EVOLUTION OF AEC PROJECT NETWORKS:
AN AGENT-BASED MODELING APPROACH

By

Nishchay Pidiha

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Construction Management — Master of Science

2021

ABSTRACT

EVOLUTION OF AEC PROJECT NETWORKS:
AN AGENT-BASED MODELING APPROACH

By

Nishchay Pidiha

In Architecture, Engineering, and Construction (AEC) industry, projects call for collaboration
between different expertise areas. To improve it between different stakeholders, an in-depth
understanding of the communication network structure is crucial. While Social Network Analysis
(SNA) shows promise in analyzing communication network structures, the AEC literature to date
shows its use mainly in a cross-sectional manner. A recent longitudinal case study shows that these
networks are not static and can evolve overtime. However, due to fast-paced delivery of any AEC
project, researchers often arrive at missing data, sometimes depriving them from concluding
statistically significant results in a longitudinal study. Hence, there is a need for further
investigating the evolution of AEC project teams network structures through a simulation that

emulate certain aspects of a social network structure evolution over time.

In response to this need, the study aims to explicate, how real-world size AEC project networks
evolve over project delivery based on similarity of node characteristics (e.g., homophily) and node
behaviors in networks (e.g., node’s popularity). To do so, the study adopted selection model, and
simulated multiple agent-based models basing its initial condition on an empirical case study. The
evolutions of the network structures were analyzed overtime. Finally, the study compared the
results with recent similar works. Deliverables include an improved understanding of AEC project
network structures and characteristics, and practical implications relating to team collaboration

and coordination considering project characteristics such as team size, and complexity.

Copyright by
NISHCHAY PIDIHA
2021

I would like to dedicate this writing to my parents who have taught me values and have
supported me in the pursuit of every little or big goal | wanted to achieve in life. I am, for life, in
debt for their effort.

ACKNOWLEDGEMENT

With a few words of gratitude, | would like to acknowledge my thesis advising committee chair

and members to whom | owe the accomplishment of this work.

I am immensely grateful to Dr. Sinem Mollaoglu, for her unceasing advice, expert guidance, and

support. Without her this work would have not been accomplished.

I am immensely thankful to the thesis advisory committee member: Dr. Kenneth Frank, and
Dr. Dong Zhao. Their involvement and idea sharing were the inception point for the approach of

this study and had made all the difference enhancing the quality of this work.

| would also like to thank Dr. Ran Xu for taking the time out to review and provide his invaluable

input in the simulation model and coding that guides this research.

I would also like to thank all the Dr. Matt Syal, Dr. Mohamed El-gafy, Dr. Tim Mrozowski, and
Dr. George Berghorn for their invaluable support during these unprecedented times of Covid-19

pandemic.

| am thankful to all the IOPT-4 research team members for investing their time in discussing my
works and its improvement, throughout the journey of my master’s degree research-work:
Dr. Angelo Garcia, Meltem Duva, Dr. Faizan Shafique, Dr. Joseph Thekinen, Hasan Bayhan, and

Nishchhal Nihal Pandey.

Last but not the least, | would like to also thank you the SPDC staff for making everything work

smoothly within the school: Jill Selke, Pat Daughenbaugh, Lauri Stephens, and Bill Balluff.

TABLE OF CONTENTS

LIST OF FIGURES ...ttt ettt sttt et ettt e s tesbeste s et esaeseeseeseesessessensensensenseseesennes viii
Chapter 1 INTRODUCTIONccoiiiiiiteieieieietete ettt sestesteste st e aesaeseeseesessessessensensenseseeseesessessenes 1
O O © T T SR 1
O 1= = o] =1 =] 0 T=Y o USSR 3
1.3. Research Goal and ODJECLIVESc.oceeieiiiieieceees ettt st st eaesraennas 4
O 0T 1< 5
1.5, OVEIVIEW OF IMENOASouveiieiieiieieeiesiesie ettt sttt sae bt 6
1.6. ReSUIS and DelIVErADIES..........coiiiiiririereee ettt sbe bt 8
O A T Ve (<) € 11 e [8
Chapter 2 LITERATURE REVIEW ..ottt sttt sttt sae s e 9
P2 S 1011 € [1Tox o] OSSPSR 9
2.2. Overview of Social Network Analysis (SNA) and Key COoNCePtS.......cceevveveeceereseecesieeresre e 9
2.3, SOCIAl NEtWOIK STIUCTUIESecveruerieriesieseeieieeeice sttt sttt e e sbesresbeseens 12
2.4. AEC Project Teams and Social Network ANalysiScccoeveieirinininineneseieeeeee e 15
24.1 Overview of SNA in the AEC LIteratUre........cocceeeereeierieieiereeeesieseeiesieeeeseesseesesseennes 15
2.4.2 AEC Project Teams, Coordination, and Knowledge Transfer.........cccceccevvveeecieniencenneenne, 16
2.4.3 Overview of Longitudinal SNA Works of AEC Project Teamsccceevververeeerereneneens 18

2.5. Node and Dyad Characteristics in SNA and Evolution of Network Structures............ccocvvueeee. 19
2.6. ABM, AEC Research Uses, and SNA INtegrationccccceeeeevereerienieeeeneseeseseseesieseeseeseeennes 24
2.7, SUMIMAIY .eeiiieiiieiie et et et esttestesbe st esseesteesaeesaeessteesteesbeesaeesasesasesnseenseessaesseesssesssesnsesnsesssessssesns 28
Chapter 3 METHODOLOGYoiciiiieiieieiesitetesiesteteste st etesseestestesseessesseessessessaensessesssessesssessesseessessesssens 30
T O 1011 {0 [¥Tox (o] SO OO O PRSP POPRRTROPPOPRPRPRO 30
3.2, Research Goals and ODJECLIVES......ccceecieeeeeeciieeete sttt ettt s sae s teera e besaeessesbeennas 30
3.3, Research ApPProach and SCOPE......ccioieviiieeeeceeeete ettt ettt s ae s beereebesasenaesreeanas 32
3.4. Model Description and SIMUIALIONS...........cccveiiiieiiieee et e 33
34.1 Selection Model for Homophily/Heterophily and Popularity Seekingc.cccoovevvevienenen. 33
3.4.2 ABM Conditions and Steps to Run the Simulationc.ccccveeeviiiece e 35

3.5, RESEAICH QUANITY ...cvieeeiictectecteeece ettt ettt st a et e e aa et e s be e be s beeab e beeanentesreennas 40
N T YU 101 1 0T YOS 42
Chapter 4 RESULTS ...ttt sttt ettt et et e et e st e sa e et e steestenseeseentessesneensesseensessesneans 43
4.1 INEFOTUCTION ...ttt sttt ettt st b e st et e b et e st e st e b sbeebentenan 43
4.1 Homophily/Heterophily versus Popularity (Degree / Eigenvector Centrality)ccccceeveeunen. 43
4.2.1 Experiment 1: Small Sized Network using Degree Centrality and Homophily.................. 48
4.2.2 Experiment 2: Real-world Sized Network using Degree Centrality and Homophily 53
4.2.3 Experiment 3: Small Sized Network using Eigenvector Centrality and Homophily 58
4.2.4 Experiment 4: Real-world Sized Network using Eigenvector Centrality and Homophily .64
4.25 Experiment 5: Small Sized Network using Degree Centrality and Heterophily................. 70
4.2.6 Experiment 6: Real-world Sized Network using Degree Centrality and Heterophily 72
4.2.7 Experiment 7: Small Sized Network using Eigenvector Centrality and Heterophily 74

4.2.8 Experiment 8: Real-world Sized Network using Eigenvector Centrality and Heterophily. 76

Vi

B2 SUMIMEIY .eoutiieeterteeieeete st et ete st st et e sb st e st e s bt e b e s b e saee st she et e bt e as e s e sbeeasenbesbee b e sbeenee bt sneennenneeanes 78

Chapter 5 DISCUSSION AND CONCLUSIONccciiiieieieieisesese et sse st sae e eesessessennas 79
51 1] T [T 4] o SRS 79
52 SUMMANY OF FINAINGS....c.eiiiiiiiiirest ettt nae e 79
5.3 DISCUSSIONS ...vtuviuteueenieuieiietiettete st st steste st et esteae st sbesbeste st e te st e st e st eseebesbesbesbente s et eneeneenesbesbensentens 80
B4 CONCIUSTON «.eutiiiieteteeee ettt sttt sttt ettt e bt e be et e st et et et et et eneenesbesbenbentens 86

APPENDICES ...ttt ettt st bbbt e et s bt b e s b bt et et ne b be st b e 89
APPENDIX A: Netlogo Code for EXPEriMENTS.......ccceeciiiiieiericeciesteeeeste sttt sn e sve e 90
APPENDIX B: NEtlogo INTEI ACEveeviieeieie sttt st a et st sre e e sreennens 142

REFERENCES ...ttt st sttt ettt be e b st s b et et en e e st eneeneebesaesbenes 145

vii

LIST OF FIGURES

Figure 3.1 Investigation FrameWOIKccoiiiiiiiiiiee e 32
Figure 3.2 Type-1 Initial Setup: a NetLogo SCreenshotcoceovviiciiiiciccicee 37
Figure 3.3 Type-2 Initial Setup: a NetL0ogo SCreenshotccoieiiiiiiiiniiiecee e 38
Figure 3.4 Diagram Illustrating Agent’s Decision Making ProCess...........cccccoovviiiiiniciicnennenn 39

Figure 4.1 Matrix Explaining all Eight Types of Simulation Experiments for the Research 45
Figure 4.2 Experiment-1 Simulation ReSUIS..........ccooiiiiiiiiiiee e 49

Figure 4.3 Plotlines Summarizing the Observed Network Structures in Simulation Experiment-

TP P TR PPRPR 52
Figure 4.4 Experiment-2 SIMulation RESUILS...........ccoveiieiiiiiicie e 54
Figure 4.5 Plotlines Summarizing the Observed Network Structures in Simulation Experiment-57
TSP P TSP PP PRSP PRRRPR

Figure 4.6 Experiment-3 SIMulation RESUILS............cccoviiieiiiiic e 59
Figure 4.7 Plotlines Summarizing the Observed Network Structures in Simulation Experiment-

X PP 63
Figure 4.8 Experiment-4 Simulation RESUILS.............coveiiiiiiiei e 65

Figure 4.9 Plotlines Summarizing the Observed Network Structures in Simulation Experiment-

viii

Figure B.1 NetLogo Screenshot Illustrating Code of for A Simulation Model..............cccccvenee.

Figure B.2 NetLogo Screenshot Illustrating Interface Tab of a Simulation Model.....................

Chapter 1 INTRODUCTION

1.1. Overview

In almost any Architecture, Engineering, and Construction (AEC) project, different expertise areas
come together for a specific period to execute the delivery of a project that span programming,
planning, design, and construction activities. Often the stakeholders involved are employed by
different companies but are contractually bonded together for the delivery of a specific project
with a defined scope keeping it within an estimated budget and schedule requirements. With so
many preexisting constraints and a specified project goal to achieve, AEC projects call for
exhaustive collaboration between, and integration of, different expertise areas. However,
communication gaps between the involved stakeholders yield risks to effective collaboration. Such
risk often results in information flow bottlenecks, inefficiency in decision making, reworks, and
cost and schedule overruns. There is always a factor of cost related to this ineffectiveness that one
or the other involved parties must bear. The situation sometimes aggravates so much that one or
several of these involved parties, approaches the methods of arbitration or litigation for getting a
compensation for the losses incurred (Sweet and Schneier, 2017). This, of course, involve even
more time and expenses on each stakeholder’s side. All of these successive unfavorable chains of
events can be avoided to an extent by improving collaboration and communication dynamics
among project team members. To improve collaboration between different stakeholders the first

step is to comprehensively understand the structure in a project team communication network.

Social Network Analysis (SNA) shows promise in understanding such structures. Majority of the
prior research, however, have only looked at AEC teams’ social network structures in a cross-

sectional manner. Recent similar studies claim that these networks are not static and can evolve

overtime (Garcia et al., 2020a and b). AEC project teams, thus, should be studied longitudinally
using SNA. There is overwhelming assumption of work teams in AEC project context, hence,
there is a need for investigating longitudinally, the evolution of AEC project team communication
network structures during project delivery that stimulates the knowledge transfer. Nevertheless,
collection of project team members’ data longitudinally is an arduous task. Moreover, due to fast-
paced delivery of any AEC project, researchers often end arrive at some missing data, sometimes
depriving them from concluding statistically significant results in a longitudinal study. For this
reason, an open-source agent-based modeling software is used to simulate and observe a social

network structure evolution over time.

The goal of this study is to explore the evolution of network structures in AEC project teams based
on team member/node characteristics (i.e., expertise, roles, and tiers). The study objective is to use
an Agent-Based Model (ABM) approach to study the evolution of AEC project team networks and
develop theoretical and practical implications. The unit of analysis in this research project is a
network structure that appears through evolution in early stages of project delivery. To begin,
researcher used NetLogo (Wilensky, 1999), an open-source agent-based modeling software to
simulate partially a project team social network structure. The initial condition for simulations
were based on an empirical case study of an AEC project team network studies by Garcia et al.
(2020a and b). Later, the researcher analyzed the simulation results, both the intermediate and final
sociograms of the evolved network structures. Finally, upon comparison with the empirical study,
the results provide a better understanding to the AEC project networks phenomenon and node’s

characteristic variables such as expertise, roles, and tiers.

1.2. Need Statement

It is evident that lack in collaboration between AEC project teams ultimately foster loss in
productivity. As discussed before it sets a start to unfavorable chains of events detrimental to the
project progress. The project teams constantly thrive to maintain good relation and healthy
communication among their team members so that everyone can work towards a common goal. In
spite of their best efforts almost every AEC project face some amount of rework, schedule, and
cost overruns. This is believed to happen because project leaders and members can never know for
sure if the existing collaboration level among team members is good enough, other than just
heuristically analyzing its potency. In other words, a system is required which can predict, before
it is too late, if the collaboration level is optimal in a team or not. To thoroughly build such a
system, however, one must first understand the communication network structure on which the

collaborative effort thrives.

The use of SNA as a network analysis tool makes the most sense as it can access the dynamic-
nature of the ever-evolving communication network structure of AEC project team (Garcia et al.,
2020a and b). Although sparse, there are studies that used SNA to analyze AEC project team
networks longitudinally analyzing the structures of such teams. However, collection of project
team members’ data longitudinally is an arduous task. Furthermore, due to fast paced AEC project
deliveries, researchers often wind up with missing data, sometimes depriving them from

concluding statistically significant results in a longitudinal study.

To respond to this gap in literature, there is a need to take an agent-based simulation approach to
understand the multidimensional dynamic network structures that evolve to support knowledge

sharing in AEC project teams.

1.3. Research Goal and Objectives

The goal of the research is to explore the evolution of network structures in AEC project teams
based on team member/node characteristics (i.e., expertise, roles, and tiers). More specifically the
study aims to shed light onto how real-world size AEC project networks evolve over project
delivery based on similarity of node characteristics (e.g., homophily) and node behaviors in

networks (e.g., node’s popularity).
The objectives of the study are to:

e Review the literature and study empirical data to identify node characteristics key to project
team networks and their structures;

e Using an Agent-Based Model (ABM) approach, study the evolution of AEC project team
networks through a computer-based simulation; and

e Develop theoretical and practical implications.

To accomplish these objectives, NetLogo (Wilensky, 1999), an open-source agent-based modeling
software, is used for creating the simulation experiments. The study adopted the selection model
from the influence and section model (Frank and Fahrbag, 1999; Frank and Xu, 2020), and
simulated multiple agent-based models basing its initial condition on the observations in a recent

study under AEC project team network structure domain (Garcia et al., 2020a and b).
The main research question that directed this research is as follows:

“To what extent the similarity/difference in individual and dyadic characteristics influence the
multidimensional dynamic network structures that evolve to support knowledge sharing in
AEC project teams in early stages of project delivery? And what are the probable evolutions

in these network structures overtime during project delivery?”

4

1.4. Scope

The unit of analysis in this research project is network structure that appears through evolution in
early stages of project delivery. The simulation experiments performed were bound by a recent
study (Garcia et al., 2020a and b) that explained the network evolution in early phase of project
delivery, thus the results of the simulation also hold representative of the same phase of AEC
project delivery. The scope of the investigation was to simulate agents (project team members)
with node characteristics and observe the results of interaction between these agents based on
difference in their characteristics until when the network structure stabilizes. In all the simulation
experiments the types of agents’ characteristics were kept minimal to understand interactions
better. In other words, any agent was either similar to another agent or not similar. The proportions
of similarity among the agents, and the seeking need of connection to a new agent, were the
parameters that were controlled by variables discussed in detail in the Chapter 2 and 3, the

Literature review and Method sections respectively.

The network size studied were of two kinds: First, a relatively small network size for theory
understanding and explanation; Second, a real-world AEC team project size, to predict the network

evolution of such a network.

Qualitative analysis was carried out further to observe any trend in the evolution of network
structure based on the variables like homophily/ seek for node characteristics (i.e., expertise, roles,
and tiers) similarity, popularity seeking need of each node, and network size. Via comparison, the
trends in the simulation experiment results are expected to signal the effective use of network

structure in AEC project teams.

1.5. Overview of Methods

Extensive literature review on social networks, social network structure evolution simulation
methods, and AEC network literature was conducted. The study then adopted the selection model
from the influence and section model (Frank and Fahrbag, 1999; Frank and Xu, 2020).
Furthermore, basing the initial conditions for the simulation over Garcia et al. (2020a and b)
several ABM simulations were run. The variables like homophily/ seek for similar node
characteristics (i.e., expertise, roles, and tiers), popularity seeking need of each node, and size of
the network were changed accordingly for each experiment to record the intermediate and final
structure coming out of each simulation run. The results were then compared to find the trends that

are expected to signal the effective use of network structure in AEC project teams.

To maintain research quality, several validation tests and reliability techniques were implemented
on the ABM simulation experiments. The validation tests such as, event validity, extreme
condition test, historical data validation, internal validity, parameter variability or sensitivity
analysis, predictive validation and face validity were conducted (Sargent, 2013). The reliability
techniques that were used include, open-source licensed distribution software usage, and model
documentation with separate implementation techniques and conceptual description records

(Richiardi et al., 2006). Details about each test and technique administered are as follows.

e Validation tests that were administered are: (Sargent, 2013)
o Event validity, tested by comparing the occurrence of events within the simulation
with real-world event from empirical case study (Garcia et al., 2020a and b);

o Extreme condition test, administered by tuning all the variables to their extremities

and comparing the results as to be valid. For instance, when there existed no

difference in node characteristics, for any value of homophily or node popularity
the structure never broke;

o Historical data validation, conducted by using the simulation software and coding

techniques from an existing similar model, influence and selection model (Frank
and Fahrbag, 1999; Frank and Xu, 2020);

o Internal validity, examined by performing several replications (runs) of the

stochastic model and observing consistency in results;

o Parameter variability or sensitivity analysis, performed by changing the values of

input and internal parameters (e.g., changing popularity definition from degree
centrality to eigenvector centrality in the selection model equation) to determine if

the results changed sufficiently;

o Predictive validation, by forecasting the system behavior based on available theory
and then comparing the actual behavior of the model; and
o Face validity, by conducting expert interviews with Dr. Kenneth Frank and Dr. Ran
Xu, co-authors of Frank and Xu (2020), about the simulation process and results,
to check whether the model and/or its behavior are viable.
e Reliability techniques that were used are:

o Use of open-source licensed distribution software, using NetLogo (Wilensky,

1999) for coding and simulating the ABM simulation experiments; and

o Thorough documentation of each of the implementation steps for running the

experiments (software interface and implementation knowledge) and conceptual

model.

1.6. Results and Deliverables

The results and deliverables of the study are:

1) Verification of trends observed in an empirical study (Garcia et al., 2020a and b) showing
that the network structures are dynamic, and they can evolve from core-periphery to
cohesive subgroups in early stages of design during project delivery;

2) Practical applications for improved communication and management of AEC project
networks;

3) Insights to variables that can have impacts on AEC network structures; and

4) Directions for future research.

1.7. Reader’s Guide

In the following sections, Chapter-2 presents the extensive literature review in varied domains
(e.g., construction management, organization science, computer science, and social networks) for
defining the key methods for conducting the current research. Methodology for performing the
ABM simulation-based experiment study is canvassed in Chapter-3. Chapter-4 lists the key
findings from the simulation experiments. Chapter-5 presents a comparative analysis of the results,
and enumerate their theoretical and practical applications in AEC project teams. It also concludes
this dissertation emphasizing the most relevant points and offer recommendations for future

research.

Chapter 2 LITERATURE REVIEW

2.1. Introduction

This chapter discusses the concept of SNA, its key concepts, social network structures and
observed presence of such structures in existing studies on project teams. With the aid of this
literature review, the researcher attempts to substantiate the existence of dynamic nature of social
network in AEC project teams, and then justifies the importance of studying these dynamics. This
section also expatiates the findings of other prior studies that explored the non-static nature of
communication network structure of AEC project during their delivery. It also presents the reason
behind usage of agent-based modelling approach for the current research, and states several
accomplished research that used a similar approach in myriad of domains (e.g., epidemiology,
psychology, organizational research, and AEC). Following this, the researcher then, concludes the

literature review section.

2.2. Overview of Social Network Analysis (SNA) and Key Concepts

SNA is a process by which one can investigate and analyze a network structure of a connected
group or an organization through the use of network and graph theory (Otte & Rousseau, 2002).
Here, sociogram is an information map of the network and is mentioned as being resilient yet
constantly adapting in nature (Kadushin, 2012). Kadushin (2012) also propound that the initial
applications of SNA were to investigate the working of an organization or workplace, and
understand the characteristics of leadership in the organization. Due to the complexity involved
and evolving nature of these workplaces, a social network graph is necessary to comprehensively
capture and display the dynamics to any researcher analyzing the network over a timeline. Some

of the basic definitions, concepts, and metrics of SNA are discussed below.

e Graph (Network) is the graphical representation of the Nodes and Edges. Also known as

sociogram, a term coined by Jacob Moreno in 1953 (Kadushin, 2012).

e Components of sociograms:

o

Nodes (vertices) in a SNA graph represents people or subject whose relationship with
other people or subject(s) is the interest of study (Otte & Rousseau, 2002).

Edges (links) in a SNA graph represents the relationship between the nodes (Otte &
Rousseau, 2002).

Hub is a component of a network which has a node that have a high degree centrality
(Barabasi, 2016).

Bridge is a link between two nodes which if broken separates the network into two

different components (Kereri and Harper, 2019).

e Sub-network characteristics:

o

o

Cluster is the grouping of actors within a network (Kereri and Harper, 2019).

Dyad represents the two node and the edge between them. Its study focuses on the
dyadic properties which include reciprocity, flexibility, etc. (Kereri and Harper, 2019).
Triad represents a subgroup of three nodes and the possible edges among them (Kereri
and Harper, 2019).

Clique is a subgraph containing three or more nodes and all the nodes are connected to
one another (Kadushin, 2012).

A node’s neighborhood is the set of its immediately connected nodes in the network.

10

Social network analysis metrics:

©)

Network density is a measure of up to how much extent a network is connected,
mathematically equal to the ratio of number of ties in the network over the total possible
number of ties between all pairs of nodes (Kereri and Harper, 2019).

Cohesion (connectivity) is the measure of the connectedness and togetherness among
nodes within a network. Measures of cohesion includes reciprocity, network density,
clique and structural equivalence (Lee et al., 2018).

Clustering coefficient is a ratio, a numeric value between 0 and 1. It is mathematically
equal to the number of closed triplets in a neighborhood of a node divided by the total
number of triplets in the neighborhood (Kereri and Harper, 2019).

Closeness centrality (analogous to mean) is the mean of all the shortest path distances
from a node under consideration, to every other node in the network. It is a measure of
speed with which an information from a node can reach to the whole network (Kereri
and Harper, 2019).

Betweenness centrality (analogous to median) is a measure of centrality of a node that
quantifies the number of times the node can act as a bridge along the shortest path
between two other nodes. (Freeman, 1977).

Degree centrality (analogous to mode) is the total number of links going into or out of
the node. It is a measure of node’s influence or popularity (Kereri and Harper, 2019).
Eigenvector centrality is another measure of influence of a node on its network. It
assigns scores to all the nodes according to a rule that connection to high-scoring nodes
has more contribution to the score of the considered node, than equal connections to

low-scoring nodes (Newman, 2008).

11

o Geodesic distance is a measure of either the distance between the two nodes with the
greatest separation in a network, or the distance between two nodes under consideration

(Chinowsky et al., 2008).

2.3. Social Network Structures

e Understanding social network structures to perform SNA is crucial. The literature presented
several types of social network structures based on information flow within these structures,
randomness in structures, and their subgroup properties. The classification is presented
hereafter:

e Classification of social networks based on information flow notation:

o If existence of the link between any node A and another node B necessarily implies the
existence of link from node B back to A then the network is called undirected network
(Otte & Rousseau, 2002). The links do not show arrowhead between any connected
nodes.

o If existence of the link between any node A and other node B does not necessarily
imply the existence of link from node B back to A then the network is called directed
network (Otte & Rousseau, 2002). The links show arrowhead between any connected
nodes for representing the direction of the information flow.

e Classification of social networks based on randomness in the structure:

o Linear graph (regular network) represents a case in which nodes are linearly
arranged, thus the average path length between two nodes is usually high (Golbeck,
2013).

o Random graph (random network) represents a case in which each node (member)

can access one another within the network and there is no clustering (Kereri and Harper,

12

2019). Mathematically it can be defined as placing N number of nodes and placing
connections between them, such that the connecting tie of each pair has an independent
probability p (Newman et al., 2008).

o A network is a small world if any two nodes (people) in the network can access each
other through a small network path (Hexmoor, 2015). These networks exhibit high
density within the clusters but also have bridging ties from cluster to cluster (Kereri
and Harper, 2019).

e Classification of social networks based on subgraph properties:

o Core-periphery structures consist of two kinds of nodes. The cohesive subgroup that
are closely connected to each other called core, and the set of nodes that are not
connected to each other but are connected to one or a few nodes from the core called
periphery (Borgatti and Everett, 2000). This type of network structure emphasizes team
coordination (Garcia et al., 2020a and b).

= A bow-tie network structure is essentially a directed core-periphery
structured network that have a bow-tie configuration. It has a core at the center
having low evolve-ability representing the highly constrained part of the
network. The core is surrounded by fan-in component of incoming edges, and
fan-out component of the outgoing ones. These fan-in and fan-out periphery
components have fewer constraints and higher evolve-ability (Csermely et al.
2013).

= Rich club networks are the ones with dense core nodes with peripheral nodes
only connecting to the core nodes but not each other. Thus, they have a little

nestedness (Csermely et al. 2013).

13

= Nested networks, however, are similar to rich clubs but also have their core
nodes connected with each other. Here nestedness is increased but the
peripheral nodes still remain disconnected with each other (Csermely et al.
2013).

= Onion network structure have their peripheral nodes connected to the core (as
in rich club and nested networks) as well as other periphery nodes. This creates
concentric layers of links resembling to the layers present in an onion, hence
the name (Csermely et al. 2013).

o Cohesive subgroups are the sub network structures that consist of nodes that are
densely connected to each other but sparsely to the nodes outside of the subnetwork.
The optimal situation when all the subgroup members interact with all the other
members within the subgroup the cohesive subgroup becomes a clique (Frank, 1995).

o Egocentric network is a personal network (Lee et al., 2018). The person in
consideration is termed as ego and his/her connections are alteri (Djomba and Zaletel-

Kragelj, 2016).

Building up on the definitions listed above the author explored the presence of such networks, and
more importantly, the factors that encouraged the formation of these networks through the current

simulation-based study.

14

2.4. AEC Project Teams and Social Network Analysis

This section discusses the SNA literature with a concentration to AEC project teams, specifically
why SNA serves as an effective tool to analyze the network structure, and goes into details of
coordination and communication giving evidence of how they are influenced by bridges and
boundary spanners. Finally, the results and findings of some of the recent research that studied,

longitudinally, an AEC project team using SNA tools and methods are presented.

2.4.1 Overview of SNA in the AEC Literature

Since the product of an AEC industry project is a result of the combined effort and implementation
of knowledge base of the different expertise involved. It is evident that collaboration between the
involved organizations and integration of different expertise areas are much needed aspect for an
AEC project’s successful completion. However, if there is a communication gap between these
organizations, it can undermine the efficiency of information exchange between trades. Thus, there
is a need of an analysis technique to track and examine the efficacy of communication between
involved stakeholders. Literature suggests that SNA can serve as a technique to better record and

plot these interactions and information exchanges using graph theory.

In AEC project management domain, SNA can be defined as a tool that can help in analyzing the
interconnectivity and interdependence of project participant(s) in the iterative and interactive
social structure (Lee et al., 2018). Findings of Lee et al. (2018) also suggests that SNA can prove
to be a useful tool for improving the interdisciplinary interactions between involved project team
members, thereby, enhancing project delivery efficiency. The study justifies this by performing a
literature review and then classifying the applicable metrics that could be used to quantify each of
the project management knowledge area such as, quality management, schedule management,

resource management, etc. In a different study over an AEC competition project team, Chinowsky

15

et al. (2008) formulated a social network model for construction. This comprised of two segments,
the dynamics, and the mechanics, that are stated to be essentially present in a team’s network
structure to achieve high performance. In this novel study Chinowsky et al. (2008) linked the team
performance, in separate categories, with the SNA metrics measuring them. The model estimated
the reason behind poor performances in specific areas with the help of defined metrics. This proves
that not only can SNA interpret performance of AEC teams but can also help the team improve
their weaknesses in time, which were otherwise, remained untapped. In a successive study by
Chinowsky et al. (2010), four project teams that provided construction services were analyzed
based on the prior model. Once again, the model illustrated that existing issues in trust and
communication (parts of dynamic segment of the model) between project team members correlated
with, the areas where the project failed to meet its objectives. Although substantive in producing
and testing a social network model for construction teams, the research lacks to take into account
other variables such as project delivery type, contractual relationship, etc., which may have an
underlying effect on the team performance and the observed social network structure. Nonetheless,
multiple research corroborated the importance of performing SNA on AEC teams, which is why

SNA stays as an integral part of the knowledgebase that backs the current research.

2.4.2 AEC Project Teams, Coordination, and Knowledge Transfer

In a comprehensive study conducted over a large electronic product manufacturing company
product design divisions Hansen (1999) found that, within a network weak ties are good for
searching information and strong ties are better option for complex knowledge transfer. Later in a
successive research Hansen (2002) discovered that the amount of knowledge transfer was
inversely proportional to the network path length connecting the considered entities. The

connecting network path length, however, was directly proportional to the project completion time.

16

Reagans and McEvily (2003) further studied these findings and claimed that both, better social
cohesion and increased network range, favors the ease of knowledge transfer. The three studies
are compendious in terms of exploring the effects of cohesion, and weak and strong ties on
knowledge transfer. However, there are other factors like, diverse background of the project team,
and key organizational practices for managing these project teams, that can have an effect on the
knowledge transfer, issue resolution, and ultimately the efficiency of the team. Di Marco et al.
(2010) compared the evolution of social network structure of two culturally diverse team to study
the effect of a bridger or a boundary spanner in such teams. Findings suggested that not only does
a bridger helps in resolution of issues arising from cross cultural boundaries but also trigger the
emergence of other bridgers, hence better integrating the team. In addition to the cultural boundary
factor the organizational practices of cross functional teams also affect the coordination and
knowledge transfer. A study by Laurent and Leicht (2019) asserts that cross functional teams
should be formed at early stages of design with a focus on target value design approach. Moreover,
the leadership should have a cross disciplinary knowledge so as to communicate and coordinate

effectively.

Learning from the trends observed, the researcher studied weak and strong ties as the literature
showed that each have serves a certain function in a social network better than the other. Moreover,
special importance is given to understand the role of bridgers observed in the simulation

experiments.

17

2.4.3 Overview of Longitudinal SNA Works of AEC Project Teams

Parraguez et al. (2015) conducted a longitudinal study over a complex engineering project for
three-point interval, starting from conceptual design stage, going through detail design stage, and
finally ending at system integration stage. It was observed that network was highly central at the
conceptual design stage. The centrality decreased during the detailed design stage and then again
rose to some extent in system integration stage. Network clustering values changed from low to
high, and then to medium, however, during the three stages respectively. These research results
did not provide any conclusion on the network structures observed however, it hinted that the
social networks are not static, and evolution of network is task dependent. For instance, it is
possible that it is the project’s unique-goal-information transfer from the core leaders to the whole
organization that led the network to become highly central in the concept design stage or, it is the
highly decentralized departments doing their assigned job during detailed design that made the
network structure look highly clustered during that phase. Parraguez et al. (2015) surely opens the

ground for the aforementioned discussions.

A recent literature review by Kereri and Harper (2019) revealed that social networks of
construction teams resemble the formation of a small world, evolving from the initially emerged
clusters based upon professional, contractual, task, and trade relations between the team members.
Another research in AEC project domain longitudinally studied the evolving nature of social
networks over three time points during the schematic design phase of an AEC project (Garcia et
al., 2020a and b). The study showed that during initial times the network forms a core-periphery
structure and later due to core members’ engagement with peripheral members the network evolves
to form triangles and consecutively, cohesive subgroups. The research also found that the network

evolution went hand in hand with the type of major task the network severed at different time

18

points. The result showed that core-periphery network structures indicated the presence of team
coordination type of tasks and triangles and subgroups suggested towards the existence of deep
knowledge sharing tasks (Garcia et al., 2020a). Kereri and Harper (2019) and Garcia et al. (2020a)
were directly performed over AEC project teams and were thorough enough to divulge the

relationship between task in consideration and the corresponding network structures.

2.5. Node and Dyad Characteristics in SNA and Evolution of Network Structures

Literature talks about several node and dyad characteristics that can influence a network structure.
A study on AEC team project members by (Garcia et al., 2020a) presents many node level
characteristics such as tiers, roles, expertise similarity, years working in AEC Industry, and
meeting participation and contributions as influential conditions to communication network
structure evolution. Although, due to missing data the study failed to conclude any statistically
significant results with respect to correlation between network structure and node characteristic,
qualitative analysis of the node characteristics (like expertise and role), complemented the
observed structures. Lee et al. (2016) in a communication research over Korean immigrants’
support exchange social network, found that the node characteristics like gender and age did not
show any significant relation to the network structure observed. This finding overlapped with a
study by Yuan and Gay (2006), that conclude gender and racial characteristics of a node to be
insignificant as compared to social characteristics of a node in a study over computer mediated

university student teams.

There are dyad level characteristics that are found significant in influencing the social network
structure evolution. Yuan and Gay (2006) discovered that nodes having prior informal connections
(i.e., some prior experience together), was a dyadic characteristic that significantly correlated to

the probability of new work-related ties they could form. Furthermore, this particular characteristic

19

hints towards homophily that is also found significantly influential in several studies. Homophily,
the observed tendency of people associating with like other, is mentioned as one of the most robust
empirical regular phenomena in social life (Lazarsfeld and Merton, 1954). Yuan and Gay (2006)
research concluded that the higher the number of common traits a couple of node has the higher is
the likelihood of a work-related tie forming in between them. Not only was the homophily arising
through common traits was found influential but also the homophily by location similarity was
found correlated with the probability of ties between nodes. An inter organizational network study
using exponential random graph models by Broekel and Hartog (2013) also found that homophily
arising by having prior similar institutional background (shared values) is statistically significant
in relation to network structure of the inter-organization communication. Thus, homophily was
found significantly correlated to the probabilities of tie development between these organizations,

i.e., the characteristic was significant at network level too.

Another important dyad level characteristic is a node’s predilection towards popularity seeking. It
is observed that nodes tend to connect with popular others in order to seek conformity to the
running popular trends. In engineering and construction organization settings “conformity to
corporate culture” accounts for 25.8% out of all the 9 factors considered, that motivates a project
team member to share knowledge with their team members (Javernick-Will, 2012). The
characteristic of popularity seeking is also studied and tested by Frank and Xu (2020) with the help
of an influence and selection agent-based model simulation research. Through this research the
author examined the effect of homophily and popularity seeking characteristics of nodes over the
evolution of network structure overtime. It also took into account of the temporal influence a node

creates on its connections.

20

The research parametrizes the relative effect of homophily in terms of alpha, o (0<a<1) and trade
it against popularity seeking urge of each node within the simulation model. The simulation model
also uses an influence factor K (0<k<1) that takes care of the influence any node puts on another
node while interaction happens between nodes within the simulation model. The equations that

represent the influence and section part of the model are as follows:
Uijt = (1-0) pjt - o |yit1 — Yje1 1)

Y Wijt—1 Yjt-1
it = (1-ka) vit1 + ka 2
Yit = (1-ka) yi Y Wie—s (2)

Where,

Uijt is utility function for selection part of the model,

a is homophily factor, (0<0<l1);

pjt-1 is the node j’s popularity;

tis time;

lyit-1 — Yjt-1| IS the difference in node characteristics of node i and j at time t-1;

yit is the newly influenced characteristic of a node i at time t; and

K is influence factor, (0<k<1).

In equation 1, Uij is the utility function for selection part of model. It is the utility of any node i
wanting or selecting to make a connection with a node j at any time t. pj..1 is the popularity (degree
centrality) of the node j at time t-1. o is the homophily seeking factor and |yit1 — Vjt-1| is the

difference in node characteristics of node i and j at time t-1.

21

In equation 2, yit is the newly influenced characteristic of a node i at time t. It is based on the

resultant sum of its initial node characteristic yit1 at time t-1 and the influence the node j had on

2 Wijt—1 Yjt-1
2 Wijt—1

node i from time t-1 to time t, represented by the quantity ka . Here k (0<k<1) is

the influence factor, i.e., the factor of influence that can be transferred between any two nodes.
These factors were added at node level (micro level) and the simulation results presented the

network level (macro level) evolution that were triggered.

The network structure evolution resultant graphs from the simulation were found to be analogous
to the results observed in AEC project team social network structure evolution discussed earlier in
the literature review. For instance, when o (homophily) and k (influence) are high the structure
breaks into cohesive subgroups (Frank and Xu, 2020). This seems analogous to the later stages in
AEC project delivery when after project coordination is successfully accomplished similar trade
members comes together to use the project info and produce results forming cohesive subgroups
(Kereri and Harper, 2019; Garcia et al., 2020a and b). Similarly, when o (homophily) is low,
irrespective of K (influence), the structure forms a core-periphery (Frank and Xu, 2020), analogous
to the early stages in AEC project delivery when project coordination is in progress and core
members of team are providing crucial information to different trade members producing a core-
periphery structure (Kereri and Harper, 2019; Garcia et al., 2020a and b). This similarity seeds the

need of the author’s current research.

However, the use of degree centrality to translate popularity (node’s importance) into the
simulation might end up not providing actual results from the simulation. This is because degree
centrality just takes into account of the number of outgoing or incoming links to a node which sure

means that the node is important, but the notion might miss the nodes that are not having as many

22

connections but are connected to a few but important nodes. For instance, a node could be a
bridging node between two highly degree central nodes. In this case if popularity is equated to
degree centrality the simulation calculation will miss the most important bridging node that have
relatively low degree centrality but high importance. Now, as defined in the literature earlier
eigenvector centrality assigns scores to all the nodes according to a rule, that connection to high-
scoring nodes has more contribution to the score of the considered node, than equal connections
to low-scoring nodes (Newman, 2008). This being a relative measure takes into account of nearly
all the possibilities of a node being popular in reality and just not a node with the greatest number
of unimportant connections. Thus, as the literature suggests, eigenvector centrality measure was
used in place of degree centrality, for translating the notion of “popular node” into some of the

simulation experiments, to observe if it provides more realistic results.

Moreover, literature suggests that in context of project teams in AEC industry homophily should
be approached differently versus the project networks in other domains. For instance, in influence
and selection model at any instance a node connection meant a node characteristic is going to
change the other connected node characteristic. But in AEC domain a node’s characteristics like
expertise or role does not change the connected node’s expertise or role. In other work an architect
connecting with an owner does not make the owner an architect no matter the strength of the
connection or time for which it influences the connected team participant. For this reason, only

selection model was considered for the current research simulation models.

Another dissimilarity in the context of an AEC project team and other organizational teams is that,
often times heterophilic nodes (nodes having dissimilar characteristics) have to connect with each
other in order to attain a common goal. In other words, two nodes having dissimilar node

characteristics sometimes seek to connect with each other to achieve project success. This may be

23

a dissimilarity based of tiers (a tier 3, a project engineer wanting to connect with a tier 2, senior
construction manager for gaining information), or role (an architect wanting to connect with a
contractor for change order removal), or expertise (a plumber wanting to connect with an
electrician for rerouting of MEP items) or a combination of these all. The testing of this
phenomenon has never been performed in the literature. Thus, for this research experiments also
considered trading heterophily versus popularity seeking, the two characteristics that seems to

drive social network structure evolution in AEC teams.

2.6. ABM, AEC Research Uses, and SNA Integration

Among all the longitudinal case studies on AEC project social network discussed above there is a
commonality, the arduous task of data collection. First, it is usual with AEC project teams to
constantly have different parties working, joining, and leaving the project as it progresses. Second,
unlike any other industry AEC projects are very fast paced which brings together often
unacquainted people from different trades to work together towards a common goal for a short
intense period. It is due to these two aforementioned reasons the collection of data from the project
team parties often encounters a problem of missing data. This sometimes even incapacitate the
capability of an investigator to present a statistically significant result after putting in long hours
first collecting and then analyzing the data. Financially expensive, time involving, and physically
arduous, the collection of project team members’ social interaction data longitudinally could be
replaced, to some extent, by taking an Agent-Based Model (ABM) simulation experiment-based

approach.

ABM origin lies in the early studies in cellular automata (Wolfram and Mallinckrodt, 1995) and
artificial life (Langton, 1995). Currently it is widely used in organizational research (Miller and

Lin, 2010; Burton and Obel, 2011). An ABM computer simulation overcomes some of these

24

challenges and provides a researcher with the benefit of replicating the important characteristics
of a human behavior in a computer-generated reality (simulation). Thus, instead of collection of
project team members’ data longitudinally only the initial condition relationship is plotted in the
simulation. The agents (analogy of people in the simulation world) are left to interact with each

other based on variable values of agents’ characteristics.

In essence, the most integral unit of any ABM is an agent. ABM is a model in which a real-world
occurrence can be modeled that comprise of a system that is dynamic in nature, i.e., several actors
within a system continually interact with each other to produce different results (Castiglione,
2006). In ABM the agents act as autonomous entities and based on set of rules these actors make
decisions accordingly in order to replicate a real-life scenario (Sawhney et al., 2003). The state of
an agent is defined by its attributes. With change in attributes the behavior of the agents’ changes
as well. Thus, ensuing a change at macro level when the agent interacts with each other in a
simulation. Hence, by using aa ABM a researcher can analyze a macro level patter emerging out
from agents’ behavior and interactions. Since ABM can take into account of large number of agent
and complex system (such as a social network structure) with rules to predict any event very
quickly as compared to the time-interval the natural phenomenon takes to occur, it was deemed fit
for the use in the current research. Moreover, it is thought be the core reason why research in AEC
domain have started using ABM to emulate and analyze complex organizational environment

within a simulation model.

A compendious research by (Ding et al., 2016), that dwelled into the problem of managing AEC
industry demolition waste, used an ABM approach. A longitudinal trend of demolition waste
quantities was forecasted based on an ABM simulation where interactions between demolition

agents (e.g., demolition companies, waste management companies, waste disposal companies,

25

etc.) were tracked and simulated overtime. The observed trends would help keep these
organizations (demolition agents) a check on their work before it is too late. This means that the
use of ABM in predicting longitudinal trends are proved to be helpful with respect to the amount
of time saving that can be performed. That is, simulating the whole process in place of collecting
the data longitudinally is a huge success in itself. Another comprehensive research used ABM to
understand the impact of lack or absence of instructions on production performance in an AEC
industry workplace (Lahouti, 2013). The agents in this model were coded such that they make
decisions based on the cues the agents’ surroundings provide them, when there is a lack of
instruction to complete a job. This hints that ABM can be used to represent complex decision
making behavior of human in a simulation. A different study, again, successfully forecasted the
demand for recycled mineral construction material by creating an ABM that emulate the decision
making process of the actors involved (Kndri et al., 2007). Furthermore, Raoufi and Robinson
Fayek (2018) support the argument of ABM suitable for handling human behaviors in simulations.
Their study replicated construction crew decision making behavior. All in all, the discussed ABM
studies (Knori et al., 2007; Lahouti, 2013; Ding et al., 2016; Raoufi and Robinson Fayek, 2018)

justifies the use of ABM as a modelling technique for the current research.

Since the emergence of agent-based modelling approach, which dates back to the early studies in
cellular automata (Wolfram and Mallinckrodt, 1995), it has also been extensively used in many
research that studied social interaction phenomenon by coupling ABM with SNA (Will et al.,
2020). The use of ABM for SNA can explain complex human interactions with so much ease that
its application in research ranges through different fields of study such as epidemiological (Frias-
Martinez et al., 2011), psychology (Frank and Fahrbag, 1999; Frank and Xu, 2020), organizational

research (Lin, 2014), and AEC domain (Ding et al., 2016).

26

Computing advancement has ubiquitously enabled capturing large amounts of human behavior
data. The footprints from these datasets if analyzed correctly can provide incisive knowledge about
virus spreading. Thus, Frias-Martinez et al. (2011) used an ABM coupled with social network
information of people communicating over phone calls to study 2009 H1N1 flu outbreak patterns.
It was found that the limitation of studying the spatial-temporal human behavior dynamics were

overcome by using the ABM that mimics population social patterns.

The use of ABM in explaining polarization in social communication network is comprehensively
explained in Frank and Xu, (2020) influence and selection ABM maodel, that, simulates social
networks to study the phenomenon in temporal manner. The study was not only able to
complement the reason for the polarization in current U.S. voting population, but also, support the
evolutionary grouping pattern observed in cohesive groups of terrorist organizations such as Red

Army terrorist groups, Al Qaeda, and Islamic state (ISIS).

Another research conducted by Lin (2014) used ABM that looked into mechanism that strengthen
or weaken a closure and brokerage structures of organizational teams. The study mapped out the
possible evolutionary path of the network based on a discovery of a static network. Basing the
ABM of the social network over an empirical study is very similar to the author’s current research-
approach, where an ABM initial condition and various parameters were set over an empirical

study.

The pervasive coupled use of ABM and SNA have led researchers to develop realistic initial
condition models for simulation use purposes (Hamill and Gilbert, 2009). The reason for
skepticism among some social scientists about ABM, and for the low acceptance of results that
comes out of an agent-based methodology is often the unavailability of methodological standard

references. Richiardi et al. (2006) have worked at producing a very well written protocol that can

27

be used to maintain research quality while using ABM to conduct research on complex

phenomenon like analyzing social communication pattern.

The literature provides various instances of ABM and SNA that supports the use of ABM usage
for current research. Accessing the current research goal of exploring the evolution of network
structures in AEC project teams based on team member/node characteristics using an ABM

approach shows promise in annexing valuable insights to the body of knowledge.

2.7. Summary

Through this chapter the author discussed the overview, key concepts, and metrics of SNA. Later
the literature study provided enough evidence to substantiate the importance of performing an
SNA on AEC project teams. Although rare, the researcher found longitudinal SNA studies
performed over the years. The review, therefore, enumerate the important findings and trends
observed in these studies performed over both non-AEC and AEC industry projects. The review
revealed that although AEC projects should be studied longitudinally for SNA, due to the intrinsic
problem of arduous data collection and missing data instances, adopting an ABM computer
simulation methodology could be a better option to virtually analyze a social network evolution

overtime.

Studies also suggest the use of ABM technique to be a better fit for replicating a complex real-life
system, be it AEC or non-AEC project team communication network structure. This is due to the
capacity of ABM to consider a huge number of autonomous entities and produce results of their
interactions almost instantaneously, saving time, energy, and money that would have been

otherwise consumed to collect the data over the years to come to a conclusion.

28

The literature then discusses studies that used ABM in research from various domains and explains
the simulation model from one of them in detail. The part of the simulation model that inspired the
current research are then expatiated (Frank and Fahrbag, 1999; Frank and Xu, 2020). The
simulation model decision making process for the current investigation are discussed later in the

Chapter-3 and 4, Methodology and the Results sections respectively.

29

Chapter 3 METHODOLOGY

3.1. Introduction

To response to the needs that were laid out in the literature review the study aims to elucidate, how
real-world size AEC project networks evolve over project delivery based on similarity of node
characteristics (e.g., homophily) and node behaviors in networks (e.g., node’s popularity). To do
so, the study adopted selection model (Frank and Fahrbag, 1999; Frank and Xu, 2020), and
simulated multiple agent-based models basing its initial condition on an empirical study (Garcia
et al., 2020a and b). The evolutions of the network structures were analyzed overtime. The study
then compared its findings with the empirical study. The current research’s methods for the

simulation experiments and their results analysis are discussed in the subsections hereafter.

3.2. Research Goals and Objectives

The goal of the study is the exploration of the evolution of network structures of AEC project
teams based on team member/node (i.e., expertise, roles, and tiers) and dyadic (homophily,
heterophily, and popularity seeking) characteristics. More specifically the study aims to interpret
how real-world size AEC project networks evolve over project delivery based on similarity of node

characteristics (e.g., homophily) and node behaviors in networks (e.g., node’s popularity).
The main objectives of the study are to:

e Review the literature and study empirical data to identify node characteristics key to project
team networks and their structures;

e Using an Agent-Based Model (ABM) approach, study the evolution of AEC project team
networks through a computer-based simulation; and

e Develop theoretical and practical implications.

30

To accomplish these objectives, NetLogo, an open-source agent-based modeling software, is used
for creating the simulation experiments. The study adopted the selection model from the influence
and section model presented in a study by Frank and Xu (2020), and simulated multiple agent-
based models basing its initial condition on an empirical case study data as initial condition

anchorage (Garcia et al., 2020a and b).
The main research question that directed this research is as follows:

“To what extent the similarity/difference in individual and dyadic characteristics influence
the multidimensional dynamic network structures that evolve to support knowledge sharing
in AEC project teams in early stages of project delivery? And what are the probable

evolutions in these network structures overtime during project delivery?

31

3.3. Research Approach and Scope

This explanatory and empirical research was categorized into five phases, as illustrated in the

Figure 3.1.

"Phase !

i : Literature i

R Review * (Objective One)
i ; Selection Model Adoption
' 2 (Frank and Xu, 2020) & !
! Agent Based Model
E . 3 Development _) .. (Objective Two) 5
Ve i H)
R Conduct
' 3 i 3 : Experiment !
= i : '
1 O | 1 '
1O 1 H 1
e : :
- i i | Develop Theoretical & .
' § P4 (Objective Three) Practical Implications '
4 ; i i '
f i é Present & Discuss :
i 5 Outcomes

..

Figure 3.1 Investigation Framework

Figure 3.1 shows the five phases contributing to the three research objects mentioned above.
Phases two, three, four, and five accounts for the contribution the study annexed to the body of

knowledge.

The unit of analysis in this research project is network structure that appears through evolution in
early stages of project delivery. The simulation experiments performed had initial conditions
anchorage mimics the network evolution in early phase of project delivery, thus the results of the
simulation also hold representative of the same phase of AEC project delivery. The scope of the

investigation was to simulate agents (project team members) with their characteristics and observe

32

the results of interaction between these agents on the resultant communication network structure

produced until when the network structure stabilizes.

3.4. Model Description and Simulations

3.4.1 Selection Model for Homophily/Heterophily and Popularity Seeking

As explained in the literature review section, the current research adopted from the selection and
influence (Frank and Fahrbag, 1999; Frank and Xu 2020). Moreover, as approach towards node
characteristics like tiers, roles, expertise similarity, years working in AEC Industry (Garcia et al.,
2020a), homophily (Yuan and Gay, 2006; Lee et al., 2016) and popularity seeking differs in
context of an AEC project team than that of other project teams. Thus, parts of the original equation
1 (Uiit = (1-0) pjt-1 - o |yit-1 — Yjt-1|) were modified for the some of the experiments accordingly. In
total eight experiments were run, with all the odd numbered experiment (1,3,5, and 7) run on the
small sized networks, and all even numbered experiments (2,4,6, and 8) run on the real-world sized
networks. The parts of the original equations 1 and 2 that were partially modified or discarded are

discussed hereafter.

Among the original equation 1 and 2, the second equation was responsible for the influence part
of the model and in AEC team members social network context this part of the model is not
considered a part of the current study simulation model for the reasons explained in the literature

review section.

In the first equation (Uijt = (1-a) pjt1 - o |yit-1 — Yjt-1]), Uijt Is the utility function for selection part of
model. It is the utility of any node i wanting or selecting to make a connection with a node j at any
time t. pjt1 is the popularity (degree centrality) of the node j at time t-1. a is the homophily seeking

factor and |yit1 — Yjt1| is the difference in node characteristics of node i and j at time t-1. For

33

Experiment one and two the selection equation was taken into the new model as it is. Note,
however, the homophily characteristic in the model can represent homophily seeking via any type
of node/dyad characteristic (e.g., tiers, roles, and expertise). For Experiment three and four the
term pjt.1, representing the popularity of a node via degree centrality, was changed to represent
popularity of any node j with its eigenvector centrality. This was done to observe, based on the
findings from the literature review, if the simulation provides more realistic results using
eigenvector centrality over degree centrality whenever defining popularity of a node in an AEC

project team communication network.

Furthermore, in experiment five and six, the author wanted to check whether an observed
phenomenon of node selecting heterophilious other (selecting node with dissimilar node
characteristics) was significant to correlate with evolution of social network structure in AEC team
when traded against node’s popularity seeking characteristic. To conduct such an experiment first,

the equation 1 was modified to:

Uijt = (1-a) pjt-1 + o |yit1 — Vi1 (3)

Here the negative sign between the original equation 1 is replaced with a positive sign. This
basically translated what the author wanted the experiment to perform, into a mathematical
expression for the simulation model. Therefore, experiment five and six used the modified
equation 3 for its simulation runs. Note, here the term pj..1 was still representing node’s popularity
seeking via degree centrality. To compare the simulation results with an empirical study results
the author again changed the term pj.1 to represent node’s popularity seeking via eigenvector

centrality. This was then used to run the experiment seven and eight.

34

Moreover, within each experiment (one to eight) the population of node had two types of
characteristics. The ratio of nodes having one type of characteristic versus the ones having the
other type was represented in terms of domain difference percentage form here after in this writing.
In other words, if the population of 20 nodes in a simulation consists of 10 having a type of
characteristic and other 10 having another type of characteristic, then the domain difference
percentage is mentioned as 50%. If this population changes to 5 nodes of one type and 15 nodes
of another type, then the domain difference percentage is mentioned as 25%. Thus, by the logic if

all nodes have same characteristic then the domain difference percentage is 0%.

The NetLogo coding for the production of all the simulation model was based upon the codes of
open-sourced materials, “starting from divergence.nlogo” & “random network homophily vs
preferential attachment.nlogo” models (Frank, 2020). There are various procedures and codes that
enabled production of all the discussed experiments. All these coding and the exact procedure for

all the experiments conducted for this study are presented in the APPENDIX A section.

3.4.2 ABM Conditions and Steps to Run the Simulation

Netlogo: Initially developed by Wilensky (1999), Netlogo is a programmable and flexible ABM
modeling environment and an open-source licensed software used for simulating phenomena that

are natural and social.

Coders provide instructions to hundreds or thousands of “agents" all operating independently
though the use of code tab. This feature of the program makes it possible for it to be used in the
exploration of the connection between the micro-level behavior of an agent and the macro-level
patterns that emerge from their interaction. The set of rules defined by the coder acts as a brain

and guides each agent to make learned actions at any time in a running simulation. All such actions

35

are updated and displayed in real time in the “Interface” tab of the NetLogo simulation model.
Moreover, the interface tab of the software in itself is a totally customizable area, with all the
required buttons such as slider bars, switches, plots, text area, and simulation world screen, etc.
User can utilize customizable interface to observe a part of the simulation result, or to give
instructions, or change attribute values of the agent interacting in the simulation. APPENDIX B
mentions two out of three tabs and all the interface items, useful to understand the simulation

model created for the current research.

Initial Experiment Conditions: There are three network densities set up based on the empirical
case study considered (Garcia et al., 2020a and b) and remain unvaried throughout all the
experiment setups. “p-within-core,” “p-within-periphery,” and the “p-between-core-periphery,”
the three densities, defines the network tie density among core nodes, peripheral nodes, and
between core and periphery nodes, respectively (Figure 3.2). There are two variants of initial
condition that are setup for the experiments. In the first type of initial setup, the initial condition is
set to replicate a small-scale core-periphery network structure (4 core nodes and 10 periphery

nodes). This is illustrated in the Figure 3.2.

36

%A s

t

setup 0O o

|

LEGENDS

number-of-core-nodes 4

I

* : Core Node

@ : Periphery Node
Color: Signifies a type of
node characteristic

number-of-periphery-nodes 10

domain-difference-percentage 50 %

|

alpha 0.90 |

|

p-within-core 0.50 |

p-within-periphery 0.01

p-between-core-periphery 0.13 I

Figure 3.2 Type-1 Initial Setup: a NetLogo Screenshot

In Figure 3.2 the purple-colored button on the top left corner “setup” sets up this initial condition
based on the slider button inputs. These 7 green colored slider buttons present on the left side in
the figure are set before running the setup button. The “number-of-core-nodes” button, as the name
suggests, sets up the number of core node the initial condition of the network simulation will
constitute of. Similarly, the “number-of-periphery-nodes” button sets up the number of periphery
node the initial condition will have. The “domain-difference-percentage” button sets up the ratio
of the nodes that have difference in their node characteristics. The color of the nodes in the
simulation world (black screen) defines the two different node characteristic types. The shape of
the nodes being star and circle defines that they are core and periphery nodes respectively. For this
specific screenshot the domain-difference-percentage button is tuned up at 50%. This implies that
50% of the nodes have one characteristic and other 50% have the other. This is exactly what the
color difference in nodes also depicts, i.e., 50% nodes are red in color and 50% nodes are white in
color. This difference can be interpreted as difference in any kind of node characteristic (i.e.,

expertise, roles, and tiers). The “alpha” slider defines the homophily/heterophily factor and only

37

starts playing its role after the simulation starts, i.e., when the purple colored “go” button right of

the setup button is clicked.

In the second type of initial setup, the initial condition is assumed to be at an early stage of project
delivery of an AEC project with team communication network structure forming a core-periphery
network structure with 8 core and 71 peripheral nodes based on the empirical case study
considered. The only difference between this setup and the earlier one is that in this a real-world

sized network is considered to observe its evolution overtime. This setup is illustrated in the Figure

3.3.
e ® g P2 tdso

number-of-core-nodes LEG E N Ds
VnurbeH:F-perbheryﬂode; * - Core No d e
domain-difference-percentage . . P e ri p h e ry N o d e
——)

il o Color: Signifies a type of
———§———] -

B core g5 node characteristic
|

p-within-periphery 0.01

——=

Figure 3.3 Type-2 Initial Setup: a NetLogo Screenshot

In the Figure 3.3, the setup contains all the buttons and switches explained in the setup type-1.
Only the “number-of-core-nodes” and “number-of-periphery-nodes” sliders are tuned on greater

numbers, i.e., at 8 and 71 respectively. The black colored simulation world screen shows how the

38

network structure looks like with the set type-2 initial conditions. Just like type-1 initial setup,

type-2 setup also starts the simulation run as soon as the “go” button is clicked.

The decision-making process that governs each agent in the current research simulations is shown

in the Figure 3.5.

Initial Condition: Core-periphery network structure
(Nodes with attributes are set up)

I

Nodes Interact: seek homophily by node
characteristic balanced against popularity <] 1
(Eigenvector/Degree centrality) seeking

Loop runs for structure to

stabilize (it usually stops
evolving at 20~30 tick)

Nodes replace old with new connections based on 4‘
utility equation. (0 - 50 tick)

(On 515t tick
simulation stops)

Evolved network
structure

Figure 3.4 Diagram Illustrating Agent’s Decision-Making Process

As shown in the Figure 3.5, for each experiment the initial condition comprises of a core-periphery
network structure, with a variant in the network size: small sized network and real-world sized
network. Each node has an attribute such that two nodes interacting in the simulation either have
a same attribute or a different in attribute, coded as 0 and 1 respectively. As soon as the simulation
start, the tick value becomes 1 and each node start to choose either popular other nodes having

different or same attribute or strictly connects to a node with similar attribute. This selection is

39

based on a number of factors like utility value for connection between a node i and node j at any
time t (Uijt), alpha (o) (Frank and Xu, 2020), and the probability induced by domain difference

percentage.

Since this model represents a phenomenon that evolve overtime, the agents’ decision-making
process are set such that they interact repeatedly following a set rule. In NetLogo program such a
cycle is called a “Tick”. As the simulation model runs the tick numbers keep on increasing with
an increment of 1. In other words, if the tick is 25, this means that the simulation is in its 25th
cycle of the simulation run. Although, the initial runs of the current research simulation
experiments provided a stabilized (not evolving any further) structures after running 20~30 ticks

(loops), as per the literature, the simulation was run for 50 ticks for each experiment.

The network structure at the end of the simulation as well as the intermediate network structures

are recorded and qualitatively analyzed.

3.5. Research Quality

To maintain research quality, several validation tests and reliability techniques were implemented
on the ABM simulation experiments. The validation tests such as, event validity, extreme
condition test, historical data validation, internal validity, parameter variability or sensitivity
analysis, predictive validation and face validity were conducted (Sargent, 2013). The reliability
techniques that were used include, open-source licensed distribution software usage, and model
documentation with separate implementation techniques and conceptual description records

(Richiardi et al., 2006). Details about each test and technique administered are as follows.

e Validation tests that were administered are: (Sargent, 2013)

40

Event validity, tested by comparing the occurrence of events within the simulation
with real-world event from empirical case study (Garcia et al., 2020a and b);

Extreme condition test, administered by tuning all the variables to their extremities

and comparing the results as to be valid. For instance, when there existed no
difference in node characteristics, for any value of homophily or node popularity
the structure never broke;

Historical data validation, conducted by using the simulation software and coding

techniques from an existing similar model, influence and selection model (Frank
and Xu, 2020);

Internal validity, examined by performing several replications (runs) of the

stochastic model and observing consistency in results;

Parameter variability or sensitivity analysis, performed by changing the values of
input and internal parameters (e.g., changing popularity definition from degree
centrality to eigenvector centrality in the selection model equation) to determine if
the results changed sufficiently;

Predictive validation, by forecasting the system behavior based on available theory

and then comparing the actual behavior of the model; and
Face validity, by conducting expert interviews with Dr. Kenneth Frank and Dr. Ran
Xu, co-authors of Frank and Xu (2020), about the simulation process and results,

to check whether the model and/or its behavior are viable.

Reliability techniques that were used are:

o Use of open-source licensed distribution software, using NetLogo (Wilensky,

1999) for coding and simulating the ABM simulation experiments; and

41

o Thorough documentation of each of the implementation steps for running the

experiments (software interface and implementation knowledge) and conceptual

model.

3.6. Summary

Through this section the author presents the goal, objectives, approach, and scope of the research.
The researcher explains the five phases in which this research is divided in, namely, literature
review, selection model adoption and ABM development, conduct experiment, develop theoretical
and practical implications, and present and discuss outcomes. With a detailed process diagram the
agent-based decision-making process developed for this research is then expatiated. The initial
condition setups for all the simulation experiments are explained. With a detailed process diagram
the agent-based decision-making process developed for this research is then expatiated. Finally, to
maintain research quality several validation test and reliability techniques that were implemented

on the ABM simulation experiments, were also enumerated.

42

Chapter 4 RESULTS

4.1 Introduction

To present both theory explanation, and prediction of a realistically sized AEC project social
network structure evolution, simulations were run on two different types of initial condition setups
as explained in Chapter-3 Methodology. First, to track and analyze the effects of node
characteristics like homophily/heterophily and popularity seeking on a network structure, a small
sized core-periphery network structure was set as initial condition for the experiment. Later a real-
world sized network was used to see how the structure evolve from the influence generated by the

same characteristics.

4.1 Homophily/Heterophily versus Popularity (Degree / Eigenvector Centrality)

As shown in the Figure 4.1, eight experiments were run:

1. Homophily via node characteristics (e.g., tiers, roles, expertise similarity, years working in
AEC Industry) and nodes’ popularity via degree centrality for small networks;

2. Homophily via node characteristics against nodes’ popularity via degree centrality for real-
world sized networks;

3. Homophily via node characteristics and nodes’ popularity eigenvector centrality for small
networks;

4. Homophily via node characteristics and nodes’ popularity eigenvector centrality for real-
worlds sized networks;

5. Heterophily via node characteristics and nodes’ popularity via degree centrality for small

networks;

43

6. Heterophily via node characteristics and nodes’ popularity via degree centrality for real-
worlds sized networks;

7. Heterophily via node characteristics and nodes’ popularity via eigenvector centrality for
small networks; and

8. Heterophily via node characteristics and nodes’ popularity via eigenvector centrality for

real-worlds sized networks;

44

Popularity seeking via Popularity seeking via
degree centrality VS eigenvector centrality
Homophily via node VS Homophily via node

characteristics similarity characteristics similarity

Small sized
core-periphery network @ @
structure
Real world sized
core-periphery network
structure

Popularity seeking via Popularity seeking via
degree centrality VS eigenvector centrality VS
Heterophily via node Heterophily via node

characteristics dissimilarity characteristics dissimilarity

Real world sized
core-periphery network
structure

Small sized
core-periphery network
structure

Figure 4.1 Matrix Explaining all Eight Types of Simulation Experiments for the Research

Figure 4.1 illustrates a matrix showing what each experiment simulation had as a condition for
agents to act upon. All the observations and results from each of the experiment mentioned in the

figure are presented in detail in the upcoming sub-sections.

45

As soon as the simulation setup is complete based on type 1 or type 2 initial condition a core
periphery network structure appears (Refer Figure 3.2 and 3.3). Then, upon running the simulation,

the nodes start interacting with each other based on the following steps:

1. Based on the computation of all the node’s utility of tie establishment, each node connects
to the node having highest of this computed utility value using the following equation
adopted from Frank and Xu (2020).

Utilityij = (1- a) * Popularityj - a * Difference in node characteristicij
Here, Popularity of node j is degree centrality of node j. This first part of the equation ((1-
a) * Popularityj) is responsible for the nodes behavior of seeking new knowledge from
popular other. Difference in node characteristic of node i and node j give either 0 (meaning
the nodes have same node characteristics and they will choose the popular other) or 1
(meaning the nodes have different node characteristics and the whole equation will produce
some final utility value). This second half of the equation (- « * Difference in node
characteristici) is responsible for the nodes behavior of seeking the homophilious others.
Uije = (1-0) pje-1 - ¢ [yit1 — Yje| (1)
Where, Uijt is utility function for selection part of the model;

a 1s homophily factor, (0<0<1);

pjt-1 is the node j’s popularity;

tis time; and

lyit1 — V1| is the difference in node characteristics of node i and j at time t-1.

46

2. The out degree of each node is kept constant during this procedure, i.e., the node will have
the same number of links as they had in the setup stage but will have a chance to select the
nodes, they want to have these links with.

3. Finally, based on the investigator provide “domain difference percentage” values (50%,
25%, and 0%) the simulation provided different results.

4. This whole process is repeated for 50 times. The final structures were analyzed based on

varied alpha, and percentage of node characteristics similarity.

As explained in the Chapter-3 Methodology, each experiment (one to eight) the population of node
had two types of characteristics. The ratio of nodes having one type of characteristic versus the
ones having the other type was represented in terms of domain difference percentage. In other
words, if the population of 20 nodes in a simulation consists of 10 having a type of characteristic
and other 10 having another type of characteristic, then the domain difference percentage is
mentioned as 50%. If this population changes to 5 nodes of one type and 15 nodes of another type,
then the domain difference percentage is mentioned as 25%. Thus, by the logic if all nodes have

same characteristic then the domain difference percentage is 0%.

47

4.2.1 Experiment 1: Small Sized Network using Degree Centrality and Homophily

This experiment investigated if nodes seeking homophily via node characteristics similarity versus
nodes seeking popular-other nodes via degree centrality influence the evolution of AEC project

team social network structure overtime. This was conducted over a small sized network.

As soon as the simulation setup is complete a core periphery network structure appears, with 4
core and 10 periphery nodes (Refer Figure 3.2). The final and intermediate structure snapshots and
the results observed during the simulation run, produced by varying, alpha from 0 to 1, and domain

difference percentage from 50% to 0% are illustrated in the Figure 4.2.

48

Domain Difference Percentage = 50%

o

>

S

-

)

<

o

2

[<B]

p

_g (A) Core-periphery-and- (B) 1 or 2 Core-periphery-and-triangles bridged (C) 2 Core-periphery-and-
T triangles together triangles bridged together
Alpha 0t0 0.6 0.6t00.7 0.7t00.8
o

=]

0

-

)

<

o

2

[<B]

p

‘©

L% (D) 2 Core-periphery-and- (E) 2 Subgroups

triangles
Alpha 0.8t00.9 1.0

LEGENDS: Y Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

Figure 4.2 Experiment-1 Simulation Results

49

Figure 4.2 (cont’d)

Domain Difference Percentage = 25%

(F) Core-periphery-and- (G) 2 Core-periphery-and- (H) 2 Subgroups

triangles triangles

Final Network Structure

0t0 0.8 0.8t00.9 1.0

in Difference Percentage = 0%

o 2
o
3| 8

(1) Core-periphery-and- (J) Random Network

triangles

Final Network Structure

0t0 0.9 1.0

>
©
0
QD

LEGENDS: Y Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

50

Figure 4.2 shows the following:

e For 50% domain difference, as alpha (homophily coefficient) varies from 0 to 0.6 a core-
periphery-with-triangles structure appears. As soon as alpha ranges between 0.6 and 0.7
either one core-periphery-with triangles structure or two core-periphery-with-triangles
structure bridged with nodes start to appear. When alpha is between 0.7 and 0.8 only two
core-periphery-with-triangles structure bridged with nodes appear. Just when alpha lies
between 0.8 and 0.9 the structure breaks and form two core-periphery-with-triangles

structures. When alpha equals one two subgroups with random structure shows up.

e For 25% domain difference, as alpha varies from 0 to 0.8 a core-periphery-with-triangles
structure appears. As soon as alpha ranges between 0.8 and 0.9 two core-periphery-with-
triangles structures appear. When alpha equals one two subgroups with random structure

shows up.

e For 0% domain difference, for no value of alpha the structure breaks. As alpha varies from
0to 0.9 a core-periphery-with-triangles structure appears. When alpha equals one a random

structure shows up.

To summarize the observed network structures in simulation experiment one, Figure 4.3 depicts a
plot showing the comparison of all the final structures that emerged out from varying domain

difference percentage and the alpha values.

51

2 Subgroups ,
random structure /

2 Core-periphery- /
and-triangles

2 Core-periphery-and-
triangles bridged together

1 Core-periphery-
and-triangles

1 Random network
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha (o)

—e— 50% Domain Difference 25% Domain Difference

0% Domain Difference

Figure 4.3 Plotlines Summarizing the Observed Network Structures in Simulation Experiment-1

In Figure 4.3 vertical axis represents the types of network structures that finally appeared in the
experiment one. The light grey horizontal gridlines in front of all the named structures represents
the respective network structure type. Similarly, the horizontal gridlines that lie in between two
such named gridlines, represent the possibility of a final structure that can be either of the two
structures, the one that represents the gridline just above the considered gridline or just below the
considered gridline. Horizontal axis plots the values of alpha for with the results were collected.
Each dot’s vertical level represents the structure that emerged at its corresponding alpha value on
the horizontal axis. The three plot lines are for different domain conditions. The blue plotline

52

represents the final network structures that emerged when the domain difference percentage was
50%, i.e., when the node population had 50% of nodes having one kind of node characteristic and
other 50% having another kind of node characteristic. The yellow plotline represents the final
network structures that emerged when the domain difference percentage was 25%, i.e., when the
node population had 25% of nodes having one kind of node characteristic and other 75% having
another kind of node characteristic. The grey plotline represents the final network structures that
emerged when the domain difference percentage was 0%, i.e., when the characteristics of all the

nodes were same.

4.2.2 Experiment 2: Real-world Sized Network using Degree Centrality and
Homophily
This experiment investigated if nodes seeking homophily via node characteristics similarity versus

nodes seeking popular-other nodes via degree centrality influence the evolution of AEC project

team social network structure overtime. This was conducted over a real-world sized network.

After setting up the type-2 initial condition for the simulation a core periphery network structure
appears, with 8 core and 71 periphery nodes (Refer Figure 3.3). The only change in this simulation
setting is the network structure size, that is based on a real-world network structure found in an

empirical case study by Garcia et al. (2021a and b).

The final and intermediate structure snapshots and the results observed during the simulation run,
produced by varying, alpha from 0 to 1, and domain difference percentage from 50% to 0% are

illustrated in the Figure 4.4.

53

Domain Difference Percentage = 50%

Final Network Structure

(A) Core-periphery-and-triangles

Alpha | 0t0 0.8

Final Network Structure

(B) 2 Core-periphery-and-triangles bridged together

0.8t00.9

>
©
0
D

Final Network Structure

(C) 2 Subgroups

Alpha | 1.0

LEGENDS: ¥ Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

Figure 4.4 Experiment-2 Simulation Results

54

Figure 4.4 (Cont’d)

Domain Difference Percentage = 25%

Final Network Structure

(D) Core-periphery-and-triangles

>
o
0
o]

0t00.9

Final Network Structure

(E) 2 Subgroups

Alpha | 1.0

Domain Difference Percentage = 0%

Final Network Structure

(F) Core-periphery-and-triangles (G) Random Network

Alpha | 0to 0.9 1

LEGENDS: Y Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

55

Figure 4.4 shows the following:

e For 50% domain difference, as alpha (homophily coefficient) varies from 0 to 0.8 a core-
periphery-with-triangles structure appears. As soon as alpha ranges between 0.8 and 0.9
two core-periphery-with-triangles structure bridged with nodes start to appear. When alpha

equals one two subgroups with random structure shows up.

e For 25% domain difference, as alpha varies from 0 to 0.9 a core-periphery-with-triangles
structure appears. When alpha equals one two subgroups with random structure shows up.
e For 0% domain difference, for no value of alpha the structure breaks. As alpha varies from
0to 0.9 a core-periphery-with-triangles structure appears. When alpha equals one a random

structure shows up.

To summarize the observed network structures in simulation experiment two, Figure 4.5 depicts a
plot showing the comparison of all the final structures that emerged out from varying domain

difference percentage and the alpha values.

56

2 Subgroups
random structure

2 Core-periphery-
and-triangles

2 Core-periphery-and-
triangles bridged together

1 Core-periphery-
and-triangles

1 Random network
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha (o)

—e— 50% Domain Difference 25% Domain Difference

0% Domain Difference

Figure 4.5 Plotlines Summarizing the Observed Network Structures in Simulation Experiment-2

In Figure 4.5 vertical axis represents the types of network structures that finally appeared in the
experiment two. The light grey horizontal gridlines in front of all the named structures represents
the respective network structure type. Similarly, the horizontal gridlines that lie in between two
such named gridlines, represent the possibility of a final structure that can be either of the two
structures, the one that represents the gridline just above the considered gridline or just below the
considered gridline. Horizontal axis plots the values of alpha for with the results were collected.
Each dot’s vertical level represents the structure that emerged at its corresponding alpha value on
the horizontal axis. The three plot lines are for different domain conditions. The blue plotline

57

represents the final network structures that emerged when the domain difference percentage was
50%, i.e., when the node population had 50% of nodes having one kind of node characteristic and
other 50% having another kind of node characteristic. The yellow plotline represents the final
network structures that emerged when the domain difference percentage was 25%, i.e., when the
node population had 25% of nodes having one kind of node characteristic and other 75% having
another kind of node characteristic. The grey plotline represents the final network structures that
emerged when the domain difference percentage was 0%, i.e., when the characteristics of all the

nodes were same.

4.2.3 Experiment 3: Small Sized Network using Eigenvector Centrality and
Homophily
This experiment investigated if nodes seeking homophily via node characteristics similarity versus

nodes seeking popular-other nodes via eigenvector centrality influence the evolution of AEC

project team social network structure overtime. This was conducted over a small sized network.

Experiment three and four follows the exact same steps from experiment one and two respectively,
with only a change in measurement of nodes’ popularity. In both the experiments three and four
the degree centrality is replaced by eigenvector centrality and the simulations are re-run. The initial
condition produced by the setup in experiment three and four still remains the same as in
experiment one and two respectively (refer figure 3.2 and 3.3). The final and intermediate structure
snapshots and the results observed during the simulation run, produced by varying, alpha from 0

to 1, and domain difference percentage from 50% to 0% are illustrated in the Figure 4.6.

58

Domain Difference Percentage = 50%

o
>
S
-
)
<
o
2
(<5}
p
_g (A) Core-periphery-and-triangles (B) 1 or 2 Core-periphery-and-triangles
LL
Alpha 0to0.1 0.1t00.4
o
>
S
-
)
<
o
2
D
2
_g (C.1) 2 Core-periphery-and-triangles (C.2) 2 Subgroups
L (as intermediate structure) (as final structure) (D) 2 Subgroups
Alpha 04t00.9 1.0

LEGENDS: ¥ Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

Figure 4.6 Experiment-3 Simulation Results

59

Figure 4.6 (cont’d)

Domain Difference Percentage = 25%

o
=]
S
-
)
=
o
2
(<5}
z []
E (E) Core-periphery-and-triangles | (F.1) 2 Core-periphery (F.2) 2 Core-periphery (F.3) 2 Subgroups
L -and-triangles bridged (Intermediate structure) (Final structure)
Alpha 0to0.4 0.41t00.6
o
=]
S
-
)
=
o
2
D
= (G.2) 2 Subgroups
2 and-triangles (Final structure)
L (Intermediate structure) (H) Random Network
Alpha 0.6t00.9 1.0

LEGENDS: ¥ Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

60

Figure 4.6 (cont’d)

Domain Difference Percentage = 25%

®
(1) Core-periphery-and-triangles (J) Core-periphery-and-triangles

Final Network Structure

0t00.9 1.0

>
©
0
[sV)

LEGENDS: ¥ Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

61

Figure 4.6 shows the following:

For 50% domain difference, as alpha (homophily coefficient) varies from 0 to 0.1 a core-
periphery-with-triangles structure appears. As soon as alpha ranges between 0.1 and 0.4
either one core-periphery-with triangles structure or two core-periphery-with-triangles
structure bridged with nodes start to appear. When alpha is between 0.4 and 0.9 structure
breaks to form two core-periphery-with-triangles as an intermediate structure and then
stabilizes to form two subgroups showing random structure. When alpha equals one two

subgroups with random structure shows up at once.

For 25% domain difference, as alpha varies from 0 to 0.4 a core-periphery-with-triangles
structure appears. As soon as alpha ranges between 0.4 and 0.6 either two core-periphery-
with-triangles structures bridged with nodes appear or two intermediate structures, two
core-periphery-with-triangles, appears only to stabilize and form two subgroups showing
random structure overtime. When alpha ranges from 0.6 to 0.9 two core-periphery-with-
triangles appear and stabilizes into two subgroups showing random structure overtime.
When alpha equals one two subgroups with random structure appears at once.

For 0% domain difference, for no value of alpha the structure breaks. As alpha varies from
0 to 0.9 a core-periphery-with-triangles structure appears. When alpha equals one a

random structure shows up.

To summarize the observed network structures in simulation experiment three, Figure 4.4 depicts

a plot showing the comparison of all the final structures that emerged out from varying domain

difference percentage and the alpha values.

62

2 Subgroups
random structure

2 Core-periphery-
and-triangles

2 Core-periphery-and-
triangles bridged together

1 Core-periphery-
and-triangles

1 Random network
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha (o)

—o— 50% Domain Difference Rarely Observed Final
Structures Under

25% Domain Difference 25% Domain Difference

0% Domain Difference

Figure 4.7 Plotlines Summarizing the Observed Network Structures in Simulation Experiment-3

In Figure 4.7 vertical axis represents the types of network structures that finally appeared in the
experiment three. The light grey horizontal gridlines in front of all the named structures represents
the respective network structure type. Similarly, the horizontal gridlines that lie in between two
such named gridlines, represent the possibility of a final structure that can be either of the two
structures, the one that represents the gridline just above the considered gridline or just below the
considered gridline. Horizontal axis plots the values of alpha for with the results were collected.
Each dot’s vertical level represents the structure that emerged at its corresponding alpha value on
the horizontal axis. The four plot lines are for different domain conditions. The blue plotline

63

represents the final network structures that emerged when the domain difference percentage was
50%, i.e., when the node population had 50% of nodes having one kind of node characteristic and
other 50% having another kind of node characteristic. The yellow plotline represents the final
network structures that emerged when the domain difference percentage was 25%, i.e., when the
node population had 25% of nodes having one kind of node characteristic and other 75% having
another kind of node characteristic. The light-yellow plot line represents the rarely observed final
network structures that emerge when the domain difference percentage was 25%. The grey plotline
represents the final network structures that emerged when the domain difference percentage was

0%, i.e., when the characteristics of all the nodes were same.

4.2.4 Experiment 4: Real-world Sized Network using Eigenvector Centrality and
Homophily

This experiment investigated if nodes seeking homophily via node characteristics similarity versus

popularity seeking via eigenvector centrality influence the evolution of AEC project team social

network structure overtime. This was conducted over a real-world sized network.

The final and intermediate structure snapshots and the results observed during the simulation run,
produced by varying, alpha from 0 to 1, and domain difference percentage from 50% to 0% are

illustrated in the Figure 4.8.

64

Domain Difference Percentage = 50%

o

>

S

=

h

4

1

o

2

(<5}

pa

©

=

o
Alpha | 0to 0.1
o

>

S

=

)

4

|

o

2

(<3}

pa

©

-,_% (B.1) Core-periphery-and-triangles (or) (B.2) 2 Core-periphery-and-triangle

bridged together

Alpha | 0.1t0 0.4
o

>

S

=

7

4

|-

o

2

(<3}

pa

©

=

L (C.1) 2 Core-periphery-and-triangles (C.2) 2 Subgroups (Final structure)

(Intermediate structure)

Alpha | 0.41t00.9

LEGENDS: ¥ Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

Figure 4.8 Experiment-4 Simulation Results

65

Figure 4.8 (cont’d)

o

>

3]

~

)

4

|-

o

=

[«5]

pa

©

= (D) 2 Subgroups
Alpha | 1.0

Domain Difference Percentage = 25%
o

>

S

2

)

4

|

o

2

(<5}

pa

©

£

i

(E) Core-periphery-and-triangles

Alpha |[0to 0.4

o

>

S

=

)

<

o

2

(<5}

pa

©

c

=

(E.1) 2 Core-periphery-and-triangles (E.2) 2 Subgroups
(Intermediate structure) (Final structure)

Alpha | 0.41t00.9

LEGENDS: ¥ Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

66

Figure 4.8 (cont’d)

Final Network Structure

(D) 2 Subgroups

Alpha | 1.0

Domain Difference Percentage = 0%

Final Network Structure

(F) Core-periphery-and-triangles (G) Random Network

Alpha | 010 0.9 1.0

LEGENDS: ¥ Core Node; @ Periphery Node; Color-Signifies a type of node characteristic.

Figure 4.8 shows the following:

For 50% domain difference, as alpha (homophily coefficient) varies from 0 to 0.1 a core-
periphery-with-triangles structure appears. As soon as alpha ranges between 0.1 and 0.4
either one core-periphery-with triangles structure or two core-periphery-with-triangles
structure bridged with nodes start to appear. When alpha is between 0.4 and 0.9 structure

breaks to form two core-periphery-with-triangles as an intermediate structure and then

67

stabilizes to form two subgroups showing random structure. When alpha equals one two

subgroups with random structure shows up at once.

e For 25% domain difference, as alpha varies from 0 to 0.4 a core-periphery-with-triangles
structure appears. As soon as alpha ranges between 0.4 and 0.9 two core-periphery-with-
triangles as intermediate structures appears only to stabilize and form two subgroups
showing random structure overtime. When alpha equals one two subgroups with random
structure appears at once.

e For 0% domain difference, for no value of alpha the structure breaks. As alpha varies from
0to 0.9 a core-periphery-with-triangles structure appears. When alpha equals one a random

structure shows up.

To summarize the observed network structures in simulation experiment four, Figure 4.9 depicts
a plot showing the comparison of all the final structures that emerged out from varying domain

difference percentage and the alpha values.

68

2 Subgroups
random structure

2 Core-periphery-
and-triangles

2 Core-periphery-and-
triangles bridged together

1 Core-periphery-
and-triangles

1 Random network
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha (o)

—&— 50% Domain Difference
25% Domain Difference

0% Domain Difference

Figure 4.9 Plotlines Summarizing the Observed Network Structures in Simulation Experiment-4

In Figure 4.9 vertical axis represents the types of network structures that finally appeared in the
experiment four. The light grey horizontal gridlines in front of all the named structures represents
the respective network structure type. Similarly, the horizontal gridlines that lie in between two
such named gridlines, represent the possibility of a final structure that can be either of the two
structures, the one that represents the gridline just above the considered gridline or just below the
considered gridline. Horizontal axis plots the values of alpha for with the results were collected.
Each dot’s vertical level represents the structure that emerged at its corresponding alpha value on
the horizontal axis. The three plot lines are for different domain conditions. The blue plotline

69

represents the final network structures that emerged when the domain difference percentage was
50%, i.e., when the node population had 50% of nodes having one kind of node characteristic and
other 50% having another kind of node characteristic. The yellow plotline represents the final
network structures that emerged when the domain difference percentage was 25%, i.e., when the
node population had 25% of nodes having one kind of node characteristic and other 75% having
another kind of node characteristic. The grey plotline represents the final network structures that
emerged when the domain difference percentage was 0%, i.e., when the characteristics of all the

nodes were same.

4.2.5 Experiment 5: Small Sized Network using Degree Centrality and Heterophily

Experiments five to eight were analogous to experiment one to four in all terms except the nodes’
homophily seeking characteristic was replaced by nodes’ heterophily seeking characteristic. This

was accomplished by using equation 3 mentioned in the Chapter-3 Methodology.
Uijt = (1-a) pjt1 + o |yit1 — Yjt-1| (3)

This experiment investigated if nodes seeking heterophily via node characteristics similarity versus
popularity seeking via degree centrality influence the evolution of AEC project team social

network structure overtime. This was conducted over a small sized network.

To summarize the observed network structures in simulation experiment five, Figure 4.10 depicts
a plot showing the comparison of all the final structures that emerged out from varying domain

difference percentage and the alpha values.

70

2 Subgroups
random structure

2 Core-periphery-
and-triangles

2 Core-periphery-and-
triangles bridged together

1 Core-periphery-
and-triangles

1 Random network
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha (o)

—e— 50% Domain Difference 25% Domain Difference

0% Domain Difference

Figure 4.10 Plotlines Summarizing the Observed Network Structure in Simulation Experiment-5

In Figure 4.10 vertical axis represents the types of network structures that finally appeared in the
experiment three. The light grey horizontal gridlines in front of all the named structures represents
the respective network structure type. Similarly, the horizontal gridlines that lie in between two
such named gridlines, represent the possibility of a final structure that can be either of the two
structures, the one that represents the gridline just above the considered gridline or just below the
considered gridline. Horizontal axis plots the values of alpha for with the results were collected.
Each dot’s vertical level represents the structure that emerged at its corresponding alpha value on

the horizontal axis. The three plot lines are for different domain conditions. The blue plotline

71

represents the final network structures that emerged when the domain difference percentage was
50%, i.e., when the node population had 50% of nodes having one kind of node characteristic and
other 50% having another kind of node characteristic. The yellow plotline represents the final
network structures that emerged when the domain difference percentage was 25%, i.e., when the
node population had 25% of nodes having one kind of node characteristic and other 75% having
another kind of node characteristic. The grey plotline represents the final network structures that
emerged when the domain difference percentage was 0%, i.e., when the characteristics of all the

nodes were same.

4.2.6 Experiment 6: Real-world Sized Network using Degree Centrality and

Heterophily
This experiment investigated if nodes seeking heterophily via node characteristics similarity versus
popularity seeking via degree centrality influence the evolution of AEC project team social

network structure overtime. This was conducted over a real-world sized network.

To summarize the observed network structures in simulation experiment six, Figure 4.11 depicts
a plot showing the comparison of all the final structures that emerged out from varying domain

difference percentage and the alpha values.

72

2 Subgroups
random structure

2 Core-periphery-
and-triangles

2 Core-periphery-and-
triangles bridged together

1 Core-periphery-
and-triangles

1 Random network
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha (o)

—e— 50% Domain Difference 25% Domain Difference

0% Domain Difference

Figure 4.11 Plotlines Summarizing the Observed Network Structure in Simulation Experiment-6

In Figure 4.11 vertical axis represents the types of network structures that finally appeared in the
experiment three. The light grey horizontal gridlines in front of all the named structures represents
the respective network structure type. Similarly, the horizontal gridlines that lie in between two
such named gridlines, represent the possibility of a final structure that can be either of the two
structures, the one that represents the gridline just above the considered gridline or just below the
considered gridline. Horizontal axis plots the values of alpha for with the results were collected.
Each dot’s vertical level represents the structure that emerged at its corresponding alpha value on

the horizontal axis. The three plot lines are for different domain conditions. The blue plotline

73

represents the final network structures that emerged when the domain difference percentage was
50%, i.e., when the node population had 50% of nodes having one kind of node characteristic and
other 50% having another kind of node characteristic. The yellow plotline represents the final
network structures that emerged when the domain difference percentage was 25%, i.e., when the
node population had 25% of nodes having one kind of node characteristic and other 75% having
another kind of node characteristic. The grey plotline represents the final network structures that
emerged when the domain difference percentage was 0%, i.e., when the characteristics of all the

nodes were same.

4.2.7 Experiment 7: Small Sized Network using Eigenvector Centrality and

Heterophily
This experiment investigated if nodes seeking heterophily via node characteristics similarity versus
popularity seeking via eigenvector centrality influence the evolution of AEC project team social

network structure overtime. This was conducted over a small sized network.

To summarize the observed network structures in simulation experiment seven, Figure 4.12 depicts
a plot showing the comparison of all the final structures that emerged out from varying domain

difference percentage and the alpha values.

74

2 Subgroups
random structure

2 Core-periphery-
and-triangles

2 Core-periphery-and- |~~~ _
triangles bridged together / \

1 Core-periphery- >4 \
and-triangles \

1 Random network
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha (o)

—e— 50% Domain Difference 25% Domain Difference

0% Domain Difference

Figure 4.12 Plotlines Summarizing the Observed Network Structure in Simulation Experiment-7

In Figure 4.12 vertical axis represents the types of network structures that finally appeared in the
experiment three. The light grey horizontal gridlines in front of all the named structures represents
the respective network structure type. Similarly, the horizontal gridlines that lie in between two
such named gridlines, represent the possibility of a final structure that can be either of the two
structures, the one that represents the gridline just above the considered gridline or just below the
considered gridline. Horizontal axis plots the values of alpha for with the results were collected.
Each dot’s vertical level represents the structure that emerged at its corresponding alpha value on

the horizontal axis. The three plot lines are for different domain conditions. The blue plotline

75

represents the final network structures that emerged when the domain difference percentage was
50%, i.e., when the node population had 50% of nodes having one kind of node characteristic and
other 50% having another kind of node characteristic. The yellow plotline represents the final
network structures that emerged when the domain difference percentage was 25%, i.e., when the
node population had 25% of nodes having one kind of node characteristic and other 75% having
another kind of node characteristic. The grey plotline represents the final network structures that
emerged when the domain difference percentage was 0%, i.e., when the characteristics of all the

nodes were same.

4.2.8 Experiment 8: Real-world Sized Network using Eigenvector Centrality and

Heterophily

This experiment investigated if nodes seeking heterophily via node characteristics similarity versus
popularity seeking via eigenvector centrality influence the evolution of AEC project team social

network structure overtime. This was conducted over a real-world sized network.

To summarize the observed network structures in simulation experiment eight, Figure 4.13 depicts
a plot showing the comparison of all the final structures that emerged out from varying domain

difference percentage and the alpha values.

76

2 Subgroups
random structure

2 Core-periphery-
and-triangles

2 Core-periphery-and- (- _
triangles bridged together / \

1 Core-periphery- |
and-triangles \

1 Random network
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha (o)

—e— 50% Domain Difference 25% Domain Difference

0% Domain Difference

Figure 4.13 Plotlines Summarizing the Observed Network Structure in Simulation Experiment-8

In Figure 4.13 vertical axis represents the types of network structures that finally appeared in the
experiment three. The light grey horizontal gridlines in front of all the named structures represents
the respective network structure type. Similarly, the horizontal gridlines that lie in between two
such named gridlines, represent the possibility of a final structure that can be either of the two
structures, the one that represents the gridline just above the considered gridline or just below the
considered gridline. Horizontal axis plots the values of alpha for with the results were collected.
Each dot’s vertical level represents the structure that emerged at its corresponding alpha value on

the horizontal axis. The three plot lines are for different domain conditions. The blue plotline

7

represents the final network structures that emerged when the domain difference percentage was
50%, i.e., when the node population had 50% of nodes having one kind of node characteristic and
other 50% having another kind of node characteristic. The yellow plotline represents the final
network structures that emerged when the domain difference percentage was 25%, i.e., when the
node population had 25% of nodes having one kind of node characteristic and other 75% having
another kind of node characteristic. The grey plotline represents the final network structures that
emerged when the domain difference percentage was 0%, i.e., when the characteristics of all the

nodes were same.

4.2 Summary

To present both theory explanation, and prediction of a realistically sized AEC project social
network structure evolution, simulations were run on two different types of initial condition setups,
representing small sized and real-world sized AEC project team social network structures. All the
experiments suggested that, both node characteristic for seeking homophily/heterophily and
popularity seeking correlated to the evolution of AEC project network structure overtime. The
results showed that the node and dyadic characteristics and network size influence an AEC social
network structure evolution. Moreover, using eigenvector centrality measure to define a node’s
popularity was found more practical than using degree centrality for the same. The key findings

and their applications are further discussed in detail in the next chapter.

78

Chapter 5 DISCUSSION AND CONCLUSION

5.1 Introduction

Through this chapter the author presents the summary of findings and then discuss their theoretical
implications and practical application in AEC domain. The researcher then states the research
deliverables. Finally, the author concludes the current chapter by presenting some limitations to

this study and a few recommendations for future research.

5.2 Summary of Findings

The key findings of this research are as follows:

1. Node (e.g., tiers, roles, expertise similarity, and years working in AEC Industry) and dyadic
characteristics (e.g., homophily, heterophily, and popularity seeking) influence an AEC
social network structure evolution.

2. An agent-based model can be used to simulate an AEC project team social network
structure to predict its evolution.

3. Network size also influence the evolution of AEC project teams social network structures,
more specifically the formation of broken/unbroken subgroups as the network evolve.

4. Using eigenvector centrality measure to define a node’s popularity is more practical than

using degree centrality for the same.

79

5.3 Discussions

The various network structures that emerge out over time by changing the network size, domain
difference percentage, and alpha (factor for homophily/heterophily), provides the following
theoretical explanation and practical implications of the results for AEC research domain and AEC

project teams:

1. Node (e.g., tiers, roles, expertise similarity, and years working in AEC Industry) and dyadic
characteristics (e.g., homophily, heterophily, and popularity seeking) influence an AEC

social network structure evolution.

Theoretical explanation and implication: As homophily in the model increases, project
participants (nodes) increasingly seek connections only with similar other based on either
role, tier or, expertise similarity. This creates polarized groups within the organization
communication network. Polarization at high value of homophily seeking aligns with the
literature (Frank and Fahrbag, 1999; Frank and Xu, 2020). The polarization can prove
detrimental to the project success as the participants no longer communicate with the
knowledgeable (popular) others, as they have traded their connections from popular other
to connect to only homophilious others.

On the other hand, as heterophily in the model increases, project participants (nodes)
increasingly seek connections only with dissimilar others based on either role, tier or,
expertise similarity. Although the simulation reveals two core-periphery-and-triangle
structure bridged together at high heterophily value but the structure never polarizes
(breaks). This implies that the heterophily seeking characteristic holds back the network
structure from breaking apart into detached subgroups. This is just opposite to what

homophily as a characteristic have an effect on the network structure, as its increment

80

breaks the structure in completely detached subgroups in the simulation. In real world both
homophily and heterophily characteristics coexist in networks. That is, team members seek
connections with similar others (e.g., same roles, and tiers) at the time of team coordination,
while they seek connections with dissimilar others when they need access to new
information to resolve an issue that is outside of their expertise and knowledge (Parraguez
et al. 2015).

Simulation findings of homophily and heterophily seeking characteristic in isolation
displayed what we observe in real life when these characteristics have a combined effect
on evolution of a network structure. That is, the observation of sparsely connected final
subgroups as the final structure in the empirical study (Garcia et al., 2020a and b). Here,
subgroups are seen potentially due to individuals’ homophily seeking but they are not seen
as completely detached subgroups potentially due to the presence of heterophily seeking
characteristic.

Practical applications: AEC project team leaders should be extra cautious about the

attributes of the people they select or manage for each project. Based on how they want the
team communication network to perform they should choose some team players with
similar attributes. Team members with similar attributes (e.g., similar roles, expertise
similarity, and years working in AEC industry) will catalyze and increase cohesion among
the group members. However, a few members having different/varied expertise knowledge
should also be a part of the team as their presence can insure that the network do not break
into completely independent subgroups. The presence of varied expertise creates an inflow
of new knowledge within the team. This is because the probability of circulation of

redundant information (the knowledge that is common to each team member) decreases

81

when a team has members with different node attributes (e.g., different tiers, different roles,
expertise dissimilarity, and years working in AEC Industry). For instance, a team
containing members of different types of roles like architects and construction managers
will have a better chance of resolving an issue about a construction change order than a
team containing only one type of role like only architects. This is true as the team with
members from a common role will mostly have the knowledge that is common to each
team member thus the knowledge sharing become redundant for the team members. On the
contrary the diverse by role team have members that have varied knowledge thus the
knowledge sharing is fruitful and often result in the resolution of the issue at hand.

. An ABM can be used to simulate an AEC project team social network structure to predict

its evolution.

Theoretical explanation and implication: As the investigator found similarity between the
simulation resultant network structures and the empirical study network structure
evolutions (Garcia et al., 2020a and b), furthermore, the simulation models passed all the
research quality tests (Richiardi et al., 2006; Sargent, 2013), it was concluded that ABM
simulation is well equipped to emulate AEC project team social network structure
evolution.

Practical applications: Research in AEC domain can use the developed model to simulate

any other project teams’ initial/intermediate social network structure to predict their
evolution based on node and dyadic characteristics. They can also study and compare the
social network evolution results produced by the current model with the results from an

actual longitudinal study over the same initial social network structure setting.

82

3. Network size also influence the evolution of AEC project teams social network structures,
more specifically the formation of broken/unbroken subgroups as the network evolves.

Theoretical explanation and implication: With an increase in network size the probability

of bridging ties also increases. The bridging ties are responsible for not letting a network
structure break into completely separate subgroups. Thus, with increased number of
bridging ties it becomes relatively rare that a network evolves into completely separated
subgroups. This aligns with the final evolved structure observed in the empirical study
(Garcia et al., 2020a and b).

Practical applications: Big organizational team (comparable to the team size containing 80

members or more) have a rare chance of polarization. Project team leaders should be extra
cautious in forming a small team out of members having varied attributes (e.g., different
tiers, different roles, expertise dissimilarity, and years working in AEC Industry) because
with a lower possibility of a bridging member (those members that keeps a network
structure from breaking apart completely) found within the team, the team can break apart
overtime and the common goal (e.g., project goals, issue resolutions during project
delivery, within budget and on time delivery of project, etc.) could never be achieved in
time in such a scenario. For instance, in a scenario where during a project delivery a
member connected with two members, an architect and a contractor, can mediate and
resolve contention between the two parties over a type of solution. The probability of the
presence/emergence of such a mutually connected member increases with an increase in

size of the connected group.

83

4. Using eigenvector centrality measure to define a node’s popularity is more practical than
using degree centrality for the same.

Theoretical explanation and implication: Literature suggests that, while assigning a

popularity value to a node (member), degree centrality measure only consider the number
of connected nodes (members) to the node in consideration. Thus, the calculation takes into
account of only level one connections. The measure does not consider the importance of
the possible deeper levels of connections, i.e., further connections of the connections to the
considered node and so on. Eigenvector, however, take these factors into account. It
provides a relative importance rank to each node within the network structure accordingly.
Moreover, the research found more number of instance where the simulation provided final
network structure matched to that found in the empirical study when eigenvector was
considered as a measure of popularity instead of degree centrality. Thus it was concluded
that eigenvector centrality more effectively represents a team member’s popularity as
compared to degree centrality.

Practical applications: Research in AEC domain can further study the effects of studying

the node characteristics of popularity seeking in terms of eigenvector centrality to explore
the effects either by using ABM methodologies or other modelling techniques.

Clear from the theoretical explanation above, degree centrality measure cannot entirely
represent the reason for a member being popular (important) within a social network. Thus,
AEC teams should be cautious in using the findings of such research that uses degree
centrality as a measure of a team member’s popularity (importance). In real world,
connecting to a popular member means connecting to an important team member to gain

new knowledge. For example: A lower organizational tier member such as a project

84

engineer connecting to a higher organizational tier member such as a senior construction
manager to gain new knowledge. Here, senior construction manager is likely the popular
node in the network stemming from its high centrality (eigenvector centrality) in the
network (receiving/ disseminating information to the whole team). Thus, the research that
uses degree centrality to grade if the members popular or not, assumes that the most
important (popular) member in the organizational network is the one connected with
maximum number of other members within the organization (the member with the highest
degree centrality), which is an incorrect way to grade the importance of a member. The
measure does not consider the importance of the possible deeper levels of connections, i.e.,
further connections of the connections to the considered member and so on. Eigenvector,
however, take these factors into account. It provides a relative importance rank to each

member within the network structure accordingly.

85

5.4 Conclusion

Working towards the goal of research, “exploration of the evolution of network structures of AEC
project teams based on team member/node characteristics (i.e., expertise, roles, and tiers) and
dyadic (homophily, heterophily, and popularity seeking) characteristics,” three objectives were

established:

(1) Review of literature and study of empirical data to identify node characteristics key to
project team networks and their structures: This objective is accomplished via a literature
review presented in Chapter 2. Several nodes, dyad, and network level characteristics and
structures were studied. SNA studies both in AEC and Non-AEC domain were gleaned to
find the existing methodology used in this research. It was discussed that literature till now
has suggested several nodes (i.e., expertise, roles, and tiers) and dyadic (i.e., homophily,
heterophily, and popularity seeking) characteristics that can influence the evolution of AEC
project social network structure.

(2) The second objective ‘developing and using an ABM approach to study the evolution of
AEC project team networks through a computer-based simulation” was fulfilled in Chapter-
3 Methodology. Using selection model part from Frank and Xu (2020) and simulation
initial condition reference point from Garcia et al. (2020a and b) an ABM was developed.

(3) The third and final objective of ‘developing theoretical and practical implications’ were
described in the aforementioned Discussion subsection of the current Chapte-5 Discussion

and Conclusion.

The principal deliverable of this research is to present the effects of node and dyadic characteristics
over an AEC project team social network evolution overtime. Furthermore, this deliverable is

complemented by the following ones:

86

1) Verification of trends observed in an empirical study (Garcia et al., 2020a and b) showing
that the network structures are dynamic, and they can evolve from core-periphery to
cohesive subgroups in early stages of design during project delivery;

2) Practical applications in AEC domain future research and AEC project teams for improved
communication and management of AEC project networks (section 5.2, and 5.3);

3) Insights of variables that can have an impact on AEC network structure (section 5.2, and
5.3); and

4) An ABM simulation based Netlogo model that can be used for future research (section

3.4).

Main limitation of this research includes using a single empirical study, that was an AEC project
delivered by Construction Management at Risk (CMR) project delivery method, to base the initial
condition of the simulation experiments. Thus, the result can only conclude the findings under this

domain.

Although node and dyadic characteristics were considered but external factors like events that can
influence a social network structure evolution were not considered in the developed model to make
it as parsimonious as possible. This was done to reduce the noise and understand the most
important influencers in the resultant evolved networks, however since we now know how the

model performs these external factors could be included in the model by extending it easily.

87

The author presents the following recommendations for future research:

1)

2)

3)

4)

Future ABM simulation-based approach should take into account several empirical studies
having AEC projects delivered via a different project delivery method to compare the
network evolution within such delivery method. By performing such a study the researcher
can analyze if and how project delivery method can influence the project teams’ social
network structure evolution.

In addition, the current model is yet in need of development in several aspects. One area of
improvement is to enable agent's ‘memory’ and ‘learning capabilities’ from its interactions.
Such capability will offer agents a new dependency in terms of each interaction and next
decision made.

Moreover, the current model can be extended by populating an event/events within the
model. The event/events, same as in real life, can initiate an interaction between nodes
holding different types of node characteristics. It would be interesting to observe the
evolution of network structure based on type of event and similar/dissimilar node
characteristic.

Furthermore, it will be interesting to see if we can trade agents’ homophily seeking
characteristics versus their heterophily seeking characteristics at once, within a model. The
author believes that such a simulation experiment might provide interesting insights, as in
real world both these characteristics (homophily and heterophily seeking) are present

simultaneously.

88

APPENDICES

89

APPENDIX A: Netlogo Code for Experiments

Code for Experiments 1 and 2:

extensions [matrix]

globals [infinity average-path-length]
breed[core turtlel]

breed[periphery turtle2]

turtles-own [indegree domain information self-identity safety behavior behavior0 new distance-from-
other-turtles utility degree node-cc neighborhood out-degree] ;; values and variables owned by turtles

links-own [information2 information3 old] ;; used as indicator for comparison

to setup
ca
setup-core-nodes
setup-periphery-nodes
setup-core-periphery-network
set infinity 99999
find-path-lengths ; creating a list for each turtle that tells the distance of all the rest of the turtles from itself
calculate-utility ; using eq 6 from the paper
;ask turtles
[
;set indegree count in-link-neighbors
;set indegree0 indegree
;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
]
;calculate-exposure ;
;set average-path-length 1 ; setting the starting point of calculation of avg path length
reset-ticks

end

90

to setup-core-nodes
set-default-shape turtles "star"
create-core number-of-core-nodes
ask core [set color white]
ask core [
: for visual reasons, we want core in center
setxy (random-xcor * 0.01) (random-ycor * 0.01)
set size 1.3
set domain 0
if domain-difference-percentage = 25
[
LetuO
while [u < (number-of-core-nodes / 4)]
[ask turtlel u [set domain 1]
setuu+1]
]
if domain-difference-percentage = 50
[
LetvO
while [v < (number-of-core-nodes / 2)]
[ask turtlel v [set domain 1]

setvv+1]

;set information n-values 3 [random 15];; set initial information each turtle has

;set information Iput n-values 2 [random -15] information

;set information reduce sentence information ;; eliminate the redundent information
;set information shuffle information

set self-identity 1 - k-parameter * alpha

set safety alpha

91

;set behavior random-normal (behavior-mean + 2 * behavior-sd) behavior-sd
: set behavior behavior + 0.5 * behavior-sd
]
end
to setup-periphery-nodes
set-default-shape turtles "circle"
create-periphery number-of-periphery-nodes
ask periphery [set color white]
ask periphery
[
; for visual reasons, we don't put any nodes *too* close to the edges
setxy (random-xcor * 0.95) (random-ycor * 0.95)
set domain 0
if domain-difference-percentage = 25
[
LetuO
while [u < (number-of-periphery-nodes / 4)]
[ask turtle2 (number-of-core-nodes + u) [set domain 1]
setuu+1]

]

if domain-difference-percentage = 50
[
LetvO
while [v < (number-of-periphery-nodes / 2)]
[ask turtle2 (number-of-core-nodes + v) [set domain 1]

setvv+1]

;set information n-values 2 [random 15];; set initial information each turtle has

;set information Iput n-values 3 [random -15] information

92

:set information reduce sentence information ;; eliminate the redundent information

:set information shuffle information
;set self-identity 1 - k-parameter * alpha
set safety alpha

;set behavior random-normal (behavior-mean + 2 * behavior-sd) behavior-sd

:set behavior behavior + 0.5 * behavior-sd

end

to setup-core-periphery-network

ask turtles with [domain = 1] [set color red]

let num-links1 (p-within-core * number-of-core-nodes * (number-of-core-nodes - 1)) ;number of links
among Core

let num-links2 (p-within-periphery * number-of-periphery-nodes * (number-of-periphery-nodes - 1))
;number of links among periphery

let num-links3 (p-between-core-periphery * 2 * number-of-core-nodes * number-of-periphery-nodes)
;number of links between core & periphery

; if average-node-degree > min [number-of-subl - 1 number-of-sub2 - 1]

; [set average-node-degree min [number-of-nodes - 1 number-of-sub2 - 1]

, stop]

while [count links < num-linksl]

[
ask one-of core
[
let choice (one-of other core with [not in-link-neighbor? myself] ; "myself" here refers to "one-of other
core"
)
if choice !=nobody [create-link-to choice] ;; "choice" is "one-of other core"
]

93

]

while [(num-links1 <= count links) and (count links < num-links1 + num-links2)]

[
ask one-of periphery
[
let choice (one-of other periphery with [not in-link-neighbor? myself]
)
if choice !'=nobody [create-link-to choice]
]
]
while [(count links >= num-links1) and (count links < num-links1l + num-links3)]
[
ask one-of turtles
[

ifelse breed = core

[let choice (one-of other turtles with [(breed = periphery) and (not in-link-neighbor? myself)])

if choice !'=nobody [create-link-to choice]

]
[

let choice (one-of other turtles with [(breed = core) and (not in-link-neighbor? myself))

if choice !'=nobody [create-link-to choice]

]
]
]

if p-within-core !'= 0 ; this is to make sure every core turtle is connected to at least one other core turtle

[

ask core with [count out-link-neighbors = 0] [create-link-to one-of other core]

]

94

if p-between-core-periphery 1= 0 ; this is to make sure every periphery turtle is connected to at least one
core turtle

[

ask periphery with [count out-link-neighbors = 0] [create-link-to one-of other core]

]

repeat 2 ; lay out core

[

layout-spring core links 0.6 0.5 1 ; turtle-set link-set spring-constant spring-length repulsion-
constant

]
repeat 100 ; lay out periphery
[

layout-spring periphery links 0.6 5 50 ; turtle-set link-set spring-constant spring-length repulsion-
constant

]

ask links
[
set information2 n-values 2 [random 0]
set information2 remove 0 information?2
set information3 n-values 2 [random 0]
set information3 remove 0 information3
setold O
] ;; set information2 and information3 as empty list
end

to find-path-lengths ; creating a list for each turtle that tells the distance of all the rest of the turtles from
itself

ask turtles

[set distance-from-other-turtles []

]
letiO

letjo

95

letk 0
let nodel one-of turtles
let node2 one-of turtles
let node-count count turtles
:; initialize the distance lists
while [i < node-count]
[
setj 0
while [j < node-count]
[
set nodel turtle i
set node2 turtle j
ifelse i = j ;; zero from a node to itself
[
ask nodel
[set distance-from-other-turtles Iput O distance-from-other-turtles]
]
[;; 1 from a node to it's neighbor
ifelse [in-link-neighbor? nodel or out-link-neighbor? nodel] of node2
[
ask nodel [set distance-from-other-turtles Iput 1 distance-from-other-turtles]
]
[
ask nodel [set distance-from-other-turtles Iput infinity distance-from-other-turtles]
]
]
setjj+1
]

setii+1

96

setiO
setjo
let dummy O
while [k < node-count]
[
setiO
while [i < node-count]
[
setjo
while [j < node-count]
[
;; alternate path length through kth node
set dummy ((item k [distance-from-other-turtles] of turtle i) +
(item j [distance-from-other-turtles] of turtle k)) ;
;; is the alternate path shorter?
if dummy < (item j [distance-from-other-turtles] of turtle i)
[

ask turtle i [

set distance-from-other-turtles replace-item j distance-from-other-turtles dummy ;; replace distance
if shorter

]
]
setjj+1
]
setii+1
]
setkk+1

]

end

97

to calculate-utility ;; this calculate a list for each turtle, containing utility for connecting to each other turtle
ask turtles [set utility []]

letm O

while [m < count turtles]

[

ask turtle m
[
letn0

while [n < length distance-from-other-turtles] ;Reports the number of items in the given list, or the
number of characters in the given string.

[
ifelse item n distance-from-other-turtles = 0 ;; distance to another turtle is 0 or infility
[let p -999999
set utility Iput p utility
]
[ifelse item n distance-from-other-turtles > 10000

[let p count [in-link-neighbors] of turtle n * (1 - safety) - safety * (abs ([domain] of turtle m - [domain]
of turtle n)) + random-float 0.00000001

set utility Iput p utility ; utility connecting to itself or turtle it has no access to = minus infinity
]
[

letp ((1 -safety) * tau * count [in-link-neighbors] of turtle n + (item n distance-from-other-turtles -
1) * (1 - safety) * (1 - tau)) - safety * (abs ([domain] of turtle m - [domain] of turtle n)) + random-float
0.00000001 ;; utility function, consisted of reducing maximal path length and homophily

set utility Iput p utility
]
]
setnn+1
]
]

setmm+1

98

end

to go

;calculate-exposure

;ask turtles [set behavior0Q behavior]
find-path-lengths

calculate-utility

;information-seeking ; coming from paper eq 7 ; social influence model eq

;;change-ties

calculate-apl; calculation of average path length for plotting
;find-neighborhood

;calculate-cc ;

;calculate-global-clustering-coefficient

change-path-length
ask turtles [set indegree count in-link-neighbors] ; to plot indegree of turtles
;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
]
:calculate-correlation
;calculate-sum-score
; influence
;ask turtles
[
:ifelse show-information?
;[set label length information]
;[set label ™
]

; If min [length information] of turtles = max [length information] of turtles[stop]

99

ifticks=50[
: nw:set-context turtles links
;ask turtles [set ec nw:eigenvector-centrality]
;calculate-skewness
; stop
;. nw:set-context turtles links
; nw:save-matrix "xx.csv"
;export-network
stop
]
; if ticks > 50 [ask turtles [set safety 0.9]]
tick

end

to calculate-apl

let num-connected-pairs sum [length remove infinity (remove 0 distance-from-other-turtles)] of turtles;
removes "zero" then "infinity" from "distance-from-other-turtle list. then "length" gives the number of
items in the list

;; In a connected network on N nodes, we should have N(N-1) measurements of distances between pairs,
;; and none of those distances should be infinity.
;; If there were any "infinity" length paths between nodes, then the network is disconnected.
;; In that case, calculating the average-path-length doesn't really make sense.
ifelse (num-connected-pairs !'= (count turtles * (count turtles - 1))) ;
[let connected? true
set average-path-length infinity
;; report that the network is not connected

set connected? false

100

set average-path-length (sum [sum distance-from-other-turtles] of turtles) / (num-connected-pairs) ; first
sum all the link distances of a turtle then multiply with the number of turtles. then divide by number of
connected pairs.

]

end

to change-path-length
ask turtles [set out-degree count out-link-neighbors]
ask links [die]
letmO
while [m < count turtles]
[
ask turtle m
[
; letnO
; let o count out-link-neighbors
; while [n < count out-link-neighbors]
;[let x item n sort out-link-neighbors
:let xx random-float 1
;if ((0.8 ~ ([old] of link m [who] of x)) < xx) ; no new information provided in 3 ticks
[

;ask link m [who] of x [die]

]

setnn+ 1
01

let p O ;; number of ties haven't been deleted(which means these ties provide new information in past 3
ticks)

letq 0

while [p < out-degree]

101

[if item g (sort-by > utility) > -999999 and (not out-link-neighbor? turtle (position (item g (sort-by > utility))
utility)) ; turtle with max utility and the one to which the ego-turtle is not connected to

[create-link-to turtle (position (item g (sort-by > utility)) utility)] ;;position (item q (sort-by > utility))
utility is to find number of turtle with the max utility to the ego

;ask links with [information2 = 0]
;[set information2 []
;set information3 []
;set old 0]
set p count out-link-neighbors ;; remain number of neighbors as constant
setqq+1]
]
setmm + 1]
if ticksmod3=0
[repeat 100 [

layout-spring turtles links 0.6 3 10 ;0.6 3 30; 0.6 0.5 1; 0.6 5 25 ; spring-constant spring-length
repulsion-constant

;layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1
display]]

end

102

Code for Experiments 3 and 4:
extensions [nw]

globals [infinity average-path-length]
breed[core turtlel]

breed[periphery turtle2]

turtles-own [indegree domain information self-identity safety behavior behavior0 new distance-from-
other-turtles utility degree node-cc neighborhood out-degree] ;; values and variables owned by turtles

links-own [information2 information3 old] ;; used as indicator for comparison
to setup
ca
setup-core-nodes
setup-periphery-nodes
setup-core-periphery-network
set infinity 99999
find-path-lengths ; creating a list for each turtle that tells the distance of all the rest of the turtles from itself
calculate-utility ; using eq 6 from the paper
:ask turtles
[
;set indegree count in-link-neighbors
;set indegree0 indegree
;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
]
;calculate-exposure
;set average-path-length 1 ; setting the starting point of calculation of avg path length
reset-ticks
end
to setup-core-nodes
set-default-shape turtles "star"
create-core number-of-core-nodes

ask core [set color white]

103

ask core [
: for visual reasons, we want core in center
setxy (random-xcor * 0.01) (random-ycor * 0.01)
set size 1.3
set domain 0
if domain-difference-percentage = 25
[
LetuO
while [u < (number-of-core-nodes / 4)]
[ask turtlel u [set domain 1]
setuu+1]
]
if domain-difference-percentage = 50
[
LetvO
while [v < (number-of-core-nodes / 2)]
[ask turtlel v [set domain 1]

setvv+1]

;set information n-values 3 [random 15];; set initial information each turtle has

;set information Iput n-values 2 [random -15] information

;set information reduce sentence information ;; eliminate the redundent information
:set information shuffle information

set self-identity 1 - k-parameter * alpha

set safety alpha

;set behavior random-normal (behavior-mean + 2 * behavior-sd) behavior-sd

: set behavior behavior + 0.5 * behavior-sd

end

104

to setup-periphery-nodes
set-default-shape turtles "circle"
create-periphery number-of-periphery-nodes
ask periphery [set color white]
ask periphery
[
; Tor visual reasons, we don't put any nodes *too* close to the edges
setxy (random-xcor * 0.95) (random-ycor * 0.95)
set domain 0
if domain-difference-percentage = 25
[
LetuO
while [u < (number-of-periphery-nodes / 4)]
[ask turtle2 (number-of-core-nodes + u) [set domain 1]
setuu+1]
]
if domain-difference-percentage = 50
[
LetvO
while [v < (number-of-periphery-nodes / 2)]
[ask turtle2 (number-of-core-nodes + v) [set domain 1]

setvv+1]

;set information n-values 2 [random 15];; set initial information each turtle has

;set information Iput n-values 3 [random -15] information

;set information reduce sentence information ;; eliminate the redundent information
;set information shuffle information

;set self-identity 1 - k-parameter * alpha

set safety alpha

105

;set behavior random-normal (behavior-mean + 2 * behavior-sd) behavior-sd

:set behavior behavior + 0.5 * behavior-sd

]

end
to setup-core-periphery-network

ask turtles with [domain = 1] [set color red]

let num-links1 (p-within-core * number-of-core-nodes * (number-of-core-nodes - 1)) ;number of links
among Core

let num-links2 (p-within-periphery * number-of-periphery-nodes * (number-of-periphery-nodes - 1))
;number of links among periphery

let num-links3 (p-between-core-periphery * 2 * number-of-core-nodes * number-of-periphery-nodes)
;number of links between core & periphery

; if average-node-degree > min [number-of-subl - 1 number-of-sub2 - 1]

; [set average-node-degree min [number-of-nodes - 1 number-of-sub2 - 1]

, stop]

while [count links < num-links1]

[
ask one-of core
[
let choice (one-of other core with [not in-link-neighbor? myself] ; "myself" here refers to "one-of other
core"
)
if choice = nobody [create-link-to choice] ;; "choice" is "one-of other core"
]
]

while [(num-linksl <= count links) and (count links < num-links1 + num-links2)]
[

ask one-of periphery

[

106

let choice (one-of other periphery with [not in-link-neighbor? myself]

)
if choice = nobody [create-link-to choice]
]
]

while [(count links >= num-links1) and (count links < num-links1 + num-links3)]

[

ask one-of turtles

[

ifelse breed = core

[let choice (one-of other turtles with [(breed = periphery) and (not in-link-neighbor? myself)])

if choice '=nobody [create-link-to choice]

]
[

let choice (one-of other turtles with [(breed = core) and (not in-link-neighbor? myself)])

if choice !'=nobody [create-link-to choice]

]
]
]

if p-within-core != 0 ; this is to make sure every core turtle is connected to at least one other core turtle

[

ask core with [count out-link-neighbors = 0] [create-link-to one-of other core]

]

if p-between-core-periphery != 0 ; this is to make sure every periphery turtle is connected to at least one
core turtle

[

ask periphery with [count out-link-neighbors = 0] [create-link-to one-of other core]

107

]

repeat 2 ; lay out core

[

layout-spring core links 0.6 0.5 1 ; turtle-set link-set spring-constant spring-length repulsion-
constant

]
repeat 100 ; lay out periphery
[

layout-spring periphery links 0.6 5 50 ; turtle-set link-set spring-constant spring-length repulsion-
constant

]

ask links
[
set information2 n-values 2 [random 0]
set information2 remove 0 information2
set information3 n-values 2 [random 0]
set information3 remove 0 information3
set old O
] ;; set information2 and information3 as empty list
end

to find-path-lengths ; creating a list for each turtle that tells the distance of all the rest of the turtles from
itself

ask turtles

[set distance-from-other-turtles []
]

letiO

letjo

letk 0

let nodel one-of turtles

let node2 one-of turtles

let node-count count turtles

108

:; initialize the distance lists
while [i < node-count]
[
setjo
while [j < node-count]
[
set nodel turtle i
set nodez2 turtle j
ifelse i = j ;; zero from a node to itself
[
ask nodel
[set distance-from-other-turtles Iput O distance-from-other-turtles]
]
[;; 1 from a node to it's neighbor
ifelse [in-link-neighbor? nodel or out-link-neighbor? nodel] of node2
[
ask nodel [set distance-from-other-turtles Iput 1 distance-from-other-turtles]
]
[
ask nodel [set distance-from-other-turtles Iput infinity distance-from-other-turtles]
]
]
setjj+1
]
setii+1
]
setiO
setjo
let dummy O

while [k < node-count]

109

setiO
while [i < node-count]
[
setjo
while [j < node-count]
[
;; alternate path length through kth node
set dummy ((item k [distance-from-other-turtles] of turtle i) +
(item j [distance-from-other-turtles] of turtle k))
;; is the alternate path shorter?
if dummy < (item j [distance-from-other-turtles] of turtle i)
[
ask turtle i [

set distance-from-other-turtles replace-item j distance-from-other-turtles dummy ;; replace distance
if shorter

]
]
setjj+1
]
setii+1
]
setkk+1
]
end
to calculate-utility ;; this calculate a list for each turtle, containing utility for connecting to each other turtle
ask turtles [set utility []]
letmO

while [m < count turtles]

[

110

ask turtle m
[
letn0

while [n < length distance-from-other-turtles] ;Reports the number of items in the given list, or the
number of characters in the given string.

[
ifelse item n distance-from-other-turtles = 0 ;; distance to another turtle is 0 or infility
[let p -999999
set utility Iput p utility
]
[ifelse item n distance-from-other-turtles > 10000
[
let ec [nw:eigenvector-centrality] of turtle n
ifelse [ec] of turtle n = false

[

let p 0 * (1 - safety) - safety * (abs ([domain] of turtle m - [domain] of turtle n)) + random-float
0.00000001

set utility lput p utility ; utility connecting to itself or turtle it has no access to = minus infinity

]
[

let p [nw:eigenvector-centrality] of turtle n * (1 - safety) - safety * (abs ([domain] of turtle m -
[domain] of turtle n)) + random-float 0.00000001

set utility lput p utility ; utility connecting to itself or turtle it has no access to = minus infinity

]
]
[

let ec [nw:eigenvector-centrality] of turtle n
ifelse [ec] of turtle n = false

[

let p ((1 - safety) * tau * 0 + (item n distance-from-other-turtles - 1) * (1 - safety) * (1 - tau)) -
safety * (abs ([domain] of turtle m - [domain] of turtle n)) + random-float 0.00000001 ;; utility function,
consisted of reducing maximal path length and homophily

111

set utility Iput p utility
]
[

letp ((1 - safety) * tau * [nw:eigenvector-centrality] of turtle n + (item n distance-from-other-turtles
-1) * (1 - safety) * (1 - tau)) - safety * (abs ([domain] of turtle m - [domain] of turtle n)) + random-float
0.00000001 ;; utility function, consisted of reducing maximal path length and homophily

set utility Iput p utility
]
]
]
setnn+1
]
]

setmm+1

]

end

to go

;calculate-exposure

;ask turtles [set behaviorQ behavior]

find-path-lengths

calculate-utility

;information-seeking ; coming from paper eq 7 ; social influence model eq
;;change-ties

calculate-apl; calculation of average path length for plotting
;find-neighborhood

:calculate-cc

;calculate-global-clustering-coefficient

change-path-length
ask turtles [set indegree count in-link-neighbors] ; to plot indegree of turtles

112

;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
']
;calculate-correlation
;calculate-sum-score
: influence
:ask turtles
[
;ifelse show-information?
;[set label length information]
;[set label "]
]
; if min [length information] of turtles = max [length information] of turtles[stop]
if ticks=50[
; nw:set-context turtles links
;ask turtles [set ec nw:eigenvector-centrality]
:calculate-skewness
; stop
; nw:set-context turtles links
; nw:save-matrix "xx.csv"
;export-network
stop
]
; if ticks > 50 [ask turtles [set safety 0.9]]
tick

end

to calculate-apl

let num-connected-pairs sum [length remove infinity (remove 0 distance-from-other-turtles)] of turtles;
removes "zero" then "infinity” from "distance-from-other-turtle” list. then "length" gives the number of
items in the list

113

;; In‘a connected network on N nodes, we should have N(N-1) measurements of distances between pairs,
;; and none of those distances should be infinity.
;» If there were any "infinity" length paths between nodes, then the network is disconnected.
;; In that case, calculating the average-path-length doesn't really make sense.
ifelse (num-connected-pairs != (count turtles * (count turtles - 1))) ;
[let connected? true
set average-path-length infinity
;; report that the network is not connected

set connected? false

]
[

set average-path-length (sum [sum distance-from-other-turtles] of turtles) / (num-connected-pairs) ; first
sum all the link distances of a turtle then multiply with the number of turtles. then divide by number of
connected pairs.

]
End
to change-path-length
ask turtles [set out-degree count out-link-neighbors]
ask links [die]
letmO
while [m < count turtles]

[

ask turtle m
[
; letnO
; let o count out-link-neighbors
; while [n < count out-link-neighbors]
;[let x item n sort out-link-neighbors
:let xx random-float 1
;if ((0.8 ~ ([old] of link m [who] of x)) < xx) ; no new information provided in 3 ticks
[
114

;ask link m [who] of x [die]
;]
setnn+1
']
let p 0 ;; number of ties haven't been deleted(which means these ties provide new information in past 3
ticks)

letq0
while [p < out-degree]

[if item g (sort-by > utility) > -999999 and (not out-link-neighbor? turtle (position (item g (sort-by > utility))
utility)) ; turtle with max utility and the one to which the ego-turtle is not connected to

[create-link-to turtle (position (item q (sort-by > utility)) utility)] ;;position (item q (sort-by > utility))
utility is to find number of turtle with the max utility to the ego

;ask links with [information2 = Q]
;[set information2 []
;set information3 []
;set old 0]
set p count out-link-neighbors ;; remain number of neighbors as constant
setqq+1]
]

setmm + 1]

if ticksmod3=0
[repeat 100 [

layout-spring turtles links 0.6 3 10 ;0.6 330 ; 0.6 0.5 1 ; 0.6 5 25 ; spring-constant spring-length
repulsion-constant

;layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1

display]]

end

115

Code for Experiments 5 and 6:
extensions [matrix]

globals [infinity average-path-length]
breed[core turtlel]

breed[periphery turtle2]

turtles-own [indegree domain information self-identity safety behavior behavior0 new distance-from-
other-turtles utility degree node-cc neighborhood out-degree] ;; values and variables owned by turtles

links-own [information2 information3 old] ;; used as indicator for comparison

to setup
ca
setup-core-nodes
setup-periphery-nodes
setup-core-periphery-network
set infinity 99999
find-path-lengths ; creating a list for each turtle that tells the distance of all the rest of the turtles from itself
calculate-utility ; using eq 6 from the paper
;ask turtles
[
;set indegree count in-link-neighbors
;set indegree0 indegree
;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
]
;calculate-exposure ;
;set average-path-length 1 ; setting the starting point of calculation of avg path length
reset-ticks

end

116

to setup-core-nodes
set-default-shape turtles "star"
create-core number-of-core-nodes
ask core [set color white]
ask core [
: for visual reasons, we want core in center
setxy (random-xcor * 0.01) (random-ycor * 0.01)
set size 1.3
set domain 0
if domain-difference-percentage = 25
[
LetuO
while [u < (number-of-core-nodes / 4)]
[ask turtlel u [set domain 1]
setuu+1]
]
if domain-difference-percentage = 50
[
LetvO
while [v < (number-of-core-nodes / 2)]
[ask turtlel v [set domain 1]

setvv+1]

;set information n-values 3 [random 15];; set initial information each turtle has

;set information Iput n-values 2 [random -15] information

;set information reduce sentence information ;; eliminate the redundent information
;set information shuffle information

set self-identity 1 - k-parameter * alpha

set safety alpha

117

;set behavior random-normal (behavior-mean + 2 * behavior-sd) behavior-sd
: set behavior behavior + 0.5 * behavior-sd
]
end
to setup-periphery-nodes
set-default-shape turtles "circle"
create-periphery number-of-periphery-nodes
ask periphery [set color white]
ask periphery
[
; for visual reasons, we don't put any nodes *too* close to the edges
setxy (random-xcor * 0.95) (random-ycor * 0.95)
set domain 0
if domain-difference-percentage = 25
[
LetuO
while [u < (number-of-periphery-nodes / 4)]
[ask turtle2 (number-of-core-nodes + u) [set domain 1]
setuu+1]

]

if domain-difference-percentage = 50
[
LetvO
while [v < (number-of-periphery-nodes / 2)]
[ask turtle2 (number-of-core-nodes + v) [set domain 1]

setvv+1]

;set information n-values 2 [random 15];; set initial information each turtle has

;set information Iput n-values 3 [random -15] information

118

:set information reduce sentence information ;; eliminate the redundent information

:set information shuffle information
;set self-identity 1 - k-parameter * alpha
set safety alpha

;set behavior random-normal (behavior-mean + 2 * behavior-sd) behavior-sd

:set behavior behavior + 0.5 * behavior-sd

end

to setup-core-periphery-network

ask turtles with [domain = 1] [set color red]

let num-links1 (p-within-core * number-of-core-nodes * (number-of-core-nodes - 1)) ;number of links
among Core

let num-links2 (p-within-periphery * number-of-periphery-nodes * (number-of-periphery-nodes - 1))
;number of links among periphery

let num-links3 (p-between-core-periphery * 2 * number-of-core-nodes * number-of-periphery-nodes)
;number of links between core & periphery

; if average-node-degree > min [number-of-subl - 1 number-of-sub2 - 1]

; [set average-node-degree min [number-of-nodes - 1 number-of-sub2 - 1]

, stop]

while [count links < num-linksl]

[
ask one-of core
[
let choice (one-of other core with [not in-link-neighbor? myself] ; "myself" here refers to "one-of other
core"
)
if choice !=nobody [create-link-to choice] ;; "choice" is "one-of other core"
]

119

]

while [(num-links1 <= count links) and (count links < num-links1 + num-links2)]

[
ask one-of periphery
[
let choice (one-of other periphery with [not in-link-neighbor? myself]
)
if choice !'=nobody [create-link-to choice]
]
]
while [(count links >= num-links1) and (count links < num-links1l + num-links3)]
[
ask one-of turtles
[

ifelse breed = core

[let choice (one-of other turtles with [(breed = periphery) and (not in-link-neighbor? myself)])

if choice !'=nobody [create-link-to choice]

]
[

let choice (one-of other turtles with [(breed = core) and (not in-link-neighbor? myself))

if choice !'=nobody [create-link-to choice]

]
]
]

if p-within-core !'= 0 ; this is to make sure every core turtle is connected to at least one other core turtle

[

ask core with [count out-link-neighbors = 0] [create-link-to one-of other core]

]

120

if p-between-core-periphery 1= 0 ; this is to make sure every periphery turtle is connected to at least one
core turtle

[

ask periphery with [count out-link-neighbors = 0] [create-link-to one-of other core]

]

repeat 2 ; lay out core

[

layout-spring core links 0.6 0.5 1 ; turtle-set link-set spring-constant spring-length repulsion-
constant

]
repeat 100 ; lay out periphery
[

layout-spring periphery links 0.6 5 50 ; turtle-set link-set spring-constant spring-length repulsion-
constant

]

ask links
[
set information2 n-values 2 [random 0]
set information2 remove 0 information?2
set information3 n-values 2 [random 0]
set information3 remove 0 information3
setold O
] ;; set information2 and information3 as empty list
end

to find-path-lengths ; creating a list for each turtle that tells the distance of all the rest of the turtles from
itself

ask turtles

[set distance-from-other-turtles []

]
letiO

letjo

121

letk 0
let nodel one-of turtles
let node2 one-of turtles
let node-count count turtles
:; initialize the distance lists
while [i < node-count]
[
setj 0
while [j < node-count]
[
set nodel turtle i
set node2 turtle j
ifelse i = j ;; zero from a node to itself
[
ask nodel
[set distance-from-other-turtles Iput O distance-from-other-turtles]
]
[;; 1 from a node to it's neighbor
ifelse [in-link-neighbor? nodel or out-link-neighbor? nodel] of node2
[
ask nodel [set distance-from-other-turtles Iput 1 distance-from-other-turtles]
]
[
ask nodel [set distance-from-other-turtles Iput infinity distance-from-other-turtles]
]
]
setjj+1
]

setii+1

122

setiO
setjo
let dummy O
while [k < node-count]
[
setiO
while [i < node-count]
[
setjo
while [j < node-count]
[
;; alternate path length through kth node
set dummy ((item k [distance-from-other-turtles] of turtle i) +
(item j [distance-from-other-turtles] of turtle k)) ;
;; is the alternate path shorter?
if dummy < (item j [distance-from-other-turtles] of turtle i)
[

ask turtle i [

set distance-from-other-turtles replace-item j distance-from-other-turtles dummy ;; replace distance
if shorter

]
]
setjj+1
]
setii+1
]
setkk+1

]

end

123

to calculate-utility ;; this calculate a list for each turtle, containing utility for connecting to each other turtle
ask turtles [set utility []]

letm O

while [m < count turtles]

[

ask turtle m
[
letn0

while [n < length distance-from-other-turtles] ;Reports the number of items in the given list, or the
number of characters in the given string.

[
ifelse item n distance-from-other-turtles = 0 ;; distance to another turtle is 0 or infility
[let p -999999
set utility Iput p utility
]
[ifelse item n distance-from-other-turtles > 10000

[let p count [in-link-neighbors] of turtle n * (1 - safety) + safety * (abs ([domain] of turtle m - [domain]
of turtle n)) + random-float 0.00000001

set utility Iput p utility ; utility connecting to itself or turtle it has no access to = minus infinity
]
[

letp ((1 -safety) * tau * count [in-link-neighbors] of turtle n + (item n distance-from-other-turtles -
1) * (1 - safety) * (1 - tau)) + safety * (abs ([domain] of turtle m - [domain] of turtle n)) + random-float
0.00000001 ;; utility function, consisted of reducing maximal path length and homophily

set utility Iput p utility
]
]
setnn+1
]
]

setmm+1

124

end

to go

;calculate-exposure

;ask turtles [set behavior0Q behavior]
find-path-lengths

calculate-utility

;information-seeking ; coming from paper eq 7 ; social influence model eq

;;change-ties

calculate-apl; calculation of average path length for plotting
;find-neighborhood

;calculate-cc ;

;calculate-global-clustering-coefficient

change-path-length
ask turtles [set indegree count in-link-neighbors] ; to plot indegree of turtles
;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
]
:calculate-correlation
;calculate-sum-score
; influence
;ask turtles
[
:ifelse show-information?
;[set label length information]
;[set label ™
]

; If min [length information] of turtles = max [length information] of turtles[stop]

125

ifticks=50[
: nw:set-context turtles links
;ask turtles [set ec nw:eigenvector-centrality]
;calculate-skewness
; stop
;. nw:set-context turtles links
; nw:save-matrix "xx.csv"
;export-network
stop
]
; if ticks > 50 [ask turtles [set safety 0.9]]
tick

end

to calculate-apl

let num-connected-pairs sum [length remove infinity (remove 0 distance-from-other-turtles)] of turtles;
removes "zero" then "infinity" from "distance-from-other-turtle list. then "length" gives the number of
items in the list

;; In a connected network on N nodes, we should have N(N-1) measurements of distances between pairs,
;; and none of those distances should be infinity.
;; If there were any "infinity" length paths between nodes, then the network is disconnected.
;; In that case, calculating the average-path-length doesn't really make sense.
ifelse (num-connected-pairs !'= (count turtles * (count turtles - 1))) ;
[let connected? true
set average-path-length infinity
;; report that the network is not connected

set connected? false

126

set average-path-length (sum [sum distance-from-other-turtles] of turtles) / (num-connected-pairs) ; first
sum all the link distances of a turtle then multiply with the number of turtles. then divide by number of
connected pairs.

]

end

to change-path-length
ask turtles [set out-degree count out-link-neighbors]
ask links [die]
letmO
while [m < count turtles]
[
ask turtle m
[
; letnO
; let o count out-link-neighbors
; while [n < count out-link-neighbors]
;[let x item n sort out-link-neighbors
:let xx random-float 1
;if ((0.8 ~ ([old] of link m [who] of x)) < xx) ; no new information provided in 3 ticks
[

;ask link m [who] of x [die]

]

setnn+ 1
01

let p O ;; number of ties haven't been deleted(which means these ties provide new information in past 3
ticks)

letq 0

while [p < out-degree]

127

[if item g (sort-by > utility) > -999999 and (not out-link-neighbor? turtle (position (item g (sort-by > utility))
utility)) ; turtle with max utility and the one to which the ego-turtle is not connected to

[create-link-to turtle (position (item g (sort-by > utility)) utility)] ;;position (item q (sort-by > utility))
utility is to find number of turtle with the max utility to the ego

;ask links with [information2 = 0]
;[set information2 []
;set information3 []
;set old 0]
set p count out-link-neighbors ;; remain number of neighbors as constant
setqq+1]
]
setmm + 1]
if ticksmod3=0
[repeat 100 [

layout-spring turtles links 0.6 3 10 ;0.6 330 ; 0.6 0.5 1 ; 0.6 5 25 ; spring-constant spring-length
repulsion-constant

;layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1
display]]

end

128

Code for Experiments 7 and 8:
extensions [nw]

globals [infinity average-path-length]
breed[core turtlel]

breed[periphery turtle2]

turtles-own [indegree domain information self-identity safety behavior behavior0 new distance-from-
other-turtles utility degree node-cc neighborhood out-degree] ;; values and variables owned by turtles

links-own [information2 information3 old] ;; used as indicator for comparison
to setup
ca
setup-core-nodes
setup-periphery-nodes
setup-core-periphery-network
set infinity 99999
find-path-lengths ; creating a list for each turtle that tells the distance of all the rest of the turtles from itself
calculate-utility ; using eq 6 from the paper
:ask turtles
[
;set indegree count in-link-neighbors
;set indegree0 indegree
;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
]
;calculate-exposure
;set average-path-length 1 ; setting the starting point of calculation of avg path length
reset-ticks
end
to setup-core-nodes
set-default-shape turtles "star"
create-core number-of-core-nodes

ask core [set color white]

129

ask core [
: for visual reasons, we want core in center
setxy (random-xcor * 0.01) (random-ycor * 0.01)
set size 1.3
set domain 0
if domain-difference-percentage = 25
[
LetuO
while [u < (number-of-core-nodes / 4)]
[ask turtlel u [set domain 1]
setuu+1]
]
if domain-difference-percentage = 50
[
LetvO
while [v < (number-of-core-nodes / 2)]
[ask turtlel v [set domain 1]

setvv+1]

;set information n-values 3 [random 15];; set initial information each turtle has

;set information Iput n-values 2 [random -15] information

;set information reduce sentence information ;; eliminate the redundent information
:set information shuffle information

set self-identity 1 - k-parameter * alpha

set safety alpha

;set behavior random-normal (behavior-mean + 2 * behavior-sd) behavior-sd

: set behavior behavior + 0.5 * behavior-sd

end

130

to setup-periphery-nodes
set-default-shape turtles "circle"
create-periphery number-of-periphery-nodes
ask periphery [set color white]
ask periphery
[
; Tor visual reasons, we don't put any nodes *too* close to the edges
setxy (random-xcor * 0.95) (random-ycor * 0.95)
set domain 0
if domain-difference-percentage = 25
[
LetuO
while [u < (number-of-periphery-nodes / 4)]
[ask turtle2 (number-of-core-nodes + u) [set domain 1]
setuu+1]
]
if domain-difference-percentage = 50
[
LetvO
while [v < (number-of-periphery-nodes / 2)]
[ask turtle2 (number-of-core-nodes + v) [set domain 1]

setvv+1]

;set information n-values 2 [random 15];; set initial information each turtle has

;set information Iput n-values 3 [random -15] information

;set information reduce sentence information ;; eliminate the redundent information
;set information shuffle information

;set self-identity 1 - k-parameter * alpha

set safety alpha

131

;set behavior random-normal (behavior-mean + 2 * behavior-sd) behavior-sd

:set behavior behavior + 0.5 * behavior-sd

]

end
to setup-core-periphery-network

ask turtles with [domain = 1] [set color red]

let num-links1 (p-within-core * number-of-core-nodes * (number-of-core-nodes - 1)) ;number of links
among Core

let num-links2 (p-within-periphery * number-of-periphery-nodes * (number-of-periphery-nodes - 1))
;number of links among periphery

let num-links3 (p-between-core-periphery * 2 * number-of-core-nodes * number-of-periphery-nodes)
;number of links between core & periphery

; if average-node-degree > min [number-of-subl - 1 number-of-sub2 - 1]

; [set average-node-degree min [number-of-nodes - 1 number-of-sub2 - 1]

, stop]

while [count links < num-links1]

[
ask one-of core
[
let choice (one-of other core with [not in-link-neighbor? myself] ; "myself" here refers to "one-of other
core"
)
if choice = nobody [create-link-to choice] ;; "choice" is "one-of other core"
]
]

while [(num-linksl <= count links) and (count links < num-links1 + num-links2)]
[

ask one-of periphery

[

132

let choice (one-of other periphery with [not in-link-neighbor? myself]

)
if choice = nobody [create-link-to choice]
]
]

while [(count links >= num-links1) and (count links < num-links1 + num-links3)]

[

ask one-of turtles

[

ifelse breed = core

[let choice (one-of other turtles with [(breed = periphery) and (not in-link-neighbor? myself)])

if choice '=nobody [create-link-to choice]

]
[

let choice (one-of other turtles with [(breed = core) and (not in-link-neighbor? myself)])

if choice !'=nobody [create-link-to choice]

]
]
]

if p-within-core != 0 ; this is to make sure every core turtle is connected to at least one other core turtle

[

ask core with [count out-link-neighbors = 0] [create-link-to one-of other core]

]

if p-between-core-periphery != 0 ; this is to make sure every periphery turtle is connected to at least one
core turtle

[

ask periphery with [count out-link-neighbors = 0] [create-link-to one-of other core]

133

]

repeat 2 ; lay out core

[

layout-spring core links 0.6 0.5 1 ; turtle-set link-set spring-constant spring-length repulsion-
constant

]
repeat 100 ; lay out periphery
[

layout-spring periphery links 0.6 5 50 ; turtle-set link-set spring-constant spring-length repulsion-
constant

]

ask links
[
set information2 n-values 2 [random 0]
set information2 remove 0 information2
set information3 n-values 2 [random 0]
set information3 remove 0 information3
set old O
] ;; set information2 and information3 as empty list
end

to find-path-lengths ; creating a list for each turtle that tells the distance of all the rest of the turtles from
itself

ask turtles

[set distance-from-other-turtles []
]

letiO

letjo

letk 0

let nodel one-of turtles

let node2 one-of turtles

let node-count count turtles

134

:; initialize the distance lists
while [i < node-count]
[
setjo
while [j < node-count]
[
set nodel turtle i
set nodez2 turtle j
ifelse i = j ;; zero from a node to itself
[
ask nodel
[set distance-from-other-turtles Iput O distance-from-other-turtles]
]
[;; 1 from a node to it's neighbor
ifelse [in-link-neighbor? nodel or out-link-neighbor? nodel] of node2
[
ask nodel [set distance-from-other-turtles Iput 1 distance-from-other-turtles]
]
[
ask nodel [set distance-from-other-turtles Iput infinity distance-from-other-turtles]
]
]
setjj+1
]
setii+1
]
setiO
setjo
let dummy O

while [k < node-count]

135

setiO
while [i < node-count]
[
setjo
while [j < node-count]
[
;; alternate path length through kth node
set dummy ((item k [distance-from-other-turtles] of turtle i) +
(item j [distance-from-other-turtles] of turtle k))
;; is the alternate path shorter?
if dummy < (item j [distance-from-other-turtles] of turtle i)
[
ask turtle i [

set distance-from-other-turtles replace-item j distance-from-other-turtles dummy ;; replace distance
if shorter

]
]
setjj+1
]
setii+1
]
setkk+1
]
end
to calculate-utility ;; this calculate a list for each turtle, containing utility for connecting to each other turtle
ask turtles [set utility []]
letmO

while [m < count turtles]

[

136

ask turtle m
[
letn0

while [n < length distance-from-other-turtles] ;Reports the number of items in the given list, or the
number of characters in the given string.

[
ifelse item n distance-from-other-turtles = 0 ;; distance to another turtle is 0 or infility
[let p -999999
set utility Iput p utility
]
[ifelse item n distance-from-other-turtles > 10000
[
let ec [nw:eigenvector-centrality] of turtle n
ifelse [ec] of turtle n = false

[

let p 0 * (1 - safety) + safety * (abs ([domain] of turtle m - [domain] of turtle n)) + random-float
0.00000001

set utility lput p utility ; utility connecting to itself or turtle it has no access to = minus infinity

]
[

let p [nw:eigenvector-centrality] of turtle n * (1 - safety) + safety * (abs ([domain] of turtle m -
[domain] of turtle n)) + random-float 0.00000001

set utility lput p utility ; utility connecting to itself or turtle it has no access to = minus infinity

]
]
[

let ec [nw:eigenvector-centrality] of turtle n
ifelse [ec] of turtle n = false

[

let p (1 - safety) * tau * O + (item n distance-from-other-turtles - 1) * (1 - safety) * (1 - tau)) +
safety * (abs ([domain] of turtle m - [domain] of turtle n)) + random-float 0.00000001 ;; utility function,
consisted of reducing maximal path length and homophily

137

set utility Iput p utility
]
[

letp ((1 - safety) * tau * [nw:eigenvector-centrality] of turtle n + (item n distance-from-other-turtles
-1) * (1 - safety) * (1 - tau)) + safety * (abs ([domain] of turtle m - [domain] of turtle n)) + random-float
0.00000001 ;; utility function, consisted of reducing maximal path length and homophily

set utility Iput p utility
]
]
]
setnn+1
]
]

setmm+1

]

end

to go

;calculate-exposure

;ask turtles [set behaviorQ behavior]

find-path-lengths

calculate-utility

;information-seeking ; coming from paper eq 7 ; social influence model eq
;;change-ties

calculate-apl; calculation of average path length for plotting
;find-neighborhood

:calculate-cc

;calculate-global-clustering-coefficient

change-path-length
ask turtles [set indegree count in-link-neighbors] ; to plot indegree of turtles

138

;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
']
;calculate-correlation
;calculate-sum-score
: influence
:ask turtles
[
;ifelse show-information?
;[set label length information]
;[set label "]
]
; if min [length information] of turtles = max [length information] of turtles [stop]
if ticks=50[
; nw:set-context turtles links
;ask turtles [set ec nw:eigenvector-centrality]
:calculate-skewness
; stop
; nw:set-context turtles links
; nw:save-matrix "xx.csv"
;export-network
stop
]
; if ticks > 50 [ask turtles [set safety 0.9]]
tick

end

to calculate-apl

let num-connected-pairs sum [length remove infinity (remove 0 distance-from-other-turtles)] of turtles;
removes "zero" then "infinity” from "distance-from-other-turtle” list. then "length" gives the number of
items in the list

139

;; In a connected network on N nodes, we should have N(N-1) measurements of distances between pairs,
;; and none of those distances should be infinity.
;» If there were any "infinity" length paths between nodes, then the network is disconnected.
;; In that case, calculating the average-path-length doesn't really make sense.
ifelse (num-connected-pairs !'= (count turtles * (count turtles - 1))) ;
[let connected? true
set average-path-length infinity
;; report that the network is not connected

set connected? false

]
[

set average-path-length (sum [sum distance-from-other-turtles] of turtles) / (num-connected-pairs) ; first
sum all the link distances of a turtle then multiply with the number of turtles. then divide by number of
connected pairs.

]
End
to change-path-length
ask turtles [set out-degree count out-link-neighbors]
ask links [die]
letmO
while [m < count turtles]

[

ask turtle m
[
; letnO
; let o count out-link-neighbors
; while [n < count out-link-neighbors]
;[let x item n sort out-link-neighbors
:let xx random-float 1
;if ((0.8 ~ ([old] of link m [who] of x)) < xx) ; no new information provided in 3 ticks
[
140

;ask link m [who] of x [die]
;]
setnn+1
']
let p 0 ;; number of ties haven't been deleted(which means these ties provide new information in past 3
ticks)

letq0
while [p < out-degree]

[if item g (sort-by > utility) > -999999 and (not out-link-neighbor? turtle (position (item g (sort-by > utility))
utility)) ; turtle with max utility and the one to which the ego-turtle is not connected to

[create-link-to turtle (position (item q (sort-by > utility)) utility)] ;;position (item q (sort-by > utility))
utility is to find number of turtle with the max utility to the ego

;ask links with [information2 = Q]
;[set information2 []
;set information3 []
;set old 0]
set p count out-link-neighbors ;; remain number of neighbors as constant
setqq+1]
]

setmm + 1]

if ticksmod3=0
[repeat 100 [

layout-spring turtles links 0.6 3 10 ;0.6 3 30 ; 0.6 0.5 1 ; 0.6 5 25 ; spring-constant spring-length
repulsion-constant

;layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1

display]]

end

141

APPENDIX B: Netlogo Interface

m_Tabs Help

L

Find... Check

Procedures «

I] Indent automatically

extensions [nw]
globals [infinity average-path-Tength]
breed[core turtlel]

bre eriphery turtle]

tur m [indegree domain information self-identity safet) behavior behavior0 new distance-from-other-turtles utility

Tin [information2 information3 ol1d] ;: used as indicator for comparison

.. .

to setup e
ca :

setup-core-nodes
setup-periphery-nodes
setup-core-periphery-network
set infinity 99999
find-path-lengths ; creating a Tist for each turtle that tells the distance of all the rest of the turtles from 1t:nlf
calculate-utiTity ; using eq 6 from the paper
;ALL THE PROCEDURE IN GREY FOR SETUP ARE FORM PLOTTING GRAPHS PURPOSE, MAYBE!
;ESP turtles
;set indegree count in-link-neighbors
;set indegree(indegree
;set deviance-from-mean abs (behavior - mean [behavior] of turtles)
;calculate-exposure ; what is exposure, its not mentioned in the paper 77777
iset avgrige-path-1ength 1l ; setting the starting point of calculation of avg path Tength
reset-ticks

to setup-core-nodes
set-default-shape turtles "star
create-core num er—of core-nodes

ask core [set color white
a;k core [
for visual reasons, we want core 1in cente
fatI) (rqndom xcor % 0. ul) (random-ycor * 0. ul)
set size 1.
set domain 0
if domain-difference-percentage = 25
Let u 0

while [u < (number-of-core-nodes / 4)]
[ask turtlel u [set domain 1]
set u u + 1]

Figure B.1 NetLogo Screenshot Illustrating Code of for A Simulation Model

In the Figure B.1, the highlighted part in grey with dotted boundary is a part of the code known as
a “Procedure.” The set of rules defined under such procedures acts as a brain and guides each agent
to make learned actions at any time in a running simulation. All such actions are updated and
displayed in real time in the “Interface” tab of the NetLogo simulation model. Moreover, the
interface tab of the software in itself is a totally customizable area, with all the required buttons
such as slider bars, switches, plots, text area, and simulation world screen, etc. The researcher can

either use this customizable interface, to observe a part of the simulation result, or to give

142

instructions, or change attribute values of the agent interacting in the simulation. Figure B.2

presents a screenshot of the interface tab of a NetLogo simulation model.

Interface jhfo Code

N

I view updates I

normal speed continuous

Settings.

GO s EI 'setup": sets the initial condition.

own but initial
alpha 0.99

p-within-core 0.50

|

p-within-periphery 0.01

p-between-core-periphery 0.13
In degree of turtles

=

4

~

|Command Center

pbserver >,

Figure B.2 NetLogo Screenshot Illustrating Interface Tab of a Simulation Model

Figure B.2 shows in purple, the “setup” and “go” buttons to set initial condition for the simulation,
and run the simulation respectively. Slider bars in green such as “alpha” and “number-of-core-
nodes” can be used to control the agents before running a simulation. It also shows histograms and
plot charts in the bottom right corner. These updates the viewer in real time about what is
happening in the simulation world as the it is running. The black view screen in the center, also
known as the “world” within Netlogo, is as the name suggests the simulation world within which
agents interact. It also displays the actual movement of the agents while they interact. On the right

143

side the text in purple is a text display option the NetLogo interface tab provides to the user. This
could be used to give a reader a brief insight about the model or specify legends for a viewer to

understand what is happening in the interface tab.

As explained earlier agents (nodes/ individuals) in an ABM interact within a model based on a set
of rules defined by the coder. If the model represents a phenomenon that evolve overtime, the
agents’ decision-making process are set such that they interact over and over again following a set
rule. In NetLogo program each cycle of this loop is called a “Tick”. As the simulation model runs
the tick numbers keep on increasing with an increment of 1. This is also displayed in real time just
above the simulation world black colored screen on the right corner. In Figure B.2 the tick is
displayed as “ticks: 50”. This means that when the screenshot of the interface tab was taken the

model was in its 50" loop of the simulation run.

Just like most of the computing software out there, NetLogo also provides extensions within its
coding interface so that specific areas of studies can make a more thorough use of it. One such
extension beneficial for simulating network structures on NetLogo is called “[nw],” the network

extension. This is also used in the current research agent based NetLogo simulation model.

144

REFERENCES

145

REFERENCES

Ahuja, G. (2000). "Collaboration Networks, Structural Holes, and Innovation: A
Longitudinal Study". Administrative Science Quarterly, 45(3), 425.

Barabasi, A. L. (2016). "Network science: graph theory." Cambridge university press, 27.

Borgatti, S. P., and Everett, M. G. (2000). “Models of core/periphery structures.” Social
Networks, 21(4), 375-395.

Broekel, T., and Hartog, M. (2013). “Explaining the Structure of Inter-Organizational
Networks using Exponential Random Graph Models.” Industry & Innovation, 20(3), 277-295.

Burton, R. M., & Obel, B. (2011). “Computational Modeling for What-Is, What-Might-
Be, and What-Should-Be Studies—And Triangulation.” Organization Science, 22(5), 1195-
1202.

Castiglione, F. (2006). “Agent based modeling.” Scholarpedia, 1(10), 1562.

Chinowsky, P., Diekmann, J., and Galotti, V. (2008). “Social Network Model of
Construction.” Journal of Construction Engineering and Management, 134(10), 804-812.

Chinowsky, P. S., Diekmann, J., and O’Brien, J. (2010). “Project Organizations as Social
Networks.” Journal of Construction Engineering and Management, 136(4), 452—458.

Cohen, W., and Levinthal, D. (1990). "Absorptive Capacity: A New Perspective on
Learning and Innovation”. Administrative Science Quarterly, 35(1), 128.

Csermely, P., London, A., Wu, L., and Uzzi, B. (2013). "Structure and dynamics of
core/periphery networks." Journal of Complex Networks, 1(2), 93-123.

Di Marco, M. K., Taylor, J. E., and Alin, P. (2010). “Emergence and Role of Cultural
Boundary Spanners in Global Engineering Project Networks.” Journal of Management in
Engineering, 26(3), 123-132.

Ding, Z.-kun, Wang, Y .-fei, and Wu, J.-chuang. (2016). “CAS and ABM-based
Demolition Waste Management Research in the AEC Industry.” Frontiers of Engineering
Management, 3(1), 18.

Djomba, J. K., and Zaletel-Kragelj, L. (2016). “A methodological approach to the
analysis of egocentric social networks in public health research: a practical example.” Slovenian
Journal of Public Health, 55(4), 256-263.

Frank, K. A. (1995). “Identifying cohesive subgroups.” Social Networks, 17(1), 27-56.

146

Frank, K. A. (2020). “Ken Frank site - Social Network Resources.” sites.google.com,
<https://sites.google.com/msu.edu/kenfrank/social-network-resources> (Mar. 12, 2021).

Frank, K. A., and Fahrbach, K. (1999). “Organization Culture as a Complex System:
Balance and Information in Models of Influence and Selection.” Organization Science, 10(3),
253-2717.

Frank, K.A., and Xu, R. “Specification, Estimation, and Dynamic Implications of
Network Influence.” University of Chicago Center for Spatial Data Science. November 2020.

Freeman, L. C. (1977). “A Set of Measures of Centrality Based on Betweenness.”
Sociometry, 40(1), 35-41.

Frias-Martinez, E., Williamson, G., and Frias-Martinez, V. (2011). “An Agent-Based
Model of Epidemic Spread Using Human Mobility and Social Network Information.” 2011 IEEE
Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third
International Conference on Social Computing.

Garcia, A.J., Frank, K.A., and Mollaoglu, S.(2020a) (in review). "Multidimensional
network structures for knowledge transfer in AEC project teams: From core-periphery to
cohesive subgroups via triangles."”, Journal of Management in Engineering

Garcia, A. J., Duva, M., Mollaoglu, S., Zhao, D., Frank, K. A., & Benitez, J. (2020b).
“Expertise Flows and Network Structures in AEC Project Teams.” Construction Research
Congress 2020: Project Management and Controls, Materials, and Contracts (pp. 95-104).
Reston, VA: American Society of Civil Engineers.

Golbeck, J. (2013). “Network Basics.” INST633 - Social Media Analysis,
<http://www.cs.umd.edu/~golbeck/INST6330/NetworkBasics.shtml> (Sep 22, 2020)

Hamill, L. and Gilbert, N. (2009). “Social Circles: A Simple Structure for Agent-Based
Social Network Models.” Journal of Artificial Societies and Social Simulation, 12(2), 3.

Hansen, M. (1999). "The Search-Transfer Problem: The Role of Weak Ties in Sharing
Knowledge across Organization Subunits”. Administrative Science Quarterly, 44(1), 82.

Hansen, M. T. (2002). "Knowledge networks: Explaining effective knowledge sharing in
multiunit companies.” Organization science, 13(3), 232-248.

Hexmoor, H. (2015). "Computational network science: an algorithmic approach.”
Morgan Kaufmann Publisher, Waltham, 1-14.

Javernick-Will, A. (2012). “Motivating Knowledge Sharing in Engineering and
Construction Organizations: Power of Social Motivations.” Journal of Management in
Engineering, 28(2), 193-202.

147

Kadushin, C. (2012). Understanding Social Networks: Theories, Concepts, and Findings.
Oxford University Press, 198 Madison Avenue, New York, NY 10016.

Kereri, J., and Harper, C. (2019). "Social Networks and Construction Teams: Literature
Review." Journal of Construction Engineering and Management, 145(4), 03119001.

Knori, C., Claudia, B., Althaus, H.J., and Leyk, S.(2007). "Agent based modeling (ABM)
for analyzing demand for recycled mineral construction material.” M.S. Unpublished Thesis,
Swiss Federal Institute of Technology, Zurich.

Lahouti, A. (2013). "Cue-Based Decision-Making in Construction: An Agent-Based
Modeling Approach.” M.S. Thesis, Michigan State University, East Lansing, MI.

Langton, C. G. (1995). “Artificial life : an overview.” Cambridge, Mass.: MIT Press.

Laurent, J., and Leicht, R. M. (2019). “Practices for Designing Cross-Functional Teams
for Integrated Project Delivery.” Journal of Construction Engineering and Management, 145(3),
05019001.

Lazarsfeld, P. F., & Merton, R. K. (1954). “Friendship as a social process: A substantive
and methodological analysis.” Freedom and control in modern society, 18(1), 18-66.

Lee, C., Chong, H., Liao, P., and Wang, X. (2018). "Critical Review of Social Network
Analysis Applications in Complex Project Management." Journal of Management in
Engineering, 34(2), 04017061.

Lee, S. K., Kim, H., and Piercy, C. W. (2016). “The Role of Status Differentials and
Homophily in the Formation of Social Support Networks of a Voluntary Organization.”
Communication Research, 46(2), 208-235.

Lin, Y. (2014). “Dynamics in organizational problem solving and the leveraging of social
capital: An agent-based modeling (ABM) perspective.” PhD thesis, University of Washington,
Seattle, Washington.

Miller, K. D., & Lin, S.-J. (2010). “Different Truths in Different Worlds.” Organization
Science, 21(1), 97- 114.

Newman, M. E. (2008). "The mathematics of networks.” The new palgrave encyclopedia
of economics, 2(2008), 1-12.

Newman, M. E. J., Watts, D. J., and Strogatz, S. H. (2002). “Random graph models of
social networks.” Proceedings of the National Academy of Sciences, 99(Supplement 1), 2566—
2572.

Otte, E., and Rousseau, R. (2002). "Social network analysis: a powerful strategy, also for
the information sciences.” Journal of Information Science, 28(6), 441-453.

148

Parraguez, P., Eppinger, S., and Maier, A. (2015). "Information Flow Through Stages of
Complex Engineering Design Projects: A Dynamic Network Analysis Approach”. IEEE
Transactions on Engineering Management, 62(4), 604-617.

Raoufi, M., and Robinson Fayek, A. (2018). “Fuzzy Agent-Based Modeling of
Construction Crew Motivation and Performance.” Journal of Computing in Civil Engineering,
32(5), 04018035.

Richiardi, M., Leombruni, R., Saam, N. J., and Sonnessa, M. (2006). "A Common
Protocol for Agent-Based Social Simulation.” Journal of Artificial Societies and Social
Simulation, 9(1), 15.

Sargent, R. G. (2013). “Verification and validation of simulation models.” Journal of
Simulation, 7(1), 12-24.

Sawhney, A., Walsh, K., & Mulky, A. R. (2003). “Agent-Based Modeling and
Simulation in Construction.” Proceedings of the 2003 Winter Simulation Conference, (pp. 1541-
1547), New Orleans.

Sweet, J., and Schneier, M. M. (2017). Legal Update for Legal Aspects of Architecture,
Engineering and the Construction Process. Cl-Engineering.

Szulanski, G. (1996). "Exploring internal stickiness: Impediments to the transfer of best
practice within the firm". Strategic Management Journal, 17(S2), 27-43.

Tortoriello, M. (2014). "The social underpinnings of absorptive capacity: The moderating
effects of structural holes on innovation generation based on external knowledge". Strategic
Management Journal, 36(4), 586-597.

Wilensky, U. (1999). “NetLogo 5.3.1 User Manual: Programming Guide.”
ccl.northwestern.edu, <http://ccl.northwestern.edu/netlogo/5.3.1/docs/programming.htmi> (Jan.
19, 2021).

Will, M., Groeneveld, J., Frank, K., and Miiller, B. (2020). “Combining social network
analysis and agent-based modelling to explore dynamics of human interaction: A review.” Socio-
Environmental Systems Modelling, 2, 16325.

William Richard Scott, and Davis, G. F. (2015). Organizations and organizing : rational,
natural, and open systems perspectives. London ; New York Routledge, Taylor Et Francis
Group.

Wolfram, S., and Mallinckrodt, A. J. (1995). “Cellular Automata and Complexity.”
Computers in Physics, 9(1), 55.

Yin, R. K. (2018). Case study research and applications: design and methods. Sixth
Edition, Sage Publications, Inc, Thousand Oaks, California.

149

Yuan, Y. C., and Gay, G. (2006). “Homophily of Network Ties and Bonding and
Bridging Social Capital in Computer-Mediated Distributed Teams.” Journal of Computer-
Mediated Communication, 11(4), 1062-1084.

150

	LIST OF FIGURES
	Chapter 1 INTRODUCTION
	1.1. Overview
	1.2. Need Statement
	1.3. Research Goal and Objectives
	1.4. Scope
	1.5. Overview of Methods
	1.6. Results and Deliverables
	1.7. Reader’s Guide

	Chapter 2 LITERATURE REVIEW
	2.1. Introduction
	2.2. Overview of Social Network Analysis (SNA) and Key Concepts
	2.3. Social Network Structures
	2.4. AEC Project Teams and Social Network Analysis
	2.4.1 Overview of SNA in the AEC Literature
	2.4.2 AEC Project Teams, Coordination, and Knowledge Transfer
	2.4.3 Overview of Longitudinal SNA Works of AEC Project Teams

	2.5. Node and Dyad Characteristics in SNA and Evolution of Network Structures
	2.6. ABM, AEC Research Uses, and SNA Integration
	2.7. Summary

	Chapter 3 METHODOLOGY
	3.1. Introduction
	3.2. Research Goals and Objectives
	3.3. Research Approach and Scope
	3.4. Model Description and Simulations
	3.4.1 Selection Model for Homophily/Heterophily and Popularity Seeking
	3.4.2 ABM Conditions and Steps to Run the Simulation

	3.5. Research Quality
	3.6. Summary

	Chapter 4 RESULTS
	4.1 Introduction
	4.1 Homophily/Heterophily versus Popularity (Degree / Eigenvector Centrality)
	4.2.1 Experiment 1: Small Sized Network using Degree Centrality and Homophily
	4.2.2 Experiment 2: Real-world Sized Network using Degree Centrality and Homophily
	4.2.3 Experiment 3: Small Sized Network using Eigenvector Centrality and Homophily
	4.2.4 Experiment 4: Real-world Sized Network using Eigenvector Centrality and Homophily
	4.2.5 Experiment 5: Small Sized Network using Degree Centrality and Heterophily
	4.2.6 Experiment 6: Real-world Sized Network using Degree Centrality and Heterophily
	4.2.7 Experiment 7: Small Sized Network using Eigenvector Centrality and Heterophily
	4.2.8 Experiment 8: Real-world Sized Network using Eigenvector Centrality and Heterophily

	4.2 Summary

	Chapter 5 DISCUSSION AND CONCLUSION
	5.1 Introduction
	5.2 Summary of Findings
	5.3 Discussions
	5.4 Conclusion

	APPENDICES
	APPENDIX A: Netlogo Code for Experiments
	APPENDIX B: Netlogo Interface

	REFERENCES

