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ABSTRACT 

PRECISION DIAGNOSTICS AND INNOVATIONS FOR PLANT BREEDING RESEARCH 

 

By 

Eli Hugghis 

Major technological advances are necessary to reach the goal of feeding our world’s growing 

population. To do this, there is an increasing demand within the agricultural field for rapid 

diagnostic tools to improve the efficiency of current methods in plant disease and DNA 

identification. The use of gold nanoparticles has emerged as a promising technology for a range 

of applications from smart agrochemical delivery systems to pathogen detection. In addition to 

this, advances in image classification analyses have allowed machine learning approaches to 

become more accessible to the agricultural field. Here we present the use of gold nanoparticles 

(AuNPs) for the detection of transgenic gene sequences in maize and the use of machine learning 

algorithms for the identification and classification of Fusarium spp. infected wheat seed. AuNPs 

show promise in their ability to diagnose the presence of transgenic insertions in DNA samples 

within 10 minutes through colorimetric response. Image-based analysis with the utilization of 

logistic regression, support vector machines, and k-nearest neighbors were able to accurately 

identify and differentiate healthy and diseased wheat kernels within the testing set at an accuracy 

of 95-98.8%. These technologies act as rapid tools to be used by plant breeders and pathologists 

to improve their ability to make selection decisions efficiently and objectively.



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my mom, dad, and my fiancée. 

Thank you for all of your love, support, and consistent encouragement to push me forward 

toward my goals. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

ACKNOWLEDGEMENTS  

 

I would like to thank the Thompson Lab and all its members for their kindness and support over 

the years that I have been at MSU. Phong Los, thank you for your assistance in scanning the 

multitude of wheat seed images and Robert Shrote and Ruijuan Tan for assistance during the 

struggles of code writing. Linsey Newton for the many questions I have asked you over the years 

about all the things. To everyone else in the lab who has offered an encouraging word, random 

act of kindness, or other act of help that made this all possible!  

Thank you to the Day Lab and its members for making me feel welcomed during my shared lab 

space visits and Saroopa Samaradivakara for your assistance early on in my assay development 

process.  

Thank you to the Chilvers lab and Mikaela Breunig for providing wheat seed samples for my 

image collection and answering my many plant pathology inquiries.  

Lastly, thank you to the members of my committee for all your time, guidance, and support 

throughout this master’s degree process.  

 

THANK YOU ALL! 

 

 

 

 

 

 

 

 

 

 

 



v 

TABLE OF CONTENTS  

 

LIST OF TABLES……………………………………………………………………………….vii 

LIST OF FIGURES…………………………………………………………………………......viii 

CHAPTER 1: REVIEW OF PRECISION DIAGNOSTICS AND INNOVATIONS FOR PLANT 

BREEDING RESEARCH ……………………………………………………………………......1 

ABSTRACT: .………………………………………………………………………….....1 

PART 1 – THE VERSATILE APPLICATION OF GOLD NANOPARTICLES IN THE 

SCIENCES...........................................................................................................................2 

 HISTORY AND ORIGIN OF GOLD NANOPARTICLES……………………...2 

 GOLD NANOPARTICLES IN MODERN MEDICINE…………………………3 

     GOLD NANOPARTICLES IN AGRICULTURE AND PLANT SCIENCES 

DNA DETECTION METHODS OF THE PAST………………………………...4 

 MODERN, RAPID DNA DETECTION METHODS……………….……………6 

  ISOTHERMAL ASSAYS………………………………………………...7 

  LATERAL FLOW ASSAYS……………………………………………..7 

  GENE CHIPS AND MICRO ARRAYS……………………………….....8 

   A COMBINATION OF TECHNOLOGIES.. ……………………………8 

  SURFACE PLASMON RESONANCE AND GOLD NANOPARTICLE  

  PROPERTIES……………………………………………………………………..9 

PART 2 – FUSARIUM DISEASED WHEAT SEED DETECTION WITH MACHINE      

LEARNING……………………………………………………………………………...11 

THE IMPORTANCE OF WHEAT, FUSARIUM HEAD BLIGHT AND ITS  

IMPACT ON GRAIN VALUE………………………………………………….11 

A BRIEF HISTORY ON MACHINE LEARNING……………………………..12 

MACHINE LEARNING FOR AGRICULTURAL APPLICATION………….. 13 

MODELS USED IN THIS STUDY……………………………………………..15 

 BIBLIOGRAPHY………………………………………………………………………..18 

CHAPTER 2: THE USE OF DEXTRIN-CAPPED GOLD NANOPARTICLES FOR THE  

DETECTION OF TRANSGENIC INSERTIONS IN MAIZE………………………………….27 

 ABSTRACT:..………………………………………………………………………….. 27 

 INTRODUCTION:...…………………………………………………………………….28 

  ASSAY FOUNDATION………………………………………………………...28 

  GOLD NANOPARTICLE PROPERTIES………………………………………30 

 MATERIALS AND METHODS:………………………………………………………..32 

  MATERIALS……………………………………………….……………………32 

  PRIMER DESIGN………………………………………….……………………32 

  DNA EXTRACTION AND SAMPLE VERIFICATION….……………………33 

  GOLD NANOPARTICLE AND REAGENT SYNTHESIS.……………………34 

  AUNP ASSAY DEVELOPMENT………………………………………………36 

  SPECTRAL ANALYSIS OF AUNP AGGREGATION………………………...37 



vi 

 RESULTS AND DISCUSSION:...………………………………………………………40 

ASSAY DEVELOPMENT AND TROUBLESHOOTING……………………..40 

DISCUSSION AND FUTURE IMPLICATIONS:………………………………………48 

 BIBLIOGRAPHY………………………………………………………………………..50

CHAPTER 3: UTILIZING MACHINE LEARNING ALGORITHMS FOR IDENTIFICATION 

AND CLASSIFICATION OF FUSARIUM INFECTED WHEAT SEED VIA IMAGE-BASED  

ANALYSIS  ..……………………………………………………………………………………55 

 ABSTRACT:..……………………………………………………………………...........55 

 INTRODUCTION:...…………………………………………………………………….56 

 MATERIAL AND METHODS:...……………………………………………………….59 

MATERIALS…………………………………………………………………….59 

IMAGES COLLECTION…………………………...…………………………...59 

IMAGE PROCESSING………………………………………………………….60 

MODEL DEVELOPMENT…………………………………………………….. 61 

RESULTS AND DISCUSSION:...………………………………………………………63 

TUNING MODELS FOR OPTIMIZATION……………………………………63 

MODEL COMPARISON AND SELECTION………………………………….67 

 DISCUSSION AND FUTURE IMPLICATIONS:...……………………………………71 

 BIBLIOGRAPHY………………………………………………………………………..72



vii 

LIST OF TABLES 

 

Table 1.1: Common DNA Detection Methods Of The Past……………………………………....6 

Table 2.1: The experimental design for each assay development test. Each control represented a  

different reaction well on a plate………………………………………………………………...37 

 

Table 3.1: This table shows a list and description of the various size, shape, and color  

measurement collected by the ImageJ software …………………………………………..……..61 
 

Table 3.2: The accuracy, area under the curve ROC (AUC), and predictive processing times 

when analyzing the testing dataset were used to compare the optimized machine learning models. 

The Support Vector Machine model had the highest accuracy and AUC. The Logistic Regression 

model was only slightly lower in accuracy and AUC but had the fastest processing time. The K- 

Nearest Neighbor model performed the worst amongst the compared models...………………..68 

 

 



viii 

LIST OF FIGURES 

 

Figure 1.1: Various colors of different sized monodispersed colloidal gold nanoparticles….......10 

Figure 1.2: Illustration of diseased kernels………………………………………………………12 

Figure 2.1: The proposed mechanism for the interaction of the target and non-target dsDNA,  

ssDNA probe, and d-AuNPs in a high salt concentration environment…………………………29 
 

Figure 2.2: Gel analysis of PCR done on B73 (1-5) and Xerico DNA (6-15) samples collected  

from leaf tissue………………….………………………………………………………………..34 

 

Figure 2.3: Gold nanoparticle batch under Transmission Electron Microscope (TEM)…….......35 

 

Figure 2.4: Infographic of AuNP assay for rapid detection……………………………………...37 

Figure 2.5: Spectral results for an ideal AuNP assay test………………………………………..38 

Figure 2.6: Ideal colorimetric response to the 10-minute assay………………………………....39 

Figure 2.7: d-AuNP assay test showing rate of aggregation for controls with not ideal results  

……………………………………………………………………………………………………41 
 

Figure 2.8: d-AuNP assay tests showing the rate of aggregation for controls with   

reproducibility……………………………………………………………………………………41 
 

Figure 2.9: d-AuNP assay test showing absorbance measurements after 10 minutes……...……42 

Figure 2.10: The coding sequence for the Xerico insertion………………………………….......43 

Figure 2.11: Absorbance measurements after 10 minutes for assay test…………………...……44 

Figure 2.12: Full spectrum analysis of d-AuNP batches…………………………………….......45 

Figure 2.13: Salt series dilution of old nanoparticle batch in the early stages of assay 

development (A) and a salt series dilution of the same batch 2 years later with fresh reagents (B)  

….………………………………………………………………………………………………..46 
 

Figure 2.14: Salt series dilution of a new nanoparticle batch……………………………………47 

Figure 2.15: d-AuNP batches examined under a TEM………………………………………......47 

Figure 3.1: Scanned images of diseased and healthy wheat seeds………………………………56 

 



ix 

Figure 3.2: Images of FDK collected from the flatbed scanner (A) and the labelled image after  

ROI detection and measurement via ImageJ software (B) ……………………………….……..60 
 

Figure 3.3: Workflow diagram of image processing for determining FDK per image………….61 

Figure 3.4: Tuning for Support Vector Machine (SVM) model…………………………………64 

Figure 3.5: Bimodal distribution for the “Mean Blue” parameter in the model…………………65 

Figure 3.6: Confusion matrices for tuned models……………………………………...………...65 

Figure 3.7: The importance of each parameter utilized within the Logistic Regression model  

……..……………………………………………………………………………………………..66 
 

Figure 3.8: Identifying the optimal K value for the K-Nearest Neighbor model………………..67 

Figure 3.9: Correlation between the predicted number of diseased seed per image and the actual  

when logistic regression is applied to additional images…………………………………...……69 
 

 

  

 



1 

 

CHAPTER 1: REVIEW OF PRECISION DIAGNOSTICS AND INNOVATIONS FOR 

PLANT BREEDING RESEARCH 

 

ABSTRACT: 

Major technological advances are necessary to reach the goal of feeding our world’s growing 

population. To do this, there is an increasing demand within the agricultural field for rapid 

diagnostic tools to improve the efficiency of current methods in plant disease and DNA 

identification. The use of gold nanoparticles has emerged as a promising technology for a range 

of applications from smart agrochemical delivery systems to pathogen detection. In addition to 

this, advances in image classification analyses have allowed machine learning approaches to 

become more accessible to the agricultural field. Here we present the use of gold nanoparticles 

(AuNPs) for the detection of transgenic gene sequences in maize and the use of machine learning 

algorithms for the identification and classification of Fusarium spp. infected wheat seed. AuNPs 

show promise in their ability to diagnose the presence of transgenic insertions in DNA samples 

within 10 minutes through colorimetric response. Image-based analysis with the utilization of 

logistic regression, support vector machines, and k-nearest neighbors were able to accurately 

identify and differentiate healthy and diseased wheat kernels within the testing set at an accuracy 

of 95-98.8%. Rapid diagnostic tools can be used by plant researchers to accelerate their decision-

making ability efficiently and objectively.   
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PART 1 – THE VERSATILE APPLICATION OF GOLD NANOPARTICLES IN THE 

SCIENCES 

 

HISTORY AND ORIGIN OF GOLD NANOPARTICLES 

Colloidal gold and the use of gold nanoparticles have been extensively observed and studied for 

several centuries. The use of colloidal gold can be found as far back as the 4th century BC in the 

Middle East, China, and India where “potable gold” was used for medicinal purposes (Dykman 

& Khlebtsov, 2019; (Huaizhi & Yuantao, 2001). In Europe, early use of this material was for 

artistic application as a color stain used by glassworkers in ancient Rome. One of the most 

famous examples of this is the Lycurgus Cup developed in the 4th century which was known for 

its very interesting dichromatic color properties (Loos, 2015; Taylor, 2010). These properties 

were also useful in large cathedral halls in their stained-glass windows. The scientific 

understanding for these phenomena was not fully understood until 1990 when a study explained 

the presence of various nanoparticles dispersed in the glass of the cup (Barber & Freestone, 

1990). Centuries later the use of colloidal gold for art transitioned to its use within medicine and 

science.  

 

One of the oldest writings on the medicinal use for this material is in 1618 by Francis Anthony 

where he discusses his alchemy studies for its curative properties for various diseases and the 

formation of the colloidal solution (Antonii, 1618; Culpeper, 1657). In the Middle Ages, gold 

colloids were used as an elixir of life and longevity, with the belief that drinking the gold 

solution would allow individuals to stay youthful (Charlier et al., 2009). In addition, alchemists 

would use the liquid elixir to treat several mental illnesses, syphilis, epilepsy, leprosy, and many 

other diseases (Daraee et al., 2016; Louis & Pluchery, 2012). A German chemist named Johann 
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Kunckels published a book in 1676 that discussed a “drinkable gold that contains metallic gold 

in a slightly pink solution that can exert curative properties for several diseases” (Rahman & 

Rebrov, 2014; Daniel & Astruc, 2004). He was able to conclude that the gold was present in the 

liquid, yet invisible to the human eye. In 1856, a more scientific evaluation of colloidal gold was 

seen during an accidental observation by Michael Faraday. Faraday was studying light refraction 

on different objects and was making thin pieces of gold for his microscope slides (Bean, 2020). 

To do this, he would wash the gold strips with a phosphorous-based reducing agent to make the 

gold pieces thin enough to pass light through them (Rahman & Rebrov, 2014). The wash’s 

runoff would produce a faint ruby red liquid, which when light passed through it generated 

unique cone-shaped refraction (Tweney, 2006). This discovery, known as the “Faraday-Tyndall 

effect”, is seen to be one of the main precursors to research within nanoscience and 

nanotechnology fields.  

 

GOLD NANOPARTICLES IN MODERN MEDICINE 

Through extensive study over the years, gold nanoparticles (AuNPs) have become extremely 

useful within the medical field. For quite some time, gold therapy was used as a main treatment 

for rheumatoid arthritis and tuberculosis (Garcia, 1981; Davis, 1988; Louis & Pluchery, 2012). 

Gold nanoparticles have a high surface area to volume ratio and a surface that is frequently 

conjugated with a variety of ligands used for a multitude of applications. Thomas and Kibanov 

were able to modify AuNPs with polyethyleneimine chains to improve the delivery of plasmid 

DNA into mammalian cells (Thomas & Klibanov, 2003). Bowman et. al. used conjugated 

AuNPs as a potent therapeutic for HIV and Gibson and co-workers used them for targeted, 

tumor-inhibiting, drug delivery (Bowman et al., 2008; Gibson et al., 2007). In addition to these 
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innovative applications, AuNPs have been used in a variety of biosensors and diagnostic assays. 

They have been used for multiplexed detection of cancer markers (Stoeva et al., 2006), detection 

of target proteins related to prostate and breast cancer (Nam et al., 2003), and more recently in 

the detection of COVID-19 (Kotz, 2020; Medhi et al., 2020; Ventura et al., 2020). The use of 

AuNPs has rapidly emerged as a useful technology within the medical field as well as in 

agriculture.  

 

GOLD NANOPARTICLES IN AGRICULTURE AND PLANT SCIENCES 

Advancements in gold nanoparticle technology have allowed this material to become a versatile 

tool in agriculture research. The gene gun, used in plant transformation, uses gold nanoparticles 

coated with plasmid DNA to transform crops such as maize (Kao et al., 2008), wheat (Ismagul et 

al., 2018), peanut (X. Y. Deng et al., 2001), and rice (Mortazavi & Zohrabi, 2018). Torney et. al. 

used functionalized nanoparticles to deliver DNA and chemicals into isolated plant cells and 

intact leaves. They found that uncapping the gold nanoparticles released bound chemicals and 

triggered expression of the green fluorescent protein gene contained within the plasmid attached 

to the surface of the AuNP (Torney et al., 2007). Also, AuNPs have been seen to improve seed 

germination (Arora et al., 2012; Shah & Belozerova, 2009), affect vegetative growth (Gopinath 

et al., 2014; Kumar et al., 2013), enhance total seed yield, and improve plant shoot to root ratios 

(Shah & Belozerova, 2009). Gold nanoparticles made by an extract from the seeds of 

Abelmoschus esculentus were seen to have antifungal properties against plant pathogens such as 

Puccinia graminis f. sp. tritici (stem rust pathogen) and Aspergillus niger (black mold) 

(Jayaseelan et al., 2013).  When used on root-knot nematodes in tomato crops, AuNPs act as 
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management tools to combat the pest with no negative impact on plant growth (Thakur et al., 

2018).  

 

Along with these versatile applications for AuNPs, researchers also have examined their use as a 

rapid and efficient diagnostic tool for pesticide residue on fruit and vegetable products. Bai et. al. 

was able to develop a sensitive, relatively low-cost optical sensor for screening pymetrozine 

using unmodified AuNPs.  They were able to detect the chemical at a detection limit of  1 × 10 −6 

M and visually diagnose the presence of the chemical due to the assays colorimetric response (L. 

Y. Bai et al., 2010). The residual pesticide Kitazine was detected by a visual assay that coupled 

an enzyme-linked immunoassay (ELISA) with bioconjugated AuNPs (Malarkodi et al., 2017). 

Kang et. al. made a colorimetric sensor for a pesticide using modified AuNPs. The assay was 

highly sensitive as it could detect the chemical as low as 10nM with the use of UV-Vis 

spectroscopy and could detect from water and food samples (Kang et al., 2018).  

AuNP sensing has also been investigated for organic compounds such as pathogen DNA. Gold 

nanoparticles were used to detect the plant pathogen Xanthomonas campestris. AuNPs were 

modified to bind to pathogen DNA, leading to nanoparticle aggregation causing a visible shift in 

their color (H. Peng & Chen, 2019). Firrao et. al. used oligonucleotide-modified AuNPs to act as 

a fluorescence signal when hybridized with target DNA for the vineyard pathogen, Flavescence 

dorée (Firrao et al., 2005). Baetsen et. al. were able to detect viral DNA of cucurbit downy 

mildew in cucumber using unmodified gold nanoparticles to detect very low concentrations of 

the Pseudoperonospora cubensis DNA (Baetsen-Young et al., 2018). Outside of the use of gold 

nanoparticles, several other diagnostic tools for DNA sequence detection have been developed.   
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DNA DETECTION METHODS OF THE PAST 

Over the last 30 years, the science community has been employing the use of methods such as 

Polymerase Chain Reaction (PCR), Restriction Fragment Length Polymorphism (RFLP), Short 

Tandem Repeat (STR) Analysis, and several others for genetic sequence analysis. Though these 

methods are widely used, each has its own set of drawbacks ranging from processing time and 

efficiency to overall costs associated (Table 1.1).  

Table 1.1: Common DNA Detection Methods Of The Past 

 

With the progression of knowledge in the study of DNA and genetic sequence analysis, novel 

and more efficient detection methods have been developed.   

 

 

 

 

Method Challenges/ Drawbacks Literature

Polymerase Chain Reaction (PCR)  

and its variations (qPCR, RT-PCR, RT-

qPCR)

Very sensitive to contamination, relatively 

slow analysis, requires specialized and 

costly equipment

(Thomson & Dietzgen, 1995; Khan et.al., 

2018; Broccanello et. al., 2018; Singh & 

Kapoor, 2018, Hoy et. al., 2019)

Restriction Fragment Length 

Polymorphism (RFLP)

Requires a large DNA sample for analysis, 

results can take weeks

(Powell et. al., 1996; Camele et. al., 

2005; Kumar et. al., 2020)

Random amplified polymorphic 

DNA (RAPD)

Requires standardized laboratory 

conditions for reproducibility, requires 

specialized equipment, sensitive to the 

quality of DNA samples

(Mata et.al., 2009; Lin et. al., 2009; 

Zheng et. al., 2008)

Amplified fragment length 

polymorphism (AFLP)

Specialized and costly equipment and 

reagents, requires very clean template 

DNA samples

(Coyle et. al.,2005; Bryan et. al., 2017; 

Smith et. al., 2007)

Short Tandem Repeat (STR) analysis Costly equipment and slow analysis
(Howard et. al., 2009; Undurraga et. al., 

2012; Carlson et. al., 2015)

Sourthern Blot
Requires a large DNA sample for analysis, 

slow analysis

(McCabe et. al., 1997; Glowacka et. al., 

2016; Honda et. al., 2002)

DNA Sequencing
Requires specialised and expensive 

equipment, data can be difficult to 

interpret, results can take a long time

(James et. al., 2013; Chandler et. al., 

2002; Gill et. al., 2004)

Common DNA Detection Methods of the Past
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MODERN, RAPID DNA DETECTION METHODS 

PCR was the gold-standard method for reliable DNA detection in plant material, but since Kary 

Mullis developed this technology in 1983, several new techniques for the study of DNA have 

been developed that work to overcome the drawbacks of their predecessors:  

 

• ISOTHERMAL ASSAYS: The emerging technology of isothermal assays has opened 

new opportunities for access and point-of-care use for plant disease diagnostics. These 

DNA amplification techniques are conducted at a constant temperature, lessening the 

need for specialized and costly equipment. Rojas et. al. demonstrated the use of 

recombinase polymerase amplification (RPA) as a rapid, species-specific diagnostic 

assay for detection of Phytophthora sojae and P. sansomeana (Rojas et al., 2017). Loop-

mediated isothermal amplification (LAMP), which utilizes primers that form hairpin-like 

structures to induce amplification, was found to be more rapid and sensitive than 

conventional PCR when detecting Alternaria solani (M. Khan et al., 2018). Though the 

assay was not as sensitive as nested PCR and qPCR, it was simpler, faster, and able to 

detect disease in young leaves that only showed minimal symptoms of early blight.  

• LATERAL FLOW ASSAYS: Lateral flow assays are rapid immunological platforms 

that are typically comprised of a nitrocellulose membrane, sample pad, conjugate pad, 

and absorbent pad, and are best known for their point of care application. A rapid point of 

care method for the detection of cauliflower mosaic virus promoter (CaMV 35S) was 

achieved and coupled with cross-priming amplification technology (Huang et al., 2014).  

This nucleic acid lateral flow assay could detect as little as 30 copies of the plasmid 

containing the CaMV 35S gene and was made to monitor the presence of genetic 
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modifications rapidly and efficiently in products. A nucleic acid lateral flow 

immunoassay (NALFIA) was combined with PCR to detect Macrophomina phaseolina in 

soil and seed samples. This NALFIA used labeled primers to overcome the timely use of 

gel electrophoresis, allowing it to be simpler and faster than conventional PCR (Pecchia 

& Da Lio, 2018).  

• GENE CHIPS AND MICROARRAYS:  Microarray technology allows for multi-

parallel analysis of many gene sequences at once. They typically involve separate gene-

specific DNA fragments that are attached to a solid support. Detection occurs when 

fragments hybridize with targeted DNA sequences. Several common potato viruses were 

simultaneously detected with a microarray assay with comparable sensitivity to ELISA 

(Boonham et al., 2003). Liebe et. al. developed a microarray assay to successfully 

identify several sugar beet root diseases. This innovative tool allowed for high-

throughput multiplexed detection of pathogens (Liebe et al., 2016). 

• A COMBINATION OF TECHNOLOGIES: To get the most out of these rapid 

diagnostic tools, researchers have combined some of the technologies.  Lau et. al. 

developed a nanoparticle-based electrochemical biosensor for rapid detection of 

Pseudomonas syringae using disposable screen-printed carbon electrodes. This assay was 

coupled with recombinase polymerase amplification (RPA) to produce a method that was 

10,000 times more sensitive than conventional PCR and could diagnose the presence of 

Pseudomonas syringae before disease symptoms were visible on the plant (Lau et al., 

2017). In another study, Karnal bunt of wheat was detected on sight using a AuNP- based 

lateral flow immune-dipstick assay at the genus level. AuNPs were conjugated with anti-

teliospore antibodies for improved specificity in the detection of Tilletia indica, the 
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fungal pathogen for the disease (Singh et al., 2010).  Ghosh et al (2018) combined RPA 

with a lateral flow assay as a tool for detection of the citrus greening  

pathogen, Candidatus Liberibacter asiaticus, on mandarin oranges (Ghosh et al., 2018).  

 

These other rapid detection technologies have helped push DNA analysis toward high 

throughput, low cost, and sensitive advances. Just like these methods, AuNPs have steadily 

grown in popularity due to their unique physical and chemical properties.  

 

SURFACE PLASMON RESONANCE AND GOLD NANOPARTICLE PROPERTIES 

AuNPs have a large surface-to-volume ratio, which gives them a platform for surface 

modification. This surface functionalization of the particles is often what determines the use of 

the material. The alteration to the particles can be done through physical adsorption or covalent 

attachment of ligands to their surface (Dykman & Khlebtsov, 2019).  Modifications act to 

provide protection of the particles from aggregation, improve biocompatibility, and allow for 

targeted hybridizations to be used in assays. As mentioned previously, AuNPs can also be useful 

as unmodified materials due to their localized surface plasmon resonance. Surface plasmon 

resonance (SPR) is a result of the electrons on the particles’ surface oscillating as they interact 

with light and other analyte materials (McDonnell, 2001; Pattnaik, 2005; Tang et al., 2010). 

Nanoparticles can occur in a multitude of shapes including spherical, cube, star, rod, cluster, and 

shell-shaped (A. K. Khan et al., 2014).  SPR is greatly affected by the gold particles’ size, shape, 

and environment. For example, as nanoparticle size increases the wavelength of light that is 

adsorbed shifts to longer, redder wavelengths (Figure 1.1). This means that larger particles will 

adsorb red light and reflect blue light leading to a pink, purple, or blue color of the colloidal 
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solution. The various sizes and shapes of the AuNPs are controlled so that they will have specific 

optical properties for their intended applications.  This red shifting occurrence can also happen 

when gold particles are in an excess salt solution (Anderson et al., 2011; Baetsen-Young et al., 

2018; Han et al., 2015; Li & Rothberg, 2004b; Wang et al., 2016). The surface of AuNPs is 

usually negatively charged, but in a salt environment, the charge becomes neutral leading to 

aggregation, and as a result, the gold solution turns from red to blue.  

 

Our study investigates the use of AuNPs as a diagnostic detection assay for DNA sequences in 

maize. The red shifting properties of the d-AuNPs as they aggregate or disperse in an ionic salt 

environment are utilized for this sequence-specific detection assay. The d-AuNPs are stabilized 

within a complex formed between the single-stranded DNA probe (ssDNAp) and the target 

dsDNA. This stability causes a color display of red/pink when target DNA is present as the 

nanoparticles bind to the complex loop and are dispersed. When there is no target DNA, the 

nanoparticles can freely aggregate as there is no loop complex to stabilize them, thus a 

blue/purple color is displayed. The assay is used to detect a Xerico insertion gene that is known 

to induce ABA sensitivity and improve water use efficiency in maize. As this gene was inserted 

into the B73 variety of maize, untransformed samples were used in the assay as a non-target 

negative control. Though a reproducible assay was not achieved, this study shows promise for 

further research to be done for a rapid DNA diagnostic tool once challenges with nanoparticle 

Figure 1.1: Various colors of different sized monodispersed colloidal gold 

nanoparticles. Particle size increases from left to right. Modified from sigmaaldrich.com.  
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synthesis can be overcome. Through further research and application, this assay can be used to 

assist breeders in their selection process with a rapid, simple method of detection of native 

sequences, transgenic insertions, introgressed regions, and recurrent parent DNA. 

 

PART 2- FUSARIUM DISEASED WHEAT SEED DETECTION WITH MACHINE 

LEARNING 

 

THE IMPORTANCE OF WHEAT, FUSARIUM HEAD BLIGHT AND ITS IMPACT ON 

GRAIN VALUE 

 

Since the Fertile Crescent, wheat (Triticum spp.), the Middle East originating crop, has been 

amongst the world’s top staple crops. Major improvements in the genetics and resistance in 

wheat came after World War II through the Green Revolution. Despite these great advances, 

wheat is still plagued by several impactful diseases. One of the most devastating of these is 

Fusarium Head Blight (FHB). The scab disease has caused billions of dollars in losses due to its 

negative effects on the nutritive, physical, and chemical qualities of the grain (Cowger et al., 

2020), which lowers the market value. FHB is caused by the Fusarium spp. with its dominant 

pathogen being Fusarium graminearum. Symptoms of the infection are seen as bleached spike 

heads, beginning in a single spikelet, and spreading to the rest of the wheat head. After harvest, 

infection in wheat is often visualized in the kernels as a tombstone, pink or chalky color and 

shriveled in appearance (Figure 1.2). 
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The greatest threat of this pathogen is its ability to produce the vomitoxin, deoxynivalenol 

(DON). DON in grain can be extremely harmful to animals and humans as it disrupts normal 

cellular function and can lead to nausea, fever, headaches, and vomiting (Chu, 2003). The USDA 

recommends DON levels not to exceed 1 part per million (ppm) and 2ppm is marked as 

unacceptable for wheat used in human foods (Food and Drug Administration (FDA), 2010). Due 

to the dangerous economic and physical effects of this infection, it is important to identify 

Fusarium infected seed to reduce the possibility of DON contamination. 

 

A BRIEF HISTORY ON MACHINE LEARNING 

Machine Learning is a rapidly developing technology that looks to use algorithms to assist 

computer systems to continually improve their performance for detecting patterns, making 

predictions, and analyzing data (Awad & Khanna, 2015). The term “machine learning” was 

coined by an IBM developer named Arthur Samuel that wanted to develop a computer program 

to play checkers in 1952 (Samuel, 1959). A few years later, a scientist at Cornell built off of 

Samuel’s idea and coupled it with a model of brain cell interaction that was previously published 

Figure 1.2: Illustration of diseased kernels. Modified from canr.msu.edu and originally 

from Dr. Pierce Paul, Ohio State University.  
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(Hebb, 1949) to create the “Perceptron” (Rosenblatt, 1960). This software was built for the IBM 

704 computer to do image recognition, classification, and simulate progressive learning. Though 

this invention had great promise, it struggled to successfully recognize complex visual patterns 

and did more binary classification. To combat this, multilayer perceptrons were developed to 

significantly increase the detection and classification ability of the technology (Murtagh, 1991; 

Mondal et al., 2018). As technology progressed and the growth of the internet boomed, machine 

learning began to investigate more practical problems to provide services focused on probability 

theory and statistics. These tools have a variety of applications from credit card fraud detection 

(Awoyemi et al., 2017), to facial recognition in smartphones (Alshamsi et al., 2016), self-driving 

cars (Stilgoe, 2018), and personalized internet advertisements (Mogaji et al., 2020). The practical 

application of machine learning algorithms has also been examined in the agricultural field.  

 

MACHINE LEARNING FOR AGRICULTURAL APPLICATION  

Advances in high throughput and precision agriculture have created a rapidly emerging sector 

that utilizes machine learning for innovative research and application.  Ramos et. al. used 

machine learning to measure the number of fruits on a coffee branch through digital image 

analysis. The machine vision system was able to successfully estimate fruit number, its 

maturation percentage, and weight with a correlation as high as 90% at early stages of crop 

development (Ramos et al., 2017). Their method enabled an efficient, low-cost, and non-

destructive model for coffee tree fruit counts. Another yield-related model was created for cherry 

tree harvesting. They developed models that classified images by parts (branch, cherry, leaf, and 

background), and linked segmented pictures corresponding to whole branches and trees (Amatya 

et al., 2016). This research shows the potential for automatic harvesting of cherry trees. K-
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Nearest Neighbors was used for lettuce growth stage identification based on image analysis 

(James Loresco et al., 2018). They used KNN to compare color spaces for RGB, HSV, CIELab, 

and YCbCr. The study found CIELab color space as the most useful to use in growth stage 

prediction in lettuce. Nari and Yang-Won used SVM, Random Forest, Extremely Randomized 

Trees, and Deep Learning to predict corn yields based on satellite images and climate data (Kim 

& Lee, 2016). When compared to data from the USDA, their predictions differed by only 6-8%, 

thus showcasing machine learning as an option for crop yield modeling. In China, researchers 

used support vector machines to create a crop modeling system for rice (Su et al., 2017). Their 

study provided a model that was parametrically simple, regionally applicable, and useful on 

perennial and one-year rice predictions.  

 

A wide variety of machine learning applications are also seen in disease and pest detection for 

several crops. The detection of thrips on strawberries grown in greenhouses was facilitated by 

the analysis of crop canopy images using a support vector machine classification model 

(Ebrahimi et al., 2017). The model identified the pests in images of strawberry flowers with an 

error rate of less than 2.5%. Rice blast disease was identified using machine learning algorithms, 

including multiple regression, neural network, and support vector machine (Kaundal et al., 

2006). The models were able to achieve early detection of the disease for different locations and 

in different seasons. They saw that SVM was the best technique for disease identification and 

developed a web server for rice blast prediction. This open-access server has helped the plant 

science community and farmers in their decision-making processes. Logistic regression was used 

to predict white mold incidence in dry beans from North Dakota. The model used data on 

rainfall, temperature, and frequency of rain in the growing season (Harikrishnan & Del Río, 
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2008). It was able to explain 85% of the variability and had a high accuracy of 91%. This gave 

researchers an additional tool for deciding on fungicide application for mold control. Moshou et. 

al. utilized neural networks for the detection of yellow rust in wheat plants. The model used 

hyperspectral image data of wheat plants to distinguish healthy and yellow rust-infected plants 

during their early developmental stages (Moshou et al., 2004). The identification system was 

very successful in classification with accuracy ranging from 95-99%. Their research allows for 

the prospect of a remote sensing device for yellow rust that works in the field. Researchers 

developed a smartphone app that has integrated machine learning models to detect early signs of 

disease in bananas (Selvaraj et al., 2019). They used deep convolutional neural networks as an 

AI-based banana disease and pest detection system to support banana farmers in developing 

countries. Their model was able to achieve 90% accuracy and was transferred to a mobile app 

platform that tracks the class and location of various banana diseases and differentiates healthy 

and diseased plant parts. This classification of healthy and diseased materials is vital for the rapid 

diagnosis of disease in plants. Machine learning models are very useful for developing low-cost, 

efficient, and rapid detection tools to be used by researchers.  

 

MODELS USED IN THIS STUDY 

The machine learning approaches used for this study are all supervised classification models that 

include: K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Logistic 

Regression (LR). K-nearest neighbors is a model that estimates how likely a data point is to 

belong with one group or another based on its proximity to other groups of data points. The “K” 

in this model represents the number of “nearest neighbor” datapoints to use in the model for 

association grouping of the testing dataset (Latha Jothi & Sabari, 2020). Support vector machine 
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is a model that separates data using a hyperplane. This hyperplane can be a linear or multi-

dimensional threshold depending on how the dataset is structured (Noble, 2006). In some data 

sets classification is not always an easy “Yes” or “No”. Separated data are often divided by a soft 

margin that allows for misclassifications. The specification of the cost function (C-value) is a 

parameter in SVM that allows for misclassification in the model and prevents overfitting of the 

model (Lorena & De Carvalho, 2008). The soft margin has observations within it called “support 

vectors” that act to support the division of the model by the hyperplane. 

Logistic Regression is a model that is used to estimate the probability of a binary dependent 

variable based on a logistic function which is the natural logarithm of an odds ratio. This 

function gives an “S” shaped curve when modeling predictions of the data (C. Y. J. Peng et al., 

2002). A cutoff point can be placed on the logistic prediction curve for binary decision making 

by using a relative operating characteristic (ROC) curve and choosing the threshold that 

corresponds to the highest sensitivity and specificity for that dataset (Soureshjani & Kimiagari, 

2013).  

 

Visual assessment of wheat kernels is one of the most common ways to non-destructively 

diagnose Fusarium diseased kernels (FDK) and is most often done by a trained pathologist or 

another researcher by hand. Despite the reliability of this evaluation process, it can be very time-

consuming, subjective, and not ideal for large sample sizes. Therefore, high throughput, low-

cost, image-based detection methods are important for pathology and breeding research. We 

examine three machine learning models for the detection and classification of healthy kernels 

and FDK. This comparative study investigates Logistic regression (LR), Support Vector 

Machine (SVM), and K-Nearest Neighbors (KNN) as the models of choice.  Each model was 
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able to identify and classify thousands of healthy or infected kernels with high accuracy from 95-

98.6%. The best of the compared models was logistic regression because of its fast processing 

time when making predictions while maintaining high model accuracy. Utilizing image-based 

methods for FDK identification will assist researchers to have a faster, more objective method 

for accurately evaluating disease severity in wheat without expensive image analysis equipment.    
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CHAPTER 2: THE USE OF DEXTRIN-CAPPED GOLD NANOPARTICLES FOR THE 

DETECTION OF TRANSGENIC INSERTIONS IN MAIZE 

 

ABSTRACT: 

DNA detection techniques are essential to the science community and our everyday lives, with 

applications in pathogenic and genetic disease diagnosis, forensic analysis, crop breeding, and 

much more.  Through recent advances in technology, rapid, low-cost, and more efficient 

techniques had been created. Gold nanoparticle (AuNP) technology has emerged as a versatile 

tool in rapid diagnostic and bio-sensory assays. Here we present a novel colorimetric assay for 

the detection of DNA sequences in maize using unmodified gold nanoparticles and unamplified 

DNA. For this sequence-specific assay, we exploit the red shifting properties of the AuNPs that 

are caused by its surface plasmon resonance. In a salt environment, the AuNPs are stabilized 

within a loop complex between the single-stranded DNA probe (ssDNAp) and the target dsDNA. 

This stability results in a colorimetric response that is dependent upon the presence of target 

DNA in a sample. If the target gene of interest is present, the assay solution will turn red/pink 

and if there is no gene of interest present in the sample, the assay will turn blue/purple. AuNPs 

show promise in their ability to accurately diagnose the presence of transgenic insertions in DNA 

samples within 10 minutes. Through further research and development, this assay can be used to 

assist breeders in their selection process with a rapid, simple method of detection of native 

sequences, transgenic insertions, introgressed regions, and recurrent parent DNA. 
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INTRODUCTION: 

Over the last 30 years, the science community has been employing the use of methods such as 

Polymerase Chain Reaction (PCR), Restriction Fragment Length Polymorphism (RFLP), Short 

Tandem Repeat (STR) Analysis, and several others for genetic sequence analysis. Though these 

methods are widely used, each have their own set of drawbacks ranging from processing time 

and efficiency to overall costs associated.  In recent years, gold nanoparticles (AuNPs) have been 

applied as a DNA detection tool for diagnostic and bio-sensory assays ranging from cancer 

detection in hospitals, to virus and pathogen detection in the field (X. Bai et al., 2020; Dykman 

& Khlebtsov, 2011; Giraldo et al., 2019; Vetrone et al., 2012). AuNPs have been extensively 

used because of their stability, and controlled geometrical, visual, and surface chemical 

properties. Target DNA-induced aggregation of AuNPs has been shown to result in color 

changes in gold nanoparticle solutions due to the electrostatic interactions between the negatively 

charged surface of the AuNPs and the exposed nucleotide bases (Izanloo, 2017). Our goal is to 

develop and optimize the characteristics of AuNPs as an unamplified genomic DNA biosensor in 

maize for breeding applications.  

 

ASSAY FOUNDATION 

Our study builds from the scheme presented by Baetsen et. al. regarding their experiments for the 

detection of viral DNA of cucurbit downy mildew in cucumber. They were able to use 

unmodified gold nanoparticles to detect very low concentrations of viral DNA (Baetsen-Young 

et al., 2018). In addition to this rapid diagnostic tool, they proposed that in the presence of 

elevated NaCl conditions and target DNA, AuNPs are stabilized within a complex created by 

generated ssDNA after the hybridization of genomic dsDNA and ssDNA probe during sample 
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denaturation and annealing steps (Figure 2.1). In the presence of non-target DNA, this complex 

would not form and AuNPs would aggregate as they are adsorbed to ssDNA probes that do not 

hybridize with the non-target DNA. This difference in stability and aggregation of the d-AuNPs 

is what causes a colorimetric response. This electrostatic interaction between DNA and gold 

nanoparticles is consistent with studies in the literature where the charged surface of the 

nanoparticles bind to the nucleotide bases (Arvizo et al., 2010; Brown et al., 2000; Vorobjev et 

al., 2019). The exploitation of this physical property of AuNP is the basis for our study.  

 

 

 

 

Figure 2.1: The proposed mechanism for the interaction of the target and non-target 

dsDNA, ssDNA probe, and d-AuNPs in a high salt concentration environment. 

Modified from Baetsen et. al., 2018. 
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GOLD NANOPARTICLE PROPERTIES 

Gold nanoparticles are largely applied for their optical properties caused by the oscillation of 

electrons on the surface of the particles called surface plasmon resonance (X. Bai et al., 2020; 

Bayazit et al., 2016; Zhu & Gao, 2018). This unique physical property is what allows AuNPs to 

exhibit color changes when interacting with various materials such as DNA. Nanoparticles also 

have specific size and shape-related electronic properties and excellent biocompatibility  (Yeh et 

al., 2012). The aggregation and stability of nanoparticles cause color shifts of aqueous AuNPs 

solutions, resulting in blue or red solutions respectively (Dykman & Khlebtsov, 2011).  

Nanoparticle-based assays for the detection of genomic DNA have been developed previously. 

Deng et. al. did a study in 2012 showing the usefulness of AuNPs for the detection of Bacillus 

anthracis. They found that when coupled with asymmetric polymerase chain reaction for 

amplification of the target sample, functionalized AuNPs provided a colorimetric response assay 

(H. Deng et al., 2012). In several examples in the literature, nanoparticles were “functionalized” 

with the attachment of a ssDNA probe to the surface of the particle for ensuring the specificity of 

their assay (Franco et al., 2015; Khaliliazar et al., 2020; Zhou et al., 2016). In addition to this, 

unmodified AuNPs were also shown to be viable for specific detection assays (H. Deng et al., 

2013; Han et al., 2015; Hussain et al., 2013; Li & Rothberg, 2004a; Liu et al., 2011). In Hussain 

et al.’s study, they even took the method a step further by using unamplified DNA samples to 

detect Mycobacterium tuberculosis by using a restriction digestion of the mycobacterium DNA 

for rapid, sensitive detection.  

  

This study investigates the use of AuNPs as a diagnostic detection assay for DNA sequences in 

maize. The aggregation and dispersion characteristics of the d-AuNPs in an ionic salt 
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environment are utilized for this sequence-specific detection assay. The d-AuNPs form a 

complex between the single-stranded DNA probe (ssDNAp), the target DNA, and the 

nanoparticles to achieve stability. This stability causes a color display of red/pink when target 

DNA is present, but when there is no target DNA, a blue/purple color is displayed. Through 

further research and application, we hope to use this assay to assist breeders in their selection 

process with a rapid simple method of detection of native sequences, transgenic insertions, 

introgressed regions, and recurrent parent DNA.   
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MATERIALS AND METHODS: 

MATERIALS 

This experiment used genomic DNA from maize plants grown in plant breeding research fields 

at Michigan State University. Maize varieties used include B73 and transgenic Xerico lines 

introgressed into B73 via backcrossing. Maize plants were previously transformed with an 

inserted Xerico gene patented by Han and Ko in 2011 that originated in Arabidopsis thaliana 

(Han, Kyung-Hwan & Ko, 2011; Ko et al., 2006). The Xerico gene encodes a small protein with 

an N-terminal transmembrane domain and a RING-H2 zinc finger motif located on the C-

terminus. Over expression of this RING domain in maize has been seen to induce ABA 

hypersensitivity and improved water use efficiency, enhancing yield performance in drought 

conditions (Brugière et al., 2017).   

 

PRIMER DESIGN 

DNA primers were developed using the Integrated DNA Technologies (IDT) Primer Quest and 

Oligo Analyzer (Found at idtdna.com). These tools enable the design of oligonucleotides with 

unique predicted biophysical, chemical and hybridization properties (Owczarzy et al., 2008). The 

ssDNA oligonucleotide 5’- GTGCAAGAAACAGGCAGACA-3’was synthesized by Integrated 

DNA Technologies (Coralville, IA). The target sequence for the ssDNA probe was 5’- 

TGTCTGCCTGTTTCTTGCAC-3’ which is within the genomic DNA of the Xerico insertion.  

Sequences were analyzed using the NCBI Basic Local Alignment Search Tool (BLAST) to 

identify any regions of similarity within the Xerico gene and native B73 v3. maize DNA. The 

Xerico gene was compared to the B73 v.3 DNA sequence to identify any regions of similarity. 

Once identified, these regions were excluded from the possible locations for primer 
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development. From the possible primer results, the Oligo Analyzer tool was used to examine the 

sequence for any predicted hairpin loops, self-dimers, and heterodimers.  Primers were chosen 

based on recommendations from IDT protocol.  

 

DNA EXTRACTION AND SAMPLE VERIFICATION 

Genomic DNA was extracted from Zea mays plants using the DNeasy® Plant Mini Kit from 

Qiagen (Venlo, Netherlands). Four-centimeter-long leaf samples were flash-frozen using liquid 

nitrogen and homogenized in a Qiagen Tissue Lyser for 2 minutes at a frequency of 30 Hz (1800 

oscillations/minute) using pre-chilled sample holder plates that were stored in a -80° C freezer.  

DNA samples were purified according to manufacturer protocols listed for the kit. DNA 

concentration and purity were quantified by Qubit (Thermofisher, Waltham, MA). After 

extraction, DNA was stored in a -20°C freezer for later use. Sample sequences were verified with 

PCR and Gel electrophoresis (Figure 2.2) using the following PCR protocol: initial denaturation 

at 95°C for 2 mins; 35 cycles of 95°C for 30 seconds, annealing at 63°C for 30 seconds, and 

extension at 72°C for 1 minute; followed finally by 72°C for 5 minutes and held at 10°C until 

ready for storage.   
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GOLD NANOPARTICLE AND REAGENT SYNTHESIS 

Dextrin-capped gold nanoparticles (approximately 13nm in diameter) were synthesized utilizing 

methods demonstrated by Anderson in 2010 and once again by Baetsen-Young in 2018 

(Anderson et al., 2011; Baetsen-Young et al., 2018). A gold chloride (HAuCl4) stock solution 

was prepared with distilled sterile water for a 20mM concentration and stored under 

refrigeration. 5mL of the HAuCl4 solution was added to 20mL of dextrin stock prepared at a 

25g/L concentration and was added to a 250mL flask. The pH of the solution was adjusted to 9.0 

using 1% filter sterile sodium carbonate (Na2CO3). The final reaction volume was adjusted to 

50mL by adding 25mL of pH 9.0 sterile distilled water. The solution was wrapped in tinfoil and 

Figure 2.2: Gel analysis of PCR done on B73 (1-5) and Xerico DNA 

(6-15) samples collected from leaf tissue. The difference in band size 

represents maize lines that have an inducible promoter (6-10) and those 

with a constitutive promoter (11-15). None of the B73 samples showed 

any presence of the Xerico insertion. All Xerico samples showed the 

presence of the Xerico gene except one sample (11).   
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incubated on a stir plate at 50°C at 250rpm for 8 hours. The solution was checked regularly to 

evaluate particle formation through color change stages as exhibited by Anderson. The solution 

went from clear, to light purple, dark purple, bright red, and wine red within the 8hr period. Once 

complete, nanoparticles were evaluated by TEM to evaluate the average size, shape, and 

uniformity of particles (Figure 2.3). AuNP absorption was also evaluated with a SpectraMax 

ABS Plus Microplate Reader (Molecular Devices, Sunnyvale, CA).  

 

A phosphate-buffered saline (PBS) solution was prepared using the protocol from Chazotte for a 

10mM PBS stock solution (Chazotte, 2012). Briefly, 8g of NaCl, 0.2g of KCl, 1.44g of 

Na2HPO4, and 0.24g of KH2PO4 were added to 800mL of sterile distilled water and the pH was 

adjusted to 7.4 with HCl. Afterward, the volume of the solution was adjusted to 1L with sterile 

distilled water and was autoclaved. A 1.5mM NaCl stock solution was made with 4.38g NaCl 

dissolved in 50mL sterile distilled water and was autoclaved.   

 

Figure 2.3: Gold nanoparticle batch under Transmission 

Electron Microscope (TEM). This batch of gold nanoparticles 

was seen to have uniform round shape and 13nm diameter.  
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AUNP ASSAY DEVELOPMENT 

This diagnostic assay has five components including PBS buffer, ssDNA probe, dsDNA sample, 

dextrin-capped gold nanoparticles (d-AuNPs), and salt solution (Figure 2.4). The B73 dsDNA 

was used as a non-target negative control for assay testing, while the Xerico dsDNA was the 

target material. For assay testing, each experiment was done in 5 different control wells. Each 

well had a differing mix of DNA and probe samples based on if it was a positive or negative 

control (Table 2.1). Briefly, control well 1 contained a probe and target DNA sample. Well 2 did 

not have the probe or target DNA. Well 3 contained the probe but not target DNA. Well 4 

contained target DNA, but not the probe. Well 5 contained the probe and non-target B73 DNA. 

The volumes used for each test were based on the final reaction concentrations of each 

component within a 100µL reaction except the d-AuNP which was always 20µL. The reaction 

concentration of the target and non-target dsDNA samples was 1.5ng/µL, the Xerico probe was 

0.05µM, the NaCl concentration was based on results from the salt series dilution mentioned 

below, and the volume of reaction was adjusted to 100µL by using 50mM PBS buffer. Reactions 

were denatured at 95°C for 5min, followed by annealing at 64°C for 1min, and cooled at 23°C 

for 10min before adding 20µL of AuNPs, followed by the appropriate volume of NaCl. 

Immediately after, reactions were aliquoted to a clear plate and measured at 520 and 620nm 

absorbance values at 1-minute intervals over 10 min.  
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Prior to experiments with the dsDNA, the stability of the d-AuNPs was evaluated with a salt 

series dilution study where 5µL of our 1µM ssDNA probe was added to 10µL of d-AuNPs. Then 

varying volumes of NaCl and PBS buffer were used to achieve salt concentrations of 0, 50, 100, 

150, 200, …450mM in a final reaction volume of 50µL per reaction. The visible absorption 

spectrum of the AuNP aggregation was measured by the SpectraMax plate reader mentioned 

above to determine the ideal salt concentration to use for assay development. Plate readings were 

Figure 2.4: Infographic of AuNP assay for rapid detection.  

Table 2.1: The experimental design for each assay development test. Each control 

represented a different reaction well on a plate.  

Experimental Design Control 1 Control 2 Control 3 Control 4 Control 5
50mM PBS Yes Yes Yes Yes Yes

Xerico probe Yes No Yes No Yes

Xerico dsDNA sample Yes No No Yes No

B73 dsDNA sample No No No No Yes

d-AuNPs Yes Yes Yes Yes Yes

1.5M NaCl Yes Yes Yes Yes Yes
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taken at 1-minute intervals over 10 minutes. Absorption measurements were taken at the 520 and 

620nm absorbance values as described by Baetsen et. al., 2018.   

 

SPECTRAL ANALYSIS FOR AUNP AGGREGATION 

Spectral data was formatted, analyzed, and plotted using R (Figure 2.5) (R Team, 2020). The 

aggregation and stability of the AuNPs are seen visibly in samples, as control solutions without 

the presence of target DNA should turn blue, while control solutions with the presence of target 

DNA will turn red (Figure 2.6). The rate of aggregation of the AuNPs was calculated by dividing 

the absorbance measurement at 620nm by the measurement at 520nm.  

 

Figure 2.5: Spectral results for an ideal AuNP assay test. Control 1 (“dblPosi”) 

shows the lowest rate of aggregation, Control 2 (“dblNeg”) shows the highest rate of 

aggregation, and controls 3 (“PosP_NegD”) and 4 (“NegP_PosD”) show rates in 

between the other two. The colorimetric response related to these results are seen in 

Figure 2.5. Quantification of color intensity was done in R, after measurements taken 

with a SpectraMax Plus.  
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Figure 2.6: Ideal colorimetric response to the 10-minute assay. The colorimetric 

response of results seen in Figure 2.4. The wells for control 2 show a blue color 

indicating no presence of target DNA. The wells for control 1 show a red color 

indication the presence of target DNA. The wells for controls 3 and 4 show a purple 

color, indicating partial stability of the AuNPs from the probe or DNA.  



40 

 

RESULTS AND DISCUSSION: 

ASSAY DEVELOPMENT AND TROUBLESHOOTING 

We started our assay development using a XERICO reverse probe (5’- 

GAATTTCGACAAACACACAGAAC-3’) but ran into issues with control 3 (+P -Target DNA) 

showing lower and similar rates of aggregation as control 1 (+P +Target DNA) (Figure 2.7). 

Ideally, we would want to see an assay test where control 2 (-P-DNA) shows the highest rate of 

aggregation and control 1 shows the lowest rate of aggregation. The 5 components of the d-

AuNP assay - PBS buffer, dsDNA sample, ssDNA probe, NaCl concentration, and a batch of d-

AuNPs - were changed one by one to optimize results for the assay. Improvements in the assay 

were not seen until the probe sequence was changed to a forward probe (5’-

CCAAGGGGATTCAGAGATCA-3’). This probe was selected because it had fewer self-dimers 

with higher Delta G values and a higher GC content. This change would reduce the probe’s 

ability of binding to itself and give it a stronger bond to target sequences. When this was done, 

the assay’s testing concentrations were optimized for the NaCl and probe concentration to 

200mMol and 0.05 µM, respectively. Reproducibility was seen in the assay as we tested these 

parameters with multiple target dsDNA samples (Figure 2.8). These results were good, but we 

wanted to increase the separation rate of aggregation curves between the controls. This would 

allow for a clearer distinction of controls and better confidence in the assay.  
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Figure 2.7: d-AuNP assay test showing rate of aggregations for the controls 

with not ideal results. We do not see ideal conditions with this test as the control 3 

(positive for ssDNA probe, and negative for target DNA) showed a lower rate of 

aggregation than control 1 (positive for ssDNA probe, and positive for target DNA).   

Figure 2.8: d-AuNP assay test showing rate of aggregations for the controls with 

reproducibility. Here we see reproducibility of the assay with different target dsDNA 

samples with optimized testing concentrations.   
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To do this, we changed the d-AuNP batch along with optimizing the assay’s testing 

concentrations for this specific batch of gold nanoparticles. The results of this optimization can 

be seen in Figures 2.5 and 2.6 where there is a clear distinction between controls and the 

colorimetric response of the assay. After achieving these ideal results, an additional 5th control 

was added to the assay to ensure the experiment was not falsely detecting non-target DNA 

(Table 2.1). When introduced in the assay, it showed good results as control 1 had the lowest 

absorption measurement after 10 minutes, and control 2 had the largest, with the other controls in 

between (Figure 2.9).  However, as seen in the previous testing, there was not a clear distinction 

between all controls (control 1 and 5 showed a similar measurement).   

 

 

Figure 2.9:  d-AuNP assay test showing absorbance measurements after 

10 minutes.  This shows the introduction of the 5th control using the first 

Xerico forward probe, a different d-AuNP batch, with 50mM PBS, Xerico 

target dsDNA, non-target B73 DNA, and 350mM NaCl.   

0

0.2

0.4

0.6

0.8

1

1.2

1.4

+Probe
+DNA

-Probe -
DNA

+Probe -
DNA

-Probe
+DNA

+Probe
+NTDNA

A
6

2
0

/A
5

2
0

Treatment

Absorbance Measurment after 
10-Minute Timepoint



43 

 

To examine this further, the coding sequence for the Xerico insertion was Blast against the B73 

v4. coding sequence within the MaizeGDB database (Portwood et al., 2019). This allowed us to 

find six regions of similarity between the Xerico insertion and the Zea mays reference genome 

for B73 (Figure 2.10). Due to the forward probe being within one of the regions of similarity, 

there was no clear differentiation between the absorbance measurements of control 1 and 5 

(Figure 2.9). Future probes were designed to exclude targeting within these regions of similarity. 

A new forward Xerico probe was utilized for future experiments (5’- 

GTGCAAGAAACAGGCAGACA-3’). With this new forward probe, we were able to see good 

results (Figure 2.11), but when attempting to repeat the experiment, a new PBS buffer had to be 

made due to stock contamination. With the new PBS buffer, we did not achieve similar results as 

when the second probe was originally introduced as there was less distinction between the 

controls even though the assay’s testing concentrations were the same. This lack of 

reproducibility in the assay testing made it difficult to assess the viability of the assay.  

 

Figure 2.10:  The coding sequence for the Xerico insertion. Highlighted in yellow 

are regions of similarity between the insertion and the B73 v.4 reference gene from 

MaizeGDB. There was a total of 6 regions of similarity.   
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After attempting to troubleshoot the assay, new AuNP batches were made to see if the age of the 

d-AuNPs was affecting the consistency of the assay. New batches of d-AuNPs were synthesized 

and analyzed under a TEM and a full spectrum analysis of the batches was done to test 

absorbance. Full-spectrum analysis shows a lower absorbance measurement at the 520nm value 

in the old batches of d-AuNPs as compared to the new batches (Figure 2.12).  

Figure 2.11: Absorbance measurements after 10 minutes for assay test. Blue bars 

represent the assay test when the second forward probe was tested. The yellow bars 

represent when the second forward probe was tested with a new PBS buffer. The grey 

bars represent a repeat of the experiment.  
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Figure 2.12: Full spectrum analysis of d-AuNP batches. (A) represents the old 

batches of particles and (B) represent new batches. New batches show higher 

absorbance peaks at the 520nm value as compared to the old batches.  

A 



46 

 

In addition to this, a salt series dilution test was done at varying NaCl concentrations to examine 

the old batches’ responsiveness to ionic environments. The old batches showed a lack of 

response to ionic environments and were less reactive to the concentrations as compared to 

earlier dilution tests (Figure 2.13). This indicates that age may be affecting the responsiveness of 

the nanoparticles to the assay components.  

 

Fresh reagents were made for the assay components (PBS buffer, target, and non-target DNA 

extracts, NaCl solution), except the ssDNA probe, as it had not reached its company 

recommended expiration date. As done previously, a salt serious dilution test was conducted to 

find the optimal salt concentration for assay development. When done, the new batches of 

AuNPs did not show a reaction to varying salt concentrations (Figure 2.14). This may have been 

due to the non-uniformity in the size of the particles (Figure 2.15). The varying sizes of the 

particles counteract the effects of one another.  

A B 

Figure 2.13: Salt series dilution of old nanoparticle batch in the early stages of 

assay development (A) and a salt series dilution of the same batch 2 years later 

with fresh reagents (B).  
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Figure 2.14: Salt series dilution of a new nanoparticle batch. No response was seen 

from the nanoparticles with the varying NaCl concentrations.   

Figure 2.15: d-AuNP batches examined under a TEM. A and B represent old gold 

nanoparticle batches and C and D represent new batches of the particles. Uniform 

spherical shaped particles were seen for all batches. A and B have an average size of 13-

15nm and 17-20nm diameters, respectively.  C and D have an average size of 11-13nm 

diameters. However, the new batches did not have uniform shape across the entire 

solution.   
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DISCUSSION AND FUTURE IMPLICATIONS: 

Future studies will need to be done to examine the consistency and reproducibility of this assay 

for gene sequence detection. Though there were successes in assay testing, reproducibility was 

never achieved. This lack of reproducibility may have been due to batch-to-batch variability and 

stability of the nanoparticles. This issue has been noted in the literature. Zhang et. al. had seen a 

depreciation in the quality of lab synthesized nanoparticles within one month of storage (Zhang 

et al., 2008). Tso et. al. also found difficulty with maintaining the stability of nanoparticles in 

aqueous conditions from commercially available nanoparticle materials (Tso et al., 2010). In the 

literature, it is noted that the shelf life of nanoparticle dispersions can range from a few months 

to 2 years and there is a need for more literature on how representative a single batch of 

nanoparticles is across multiple batches (Mülhopt et al., 2018).  Synthesis of nanoparticles has 

noted challenges that may inhibit the reproducibility of studies for labs that don’t have efficient 

synthesis or quality control technology and resources (Rahman & Rebrov, 2014). Though there 

have been several methods claiming highly reproducible synthesis of nanoparticles (Bayazit et 

al., 2016; Dong et al., 2020; Keijok et al., 2019; Panariello et al., 2020), lab resource limitations 

and varied environments will induce synthesis variability from batch to batch. Therefore, we 

would suggest nanoparticles used for future studies should be obtained from a third-party group 

or company that is known for consistency in nanoparticle synthesis. In addition to this, we 

suggest that future research be done within a short time frame to limit the degradation of 

nanoparticles that will occur over time.  

 

This study was able to provide insight into the challenges of d-AuNP assay development, but 

also successes. This study shows the use of d-AuNPs as a diagnostic detection assay for DNA 
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sequences in maize. Reproducibility of the assay was limited due to batch-to-batch variation of 

gold nanoparticles and nanoparticle degradation. If the reproducibility of nanoparticle batches 

can be increased, this technology would provide a rapid detection tool for plant breeders for 

making breeding decisions.  
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CHAPTER 3: UTILIZING MACHINE LEARNING ALGORITHMS FOR 

IDENTIFICATION AND CLASSIFICATION OF FUSARIUM INFECTED WHEAT 

SEED VIA IMAGE-BASED ANALYSIS 

 

ABSTRACT: 

Fusarium Head Blight (FHB) is a devastating plant disease that is caused by the Fusarium spp. 

with its dominant pathogen being Fusarium graminearum. FHB, or scab infection, has led to 

several billion dollars in losses due to its degenerative effects on the nutritive, physical, and 

chemical qualities of infected grains. Infection in wheat (Triticum spp.) is often visualized as 

bleaching of the spike where kernels are a ghostly pink color and shriveled in appearance. This 

disease also produces a harmful vomitoxin called deoxynivalenol (DON) that causes nausea, 

fever, headaches, vomiting, and disruption of normal cell function in humans and animals. The 

damaging effects of this infection, cause a need for diagnostic tools to prevent DON 

contamination. This study aimed to develop an image-based identification model for the 

detection of and differentiation between healthy and diseased wheat seeds. We compared the 

accuracy of FHB detection in multiple machine learning models including Logistic Regression 

(LR), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). All methods were 

extremely accurate: 95 to 98.8% accuracy in the withheld testing set. Utilizing image-based 

methods for disease identification can help researchers to improve the efficiency of detecting 

Fusarium diseased kernels (FDK), which is typically done by hand. This would also provide a 

more objective and accurate method for evaluating disease severity. 
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INTRODUCTION: 

Fusarium Head Blight (FHB) is one of the most devastating plant diseases in the world. The scab 

disease has caused billions of dollars in losses due to its degenerative effect on the nutritive, 

physical, and chemical qualities in the grain (Cowger et al., 2020; McMullen et al., 1997), which 

lowers the market value of the grain. FHB, or scab infection, is caused by the Fusarium spp. with 

its dominant pathogen being Fusarium graminearum. Scab infection in wheat (Triticum spp.) is 

shown by the bleaching of the spike head, beginning in one of its spikelets, and spreading to the 

rest of the spike. After harvest, infection in wheat is often visualized in the kernels as a 

tombstone, pink or chalky color and shriveled in appearance (Figure 3.1).  

 

This well-documented disease is most impactful due to the pathogen’s creation of a mycotoxin 

called deoxynivalenol (DON) upon infection of wheat. DON in grain can be very harmful to 

animals and humans as it disrupts normal cellular function and can lead to nausea, fever, 

headaches, and vomiting (Chu, 2003). DON contaminated grain can cause extreme discounts as 

Figure 3.1: Scanned images of diseased and healthy wheat seeds. Images of wheat 

seeds where seeds in (A) are infected with Fusarium graminearum and those in (B) are 

healthy wheat seeds. 
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the USDA recommends DON levels not to exceed 1 part per million (ppm) and 2ppm is marked 

as unacceptable for wheat used in human foods (Food and Drug Administration (FDA), 2010; 

Xia et al., 2020). DON’s impact of lowering the value of grain production leads to the need for 

rapid detection tools.  

 

Visual assessment of wheat seed can be one of the best ways to evaluate samples in a non-

destructive way. In many pathology and breeding research labs, Fusarium diseased kernels 

(FDK) are often identified by hand using standards set by the USDA Grain Inspection, 

Stockyards, and Packers Administration (USDA, 2016; Dowell et al., 1999). Though this has 

been a reliable diagnostic method for researchers, visually detecting FDK by hand can be time-

consuming, subjective, and not well suited for large samples. As machine learning technologies 

in image recognition have advanced, image-based detection for diagnostic assessment has grown 

in popularity. One approach to more rapid and objective image-based detection of post-harvest 

FDK measures whitened kernel surface in seed photographs with a correlation around 0.8 with 

FDK (Saccon et al., 2017). In recent experiments, FDK has been assessed using hyperspectral 

imaging, Fourier Transform Infrared (FTIR) spectroscopy, and Near Infrared (NIR) spectroscopy 

(Alisaac et al., 2019; Barbedo et al., 2015; Kautzman et al., 2015; Lahlali et al., 2015). Despite 

these innovative applications’ ability to detect FDK, these methods often require expensive 

analysis equipment. This study looks to utilize low-cost, easy-to-use equipment for rapid 

detection of FDK.  

 

This study aimed to develop an image-based identification model for the detection of and 

differentiation between healthy and Fusarium spp. infected wheat seeds. We compared the 
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accuracy of FHB detection in multiple machine learning models including Logistic Regression 

(LR), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). Utilizing image-based 

methods for disease identification would help researchers to improve the efficiency of detecting 

FDK, which is typically done by hand. This would also provide a more objective and accurate 

method for evaluating disease severity while using inexpensive equipment for diagnostic 

analysis.  
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MATERIALS AND METHODS: 

MATERIALS 

This experiment used the infected grains of several Michigan wheat varieties. The grain was 

comprised of several red and white soft wheat varieties. The samples used for image analysis 

were obtained from infected plants in fields with natural or grain spawn inoculum. These 

infected plants were grown in plant pathology research fields at Michigan State University and 

the Saginaw Valley Research and Extension Center in Frankenmuth, MI. . Presence of infection 

was confirmed for each field by isolating Fusarium from small samples of symptomatic kernels 

and wheat heads. In addition, seed samples were evaluated by trained pathologists for the 

incidence of FDK. A “healthy” kernel is one that visually has no Fusarium spp. present while 

diseased kernels were visually confirmed using USDA-GISPA standards (USDA, 2016). 

 

IMAGES COLLECTION 

Images of seed were collected using an Epson Perfection 4180 Photo flatbed scanner. Healthy 

and diseased kernels were placed on the scanner and spread apart so that no seeds were touching 

(Figure 3.2). Seeds were left in the position that they fell on the scanner (i.e., a mix of the 

ventral, dorsal, and side profiles of the kernels were scanned).  Images were produced using a 

24-bit color setting and a 720dpi resolution. A total of 150 images were taken, resulting in nearly 

38,000 kernels scanned. Seeds were scanned in 3 different sets. Images within the scan 1 and 2 

sets had a mix of healthy and diseased kernels. Images within the scan 3 set had solely healthy or 

diseased kernels. Images in scan 3 were used to develop and train machine learning algorithms. 

Scan 3 images contained a total of 11,351 kernels, where 3,760 kernels were FDK and 7,591 

were healthy kernels. For each aliquot of seed used for an image, notes were recorded on the 
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sample’s weight, the total number of diseased seeds in the sample, the image number, and the 

seed variety. Images were taken with a ruler and color panel for calibration and scale setting 

during image processing.  

 

IMAGE PROCESSING 

Scanned images were processed using the ImageJ 1.x software (Schneider et al., 2012) to collect 

several size, shape, and color parameters. An ImageJ macro program was made to batch-process 

all images. The software took measurements of the area, mean color, perimeter, circularity, 

aspect ratio, roundness, solidity, and minimum feret (Table 3.1). There were a total of 10 shape, 

size, and color parameters. The three color measurements were “Mean Red”, “Mean Blue”, and 

“Mean Green”, which is the amount of red, blue, or green intensity within the region of interest 

(ROI) for each seed. This color measurement is based on the additive RGB color model.  

A B 

Figure 3.2: Images of FDK collected from the flatbed scanner (A) and the labelled 

image after ROI detection and measurement via ImageJ software (B).  
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MODEL DEVELOPMENT 

Data collected by the ImageJ software was formatted and analyzed using R programming 

software (R Core Team, 2020). Within R, machine learning algorithms were developed and 

tuned utilizing the caret package (Kuhn, 2020) for model development. Data collected from the 

scan 3 set of images were used for model development. Training and testing data were divided 

via a 70-30 split, with 70% of the data (representing 7,946 kernels) used as the training set and 

the other 30% (representing 3,405 kernels) as the testing dataset. Three different classification 

methods were used to identify and classify the wheat seed as health or FDK including: support 

vector machines (SVM), logistic regression (LR), and k-nearest neighbors (KNN). The workflow 

for image processing and analysis can be found in Figure 3.3. Once data was properly formatted, 

the scan 3 training data was used to build and tune the models. The optimized models were then 

Table 3.1: This table shows a list and description of the various size, shape, and color 

measurement collected by the ImageJ software.  

Figure 3.3: Workflow diagram of image processing for determining FDK per image. 

Logistic regression, support vector machines, and k-nearest neighbors were the machine 

learning models (MLM) used for analysis and prediction.  
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used to predict the classification of each kernel as FDK or healthy. Comparison of the models 

was based on accuracy, the area under the ROC curve (AUC), and the predictive processing 

times when used on the testing dataset. These model comparison criteria were used in other 

experiments to differentiate machine learning models for image classification (Al Zorgani & 

Ugail, 2018; Saberioon et al., 2018). In each of these studies, support vector machines, logistic 

regression, and k-nearest neighbors were among the models compared. Each model was 

optimized using a ten-fold cross-validation, repeated three times. The best performing model was 

applied to scan 1 and scan 2 datasets to obtain the FDK incidence prediction per image.  
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RESULTS AND DISCUSSION: 

 

TUNING MODELS FOR OPTIMIZATION 

To optimize the model for support vector machines, the type of support vector machine model 

and cost value (C-value) for SVM must be examined. C-value is a parameter within SVM that 

allows for misclassifications within the model, preventing overfitting. The higher the cost value, 

the more misclassifications that are allowed within the model. In our analysis, accuracy across 

various cost values was examined to find an optimal C-value to use for the model (Figure 3.4). 

The optimal C-value for SVM was 2.01. SVM models utilize a kernel function that finds the 

support vector classifier in higher dimensions to separate the data via a hyperplane. The three 

types of kernel functions for SVM are linear, polynomial, and radial functions. Each of these 

instances differentiate in how they make decisions for hyperplane boundaries of classes. When 

comparing these three kernel functions, it was found that the SVM linear kernel function had the 

highest accuracy of 98.7%. With these tuned parameters, SVM was able to achieve an accuracy 

of 98.7%, with a 97.9% sensitivity and 99.1% specificity (Figure 3.6).  
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Though there are no tuning parameters for logistic regression, we were able to look at the 

importance of each variable in the model. Within the caret package, the “varImp” function can 

be used to look at the importance of each parameter. This importance is based on the absolute 

value of the t-statistic for each parameter in the model (Dalpiaz, 2020). Based on this analysis, 

we see that “Mean Blue” is the most important parameter in the model followed by Mean Green 

and circularity (Figure 3.7). This is consistent with the standard used to rate FDK by hand set by 

the USDA, as color and a shriveled shape are the most obvious indicators of fusarium infection 

(Bauriegel et al., 2010; USDA, 2016; West et al., 2017). Upon further examination, it was seen 

that the distribution of the Mean Blue parameter had a bimodal distribution (Figure 3.5). This 

may be the cause of its high importance in the model. The logistic regression model performed 

strongly with its accuracy (98.6%), sensitivity (97.6%), and specificity (99%) (Figure 3.6).  

Figure 3.4: Tuning for Support Vector Machine (SVM) model. The SVM Linear 

model showed the highest accuracy (A). The SVM model was tuned by analyzing the 

accuracy of varying SVM model across cost values (B). The accuracy of the SVM Linear 

model was then measured across cost values on the training data set. The optimal cost 

value found and used in later analysis was 2.01. 

A 
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Figure 3.5: Bimodal distribution for the “Mean Blue” parameter in the model. 

This plot shows the distribution of the dataset used for training the model. Mean Blue 

was the most important variable for the classification model.  

Figure 3.6: Confusion matrices for tuned models. Confusion matrixes were used to 

compare the accuracy of the machine learning models when classifying wheat seeds as 

healthy or diseased using the testing dataset. Support Vector Machine model had the highest 

true positive (sensitivity and recall), true negative rate (specificity), positive predictive value 

(precision), accuracy, and F1 values. The Logistic Regression model showed only slightly 

lower performance in each of these categories (0.4% > difference in each category). The K-

Nearest Neighbor model showed the worst performance in all categories. 
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To optimize the model for k-nearest neighbors, various k-values should be examined. K-value in 

this model is a parameter that refers to the number of “nearest neighbors” used by the model 

when making classification predictions. The higher the K-value, the more neighboring data 

points that are used for voting whether a kernel is diseased or healthy. We examined the 

accuracy of the model across k-values and found the optimal k to be 5 (Figure 3.8). With these 

tuned parameters, KNN achieved an accuracy of 97.6%, with a 95.6% sensitivity and 98.6% 

specificity (Figure 3.6).  

Figure 3.7: The importance of each parameter utilized within the Logistic Regression 

model. The parameter “Mean Blue”, which is the amount of blue color intensity in each 

seed, was found to be the most important variable within the model.  
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MODEL COMPARISON AND SELECTION 

In previous comparative studies, support vector machines showed the highest accuracy amongst 

classification models (Al Zorgani & Ugail, 2018; Saberioon et al., 2018). This is consistent with 

our study as SVM showed the highest accuracy (98.8%) of the three algorithms (Table 3.2). The 

LR model showed only a slightly lower performance (less than 0.4% difference in each category) 

when compared to SVM. The KNN model performed the worst of the classification algorithms. 

Though SVM showed the highest accuracy, when comparing the algorithm’s processing speed 

when making predictions on testing sets, LR was seven times faster than SVM (Table 3.2). Due 

to the minimal gain in accuracy, specificity, sensitivity, and area under the ROC curve, logistic 

regression was deemed to be the best choice for an accurate yet rapid detection algorithm.   

Figure 3.8: Identifying the optimal K value for the K-Nearest Neighbor model. The 

optimal K value for the K-Nearest Neighbor model was identified by comparing model 

accuracy across a range of K values on the training dataset. The optimal K value used for 

further analysis was 5, where K is the number of nearest neighbors used to appropriately 

classify a data point.   
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Once logistic regression was chosen as the best model to use, we applied this classification 

model to the other sets of scanned seed (1 and 2) to examine the applicability of the model on 

mixed seed images. As mentioned previously, these scans had a mix of both healthy and diseased 

seeds within each scan. When applied, we compared the predicted number of FDK per image to 

the actual number of FDK per image. We saw a correlation of 81.8% for the model and it had a 

significant p-value (<0.001) and an adjusted R-squared of 66.7% (Figure 3.9).  

 

 

Table 3.2: The accuracy, area under the curve ROC (AUC), and predictive processing 

times when analyzing the testing dataset were used to compare the optimized machine 

learning models. The Support Vector Machine model had the highest accuracy and AUC. 

The Logistic Regression model was only slightly lower in accuracy and AUC but had the 

fastest processing time. The K-Nearest Neighbor model performed the worst amongst the 

compared models. 
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Very few studies have looked at the classification of FDK utilizing relatively inexpensive 

equipment. Building upon previous work, this study uses a larger dataset for model development 

(over 11,000 kernels used) and alternative machine learning models (LR, SVM, and KNN) for 

FDK classification. In a study published in 2018, a comparative analysis examined hyperspectral 

images versus the use of flatbed scanner images for the classification of FDK (Ropelewska & 

Zapotoczny, 2018). Ropelewska and Zapotoczny were able to achieve high classification 

accuracy using a flatbed scanner (94-100%) by examining 120 kernels that were laid on either 

their dorsal or ventral sides. The accuracy of their model was influenced by the positioning of the 

analyzed wheat kernels and wheat variety. The following year, Ropelewska did another study 

using flatbed images and was able to achieve a classification accuracy range of 58.12%-73.37% 

Figure 3.9: Correlation between the predicted number of diseased seed per image 

and the actual when logistic regression is applied to additional images. Showing 

the correlation between the predicted number of diseased seed per image and the 

actual, when the LR model is applied to scan 1 and 2 sets of seed images. The P value 

for this plot was significant <0.001 and had a correlation of 81.8% and an adjusted R-

Squared of 66.74%.  



70 

 

(Ropelewska, 2019). This time they used 1,800 kernels and 59 geometric parameters for 

classification. The highest accuracy was found using a 10-fold cross-validation procedure and 

various attribute selection methods to lower the processing time for model application. In 

addition to color, shape, and size parameters, researchers have also utilized textural parameters to 

classify FDK (Guevara-Hernandez & Gomez Gil, 2011; Zapotoczny, 2011). In future work, 

textural parameters may also be useful for increasing the classification accuracy of the model.  
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DISCUSSION AND FUTURE IMPLICATIONS: 

 

This study provides a rapid and low-cost method for discrimination between healthy kernels and 

FDK based on color, size, and shape parameters.  FDK was classified with the greatest accuracy 

of 98.7% utilizing the SVM model, but this model lacked the speed of processing time when 

making predictions on the testing set. Logistic regression was the fastest of compared models by 

at least sevenfold and maintained a high accuracy, AUC, sensitivity, and specificity. Mean Blue 

was the most important parameter within the LR classification model. Upon model application to 

other data sets, LR achieved an 81.8% correlation between predicted FDK and actual FDK. 

Utilizing image-based methods for disease identification would help researchers to improve the 

efficiency of detecting FDK without the use of expensive equipment in a rapid, non-destructive, 

and objective manner.  In future work, models should also include textural parameters to increase 

model accuracy. This method could be integrated into an application for smartphone use. 

Currently, many smartphones have the capability of exporting photos at a resolution of more than 

300dpi. Further experimentation should be done to test the efficiency of the model using lower-

resolution images. In addition to this, separating the kernels to ensure none of them were 

touching added significantly to the time used for data collection. Thus, further research should 

also be done to examine the accuracy of these models using samples with various spacing levels, 

ranging from no contact to touching on all sides of the seed. This would increase the usability 

and practicality of this method for plant pathologists and breeders. As a limitation of this study, 

individual kernel infection was not examined via qPCR or another diagnostic testing. This may 

limit the ability of the model to be used on visually asymptomatic Fusarium spp. infected kernel.  

This model was developed to align with methods for visually symptomatic infection.  
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