While significant progress has been made on the key glycosyltransferases involved in
proteoglycan linkage region synthesis, application of these biocatalysts is in its infancy. From the
perspective of synthesis, deploying the four enzymes may lead to a highly -efficient
chemoenzymatic preparation of the PG linkage bearing glycopeptides. Together with well-

developed GAG synthesis enzymes,’® 7

it may pave the road towards native homogeneous PG
glycopeptides and glycoproteins. A library as such would be highly valuable for in-depth structure-
activity relationship investigations. As traditional chemical synthesis can be highly tedious and
labor intensive, PG enzymatic synthesis would serve as a disruptive approach to dramatically
reduce the time, effort, and materials required to prepare PG compounds, making the process
faster, easier, and ‘greener’.

In addition, enabled by advanced computational technology, biocatalytic enzymes could
be re-designed or re-purposed to tailor specific research needs. Among the four enzymes needed
to make the PG linkage, XT-1 is a particularly promising target. With its ability to recognize certain
binding motifs, a properly engineered XT-I variant could potentially transfer non-native sugars,
for instance, an azido-sugar, to a wide range of biological proteins. The labelled proteins may then
be functionalized with a variety of fluorescent probes or affinity tags to support diverse research
aspirations. If the other enzymes involved in PG linkage assembly could tolerate the chemically

modified glycoproteins as their substrates, they would become a highly valuable biocatalytic

toolkit to facilitate investigation of the multifaceted biological functions of PGs.
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Chapter 2 Convergent Chemoenzymatic Synthesis and Biological Evaluation of
a Heparan Sulfate Proteoglycan Syndecan-1 Mimetic

2.1 Introduction

Heparan sulfate proteoglycan (HSPG) consists of one or more heparan sulfate (HS) chains
linked to serine residues in the core protein.! Ubiquitous on mammalian cell surface and in the
extracellular matrix, HSPGs are involved in a wide variety of important biological processes,
including regulations of growth factors, cell adhesions and cell-cell communications.?> While
heparan sulfate (HS) is generally considered to be the main determinant of HSPG activities, the
core protein of HSPG can have significant impacts as well.> 7 However, due to the extreme
heterogeneity of HS structures in nature, it is highly challenging to purify homogenous HSPGs
from natural sources, presenting significant hurdles to decode the roles of HS and the core protein
in HSPG functions. Chemical synthesis of HS glycopeptide has been reported, which is highly
challenging due to instabilities of the HS glycan under typical peptide synthesis conditions.® ! In
this chapter, I have developed a new convergent strategy integrating chemical synthesis with
enzymatic reactions to synthesize a well-defined glyco-polypeptide mimicking the complex
structure of HSPG such as syndecan-1.

Syndecan-1, a prototypical HSPG on the mammalian cell surface, can bind with integrins
mediating cell adhesion, signaling, and migration. Synstatin (SSTN), a 36 amino acid long
polypeptide corresponding to residues 92-117 of human syndecan-1, has been identified as the
binding sites of avp3 and avp5 integrins.!! While HS is known to interact with integrins, it is not
clear how displaying HS in the context of a glycoprotein impacts its function. To more closely
mimic the structural complexity of syndecan-1, we designed glyco-polypeptide analog 1, which

contains a 48 amino acid residue polypeptide backbone containing the full length synstatin
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sequence, as well as a HS glycan chain bearing the full structural features of HS encountered in
nature, including iduronic acid, glucuronic acid, O-sulfation and N-sulfation.

2.2. Results and Discussions
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Figure 2.1 Structure of the HSPG syndecan-1 mimetic 1.

To prepare the complex structure of HSPG mimetic 1, retrosynthetically, the target
molecule is divided into glycopeptide module 2 and synstating,.117 peptide 3 bearing a pentaglycine
at its N-terminus (Scheme 2.1), which would be joined through an irreversible sortase A-mediated
ligation. The glycopeptide 2 containing the ‘LPETG’ sorting sequence at the C-terminus would be
assembled through the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) of azido-

oligosaccharide 4 and alkynyl peptide 5

Module 2 HS

sortase HS CuAAC octasaccharide
mediated |glycopeptidel ——— 4

Ilgatlon +
glycopeptld Gly5SSTNg;.4 + Alkynyl
peptdie 5
Syndecan-1 Mimetic 1 GlysSSTNg;.4

Synstatin peptide 3

Scheme 2.1 Retrosynthetic analysis of HSPG syndecan-1 mimetic 1.
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Scheme 2.1 (cont’d)
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The heparin octasaccharide 6 was synthesized by the Liu group.'? To prepare the HS
oligosaccharide 4, the nitro moiety in the aglycon of heparin octasaccharide 6 (Scheme 2.2) was
reduced by catalytic hydrogenation.'? This was followed by the installation of the azide linker at
the reducing end with 6-azidohexanoic acid NHS ester 8 leading to azide functionalized HS

octasaccharide 4 (Scheme 2.2).
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Scheme 2.2 Synthesis of HS octasaccharide 4. Reagents and conditions: (a) Pd/C, Hz, H20, 95%;
(b) 6-azidohexanoic acid NHS ester 8, aq. NaHCO3, 78%.
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With the glycan in hand, alkynyl peptide 5 was synthesized via microwave-assisted solid
phase supported peptide synthesis (SPPS) starting from Fmoc-glycine loaded resin 9 (Scheme
2.3). The peptide 5 is terminated with pentaglycine at its N-terminus. Because of the synthetic
difficulties of certain homooligopeptides, the Fmoc-protected pentaglycine building block Fmoc-
pentaglycine 10 was prepared in a separate reaction and purified with preparative HPLC.!> 14 10
was then introduced to the N-terminus of the growing peptide chain attached to the solid phase
(Scheme 2.3). Subsequent acidic treatment (TFA/TIPS/H20) cleaved the Fmoc-Gly5 terminated
peptide 11 off the resin with all acid-labile protecting groups removed. After treatment of 11 with
the propargyl alkyne NHS ester 12, the target peptide 5 was obtained in 18% overall yield. In a
similar manner using microwave assisted SPPS, the 33-mer synstatin peptide 3 with the N-
terminus pentaglycine was prepared with an overall yield of 24% (Appendix Scheme 2.5).

To obtain the glycopeptide mimetic, azido-oligosaccharide 4 and alkynylpeptide S (1:1
molar ratio) were subjected to copper catalyzed alkyne azide cycloaddition (CuAAC) and the
desired product module 2 was obtained in 88% yield following diethylaminoethyl cellulose
(DEAE)-HPLC purification (Scheme 2.3). The CuAAC condition is mild, which did not affect the

structural integrity of the HS glycan or the glyco-polypeptide.
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Scheme 2.3 Microwave-assisted synthesis of alkyne-functionalized SorTag-containing peptide 5
and formation of glycopeptide mimetic 2 through the CuAAC. Reagents and conditions: (a) Fmoc-
deprotection: 20% piperidine/DMF, 50 °C, 2 min, microwave; (b) Amino acid coupling: 5 eq.
Fmoc-AA-OH, HBTU, HOBt, DIPEA, DMF, 50 °C, 10 min, microwave; (c) Oligopeptide
coupling: 5 eq. Fmoc-pentaglycine 10, HATU, DIPEA, DMF, 50 °C, 10 min, microwave; (d) Resin
cleavage: TFA/TIPS/H>O (95:2.5:2.5, v/v/v); (e) Propargyl alkyne NHS ester 12, aq. NaHCOs,
18% overall. (f) CuSO4, THPTA, Na ascorbate, H>O, 88%.

To extend the peptide backbone, the key ligation between glycopeptide module 2 and Gly5-
SSTNo»-119 3 was carried out under the catalysis of sortase A (SrtA), a transpeptidase that crosslinks
the pilin subunits to assemble pili on the surface of gram-positive bacteria (Scheme 2.4).1> 1 To
achieve effective ligations, SrtA from Staphylococcus aureus (SttAswpn) typically requires a
LPXTG-containing peptide donor (X can be any natural amino acid) and an acceptor peptide

having oligoglycine fragment at its N-terminus.!” SrtAgaph is able to irreversibly couple peptide
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fragments in the presence of nickel (II) sulfate if the donor peptide carries a Gly-His-Gly tripeptide
at the C-terminus of the ‘LPETG’ sorting signal (SorTag). This results from a Nickel-peptide
complex with the histidine residue at the GGHG motif, thus reducing the nucleophilicity and the
reversible coupling of the cleaved peptide.'¢

The SrtAswph-mediated ligation has been tested using GAGALPETGGHG as the donor
peptide and GGGGGLPAG as the acceptor peptide. Reaction conditions, including buffer, pH,
temperature, reaction time and the amount of NiSO4 were carefully optimized (Appendix Table
2.2) to minimize the undesired hydrolytic activities and improve the coupling efficiency.
Incubation of SrtAsw.ph With the peptide donor at weakly acidic or neutral pH (pH 6.0 — 7.0) at 37
°C led to rapid hydrolysis of the donor. Increasing the pH of the reaction media to slightly basic
(pH 8.0-8.5) and lowering the reaction temperature to 25 °C in the presence of 1.5 equivalent
nickel (II) sulfate completely shut down the hydrolysis side reaction, while retaining a comparable
rate of ligation reaction with the acceptor. In the presence of the donor substrate, a quantitative
conversion of the substrate into the product was observed in 10 hours as monitored by LC-MS.
When the optimized reaction condition was applied to the ligation of glycopeptide module 2 and
the synstatin peptide 3 (Scheme 2.4), the desired ligation product 1 was obtained in 86% isolated
yield on a milligram scale. 'H NMR and HPLC analysis confirmed the product identity and purity.
Glyco-polypeptide 1 has a Fmoc moiety at the N-terminus, which can be potentially deprotected
and serve as a new acceptor for further peptide backbone extension via another sortase mediated

ligation if necessary.
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nl]leglt?;id glycopeptide | G!Y55STNg2-1
glycopeptud +] GlysSSTNg; 4 g

Syndecan-1 Mimetic 1

Scheme 2.4 Sortase A-Mediated Ligation. Reagents and conditions: (a) SrtAstaph (5 mol%), 50 mM
Tris-HCI buffer, 150 mM NaCl, 5 mM CacCl,, 0.5 mM mercaptoethanol, NiSO4 (1.5 equiv to 2),
pH 8.5, 25°C, 4 hours, 86%.

With the glyco-polypeptide mimetic 1 in hand, we investigated its binding with integrin
through biolayer interferometry (BLI). The glyco-polypeptide mimic 1, GlysSSTNo2.119 3, and HS
glycan 4 were biotinylated and immobilized onto streptavidin-coated sensors. Their bindings with
soluble integrin avB3 were measured via BLI. While all three compounds were able to bind with
integrin avp3, interestingly, little dissociation was observed in all cases under the conditions
examined (Figure 2.2). Kinetic analysis indicated that the glyco-polypeptide mimetic 1 was able
to bind integrin faster, with a kon rate more than 2-fold greater than the rates of glycan or synstatin

peptide (Table 2.1).
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Figure 2.2 BLI sensorgrams of immobilized (a) HS octasaccharide 4, (b) GlysSSTNg2.119 3 and
(c) glyco-polypeptide mimetic 1 binding with integrin avp3. Each set of binding curves was
generated with integrin concentration 104.7 nM, 52.4 nM, and 13.1 nM, from top to bottom. Fitting
curves were generated using the 2:1 binding model from Octet Data Analysis 9.0.0.12.

Syndecan-1 Mimetic 1 GlysSSTNo2-1193 HS glycan 4

kon (1/Ms) 5.08 x 10* 1.98 x 104 9.60 x 10°

Table 2.1 The on-rates (kon) of 1, 3, and 4 with integrin avp3.

As the glyco-polypeptide mimetic 1 can bind with integrin strongly, we next measured its
effect on cancer cells. MDA-MB-231 breast carcinoma cells activate the cell-surface integrin avf33
through the complex formation of syndecan-1, insulin-like growth factor-1 receptor, and integrin

to migrate.!'® In addition to syndecan-1 mimetic 1 and GlysSSTNo,-119 3, heparin, which binds more
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tightly with integrin than heparan sulfate, was chosen to test the inhibitory effect on the migration

of MDA-MB-231 using wound-healing assays (Appendix Figure 2.4).3-!° Over 20 hours, heparin

and Gly5-SSTNo.119 peptide reached the maximal inhibitory effect at the highest testing

concentration of each (6 uM). The maximal inhibition from heparin is ~18% reduction in relative

migration. Among the analytes, the syndecan-1 mimetic 1 at 6 pM achieved the strongest

inhibition, >30% reduction in relative migration (Figure 2.3 and Appendix Table 2.3).
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Figure 2.3 Wound-healing assay results of (a) GlysSSTNo»-119 3, (b) heparin, and (c) syndecan-1
mimetic 1. Each plot is displayed as mean + S.D. of six biological replicates. T test was used for
statistical analysis. *p<0.05, **p<0.01, ***p<0.001. The p values were determined through a two-
tailed unpaired t-test using GraphPad Prism.
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It is possible that the enhanced efficacy of the HSPG mimic 1 compared to glycan or
peptide alone was due to the ability of the mimic to simultaneously engage multiple binding sites
on the integrin. To gain insights on the integrin avP3 binding process, in silico molecular docking
simulations were performed, and potential integrin binding sites of GlysSSTNog».119 peptide 3 and
HS oligosaccharide 5 on the integrin were identified (Appendix Figure 2.5 and Figure 2.6).2% 2!
The syndecan-1 mimetics 1 was found to be large enough to bridge the synstatin and HS binding
sites at the same time (Appendix Figure 2.7, Table 2.4 and Table 2.5). This finding supports a
potential synergy from SSTNo»-119 and HS in integrin binding.

2.3 Conclusions

In conclusion, with the tremendous structural complexity of HSPG, access to homogeneous
HS glycopeptides with defined structures is highly challenging. In this chapter, I developed an
expedient approach to produce an HSPG mimetic, which contain a 48 amino acid residue
polypeptide backbone and the glycan chain with the full structural features of HS in nature
including iduronic acid, glucuronic acid, 2-O, 6-O and 3-O sulfations, and N-sulfation. The
deployment of HS synthetic enzymes, CuAAC and sortase A-mediated ligation greatly shortens
the synthetic routes and enhances the overall efficiency of the synthesis. The synthetic strategy is
convergent, which can offer great potential flexibility in varying the glyco-polypeptide structures
with other peptide or glycan sequences.

The interaction of the glyco-polypeptide mimic 1 with integrin was investigated. Binding
study showed that the glycopeptide was able to engage integrin avp3 faster than either the HS
glycan or synstatin peptide alone. Although, for all three ligands, dissociations are slow, the higher
on-rate of HSPG mimetic suggested a cooperation of HS oligosaccharide and synstatin in integrin

binding. Furthermore, the glycopeptide 1 inhibited the migration of triple negative breast cancer
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cell MDA-MB-231, opening up the door to investigate the cellular functions of HSPG with

structurally well-defined mimetics.
2.4 Experimental Section

2.4.1 Materials

Sortase A-expressing BL21 cells were obtained from Prof. Xue-long Sun (Cleveland State
University, OH). Gibco LB broth and LB agar were purchased from Thermo Fischer Scientific
(Waltham, MA). Nickel columns and Nickel resins were purchased from Bio-rad (Hercules, CA).
SDS-PAGE gels and 10x Tris/Glycine/SDS electrophoresis buffer were purchased from Bio-rad
(Hercules, CA). Tris-HCI buffer was purchased from MilliporeSigma (St. Louis, MO). Sephadex
G-15 and G-25 were purchased from MilliporeSigma (St. Louis, MO). EZ-Link™ Sulfo-NHS-
LC-Biotin was purchased from Thermo Fischer Scientific (Waltham, MA). Recombinant human
integrin avp3 was purchased from R&D Systems (Minneapolis, MN). Heparin sodium salt was
purchased from MilliporeSigma (St. Louis, MO). MDA-MB-231 breast carcinoma cells were
obtained from Prof. Kathy Gallo (Michigan State University, MI). Dulbecco’s Modified Eagle
Medium (DMEM) was purchased from MilliporeSigma (St. Louis, MO). Fetal Bovine Serum was
purchased from Thermo Fischer Scientific (Waltham, MA). Human EGF was purchased from
Alomone labs Ltd. (Jerusalem, Israel). Human vitronectin protein was purchased from R&D
Systems (Minneapolis, MN).
2.4.2 Preparation of Oligosaccharide 7

The octasaccharide compound 6 was dissolved in H>O (5 mg/ml), to which Pd/C (10
mg/ml) was added. The mixture was then placed under a hydrogen balloon and stirred at room

temperature for 1 h. After completion of the reaction, the mixture was filtered through a PTFE
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syringe filter (0.2 mm, 13 mm). The filtrate was concentrated, and the desired product was purified
by a Sephadex G-10 column.
2.4.3 Preparation of Oligosaccharide 4

Compound 7 was dissolved in aqueous solution of NaHCOs3 at pH 8.5, after which 1.5
equivalents of 6-azidohexanoic acid NHS ester in anhydrous DMF were added. The reaction was
then stirred at room temperature for 6 hours. Upon completion, the reaction mixture was directly
loaded onto a Sephadex G-10 column for purification.
2.4.4 General Procedure for Automated Solid-Phase Peptide Synthesis

All the peptides reported were synthesized on a Liberty Blue™ Automated Microwave
Peptide Synthesizer following standard Fmoc-based solid-phase peptide synthesis protocol. The
2-chlorotrityl resins with or without Fmoc-amino acid loaded were purchased from Chem-Impex
(Wood Dale, IL). The Liberty Blue software from CEM Corporation (Matthews, NC) was used to
program the synthesis, including resin swelling, amino acid loading, couplings and Fmoc-
removals. Commercially available N N-dimethylformamide (DMF) from Fischer Chemical
(Hampton, NH) was supplied to the synthesis module as reaction and washing solvent. Peptide
synthesis was enabled by sequential couplings of Fmoc-amino acid, purchased from Chem-Impex
(Wood Dale, IL), which was preactivated by N,N,N’,N'-tetramethyl-O-(1H-benzotriazol-1-yl)
uronium  hexafluorophosphate ~ (HBTU), = N-hydroxybenzotriazole = (HOBt),  N,N-
diisopropylethylamine (DIPEA), at 50 °C for 10 min, and the deprotections with 20% piperidine
in DMF at 60 °C for 4 min. In-between each coupling/deprotection step, resin-bound peptide was
thoroughly washed with DMF. For the synthesis of Fmoc-Gly5-OH peptide, Fmoc-glycine was
preactivated by 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid

hexafluorophosphate (HATU) and DIPEA instead. Resin-bound peptides were cleaved off the
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solid support with a cocktail solution of trifluoroacetic acid (TFA), triisopropylsilane (TIPS) and
water (TFA/TIPS/H>0, 95:2.5:2.5). The crude peptides were then purified with reverse-phase C18
preparative HPLC. Compound purity for each peptide was confirmed with chromatograms from
C18 analytical HPLC.
2.4.5 High-Performance Liquid Chromatography

LC-8A Solvent Pumps, DGU-14A Degasser, SPD-10A UV-Vis Detector, SCL-10A
System Controller (Shimadzu Corporation, JP) and Vydac 218TP 10 um C18 Preparative HPLC
column (HICHROM Limited, VWR, UK) or 20RBAX 300SB-C18 Analytical HPLC column
(Agilent Technologies, CA) were used for HPLC purifications with HPLC-grade acetonitrile
(EMD Millipore Corporation, MA) and Milli-Q water (EMD Millipore Corporation, MA). A
variety of eluting gradients were set up with the LabSolutions software. Dual-wavelength UV
detector was set to 220 nm and 254 nm for monitoring the absorbance of the amide and Fmoc,
respectively. The eluted compounds were checked with ESI-MS to confirm their identities. Then
aqueous solutions of purified compounds were lyophilized to obtain the dry solid.
2.4.6 Sortase A Expression, Purification and Quantification

An aliquot of 2 pL sortase A-expressing BL21 competent cell culture was transferred to a
kanamycin/chloramphenicol petri dish. The culture was incubated at 37 °C overnight. One colony
of BL21 cells was picked to start a 10 mL culture, containing kanamycin (35 mg/L). The cell
culture was incubated at 37 °C for 12-16 h until ODsoo value reached 0.85. The starter culture was
transferred into sterilized culture medium (1L containing 35 mg/L kanamycin). After roughly 5
hours, the ODsoo reached 0.85. 0.5 mM IPTG was added to induce protein expression. The cell
culture was incubated for another 4 hours at 37 °C. The cells were centrifuged at 4 °C, 5000 rpm

for 10 min. The cells were then resuspended in 40 mL lysis buffer (20 mM Tris, 250 mM NaCl,
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pH 8.0) and lysed by sonication. The lysate was centrifuged (20,000 g for 20 min). The supernatant
was loaded onto a Ni-affinity column and sortase A was purified by Nickel column, using the
following elution profile: a. washing buffer: 20 mM Tris, 0.5 M NaCl; b. eluting buffer: 20 mM
Tris, 0.5 M NaCl and 250 mM imidazole. Dialysis was used to remove the imidazole against 2L
of buffer (20 mM Tris, 150 mM NacCl, pH 8.0). Protein purity was confirmed by SDS-PAGE and
the standard Bradford assay determined the concentration and expression yield of sortase A.
2.4.7 General Procedure for Sortase A-Mediated Ligation

10X Tris-HCl reaction buffer for the sortase A-mediated ligation was prepared in advance
following the recipe of 500 mM Tris-HCIL, 1.5 M NaCl, 50 mM CaCl,, 5 mM mercaptoethanol,
and 2 mM Ni(II) sulfate. The pH of the 10X reaction buffer was adjusted to 8.5 with addition of
NaOH or HCI. Proper amounts of ligation substrates were dissolved and added into Tris-HCl
reaction buffer, followed by the addition of sortase A. The reaction vessel was then kept at 25 °C
until reaction completion. Reaction progress was monitored with LC-MS. After the reaction,
enzyme was deactivated and precipitated out by addition of ethanol. The reactions were clarified
by centrifugation and the supernatant was loaded onto G-15/G-25 size exclusion column for
purification.
2.4.8 Size-Exclusion Purification of HS Glycopeptide

Samples were prepared in minimal amounts of distil water and then slowly transferred to
a G-15/G-25 size-exclusion column. Fractions of 1 mL eluent were collected. Fractions that
contain desired compounds were identified by ESI-MS analysis. Purified compounds were
lyophilized to obtain the dry solid.
2.4.9 BLI Binding Experiment

BLI Octet K2 instrument (ForteBio, Molecular Devices, CA) was used for binding
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experiments. Polypropylene black 96-well plates (Greiner Bio-one, Austria) and streptavidin (SA)
sensor chips (ForteBio, Molecular Devices, CA) were used to assist sample preparations and
detections of binding activities. The assay buffer was phosphate buffered saline (PBS) unless
otherwise noted. Integrin avB3 protein solutions were prepared according to the assay design. To
prepare biotinylated analytes, | mM of each amine-containing ligand compound and EZ-Link™
Sulfo-NHS-LC-Biotin (1.2 equiv.) were added to 0.1 M NaHCOj solution (pH 8.5). The reaction
was proceeded overnight. Upon completion, reaction mixture was passed through G-10 column to
remove the unconjugated biotin reactant. Sensors were then loaded with the biotin-labelled
compounds. The binding activity (including association and dissociation) between the ligand and
protein was measured by BLI monitoring. Biotin was used as the negative control for all BLI
assays. The assay results were then processed by the Octet software. Various concentrations of
protein were tested against each ligand to obtain the kinetic data. The curve fitting was achieved
using a 2:1 heterogenous ligand binding model provided by the data-processing software.
2.4.10 Wound-Healing Assay

MDA-MB-231 breast carcinoma cells were cultivated in the 6-well plate until 90%
confluent. After 24-hour starvation with serum-free medium, wounds were created by scratching
the monolayer with sterile P200 pipet tips. This process was done carefully to make sure that all
wounds were similar in size. A Zeiss Axionvert 200 Pred Axio Observer microscopy (Boston
Industries, Inc.) was used to take microscopic images. T = 0 images were taken right after the
wounding process. Then the serum-free medium was replaced by the growth medium that
contained varying analyte concentrations. Growth medium without analytes was treated as the
control group. Human EGF was added to stimulate cancer cell migrations. After a 20-hour

incubation at 37 °C, T = 20 microscopic images were collected. Images at the same site for T =0
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and T = 20 were processed with GraphPad Prism Version 5.0c to interpret the T = 20 cell migration
results.
2.4.11 Identification of Ligand Binding Sites

To initiate the search for ligand binding sites on the integrin avfB3 protein surface, synstatin
peptide SSTNo».119 model was constructed de novo using an open computation platform developed
by Tuffery group.?’ Integrin protein (PDB:4G1M) was used as the receptor reference to facilitate
the model construction and improve the subsequent docking simulations. Independent model
simulations (200 rounds) with sOPEP force field were applied to get quality peptide conformation
predictions. The best candidate models were selected for the ligand-receptor molecular docking
simulations.

Hot spots on the protein surface for synstatin binding were identified through examining
the docking results. For the heparan sulfate binding simulations, a generic heparan sulfate
tetrasaccharide structure was utilized to identify potential HS binding sites on integrin avf33. After
uploading the integrin coordinate file to ClusPro docking platform, binding simulations were
initiated under the built-in ‘Heparin Ligand’ mode.??> Simulation results were then visualized and
processed with UCSF Chimera software to pinpoint potential HS binding sites.?3
2.4.12 Biomolecule Visualization

The construction of syndecan-1 mimetic started with the heparan sulfate octassachride
moiety. Its structure was prepared through ‘GAG Builder’ program at GLYCAM-Web.?* Counter
ions were added to the negatively charged sulfate groups and the HS octassachride was solvated
into a cube of water molecules. Structural optimization was accomplished with GLYCAM force

field. The generated PDB file of HS octassachride was later used to construct the glycopeptide.
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Ab initio modeling of the peptide backbone was achieved with QUARK program.? Top
model that adopted a more extended conformation was selected for the syndecan-1 mimetic
construction. The structure coordinates of HS octassachride and peptide backbone were input into
Maestro software.?® The artificial linkage connecting HS and peptide backbone was manually
created. The resulted syndecan-1 mimetic structure was then optimized using all-atom
minimization function to approximate its conformation. The dimensions of syndecan-1 mimetic

and integrin avB3 were measured with UCSF Chimera to provide an estimation of their sizes.
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APPENDIX A: Supplementary Schemes, Figures and Tables

Solid-Phase Synthesis of Synstatin Peptide 3

BO_o N

o~/

(\ \ O)DLN oj/—</_\>—o Amino Acid Loading: 0.3 mmolig
Ho§ =
7
o O

Scheme 2.5 Solid-phase synthesis of Gly5-SSTNo2.117 peptide. Reagents and conditions: (a)
Amino acid Loading: Fmoc-Glu(O-tBu)-OH, DIPEA, DMF; (b) Fmoc cleavage: 20%
piperidine/DMF, 50 °C, 2 min, microwave; (¢) Amino acid coupling: 5 equiv Fmoc-AA-OH,
HBTU, HOBt, DIPEA, DMF, 50 °C, 10 min, microwave; (d) Oligopeptide coupling: 5 equiv
Fmoc-Gly5-OH, HATU, DIPEA, DMF, 50 °C, 10 min, microwave; (¢) Resin cleavage:
TFA/TIPS/H>0 (95:2.5:2.5, v/v/v), 24 % overall.

50



MDA-MB-231 Wound Healing Assay Images

To

Too

Too

Figure 2.4 Microscopy images of MDA-MB-231 treated with (a) PBS as control and (b) synthetic
HS glycopeptide (6 pM) after 20-hour incubation (solid lines for cell frontiers at T=0 and dashed
lines for T=20; 10X magnification; scale bar, 200 pm).
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Computer Docking Simulation Result and Biomolecule Visualization

Figure 2.5 Identified synstatin peptide binding site (as circled) on the surface of integrin avp3
(PDB: 4G1M).

Figure 2.6 One of the identified heparan sulfate binding sites (as circled) on the surface of integrin
avP3 (PDB: 4G1M).
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Figure 2.7 Biomolecule visualization and approximate size comparison of syndecan-1 mimetic
(lower structure) and integrin avB3 (PDB: 4G1M). Predicted binding areas of synstatin peptide
and heparan sulfate tetrasaccharide are highlighted with orange circles.
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Screening Conditions for Sortase A Ligation Reaction

Substrate Concentration (uM)
Peptide 1: GAGALPETGGHG 250
Peptide 2: GGGGGLPAG 250
Product
Peptide: GAGALPETGGGGGLPAG
Sortase Reaction Condition
Buffer mol% | Reaction Reaction % Hydrolyzed
Sortase Time Temperature |conversion| Donor/Product
pH 7.0 67.9 0.01:1
H7. .
pH 7.5 300 mM 59.8 N/A
: 6 10 h 37 °C
Tris-HCl
pH 8.0 71.9 N/A
pH 8.5 71.0 N/A
Sortase Reaction Condition
Buffer mol% | Reaction Reaction % Hydrolyzed
Sortase Time Temperature |conversion| Donor/Product
pH 7.0 67.9 0.13:1
H7. . .01:
pH 7.5 300 mM 69.0 0.01:1
: 12 10 h 37°C
Tris-HCI
pH 8.0 67.4 0.05:1
pH 8.5 N/A N/A

Table 2.2 Screening of sortase A ligation conditions.
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Table 2.2 (cont’d)

Sortase Reaction Condition

Buffer mol% | Reaction Reaction % Hydrolyzed
e Sortase Time Temperature |conversion| Donor/Product
pH 7.0 60.5 0.26:1
H7. 62.6 0.14:1
PHTS 1 300 mm .
Tris-HCI 24 10 h 37 °C
pH 8.0 66.7 0.11:1
pH 8.5 68.7 0.13:1
Sortase Reaction Condition
Buff mol% | Reaction Reaction % Hydrolyzed
et Sortase Time Temperature |conversion| Donor/Product
pH 7.0 51.5 0.39:1
pH 7.5 59.4 0.15:1
omMo| 2 10h 37 °C
pH 8.0 64.6 0.15:1
pH 8.5 62.7 0.19:1
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Table 2.2 (cont’d)

Sortase Reaction Condition

Buffer mol% | Reaction Reaction % Hydrolyzed
4 Sortase Time Temperature |conversion| Donor/Product
pH 7.0 26.8 1.23:1
pH 7.5 46.1 0.44:1
SN D 45h 37°C
pH 8.0 44.9 0.18:1
pH 8.5 45.7 0.16:1
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Wound Healing Assay Result

Gly5-SSTN

Concentration (uM)

Relative Migration Area (Unit)

6 103.92 | 99.61 100.60 | 107.91 98.96 96.18
2 102.01 102.77 99.73 97.85 122.89 109.22
1 111.56 | 109.67 118.42 11584 | 11574 | 113.54
0 100.70 | 98.40 94.45 99.88 103.13 100.35
Heparin

Concentration (uM) | Relative Migration Area (Unit)

6 82.62 95.3 83.28 80.77 73.85 81.61
2 88.3 83.49 85.63 83.17 82.23 79.42
1 97.95 98.89 88.91 83.87 88 83.28
0 100.70 98.40 94.45 99.88 103.13 100.35
Syndecan-1 Mimetic

Concentration (uM) | Relative Migration Area (Unit)

6 65.04 65.37 80.11 52.96 65.27 71.59
2 82.81 84.61 92.50 81.69 82.47 80.88
1 82.26 85.77 103.42 94.08 106.81 84.19
0 100.70 98.40 94.45 99.88 103.13 100.35

Table 2.3 Summary of wound-healing assay results.
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Estimated Center-to-Center Distance

The Spotted Binding Sites

6 nm

Table 2.4 Measured estimated distance of the spotted synstatin and heparan sulfate binding sites.

Longitudinal Transversal

Syndecan-1 Mimetics

9 nm 3 nm

Table 2.5 Measured approximate dimensions of integrin avp3 and syndecan-1 mimetic.

58




APPENDIX B: Product Characterization Spectra
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The purity of glycopeptide 1 was verified with analytical C-18 HPLC (5-100% acetonitrile/water;
0.1% trifluoroacetic acid). "H-NMR (900 MHz, D,0), 6 8.35 (m, 2H), 7.88 — 7.67 (m, 1H), 7.64 —
7.52 (m, 1H), 7.42 — 7.30 (m, 1H), 7.30 — 7.23 (m, 1H), 7.18 — 7.07 (m, 1H), 5.37-5.27 (m, 1H),
5.18-5.11 (m, 1H), 5.11-5.03 (m, 1H), 5.01-4.94 (m, 1H), 4.92-4.88 (m, 4H), 4.86-4.82 (m, 3H),
4.82-4.77 (m, 16H), 4.61—4.55 (m, 3H), 4.55 — 4.42 (m, 3H), 4.41-4.39 (m, 1H), 4.39 — 4.22 (m,
6H), 4.22 — 4.03 (m, 8H), 4.02-3.97 (m, 3H), 3.97 — 3.92 (m, 4H), 3.92-3.88 (m, 6H), 3.87 — 3.83
(m, 6H), 3.78-3.76 (m, 4H), 3.75-3.72 (m, 5H), 3.72 — 3.65 (m, 14H), 3.65 — 3.61 (m, 12H), 3.61-
3.59 (m, 7H), 3.59-3.56 (m, 10H), 3.56 —3.53 (m, 13H), 3.53-3.51 (m, 51H), 3.50 — 3.45 (m, 12H),
3.45 - 3.38 (m, 5H), 3.28-3.22 (m, 1H), 3.22-3.16 (m, 1H), 3.13 — 3.09 (m, 6H), 3.08 — 3.04 (m,
1H), 3.04-2.99 (m, 1H), 2.98 — 2.86 (m, 2H), 2.64 — 2.60 (m, 1H), 2.57-2.49 (m, 1H), 2.34 — 2.28
(m, 1H), 2.24 —2.12 (m, 6H), 2.10-2.03 (m, 2H), 2.00 — 1.91 (m, 7H), 1.90 — 1.83 (m, 16H), 1.81-
1.76 (m, 71H), 1.76 — 1.65 (m, 4H), 1.64 — 1.54 (m, 3H), 1.53 — 1.42 (m, 4H), 1.42-1.33 (m, 4H),
1.33 — 1.31 (m, 2H), 1.28-1.27 (m, 2H), 1.27 — 1.22 (m, 43H), 1.22 — 1.15 (m, 3H), 1.13 — 1.02
(m, 3H), 0.88-0.70 (m, 8H). 3C-NMR (225 MHz, D;0), § 152.3, 152.3, 152.2, 148.0, 147.7, 147.6,
147.5, 147.3, 147.2, 147.1, 147.0, 146.9, 146.8, 146.5, 145.9, 129.1, 128.6, 128.6, 128.5, 128.0,

127.4,127.2,127.1,125.0, 123.5, 123.4,120.2, 116.8, 101.6, 101.6, 100.2, 100.1, 99.0, 98.4, 98.3,
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97.6, 96.9, 96.5, 96.4, 95.6, 95.3, 95.2, 93.1, 79.9, 76.5, 76.4, 76.2, 75.9, 75.8, 75.7, 75.4, 75.3,
75.1, 74.0, 73.4, 73.3, 73.2, 72.5, 72.1, 71.8, 71.7, 71.4, 71.3, 71.1, 70.7, 70.2, 70.1, 69.8, 69.6,
69.5, 69.4, 69.1, 69.0, 68.9, 68.8, 68.6, 67.5, 67.4, 67.3, 67.2, 67.1, 66.8, 66.5, 66.2, 66.1, 66.0,
65.6, 65.4, 64.3, 64.0, 62.9, 62.8, 62.5, 62.4, 62.0, 61.2, 61.1, 60.5, 60.4, 60.3, 59.6, 59.4, 59.2,
59.2, 59.1, 59.0, 58.8, 58.5, 58.3, 58.2, 58.0, 57.7, 57.5, 55.8, 55.7, 55.2, 55.1, 55.0, 54.4, 54.3,
54.2, 53.8, 53.7, 53.6, 53.5, 53.4, 53.3, 52.0, 51.9, 51.7, 51.6, 50.3, 50.2, 50.1, 49.8, 49.6, 49.5,
479, 47.4, 46.8, 46.7, 44.5, 44.4, 43.6, 43.6, 43.2, 43.2, 43.6, 42.6, 42.4, 42.3, 40.4, 39.9, 39.8,
39.1, 39.0, 38.9, 38.9, 38.7, 38.6, 37.1, 37.0, 36.0, 35.9, 34.4, 34.0, 33.8, 33.7, 33.5, 33.4, 30.5,
30.2, 30.0, 29.3, 29.2, 28.9, 28.6, 27.1, 26.2, 24.7, 24.6, 24.4, 24.3, 24.2., 24.1, 24.0, 23.3, 23.0,
22.7,22.4,224,22.0,22.0, 21.9, 21.7, 21.4, 20.9, 20.6, 20.0, 19.3, 18.8, 18.7, 18.6, 18.4, 18.2,
18.2, 18.0, 179, 17.8, 17.7, 17.2, 16.7, 16.6, 16.5, 16.5, 16.4, 15.7, 13.3, 12.9, 12.8, 12.3, 12.2,

12.1. ESI-MS: C277H411N650145S9 [M+10H]4' calcd: 1451.0859, obsd: 1451.0818 (2.84 ppm).
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Figure 2.8 HPLC chromatogram of 1.
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The purity of glycopeptide 2 was verified with analytical C-18 HPLC (5-100% acetonitrile/water;
0.1% trifluoroacetic acid). 'H-NMR (900 MHz, D>0), § 8.61-8.57 (m, 2H), 7.91 — 7.80 (m, 6H),
7.67-7.63 (m, 3H), 7.62-7.55 (m, 1H), 7.46-7.42 (m, 4H), 7.39-7.35 (m, 4H), 7.34-7.28 (m, 3H),
7.27-7.19 (m, 4H), 7.17 — 6.99 (m, 4H), 5.63-5.59 (m, 1H), 5.45-5.41 (m, 1H), 4.40-4.34 (m, 2H),
4.32—-4.12 (m, 3H), 4.05—3.95 (m, 10H), 3.95-3.89 (m, 24H), 3.87-3.81 (m, 8H), 3.80 —3.67 (m,
14H), 3.66-3.62 (m, 5H), 3.60-3.56 (m, 3H), 3.46-3.42 (m, 1H), 3.41 — 3.23 (m, 5H), 3.22-3.18
(m, 2H), 3.08-3.04 (m, 4H), 2.53 — 2.40 (m, 4H), 2.38-2.34 (m, 4H), 2.29-2.25 (m, 5H), 2.13-2.09
(m, 2H), 2.02-1.98 (m, 6H), 1.91-1.87 (m, 2H), 1.86-1.82 (m, 3H), 1.77 — 1.65 (m, 4H), 1.64 —
1.51 (m, 9H), 1.44 — 1.30 (m, 17H), 1.30 — 1.12 (m, 14H), 0.91 (m, 12H). *C-NMR (225 MHz,
D»0), 6 174.6,174.2, 174.0, 172.7, 171.8, 171.3, 171.1, 170.8, 153.8, 143.8, 143.6, 140.8, 133.5,
131.8,128.1,128.0,127.4,125.0, 124.7,124.5,123.4,120.1, 117.5, 116.9, 1018, 100.2, 97.6, 97.0,
77.3,77.0, 76.3, 76.2, 75.8, 73.4, 72.4, 70.5, 70.0, 69.3, 69.0, 68.8, 67.0, 66.8, 66.2, 66.1, 65.8,
62.8, 61.0, 60.4, 59.0, 58.0, 57.9, 57.5, 55.8, 53.9, 53.6, 53.5, 52.2, 50.2, 50.1, 49.9, 49.3, 47.7,
46.7, 43.6, 43.2, 42.5, 42.3, 42.3, 39.0, 38.9, 36.0, 35.8, 32.3, 30.3, 29.2, 28.8, 27.7, 26.9, 26.6,
24.8, 24.6, 24.4, 24.3, 22.4, 22.3, 21.9, 20.5, 18.7, 16.6, 16.3. ESI-MS: Ci46H207N31099S9

[M+11H]* caled: 1066.4901, obsd: 1066.4874 (2.51 ppm).
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Chapter 3 Chemoenzymatic Synthesis of Glycopeptides bearing Galactose-
Xylose Disaccharide from the Proteoglycan Linkage Region

3.1 Introduction

Proteoglycans (PGs) are ubiquitous in the mammalian system with important roles in many
biological events including cancer development, inflammation, and immune modulation.!> PGs
are composed of a core protein linked with one or more glycosaminoglycan (GAG) chains through
a tetrasaccharide linkage of glucuronic acid (GlcA)-B-1,3-galactose (Gal)-B-1,3-Gal-B-1,4-xylose
(Xyl) covalently conjugated with serine residues of serine-glycine dipeptides.® As naturally
existing PGs are highly heterogeneous due to complex enzymatic post-translational modification
of the GAG chain, synthesis becomes important to provide the much needed, well-defined PGs to
expedite their characterization in biological studies. Recently, chemical syntheses of several PG
glycopeptides have been reported, which have opened up the possibilities of accessing
homogeneous glycopeptides.” ® However, the overall synthesis is tedious due to the need for
multistep chemical manipulations. We have become interested in developing a chemoenzymatic
strategy to access these glycopeptides by taking the first step to investigate the utility of human [-
1,4-galactosyltransferase 7 (f4GalT7) in synthesis of Gal-Xyl bearing glycopeptides.

B4GalT7 can transfer a Gal unit from the uridine diphosphate (UDP)-Gal donor to the 4-
OH of a Xyl acceptor.”!! Xylosides bearing hydrophobic aglycons have been shown to be
competent acceptors for f4GalT7.!2 This knowledge has led to the fascinating utility of xylosides
as a tool to prime cellular synthesis of glycosaminoglycans and modulate cellular functions. In
addition, various xyloside analogs have been synthesized to probe the catalytic sites of p4GalT7.!*
7 However, to the best of our knowledge, B4GalT7 has not been explored for glycopeptide
synthesis. Herein, for the first time we report that human B4GalT7 enzyme can be utilized to

catalyze the formation of native glycopeptides bearing Gal-Xyl disaccharide on a milligram scale,
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enhancing the understanding of substrate selectivities of f4GalT7 and expediting the synthesis

toward structurally well-defined PGs.
3.2 Results and Discussions

To establish the feasibility of f4GalT7 promoted glycopeptide synthesis, I first synthesized
the glycopeptide 1 QEEEG(Xyl-O)SGGGQGG bearing a xylose as a potential acceptor
corresponding to bikunin amino acid residues 5-14.'® The key building block Fmoc-Ser(O-Xyl)-
OH 2 was prepared from xylosyl serine 3! 2 through protecting group manipulations with a 91%
overall yield for the two steps (Scheme 3.1a). With Xyl-O-Ser carboxylic acid 2 in hand,
automated solid phase peptide synthesis (SPPS) was carried out following Fmoc-based peptide
chemistry on a chlorotrityl (CI-TCP) ProTide resin under microwave heating at 50 °C (Scheme
3.1b). The protected glycopeptide 4 was obtained in 14.8% overall yield. Following cleavage from
the resin, the ester protective groups on the xylose and the N-terminus Fmoc moiety were removed

giving the xylosylated bikunin glycopeptide 1.
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a)
HO 2 o) 1) Ac,0, pyridine AcO 0} o

BzO OBz l » BzO OBz )\
3 FmocHN™ "cO,Bn 2) Pd(OH),/C, Hp, NH4,CO,H FmocHN” “CO,H

MeOH/DCM
91% over 2 steps 2
b)
CIO 1) microwave assisted O
Fmoc SPPS 7.5% NHy;NH5.H,0
CI-TCP . 4 - 1
Protide 2) TFA/TIPS/H,O 14.8% 81%
resin (95:2.5:2.5) overall yield
NH2 OH 1:R1=R2=R3=H

0 4:R, = Bz; Ry = Ac; Ry = Fmoc
H O H O H O H O H O H O
R3HN N\.)k N\-)J\H/\H/N\)LH/\H/N\)J\H/\H/N\)J\H/\H/N\)J\OH
o) o) o) o)

.0 QEEEG(Xyl-0)SGGGQGG
Conditions for 1) Fmoc-Gly-OH, DIPEA, Kl, yW, DMF, 90 °C
microwave 2) Fmoc - cleavage: 20% piperidine/DMF
assisted

3) Amino acid coupling: 5 eq Fmoc-AA-OH @50 °C for 10 min,
DIC, K-Oxyma Pure, DMF or 3 eq Fmoc-Ser(O-Xyl)-OH 2 @50 °C
for 10 min, DIC, Oxyma Pure w/0.1M DIPEA, DMF

Repeat steps 2 and 3

Fmoc SPPS:

Scheme 3.1 a) Synthesis of Fmoc-Xyl-serine 2; b) SPPS synthesis of xylosylated bikunin

glycopeptide (aa: 5-14) 1.

With the glycopeptide acceptor 1 prepared, we moved to express the polyhistidine-tagged
human B4GalT7 (EC 2.4.1.133, Appendix Figure 3.3),'> which was cloned into a pET plasmid and
expressed in E. coli BL21 cells. The protein was purified by a Ni Sepharose column (Appendix
Figure 3.4) with an expression yield of 5 mg/L. A solution of bikunin glycopeptide 1 and UDP-
Gal was incubated with B4GalT7 at 37 °C overnight (Scheme 3.2). High performance liquid
chromatography analysis of the product mixture showed that the acceptor 1 was completely
consumed. The desired Gal-Xyl disaccharide bearing glycopeptide 5 was obtained in 75% yield at

milligram scales following purification by size exclusion chromatography. The product structure
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was validated by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Heteronuclear
NMR analysis showed a coupling constant of 'Jci, 1 = 161.6 Hz from anomeric position of Gal

unit, which confirmed the newly formed B-glycosyl linkage between the Gal and Xyl units.?!

NH,
UDP-Gal
B4GalT7, o] H H H H H
MES buffer, H,N \)J\ N%NWN%NWN%NWN%NWN\)kOH
! He237°C HoHoOo HOIHDO
pH 6.2, 37 °C 0 2 o) 2 \o 2
0
75% ° O~ oH O=\NH,
OH 5
OHo OHO
HO QEEEG(Gal-Xyl-0)SGGGQGG
OH

Scheme 3.2 4GalT7-catalyzed galactosylation of glycopeptide 1 to Gal-Xyl bearing glycopeptide
S.

To test the scope of the galactosylation reaction catalyzed by hf4GalT7, xylosylated
glycopeptides 6 - 11 from several other naturally existing PGs were prepared via SPPS (Figure
3.1). These substrates include sequences from bikunin as well as members of the syndecan family
PGs, representing common PGs from nature including glycopeptides with multiple Xyl moieties
(glycopeptides 8 — 11). These glycopeptides contain aromatic, hydrophobic and also hydrophilic
amino acid residues adjacent to the glycosylation sites, which enhanced the structural diversity of
the acceptors for h4GalT7. To prepare the glycopeptides, I first followed the same SPPS protocol
used to make glycopeptide 1, starting from the chlorotrityl ProTide resin. However, several
glycopeptides were obtained in low overall yields (<10%) (Appendix Table 3.3). As the
chlorotrityl resin can be unstable under heating,?? we tested an alternative of using the more heat
stable CI-MPA ProTide resins. Together with a lowered reaction temperature from 50 °C to 30 °C
for amino acid coupling, yields of the glycopeptides were significantly improved (Appendix Table

3.3).
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B4GalT7-catalyzed galactosylation reactions were carried out on glycopeptides 6-11 to
examine the scope of this transferase. Inspiringly, all enzymatic reactions successfully produced
the desired products. Glycopeptides 8-11 bearing multiple Xyl units could be successfully
galactosylated in all Xyl sites when 2 equiv of UDP-Gal donor per Xyl was added to the reaction
mixture (Table 3.1). This suggests with an excess of UDP-Gal donor, B4GalT7 can drive the
reaction to completion including on substrates with multiple glycosylation sites in close proximity

to each other.

bikunin  °QEEEGSG 6: R = Xyl
12: R = Gal-Xyl;
NH,

o o
o H O H O
HZNEWHJKNZKNJ&N/YNJN/YOH
: H L H o :\ H

11 7: R =Xyl
human syndecan-3 GGPSGDFE 13:R = Gal-Xyl

human syndecan-4 57 8:R = Xyl
DFELSGSGDLD ¢ y
- 14: R = Gal-Xyl

(e} H O H O H O H O H O
HN I AN AN L A N A N AN A gy
z : H 0 : H o ¢ H z B

Ho. S H o ~ (o] [e]
g 1 “oR “oR =0 “=0
o) Ho 0 HO HO
9: R =Xyl
human syndecan-2 51YASASGSGADE  15: R = Gal-Xyl
HO
o} o % 0
o) H O H O H H H
HZNJNJ\WNJNJ\WN%NWNVJKN/\WNJKNH N Aoy
Y : N
: H o 1 H o ¥ 0o 0o

o ; H H B B
o T TR
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o) H Q H H
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0 © MR “orR
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HO OH
= HO=O 4 Galxyl= g&/ 0
Xyl = y o
Y HOy?H/ HO="%5, H(;D?H/g

Figure 3.1 Structures of glycopeptides 6-11 with the serine glycosylation sites underlined.
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Acceptor Product Yield (%)
6 12 82
7 13 91
8 14 81
9 15 81
10 16 77
11 17 78

Table 3.1 Yield summary of B4GalT7-catalyzed galactosylation.

How B4GalT7 interacts with the native glycopeptide substrates is not yet well understood.
To gain deeper insights, we performed kinetics analysis of the enzyme on selected substrates using
a modified phosphatase-coupled transferase assay.?* The Km value of hB4GalT7 for UDP-Gal was
calculated to be 0.04 mM (Appendix Figure 3.7). For glycopeptides 1 and 7 containing a single
Xyl, the Ky, values were about 0.1 mM. Glycopeptides 8 and 9 have two Xyl per chain, which have

higher Km values, approximating a weaker binding by the enzyme (Table 3.2, Appendix Figures

3.8-3.11).
Substrate (n[fll\n/l) Vmax (pmol/min/pg) keat (min™") (mﬁiai/nlflr\n/[ N
1 0.07+0.01 158 10 144
7 0.10£0.01 460 28 281
8 0.39 +£0.09 70 4 11
9 0.28 £0.06 159 9 34

Table 3.2 Summary of kinetic results from glycopeptide substrates.
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For substrates with two Xyl units, we next investigated whether there were site preferences
by the enzyme when the reaction was performed with sub-stoichiometric quantities of the donor
UDP-Gal. Glycopeptide 9 was subjected to hB4GalT7-catalyzed galactosylation in the presence of
1 equiv of UDP-Gal. The glycopeptides bearing only one Gal-Xyl disaccharide were observed
with electrospray ionization (ESI)-MS. To determine the site of galactosylation, analysis of the
glycopeptides was performed by tandem MS fragmentation of the glycopeptides. Successes in this
analysis critically depended on retaining the glycan during peptide fragmentation in MS?, which
was challenging due to the lability of the glycosidic linkage with the peptide backbone. Through
a collaboration with Dr. Lingjun Li (University of Wisconsin)’s laboratory, after exploring multiple
fragmentation methods, the electron-transfer/higher-energy collision dissociation (EThcD) hybrid
fragmentation technique, an integrated dissociation method combining electron-transfer
dissociation (ETD) and higher-energy collision dissociation (HCD), was found suitable.?*
Following fragmentation of the peptide backbone in MS?, fragment ions corresponding to
glycopeptide fragments with the Gal-Xyl disaccharide at either Ser5 or Ser7 site were identified.
The cumulative total ion count values of the respective peaks exhibited a 1:3 ratio of these two
regio-isomers (Appendix Table 3.4), suggesting a preference for Ser7 galactosylation by f4GalT?7.

To better understand the site preference, computational studies were performed by docking
the glycopeptide 1 into the crystal structure of the complex of D211N mutant of f4GalT7 with the
donor and the acceptor (PDB: 4M4K).% Earlier studies showed that D211 is a key catalytic residue.
D211N mutation enabled a catalytically stalled ternary complex to form. The docking structure
obtained showed that the glycopeptides with 4-OH of xylose pointing towards the center of the
active site and being oriented by N211 explaining the preference for glycosylation at the 4-OH

(Figure 3.2a). For glycopeptide 9 with two Xyl reaction sites, the Xyl at Ser7 preferentially forms
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hydrogen bonds with Asn211/Asp212 in the active site and orients itself for the galactosylation
(Figure 3.2b). The energy difference between Ser7 and Ser5 in the reactive site was calculated to
be > 0.3 kcal/mol, providing a potential explanation for higher reactivity of the Xyl unit on Ser 7

over that on Ser5 for f4GalT7 promoted galactosylation.

Figure 3.2 a) Docking structure of QEEEG(Xyl-O)SGGGQGG 1 with D211N mutant of 4GalT7
(PDB: 4M4K). (Catalytic residues Glu210/Asn211/Asp212 are highlighted in the protein
backbone; Xylose unit is centered and colored in orange red; Galactose unit is colored in light
blue; Heteroatoms are colored differently as H in white, O in red and N in deep blue; Hydrogen

92



Figure 3.2 (cont’d) bonds potentially involved in the catalytic process are labeled with
corresponding inter-atomic distance. b) Docking structure of YASA(Xyl-O)SG(Xyl-O)SGADE 9
with B4GalT7 suggests a preference toward Ser7 site by the enzyme (Xylose unit on Ser7 site is
centered and colored in khaki).

3.3 Conclusion

In conclusion, human p4GalT7 (EC 2.4.1.133) has been found to be able to transfer the Gal
unit to a xylosylated glycopeptide acceptor. Diverse native glycopeptides bearing Gal-Xyl
disaccharides have been prepared via f4GalT7 catalysis at milligram scale in good yields for the
first time. Glycopeptides with multiple Xyl units can be effectively galactosylated as well. The
high efficiency, broad substrate scope, and operational simplicity of f4GalT7 render it a useful
tool toward the synthesis of homogeneous PGs.

3.4 Experimental Section

3.4.1 Materials

B4GalT7-expressing BL21 cells were obtained from Prof. Ulf Ellervik (Lund University,
Sweden). Gibco LB broth, LB agar and Coomassie Brilliant Blue G-250 were purchased from
Thermo Fischer Scientific (Waltham, MA). Nickel columns and Nickel resins were purchased from
Bio-rad (Hercules, CA). SDS-PAGE gels, 10x Tris/Glycine/SDS electrophoresis buffer, prestained
protein ladder, sample loading buffer, and Coomassie Blue R-250 were purchased from Bio-rad
(Hercules, CA). Tris-HCI buffer was purchased from MilliporeSigma (St. Louis, MO). UDP-
galactose was purchased from Complex Carbohydrate Research Center (Athens, GA). Amino acid
building blocks were purchased from Chem-Impex International, Inc (Wood Dale, IL).
Glycosyltransferase Activity Kit was purchased from R&D Systems. All other chemical reagents
were purchased from commercial sources and used without additional purifications unless

otherwise noted.
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3.4.2 General Information

High-performance liquid chromatography was carried out with LC-8A Solvent Pumps,
DGU-14A Degasser, SPD-10A UV-Vis Detector, SCL-10A System Controller (Shimadzu
Corporation, JP) and Vydac 218TP 10 um C18 Preparative HPLC column (HICHROM Limited,
VWR, UK) or 20RBAX 300SB-C18 Analytical HPLC column (Agilent Technologies, CA) using
HPLC-grade acetonitrile (EMD Millipore Corporation, MA) and Milli-Q water (EMD Millipore
Corporation, MA). A variety of eluting gradients were set up on LabSolutions software (Shimadzu
Corporation, JP)). The dual-wavelength UV detector was set at 220 nm and 254 nm for monitoring
the absorbance from amide and Fmoc-, correspondingly. 3D structure of glycopeptide compounds
was prepared with Maestro software. Docking simulations were acquired with AutoDock Vina and
UCSF Chimera (UCSF, CA). Enzymatic activity was quantified by absorbance at 620 nm using a
SpectraMax M3 96-well plate reader (Molecular Devices, CA). Enzymatic glycosylation sites
were analyzed by Orbitrap Fusion™ Tribrid™ Mass Spectrometer (Thermo Fischer Scientific,
MA). LC-MS2 data was processed with Byonic™ search engine (Protein Metrics, CA). NMR data
were obtained with DirectDrive2 500 MHz and Varian 900 MHz NMR spectrometer (Agilent, CA)
at ambient temperature.
3.4.3 p4GalT7 Expression, Purification and Characterization

hp4GalT7-expressing BL21 competent cell were cultured onto
kanamycin/chloramphenicol containing petri dish, which was incubated at 37 °C overnight. One
colony of BL21 cells was picked and inoculated into 10 mL starter culture containing kanamycin
at concentration of 30 mg/L. The cell culture was incubated at 37 °C overnight. The starter culture
was then transferred into autoclaved 1L culture medium (with 30 mg/L kanamycin) and incubated

at 37 °C with shaking at 250 rpm. After roughly 3-4 hours, the ODgoo reached 0.5. IPTG (0.56 mM,
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MilliporeSigma, MO) was added to induce protein expression at 32 °C for 20 hours. Cells were
centrifuged at 4 °C, 5,000 g for 10 min. Cell pellet was lysed using Cellytic in 20 mM Tris buffer,
pH 7.6, 50 U/mL benzonase, 0.2 mg/mL lysozyme and 1mM PMSF (MilliporeSigma, MO) for 20
min at ambient temperature. Clarified lysate was purified by nickel column (Cytiva, MA) (a.
washing buffer: 20 mM phosphate, 0.5 M NaCl and 40 mM imidazole; b. eluting buffer: 20 mM
phosphate, 0.5 M NaCl and 40-250 mM imidazole). Protein purity was confirmed with SDS-PAGE
gel electrophoresis and the concentration and expression yield were determined by standard
Bradford assay.
3.4.4 Glycosyl Amino Acid Building Block Preparation

The glycosyl amino acid building block 3 was prepared following the previously reported

conditions.2¢ 27

HO 0 1) Ac,0, pyridine AcO 0
Bz(/)m/o ) Acz0, py BzO o)

OBz OBz
2) Pd(OH),/C, Hy, NH,COOH
FmocHN CcOo0Bn FmocHN COOH
MeOH/DCM
3 2

91% over 2 steps

N-Fluorenylmethyloxycarbonyl-O-(2,3-di-O-benzoyl-4-O-acetyl- -D-xylopyranosyl)-L-serine

(2). Compound 3 (227 mg, 0.3 mmol) was dissolved into pyridine (2 mL), followed by the addition
of acetic anhydride (61 pL, 0.6 mml). The reaction mixture was stirred at room temperature
overnight. It was then diluted with DCM and washed against dilute HCI solution. The reaction
intermediate was concentrated and dissolved into MeOH/DCM (1:1, v/v, 10 mL), followed by
Pd(OH)»/C (50 mg) and HCOONHj4 (21.2 mg, 0.898 mmol). The mixture was stirred under H» at
ambient temperature for 30 min and then filtered via a PTFE membrane (pore size 0.22 um). The

filtrate was concentrated under vacuum without further purification to afford compound 2 (193.6
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mg, 91%). [a]p?°=- 3.7 °(c = 14.18, methanol). "TH-NMR (500 MHz, CDs;0D), 1.96-2.00 (s, 3 H),
3.50-3.59 (m, 1 H), 3.85-3.92 (m, 1 H), 4.02-4.11 (m, 2 H), 4.11-4.21 (m, 2 H), 4.24-4.31 (m, 1
H), 4.46-4.51 (m, 1 H), 4.83-4.87 (m, 1 H), 5.02-5.16 (m, 3 H), 5.21-5.26 (m, 1 H), 5.51-5.57 (m,
1 H), 7.22-7.30 (m, 5 H), 7.31-7.39 (m, 3 H), 7.39-7.45 (m, 2 H), 7.45-7.54 (m, 1 H), 7.55-7.62
(m, 3 H), 7.76-7.81 (m, 1 H), 7.90-7.95 (m, 3 H); 3C-NMR (500 MHz, CD30D), 19.0, 54.1, 60.9,
66.6, 66.7, 68.0, 68.4, 70.7, 71.1, 99.9, 119.5, 124.8, 124.9, 126.7, 127.3, 127.4, 127.9, 127.9,
128.1, 128.1, 128.2, 128.9, 129.1, 129.4, 133.1, 133.2, 135.6, 141.1, 141.1, 143.6, 143.8, 156.8,
165.2, 165.4, 169.7, 170.0. ESI-MS: C39H36NO12 [M+H]" caled: 710.2232, obsd: 710.2243 (1.55
ppm).
3.4.5 General Procedure for Automated Solid-Phase Glycopeptide Substrate Synthesis

All the glycopeptides were synthesized on a Liberty Blue™ Automated Microwave Peptide
Synthesizer following the standard Fmoc-based solid-phase peptide synthesis protocol. The Cl-
TCP(Cl) ProTide resins were purchased from CEM Corporation. The Liberty Blue software (CEM
Corporation, NC) was used to program the synthesis, including resin swelling, amino acid loading,
couplings and Fmoc- removal. Commercially available N,N-dimethylformamide (DMF) from
Fischer Chemical was supplied to the synthesis module as a reaction and washing solvent. Peptide
synthesis was enabled by sequential couplings of Fmoc-amino acid (purchased from Chem-Impex,
Wood Dale, IL), which was preactivated by DIC, Oxyma Pure and DIPEA, at 50 °C for 10 min,
and deprotections with 20% piperidine in DMF at 60 °C for 4 min. In-between each
coupling/deprotection step, resin-bound peptide was thoroughly washed with DMF. For the
incorporation of the glycosyl amino acid 2, double coupling was applied by recycling the unreacted
glycosyl amino acid building block. Resin-bound peptides were cleaved off the solid support with

a cocktail solution of trifluoroacetic acid (TFA), triisopropylsilane (TIPS) and water
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(TFA/TIPS/H20, 95:2.5:2.5). The crude peptides were then purified with reverse-phase C18
preparative HPLC. Compound purity was confirmed by C18 analytical HPLC analysis.
3.4.6 General Procedure for Glycopeptide Deprotection

Partially protected glycopeptide was first dissolved in H2O (0.85 mL). An 80% hydrazine
hydrate solution (hydrazine, 51%, 0.15 mL) was then added slowly to initiate the reaction. The
resulting mixture was stirred at ambient temperature overnight. The desired fully deprotected
glycopeptide product was purified with a Sephadex G-10 column.
3.4.7 General Procedure for f4GalT7-Catalyzed Glycosylation

10x MES reaction buffer for f4GalT7-catalyzed glycosylation was prepared in advance
following the recipe of 200 mM MES, 100 mM MnCl.. The pH of the 10x reaction buffer was
adjusted to 6.2 by adding concentrated NaOH solution. A solution of 1 mM glycopeptide substrate
and 1.5 mM UDP-galactose (1.5 equiv per glycosylation site) was made with the reaction buffer.
The addition of B4GalT7 enzyme (0.5 mol%) initiated the glycosylation. The reaction solution was
kept at 37 °C overnight. The reaction progress was monitored with LC-MS. After the reaction, the
enzyme was deactivated and precipitated out of the reaction mixture by adding ethanol. The
mixture was centrifuged, and the supernatant was loaded onto a G-10 size exclusion column for
purification.
3.4.8 General Procedure for Enzyme-Substrate Docking

3D structure of the substrate was prepared with ChemDraw 16.0 and Schrodinger Maestro
software. After importing the substrate structure from ChemDraw into Maestro, it was
energetically optimized via the built-in function “Minimize-All Atoms”. The optimized structure
was then output as a mol2 file for the subsequent molecular dynamic docking. To initiate the

docking experiments, a high-resolution enzyme crystal structure as a PDB file, along with the
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substrate structure as a mol2 file, was imported into UCSF Chimera software. The enzyme-
substrate molecular docking was achieved with AutoDock Vina, an integrated program in UCSF
Chimera.?®?° For the docking set-up, the enzyme was chosen as the “Receptor” and the substrate
was selected as “Ligand”. The “Receptor search volume” was defined to ensure that space around
the catalytic binding pocket was included for a proper docking simulation, while balancing the
demand towards computation resource. Default settings of “Receptor options” and “Ligand
options” were used. “Number of binding modes”, “Exhaustiveness of search” and “Maximum
energy difference (kcal/mol)” options were adjusted to the maximum level to ensure the quality of
the simulation. The docking experiment was then executed via Opal web service. Computation
results were available upon completion of the experiment.
3.4.9 Phosphatase-Coupled Enzymatic Kinetic Assay

The kinetic assay protocol follows the general assay conditions reported by R&D Systems
Inc. with modifications.?’

30 pL reaction solutions of UDP-galactose, glycopeptide acceptor and f4GalT7 enzyme
were prepared in the 96-well plate. The plate was covered with a plate sealer and incubated at 37
°C for 20 min. 12 uLL 10x phosphatase assay buffer, 3 pL MnCl; solution (100 mM), 3 pL MilliQ
water and 2 pL coupling phosphatase 1 (20 ng/uL), were quickly added to a total volume of 50
pL. The plate was covered with a plate sealer again and incubated at 37 °C for 20 min. After the
incubation, 30 uL of Malachite Green Reagent A was quickly added to each well. The solutions
were gently mixed by tapping the plate. 100 uL of deionized or distilled water was added to each
well. 30 pL of Malachite Green Reagent B was then added to each well. Solutions were mixed
gently by tapping the plate. The plate was incubated for 5 minutes at room temperature to have

consistent color development. The optical density of each well was determined using a microplate
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reader set to 620 nm, and the OD was adjusted by subtracting the reading of the negative control.
Product formation was calculated using the conversion factor determined from the phosphate
standard curve.

3.4.10 LC/ESI-MS/MS Analysis and Data Processing

The glycopeptide sample was first desalted using a Hydrophilic-Lipophilic-Balanced
(HLB) cartridge (Waters, Milford, MA). The desalted sample was dissolved in 0.1% FA and
analyzed on the Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer (Thermo Fisher
Scientific, San Jose, CA) coupled to a Dionex UPLC system. A binary solvent system composed
of 0.1% formic acid in H>O (A) and 0.1% formic acid in ACN (B) was used for all analyses.
Samples were loaded and separated on a 75 pm x 15 cm homemade column packed with 1.7 pum,
150 A, BEH C18 material obtained from a Waters UPLC column (part no. 186004661). The LC
gradient for intact glycopeptides was set as the following: 3%-30% A (18-33 min), 85% A (33-43
min), and 3% A (43-53 min). The mass spectrometer was operated in data dependent mode using
a top-speed approach (cycle time of 3 s). HCD triggered EThcD was employed. MS1 scan was
acquired from m/z 300-2000 (120,000 resolution, 4¢> AGC, 50 ms injection time) followed by
EThcD MS/MS acquisition of the selected precursors in the Orbitrap (60,000 resolution, 2> AGC,
250 ms injection time) with an optimized user-defined charge-dependent reaction time (+2 50 ms;
+3 25 ms; +4-5 15 ms; +6-8 10 ms) supplemented by 25% HCD activation.

All raw data files were searched against the known peptide sequence using PTM-centric
search engine Byonic (version 3.3, Protein Metrics, San Carlos, CA). Searches were performed
with a precursor mass tolerance of 10 ppm and a fragment mass tolerance of 0.03 Da.
Xylose(Pent(1)) and Xylose-Galactose(Hex(1)Pent(1)) were embedded in Byonic as the glycan

database. Only these O-glycopeptides with PSMs with an FDR < 1% and Byonic score over 150
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were considered as a reliable identification. The ratio of coeluted glycopeptides with different
glycoforms (regio-isomers) was calculated by manually checking their MS2 spectra and

cumulatively counting the intensities of ¢, z ions bearing specific glycans.
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APPENDIX A: Supplementary Schemes, Figures and Tables

Sequence Analysis

Start codon and stop codon shown in Red
Ncol, Notl were avoided during optimization

1. The original sequence of BAGALT7-e.coli

ATCFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLFVACLSLGEFF SLLWLQLSCSGDVARAVRGQGQET SGPPRACPPEPPPEHWEEDA
SWGPHRLAVLVPFRERFEELLVFVPHMRRFLSRKKIRHHIYVLNQVDHFRFNRAAL INVGFLESSNSTDY IAMEDVDLLPLNEELDYGFP
EAGPFHVASPELHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDEFYRRIKGAGLQLFRPSGI TTGYKTFRHLHDPAWRKRDQ
KRIAAQKQEQFKVDREGGLNTVKYHVASRTALSVGGAPCTVLNIMLDCDKTATPWCTFSTAR

The optimized (for Escherichia coli) sequence of B4AGALT7-e.coli

A196 T 218 C 279 G 291 | GC%: 57.93% | Length: 984
ATGTTTCCGAGTCGCCGTAAAGCAGCCCAGCTGCCTTGGGAGGATGGTCGCAGCGGTTTATTAAGCGGCGGTCTGCCGCGTAAGTGCAGT
GTTTTCCACCTGTTCGTGGCCTGTCTGAGCCTGGGTTTCTT TAGCCTGCTGTGGCTGCAGCTGAGCTGTAGCGGTGATGTGGCCCGCGCA
GTTCGTGGTCAAGGCCAGGAGACCAGTGGTCCGCCTCGTGCATGCCCTCCGGAACCGCCTCCGGAGCATTGGGAGGAAGATGCCAGTTGG
GGTCCGCATCGCCTGGCAGTGCTGGTTCCGTTCCGCGAACGCTTTGAGGAACTGCTGGTTTTCGTGCCGCACATGCGTCGCTTTCTGAGC
CGCAAAAAGATCCGCCACCACATTTACGTGCTGAACCAGGTGGACCACTTCCGCTTTAATCGTGCCGCCCTGATTAATGTGGGCTTCCTG
GAGAGCAGCAACAGCACCGATTACATCGCCATGCACGATGTGGATCTGCTGCCGCTGAATGAAGAGCTGGATTACGGCTTTCCGGAAGCC
GGCCCGTTTCATGTGGCCAGCCCGGAACTGCACCCGCTGTACCACTATAAAACCTACGTGGGCGGCATCCTGCTGCTGAGCAAGCAGCAT
TATCGCCTGTGTAACGGCATGAGCAACCGTTTCTGGGGCTGGGGCCGTGAAGATGACGAGT TCTATCGCCGCATCAAAGGTGCCGGTCTG
CAGTTATTTCGCCCGAGCGGCATCACCACCGGCTACAAGACATTTCGCCATCTGCACGATCCGGCATGGCGTAAACGTGATCAGAAACGC
ATCGCCGCCCAGAAACAGGAACAGTTCAAGGTGGATCGCGAGGGCGGCCTGAACACCGTTAAGTATCACGTGGCAAGCCGTACCGCACTG
AGTGTGGGTGGCGCACCTTGTACCGTGCTGAACATCATGCTGGACTGCGATAAAACCGCAACCCCTTGGTGTACATTTAGCTAA

Figure 3.3 f4GalT7 amino acid and gene sequence.

Protein Purified
Ladder p4GalT7
—
7skpa M
50 KDa -
37 KDa -
LR
25kpa WD
-
o,

Figure 3.4 SDS-PAGE gel of purified f4GalT7.
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Orignial Assay Setup ‘ ‘ Modified Assay Setup

—P-P-@ +R —p-p-@ +R

Glycosyltransferase Glycosyltransferase |MES Buffer, pH 6.2

P—P-g@ + R P-P-@ + R-

Phosphatase | Buffer Adjustment |
P— P—'r_,_ R—
P_'r+ i Phosphatase IAssay Buffer, pH 7.5
e Sugar Residue .r Nucleoside
Inorganic Phosphate R Acceptor P‘.r“” Pi

Figure 3.5 Schematic demonstrations of the original and the modified kinetic assay set-up.’

Phosphate Standard

1.6+
1.4+
1.2+
1.0+
0.8+
0.6+
0.4+
0.24

OC 1 ] T ] ] ] ) J
0 20 40 60 80 100 120

Phosphate Std. Conc. (uM)

Optical Density (620 nm)

Figure 3.6 Phosphate conversion factor measurement. Conversion factor was calculated as 3541
pmol/OD (Plot is displayed as mean + S.D. of two replicates, phosphate standard concentration =
50 uL).
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b4GalT7 Specific activity vs. UDP-Gal b4GalT7 Specific Activity vs. UDP-Gal
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Figure 3.7 Phosphatase-coupled assay result of UDP-Gal. kcat=27.5 min'!, Kin= 0.04 mM, kcat/Km
=635 mM 'min’.

b4GalT7 Specific Activity vs. QEEEGSGGGQGG b4GalT7 Specific Activity vs. QEEEGSGGGQGG
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Figure 3.8 Phosphatase-coupled assay result of QEEEGSGGGQGG 1. keat = 10 min!, Kin=0.07
mM, keat/Km = 144 mM'min!.
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b4GalT7 Specific activity vs. GGPSGDFE b4GalT7 Specific activity vs. GGPSGDFE
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Figure 3.9 Phosphatase-coupled assay result of GGPSGDFE 7. kcat = 28 min!, Kin=0.10 mM,
keat/Kim = 281 mM 'min!,

b4GalT7 Specific Activity vs. DFELSGSGDLD b4GalT7 Specific Activity vs. DFELSGSGDLD
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Figure 3.10 Phosphatase-coupled assay result of DFELSGSGDLD 8. kcat = 4 min'!, Ky = 0.39
mM, keat/Km = 11 mM'min’!.
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b4GalT7 Specific Activity vs. YASASGSGADE b4GalT7 Specific Activity vs. YASASGSGADE
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Figure 3.11 Phosphatase-coupled assay result of YASASGSGADE 9. kcat = 9 min!, K= 0.28
mM, kea/Kin = 34 mM'min!.

Sequence SPPS Yie.ld (%)(7 SPPS Yield (%) Deprotection
(CI-TCP Resin, 50 °C) (CI-MPA Resin)* Yield (%)

QEEEGS(O-XyDG 6 14.6 N/A 75
GGPS(O-Xyl)GDFE 7 12.8 N/A 87
DFELS(O-Xyl)GS(O-Xyl)GDLD 8 5.6 30 78
YASAS(O-Xyl)GS(O-Xyl)GADE 9 74 25 82
DNFS(O-Xy)GS(O-Xyl)GAG 10 11.5 26 75
DLYS(O-XyD)GS(O-Xyl)GS(O-Xyl)GYFE 11 2.6 13 63

Table 3.3 Summary of synthesized glycopeptides and the corresponding yields. (N/A: not
performed) (*Coupling of the glycosyl amino acid was performed at 50 °C and the couplings of
non-glycosylated amino acids were performed at 30 °C)
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SDC2 Human
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Fragmentation: EThcD; Data Searching: Byonic software

LC-MS2 Result Summary

Analysis #1

MS2 ions of YASAS[+294.09508]GS[+132.04226] GADE

Tons m/z Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6

y6 6672417  1.53E+04  3.72E+04 120E+05 6.50E+02  0.00E+00  0.00E+00
y5 610.2202  0.00E+00  0.00E+00  1.27E+04  0.00E+00  0.00E+00  0.00E+00
b6 831.3254  5.15E+03  6.48E+04  3.14E+04  0.00E+00  0.00E+00  0.00E+00
c6 848.352 4.36E+04  1.16E+05 5.65E+05  1.35E+03  5.82E+02  0.00E+00
c5 7913305 0.00E+00  0.00E+00  5.18E+04  0.00E+00  0.00E+00  0.00E+00

Auto-annotated MS2 ions intensity
1.07E+06

Relative Ratio of YASAS[+294.09508]GS[+132.04226] GADE

32.41%

MS2 ions of YASAS[+132.04226]GS[+294.09508] GADE

Tons m/z Scan 1 Scan 2 Scan 3 Scan 4 Scan 5

y6+Gal 829.2945  4.65E+04 7.53E+05  7.72E+04  1.27E+04  2.89E+03
y5+Gal 772.273 8.16E+03 8.79E+04  0.00E+00  1.02E+03  0.00E+00
b6-Gal 669.2726  0.00E+00 0.00E+00  0.00E+00  0.00E+00  0.00E+00
c6-Gal 686.2992  6.23E+04 9.15E+05  1.24E+05  2.12E+04  3.13E+03
c5-Gal 629.2777  0.00E+00 7.17E+04  3.34E+04  0.00E+00  0.00E+00

Auto-annotated MS2 ions intensity
2.22E+06 3.29E+06

Relative Ratio of YASAS[+132.04226]GS[+294.09508] GADE

67.59%

Table 3.4 LC-MS2 characterization of glycosylation intermediates.
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Table 3.4 (cont’d)

Analysis #2

ions

y6

y5

b6

c6

c5

MS2 ions of YASAS[+294.09508]GS[+132.04226]GADE

m/z

667.2417

610.2202

831.3254

848.352

791.3305

Scan 1

3.07E+04

0.00E+00

1.41E+04

7.24E+04

2.66E+04

Scan 2

1.19E+05

3.30E+04

8.95E+04

2.81E+05

7.13E+04

Scan 3

1.07E+05

0.00E+00

5.58E+04

5.75E+05

6.45E+04

Scan 4

4.65E+04

0.00E+00

1.39E+04

7.99E+04

1.20E+05

Scan 5

2.03E+03

0.00E+00

2.12E+03

6.09E+03

1.40E+03

Auto-annotated MS2 ions intensity

1.81E+06

Relative Ratio of YASAS[+294.09508]GS[+132.04226]GADE

Analysis #3

ions

26.27%

MS?2 ions of YASAS[+294.09508]GS[+132.04226]GADE

m/z

667241

6102202

831.3254

848.352

791.3305

Scan 1

1.89E+04

0.00E+00

1ATE+04

549E+04

1.62E+04

Scan 2

64SE+04

1.22E+04

7.13E+04

1.21E+05

237E+04

Scan 3 Scan 4 Scan 5 Scan 6
2.70E+05 0.00E+00 3.28E+03 5.22E+03
1.70E+04 0.00E+00 0.00E+00 0.00E+00
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APPENDIX B: Product Characterization Spectra
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-10% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?* = - 1.53 ° (¢ = 0.08, H,0). 'H-NMR (500 MHz, D>0), & 4.50 (t,
J=4.8 Hz, 1H), 430 - 4.17 (m, 3H), 4.17 — 3.98 (m, 4H), 3.91 — 3.67 (m, 15H), 3.60 (d, J=2.0
Hz, 4H), 3.42 (td, J=9.9, 5.5 Hz, 2H), 3.34 — 3.20 (m, 3H), 3.19 - 3.01 (m, 3H), 2.21 (t, J="7.5
Hz, 3H), 2.18 — 2.05 (m, 8H), 2.07 — 1.95 (m, 3H), 1.93-1.87 (m, 4H), 1.87 — 1.74 (m, 5H), 1.74
(s, 8H). BC-NMR (225 MHz, D:0), § 177.9, 177.0, 174.3, 173.8, 173.4, 172.1, 171.6, 170.9,
103.0, 75.5, 72.9, 72.8, 69.5, 69.1, 68.7, 65.2, 53.9, 53.8, 53.7, 53.7, 53.2, 52.4, 52.2, 44.5, 43.2,
42.7,42.4,42.4,33.6,31.0,30.1,27.7,27.6, 27.5,26.7,26.6, 26.6, 25.1,23.2,22.2, 21.4. ESI-MS:

C4sH70N 14026 [M+H]" calcd: 1223.4659, obsd: 1223.4637 (1.8 ppm).
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Figure 3.12 HPLC chromatogram of 1.
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Figure 3.15 COSY NMR of 1 (900MHz, D,0).
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Figure 3.17 HSQC-coupled NMR of 1 (900MHz, D,0).

115

f1 (ppm)



o NH: o OH
4O y O y O b 0 b 0 b0
HZNE(N\)KHZ(NJH/\WNQLH/YNQLH/YNJH/YNQJ\OH
0:2 0 :2 SN o) 0:2 o)
o
% OH 0o Oﬁﬁ;;jgi;: 0 NH,
HOHO

ol

QEEEGS(0-Xyl)GGGQGG-OH.5.ser
HMBC

) . -t . i [
%‘ ' : L40

1140
1160
s i L 1180

r200

r220

9.5 8.5 75 6.5 55 45 3.5 2.5 1.5 0.5 -0.5 -1.5
f2 (ppm)

Figure 3.18 HMBC NMR of 1 (900MHz, D,0).

116



OBz J\

FmocHN COOH

[a]o® = - 3.7 ° (¢ = 0.20, methanol). 'H-NMR (500 MHz, CD;OD), § 7.95 — 7.90 (m, 3H), 7.78
(dd, J= 7.6, 3.4 Hz, 2H), 7.62 — 7.52 (m, 3H), 7.52 — 7.45 (m, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.36
(dq, J=15.5,7.5 Hz, 3H), 7.30 — 7.22 (m, 5H), 5.55 (q, J = 6.8, 5.7 Hz, 1H), 5.24 (dd, J = 8.0, 6.0
Hz, 1H), 5.13 (d, J = 12.3 Hz, 1H), 5.09 — 5.01 (m, 2H), 4.85 (d, J = 6.0 Hz, 1H), 4.49 (t, J = 4.6
Hz, 1H), 4.28 (dd, J = 10.4, 6.8 Hz, 1H), 4.21 — 4.11 (m, 2H), 4.11 — 4.01 (m, 2H), 3.89 (dd, J =
10.4, 4.3 Hz, 1H), 3.54 (dd, J = 12.1, 7.8 Hz, 1H), 1.98 (s, 3H). 3C-NMR (125 MHz, CD;OD), &
170.0, 169.8, 165.4, 165.2, 156.8, 143.8, 143.6, 141.1, 141.1, 135.6, 133.2, 133.2, 129.4, 129.1,
128.9,128.2, 128.1, 128.1, 127.9, 127.9, 127.4, 127.4, 126.8, 124.9, 124.8, 119.5,99.9, 71.1, 70.7,
68.4, 68.0,66.7,66.7, 61.1, 54.2, 48.2, 48.1, 47.9, 47.7, 47.6, 47.4, 47.2, 47.1, 46.8, 19.2. ESI-MS:

C39H36NO12 [M+H]" calcd: 710.2232, obsd: 710.2243 (1.55 ppm).
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Figure 3.19 'H NMR (500 MHz, CD;0D).
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Figure 3.21 COSY NMR of 2 (500MHz, CD;0OD).
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Figure 3.22 HSQC NMR of 2 (500MHz, CD;OD).
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Figure 3.23 HMBC NMR of 2 (500MHz, CD;0OD).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-10% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?®=-1.57 °(c = 0.14, H>0). 'H NMR (900 MHz, D>0), § 5.83 (s,
2H), 4.29 (m, 3H), 4.23 (s, 4H), 4.08 (s, 2H), 3.85 (s, 10H), 3.76 (s, 4H), 3.70 — 3.62 (m, 4H), 3.59
(m, 3H), 3.55 (s, 3H), 3.49 (dd, J = 11.2, 6.0 Hz, 5H), 3.45 (s, 2H), 3.35 (t, J = 8.9 Hz, 2H), 3.24
(t,J=12.4 Hz, 1H), 3.16 (s, 1H), 2.30 (s, 1H), 2.24 (s, 1H), 2.03 (s, 1H), 1.86 (s, 1H), 1.25-0.95
(m, 3H). 3C NMR (225 MHz, D:0) § 102.4, 92.1, 88.4, 72.5, 70.6, 68.8, 62.9, 61.0, 53.5, 42.6,

30.9, 26.6. ESI-MS: CsHgoN 14051 [M+H]* caled: 1385.5187, obsd: 1385.5135 (3.75 ppm).
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Figure 3.26 COSY NMR of 5 (500 MHz, D,0).
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Figure 3.27 HSQC NMR of 5 (500 MHz, D-0).
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Figure 3.28 HSQC-coupled NMR of 5 (900 MHz, D,0).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-10% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?’= - 1.570 ° (¢ = 0.14, H>0O). 'H-NMR (900 MHz, D,0), § 4.60 (t,
J=5.1Hz, 1H), 4.30 (d, /= 7.8 Hz, 2H), 4.23 — 4.18 (m, 3H), 4.10 (m, 1H), 3.97 — 3.88 (m, 3H),
3.87-3.80 (m, 3H), 3.72 - 3.63 (m, 3H), 3.51 (m, 2H), 3.49 — 3.44 (m, 1H), 3.33 (m, 1H), 3.23 —
3.15 (m, 3H), 3.05 (t, /= 5.8 Hz, 1H), 2.29 - 2.12 (m, 10H), 2.02 — 1.93 (m, 4H), 1.90 — 1.79 (m,
6H), 1.67 (p, J = 5.8 Hz, 1H), 1.56 (m, 1H). *C-NMR (225 MHz, D;0),  181.4, 178.2, 176.3,
174.3, 173.8, 173.7, 171.3, 170.7, 164.3, 160.3, 103.2, 102.8, 75.4, 72.8, 72.8, 69.1, 69.0, 68.9,
66.0, 65.1, 65.1, 53.9, 53.8, 53.7, 53.4, 53.3, 44.5, 43.4, 42.5, 33.6, 33.5, 30.9, 27.7, 27.6, 27.6,

22.2,21.5. ESI-MS: C3;Hs0NgO20 [M+H]" calcd: 867.3214, obsd: 867.3209 (0.58 ppm).
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Figure 3.29 HPLC chromatogram of 6.
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Figure 3.32 COSY NMR of 6 (900 MHz, D-0).
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Figure 3.33 HSQC NMR of 6 (900 MHz, D,0).
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Figure 3.34 HSQC-coupled NMR of 6 (900 MHz, D,0).
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Figure 3.35 HMBC NMR of 6 (900 MHz, D;0).
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The purity of glycopeptide was verified with analytical C-18 HPLC (5-30% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p®® = - 3.4 °(c = 0.16, H,0). 'H-NMR (900 MHz, D20), § 7.28 —
7.12 (m, 5H), 4.69 —4.61 (m, 2H), 4.61 —4.51 (m, 3H), 4.46 (dt, J=8.7, 4.4 Hz, 1H), 4.37 (dd, J
=8.7, 5.1 Hz, 1H), 4.31 (m, 1H), 4.12 — 4.05 (m, 2H), 4.06 — 3.94 (m, 3H), 3.88 — 3.75 (m, 5H),
3.60 — 3.39 (m, 4H), 3.42 — 3.26 (m, 3H), 3.22-3.16 (m, 2H), 3.16 — 3.07 (m, 1H), 2.91 (m, 1H),
2.48 (m, 1H), 2.36 — 2.26 (m, 1H), 2.24 — 2.16 (m, 1H), 2.05 (t, J = 8.3 Hz, 3H), 1.99 — 1.85 (m,
4H), 1.85 — 1.72 (m, 2H); 3*C-NMR (225 MHz, D20) 6 182.0, 178.0, 177.4, 174.5, 172.8, 171.9,
171.3, 170.4, 169.4, 163.1, 163.0, 162.8, 162.7, 160.5, 136.3, 129.2, 128.5, 126.9, 118.1, 116.8,
115.5,114.2,103.0, 75.4,72.7, 69.0, 68.6, 65.0, 60.6, 55.1, 54.6, 53.4, 51.4,46.9,42.9,42.3,41.5,
38.2,36.9,33.8,29.3, 28.5, 24.3. ESI-MS: C37H52NgO16 [M+H]" calcd: 897.3473, obsd: 897.3443

(3.34 ppm).
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Figure 3.36 HPLC chromatogram of 7.
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Figure 3.40 HSQC NMR of 7 (900 MHz, D,0).
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Figure 3.41 HSQC-coupled NMR of 7 (900 MHz, D,0).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p** =+ 0.01 ° (¢ = 0.10, H>O). 'H-NMR (500 MHz, D,0) & 7.26 —
7.01 (m, 5H), 4.51-4.46 (m, 3H), 4.30 (t, /= 6.3 Hz, 1H), 4.27 — 4.15 (m, 3H), 4.03-3.98 (m, 2H),
3.92-3.67 (m, 7H), 3.27 (t,J = 9.2 Hz, 1H), 3.20 — 3.06 (m, 3H), 2.58-2.54 (m, 7H), 2.15 (t,J =
7.4 Hz, 2H), 1.50-1.46 (m, 7H), 0.92 — 0.40 (m, 14H); 3C-NMR (125 MHz, D,0) 8 175.6, 163.1,
162.8, 162.8, 129.0, 129.0, 129.0, 128.7, 128.7, 128.7, 119.7, 117.4, 115.1, 115.1, 103.0, 75.4,
72.8,72.7, 69.1, 69.0, 65.1, 50.4, 24.2, 24.1, 22.3, 22.2, 20.8, 20.8, 20.4. ESI-MS: CssHg7N11030

[M+2H]?* calcd: 1418.5693, obsd: 1418.5635 (4.09 ppm).
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Figure 3.43 HPLC chromatogram of 8.
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Figure 3.45 3C-NMR of 8 (125 MHz, D,0).
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Figure 3.46 COSY NMR of 8 (500 MHz, D,0).
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Figure 3.47 HSQC NMR of 8 (500 MHz, D,0).
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Figure 3.48 HSQC NMR of 8 (500 MHz, D,0).
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Figure 3.49 HMBC NMR of 8 (500 MHz, D,0).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?*=- 0.003 ° (c = 0.06, H>0). 'H-NMR (500 MHz, D:0), § 7.06 —
6.93 (m, 2H), 6.73-6.68 (m, 2H), 4.58 — 4.40 (m, 3H), 4.35 — 4.12 (m, 6H), 4.11 — 3.94 (m, 4H),
3.93-3.67 (m, 12H), 3.43 (d, J= 8.8 Hz, 2H), 3.27 (m, 2H), 3.20 — 3.08 (m, 5H), 3.08 — 2.87 (m,
3H), 2.64 — 2.59 (m, 2H), 2.48 — 2.44 (m, 2H), 2.11 (t, /= 7.9 Hz, 3H), 1.98 — 1.86 (m, 2H), 1.82
— 1.67 (m, 2H), 1.30 — 1.18 (m, 14H); *C-NMR (125 MHz, D-0) & 174.6, 172.3, 159.9, 142.0,
131.8, 130.8, 130.8, 122.3, 115.7, 108.9, 82.7, 74.3, 69.0, 65.1, 60.5, 49.4, 42.7, 30.1, 18.0, 17.4,

16.6. ESI-MS: CssHssN 11033 [M+H]>* caled: 1278.4856, obsd: 1278.4772 (6.57 ppm).
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Figure 3.50 HPLC chromatogram of 9.
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Figure 3.51 'H-NMR of 9 (500 MHz, D-0).
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Figure 3.52 >*C-NMR of 9 (125 MHz, D,0).
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Figure 3.53 COSY NMR of 9 (500 MHz, D-0).
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Figure 3.54 HSQC NMR of 9 (500 MHz, D,0).
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Figure 3.56 HMBC NMR of 9 (500 MHz, D;0).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?®=+ 0.020 ° (¢ = 0.03, H>O). 'H-NMR (500 MHz, D>0) § 7.19 -
7.13 (m, 5H), 4.66 (s, 5H), 4.58 —4.39 (m, 3H), 4.24 — 4.20 (m, 3H), 4.01 (m, 2H), 3.91 - 3.67 (m,
11H), 3.68 — 3.51 (m, 4H), 3.46 3.41 (m, 5H), 3.32 — 3.19 (m, 3H), 3.18 — 3.05 (m, 4H), 2.99 —
2.94 (m, 2H), 2.63 — 2.37 (m, 3H), 1.23 (t, J = 7.3 Hz, 4H); 3*C-NMR (125 MHz, D>0) § 207.4,
174.2,170.7, 166.6, 151.8, 129.1, 128.7, 110.0, 103.0, 101.5, 72.8, 69.0, 65.1, 43.2, 24.0. ESI-MS:

Ca2HeaN 10023 [MH+H]" caled: 1075.4062, obsd: 1075.4014 (4.46 ppm).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?’=+0.013 ° (¢ = 0.02, H20). 'H-NMR (500 MHz, D;0), & 7.21 —
7.09 (m, 3H), 7.05 (d, J=7.2 Hz, 2H), 6.97 (d, /= 7.0 Hz, 2H), 6.84 (d, /= 8.1 Hz, 2H), 6.63 (m,
4H), 4.93 —4.62 (m, 32H), 4.56 —4.39 (m, 3H), 4.31 (t, /= 7.6 Hz, 1H), 4.25 - 4.12 (m, 3H), 4.04
—3.94 (m, 2H), 3.93 — 3.62 (m, 14H), 3.42 (d, J = 11.5 Hz, 3H), 3.30 — 3.18 (m, 3H), 3.09 (m,
5H), 3.03 —2.87 (m, 1H), 2.85 - 2.61 (m, 2H), 2.61 — 2.40 (m, 1H), 1.99 (t, /= 8.3 Hz, 2H), 1.85
(d, J=9.6 Hz, 1H), 1.74 (s, 1H), 1.33 (s, 1H), 0.69 (m, 6H); *C-NMR (125 MHz, D,0) § 160.3,
153.8, 136.8, 128.5, 128.4, 128.1, 117.9, 117.2, 115.3, 99.1, 95.2, 89.7, 24.5, 21.3. ESI-MS:

C72H101N12034 [M+H]" caled: 1677.6538, obsd: 1677.6555 (1.0 ppm).
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Figure 3.64 'H-NMR of 11 (500 MHz, D>O).
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The purity of glycopeptide was verified with analytical C-18 HPLC (water; 0.1% trifluoroacetic
acid). [a]p**=-1.530° (¢ =0.08, H20). 'H-NMR (500 MHz, D;0),  4.53 (t,J= 5.0 Hz, 1H), 4.34
—4.14 (m, 6H), 4.05 — 4.01 (m, 2H), 3.99 — 3.85 (m, 3H), 3.86 — 3.71 (m, 7H), 3.72 — 3.60 (m,
3H), 3.61 — 3.50 (m, 3H), 3.51 —3.38 (m, 3H), 3.26 — 3.07 (m, 3H), 2.41 — 2.19 (m, 10H), 2.07 —
1.90 (m, 6H), 1.90 — 1.75 (m, 4H). 3C NMR (225 MHz, D;0) & 102.0, 76.3, 72.9, 70.5, 68.7, 63.0,
61.0, 53.0, 44.6, 42.5, 30.1, 26.4. ESI-MS: Cs3sHsoNgO2s [M+H]" caled: 1029.3743, obsd:

1029.3717 (2.53 ppm).
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Figure 3.70 HSQC NMR of 12 (500 MHz, D,0).
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Figure 3.71 HSQC-coupled NMR of 12 (900 MHz, D-0).
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Figure 3.72 HMBC NMR of 12 (900 MHz, D,0).
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The purity of glycopeptide was verified with analytical C-18 HPLC (5-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p®® = -3.400° (¢ = 0.16, H,0). 'H-NMR (500 MHz, D,0) & 7.84 —
7.75 (m, 1H), 7.26 — 7.02 (m, 5H), 5.88 — 5.71 (m, 2H), 4.65 (d, /= 5.0 Hz, 1H), 4.53 (s, 1H), 4.47
(d, J=9.3 Hz, 1H), 4.27 (t, J = 8.7 Hz, 2H), 4.24 — 4.14 (m, 3H), 4.11 (s, 1H), 4.08 — 3.94 (m,
4H), 3.91 (d, J=11.2 Hz, 2H), 3.87 - 3.76 (m, 3H), 3.73 (d, /= 7.7 Hz, 4H), 3.69 — 3.55 (m, 5H),
3.54-3.38 (m, 6H), 3.33 (t, /= 8.4 Hz, 1H), 3.26 — 3.06 (m, 3H), 3.06 —2.95 (m, 1H), 2.94 —2.82
(m, 1H), 2.68 (m, 1H), 2.55 (m, 1H), 2.22 (t, J = 6.3 Hz, 2H), 2.14 (s, 1H), 2.00 (s, 1H), 1.86 —
1.82 (m, 4H); BC-NMR (125 MHz, D;0) & 140.8, 129.2, 128.6, 102.8, 102.6, 95.8, 95.7, 88.6,
88.3, 82.8, 73.8, 73.6, 73.6, 71.8, 71.8, 70.0, 69.5, 69.2, 69.0, 68.9, 68.9, 68.9, 68.3, 68.3, 68.2,
66.0, 65.8,64.9, 64.8, 60.9, 60.8, 52.4, 52.1, 52.1,47.2,46.7, 33.9. ESI-MS: C43Hs2NgO23 [M+H]"

calcd: 1059.4001, obsd: 1059.3901 (3.34 ppm).
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Figure 3.77 HSQC-coupled NMR of 13 (500 MHz, D>0).
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14

The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?® = + 0.900 ° (¢ = 0.01, H>O). 'H-NMR (900 MHz, D>0) & 7.79
(m, 1H), 7.31 — 7.06 (m, 5H), 5.82 (m, 1H), 4.40 — 4.25 (m, 2H), 4.22 (s, 1H), 4.12 (m, 2H), 4.01
(m, 3H), 3.94 (m, 5H), 3.88 —3.78 (m, 5H), 3.76 (d, J=4.2 Hz, 4H), 3.71 — 3.62 (m, 7H), 3.59 (d,
J=11.9 Hz, 5H), 3.55 (t, /= 6.5 Hz, 5H), 3.49 — 3.45 (m, 8H), 3.38 — 3.33 (m, 4H), 3.31 — 3.20
(m, 4H), 3.18 (t, /= 9.3 Hz, 3H), 3.04 - 2.99 (m, 2H), 2.91 (d, J = 10.1 Hz, 1H), 2.11 — 2.07 (m,
2H), 1.87 — 1.84 (m, 2H), 1.78 — 1.73 (m, 1H), 1.64 — 1.60 (m, 1H), 1.52 — 1.49 (m, 6H), 1.41 —
1.37 (m, 2H), 1.20 -1.16 (m, 2H), 1.15—1.11 (m, 1H), 1.09 — 1.05 (m, 1H), 0.90 — 0.59 (m, 14H);
BC-NMR (225 MHz, D;0) § 143.2, 128.9, 114.8, 111.9, 102.5, 97.2, 88.3, 82.3, 77.6, 73.5, 70.8,
68.7, 60.8, 44.9, 28.8, 22.1, 18.4, 8.7. ESI-MS: C70H107N11040 [M+2H]*" calcd: 871.8412, obsd:

871.8452 (4.59 ppm).
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Figure 3.79 'H-NMR NMR of 14 (900 MHz, D>0).
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Figure 3.82 HSQC-coupled NMR of 14 (900 MHz, D-0).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?® = + 1.200 ° (¢ = 0.01, H,0). 'H-NMR (500 MHz, D>0) & 6.97
(m, 2H), 6.68 (m, 2H), 5.99 - 5.71 (m, 6H), 4.69 — 4.46 (m, 24H), 4.25 - 4.21 (m, 8H), 3.89 —3.85
(m, 9H), 3.74 — 3.70 (m, 6H), 3.68 — 3.56 (m, 9H), 3.54 (d, /= 5.8 Hz, 7TH), 3.42 — 3.38 (m, 7H),
1.26 —1.22 (m, 3H), 1.21 — 1.12 (m, 3H); 3*C NMR (225 MHz, D,0) & 138.3, 130.8, 104.8, 101.9,
98.3, 95.0, 91.0, 88.4, 77.4, 72.8, 71.2, 68.6, 62.7, 60.8, 59.5, 29.2, 22.0, 18.5, 16.6. ESI-MS:

Ce2HosN1103s [M+2H]** calcd: 801.7993, obsd: 801.8046 (1.62 ppm).
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Figure 3.87 HSQC-coupled NMR of 15 (900 MHz, D>0).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?’=+ 1.100 ° (¢ = 0.01, H>0). 'H-NMR (900 MHz, D-0), & 7.83 —
7.79 (m, 1H), 7.29 — 7.05 (m, 5H), 5.86 — 5.82 (m, 5H), 5.71 (d, J = 4.5 Hz, 1H), 4.77 — 4.74 (m,
3H), 4.35-4.08 (m, 7H), 4.06 — 4.03 (m, 1H), 3.96 — 3.84 (m, 8H), 3.84 -3.80 (m, 1H), 3.76 (d, J
= 3.5 Hz, 2H), 3.73 - 3.61 (m, 11H), 3.61 — 3.56 (m, 11H), 3.55 (d, J = 9.3 Hz, 3H), 3.51 — 3.46
(m, 6H), 3.35 (q, J = 7.8 Hz, 2H), 3.26 — 3.22 (m, 2H), 1.26 — 1.22 (m, 4H); *C-NMR (225 MHz,
D,0O) 6 128.9, 102.0, 101.7, 88.2, 72.5, 70.8, 68.7, 61.9, 60.8, 46.9, 42.6, 16.6. ESI-MS:

Cs4HgaN10O33 [M+H]" caled: 1399.5119, obsd: 1399.5148 (2.07 ppm).
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The purity of glycopeptide was verified with analytical C-18 HPLC (0-30-100% acetonitrile/water;
0.1% trifluoroacetic acid). [a]p?*=+ 1.100 ° (¢ = 0.01, H>O). 'H-NMR (800 MHz, D,0), 4 7.82 —
7.78 (m, 2H), 7.18 — 7.14 (m, 3H), 7.08 — 7.04 (m, 1H), 7.00 — 6.98 (m, 2H), 6.87 — 6.83 (m, 1H),
6.67 -6.63 (m, 3H), 5.85 — 5.81 (m, 5H), 4.47 — 4.43 (m, 3H), 4.38 — 4.17 (m, 12H), 4.16 — 4.12
(m, 6H), 4.05 —4.01 (m, 8H), 3.89 — 3.84 (m, 11H), 3.82 —3.70 (m, 12H), 3.63 — 3.58 (m, 20H),
3.55-3.50 (m, 3H), 3.49 — 3.38 (m, 8H), 3.36 — 3.31 (m, 3H), 3.20 — 3.16 (m, 5H), 2.72 — 2.67
(m, 4H), 1.32 — 1.28 (m, 7H), 0.71 — 0.67 (m, 5H). *C-NMR (200 MHz, D;0) § 133.1, 132.0,
118.0, 105.5, 104.3, 98.5,90.8, 79.0, 77.9, 76.3, 75.2, 73.1, 71.2, 67.9, 65.6, 63.6, 57.6, 56.1, 45.1,
31.1, 28.0,26.5, 24.6, 23.5, 19.9, 10.9. ESI-MS: CooH132N12049 [M+2H]?" calcd: 1082.4098 obsd:

1082.4048 (4.62 ppm).
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Chapter 4 Exploration of Human Xylosyltransferase for Chemoenzymatic
Synthesis of Proteoglycan Linkage Region

4.1 Introduction

Proteoglycans (PGs) are an essential class of glycoproteins that are ubiquitous in the
mammalian systems. They are directly involved in numerous biological processes including tumor
progression, cell adhesion, and regulation of growth factors.!-* Structurally, PGs consist of a core
protein and one or more glycosaminoglycan (GAG) chains, which are linked through glucuronic
acid (GlcA)-B-1,3-galactose (Gal)-p-1,3-Gal-B-1,4-xylose (Xyl) tetrasaccharide linkages attached
to serine residues of serine-glycine dipeptides.* Due to the complexity of post-translational
modifications on the GAG chains, PGs from natural sources are highly heterogeneous. To date,
structurally defined proteoglycan glycopeptides can only be prepared through chemical synthesis.
However, the general synthetic process is highly challenging and tedious, owing to the presence
of many sensitive functional groups, thus requiring meticulous designs of the protective group
strategy and the synthetic route.’”” To expedite the PG preparations, we have become interested in
developing a synthetic strategy deploying the enzymes involved in biosynthetic assembly of the
tetrasaccharide linkage. Herein, I report my results on the utility of human xylosyltransferase I
(XT-I), the enzyme responsible for initiating PG synthesis in humans.

XT-I natively catalyze the transfer of the Xyl from UDP-Xyl to the side chain of certain
serine residues in the PG core protein.®!® A consensus sequence for peptide acceptors has been
deduced as Gly-Ser-Gly or Ser-Gly-x-Gly (x being any natural amino acid), with acidic residues
commonly present near the GAG attachment site.® ' 12 Till now, XT-I has not been utilized for
synthetic purposes of the PG. I report for the first time that human XT-I enzyme can be used to
efficiently synthesize native xylosylated PG glycopeptides at milligram scale, and the combination

of human XT-I with human B-4-galactosyl transferase 7 (B4GalT7)!3-!> enabled one pot synthesis
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of glycopeptides bearing Gal-Xyl disaccharides. Moreover, I investigated XT-I donor promiscuity.
Its ability to transfer an unnatural donor such as 6-azidoglucose (6AzGlc) opens the door to
introduce a biorthogonal handle to label peptide and protein substrates.

4.2 Results and Discussions

To explore the synthetic potential and capability of XT-I, we selected a bikunin-like
peptide sequence QEEEGSGGGQGG as the initial peptide substrate.!® 7 The preparation of
QEEEGSGGGQGG was achieved with Fmoc-based solid-phase peptide synthesis (SPPS) using
CI-MPA ProTide resin under microwave condition. Acidic treatment of the peptide loaded resins
cleaved the peptide off the resin followed by Fmoc-removal from the N-terminus leading to 43.2%
isolated yield of bikunin peptide 1 (Appendix Scheme 4.4).

To express the polyhistidine-tagged human XT-I (EC 2.4.2.26),!? plasmid encoding signal
peptide-His6-XT-I was constructed and used to transfect HEK-293F cells (Appendix Figure 4.3).
Secreted XT-I protein was purified using a Ni Sepharose affinity column with an expression yield
of 5 mg/L. Xylosylation was then initiated by sequentially adding UDP-Xyl (1.2 equiv), peptide 1
(1 equiv), and XT-I (0.025 mol%) to the MES reaction buffer. After overnight incubation at 37 °C,
quantitative conversion of 1 to xylosylated glycopeptide 2 (Scheme 4.1) was confirmed with high-
resolution mass spectrometry (HRMS) and high-performance liquid chromatography (HPLC). The
desired glycopeptide product 2 was isolated via G-10 size exclusion chromatography in 89.2%
yield at milligram scales. HRMS and nuclear magnetic resonance (NMR) analyses confirmed the
structure of B-glycosylated product (1Jci, m1 =159.5 Hz),!* which was identical to the chemically

synthesized glycopeptide 2.1
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Scheme 4.1 XT-I-catalyzed xylosylation of bikunin peptide 1.

Investigation furthered with peptide substrates 3-6 (Figure 4.1 and Table 4.5),22* which
contain diverse residues, including hydrophilic or hydrophobic residues flanking the glycosylation
site. In addition, peptides 4 and 5 have two potential sites of glycosylation, while peptide 6 has
three sites. Excitingly, XT-I enzyme smoothly converted all the peptide substrates to the
glycosylated products with desired stereoselectivity (Table 4.1). All glycopeptide structures were
confirmed through HPLC, NMR, and MS comparisons with glycopeptides synthesized
chemically.! In addition, a recombinant polyhistidine-tagged human CD44 hyaluronic acid
binding domain protein (hCD4420.173)** was successfully xylosylated by XT-I demonstrating that

XT-I can utilize a protein as an acceptor as well (Figure 4.39 and 4.40).
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Figure 4.1 Structures of peptide 3-6 and glycopeptide 7-10 with the serine xylosylation site
highlighted.

Acceptor Product Reaction Yield (%)
3 7 100
4 8 68.6
5 9 73.8
6 10 86.5

Table 4.1 Summary of XT-I catalyzed peptide glycosylation yields.
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To attain more in-depth understandings on XT-I activity and its substrate preference,
enzyme kinetics were measured for multiple peptide acceptors using a modified phosphatase-
coupled glycosyltransferase assay.”> Among the analytes, XT-I demonstrates the highest affinity
and catalytic efficiency towards the bikunin peptide 1 (Table 4.2). The differential kca/Km values
for various peptide sequences suggest that presence of acidic residues N-terminal to the xylose

attachment site may facilitate enzyme activities.

Substrate Km (UM) Vmax (pmol/min/pg) keat (min™!) keat/ Kin (min”'mM-1)
1 49.8+49 350.9 +30.6 28 562
3 308.0 + 69.4 454+48 3 10
4 133.8 £27.0 196.7 £ 16.3 16 120
5 164.4 £23.0 183.8 £10.7 15 91

Table 4.2 Summary of kinetic data from peptide substrate 3-6.

I next investigated the donor selectivity of XT-I. While XT-I was believed to be
monofunctional to UDP-Xyl.?® A variety of UDP-sugars were tested as XT-I donors, including
UDP-Xyl, UDP-glucose (Glc), UDP-Galactose (Gal), UDP-N-acetyl glucosamine (GlcNAc) and
UDP-6-azidoglucose (6AzGlc) with peptide 1 as the acceptor. UDP-Gal and UDP-GlcNAc were
not transferred at detectable amounts. Examination of the crystal structure of XT-I (PDB code:
6EJ7)!? shows that axial 4-OH of galactoside would clash with Asp494 and Glu529 (the catalytic
base) in the active site of the enzyme (Figure 4.2). For UDP-GIcNAc, the 2-N-acetyl group of
UDP-GIcNAc could be accommodated, but it could not form the hydrogen bond to Arg598 as

present when UDP-Xyl was bound.

218



Lys599

Arg598

UDP-xylose

Figure 4.2 Structure of the active site of XT-I bound with UDP-Xyl and the peptide acceptor
derived from the crystal structure (PDB code: 6EJ7). The 2-OH and 4-OH of UDP-Xyl have been
labeled with the numbers 2 and 4 in circles. The key residues in the active site interacting with the
UDP-Xyl have been highlighted. The structure 6EJ7 is a ternary complex of XT-I, UDP-Xyl and
the acceptor peptide with a Ser-to-Ala mutation (to prevent Xyl transfer occurring in the crystal).
To generate this figure, the serine was inserted back into the peptide acceptor to demonstrate the
geometry of the acceptor complex. (Docking simulation was performed by Po-han Lin)

Interestingly, besides UDP-Xyl, noticeable enzymatic activities were observed with UDP-
Glc and UDP-6AzGlc (Table 4.3). The successful transfer of 6AzGlc to bikunin peptide 11 by
XT-I indicates its potential to be developed as a valuable biolabeling tool. As a proof of concept,
azide-tagged glycopeptide 12 and alkynyl sulfo-Cy5 were subject to copper (I)-catalyzed azide-
alkyne cycloaddition (CuAAC). The desired Cy5 conjugated glycopeptide 13 was successfully

produced (Scheme 4.2).
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Substrate Km (uM) Vimax (pmol/min/pg) | ke (min!) | kea/Km (min'mM1)

UDP-Xyl 434+6.9 1659+6.4 13 266

UDP-Glc 84.0 £26.6 204+19 2 20
UDP-6AzGlc 23.4+10.5 11.0£1.0 1 39

Table 4.3 Summary of kinetic results from UDP-sugar donors.
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Scheme 4.2 XT-I catalyzed transfer of non-native 6AzGlc to bikunin peptide 11, followed by
incorporation of Cy5 fluorescent dye via ‘Click’ reaction.

To test whether the enzymatically prepared xylosyl peptide is a viable substrate for
B4GalT7, xylosylated peptide 8 was treated with f4GalT7 and UDP-Gal To further the potential

of XT-I to adopt UDP-6AzGlc, gatekeeper residue W392 in human XT-I (PDB: 6EJ7) was
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replaced by alanine using UCSF Chimera program.!? 27

As the result from docking simulation
showed improved but sub-optimal binding between the enzyme and UDP-6AzGlc, in addition,
R598 was swapped with Lysine to provide more space in the binding pocket. After local energy

minimization, the resulted double mutant shows the potential to accept UDP-6AzGlc as its native

donor substrate (Figure 4.3).

Figure 4.3 a) Wild-type human XT-I (PDB:6EJ7) in complex with UDP-Xyl (in brown color) or
UDP-6AzGlc (in light blue color) and an acceptor peptide (as in Figure 4.2, in yellow color). C5
of xylopyranose is in close proximity with residue W392 (in green color); b) in silico engineered
human XT-I W392A/R598K double mutant in complex with UDP-Xyl (in brown color) or UDP-
6AzGlc (in light blue color) and the acceptor peptide (in yellow color).

As proteoglycans can contain long glycan chains, it is important that the glycan of the
synthetic xylosyl peptides can be extended. In nature, a glycosyl transferase such as the f4GalT7
is responsible for adding a galactose unit to the xylose from the UDP galactose (UDP-Gal)
donor.!315 Recently, B4GalT7 has been shown to be able to galactosylate chemically synthesized
xylosylated peptides.!” To test whether the enzymatically prepared xylose peptide is a viable

substrate for f4GalT7, xylosylated peptide 8 was treated with f4GalT7 and UDP-Gal (Scheme
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4.3a). The glycopeptide 14! with two Gal-Xyl disaccharide was successfully produced in 77%
yield. Thus, the overall yield for the stepwise conversion of 4 to 14 with XT-I glycosylation
followed by B4GalT7 reaction was 53%. To further improve the synthetic efficiency, one pot
synthesis was explored with XT-I and B4GalT7. Peptide 4, UDP-Xyl, UDP-Gal, XT-I, and
B4GalT7 were incubated together in the MES reaction buffer at 37 °C overnight (Scheme 4.3b).
Encouragingly, a full conversion of acceptor peptide 4 was observed with an isolated yield of 68%
for glycopeptide 14. Besides peptide 4, this one-pot two-enzyme (OP2E) protocol smoothly
converted peptides 3, 5, and 6 to the corresponding glycopeptides 15-17'° (Figure 4.4) with higher
yields compared to the stepwise synthesis (Table 4.4). The polyhistagged hCD44,.178 protein was

also glycosylated by the OP2E method to yield the Gal-Xyl modified CD44 (Appendix Figure

4.42).
UDP-Gal,
2) B4GalT7,
MES buffer,
pH 6.2, 37 °C
77%
HO
0 o} o}
0] H © H H
H N N H
HZN/QN\;)J\H N ”/\{O]/ \:/U\H/\([)]/ \)J\H/\C[)]/O
o o X \ B
o=( OR OR
NH; 14 OH.OH
R= 0O HO—_OH
HO&S/O\ROV;\
b) OH

MES Buffer, pH 6.4,

XT-I, B4GalT7, 37 °C
. S 14

UDP-Xyl, UDP-Gal 68%

Scheme 4.3 a) Galactosylation of glycopeptide 8 by f4GalT7 to form glycopeptide 14 bearing
galactose-xylose disaccharide; b) OP2E synthesis of 14 from peptide 4 by one pot reaction with
XT-I and B4GalT7.
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Figure 4.4 Structures of OP2E glycopeptide products 15-17. Glycosylated serine sites are
highlighted.

Acceptor Product Stepwise Synthesis Yield (%) | Reaction Yield (%)
3 15 91 94
4 14 53 68
5 16 60 89
6 17 68 91

Table 4.4 Yield summary of OP2E synthesis.
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Enzymatic synthesis of glycopeptide such as 14 is more efficient than the corresponding
chemical synthesis. Due to the need for multiple protecting group manipulation to prepare the two
strategically protected monosaccharide building blocks followed by the technically challenging
chemical glycosylations and deprotection reactions, it would have taken over 20 synthetic steps to
access a glycopeptide such as 14 via chemical glycosylation from commercially available
monosaccharides.?® Thus, the OP2E protocol can significantly improve the overall synthetic
efficiencies.

In the OP2E protocol for glycopeptide synthesis, XT-I presumably installed the xylose onto
the peptide first, followed by B4GalT7 promoted galactosylation of the xylosylated peptide as in
the case for stepwise synthesis. Alternatively, B4GalT7 may galactosylate UDP-Xyl first with
subsequent transfer of the UDP disaccharide donor to the peptide acceptor catalyzed by XT-I.

However, the formation of disaccharide donor in OP2E reaction is unlikely to occur at an
appreciable rate as B4GalT7 prefers B-xyloside acceptors.?” The UDP-Xyl has an a-anomeric
configuration and the UDP moiety would clash with the active site of B4GalT7 enzyme.
Furthermore, the crystal structure of XT-I (PDB code: 6EJ7)!? shows that the active site of XT-I
(Figure 4.2) is not sufficiently large to accommodate a disaccharide donor.

4.3 Conclusions

In conclusion, for the first time, human XT-I (EC 2.4.2.26) enzyme has been utilized to
efficiently synthesize structurally diverse xylosylated glycopeptides at milligram scales with a
range of peptide acceptors as well as the His tag bearing hCD44.178 protein. XT-I was found
tolerant toward several non-native UDP-sugar donors, particularly UDP-6AzGlc, rendering it

potentially a valuable tool to label biological proteins. The one-pot two-enzyme method developed
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further enhanced the synthetic efficiency and the overall yield, paving the way toward efficient

chemoenzymatic synthesis of PG glycopeptides and glycoproteins.
4.4 Experimental Section

4.4.1 Materials

Signal peptide-His6-XT-1 gBlocks gene was purchased from Integrated DNA
Technologies (Coralville, IA). FreeStyle 293 Expression Medium and Coomassie Brilliant Blue
G-250 were purchased from Thermo Fischer Scientific (Waltham, MA). Nickel columns and
Nickel resins were purchased from Bio-rad (Hercules, CA). SDS-PAGE gels, 10x
Tris/Glycine/SDS electrophoresis buffer, prestained protein ladder, sample loading buffer, and
Coomassie Blue R-250 were purchased from Bio-rad (Hercules, CA). Tris-HCI buffer was
purchased from MilliporeSigma (St. Louis, MO). UDP-xylose was purchased from Complex
Carbohydrate Research Center (Athens, GA). Amino acid building blocks were purchased from
Chem-Impex International, Inc (Wood Dale, IL). Cy5-alkyne was purchased from MilliporeSigma
(St. Louis, MO). Glycosyltransferase Activity Kit was purchased from R&D Systems. All other
chemical reagents were purchased from commercial sources and used without additional
purifications unless otherwise noted.
4.4.2 General Information

High-performance liquid chromatography was carried out with LC-8A solvent pumps,
DGU-14A degasser, SPD-10A UV-Vis detector, SCL-10A system controller (Shimadzu
Corporation, JP) and Vydac 218TP 10 pum C18 preparative HPLC column (HICHROM Limited,
VWR, UK) or 20RBAX 300SB-C18 analytical HPLC column (Agilent Technologies, CA) using
HPLC-grade acetonitrile (EMD Millipore Corporation, MA) and Milli-Q water (EMD Millipore

Corporation, MA). A variety of eluting gradients were set up on LabSolutions software (Shimadzu

225



Corporation, JP)). The dual-wavelength UV detector was set at 220 nm and 254 nm for monitoring
the absorbance from amide and aromatic groups correspondingly. 3D structure of glycopeptide
compounds was prepared with Maestro software. Docking simulations were acquired with
AutoDock Vina and UCSF Chimera (UCSF, CA). Enzymatic activity was quantified by
absorbance at 620 nm using a SpectraMax M3 96-well plate reader (Molecular Devices, CA).
NMR data were obtained with DirectDrive2 500 MHz (Agilent, CA) at ambient temperature.
4.4.3 XT-I Expression, Purification and Characterization

HEK-293F cells were grown in FreeStyle™ 293 Expression Medium on a platform shaker
in humidified 37 °C COz (5%) incubator with rotation at 150 rpm. When the cell density reached
between 4 x 10° and 3 x 106 cells/ml, cells were split to a density of 1 x 10° cells/ml and cultured
overnight in the same condition. Cells were then transfected with His6-XT-I gene 24 hours after
they were split. Before transfection, cells were harvested by centrifugation at 1200 rpm for 10 min
at room temperature and re-suspended in fresh pre-warmed media. To transfect the cells, a final
concentration of 2-3 pg/ml of the XT-I gene and 9 ng/ml of PEI were added. PEI stock solution
was prepared at the concentration of 1 mg/ml in a buffer containing 25 mM HEPES and 150 mM
NaCl, pH 7.4. The flask was returned to the shaker platform in the incubator. Cells were diluted
1:1 with pre-warmed media supplemented with valproic acid (VPA) to a final concentration of 2.2
mM. Four to six days after the transfection, cells were harvested. Clarified lysate was purified by
nickel column (Cytiva, MA) (a. washing buffer: 20 mM Tris, 0.5 M NaCl and 40 mM imidazole;
b. eluting buffer: 20 mM Tris, 0.5 M NaCl and 40-250 mM imidazole). Protein purity was
confirmed with SDS-PAGE gel electrophoresis and the concentration and expression yield were

determined by standard Bradford assay.
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4.4.4 General Procedure for Automated Solid-Phase Peptide Substrate Synthesis

All the peptides were synthesized on a Liberty Blue™ Automated Microwave Peptide
Synthesizer following the standard Fmoc-based solid-phase peptide synthesis protocol. The Cl-
MPA ProTide resins were purchased from CEM Corporation. The Liberty Blue software (CEM
Corporation, NC) was used to program the synthesis, including resin swelling, amino acid loading,
couplings and Fmoc- removal. Commercially available N,N-dimethylformamide (DMF) from
Fischer Chemical was supplied to the synthesis module as reaction and washing solvent. Peptide
synthesis was enabled by sequential couplings of Fmoc-amino acid (purchased from Chem-
Impex), which was preactivated by DIC, Oxyma Pure and N,N-diisopropyl-N-ethyl amine at 50
°C for 10 min, and deprotections with 20% piperidine in DMF at 60 °C for 4 min. In-between each
coupling/deprotection step, resin-bound peptide was thoroughly washed with DMF. Resin-bound
peptides were cleaved off the solid support with a cocktail solution of trifluoroacetic acid (TFA),
triissopropylsilane (TIPS) and water (TFA/TIPS/H20, 95:2.5:2.5). The crude peptides were then
purified with reverse-phase C18 preparative HPLC. Compound purity was confirmed by C18

analytical HPLC analysis.

4.4.5 General Procedure for XT-I-Catalyzed Glycosylation

The 10x 2-(N-morpholino)ethanesulfonic acid (MES) reaction buffer for XT-I-catalyzed
glycosylation was prepared in advance following the recipe of 250 mM MES, 250 mM KCl, 50
mM KF, 50 mM MgClz, 50 mM MnCl. The pH of the 10x reaction buffer was adjusted to 6.5 by
adding concentrated NaOH solution. A solution of 1 mM peptide substrate and 1.1-3.0 mM UDP-
Xyl (1.1-3.0 equiv. per glycosylation site, depending on peptide acceptors) was made with the
reaction buffer. The addition of XT-I enzyme (0.02 mol%) initiated the glycosylation. The reaction

solution was kept at 37 °C overnight. The reaction progress was monitored with LC-MS. After the
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reaction, the enzyme was deactivated and precipitated out of the reaction mixture by addition of
ethanol. The mixture was centrifuged, and the supernatant was loaded onto a G-10 size exclusion
column for purification.
4.4.6 General Procedure for Enzyme-Substrate Docking and In Silico Enzyme Engineering
3D structure of the substrate was prepared with ChemDraw 16.0 and Schrodinger Maestro
software. After importing the substrate structure from ChemDraw into Maestro, it was
energetically optimized via the built-in function “Minimize-All Atoms”. The optimized structure
was then output as a mol2 file for the subsequent molecular dynamic docking. To initiate the
docking experiments, a high-resolution enzyme crystal structure as a PDB file, along with the
substrate structure as a mol2 file, was imported into UCSF Chimera software. The enzyme-
substrate molecular docking was achieved with AutoDock Vina, an integrated program in UCSF

Chimera. 2% 23

For the docking set-up, the enzyme was chosen as the “Receptor” and the substrate
was selected as “Ligand”. The “Receptor search volume” was defined to ensure that space around
the catalytic binding pocket was included for a proper docking simulation, while balancing the
demand towards computation resource. Default settings of “Receptor options” and “Ligand
options” were used. “Number of binding modes”, “Exhaustiveness of search” and “Maximum
energy difference (kcal/mol)” options were adjusted to the maximum level to ensure the quality of
the simulation. The docking experiment was then executed via Opal web service. Computation
results were available upon completion of the experiment.

Human XT-I crystal (PDB:6EJ7) was selected for in silico enzyme engineering. R598
residue was replaced by lysine through Chimera built-in function ‘Rotamers’. Lysine residue poses

with highest predicted possibilities were selected to examine potential clashes/contacts. If contacts

with nearby residues were detected, residues in contact, together with K598, were processed
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through ‘Minimize Structure’ function. All other atoms, except the selected ones, were fixed to
reduce the computation workload. The resulted clash-free XT-I mutant structure was then used to
perform the enzyme-substrate docking simulation.

4.4.7 General Procedure for XT-I-Catalyzed Transfer of UDP-6-Azidoglucose

A solution of 0.5 mM peptide substrate and 2.5 mM UDP-xylose (5 equiv. per
glycosylation site) was made with the MES reaction buffer. The addition of XT-I enzyme (0.1
mol%) initiated the glycosylation. The reaction solution was kept at 37 °C overnight. The reaction
progress was monitored with LC-MS. After the reaction, the enzyme was deactivated and
precipitated out of the reaction mixture by addition of ethanol. The mixture was centrifuged, and

the supernatant was carried over without further purification.

4.4.8 General Procedure for Copper (I)-Catalyzed Azide-Alkyne Cycloaddition

To a solution of azide-tagged glycopeptide 12 (100 puM), CuSOs (20 mM), (tris-
hydroxypropyltriazolylmethylamine) (THPTA) ligand (10 mM), aminoguanidine (100 mM), Cy5-
alkyne (1 mM), and Na ascorbate (100 mM) were added. The reaction tube was attached to a 20
round-per-minute (rpm) end-over-end rotator. The reaction was allowed to proceed for 2 hours at
room temperature. The formation of Cy5 conjugated glycopeptide 13 was confirmed using LC-
MS (ESI-MS: Co1H131N22036S3%, caled: 734.6092, obsd: 734.5991 (13.7ppm))
4.4.9 General Procedure for One-Pot Two-Enzyme (OP2E) Glycosylation

The 10x MES reaction solution for XT-I and f4GalT7 OP2E glycosylation was prepared
following the recipe of 225 mM MES, 125 mM KCI, 25 mM KF, 25 mM MgClz, 75 mM MnCl,.
A solution of 1 mM peptide and 1.5-3.0 mM UDP-xylose (1.5-3.0 equiv. per glycosylation site,
depending on peptide acceptors) and 2.0 mM UDP-galactose (2.0 equiv. per glycosylation site)

was made with the reaction buffer. XT-I enzyme (0.05 mol%) and f4GalT7 enzyme (0.5 mol%)
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were added to initiate the glycosylation reactions. The reaction tube was kept in an incubator at 37
°C overnight. The reaction progress was monitored via LC-MS. Upon reaction completion, the
reaction mixture was directly injected into HPLC, and the reaction yield was quantified from peak
areas of HPLC chromatograms.

4.4.10 Phosphatase-Coupled Enzymatic Kinetic Assay

The kinetic assay protocol follows the general assay conditions reported by R&D Systems Inc.
with modifications.?’

30 pL reaction solutions of UDP-galactose, glycopeptide acceptor and f4GalT7 enzyme were
prepared in the 96-well plate. The plate was covered with a plate sealer and incubated at 37 °C for
20 min. 12 pL 10x phosphatase assay buffer, 3 uL. MnCl: solution (100 mM), 3 uL MilliQ water
and 2 pL coupling phosphatase 1 (20 ng/pL), were quickly added to a total volume of 50 pL. The
plate was covered with a plate sealer again and incubated at 37 °C for 20 min. After the incubation,
30 uL of Malachite Green Reagent A was quickly added to each well. The solutions were gently
mixed by tapping the plate. 100 uL of deionized or distilled water was added to each well. 30 uL
of Malachite Green Reagent B was then added to each well. Solutions were mixed gently by
tapping the plate. The plate was incubated for 5 minutes at room temperature to have consistent
color development. The optical density of each well was determined using a microplate reader set
to 620 nm, and the OD was adjusted by subtracting the reading of the negative control. Product
formation was calculated using the conversion factor determined from the phosphate standard

curve.
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APPENDIX A: Supplementary Figures, Schemes and Tables

Signal peptide-His6-XT-I Sequence

(2341) End Start (0)
(2308) EcoRV BspEI (24)
(2275) PspFI XbaI (31)
(2271) BseYI Agel (88)
(2238) DrdI BspHI (117)
(2194) RsrII PshAI (125)
SalI (128)

(2131) Haell

(2129) Afel BpulOI (229)
PstI (256)
(2059) BbsI

(2049) AlwNI

Kozak sequE,,Ceg 0
(2021) Miul 6,

4\'/7/5

BStEII (315)
Tsol (333)

(1918) KpnI
(1914) Acc65I - Banl

NmeAIII (459)

(1837) EcoRI
(1834) Pvull

gblock order of signal peptide-Histag-XT1

(1782) BamHI - BstYI - BtgZI 2341 bp

AclI (566)

Bsal (638)
BStAPI (639)

BspQI - Sapl (766)

(1506) Pvul
(1487) BaeGI - Bme15801 - BsiHKAI
(1483) ApaLl

Pcil (848)
Alel (849)

Aval - BsoBI (877)
BmeT110I (878)
(1367) AatIl

(1365) Zral
(1364) BsaHI

(1310) BsrBI

(12?22:)"3‘“51 Dralll (1029)

(1219) EcoP151
(1178) BsaBI Bsu36I (1169)

5’AAGACACCGGGACCGATCCAGCCTCCGGACTCTAGAGCCGCCACCATGGGTTGGA
GTTGTATCATCCTTTTCCTGGTAGCTACCGCAACCGGTGTTCATTCACATCACCACCA
TCATCATGACGTAAGTCGACCTCCTCACGCAAGAAAGACGGGTGGCTCTAGCCCGG
AGACTAAGTATGACCAGCCGCCGAAGTGCGACATTAGCGGTAAAGAAGCGATCTCT
GCCCTGAGCCGGGCAAAATCAAAACACTGCAGACAGGAGATTGGTGAGACGTATTG
CCGACACAAACTGGGGCTCCTCATGCCAGAGAAGGTAACCAGATTTTGTCCGCTGG
AGGGGAAGGCCAACAAAAACGTCCAATGGGACGAGGATAGCGTCGAATACATGCCT
GCGAATCCCGTCAGGATCGCGTTTGTCCTTGTCGTTCATGGCCGAGCGAGCAGACAA
CTTCAGCGCATGTTTAAAGCAATCTACCACAAAGACCATTTCTATTATATTCATGTCG

Figure 4.5 XT-I gene sequence.
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Figure 4.5 (cont’d)

ATAAGCGGTCAAACTACCTGCACCGGCAGGTACTCCAGGTTTCACGCCAATACTCCA
ACGTTCGCGTAACTCCATGGCGGATGGCCACGATCTGGGGTGGGGCTTCACTCCTCT
CAACGTATTTGCAGAGCATGCGAGACCTTCTGGAAATGACTGACTGGCCATGGGACT
TTTTCATCAATTTGAGCGCAGCCGACTATCCAATCCGAACCAATGATCAGCTTGTAG
CATTTCTGAGTCGCTATAGGGACATGAATTTCCTGAAGAGCCATGGGCGGGATAACG
CGCGGTTCATACGAAAGCAAGGGCTGGATAGGCTGTTTCTTGAATGCGACGCACAC
ATGTGGAGGCTTGGGGATAGAAGGATTCCCGAGGGGATCGCCGTGGATGGAGGAAG
CGACTGGTTCCTTCTGAATCGACGGTTTGTCGAGTATGTCACGTTCAGCACGGATGA
TTTGGTCACGAAAATGAAACAATTCTACAGTTATACGCTCCTGCCCGCTGAGAGCTT
CTTCCACACGGTGTTGGAAAACTCCCCGCATTGTGATACAATGGTTGATAATAATTT
GAGGATTACAAATTGGAATCGAAAACTTGGGTGCAAATGTCAGTATAAGCATATAG
TGGACTGGTGTGGATGTTCTCCTAATGACTTTAAACCTCAGGATTTTCATCGATTCCA
GCAGACAGCACGGCCTACTTTTTTTGCGCGAAAATTCGAAGCAGTCGTCAATCAAGA
GATTATCGGACAATTGGATTACTACCTGTATGGAAACTATCCTGCCGGTACGCCTGG
GCTCCGCTCCTATTGGGAGAATGTCTATGATGAACCTGACGGAATACATTCCCTTAG
TGACGTCACCCTCACTCTTTATCATAGTTTTGCACGCTTGGGTCTGAGACGGGCCGA
AACTTCTCTTCATACAGACGGCGAAAACAGTTGTCGCTATTACCCGATGGGCCACCC
CGCATCAGTGCACCTTTATTTCCTGGCCGATCGATTCCAGGGGTTTCTGATCAAGCAT
CATGCGACAAACCTCGCAGTGAGCAAATTGGAAACTCTTGAAACCTGGGTGATGCC
CAAAAAAGTGTTCAAAATCGCTAGTCCTCCCTCCGACTTTGGTAGGTTGCAGTTCTC
CGAAGTAGGGACAGATTGGGACGCGAAGGAGAGACTGTTTCGGAACTTCGGCGGGT
TGTTGGGACCGATGGATGAGCCAGTTGGCATGCAAAAGTGGGGCAAAGGGCCTAAC
GTCACTGTAACAGTGATCTGGGTGGATCCAGTCAACGTCATCGCCGCAACTTACGAT
ATACTGATTGAGAGTACAGCTGAATTCACCCACTATAAACCGCCCTTGAACCTTCCC
CTGCGACCTGGAGTGTGGACCGTTAAGATTCTTCACCACTGGGTACCTGTGGCGGAG
ACGAAATTTTTGGTGGCCCCGTTGACTTTTTCCAATCGACAACCTATAAAGCCTGAA
GAGGCCCTTAAACTGCACAACGGTCCACTGCGAAACGCGTATATGGAACAGTCTTTC
CAGTCTCTGAACCCTGTACTTAGTCTTCCAATAAATCCGGCCCAAGTTGAGCAAGCC
CGGCGGAATGCCGCTTCCACTGGAACAGCGCTCGAAGGATGGCTTGATAGCCTGGTT
GGAGGTATGTGGACAGCCATGGACATCTGCGCCACCGGACCGACCGCGTGTCCGGT
GATGCAAACTTGTTCTCAGACTGCGTGGTCTAGCTTCTCACCTGATCCAAAGTCCGA
GCTGGGCGCAGTGAAACCCGACGGTAGACTTAGGTGATATCTCGACAATCAACCTCT
GGATTACAAAATTT 3
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Figure 4.6 SDS-PAGE gel of purified XT-I.
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Figure 4.7 Schematic demonstrations of the original®® and the modified kinetic assay set-up.
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Figure 4.8 Phosphate conversion factor measurement. Conversion factor = 3541 pmol/OD (Plot
is displayed as mean + S.D. of two replicates, phosphate standard volume = 50 pL).

XT-I Specific Activity vs. QEEEGSGGGQGG XT-I Specific Activity vs. QEEEGSGGGQGG
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Figure 4.9 Phosphatase-coupled assay result of QEEEGSGGGQGG 1. k., = 28 min™!, K, = 49.8
mM, k./K,, = 562 mM!' min’!.
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Figure 4.10 Phosphatase-coupled assay result of GGPSGDEFE 3. k,,
ko /K, =10 mM-! min'.
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=3 min', K, =308.0 mM,
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Figure 4.11 Phosphatase-coupled assay result of DNFSGSGAG 4. k., = 16 min™!, K, = 133.8
mM, kea/ Ky = 120 mM-! min.
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XT-I Specific Activity vs. DFELSGSGDLD XT-1 Specific Acivity vs. DFELSGSGDLD
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Figure 4.12 Phosphatase-coupled assay result of DFELSGSGDLD 5. k., = 15 min!, K, = 164.4
mM, keo/ Ky = 91 mM™! min-!.
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Figure 4.13 Phosphatase-coupled assay result of UDP-xylose. ke = 13 min’!, K, = 43.4 mM,
kea/ Ky =266 mM ! min™'.

237



XT-I Specific Acivity vs. UDP-Glucose XT-I Specific Acivity vs. UDP-Glucose
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Figure 4.14 Phosphatase-coupled assay result of UDP-glucose. ke = 2 min!, K, = 84.0 mM,
kea/ Ky =33 mM™! min!.
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Figure 4.15 Phosphatase-coupled assay result of UDP-6-azido-glucose. k., = 1 min™!, K, = 23.4
mM, keo/ Ky = 18 mM™! min-!.
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uO

1) microwave assisted O
Fmoc SPPS (Condition A)

1

CI-TCP

2) TFATIPS/H20 43.9%
ProTide . . .
Resin (95:2.5:2.5) overall yield
o NH, o OH
Ho© H

SPPS conditions :

Ay

2.

OH

H\)OJ\
N

AN
OH

y © e e
N N N

o

NH,

QEEEGSGGGQGG

1) Fmoc-AA-OH, DIPEA, KI, yW, DMF, 90 °C

2) Fmoc- removal: 20% piperidine in DMF

3) Amino acid coupling: 5 eq Fmoc-AA-OH @50 °C for 10 min,
DIC, Oxyma Pure w/0.1 M DIPEA, DMF

Repeat step 2 and 3

Scheme 4.4 SPPS synthesis of bikunin glycopeptide (QEEEGSGGGQGG) 1.
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Sequence SPPS Yield (%)
QEEEGSGGGQGG 1 43.2
GGPSGDFE 3 47.7
DNFSGSGAG 4 61.7
DFELSGSGDLD 5 38.2
DLYSGSGSGYFE 6 33.1
QEEEGSGGGQKK 11 47.8

Table 4.5 Summary of synthesized peptide acceptors and the corresponding yields.
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APPENDIX B: Product Characterization Spectra

0 NH, o OH
H 0 H (0] H (0] H (0] H (0] H (0]
HN N\)J\ritjl N\:)J\H/\IJN\_)LH/IN\)J\H/TN\—)J\H/\[O(N\)J\OH
(0] B (0] N\

L, o=

OH OH NH,

The purity of peptide 1 was verified with analytical C-18 HPLC (water, 0.1% trifluoroacetic acid).
[a]p?’= + 28 (c 0.1, H,0, specific rotation was collected by Po-han Lin). 'H-NMR (500 MHz,
D»0) 6 4.37 —4.15 (m, 2H), 3.99 — 3.65 (m, 5H), 3.05 - 2.93 (m, 9H), 2.47 — 2.14 (m, 5H), 2.06 —
1.89 (m, 2H), 1.90 — 1.76 (m, 2H), 1.60 (m, 10H), 1.52 — 1.45 (m, 5H); *C-NMR (125 MHz, D>0)
0 60.9, 60.9, 56.7, 55.7, 55.6, 53.1, 52.9, 52.9, 52.1, 46.6, 45.3, 44.6, 44.3, 44.3, 43.3, 42.6, 42.3,
42.1,42.1, 42.1, 41.3, 40.0, 31.5, 30.7, 29.9, 29.9, 29.7, 28.7, 27.4, 27.2, 26.4, 26.2, 26.0, 25.2,
24.5,24.4,23.2,22.0,22.0,21.7,21.2,21.1, 204, 19.7, 17.7, 16.9, 14.4. ESI-MS: C40He3N14022

[M+H]" caled: 1091.4236, obsd: 1091.4216 (1.8 ppm)
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o NH: o OH
H 0 H o H 0] H O H 0O H 0]
N N N N N

O™ on OH NH,
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Figure 4.16 HPLC chromatogram of 1.
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Figure 4.17 'H-NMR of 1 (500 MHz, D>0).
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Figure 4.18 COSY NMR of 1 (500 MHz, D20).
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Figure 4.19 HSQC NMR of 1 (500 MHz, D,0).
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Hji H\)?\ Hji H\)k
H2N/\[fN \ N N/\H/N AN N
© © :\OHH © :):o ©

0
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HO o:?

3 OH

The purity of peptide 3 was verified with analytical C-18 HPLC (5-100% acetonitrile/water, 0.1%
trifluoroacetic acid). [a]p**=- 111 (c 0.1, HxO, specific rotation was collected by Po-han Lin). 'H
NMR (500 MHz, D;0) 6 7.19 (m, 2H), 7.17 — 7.11 (m, 1H), 7.11 — 7.07 (m, 2H), 4.53 (m, 1H),
4.46 (m, 1H), 4.34 — 4.26 (m, 2H), 4.23-4.19 (m, 1H) 4.09 — 3.92 (m, 2H), 3.85 — 3.64 (m, 6H),
3.53 - 3.42 (m, 2H), 3.03-2.99 (m, 1H), 2.92 — 2.83 (m, 1H), 2.72 — 2.63 (m, 1H), 2.58-2.53 (m,
1H), 2.25-2.21 (m, 2H), 2.15-2.11 (m, 1H), 2.05 — 1.94 (m, 1H), 1.90 — 1.72 (m, 4H); *C NMR
(125 MHz, D;0) ¢ 177.0, 174.5, 174.5, 173.8, 172.5, 172.2, 171.7, 170.8, 169.1, 167.4, 136.1,
129.1, 128.6, 127.0, 60.9, 60.5, 55.6, 54.8, 51.9,49.8,47.0,42.4, 41.6, 40.5, 40.2, 36.6, 35.0, 29.7,

29.3,25.7, 24.3. ESI-MS: C3:HasNsO14 [M+H]" caled: 765.3050, obsd: 755.3022 (3.7 ppm)
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Figure 4.20 HPLC chromatogram of 3.
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Figure 4.21 'H-NMR of 3 (500 MHz, D-0).
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Figure 4.22 COSY NMR of 3 (500 MHz, D,0).
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Figure 4.23 HSQC NMR of 3 (500 MHz, D-0).
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Hji H\)?\ Hji H\)k
HzN/\[fN N N ; N/\H/N ~NH N
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OH

The purity of peptide 4 was verified with analytical C-18 HPLC (5-100% acetonitrile/water, 0.1%
trifluoroacetic acid). [a]p?’= - 329 (¢ 0.1, H,O, specific rotation was collected by Po-han Lin). 'H
NMR (500 MHz, D20O) 6 7.24 — 7.08 (m, 5SH), 4.56-4.52 (m, 2H), 4.32 (t,J= 5.1 Hz, 1H), 4.27 (t,
J=5.2Hz, 1H),4.20 (q,J= 7.2 Hz, 1H), 4.13 (t,J= 6.3 Hz, 1H), 3.86-3.84 (m, 1H), 3.82 —3.80
(m, 2H), 3.78 (d, J = 12.8 Hz, 3H), 3.75 (d, J = 6.1 Hz, 1H), 3.74 — 3.62 (m, 4H), 3.03-3.01 (m,
1H), 2.92-2.88 (m, 1H), 2.78 — 2.71 (m, 2H), 2.62-2.60 (m, 1H), 2.52-2.50 (m, 1H), 1.22 (d, J =
7.2 Hz, 3H); 3C NMR (125 MHz, D-0) § 129.1, 129.1, 128.7, 127.1, 60.9, 60.9, 60.9, 55.6, 55 .4,
55.0, 50.3, 49.6, 49.4, 42.3, 42.3, 41.9, 41.9, 41.2, 36.7, 36.7, 35.9, 35.9, 35.1, 16.5. ESI-MS:

C32H47N10015 [M+H]" calcd: 811.3217, obsd: 811.3207 (1.2 ppm)
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Figure 4.24 HPLC chromatogram of 4 (500 MHz, D,O).
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Figure 4.25 'H-NMR of 4 (500 MHz, D>0).
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Figure 4.26 COSY NMR of 4 (500 MHz, D,0).
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Figure 4.27 HSQC NMR of 4 (500 MHz, D,0).
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5

The purity of peptide 5 was verified with analytical C-18 HPLC (5-100% acetonitrile/water, 0.1%
trifluoroacetic acid). [a]p?°= + 76 (c 0.1, H>O, specific rotation was collected by Po-han Lin). 'H
NMR (500 MHz, D20O) 6 7.24 — 7.18 (m, 2H), 7.18 — 7.12 (m, 1H), 7.12 — 7.06 (m, 2H), 4.55 (s,
1H), 4.52 — 4.45 (m, 1H), 4.32 — 4.26 (m, 1H), 4.24 — 4.08 (m, 3H), 3.92 — 3.77 (m, 4H), 3.77 —
3.66 (m, 4H), 2.92 (t, J = 8.5 Hz, 2H), 2.86 — 2.70 (m, 5H), 2.70 — 2.61 (m, 1H), 2.26 — 2.19 (m,
2H), 1.92 — 1.81 (m, 1H), 1.74 (dt, J = 14.1, 7.3 Hz, 1H), 1.53 — 1.42 (m, 6H), 1.16 (d, J= 1.2 Hz,
1H), 0.85—0.74 (m, 10H), 0.72 — 0.67 (m, 4H). ESI-MS: C4sH72N 11022 [M+H]" calcd: 1154.4848,

obsd: 1154.4822 (2.3 ppm)
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Figure 4.28 HPLC chromatogram of 5.
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The purity of peptide 6 was verified with analytical C-18 HPLC (5-100% acetonitrile/water, 0.1%
trifluoroacetic acid). [a]p2° = -36 (¢ 0.1, H,O, specific rotation was collected by Po-han Lin). 'H
NMR (500 MHz, D;0O) 6 7.21 — 7.08 (m, 3H), 7.07 — 7.01 (m, 2H), 6.96 — 6.90 (m, 2H), 6.85 —
6.79 (m, 2H), 6.67 — 6.57 (m, 4H), 4.43-4.40 (m, 2H), 4.35 — 4.22 (m, 4H), 4.16 — 4.08 (m, 3H),
3.92-3.88 (m, 1H), 3.84 —3.71 (m, 5H), 3.71 — 3.64 (m, 6H), 3.61 (dd, J=11.9, 5.2 Hz, 2H), 2.92-
2.88 (m, 2H), 2.84 — 2.62 (m, 7H), 2.55 (s, 1H), 2.20 (t, J = 7.4 Hz, 2H), 1.97-1.93 (m, 1H), 1.76-
1.72 (m, 1H), 1.36 — 1.29 (m, 2H), 1.27-1.23 (m, 2H), 0.70-0.66 (m, 6H). *C NMR (125 MHz,
D»0) 6 135.9, 130.9, 130.8, 130.4, 130.3, 129.1, 128.4, 127.0, 117.0, 115.5, 115.3, 115.2, 114.3,
113.0,111.2,110.2, 88.8, 65.2,62.7,62.1, 61.1, 60.2, 59.9, 58.6, 58.1, 57.9, 55.9, 55.7, 55.6, 55 .4,
55.1, 54.9, 54.7, 54.6, 52.9, 52.6, 51.3, 51.1, 49.6, 42.5, 42.3, 39.6, 39.5, 38.6, 37.0, 36.2, 36.0,
35.7, 322, 29.9, 27.7, 25.9, 25.7, 24.0, 21.9, 20.7, 20.7, 16.6. ESI-MS: Cs7;H77N12022 [M+H]"

calcd: 1281.5270, obsd: 1281.5206 (5.0 ppm)
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Figure 4.32 HPLC chromatogram of 6.
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The purity of peptide 11 was verified with analytical C-18 HPLC (water, 0.1% trifluoroacetic acid).
[a]p20 =+ 31 (c 0.1, H,0). 'H NMR (500 MHz, D:;0) & 4.35 —4.08 (m, 3H), 3.98 — 3.81 (m, 3H),
3.81 —3.67 (m, 2H), 3.08 — 2.92 (m, 8H), 2.83 (s, 2H), 2.41 — 2.16 (m, 6H), 2.07 — 1.70 (m, 6H),
1.64-1.56 (m, 10H), 1.55 — 1.45 (m, 7H), 1.31-1.27 (m, 3H). '3C NMR (125 MHz, D,0) & 60.9,
56.7, 55.6, 54.1, 53.3, 52.9, 52.1, 46.6, 45.5, 45.3, 44.8, 44.6, 44.3, 44.1, 43.6, 43.5, 43.3, 42.6,
42.3,42.1, 40.8, 39.3, 39.1, 38.1, 36.8, 34.0, 32.2, 31.8, 31.3, 30.7, 30.2, 29.9, 29.7, 28.7, 27.4,
27.2,27.0,264, 26.2, 26.0, 25.9, 24.5, 23.7, 23.2, 22.9, 22.0, 21.7, 21.4, 21.2, 21.1, 20.4, 19.7,

17.7. ESI-MS: CssH3g1N16022 [NH—H]+ caled: 1233.5706, obsd: 1233.5679 (2.2 ppm)
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Figure 4.36 HPLC chromatogram of 11.
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Figure 4.38 COSY NMR of 11 (500 MHz, D,0O).
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Figure 4.39 HSQC NMR of 11 (500 MHz, D,0O).
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Figure 4.40 ESI-MS of recombinant CD44.
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Figure 4.41 ESI-MS of CD44 (O-Xyl).
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Figure 4.42 ESI-MS of CD44 (O-Xyl-Gal).
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