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ABSTRACT

USING EVENTUAL CONSISTENCY TO IMPROVE THE PERFORMANCE OF
DISTRIBUTED GRAPH COMPUTATION IN KEY-VALUE STORES

By

Duong Ngoc Nguyen

Key-value stores have gained increasing popularity due to their fast performance and simple data

model. A key-value store usually consists of multiple replicas located in different geographical

regions to provide higher availability and fault tolerance. Consequently, a protocol is employed

to ensure that data are consistent across the replicas. The CAP theorem states the impossibility

of simultaneously achieving three desirable properties in a distributed system, namely consistency,

availability, and network partition tolerance. Since failures are a norm in distributed systems

and the capability to maintain the service at an acceptable level in the presence of failures is a

critical dependability and business requirement of any system, the partition tolerance property

is a necessity. Consequently, the trade-off between consistency and availability (performance) is

inevitable. Strong consistency is attained at the cost of slow performance and fast performance is

attained at the cost of weak consistency, resulting in a spectrum of consistency models suitable for

different needs. Among the consistency models, sequential consistency and eventual consistency

are two common ones. The former is easier to program with but suffers from poor performance

whereas the latter suffers from potential data anomalies while providing higher performance.

In this dissertation, we focus on the problem of what a designer should do if he/she is asked

to solve a problem on a key-value store that provides eventual consistency. Specifically, we are

interested in the approaches that allow the designer to run his/her applications on an eventually

consistent key-value store and handle data anomalies if they occur during the computation. To that

end, we investigate two options: (1) Using detect-rollback approach, and (2) Using stabilization

approach. In the first option, the designer identifies a correctness predicate, sayΦ, and continues to

run the application as if it was running on sequential consistency, as our system monitors Φ. If Φ

is violated (because the underlying key-value store provides eventual consistency), the system rolls



back to a state where Φ holds and the computation is resumed from there. In the second option,

the data anomalies are treated as state perturbations and handled by the convergence property of

stabilizing algorithms.

We choose LinkedIn’s Voldemort key-value store as the example key-value store for our study.

We run experiments with several graph-based applications on Amazon AWS platform to evaluate

the benefits of the two approaches. From the experiment results, we observe that overall, both

approaches provide benefits to the applications when compared to running the applications on

sequential consistency. However, stabilization provides higher benefits, especially in the aggressive

stabilization mode which trades more perturbations for no locking overhead. The results suggest

that while there is some cost associated with making an algorithm stabilizing, there may be a

substantial benefit in revising an existing algorithm for the problem at hand to make it stabilizing

and reduce the overall runtime under eventual consistency.

There are several directions of extension. For the detect-rollback approach, we are working to

develop a more general rollback mechanism for the applications and improve the efficiency and

accuracy of the monitors. For the stabilization approach, we are working to develop an analytical

model for the benefits of eventual consistency in stabilizing programs. Our current work focuses

on silent stabilization and we plan to extend our approach to other variations of stabilization.
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CHAPTER 1

INTRODUCTION

1.1 TheTrade-off betweenConsistency andPerformance inDistributedKey-
value Stores.

Distributed key-value stores [4–10] have gained increasing popularity due to their scalability

and simple data model. Clients (users) view a distributed key-value store as a single table with two

fields: a unique key field for storing the variable names, and a value field for storing the associated

values of the variables. A machine storing that table is called a replica (or server). Clients’ access

to the key-value store is performed by issuing two operations, PUT (write) and GET (read), to the

replicas.

The clients are distributed programs that coordinate to perform some computation task (e.g.

find a valid coloring for a graph). During their execution, clients use the key-value store to retrieve

data and update computation results (i.e. permanent data are not kept locally at the clients). For the

client program to be correct, it is required that the values read by the clients are up-to-date. This

requirement can be divided into two smaller requirements: (1) the client actions are atomic [11]

(e.g. a client should not read a value that is being updated by another client), and (2) the data store

is sequentially consistent [12], i.e. responses from different replicas are identical so that the clients

have the illusion that they are interacting with a single replica.

The first requirement can be satisfied if the clients employ some mutual exclusion mechanism

such as locking [13] when they access data entries. The second requirement is trivially satisfied

if the key-value store consists of one replica. However, single-replica key-value store is not used

in practice since the replica will become a performance bottle-neck as well as a single point of

failure. To provide higher availability and fault tolerance, the key-value table is replicated across

multiple replicas located at regions geographically far enough (a failure in a region does not affect

other regions). The key-value store also employs a consistency model (protocol) to keep the data at
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replicas synchronized. Tomeet the second requirement aforementioned, themodel employed should

be the sequential consistency model. Sequential consistency is more natural for programmers to

write programs as it masks the complexity of replication and ensures that different clients always

observe the same value for the same key. However, when there is a transient failure, in order to

fulfill that contract, the sequential consistency model would block client operations until it is safe

to proceed (cf. Figure 1.1a). This restriction impedes the performance (throughput and latency of

operations) of the key-value store.

Another consistency model is eventual consistency which is a best-effort approach. When a

client reads the value of a key, each replica returns themost recent value that it knows (evenwhen that

value differs from the values stored at other replicas). When a client updates a key, a confirmation

from one replica is sufficient for the PUT operation to be considered successful. (Confirmations

from multiple replicas are great but not required, and the responsive replica is usually located in the

same geographical region as the client). Since there is no blocking, the performance of a key-value

store under eventual consistency is higher than under sequential consistency. However, when there

is a transient network failure, different replicas could store different values for the same key under

eventual consistency. If this happens, clients may observe different values for the same key (cf.

Figure 1.1b) and they could perform undesirable actions. Although such data anomalies are not

frequent [4] and they are expected to be resolved eventually when the failure stops and new updates

override the old values, they affect the correctness of the computation and compromise subsequent

execution.

The advantages and disadvantages of the sequential and eventual consistency models reflect

the inevitable trade-off between consistency and performance in a key-value store. Recall that due

to the CAP theorem [14, 15], it is impossible for a distributed key-value store to simultaneously

achieve three properties: (C) sequential consistency, (A) availability, i.e. a client request is always

satisfied within a provisioned time, and (P) partition tolerance, i.e. the key-value store is still

operational despite the presence of network failures. Since failures are a norm in distributed

systems and the capability to maintain the service at an acceptable level in the presence of failures
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(a) Sequential consistency (b) Eventual consistency

Figure 1.1: Illustration of two consistencymodels for key-value store. Original - = 0. In sequential
consistency (Figure 1.1a), the PUT (write) operation would not succeed until the network condition
is recovered because it requires confirmations from all replicas. Hence, clients always have a
consistent view of the data under sequential consistency. In eventual consistency (Figure 1.1b), the
PUT operation succeeded but clients observed different values of - .

is a critical dependability and business requirement of any system, the partition tolerance property

is a necessity. Consequently, the trade-off between consistency and availability (performance) is

inevitable. The best trade-off decisions between consistency and performance often depend on

the specific applications carried out by the clients and there is an array of consistency models

designed for different needs [16, 17]. This dissertation focuses on sequential consistency and

eventual consistency as they are the consistency models available in most distributed key-value

stores [4, 5, 10, 18–24]. In this dissertation, we choose LinkedIn’s Voldemort [5] key-value store

as the example of key-value store for studying and evaluation since the project is open-source and

supports tunable consistency.

1.2 Problem Statement

The problem we are interested in this study is as follows:
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A designer has to solve a distributed computation problem on a key-value store. The

key-value store only provides sequential consistency and eventual consistency, and the

key-value store has better performance under eventual consistency. What should the

designer do to make use of this advantage of eventual consistency?.

In order to use eventual consistency, the designer has to address the problem associated with

it: data anomalies could lead to incorrect computation results. As an illustration of this problem,

consider a distributed computation that relies on a key-value store to arrange exclusive access to

a critical resource for the clients. If the key-value store employs sequential consistency and the

clients use Peterson’s algorithm [13] then the mutual exclusion is guaranteed but the performance

is slow. If eventual consistency is adopted then the mutual exclusion is violated (cf. Figure 1.2a).

The reason for this violation is that when there is a transient network failure, client requests are still

served by the local replicas (servers) and the clients will observe different values for the variables

related to Peterson algorithm (namely x_1, x_2, and turn). Both clients think that the status of

the lock is available and they proceed to the critical section simultaneously. We say that two clients

conflict when the time intervals during which the clients want to access the same critical section

overlap.

For the sake of discussion, suppose that the computation task carried out by the clients is the

graph coloring problem [25] in which the clients have to assign colors to every graph node (vertex)

so that neighboring nodes have different colors. Each client is assigned to work on a partition

of the input graph (a subset of graph nodes). Assume client 1 and client 2 are working on two

neighboring nodes � and �, respectively. To ensure action atomicity, a lock is imposed on the

edge (�,�) so that client 1 (respectively client 2) could not process node � (respectively node �)

if it has not obtained the lock corresponding to edge (�,�). As illustrated before, this lock could

be (incorrectly) obtained by both clients under eventual consistency. Each client then proceeds to

perform the action on its node, i.e. it reads the colors of neighboring nodes and chooses a different

color for its node. Suppose the initial color of every node is 0, both clients choose color 1 as the

new color for both � and�. However, these client actions are incorrect since � and� are neighbors
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so they should have different colors (cf. Figure 1.2b). The reason for these incorrect actions is that

client 1 (respectively client 2) reads the color of node � (respectively node �) while that color is

being updated by client 2 (respectively client 1). If the clients use locks and the key-value store is

sequentially consistent, the resultant coloring is always valid since at most one client is allowed to

proceed and update the color of its node at any given time.

We denote such erroneous client actions as consistency violating faults (2E 5 s) because the

consequences of those actions are similar to consequences of faulty program transitions and the

causes of those actions are due to data anomalies in eventual consistency. We will formally define

2E 5 s in Section 2.4.

1.3 Approaches

To address the problem caused by 2E 5 s, the designer has two options: either prevent 2E 5 s by

employing sequential consistency or let 2E 5 s occur in eventual consistency and handle them. The

first option retards the performance and is not in accordance with the goal of the problem we have

stated before. For the second option, there are several approaches:

1. Develop a brand new algorithm that works under eventual consistency, or

2. Use stabilization to handle 2E 5 s, or

3. Run an existing algorithm (available for sequential consistency) on eventual consistency

by pretending that the underlying system satisfies sequential consistency but monitor the

execution to detect violations of the mutual exclusion requirement and perform corrective

actions upon a violation is reported.

In case of the first approach, we potentially need to develop a new algorithm for each computation

task at hand. In case of the second option, data anomalies and the consequences of 2E 5 s are treated

as state perturbations and a stabilizing algorithm is already designed to handle the issue. In case

of the third option, the corrective actions may include rolling back the system to an earlier state if

a violation is found. While rollback in general distributed systems is a challenging task, existing
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(a) Violation of mutual exclusion

(b) Incorrect client actions in graph coloring

Figure 1.2: Illustration 2E 5 s: data anomalies in eventual consistency lead to incorrect computation
results. Figure 1.2a: two clients use Peterson algorithm for mutually exclusive access to the critical
section. However, the mutual exclusion requirement is violated if the key-value store is eventually
consistent. Operations related to variable turn are not shown since the conditions of the while
loop become false due to variables x_1 and x_2. Figure 1.2b: Clients execute incorrect actions in
graph coloring computation due to violation of mutual exclusion. On the left is the original color
and on the right is the new coloring after client 1 and client 2 executes actions on nodes � and �,
respectively. The new colors resulted from those actions are still not a valid coloring.

approaches have provided rollback mechanisms for key-value stores with low overhead such as [26].

Moreover, it is possible to develop efficient application-specific rollback algorithms by exploiting

the properties of the applications. This study considers the approaches that allow users to use

existing algorithms with minimal modification and run them on eventual consistency. In particular,
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the second and third approaches aforementioned (stabilization and detect-rollback) are our main

interest. We also note that although we focus on eventual consistency in this study, these two

approaches are applicable for any consistency model weaker than sequential consistency as well.

While this work could be potentially useful for distributed computation problems in general,

the focused applications of this work are distributed computation problems on graphs. In these

problems, the state of each graph node depends on its neighbors. Each client is assigned a partition

of the graph (a subset of graph nodes) in such a way that the workload is roughly evenly distributed

among the clients. Since the state of a node depends on its neighbors, the clients need to coordinate

to avoid executing actions on two neighboring nodes simultaneously. Otherwise, they may read

inconsistent data (data being updated by some client and other clients should not read this data item

until the update is complete) and their computation results would be incorrect as illustrated above

in the graph coloring problem (cf. Figure 1.2b). This coordination requirement manifests in many

other graph computation problems as well such as spanning trees [27,28], leader election [29,30],

matching [31, 32], dominating set [33, 34], independent set [35, 36], clustering [37–39].

1.4 Contributions

This dissertation focuses on two approaches that handle 2E 5 s which occur during the execution

of distributed graph computations on eventually consistent key-value stores, namely the stabilization

and detect-rollback approaches. Specifically, it evaluates the benefits of these two approaches when

compared to the baseline of using sequential consistency (i.e. the option of preventing 2E 5 s). In

this direction, the dissertation has the following contributions:

(1) Detect-rollback approach: we propose a detect-rollback framework to handle 2E 5 s during

the execution of distributed computations on eventually consistent key-value stores. Specif-

ically, the designer identifies a correctness predicate, say Φ, and runs the distributed com-

putation (using the algorithms designed for sequential consistency) on eventual consistency.

At the same time, a monitoring module will monitor for violation of Φ (as a consequence of

2E 5 s) during the execution. If Φ is violated (¬Φ is true), the systems will be rolled back to
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Figure 1.3: The detect-rollback approach: when the predicate of interest is violated, system state
is restored to the most recent consistent snapshot and the computation resumes from there.

an earlier correct state from where subsequent execution is resumed.

TomonitorΦ, we design and develop a prototype of the monitoringmodule for the Voldemort

key-value store [5]. Our monitors adapt the algorithms by Garg and Chase [2,3] for detection

of linear and semi-linear predicates on key-value stores.

For the rollback task, one possibility is restoring the system to a recent snapshot taken

by lightweight snapshot tools such as Retroscope [26] (cf. Figure 1.3). This is the most

general option in the sense that it can be used for any application. However, it is potentially

expensive 1. Another possibility of rollback is analyzing and exploiting the properties of

violations in specific applications. In this regard, we propose an efficient rollback algorithm

specifically designed for distributed graph computations.

We use several graph-based applications that are motivated by the task of Social Media

Analysis and Weather Monitoring as our test cases (the details of these applications are

described in Section 3.3.1). We run these test cases on Amazon AWS platform and on our

local lab network (where we can control the network latency) to quantify the usefulness

of the proposed detect-rollback approach (using the rollback algorithm specific for graph

computations). From the experimental results, we observe the following benefits of the

detect-rollback approach:

• Throughput improvement: We observe that the Voldemort key-value store achieves

significantly higher performance under eventual consistency (even with monitors run-

1We are working on the general rollback mechanism with Retroscope
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ning concurrently with the applications) than under sequential consistency. Specifically,

the client throughput is improved by 50%−80% for Social Media Analysis applications

and by 20% − 50% for Weather Monitoring applications. We note that this throughput

improvement is not necessarily the improvement in the overall computation time since

some requests such as checking the status of the locks are counted in the throughput

measurement but do not contribute to the progress of the computation.

• Efficient detection: The monitors could quickly detect violations of linear and semi-

linear predicates even when there are as many as thousands of predicates being moni-

tored simultaneously. In particular, more than 99.9% of violations were detected within

50 milliseconds for experiments on Amazon AWS regional network (all machines in the

same AWS region), and within 3 seconds on the global network (machines in different

AWS regions).

• Low monitoring overhead: We evaluate the overhead of the monitoring module to

see how it might affect the computation when being used for the purpose of debugging

or runtime monitoring. We observe that when the monitors were used with sequential

consistency, the overhead was at most 8%. And, for eventual consistency, the overhead

was less than 4%.

• Improvement in the final benefits: We observe that the final benefits (i.e. the benefits

observed in the final progress of the applications) vary depending on the properties of

applications. Specifically, for non-terminating applications such as Weather Monitor-

ing, the application progress is 45% − 47% faster on detect-rollback than on sequential

consistency. For terminating applications such as Social Media Analysis, the benefit is

10% − 20%.

One of the reasons for the reduced benefit in terminating applications is that during the

final phase of a terminating application, there are few tasks to be processed, thus the

chance of client conflicts and recurring violations is increased during this phase. In fact,

if the application keeps using eventual consistency, the computation may stall due to
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repeated rollbacks (livelocks). We use strategies such as random backoff and adaptive

consistency to overcome livelocks. We also observe that terminating applications using

detect-rollback approach progressed 16%–28% faster than using sequential consistency

during the first phase of the computation (the first phase is when 90%of thework is done,

and the final phase is when 10% of the remaining work is done), and 10%–20% faster

overall (because it has to switch from eventual consistency to sequential consistency

during the final phase of the execution).

(2) Stabilization approach: Unlike the detect-rollback approach, the stabilization approach

does not need additional mechanisms to handle 2E 5 s except that the existing algorithm (for

sequential consistency) is stabilizing 2. We evaluate the difference in the performance when

running a stabilizing algorithm on eventual consistency versus on sequential consistency. We

choose the stabilizing algorithm for maximal matching by Manne et al. [40] as the case study

and find that the convergence time of maximal matching is 1.2–1.8 times faster on eventual

consistency than on sequential consistency. Especially, if we allow the algorithm to run on

eventual consistency without a mutual exclusion mechanism and treat violations of mutual

exclusion as additional 2E 5 violations (we call this execution mode aggressive stabilization),

the speedup factor is 7–12 times.

(3) Stabilization vs. Detect-rollback: We compare the benefits of the two approaches. Clearly,

if the underlying program is not stabilizing then wemust rely on the detect-rollback approach.

Hence, we focus on stabilizing programs where both approaches are applicable. Specifically,

we consider three stabilizing graph computation problems/applications: planar graph col-

oring, arbitrary graph coloring, and maximal matching. From the experimental results, we

obtain the following observations:

• Overall comparison: Stabilization approach provides higher benefits than the detect-

2In this dissertation, the terms self-stabilizing and stabilizing are interchangeable, and so are
self-stabilization and stabilization.
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rollback approach in the three graph computation problems above. Using sequential

consistency as the base-line for comparison, stabilization improves the convergence

time of the programs by 25 % to 35 %, whereas the detect-rollback approach improves

the convergence time by 30 % in the best case and potentially causes performance to

suffer. Notably, the convergence time of the programs speeds up by 2 to 15 times with

aggressive stabilization.

The aggressive stabilization execution mode eliminates the locking overhead at the

cost of extra 2E 5 s. The boosted speedup of aggressive stabilization suggests that the

stabilization cost for the extra 2E 5 s is outweighed by the benefits of no locking overhead.

This observation is also compatible with our analysis in which we observe that a sizeable

proportion of the client computation time is spent on obtaining locks to ensure the action

atomicity requirement is satisfied (clients do not update the states of neighboring nodes

simultaneously).

• Analysis of the impact of 2E 5 s: We analyze the 2E 5 s caused by the absence of locks

and find that many of those 2E 5 s resolve favorably by themselves (they do not result in

erroneous computation), thus the actual stabilization cost is lower than what we have

thought. In contrast, the removal of locks would require the detect-rollback approach

to utilize more complicated mechanisms to detect atomicity violation instances. The

overhead of such a mechanism is expensive, thus we do not consider the aggressive

detect-rollback approach in this dissertation.

• Mitigating 2E 5 s in aggressive stabilization Although being more beneficial, aggres-

sive stabilization could suffer from some 2E 5 s that prevent the programs to converge.

We propose some heuristics to improve the performance of aggressive stabilization in

such cases.

• Impact of other factors: The performance of detect-rollback and stabilization is ana-

lyzed under different dimensions such as types of case study problems, characteristics

of input graphs, partitioning schemes, and network latency. We observe that for most of
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these factors, the impact of a factor on stabilization and on detect-rollback is different.

• Scalability: When tested on large-scale real-world graphs, the stabilization approach,

especially aggressive stabilization scales very well. This scalability is not observed in

sequential consistency and in the detect-rollback approach.

• A comparison with non-stabilizing algorithm: A natural question could be that

what options should we choose if both stabilizing and non-stabilizing algorithms are

available? We note that in general, when the algorithms are different, it is hard to

fairly compare the two approaches since the performance is affected not only by the

algorithm itself but also by other factors such as optimization and implementation

techniques. However, if the algorithms are closely similar, the comparison may be

useful. In particular, we compare the stabilizing and non-stabilizing algorithms for

graph coloring since the algorithms are fairly similar. A key observation we obtain

from the experimental results is that the stabilizing algorithm is less efficient than the

non-stabilizing counterpart on sequential consistency. However, it is the overall winner

when used with eventual consistency, as it can benefit from tolerating 2E 5 s. We also

note that more studies are needed to obtain more insights and more comprehensive

comparison.

These observations imply that while there is some cost associated with making an algorithm

stabilizing, there may be a substantial benefit in revising an existing algorithm for the problem

at hand to make it stabilizing and reduce the overall runtime under eventual consistency.

1.5 Outline of the Dissertation

The remaining of this dissertation consists of seven chapters and one appendix as follows:

• Chapter 2 provides the definitions of concepts and notations used in this dissertation. We

reiterate the notion of causality and the general framework for predicate detection. Then

we describe two classes of predicate that are used in this dissertation, linear and semilinear
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predicates, and their detect algorithms. Thenwe review the general architecture of a key-value

store and the specifics in the Voldemort key-value store. We also present the formal definition

of distributed programs, the traditional active-node model and the new passive-node model,

the notion of self-stabilization, and define the notion of consistency violating faults (2E 5 s).

• Chapter 3 investigates the benefits of the detect-rollback approach. For the detect phase

of the detect-rollback approach, we present our design and implementation of the moni-

tors and evaluate the performance of the monitors. For the rollback phase, we propose

an application-specific rollback algorithm as well as strategies for handling livelocks (re-

occurring violations). We also present evaluation results of rollback. These results have been

published in [41, 42].

• Chapter 4 investigates the benefits of self-stabilization approach. We present our evaluation

with the maximal matching self-stabilization program and discuss extensions of this approach

in other versions of stabilization. The results in this chapter have been published in [43].

• Chapter 5 compares the benefits of detect-rollback approach and stabilization approach. We

present the evaluation results under different factors such as case study problems, input

graphs, partitioning schemes, etc. The results in this chapter have been published in [44].

• Chapter 6 discusses some possible directions to extend our results.

• Chapter 7 reviews the literature related to this dissertation and identifies the contributions of

this dissertation.

• Chapter 8 concludes this dissertation.

• In the Appendix, we list the publications on which this dissertation is based. We also provide

access links to the relevant source code and experimental data set.

1.6 Nomenclature

In Table 1.1, we list some common notations that we use in this dissertation and their meanings.
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Table 1.1: List of Notations and Their Meanings.

Notation Meaning

General:

= Number of processes in a distributed system

%8 The 8Cℎ process

n The bound for clock synchronization error

Φ or P Predicate of interest. We want to detection violations of Φ or

P

2E 5 Consistency Violating Faults

COLOR The problem of coloring an arbitrary/general graph

P-COLOR The problem of coloring a planar graph

MAX-MATCH The problem of finding amaximal matching in a general graph

AWS Amazon Web Service

Causality:

48 9 The 9 Cℎ local event on process %8

4 → 5 Event 4 happens before event 5

4 ℎ1 5 Same as 4 → 5 , event 4 happens before event 5 ,

4‖ 5 Events 4 and 5 are concurrent

+�8 Vector clock on process %8

+�8 [ 9] The 9 Cℎ element of vector clock +�8

4.+� The vector clock associated with event 4

+�1 < +�2 Vector clock +�1 is smaller than vector clock +�2

+�1‖+�2 Vector clocks +�1 and +�2 are concurrent

�+�8 Hybrid vector clock on process %8

�+�8 [ 9] The 9 Cℎ element of hybrid vector clock �+�8
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Table 1.1 (cont’d)

Notation Meaning

�+�1 < �+�2 Hybrid vector clock �+�1 is smaller than hybrid vector clock

�+�2

�+�1‖�+�2 Hybrid vector clocks �+�1 and �+�2 are concurrent

%)8 The physical clock on process %8

Predicate Detection:

SAT Satisfiablity problem

NP Non-deterministic Polynomial time

GLOB The problem of Global Predicate Detection

- ≤ . The cut/state . is reachable from the cut/state -

BD?(-) Set of supremal states of cut -

BD22(4) Successor of local state/event 4

-4 Advance of - along 4

5 8=0; (-) - is final, i.e. execution stops at -

%Φ(-,. ) Possibly-Φ

�Φ(-,. ) Definitely-Φ

5 >A1Φ(B, -) B is forbidden state of cut - w.r.t. Φ

B 5 >A1Φ(B, -) B is semi-forbidden state of cut - w.r.t. Φ

4;8681;4(-) Set of all eligible states of -

Key-value Store:

Replica (or server) A machine that stores the key-value store data

Client A process/program that performs some distributed computa-

tion task. Its data (e.g. computation results) is not kept locally

but kept in the key-value store.

PUT Put/Write request that updates the value of a key

GET Get/Read request that retrieves the value of a key
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Table 1.1 (cont’d)

Notation Meaning

GET_VERSION Get version request that retrieves the version of a key

# Replication factor, i.e. the number of copies for each data

entry (key)

' Required reads, i.e. theminimumnumber of responses needed

for a GET (read) request to be successful.

, Required writes, i.e. the minimum number of confirmations

needed for a PUT (write) request to be successful.

#3'1,3 Example of consistency where # = 3, ' = 1,, = 3

SEQ Sequential consistency

EVE-S Eventual consistency with stabilization

EVE-AS Eventual consistency with aggressive stabilization (or aggres-

sive stabilization for short)

Rollback Eventual consistency with detect-rollback

Distributed Program:

? A distributed program

+? Set of nodes in program ?

�? Set of edges in program ?

E0A? Set of variables in program ?

(? State space of program ?

B8 The 8Cℎ state of program ?

02 9 Set of actions at node 9 (of program ?)

X02 Set of transition of action 02

X? Set of transition of program ?

X 9 Set of transition of node 9

� Invariant of program ?
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Table 1.1 (cont’d)

Notation Meaning

03E? computation of program ? in the presence of adversary

!_5_20 A lock corresponding to the edge between node 5 and node

50.
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CHAPTER 2

PRELIMINARIES

This chapter defines the concepts used in this dissertation. Section 2.1 defines the model of

distributed systems, the notion of causality, vector clocks, and the problem of predicate detection

in distributed systems. We also discuss the linear and semilinear predicates and their detection

algorithms as this dissertation focuses on these two classes of predicate. In Section 2.2, we review

the general architecture of a key-value store and the specifics in the Voldemort key-value store.

Section 2.3 presents the formal definition of distributed programs, the traditional active-node model

and the new passive-node model, and the notion of self-stabilization. Finally, Section 2.4 define

the notion of consistency violating faults (2E 5 s). The content of this chapter is mainly adapted

from [1–3,42, 43, 45–51].

2.1 Predicate Detection in Distributed Systems

2.1.1 System Model

A distributed system consists of = processes %1, %2, ..., %=. Those processes do not have a shared

memory and do not have a shared global clock. Each process operates according to its local

algorithm and communicates with other processes using messages. During its execution, states of

a process are changed by events. There are 3 types of events: sending message events, receiving

message events, and internal computation events. The set of all events within a process %8 is

denoted as �8 = {481, 482, ...}. The set of all events that have happened during the computation of

a distributed system is � =
⋃
8 �8.

2.1.2 Causality in Distributed Systems

In the above asynchronous model of distributed systems, actions performed by processes are not

determined by the real time but by the events. For example, a process only starts an internal
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computation after it receives a particular message <B6, no matter the real time when it receives

<B6 is. A process only receives a message<B6 after some process sends<B6. Therefore, the cause

and effect relationship has an important role in connecting events in a distributed computation.

The cause and effect relationship between events is expressed by the notion of causality [45]

(which is also known as happen-before relationship, or causal ordering). Specifically, an event 4 is

said to happen before (or causally precede) an event 5 , denoted as 4 → 5 when one of the following

conditions is met:

• 4 and 5 are events on the same process and 4 proceeds 5 . That is there exists %8 such that 4

and 5 are local events of %8: 4 = 48 9 and 5 = 48: , and 8 < : .

• 4 is the sending event of a message <B6, and 5 is the receiving event of that message <B6.

• There exists some event 6 such that 4 → 6 and 6 → 5 .

We note that the causality defined above captures the potential cause and effect relationship

which sometimes may not be the actual one. For example, events 4 and 5 are two message-receive

events on the same process and 4 occurs before 5 . By definition 4 → 5 , but in reality, the

occurrence of 4 does not causally affect the occurrence of 5 . If we re-run the computation again,

it is possible that 5 occurs before 4.

If neither 4 causally precedes 5 nor 5 causally precedes 4, then 4 and 5 are said to be concurrent,

denoted as 4‖ 5 . Specifically,

4‖ 5 ⇐⇒ ¬(4 → 5 ) ∧ ¬( 5 → 4)

Causality relationship is used to define consistent global states. A consistent global state is the

state resulted from a consistent cut. A consistent cut is a set of events in a distributed computation

such that if the cut includes an event 4 then it also includes all events causally preceding 4. In other

words, for a cut to be consistent, if it includes the effect then it also includes the causes. However, a

consistent cut could include the causes without consequent effects. Formally, a cut � is consistent

19



when

4 ∈ � ∧ 5 → 4 =⇒ 5 ∈ �

Equivalently, a global snapshot is considered consistent if its constituent local states aremutually

concurrent. Since a process state results from an event, if there are local states that are not mutually

concurrent, there exists an event that is not included in the cut but one of its effects is included in

the cut.

Causality relationship could be represented by different mechanisms such as vector clocks (or

vector time) [46,47], dependency vectors, and concurrent maps [52]. Among them, vector clock is

the most popular mechanism.

2.1.3 Vector Clocks

Vector clocks, defined by Fidge and Mattern [46, 47], are designed for asynchronous distributed

systems that make no assumption about underlying speed of processes or about message delivery.

Each process %8 maintains a vector+�8 [] of = integer numbers which represent the best information

that %8 knows about the clocks of other processes. Initially, +�8 [ 9] = 0 ∀8, 9 . Vector clocks are

updated according to the following rules:

• Upon the occurrence of a local event (internal computation, send message, receive message)

at process %8, the 8Cℎ element of +�8 is first incremented by 1, i.e. +�8 [8] = +�8 [8] + 1.

• Each message sent by process %8 will also include the latest vector clock +�8.

• When a process %8 receives a message, it will update every component of its vector clock to

the most recent known value:

∀ 9 : +�8 [ 9] = <0G("+� [ 9], +�8 [ 9])

s where "+� is the vector clock piggy-backed on the message by its sender.

.
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Vector clocks can be compared using vector comparison method (suppose +�1 and +�2 are

two vector clocks):

+�1 < +�2 ⇐⇒ (∀ 9 : +�1 [ 9] ≤ +�2 [ 9]) ∧ (∃: : +�1 [:] < +�2 [:])

+�1‖+�2 ⇐⇒ ¬(+�1 < +�2) ∧ ¬(+�2 < +�1)

It can be proved that vector clocks exactly characterize causality relationship. Let 4.+� denote

the vector clock associated with event 4, then:

4 → 5 ⇐⇒ 4.+� < 5 .+�

4‖ 5 ⇐⇒ 4.+�‖ 5 .+�

Hence, in order to determine the causal relationship between events or states, we just compare their

corresponding vector clocks.

2.1.4 Hybrid Vector Clocks

Hybrid vector clocks [48] are designed for systems where clocks of processes are synchronized

within a given synchronization error (denoted as parameter n in this dissertation). While the size

of vector clocks is always = (the number of processes in the system), hybrid vector clocks have the

potential to reduce the size to less than =. Basically, a hybrid vector clock is a vector clock with the

optimization that clock elements that have not been updated for a long time will be automatically

updated (because processes clocks are partially synchronized) and their representation can be

compacted to reduce the space.

Every process maintains its own HVC. HVC at process %8, denoted as �+�8, is a vector

with = elements such that �+�8 [ 9] is the most recent information process %8 knows about the

physical clock of process % 9 . �+�8 [8] = %)8, the physical time at process 8. Other elements

�+�8 [ 9], 9 ≠ 8 is learned through the communication between processes. When process %8 sends

a message, it updates its HVC as follows: �+�8 [8] = %)8, �+�8 [ 9] = <0G(�+�8 [ 9], %)8 − n) for

9 ≠ 8. Then �+�8 is piggy-backed with the outgoing message. Upon reception of a message <B6,
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process %8 uses the piggy-backed hybrid vector clock �+�<B6 to update its HVC: �+�8 [8] = %)8,

�+�8 [ 9] = <0G(�+�<B6 [ 9], %)8 − n) for 9 ≠ 8.

Hybrid vector clocks are vectors and can be compared as usual. Given two hybrid vector clock

�+�8 and �+� 9 , we says �+�8 is smaller than �+� 9 , denoted as �+�8 < �+� 9 , if and only

if �+�8 [:] ≤ �+� 9 [:]∀: and ∃; : �+�8 [;] < �+� 9 [;]. If ¬(�+�8 < �+� 9 ) ∧ ¬(�+� 9 <

�+�8), then the two hybrid vector clocks are concurrent, denoted as �+�8 | |�+� 9 .

If we set n = ∞, then hybrid vector clocks have the same properties as vector clocks. If

n is finite, certain entries in �+�8 can have the default value %)8 − n and their representa-

tion can be compressed. For example, if = = 10, n = 20, a hybrid vector clock �+�0 =

[100, 80, 80, 95, 80, 80, 100, 80, 80, 80] could be represented by =(10) bits 10010010001 and a

list of three integers 100, 95, 100, instead of a list of ten integers.

Our monitors can work with either of these clocks. We use HVC in our implementation to

facilitate its use when the number of processes is very large. However, in the experimental results,

we ignore this optimization and treat as if n is∞.

2.1.5 A Basic Framework of Predicate Detection

The goal of a predicate detection algorithm is to ensure that the predicate of interest Φ is always

satisfied during the execution of the distributed system. In other words, we want the monitors to

notify us of cases where predicateΦ is violated (¬Φ = CAD4). To detect whether the given predicate

Φ is violated, we utilize the notion of possibility modality [49, 50] as described below.

Each process has a trace of its local events/states. From the traces of local states, Marzullo

and Neiger [49] enumerate consistent global states by combining local states which are mutually

concurrent. Then global states are connected together as follows: connect the global state (1 to the

global state (2 if (2 could be reached from (1 by a single operation/event in some process (i.e. the

cut corresponding to (2 has exactly one more event than the cut corresponding to (1). The graph

of all consistent cuts and their connections forms a lattice as shown in Figure 2.1. The lattice shows

all possible paths that the distributed system may execute.
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Figure 2.1: (This figure is based on [1]). The lattice of distributed computation history (right) is
constructed from a particular execution (left) and causality. G + H > 15 is a definitely predicate
since it is met by state (31 and every computation passes through (31. G + H = 12 is a possibly
predicate since it is met by only (21 and there are computation paths not going through (21.

Denote Φ be the predicate under consideration. There are 3 possibilities [49]:

• Possibly Φ: there exists at least a global state in the lattice that satisfies Φ. In other words,

there exists a valid distributed computation during which we can observe the truthification

of Φ. If Φ represents the existence of a bug then possibly Φ implies the bug exists but we

may or may not observe it during an execution of the distributed system.

• Definitely Φ: there exists a finite set of global states � such that: (1) all states in � satisfy Φ,

and (2) all infinite distributed computations must pass through at least one state in �. If Φ

represents the existence of a bug then definitelyΦ implies the bug exists and we will certainly

observe it during any long enough execution.

• Never Φ: no state in the lattice satisfies Φ. If Φ represents the existence of a bug then never

Φ implies the distributed system is free from that bug.

The above framework can be used for global predicate detection of an arbitrary predicate.

However, since it explores the state space thoroughly, this approach has worst-case exponential

time complexity of $ ("=) where = is the number of processes and " is the average number of

events on each process. It can be proved that the problem of global predicate detection (GLOB) in

general case is NP-hard [3]. First, GLOB is a decision problem because the goal is to determine
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Figure 2.2: Reduction of a SAT instance to a GLOB instance.

whether there exists a consistent global state in which the predicate of interest Φ is violated

(¬Φ = CAD4. Given a consistent global state, we can evaluate Φ at that global state in polynomial

time (with respect to the number of processes =). Therefore, GLOB is NP. The prove the problem

is NP-complete, we reduce an arbitrary instance of SAT problem into an instance of GLOB. An

instance of SAT problem is a Boolean function of 5 (11, 12, ..., 1=) where 18 are Boolean variables.

The corresponding GLOB instance (cf. Figure 2.2 consists of = processes. On process %8, there

are only two internal events that assign 18 = 5 0;B4 and 18 = CAD4 respectively. There is no

communication between processes. The global predicate to be detected is ¬Φ = 5 (11, 12, ..., 1=).

It is clear that 5 is satisfiable if and only if there exists a consistent cut in which ¬Φ = CAD4.

Although the general global predicate detection problem is NP-complete, for some classes of

predicates, there exist efficient detection algorithms. In this dissertation, we focus on two classes of

predicates: linear predicates and semi-linear predicates. These predicates can be detected efficiently

and they are commonly used in monitoring and verification of distributed systems. For example,

conjunctive predicates are linear predicates while mutual exclusions are semi-linear predicates. In

Sections 2.1.6 and 2.1.7, we recall the definitions of linear predicates, semilinear predicates and

their detection algorithms [2, 3].
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2.1.6 Linear Predicate and Detection Algorithm

In this section and the next sections, we recall the definitions of linear and semilinear predicates

and their detection algorithms as described in [3]. Before we describe the linear predicates, we

define some relevant definitions.

Path is a sequence of cuts where the later cut has more than previous cut exactly one local

state. Path ( = -1, ..., -: such that -8+1 = -8 ∪ {one more state}. For example, in Figure 2.3, the

sequence �1, �2, �4 is a path. The sequences �1, �4 and �1, �2, �3, �4 are not paths.

Suppose - and . are two consistent global cut. We say . is reachable from - , denoted as

- ≤ . , if there is an execution that takes the system from - to. . In other words, there exists a path

in which - appears before . . The notion of path and reachable is also applicable for consistent

global states since each consistent cut corresponds to exactly one consistent global state.

Supremal state is a local state that is not less than any other local states of the cut. Intuitively,

supremal states are the right-most states of the cut at each process. The set of all supremal states of a

cut� is denoted as BD?(�). For example, in the example of Figure 2.3, we have BD?(�1) = {41, 42},

BD?(�2) = {41, 44}, BD?(�3) = {43, 42}, and BD?(�4) = {43, 44}.

Successor of a local state B is the next local state after B in the same process, denoted by BD22(B).

If B is a local state in cut - , we define - B = - ∪ BD22(B). - B is called the advance of cut - along

local state B. For example, in Figure 2.3 BD22(41) = 43, BD22(42) = 44, �
41
1 = �3, �

42
1 = �2,

�
43
2 = �4, �

44
3 = �4.

If the execution stops at cut/state - then - is called final, denoted as 5 8=0; (-).

Possibly-Φ: We say that the predicate Φ is possibly satisfied between two state/cut - and . ,

denoted as %Φ(-,. ), if there exist an execution from X to Y along which Φ is satisfied at some

state/cut.

%Φ(-,. ) ≡ ∃, : (- ≤ , ≤ . ) ∧ (Φ(,) = CAD4)

Definitely-Φ: We say that the predicate Φ is definitely satisfied between two state/cut - and . ,
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Figure 2.3: An example of a distributed computation

denoted as �Φ(-,. ), if along any execution from X to Y, Φ is satisfied at some state/cut.

�Φ(-,. ) ≡ ∀( : (( is a path from - to . ) ∧ (∃, ∈ ( : Φ(,) = CAD4)

Table 2.1 provides some examples of possibly-Φ and definitely-Φ. It is obvious that�Φ(-,. ) ⇒

%Φ(-,. ).

Table 2.1: Examples of Possibly-Φ and Definitely-Φ for the computation in Figure 2.3

Φ %Φ(�1, �4) �Φ(�1, �4)
G + H = 3 Yes Yes
H − G = 1 Yes No
G + H = 4 Yes Yes
G = 0 No No

Forbidden state: Suppose X is a consistent cut and Φ(-) = 5 0;B4. A local state B ∈ - is

called a forbidden state, denoted as 5 >A1Φ(B, -) when Φ will remain false until the cut leaves the

forbidden state B.

5 >A1Φ(B, -) ≡ ∀. : - ≤ . : (Φ(. ) = 5 0;B4) ∨ (- B ≤ . )

Linear predicate: predicate Φ is linear, denoted as ;8=40A (Φ), if for any cut - where Φ(-) =

5 0;B4, at least one of the supremal states of - is a forbidden state.

;8=40A (Φ) ≡ ∀- : (Φ(-) = 5 0;B4) ⇒ (∃B ∈ BD?(-) : 5 >A1Φ(B, -))
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Thus to find a consistent global state satisfying Φ, we have to advance the cut passing by the

forbidden state(s). However, we should not advance the cut passing by non-forbidden state(s) unless

required. For the example in Figure 2.3 and let Φ = (G = 1) ∧ (H = 2). Φ is not satisfied in �1.

The forbidden state is 42. If we advance �1 passing 42 we get �2 in whichΦ is satisfied. However,

if we advance �1 passing 41 we get �3. After than, even if we advance �3 passing 42 we will get

�4 and Φ is still not satisfied along that path. When we advance the cut along a local state, says 4,

the cut may become inconsistent because 4 is not concurrent with some existing supremal states.

In this case, we have to advance all supremal states not concurrent with 4. This process is repeated

until all supremal states are concurrent. If we advance the cut a long a state 4 and after that the cut

is still consistent, then 4 is called an eligible state of the cut. The set of all eligible states of a cut -

is denoted as 4;8681;4(-).

4;8681;4(-) = {B : B ∈ BD?(-) ∧ - B is consistent}

Algorithm 1 illustrates the algorithm for detection of linear predicate [2].

Algorithm 1 Linear predicate detection algorithm adapted from [2]
1: Input:
2: Φ ⊲ global linear predicate to detect
3: Variable:
4: �( ⊲ global state
5: Initialization:
6: �( ← set of initial local states
7: while Φ(�() == 5 0;B4 do
8: Find forbidden local state B ∈ �(
9: �( ← �( ∪ BD22(B) ⊲ advance �( along B
10: consistent(�() ⊲ make �( consistent
11: end while
12: return �(

We observe that cut �( is never moved backward. Each advance adds a new event to �(. Thus

the total number of global states/cuts enumerated is at most the total number of events.

27



Figure 2.4: Illustration of semi-forbidden state.

2.1.7 Semilinear Predicate and Detection Algorithm

Semi-forbidden state: SupposeΦ(-) = 5 0;B4. Local state B ∈ - is called a semi-forbidden state,

denoted as B 5 >A1Φ(B, -), if

B 5 >A1Φ(B, -) ≡ ∀. : - B ≤ . : %Φ(-,. ) ⇒ %Φ(- B, . )

Figure 2.4 illustrates the meaning of a semi-forbidden state. If predicate Φ is ever satisfied

along some path from - to . , then it will be satisfied by some path from - B to . . Hence, by

advancing the cut passing semi-forbidden state, we will find a global state where Φ is satisfied (if

there is any such global state). We note that a semi-forbidden state is also an eligible state.

Semi-linear predicate: predicate Φ is semilinear, denoted as B4<8;8=40A (Φ), if for any cut -

where Φ(-) = 5 0;B4, at least one of the supremal states of X is a semi-forbidden state state.

(4<8;8=40A (Φ) ≡ ∀- : ((Φ(-) = 5 0;B4) ∧ ¬ 5 8=0; (-)) ⇒ ∃B ∈ 4;8681;4(-) : B 5 >A1Φ(B, -)

To find the global state where a semilinear predicate Φ is satisfied, we find the semi-forbidden

state in the current cut and advance the cut along that state as illustrated in Algorithm 2.

We observe that cut - is never moved backward and each advance adds a new event to - .

Thus the total number of global states/cuts enumerated is at most the total number of events. The

procedure to find the semi-forbidden state depends on the nature of Φ. For example, if Φ is a
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Algorithm 2 Semilinear predicate monitor algorithm adapted from [3]
1: Input:
2: Φ ⊲ global semilinear predicate to detect
3: Variable:
4: �( ⊲ global state
5: Initialization:
6: �( ← set of initial local states
7: while Φ(�() == 5 0;B4 do
8: Find B ∈ �( : B ∈ 4;8681;4(�() ∧ B 5 >A1Φ(B, �()
9: �( ← �( ∪ BD22(B) ⊲ advance �( along B
10: end while
11: return �(

mutual exclusion predicate, then finding the semi-forbidden state is equivalent to finding all eligible

states [3]. Checking whether a local state B is eligible is $ (=) as we have to compare B with other

supremal states. So the cost of finding the semi-forbidden state is $ (=2).

2.2 Key-Value Store

2.2.1 General Architecture of a Key-Value Store

We utilize the standard architecture for key-value stores. Specifically, the data consists of (one or

more) tables with two fields, a unique key and the corresponding value. The field value consists

of a list of <version, value> pairs. A version is a vector clock that describes the origin of the

associated value. It is possible that a key has multiple versions when different clients issue PUT

(write) requests for that key independently. When a client issues a GET (read) request for a key,

all existing versions of that key will be returned. The client could resolve multiple versions for the

same key on its own or use the resolver function provided from the library. To provide efficient

access to this table, it is divided into multiple partitions. Furthermore, to provide redundancy and

ease of access, the table is replicated across multiple replicas.

To access the entries in this table, the client utilizes two operations: GET and PUT . The

operationGET (G) provides the client with the value (or values if multiple versions exist) associated

with key G. The operation PUT (G, E0;) changes the value associated with key G to E0;. The state
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of the servers can be changed only by PUT requests from clients.

2.2.2 Voldemort Key-Value Store

Voldemort is LinkedIn’s open source equivalence of Amazon’s Dynamo key-value store. In Volde-

mort, clients are responsible for handling replication. When connecting to a server for the first time,

a client receives meta-data from the server. The meta-data contains the list of servers and their ad-

dresses, the replication factor (#), required reads ('), required writes (,), and other configuration

information.

When a client wants to perform a PUT (or GET) operation, it sends PUT (GET) requests to

# servers and waits for the responses for a predefined amount of time (timeout). If at least ,

(') acknowledgments (responses) are received before the timeout, the PUT (GET) operation is

considered successful. If not, the client performs one more round of requests to other servers to get

the necessary number of acknowledgments (responses). After the second round, if still less than,

(') replies are received, the PUT (GET) operation is considered unsuccessful.

Since the clients do the task of replication, the values # , ',, specified in the meta-data is only

a suggestion. The clients can change those values for their needs. By adjusting the value of , ,

', and # , the client can tune the consistency model. For example, if , + ' > # and , > #
2 for

every client, then they run on sequential consistency. On the other hand, if , + ' ≤ # then they

have eventual consistency. For example, when # = 3, ' = 1,, = 1 we have eventual consistency.

When # = 3, ' = 1,, = 3 or # = 3, ' = 2,, = 2, we have sequential consistency. In this

dissertation, we also use #G'H,I (or 'H,I when value of # is clear from the context) as the

short form of # = G, ' = H,, = I.

2.2.3 The Performance Difference between Eventual and Sequential Consistency in Volde-
mort Key-Value Store

Let us consider the PUT request first. In reality, a PUT request consists of a GET_VERSION

request (to obtain the latest version of the key so that a new version value can be issued properly)
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and an actualPUT request (to request the replicas to commit to their database the new value and new

version of the key). However, we assume aPUT request is an actualPUT request for now andwewill

discuss the full PUT request later. When a client issues a PUT request, it needs to receive enough

number of acknowledgments from replicas/servers within the timeout to succeed. In sequential

consistency, the required number of “in-time” acknowledgments is higher. Thus, the client has to

wait for acknowledgments from more servers, especially the ones in the remote distance. Due to

network latency, it is possible that the acknowledgments from the remote servers arrive late after

the timeout and the client has to re-issue the PUT requests (the late acknowledgments are ignored

by the client). This increases the latency and decreases the throughput of PUT request. On the

other hand, in eventual consistency, the number of “in-time” acknowledgment is lower (typically

one) and the client request is likely to be satisfied promptly by the local server. Thus, the latency

of a PUT request in eventual consistency is low and the throughput is high.

We note that in eventual consistency, even if the acknowledgments from remote servers arrive

late, the PUT request is still committed at remote databases as long as the servers receive the PUT

request. Data anomalies (the PUT request is committed at some servers and not at some other

servers) occur if the PUT request fails to arrive some servers because of network or hardware

failures. This scenario is expected to be rare. So intuitively, since the eventually consistent client

knows that its PUT request is very likely to be committed at every server, the client believes it is safe

to proceed without waiting for confirmations from remote servers after the timeout. On the other

hand, the sequentially consistent client thinks that it is only safe to proceed if the confirmations

are received in time. Otherwise, the client has to re-issue the request to make sure the servers are

consistent. This cautiousness increases the latency (and bandwidth) and decreases the throughput

in exchange for the guarantee of consistency.

For GET requests, it is similar. An eventually consistent client thinks the value stored at

the local server is identical to that stored at remote servers, thus it proceeds without waiting for

responses from remote servers after the timeout. The problem occurs if different servers store

different versions for the same key (because of anomalies caused by PUT requests). In this case,
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different clients can read different values of the same key, which may result in incorrect actions by

the clients.

Regarding the full PUT request, it consists of two independent requests: a GET_VERSION

request (which is basically similar to a GET request) and an actual PUT request. Thus compared

to a GET request, the chance for a full PUT request to succeed (i.e. the client receives replies for

both GET_VERSION and actual PUT from servers within the timeout) is lower. Consequently,

the performance difference between eventual and sequential consistency is larger for (full) PUT

requests than for GET requests.

We also observe another scenario for data anomaly with a full PUT request as follows. Suppose

we have two servers (1 and (2 at locations distant from each other. Client �1 and client �2 are

close to (1 and (2 respectively. Assume the key-value store is eventually consistent. Consider

the key G with original version < E4A = 0, E0; = 0 >. Client �1 wants to update G with value

1. It issues GET_VERSION requests, receives the reply from (1, and ignores the expired reply

from (2. Then it issues the actual PUT request with new value < E4A = 1, E0; = 1 > for key G.

Client �2 simultaneously does the same but with new value< E4A = 1, E0; = 2 >. When server (1

receives the actual PUT request from �1, it commits the request to its database. When the actual

PUT request from�2 arrives (1 later, the request is rejected because server (1 observes the version

(E4A = 1) is not newer than the current version of G in its database. In a symmetrical way, the value

< E4A = 1, E0; = 2 > is committed to (2 database. Assume the reject responses from (1 to �2 and

from (2 to�1 arrive late and are ignored by the clients. Then the clients will proceed while leaving

the server databases inconsistent. If sequential consistency is used, the clients will observe the

reject responses from the servers and they will re-issue the requests until positive acknowledgments

are confirmed. Although that guarantees a consistent database, the repeated requests also increase

the latency observed by the application at the higher level.

Late arrivals of replies from remote servers is probably the main reason for the decreased

performance in sequential consistency because they cause the clients to retry. Consequently, when

network latency increases (for example the replicas/servers are distributed over a wider area for
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higher fault-tolerance and availability), the performance difference between eventual and sequential

consistency is expected to be larger. We also note that different sequential consistency configurations

have different performance. For example, '1,3 is better than '2,2 for GET requests because

'2,2 has stricter requirement for GET requests. However, '1,3 is worse than '2,2 for PUT

requests. As a result, in an application where PUT requests dominate, '1,3 is better than '2,2.

Since it is typical that PUT requests constitute the majority in an application, we usually choose

configurations like ' = 1,, = # as representatives for sequential consistency.

In summary, we anticipate that the following factors can influence the performance difference

between eventual and sequential consistency:

• Workload characteristics. The difference is larger for PUT request than for GET request.

Thus when the percentage of PUT requests increases, the difference is increased.

• Network latency. When network latency is larger, the difference increases.

• Specific sequential consistency configuration. For example, '1,3 is expected to perform

better than '2,2 in a typical application.

We will validate our hypothesis in Chapter 3.

2.3 Distributed Programs

A program ? consists of a set of nodes +? and a set of edges �? . We assume that for any node

9 , edge ( 9 , 9) is included in �? . Each node, say 9 , in +? is associated with a set of variables E0A 9 .

The set of variables of program ?, denoted by E0A? , is obtained by the union of the variables of

nodes in ?. A state of ? is obtained by assigning each variable in E0A? a value from its domain.

State space of ?, denoted by (? , is the set of all possible states of ?.

Each node 9 in program ? is also associated with a set of actions, say 02 9 . An action in 02 9

is of the form 6 −→ BC, where 6 is a predicate involving {E0A: : ( 9 , :) ∈ �?} and BC updates one

or more variables in E0A 9 . We say that an action 02 (of the form 6 −→ BC) is enabled in state B

if and only if 6 evaluates to true in state B. The transitions of action 02 (of the form 6 −→ BC)
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are given by {(B0, B1) | B0, B1 ∈ (? , 6 is true in B0 and B1 is obtained by execution BC in state B0}.

Finally, transitions of node 9 (respectively, program ?) is the union of the transitions of its actions

(respectively, its nodes). We use X02, X 9 and X? to denote transitions corresponding to action 02,

node 9 and program ? respectively.

2.3.1 Traditional/Active-Node Model

Computation. In the traditional/active-node model, the computation of program ? is of the form

〈B0, B1, · · · 〉 where

• ∀; : ; ≥ 0 :, B; is a state of ?,

• ∀; : ; ≥ 0 : (B; , B;+1) is a transition of ? or

((B; = B;+1) and no action of ? is enabled in state B;), and

• If some action 02 of ? (of the form 6 −→ BC) is continuously enabled (i.e., there exists ; such

that 6 is true in every state in the sequence after B;) then 02 is eventually executed (i.e., for

some G ≥ ;, (BG , BG+1) corresponds to execution of BC.)

The above computation model corresponds to the centralized daemon with interleaving se-

mantics wherein each step, only one node can execute at a given time. This can be implemented

in read-write atomicity or message passing model by solutions such as local mutual exclusion,

dining philosophers, etc. The resulting computation guarantees that two neighboring nodes do not

execute simultaneously. In turn, the resulting computation is realizable in the original model. (Our

observations/results are also applicable to other models. We discuss this in Section 4.4.)

2.3.2 Passive-Node Model

The structure of the program (in terms of its nodes and actions) remains the same in the passive-node

model. The only difference is in terms of the execution model. Specifically, the system consists

of a replicated and partitioned key-value store that captures the current state of ?. In other words,

34



the state of ? is stored in terms of pairs of the form 〈:, E〉, where : is a key (i.e., the name of the

variable and node ID) and E is the corresponding value. Additionally, the system contains a set

of clients. The role of the clients is to execute the actions of one or more nodes assigned to them

(either statically or dynamically).

In an ideal environment, the execution of the program is performed as follows: Let node 9

be assigned to client 21. Then, 21 reads the values of the variables of 9 and its neighbors. If it

finds that some action of 9 is enabled, it updates the key-value store with the new values for the

variables of 9 . Similar to active-node model, it is required that the actions of multiple nodes can

be serialized.

Computation. The notion of computation in the passive-node model is identical to that of

the active-node model from Section 2.3.1; the only difference is the introduction of clients in the

passive-node model. Furthermore, by requiring the clients to execute actions of each node infinitely

often, it guarantees the fairness assumed in the definition of computation in Section 2.3.1.

2.3.3 Similarity between Active-Node and Passive-Node Model

The passive-node model relies on two requirements (1) each node is given a fair chance to execute,

and (2) execution corresponds to a sequence of atomic executions of actions of some nodes. The first

requirement is satisfied as long as each client considers every node infinitely often; if some action

is enabled continuously, eventually a client would execute that action. The second requirement,

atomicity of individual actions, is satisfied if (1) clients enforce local mutual exclusion among

nodes, i.e., if we ensure that clients 21 and 22 do not operate simultaneously on nodes 9 and : that

are neighbors of each other and (2) when a client reads the value of any variable (key), it obtains

the most recent version of that variable (key).

Of these, the requirement for mutual exclusion was necessary even in the active-node model.

The ability to read the most recent value was inevitable in the active-node model. Specifically, if

node 9 reads the values of its neighbors after it had acquired the local mutual exclusion, it was
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guaranteed to read the latest state of its neighbors. In the passive-node model, this requirement

would be satisfied if we have only one data store (i.e., no replication) that maintains the data

associated with all nodes or the replicated data store appears as a single copy. In particular, if the

replicated data store provides a strong consistency such as sequential consistency, this property is

satisfied. However, if it provides a weaker consistency such as eventual consistency, this property

may be violated. We discuss the details of this sequential/eventual consistency, next in Section 2.4.

2.3.4 Executing a Node Action by Client

The procedure for a client � to process a node 8 assigned to its partition is as follows:

(1) Obtain exclusive update privilege for the state of node 8 and read privilege for neighbors of 8

(i.e. no other client should read the state of 8 or update the state of 8 neighbors).

(2) Read the state of 8 (variables of 8) and its neighbors.

(3) Compute the new values for 8’s variables.

(4) Write the new state of 8 to the store (this step can be omitted if all of 8’s variables are

unchanged), and

(5) Release the privileges it holds for 8 and its neighbors.

In order to support client � in obtaining necessary privileges, we designate one Peterson

lock [13] associated with each graph edge. To read the state of node 8, client � just needs to obtain

a lock associated with any edge incident on 8. To update the state of node 8, however, client � needs

to obtain the locks associated with all edges incident on 8. Once such locks are obtained by�, other

clients can read state of 8’s neighbors but they cannot update any of them (since they have to wait

for one of the locks being hold by �).

For deadlock avoidance, client � obtains the required locks in lexicographical order. Suppose

8 < 9 then the lock for edge (8, 9) is !_8_ 9 . As an illustration, in Figure 2.5, if client � wants to

update node 6, it has to obtain these locks in the following order !_1_6, !_5_6, !_6_9.
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Once � has had the update privilege for node 6, no other client can update any neighbor of 6

(says 5) since that client will have to wait for � to release the lock !_5_6.

We note that the above locking scheme only works if the shared data is sequentially consistent.

If it is eventually consistent, simultaneous updates could happen as explained in Section 2.4.

Since obtaining locks constitutes a sizeable proportion of client computation time (waiting for

other clients to release the required locks) and many nodes shared neighbors, a client usually does

not process each node individually but processes a batch of nodes at the same time. This batch

processing reduces the number of locks the client needs to obtain. For example, suppose nodes 5

and 6 are assigned to a client. If the client processes 5 and 6 individually, it will have to obtain 5

locks, namely !_1_5, !_5_9, !_5_20 (for node 5) and !_1_6, !_6_9 (for node 6). Note that there

is no need for obtaining lock !_5_6 if both nodes are assigned to the same client. On the other

hand, if the client processes node 5 and 6 together, it only has to obtain 3 locks, namely either

!_1_6 or !_1_6, !_5_20, and either !_5_9 or !_6_9.

Figure 2.5: Illustration of locks. To update node 6, a client has to obtain these locks in following
order: !_1_6, !_5_6, !_6_9

2.3.5 Stabilization

In this section, we recall the definition of stabilization from [53]. This definition relies on the

notion of computation. As discussed in Section 2.3.1 and 2.3.2, computations can be defined in

both active-node model and passive-node model. We use this notion of computation in defining

stabilization.
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Stabilization. Let ? be a program. Let � be a subset of state space of ?. We say that ? is

stabilizing with state predicate � if and only if

• Closure: If program ? executes a transition in a state in � then the resulting state is in �, i.e.,

for any transition (B0, B1) ∈ X? , B0 ∈ � ⇒ B1 ∈ �, and

• Convergence: Any computation of ? eventually reaches a state in �, i.e., for any 〈B0, B1, · · · 〉

that is a computation of ?, there exists ; such that B; ∈ �.

In our context, we use � to capture the predicate towhich program recovers so that the subsequent

computation satisfies the specification. We use the term invariant of ? to denote this predicate.

In our initial discussion, we focus only on the convergence property. Hence, we focus on silent

stabilization which requires that upon reaching the invariant, the program terminates, i.e., it has no

further actions that it can execute. Thus, we have

Silent Stabilization. Let ? be a program. Let � be a subset of state space of ?. We say that ?

is silent stabilizing with state predicate � if and only if

• Closure: Program ? has no transitions that can execute in �, i.e., for any B0 ∈ �, (B0, B1) ∉ X?

for any state B1, and

• Convergence: Any computation of ? eventually reaches a state in �, i.e., for any 〈B0, B1, · · · 〉

that is a computation of ?, there exists ; such that B; ∈ �.

Our initial discussion focuses on silent stabilization. We discuss generalized stabilization in

Section 4.4.

2.4 Consistency Violating Faults (2E 5 )

In the passive-node model, the program state is stored at the replicas. The protocol for

synchronizing replicas can be passive replication or active replication (the case of Voldemort).
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In passive-replication-based sequential consistency, the protocol enforces that all replicas are

strictly synchronized. A replica will not provide the new value unless that value has been committed

by other replicas. A client reading from any of the replicas will always obtain the fresh data.

However, for eventual consistency, the protocol is relaxed and allows replicas to return the current

values they know, which may be not up-to-date.

In active-replication-based sequential consistency, the protocol requires each update to be

committed by a majority of replicas and the client reads from at least one of them, thus obtains

the fresh data. For eventual consistency, however, the protocol is relaxed where the read and write

quorums do not overlap. Thus, some replicas may have not received the latest updates due to

transient faults, and if a client reads from those replicas, it obtains a stale value.

In short, a client always obtains the fresh data with sequential consistency and may obtain a

stale data with eventual consistency. Reading stale information could lead the clients to incorrect

computation steps/transitions.

Abstract description of 2E 5 . For each variable G of node 9 , each replica 8 maintains a value

of G. 9 as a key-value pair. For the purpose of illustration, assume that there are three replicas and

the values of G. 9 at these replicas are A1, A2 and A3. Denote 5 (A1, A2, A3) as the abstract value of

G. 9 where 5 is some resolution function that chooses a value among A1, A2, A3 in a deterministic

manner. For example, function 5 chooses the latest value of G. 9 (assume that each value is also

associated with a logical or physical timestamp). In sequential consistency where the replication

protocol provides the impression that all the replicas work as if there is only a single replica, access

(read/write) to variable G. 9 by any client always returns the same abstract value of G. 9 . In eventual

consistency, however, this property may be violated when different clients observe different values

of G. 9 (e.g. client 21 observes value A1 while client 22 observes value A2). Only one of those values

is up-to-date and the other is stale. We also note that reading stale data is possible in eventual

consistency but such anomalies are expected to be not frequent [4] and they are usually associated

with transient faults.
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Reading stale values due to eventual consistency in Voldemort. Figure 2.6 illustrates how

a 2E 5 occurs in Voldemort key-value store where the clients are running on eventual consistency

R1W1. Suppose G = 0 initially. Client 1 updates the value of G to 1 by sending PUT(G, 1) request

to all replicas/servers. Due to a temporary network failure, the request does not reach server 3.

However, the PUT request still succeeds since client 1 receives replies from two servers (PUT

request is successful if client receives at least W=1 replies). If client 3 reads the value of G, it

will obtain the stale value G = 0 from server 3 (this read succeeds since client 3 just needs R=1

response). In contrast, any client served by server 1 and server 2 will see the new value G = 1.

Figure 2.6: Illustration of 2E 5 in Voldemort. Clients run on eventual consistency R1W1

Reading stale values can lead to erroneous transitions. For example, in the graph coloring

problem suppose client 1 wants to work on node 5 while client 3 wants to work on node 20 (cf.

Figure 2.5). If variable G in Figure 2.6 is the shared lock !_5_20, then client 1 will think that it

has obtained the lock while client 3 observes the lock is still vacant and tries to obtain it (it will

succeed since one confirmation from server 3 is sufficient). As a result, both clients enter a critical

section simultaneously. Suppose the initial color of each node is color 0 and the two clients read

these values. Then the clients will likely update the colors of both node 20 and node 5 to color 1,

resulting in a new invalid coloring. We note that if locks are not used to guarantee atomicity (such
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as in aggressive stabilization), client 1 and client 3 may also read and update the color of node 5

and node 20 simultaneously without knowing so, and produce invalid coloring results in a similar

manner.

Consistency Violating Faults (2E 5 ). With this observation, we can now view the computation

of the given program ? as a sequence 〈B0, B1, · · · 〉 such that most transitions (B; , B;+1), ; ≥ 0 in this

sequence correspond to the transitions of ?. However, some transitions correspond to the scenario

where some node 9 reads an inconsistent (stale) value for some variable and updates one or more

variables of 9 . By design, the incorrect execution corresponds to changing one or more variables

of one node. Thus, the effect of the incorrect execution is state perturbation of some node. We

denote such incorrect execution as concurrency violating faults (2E 5?)):

2E 5? ⊂ {(B0, B1) |B0, B1 ∈ (? and B0, B1 differ only in the variables of some node 9 of ?}.

Remark 1. Whenever ? is clear from the context, we use 2E 5 instead of 2E 5? .

Remark 2. If the clients do not utilize a mechanism to guarantee atomicity, they may read

unreliable values that are not supposed to be read (values being updated by other clients), and

incorrectly calculate values for some variables of some node, e.g. node 9 . When these incorrect

values are updated to the store, that update has the same effect as perturbing the variables of node

9 . In other words, the incorrect transitions caused by violations of the action atomicity requirement

can also be treated as 2E 5 s.

Computation in the presence of 2E 5 . With the definition of 2E 5 , we can see that computation

of program ? in a given replicated passive-node model is of the form 〈B0, B1, · · · 〉 where

• ∀; : ; ≥ 0 :, B; is a state of ?,

• ∀; : ; ≥ 0 : (B; , B;+1) ∈ X? ∪ 2E 5? or
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(B; = B;+1) and no action of ? is enabled in state B; , and

• If some action 02 of ? (of the form 6 −→ BC) is continuously enabled (i.e., there exists ; such

that 6 is true in every state in the sequence after B;) then 02 is eventually executed (i.e., for

some G ≥ ;, (BG , BG+1) corresponds to execution of BC.)

Figure 2.7 illustrates a computation with 2E 5 s.

Figure 2.7: A computation in the presence of 2E 5

42



CHAPTER 3

DETECT-ROLLBACK APPROACH

In this chapter, we evaluate the benefits of the detect-rollback approach in handling 2E 5 s. The

correctness of this approach relies on two components: detection and rollback. In the detection

phase, we run applications on eventual consistency and use themonitors to detect any violations that

occur. Once a violation is reported, a rollback mechanism is invoked to recover the computation to

a previous correct state and then resume the computation.

This chapter is organized as follows. Section 3.1 presents our design and implementation

of the predicate detection module. Section 3.2 discusses some rollback mechanisms, presents

our application-specific rollback algorithm as well as strategies for handling livelocks. Section

3.3 describes the experiment setups, the test cases we used, and analysis of experiment results.

In particular, we are interested in evaluating the overhead and effectiveness of the monitors, the

benefits of eventual consistency with monitors vs. sequential consistency, the benefit of detect-

rollback (i.e. eventual consistency with monitors and rollback) vs. sequential consistency. We

also interested in experiment results that help checking our anticipation in Section 2.2.3. We make

concluding remarks in Section 3.4.

3.1 Predicate Detection Module

3.1.1 Overall Architecture

The predicate detection module (monitoring module) is responsible for monitoring and detecting

violation of the global predicate of interest in a distributed system. The structure of the module is as

shown in Figure 3.1. It consists of local predicate detectors attached to each server and the monitors

independent of the servers. The local predicate detector caches the state of its host server and sends

information to the monitors. This is achieved by intercepting the PUT requests for variables that

may affect the predicate being monitored. The monitors run predicate detection algorithm based
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Figure 3.1: Architecture of predicate detection module

on the information received to determine if the global predicate of interest P has been violated.

We anticipate that the predicate of interest P is a conjunction of all constraints that should be

satisfied during the execution. In other words, P is of the form P1 ∧P2 ∧ · · · P; where each P8 is a

constraint (involving one or more processes) that the program is expected to satisfy. Each P8 can be

of different types (such as linear or semilinear). The job of the monitoring module is to identify an

instance whereP is violated, i.e., to determine if there is a consistent cut where¬P1∨¬P2∨· · · ¬P;

is true. In order to monitor multiple predicates, the designer can have multiple monitors with one

monitor for each predicateP8 or onemonitor for all predicatesP8’s. In the former case, the detection

latency is small but the overheads can be unaffordable when the number of predicates is large since

we need many monitor processes. In the latter case, the overhead is small but the detection latency

is long. We adopt a compromise: our monitoring module consists of multiple monitors and each

monitor is responsible for multiple predicates. The predicates are assigned to the monitors based

on the hash of the predicate names in order to balance the monitors’ workload.

The number of monitors equals the number of servers and the monitors are distributed among

the machines running the servers. We have done so to ensure that the cost of the monitors is
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<predicate>
<type>semilinear</type>
<conjClause>
<id>0</id>
<var>
<name>x2</name> <value>1</value>

</var>
<var>
<name>y2</name> <value>1</value>

</var>
</conjClause>
<conjClause>
<id>1</id>
<var>
<name>z2</name> <value>1</value>

</var>
</conjClause>

</predicate>

Figure 3.2: XML specification for ¬P ≡ (G1 = 1 ∧ H1 = 1) ∨ I2 = 1

accounted for in experimental results while avoiding overloading a single machine. An alternative

approach is to have monitors on a different machine. In this case, the trade-off is between CPU

cycles used by the monitors (when monitors are co-located with servers) and communication cost

(when monitors are on a different machine). Our experiments suggest that in the latter approach

(monitors on a different machine) monitoring is more efficient. However, since there is no effective

way to compute the increased cost (of machines in terms of money), we report results where

monitors are on the same machines as the servers.

Each (smaller) predicate P8 is a boolean formula on the states of some variables. Since any

boolean formula can be converted to a disjunctive normal form, users can provide the predicates

being detected (¬P8’s) in disjunctive normal form. We use the XML format to represent the

predicate. For example, the semilinear predicate, says ¬P1 ≡ (G1 = 1 ∧ H1 = 1) ∨ I2 = 1, in

XML format is shown in Figure 3.2. Observe that this XML format also identifies the type of the

predicate (linear, semi-linear, etc.) so that the monitor can decide the algorithm to be used for

detection.
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3.1.2 Local Predicate Detector

Upon the execution of a PUT request, the server calls the interface functionlocalPredicateDetector

which examines the state change and sends a message (also known as a candidate) to one or more

monitors if appropriate. Note that not all state changes cause the localPredicateDetector to

send candidates to the monitors. The most common example of this is when the changed variable

is not relevant to the predicates being detected. Other examples depend upon the type of predicate

being detected. As an illustration, if predicate ¬P is of the form G1∧G2 then we only need to worry

about the case where G8 changes from 5 0;B4 to CAD4.

A candidate sent to the monitor of predicate P8 consists of an HVC interval and a partial copy

of the server local state containing variables relevant to P8. The HVC interval is the time interval

on the server when P8 is violated, and the local state has the values of variables which make ¬P8

true.

For example, assume the global predicate of interest to be detected is¬P ≡ ¬P1∨¬P2 · · ·∨¬P<

where each ¬P 9 is a smaller global predicate. Assume that monitor " 9 is responsible for detection

of predicate ¬P 9 . Consider a smaller predicate, says ¬P2, and for the sake of the example, assume

that it is a conjunctive predicate, i.e. ¬P2 ≡ (¬!%1
2) ∧ (¬!%

2
2) ∧ ...(¬!%

=
2) where = is the number

of servers. We want to detect when ¬P2 becomes true. On a server, say server 8, the local predicate

detector will monitor the corresponding local predicate ¬!%82 (or ¬!%2 for short, in the context

of server 8 as shown in Figure 3.3). Since ¬P2 is true only when all constituent local predicates

are true, server 8 only has to send candidates for the time interval when ¬!%2 is true. In Figure

3.3, upon the first PUT request, no candidate is sent to monitor "2 because ¬!%2 is false during

interval [�+�0
8
, �+�1

8
]. After serving the first PUT request, the new local state makes ¬!%2

true, starting from the time �+�2
8
. Therefore upon the second PUT request, a candidate is sent to

monitor"2 because ¬!%2 is true during the interval [�+�2
8
, �+�3

8
]. This candidate transmission

is independent of whether ¬!%2 is true or not after the second PUT request is served. It depends

on whether ¬!%2 is true after the execution of the previous PUT request. That is why, upon the

second PUT request, a candidate is also sent to monitor "3 but none is sent to "1. However, if
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Figure 3.3: Illustration of candidates sent from a server to monitors corresponding to three con-
junctive predicates. If the predicate is semilinear, the candidate is always sent upon a PUT request
of relevant variables.

the predicate is not a linear predicate, then upon a PUT request for a relevant variable, the local

predicate detector has to send a candidate to the associated monitor anyway.

3.1.3 Implementation of the Monitors.

The task of a monitor is to determine if some smaller predicate P8 under its responsibility is

violated, i.e., to detect if a consistent state on which ¬P8 is true exists in the system execution. The

monitor constructs a global view of the variables relevant to P8 from the candidates it receives. The

global view is valid if all candidates in the global view are pairwise concurrent.

The concurrence/causality relationship between a pair of candidates is determined as follows:

suppose we have two candidates �0=31, �0=32 from two servers (1, (2 and their corresponding

HVC intervals [�+�BC0AC1 , �+�4=31 ], [�+�BC0AC2 , �+�4=32 ]. Without loss of generality, assume

that ¬(�+�BC0AC1 > �+�BC0AC2 ) (cf. Figure 3.4).

• If�+�BC0AC2 < �+�4=31 then the two intervals have common time segment and�0=31‖�0=32.

• If �+�4=31 < �+�BC0AC2 , and �+�4=31 [(1] ≤ �+�BC0AC2 [(2] − n then interval one is consid-
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ered happens before interval two. Note that �+� [8] is the element corresponding to process

8 in HVC. In this case �0=31 → �0=32

• If �+�4=31 < �+�BC0AC2 , and �+�4=31 [(1] > �+�BC0AC2 [(2] − n , this is the uncertain case

where the intervals may or may not have common segment. In order to avoid missing possible

violations, the candidates are considered concurrent.

Figure 3.4: Illustration of causality relation under HVC interval perspective

When a global predicate is detected, the monitor informs the administrator or triggers a desig-

nated process of recovery. We develop detection algorithms for themonitors of linear predicates and

semilinear predicates based on [2, 3] as shown in Algorithm 1 and Algorithm 2 (these Algorithms

are described in Section 2.1). Basically, the algorithms have to identify the correct candidates to

update the global state (�() so that we would not have to consider all possible combinations of �(

as well as not miss the possible violations. In linear (or semilinear) predicates, these candidates

are forbidden (or semi-forbidden) states. Forbidden states are states such that if we do not replace

them, we would not be able to find the violation. Therefore, we must advance the global state along

forbidden states. Semi-forbidden states are states such that if we advance the global state along

them, we would find a violation if there exists any. The procedure of advancing the global snapshot

�( along a local state B (B belongs to �() means the successor of B is added to �(. The successor

of a local state B is the next local state after B on the same process. As B is replaced by its successor,

the global snapshot �( “advances” forward. When advancing global state along a candidate, that

candidate may not be concurrent with other candidates existing in the global state. In that case,
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we have to advance the candidates to make them consistent. This is done by consistent(GS) in

the algorithm. If we can advance global state along a candidate without calling consistent(GS),

that candidate is called an eligible state. The set of all eligible states in the global state is denoted

as eligible(GS) in the algorithms. For a more detailed discussion of linear and semi-linear

predicates, we refer to [3].

After a consistent global state �( is obtained, we evaluate whether predicate P is violated at

this global state (P(�() = CAD4 means P is satisfied, P(�() = 5 0;B4 means P is violated). If

P is violated, the algorithms return the global snapshot �( as the evidence of the violation. Note

that the monitors will keep running even after a violation is reported so that possible violations in

the future will not be missed. This is the case when the applications, after being informed about

the violation and rolling back to a consistent checkpoint before the moment when the violation

occurred, continue their execution and violations occur again. Hence the monitors have to keep

running in order to detect any violations of P.

Thewaywe evaluateP on global state�( is slightly different from the algorithms in [2,3,54,55].

In those algorithms, the candidates are sent directly from the clients containing the states of the

clients. In our algorithms, the candidates are sent from the servers containing the information the

servers know about the states of the clients that have been committed to the store by the clients.

Note that, in a key-value store, the clients use the server store for sharing variables and committing

updates. Therefore, the states of clients will eventually be reflected at the server store. Since

the predicate P is defined over the states of the clients, in order to detect violations of P from

the states stored at the server, we have to adapt the algorithms in [2, 3, 54, 55] to consider that

difference. Furthermore, the state of a client can be stored slightly differently at different servers.

For example, a PUT request may be successful at the regional server but not successful at remote

servers. In that case, assuming we are using eventual consistency, the regional server store will

have the update while remote stores do not have the update. Our algorithms also consider this

factor when evaluating P. For example, suppose variable G has version E1 at a server and version

E2 at another server. Suppose that if G = E1 then P is violated, and if G = E2 then P is satisfied. To
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avoid missing possible violations, our algorithms check all available versions of G when evaluating

P.

Since our algorithms are adapted from [2, 3, 54, 55], the correctness of our algorithms follow

from those existing algorithms. We refer to [2, 3, 54, 55] for more detailed discussion and proof of

correctness of the algorithms.

Handling a large number of predicates. When the number of predicates to be monitored

is large (e.g. hundreds of thousands, as in Social Media Analysis application in the next section

or in graph-based applications discussed in the Introduction), it is costly to maintain monitoring

resources (memory, CPU cycles) for all of them simultaneously. That not only slows down the

detection latency but also consumes all the resources on the machines hosting the monitors (for

example, we received OutOfMemoryError error when monitoring tens of thousands of predicates

simultaneously). However, we observe that not all predicates are active at the same time. Only

predicates relevant to the nodes that the clients are currently working on are active. A predicate is

considered inactive when there is no activity related to that predicate for a predetermined period

of time, and therefore the evaluation of that predicate is unchanged. Hence, the monitors can clean

up resources allocated for that predicate to save memory and processing time.

Automatic inference of predicate from variable names. This feature is also motivated by

applications where the number of predicates to be monitored is large such as the graph-based appli-

cations. In this case, it is impossible for the users to manually specify all the predicates. However,

if the variables relevant to the predicates follow some naming convention, our monitoring module

can automatically generate predicates on-demand. For example, in graph-based applications, the

predicates are the mutual exclusion on any edge whose endpoints are assigned to two different

clients. Let �_� is such an edge, and assume � < �. If the clients are using Peterson’s mutual
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exclusion, the predicate for edge �_� will be

¬P�_� ≡ ( 5 ;06�_�_� = CAD4 ∧ CDA=�_� = ”�”)

∧( 5 ;06�_�_� = CAD4 ∧ CDA=�_� = ”�”)

When a server receives a request (PUT or GET) from some client for a variable whose name is

either flagA_B_A, or flagA_B_B, or turnA_B, it knows that the client is interested in the lock for

edge �_� and the server will generate the predicate for edge �_� so that the monitors can detect

if the mutual exclusion access on edge �_� is violated. On the other hand, if the servers never

see requests for variables flagA_B_A, flagA_B_B, and turnA_B, then both nodes � and � are

assigned to the same client and we do not need the mutual exclusion predicate for edge �_�.

3.2 Rollback from Violations

3.2.1 Rollback Mechanism

While data anomalies are possible with eventual consistency, they are rare [4] given that networks

are reliable and client conflicts are infrequent. However, such data anomalies and client conflicts

can arise and, hence, one needs to deal with these anomalies if we are using an application that

relies on eventual consistency. We discuss the rollback approaches for such scenarios.

One possible approach for rollback, especially if violations can be detected quickly is as follows:

We partition the work assigned to each client in terms of several tasks. Each task consists of two

phases (cf. Figure 3.5): (1) Read phase: the client obtains all necessary locks for all nodes in the

task, reading the necessary data, and identify the values that need to be changed. However, all

updates in this phase are done in local memory. (2)Write phase: the client writes the data that they

are expected to change and reflect it in the data store.

In such a system, a violation could occur if clients C1 and C2 are accessing the same data

simultaneously. For sake of discussion, suppose that client C1 started accessing the data before

C2. Now, if the detection of violation is quick then detection would occur before client C2 enters

the write phase. In this case, client C2 has not performed any changes to the key-value store. In
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Figure 3.5: Two client tasks involved in a violation. Since detection latency is much smaller than
the Read phase time, violation will be notified within Read phase of the current task of at least one
client.

other words, client C2 can re-start its task (that involves reading the data from the key-value store)

to recover from the violation.

With this intuition, we can provide recovery as follows: When a violation is detected, if the

client causing the violation is in the read phase, it aborts that task and starts that task again. On

the other hand, if a client is in write phase (and this can happen to at most one task if detection is

quick enough) then it continues its task normally. Note that with this approach, it is possible that

two clients that result in a violation are both in the read phase. While one of the clients could be

allowed to continue normally, this requires clients to know the status of other clients. We do not

consider this option as it is expected that in most applications clients do not communicate directly.

Rather, they communicate only via the key-value store. We utilize this approach in our rollback

mechanism. In particular, when detection is quick, we use the Algorithm 3 for rollback (cf. Figure

3.5 and Algorithm 3).

Other approaches for rollback are as follows:

• Rollback via Retroscope [26]. The most general approach is to utilize an algorithm such

as RetroScope [26]. Specifically, it allows one to rollback the state of the key-value store to

an earlier state. The time, C, of rollback is chosen in such a way that there are no violations

before time C. Upon such a rollback, we can determine the phases the clients are in at time

C. If a client is in the read phase at time C, it will abort its current task and begin it again.

And, if the client is in a write phase, it will finish that phase. Note that since there are no

violations until time C, such write phases will not cause incorrect computation results.
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Algorithm 3 Rollback algorithm at a client
1: for taskId = clientFirstTask to clientLastTask do
2: while (performTask(taskId) == False) do
3: end while
4: end for
5:
6: function performTask(C0B: �3)
7: Obtain relevant locks
8: Read information from data-store
9: Compute new values
10: if Violation is received then
11: Release locks
12: return False ⊲ abort
13: end if
14: Write new values to data-store
15: return True ⊲ success
16: end function

While this approach is most general, it is also potentially expensive. Hence, some alternate

approaches are as follows:

• Use of Self-Stabilizing Algorithms. One possibility is if we are using a self-stabilizing

algorithm. An algorithm is self-stabilizing if it is guaranteed to recover to a legitimate state

even in the presence of arbitrary state perturbation. This approach is discussed in Chapter 4.

• Use of Application-Specific Rollbacks. Another possibility is application specific rollback.

To illustrate this, consider an example of graph coloring. For sake of illustration, consider

that we have three nodes A, B, C, arranged in a line with node B in the middle. Each node

may have additional neighbors as well. Node A chooses its color based on the colors of its

neighbors. Subsequently, node B chooses its color based on node A (and other neighbors of

B). Afterward, C chooses its color based on B (and other neighbors of C). At this point, node

B is required to rollback, it can still choose its color based on the new color of node C while

still satisfying the constraints of graph coloring. In other words, in this application, we do

not need to worry about cascading rollback.
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3.2.2 Dealing with Potential of Livelocks

One potential issue with rollback is a possibility of livelocks. Specifically, if two clients C1 and

C2 rollback and continue their execution then the same violation is likely to happen again. We

consider the following choices for dealing with such livelocks.

• Random Backoff. Upon rollback, clients perform a random backoff. With backoff, the

requests for locks from clients arrive at different times in the key-value store. Hence, the

second client is likely to observe locks obtained by the first client in a consistent manner. In

turn, this will reduce the possibility of the same violation to recur.

• Reordering of Tasks. If the work assigned to clients consists of several independent

tasks, then clients can reorder the tasks upon detecting a violation. In this case, the clients

involved in the rollback are likely to access different data and, hence, the possibility of another

violation is reduced.

• Moving to Sequential Consistency. If the number of violations is beyond a certain

threshold, clients may conclude that the cost of rollback is too high and, hence, they can

move to sequential consistency. While this causes one to lose the benefits of an eventual

consistent key-value store, there would be no need for rollback or monitoring.

3.3 Evaluation Results

3.3.1 Experimental Setup

System configurations. We ran experiments on Amazon AWS EC2 instances. The servers ran

on M5.xlarge instances with 4 vCPUs, 16 GB RAM, and a GP2 general-purpose solid-state drive

storage volume. The clients ran on M5.large instances with 2 vCPUs and 8 GB RAM. The EC2

instances were located in three AWS regions: Ohio, U.S; Oregon, U.S; Frankfurt, Germany.

We also ran experiments on our local lab network which is set up so that we can control network

latency. We used 9 commodity PCs, 3 for servers, 6 for clients, with configurations as in Table
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3.1. Each client machine hosted multiple client processes, while each server machine hosted one

Voldemort server process.

Table 3.1: Machine configuration in local lab experiments

Machine CPU RAM
Server machine 1, 2 4 Intel Core i5 3.33 GHz 4 GB
Server machine 3 4 Intel Core i3 3.70 GHz 8 GB
Client machine 1, 2 4 Intel Core i5 3.33 GHz 4 GB
Client machine 3, 4 Intel Core Duo 3.00 GHz 4 GB
Client machine 5 4 AMD Athlon II 2.8 GHz 6 GB
Client machine 6 4 Intel Core i5 2.30 GHz 4 GB

On the local network, we control the delay by placing proxies between the clients and the

servers. For all clients on the same physical machine, there is one proxy process for those clients.

All communication between those clients and any server is relayed through that proxy (cf. Figure

3.6a). Due to the proxy delays, machines are virtually arranged into three regions as in Figure 3.6b.

Latency within a region is small (2 <B) while those across regions are high and tunable (e.g. 50,

100 <B). Since Voldemort uses active replication, we do not place proxies between servers. The

latency in the proxies is simulated to follow the Gamma distribution [56, 57].

(a) (b)

Figure 3.6: Simulating network delay using proxies. The proxies virtually partition our local lab
network into three regions

We considered replication factors (#) of 3 and 5. The parameters ' (required reads) and ,

(required writes) are chosen to achieve different consistency models as shown in Table 3.2. The
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number of servers is equal to the replication factor # . The number of clients is varied between 15

and 90.

Table 3.2: Setup of consistency models with # (replication factor), ' (required reads), and ,
(required writes)

N R W Abbreviation Consistency model
3 1 3 N3R1W3 Sequential

2 2 N2R2W2 Sequential
1 1 N3R1W1 Eventual

5 1 5 N5R1W5 Sequential
3 3 N5R3W3 Sequential
1 1 N5R1W1 Eventual

Test cases. In our experiments, we used 3 case studies: Social Media Analysis, Weather

Monitoring, and Conjunctive.

The application motivated by Social Media Analysis considers a large graph representing users

and their connections. The goal of clients is to update the state of each user (node) based on its

connections. For the sake of analysis in our analysis, the attribute associated with each user is a

color and the task is to assign each node a color that is different from its neighbors. We use the tool

networkx [58] to generate input graphs. There are two types of graph: (1) Power-law clustering

graph that simulates the power-law degree and clustering characteristics of social networks, and

(2) Random 6-regular graph in which each node has 6 adjacent edges and the edges are selected

randomly. The reason we use random regular graphs is that they are the test cases where the

workload is distributed evenly between clients and throughout the execution. The graphs have

50,000 nodes with about 150,000 edges. Each client is assigned a set of nodes to be colored and

run a distributed coloring algorithm [25].

Since the color of a node is chosen based on its neighbors’ colors, while a client �1 is coloring

node E1, no other client is updating the colors of E1’s neighbors. The goal of the monitors is to

detect violation of this requirement. This requirement can be viewed as a mutual exclusion (semi-

linear) predicate where a client going to update the color of E1 has to obtain all the exclusive locks
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associated with the edges incident to E1. Mutual exclusion is guaranteed if clients use Peterson’s

algorithm and the system provides sequential consistency [59]. However, it may be violated in

the eventual consistency model. To avoid deadlock, clients obtain locks in a consistent order. For

example, let �_� and �_� are the locks associated with the edges between nodes � and �, and

� and � respectively. Assume � < � and � < �. Then lock �_� is obtained before �_� when

� < � or when � = � and � < �.

The number of predicates being monitored in this test case is proportional to the number of

edges.

We note that the task performed by each client (i.e., choosing the color of a node) is just used as

an example. It is easily generalized for other analysis of Social Media Graph (e.g., finding clusters,

collaborative learning, etc.)

The application motivated by Weather Monitoring task considers a planar graph (e.g. a line or

a grid) where the state of each node is affected by the state of its neighbors. In a line-based graph,

all the nodes of the graph are arranged on a line and each client is assigned a segment of the line.

In a grid-based graph, the graph nodes are arranged on a grid. The clients are also organized as a

grid and each client is responsible for a section of the grid of nodes. In this application, we model a

client that updates the state of each node by reading the state of its neighbors and updating its own

state. This application can be tailored to vary the ratio of GET/PUT request. This application is

relevant to several practical planar graph problem such as weather forecasting [60], radio-coloring

in wireless and sensor network [61], computing Voronoi diagram [62].

Finally, the Conjunctive application is an instance of distributed debugging where the predicate

being detected (i.e., ¬P) is of the form P1 ∧ P2 ∧ · · · ∧ P; . Each local predicate P8 becomes true

with a probability V and the goal of the monitors is to determine if the global conjunctive predicate

¬P becomes true. In this application, we monitor multiple conjunctive predicates simultaneously.

Since we can control how frequently these predicates become true by varying V, we can use it

mainly to assess monitoring latency and stress the monitors. Conjunctive predicates are also useful

in distributed testing such as to specify breakpoints.
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Performance metric and measurement. We use throughput as the performance metrics in

our experiments. Throughput can be measured at two perspectives: application, and Voldemort

server. The two perspectives are not the same but related. One application request triggers multiple

requests at Voldemort client. For example, one application PUT request is translated into one

GET_VERSION request (to obtain the last version of the key) and one PUT request (with a new

incremented version) at the Voldemort client library. Then each Voldemort client request causes

multiple requests at servers due to replication. Failures and timeout also make the counts at the

applications and the servers differ. For example, an application request is served and counted at

a server but if the server response is lost or arrives after the timeout, the request is considered

unsuccessful and thus not counted at the application. Generally, servers’ counts are greater than

applications’ counts. In our experiments, we use the aggregated measurement at servers to assess

the overhead of our approach since the monitors directly interfere with the operation of the server,

and use aggregated measurement at applications to assess the benefit of our approach because

that measurement is close to users’ perspective. Hence, in the following sections, for the same

experiment, we note that the measurements used for overhead and benefit evaluation are different.

Stabilization of the Results. We ran each experiment three times and used the average as the

representative results for that experiment. Figure 3.7 shows the stabilization of different runs of an

experiment. Note that the values are aggregated from all applications. We observe that in every

run, after a short period of initialization, the measurements converge on a stable value. When

evaluating our approach, we use the values measured at the stable phase. We also note that the

aggregated throughput in Figure 3.7 is not very high but expected. The pairwise round-trip latency

between three AWS regions (Ohio, Oregon, Frankfurt) were 76, 103, and 163 <B. The average

round-trip latency was 114 <B. On M5.xlarge EC2 instances with a GP2 storage volume, the

average I/O latency for a read and a write operation was roughly 0.3 <B and 0.5 <B, respectively.

We will roughly estimate the cost of a GET request since in Social Media Analysis, most operations

are GET requests to read lock availability and colors of neighbors. Assume eventual consistency
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R1W1 is used, a GET request is executed by Voldemort client in two steps:

1. Perform parallel request: client simultaneously sends GET requests to all servers (N = 3)

and wait for responses with a timeout of 500 <B. The wait is over when either client gets

responses from all servers or the timeout expires. In this case, the client will get all responses

in about 114.3 <B (114 <B for communication delay, and 0.3 <B for the read operation

processing time at the server).

2. Perform serial request: client checks if it has received enough required responses. If not,

it has to send addition GET requests to servers to get enough number of responses. If after

the additional requests, the required number of responses is not met, the GET request is

considered unsuccessful. Otherwise, the result is returned. In the current case, the number

of responses received (3) is greater than the required (R = 1). Thus this step is skipped.

From this discussion, a GET request takes roughly 115 <B to complete, on average. Since GET

is the dominating operation in the Social Media Analysis application, with 15 clients, the expected

aggregated throughput is 15
0.1143 ≈ 131 >?B. The average throughput measured in experiments was

132 >?B (cf. Figure 3.7).

If we run experiments where all machines are in the same region but in different availability

zones, the aggregated throughput will be higher (cf. Figure 3.9). For example, in the AWS North

Virginia region, the average round-trip latency within an availability zone was about 0.5 <B, and

between different availability zones was about 1.4 <B. Based on the discussion about GET request

above, a GET request takes roughly 0.8<B (0.5 <B for network latency within an availability zone

plus 0.3 <B for processing read request at the server). Similarly, a GET_VERSION request takes

0.8 <B. Since we are using R1W1 configuration, an actual PUT request can be satisfied by the

server within the same availability zone. Thus, an actual PUT request takes roughly 1 <B (0.5 <B

for network latency within an availability zone plus 0.5 <B for write operation processing time at

the server). A PUT request (consisting of a GET_VERSION request and an actual PUT request)

takes roughly 1.8<B. Assume the workload consists of 50%GETs and 50% PUTs, then on average,
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Figure 3.7: Illustration of result stabilization. The Social Media Analysis application is run three
times on Amazon AWS with monitoring enabled. Number of servers (#) = 3. Number of clients
per server (�/#) = 5. Aggregated throughput measured by Social Media Analysis application in
three different runs and their average is shown. This average is used to represent the stable value of
the application throughput.

a request takes 0.5 × 0.8 + 0.5 × 1.8 = 1.3 <B = 0.0013 B. With 10 clients, the expected aggregate

throughput is 10
0.0013 = 7692 >?B. If the workload consists of 75% GETs and 25% PUTs, a request

takes 0.75 × 0.8 + 0.25 × 1.8 = 1.05 <B = 0.00105 B, and the expected aggregate throughput is
10

0.00105 = 9524 >?B. In our experiments, the aggregate throughput measured for 25% PUT and

50% PUT was 9593 >?B and 7782 >?B, respectively (cf. Figure 3.9a and 3.9b).

3.3.2 Analysis of Throughput

Comparison of Eventual Consistency withMonitors vs. Sequential Consistency. As discussed

in the introduction, one of the problems faced by the designers is that they have access to an

algorithm that is correct under sequential consistency but the underlying key-value store provides

a weaker consistency. In this case, one of the choices is to pretend as if sequential consistency is

available but monitor the critical predicate P. If this predicate is violated, we need to rollback to

an earlier state and resume the computation from there. Clearly, this approach would be feasible

if the monitored computation with eventual consistency provides sufficient benefit compared with

sequential consistency. In this section, we evaluate this benefit.
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(c) Overhead on R1W3=1.7%
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Figure 3.8: (AWS) Social Media Analysis application, 3 servers, 15 clients. The benefit of eventual
consistency with monitors vs. sequential consistency without monitors (throughput improvement
compared to R1W3 andR2W2 is 57% and 78%, respectively), and the overhead of runningmonitors
on each consistency setting (the overhead is less than 2%).

Figure 3.8a compares the performance of our algorithms for eventual consistency with monitors

and sequential consistency without monitors in the Social Media Analysis application on the AWS

environment. Using our approach, the client throughput was increased by 57% (for N3R1W3)

and 78% (for N3R2W2). Note that the cost of a GET request is more expensive in N3R2W2 (the

required number of positive acknowledgment is 2) than in N3R1W3 (the required acknowledgment

is 1). Since in the Social Media Analysis application GET requests dominates, the application

performs better in N3R1W3 than in N3R2W2.

Overhead of monitoring. A weaker consistency model allows the application to increase the

performance on a key-value store as illustrated above. To ensure correctness, a weaker consistency

model needs monitors to detect violations and trigger rollback recovery when such violations

happen. As a separate tool, the monitors are useful in debugging to ensure that the program
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satisfies the desired property throughout the execution. In all cases, it is desirable that the overhead

of the monitors is small so that they would not curtail the benefit of weaker consistency or make

the debugging cost expensive.

Figures 3.8b 3.8c, and 3.8d show the overhead of the monitors on different consistency settings

in the Social Media Analysis application. The overhead was between 1% and 2%. At its peak,

the number of active predicates being monitored reached 20,000 predicates. Thus, the overhead

remains reasonable even with monitoring many predicates simultaneously.

3.3.3 Analysis of System and Application Factors

Impact of workload characteristics. In order to evaluate the impact of workload on our algo-

rithms we ran the Weather Monitoring application where the proportional of PUT and GET was

configurable. The number of servers was 5 and the number of clients was 10. The machines host-

ing the servers and clients were in the same AWS region (North Virginia, U.S.) but in 5 different

availability zones. We choose machines in the same region to reduce the latency (to less than 2<B),

thus increasing the throughput measure and stressing the servers and the monitors. If we put the

clients and servers in different regions (e.g., Frankfurt Germany, Oregon USA, Ohio USA) then the

throughput for 15 clients is low. To stress it further, we would have to add hundreds of clients which

is very expensive. Hence, for the stress test, we put the servers and clients in the same region.
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0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0
0

2
0
0

3
0
0

T
h
ro

u
g
h
p
u
t 

(o
p
s)

Elapsed time
(seconds)

Sequential N5R1W5 (avg 5666)
Eventual + Detection N5R1W1 (avg 7782)

(b) PUT=50%. Benefit=37%
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Figure 3.9: Benefit and overhead of monitors in Weather Monitoring application. Percentage of
PUT requests is 25% and 50% Number of servers =5. Number of clients = 10. Machines are on
the AWS North Virginia region but in different availability zones.

From Figures 3.9a and 3.9b, we find that when the percentage of PUT request increased from

25% to 50%, the benefit over sequential consistency (N5R1W5 in this case) increased from 18%
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to 37%. This is because the cost for a PUT request is expensive in N5R1W5 as a PUT request is

successful only when it is confirmed by all 5 servers. Thus, when the proportion of PUT increases,

the performance of N5R1W5 decreases. In such cases, sequential settings that balance R and W

(e.g. N5R3W3) will perform better than settings emphasize W (e.g. N5R1W5). When GET

requests dominate, it is vice versa (cf. Figure 3.8a). We also observe that, when PUT percentage

increased and other parameters were unchanged, the aggregated throughput measured at clients

decreased. That is because a PUT request consists of a GET_VERSION request (which is as

expensive as a GET request) and an actual PUT request, therefore a PUT request takes a longer

time to complete than a GET request does.

Regarding overhead, Figure 3.9c shows that the overhead was 4% when PUT percentage was

50%. Note that in Weather Monitoring application, the number of predicates being monitored is

proportional to the number of clients. Thus, the overhead remains reasonable evenwhenmonitoring

several predicates simultaneously and the servers are stressed.

The number of violations detected in this experiment was only one instance in executions with

a total time of 18, 000 <B. The violation was detected within 20 <B.

Impact of network latency. We ran experiments on the local lab network (cf. Section 3.3.1)

where the one-way latency within a region (cf. Figure 3.6b) was 1 ms and one-way latency between

regions varied from 50 <B to 100 <B. The number of clients per each server varied between 10 and

20. The values in sub-columns “server” and “app” are the aggregate throughput measured at the

servers and at the applications (unit is >?B). In Table 3.3, the overhead is computed by comparing

server measurements when the monitors are enabled and disabled. The benefit is computed by

comparing application measurements on sequential consistency without monitoring to those on

eventual consistency with monitoring. For example, when one-way latency is 50 <B, if we run the

Weather Monitoring application on N3R1W3, the overhead of monitoring is (649 − 628)/649 =

3.2%. If we run the same application on eventual consistency N3R1W1 with monitoring, the

benefit (compared to running on N3R1W3 without monitoring) is (454 − 313)/313 = 45%.
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Table 3.3: Overhead (oh) and benefit of monitors in local lab network. For Conjunctive and Weather Monitoring, PUT percentage is
50%.

Latency
(ms) Application Client/

Server Monitor
N3R1W1 N3R2W2 N3R1W3

server oh app server oh app benefit server oh app benefit

50

Conjunctive 20 yes 821 -0.2% 470 842 0.6% 375 25.3% 588 3.3% 337 40.7%
no 819 470 847 375 608 334

Weather
Monitoring 20 yes 924 0.2% 454 795 7.1% 345 27.2% 628 3.2% 312 45.0%

no 926 453 856 357 649 313
SocialMedia
Analysis 10 yes 560 0.2% 258 367 0.5% 156 65.4% 344 7.8% 174 47.4%

no 561 267 369 156 373 175

100

Conjunctive 20 yes 476 0.4% 270 491 -0.2% 218 23.3% 354 0.0% 191 42.1%
no 478 271 490 219 354 190

Weather
Monitoring 20 yes 544 0.7% 266 500 1.0% 209 28.5% 371 0.8% 176 49.4%

no 548 273 505 207 374 178
SocialMedia
Analysis 10 yes 287 0.0% 135 236 0.0% 74 80% 185 -0.5% 86 60.7%

no 287 133 236 75 184 84
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From Table 3.3, as latency increases, the benefit of eventual consistency with monitoring vs.

sequential consistency increases. For example, when one-way latency increased from 50 <B to

100 <B, in Social Media Analysis application, the benefit of eventual consistency with monitoring

vs. sequential consistency R1W3 increased from 47% to 60%. In the case of R2W2, the increase

was from 65% to 80%. This increase is expected because when latency increases, the chance for

a request to be successful at a remote server decreases. Due to strict replication requirement of

sequential consistency, the clientwill have to repeat the request again. On the other hand, on eventual

consistency, requests are likely to be successfully served a local server and the client can continue

regardless of results at remote servers. Hence, as servers are distributed in more geographically

disperse locations, the benefit of eventual consistency is more noticeable. Regarding overhead, it

was generally less than 4%. In all cases, the overhead was at most 8%.

3.3.4 Analysis of Violations and Detection Latency

Detection latency is the time elapsed between the violation of the predicate being monitored and

the time when the monitors detect it. In our experiment with Social Media Analysis applications

on eventual consistency (N3R1W1), in several executions of total 9, 000 seconds, we detected only

2 instances of mutual exclusion violations. Detection latency for those violations were 2, 238 <B

and 2, 213 <B. So for Social Media Analysis application, violations could happen on eventual

consistency every 4, 500 B on average.

In order to evaluate the detection latency of monitors with higher statistical reliability, we need

experiments where violations are more frequent. In these experiments, the clients ran Conjunctive

application in the same AWS configuration asWeather Monitoring application above. The monitors

have to detect violations of conjunctive predicates of the form P = P1∧P2∧· · · P10. Furthermore,

we can control how often these predicates become true by changing when local predicates are

true. In these experiments, the rate of local predicate being true (V) was 1%, which was chosen

based on the time breakdown of some MapReduce applications [63, 64]. The PUT percentage

was 50%. The Conjunctive application is designed so that the number of predicate violations
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is large and to stress the monitors. We considered both eventual consistency and sequential

consistency. Table 3.4 shows detection latency distribution ofmore than 20, 000 violations recorded

in the Conjunctive experiments. Predicate violations are generally detected promptly. Specifically,

99.93% of violations were detected in 50 <B, 99.97% of violations were detected in 1 B. There

were rare cases where detection latency was greater than ten seconds. Among all the runs, the

maximum detection latency recorded was 17 seconds, the average was 8 <B.

Table 3.4: Response time in 20, 647 conjunctive predicate violations

Response time (milliseconds) Count Percentage
< 50 20,632 99.927%
50 − 1, 000 6 0.029%
1, 000 − 10, 000 3 0.015%
10, 000 − 17, 000 6 0.029%

Regarding overhead and benefit, the overhead ofmonitors onN5R1W1,N5R1W5, andN5R3W3

was 7.81%, 6.50%, and 4.66%, respectively. The benefit of N5R1W1 over N5R1W5 and N5R3W3

was 27.90% and 20.16%, respectively.

3.3.5 Evaluating Strategies for Handling Livelocks

In this section, we evaluate the effect of rollback mechanisms. We consider the evaluation of the

Social Media Analysis with a power-law graph andWeather Monitoring with grid-based graph (we

describe the graphs in Section 3.3.1) . We consider the execution with sequential consistency,

eventual consistency with rollback but no mechanism for dealing with livelocks, and eventual

consistency with one or more mechanism for dealing with livelocks. The results are shown in

Figure 3.10.

From this figure, we observe that the impact of livelocks is not the same in different applications.

In particular, for terminating applications like Social Media Analysis, if the livelock issue is ignored,

the computation does not terminate. Likewise, computation does not terminate with the mechanism

of reordering of remaining tasks upon rollback. This is anticipated, in part, because recurrence of
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rollback happens in end-stages where the number of remaining tasks is low. On the other hand, for

a non-terminating application like Weather Monitoring, livelocks do not cause the computation to

stall. Except for adaptive consistency, the effectiveness of different livelock handling strategies is

almost similar. From Figure 3.10, we observe that rollback with adaptive consistency works best

for terminating applications, and rollback with backoff works best for non-terminating applications.

Therefore, we choose these mechanisms to handle livelocks in the detailed analysis of applications

in Section 3.3.6.
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Figure 3.10: Effectiveness of livelock handling mechanisms. Number of servers=3, number of
clients=30. We observed that adaptive mechanism worked best for Social Media Analysis (Figure
3.10a), and backoff mechanism worked best for Weather Monitoring (Figure 3.10b).

3.3.6 Analysis of Applications

In this section, to illustrate the benefit of our approach, we run the recovery algorithm described

in Section 3.2.1 for two applications: Weather Monitoring and Social Media Analysis. We do not

consider Conjunctive, as it was designed explicitly to cause too many violations for the purpose

of detecting latency of violations. The analysis was performed in our local lab network with the

round-trip latency varying between 5 <B – 50 <B. We use the approach in Section 3.3.1 to add

additional delays to evaluate the behavior of the application in a realistic setting where replicas are

not physically co-located. In order to deal with livelocks, we utilize the backoff mechanism for

Weather Monitoring application, and adaptive mechanism for Social Media Analysis application.

The number of servers was 3 and the number of clients was 30.
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Weather Monitoring. When running the Weather Monitoring application with eventual con-

sistency, first, we consider the nodes organized in a line. In this case, the application progressed

47.2% faster than running on sequential consistency (cf. Figure 3.11a). Even if we extend it to a

grid graph, the results are similar. In Figure 3.11c, we find that in the grid graph, the application

progressed 46.8% faster under eventual consistency than in sequential consistency. In both of these

executions, no violations were detected in the 500 seconds and 1000 seconds window, respectively.

To evaluate the effect of rollbacks, we increase the chance of conflicts by reducing the coverage

of each client (i.e. the number of nodes in the graph assigned to each client) so that the clients

work on bordering nodes more frequently. In that setting, on a line graph, eventual consistency

still progressed about 45% faster than running on sequential consistency (cf. Figure 3.11b), even

though we had a substantial number of rollbacks (36 in 500 seconds). The detection latency for

violation was on average 18 <B. The worst case detection latency was 55 <B. We note that the

application motivated byWeatherMonitoring is a non-terminating application which keeps running

without termination. Hence, the number of nodes processed measured in stable phase reflects the

overall progress of the application. Hence, in order to compare the progress of different experiment

configurations, we measure the progress made by the clients after the same execution duration. For

example, in Figure 3.11a, the larger points on each line are where we measure the progress after the

execution has run for 490B. Figure 3.11b also considers the progress made by the application on

eventual consistency without rollback or monitoring. Thus, the resulting answer may be incorrect.

The reason for this analysis is to evaluate the cost of monitoring and rollback. As shown in Figure

3.11b, the cost of rollback is very small. Specifically, with rollback, the number of nodes processed

decreased by about 1.4%.

In grid-based graphs, eventual consistency progressed 45.1% faster than sequential consistency

did (cf. Figure 3.11d) even though it had to rollback a number of times (68 times in 1000 seconds).

The detection latency was 10 <B on average, and 41 <B in the worst case. The cost of rollback was

1.4%.
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Figure 3.11: The benefit and overhead of Eventual consistency+Rollback vs. Sequential consistency
inWeather Monitoring application. The inset figure within Figure 3.11b is a close-up view showing
the impact of rollback. The larger points near the end of each data sequence are where we choose
the representative values for the data sequences.

Social Media Analysis. Since the Weather Monitoring task is a non-terminating task, its

behavior remains the same throughout the execution. Hence, to evaluate the effect of termination,

we evaluate our approach in the Social Media Analysis application. Terminating computation

suffers from the following when compared with non-terminating computations: (1) At the end,

some clients may have completed their task thereby reducing the level of concurrency, and (2) The

chance of rollback resulting in the same conflict increases, as the tasks remaining are very small.

Hence, the computation after the rollback is more likely to be similar to the one before the rollback.

In other words, the conflict is likely to recur.

We evaluate the effect of termination in two types of graph: (1) Power-law clustering (cf. Figure

3.12a), and (2) Regular graphs (cf. Figure 3.12b) where degrees of all nodes are close. (The details

of these graphs is given in Section 3.3.1.)

On power-law clustering graphs, as shown in Figure 3.12a, before the execution reached 90%

completion of the work, eventual consistency – even with the cost of monitoring and rolling back –
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progressed about 18.5% faster than sequential consistency. However, in the remaining 10% of the

work, when there were a few nodes to be colored, the chance of conflict increased. Furthermore,

the same conflict occurred after rollback as well. Hence, in the final phase, execution under

eventual consistency almost stalled due to frequent rollbacks. When the clients utilized adaptive

consistency then they could make progress through the final phase and finished about 9.5% faster

than sequential consistency. We note that the decline in computation rate in the final phase is also

true for sequential consistency, and that is related to a property of power-law cluster graph that some

nodes are high degree nodes. In regular random graph, we do not observe this decline as shown

in Figure 3.12b. The main reason for this is that the likelihood of conflict in the power-law graph

is high since there are several nodes with a high degree. Furthermore, it is difficult to distribute

the workload of power-law clustering graph to the clients evenly. Therefore, in the final phase,

some clients have completed before the others, thus reducing the parallelism. By contrast, in the

regular graph, the likelihood of conflict in end stages remains the same and the workload can be

evenly distributed among the clients. On a regular graph, eventual consistency with monitoring

and rollback was 26% faster than sequential consistency before 90% of the nodes were processed,

and 20.8% faster overall (cf. Figure 3.12b).
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Figure 3.12: Comparing the completion time of Sequential Consistency (R1W3) vs. Eventual Con-
sistency with rollback and adaptive consistency (R1W1+adaptive) in Social Media Analysis appli-
cation. On a power-law clustering graph, before 90% of the nodes are processed, R1W1+adaptive
progresses about 18% faster than R1W3. Overall, R1W1+adaptive is 9.5% faster than R1W3. On
a regular random graph, the benefit before 90% of the nodes are processed is 26% and the overall
benefit is 20.8%.

70



3.4 Summary

In this chapter, we investigate the benefits of the detect-rollback approach in which we run

an application on the key-value store with eventual consistency and use the monitors to detect

consistency violations. Upon a violation is detected, we use our application-specific rollback

algorithm to correct the application inconsistent results.

We run experiments on several test cases to quantify the benefits of the detect-rollback ap-

proach. In particular, we evaluate the overhead and effectiveness of the monitors, the benefits of

running eventual consistency with monitors vs. running sequential consistency, the benefits of

using detect-rollback (i.e. running eventual consistency with monitors and rollback) vs. running

sequential consistency. The reason that we are interested in evaluating the benefits of eventual con-

sistency with monitors (but without rollback) is that it informs us about the intermediate benefits

of the detect phase before the rollback phase. Since the rollback phase can be done by different

rollback algorithms, these intermediate benefits inform us about the efficiency of the detect phase,

independent of the rollback phase.

Our experiment results show that when compared to running an application on sequential con-

sistency, running that application on eventual consistency can improve the application throughput

from 20% to 80%. There are several factors that influence the benefits such as the workload charac-

teristics and the network latency. Specifically, when the percentage of PUT requests increases, the

benefits increase. The reason is that the performance difference between eventual consistency and

sequential consistency is larger for PUT requests than for GET requests (we explain this in Section

2.2.3). We observe that when the network latency is larger (i.e. when replicas are distributed over

a large geographical area to increase fault-tolerance and availability), the benefit is higher. These

observations agree with our anticipation in Section 2.2.3.

We also observe that the overhead of the monitors is low. It is typically less than 4% and in

stressed experiments is less than 8%. This allows the monitors themselves to be utilized for the

sake of distributed debugging. Furthermore, we observe the violations are not frequent and can

be detected quickly. In particular, in a scenario designed to intentionally cause a large number of
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violations, more than 99.9% of violations were detected in less than 50 milliseconds in regional

networks (all clients and servers in the same Amazon AWS region), and in less than 3 seconds in

global networks.

Finally, we observe that running an application with detect-rollback helps the application

progress between 10%–50% faster than running on sequential consistency. An important factor

that influences the benefits is re-occurring violations (livelocks). On non-terminating applications

such asWeather Monitoring, the chance of livelocks is low and the benefits are higher. In contrast,

on terminating application such as Social Media Analysis, the chance of livelock is high during the

last phase of the computation. This requires an adaptation from eventual consistency to sequential

consistency and the benefits are reduced.

In conclusion, experiment results in this chapter show that the detect-rollback approach is

promising in improving the performance of computation on a key-value store. There are several

possible directions to improve and extend the results of this approach. We will discuss these

directions in Chapter 6.
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CHAPTER 4

STABILIZATION APPROACH

In this chapter, we investigate the stabilization approach for handling 2E 5 s. Unlike the detect-

rollback approach in chapter 3, the stabilization approach does not need additional mechanisms

to handle 2E 5 s except that the existing algorithm (for sequential consistency) is stabilizing. As

discussed in Section 2.4, 2E 5 s are treated as state perturbations and a stabilizing algorithm is

already designed to handle them.

We begin with Section 4.1 where we discuss the properties of 2E 5 s and anticipate that their

effect on the convergence time of a self-stabilizing program 1 is small. Next, Section 4.2 describes

the termination detection algorithm which measures the convergence time of a stabilizing program.

Since our focus is silently stabilizing programs, the convergence time is used as the performance

metrics of evaluation and comparison. Section 4.3 presents the experimental results for the eval-

uation of our hypothesis. Section 4.4 discusses extension of the approach in other versions of

stabilization. Section 4.5 summarizes the content of this chapter.

4.1 Expected Properties of 2E 5 .

If we run a distributed program in the passive-node model – with a large number of nodes but

relatively fewer clients– with an eventually consistent key-value store then its execution would be a

computation in the presence of 2E 5 (cf. Section 2.4). We expect the following properties for 2E 5 :

• A single 2E 5 only affects one node.

• 2E 5 is expected to be rare; to be affected by 2E 5 , we need to have one client, say 21, operating

on node 9 and another client, say 22, operating on neighboring node : where state of 9 is

updated on one replica but 22 reads it from another replica.

1In this dissertation, the terms self-stabilizing and stabilizing are interchangeable, and so are
self-stabilization and stabilization.
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• By design, 2E 5 is not deliberate. While some specific single perturbation in a stabilizing

program can significantly affect the convergence property, the probability that 2E 5 would

result in that specific perturbation is small.

• Between two 2E 5 transitions, the program is likely to execute several valid transitions.

• Let 6 −→ BC be a transition of node 9 . One type of 2E 5 occurs when reading an inconsistent

value of some variable results in 6 to evaluate to false. In this case, the effect of 2E 5 results

in stuttering of the same state. In this case, the recovery of program ? is unaffected.

Now, consider the execution of a program ? from its arbitrary state, say B0, in the presence of

2E 5 . In this computation, ? is attempting to change its state so that it reaches its invariant. A 2E 5

can perturb this recovery. However, from the above discussion, the effect of 2E 5 on recovery time is

expected to be small. By contrast, the cost of eliminating 2E 5 (i.e., utilize sequential consistency) is

expected to slow down the execution of program ?. In this dissertation, we evaluate this hypothesis

to determine if permitting occasional 2E 5 with eventual consistency is likely to provide us with a

better recovery time that eliminating 2E 5 with sequential consistency.

4.2 Termination Detection Algorithms.

Our termination detection algorithm to determine whether a program has reached a fixed

point in the computation is based on the algorithm in [65]. We briefly describe the termination

detection algorithm. Basically, the termination detector is also a Voldemort client program running

a detection algorithm consisting of two rounds. In the first round, the algorithm reads the state of

all nodes (including modification timestamps) and determines if every node has become disabled

(i.e., all of its actions have the guards be evaluated to false). If that is true, it moves to the second

round; otherwise, it restarts the first round. In the second round, the algorithm checks if the state

and modification timestamp of every node is unchanged since the most recent successful first-round

check. If there is any change, the algorithm restarts from the first round; otherwise, it reports

the termination of computation. The termination detector runs in the consistency mode where
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' = # (the number of required reads equals the number of replicas) to ensure reliability. Since the

termination detector only reads from and does not write to the key-value store, it minimally affects

the convergence time of the computation.

4.3 Experimental Evaluation of Benefits of Stabilization in Key-Value Stores

As discussed in Section 2.4, if we run a stabilizing program with eventually consistent key-

value store, it may suffer from consistency violating faults (2E 5 ). In this section, we evaluate the

hypothesis that even if the convergence is perturbed by 2E 5 , using eventual consistency would

improve the overall convergence time. We use the (silently) stabilizing algorithm by Manne et

al. [40] for maximum matching to perform the evaluation. We note that our analysis depends upon

the occurrence of 2E 5 and, hence, it is equally applicable to other stabilizing algorithms as well.

4.3.1 Experiment Setup

We conduct the experiment in a local network with 9 commodity PCs (the machine configurations

are described in Table 3.1). 3 PCs are reserved for the 3 key-value store servers and the clients are

evenly distributed among the remaining 6 PCs.

We conduct experiments with three initial configurations: no-match, random-match and

perturbed-match. The no-match experiment initializes global state so that no node is matched

with any other node, characterizing execution from a properly initialized state. The random-match

experiment initializes each node so that the match of node 9 is either =D;; (not matched) or some

node in the network. (Of course, in the initial state if 9 is matched with : it does not imply that :

is matched with 9 .) The random-match corresponds to a random initial state of the program. The

perturbed-match experiment perturbs 10% of the nodes from an invariant state (i.e., a state where

maximal matching has been achieved). We use the same set of initial states in each experiment.

In other words, the same initial state is used to compare sequential consistency with eventual

consistency. In our experiments, we use three replicas. As discussed in Section 2.2 for sequential

consistency, we use R1W3 and R2W2models whereas for eventual consistency, we use R1W1. We
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repeat each experiment 3 times and take an average.

Since the maximal matching program in [40] is silently stabilizing, we use the convergence

time reported by the termination detection algorithm (cf. Section 4.2) as the performance metrics

of evaluation and comparison.

4.3.2 Experiment Results

We conduct five types of experiments to validate our hypothesis that permitting 2E 5 by utilizing

stabilizing algorithms is beneficial compared with the use of sequential consistency and local

mutual exclusion where 2E 5 are prevented. We conduct experiments to (1) validate this hypothesis,

(2) improve performance further by improving efficiency where the occurrence of 2E 5 is increased,

and (3) evaluate the effect of concurrency (i.e., increased number of clients), (4) evaluate the

convergence pattern to compare the intermediate states of the program before convergence, and (5)

validate the soundness of results in a realistic environment with Amazon AWS.

Experiment 1: Sequential vs Eventual Consistency. Our first set of experiments focuses on

comparing eventual consistency with 2E 5 and sequential consistency. Recall that the latter does

not suffer from 2E 5 as each client gets the latest state of every node. The results are shown in Table

4.1.

Wefind that evenwith 2E 5 , the convergence timewith eventual consistency is significantly lower.

Specifically, for configuration no-match, random-match, and perturbed-match, the convergence

speedup factor is 1.3 – 1.7, 1.2 – 1.8, and 1.2 – 1.7, respectively. Moreover, the benefit remains

fairly constant as the number of nodes increases.

Experiment 2: Revisiting Local Mutual Exclusion. Recall that to ensure that the execution

in the passive-node model is free from 2E 5 , we need to use sequential consistency and local mutual

exclusion (lme). Note that without local mutual exclusion (no-lme), implementation of a protocol

may suffer from inconsistencies. However, their effect is the same as 2E 5 .
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Table 4.1: Benefit of Eventual Consistency in the Presence of 2E 5 s over Sequential Consistency.
15 Clients. With Local Mutual Exclusion. Convergence Time Unit: second.

Initial state Consistency Graph size (# nodes)
5,000 10,000 20,000

random-
match

R1W1 180 399 851
R2W2 305 637 1496
R1W3 234 497 1080

Speedup over R2W2 1.7 1.6 1.8
Speedup over R1W3 1.3 1.2 1.3

perturbed-
match

R1W1 123 273 650
R2W2 184 450 1136
R1W3 155 349 808

Speedup over R2W2 1.5 1.6 1.7
Speedup over R1W3 1.3 1.3 1.2

no-match

R1W1 119 273 563
R2W2 200 445 976
R1W3 156 363 779

Speedup over R2W2 1.7 1.6 1.7
Speedup over R1W3 1.3 1.3 1.4

From this observation, we first compare the convergence time for the program using local

mutual exclusion and sequential consistency with the program using eventual consistency and no

local mutual exclusion. The results are shown in Table 4.2.

From this table, we observe that even in the presence of increased 2E 5 due to unavailability

of local mutual exclusion (lme), the time for convergence is significantly lower with eventual

consistency. Specifically for configurations no-match, random-match, and perturbed-match, the

convergence speedup factor of eventual consistency without lme over sequential consistency (with

lme) is 8.2 – 10.5, 7.6 – 11.6, and 7.3 – 10.3, respectively.

Experiment 3: Effect of Increased Concurrency. A key advantage of the passive-node

model is that the level of concurrency can be managed. Specifically, we can increase the number

of clients to increase the level of concurrency. To evaluate the effect of 2E 5 on an increased level

of concurrency, we conducted the setup for Experiment 3 with 15, 30, and 45 clients. The graph

size is 10,000 nodes. The results are shown in Table 4.3. From this table, we observe that the
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Table 4.2: Revisiting Local Mutual Exclusion (lme): Treating Violations as 2E 5 s. no-lme means
without local mutual exclusion. lme means with local mutual exclusion. Number of clients is 15.
Convergence Time Unit: second.

Initial state Consistency Graph size (# nodes)
5,000 10,000 20,000

random-
match

R1W1-no-lme 31 63 129
R1W1-lme 180 399 851
R2W2-lme 305 637 1496
R1W3-lme 234 497 1080

Speedup over R1W1-lme 5.8 6.3 6.6
Speedup over R2W2-lme 9.9 10.0 11.6
Speedup over R1W3-lme 7.6 7.8 8.4

perturbed-
match

R1W1-no-lme 19 47 110
R1W1-lme 123 273 650
R2W2-lme 184 450 1136
R1W3-lme 155 349 808

Speedup over R1W1-lme 6.6 5.8 5.9
Speedup over R2W2-lme 9.8 9.5 10.3
Speedup over R1W3-lme 8.3 7.4 7.3

no-match

R1W1-no-lme 19 43 94
R1W1-lme 119 273 563
R2W2-lme 200 445 976
R1W3-lme 156 363 779

Speedup over R1W1-lme 6.2 6.3 6.0
Speedup over R2W2-lme 10.5 10.3 10.4
Speedup over R1W3-lme 8.2 8.4 8.3

benefit of tolerating 2E 5 s with eventual consistency remains (fairly) same as the concurrency level

is increased.

Experiment 4: Convergence pattern. The general trend of convergence for both sequential

and eventual consistency looks like a sigmoid shape as shown in Figure 4.1. It starts slowly

when nodes try to find their matches by making, withdrawing, and accepting proposals. Once

some matches are formed, the matching progress quickly since the number of matching options is

reduced. In the end, the progress slows down, as it takes time for a dead node to determine that it

will remain unmatched.

78



Table 4.3: Effect of Increased Concurrency on the Benefit of Eventual Consistency in the Presence
of 2E 5 s over Sequential Consistency. 10,000-nodes random-match graph. Convergence Time Unit:
second

Consistency Number of clients
15 30 45

R1W1-no-lme 63 52 71
R1W1-lme 399 407 500
R2W2-lme 637 638 812
R1W3-lme 497 416 548

Speedup over R1W1-lme 6.3 7.9 7.0
Speedup over R2W2-lme 10.0 12.3 11.4
Speedup over R1W3-lme 7.8 8.0 7.7
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Figure 4.1: Convergence of maximal matching

From this figure, we find that at any given time C, the level of matching performed with eventual

consistency is higher. In other words, the benefit of eventual consistency is not caused by the last

few nodes that delay the completion of the matching algorithm.

Experiment 5: Experiments on Amazon AWS. To validate our results in a more realistic

setting, we deploy similar experiments on a subset of the settings on Amazon AWS EC2 instances.

The servers run on M5.xlarge instances (4 vCPUs, 16 GB RAM), the termination detector and the

clients run on M5.large instances (2 vCPUs, 8 GB RAM). The instances are distributed in three

different availability zones of the same region (Ohio, USA).

As shown in Table 4.4 and in Figure 4.2 , the results in the AWS experiments have similar
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characteristics as those in the experiments deployed on local machines, except that it takes longer

time to converge in the AWS experiments because of longer network latency. In fact, the benefit in

Amazon AWS experiments is higher than the values observed in Experiment 1. This is due to the

fact that latencies in Amazon AWS network are higher than in Experiment 1 where machines are

on the same local network. In other words, increased latency is improving the benefit of eventual

consistency with 2E 5 over sequential consistency.

Table 4.4: AWS Experiments. Benefit of Eventual Consistency in the Presence of 2E 5 s over
Sequential Consistency. 15 Clients. Convergence Time Unit: second.

Initial state Consistency Graph size (# nodes)
5,000 10,000 20,000

random-match

R1W1-no-lme 66 139 277
R1W1-lme 385 938 1629
R2W2-lme 791 1666 3307
R1W3-lme 548 1249 2426

Speedup over R1W1-lme 5.8 6.8 5.9
Speedup over R2W2-lme 12.0 12.0 11.9
Speedup over R1W3-lme 8.3 9.0 8.7

perturbed-match

R1W1-no-lme 48 114 238
R1W1-lme 250 582 1345
R2W2-lme 531 1283 2262
R1W3-lme 373 877 1902

Speedup over R1W1-lme 5.2 5.1 5.7
Speedup over R2W2-lme 11.1 11.2 9.5
Speedup over R1W3-lme 7.8 7.7 8.0

no-match

R1W1-no-lme 45 86 145
R1W1-lme 241 570 1154
R2W2-lme 524 1099 2221
R1W3-lme 396 817 1644

Speedup over R1W1-lme 5.3 6.7 8.0
Speedup over R2W2-lme 11.6 12.8 15.3
Speedup over R1W3-lme 8.7 9.5 11.4

4.4 Discussion and Extensions

In this section, we consider stronger versions of stabilization and argue that they provide

additional benefit in the context of tolerating 2E 5 s with eventual consistency. Specifically, in
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Figure 4.2: Convergence of maximal matching in the experiments deployed on Amazon EC2
instances. Note that this convergence pattern is similar to the convergence pattern in Figure 4.1
except that the convergence in Amazon EC2 experiments converges slower. This is because the
delay in Amazon AWS network is longer.

Sections 4.4.1, 4.4.2 and 4.4.3, we consider benefits obtained if one beginswith an active stabilizing,

contained active stabilizing and fault-containment stabilizing program, respectively.

We also discuss extensions of our work. Section 4.4.4 considers the case where we use other

traditional models of computations. Section 4.4.5 considers the behavior of the stabilizing program

after convergence. Finally, in Section 4.4.6, we argue that stabilization is essential to achieve the

benefits in Section 4.3 and Sections 4.4.1 – 4.4.3.

4.4.1 Benefits with Active Stabilization

Our analysis in Section 4.3 used experimental results to demonstrate that even in the presence

of consistency violating faults (2E 5 ), we can improve the performance of stabilizing algorithms

by using eventual consistency. In this section, we show that this benefit can be formalized and

enhanced if we use active stabilization from [66].

Active stabilization [66] removes a key assumption –that faults stop for a long enough time

to ensure stabilization– about traditional (passive) stabilization. It was designed for cases where

perturbations are caused by an adversary in the context of security.
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To deal with stabilization in the presence of security related perturbations, the definition of

active stabilization introduces a notion of adversary actions. Adversary actions are a (given) subset

of (?x(? whereas fault actions in the context of stabilization are equal to (?x(? , as stabilization

deals recovery from an arbitrary state. We use 03E? (or 03E when program ? is clear from the

context) to denote the adversary for program ?.

When we consider computations of ? in the presence of an adversary, clearly, program ? must

get sufficient ability to execute its actions. The definition of active stabilization from [66] uses a

parameter : such that program ? gets at least : −1 chances to execute its actions between adversary

actions. Thus, the definition of computation in the presence of adversary 03E? is defined as follows:

〈?, 03E?, :〉-computation. Let ? be a program with state space (? and transitions X? . Let

03E? be an adversary for program ?. And, let : be an integer greater than 1. We say that a sequence

〈B0, B1, B2, ...〉 is a 〈?, 03E? , :〉-computation iff

• ∀ 9 ≥ 0 :: B 9 ∈ (? , and

• ∀ 9 ≥ 0 :: (B 9 , B 9+1) ∈ X? ∪ 03E? , and

• ∀ 9 ≥ 0 :: ((B 9 , B 9+1) ∉ X?) ⇒ (∀; | 9 < ; < 9 + : :: (B; , B;+1) ∈ X?)

Observe that 〈?, 03E? , :〉 computation allows execution of either program or adversary. How-

ever, once the adversary executes, for subsequent steps, if the program is able to execute (i.e., it has

some action of some node whose guard is true) then some program action is executed. Only if the

program has reached a state where none of its actions can execute then the adversary can execute

again. After : steps, program and adversary execute non-deterministically, i.e., the adversary does

not have to execute. With this notion of 〈?, 03E? , :〉-computation, we define active stabilization

(from [66]) as follows:

Active stabilization. Let ? be a program with state space (? and transitions X? . Let 03E? be

an adversary for program ?, i.e., 03E ∈ (?x(? . Let : be an integer greater than 1. We say that

program ? is :-active stabilizing with adversary 03E? for invariant � iff
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• If we start from a state in � then execution of either a program or adversary action results in

a state in �, i.e., ∀B0, B1 : B0 ∈ � ∧ (B0, B1) ∈ X? ∪ 03E? ⇒ B1 ∈ �

• For any sequence f (=〈B0, B1, B2, ...〉 ) if f is a 〈?, 03E, :〉-computation then there exists ;

such that B; ∈ �.

Although the work in [66] defines the notion of active stabilization in the context of a fixed : that

is constant throughout the execution, it is possible to extend it to asymptotic valuewhere the program

is permitted to execute : steps on average between adversary steps. Now, it is straightforward to

observe that 2E 5 can be modeled as an adversary. The exact transitions of 2E 5 can be determined

upfront and the expected value of the number of steps that can be executed between 2E 5 can be

computed by experimental evaluation and/or analytical model of eventual consistency.

From the above discussion, by using active stabilization, we can precisely characterize the effect

of 2E 5 rather than rely on the expected properties of 2E 5 from Section 2.4.

4.4.2 Benefits with Contained Active Stabilization

Formalizing 2E 5 via active stabilization would allow us to provide guarantees about the effect

of 2E 5 . However, similar to passive stabilization, active stabilization requires that execution of

adversary actions does not cause the program to leave its invariant. If the given program is silent

stabilizing then this issue is moot, as the program state does not change in the invariant. And, at

this point, 2E 5 will not affect the state of the system, as 2E 5 occurs when different replicas are

inconsistent.

For the case, where 2E 5 s could execute inside the invariant states, we can benefit from the use

of contained active stabilization (from [66]), defined next.

Contained Active Stabilization. Let ? be a program with state space (? and transitions X?.

Let 03E? be an adversary for ?. And, let : be an integer greater than 1. We say that program ? is

contained :-active stabilizing with adversary 03E? for invariant � iff
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• ∀B0, B1 : B0 ∈ � ∧ (B0, B1) ∈ X? ⇒ B1 ∈ �

• For any sequence f (=〈B0, B1, B2, ...〉 ) if f is a 〈?, 03E? , :〉-computation then there exists ;

such that B; ∈ �.

• For any finite sequence U (=〈B0, B1, B2, ...B:〉 ) if B0 ∈ �, (B0, B1) ∈ 03E? and (∀ 9 : 0 < 9 <

: : (B 9 , B 9+1) ∈ X? then B: ∈ �.

In the above definition, the program is guaranteed to reach the invariant even if perturbed by the

adversary as long as the program can execute at least : steps between adversary actions. Moreover,

even if the adversary perturbs the program outside the invariant, it recovers to the invariant before

the adversary can execute again. With this approach, even if 2E 5 occurs while the system is in the

invariant, and perturbs the program outside the invariant, its correctness will be restored quickly

thereby providing additional assurance about those programs.

To illustrate this property, consider the example of Dĳkstra’s K-value token ring program [53],

where each node 9 , 0 ≤ 9 <  maintains a variable G. 9 . The nodes are organized in a ring. The

actions of each node is as follows:

Action at node 0

G.0 = G.# −→ G.0 = (G.0 + 1) <>3  

Action at other nodes

G.( 9 − 1) ≠ G. 9 −→ G. 9 = G.( 9 − 1)

It is wellknown that $ ( ) circulations (counted in terms of actions executed by node 0) of

tokens is required to restore this program from an arbitrary state to an invariant state, where the

invariant is as follows:

∃ 9 : 0 ≤ 9 ≤ # : (∀: : : ≤ 9 : G.0 = G.:)∧

(∀: : : > 9 : G.0 = (G.: + 1) <>3  )

Next, we consider the effect of 2E 5 in an invariant state. To illustrate this effect, consider

the case where some node, say 9 ≠ 0 such that G. 9 = 4. In this case, G.( 9 − 1) is either 4 or 5.
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Specifically, when G. 9 is set to 4, G.( 9 −1) is 4. And, subsequently, it may change to 5. In this case,

except in an extreme situation discussed in the next paragraph, even if the client updating node 9

reads an older value, it will end up reading 4. In other words, the effect of 2E 5 is stuttering, i.e.,

the program remains in an invariant state. Finally, we also note that this analysis also holds for a

2E 5 and node 0.

In an extremely rare situation, a node may read a very old value from a replica that was offline

for too long. (We can guard against it with timestamps or in systems that use passive replication

where replicas synchronize periodically. But, we ignore that for now.) In this case, the client may

read a random value thereby creating a scenario where we have three values in the token ring.

However, the recovery time for this scenario is significantly less (at most 3 executions of node 0)

than the scenario (upto  executions of node 0) where each node has a random G value.

From this discussion, it follows that in the presence of a single 2E 5 , the recovery time is

significantly faster than the scenario where the program state is arbitrary. If we ignore the extremely

rare case described in the above paragraph, the token ring program is active stabilizing for the 2E 5

under consideration. If we consider the extremely rare case, with the above analysis, we can identify

the maximum time required for convergence after a single 2E 5 . Although the details of this analysis

are outside the scope of this dissertation, we can use the above discussion to find the value of :

required to satisfy the constraints of the definition of contained active stabilization.

4.4.3 Benefits with Fault-Containment stabilization.

Yet another approach to address 2E 5 is to focus on the work on fault containment. Observe that

2E 5 , by design, affects one node. While in a stabilizing program, it is possible that corruption of

one node from an invariant state may perturb the system to a state where the recovery time is very

large and recovery involves all nodes in the system, fault-containment system, fault-containment

stabilization focuses on eliminating this possibility.

Intuitively, fault-containment stabilization [67–71] guarantees that in addition to being stabiliz-

ing, the system guarantees that from an invariant state if only one (respectively, a small number) of
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the nodes is corrupted then the convergence time is small and affects a small vicinity of the affected

node(s).

In this regard, we observe that fault-containment stabilization provides spatial locality where

the nodes affected by 2E 5 would be physically close to the node that suffered from 2E 5 . By contrast,

in contained active stabilization, we get temporal locality where recovery time is small.

4.4.4 Other Traditional Models of Computation

Ourmodel in Section 2.3.1 focused on themodel that is traditionally called central daemon/interleaving

semantics. Observe that the notion of 2E 5 introduced in Section 2.4 captured the scenario where

the node relied on an inconsistent value of some node to execute its action. In the model in Section

2.3.1, 2E 5 could result due to a client reading the state of some node incorrectly. In other words,

the notion of 2E 5 is independent of the underlying computational model.

It follows that the notion of 2E 5 also applies to other models such as read/write atomicity,

distributed daemon, etc. Thus, having a self-stabilizing algorithm and running it with an eventually

consistent key-value store would be beneficial for these programs as well.

4.4.5 Dealing with Non-Silent Algorithms

A property of maximal matching considered in Section 4.3 is that it is an instance of a silent

self-stabilizing algorithm. By a silent algorithm, we mean that in a legitimate state, there are

no enabled actions. (In other words, when maximal matching is performed, no node needs to

execute an action). There are several problems that permit such silent solution. Examples include

maximal independent set, minimal vertex cover, leader election, spanning tree construction, etc.

In these algorithms, once the system reaches a legitimate state, the values of the variables remain

unchanged. Hence, even with eventual consistency, no client is able to update any program

variables. Our analysis is applicable to all these algorithms.

For non-silent algorithms, however, the use of eventual consistency may create certain new

difficulties. We discuss them, next and identify issues in addressing them.
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In a non-silent algorithm, we may be faced with a situation where we have an action, say 02

(of the form 6 −→ BC) that is executed by client 2, that executes inside legitimate states. If we

execute action 02 under eventual consistency, it may be possible that 6 evaluates to true because 2

is reading an inconsistent value of the data store. In this case, execution of action 02 may cause

the system to be perturbed outside the legitimate states. In other words, execution of the offending

action 02 causes the system to start from a state in the invariant to a state outside the invariant.

While this perturbation would (eventually) be corrected by the stabilization of the algorithm itself,

this implies that with eventual consistency, execution of the algorithm from a state in the invariant

may not remain within the invariant even in the absence of faults.

One approach is to utilize the notion of closure and convergence [72]. In particular, in this

work, authors partition the actions of the stabilizing algorithms into closure actions (that execute

within the invariant states) and convergence actions (that execute outside the invariant).

Thus, a natural question in this context is could we execute such a program so that (1) closure

actions are run under sequential consistency and (2) convergence actions are run under eventual

consistency. Unfortunately, this approach is incorrect. Specifically, it is possible that the program

is in a state in the invariant. However, some client reads the state of some node incorrectly and

thereby concludes that guard of some convergence action is true. In this case, it may execute the

corresponding action. If this happens, the resulting state may be outside the invariant.

While this straightforward approach does not work for dealing with 2E 5 for non-silent algo-

rithms, we can use an alternative using the notion of contained-active-stabilization discussed in

Section 4.4.2.

4.4.6 Non-stabilizing Algorithms and 2E 5

A natural question from this work is Was it essential for the algorithm to be stabilizing to achieve

the benefit identified in Sections 4.3 and 4.4.1 – 4.4.3?

We argue that the answer to this question is Yes.

The reason that stabilizing programs could tolerate 2E 5 is that, by definition, 2E 5 is a subset
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of arbitrary transient faults. Specifically, 2E 5 corrupts the state of one node. And, a stabilizing

program is designed to tolerate it. If the underlying program is not stabilizing, it is possible that the

effect of even a single 2E 5 may result in the program to reach a state where we have no knowledge

about its subsequent behavior. In particular, it may cause the program to deadlock, go into a loop,

etc.

Theoretically, one could benefit if the program was designed to tolerate a few 2E 5 s that could

occur at a time. However, it is possible that occurrences of multiple 2E 5 s could affect multiple

nodes at a time. Hence, we must tolerate a certain threshold C of simultaneous 2E 5 s. However,

if one follows the zero-one-infinity [73] principle of software design, unless we can argue that at

most one 2E 5 can occur at a time in the given system, we should tolerate an unbounded number of

2E 5 s thereby essentially requiring the algorithm to be stabilizing.

If one must use a non-stabilizing algorithm, we can tolerate 2E 5 as follows: Let ) be a state

predicate from where the program is expected to recover to its original behavior. (For stabilizing

programs,) =state space. For programs that cannot tolerate even a single 2E 5 ,) = �, the legitimate

states.) Now, we can run a monitoring algorithm for violation of ) and restore the program to an

earlier state if the program is perturbed outside ) . A similar approach (under certain restrictions)

is considered in [74]. However, this approach is limited in terms of being able to find ) and being

able to detect ¬) efficiently at runtime.

4.5 Summary

In this chapter, we investigate the benefit of the self-stabilization approach. We observe that

running self-stabilizing programs on eventual consistency helps the programs converge 1.2–1.8

times faster. Furthermore, it is interesting as we observe that we can relax the coordination

mechanisms between the clients such as mutual exclusion, and treat coordination violations as

2E 5 . Although the chance of 2E 5 increases, the overhead of coordination mechanisms is removed.

Experiment results show that the gain is actually higher than the cost. The convergence time

speedup even reaches as high as 7–12 times.
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We also discuss other variations of self-stabilization programs. We anticipate that eventual

consistency is also beneficial in these cases. One of our future works is to validate this hypothesis.

We discuss other future work related to the self-stabilization approach in Chapter 6.
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CHAPTER 5

STABILIZATION VERSUS DETECT-ROLLBACK

The two previous chapters discuss the detect-rollback and stabilization approaches for handling

2E 5 s. Experimental results show that both approaches are beneficial when compared to sequential

consistency. In this chapter, we compare the benefits of the two approaches. Clearly, if the

underlying program is not stabilizing then we must rely on the detect-rollback approach. Hence, we

focus on stabilizing programswhere both approaches are applicable. In particular, we consider three

stabilizing graph computation problems/applications as our case studies: planar graph coloring,

arbitrary graph coloring, and maximal matching.

The organization of this chapter is as follows. Section 5.1 explains howwe set up the experiments

and the performance metrics used for comparison. Section 5.2 presents the experimental results

and our analysis of the effect of some factors on the performance of both approaches. More analysis

is discussed in Section 5.3 to obtain further insights and implications of the results. We summarize

the chapter in Section 5.4.

5.1 Experiment Setup

5.1.1 System Configuration

As in previous chapters, we ran experiments in two environments: local lab network and Amazon

Web Service (AWS) network. For the configuration of the local lab network, we refer to Sec-

tion 3.3.1. The configuration of the local lab machines used for the experiments in this chapter are

shown in Table 5.1.

In our experiments, the distributed system consisted of 3 regions (clusters). Each region had

1 server machine (which hosted 1 replica) and 2 client machines (a client machine hosted 5 client

processes). Thus, there were 3 servers and 30 clients. We chose the configuration N3R1W1

for eventual consistency, and N3R1W3 for sequential consistency (in our experiments, N3R1W3
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performed better than another sequential consistency configuration N3R2W2).

On Amazon AWS platform, we used three EC2 M5.xlarge instances for the servers and six

EC2 M5.large instances for the clients (cf. Table 5.1). The AWS machines are distributed in three

regions (clusters): US East Ohio, US West Oregon, and Canada Central. The one-way latency

among the AWS regions in our experiments (measured using ping command) were: US West

Oregon and US East Ohio: 26 ms US West Oregon and Canada Central: 32 ms Canada Central

and US East Ohio: 15 ms. The average latency between AWS regions is about 24 ms.

Table 5.1: Configurations of machines used in the experiments

Environment Machine CPU RAM Storage

Local lab
3 server machines 8 Intel Core i7-4770T 2.50 GHz 8 GB SSD
5 client machines 4 Intel Core i5 660 3.33 GHz 4 GB HDD
1 client machine 4 Intel Core i5-2500T 2.30 GHz 4 GB HDD

AWS 3 server machines
(EC2 M5.xlarge)

4 vCPUs 16 GB SSD

6 client machines
(EC2 M5.large)

2 vCPUs 8 GB SSD

5.1.2 Client Execution Modes.

The clients were configured to run in four different modes (cf. Table 5.2) corresponding to

four different ways of executing the computation. In sequential mode (SEQ), the clients run on

sequentially consistent key-value store and use mechanisms (e.g. locks) to guarantee atomicity. No

2E 5 s occur in SEQ mode. This is the standard approach for executing the computation [75,76] and

is used as the baseline for comparison. In eventual with stabilizationmode (EVE-S), the clients also

employmechanisms for atomicity but run on eventually consistent data store. This mode allows 2E 5

to occur due to eventual consistency. However, 2E 5 is expected to be infrequent so that between two

instances of 2E 5 , the clients can execute several transitions to stabilize the computation. Eventual

with aggressive stabilization mode (EVE-AS) is similar to EVE-S except that the clients do not use

mechanisms for atomicity. Consequently, in EVE-AS more 2E 5 s are expected (Remark 2) but the

locking overhead is avoided. Lastly, in Rollback mode, the clients run on eventually consistent data
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store and also use atomicity mechanisms. Hence, 2E 5 occurs in rollback mode. However, instead

of relying on the stabilizing transitions of the program to correct 2E 5 , the monitors are deployed to

detect violations and the computation is then rolled back to undo the effect of 2E 5 .

Table 5.2: Four client execution modes

Execution
mode

Consistency Atomicity
mechanisms

Monitors Note

SEQ Sequential Yes No No 2E 5 . Standard approach.
EVE-S Eventual Yes No Infrequent 2E 5 expected.
EVE-AS Eventual No No More 2E 5 expected.
Rollback Eventual Yes Yes Rollback when violation is de-

tected.

5.1.3 Case Study Problems

Weused three stabilization problems/programs as our case studies: arbitrary/general graph coloring

(COLOR), planar graph coloring (P-COLOR), and maximal matching (MAX-MATCH).

In COLOR, we have an arbitrary input graph and the goal is the assign colors to graph nodes

in such a way that any two neighboring nodes have different colors. COLOR is a classical graph

problem and has many practical applications. For example, in the problem of traffic phasing we

have different traffic streams and some of them conflict with each other. We want to schedule the

traffic streams in such a way that conflicting streams are not schedule at the same time. As an

illustration, Figure 5.1 shows the traffic at the intersection between Wilson road and Red Cedar

road near the Engineering Building. There are 12 traffic streams and some of them conflict with

each other like stream 2 and stream 5. We want to schedule the green lights so that conflicting

streams are not scheduled at the same time. One way to solve this problem is as follows: we

model each traffic stream as a node in a graph and connect conflicting nodes by edges. By solving

graph coloring problem, conflicting streams will have different colors while compatible streams

could have same colors. If we schedule one time slot of green light for each color and during

that time slot all traffic streams assigned that color are allowed to go, we can be sure there is no
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Figure 5.1: Illustration of solving a traffic phasing problem using graph coloring. Each color in the
lower right graph corresponds to one time slot of green light.

traffic collision. We note that a trivial solution for COLOR is to assigned a different color for each

node. However, such solution is not efficient. In the traffic phasing problem above, we could use

12 colors (12 green-light time slots) for 12 traffic streams, but such solution lacks concurrent flow

of non-conflicting traffic streams and has significant red-light waiting time. One the other hand,

coloring an arbitrary graph with minimal number of colors is known as an NP-hard problem [77].

Thus, in practice, coloring solutions that use a fewer number of colors are preferred.

By a similar approach, COLOR can be used in final examination scheduling (two courses having

a common student are considered conflicting and their final exam schedules should not overlap so

that the student could take both exams) [78], air traffic scheduling [79], task execution scheduling

in GraphLab framework [76], compiler register allocation [80], bandwidth allocation [61], etc.

COLOR also has applications in banking and financial services [81], in social network analy-
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sis [82] to detect community [83, 84], or recommend friends [85]. For example, one way to detect

community using graph coloring is as follows. From the original graph �, we construct an overlay

complete graph �> and associate a weight for each edge in the overlay graph. The weight of an

edge (E8, E 9 ) in the overlay graph is defined based on the number of common neighbors between

E8 and E 9 in the original graph � (the higher the weight, the more connectivity between the two

nodes). Then we remove from �> those edges whose weights are greater a certain threshold and

obtain a derived graph �′>. For graph �′>, we compute a valid coloring. Clearly, two nodes with

same colors in �′> are not neighbors in �′>, thus the weight of the edge connecting the two nodes

is higher than the threshold in �>. In other word the two nodes have high connectivity in � and

could be put in the same community. For the problem of friend recommendation, first we compute

a valid coloring of the original social network (where two nodes are linked if they are friends).

Observe that two nodes with the same colors are clearly not friend in the original social network

and thus are potential candidates for friend recommendation (of course, other metrics such as the

number of common neighbors should be considered to prioritize the recommendation).

COLOR is also used as a sub-procedure in other algorithms such as clique computation [86,87],

matrix factorization [88], graph partitioning [89]. In distributed computing, we know that if the

processes run identical code and identical initial state, it is possible that the algorithm will not

terminate due to symmetry [90, 91]. We could break the symmetry by assigning identifiers to

processes that are locally distinguishable. Graph coloring can be used for that purpose. A valid

solution of COLOR also naturally induces a directed acyclic graph (an edge exists from node E8 to

node E 9 if the numeric value corresponding to the color of node E8 is greater than that of node E 9 ).

For COLOR, we used the stabilizing algorithm in [92] (the first of three variations). One

observation on this algorithm is that the result of a faulty transition, i.e. two neighboring nodes

have the same color, can be corrected by just one action at one of the nodes without affecting nodes

at a few hops away.

The problem of planar graph coloring is motivated by applications on planar graphs such as

weather monitoring [60], radio-coloring in wireless and sensor network [61], computing Voronoi
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diagram [62], etc.. We implemented the algorithm by Ghosh and Karaata [93] that guarantees to

use at most 6 colors for planar graphs. This algorithm consists of two steps: constructing a directed

acyclic graph (DAG) and coloring the nodes based on that DAG (in implementation, the two steps

can run simultaneously).

The problem of maximal matching has many applications in resource allocation such as tele-

phone line switching [94], college student placement [95], stable marriage [96], and matrix compu-

tation [97]. We used the algorithm in [40] to find amaximal matching of a graph. InMAX-MATCH,

a 2E 5 may require several actions to correct.

5.1.4 Input Graphs

We used three types of input graphs in the experiments: planar graphs, social graphs, and random

regular graphs. A planar graph is a graph that can be drawn on a plane such that its edges do not

cross with each other. We used the algorithm and program in [98] to generate planar graphs of

approximately 10,000 nodes (and roughly 24,000 edges). In a social graph, node degrees follow the

power-law distribution and nodes form clusters within the graph. In a random regular graph, nodes

have the same degree and are randomly connected. We used the tool networkx [58] to generate

social and random regular graphs. These graphs had 10,000 to 50,000 nodes.

Besides the above synthesis input graphs, we also use large-scale real-world graphs. However,

due to the large size, these real-world graphs are only used for experiments in Section 5.2.4 to

evaluate the scalability of our approaches.

5.1.5 Workload Partitioning Schemes.

In the passive-node model, each client is responsible for a (roughly equal) partition of the graph.

We used three schemes to construct the clients’ partitions. In the normal partitioning (or straight

partitioning), each client is responsible for a trunk of consecutive nodes. For example, with 10,000

nodes and 10 clients, client 0 is assigned nodes 0 to 999, ..., client 9 is assigned nodes 9,000 to

9,999. In the Metis partitioning, we used graph partitioning tool Metis [99] to partition the graphs.
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Metis partitioning algorithm aims to minimize the edge-cut partitioning objective, i.e. the number

of graph edges bridging different partitions, and thus increases the locality within the partitions.

In other words, it helps reduce the amount of coordination between the clients. In the random

partitioning, each client is assigned a distinct set with roughly the same number of nodes randomly

selected from the graph. Random partitioning distributes the workload more evenly between clients

but could have negative effect on the locality of partitions.

5.1.6 Performance Metrics

Since the case study programs are silently self-stabilizing, we use convergence time (the time since

the programs start until they terminate, i.e. they reach a state in the invariant) as the performance

metrics. (cf. Section 4.2 for the description of termination detection algorithm.) We note that the

throughput does not necessarily reflect the end-to-end performance of the programs. For example,

when using lock to ensure atomicity requirement, a client is likely to wait for a lock to be available.

When waiting for the lock, the client keeps sending requests to check the status of the lock. Those

requests increase the throughput but do not help the program to progress.

5.2 Benefits of Stabilization versus Rollback: Comparison and Analysis

5.2.1 Stabilization vs. Rollback: Comparison and Analysis

Overall comparison. Table 5.3 shows the experiment results of running four execution modes (cf.

Section 5.1.2) on different case study problems and input graphs. Input graphs are partitioned with

normal partitioning scheme. We ran experiments in local lab network where the average latency

was 20 ms (using proxy) and each measurement is the average of several runs. The sequential mode

(SEQ) is used as the baseline of comparison.

In general, stabilization performed better than rollback in our case studies. Specifically, sta-

bilization EVE-S improved the convergence time by 25%–35% whereas Rollback improved the

convergence time by 29% in the best case but potentially caused the performance to suffer. Re-

markably, aggressive stabilization EVE-AS improved the performance 2–15 times.
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Table 5.3: Stabilization vs. Rollback. Graphs are partitioned in normal scheme. Network latency was 20 ms. SEQ is baseline for
comparison. Rows 7-10 are convergence time benefits, shown in percentage increase or in speedup (e.g. ×5.2 means 5.2 times faster).

Problem
Planar Graph Coloring
(P-COLOR)

Arbitrary Graph
Coloring (COLOR)

Maximal Matching
(MAX-MATCH)

Input graph Planar 10K Social 50K Regular 50K Social 10K Regular 10K Planar 10K

Convergence
time

(seconds)

SEQ 3,887 27,995 6,518 31,581 14,859 8,545
EVE-S 2,658 18,229 4,270 23,246 11,028 6,173
EVE-AS 754 1,885 3,547 2,892 1,866 2,590
Rollback 3,860 32,165 4,624 32,238 12,496 8,660

Benefit

EVE-S vs. SEQ 31.6% 34.9% 34.5% 26.4% 25.8% 27.8%
EVE-AS vs. EVE-S ×3.5 ×9.7 ×1.2 ×8 ×5.9 ×2.4
EVE-AS vs. SEQ ×5.2 ×14.9 ×1.8 ×10.9 ×8 ×3.3
Rollback vs. SEQ 0.7% -14.9% 29% -2.1% 15.9% -1.4%
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Impact of input graph structure. The structure of input graph affects the computation in two

ways: (1) it changes the work balance between clients and (2) it determines the locking overhead

among the clients.

In skewed graphs such as social graphs and planar graphs where there are a few nodes with

very high connectivity degrees, some clients will be assigned graph partitions with more work

(the number of nodes is roughly the same but the number of edges in these partitions is higher).

In contrast, the workload can be evenly distributed in random regular graph due to its regularity

structure.

The locking overhead also depends on the connectivity structure of input graphs. For example,

Figures 5.2 (a-c) measures the average throughput ofMAX-MATCH running on 4 execution modes

and in different graphs. In social graphs (cf. Figure 5.2a), the throughput in EVE-S (4996 ops)

was about 5 times higher than that in EVE-AS (953 ops). In regular graphs (cf. Figure 5.2b), this

difference was about 2 times (2192 and 972 ops). Lastly, the two throughputs were comparable

in planar graph (881 and 972 ops, cf. Figure 5.2c). Since the key difference between EVE-S and

EVE-AS is whether an atomicity mechanism is used or not (with or without locking overhead),

these results indicated that the locking overhead was highest in social graphs due to their complex

structure (power-law degree distribution, clustering) and lowest in planar graphs due to their locality

property. (We can partition a planar graph into non-overlapping partitions with a small number of

border nodes– nodes connected to other partitions.)

Due to the amount of locking overhead, computation was slowest on social graphs and (often)

fastest on planar graphs. We note that MAX-MATCH (on EVE-AS mode) converged faster on

random regular graphs (1,866 s) than on planar graphs (2,590 s) because some clients converged

slower than others in planar graphs (due to skewed partitioning results), which increased the overall

time of the program.

The graph structure also affects the benefits of stabilization and rollback. Specifically, the

benefits of aggressive stabilization EVE-AS were highest (lowest, respectively) in social graphs

(planar graphs, respectively) since the locking overhead was high (low, respectively) and EVE-AS
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Figure 5.2: Measurement of client throughput (ops – operations per seconds) of MAX-MATCH
with different input graphs. Normal partitioning. Latency was 20 ms.

avoided such overhead. In contrast, the performance of Rollback suffered on social graphs because

the chance of conflicts (two clients updated neighboring nodes simultaneously) was high and

rollback was more frequent. Rollback performed well on random regular graphs since the chance

of conflicts was low. We note that forMAX-MATCH on planar graphs, Rollback was slightly slower

than SEQ because of the skewed workload. When planar graphs were partitioned using the random

scheme, Rollback was 22% faster than SEQ (we discuss the impact of partitioning schemes later in

this section). Finally, the benefits of EVE-S were fairly stable across different settings (25%–35%)

because these benefits stemmed from the performance difference between eventual and sequential

consistency.

Impact of case study problems. The effect of 2E 5 is not the same for different problems. In
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COLOR, a 2E 5 can cause a client to update a node with color similar to one of its neighbors but this

error can be fixed by one valid transition (update the node with a different color). Nodes that are

more than one hop away are not affected by the 2E 5 . In contrast, in MAX-MATCH a 2E 5 can have

cascading effect that requires updates at distant nodes. As an illustration, suppose four nodes E1,

E2, E3, and E4 are on a straight line in that order. Nodes E1 and E3 are matched with E2 (due to 2E 5 ).

To correct this error, we can un-match E2 from E3. Since E3 is now free, it can be matched with E4,

thus updating the states of both E3 and E4. Therefore, the cost to correct 2E 5 s in MAX-MATCH is

higher and the benefits of EVE-AS are smaller inMAX-MATCH than in COLOR (×10.9 and ×14.9

speedup on social graphs) since EVE-AS introduces more 2E 5 s.

We notice an exception: on regular graphs, the benefit of EVE-AS in COLOR is unusually low

(×1.8 speedup whereas the benefits of MAX-MATCH is ×8 speedup). We examined the execution

of COLOR and found that eliminating atomicity mechanisms (in EVE-AS) introduced some 2E 5 s

that were difficult to recover. This happened when only a small number of nodes had inconsistent

colors and 2E 5 s caused clients to re-visit those nodes again and again. We only observed these

2E 5 s in regular graphs as the workload was split very evenly across clients, thereby leading to a

livelock. One way to address this problem is using random coloring. We will discuss our approach

to overcome this issue and improve the convergence time in Section 5.2.2.

Impact of partitioning scheme. A normal partitioning of skewed graphs (social or planar)

causes workload imbalance among clients and high connectivity among partitions (low locality),

which increases the computation time as well as affects the benefits of stabilization and rollback.

Efficient partitioning schemes can address these issues. We consider two alternatives: random

partitioning and Metis partitioning. The former helps distribute the workload more evenly whereas

the later improves the locality.

As shown in Table 5.4, Rollback was not better than SEQ when normal partitioning was used in

MAX-MATCH andP-COLOR because of the unevenworkload. However, when random partitioning

was employed, the benefits of both rollback and stabilization were significantly improved (cf.
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Table 5.4). However, the convergence time often increases with random partitioning because this

partitioning disturbs the locality of planar graphs. To quantitatively justify this argument, we

partitioned a planar graph using normal and random partitioning schemes, and measured some

properties of the resultants partitions (cf. Table 5.5).

Table 5.4: Effect of random partitioning on stabilization and detect-rollback. Rows 2-5 are
convergence time. Rows 6-8 are benefits, in percentage increase or in speedup (e.g. ×3 means 3
times faster). Network latency was 20 ms

Execution mode
MAX-MATCH P-COLOR

Normal
partition

Random
partition

Normal
partition

Random
partition

Convergence
time

(seconds)

SEQ 8,545 10,736 3,887 8,686
EVE-S 6,173 7,026 2,658 5,315
EVE-AS 2,590 1,448 754 655
Rollback 8,660 8,341 3,860 7,242

Benefit

EVE-S vs. SEQ 27.8% 34.6% 31.6% 38.8%
EVE-AS vs. SEQ ×3.3 ×9.4 ×5.2 ×13.3
Rollback vs. SEQ -1.4% 22.3% 0.7% 16.6%

Table 5.5: Comparison between the normal and random partitioning schemes of a planar graph.
For each property, the average (AVG) and standard deviation (STDEV) among the partitions are
calculated.

Properties Normal partition Random partition
AVG STDEV AVG STDEV

Max degree 15.3 5.0 17.1 2.7
Min degree 2.7 0.6 1.0 0.0
Total degree 1622.2 508.5 1622.2 59.9
Node count 367.8 4.7 367.8 4.7
Average degree 4.4 1.4 4.4 0.1
External edges 585.7 148.9 1568.1 54.4
Internal edges 1036.5 508.7 54.1 13.6

We observed that properties related to nodes’ degrees were more evenly distributed with random

partitioning. Since a node’s degree reflects the cost of obtaining locks and reading state of neighbors,

which constitutes a significant amount of work, an even degree distribution implies more balanced

workload among partitions/clients. Consequently, we avoided slow clients that were assigned too

much work. On the other hand, random partitioning potentially breaks the locality characteristics
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of planar graphs. We observed with random partitioning, the number of external edges that

crossed between partitions increased whereas the number of internal edges that connected nodes

within a partition decreased. This implies random partitioning increased the locking overhead.

Consequently, computation time often increased with random partitioning (cf. Table 5.4).

Metis partitioning [99] reduces the number of external edges bridging between partitions, and

improves the locality within partitions. Consequently, the locking overhead was reduced and the

convergence time of all execution modes was improved when compared to normal partitioning (cf.

Table 5.6). Since the locking overhead was reduced, the benefits of aggressive stabilization EVE-AS

decreased.

Table 5.6: Impact of Metis partitioning scheme. Latency was 20 ms.

Problem MAX-MATCH
Input graph Planar Planar
Partition scheme Normal Metis

Convergence
time (seconds)

SEQ 8,545 2,585
EVE-S 6,173 2,389
EVE-AS 2,590 2,154
Rollback 8,660 2,635

Benefit

EVE-S vs. SEQ 27.8% 7.6%
EVE-AS vs. SEQ ×3.3 ×1.2
Rollback vs. SEQ -1.4% -1.9%

5.2.2 Improving the Convergence Time of Stabilization Approach

Heuristics to reduce tail latency. In the passive node model, clients are responsible for checking

which nodes have enabled actions and execute those actions. The results in Table 5.3 correspond to

the case where clients evaluated the guards of nodes assigned to them in a round-robin manner. One

of the issues with round-robin is that some nodes whose actions are enabled may not be considered

while the client is evaluating other nodes assigned to it but having no enabled actions. Note that

this issue is ignored in the active node model, as, generally, it is assumed that the scheduler will

choose some active node for execution. The time required for the scheduler to determine this node

is ignored.
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In the programs under consideration, if no action of 9 is enabled in the current state then this

information is stable until a neighbor of 9 executes. Thus, if a node could tell the client that its

actions are unlikely to be enabled then the client can save on reading the states of its neighbors. For

such an approach to work, for node 9 , we need to know (1) =3_2ℎ0=64. 9 the last time the client

checked that no actions are enabled at 9 , and (2) =1A_2ℎ0=64. 9 the last time one of its neighbors

was updated.

Thus, when client reads the state of 9 and finds that =3_2ℎ0=64. 9 > =1A_2ℎ0=64. 9 , it does

not need to read the state of its neighbors to determine if some action of 9 is enabled. Since

clocks of all computers involved may not be identical, we change the condition to =3_2ℎ0=64. 9 >

=1A_2ℎ0=64. 9 +Δ. 9 + n where Δ. 9 is the length of the last execution of 9 and n is the upper bound

for clock synchronization error. In other words, if =3_2ℎ0=64. 9 > =1A_2ℎ0=64. 9 +Δ. 9 + n is true

then the client can save time by not issuing GET requests to neighbors of 9 .

Table 5.7 considers execution with this optimization. We find that this optimization is useful

only when the convergence pattern exhibits a long tail at the end (cf. EVE-AS mode in Figure 5.3).

The overhead of the optimization (for reading and writing additional variables) caused EVE-AS

(optimized) to converge slower than EVE-AS at first. However, the optimization significantly

reduced the tail of convergence graph and thus improved the overall convergence time by 44%. If

the convergence pattern did not have the long tail characteristic (such as EVE-S mode in Figure

5.3, or EVE-AS mode with random coloring), this optimization increased the convergence time

because of the extra overhead (cf. Table 5.7).

Randomization. As discussed in Section 5.2.1, we observed some 2E 5 s when running

COLOR in aggressive stabilization mode on regular graphs that prevented the program to converge.

For example, suppose two clients �1 and �2 are working on two nodes E1 and E2 at the same time.

Suppose the original color of both nodes is 0. Because no mutual exclusion is used in EVE-AS, both

clients may assign the same new colors 1 for both nodes, resulting in invalid/inconsistent coloring.

This error is usually resolved when one of the clients visits its node in the next round and change
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Table 5.7: Effectiveness of the random coloring and the optimization for stabilization approach in
the arbitrary graph coloring problem (COLOR). Convergence time is measured in seconds. Normal
partition. Latency = 20 ms

Execution
mode

Track update
timestamp

Color selection
scheme

Regular graph
50K

Social graph
50K

EVE-AS Yes Deterministic 1,972 4,805
EVE-AS Yes Random 1,941 4,807
EVE-AS No Deterministic 3,547 1,885
EVE-AS No Random 1,431 1,883
EVE-S No Deterministic 4,270 18,229
EVE-S Yes Deterministic 5,136 >20,000
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Figure 5.3: The convergence pattern of different execution modes in COLOR. Normal partitioning.
Latency was 20 ms.

its node to a different color. However, if both �1 and �2 re-visit E1 and E2 at the same time, the

problem persists. We observed this problem occurred only in regular graphs where the workload

was split very evenly among the clients and there were only a few nodes with inconsistent colors

that needed to be fixed. The problem did not happen in social graphs since the client workload was

not even. In other words, running COLOR in EVE-AS mode does not guarantee convergence.

One possibility to address this problem is to modify the coloring algorithm so that the client
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would choose a random value among available colors for its nodes. With this modification, EVE-

AS is probabilistic self-stabilizing. In our experiments with the random coloring scheme, the

convergence time of coloring the same regular graph in EVE-AS improved from 3.547 seconds to

1.431 seconds. On the other hand, the convergence time for social graph stayed almost the same

(1,885 ms and 1,883 ms, cf. Table 5.7).

We also note that the performance of sequential mode (SEQ) is unaffected by whether deter-

ministic coloring or random coloring is used (6,518 ms and 6,544 ms, not shown in Table 5.7).

Thus, for the COLOR program on random regular graphs, random coloring improves the benefits

of EVE-AS when compared to deterministic coloring (×4.6 speedup vs. ×1.8 speedup).

Impact of network latency. Network latency characterizes the geographical distribution of

replicas. As shown in Table 5.8, when network latency increased (from 20 ms to 50 ms), the

benefits of stabilization (EVE-AS) slightly increased. We attribute this result to the fact that

the benefits of eventual consistency compared to sequential consistency increase when network

latency increases [42]. On the other hand, the effect of network latency on the benefits of rollback

was mixed. We anticipate that the different interaction patterns of rollback with the underlying

stabilizing programs is the reason for this variation.

Table 5.8: Impact of network latency. Rows 4-6 are convergence time (in seconds). Rows 7-8 are
the benefits, shown in percentage increase or in speedup (e.g. ×4.3 means 4.3 times faster).

Program MAX-MATCH COLOR P-COLOR

Input graph Regular 10K,
normal partition

Regular 10K,
normal partition

Planar 10K,
normal partition

Latency 20 ms 50 ms 20 ms 50 ms 20 ms 50 ms
SEQ 14,859 35,653 6,518 15,535 3,887 9,415
EVE-AS 1,866 3,985 1,615 3,607 754 1,814
Rollback 12,496 38,657 4,742 14,113 3,860 9,057
EVE-AS vs. SEQ ×8.0 ×8.9 ×4.0 ×4.3 ×5.16 ×5.19
Rollback vs. SEQ 15.9% -8.4% 28.3% 9.2% 0.7% 3.8%
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5.2.3 Experiments on Amazon AWS

To confirm the results in a more realistic deployment, we ran experiments on AmazonWeb Services

(AWS) network. As shown in Table 5.9, the AWS results agree with the experimental results on

the local lab network (cf. Table 5.3).

Table 5.9: Experiment results on Amazon AWS network

Problem P-COLOR COLOR MAX-MATCH
Input graph Planar 10K Social 10K Regular 10K

Partition scheme Random Normal Normal

Convergence time
(seconds)

SEQ 10,211 21,265 6,816
EVE-S 6,586 13,630 4,038
EVE-AS 797 2,430 413
Rollback 9,575 21,718 7,625

Benefit
EVE-S vs. SEQ 35.5% 35.9% 41.7%
EVE-AS vs. SEQ ×12.8 ×8.8 ×16.5
Rollback vs. SEQ 6.2% -2.1% -11.9%

5.2.4 Scalability Analysis

We analyze the performance of stabilization for three real-world social graphs [100]: a DBLP

co-authorship network (DBLP-300K) and two YouTube friendship networks (YT-1M and YT-3M).

The sizes of those graphs are provided in Table 5.10. We ran COLOR program on AWS machines

located in three availability zones of US East Ohio region. Each availability zone has oneM5.xlarge

machine hosting one server/replica and two M5.large machines (each machine hosts five clients).

The average one-way network latency within and between availability zones is about 0.05 and

0.3 milliseconds, respectively. The graphs are partitioned with the normal (straight) partitioning

scheme.

Table 5.10 shows the experiment results. We observe that on social graphs, while the benefits

of EVE-S (compared to SEQ) are fairly stable (25% – 30%), the benefits of EVE-AS increase

substantially as the graph size increases. Specifically, the speedup benefit on graph with 300

thousand, 1 million, and 3 million nodes is 9.5, 13.2, and at least 59.7, respectively. This is because

the performance of EVE-AS scales well as the graph size increases while SEQ does not.
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We anticipate SEQ’s poor scalability is due to skewness in social graphs. As discussed in

Section 5.2.1, it is difficult to balance workload among the clients’ partitions of a social graph.

As this imbalance is enlarged as a social graph grows, the computation progress is retarded on

the slowest client. Moreover, a social graph contains nodes with high degree (power-law degree

distribution [101]) and due to atomicity requirement (employed by SEQmode), the processing time

of those nodes are high. As the graph size increases, the degree of such nodes and their processing

time increases quickly (cf. fifth and sixth rows in Table 5.10). Although the issue of skewness can

be alleviated with complex partitioning schemes (e.g. Metis), they requires extra processing step

and could not eliminate the problem. In short, as the graph size grows, skewness is more severe

and the processing speed of slowest client slows down.

In contrast, the skewness problem is almost eliminated in EVE-AS mode since the atomicity

requirement is removed and (thus) every node has roughly the same processing time (although

client may need to process high degree nodes several times due to the higher chance of 2E 5 s.

However, as shown in Section 5.2.5, this chance is small.)

Table 5.10: (AWS) Performance of COLOR for different graph sizes. Normal partitioning

Input graph DBLP-300K YT-1M YT-3M
Node count 317,080 1,134,890 3,223,585
Edge count 1,049,866 2,987,624 9,375,374
Average degree 6.6 5.3 5.8
Maximum degree 343 28,754 91,751
Average processing speed of
slowest client (ms/node) in
SEQ mode

156.3 389.9 2,200

SEQ time (s) 1,660 14,788 236,390
EVE-S time (s) 1,192 10,808 164,591
EVE-AS time (s) 175 1,119 2,738
Rollback time (s) > SEQ > SEQ > SEQ
EVE-S vs. SEQ benefit 28.2% 26.9% 30.4%
EVE-AS vs. SEQ benefit ×9.5 ×13.2 ×86.3
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5.2.5 Key Observation

Although the performance of each specific execution mode depends on several factors, in general,

EVE-AS is noticeably efficient, EVE-S consistently yields substantial benefits whereas Rollback

could provide comparable benefits as EVE-S but also potentially causes performance to suffer.

The above observation poses some questions: (1) what is the reason that makes stabilization,

especially aggressive stabilization, more efficient than rollback? And (2) when one already has a

non-stabilization algorithm for a problem at hand, and there exists another stabilizing algorithm

which is (relatively) less efficient (on sequential consistency), is it worth considering the stabilizing

option? This question can also be extended for handling the case where adding stabilization to

a non-stabilizing program leads to an increase in overhead/computation time. We discuss these

questions in Section 5.3.

5.3 Analysis of Results and Their Implications in the Design

5.3.1 Insight into Comparison of Stabilization versus Rollback

Weobserve fromTable 5.3 that the performance of self-stabilization is generally better than rollback,

particularly in COLOR with social graphs. We anticipate the reason is that the effect of 2E 5 s is

resolved differently in the two approaches. As an illustration, consider the COLOR program for

social graphs. A 2E 5 corresponds to the case when the possession time intervals of two clients for a

lock overlapped. (This scenario occurs in eventual consistency when a client obtains the lock from

one replica while the other client obtains that lock from another replica [51].) However, overlapping

lock intervals do not necessarily mean the two clients accessed the shared data (protected by the

lock) simultaneously because a client might want to obtain several locks before it started accessing

the data. Furthermore, even if the clients accessed the data simultaneously, that does not necessarily

mean the computed results would bewrong (the colors of neighboring nodesmight still be different).

We validated this hypothesis with experiments where we ran the COLOR program for social

graphs in Rollback mode. We also added instrumentation to record information about the 2E 5 s
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such as the time intervals when the clients accessed shared variables and the colors of graph nodes

computed by the clients. We analyzed the recorded data after the experiments had finished and

found that among 116 2E 5 s detected in the experiments, the client access intervals did not overlap in

35 of them. In the 81 2E 5 s where the clients could have accessed shared variables simultaneously,

only in 6 2E 5 s that the computed colors were conflicting. (The reason the colors of two conflicting

neighbors were still different even two clients were updating them simultaneously is that the color

of a node was influenced by the colors of all of its neighbors, not just only the neighbor where

the access conflict occurred.) So in most of the 2E 5 s we observed, the conflicts were resolved

favorably. These results imply that in rollback approach the program was inherently required to

rollback more often than necessary (each detected 2E 5 caused a rollback) whereas in stabilization

approach the program only had to handle a few actual faulty 2E 5 s. We believe this is one of the

reasons why stabilization performed better than rollback in our experiments.

We note that the overhead of the above analysis is expensive and currently not suitable to be

used with runtime rollback. It is an open problem to find efficient mechanisms to do it.

5.3.2 Results with Non-Stabilizing Algorithm

A natural question could be that what options should we choose if both stabilization and non-

stabilization algorithms are available? We note that in general, when the algorithms are different, it

is hard to fairly compare the two approaches since the performance is also affected by other factors

such as optimization and implementation techniques. However, if the algorithms are closely similar,

the comparison is useful. In this section, we also compare the stabilization and non-stabilization

algorithms for graph coloring since the algorithms are fairly similar. (Our non-stabilization graph

coloring algorithm is based on [25].)

Table 5.11 shows experiment results when running those algorithms on a regular random graph

with 50,000 nodes, using normal partitioning scheme, in our local lab network with 20 ms latency.

A key observation from this analysis is that the stabilizing algorithm is less efficient than the non-

stabilizing counterpart on sequential consistency. However, it is the overall winner when used with
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eventual consistency, as it can benefit from tolerating 2E 5 s. By contrast, non-stabilizing algorithm

cannot benefit from tolerating 2E 5 s thereby resulting in lower performance even with rollback. For

example, for 3 = 10 (3 is the average node degree), time taken by the non-stabilizing algorithm

was 7,021 s in sequential consistency and it improved to 5,456 s with eventual consistency and

rollback. By contrast, the cost of the stabilizing algorithm under sequential consistency was 11,146

s. It improved to 1,717 s under EVE-AS model.

This implies that while there may be some cost associated with making the protocol stabilizing,

it is recovered by tolerating 2E 5 s. In this context, we also want to remind the reader that non-

stabilizing algorithms cannot ignore 2E 5 s, as a 2E 5 may perturb the program to a state from

where recovery is not guaranteed. Only stabilizing programs can choose to ignore 2E 5 s as they

are designed to recover from them. Non-stabilizing programs can only use the detect-rollback

approach to deal with 2E 5 s.

Table 5.11: Computation time (in seconds) of Stabilizing and Non-Stabilizing algorithms for graph
coloring. The average of node degree (3) varies between 2 and 10. The baseline for calculating
benefit is SEQ

Average node degree 3=2 3=3 3=6 3=10

Stabilizing graph
coloring

SEQ 2,325 3,378 6,518 11,146
Rollback 1,559 2,279 4,742.3 10,150
EVE-AS 1,321 1,376 1,615 1,717
EVE-AS benefit ×1.8 ×2.5 ×4.0 ×6.5

Non-stabilizing
graph coloring

SEQ 1,653 2,291 4,246 7,021
Rollback 1,213 1,681 3,192 5,456
Rollback benefit 26.6% 26.6% 24.8% 22.3%

5.4 Summary

In this chapter, we consider the detect-rollback and stabilization approaches to handle consis-

tency violating faults (2E 5 s) and reduce the time for execution of stabilizing graph algorithms.

Our analysis shows that for stabilizing programs, the stabilization approach provides substantial

benefits compared with the detect-rollback approach. Specifically, the second approach provides

a 25%–35% improvement for different programs. Furthermore, the aggressive stabilization (that

110



introduces additional 2E 5 s at the cost of efficiency) reduces the convergence time 2–15 times. By

contrast, the detect-rollback approach provides limited benefits and potentially causes performance

to suffer when compared with sequential consistency.

We also considered another approach to reduce the time for execution. It relied on heuristics

to allow clients to keep track of nodes that may have enabled actions. Experimental results show

that the heuristics can improve convergence time by about 44% by reducing tail latency where the

state of a very few nodes is inconsistent. However, it is only suitable for convergence patterns with

a long tail of slow progress at the end.

We also find that the stabilization approach can benefit even more if the program can use

other techniques to reduce overall time. Specifically, we considered the use of the random graph

partitioning scheme to balance client workload. In this case, both approaches showed benefits but

the benefit of stabilization was higher.

Another key insight in this work is that the benefits that apply to stabilizing algorithms can

make them attractive in eventually consistent data stores even if they are (relatively) inefficient under

sequential consistency. For example, in Section 5.3.2, we showed that under sequential consistency,

the stabilizing program had 58% lower performance than a similar non-stabilizing program (11,146

s to 7,072 s). However, its performance was 3.2 times better under eventual consistency (1,717 s vs

5,456 s). This happened because the non-stabilizing algorithm could not tolerate 2E 5 s in the same

manner that a stabilizing program could. This indicates that there may be a substantial benefit in

revising an existing algorithm for the problem at hand to make it stabilizing and reduce the overall

runtime under eventual consistency.

Directions to extend the work in this chapter will be discussed in Chapter 6.
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CHAPTER 6

FUTUREWORK

In this chapter, we discuss some potential directions to extend the work of this dissertation.

Section 6.1 focuses on improving the detect-rollback approach. The stabilization approach is

discussed in Section 6.2. Section 6.3 discusses some interesting problems that are also related to

this dissertation.

6.1 Improving The Detect-Rollback Approach

Rollback with Retroscope. The rollback algorithm proposed in this dissertation is specific for

some graph-based applications and has the assumption of small detection latency. It does not work

for a general application in a key-value store. When the detection latency is prolonged because

of network congestion or delay, the rollback algorithm also does not work because the violation

occurred during a task in the past, not the current task. In this case, we have to rollback the system

to a point before the task in which the violation occurred.

For the general rollback scenario, we are investigating the possibility of integrating the monitor

with Retroscope [26] to automate the rollback and recovery.

Improving the monitors. The monitors used in this work suffer from false positives, i.e., they

initiate rollback when it was not absolutely necessary. One possible reason for false positives is that

the clients, say�1 and�2, involved in rollback had only read from the key-value store. In this case,

one of the clients can continue the execution without rollback. However, in our implementation,

as each client rolls back independently, both of them rollback. If this is prevented, it can not only

reduce the wasted work, it can also potentially avoid the re-occurrence of conflict between �1 and

�2 after rollback.

Another reason for false positives is the mismatch in the clock synchronization assumptions

made by the monitors and the applications [102]. There is also the mismatch between the time
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interval duringwhich a client possesses a lock and the time interval when the client actually accesses

the variables guarded by the lock. Often, the later time interval is much smaller than the former one

because the client has to obtain all the locks related to a node before updating that node. This leads

to the situation where the lock possession time intervals of two clients overlap but their access time

intervals do not (as discussed in Section 5.3.1). Consequently, the monitors trigger false alarms

and unnecessary rollbacks. In order to reduce or eliminate the false positives, we would have to

augment the clients and servers with more information so that monitors will have more accurate

information about the events. Such instrumentation increases the cost of monitoring but reduces

the need for performing rollback.

Adaptive Consistency. Currently, the adaptive solution switches from eventual consistency

to sequential consistency based on the feedback from monitors. It is possible that the increase in

violations is temporary due to network issues. When the condition is resumed to normal, it would

be beneficial to run in eventual consistency again. However, in sequential consistency, monitors

are not required and, hence, there is no feedback mechanism to determine when using eventual

consistency is reasonable. One needs to develop new techniques to permit this possibility. One

possibility is the probation method. Assume a client is in sequential consistency and it wants to

determine whether it is safe to switch to eventual consistency. The client waits for some predefined

amount of time )F08C (the value of )F08C is determined from the analysis of experiment results) and

tries eventual consistency. If violations recur quickly, it switches back to sequential consistency

and doubles the wait time before the next try. The process is repeated until the client does not

observe recurring violations.

6.2 Improving The Stabilization Approach

Analytical model for benefits of self-stabilizing eventual consistency. In Chapter 4, we

characterize violations occurred in eventual consistency as consistency violating faults (2E 5 ). Our

experiment results show that some self-stabilizing programs could convergence in the presence
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of 2E 5 . However, it is not clear whether a designer can have an estimate of the benefits without

running experiments. We are working to develop an analytical model for estimating the expected

convergence speedup of self-stabilizing programs in the presence of 2E 5 .

Other variations of stabilization As self-stabilization characteristics of different problems

are different, we plan to investigate the benefit of eventual consistency in other self-stabilizing

programs such as coloring [92], Dĳkstra’s token ring [53], and collateral composite self-stabilizing

algorithms [103]. We are also interested in the benefits of eventual consistency to other variations

of stabilization such as weak, probabilistic, active, and fault-containment stabilization.

Adding stabilization to non-stabilizing programs

Results in Chapter 5 show that stabilizing programs, while relatively inefficient under sequential

consistency, are attractive under eventual consistency. This indicates that there may be a substantial

benefit in revising an existing algorithm for the problem at hand to make it stabilizing and reduce

the overall runtime under eventual consistency. We note that there are several algorithms to add

stabilization to a non-stabilizing program [104]. These algorithms could be used in this context.

However, an approach that optimizes the addition of stabilization using specific insight into the

problem at hand may be more desirable as it is likely to provide the most benefit.

As another demonstration, consider the task of analyzing large-scale real-life networks (e.g.

social networks) which are challenging to deal with. One of the challenges is that their complex

structure imposes a significant locking coordination overhead for atomicity assurance, which retards

the overall performance. Most of the existing work tried to reduce this overhead by efficient

partitioning schemes [75] but the improvement was limited due to the inherent complex graph

structure and required a preprocessing step. In chapter 5, we observed that aggressive stabilization

(EVE-AS) performed particularlywell in social graphs (an order ofmagnitude improvement)without

the additional preprocessing overhead. This observation suggests that eventual consistency and

stabilization is a promising candidate to efficiently tackle the complexity in social networks.
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From the analysis of this work, we find that the stabilization-based approach provides a substan-

tial benefit compared with the rollback-based approach. However, in both cases, the time required

for convergence of the last few nodes is still quite high. One of the future work in this area is

to reduce this overhead. Another future work is to generalize the results in chapter 5 specifically

to determine which options one should choose if both stabilizing and non-stabilizing algorithms

are available. Another question for investigation is whether the analysis holds for other models of

distributed computation.

6.3 Other Possibilities of Future Work

6.3.1 Characteristics of Monitoring Errors

When monitoring a partially synchronized distributed system, the monitors need to know about

the target system clock drift. However, this information is not always available to the monitors.

Even when the target system specification is available, implementation bugs can make the actual

drift differ from the specification. Therefore, the monitor assumption on clock drift may slightly

differ from the application assumption. Due to the impedance mismatch between the applications

and monitors about their assumptions of synchronization error, the monitors can suffer from false

positives, false negatives, or both. False positives are phantom violations reported by the monitors

but they did not actually occur during the execution. False positives are introduced when the

monitor assumption is larger than the application assumption. False positives are false alarms and

can cause unnecessary correction actions. False negatives are circumstances where the monitors

failed to detect valid violations that actually occurred during the computation. They occur when

the monitor assumption is smaller than the application assumption. If false negatives occur, the

monitors miss to detect valid violations and the correctness of the computation is affected.

False positive rate and false negative rate are related to the precision and recall properties of

the monitors. Specifically, false positive rate = 1 - precision, and false negative rate = 1 - recall. In

the context where we use the monitors to detect anomalies in eventual consistency, false positives

will cause unnecessary rollbacks and impede the overall progress of the computation. On the other
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hand, false negatives will cause the clients to use inconsistent data and thus the computation results

are compromised.

The precision and recall characteristics of the monitors is an independent problem of interest. It

is useful not only in the context of recovery from violations (the detect-rollback approach) but also

for distributed monitoring and debugging in general since it helps the designer use the monitors

more effectively. Hence, we plan to study this problem in the future.
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CHAPTER 7

RELATEDWORK

In this chapter, we review the literature related to the work of this dissertation. The Voldemort

key-value store and the passive-node model are related to frameworks for distributed data process-

ing (Section 7.1). The sequential and eventual consistency are two consistency models widely

supported by many distributed data stores (Section 7.2). We develop the techniques used by the

detect-rollback approach based on existing work in predicate detection in distributed systems (Sec-

tion 7.3), distributed snapshots (Section 7.4), and monitoring services on the cloud (Section 7.5).

The approach of using stabilization to handle 2E 5 s belongs to the literature on self-stabilization

(Section 7.6). Section 7.7 summarizes the contribution of this dissertation.

7.1 Distributed Data Processing

MapReduce [105], DataFlow [106] are general-purpose distributed data processing frameworks.

In the realm of distributed graph processing, many frameworks are available such as Pregel [107],

GraphLab [76], GraphX [108], and PowerGraph [109]. In those works, data is persisted in semi-

structural storages such Google File System, Hadoop Distributed File Systems [110], BigTable

[111], or in in-memory storage such as Spark [112]. Our work focuses on the no-structure key-

value stores and the impact of different consistency models on key-value store performance. Our

approach’s usefulness is also not limited to graph applications.

7.2 Consistency in Distributed Data Stores

Sequential consistency [12] is one of the earliest consistencymodels studied. It allows program-

mers to develop correct programs without worrying about the replication nature of a distributed

system. However, for large-scale and busy systems, this consistency model is too strict that its

performance does not meet the customer expectations. Weaker consistency models such as causal

consistency [113, 114], FIFO consistency [1] are introduced to improve the performance while
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still ensure that application-specific consistency requirements are met. At one extreme, even-

tual consistency model even does not provide any guarantee except a best effort. Nevertheless,

eventual consistency works very well in practice and is supported by many NoSQL data stores

[4, 5, 7, 10, 18, 21]. The eventual consistency model is especially popular among key-value and

column-family databases. The original Dynamo [4] was one of the pioneers in the eventual con-

sistency movement and served as the basis for Voldemort key-value store. Dynamo introduced the

idea of hash-ring for data-sharding and distribution, but unlike Voldemort it relied on server-side

replication instead of active client replication. Certain modern databases, such as Cosmos DB and

DynamoDB [7,8] offer tunable consistency guarantees, allowing operators to balance consistency

and performance. This flexibility would enable some applications to take advantage of optimistic

execution while allowing other applications to operate under stronger guarantees if needed. How-

ever, many data-stores [115, 116] are designed to provide strong consistency and may not benefit

from optimistic execution module.

Aside from general-purpose databases, a variety of specialized solutions exist. For instance,

TAO [117] handles social graph data at Facebook. TAO is not strongly consistent, as its main goal

is performance and high scalability, even across data centers and geographical regions. Gorilla

[118] is another Facebook’s specialized store. It operates on performance time-series data and is

highly tuned for Facebook’s global architecture. Gorilla also favors availability over consistency in

regards to the CAP theorem.

This dissertation focuses on eventual consistency and sequential consistency as they are available

in most data stores.

7.3 Predicate Detection in Distributed Systems

Predicate detection is an important task in distributed debugging. An algorithm for capturing

consistent global snapshots and detecting stable predicates was proposed by Chandy and Lam-

port [119]. A framework for general predicate detection is introduced by Marzullo and Neiger [49]

for asynchronous systems, and Stollers [50] for partially synchronous systems. These general

118



frameworks face the challenge of state explosion as the predicate detection problem is NP-hard

in general [3]. However, there exist efficient detection algorithms for several classes of practi-

cal predicates such as unstable predicates [55, 120, 121], conjunctive predicates [2, 122], linear

predicates, semilinear predicates, bounded sum predicates [3]. Some techniques such as partial-

order method [123] and computation slicing [124, 125] are also the approaches to address the

NP-Completeness of predicate detection. Those works use vector clocks to determine causality

and the monitors receive states directly from the constituent processes. Furthermore, the processes

are static. [126, 127] address the predicate detection in dynamic distributed systems. However,

the class of predicate is limited to the conjunctive predicate. In this dissertation, our algorithms

are adapted for detecting the predicate from only the states of the servers in the key-value store,

not from the clients. The servers are static (except failure), but the clients can be dynamics. The

predicates supported include linear (including conjunctive) predicates and semilinear predicates.

In [128, 129], the monitors use Hybrid Logical Clock (HLC) to determine causality between

events in a distributed execution. HLC has the advantage of low overhead but suffers from false

negatives (some valid violations are not detected). In contrast, we use hybrid vector clocks to

determine causality in our algorithms. In [102], the authors discussed the impact of various factors,

among which is clock synchronization error, on the precision of the monitors. In this dissertation,

we set n at a safe upper bound for practical clock synchronization error to avoid missing potential

violations. In other words, a hybrid vector clock is practically a vector clock. Furthermore, this

dissertation focuses on the efficiency and effectiveness of the monitors.

7.4 Distributed Snapshots and Reset

The problem of acquiring past snapshots of a system state and rolling back to these snapshots

has been studied extensively. Freeze-frame file system [130] uses Hybrid Logical Clock (HLC)

to implement a multi-version Apache HDFS. Retroscope [26] takes advantage of HLC to find

consistent cuts in the system's global state by examining the state-history logs independently on

each node of the system. The snapshots produced by Retroscope can later be used for node reset
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by a simple swapping of data-files. Eidetic systems [131] take a different approach and do not

record all prior state changes. Instead, the Eidetic system records any non-deterministic changes at

the operating system level and constructing a model to navigate deterministic state mutations. This

allows the system to revert the state of an entire machine, including the operating system, data, and

applications, to some prior point. Certain applications may not require past snapshots and instead,

need to quickly identify consistent snapshots in the presence of concurrent requests affecting the

data. VLS [132] is one such example designed to provide snapshots for data-analytics applications

while supporting high throughput of requests executing against the system.

The overall framework for detect-rollback in this dissertation rely on the capability of efficiently

taking snapshots and restoring the state of the system to a proper checkpoint. One of the directions

to extend our current work is to combine our predicate detection module with a snapshot tool to

rollback a general application once 2E 5 s occur.

7.5 Monitoring Large-scale Web-services and Cloud Computing Systems.

Dapper [133] is Google’s production distributed systems tracing infrastructure. The primary

application for Dapper is performance monitoring to identify the sources of latency tails at scale.

Making the system scalable and reducing performance overhead was facilitated by the use of

adaptive sampling. The Dapper team found that a sample of just one out of thousands of requests

provides sufficient information for many common uses of the tracing data.

Facebook’s Mystery Machine [134] has goals similar to Google’s Dapper. Both use similar

methods, however mystery machine tries to accomplish the task relying on less instrumentation than

Google Dapper. The novelty of the mystery machine work is that it tries to infer the component

call graph implicitly via mining the logs, whereas Google Dapper instrumented each call in a

meticulous manner and explicitly obtained the entire call graph.

Our predicate detection module does not rely on sampling for detection of 2E 5 s since missing

a 2E 5 (false negative) could compromise the computation results. We formalize violations of 2E 5 s

as conjunctive and semi-conjunctive predicates and use algorithms in the literature [2, 3] to detect
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them. To help our monitors scale with hundreds of thousands of predicates in a large system, we

classify predicates into active and inactive ones. By keeping only active predicates in the cache,

the performance of the monitors is improved (cf. Section 3.1.3).

7.6 Self Stabilization

Self-stabilization is the design principle proposed by Dĳkstra [135] to help an application

recover from transient faults by itself. Examples of such applications include spanning trees [27,28]

leader election [29, 30], matching [31, 32], dominating set [33, 34], independent set [35, 36],

clustering [37–39]. In these work, the active-node model is employed. In contrast, our work relies

on the passive-node model.

A self-stabilization program has the properties of convergence and closure [72]. A self-

stabilization solution does not exist for all problems [104] and weaker variations of stabilization are

introduced such as weak stabilization [136], probabilistic stabilization [137]. On the other hand,

stronger versions of stabilization are proposed to reduce the effect of transient faults such as active

stabilization [66], collaborative stabilization [138], and fault-containment stabilization [139–143].

In this dissertation, we discuss and anticipate the benefit of eventual consistency in some versions

of stabilization. It is our future work to develop an analytical model for the benefit of eventual

consistency in self-stabilizing programs.

7.7 Summary

To the best of our knowledge, our work is the first one that examines and formalizes the notion

of consistency violating faults (2E 5 s) that occur during the execution of a distributed program on

an eventually consistent key-value store. We also quantitatively evaluate two optimistic execution

approaches, namely detect-rollback and stabilization, that allow a computation to be run on eventual

consistency and correct the 2E 5 faults when they occur. Our results show that those optimistic

execution approaches are more beneficial than to conservatively prevent 2E 5 s with sequential

consistency.
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CHAPTER 8

CONCLUSION

When developing distributed applications on a key-value store, the sequential consistency model is

more natural and easier for programmers to work with since it masks the complexity of replication.

However, it could suffer from poor performance, especially on large-scale and busy applications.

Eventual consistency provides fast performance meeting the needs of those applications but poten-

tially suffers from data anomalies (denoted as consistency violating faults – 2E 5 s) which compro-

mise the correctness of the computation. In this dissertation, we investigated optimistic solutions

that take the performance advantage of eventual consistency while being 2E 5 -tolerant to ensure

the correctness of the computation. Specifically, we proposed two approaches, detect-rollback

and stabilization, and evaluated their benefits when compared to the standard approach of using

sequential consistency.

In the detect-rollback approach, we run the application on eventual consistency and formulating

2E 5 s as a safety predicate Φ. We use monitors to detect the existence of ¬Φ (or violations of

Φ). When a violation is detected, the computation is rolled back to a point where the 2E 5 has not

occurred and the computation is resumed. Two main components of the detect-rollback approach

are the monitors and the rollback mechanism. Our monitors implement the predicate detection

algorithms in [2,3] with adaptation for key-value stores. For rollback mechanisms, we proposed an

efficient rollback algorithm for graph-based applications. When performing rollback, we observed

some challenges with livelocks in which the violations are likely to re-occur after rollback. We

proposed some strategies to handle livelocks such as random back-off, adaptive consistency, and

re-ordering the tasks.

Our experiment results with several graph-based applications on Amazon AWS platform as

well as on our local lab network show that the detect-rollback provides performance benefits

when compared to the baseline approach of running the applications on sequential consistency.

Specifically, when compared to the baseline, running applications on eventual consistency with
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monitors (but without rollback) improved the application throughput by 20%–80%. The benefits

are high when the percentage of PUT requests is high or when network latency is long. The

monitors are efficient in detecting violations. In regional networks (global network, respectively),

the monitors were able to detect more than 99.9% of violations in less than 50 milliseconds (3

seconds, respectively) while only introducing a small overhead that was typically less than 4%

and in very stressed cases less than 8%. This efficiency allows the monitors themselves to be

utilized for the sake of distributed debugging and runtime monitoring. Overall, the detect-rollback

improved the computation progress of the applications by 10%–50%when compared to running the

applications on sequential consistency. In non-terminating applications, the benefit was 45%–47%

while in terminating applications the benefit was 10%–20%. One of the reasons for the reduced

benefits in terminating applications is that those applications suffer extensive livelocks during their

last phase of computation. We proposed the rollback with an adaptive consistency mechanism

which switches from eventual consistency to sequential consistency if livelocks are detected to

avoid computation stall.

In the self-stabilization approach, neither the monitors nor the rollback mechanism is needed

as 2E 5 s can be handled by the convergence property of self-stabilizing programs. Running a

self-stabilizing program on eventual consistency has the advantage of higher throughput and the

disadvantage of perturbations caused by 2E 5 . Our experiments with the maximal-matching self-

stabilizing program show that the gain is higher than the cost. Specifically, we observed that

running the self-stabilizingmaximal-matching program on eventual consistency helped the program

converge 1.2–1.8 times faster. The benefits scaled when we increased the level of concurrency.

Furthermore, when we drop the locking mechanism among the clients and treated mutual exclusion

violations as 2E 5 s, the chance of 2E 5 perturbation is higher but the overhead of locking is also

eliminated. Indeed, the speedup benefits observed in this case were even higher, as much as 7–12

times.

To compare the detect-rollback and self-stabilization approach, we evaluated their benefits

on three self-stabilizing programs: planar graph coloring, general graph coloring, and maximal-
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matching. The evaluation results show that the self-stabilization approach provides substantially

more benefits than the detect-rollback approach. The stabilization improved the convergence time of

the case study programs by 25%–35%. Notably, the aggressive stabilization (that trades additional

2E 5 s for no locking overhead) reduced the convergence time 2–15 times. By contrast, the detect-

rollback approach provided limited benefits and potentially causes performance to suffer when

compared with sequential consistency. We also considered non-stabilizing programs. The results

on stabilizing and non-stabilizing programs for graph coloring show that the stabilizing algorithm

is less efficient than the non-stabilizing counterpart on sequential consistency but is the overall

winner when used with eventual consistency. The results indicate that there may be a substantial

benefit in revising an existing algorithm for the problem at hand to make the algorithm stabilizing

and reduce the overall runtime under eventual consistency.

We also considered mechanisms to improve the performance of stabilization. In particular,

we used randomization to overcome livelocks in aggressive stabilization and proposed heuristics

to reduce the execution time of stabilizing programs in case the convergence pattern exhibits a

long tail of slow progress at the end. We also analyzed the effect of several factors such as the

input graph structure, the partitioning scheme, and the characteristics of the stabilizing program, on

the performance of the detect-rollback and self-stabilization approaches. We observe their effects

on the two approaches are different. For example, input graphs with complex structure such as

social graphs impose high locking overhead and a high chance of client conflicts. Consequently,

the detect-rollback approach performs poorly on social graphs while the aggressive stabilization

approach (which removes the locking overhead) performs well. However, on regular graphs with a

small average degree, the detect-rollback performswell while the benefits of aggressive stabilization

are reduced.

The results presented in this dissertation indicate that there are benefits in employing the

optimistic execution approaches. Eventual consistency provides significantly higher performance

than sequential consistency. Although eventual consistency introduces 2E 5 s, in many cases these

2E 5 s could be handled efficiently to ensure the correctness of the computation.
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APPENDIX

PUBLICATIONS AND AVAILABILITY OF THE SOURCE CODE AND
EXPERIMENTAL RESULTS

Conference Papers

1. D. Nguyen and S. S. Kulkarni. Benefits of Stabilization versus Rollback in Self-Stabilizing

Graph-Based Applications on Eventually Consistent Key-Value Stores. 2020 International

Symposium on Reliable Distributed Systems (SRDS), Shanghai, China, 2020, pp. 11-20, doi:

10.1109/SRDS51746.2020.00009.

2. Duong N. Nguyen, Sandeep S. Kulkarni, and Ajoy K. Datta. Benefit of self-stabilizing

protocols in eventually consistent key-value stores: a case study. In Proceedings of the

20th International Conference on Distributed Computing and Networking, ICDCN 2019,

Bangalore, India, January 04-07, 2019, pages 148–157, 2019.

3. D. Nguyen, A. Charapko, S. S. Kulkarni, and M. Demirbas. Using weaker consistency

models with monitoring and recovery for improving performance of key-value stores. In

2018 Eighth Latin-American Symposium on Dependable Computing (LADC), pages 67–76,

Oct 2018

4. Sorrachai Yingchareonthawornchai, Duong N. Nguyen, Vidhya Tekken Valapil, Sandeep S.

Kulkarni, and Murat Demirbas. Precision, recall, and sensitivity of monitoring partially

synchronous distributed systems. In Runtime Verification - 16th International Conference,

RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, pages 420–435, 2016.

Journal Papers

1. Duong N. Nguyen, Aleksey Charapko, Sandeep S. Kulkarni, and Murat Demirbas. Using

weaker consistency models with monitoring and recovery for improving performance of key-
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value stores. J Braz Comput Soc 25, 10 (2019). https://doi.org/10.1186/s13173-019-0091-9.

2. Sorrachai Yingchareonthawornchai, Duong N. Nguyen, Sandeep S. Kulkarni, Murat Demir-

bas: Analysis of Bounds on Hybrid Vector Clocks. IEEE Trans. Parallel Distrib. Syst.

29(9): 1947-1960 (2018)

Manuscript in Preparation

1. Duong N. Nguyen, Sorrachai Yingchareonthawornchai, Vidhya Tekken Valapil, Sandeep S.

Kulkarni, and Murat Demirbas. Precision, recall, and sensitivity of monitoring partially

synchronous distributed systems (Journal manuscript under review).

Availability of Source Code and Experimental Results

The experimental data and the source code used in chapters 3, 4, and 5 of this dissertation are

available at [144], [145], and [146], respectively.

127



BIBLIOGRAPHY

128



BIBLIOGRAPHY

[1] Sukumar Ghosh. Distributed systems: an algorithmic approach. CRC press, 2014.

[2] Vĳay K Garg and Craig M Chase. Distributed algorithms for detecting conjunctive pred-
icates. In Distributed Computing Systems, 1995., Proceedings of the 15th International
Conference on, pages 423–430. IEEE, 1995.

[3] Craig M Chase and Vĳay K Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11(4):191–201, 1998.

[4] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, PeterVosshall, andWernerVogels.
Dynamo: Amazon’s highly available key-value store. In Proceedings of Twenty-first ACM
SIGOPS Symposium onOperating Systems Principles, SOSP ’07, pages 205–220, NewYork,
NY, USA, 2007. ACM.

[5] Project voldemort. http://www.project-voldemort.com/voldemort/quickstart.html. Ac-
cessed: 2020-Nov-20.

[6] LinkedIn Engineering. Venice articles. https://engineering.linkedin.com/blog/topic/venice.
Accessed: 2019-4-5.

[7] Amazon dynamodb – a fast and scalable nosql database service designed for internet scale
applications. http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html. Ac-
cessed: 2019-08-10.

[8] Azure cosmos db – globally distributed database service. https://azure.microsoft.com/en-
us/services/cosmos-db/?v=17.45b. Accessed: 2019-08-10.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding,
Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C Li, et al. Tao: Facebook’s
distributed data store for the social graph. In USENIX Annual Technical Conference, pages
49–60, 2013.

[10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[11] Shlomi Dolev. Self-Stabilization. The MIT Press. The MIT Press, 2000.

[12] Leslie Lamport. How tomake amultiprocessor computer that correctly executesmultiprocess
programs. IEEE Trans. Computers, 28(9):690–691, 1979.

[13] Gary L. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett., 12(3):115–
116, 1981.

129



[14] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, July 16-19,
2000, Portland, Oregon, USA., page 7, 2000.

[15] SethGilbert andNancyLynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[16] Hesam Nejati Sharif Aldin, Hossein Deldari, Mohammad Hossein Moattar, and
Mostafa Razavi Ghods. Consistency models in distributed systems: A survey on defini-
tions, disciplines, challenges and applications. CoRR, abs/1902.03305, 2019.

[17] David Bermbach and Jörn Kuhlenkamp. Consistency in distributed storage systems. In
International Conference on Networked Systems, pages 175–189. Springer, 2013.

[18] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a memory
cloud. In Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’13, page 505–516, New York, NY, USA, 2013. Association for
Computing Machinery.

[19] Mohammad Roohitavaf and Sandeep S. Kulkarni. DKVF: a framework for rapid prototyping
and evaluating distributed key-value stores. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, pages 912–915, 2018.

[20] Azure cosmos db. https://azure.microsoft.com/en-us/services/cosmos-db/. Accessed: 2020-
Nov-20.

[21] An introduction to redis data types and abstractions. https://redis.io/topics/data-types-intro.
Accessed: 2020-Nov-20.

[22] Couchbase db documentation. https://docs.couchbase.com/java-sdk/current/howtos/kv-
operations.html. Accessed: 2020-Nov-20.

[23] Arangodb: The many faces of a native multi-model database.
https://www.arangodb.com/why-arangodb/multi-model/. Accessed: 2020-Nov-20.

[24] Apache hbase reference guide. https://hbase.apache.org/book.html. Accessed: 2020-Nov-20.

[25] Michel Raynal. Distributed algorithms for message-passing systems, volume 500. Springer,
2013.

[26] Aleksey Charapko, Ailidani Ailĳiang, Murat Demirbas, and Sandeep Kulkarni. Retrospec-
tive lightweight distributed snapshots using loosely synchronized clocks. In Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Conference on, pages 2061–
2066. IEEE, 2017.

[27] Anish Arora and Mohamed G. Gouda. Distributed reset. IEEE Trans. Computers,
43(9):1026–1038, 1994.

130



[28] Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing algorithm for constructing
breadth-first trees. Inf. Process. Lett., 41(2):109–117, 1992.

[29] KarineAltisen, AjoyK.Datta, StéphaneDevismes, AnaïsDurand, andLawrenceL. Larmore.
Leader election in asymmetric labeled unidirectional rings. In 2017 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando, FL, USA, May 29
- June 2, 2017, pages 182–191. IEEE Computer Society, 2017.

[30] Ajoy Kumar Datta, Lawrence L. Larmore, and Priyanka Vemula. Self-stabilizing leader
election in optimal space under an arbitrary scheduler. Theor. Comput. Sci., 412(40):5541–
5561, 2011.

[31] Michiko Inoue, Fukuhito Ooshita, and Sébastien Tixeuil. Brief announcement: Efficient self-
stabilizing 1-maximal matching algorithm for arbitrary networks. In Elad Michael Schiller
and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages
411–413. ACM, 2017.

[32] Ajoy Kumar Datta, Lawrence L. Larmore, and Toshimitsu Masuzawa. Maximum matching
for anonymous trees with constant space per process. In Emmanuelle Anceaume, Christian
Cachin, and Maria Gradinariu Potop-Butucaru, editors, 19th International Conference on
Principles of Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes, France,
volume 46 ofLIPIcs, pages 16:1–16:16. SchlossDagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

[33] Hisaki Kobayashi, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Brief announcement:
A self-stabilizing algorithm for the minimal generalized dominating set problem. In Paul G.
Spirakis and Philippas Tsigas, editors, Stabilization, Safety, and Security of Distributed
Systems - 19th International Symposium, SSS 2017, Boston, MA, USA, November 5-8, 2017,
Proceedings, volume 10616 of Lecture Notes in Computer Science, pages 378–383. Springer,
2017.

[34] Hirotsugu Kakugawa and Toshimitsu Masuzawa. A self-stabilizing minimal dominating set
algorithm with safe convergence. In 20th International Parallel and Distributed Processing
Symposium (IPDPS 2006), Proceedings, 25-29 April 2006, Rhodes Island, Greece. IEEE,
2006.

[35] Michiyo Ikeda, Sayaka Kamei, and Hirotsugu Kakugawa. A space-optimal self-stabilizing
algorithm for the maximal independent set problem, 2002.

[36] Stephen T. Hedetniemi, David P. Jacobs, and K. E. Kennedy. Linear-time self-stabilizing
algorithms for disjoint independent sets, 2012.

[37] Ajoy Kumar Datta, Stéphane Devismes, Karel Heurtefeux, Lawrence L. Larmore, and Yvan
Rivierre. Competitive self-stabilizing k-clustering. Theor. Comput. Sci., 626:110–133, 2016.

[38] AjoyKumarDatta, Lawrence L. Larmore, and PriyankaVemula. A self-stabilizingO(k)-time
k-clustering algorithm. Comput. J., 53(3):342–350, 2010.

131



[39] Eddy Caron, Ajoy Kumar Datta, Benjamin Depardon, and Lawrence L. Larmore. A self-
stabilizing k-clustering algorithm using an arbitrary metric. In Henk J. Sips, Dick H. J.
Epema, and Hai-Xiang Lin, editors, Euro-Par 2009 Parallel Processing, 15th International
Euro-Par Conference, Delft, The Netherlands, August 25-28, 2009. Proceedings, volume
5704 of Lecture Notes in Computer Science, pages 602–614. Springer, 2009.

[40] Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien Tixeuil. A new self-
stabilizing maximal matching algorithm. Theoretical Computer Science, 410(14):1336 –
1345, 2009. Structural Information and Communication Complexity (SIROCCO 2007).

[41] D. Nguyen, A. Charapko, S. S. Kulkarni, and M. Demirbas. Using weaker consistency
models with monitoring and recovery for improving performance of key-value stores. In
2018 Eighth Latin-American Symposium on Dependable Computing (LADC), pages 67–76,
Oct 2018. Extended version is available at http://arxiv.org/abs/1909.01980.

[42] Duong N. Nguyen, Aleksey Charapko, Sandeep S. Kulkarni, and Murat Demirbas. Using
weaker consistency models with monitoring and recovery for improving performance of
key-value stores. J. Braz. Comp. Soc., 25(1):10:1–10:25, 2019.

[43] Duong N. Nguyen, Sandeep S. Kulkarni, and Ajoy K. Datta. Benefit of self-stabilizing
protocols in eventually consistent key-value stores: a case study. In Proceedings of the
20th International Conference on Distributed Computing and Networking, ICDCN 2019,
Bangalore, India, January 04-07, 2019, pages 148–157, 2019.

[44] D. Nguyen and S. S. Kulkarni. Benefits of stabilization versus rollback in self-stabilizing
graph-based applications on eventually consistent key-value stores. In 2020 International
Symposium on Reliable Distributed Systems (SRDS), pages 11–20, 2020.

[45] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978.

[46] Colin J Fidge. Timestamps in message-passing systems that preserve the partial ordering. In
Kerry Raymond, editor, Proceedings of the 11th Australian Computer Science Conference
(ACSC), pages 56–66, 1988.

[47] Friedemann Mattern. Virtual time and global states of distributed systems. Parallel and
Distributed Algorithms, 1(23):215–226, 1989.

[48] Murat Demirbas and Sandeep Kulkarni. Beyond truetime: Using augmentedtime for im-
proving google spanner. In Workshop on Large-Scale Distributed Systems and Middleware
(LADIS), 2013.

[49] Keith Marzullo and Gil Neiger. Detection of global state predicates. In International
Workshop on Distributed Algorithms, pages 254–272. Springer, 1991.

[50] Scott D Stoller. Detecting global predicates in distributed systems with clocks. Distributed
Computing, 13(2):85–98, 2000.

132



[51] Duong Nguyen and Sandeep S. Kulkarni. Technical report: Benefits of stabilization ver-
sus rollback in self-stabilizing graph-based applications on eventually consistent key-value
stores. CoRR, 2020.

[52] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Distributed computing, 7(3):149–174, 1994.

[53] Edsger W. Dĳkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

[54] Vĳay K Garg. Principles of distributed systems, volume 3144. Springer Science & Business
Media, 2012.

[55] Vĳay K. Garg and Brian Waldecker. Detection of weak unstable predicates in distributed
programs. IEEE Transactions on Parallel and Distributed Systems, 5(3):299–307, 1994.

[56] CJ Bovy, HT Mertodimedjo, G Hooghiemstra, H Uĳterwaal, and Piet Van Mieghem. Anal-
ysis of end-to-end delay measurements in internet. In Proc. of the Passive and Active
Measurement Workshop-PAM, volume 2002. sn, 2002.

[57] NIST/SEMATECH e-handbook of statistical methods.
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm, 2013. Accessed:
2019-02-10.

[58] Overview of networkx. https://networkx.github.io/documentation/stable/. Accessed: 2020-
May-20.

[59] JerzyBrzezinski andDariuszWawrzyniak. Consistency requirements of peterson’s algorithm
for mutual exclusion of N processes in a distributed shared memory system. In Proceedings
of the th International Conference on Parallel Processing and Applied Mathematics-Revised
Papers, PPAM ’01, pages 202–209, London, UK, UK, 2002. Springer-Verlag.

[60] Bård Fjukstad, John Markus Bjørndalen, and Otto Anshus. Embarrassingly distributed
computing for symbiotic weather forecasts. Procedia Computer Science, 18:1217–1225,
2013.

[61] Ravi Prakash, Niranjan G Shivaratri, and Mukesh Singhal. Distributed dynamic channel
allocation for mobile computing. In Proceedings of the fourteenth annual ACM symposium
on Principles of distributed computing, pages 47–56. ACM, 1995.

[62] Yurai Núnez-Rodrıguez, Henry Xiao, Kamrul Islam, and Waleed Alsalih. A distributed
algorithm for computing voronoi diagram in the unit disk graph model. In Proc. 20th
Canadian Conference in Computational Geometry (CCCG’08), pages 199–202, 2008.

[63] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In High Per-
formance Computer Architecture, 2007. HPCA 2007. IEEE 13th International Symposium
on, pages 13–24. IEEE, 2007.

133



[64] Spyros Blanas, Jignesh M Patel, Vuk Ercegovac, Jun Rao, Eugene J Shekita, and Yuanyuan
Tian. A comparison of join algorithms for log processing in mapreduce. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data, pages 975–986.
ACM, 2010.

[65] Edsger W. Dĳkstra, W. H. J. Feĳen, and A. J. M. van Gasteren. Derivation of a termination
detection algorithm for distributed computations. Inf. Process. Lett., 16(5):217–219, 1983.

[66] Borzoo Bonakdarpour and Sandeep S. Kulkarni. Active stabilization. In SSS, pages 77–91,
2011.

[67] Sven Köhler and Volker Turau. Fault-containing self-stabilization in asynchronous systems
with constant fault-gap. Distributed Computing, 25(3):207–224, Jun 2012.

[68] Volker Turau. Computing fault-containment times of self-stabilizing algorithms using
lumped markov chains. Algorithms, 11(5), 2018.

[69] Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao. Fault-containment in weakly-stabilizing
systems. In Rachid Guerraoui and Franck Petit, editors, Stabilization, Safety, and Security of
Distributed Systems, pages 209–223, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[70] Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao. Probabilistic fault-containment. In
Toshimitsu Masuzawa and Sébastien Tixeuil, editors, Stabilization, Safety, and Security of
Distributed Systems, pages 189–203, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[71] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pemmaraju. Fault-containing
self-stabilizing algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’96, pages 45–54, New York, NY, USA, 1996.
ACM.

[72] Anish Arora and Mohamed Gouda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering, 19(11):1015–1027, 1993.

[73] https://en.wikipedia.org/wiki/Zero_one_infinity_rule.

[74] Duong Nguyen, Aleksey Charapko, Sandeep Kulkarni, and Murat Demirbas. Technical
report: Optimistic execution in key-value store. CoRR, 2018.

[75] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex: A survey of
vertex-centric frameworks for large-scale distributed graph processing. ACMComput. Surv.,
48(2), October 2015.

[76] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed graphlab: a framework for machine learning and data
mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[77] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,

134

https://en.wikipedia.org/wiki/Zero_one_infinity_rule


Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103.
Plenum Press, New York, 1972.

[78] Frank Thomson Leighton. A graph coloring algorithm for large scheduling problems.
Journal of research of the national bureau of standards, 84(6):489–506, 1979.

[79] Nicolas Barnier and Pascal Brisset. Graph coloring for air traffic flow management. Annals
of operations research, 130(1):163–178, 2004.

[80] Gregory J Chaitin. Register allocation & spilling via graph coloring. ACM Sigplan Notices,
17(6):98–101, 1982.

[81] Andrea Gigli, Fabrizio Lillo, and Daniele Regoli. Recommender systems for banking and
financial services. In RecSys 2017 Poster Proceedings, August 27-31, Como, Italy, 2017.

[82] Ryan A. Rossi and Nesreen K. Ahmed. Coloring large complex networks. Social Netw.
Analys. Mining, 4(1):228, 2014.

[83] Wei Liao, Kun Deng, and ShengyuanWang. Community detection based on graph coloring.
In 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages 2114–2118.
IEEE, 2019.

[84] Pierre Hansen and Michel Delattre. Complete-link cluster analysis by graph coloring.
Journal of the American Statistical Association, 73(362):397–403, 1978.

[85] Omayya Murad, Azzam Sleit, and Ahmad Sharaiah. Improving friends matching in social
networks using graph coloring. International Journal, 15(8), 2016.

[86] Patric RJ Östergård. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120(1-3):197–207, 2002.

[87] Long Yuan, Lu Qin, Xuemin Lin, Lĳun Chang, and Wenjie Zhang. Diversified top-k clique
search. The VLDB Journal, 25(2):171–196, 2016.

[88] Maxim Naumov, Patrice Castonguay, and Jonathan Cohen. Parallel graph coloring with
applications to the incomplete-lu factorization on the gpu. Nvidia White Paper, 2015.

[89] Nikos Armenatzoglou, Huy Pham, Vasilis Ntranos, Dimitris Papadias, and Cyrus Shahabi.
Real-time multi-criteria social graph partitioning: A game theoretic approach. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data, pages
1617–1628, 2015.

[90] Christoph Lenzen. Synchronization and symmetry breaking in distributed systems. PhD
thesis, ETH Zurich, 2011.

[91] Damien Imbs, Sergio Rajsbaum, and Michel Raynal. The universe of symmetry breaking
tasks. In International Colloquium on Structural Information and Communication Complex-
ity, pages 66–77. Springer, 2011.

135



[92] Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloration and arbitrary
graphs. In Procedings of the 4th International Conference on Principles of Distributed
Systems, OPODIS 2000, Paris, France, December 20-22, 2000, pages 55–70, 2000.

[93] SukumarGhosh andMehmet HakanKaraata. A self-stabilizing algorithm for coloring planar
graphs. Distributed Computing, 7(1):55–59, 1993.

[94] ST Hedetniemi and S Mitchell. Edge domination in trees. In Proceeding of the 8th South-
eastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State Univ.,
Baton Rouge, La., volume 19, pages 489–509, 1977.

[95] Michel Balinski and Tayfun Sönmez. A tale of two mechanisms: student placement. Journal
of Economic theory, 84(1):73–94, 1999.

[96] Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems: An
introduction to the mathematical analysis of algorithms, volume 10. AmericanMathematical
Soc., 1997.

[97] Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse matrix. ACM
Trans. Math. Softw., 16(4):303–324, 1990.

[98] Éric Fusy. Uniform random sampling of planar graphs in linear time. Random Structures
and Algorithms, 35(4):464–522, 2009.

[99] Amine Abou-Rjeili and George Karypis. Multilevel algorithms for partitioning power-law
graphs. In 20th International Parallel andDistributed Processing Symposium (IPDPS 2006),
Proceedings, 25-29 April 2006, Rhodes Island, Greece, 2006.

[100] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World
Wide Web Companion, pages 1343–1350, 2013.

[101] Vito Latora, VincenzoNicosia, andGiovanni Russo. Complex networks: principles, methods
and applications. Cambridge University Press, 2017.

[102] Sorrachai Yingchareonthawornchai, Duong N. Nguyen, Vidhya Tekken Valapil, Sandeep S.
Kulkarni, and Murat Demirbas. Precision, recall, and sensitivity of monitoring partially
synchronous distributed systems. In Runtime Verification - 16th International Conference,
RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, pages 420–435, 2016.

[103] Mohamed G. Gouda and Ted Herman. Adaptive programming. IEEE Trans. Software Eng.,
17(9):911–921, 1991.

[104] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing, 7(1):17–26, 1993.

[105] JeffreyDean and SanjayGhemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

136



[106] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J Fernández-
Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, et al.
The dataflow model: a practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. Proceedings of the VLDB Endow-
ment, 8(12):1792–1803, 2015.

[107] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pages 135–146. ACM, 2010.

[108] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J Franklin,
and Ion Stoica. Graphx: Graph processing in a distributed dataflow framework. In OSDI,
volume 14, pages 599–613, 2014.

[109] Joseph E. Gonzalez, Yucheng Low, Haĳie Gu, Danny Bickson, and Carlos Guestrin. Power-
graph: Distributed graph-parallel computation on natural graphs. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA,
October 8-10, 2012, pages 17–30, 2012.

[110] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP
2003, Bolton Landing, NY, USA, October 19-22, 2003, pages 29–43, 2003.

[111] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A distributed
storage system for structured data. ACMTransactions on Computer Systems (TOCS), 26(2):4,
2008.

[112] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages 2–2. USENIX
Association, 2012.

[113] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle
for eventual: Scalable causal consistency for wide-area storage with cops. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
401–416, New York, NY, USA, 2011. ACM.

[114] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, andWilly Zwaenepoel. Gentlerain: Cheap and
scalable causal consistency with physical clocks. In Proceedings of the ACM Symposium on
Cloud Computing, SOCC ’14, pages 4:1–4:13, New York, NY, USA, 2014. ACM.

[115] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Google’s globally distributed database. ACM Transactions
on Computer Systems (TOCS), 31(3):8, 2013.

137



[116] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A distributed
storage system for structured data. ACMTransactions on Computer Systems (TOCS), 26(2):4,
2008.

[117] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding,
Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C Li, et al. Tao: Facebook’s
distributed data store for the social graph. In USENIX Annual Technical Conference, pages
49–60, 2013.

[118] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin Meza,
and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time series database.
Proceedings of the VLDB Endowment, 8(12):1816–1827, 2015.

[119] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, February 1985.

[120] Vĳay K Garg and Brian Waldecker. Detection of unstable predicates in distributed pro-
grams. In International Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 253–264. Springer, 1992.

[121] Vĳay K Garg and Brian Waldecker. Detection of strong unstable predicates in distributed
programs. IEEE Transactions on Parallel and Distributed Systems, 7(12):1323–1333, 1996.

[122] Vĳay K Garg, Craig M Chase, J Roger Mitchell, and Richard Kilgore. Conjunctive predicate
detection. In Proceedings Hawaii International Conference on System Sciences HICSS95
(January 1995), IEEE Computer Society. Citeseer, 1995.

[123] Scott D Stoller, Leena Unnikrishnan, and Yanhong A Liu. Efficient detection of global
properties in distributed systems using partial-order methods. In International Conference
on Computer Aided Verification, pages 264–279. Springer, 2000.

[124] Neeraj Mittal and Vĳay K Garg. Techniques and applications of computation slicing.
Distributed Computing, 17(3):251–277, 2005.

[125] Himanshu Chauhan, Vĳay K Garg, Aravind Natarajan, and Neeraj Mittal. A distributed
abstraction algorithm for online predicate detection. In 2013 IEEE 32nd International
Symposium on Reliable Distributed Systems, pages 101–110. IEEE, 2013.

[126] Xinli Wang, JeanMayo, Guy Hembroff, and Chunming Gao. Detection of conjunctive stable
predicates in dynamic systems. In Parallel and Distributed Systems (ICPADS), 2009 15th
International Conference on, pages 828–835. IEEE, 2009.

[127] Xinli Wang, Jean Mayo, and Guy C Hembroff. Detection of a weak conjunction of unstable
predicates in dynamic systems. In Parallel and Distributed Systems (ICPADS), 2010 IEEE
16th International Conference on, pages 338–346. IEEE, 2010.

138



[128] Vidhya Tekken Valapil and Sandeep S. Kulkarni. Biased clocks: A novel approach to
improve the ability to perform predicate detectionwithO(1) clocks. In Structural Information
and Communication Complexity - 25th International Colloquium, SIROCCO 2018, Ma’ale
HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, pages 345–360, 2018.

[129] Vidhya Tekken Valapil, Sorrachai Yingchareonthawornchai, Sandeep S. Kulkarni, Eric
Torng, and Murat Demirbas. Monitoring partially synchronous distributed systems us-
ing SMT solvers. In Runtime Verification - 17th International Conference, RV 2017, Seattle,
WA, USA, September 13-16, 2017, Proceedings, pages 277–293, 2017.

[130] Weĳia Song, Theo Gkountouvas, Ken Birman, Qi Chen, and Zhen Xiao. The freeze-frame
file system. In SoCC, pages 307–320, 2016.

[131] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Peter M Chen. Eidetic
systems. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 525–540, 2014.

[132] Fernando Chirigati, Jérôme Siméon, Martin Hirzel, and Juliana Freire. Virtual lightweight
snapshots for consistent analytics in nosql stores. In Data Engineering (ICDE), 2016 IEEE
32nd International Conference on, pages 1310–1321. IEEE, 2016.

[133] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a large-scale distributed systems tracing infrastructure. Technical
report, Google, Inc., 2010.

[134] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. Wenisch. The mystery machine: End-to-
end performance analysis of large-scale internet services. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pages 217–231, 2014.

[135] Edsger W. Dĳkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

[136] Mohamed G. Gouda. The theory of weak stabilization. In Self-Stabilizing Systems, 5th
International Workshop, WSS 2001, Lisbon, Portugal, October 1-2, 2001, Proceedings,
pages 114–123, 2001.

[137] Ted Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.

[138] Mohammad Roohitavaf and Sandeep S. Kulkarni. Collaborative stabilization. In 35th IEEE
Symposium on Reliable Distributed Systems, SRDS 2016, Budapest, Hungary, September
26-29, 2016, pages 259–268. IEEE Computer Society, 2016.

[139] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pemmaraju. Fault-containing
self-stabilizing algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’96, pages 45–54, New York, NY, USA, 1996.
ACM.

[140] Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao. Fault-containment in weakly-stabilizing
systems. In Rachid Guerraoui and Franck Petit, editors, Stabilization, Safety, and Security of
Distributed Systems, pages 209–223, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

139



[141] Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao. Probabilistic fault-containment. In
Toshimitsu Masuzawa and Sébastien Tixeuil, editors, Stabilization, Safety, and Security of
Distributed Systems, pages 189–203, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[142] Sven Köhler and Volker Turau. Fault-containing self-stabilization in asynchronous systems
with constant fault-gap. Distributed Computing, 25(3):207–224, Jun 2012.

[143] Volker Turau. Computing fault-containment times of self-stabilizing algorithms using
lumped markov chains. Algorithms, 11(5), 2018.

[144] Duong Nguyen. Supplementary dataset and source code for the paper "Using Weaker
Consistency Models with Monitoring and Recovery for Improving Performance of Key-
Value Stores". https://doi.org/10.5281/zenodo.3338381, July 2019.

[145] Duong Nguyen. Supplementary materials for the paper "Benefit of Self-
Stabilizing Protocols in Eventually Consistent Key-Value Stores: A Case Study".
https://doi.org/10.5281/zenodo.4449643, January 2021.

[146] Duong Nguyen. Supplementary materials for the paper "Benefits of Stabilization versus
Rollback in Self-Stabilizing Graph-Based Applications on Eventually Consistent Key-Value
Stores". https://doi.org/10.5281/zenodo.3606271, January 2020.

140


	List of Tables
	List of Figures
	List of algorithms
	Introduction
	The Trade-off between Consistency and Performance in Distributed Key-value Stores.
	Problem Statement
	Approaches
	Contributions
	Outline of the Dissertation
	Nomenclature

	Preliminaries
	Predicate Detection in Distributed Systems
	System Model
	Causality in Distributed Systems
	Vector Clocks
	Hybrid Vector Clocks
	A Basic Framework of Predicate Detection
	Linear Predicate and Detection Algorithm
	Semilinear Predicate and Detection Algorithm

	Key-Value Store
	General Architecture of a Key-Value Store
	Voldemort Key-Value Store
	The Performance Difference between Eventual and Sequential Consistency in Voldemort Key-Value Store

	Distributed Programs
	Traditional/Active-Node Model
	Passive-Node Model
	Similarity between Active-Node and Passive-Node Model
	Executing a Node Action by Client
	Stabilization

	Consistency Violating Faults (cvf)

	Detect-Rollback Approach
	Predicate Detection Module
	Overall Architecture
	Local Predicate Detector
	Implementation of the Monitors.

	Rollback from Violations
	Rollback Mechanism
	Dealing with Potential of Livelocks

	Evaluation Results
	Experimental Setup
	Analysis of Throughput
	Analysis of System and Application Factors
	Analysis of Violations and Detection Latency
	Evaluating Strategies for Handling Livelocks
	Analysis of Applications

	Summary

	Stabilization Approach
	Expected Properties of cvf. 
	Termination Detection Algorithms.
	Experimental Evaluation of Benefits of Stabilization in Key-Value Stores
	Experiment Setup
	Experiment Results

	Discussion and Extensions
	Benefits with Active Stabilization 
	Benefits with Contained Active Stabilization
	Benefits with Fault-Containment stabilization. 
	Other Traditional Models of Computation
	Dealing with Non-Silent Algorithms
	Non-stabilizing Algorithms and cvf

	Summary

	Stabilization versus Detect-Rollback
	Experiment Setup
	System Configuration
	Client Execution Modes.
	Case Study Problems
	Input Graphs
	Workload Partitioning Schemes.
	Performance Metrics

	Benefits of Stabilization versus Rollback: Comparison and Analysis
	Stabilization vs. Rollback: Comparison and Analysis
	Improving the Convergence Time of Stabilization Approach
	Experiments on Amazon AWS
	Scalability Analysis
	Key Observation

	Analysis of Results and Their Implications in the Design
	Insight into Comparison of Stabilization versus Rollback
	Results with Non-Stabilizing Algorithm

	Summary

	Future Work
	Improving The Detect-Rollback Approach
	Improving The Stabilization Approach
	Other Possibilities of Future Work
	Characteristics of Monitoring Errors


	Related Work
	Distributed Data Processing
	Consistency in Distributed Data Stores
	Predicate Detection in Distributed Systems
	Distributed Snapshots and Reset
	Monitoring Large-scale Web-services and Cloud Computing Systems.
	Self Stabilization
	Summary

	Conclusion
	Appendix
	Bibliography

