USING EVENTUAL CONSISTENCY TO IMPROVE THE PERFORMANCE OF
DISTRIBUTED GRAPH COMPUTATION IN KEY-VALUE STORES

By

Duong Ngoc Nguyen

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Computer Science — Doctor of Philosophy

2021

ABSTRACT

USING EVENTUAL CONSISTENCY TO IMPROVE THE PERFORMANCE OF
DISTRIBUTED GRAPH COMPUTATION IN KEY-VALUE STORES

By
Duong Ngoc Nguyen

Key-value stores have gained increasing popularity due to their fast performance and simple data
model. A key-value store usually consists of multiple replicas located in different geographical
regions to provide higher availability and fault tolerance. Consequently, a protocol is employed
to ensure that data are consistent across the replicas. The CAP theorem states the impossibility
of simultaneously achieving three desirable properties in a distributed system, namely consistency,
availability, and network partition tolerance. Since failures are a norm in distributed systems
and the capability to maintain the service at an acceptable level in the presence of failures is a
critical dependability and business requirement of any system, the partition tolerance property
is a necessity. Consequently, the trade-off between consistency and availability (performance) is
inevitable. Strong consistency is attained at the cost of slow performance and fast performance is
attained at the cost of weak consistency, resulting in a spectrum of consistency models suitable for
different needs. Among the consistency models, sequential consistency and eventual consistency
are two common ones. The former is easier to program with but suffers from poor performance
whereas the latter suffers from potential data anomalies while providing higher performance.

In this dissertation, we focus on the problem of what a designer should do if he/she is asked
to solve a problem on a key-value store that provides eventual consistency. Specifically, we are
interested in the approaches that allow the designer to run his/her applications on an eventually
consistent key-value store and handle data anomalies if they occur during the computation. To that
end, we investigate two options: (1) Using detect-rollback approach, and (2) Using stabilization
approach. In the first option, the designer identifies a correctness predicate, say @, and continues to
run the application as if it was running on sequential consistency, as our system monitors ®. If @

is violated (because the underlying key-value store provides eventual consistency), the system rolls

back to a state where ® holds and the computation is resumed from there. In the second option,
the data anomalies are treated as state perturbations and handled by the convergence property of
stabilizing algorithms.

We choose LinkedIn’s Voldemort key-value store as the example key-value store for our study.
We run experiments with several graph-based applications on Amazon AWS platform to evaluate
the benefits of the two approaches. From the experiment results, we observe that overall, both
approaches provide benefits to the applications when compared to running the applications on
sequential consistency. However, stabilization provides higher benefits, especially in the aggressive
stabilization mode which trades more perturbations for no locking overhead. The results suggest
that while there is some cost associated with making an algorithm stabilizing, there may be a
substantial benefit in revising an existing algorithm for the problem at hand to make it stabilizing
and reduce the overall runtime under eventual consistency.

There are several directions of extension. For the detect-rollback approach, we are working to
develop a more general rollback mechanism for the applications and improve the efficiency and
accuracy of the monitors. For the stabilization approach, we are working to develop an analytical
model for the benefits of eventual consistency in stabilizing programs. Our current work focuses

on silent stabilization and we plan to extend our approach to other variations of stabilization.

Copyright by
DUONG NGOC NGUYEN
2021

To my family, whose love and support has made this dissertation possible.

ACKNOWLEDGEMENTS

I want to express my deep gratitude to my advisor, Professor Sandeep S. Kulkarni, for his kind help
and support throughout my studies. Professor Kulkarni is always available to answer questions
and explain the problems for me. He has spent countless hours to help me revise the manuscripts
and comment my presentations. He introduces me to the opportunities at summer schools and
conferences to extend my knowledge. I am very fortunate to have a knowledgeable, patient, and
supportive advisor like him.

I am sincerely thankful to Professor Philip McKinley, Professor Eric Torng, and Professor Subir
Biswas for having arranged time from their full schedules to serve in my Ph.D. guidance committee
and provided valuable suggestions to improve my dissertation.

I am fortunate to have the opportunity to collaborate or be a lab mate of wonderful people:
Professor Murat Demirbas, late Professor Ajoy K. Datta, Dr. Reza Hajisheikhi, Dr. Ling Zhu, Dr.
Mohammad Roohitavaf, Dr. Vidhya Tekken Valapil, Mr. Sorrachai Yingchareonthawornchai, Dr.
Aleksey Charapko. I am thankful for their kind advice, teaching, and help.

I also want to thank the office staff in the Department of Computer Science and Engineering, the
Graduate School, the Office for International Students and Scholars, and other graduate students,
friends at Michigan State University for their understanding and support. Their help has made this

journey easier and full of happy memories.

Vi

TABLE OF CONTENTS

LISTOFTABLES . . i i it it it i e i e e i e e it e ittt ittt e e neean X
LISTOFFIGURES . . . ¢ i i i it i e i e e it ettt ettt et e e neean Xxii
LISTOFALGORITHMS . . . & o i it i e i e e e e i e e ettt e et e e n e e an XV
CHAPTER 1 INTRODUCTION . . ¢ vt v ittt it ittt e ottt e neean 1
1.1 The Trade-off between Consistency and Performance in Distributed Key-value
SOres. o e 1
1.2 Problem Statement L L 3
1.3 Approaches e 5
1.4 Contributions L 7
1.5 Outline of the Dissertation 12
1.6 Nomenclature e 13
CHAPTER 2 PRELIMINARIES o it i i e e e it e et e e e a 18
2.1 Predicate Detection in Distributed Systems 18
2.1.1 SystemModel 18
2.1.2 Causality in Distributed Systems 18
2.1.3 VectorClocks o . 20
2.1.4 Hybrid VectorClocks 21
2.1.5 A Basic Framework of Predicate Detection 22
2.1.6 Linear Predicate and Detection Algorithm 25
2.1.7 Semilinear Predicate and Detection Algorithm 28
2.2 Key-Value Store 29
2.2.1 General Architecture of a Key-Value Store 29
2.2.2 Voldemort Key-Value Store, 30
2.2.3 The Performance Difference between Eventual and Sequential Consis-
tency in Voldemort Key-Value Store 30
2.3 Distributed Programs Lo 33
2.3.1 Traditional/Active-Node Model 34
2.3.2 Passive-Node Model 34
2.3.3 Similarity between Active-Node and Passive-Node Model 35
2.3.4 Executing a Node Actionby Client 36
2.3.5 Stabilization L. 37
2.4 Consistency Violating Faults (cvf) 38
CHAPTER 3 DETECT-ROLLBACK APPROACH 43
3.1 Predicate Detection Module Lo o 43
3.1.1 Opverall Architecture 43
3.1.2 Local Predicate Detector 46
3.1.3 Implementation of the Monitors. 47

Vil

3.2 Rollback from Violations 51
3.2.1 Rollback Mechanism, 51

3.2.2 Dealing with Potential of Livelocks 54

3.3 EvaluationResults 54
3.3.1 Experimental Setup 54

3.3.2 Analysis of Throughput 60

3.3.3 Analysis of System and Application Factors 62

3.3.4 Analysis of Violations and Detection Latency 65

3.3.5 Evaluating Strategies for Handling Livelocks 66

3.3.6 Analysis of Applications 67

34 Summary e e e 71
CHAPTER 4 STABILIZATION APPROACH ¢ttt it ittt ie i e e e 73
4.1 Expected Propertiesof cvf. 73
4.2 Termination Detection Algorithms. 74
4.3 Experimental Evaluation of Benefits of Stabilization in Key-Value Stores 75
43.1 ExperimentSetup e 75

432 ExperimentResults L o 76

4.4 Discussion and Extensionso oo 80
4.4.1 Benefits with Active Stabilization 81
4.4.2 Benefits with Contained Active Stabilization 83

4.4.3 Benefits with Fault-Containment stabilization. 85
4.4.4 Other Traditional Models of Computation 86

4.4.5 Dealing with Non-Silent Algorithms 86

4.4.6 Non-stabilizing Algorithmsand cvf 87

4.5 Summary ... e e e 88
CHAPTER 5 STABILIZATION VERSUS DETECT-ROLLBACK 90
5.1 Experiment Setup 90
5.1.1 System Configuration 90

5.1.2 Client Execution Modes., 91

5.1.3 Case Study Problems 92

5.1.4 InputGraphs e 95

5.1.5 Workload Partitioning Schemes. 95

5.1.6 Performance Metrics Lo 96

5.2 Benefits of Stabilization versus Rollback: Comparison and Analysis 96
5.2.1 Stabilization vs. Rollback: Comparison and Analysis 96

5.2.2 Improving the Convergence Time of Stabilization Approach 102

5.2.3 Experiments on Amazon AWSo oL 106
5.2.4 Scalability Analysis 106

5.2.5 KeyObservation e e 108

5.3 Analysis of Results and Their Implications in the Design 108
5.3.1 Insight into Comparison of Stabilization versus Rollback 108
5.3.2 Results with Non-Stabilizing Algorithm 109

54 Summary e e e e e e 110

viii

CHAPTER 6 FUTUREWORK. i ittt i it i it ittt ie e ne e 112

6.1 Improving The Detect-Rollback Approach 112

6.2 Improving The Stabilization Approach 113

6.3 Other Possibilities of Future Work 0oL 115
6.3.1 Characteristics of Monitoring Errors 115
CHAPTER7 RELATEDWORK i i ittt ittt it i et e e e e 117
7.1 Distributed Data Processing L oo 117
7.2 Consistency in Distributed Data Stores L. 117

7.3 Predicate Detection in Distributed Systems 118
7.4 Distributed Snapshotsand Reset, 119

7.5 Monitoring Large-scale Web-services and Cloud Computing Systems. 120
7.6 Self Stabilization 121
T Summary e e e e e 121
CHAPTER 8 CONCLUSION . . &t i i it i i et et e et ettt ettt ne e neeas 122
APPENDIX . . i i it it e e e e e e e e e e e e e e e e e e 125
BIBLIOGRAPHY . . . o o i it i e e e e e e e e et ettt e s e nee 128

ix

Table 1.1:

Table 2.1:

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

LIST OF TABLES

List of Notations and Their Meanings. 14
Examples of Possibly-® and Definitely-® for the computation in Figure 2.3 . . . 26
Machine configuration in local lab experiments 55
Setup of consistency models with N (replication factor), R (required reads),

and W (required writes) Lo 56
Overhead (oh) and benefit of monitors in local lab network. For Conjunctive

and Weather Monitoring, PUT percentage is 50%. 64
Response time in 20, 647 conjunctive predicate violations 66

Benefit of Eventual Consistency in the Presence of cv f's over Sequential Con-
sistency. 15 Clients. With Local Mutual Exclusion. Convergence Time Unit:
second. 77

Revisiting Local Mutual Exclusion (Ime): Treating Violations as cv f's. no-lme
means without local mutual exclusion. Ime means with local mutual exclusion.
Number of clients is 15. Convergence Time Unit: second. 78

Effect of Increased Concurrency on the Benefit of Eventual Consistency in the
Presence of cv fs over Sequential Consistency. 10,000-nodes random-match

graph. Convergence Time Unit: second 79

AWS Experiments. Benefit of Eventual Consistency in the Presence of cvf's

over Sequential Consistency. 15 Clients. Convergence Time Unit: second. 80
Configurations of machines used in the experiments 91
Four client executionmodes L oL 92

Stabilization vs. Rollback. Graphs are partitioned in normal scheme. Network
latency was 20 ms. SEQ is baseline for comparison. Rows 7-10 are conver-
gence time benefits, shown in percentage increase or in speedup (e.g. x5.2
means 5.2 times faster). 97

Effect of random partitioning on stabilization and detect-rollback. Rows 2-5
are convergence time. Rows 6-8 are benefits, in percentage increase or in
speedup (e.g. X3 means 3 times faster). Network latency was 20 ms 101

Table 5.5:

Table 5.6:

Table 5.7:

Table 5.8:

Table 5.9:

Table 5.10:

Table5.11:

Comparison between the normal and random partitioning schemes of a planar
graph. For each property, the average (AVG) and standard deviation (STDEV)

among the partitions are calculated.

Impact of Metis partitioning scheme. Latency was 20ms.

Effectiveness of the random coloring and the optimization for stabilization
approach in the arbitrary graph coloring problem (COLOR). Convergence

time is measured in seconds. Normal partition. Latency =20ms

Impact of network latency. Rows 4-6 are convergence time (in seconds). Rows
7-8 are the benefits, shown in percentage increase or in speedup (e.g. x4.3

means 4.3 times faster).
Experiment results on Amazon AWS network

(AWS) Performance of COLOR for different graph sizes. Normal partitioning . .

Computation time (in seconds) of Stabilizing and Non-Stabilizing algorithms
for graph coloring. The average of node degree (d) varies between 2 and 10.

The baseline for calculating benefitis SEQ

xi

LIST OF FIGURES

Figure 1.1: Illustration of two consistency models for key-value store. Original X = 0.
In sequential consistency (Figure 1.1a), the PUT (write) operation would not
succeed until the network condition is recovered because it requires confir-
mations from all replicas. Hence, clients always have a consistent view of the
data under sequential consistency. In eventual consistency (Figure 1.1b), the
PUT operation succeeded but clients observed different values of X. 3

Figure 1.2: Illustration cvfs: data anomalies in eventual consistency lead to incorrect
computation results. Figure 1.2a: two clients use Peterson algorithm for mu-
tually exclusive access to the critical section. However, the mutual exclusion
requirement is violated if the key-value store is eventually consistent. Opera-
tions related to variable turn are not shown since the conditions of the while
loop become false due to variables x_1 and x_2. Figure 1.2b: Clients execute
incorrect actions in graph coloring computation due to violation of mutual
exclusion. On the left is the original color and on the right is the new coloring
after client 1 and client 2 executes actions on nodes B and C, respectively.
The new colors resulted from those actions are still not a valid coloring. 6

Figure 1.3: The detect-rollback approach: when the predicate of interest is violated, sys-
tem state is restored to the most recent consistent snapshot and the computation
resumes fromthere. L L 8

Figure 2.1: (This figure is based on [1]). The lattice of distributed computation history
(right) is constructed from a particular execution (left) and causality. x +y >
15 is a definitely predicate since it is met by state S3; and every computation
passes through S31. x + y = 12 is a possibly predicate since it is met by only

S»1 and there are computation paths not going through S>;. 23
Figure 2.2: Reduction of a SAT instance to a GLOB instance. 24
Figure 2.3: An example of a distributed computation 26
Figure 2.4: Illustration of semi-forbidden state. 28

Figure 2.5: Illustration of locks. To update node 6, a client has to obtain these locks in

following order: L_1_6,L_5_6,L_6_9 37
Figure 2.6: Illustration of cv f in Voldemort. Clients run on eventual consistency RIW1 . . 40
Figure 2.7: A computation in the presence of cvf L. 42

xii

Figure 3.1:
Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 3.9:

Figure 3.10:

Figure 3.11:

Architecture of predicate detectionmoduleo
XML specification for = = (x; =1 Ay;=1)Vzo=1

[llustration of candidates sent from a server to monitors corresponding to
three conjunctive predicates. If the predicate is semilinear, the candidate is
always sent upon a PUT request of relevant variables.

[lustration of causality relation under HVC interval perspective

Two client tasks involved in a violation. Since detection latency is much
smaller than the Read phase time, violation will be notified within Read
phase of the current task of at least one client.

Simulating network delay using proxies. The proxies virtually partition our
local lab network into three regions

[lustration of result stabilization. The Social Media Analysis application is
run three times on Amazon AWS with monitoring enabled. Number of servers
(N) = 3. Number of clients per server (C/N) = 5. Aggregated throughput
measured by Social Media Analysis application in three different runs and
their average is shown. This average is used to represent the stable value of
the application throughput. L.

(AWS) Social Media Analysis application, 3 servers, 15 clients. The benefit
of eventual consistency with monitors vs. sequential consistency without
monitors (throughput improvement compared to RIW3 and R2W2 is 57% and
78%, respectively), and the overhead of running monitors on each consistency
setting (the overhead is less than 2%).

Benefit and overhead of monitors in Weather Monitoring application. Per-
centage of PUT requests is 25% and 50% Number of servers =5. Number of
clients = 10. Machines are on the AWS North Virginia region but in different
availability zones.

Effectiveness of livelock handling mechanisms. Number of servers=3, num-
ber of clients=30. We observed that adaptive mechanism worked best for
Social Media Analysis (Figure 3.10a), and backoff mechanism worked best
for Weather Monitoring (Figure 3.10b).

The benefit and overhead of Eventual consistency+Rollback vs. Sequential
consistency in Weather Monitoring application. The inset figure within Figure
3.11b is a close-up view showing the impact of rollback. The larger points
near the end of each data sequence are where we choose the representative
values for the data sequences.

62

Figure 3.12: Comparing the completion time of Sequential Consistency (R1W3) vs. Even-

Figure 4.1:

Figure 4.2:

Figure 5.1:

Figure 5.2:

Figure 5.3:

tual Consistency with rollback and adaptive consistency (R1W1+adaptive) in
Social Media Analysis application. On a power-law clustering graph, before
90%% of the nodes are processed, R1W 1+adaptive progresses about 18% faster
than R1W3. Overall, RIW1+adaptive is 9.5% faster than RIW3. On a regu-
lar random graph, the benefit before 90% of the nodes are processed is 26%
and the overall benefitis 20.8%. oo oo 70

Convergence of maximal matching 79
Convergence of maximal matching in the experiments deployed on Amazon
EC2 instances. Note that this convergence pattern is similar to the convergence
pattern in Figure 4.1 except that the convergence in Amazon EC2 experiments

converges slower. This is because the delay in Amazon AWS network is longer. 81

[lustration of solving a traffic phasing problem using graph coloring. Each
color in the lower right graph corresponds to one time slot of green light. 93

Measurement of client throughput (ops — operations per seconds) of MAX-
MATCH with different input graphs. Normal partitioning. Latency was 20

The convergence pattern of different execution modes in COLOR. Normal
partitioning. Latency was 20ms. L. 104

X1V

Algorithm 1
Algorithm 2

Algorithm 3

LIST OF ALGORITHMS

Linear predicate detection algorithm adapted from [2]
Semilinear predicate monitor algorithm adapted from [3]

Rollback algorithm ataclient

XV

CHAPTER 1

INTRODUCTION

1.1 The Trade-off between Consistency and Performance in Distributed Key-
value Stores.

Distributed key-value stores [4—10] have gained increasing popularity due to their scalability
and simple data model. Clients (users) view a distributed key-value store as a single table with two
fields: a unique key field for storing the variable names, and a value field for storing the associated
values of the variables. A machine storing that table is called a replica (or server). Clients’ access
to the key-value store is performed by issuing two operations, PUT (write) and GET (read), to the
replicas.

The clients are distributed programs that coordinate to perform some computation task (e.g.
find a valid coloring for a graph). During their execution, clients use the key-value store to retrieve
data and update computation results (i.e. permanent data are not kept locally at the clients). For the
client program to be correct, it is required that the values read by the clients are up-to-date. This
requirement can be divided into two smaller requirements: (1) the client actions are atomic [11]
(e.g. aclient should not read a value that is being updated by another client), and (2) the data store
is sequentially consistent [12], i.e. responses from different replicas are identical so that the clients
have the illusion that they are interacting with a single replica.

The first requirement can be satisfied if the clients employ some mutual exclusion mechanism
such as locking [13] when they access data entries. The second requirement is trivially satisfied
if the key-value store consists of one replica. However, single-replica key-value store is not used
in practice since the replica will become a performance bottle-neck as well as a single point of
failure. To provide higher availability and fault tolerance, the key-value table is replicated across
multiple replicas located at regions geographically far enough (a failure in a region does not affect

other regions). The key-value store also employs a consistency model (protocol) to keep the data at

replicas synchronized. To meet the second requirement aforementioned, the model employed should
be the sequential consistency model. Sequential consistency is more natural for programmers to
write programs as it masks the complexity of replication and ensures that different clients always
observe the same value for the same key. However, when there is a transient failure, in order to
fulfill that contract, the sequential consistency model would block client operations until it is safe
to proceed (cf. Figure 1.1a). This restriction impedes the performance (throughput and latency of
operations) of the key-value store.

Another consistency model is eventual consistency which is a best-effort approach. When a
client reads the value of a key, each replica returns the most recent value that it knows (even when that
value differs from the values stored at other replicas). When a client updates a key, a confirmation
from one replica is sufficient for the PUT operation to be considered successful. (Confirmations
from multiple replicas are great but not required, and the responsive replica is usually located in the
same geographical region as the client). Since there is no blocking, the performance of a key-value
store under eventual consistency is higher than under sequential consistency. However, when there
is a transient network failure, different replicas could store different values for the same key under
eventual consistency. If this happens, clients may observe different values for the same key (cf.
Figure 1.1b) and they could perform undesirable actions. Although such data anomalies are not
frequent [4] and they are expected to be resolved eventually when the failure stops and new updates
override the old values, they affect the correctness of the computation and compromise subsequent
execution.

The advantages and disadvantages of the sequential and eventual consistency models reflect
the inevitable trade-off between consistency and performance in a key-value store. Recall that due
to the CAP theorem [14, 15], it is impossible for a distributed key-value store to simultaneously
achieve three properties: (C) sequential consistency, (A) availability, i.e. a client request is always
satisfied within a provisioned time, and (P) partition tolerance, i.e. the key-value store is still
operational despite the presence of network failures. Since failures are a norm in distributed

systems and the capability to maintain the service at an acceptable level in the presence of failures

| m =

X=0 X=0 X=1 X=0
CLIENT 1 CLIENT 2 CLIENT 1 CLIENT 2
/ = = _
PUT(X, 1) S 4*»\\ PUT(X, 1) 5 N GET(X) => 0
=>NOTSUCCESS | N® GET(X) =>0 =>success | N (STALE VALUE)
REPLICA 1 REPLICA 2 REPLICA 1 REPLICA 2
\ X=0 % X=1
= =)
) - Transient E ['_} Transient
S x network N x network
REPLICA 3 failure REPLICA 3 failure
I GET(X) =>0 l GET(X)=>1
CLIENT 3

CLIENT 3

(a) Sequential consistency (b) Eventual consistency

Figure 1.1: Illustration of two consistency models for key-value store. Original X = 0. In sequential
consistency (Figure 1.1a), the PUT (write) operation would not succeed until the network condition
is recovered because it requires confirmations from all replicas. Hence, clients always have a
consistent view of the data under sequential consistency. In eventual consistency (Figure 1.1b), the

PUT operation succeeded but clients observed different values of X.

is a critical dependability and business requirement of any system, the partition tolerance property
is a necessity. Consequently, the trade-off between consistency and availability (performance) is
inevitable. The best trade-off decisions between consistency and performance often depend on

the specific applications carried out by the clients and there is an array of consistency models

designed for different needs [16, 17]. This dissertation focuses on sequential consistency and

eventual consistency as they are the consistency models available in most distributed key-value
stores [4,5, 10, 18-24]. In this dissertation, we choose LinkedIn’s Voldemort [5] key-value store

as the example of key-value store for studying and evaluation since the project is open-source and

supports tunable consistency.

1.2 Problem Statement

The problem we are interested in this study is as follows:

A designer has to solve a distributed computation problem on a key-value store. The
key-value store only provides sequential consistency and eventual consistency, and the
key-value store has better performance under eventual consistency. What should the

designer do to make use of this advantage of eventual consistency?.

In order to use eventual consistency, the designer has to address the problem associated with
it: data anomalies could lead to incorrect computation results. As an illustration of this problem,
consider a distributed computation that relies on a key-value store to arrange exclusive access to
a critical resource for the clients. If the key-value store employs sequential consistency and the
clients use Peterson’s algorithm [13] then the mutual exclusion is guaranteed but the performance
is slow. If eventual consistency is adopted then the mutual exclusion is violated (cf. Figure 1.2a).
The reason for this violation is that when there is a transient network failure, client requests are still
served by the local replicas (servers) and the clients will observe different values for the variables
related to Peterson algorithm (namely x_1, x_2, and turn). Both clients think that the status of
the lock is available and they proceed to the critical section simultaneously. We say that two clients
conflict when the time intervals during which the clients want to access the same critical section
overlap.

For the sake of discussion, suppose that the computation task carried out by the clients is the
graph coloring problem [25] in which the clients have to assign colors to every graph node (vertex)
so that neighboring nodes have different colors. Each client is assigned to work on a partition
of the input graph (a subset of graph nodes). Assume client 1 and client 2 are working on two
neighboring nodes B and C, respectively. To ensure action atomicity, a lock is imposed on the
edge (B, C) so that client 1 (respectively client 2) could not process node B (respectively node C)
if it has not obtained the lock corresponding to edge (B, C). As illustrated before, this lock could
be (incorrectly) obtained by both clients under eventual consistency. Each client then proceeds to
perform the action on its node, i.e. it reads the colors of neighboring nodes and chooses a different
color for its node. Suppose the initial color of every node is 0, both clients choose color 1 as the

new color for both B and C. However, these client actions are incorrect since B and C are neighbors

so they should have different colors (cf. Figure 1.2b). The reason for these incorrect actions is that
client 1 (respectively client 2) reads the color of node C (respectively node B) while that color is
being updated by client 2 (respectively client 1). If the clients use locks and the key-value store is
sequentially consistent, the resultant coloring is always valid since at most one client is allowed to
proceed and update the color of its node at any given time.

We denote such erroneous client actions as consistency violating faults (cv fs) because the
consequences of those actions are similar to consequences of faulty program transitions and the
causes of those actions are due to data anomalies in eventual consistency. We will formally define

cv fs in Section 2.4.

1.3 Approaches

To address the problem caused by cv f's, the designer has two options: either prevent cv f's by
employing sequential consistency or let cv f's occur in eventual consistency and handle them. The
first option retards the performance and is not in accordance with the goal of the problem we have

stated before. For the second option, there are several approaches:
1. Develop a brand new algorithm that works under eventual consistency, or
2. Use stabilization to handle cv f's, or

3. Run an existing algorithm (available for sequential consistency) on eventual consistency
by pretending that the underlying system satisfies sequential consistency but monitor the
execution to detect violations of the mutual exclusion requirement and perform corrective

actions upon a violation is reported.

In case of the first approach, we potentially need to develop a new algorithm for each computation
task at hand. In case of the second option, data anomalies and the consequences of cv f's are treated
as state perturbations and a stabilizing algorithm is already designed to handle the issue. In case
of the third option, the corrective actions may include rolling back the system to an earlier state if

a violation is found. While rollback in general distributed systems is a challenging task, existing

Critical Section
Init: x 1 = x 2 =0 Client 1

Client 1: a e/ L / 5 N/
x 1 =1; // flag o P> 2 J & ~ 1

u % =4 » % K
turn = 2; ,: AN 5) ; <o
while(x 2 == 1 o (X “

§&& turn == 2) Server 1 x & %

busy wait; and x/\ .

Critical Section; Server 3 \
x =06 TTTTTT= Transient network failure — — — — — — —

\/

JX2—p|

Server 2]/\
Client 2: f 7
x 2 =1; // flag —
()
\
o

e
turn = 1; - Q,
5 7
Client 2 \ \

while(x 1 == 1
Operations related to variable turn are not shown

A
)
-

&& turn == 1)
busy wait;
Critical Section;

x 2 =0;

Critical Section

e 0=*

I Get x]

\J

(a) Violation of mutual exclusion

CLIENT 1 CLIENT 1
CLIENT 2

CLIENT 2

CLIENT 3 CLIENT 3

Color B and C still have same color after
Code @ @ @ @

being updated by the clients

(b) Incorrect client actions in graph coloring

Figure 1.2: Illustration cv f's: data anomalies in eventual consistency lead to incorrect computation
results. Figure 1.2a: two clients use Peterson algorithm for mutually exclusive access to the critical
section. However, the mutual exclusion requirement is violated if the key-value store is eventually
consistent. Operations related to variable turn are not shown since the conditions of the while
loop become false due to variables x_1 and x_2. Figure 1.2b: Clients execute incorrect actions in
graph coloring computation due to violation of mutual exclusion. On the left is the original color
and on the right is the new coloring after client 1 and client 2 executes actions on nodes B and C,
respectively. The new colors resulted from those actions are still not a valid coloring.

approaches have provided rollback mechanisms for key-value stores with low overhead such as [26].
Moreover, it is possible to develop efficient application-specific rollback algorithms by exploiting

the properties of the applications. This study considers the approaches that allow users to use

existing algorithms with minimal modification and run them on eventual consistency. In particular,

the second and third approaches aforementioned (stabilization and detect-rollback) are our main
interest. We also note that although we focus on eventual consistency in this study, these two
approaches are applicable for any consistency model weaker than sequential consistency as well.
While this work could be potentially useful for distributed computation problems in general,
the focused applications of this work are distributed computation problems on graphs. In these
problems, the state of each graph node depends on its neighbors. Each client is assigned a partition
of the graph (a subset of graph nodes) in such a way that the workload is roughly evenly distributed
among the clients. Since the state of a node depends on its neighbors, the clients need to coordinate
to avoid executing actions on two neighboring nodes simultaneously. Otherwise, they may read
inconsistent data (data being updated by some client and other clients should not read this data item
until the update is complete) and their computation results would be incorrect as illustrated above
in the graph coloring problem (cf. Figure 1.2b). This coordination requirement manifests in many
other graph computation problems as well such as spanning trees [27,28], leader election [29,30],

matching [31,32], dominating set [33,34], independent set [35,36], clustering [37-39].

1.4 Contributions

This dissertation focuses on two approaches that handle cv f's which occur during the execution
of distributed graph computations on eventually consistent key-value stores, namely the stabilization
and detect-rollback approaches. Specifically, it evaluates the benefits of these two approaches when
compared to the baseline of using sequential consistency (i.e. the option of preventing cv fs). In

this direction, the dissertation has the following contributions:

(1) Detect-rollback approach: we propose a detect-rollback framework to handle cv f's during
the execution of distributed computations on eventually consistent key-value stores. Specif-
ically, the designer identifies a correctness predicate, say @, and runs the distributed com-
putation (using the algorithms designed for sequential consistency) on eventual consistency.
At the same time, a monitoring module will monitor for violation of ® (as a consequence of

cv fs) during the execution. If @ is violated (—® is true), the systems will be rolled back to

Computation continues

el CoOTTECE tati .
orrect computation from backup snapshot

Incorrect computation >
due to data conflict A
|
|
|
|
|

Rollback to most recent

Periodic snapshots consistent snapshot

_ Predicate

/ ‘ \ -7 N violation
e AN

A el o detected

Figure 1.3: The detect-rollback approach: when the predicate of interest is violated, system state
is restored to the most recent consistent snapshot and the computation resumes from there.

an earlier correct state from where subsequent execution is resumed.

To monitor @, we design and develop a prototype of the monitoring module for the Voldemort
key-value store [5]. Our monitors adapt the algorithms by Garg and Chase [2,3] for detection

of linear and semi-linear predicates on key-value stores.

For the rollback task, one possibility is restoring the system to a recent snapshot taken
by lightweight snapshot tools such as Retroscope [26] (cf. Figure 1.3). This is the most
general option in the sense that it can be used for any application. However, it is potentially
expensive !. Another possibility of rollback is analyzing and exploiting the properties of
violations in specific applications. In this regard, we propose an efficient rollback algorithm

specifically designed for distributed graph computations.

We use several graph-based applications that are motivated by the task of Social Media
Analysis and Weather Monitoring as our test cases (the details of these applications are
described in Section 3.3.1). We run these test cases on Amazon AWS platform and on our
local lab network (where we can control the network latency) to quantify the usefulness
of the proposed detect-rollback approach (using the rollback algorithm specific for graph
computations). From the experimental results, we observe the following benefits of the

detect-rollback approach:

* Throughput improvement: We observe that the Voldemort key-value store achieves

significantly higher performance under eventual consistency (even with monitors run-

I'We are working on the general rollback mechanism with Retroscope

ning concurrently with the applications) than under sequential consistency. Specifically,
the client throughput is improved by 50% — 80% for Social Media Analysis applications
and by 20% — 50% for Weather Monitoring applications. We note that this throughput
improvement is not necessarily the improvement in the overall computation time since
some requests such as checking the status of the locks are counted in the throughput

measurement but do not contribute to the progress of the computation.

Efficient detection: The monitors could quickly detect violations of linear and semi-
linear predicates even when there are as many as thousands of predicates being moni-
tored simultaneously. In particular, more than 99.9% of violations were detected within
50 milliseconds for experiments on Amazon AWS regional network (all machines in the
same AWS region), and within 3 seconds on the global network (machines in different

AWS regions).

Low monitoring overhead: We evaluate the overhead of the monitoring module to
see how it might affect the computation when being used for the purpose of debugging
or runtime monitoring. We observe that when the monitors were used with sequential
consistency, the overhead was at most 8%. And, for eventual consistency, the overhead

was less than 4%.

Improvement in the final benefits: We observe that the final benefits (i.e. the benefits
observed in the final progress of the applications) vary depending on the properties of
applications. Specifically, for non-terminating applications such as Weather Monitor-
ing, the application progress is 45% — 47% faster on detect-rollback than on sequential
consistency. For terminating applications such as Social Media Analysis, the benefit is
10% — 20%.

One of the reasons for the reduced benefit in terminating applications is that during the
final phase of a terminating application, there are few tasks to be processed, thus the
chance of client conflicts and recurring violations is increased during this phase. In fact,

if the application keeps using eventual consistency, the computation may stall due to

repeated rollbacks (livelocks). We use strategies such as random backoff and adaptive
consistency to overcome livelocks. We also observe that terminating applications using
detect-rollback approach progressed 16%—28% faster than using sequential consistency
during the first phase of the computation (the first phase is when 90% of the work is done,
and the final phase is when 10% of the remaining work is done), and 10%—-20% faster
overall (because it has to switch from eventual consistency to sequential consistency

during the final phase of the execution).

(2) Stabilization approach: Unlike the detect-rollback approach, the stabilization approach
does not need additional mechanisms to handle cv f's except that the existing algorithm (for
sequential consistency) is stabilizing 2. We evaluate the difference in the performance when
running a stabilizing algorithm on eventual consistency versus on sequential consistency. We
choose the stabilizing algorithm for maximal matching by Manne et al. [40] as the case study
and find that the convergence time of maximal matching is 1.2—-1.8 times faster on eventual
consistency than on sequential consistency. Especially, if we allow the algorithm to run on
eventual consistency without a mutual exclusion mechanism and treat violations of mutual
exclusion as additional cv f violations (we call this execution mode aggressive stabilization),

the speedup factor is 7—12 times.

(3) Stabilization vs. Detect-rollback: We compare the benefits of the two approaches. Clearly,
if the underlying program is not stabilizing then we must rely on the detect-rollback approach.
Hence, we focus on stabilizing programs where both approaches are applicable. Specifically,
we consider three stabilizing graph computation problems/applications: planar graph col-
oring, arbitrary graph coloring, and maximal matching. From the experimental results, we

obtain the following observations:

* Overall comparison: Stabilization approach provides higher benefits than the detect-

2In this dissertation, the terms self-stabilizing and stabilizing are interchangeable, and so are
self-stabilization and stabilization.

10

rollback approach in the three graph computation problems above. Using sequential
consistency as the base-line for comparison, stabilization improves the convergence
time of the programs by 25 % to 35 %, whereas the detect-rollback approach improves
the convergence time by 30 % in the best case and potentially causes performance to
suffer. Notably, the convergence time of the programs speeds up by 2 to 15 times with
aggressive stabilization.

The aggressive stabilization execution mode eliminates the locking overhead at the
cost of extra cv fs. The boosted speedup of aggressive stabilization suggests that the
stabilization cost for the extra cv f's is outweighed by the benefits of no locking overhead.
This observation is also compatible with our analysis in which we observe that a sizeable
proportion of the client computation time is spent on obtaining locks to ensure the action
atomicity requirement is satisfied (clients do not update the states of neighboring nodes

simultaneously).

Analysis of the impact of cv fs: We analyze the cv f's caused by the absence of locks
and find that many of those cv f's resolve favorably by themselves (they do not result in
erroneous computation), thus the actual stabilization cost is lower than what we have
thought. In contrast, the removal of locks would require the detect-rollback approach
to utilize more complicated mechanisms to detect atomicity violation instances. The
overhead of such a mechanism is expensive, thus we do not consider the aggressive

detect-rollback approach in this dissertation.

Mitigating cv f's in aggressive stabilization Although being more beneficial, aggres-
sive stabilization could suffer from some cv f's that prevent the programs to converge.
We propose some heuristics to improve the performance of aggressive stabilization in

such cases.

Impact of other factors: The performance of detect-rollback and stabilization is ana-
lyzed under different dimensions such as types of case study problems, characteristics

of input graphs, partitioning schemes, and network latency. We observe that for most of

11

these factors, the impact of a factor on stabilization and on detect-rollback is different.

* Scalability: When tested on large-scale real-world graphs, the stabilization approach,
especially aggressive stabilization scales very well. This scalability is not observed in

sequential consistency and in the detect-rollback approach.

* A comparison with non-stabilizing algorithm: A natural question could be that
what options should we choose if both stabilizing and non-stabilizing algorithms are
available? We note that in general, when the algorithms are different, it is hard to
fairly compare the two approaches since the performance is affected not only by the
algorithm itself but also by other factors such as optimization and implementation
techniques. However, if the algorithms are closely similar, the comparison may be
useful. In particular, we compare the stabilizing and non-stabilizing algorithms for
graph coloring since the algorithms are fairly similar. A key observation we obtain
from the experimental results is that the stabilizing algorithm is less efficient than the
non-stabilizing counterpart on sequential consistency. However, it is the overall winner
when used with eventual consistency, as it can benefit from tolerating cv fs. We also
note that more studies are needed to obtain more insights and more comprehensive

comparison.

These observations imply that while there is some cost associated with making an algorithm
stabilizing, there may be a substantial benefit in revising an existing algorithm for the problem

at hand to make it stabilizing and reduce the overall runtime under eventual consistency.

1.5 Outline of the Dissertation

The remaining of this dissertation consists of seven chapters and one appendix as follows:

* Chapter 2 provides the definitions of concepts and notations used in this dissertation. We
reiterate the notion of causality and the general framework for predicate detection. Then

we describe two classes of predicate that are used in this dissertation, linear and semilinear

12

predicates, and their detect algorithms. Then we review the general architecture of a key-value
store and the specifics in the Voldemort key-value store. We also present the formal definition
of distributed programs, the traditional active-node model and the new passive-node model,

the notion of self-stabilization, and define the notion of consistency violating faults (cv f's).

* Chapter 3 investigates the benefits of the detect-rollback approach. For the detect phase
of the detect-rollback approach, we present our design and implementation of the moni-
tors and evaluate the performance of the monitors. For the rollback phase, we propose
an application-specific rollback algorithm as well as strategies for handling livelocks (re-
occurring violations). We also present evaluation results of rollback. These results have been

published in [41,42].

* Chapter 4 investigates the benefits of self-stabilization approach. We present our evaluation
with the maximal matching self-stabilization program and discuss extensions of this approach

in other versions of stabilization. The results in this chapter have been published in [43].

* Chapter 5 compares the benefits of detect-rollback approach and stabilization approach. We
present the evaluation results under different factors such as case study problems, input

graphs, partitioning schemes, etc. The results in this chapter have been published in [44].
* Chapter 6 discusses some possible directions to extend our results.

* Chapter 7 reviews the literature related to this dissertation and identifies the contributions of

this dissertation.
* Chapter 8 concludes this dissertation.

* In the Appendix, we list the publications on which this dissertation is based. We also provide

access links to the relevant source code and experimental data set.

1.6 Nomenclature

In Table 1.1, we list some common notations that we use in this dissertation and their meanings.

13

Table 1.1: List of Notations and Their Meanings.

Notation Meaning

General:

n Number of processes in a distributed system

P; The i*" process

€ The bound for clock synchronization error

® or P Predicate of interest. We want to detection violations of @ or
P

cvf Consistency Violating Faults

COLOR The problem of coloring an arbitrary/general graph

P-COLOR The problem of coloring a planar graph

MAX-MATCH The problem of finding a maximal matching in a general graph

AWS Amazon Web Service

Causality:

eij The ;! h local event on process P;

e— f Event e happens before event f

e hbf Same as e — f, event e happens before event f,

ellf Events e and f are concurrent

VC; Vector clock on process P;

VCilJj] The j! h element of vector clock VC;

eVC The vector clock associated with event e

VC < V(G Vector clock V| is smaller than vector clock VCy

VC||IVCy Vector clocks VC| and VC, are concurrent

HVC; Hybrid vector clock on process P;

HVC;i[j] The j* element of hybrid vector clock HV C;

14

Table 1.1 (cont’d)

Notation Meaning

HVC; < HV(C, Hybrid vector clock HV Cy is smaller than hybrid vector clock
HV(Cy

HVC{||HVCy Hybrid vector clocks HVCy and HV C; are concurrent

PT; The physical clock on process P;

Predicate Detection:

SAT

NP

GLOB
X<Y
sup(X)
succ(e)

xe

final(X)
Pe(X.Y)
Dg(X,Y)
forba(s, X)
sforbg(s, X)
eligible(X)

Satisfiablity problem

Non-deterministic Polynomial time

The problem of Global Predicate Detection
The cut/state Y is reachable from the cut/state X
Set of supremal states of cut X

Successor of local state/event e

Advance of X along e

X is final, i.e. execution stops at X
Possibly-®

Definitely-®

s is forbidden state of cut X w.r.t. @

s is semi-forbidden state of cut X w.r.t. @

Set of all eligible states of X

Key-value Store:
Replica (or server)

Client

PUT

GET

A machine that stores the key-value store data

A process/program that performs some distributed computa-
tion task. Its data (e.g. computation results) is not kept locally
but kept in the key-value store.

Put/Write request that updates the value of a key

Get/Read request that retrieves the value of a key

15

Table 1.1 (cont’d)

Notation

Meaning

GET_VERSION

Get version request that retrieves the version of a key

N Replication factor, i.e. the number of copies for each data
entry (key)

R Required reads, i.e. the minimum number of responses needed
for a GET (read) request to be successful.

w Required writes, i.e. the minimum number of confirmations
needed for a PUT (write) request to be successful.

N3R1W3 Example of consistency where N =3, R=1, W =3

SEQ Sequential consistency

EVE-S Eventual consistency with stabilization

EVE-AS Eventual consistency with aggressive stabilization (or aggres-
sive stabilization for short)

Rollback Eventual consistency with detect-rollback

Distributed Program:

p A distributed program

Vi Set of nodes in program p

Ep Set of edges in program p

varp Set of variables in program p

Sp State space of program p

s The i*" state of program p

acj Set of actions at node j (of program p)

Oac Set of transition of action ac

Op Set of transition of program p

0 Set of transition of node j

Il Invariant of program p

16

Table 1.1 (cont’d)

Notation Meaning

adv computation of program p in the presence of adversary

L 520 A lock corresponding to the edge between node 5 and node
50.

17

CHAPTER 2

PRELIMINARIES

This chapter defines the concepts used in this dissertation. Section 2.1 defines the model of
distributed systems, the notion of causality, vector clocks, and the problem of predicate detection
in distributed systems. We also discuss the linear and semilinear predicates and their detection
algorithms as this dissertation focuses on these two classes of predicate. In Section 2.2, we review
the general architecture of a key-value store and the specifics in the Voldemort key-value store.
Section 2.3 presents the formal definition of distributed programs, the traditional active-node model
and the new passive-node model, and the notion of self-stabilization. Finally, Section 2.4 define
the notion of consistency violating faults (cv fs). The content of this chapter is mainly adapted

from [1-3,42,43,45-51].

2.1 Predicate Detection in Distributed Systems

2.1.1 System Model

A distributed system consists of n processes Py, P, ..., P;,. Those processes do not have a shared
memory and do not have a shared global clock. Each process operates according to its local
algorithm and communicates with other processes using messages. During its execution, states of
a process are changed by events. There are 3 types of events: sending message events, receiving
message events, and internal computation events. The set of all events within a process P; is
denoted as E; = {¢;1,e;2,...}. The set of all events that have happened during the computation of

a distributed system is E = |J; E;.

2.1.2 Causality in Distributed Systems

In the above asynchronous model of distributed systems, actions performed by processes are not

determined by the real time but by the events. For example, a process only starts an internal

18

computation after it receives a particular message msg, no matter the real time when it receives
msg is. A process only receives a message msg after some process sends msg. Therefore, the cause
and effect relationship has an important role in connecting events in a distributed computation.
The cause and effect relationship between events is expressed by the notion of causality [45]
(which is also known as happen-before relationship, or causal ordering). Specifically, an event e is
said to happen before (or causally precede) an event f, denoted as e — f when one of the following

conditions is met:

* e and f are events on the same process and e proceeds f. That is there exists P; such that e

and f are local events of P;: e = ¢;; and f = e;, and i < k.
* ¢ is the sending event of a message msg, and f is the receiving event of that message msg.
* There exists some event g such thate — gand g — f.

We note that the causality defined above captures the potential cause and effect relationship
which sometimes may not be the actual one. For example, events e and f are two message-receive
events on the same process and e occurs before f. By definition e — f, but in reality, the
occurrence of e does not causally affect the occurrence of f. If we re-run the computation again,
it is possible that f occurs before e.

If neither e causally precedes f nor f causally precedes e, then e and f are said to be concurrent,

denoted as e|| f. Specifically,
ellf &= —(e=f)an-(f—e)

Causality relationship is used to define consistent global states. A consistent global state is the
state resulted from a consistent cut. A consistent cut is a set of events in a distributed computation
such that if the cut includes an event e then it also includes all events causally preceding e. In other
words, for a cut to be consistent, if it includes the effect then it also includes the causes. However, a

consistent cut could include the causes without consequent effects. Formally, a cut C is consistent

19

when

eceCANf—oe = feC

Equivalently, a global snapshot is considered consistent if its constituent local states are mutually
concurrent. Since a process state results from an event, if there are local states that are not mutually
concurrent, there exists an event that is not included in the cut but one of its effects is included in
the cut.

Causality relationship could be represented by different mechanisms such as vector clocks (or
vector time) [46,47], dependency vectors, and concurrent maps [52]. Among them, vector clock is

the most popular mechanism.

2.1.3 Vector Clocks

Vector clocks, defined by Fidge and Mattern [46,47], are designed for asynchronous distributed
systems that make no assumption about underlying speed of processes or about message delivery.
Each process P; maintains a vector VC;[] of n integer numbers which represent the best information
that P; knows about the clocks of other processes. Initially, VC;[j] = 0 Vi, j. Vector clocks are

updated according to the following rules:

* Upon the occurrence of a local event (internal computation, send message, receive message)

at process P;, the i'" element of VC; is first incremented by 1,i.e. VC;[i] = VCi[i] + 1.
» Each message sent by process P; will also include the latest vector clock VC;.

* When a process P; receives a message, it will update every component of its vector clock to

the most recent known value:
Vi VGCljl =max(MVC[jl,VCi[j])

s where MV C is the vector clock piggy-backed on the message by its sender.

20

Vector clocks can be compared using vector comparison method (suppose VC; and VC; are

two vector clocks):

VC; <VCy > (Vj:VC[j] <VCylj]) A (Fk : VC[k] < VC,[k])

VCIVCy, &= —~(VC| < VCy) A~(VCy < VCy)

It can be proved that vector clocks exactly characterize causality relationship. Let e.VC denote

the vector clock associated with event e, then:

e > f & eVC< fVC

ellf & eVC|f.VC

Hence, in order to determine the causal relationship between events or states, we just compare their

corresponding vector clocks.

2.1.4 Hybrid Vector Clocks

Hybrid vector clocks [48] are designed for systems where clocks of processes are synchronized
within a given synchronization error (denoted as parameter € in this dissertation). While the size
of vector clocks is always n (the number of processes in the system), hybrid vector clocks have the
potential to reduce the size to less than n. Basically, a hybrid vector clock is a vector clock with the
optimization that clock elements that have not been updated for a long time will be automatically
updated (because processes clocks are partially synchronized) and their representation can be
compacted to reduce the space.

Every process maintains its own HVC. HVC at process P;, denoted as HVC;, is a vector
with n elements such that HVC;[j] is the most recent information process P; knows about the
physical clock of process P;. HVC;[i] = PT;, the physical time at process i. Other elements
HVC;[j],j #i1is learned through the communication between processes. When process P; sends
a message, it updates its HVC as follows: HVC;[i] = PT;, HVC;|j]| = max(HVC;[j], PT; — €) for

J #i. Then HVC; is piggy-backed with the outgoing message. Upon reception of a message msg,

21

process P; uses the piggy-backed hybrid vector clock HV Cp,¢ to update its HVC: HV C;[i] = PT;,
HVCi[j] = max(HVCpsg|j], PT; — €) for j #i.

Hybrid vector clocks are vectors and can be compared as usual. Given two hybrid vector clock
HVC; and HVCJ-, we says HVC; is smaller than HVCJ-, denoted as HVC; < HVC]-, if and only
if HVCi[k] < HVCj[k]Vk and 3l : HVC;[l] < HVCj[l]. It =(HVC; < HVCj) A =(HVC; <
HVC;), then the two hybrid vector clocks are concurrent, denoted as HVC;||[HVC ;.

If we set € = oo, then hybrid vector clocks have the same properties as vector clocks. If
€ is finite, certain entries in HVC; can have the default value PT; — € and their representa-
tion can be compressed. For example, if n = 10,e = 20, a hybrid vector clock HVCy =
[100, 80, 80, 95, 80, 80, 100, 80, 80, 80] could be represented by n(10) bits 10010010001 and a
list of three integers 100, 95, 100, instead of a list of ten integers.

Our monitors can work with either of these clocks. We use HVC in our implementation to
facilitate its use when the number of processes is ver<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>