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ABSTRACT 
 

DIGITAL EVOLUTION IN EXPERIMENTAL PHYLOGENETICS AND EVOLUTION EDUCATION 
 

By 
 

Cory Kohn 

The creation and evaluation of known evolutionary histories and the implementation of 

student investigatory experiences on evolution are difficult endeavors that have only recently 

been feasible. The research presented in this dissertation is related in their shared use of digital 

evolution with Avidians as a model study system, both to conduct science research in 

experimental phylogenetics and to conduct education research in curricular intervention to aid 

student understanding. 

I first present background discussions on the Avidian digital evolution study system—as 

implemented in Avida and Avida-ED—and its favorable use in experimental phylogenetics and 

biology education owing to its greater biological realism than computational simulations, and 

greater utility and generality than biological systems. Prior work on conducting experimental 

evolution for use in phylogenetics and work on developing undergraduate lab curricula using 

experimental evolution are also reviewed. 

I establish digital evolution as an effective method for phylogenetic inference validation 

by demonstrating that results from a known Avidian evolutionary history are concordant, under 

similar conditions, to established biological experimental phylogenetics work. I then further 

demonstrate the greater utility and generality of digital evolution over biological systems by 

experimentally testing how phylogenetic accuracy may be reduced by complex evolutionary 

processes operating singly or in combination, including absolute and relative degrees of 

evolutionary change between lineages (i.e., inferred branch lengths), recombination, and 

natural selection. These results include that directional selection aids phylogenetic inference, 

while stabilizing selection impedes it. By evaluating clade accuracy and clade resolvability across 

treatments, I evaluate measures of tree support and its presentation in the form of consensus 

topologies and I offer several general recommendations for systematists. 



Using a larger and more biologically realistic experimental design, I systematically 

examine a few of the complex processes that are hypothesized to affect phylogenetic 

accuracy—natural selection, recombination, and deviations from the model of evolution. By 

analyzing the substitutions that occurred and calculating selection coefficients for derived 

alleles throughout their evolutionary trajectories to fixation, I show that molecular evolution in 

these experiments is complex and proceeding largely as would be expected for biological 

populations. Using these data to construct empirical substitution models, I demonstrate that 

phylogenetic inference is incredibly robust to significant molecular evolution model deviations. 

I show that neutral evolution in the presence of always-occurring population processes, such as 

clonal or Hill-Robertson interference and lineage sorting, result in reduced clade support, and 

that selection and especially recombination, including their joint occurrence, restore this 

otherwise-reduced phylogenetic accuracy. Finally, this work demonstrates that inferred branch 

lengths are often quite inaccurate despite clade support being accurate. While phylogenetic 

inference methods performed relatively well in both theoretically facile and challenging 

molecular evolution scenarios, their accuracy in clade support might be a remarkable case of 

being right for misguided reasons, since branch length inference were largely inaccurate, and 

drastically different models of evolution made little difference. This work highlights the need 

for further research that evaluates phylogenetic methods under experimental conditions and 

suggests that digital evolution has a role here. 

Finally, I examine student understanding of the importance of biological variation in the 

context of a course featuring a digital evolution lab. I first describe the Avida-ED lab curriculum 

and its fulfillment of calls for reform in education. Then I describe the specific education 

context and other course features that aim to address student conceptualization of variation. I 

present a modified published assessment on transformational and variational understanding 

and findings regarding student understanding of variation within an evolution education 

progression. Finally, I offer suggestions on incorporating course material to engage student 

understanding of variation.  
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CHAPTER 1: 
 

The Case for Using Digital Evolution in Experimental Phylogenetics 
and Evolution Education 

Experimental Evolution and Digital Evolution 

For most of its history, evolutionary biology research was impeded by a perceived 

inability to observe, measure, and experiment over evolutionarily relevant stretches of time 

(Garland and Rose, 2009). Even Darwin, the originator of innumerable insightful research 

avenues and methods of study, failed to understand that evolution may be investigated 

experimentally. Although long-term experiments were occasionally proposed (de Varigny, 

1892), this inability largely persisted for three quarters of the history of biology research to 

date, from Darwin’s publication of On the Origin of Species until experimental evolution studies 

began in earnest (see Rose et al. 2004). Experimental evolution is the study of populations 

across generations and under defined conditions imposed by the researcher, and its primary 

goal is to directly test evolutionary theory (Kawecki et al., 2012). Using this approach, a few 

populations have been studied in nature, although laboratory investigation is generally 

preferable due to greater control over environmental conditions and the ancestral population. 

Aspects of the evolutionary process can be observed in a laboratory setting over relatively 

limited amounts of time, and with particular study systems, most often phage, bacteria, yeast, 

and Drosophila. Even then, it is very difficult to record observations at the level of detail one 

might like. Still, experimental evolution, “evolutionary biology in its most empirical guise” 

(Garland and Rose, 2009), has been a very productive endeavor (Kawecki et al., 2012). 

The meaning of the term “artificial life” was suggested by Lenski (2001). The quality of 

being “artificial” is straightforward – that which is not of nature. Although definitions or 

theories of life have been notoriously difficult to construct and defend (e.g., Ruiz-Mirazo et al. 

2004), Lenski (2001) describes life as that which can evolve via natural selection; so, not only 
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the property of self-reproduction but also heritable variation and the propensity for variation in 

a population to change due to the benefit or detriment it confers.  

Digital evolution 

Digital evolution was inspired by early computer viruses, code that can reproduce 

although not evolve. Once computer scientists wrote code that could evolve they 

“domesticated” these programs in a controlled digital environment (Wilke and Adami, 2002), 

creating a form of artificial life. These self-reproducing computer programs, or digital 

organisms, differ from genetic algorithms and computational (also called numerical) simulations 

in that the organisms must, by themselves, reproduce and that no genotype is designated as 

the optimal, sought target by the experimenter. Natural selection occurs because the 

environment is computationally resource-limited and the reproduction process is designed to 

have random inaccuracies, or mutations, some of which may allow digital organisms to 

reproduce more efficiently, outcompeting other genotypes for resources. Complex 

computational metabolic processes in addition to self-reproduction may arise due to mutation, 

with organisms being able to perform computation using environmentally encountered 

numbers. These phenotypes can then evolve via selection if a suitable selective environment is 

provided – one that rewards such computation (Adami, 2006). It seems plausible that digital 

evolution systems exhibit the trait of open-ended evolution, as do biological systems (Lenski et 

al., 2015; Ruiz-Mirazo et al., 2004). Open-ended evolution is the capability of an evolving 

population to continually produce novel organisms rather than reaching a stable state. 

Although digital evolution’s capability in this regard is an ongoing discussion among artificial life 

researchers (Taylor et al., 2016). 

Digital organisms have the attributes sought for in experimental evolution model 

systems. Generation time is measured in seconds or less, population sizes can be massive, 

measurements can be taken with heretofore unprecedented ease and precision, and digital 

organisms readily tolerate human-influenced environments. Further, experiments can be highly 

controlled, easily replicated, and even identically repeated. Of course, the necessary and 
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sufficient computational hardware is needed, although these requirements are minimal with 

respect to modern machinery. Even “impossible evolutionary experiments” can be performed 

due to an experimenter having full control over the genetic and environmental conditions, e.g. 

disallowing all neutral and deleterious mutations, allowing biologists the ability to evaluate 

otherwise untestable ideas (O’Neill, 2003). 

Avidians in Avida and Avida-ED 

Avida is an artificial life platform designed to study broad questions in evolutionary 

biology via the evolution of digital organisms, called Avidians (Ofria et al., 2009; Ofria and 

Wilke, 2004). This highly manageable model system allows quick replicate experimentation and 

copious data output, leading to high-impact research regarding the nature of evolutionary 

processes (e.g., Lenski et al. 1999, 2003; Wilke et al. 2001; Chow et al. 2004; Goldsby et al. 

2012; Covert et al. 2013). Avida-ED is the educational version of this research platform 

(Pennock, 2007a). Through its approachable graphical interface, simplified set of configurable 

experimental variables and output, and associated curriculum, Avida-ED allows students to 

draw connections between evolutionary processes operating in biological and digital systems, 

ask questions and conduct research involving biological theory, and engage in science and 

engineering practices in a similar manner to biologists using Avida or other digital or biological 

model study systems (Kohn et al., 2018). Avida-ED has garnered an award from The 

International Society for Artificial Life (2017) and is itself the subject of ongoing education 

research (Speth et al., 2009; Smith et al., 2016; Lark et al., 2018). Each program is freely 

available:  Avida at http://avida.devosoft.org/ & https://github.com/devosoft/avida and Avida-

ED at https://avida-ed.msu.edu/. 

Avidians undergo computational metabolic processes to self-reproduce. An Avidian is a 

computer program consisting of a sequence of simple, modular computer instructions, the set 

of which constitutes its genome. The instruction set consists of 26 instructions and is Turing 

complete, which means that in principle any computer program could be encoded within the 

Avidian genomic language. An Avidian’s genome encodes its ability to self-reproduce and 

http://avida.devosoft.org/
https://github.com/devosoft/avida
https://avida-ed.msu.edu/
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perhaps perform other computational tasks. Digital evolution experiments often begin with an 

organism capable of reproduction and nothing else.  

During reproduction, each time a parental instruction is copied there is a chance the 

offspring will incorporate a different instruction at that position of its genome. This change 

occurs via random probabilistic means and is analogous to substitution point mutations in 

biological life. Although genome size is fixed in Avida-ED, the research version additionally 

allows other configurable genetic variables such as other types of mutation including insertions 

and deletions, as well as other instruction sets and even recombination. Mutations and, with 

sexual organisms, recombination result in the accumulation of genetic variation in a population 

and might allow an Avidian’s genome to code for other features. The digital environment in 

which a population of Avidians exists is a grid-like lattice in which a single organism occupies a 

single space in the grid. By configuring this environment grid the researcher sets the maximum 

population size. Environments can be configured such that the performance of specific 

computational functions, most commonly bitwise Boolean logic tasks, are rewarded. This 

reward is in the form of additional computational resources such that the Avidian can execute 

its code quicker relative to others in the population, resulting in faster offspring production. An 

individual’s fitness is measured as a function of its reproduction efficiency and ability to 

perform tasks. Organismal, population, and environmental data can be saved to track the 

evolutionary course of a population, and past experiments can be identically replicated through 

random number seed specification. 

Avidian evolution as an instantiation of evolution 

Avidian evolution results in evolutionary mechanisms and thus outcomes that are 

analogous to biological reality. Because the necessary and sufficient conditions for evolution—

inheritance, variation, and differential reproduction (Dennet, 1995)—are inherent to the 

system, evolution is not simulated but rather actually occurs. Albeit digital, Avidian population 

change is an instantiation of evolution and neither a summary of established evolutionary 

patterns nor a simulation thereof (O’Neill, 2003; Pennock, 2007b). Users do not program what 
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will happen, but they can adjust initial genetic and environmental conditions and, after 

initiating the experiment, they can then observe and record what happens. Rather than being a 

model of evolution, Avidians undergo evolution; though, Avidian genetic and environmental 

complexity can be considered a model of that which exists in nature. Within their complex 

computational environments, Avidian adaptation often proceeds in creative ways the 

experimenter never would have predicted. 

Because Avidians have a genomic sequence and exist in populations undergoing 

evolutionary change, many evolutionary processes or outcomes can be studied through 

experimentation. For molecular evolution, these have included epistasis and complexity (Adami 

et al., 2000; LaBar and Adami, 2016; Lenski et al., 1999a, 2003; Ofria et al., 2008; Ostrowski et 

al., 2015; Strelioff et al., 2010); genotype-phenotype mapping (Fortuna et al., 2017); phenotypic 

plasticity (Clune et al., 2007); genome size evolution (Gupta et al., 2016; Ofria et al., 2003); 

mutation rate evolution (Clune et al., 2008); mutational and drift robustness (de Visser et al., 

2003; Elena et al., 2007; LaBar and Adami, 2017; Lenski et al., 2006; Wilke et al., 2001); clonal 

and Hill-Robertson interference (Adami, 2006; Covert et al., 2013; Ostrowski et al., 2007; Wilke 

and Adami, 2002); and Muller’s ratchet, mutational meltdown, and the effects of 

recombination (Misevic et al., 2010, 2006, 2004). For ecology and macroevolution, these have 

included group selection (Beckmann et al., 2008; Clune et al., 2011; Goings et al., 2004; Goldsby 

et al., 2012, 2014a, 2014b; Knoester et al., 2007b); coevolution (Zaman et al., 2014); behavior, 

communication, and cooperation (Elsberry et al., 2009; Goldsby et al., 2008; Goldsby and 

Cheng, 2008; Grabowski et al., 2013; Knoester et al., 2013, 2007a; McKinley et al., 2008); 

ecological specialization, maintenance, and extinction (Chow et al., 2004; Connelly et al., 2010; 

Cooper and Ofria, 2003; Fortuna et al., 2013; Ostrowski et al., 2007; Yedid et al., 2009); 

historical contingency (Yedid et al., 2008); and even the origin of life (CG et al., 2017). Thus, 

there exist similarities between digital and biological organisms with respect to a remarkable 

array of evolutionary phenomena. In fact, it has been argued that “in terms of the complexity of 

their evolutionary dynamics, digital organisms can be compared with biochemical viruses and 
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bacteria” (Wilke and Adami, 2002). Accordingly, with Avida-ED students can perform 

experiments and collect actual research data amenable to hypothesis testing, learning about 

biology and practicing as scientists throughout their experience. Expert and novice scientists 

can study the power of evolution not just within the digital realm of Avida-ED, but also by 

analogy to the chemical and physical reality of biological life. 

Experimental Evolution in Phylogenetics 

The inference of historical relationships, i.e., phylogenetics, is a central goal in biology 

(Hillis, 1995). Phylogenies, representations of evolutionary relatedness among organisms or 

taxa generally, are usually inferred from molecular sequence data, although behavioral, 

morphological, and other characters can also be used. This inference process is crucially 

important because phylogenies are created for use across all of biology to support myriad 

research efforts. Our ability to infer phylogenies has consistently improved, or so we think, 

through the advancement in molecular evolution theory and modeling, the acquisition of 

molecular sequence data, and the implementation of sophisticated algorithms and 

computational tools.  

Evaluating accuracy in phylogenetics 

Evolutionary histories of appreciable degrees of evolutionary change cannot generally 

be observed, with few notable exceptions; thus, phylogenetic inference cannot be definitively 

tested, and the evaluation of phylogenetics methodologies and tools has largely relied on 

computational simulations (Hillis, 1995; Huang et al., 2017). Computer simulations are tools for 

algorithmically modeling molecular evolution under a set of assumptions. By necessity, 

simulations rely on relatively simple models of evolution (Arenas, 2012; Huelsenbeck, 1995). 

Basic simulations of molecular evolution generate probabilistic changes in characters such as 

nucleotides or amino acids according to a model of substitution rates between residues (Bull et 

al., 1993). More advanced simulations may incorporate the effects of the genetic code via 

codon evolution (Rambaut and Grass, 1997) or non-independence among characters 
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(Huelsenbeck and Nielsen, 1999). Even more advanced methods include coalescent approaches 

(Huang et al., 2010) or attempt to incorporate selection and linkage (Messer, 2013). Molecular 

evolution models can also aid, for example, in the simulation and analysis of tree topologies 

(Graybeal, 1998) and in relative and absolute rates of evolution (Kolaczkowski and Thornton, 

2008) and speciation or extinction (Rabosky and Lovette, 2008). Simulations do provide 

valuable insight regarding a range of conditions that theory predicts are relevant to 

phylogenetic inference. They can be used to generate large amounts of data with relative ease, 

even providing exhaustive information within their defined parameters (Huelsenbeck, 1995). 

Overall, simulations are ideal for investigating the specific dynamic for which they are 

programmed. 

While simulations have become increasingly sophisticated, the idealized conditions they 

model might, alone or in part, never truly exist in nature. Simulations are less useful in the 

analysis of combinations of complex factors, and when emergent or unknown properties are 

present in complex systems (Arenas, 2012). Simulations are limited in that they do not 

incorporate the full range of conditions operating in evolving populations, including those that 

we know to have potential in disrupting phylogenetic inference, those which we suspect might, 

and those which we have not yet discovered. For example, even the molecular evolution of 

coevolving sites remains very difficult to simulate (Arenas, 2012; Sousa et al., 2008). 

Simulations, as with all models, incorporate untested assumptions and fail to incorporate many 

other factors (Hillis, 1995). This gap in the credibility of simulations will always remain 

(Miyamoto and Cracraft, 1991) and it is unknown whether the assumptions and necessary 

simplifications in simulations reduce their relevance (Hillis et al. 1993). Thus, our understanding 

of the accuracy of phylogenetic methodologies is limited by a reliance on the evolutionary 

models implemented in simulations (Hillis et al., 1994). When evaluating phylogenetic methods 

using a simulation that makes explicit assumptions identical, or nearly so, to the assumptions in 

one of the methods (e.g., Jin and Nei 1990), then that method will prove superior – an 

observation that cannot be universalized to the broader range of conditions existing in nature 
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(Hillis, 1995). This makes it especially challenging to evaluate the robustness of inference 

methods using simulations. The only way to evaluate whether phylogenetic inference 

methodologies are sufficiently robust to these complexities is to evaluate their predictions 

using empirical, known evolutionary histories (Hillis, 1995). This alternative and complementary 

but rarely used approach—experimental phylogenetics—is the analysis of data from natural or 

experimental populations with a known evolutionary history.  

The objective of experimental phylogenetics research is to use living systems to 

generate known evolutionary histories with which systematists can use to directly test 

phylogenetic methods (Bull et al., 1993). In contrast to approaches using computational 

simulations, experimental phylogenetics studies make substantially fewer untested 

assumptions regarding the evolutionary process. The result is an expectation that the 

evolutionary system incorporates a degree of complexity and reality otherwise unobtainable in 

computational simulations (Bull et al., 1993; Oakley, 2009). In fact, an aim of experimental 

phylogenetics research, and of experimental molecular evolution broadly, is the iterative 

creation of increasingly sophisticated models based on empirical data which can then be 

incorporated into theory and practice through simulations (Bull et al., 1993). Experimental 

phylogenetics “is not a substitute” for simulations, but rather complementary to their use (Hillis 

et al., 1992; Huelsenbeck, 1995). Researchers following the paradigm of experimental 

phylogenetics stress that the particulars of their study system or precise conclusions are not 

necessarily universally applicable in nature. Instead, an experimental study provides 

information about the evolution that actually occurred – instead of proposing what should 

happen with natural populations, it establishes what did happen with a set of evolving 

populations. All in all, experimental phylogenies are “a step closer to reality” (Hillis and Bull, 

1993). This notion is illustrated by Hillis et al. (1993) using an analogy between weapons testing 

and phylogenetic inference testing:  

“The difference between experimental and simulated phylogenies is like the 

difference between experimental and simulated bombs: the explosion of an 
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experimental bomb does not indicate what will happen every time a bomb 

explodes, but it does provide information on one actual explosion.”  

History of experimental phylogenetics studies 

The earliest studies directly evaluating phylogenetic histories were conducted with 

common research species, including animals (mice, Fitch and Atchley 1985), plants (oats, Baum 

et al. 1984), and viruses (T7 bacteriophage, Hillis et al. 1992). The first two concerned the 

results of artificial selection and as such were limited in that the populations experienced 

relatively minimal evolutionary change even over decades or centuries, timespans of great 

length to humans but hardly of note with respect to each taxon’s rate of evolutionary change. 

Further, the histories were incompletely known. The work of Hillis et al. (1992) was 

revolutionary for the field of experimental phylogenetics in that theirs was the first “completely 

known” phylogeny, having been produced through careful laboratory experimentation for the 

purpose of testing phylogenetic methodologies. 

Research using bacteriophage T7 

The goals of Hillis et al. (1992) were twofold – to “establish the feasibility” of producing 

an experimental phylogeny using a system that could undergo considerable evolutionary 

change and to use the resulting phylogeny to test various methods of phylogenetic inference 

(Hillis et al., 1993). Because they knew the true evolutionary history in the lab, they could 

evaluate the accuracy of phylogenetic inference. Further, they argued that the performance of 

an inference method with an experimental phylogeny provides support on its performance with 

“other (natural) phylogenies” (Hillis et al., 1993). The primary results of Hillis et al. (1992) were 

that their rooted eight-taxon symmetric and approximately ultrametric tree topology was 

correctly inferred from restriction site data by parsimony in addition to neighbor-joining (NJ) 

and three other distance methods. On the other hand, branch lengths were incorrectly inferred 

by all methods, although parsimony was the least inaccurate of the five methods. Parsimony 

was the only method of those tested that can infer ancestral character states for internal 

nodes, and it did so with very high accuracy (98.6%). In a subsequent publication, Hillis et al. 
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(1994) reported analyses using sequenced DNA regions of the viral genomes. The nucleotide 

dataset had approximately one-third as many variable sites than that of the restriction site 

dataset. In a comparison, of maximum likelihood, parsimony, NJ, and two other distance 

methods, only parsimony inferred the correct tree topology. The researchers then controlled 

for the proportion of variant sites by creating bootstrapped samples of restriction site and 

nucleotide datasets. Overall, the restriction site data still outperformed the nucleotide 

sequence data for each analysis method except maximum likelihood, with parsimony being the 

most accurate among nucleotide-inferred trees and NJ performing best among restriction site 

analyses. The researchers attributed the better performance of restriction site data to its 

presumed greater independence among characters than in nucleotide sequences. 

This phage study (Hillis et al., 1992) has received various criticism. Sober (1993) 

complained that it lacked a sufficient discussion regarding how the model of the evolutionary 

process used in the laboratory was similar to that found in nature. In response, Hillis et al. 

(1993) acknowledged that their system’s molecular evolution, while not representative of most 

systems in nature, remained within the range of known processes occurring in nature. They 

concluded that their system “does not appear to be less representative than would any other 

single taxon chosen for study.” Such a detailed description of the phage’s molecular evolution 

over the course of this experiment was later expanded upon by the original researchers (Bull et 

al., 1993) and others (Oakley and Cunningham, 2000). Sober (1993) also suggested that the 

primary results of parsimony and distance methods agreeing on the true topology, might have 

arisen from the combination of uniform rates of evolution and equal branch durations in the 

evolutionary history, which would be sufficient to guarantee statistical consistency between 

these methods. He even suggested that their result of agreement between models might be 

evidence that the evolutionary processes operating in the laboratory environment are 

significantly different than in nature, since datasets from nature rarely produce agreement 

among phylogenetic inference methods. Hillis et al. (1993) responded that it is neither 

necessary nor sufficient for establishing the accuracy of an inference by showing agreement 
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among methods, as had been notably shown with the case of long branch attraction 

(Felsenstein, 1978). Hillis et al. (1994) advocated that a range of topologies and experimental 

conditions should be explored in future experimental phylogenetics studies, since no single set 

of conditions is representative of nature. Sober (1993) concluded that experimental 

phylogenetics studies may suggest the types of evolutionary processes that allow or inhibit 

methods from inferring the true history, however “it remains to be seen what experimental 

phylogenetics can teach us about the problem of phylogenetic inference.” Since simulations 

cannot demonstrate that nature obeys its assumptions, a combination of simulation and 

empirical approaches are necessary to improve phylogenetics (Hillis, 1995; Hillis et al., 1994). 

In follow-up studies in which these viral data (Hillis et al., 1992) were directly compared 

with simulated data, the general concordance between these investigatory approaches was 

demonstrated (Bull et al., 1993; Hillis and Bull, 1993; Oakley and Cunningham, 2000). By 

creating simulated datasets varying in topology, branch lengths, mutation rates, and number of 

characters, Hillis and Bull (1993) investigated the approximate range of conditions within which 

their viral populations evolved. This work provided the still cited benchmark of 70% for 

bootstrap support values as indicating true clade relationships, and therefore demonstrating 

that bootstrap values are conservative measures of phylogenetic accuracy (Sleator, 2011). 

Similarly, parametric bootstrapping was used to create simulated data modeled using detailed 

conversion and reversion rate estimates from their viral system (Bull et al., 1993). The primary 

results were that parsimony, NJ, and a second distance method inferred the correct tree with 

consistent success, though NJ did so the most often; and, as with their empirical data, no 

method produced accurate branch lengths, though all were close, and parsimony performed 

the best. Oakley and Cunningham (2000) further analyzed the evolved viral taxa to evaluate 

ancestor reconstruction methods under models of continuous phenotypic characters. The 

researchers quantified different measures for growth rate for terminal taxa and ancestral taxa 

at each bifurcation, and the terminal taxa were used to reconstruct the ancestral character 

values for each node. They found that inferred ancestral states were grossly inaccurate, even 
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when the known ancestor sequence was used to root the tree. This was due to egregious 

homoplasy in virulence, with convergent decreases due to selection. Computer simulations of 

continuous characters were consistent with these results.  

Sousa et al. (2008) used the same viral system and similar methodology as Hillis et al. 

(1992) to evaluate an asymmetric topology with considerable branch length variation. A 

fourteen-ingroup taxon evolutionary history was created, with between 3 to 29 lytic cycles (a 

measure of generation lapse) occurring between bifurcations. Phylogenetic inference was 

conducted using Bayesian inference, minimum evolution, maximum likelihood, and the five 

methods used by Hillis et al. (1992), and with their same set of restriction enzymes in addition 

to DNA sequences constituting greater genomic coverage than Hillis et al. (1994). For the 

nucleotide data, methods assuming or enforcing a molecular clock model inferred the correct 

tree, and other methods produced trees with topological accuracy (i.e., the average of clade 

accuracy and clade resolvability) of 82%. This superiority of clock-based methods was attributed 

to a strict experimental bottlenecking regime thought to produce a constant rate of change due 

to genetic drift. For restriction site data, the distance methods inferred the correct tree, while 

criterion-based methods were at best 91% accurate. For both types of data, the presence of 

polytomies was the primary culprit for many, although not all, instances of inaccuracy. Unlike in 

Hillis et al. (1994), the superiority of restriction site data was not due to greater numbers of 

variable sites in the datasets, and Sousa et al. (2008) agree that the greater independence 

among restriction site characters may have contributed to its improvement over DNA sequence 

data. They additionally attribute the poor performance of their DNA data to the still-low 

genomic coverage of 12%. 

Research on the effects of natural selection in other systems 

Molecular convergence, its prevalence due to natural selection and its effect on 

phylogenetic inference, was evaluated by several research groups. This work was conducted 

with organisms evolving in nature (Leitner et al., 1996), in Petri dishes (Bull et al., 1997; 
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Cunningham et al., 1997; Fares et al., 1998), and in digital environments (Hagstrom et al., 2004; 

Hang et al., 2007, 2003). 

Leitner et al. (1996) used two HIV genes sequenced from nine individuals with well-

documented epidemiological relationships. In HIV evolution, one of the genes sequenced is 

generally under strong positive selection for missense mutations, while the other generally has 

purifying selection against changes. Seven inference methods were tested as well as several 

models of evolution, and datasets were constructed using each gene separately and 

concatenated. Considered alone, the gene under greater positive selection produced more 

accurate clade inference than the gene under purifying selection, and convergent molecular 

evolution rarely occurred and therefore was inconsequential. The concatenated dataset 

performed even better still, yet the most accurate trees differed by at least one set of clades. 

While no combination of phylogenetic method, model, and dataset produced the correct tree, 

the larger the character set (i.e., using concatenated genes) the more accurate the inferred tree 

proved to be for many methodological combinations. This demonstrated that differences in 

these methods’ abilities were due to algorithmic efficiency rather than consistency (Hillis, 

1995), and thus with sufficient data NJ, maximum likelihood (ML), and parsimony would each 

perform well. Branch length estimates varied and were not very accurate, with short branches 

overestimated and long branches underestimated, although it is not clear how the authors 

compared the known chronogram to the phylogram inferences, as the rate of evolution was 

presumably variable among viral populations and over time. 

Bull et al. (1997) adapted a bacteriophage, ϕX174, to infect two different hosts in a high 

temperature environment. Using the ancestor as the outgroup and a seven-taxon ingroup 

evolutionary history, two different maximum likelihood analyses were conducted, one with a 

five-taxon evolved lineage ingroup and the other with a nine-taxon evolved lineage ingroup, 

including two isolates embedded within the history. Both analyses failed to resolve the true 

history for these sets of taxa, because convergent evolution, consisting of both parallelisms and 

reversals, resulted in over half of the observed substitutions being phylogenetically misleading.  
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Using the laboratory protocol of Hillis et al. (1992), Cunningham et al. (1997) produced 

twelve separate lineages of T7 phage evolved from bifurcations of six lineages that had the 

same ancestor. The bifurcations were performed after either 10, 20, or 30 lytic cycles and each 

final lineage evolved through three series of bottlenecks separated by 50 lytic cycles each, with 

isolates stored at every bottleneck. Therefore, the twelve-taxon star chronogram had six 

variously short internal branches and twelve much longer external branches. They observed 

multiple instances of parallel evolution, including of deletions and nonsense mutations, which 

the researchers attributed to the selective environment. From these viral sequences, both 

terminal and embedded isolates, Cunningham et al. (1998) modularly assembled various four-

taxon phylogenies that varied in branch lengths. Taxa were chosen such that non-sister lineages 

showed greater convergent evolution and had long external branches, with the sister lineage of 

each of these having a shortened external branch. This would be a severe test of long-branch 

attraction. Using maximum likelihood, they evaluated the effect the model of evolution had on 

phylogenetic inference by evaluating six progressively more complex models. With short-to-

long branch ratios of 1:3 or less, model choice had little influence on phylogenetic accuracy, 

whereas with more extreme ratios, model difference was significant and best-fit models were 

more successful in resolving the long-branch attraction effect.  

Fares et al. (1998) used yet another viral system, foot-and-mouth disease virus, to 

create a known evolutionary history. Using parsimony, maximum likelihood, and distance 

method analyses, they found that no method produced the true tree, which they too attributed 

to convergence due to selection.  

Digital evolution using the Avida platform was used to test the effect of natural selection 

on parsimony, and occasionally NJ analyses, with symmetrical unrooted four-taxon tree 

topologies. Varying the extent of evolution occurring along internal branches (i.e., a single 

branch when unrooted) and the external branches, Hang et al. (2003) evaluated different 

experimentally-evolved branch length combinations in addition to simulated data. Branches 

were of equivalent evolved duration per level, e.g., with all external branch lineages allowed to 
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evolve for an equivalent length of time. The researchers hypothesized that phylogenetic 

inference would be improved through the production of synapomorphic variation due to 

selection during internal branch evolution, and that this benefit would be especially 

pronounced for longer branches, with greater evolution causing more such variation to occur. 

Their hypothesis was supported for parsimony analyses, with shorter internal branch topologies 

being no better inferred than data simulated under genetic drift alone, and longer branches 

yielding substantially improved accuracy. The researchers summarily characterized selection’s 

effect on sequence evolution, finding three sets of loci: fixed, slightly variant, and highly variant 

sites. By including this three-tiered proportional model in their genetic drift simulation, they 

demonstrated that the perceived phylogenetic inference benefit of selection was restored in 

the simulated data. How these findings pertain to NJ or with trees with a range of branch length 

combinations is unclear. Hagstrom et al. (2004) used five different selective regimes to evaluate 

the relative benefit natural selection had for phylogenetic inference. The branch lengths were 

such that neutral evolution was expected to swamp all phylogenetically informative signal, and 

that only selection could cause accurate inference. Their results included that NJ performed 

well for many different selective regimes and that parsimony only performed well when natural 

selection occurred along the internal branches. Hang et al. (2007) detailed how natural 

selection rescues phylogenetic inference, reproducing that significant adaptation along internal 

branches can cause this, especially if selection is strong and maintained. This effect was caused 

by the production of synapomorphic variation rather than non-uniform character substitution, 

as expected. 

Research summary 

The overall conclusion to be drawn from the entire body of published experimental 

phylogenetics research (summarized above) is that various inference methods generally 

perform well, though with considerable and inconsistent variation among methods and across 

studies. Further, many methods seem to be robust to deviations from the assumptions 

underlying their evolutionary models—although not necessarily character independence—and 
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long-branch attraction can have a strong effect. The benefit or detriment of using characters 

evolved under natural selection remains unclear; natural selection in biological systems tends 

to interfere with phylogenetic inference by producing more homoplasy (although see Leitner et 

al. 1996), and natural selection in digital systems tends to aid phylogenetic inference by 

producing more synapomorphy. Most studies remain confined to a limited range of taxa and 

phylogenetic-difficulty sample spaces (e.g., topologies and branch lengths), are nearly 

completely deficient in replication, and have rarely evaluated modern systematics methods and 

tools.  

Hillis et al. (1992) concluded that experimental phylogenetics studies “will fill an 

important void in the science of phylogenetic reconstruction.” However, after an initial flurry of 

research, experimental phylogenetics never became the “wave of the future in phylogenetics” 

(Oakley, 2009). To explain why the field has remained small after more than twenty-five years, 

having offered “few novel insights” (Oakley, 2009), we must examine the difficulties intrinsic to 

this methodological approach. 

Experimental Evolution in Undergraduate Education 

Undergraduate biology courses rarely address the processes of evolution (Alters and 

Nelson, 2002), and even more rarely focus on examples of these processes in action via 

experimentation. Rather, courses have tended to focus on the results of evolutionary 

processes, especially adaptation, and the various evidences for evolution, for example 

morphological, molecular, or developmental similarity in characters among taxa (Mead and 

Mates, 2009). Although experimental evolution has been touted as the perfect “eye-opener to 

people for whom ‘seeing is believe’” (Kawecki et al., 2012), it has only recently been included in 

some introductory biology textbooks and laboratory curricula, with many still lacking this topic 

coverage (Burmeister and Smith, 2016; Hillis, 2007). Biological evolution can be difficult if not 

impossible to demonstrate or explore experimentally in the classroom. Providing opportunities 

for students themselves to participate in experimental evolution lab exercises is challenging 
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and finding a system in which they can conduct student-centered inquiry-based experimental 

evolution research is much more challenging still. 

A few activities that allow students to engage with experimental evolution laboratory 

exercises have recently been produced. As with experimental evolution research generally, 

these activities are limited to a few model systems amenable to such work, namely 

microorganisms and, rarely, insects. Unfortunately, most of these activities are even further 

limited in that only one or a select few biology topics can be presented with each system. Labs 

with bacteria have been created to study mutation and adaptation, specifically antibiotic 

resistance (Krist and Showsh, 2007; Petrie et al., 2005), or adaptive radiation, niche 

colonization, and relative fitness measurement (Green et al., 2011); yeast have been used to 

study social evolution and inclusive fitness theory (Agren et al., 2017), or the origin of 

multicellularity either over many generations of experimental evolution (Ratcliff et al., 2014), or 

its limited initial evolution via rotifer predation (Pentz et al., 2015); and insects have allowed 

the study of allele frequency change in Drosophila (Plunkett and Yampolsky, 2010) and sexual 

selection and operational sex ratios in bean beetles (Cotner and Hebert, 2016). Finally, several 

activities explore the timing of mutation with altered Luria-Delbruck fluctuation tests or similar 

protocols with either bacteria or yeast (Green and Bozzone, 2001; Handelsman et al., 1997, p. 

19997; Robson and Burns, 2011; Smith et al., 2015). Nearly all rely on inauthentic biological 

investigations with limited opportunities to learn—and engage in—the practice of science, from 

asking questions and proposing hypotheses, through gathering and analyzing data, and 

ultimately synthesizing and presenting research conclusions. A sole exception, the bean beetle 

system presented by Cotner et al. (2016), allows student inquiry and independent investigation, 

although the range of experiments possible are barely classifiable as experimental evolution 

since only one or very few generations can be observed over many weeks. 

These activities have several disadvantages, some of which are common with most 

laboratory curricula. These drawbacks include detailed laboratory protocols that must be 

closely followed with little room for error, expensive equipment or profuse disposable 
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resources, and the maintenance of precise environmental conditions. These concerns can be of 

particular importance when contamination or inequivalent growth environments would impede 

fitness calculations (Green et al., 2011). Other drawbacks owe to the difficulties in navigating 

utility, realism, and generality with study systems used for classroom experimental evolution 

research, as discussed previously. Among the most consequential is the lack of suitability these 

activities and model systems have for engaging in student-centered inquiry-based experimental 

evolution research. These concerns are ameliorated with the Avida-ED system and its 

curriculum that intentionally integrates science and engineering practices. 

Balancing Utility, Realism, and Generality in Experimental Evolution 

For either the evaluation of phylogenetic methodologies or the observation of evolution 

within a classroom, the complexity of the task requires a considered balancing between the 

pairwise interplay of utility, realism, and generality. Although my specificity in describing these 

tradeoffs is novel, researchers employing or critiquing experimental phylogenetics, especially 

Oakley (2009), have argued similarly. Using my formulation, Oakley’s distilled critique is as 

follows: While experimentally generated histories maintain greater biological realism than 

simulations, this comes at the significant expense of reduced utility in the form of time required 

to produce an evolutionary history. He also stipulates that with both simulations and 

experimental phylogenetics it is necessary to assume that the operating evolutionary processes 

apply with generality to other systems. In the analysis presented here, “utility” encompasses 

experimental feasibility, resource cost (e.g., time and money), and other difficulties such as 

technical expertise, “realism” entails the known and unknown complexities of biological 

evolution, and “generality,” also called universality, is the ability for inferences drawn from 

scientific data to be applicable, through induction, more broadly. I also include within generality 

the ability of a system to display open-ended evolution and be useful to explore many avenues 

of research. These three factors produce tradeoffs that must be navigated within both 

experimental phylogenetics research and classroom experimental evolution labs. 
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Experimental utility versus biological realism 

The primary critique of experimental phylogenetics focuses on this tradeoff (Oakley, 

2009). For example, Hillis et al. (1992) sought a system in which they could manipulate and 

observe long-term evolution with expected population genetic dynamics, e.g. relatively low 

mutation rates and molecular sequence divergence due to both natural selection and genetic 

drift. They opted for a system with a high mutation rate and employed stringent, repeated 

bottlenecks (Bull et al., 1993). Through this aim of increasing the proportion of phylogenetically 

informative genetic variation, while maintaining selection for viability, the researchers 

approximated the molecular evolution that they desired but, reasonably, did not wish to 

expend the resources, e.g., time and cost, to produce in a more biologically realistic manner. 

Even so, this or similar approaches can take months or years of laboratory effort to generate a 

single instance of a known phylogeny (Hillis, 1995). At the extreme, an example of reducing 

realism in an experimental system for the sake of utility is the harnessing of hypermutagenic 

polymerase chain reaction to evolve DNA sequences entirely separate from their organismal 

context (Randall et al., 2016; Sanson et al., 2002; Vartanian et al., 2001). As have others before 

me, I consider this to be in vitro simulation and not experimental phylogenetics, per se.  

Arguably the most awe-inspiring example of classroom experimental evolution is the 

laboratory system presented by Ratcliff et al. (2014) in which yeast cultures are repeatedly 

transferred after allowing time for cells to settle at the bottom of a test tube; a protocol that 

reliably produces clusters of cells that can be analogized to the origin of multicellularity. This is 

a fantastic means by which students may observe evolution in action. Yet, as argued by Pentz et 

al. (2015), this experiment suffers from two significant flaws related to the utility-realism 

tradeoff:  The selective agent is contrived – a similar agent is thought to have played no role in 

the repeated evolution of multicellularity. And, even so, the experiment requires substantial 

investment in time and resources, requiring two weeks of daily transfers and hundreds of 

sterile media tubes. Pentz et al. (2015) produced an alteration that navigates the utility-realism 

tradeoff differently by using a rotifer predator to present a more plausible selective agent for 
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multicellularity, and thus greater realism. This protocol does reduce time and resource use, 

although rotifers require more technical expertise to manage. Overall, the balance between 

utility and realism is extremely tough to manage in experimental evolution. 

Experimental utility versus generality 

An ideal that has not yet been widely adopted in experimental phylogenetics is the 

production of replicate datasets. Doing so could provide crucial insight regarding the likelihood 

of phylogenetic methods to produce correct inferences more generally. Additionally, doing so 

could “detect subtle differences” in the rate of success among methods (Bull et al., 1993). As 

argued by Bull et al. (1993), the “dilemma that faces experimental phylogenetics” is this very 

notion that when replication is lacking, the reliance on a few datasets reduces the statistical 

utility of empirical observations. Unfortunately, replication has been prohibitively difficult to 

accomplish when a single replicate is costly to produce. Out of eighteen publications regarding 

experimental phylogenetics, only five unique experimental phylogenies using biological 

organisms have been produced for the purposes of this research (Bull et al., 1997; Cunningham 

et al., 1997; Fares et al., 1998; Hillis et al., 1992; Sousa et al., 2008), plus one additional study 

using a convenience dataset of naturally evolving taxa (Leitner et al., 1996), three publications 

employing digital evolution to evolve known evolutionary histories (Hagstrom et al., 2004; Hang 

et al., 2007, 2003), and the remainder either reexamining these datasets or commenting on 

them.  

Perhaps an even more stark instance of the utility-generality tradeoff is the lack of 

model systems amenable to experimental phylogenetics or classroom experimental evolution. 

Oakley (2009) observes that experimental systems will only have utility if they can produce 

evolutionary histories within months or less; and such a system would require life history traits 

outside the norm, including short generation times and rapid rates of evolution. The taxonomic 

diversity between studies in which known non-experimentally evolved phylogenies are 

evaluated is high, including mice (Fitch and Atchley, 1985; Sage et al., 1993), oats (Baum et al., 

1984), and HIV (Hillis et al., 1994; Leitner et al., 1996). Yet the range of taxa used in 
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experimental phylogenetics is extremely limited – viruses and Avidians. As would be expected, 

the systems used in biology classrooms to observe evolution over many generations are of 

similarly limited taxonomic diversity, with bacteria (Green et al., 2011; Krist and Showsh, 2007; 

Petrie et al., 2005), yeast (Ratcliff et al., 2014), and Avidians (Speth et al., 2009). Of course, 

other systems have been used to observe one or a few generations of evolution in the 

classroom, e.g. bean beetles (Cotner and Hebert, 2016), or experimental evolution research 

other than experimental phylogenetics, e.g. Drosophila (Burke et al., 2010) and Arabidopsis 

(Scarcelli and Kover, 2009). This suggests that the number of systems suitable to experimental 

phylogenetics research or extended classroom experimental evolution is greatly limited for 

reasons of utility. 

Biological realism versus generality 

As noted by Bull et al (1993) for their viral system, “the experimental organism is not of 

special interest by itself, so the value of the study must rest on its generality to other systems.” 

The researchers continue by acknowledging that “generalities are not immediately apparent 

precisely because of the incorporation of genetic detail” into the specific model of molecular 

evolution applicable with their system. “The irony is that, by increasing the level of molecular 

resolution, we have discovered features that render the experiment unique, hence less 

general” (Bull et al., 1993). Depending on the inference methodologies under examination, 

increased modeling of molecular evolution complexity may necessitate increased taxonomic 

specificity and thus reduced general applicability to other systems.  

This realism-generality tradeoff is highlighted by classroom experimental evolution 

protocols focusing on individual systems with extremely limited diversity in content 

exploration. In fact, model lab systems in which students can engage in student-centered 

inquiry-based experimental evolution research using biological organisms is entirely lacking. 

Thus, these classroom labs maintain realism for specific biology content while near-completely 

losing the generality of content exploration. In the modified evolution of multicellularity lab 

(Pentz et al., 2015), the incorporation of a plausible selection story increases the biological 
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realism of this major transition in evolution. However, neither the initial variation in the 

tendency to form multicellular clumps nor generations of change occur within this exercise. In 

this case, not only can students not experiment using a fully open-ended evolution system 

capable of facilitating multiple avenues of research, but they cannot even observe evolution in 

action. 

Digital evolution offers a complementary balance  

By using digital evolution systems, these utility-realism-generality tradeoffs can be 

navigated differently. Doing so fills a void between computational simulations and experimental 

evolution with biological organisms (Ofria, 2015). The use of digital evolution in experimental 

phylogenetics research or in classroom experimental evolution entails greater biological realism 

than simulations, and greater utility and generality than biological systems. Importantly, none 

of these approaches serve as a substitute to the others. 

Experimentation with digital evolution entails much greater utility compared to 

biological systems but less so than simulations. Otherwise impossible experiments can be 

conducted in digital systems; for example, in the work of Hagstrom et al. (2004), a condition of 

two of their selection regimes was only feasible in a digital evolution system – offspring with 

non-neutral mutations were artificially sterilized by the environment, such that only neutral 

evolution could occur in the population. Generating an evolutionary history is relatively quick 

and easy using a system like Avida. Experiments can take minutes (e.g., Chapter 4), hours (e.g., 

Chapter 2), or weeks (e.g., Chapter 3) compared to much less and much greater time, 

respectively, for simulations and biological life, with approximately proportional cost in terms 

of computational resources with respect to simulations and overall costing much less than 

biological experiments. With respect to Avida-ED, resource cost is minimal since the program, 

currently version 3.2, is free to use and adequately runs on nearly all web-enabled devices, 

including computers, tablets, and smart phones, although its operation is quicker depending on 

available computing resources. This makes the observation of curious phenomena possible 

within a single class session (e.g., Chapter 4). As is apparent when new instructors first 
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implement Avida-ED in their classes or when scientists conduct their first experiment in Avida, 

the degree of human expertise in the form of technical knowledge and skill required for digital 

evolution experiments is more akin to biological experiments than simulations. The latter 

requires toggling established parameters, while the former each require specialized knowledge 

of the organismal system and manipulation of the organism and its environment. (No 

comparisons are intended regarding the initial creation/ discovery/ modification of each 

approach.) Bull et al. (1993) conclude that “the experimental approach is labor-intensive […] 

and it is not feasible to generate empirical data with near the ease of computer simulations.” 

However, these authors were unaware of digital evolution systems that make this possible. 

Digital organisms, such as Avidians, experience complex evolutionary and population 

genetic processes found in nature, thus achieving a degree of biological realism greater than 

that of simulations. The evolution that takes place with digital organisms is complex (e.g., Lenski 

et al. 1999, 2003; Wilke et al. 2001; Chow et al. 2004; Goldsby et al. 2012; Covert et al. 2013), 

and more so than with simulations of molecular evolution. For example, bounds on the 

presence and relative extent of mutation, recombination, and selection can be imposed upon 

the system by adjusting its genetic and environmental conditions. Yet the distribution of 

mutation effects, the character of mutations and substitutions, and the prevalence of linkage 

(under recombination) will organically change during population evolution. As with biological 

organisms, epistasis and genetic drift will always occur for Avidians. The researcher has control 

over aspects regarding organismal population size, yet less so regarding effective population 

size, which is a byproduct of the system. Other evolutionary factors such as migration and mate 

choice can be experimentally manipulated as well. Yet Avidian genetic and environmental 

substrates are much less complex than with biological life. For example, there is a lack of 

genetic modularity (e.g., chromosomes and well-defined genes), genetic expression and levels 

of information storage and use (e.g., transcription and translation), and intricately complicated 

environments (e.g., nuanced chemical and physical interactions). Aspects related to all the 

above can be readily measured and compared to biological ranges with the goal of attaining 
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greater biological realism (e.g., Chapter 3). Because the population of Avidians undergoes 

evolutionary change, experiments performed using Avida-ED result in actual research data 

amenable to hypothesis testing, allowing students to learn and engage in science practices 

(e.g., Chapter 4). For example, students can model their experiments after noteworthy 

biological counterparts, and compare their observations and evidence-based reasoning to that 

of practicing scientists. 

While true with the study of any model system, the generality of research involving 

digital organisms must be approached carefully when designing experiments and drawing 

conclusions. The applicability of research produced using digital evolution systems can be case-

specific and in large part owes to the degree of biological realism required. Fortunately, this can 

be measured with great utility because digital evolution approaches can generate vast 

quantities of data regarding the process and history of molecular evolution (e.g., Chapter 3). 

Similar data can be very difficult to produce in biological systems, if possible at all (Hang et al., 

2003). For example, one can readily observe millions of generations of evolution while 

accurately recording copious measurements and maintaining the entire series of genealogical 

relationships and ancestral organisms, enough disk space withstanding. Students using Avida-

ED have an opportunity to participate in the generation of large datasets from which they must 

extract salient information, a task common to many modern biological datasets. Classroom 

discussion is necessary to both introduce Avidians and explore how research using this system 

is applicable to biological life. An analogy that helps students at least initially understand 

Avidians is a direct comparison to bacteria (Johnson and Lark, 2018), although further 

discussion should treat Avidians as being their own system that shares generalities with all life, 

as with any model study system. Whereas replication has been prohibitively costly with 

biological systems, computational systems such as digital evolution and simulations alike are 

highly amenable to replication. The fact that Avidian evolution is an instantiation of evolution 

means that there is a richness and flexibility in the platform that cannot be matched by any tool 
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designed for a specific purpose. Avidians constitute an ideal study system to observe and 

experiment upon evolution in action in an open manner.  
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CHAPTER 2: 
 

Digital Evolution Provides Direct Tests of Phylogenetic Accuracy 

Introduction 

Phylogenetics, the inference of evolutionary relationships, is a central goal in biology 

(Hillis, 1995). The accuracy of this inference process is crucially important because phylogenies 

are used to support research throughout all of biology. While phylogenetic methodologies have 

flourished, their accuracy has remained difficult to test since we lack true evolutionary histories 

observed in nature to compare to those inferred by phylogenetic methods. Therefore, 

computational simulations have been the primary means for evaluation of such methods (Hillis, 

1995; Huang et al., 2017). While simulations provide insight regarding a range of theoretically 

important conditions, they are less suitable for evaluating combinations of complex factors and 

cannot address emergent or unknown properties of complex evolving systems (Arenas, 2012). 

The generation of known evolutionary histories—experimental phylogenetics—is a 

complimentary approach. 

The first “completely known” phylogeny and follow-up research by David Hillis, James 

Bull, and colleagues in the early 1990s was revolutionary. By presenting a complete T7 

bacteriophage evolutionary history, various molecular data sets, and phylogenetic analyses, this 

work inaugurated the field of experimental phylogenetics. First, Hillis et al. (1992) produced an 

experimental history in a carefully-controlled laboratory environment and evaluated various 

methods of phylogenetic inference. Then, other types of molecular evolution data from this 

experiment were used to investigate the accuracy of bootstrap support values (Hillis and Bull, 

1993), characterize in detail the DNA sequence evolution (Bull et al., 1993), and evaluate clade 

resolution between various phylogenetic methods (Hillis et al., 1994), among other analyses. 

Together, this experiment and subsequent analyses stand as the foundational and most-

impactful work produced in experimental phylogenetics, especially since this field has largely 

remained dormant for at least the past decade. 
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The experimental approach to evaluating phylogenetic methodologies has suffered from 

an imbalance of utility, realism, and generality compared with computational simulations. As 

argued in a critique by Oakley (2009), the greater biological realism found in experimentally 

generated evolutionary histories comes at the significant cost of reduced utility via time and 

resources and low generality, or universal applicability, to other systems. This critique seems to 

have been well-placed, as evidenced by a complete lack of published experimental 

phylogenetics research since the publication of Oakley’s critique. In Chapter 1, I have argued 

that digital evolution provides an approach that navigates the tradeoffs among utility, realism, 

and generality differently, filling a void between computational simulations and experimental 

evolution with biological organisms. Specifically, digital evolution entails greater biological 

realism than simulations, and greater utility and generality than biological systems. 

Here I present research to test the hypothesis that digital evolution using Avida is an 

effective model system for experimental phylogenetics research. I first evaluate the 

concordance of results from Avidian digital evolution treatments designed to reproduce the 

basic molecular evolutionary dynamics and phylogenetic inferences of the work of Hillis and 

colleagues using the T7 system. The resulting correspondence between these systems under 

comparable conditions is evidence that Avida is a satisfactory system for experimental 

phylogenetics. I then further demonstrate that digital evolution entails greater utility and 

generality than biological systems by presenting digital evolution research under a range of 

theoretical phylogenetically-challenging scenarios, the scope of which the T7 work did not 

address. Across 21 additional Avidian experimental evolution treatments, the effects of natural 

selection, recombination, and differing extents of lineage evolution within an evolutionary 

history are investigated. The results of these treatments were hypothesized to correspond with 

predications based on phylogenetics theory and prior research using computational systems. 

The completion of such a series of treatments is evidence of the greater utility and generality of 

digital evolution, because doing so with a biological system would be much more costly if not 

altogether impossible.  
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Taken together, concordance with a biological system’s experimental phylogenetics 

results under similar conditions and a further demonstration of the experimental possibility of 

digital evolution with the correspondence of results with theory and computational systems 

constitute evidence that digital evolution using Avida is suitable for experimental phylogenetics 

research. 

Phylogenetic analysis methods 

The aim of phylogenetics is to produce hypotheses of evolutionary relatedness subject 

to falsification and/or statistical measure, and has progressed from distance-based methods to 

criterion and model-based methods (Felsenstein, 2004; Nei and Kumar, 2000; Yang, 2006; Yang 

and Rannala, 2012). An understanding of the philosophies and limitations underlying these 

methodologies is important for considering what makes an evolutionary history theoretically 

facile versus challenging to infer. 

Distance-based methods use relatively simple algorithms to construct a phylogeny from 

a dataset based on overall similarity. With the need to analyze huge amounts of data, especially 

of molecular sequences, computationally efficient algorithms such as the phenetic distance-

based algorithms of UPGMA (unweighted pair group method with arithmetic averages, Sokal 

and Michener 1958) and, especially, NJ (neighbor-joining, Saitou and Nei 1987) were adopted in 

the late 20th century. NJ is a clustering method that uses its highly efficient algorithm to 

produce a single result – the NJ tree. This method is purported to produce a very good 

approximation; in fact, if the distance matrix is an exact reflection of the true tree then NJ is 

guaranteed to determine it. Importantly, the algorithm is efficient enough to easily be 

manageable for hundreds or more taxa. For these reasons, NJ is very useful for analyzing large 

datasets that have a low degree of sequence divergence. However, a NJ tree is often not relied 

on to be a good hypothesis of an evolutionary history, since it is an approximation whose result 

cannot be directly compared to other trees within its framework (Felsenstein, 2004). Instead, 

more sophisticated approaches rely on the optimization of a statistical criterion. 
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Maximum parsimony (MP, Swofford 1998), maximum likelihood (ML, Felsenstein 1981), 

and Bayesian inference (BI, Huelsenbeck et al. 2001) rely on the comparison of phylogenetic 

trees using an optimality criterion. An optimality criterion is a characteristic upon which a 

comparison can be made, and phylogenetic inference is therefore an optimization search 

among the evolutionary hypotheses evaluated. These methods are generally superior to 

distance methods because instead of collapsing character state data into a single difference 

value, thus discarding substantial information, they preserve all available information by 

comparing sequences in the alignment, considering each site (i.e., character) at a time. 

However, criterion-based methods are not as computationally efficient as distance-based 

methods, especially because they rely on evaluating the optimality of all possible trees. This is 

generally cost-prohibitive, so a heuristic search algorithm is used to search within the space of 

all possible tree topologies. 

The optimality criterion under MP is the parsimony score (Swofford, 1998). This is the 

total number of character-state changes necessary for a phylogenetic inference to explain the 

observed taxa-character dataset. This criterion provides a philosophically justifiable approach; 

homology should be assumed a priori and the hypothesis that requires the fewest ad hoc 

assumptions is the most preferable. This approach resulted in the distinction between 

apomorphy and plesiomorphy, and thus informative synapomorphies versus 

symplesiomorphies, and finally homology from homoplasy. If we are to deem phylogenetics as 

valuable, then we should want to maximize its utility. MP was shown to not have maximal 

utility (Felsenstein, 1978). When the amount of data gets larger, a statistically consistent 

method should converge on the correct answer, and MP does not have this property under 

certain circumstances. Model-based methods challenge MP regarding statistical justification, 

since it has been shown that a MP result is an approximation of a ML result only if the rates of 

change (i.e., branch lengths) are sufficiently small (Felsenstein, 2004). 

Statistical phylogenetic inference methods, including ML and BI, use a probabilistic 

model of evolution to produce robust inferences. These models vary in their level of 



30 

parameterization with respect to differences in character state frequency and change. For 

example, with models of nucleotide evolution successively more complex, all state changes 

might have equal rates—the one-parameter JC model (Jukes and Cantor, 1969), unequal base 

frequencies—the four-parameter F81 model (Felsenstein, 1981), different transition and 

transversion rates—the five-parameter HKY model (Hasegawa et al., 1985), and unique rates 

between all character states—the ten-parameter generalized-time-reversible, or GTR, model 

(Tavaré, 1986). Additionally, among other inclusions to the model of evolution, each of these 

can have one or two parameters of site-to-site rate heterogeneity modeled by allowing a 

proportion of invariable sites and/or by using the gamma distribution (Yang, 1994). While ML 

and BI differ on how and to what degree these parameters are estimated, the aim is to identify 

the set of parameters that best fit the entire model:  the model of evolution, tree topology, and 

branch lengths. The value that summarizes this fit is the optimality criterion.  

Maximum likelihood's optimality criterion is the likelihood value (Felsenstein, 1981), 

which is the probability of the data given the tree and model of evolution. It is calculated using 

the probabilities for character state changes among all possible ancestral reconstructions, with 

branch lengths and model of evolution parameters optimized, and by assuming both character 

and branch independence throughout the tree. Statistically, each tree topology is a model, and 

the parameters are the branch lengths and substitution parameters. Thus, under ML inference, 

very many statistical models are iteratively compared, and classical confidence intervals cannot 

be constructed (Beerenwinkel and Siebourg, 2012; Yang and Rannala, 2012). ML has the 

desirable statistical properties of being unbiased, consistent in that it approaches the true value 

with greater data analyzed, and efficient in that it has the smallest variance among unbiased 

estimates, though these properties might not hold under all circumstances, especially if the 

substitution rate model is inaccurate (Yang, 2006). 

Bayesian inference's optimality criterion is the posterior probability (Huelsenbeck et al., 

2001), the probability of the tree and model of evolution given the data. The posterior is 

directly related, through the Bayes Theorem, to the product of the likelihood calculation and 
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the prior probability of the tree and model of evolution, and inversely to the probability of the 

data. Therefore, ML only concerns the data information, and its results are interpreted with 

respect to the data only, while BI uses additional information for the calculation of the 

posterior, a result that is interpretable with respect to the evolutionary inference. An essential 

difference between ML and BI is the prior. The prior probability of the tree and model is a set of 

probability distributions that are subject to the researcher's a priori ideas drawn from other 

data sources (Baum and Smith, 2013) and/or attempts to be as uninformative or objective as 

possible so that the calculation of the posterior is strongly inferred from the likelihood 

(Beerenwinkel and Siebourg, 2012). In practice, as with many phylogenetic methodologies, 

generally the program developer’s suggested default settings are used (Brown et al., 2010; Yang 

and Rannala, 2012). The probability of the data term is challenging, since it requires 

synthesizing across all possible trees, branch lengths, and model parameters. Markov chain 

Monte Carlo (MCMC) methods, specifically using the Metropolis algorithm, allow the sufficient 

sampling of the probability distribution as long as mixing between algorithmic chains has been 

sufficiently conducted. Together, these distributions result in a major deviation from the ML 

approach in that under BI the posterior of every parameter is a probability distribution, or 

credible interval. This results in much greater information than a single ML estimate for each 

model parameter. For example, the probability of a clade, also called the clade credibility, can 

be expressed as a point estimate or as a distribution within a probability range, and, 

theoretically, with a uniform prior the mode of the posterior is equivalent to the ML estimate 

(Beerenwinkel and Siebourg, 2012). BI maintains the statistical consistency and other sought 

properties of ML (Steel, 2013). 

The BI posterior probability is what one expects from statistics, since it lets us directly 

compare the probabilities of hypotheses given data. The intrinsic problem with classical 

statistics, including ML, is that these methods produce statements about the probability of the 

data or the method for analyzing the data, for example the probability that identical analyses of 

data drawn from a statistical population will contain the true parameter value within a 
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confidence interval. BI produces statements about the probability of the parameter of interest, 

for example the credible existence of an evolutionary relationship by a posterior probability 

density interval. The former is a statement on a population of parameter value analyses; the 

latter is a probabilistic statement about the actual value of the parameter. This philosophical 

distinction is exemplified by the construction and interpretation of measures of support for 

clade relationships in phylogenetic analyses. 

Clade support evaluation 

Clade support or uncertainty in phylogenetic inference is often measured with 

nonparametric bootstrap support values and posterior probabilities, although these metrics are 

quite distinct. Under classical statistical approaches, e.g., using MP and ML, nonparametric 

bootstrapping is used to craft statements regarding the statistical estimate of the clade given 

the data. In bootstrapping, the characters of the data are sampled with replacement to 

generate bootstrap pseudo-samples for the taxa-character dataset. Each bootstrap pseudo-

sample replicate is analyzed identically to the actual dataset, and this sampling and analysis 

process is repeated hundreds or thousands of times. The proportion of trees among the 

bootstrap analyses that contain a particular clade is the bootstrap support value for that clade. 

This is used to determine the relative influence of the characters in the data. If the original data 

sample accurately reflects the phylogenetic information of the taxa, then the bootstrap will 

reflect experimental repeatability. As such, a clade's bootstrap support value is a function of the 

likelihood of the phylogenetic data for that clade.  

The bootstrap method has remained difficult for many to interpret (Yang and Rannala, 

2012), and is often erroneously considered a measure of clade accuracy (Hillis and Bull, 1993), 

while the BI posterior probability is easily and directly interpretable. A posterior probability is a 

measure of what proportion of the analysis a region of the multidimensional parameter-space 

is sampled within the BI search process. The entire space constitutes all the information of the 

prior probabilities for the tree topology, branch lengths, and free parameters in the model of 

evolution as well as how that information relates to the observed data. The more often a 
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specific region of parameter space, for example a clade in tree space, is sampled, the greater 

the probability it is accurate. The difference between bootstrap support and posterior 

probability is the fundamental distinction regarding the analysis outcome – the probability of 

the data (ML) and the probability of the hypothesis (BI). As bootstrapping is a resampling of the 

data, MCMC is a resampling of the hypothesis. A bootstrap value is the clade's support with 

respect to the experimental repeatability of the data, while a posterior probability is the clade's 

support with respect to the possible clades containing those taxa. 

A researcher’s interpretation or valuation of clade uncertainty is demonstrated by their 

presentation of either fully resolved or partially resolved trees. Fully resolved trees include the 

single best tree resulting from an analysis, such as the NJ result or the tree with the greatest 

likelihood under ML, lowest parsimony score under MP, or greatest posterior probability under 

BI. The latter is also termed the maximum clade credibility tree, and although this tree is often 

fully resolved, it is not guaranteed to be. Nonparametric bootstrap replicates or clade 

probabilities can be used to construct a fully resolved tree that considers clade uncertainty 

using the majority rule extended (MRe) algorithm, which produces a so-called greedy 

consensus tree (Bryant, 2003). This approach constructs a tree by starting with the most-

supported clades and successively adding non-conflicting clades in order of greatest support. A 

MRe tree is fully resolved in that it lacks polytomies, although it may include clades that have 

very low support albeit without conflict to other, often greatly supported, clades. A different 

approach, the standard majority rule (MR) consensus algorithm, uses a threshold value with 

clades that have insufficient support being collapsed into polytomies. Any threshold of 50% or 

greater may be used, and MR trees with greater thresholds, in addition to the MRe tree, are 

always resolutions of the 50% MR tree, such that they will not include conflicting clades but 

might contain additional resolved clades (Degnan et al., 2009).  

Hillis and Bull (1993) provided the threshold of 70% bootstrap support as indicating 

accurate clades by demonstrating that bootstrap values are conservative measures of 

phylogenetic accuracy (i.e., accuracy greater than 95% when bootstrap support is greater than 
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70%), and this result has become a commonplace rule of thumb (e.g., Sleator 2011). In 

simulation studies, bootstrap values have been shown to be highly conservative estimates of 

clade accuracy, and while posterior probability values have been shown to be closer estimates, 

they may in fact be overly liberal estimates (Cummings et al., 2003; Wilcox et al., 2002), with 

values being approximately 100% so often as to merit suspicion (Yang and Rannala, 2012). In 

practice, a variety of threshold values are used, and trees presented often display bootstrap 

support values and/or posterior probabilities for every clade, or at least those deemed 

significant. 

Recently-published research shows a diversity in threshold values and trees presented. 

A review of the 19 empirical phylogenetics analyses, pre-published online, for the August 2018 

volume of Molecular Phylogenetics and Evolution presents the diversity of support thresholds 

currently used in the literature. For example, Psonis et al. (2018) used a node coloration 

scheme to present six categories of joint disagreement between BI and ML analyses:  four 

colors represented a posterior probability of 100% and bootstrap values of either 100%, ≥ 90%, 

≥ 70%, or ≤ 70%; a fifth color for posterior probability ≥ 95% and bootstrap value ≤ 70%; and a 

final category of posterior probability ≤ 95% and bootstrap value ≤ 70%. A different study (Liu et 

al., 2018) presented posterior probabilities ≥ 0.95 as strong support and ≥ 0.85 as moderate 

support. Kim et al. (2018) considered bootstrap values ≥ 75% as showing strong support and ≥ 

50% as moderate support, whereas Zhang et al. (2018) presented bootstrap values ≥ 90% as 

having strong support, ≥ 70% as moderate support, and < 70% as weak support. The trend of 

posterior probabilities being much higher than bootstrap support values is widely exhibited 

with empirical work, as is disagreement among qualitative descriptions of bootstrap support 

thresholds. These 19 studies also present trees with a diversity of clade support: Single best 

trees include maximum likelihood or maximum clade credibility trees in addition to MRe 

consensus trees. Trees exhibiting polytomies or with annotations that clades should be 

considered as such include majority rule thresholds of 50%, 70%, 95%, and 99%.  
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Overall, measures of clade support, including both clade accuracy and resolvability, 

appear to be highly valued among researchers, although with different weighting and 

interpretation, and largely without ground truthing other than the 70% bootstrap support 

threshold provided by Hillis and Bull (1993). 

Overview of T7 phage experimental phylogenetics research 

Experimental evolutionary history 

The viral growth environment and experimental methodology of Hillis et al. (1992) were 

designed to provide ideal conditions to create phylogenetically informative variation between 

lineages. Phage were grown with a chemical to increase the mutation rate, and repeated 

bottlenecking occurred throughout the within-branch (i.e., anagenic) evolution of each lineage. 

These factors increased the extent of evolutionary change that occurred during the experiment. 

Additionally, new lineages at divisions (i.e., cladogenesis) were seeded with single-cloned 

populations, therefore eliminating lineage sorting or coalescent-type variation by fixing 

variation segregating in the population. The mutagen, anagenic bottlenecking, and cladogenic 

bottlenecking presumably increased the phylogenetically informative variation by increasing 

inferred internal branch lengths. The experimental population sizes, relatively small for a virus, 

and repeated bottlenecking also decreased phylogenetically misleading variation by increasing 

the influence of genetic drift and thus decreasing the possibility of homoplasious evolution via 

natural selection with parallel or convergent evolution.  

The phage were serially grown, divided, and transferred at periodic intervals in a 

predetermined manner to create known evolutionary relationships between the resulting nine 

viral populations. The eight terminal ingroup lineages experienced division at equivalent 

intervals to create a symmetrical, binary tree-like evolutionary history, and the outgroup 

lineage evolved for nearly an equivalent total length of time, 105 lytic cycles compared to 120 

total cycles for each ingroup (Bull et al., 1993). This desired ultrametric topology would be 

predicted to have exhibited uniform and constant rates of evolution, with all ingroup lineages 

experiencing the same mutagenic growth environment and having equal duration, and 
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therefore an equivalent likelihood of change (Sober, 1993). However this was not guaranteed 

to have occurred because the researchers fixed the extent of time between cladogenesis, 

rather than the degree of evolutionary change, which itself was a natural product of the 

evolving system (Hillis et al., 1993). 

This ultrametric, symmetrical eight-ingroup taxon tree shape (i.e., topology) was chosen 

due to its predicted ease for phylogenetic inference, and with the intention that it could be 

used as a null model or best-case scenario for comparison with other topologies. If this best-

case scenario viral growth environment and topology failed to produce data that resolved 

correctly then there would not be anything gained from attempting to evolve organisms in 

more realistic environments using topologies predicted to be more phylogenetically difficult 

(Bull et al., 1993; Hillis et al., 1993).  

Phylogenetic and molecular analyses 

The resulting evolutionary history was then used to evaluate phylogenetic methods. 

Hillis et al. (1992) used restriction-site mapping for 34 restriction enzymes to create a taxon-

character dataset containing 202 characters, excluding sites invariant across all taxa. These data 

were used to infer and then compare the actual history with inferences produced using five 

phylogenetic methods. These five methods included MP, along with UPGMA, NJ, and two other 

distance methods, Fitch-Margoliash (Fitch and Margoliash, 1967) and Cavalli-Sforza (Cavalli-

Sforza and Edwards, 1967). For this tree of eight ingroup and one outgroup taxa there are 

135,135 possible rooted bifurcating tree topologies (Felsenstein, 2004), so a correct tree 

inference was unlikely to occur by chance alone. All five methods correctly inferred 

relationships among taxa. The methods varied in their prediction of branch lengths, and while 

MP performed best, no method inferred the correct branch lengths. The amount of homoplasy 

found in their dataset was approximately equivalent to levels found in empirical studies also 

involving nine taxa (Hillis et al., 1993). 

As a follow-up study, Hillis and Bull (1993) evaluated how nonparametric bootstrap 

proportions compare to clade accuracy. To create very many pseudo-replicate datasets that 
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resemble the restriction site data of Hillis et al. (1992), they used jackknifing (i.e., sampling 

without replacement) to produce 500 subsamples of 50 characters each. Each of these were 

then bootstrapped (i.e., sampled with replacement) for 100 replicates each to construct 

bootstrap support values. Parsimony analyses for each bootstrap sample were conducted to 

produce a large set of trees from which the proportion of entire true trees as well as individual 

true clades were evaluated. They concluded that bootstrap support values of 70% or more are 

indicative of a high probability (> 95%) the clade is real. This finding indicated that bootstrap 

values may be a suitable albeit conservative measure of phylogenetic accuracy. 

Additionally, Bull et al. (1993) examined a DNA data set collected from the viral lineages 

to characterize the molecular evolution and parameterize parametric bootstraps. These 665 

sites, of the virus’s 39,937 base pair (bp) genome, were chosen due to their likely high rate of 

substitutions and lack of deletions. Within the ingroup lineages’ evolution, a total of 18 

substitutions occurred in these DNA sequences from two genomic regions overlapping three 

genes. This amounted to approximately 0.0019 substitutions per site per ingroup branch, and a 

total approximate lineage evolution from ancestor to terminal population of 0.0058. Parametric 

bootstrapping was used with detailed conversion and reversion rate estimates to produce 

simulated datasets of restriction site evolution. While both parametric and nonparametric 

bootstrapping are used to produce datasets similar to the original, the former involves 

parameterizing a simulation using evolutionary rates to create independent datasets while the 

latter uses bootstrapping to create datasets that lack independence. Tree topology and branch 

length inference were then carried out using MP, NJ, and UPGMA analyses for these data. Bull 

et al. (1993) found that each method inferred the entirely correct tree topology with consistent 

success. Specifically, NJ outperformed MP and UPGMA, with success rates of 99.1%, 97.8%, and 

97.3% respectively. The researchers concluded that each method would usually infer the 

correct topology upon repeated empirically generated phylogenies following their system, but 

that NJ would perform the best overall. They also determined that MP more accurately 
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predicted branch length than the two distance methods tested, although it did not perform 

perfectly. 

Hillis et al. (1994) sequenced 1,091 bp across four genes, finding 63 variable sites among 

the taxa. This dataset had much less phylogenetic potential than the restriction site dataset of 

Hillis et al. (1992), as it had approximately one-third as many variable sites. MP analyses, using 

either weighted or unweighted characters, estimated the correct topology, although a second 

tree with a single clade difference was equally parsimonious. The other methods evaluated, ML, 

NJ, Fitch-Margoliash, and UPGMA, each found a single, incorrect topology differing from the 

correct tree by one clade. It is not clear whether each of these methods found the same 

incorrect topology as one another and whether it was the same topology as MP’s other equally 

parsimonious tree. The researchers sought to compare these DNA sequence data with the 

restriction site data of Hillis et al. (1992) by creating 1,000 bootstrapped samples for each, 

while controlling for the amount of variant sites. The percentage of clades accurately resolved 

varied for each analysis method, with restriction site data performing better than DNA 

sequence data for each method except ML. Overall, the bootstrapped DNA sequence data 

produced the most accurate tree using MP (approximately 87% accurate clade resolution), and 

bootstrapped restriction site data produced the most accurate trees using NJ (approximately 

95%). A simple model of evolution, the four-parameter F81 model (Felsenstein, 1981), was used 

for the ML analyses, and Hillis et al. (1994) suggested that the empirically determined 

extremely biased substitution matrix (Bull et al., 1993) likely contributed to its poor 

performance. 

Digital evolution for experimental phylogenetics research 

Digital evolution systems should, theoretically, be amenable for use with phylogenetic 

inference, for example in the inference of Avidian evolutionary relationships. Phylogenetics 

does not require biological life; these methods have been ported to cultural studies as 

“phylomemetics,” with greater or lesser success, for example with the evolution of folktales 

such as “Little Red Riding Hood” (Tehrani, 2013) or the classification of plastic bag clips (Lehmer 
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et al., 2011). The fundamental requirements for phylogenetics include the following:  ancestor-

descendant relationships among evolving individuals (i.e., taxa), a series of multifurcations or at 

least bifurcations with respect to evolutionary relatedness (i.e., lineage division or 

cladogenesis), and heritable traits exhibiting variation (i.e., characters). Additionally, for more 

advanced modern methods, a set of assumptions regarding character evolution (i.e., model of 

evolution) is required. Avidians are organisms (taxa) that can self-reproduce by virtue of their 

computer instruction genomic sequence (characters) and undergo evolutionary change 

resulting in variation in evolutionary relatedness (cladogenesis). Established phylogenetics 

software is designed to handle biological sequence data such as DNA or amino acid sequences; 

importantly, the possible instructions used in Avidian genomes can be limited to or recoded as 

one of these sets of alphabetic characters, such that the software can be used without 

modification. The utility and degree of information afforded by Avida makes their mutational 

system of evolution known and configurable while allowing their substitutional system to be 

knowable by tracking fixation events (see Chapter 3). Thus, models of Avidian evolution can 

entail fewer untested assumptions than with biological evolution. Moreover, Avida has already 

had limited usage in experimental phylogenetics research (Hagstrom et al., 2004; Hang et al., 

2007, 2003). 

As Hillis et al. (1992) initially established the feasibility of their system using 

experimental conditions theorized to produce evolutionary patterns minimally challenging for 

phylogenetic inference, I do so by evaluating results of Avidian evolution from a pair of 

treatments designed to produce the basic molecular evolutionary dynamics and phylogenetic 

inferences of their work. Specifically, the molecular evolution of T7 presented by Bull et al. 

(1993) was used to design experimental conditions that in one Avidian evolution treatment 

should approximately produce the molecular evolution exhibited by the DNA dataset of Hillis et 

al. (1994), and in a second Avidian treatment that of the restriction site dataset of Hillis et al. 

(1992). The phylogenetic inference methods of NJ, MP, ML, and BI, and with both the best tree 

resulting from each analysis and various consensus support trees, are evaluated and compared 
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for both clade accuracy and resolvability. Basic signatures of molecular evolution such as the 

number of variable and parsimony informative sites as well as inferred internal and external 

branch lengths are also evaluated. 

A series of 21 additional Avidian experimental evolution treatments are then used to 

evaluate more complex conditions that are predicted to be challenging to phylogenetic 

inference. Whereas the influence of natural selection was minimized to the extent possible for 

the T7 work, various selective regimes are investigated with Avidian evolution, including 

relatively weaker stabilizing selection and much stronger stabilizing selection occurring 

uniformly throughout an experimental evolutionary history as well as directional selection 

variously occurring throughout an evolutionary history. Treatments with lineages varying in 

their extent of evolution, and thus inferred branch length, were conducted to investigate such 

dynamics known to cause issues for phylogenetic inference. And finally, the effects of 

recombination, as implemented in Avida, are investigated in combination with these other 

conditions.  

These experiments are used to examine how clade accuracy relates to support values 

within the context of individual clades and across entire trees. This large set of Avidian 

evolution phylogenetic data is used to reexamine the results of Hillis and Bull (1993) for 

bootstrap support values and additionally investigate how BI posterior support values 

correspond with clade accuracy. Finally, how clade accuracy and clade resolvability correspond 

with best, MRe, and various MR consensus threshold trees are compared across analyses to 

examine tree accuracy within a whole-tree context. 

Methods 

Experimental design 

Base evolutionary history 

A total of 23 experimental treatments, each with ten replicates, were conducted, with 

most treatments sharing a base design. In the base design, eight-taxon Avidian evolutionary 
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histories were produced, with each lineage in the history evolving for an equivalent number of 

generations for any given experimental treatment (Fig. 2.01a). A single genotype was used as 

an ancestor in Avida to initiate two independent experimental histories (i.e., branches A and B), 

together termed tree level 1 for the first set of lineages. Lineage evolution occurred for a set 

number of generations then from each lineage two new lineages were identically seeded (e.g., 

branch A leading to branches C and D, tree level 2). This was again repeated with each of these 

lineages producing two more descendent lineages (e.g., branch C leading to branches G and H, 

tree level 3). Finally, this third set of lineages evolved for that same set number of generations. 

The set of “extant” populations or taxa is two to the number of tree levels, 23, or eight. An 

equivalent length of time, as in the elapsed number of Avidian generations, occurred during 

each lineage’s evolution, with the total number of generations from the ancestral genotype to 

any one extant taxon being its multiple of tree levels. For example, if each branch persisted for 

100 generations then the number of generations from the ancestor to the extant taxon is 300 

generations. 
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Figure 2.01. Representative evolutionary history topologies with branch lengths denotating the 
number of generations lineages evolved. The base design experienced equivalent generations 
of evolution per branch, either 100 (not shown), 300 (a), or 3,000 generations per branch (not 
shown). Four designs (b-e) had differing numbers of generations per tree level, with either 
short (“S”) branches of 300 generations or long (“L”) branches of 3,000 generations across all 
branches among a level. These designs are named by tree level length from external to internal 
tree levels, and include SLL (b), LSL (c), LLS (d), and LSS (e). An additional treatment, LSSB (f), 
used the LSS branching pattern with additional external branches to “break-up” the long 
branch, resulting in a 32-taxon asymmetrical history. The scale bar in subplot a is 300 
generations and the scale bar in subplots b-f is 3,000 generations. Internal branches are labeled 
at their terminal node, and all evolutionary histories were true polytomies at their origin. 

The ancestor for branches A and B was a cloned 333-instruction long Avidian. For most 

experiments, the ancestor was a longer counterpart to the standard default Avidian genotype, 

which can replicate its genome to produce offspring but perform no other meaningful 

computation, for example a task rewarded by the environment. This default genome consists of 

two strings of instructions, necessary for reproduction, spaced apart by “blank tape” of nop-C 

instructions, for a total genome length of 100 instructions. This large nop-C region acts as 

genomic filler within which mutations can occur that might code for interesting computation, 

e.g., task performance. An additional 233 nop-C instructions were added to this filler region to 

create the 333-instruction ancestral genotype. This is referred to as the “naïve” ancestor to 

differentiate it from the “pre-adapted,” task proficient, ancestor. Using a population size of 
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10,000 to increase the efficiency of selection, the pre-adapted ancestor reached full task 

proficiency in the logic-9 task resource environment. After the population contained numerous 

organisms capable of performing all nine tasks, it evolved an additional 100 generations to 

further improve task performance and reproductive efficiency. In all treatments, genome 

length was fixed by disallowing insertion and deletion mutations and further requiring a null 

genome size differential between parent and offspring; together, these settings ensured the 

preservation of homology at each position in the genome. 

After the set number of generations elapsed for each internal branch, new lineages 

were seeded using the single most abundant genotype in the extant population. This occurred 

in all treatments that lacked recombination. In recombination treatments, lineages were 

seeding with the entire extant population to additionally include the effects of lineage sorting 

among segregating variation. Experiments that included recombination were configured with 

the number of “modules” in the genome set as 333, equal to the fixed genome size. This 

resulted in complete independent assortment among loci. 

The per site mutation rate was determined by balancing adherence to the work of Hillis 

et al. (1992) while maintaining the relative likelihood that Avidians would adapt in selective 

environments by acquiring task performance within a reasonable amount of time. Using values 

reported in Bull et al. (1993), the substitution rate of the T7 phage history was calculated to be 

18/332.5/14/100 = 3.867 * 10-5 substitutions/site/branch/generation:  18 substitutions were 

observed among the 14 ingroup internal and external branches. Effectively 332.5 sites were 

used, because mutations only affected the G/C sites, which were approximately half of the 665 

sequenced DNA sites. Approximately 100 generations of evolution occurred along each branch, 

with an estimate of 2-3 generations per T7 lytic cycle and 40 cycles per branch. The aim was to 

use a mutation rate within one order of magnitude of this empirical T7 substitution rate, so the 

per site mutation rate was set to 3.867 * 10-4. Avidians reproduce with over-lapping 

generations such that the mutation rate affects an offspring genotype and not the parent’s, 

with both organisms persisting following reproduction. Thus, the effective mutation rate is one 
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half this rate, or 1.9335 * 10-4, which is five times the observed substitution rate in the T7 study. 

With 100 generations per branch, the expected phylogenetic branch length under neutral 

evolution would therefore be approximately 2 * 10-2 substitutions/site/branch. Finally, with a 

333-site genome, the expected number of substitutions/branch would on average be 6.4. 

Non-default Avida settings shared by all experiments included the following:  The 

instruction set disallowed seven instructions from being incorporated into the genome via 

mutation. One of these, h-copy, is required for Avidian genome replication and each genotype 

used as an ancestor included a single copy of this instruction; a mutation changing this position 

would cause the organism to be inviable. The remaining six disallowed instructions were if-less, 

set-flow, shift-r, shift-l, dec, and add. This resulted in a total of 20 possible instruction 

characters, one of which was effectively invariant. For use in phylogenetic analysis algorithms, 

these 20 unique instructions were coded using the conventional single-letter amino acid 

abbreviations, allowing the resulting genetic sequences to pass as biological amino acid 

sequence data. The birth method was set as “mass action,” in which an offspring is placed 

randomly into the population instead of near their parent, resulting in a lack of spatially- and 

genetically-structured populations and increasing the effectiveness of selection because 

organisms were equally likely to compete for space with relatives and nonrelatives. All other 

settings were as the default, most notably including the default logic-9 task resource (i.e., 

selection) environment and “power” merit rewards (i.e., strength of selection); some 

treatments altered the presence/absence of a task resource, but none altered reward strength 

or included tasks outside this set. Avida (Ofria et al., 2009; Ofria and Wilke, 2004) version 2.9.0 

was used with only minor modifications to produce custom population output files. 

Stabilizing selection treatments 

Six experimental treatments were conducted under stabilizing selection with all lineages 

evolved for an equivalent amount of time within each history. These experiments differed in 

having relatively weaker or stronger stabilizing selection by using either a naïve or a pre-

adapted ancestor (termed “Stabilizing” and “Uniform” as treatment conditions, respectfully), 
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the absence or presence of recombination (“Asex” and “Sex”), and the number of generations 

the lineages evolved (100 or 300 per branch). For treatments using the pre-adapted ancestor, 

the logic-9 task resource environment was used, resulting in strong stabilizing selection for task 

maintenance. All other stabilizing selection treatments resulted in relatively weak selection 

because organisms remained under selection to reproduce efficiently, although without the 

possibility of drastic fitness reductions due to the loss of task function. 

Four experimental treatments were conducted under the same relatively weak 

stabilizing selection but with differing numbers of generation per tree level throughout each 

history, although all branches within a level were of the same length (Fig. 2.01b-e). Short (“S”) 

branches were 300 generations and long (“L”) branches were 3,000 generations. These 

treatment conditions are named by their tree level size reading from the external branch to the 

most internal tree level. For example, treatment “LSS” had eight external branches of 3,000 

generations in length, a set of four internal branches of 300 generations, then the basal two 

ingroup branches of 300 generations. Note that these treatments are named in reverse 

chronological order, as each lineage’s evolution in the LSS treatment experienced an initial 300 

generations, lineage division and 300 more generations, and lineage division with a final 3,000 

generations of evolution. 

An additional treatment used the LSS branching pattern but differed by having 

additional external branches to “break-up” the long branch, thereby named “LSSB” (Fig. 2.01f). 

In this treatment, the external branches were bifurcated after 700 generations, and only one of 

the resulting two branches was then bifurcated after an additional 800 generations, and again 

one of the resulting two branches was bifurcated after 700 generations, with 800 final 

generations remaining before the experiment ceased. For each of these bifurcations, the 

lineage that underwent no further bifurcations evolved for an additional length of time such 

that all branches evolved for a total of 3,000 generations. Rather than resulting in eight extant 

taxa that evolved in a fully symmetrical pattern as with all other experimental histories, this 

treatment resulted in a 32-taxon asymmetrical history. 
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Directional selection treatments 

Eight experimental treatments were conducted using one of four directional selection 

regimes (Fig. 2.02) and in either the absence or presence of recombination, with all branches 

lasting for 3,000 generations. Selection regime “1” was the full Logic-9 task resource 

environment. These tasks can be classified into five theoretical difficulty classes, with each class 

requiring a longer and/or more complex sequence of instructions. There are two tasks per each 

of the first four difficulty classes and one (i.e., EQU) in the hardest class. Selection regime “2” 

consisted of two environments, with each environment rewarding four tasks, one from each of 

the four easiest classes. Branch A and all its descendent lineages evolved in one environment, 

and branch B and its descendants in the other. In this way tasks were not selected in parallel 

between the GHIJ and KLMN extant clades. Regime “3” consisted of four environments and was 

identical to “2” except branch A only had one of the two easiest tasks and B the other. Each of 

their descendants had the remaining 3 tasks from the environment “2” sets. Finally, in selection 

regime “4” branches A and B had the same environment as in “3,” their second tree level 

branches had one additional task of the two in the second difficulty class, and the final tree 

level branches had a further one additional task of the two in the third difficulty class. In this 

manner, for selection regime “4,” all 14 ingroup branches experienced a unique selective 

environment. In every selection regime new tasks remained rewarded throughout the duration 

of a lineage’s evolution, for example every task rewarded in branch C remained rewarded in 

branches G and H.  
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Figure 2.02. The four natural selection regimes visualized with respect to the base evolutionary 
history topology. Colored shading indicates shared tasks rewarded among one or more 
branches within a tree. Diversifying and directional selection are inversely related in these 
designs, with regime “1” having the same selective environment across all branches as well as 
the strongest directional selection, and regime “4” having a unique selective environment on 
each branch but the weakest directional selection compared to the other regimes. 

In these environments, the strength of selection, as in the difference in potential fitness 

between an organism capable of performing none or all tasks selected in the environment, 

decreased from regime “1” through “4.” Environment “1” had all nine tasks rewarded per 

branch and the maximal advantage for performing all versus no tasks present in the 

environment was 33,554,432x; “2” had 4 tasks per branch and the maximal advantage was 

1,024x; “3” had either 1 or 4 tasks per branch and the maximal advantage was either 2x or 

1,024x depending on the branch; and “4” had 1, 2, or 3 tasks rewarded per branch, with 

maximal advantages of 2x, 8x, or 64x, respectively. Since task performance usually entails a 

nominal reduction in offspring cost relative to merit and since Avidians tend to evolve tasks 

sequentially, the realized differences in fitness between contemporaneous organisms is most 

likely reduced from these values. Note that even still, the relatively weaker selection here is still 

very strong selection compared to biological organisms in most environments. All directional 

selection treatments used a population size of 1,000 organisms to further lessen the influence 

of genetic drift. 
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Finally, four experimental treatments were conducted with directional selection (regime 

“2” or “3”), with or without recombination, and with the LSS tree level pattern of generations of 

evolution per tree level. 

Analyses 

Taxon-character datasets 

For each of the ten replicates per experimental treatment, a taxon-character dataset 

was created using the eight extant populations, or 32 in the case of LSSB. A random organism 

was sampled from each population, and therefore more abundant genotypes had a greater 

likelihood of being sampled. These sampled genotypes constituted the ingroup taxa for the 

replicate. The outgroup taxon was a randomly sampled organism from an extant population of 

a different replicate of that same experimental treatment; therefore, the outgroup taxon 

evolved for the same total number of generations and experienced similar evolutionary 

conditions to the ingroup taxa. Note that the base of the evolutionary history is a true polytomy 

of the outgroup, branch B, and branch C, that is, branch B and C do not share a more recent 

common ancestor than either does with the outgroup (Fig. 2.01). 

The complete genomic sequence of the sampled organism was used. Each sequence 

consisted of 20 single-letter characters that represented the computational instructions that 

were available to mutation. Three of these characters, J, O and B, did not have amino acid 

abbreviation counterparts and were therefore translated to W, Y, and V, respectively. 

Therefore, phylogenetic programs designed to handle amino acid character data would treat 

Avidian sequences as such. Since genome length was fixed to be a constant 333 characters, 

sequence alignment was not required, and each locus had perfect homology. Across the 23 

experimental treatments with 10 replicates per treatment a total of 220 eight-taxon by 333-

character datasets and, for the LSSB treatment, 10 thirty-two-taxon by 333-character datasets 

were created. Each of these datasets was used to conduct four different phylogenetic analyses. 
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Phylogenetic analyses 

Analyses were conducted using settings that were as simplistic as possible, i.e., using 

default settings and minimally parameterized models. This was done to avoid biasing the results 

in favor of one or other inference method. For example, several settings could be altered for 

each individual phylogenetic analysis with the aim of improving the inference accuracy; 

however, this could become untenable when inferring multiple trees from each of 230 datasets. 

Unless otherwise indicated, default settings were used for each program. In all cases, analyses 

were identically conducted across all experimental treatments and replicates.  

The simplest amino acid model of molecular evolution was used, the Poisson model. The 

Poisson model is a fixed rate model that assumes equal rates and state frequencies among all 

20 characters (Bishop and Friday, 1987), and is analogous to the JC model for nucleotide 

evolution. This is, in fact, the mutational model of molecular evolution as implemented in 

Avida, where each instruction has an equal probability of mutating to any other. Although 

higher-parameterized models were variously suggested by such programs as ProTest (Abascal 

et al., 2005), there is no theoretical reason why, for example, a nop-c instruction should behave 

like a cysteine because both are abbreviated as C. Further, I wanted to conduct analyses as 

similarly as possible across treatments. Because rate heterogeneity was expected to occur in 

this Avidian evolution, with at least one site being invariable (the h-copy site necessary for 

reproduction, as discussed previously), the model of evolution additionally included rate 

heterogeneity among sites. The model did so by allowing both a proportion of invariable sites 

and a discrete Gamma model with four rate categories, since this combination of rates is very 

commonly used (Stamatakis, 2016), despite criticism that these parameters cannot be 

optimized independently (Yang, 2006). 

Trees were inferred using NJ, MP, ML, and BI, and fully-resolved “best” and majority rule 

consensus trees were created for each analysis, as possible. Neighbor joining trees were 

constructed using QuickTree, version 2.0 (Howe et al., 2002). Since this algorithm produces only 

a single tree inference, when included in figures comparing consensus trees, the NJ tree is 
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clarified as “¬Con.,” i.e., not a consensus tree. MP was implemented using MPBoot, version 

1.1.0 (Hoang et al., 2018, 2017). The number of initial parsimony trees evaluated was increased 

to 10,000 to better search the set of possible trees, and 1,000 ultrafast bootstrap replicates 

were conducted. These bootstrap trees were used to construct 50%, 70%, 95%, and 99% 

consensus trees. The “best” tree in the analyses reported here is a random selection among the 

equally parsimonious trees identified in the heuristic search. The source code of MPBoot was 

modified to enable the printing in the log file of the parsimony score for each of the trees 

evaluated in the set of candidate trees, which was used to calculate the minimum number of 

equally parsimonious trees. This value is a minimum in that since an exhaustive search was not 

conducted, there is a possibility that a region of tree space with better or equivalent parsimony 

scores was not explored. ML was implemented using IQ-TREE, version 1.5.5 (Minh et al., 2017; 

Nguyen et al., 2015). For each analysis, a total of 100 nonparametric bootstrap replicates were 

also produced and used to construct consensus trees with the four above thresholds in addition 

to a MRe cladogram. The “best” tree reported here is the single phylogram with the greatest 

likelihood value. BI was implemented using MrBayes, version 3.2.5 (Ronquist et al., 2012, 2011), 

and specifically using the parallel processing implementation and the BEAGLE library (Altekar et 

al., 2004; Ronquist et al., 2012). The single non-default setting was that the Markov chain was 

sampled every 100 generations, to provide a greater number of cladogram samples. The post-

burn-in sampled trees were used to construct consensus trees with the above thresholds as 

well as a MRe cladogram. The “best” tree reported here is the single cladogram with the 

greatest tree posterior probability, also termed the maximum clade credibility tree. Among 

other uses, Newick utilities (Junier, 2011; Junier and Zdobnov, 2010) were used to root and 

produce consensus trees for each threshold. The Consense program from the PHYLIP package 

(Felsenstein, 2005) was used to produce MRe trees. FigTree (Rambaut, 2018) and the Iroki web 

application (Moore et al., 2020) were used for tree visualization. Finally, Python, version 2.7, 

and the following packages, among other general modules, were used to organize and present 

data: Jupyter, version 0.27.0 (Kluyver et al., 2016; Perez and Granger, 2007); Matplotlib, version 



51 

1.3.1 (Hunter, 2007); ETE2, version 2.2.1 (Huerta-Cepas et al., 2016); and DedroPy, version 3.12 

(Sukumaran and Holder, 2010). 

Phylogenetic measures 

Topological accuracy between the true tree and inference tree was calculated using 

variants of the Robinson-Foulds (RF) distance. Also termed the symmetric difference, RF 

distance is the number of internal branches (also called edges, partitions, or splits) that are 

present in one tree and not the other, and vice versa (Robinson and Foulds, 1981). RF distance 

is therefore the sum of false positive branches (FP, those appearing in the inferred tree and not 

the true tree) and false negative branches (FN, those appearing in the true tree and not the 

inferred tree). These can be further calculated as rates. The FP rate is FP divided by the number 

of internal branches in the true tree, and the FN rate is FN divided by the number of internal 

branches in the inferred tree. The arithmetic mean of the FP and FN rates is termed the average 

topological error (Swenson et al., 2010). RF distance can be normalized by dividing by the 

maximal possible RF distance, and when the trees under comparison are binary trees (i.e., are 

fully resolved by lacking polytomies) the average topological error is equivalent to the 

normalized RF distance. Since I want to emphasize the accuracy of inference methods rather 

than their error, I report complement values. I have termed the FP rate complement as “Clade 

Accuracy,” since this metric indicates the percentage of clades correctly inferred; the FN rate 

complement as “Clade Resolvability,” since this metric indicates the percentage of clades 

correctly resolved; and average topological error as “Average Topological Accuracy,” since this 

metric indicates the overall accuracy of the phylogenetic inference. Examples of these metrics 

are shown for a comparison of a known (or correctly inferred) cladogram (Fig. 2.03a) to four 

variously-inaccurate inferred cladograms (Fig. 2.03b-e). Note that the best tree topology 

produced by an analysis is always fully resolved although it may include incorrect clades, so for 

these trees each false positive clade requires a counterpart false negative clade, and thus clade 

accuracy, clade resolvability, and average topological accuracy are necessarily equivalent values 

(e.g., Fig. 2.03b,e). This holds for all best trees across analyses; even though BI maximum clade 
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credibility trees are not necessarily fully resolved, they were for all instances analyzed here. 

Trees that are not fully resolved, for example as resulting from a majority rule consensus 

algorithm, contain at least one false negative clade and may contain zero (e.g., Fig. 2.03c) or 

multiple false positive clades (e.g., Fig. 2.03d). Each analysis’s best tree as well as the variously 

constructed consensus trees were evaluated for these metrics. 

 
Figure 2.03. Example uses for the clade support metrics of Clade Accuracy (CA), Clade 
Resolvability (CR), and Average Topological Accuracy (Top. Acc.) for comparing a known 
cladogram to four inaccurate cladograms. This four-ingroup-taxon rooted tree has two true 
clades to be inferred (II + IO and OI + OO, dark green circle) and therefore as many as two false 
negative (light green circle) and two false positive (red circle) clades per cladogram. Note that 
the actual topologies of the Avidian evolution experiments constitute 8-taxon or 32-taxon trees, 
with many more potential combinations of false negative and false positive clades. 

Additional metrics include comparisons of inferred branch lengths and the amount of 

variable and parsimony informative sites. Branch lengths are summarized as the median length 

across all internal branches and, separately, across all external branch lengths. Only branch 

lengths as inferred for each analysis’s best tree will be shown, so that polytomies, as may arise 

on consensus trees, are not present and therefore all potential internal branches are included. 

As with the model of evolution, digital evolution allows the comparison of branch lengths to the 
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actual number of observed substitutions occurring within lineage evolution. However, such an 

analysis was not conducted for this set of experiments (although, see Chapter 3). Positions in 

the taxon-character dataset are considered variable if at least two types of characters exist 

among the set of taxa. Additionally, positions are informative under a MP analysis (and other 

phylogenetic approaches) if at least two sets of characters are found among at least two taxa 

each. Sites which lack informativeness are either invariant across taxa, are autapomorphic in 

that variation is unique to single taxa, or otherwise such that every possible cladogram would 

score equivalent under MP. These basic measures of taxa-character data richness are directly 

comparable across phylogenetic studies and provide a basic estimate of the phylogenetic signal 

of the data. 

Statistics 

Recognizing that phylogenetic tree metrics lack independence, the measures reported 

here are limited to comparisons of median values or aggregate sums across treatments and 

replicates, as indicated. Various statistical tests have been used to compare phylogenetics 

simulation results (e.g., Hall 2005; Wang et al. 2011); although other studies eschew their use 

(e.g., Kuhner and Felsenstein 1994; Barbançon et al. 2013). It is not clear that the Central Limit 

Theorem and its derivative parametric statistical tests and even non-parametric tests are 

applicable in such work since clade and branch inclusion (and therefore branch length) do not 

exhibit independence. Further, even if statistical tests were suitable for simulation studies, it is 

not clear that they would remain so for experimental phylogenetics research where each 

replicate is a separate instance of evolution. 

Results  

Treatment comparisons 

Treatment conditions are labeled in Figures 2.04-2.15 by their distinctive selection, 

recombination, and branch length conditions. They are also arrayed in the order described in 

the experimental design section, above. Selection conditions include the following:  starting 
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with the naïve ancestor in an environment rewarding no resources, resulting in relatively weak 

stabilizing selection; starting with a pre-adapted ancestor in the full selective environment, 

resulting in relatively strong and uniform stabilizing selection; and selection regimes “1”, “2”, 

“3”, and “4,” as described above. Recombination conditions include its absence as asexual 

reproduction or its presence as sexual reproduction. The number of generations per branch 

include topologies with uniform lengths for all tree levels of 100, 300, or 3,000 generations. 

Topologies of branch lengths differing in length per tree level have labels reflecting short (300 

generations) or long (3,000 generations) lengths and are denoted from extant to ancestral tree 

levels, for example “LSS” had only long external branches; and the final of these treatments 

(“LSSB”) had long external branches broken-up with additional branches, resulting in a 32-taxon 

asymmetrical history.  

The number of variable and parsimony informative sites found for the taxon-character 

dataset for each experimental treatment replicate are shown in Figure 2.04. For the first six 

treatments, i.e., those with stabilizing selection and topologies with uniform 100- or 300-

generation branches, the number of variable sites strongly differed per treatment, and for each 

treatment the number of informative sites was approximately half the number of variable sites. 

The trends among these treatments were that longer-evolved branches yielded greater 

numbers of informative and variable sites, and that treatments starting with the pre-adapted 

ancestor resulted in fewer numbers of sites. For all other treatments, i.e., those with at least 

one set of branches that was 3,000 generations long, nearly the entire genomic sequence (333 

loci) exhibited variation, with only 10-20 fixed sites. The number of informative sites was nearly 

this numerous for SLL and LSSB branch length treatments, with treatments LSL and LLS having a 

third less, and treatment LSS having less than half as many. The twelve treatments conducted 

under directional selection and with or without recombination did not exhibit a clear pattern 

with respect to the number of informative sites, although it was reduced for the last four of 

these treatments, that is, those with the LSS branch pattern. 
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Figure 2.04. Number of variable sites (blue pentagons) and parsimony informative sites (purple 
stars) for all experimental treatments. Open symbols are for individual treatment replicates, 
and closed symbols for the treatment median. Experimental treatments are denoted by their 
selective condition (green labels), recombination condition (orange labels), and number of 
generations per branch (cyan labels); see text for further information on condition notation. 

Inferred branch lengths for each experimental treatment are summarized in Figure 2.05. 

Only analyses that resulted in a phylogram with branch lengths expressed as the number of 

inferred substitutions per site are shown, leaving MP excluded here. The median of internal 

branch lengths and the median of external branch lengths are presented for the single best tree 

of each analysis for each of the ten replicates per treatment. Although differences between the 

first six treatments, i.e., those with stabilizing selection and uniform branch lengths, appear 

slight at this scale, the trends match that for the number of variable and informative sites, with 

longer inferred lengths for topologies with a greater number of generations per branch and 

shorter inferred lengths for treatments starting with the pre-adapted ancestor. While it is 

barely noticeable for these first six treatments, the trend of NJ underpredicting branch lengths 

relative to the other methods is readily apparent for all further treatments and is especially the 

case for conditions with longer branches. There is also a general trend across nearly all 23 

treatments of ML inferring slightly shorter branch lengths than BI. 
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Figure 2.05. Inferred median internal branch lengths (yellow) and median external branch 
lengths (orange) for the single best tree resulting from NJ (square), ML (triangle), and BI (plus) 
analyses. Open symbols are for individual replicates, and closed symbols for the median across 
treatment replicates. Note that MP is not included since it does not report trees with branch 
lengths expressed as the number of substitutions per site. 

For the four treatments of stabilizing selection with differing numbers of generations 

per tree level, the pattern of inferred median internal and external branch lengths matches the 

treatment design (Fig 2.05):  long internal branches for treatments SLL and LLS, short internal 

branches for treatments LSL and LSS, short external branches for treatment SLL, and long 

external branches for treatments LSL, LLS and LSS. Note that since internal branches include the 

two branches at the basal tree level (labeled A and B in Fig. 2.01) and the four branches at the 

middle tree level (labeled C-F in Fig. 2.01), the median across these branches is dominated by 

the middle tree level. Across these treatments, with ML and BI analyses, inferred long branches 

are slightly less than ten-fold longer than short branches. For treatment LLS, NJ especially 

underpredicted internal branch lengths compared to ML and BI. The treatment with broken-up 

long external branches (LSSB) had relatively short external branches, consistent with its 

additional taxa with fewer generations per branch. 

For all directional selection treatments, branches were generally reduced in length from 

that observed for stabilizing selection treatments that also had branches of 3,000 generations, 
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for example the long external branches of treatment LSS (Fig. 2.05). For ML and BI analyses with 

treatments either with or without recombination, external branch lengths tended to increase 

from selection regimes 1 through 4, and internal branch lengths tended to increase from 

regimes 1 through 3 then slightly decrease in regime 4 compared to 3. While NJ maintained its 

trend of underestimating branch lengths, it did not exhibit this pattern of change with respect 

to selection regimes. Internal branch lengths are greater for asexual reproduction treatments 

and external branches are greater for sexual reproduction treatments. For the final four 

directional selection treatments with the LSS branch pattern, inferred internal and external 

branch lengths were similar to although reduced from the stabilizing selection LSS treatment. 

External branch lengths for these four treatments, while similar to one another, were increased 

compared to the standard selection regimes 2 and 3 without recombination. 

Clade accuracy and clade resolvability results are presented separately in Figures 2.06-

2.13 for sets of experimental treatments. Within each figure, treatments are separated by 

dotted blue lines, and conditions are labeled as previously indicated. Within each treatment, all 

ten replicates of each of sixteen phylogenetic analysis and consensus threshold combinations 

are presented:  The NJ tree, then for each of MP, ML, and BI analyses, the analysis’ best tree 

and then consensus trees of thresholds 50%, 70%, 95%, and 99%, with dashes differing in width 

at the figure top indicating the relative ordering of these trees within the set of trees per 

analysis. Analyses are denoted by separate symbols; and sets of trees per analysis are further 

visually distinguished by a thin vertical line. 

Clade accuracy was near-perfect for five of the six treatments conducted under 

stabilizing selection with lineages evolved for an equivalent amount of time (Fig. 2.06). One 

replicate each for the 100-generation per branch treatments under weak stabilizing selection 

resulted in either a NJ or MP best tree inferring a single incorrect clade. The 100-generation 

treatment under strong, uniform stabilizing selection had decreased clade accuracy for multiple 

replicates of each analysis’s best tree, although NJ and BI best trees performed better overall as 

indicated by their medians retaining 100% accuracy. For this same treatment, ML continued to 
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have decreased accuracy for at least one replicate up to and including the 70% consensus 

threshold. These treatments, stabilizing selection with lineages evolved for an equivalent 

amount of time, did not score as highly in terms of clade resolvability (Fig. 2.07). Treatments 

with 300 generations per branch maintained greater clade resolvability than their 100-

generation equivalents. And compared to those with weaker stabilizing selection, treatments 

with strong stabilizing selection had greatly reduced resolvability, with a few replicates having a 

complete comb- or rake-like topology of 0% resolvability (as in the example of Fig 2.03c). 

Comparing the medians across consensus thresholds, BI maintained the best resolvability 

followed by MP then ML for each treatment demonstrating variation in clade resolvability. 

Finally, recombination appears to have slightly increased clade resolvability across consensus 

thresholds for each analysis when comparing the otherwise equivalent 100-generation 

treatments. 

 
Figure 2.06. Clade accuracy, the percentage of clades correctly inferred, for the set of 
treatments with stabilizing selection and lineages evolved for equivalent generations per 
branch. Best and consensus trees are included for each analysis, including NJ (square, best trees 
only), MP (circle), ML (triangle), and BI (plus), with open symbols for individual replicates and 
closed for the median across replicates. Within each analysis, the best tree then consensus 
trees in the order of increasing threshold strictness are arrayed with tick marks at the top 
indicate these distinctions; see the text for further information on tree type notation. 
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Figure 2.07. Clade resolvability, the percentage of clades correctly resolved, for the set of 
treatments with stabilizing selection and lineages evolved for equivalent generations per 
branch. Best and consensus trees of increasing threshold strictness are included for each 
analysis, except for NJ which only includes the best tree, with open symbols for individual 
replicates and closed for the median across replicates. 

Weak stabilizing selection with differing numbers of generations per tree level resulted 

in mixed results for clade accuracy (Fig. 2.08). Clade accuracy was perfect for all analyses and 

consensus thresholds when all internal branches were long (i.e., SLL) and when external long 

branches were disrupted by increased taxon sampling, (i.e., LSSB). However, with long external 

branches and at least one set of short internal branches clade accuracy is reduced for many if 

not all replicate best trees across analyses and does not reach 100% for all replicates until 

consensus threshold 70% or 95% for MP and ML and threshold 95% for BI. Clade resolvability is 

largely perfect for treatment SLL across analyses and consensus thresholds, and treatment LSSB 

has reduced resolvability for stricter thresholds (Fig. 2.09). Clade resolvability is quite low for 

treatments LSL, LLS, and LSS. Treatment LSL had about half the resolution across analyses 

compared to LLS, and treatment LSS had very low resolution, with stricter thresholds having 

replicates of 0% resolvability. Comparing across consensus thresholds for both clade accuracy 

(Fig. 2.08) and resolvability (Fig. 2.09), BI performed better than ML, and ML better than MP. 
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Figure 2.08. Clade accuracy for the set of treatments with stabilizing selection and lineages 
evolved for differing generation per tree level. Best and consensus trees of increasing threshold 
strictness are included for each analysis, except for NJ which only includes the best tree, with 
open symbols for individual replicates and closed for the median across replicates. 

 
Figure 2.09. Clade resolvability for the set of treatments with stabilizing selection and lineages 
evolved for differing generation per tree level. Best and consensus trees of increasing threshold 
strictness are included for each analysis, except for NJ which only includes the best tree, with 
open symbols for individual replicates and closed for the median across replicates. 

The treatments conducted under directional selection and with a consistent 3,000 

generations per branch had essentially perfect clade accuracy across analyses and consensus 
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thresholds (Fig. 2.10). The single exception was one MP best tree replicate that had one clade 

incorrect, although an equally parsimonious tree was identified although not selected for 

inclusion here due to random chance. Clade resolvability was generally quite high for most 

replicates (Fig. 2.11). For both the set of sexual and asexual reproduction treatments, clade 

resolvability was reduced from regime 1 through 3, with the slight distinction between regimes 

3 and 4. Comparing across consensus thresholds, BI maintained greater clade resolvability than 

ML, with MP having the lowest. The set of treatments with recombination had slightly lower 

clade resolvability at stricter consensus thresholds than their equivalent selective regime 

treatments without recombination. 

 
Figure 2.10. Clade accuracy for the set of treatments with directional selection and lineages 
evolved for equivalent generations per branch. Best and consensus trees of increasing 
threshold strictness are included for each analysis, except for NJ which only includes the best 
tree, with open symbols for individual replicates and closed for the median across replicates. 
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Figure 2.11. Clade resolvability for the set of treatments with directional selection and lineages 
evolved for equivalent generations per branch. Best and consensus trees of increasing 
threshold strictness are included for each analysis, except for NJ which only includes the best 
tree, with open symbols for individual replicates and closed for the median across replicates. 

Clade accuracy shows interesting patterns among the treatments with directional 

selection regime 2 or 3 and/or the LSS pattern of long external branches, with the presence of 

recombination being a further complicating factor (Fig. 2.12). For any pair of otherwise 

identically conducted treatments, selection regime 2 had slightly decreased clade accuracy 

compared to regime 3. Topologies with equivalent generations per tree level had the greatest 

accuracy irrespective of recombination, as discussed previously. With comparatively short 

internal branches (i.e., relatively long external branches) of topology LSS, clade accuracy was 

greatest when directional selection was present and recombination absent, was slightly 

reduced when stabilizing selection was present, and was lowest under combined directional 

selection with sexual reproduction. While the trends are more difficult to observe with clade 

resolvability (Fig. 2.13), since resolvability was generally greatly reduced, all the trends 

highlighted with respect to clade accuracy were repeated. 



63 

 
Figure 2.12. Clade accuracy for treatments with directional selection regimes 2 or 3 and/or the 
LSS pattern of generations per branch. Best and consensus trees of increasing threshold 
strictness are included for each analysis, except for NJ which only includes the best tree, with 
open symbols for individual replicates and closed for the median across replicates. Note that 
the first five treatments were shown in prior figures and are included here for comparison. 

 
Figure 2.13. Clade resolvability for treatments with directional selection regimes 2 or 3 and/or 
the LSS pattern of generations per branch. Best and consensus trees of increasing threshold 
strictness are included for each analysis, except for NJ which only includes the best tree, with 
open symbols for individual replicates and closed for the median across replicates. Note that 
the first five treatments were shown in prior figures and are included here for comparison. 
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Across all treatments, the best tree reported by each analysis often exhibited very high 

accuracy (Fig. 2.14). Recall that since the best tree produced by each analysis lacks polytomies 

although may include incorrect clades instead, each false positive clade necessarily creates a 

false negative clade, and so for these fully-resolved trees clade accuracy is equal to clade 

resolvability, and thus their average as topological accuracy (as in the examples of Fig 2.03b,e). 

For twelve treatments, all phylogenetic analyses inferred the true tree for all replicates. An 

additional three treatments had a single replicate each that resulted in a tree inference with 

one incorrect clade under either NJ or MP only. The remaining eight treatments had multiple 

replicates that each had up to three incorrect clades under multiple analyses; these included 

the 100-generation per branch treatment starting with the pre-evolved ancestor, the three 

stabilizing selection eight-ingroup taxon treatments with at least one set of short internal 

branches (i.e., treatments LSL, LLS, and LSS), and the final four directional selection treatments 

with short internal branches. To simplify further comparisons, results from these eight 

treatments are collated as “troublesome treatments,” with the treatments producing well-

resolved best tree inferences as “non-troublesome treatments.” 

 
Figure 2.14. Average topological accuracy for each analysis’ best tree for each treatment, with 
open symbols for individual replicates and closed for the median across replicates. 
“Troublesome treatments” are the eight treatments demonstrating considerable variation. 
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Both two- and four-taxon clades were responsible for decreased resolvability among the 

eight troublesome treatments, and there is considerable clade support variation between 

replicates (Fig. 2.15). While only BI analyses are presented in Figure 2.15, ML bootstrap support 

is similar albeit with magnified trends due to generally lower clade proportions. The clades 

responsible for decreased resolvability, that is, true clades appearing in low proportions of 

bootstrap or posterior samples, are always those denoted by short branches. For example, 

when clade resolvability was low in treatment LSL, it was always due to true two-taxon clades – 

the clades whose successful inference depended on the middle tree level (Fig. 2.15b). Likewise, 

treatment LLS lacked only true four-taxon clades (Fig. 2.15c), and replicates for all LSS 

treatments lacked two- and/or four-taxon clades (Fig. 2.15d-h). Note that in the eight-ingroup 

taxon topology there are twice as many two-taxon clades compared to four-taxon clades; this 

disparity of clades denoted by the middle versus basal tree level is responsible for the clade 

resolvability pattern between treatments LSL and LLS (Fig. 2.15b,c), with the latter’s short 

branch responsible for providing support to fewer overall clades. In the case of the treatment 

with strong stabilizing selection and 100 generations per branch, decreased clade resolution 

was due to both two- and four-taxon clades (Fig. 2.15a). While previous figures also 

demonstrated variation among replicates for any given treatment, this variation is especially 

evident in these target plots (Fig. 2.15). For example, in Figure 2.15a only five replicates had 

one or more clades with resolution less than 50% and none included false clades, while in 

Figure 2.15f two replicates had clades with resolution less than 50% and each also had false 

clades with greater than 50% support. Note that while many additional false clades were 

present within the trees sampled, only those with support of 50% or more are presented, since 

only these contribute to decreased clade accuracy.  
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Figure 2.15. BI posterior support for true four-taxon clades (orange), true two-taxon clades 
(blue), and false clades (red outline) for all eight troublesome treatments. Each spoke per target 
plot is a replicate and each eight-ingroup taxon tree replicate had 2 four-taxon clades and 4 
two-taxon clades, therefore 6 true clades are arrayed linearly from the outer to inner ring for 
each spoke. The thick target rings are in intervals of 30% and thin rings by 10%, with the 
absolute center of the target plot as 100% support. Only false clades with 50% or greater 
support are shown. Experimental treatment labeling is as indicated in the text. 

Accuracy and consensus thresholds 

The proportion of true and false clades identified by ML and BI analyses show a stark 

distinction between troublesome and non-troublesome treatment sets (Fig. 2.16). For both ML 

and BI, the non-troublesome treatments exhibited a perfect relationship around the 50% 

bootstrap or posterior support threshold, with no true clade represented in fewer than half the 

trees sampled and no false clades in greater than half (Fig. 2.16a,c). Troublesome treatments 

had many more, as well as more highly represented, false clades (Fig. 2.16b,d), and several 

infrequently produced true clades, with some even having nil support. For both troublesome 

and non-troublesome tree sets, BI greater proportions of clades with high support. 
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Figure 2.16. Frequency of all true and all false clades per treatment set by relative bootstrap 
support for ML analyses and by posterior probability support for BI analyses. Note the x-axis is 
not to scale, including the 95% support category. Troublesome treatments are the eight 
treatments demonstrating considerable variation among best trees across phylogenetic 
analyses; and non-troublesome treatments are the fifteen treatments demonstrating near-
perfect clade accuracy among best trees across phylogenetic analyses. Treatment LSSB is 
excluded so that only eight-ingroup taxon trees are compared.  

As a measure of the probability of a clade being correct, the relative proportion of true 

versus false clades is compared across support values in Figure 2.17, following an analysis 

provided by Hillis and Bull (1993). These researchers used jackknifing followed by bootstrapping 

to determine MP bootstrap proportions for the restriction site dataset of Hillis et al. (1992). 

Hillis and Bull (1993) observed that bootstrap proportions are lower than the probability of 

being correct for all proportions above 35%, and that proportions 70% or greater indicate a 
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very high probability (>95%) that the clade is real. For ML analyses with the troublesome 

treatments, bootstrap proportions greater than 30% were conservative in accuracy, and very 

highly so for proportions greater than 70%. BI analyses for the troublesome treatments 

produced posterior proportions conservative with respect to accuracy for all proportions 

greater than 30% except for 80%, which was slightly liberal in its representation of clade 

accuracy. BI was only more conservative than ML for support values of 40% and 50%. Within 

the range of 30-50%, BI posterior support does not closely approximate clade accuracy, with all 

other support values having a posterior probability ±5% of the probability the clade is true. 

 
Figure 2.17. Relationship between clade accuracy as the percent of correct clades for values of 
bootstrap support for ML analyses and posterior probability support for BI analyses. Results 
include data from Hillis and Bull (1993) as estimated from their Figure 4a (black), data from 
Avidian evolution non-troublesome treatments for both ML and BI analyses (blue, identical 
relationship), and data from Avidian evolution troublesome treatments for ML analyses 
(orange) and BI analyses (red dashed). The thin grey line is the one-to-one accuracy-to-support 
relationship; values above the line are conservative as being an underestimation of accuracy 
and values below are liberal as being an overestimation of accuracy. Troublesome treatments 
are the eight treatments demonstrating considerable variation among best trees across 
phylogenetic analyses; and non-troublesome treatments are the fifteen treatments 
demonstrating near-perfect clade accuracy among best trees across phylogenetic analyses. 
Treatment LSSB is excluded so that only eight-ingroup taxon trees are compared. 

Clade accuracy and clade resolvability, as well as their averaged score, topological 

accuracy, are compared within a whole-tree context in Figures 2.18 and 2.19. Results from each 
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phylogenetic analysis and consensus method are shown for the fifteen non-troublesome 

treatments (including treatment LSSB) in Fig. 2.18 and for the eight troublesome treatments in 

Fig. 2.19 as the proportion of trees that attained thresholds for clade accuracy (subplot a), clade 

resolvability (subplot b), and average topological accuracy (subplot c). These measures provide 

overall evaluations of the information provided in the trees resulting from the Avidian evolution 

treatments presented. Consensus methods presented include the thresholds previously 

evaluated as well as the MRe result. Note that ten replicates were performed for each 

treatment and that each phylogenetic analysis and consensus method was performed for all 

such treatments and replicates. Therefore, the data shown within each column of these plots 

represent 150 trees and 80 trees, respectively, in Figures 2.18 and 2.19. 

Non-troublesome treatment trees had high clade accuracy yet were often not fully-

resolved and therefore had low overall accuracy for more strict consensus support values (Fig. 

2.18). Clade accuracy was perfect (i.e., meeting the 100% threshold) for all consensus trees for 

each analysis and for best trees for ML and BI analyses (Fig. 2.18a); of course, these were the 

criteria for collating these treatments as “non-troublesome.” Clade accuracy was greater than 

95% for NJ and the MP best trees, although for the latter an equally parsimonious tree was 

consistently the true tree. A 70% consensus support threshold maintained very high clade 

resolvability (Fig. 2.18b), with at least 95% of trees being fully resolved for each analysis (i.e., 

meeting the 100% CR threshold). While MP performed slightly better than ML for thresholds of 

95% and 99%, BI maintained a much greater clade resolvability at these high support 

thresholds. When weighting clade accuracy and clade resolvability equally as average 

topological accuracy (Fig. 2.18c), BI produced a large proportion of accurate trees even at very 

strict support thresholds. 
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Figure 2.18. Proportion of trees across all non-troublesome treatments that met or exceeded 
clade accuracy (a), clade resolvability (b), and average topological accuracy (c) thresholds for 
each analysis and consensus method evaluated. Non-troublesome treatments are the fifteen 
treatments demonstrating near-perfect clade accuracy among best trees across phylogenetic 
analyses. 
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Trees from troublesome treatments had high clade accuracy but were poorly resolved, 

with low average topological accuracy (Fig. 2.19). Clade accuracy was perfect for only 50% of 

the best trees produced by each analysis, and it was at least 80% for nearly 80% of the best 

trees produced by each analysis, with MP performing a bit worse (Fig. 2.19a). As the strictness 

of the majority rule consensus threshold increased, clade accuracy increased at different rates 

among analyses, with ML approaching 95% of trees as being perfect at the 70% consensus 

threshold and both MP and BI requiring a threshold of 95%. For trees of increasing consensus 

threshold strictness, clade resolvability decreased substantially, from approximately half the 

trees being fully resolved to less than 5% of trees (Fig. 2.19b). MP and ML reached this low 

resolvability at a 95% consensus threshold while BI reached it only at 99%. Across consensus 

thresholds, ML consistently produced better-resolved trees than MP, but less so than BI. This 

trend of BI maintaining greater clade resolvability stands out when examining trees with at 

least a 60% clade resolvability (light blue, Fig. 2.19b). For 99% consensus trees, MP and ML 

produced only about 15% of trees with at least 60% clade resolvability while BI produced 45%. 

This increased resolvability caused BI consensus trees to have greater overall accuracy, and ML 

consensus trees median accuracy compared to MP (Fig. 2.19c). For MP and BI, 50% majority 

rule trees had slightly lower overall accuracy compared to best trees by having greater clade 

accuracy and slightly lesser resolvability, although for ML over 15% more trees had reduced 

overall accuracy. MRe consensus trees for ML and BI had slightly reduced clade accuracy or 

clade resolvability, with minimal increase in the other metric, if any; therefore, these trees 

tended to have near-equivalent or reduced overall accuracy compared to an analysis’ best tree. 
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Figure 2.19. Proportion of trees across all troublesome treatments that met or exceeded clade 
accuracy (a), clade resolvability (b), and average topological accuracy (c) thresholds for each 
analysis and consensus method evaluated. Troublesome treatments are the eight treatments 
demonstrating considerable variation among best trees across phylogenetic analyses. 
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Discussion 

Treatment comparisons 

The basic pair of treatments exhibited similar molecular evolution and comparable 

phylogenetic inference accuracy in Avida compared to that in the T7 phage research. These 

100- and 300-generation per branch treatments under asexual evolution and stabilizing 

selection with the naïve ancestor favorably compared to sets of molecular T7 data exhibiting 

distinct rates of evolution. Hillis et al. (1994), using a DNA dataset, observed 63 variable sites 

and a total of 69 substitutions across internal and external ingroup branches. In comparison, 

the 100-generation per branch treatment using Avida resulted in a median of 85 variable sites 

(Fig. 2.04) and a total of approximately 74 substitutions, as extrapolated from inferred branch 

lengths across ML and BI best trees (Fig. 2.05). The NJ analysis Hillis et al. (1994) performed had 

a tree with a single clade as incorrect, which was found for one of the ten NJ replicates, with 

the others having perfect accuracy (Fig. 2.06). Their MP analysis resulted in the true tree and 

one other as equally parsimonious tree, and this result also occurred for one replicate here, 

with the other replicates identifying only the true tree as most parsimonious. Whereas the T7 

researchers found ML as being incorrect by one clade, all replicates of ML and BI for the 100-

generation per branch treatment produced trees with perfect clade accuracy. Hillis et al. (1994) 

performed nonparametric bootstrapping and reported a single clade resolvability score for each 

analysis, whereas here I report clade resolvability separately for consensus trees of increasing 

threshold strictness. They found that MP maintained much higher resolvability than ML, with NJ 

slightly outperforming them all. The consensus trees analyzed for the 100-generation per 

branch treatment confirm these results (Fig. 2.07), although a bootstrap analysis with NJ was 

not performed. Consensus thresholds of 70% and greater resulted in one or more replicates 

producing trees with at least one polytomy, and MP and BI were not as greatly affected by 

increasing threshold strictness as was ML. Hillis et al. (1992), using a restriction site dataset, 

observed 202 variable sites and a total of 220 substitutions across internal and external ingroup 

branches, which is comparable to the 300-generation treatment which had a median of 186 
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variable sites and approximately 236 substitutions. Hillis et al. (1992) found that their dataset 

produced correct tree inferences under each method evaluated, and this result is reproduced 

here, with each of these analyses and consensus thresholds having 100% clade accuracy and 

resolvability. Comparing the Avidian evolution treatments, it is reasonable to suspect that the 

three-fold increased evolution between lineage division allowed greater fixations to occur, 

providing greater support for clade relationships, and therefore resulting in greater variable and 

parsimony informative sites and thus increased topological accuracy. These treatments 

approximated the molecular evolution characteristics of dataset size and degree of 

evolutionary change and found similar phylogenetic success as the T7 experimental 

phylogenetics research. This demonstrates that Avida was successfully used to reimplement 

prior experimental phylogenetics work using biological organisms. 

Three of the four remaining treatments conducted under stabilizing selection with 

lineages evolved for an equivalent amount of time within each history produced results like the 

prior treatments, with the remaining treatment being phylogenetically problematic. When an 

ancestor pre-adapted to the environment was used, the extent of molecular evolution 

decreased dramatically. Presumably, strong stabilizing selection in maintaining ancestral 

adaptation to the selective environment caused many fewer fixations to occur, resulting in 

reduced variable and parsimony informative sites (Fig. 2.04), shorter branch lengths (Fig. 2.05), 

and thus lower clade accuracy and resolvability (Figs. 2.06-2.07). As with the basic pair of 

stabilizing selection treatments, increased lineage evolution between cladogenesis allowed 

greater phylogenetic information and inferred topological accuracy for the 300-generation 

treatments. A notable trend was that clade resolvability was improved by the addition of sex to 

the 100-generation treatments. This was a curious result, as recombination in these treatments 

appears to increase clade resolvability while not greatly increasing the number of variable or 

informative sites. Together the set of six stabilizing selection treatments with equivalent lineage 

evolution per branch demonstrates that phylogenetically informative sequence variation and 



75 

thus topological accuracy is reduced due to relatively stronger stabilizing selection and 

relatively reduced lineage evolution between cladogenic division, as would be expected. 

Five treatments were designed to evaluate the effects of differing branch lengths. 

Evolution along internal branches can produce evidence of the shared ancestry among latter 

lineages via the production of synapomorphies. This is especially likely to occur if the 

population has sufficient opportunity to acquire substitutions, i.e., on relatively longer 

branches. On the other hand, evolution along external branches can only produce such 

evidence due to lineage sorting (i.e., the segregation of variant characters following 

cladogenesis). However, evolution along both internal and external branches may produce 

homoplasy, which is more likely to occur along relatively longer branches (Rokas and Carroll, 

2006). Of course, both internal and external branches can also negate evidence of shared 

ancestry when substitutions occur at sites that previously exhibited such evidence. Therefore, 

internal branches are more important in positively contributing to phylogenetic inference and 

this contribution is relative to their length, and external branches are likely to negatively 

contribute with increased length. For example, Hang et al. (2003) used digital evolution with 

Avida to demonstrate that relatively longer internal branches improved phylogenetic inference 

through the generation of synapomorphic variation. Three Avidian evolution treatments 

presented here evaluated this through the placement of a single short (“S,” 300-generation) set 

of branches per tree level among the remainder of long (“L,” 3,000-generation) sets of 

branches:  SLL had eight external branches of 300 generations each, LSL had four internal 

branches of 300 generations, and LLS had two basal-most internal branches of 300 generations. 

Felsenstein (1978) numerically demonstrated that long external branches can “attract” one 

another through the production of homoplasious evolution swamping out positively 

informative cladogenic signal. The fourth Avidian evolution treatment, LSS, had only external 

long branches to test this long branch attraction effect. Graybeal (1994) used simulations to 

show that breaking up such long external branches by adding targeted taxa resolves those 
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difficulties. Finally, Avidian evolution treatment LSSB did just that, resulting in a 32-taxon 

asymmetrical history. 

This set of treatments, conducted under weak stabilizing selection with differing 

numbers of generations per tree level, supported this prior research. Since the primary 

distinction between parsimony informative sites and variable sites is that the latter additionally 

includes autapomorphic variation, the observed pattern of informative sites in Figure 2.04 for 

these treatments makes sense. Treatment LSS would be expected to show the greatest 

proportion of such sites due to greater evolution along the long external branches. Although 

treatments LSL and LLS have the same long external branches, they also have a set of long 

internal branches, which provided a greater opportunity for parsimony informative variation 

among the resulting taxa. Treatment SLL did not have long external branches during which 

substantial evolution could take place. And treatment LSSB had longer external branches than 

SLL, although it also had four times as many taxa, allowing greater opportunity for informative 

yet misleading variation to occur due to parallelism and convergence. NJ underpredicting long 

branches for these and other treatments is as expected since the algorithm’s distance metric is 

sensitive to deviations from its model and generally undercounts rates of change (Tateno et al., 

1994). As expected, clade accuracy was perfect for all analyses and consensus thresholds when 

all internal branches were long and when external long branches were disrupted by increased 

taxa breaking up long branches yet was reduced with treatments of long external branches and 

at least one set of short internal branches (Fig. 2.08). When clade resolvability was decreased, 

the responsible clades were consistently those denoted by short branches (Fig. 2.15b-d). 

Overall, this set of treatments produced the phylogenetic trends as predicted by theory, 

simulation, and prior digital evolution research. 

The eight treatments with directional selection and long branches throughout the tree 

support prior experimental phylogenetics research on natural selection using digital evolution. 

While it is undetermined whether selection aids or hurts phylogenetic inference generally, 

experimental phylogenetics research using biological systems tends to show that selection 
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produces homoplasy (Bull et al., 1997; Cunningham et al., 1997; Fares et al., 1998), although 

see Leitner et al. (1996), while in digital systems it primarily produces greater synapomorphies 

(Hagstrom et al., 2004; Hang et al., 2007, 2003). Four different selective regimes simultaneously 

altered the strength of selection and the possibility of selection producing parallelism or 

convergent homoplasious evolution, with the strength of selection decreasing from regimes 1 

through 4 and environmental diversity among branches increasing from regimes 1 through 4 

(Fig. 2.02). For example, in regime 1 all branches experienced very strong selection for the same 

tasks, and in regime 4 each branch experienced relatively weaker selection for distinct 

combinations of tasks. Recombination is expected to increase the efficiency of natural selection 

by fixing beneficial and removing deleterious alleles, so its presence is expected to magnify the 

effects of selection. The pattern of branch lengths increasing from regimes 1 to 4 for ML and BI 

inferred best trees (Fig. 2.05) is evidence that selection for new tasks during later periods of 

lineage evolution was driving greater evolution. Since NJ did not show this pattern, this 

suggests greater deviation from its distance metric’s model of evolution for the diversifying 

selection treatments. Since branches were reduced in length from that observed for stabilizing 

selection treatments that also had branches of 3,000 generations (e.g., long external branch 

treatments in treatment LLS), selection presumably caused fewer fixations to occur. Other than 

increased selection fixing beneficial alleles and removing deleterious alleles, presumably 

stronger selective sweeps were occurring in stronger selection regimes, further causing a 

decrease in evolutionary change. Internal branch lengths appeared inflated without 

recombination and external branch lengths inflated with recombination because recombination 

treatments included the seeding of new lineages with the entire population instead of the most 

abundant genotype. This should cause lineage sorting dynamics, resulting in fewer overall 

substitutions, and delaying some fixations until later in the evolutionary history. The trend 

observed across all 23 treatments of ML inferring slightly shorter branch lengths than BI was 

especially prevalent for internal branch lengths in these treatments and is best exemplified by 

the selection regime 3 treatments with or without recombination. While it is not clear what is 
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causing this near-systematic difference, perhaps either ML or BI is more sensitive to deviations 

from the model of evolution than the other, although not nearly as sensitive as NJ’s distance 

metric. Comparing the set of treatments with recombination to those without, recombination 

appears to decrease clade resolvability (Fig. 2.11). This is the opposite trend from that observed 

for 100-generation per branch treatments (Fig. 2.07). Overall, it appears that stronger selection 

in these treatments increases clade resolvability, with homoplasious evolution presumably not 

being as significant of a concern in this digital evolution system. 

The final four treatments evaluated the combinatorial effects of selection, 

recombination, and varying branch lengths in the long branch attraction (LSS) design. Selection 

and a lack of recombination increased both clade accuracy and resolvability compared to the 

standard LSS treatment (Figs 2.12 and 2.13). Whereas selection in the presence of 

recombination decreased both clade accuracy and resolvability compared to the standard LSS 

treatment. With either recombination present or absent, both clade accuracy and resolvability 

slightly increased in the less selective environment, regime 3, countering the trend observed for 

the 3,000-generation per branch treatments. As with the stabilizing selection LSS treatment, 

clade resolvability was diminished by both two- and four-taxa clades (Fig. 2.15), owing to the 

presence of internal branches needing to provide phylogenetic support for clades of both tree 

levels. Overall, complex combinatorial dynamics were observed with these treatments. 

Accuracy and consensus thresholds 

Arguably, the most impactful individual result from the T7 work is the connection of MP 

bootstrap support values with clade accuracy, with the threshold of 70% indicating very high (> 

95%) clade accuracy (Hillis and Bull, 1993). The expansive set of experimental phylogenetics 

data presented here was used to revisit this clade-level accuracy result within the context of ML 

and BI, and to further consider it within a tree-level context.  

The relative proportions of true and false clades were directly compared across support 

values as a measure of the probability of a clade being correct (Fig. 2.17). Avidian evolution ML 

analyses with the troublesome treatments supported the results of Hillis and Bull (1993), with 
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bootstrap proportions greater than 30% being conservative in accuracy, and very highly so for 

proportions greater than 70%. BI analyses for the troublesome treatments provide strong 

evidence that posterior probabilities are very close estimates of clades accuracy, confirming 

analyses of simulation studies by demonstrating that, at least for these “troublesome” 

experimental conditions, BI posterior support is a closer estimate to clade accuracy than is ML 

bootstrap support for support values greater than 60%. Curiously, the range of 30-50% in which 

BI posterior support fails to closely track clade accuracy does not appear to be especially under-

sampled, and so it is unclear why these median values are overly conservative. While a few 

simulation studies suggest that BI posterior probabilities may be overly liberal estimates, only 

two support values (20% and 80%) were indeed liberal, and neither were overly so. This result 

suggests that BI posterior probabilities are a much better reflection of clade accuracy than 

bootstrap support, at least for most support values of interest to systematists. It also suggests 

that the commonplace 100% posterior support value may be regarded as a significant 

indication of clade accuracy rather than as an overly liberal estimate. 

While the individual accuracy of a clade is important, clades are rarely just evaluated 

alone but also in the context of one another in a tree, and therefore it is important to examine 

clade accuracy, as well as resolvability, in a whole-tree context (Figs. 2.18-16). Greater 

assurance of clade accuracy (for BI, anyway, based on results in Fig. 2.17) using more strict 

consensus support thresholds entailed a stark trade-off with clade resolvability even for the 

non-troublesome treatments (Fig 2.18a-b), although it had extreme consequences in 

troublesome treatments (Fig 2.19a-b). For both sets of treatments, BI maintained greater clade 

resolvability at stricter thresholds and therefore produced the most overall accurate trees even 

at very strict consensus thresholds. This increased clade resolvability caused BI consensus trees 

to have much greater average topological accuracy than MP and ML. A systematist might use 

the MRe method to produce a fully-resolved tree that considers bootstrap consensus support 

information. The data presented here suggest that this would be misguided, as it sacrifices 

clade accuracy and/or clade resolvability with little gain. 
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Across both clade-level and tree-level measures, a ML 70% consensus support tree is 

approximately as accurate as a BI 95% consensus support tree. As shown in Fig. 2.17, since ML 

bootstrap support is so conservative, at the 70% threshold clades have approximately a 95% 

probability of being correct. This compares to the much closer measure of accuracy provided by 

BI posterior probability, with a 95% posterior clade support having approximately a 95% 

probability of being correct. For conditions in which phylogenetics should perform well, as with 

the non-troublesome treatments, a 70% consensus ML tree may be approximately equally 

expected to exhibit perfect clade accuracy, clade resolvability, and therefore average 

topological accuracy as a 95% posterior support BI tree (Fig. 2.17). And for more difficult 

conditions, these trees are similar yet with a few differences; specifically, a 70% consensus ML 

tree may have a slightly lower chance of having perfect clade accuracy, a slightly higher chance 

of being fully-resolved, and overall a slightly greater chance of having perfect topological 

accuracy than a 95% posterior support BI tree (Fig. 2.19). 

Conclusions 

As the most ambitious examination of phylogenetic accuracy in an experimental system 

to date, this work demonstrates the use of digital evolution in experimental phylogenetics as a 

powerful tool for the evaluation of phylogenetic inference.  

This work has shown that Avida can be used to approximate the basic molecular 

evolution characteristics and phylogenetic inference results obtained in the foundational T7 

experimental phylogenetics research of Hillis et al. (1992) and Bull et al. (1993), and supports 

the bootstrap-accuracy conclusion of Hillis et al. (1994). Avida can also be used to expand upon 

these earlier experiments by evaluating a range of designs expected to cause phylogenetic 

inference complication, thereby demonstrating the greater utility and generality of the digital 

evolution approach over biological systems for experimental phylogenetics.  

A fundamental phylogenetics phenomenon has been demonstrated using this system 

across many treatments – that greater evolution aids phylogenetic inference except in 
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conjunction with lesser evolution among internal branches; although, uninvestigated here, too 

much evolution along branches will eventually swamp out positively informative signal.  

Directional selection has been shown to aid phylogenetic inference in this system, and 

does so the stronger selection occurs, although directional selection in combination with 

recombination and differing extents of lineage evolution produces conflicting results. Strong 

stabilizing selection in this system can hurt tree accuracy if it sufficiently reduces the magnitude 

of evolutionary change. It is not clear what the effects of sexual recombination, as implemented 

in Avida, are on phylogenetic inference, as it appears to increase clade resolvability in some 

circumstances and lower both clade resolvability and accuracy in others. 

This research suggests several general recommendations for systematists. BI posterior 

clade support probabilities are very close estimates of clade accuracy at least throughout the 

range of 60–100%, inclusive. Bootstrap support values in ML analyses are highly conservative 

measures of clade accuracy for values of 70% and greater. Since higher consensus thresholds 

fail to substantially improve accuracy, although they may drastically reduce clade resolvability, 

ML 70% bootstrap support values represent an ideal trade-off between accuracy and 

resolvability. BI maintains greater clade resolvability at greater consensus support thresholds 

than does MP or ML. A 50% majority rule consensus tree provides a fair trade-off between 

clade accuracy and resolvability, having potentially greater clade accuracy than an analysis’s 

best tree without sacrificing too much resolvability for most analyses. MRe consensus trees are 

not useful, as they are either equal to or worse than an analysis’s best tree in terms of clade 

accuracy, resolvability, or both. If one wishes to have a fully-resolved tree, then the best tree 

resulting from the analysis should be used instead of the MRe tree. Under either 

phylogenetically facile or challenging circumstances, ML 70% consensus trees are 

approximately equivalent to BI 95% consensus trees for both clade-level and tree-level 

measures of accuracy. 

Finally, there are a few outstanding questions that were not addressed in this study. 

Overall, the effects of natural selection and whether its phylogenetic inference effects are 
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different in biological versus digital systems stands to be further investigated. Since treatments 

reported here provided conflicting results, the influence of recombination (as implemented in 

Avida) on phylogenetic inference, separately and together with other factors, remains to be 

evaluated, in addition to its underlying mechanistic effects. The molecular genetics occurring 

within these Avidian populations, especially instruction frequencies and rates of change, was 

surely different from the Poisson model of evolution used for these analyses. Deviations from 

this model presumably accounted for differences in branch length estimation between analyses 

and potentially contributed to differences in clade support. The relative robustness between 

ML and BI to deviations from its model of evolution should be further explored. A 

characterization of the Avidian molecular evolution occurring in these treatments and the 

effects of deviation from its model of evolution might provide insight into differences between 

analyses. While molecular genetics mechanisms, such as selective sweeps and lineage sorting, 

have been suggested here as likely explanations for certain results, a characterization of such 

patterns in these evolutionary contexts remains to be shown. Finally, it is unclear whether trees 

have a higher likelihood of being accurate if multiple phylogenetic analyses, e.g., ML and BI, 

produce identical topologies, or, in the case of polytomies, at least produce non-conflicting 

topologies. If not, then these results suggest that BI analyses with posterior probability tree 

support of 95% or greater should be used by systematists desiring an assurance of high clade 

accuracy and reasonably well-resolved trees.  
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CHAPTER 3: 
 

Digital Evolution Addresses Intractable Research Questions in 
Phylogenetics 

Introduction 

The lack of experimental phylogenetics research following the revolutionary work of 

Hillis et al. (1992) in constructing and evaluating a known biological evolutionary history has 

been remarkable. After an initial flurry then trickle of related research, critiques against this 

means of evaluating phylogenetic accuracy seem to have brought the field’s extinction (Oakley, 

2009). In Chapter 1, I argued that the experimental phylogenetics approach had so far suffered 

from an imbalance of utility, realism, and generality compared with computational simulations 

due to the historical use of biological study systems. Instead, digital evolution may preserve the 

greater biological realism found in experimentally generated evolutionary histories while not 

sufficiently reducing the utility in time, resources, and expertise and not sufficiently reducing 

the generality or universal applicability to other systems compared to simulations. In this 

manner, digital evolution may fill the current void between computational simulations and 

biological experimental evolution for the evaluation of phylogenetic methodologies.  

In Chapter 2, I presented the digital evolution system Avida as a suitable system for 

experimental phylogenetics. I did so by demonstrating the correspondence between prior 

research using biological organisms (Bull et al., 1993; Hillis et al., 1994, 1992; Hillis and Bull, 

1993) with digital evolution experiments designed to produce similar results. By extending this 

work to evaluate a greater range of predicted phylogenetically troublesome conditions, I then 

further demonstrated the utility and generality of the digital approach to experimental 

phylogenetics. Those results provided a few outstanding areas for investigation, including the 

impact of natural selection, sexual recombination, and deviations from the model of evolution 

on phylogenetic accuracy—both clade support and branch length inference—and a lack of a 
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detailed understanding regarding the molecular evolutionary circumstances of such 

experimental treatments. 

The work presented in this chapter addresses those research questions:  Can 

experimental evolution conditions in Avida be configured to closely approximate the biological 

reality of molecular evolutionary dynamics? And if so, does natural selection aid phylogenetic 

inference, as suggested in Chapter 2? Does sexual reproduction always aid this, or are its effects 

not easily predictable, as suggested in Chapter 2? Finally, are deviations from the model of 

molecular evolution used in a phylogenetic analysis highly impactful on phylogenetic accuracy 

or are deviations well-tolerated?  

With respect to the impact of selection and sexual recombination, the experimental 

treatments investigated here varied in their potential for neutral evolution or natural selection 

to occur and whether asexual or sexual reproduction occurred. And to even further 

differentiate the molecular evolutionary trends as summarized in models of evolution, 

experiments were initiated with either a naïve or pre-adapted ancestor genotype. A fully 

factorial design was implemented to investigate the effects of all eight combinations of these 

experimental treatments on the phylogenetic accuracy, both topological and branch length 

accuracy, of Avidian evolutionary histories. Deviations from the model of evolution were 

investigated by comparing phylogenetic analyses using the Poisson model of molecular 

evolution to empirical substitution models created from the detailed tracking of substitutions 

that occurred across experimental replicates. For all experiments, experimental evolution 

conditions were set to approximate biological reality, and this too was evaluated using 

population genetic analyses to determine whether evolution proceeded as expected. 

The work presented here demonstrates the greater utility and generality of digital 

evolution over biological systems for evaluating phylogenetic inference. For example, to create 

the eight empirical models of molecular evolution, substitutions across a total of 1,637,600,000 

generations of evolution were tracked, and to characterize the population genetic dynamics of 

this evolution, the identified 3,291,266 substitutions were evaluated for their fitness effect 
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throughout each’s population frequency trajectory. The collection and characterization of 

similar molecular evolution data in biological systems would be prohibitively burdensome if not 

impossible. Additionally, the design of these experiments strove for biological realism, for 

which analyses conducted here provide more so than those in chapter 2. For example, the 

population sequence diversity, the distribution of mutational effects, and the extent of 

evolution per lineage between cladogenic events were well within the range observed in 

biological systems (e.g., Eyre-Walker and Keightley, 2007; Li, 1997; Pin et al., 2001; Simmons, 

2012).  

The impacts on phylogenetic inference by model divergence, selection, recombination, 

and complex population dynamics have been underexplored in phylogenetics research. Digital 

evolution has potential utility in exploring such phylogenetically difficult sample spaces, and the 

increased utility and generality of digital evolution can be harnessed to explore questions that 

simulations have aimed to address. The following work was performed within the context of 

providing specific case-study examples of the digital experimental phylogenetics approach, and 

it has produced several surprising findings that are at least relevant under the evolutionary 

conditions investigated. This research shows that recombination may have a beneficial role in 

phylogenetic inference by encouraging substitutions to occur gradually throughout lineage 

evolution; that neutral evolution can pose greater difficulty for phylogenetic inference than 

directional selection; that using a more accurate model of evolution in the phylogenetic analysis 

may not offer improvement; that inferred branch lengths may often be quite inaccurate despite 

clade support being accurate; and, that metrics like bootstrap support and posterior clade 

support may not be close estimates of clade accuracy. The aim of this work is that it may show 

the phylogenetics and experimental evolution communities alike the potential for future uses 

of digital evolution to investigate research questions that are intractable with evolving 

biological populations. 
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Methods 

Experimental design 

Base evolutionary history 

Eight experimental treatments were conducted in a fully factorial design of neutral 

evolution or natural selection, and naïve or pre-adapted ancestor, and asexual or sexual 

reproduction. Each treatment was replicated ten times, for the generation of a total of eighty 

1,024-taxon fully symmetrical Avidian evolutionary histories.  

Unlike in Chapter 2, the base of the ingroup taxa was not a true polytomy but was a root 

lineage uniting all taxa. This first lineage was initiated with a full population of the starting 

organism, and each subsequent lineage began with the cloned population from the end of the 

previous lineage. Therefore, lineage seeding in these experiments was consistent with the 

selection treatments in Chapter 2, and not like the other Chapter 2 treatments that used the 

single most abundant genotype to initiate lineages. In this manner, population growth did not 

occur, and the population size remained very close to 1,000 organisms for the entire 

evolutionary history. Under this rooted and fully symmetrical design, ten tree levels of 

evolution proceeded, producing 1,024 (i.e., 210) external branches and 1,023 (i.e., 210-1) internal 

branches. 

The per site mutation rate was set sufficiently high to maintain the relative likelihood 

that Avidians would adapt in selective environments, yet low enough to be within the range of 

biological reality (Li, 1997). Mutation rates from 3 * 10-5 to 5 * 10-6 were initially evaluated 

using the default organism, population size, and under neutral evolution or a similar selective 

environment as described in the conditions here. These populations evolved for 10,000 

generations and the sequence diversity of the population every 1,000 generations was 

evaluated. Variation at each locus was transcoded using the DNA bases for each instructional 

variant so that population genetics software could be used to infer nucleotide diversity, π (Nei, 

1987). Rather than using a genetic code or having some other biological meaning, this was 

simply a means to characterize locus diversity; for example, the four most common variants 
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were coded as A, T, G, or C, and for loci with greater than four variants, all others were coded 

with a dash, although this rarely occurred. Using the program MEGA, version 6.06 (Tamura et 

al., 2013), sequence diversity was calculated for each timepoint and compared to the 

biologically realistic range of 0.005 to 0.02 (Pin et al., 2001; Stone et al., 2002). The only 

mutation rate evaluated that was within this range for nearly all conditions and generations 

observed was 1 * 10-5. Since Avidians reproduce with over-lapping generations such that the 

mutation rate affects an offspring genotype and not the parent’s, the effective mutation rate 

was 5 * 10-6. For comparison, this rate is approximately forty times lower than in Chapter 2. 

The number of generations each lineage evolved per branch was set so that branch 

lengths were reasonably short. The objective was to produce branches of lengths on the shorter 

range of biological reality, so that future work may use taxon sampling on the resulting 

evolutionary histories to evaluate longer branch lengths. Of the phylogenetic simulation studies 

surveyed, many evaluated branches as small as 0.01 substitutions per site and as large as 0.4 

(e.g., Wiens and Cannatella 1998; Wiens and Soltis 2005; Simmons 2012). A total of 5,000 

generations of evolution per branch was chosen, yielding an expected neutral evolution branch 

length of 0.025 substitutions per site, or expectedly lower under selection. This is 

approximately the length of the shortest branches inferred in Chapter 2 treatments. The total 

extent of evolution from root-to-tip experienced by a lineage evolving across eleven tree levels 

was 55,000 total generations and expected to be 0.275 substitutions per site under neutral 

evolution, which simulation analyses suggest should be within optimal ranges across 

phylogenetic difficulty conditions (Klopfstein et al., 2017).  

Non-default Avida settings shared by all experiments included the following. Both the 

neutral and default sexual instruction sets allowed only 20 possible characters to mutate. The 

default instruction did so by disallowing the same set of instructions from being incorporated 

into the genome via mutation as in Chapter 2, except for h-copy, required for Avidian genome 

replication, which could mutate freely here. The birth method was set as “mass action,” in 

which an offspring is placed randomly into the population instead of near their parent, resulting 
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in a lack of spatially- and genetically-structured populations and increasing the effectiveness of 

selection because individuals were equally likely to compete for space with relatives and 

nonrelatives alike. Population details, including genotype frequencies, were recorded every 100 

generations, resulting in 50 sampling timepoints per branch lineage. All other settings were as 

the default, and Avida (Ofria et al., 2009; Ofria and Wilke, 2004) version 2.14.0 was used with 

modifications including the neutral instruction set and the extra computational tasks available 

for reward, as explained below. 

Neutral evolution versus natural selection 

Treatments varied in whether neutral or adaptive evolution occurred. Avida was 

modified to incorporate a new instruction set that consisted of 20 copies of the nop-X 

instruction (e.g., nop-XA, nop-XB, nop-XC, etc.), varying only in their alphabetic abbreviation. This 

instruction does not take any computational resources to perform unlike other Avidian 

instructions, including nop-C, that do to various degrees. Therefore, there should not be any 

stabilizing selection or the potential for any form of adaptive evolution with Avidian genotypes 

using this set of instructions. One additional instruction other than a nop-X analogue, called 

repro-sex, was used that was necessary and sufficient for reproduction for these genotypes; 

while this instruction’s locus was effectively invariant, it was the 1,001st position in the genome 

and was excluded from all analyses. While the reproduction instruction was excluded from 

being introduced via mutation, it had the possibility to mutate away causing inviability. In this 

manner, very, very weak stabilizing selection occurred as it was limited to one locus. 

Selective environments were designed to produce very gradual adaptive evolution 

throughout the evolutionary history while additionally minimizing the potential of homoplasy. 

Each of the 2,047 lineages within the evolutionary history were exposed to a distinct selective 

environment to limit homoplasious character evolution, like selection regime “4” in Chapter 2 

(Fig. 2.02). As with those treatments, a nesting environmental structure promoted continual 

adaptation, with all ancestrally rewarded tasks also rewarded in derived branches. Here, every 

branch additionally rewarded ten new tasks. To accomplish this, 215 new tasks were coded, 
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bringing the total number of available Avidian tasks to 348, including one-, two-, and three-

input logic or mathematical tasks. Using these, relative task difficulty was roughly approximated 

by evolving replicate Avidian populations in the full-task environment and recording how many 

generations elapsed before a mutation conferring it arose. A total of 277 tasks were identified 

from these approximated difficulty classes and environments were configured such that two 

tasks from each class were awarded per branch to promote steady adaptation across lineages.  

Since realistic population genetics were sought, selective environments were designed 

to decrease the magnitude and frequency of selective sweeps, e.g., fixation within fewer than 

100 generations. Each task was rewarded with a 10% increase in merit, which was thought to 

be approximately minimally sufficient to promote phenotypic evolution. Note, there was no 

tradeoff in merit for performing computationally more difficult tasks, as each was equivalently 

rewarded. The ten new tasks rewarded each branch therefore allowed a maximal selective 

advantage of 1.110 (i.e., 2.6x). In practice, however, Avidian populations rarely if ever reached 

full proficiency in rewarded tasks. At the very most, a difference between an Avidian 

performing no tasks versus performing all 110 tasks rewarded in an external lineage 

environment was 35,743x. Since task performance usually entails a nominal reduction in 

offspring cost relative to merit and since Avidians tend to evolve tasks sequentially, the realized 

differences in fitness between contemporaneous individuals are most likely greatly reduced 

from these values. These conditions varied from those of Chapter 2, in which all treatments 

experienced at least relatively weak stabilizing selection, and in which the most selective 

environment rewarded nine tasks with a maximal advantage of performing all versus no tasks 

of over 30 million. 

Naïve versus pre-adapted ancestor 

The ancestor used to initiate the evolutionary histories varied by being either naïve or 

pre-evolved. Each ancestor had a genome of 1,000 loci and this size was fixed by disallowing 

insertion or deletion mutations. Rare Avidian programmatic circumstances that may otherwise 

disassociate positional homology among loci was also controlled by mandating offspring size to 



90 

be identical to its parent and disallowing unstable genotypes from reproducing. As in Chapter 2, 

the naïve ancestor was equivalent to the default Avidian genotype although with additional 

nop-C instructions as genomic filler between the two strings of instructions necessary for 

reproduction. In this case 900 such instructions were added. As before, this genotype can 

reproduce but perform no other meaningful computation, for example a task rewarded by the 

environment.  

Whereas the sought distinction between the naïve and pre-adapted ancestor in Chapter 

2 was that the latter would be task proficient in the environments encountered during the 

evolutionary history, this was not the rationale between the naïve and pre-evolved ancestors 

used here. Recognizing the tremendous difference between the model of evolution 

experienced by the naïve ancestor and a biological organism, the goal for the pre-evolved 

ancestor was to create a genotype that had instruction frequency comparable to typical amino 

acid profiles in biological organisms. The was accomplished by evolving ten replicate Avidian 

populations from the default ancestor through millions of generations of evolution. The 

selective environment rewarded the remaining 71 tasks that were not rewarded among any 

branch environment in the selection treatments, although since only five tasks were performed 

by the identified genotype, the environment largely fostered stabilizing selection.  

After periodically evaluating random organisms for instruction frequencies comparable 

to biological taxa, the genotype chosen as the pre-evolved ancestor had experienced 2,038,000 

generations of evolution. Table 3.01 presents summary statistics for the pre-evolved and naïve 

Avidians in addition to several biological taxa, whose empirical amino acid frequencies were 

obtained using a diversity of methods and with taxa across the tree of life. While the naïve 

ancestor had 98.8% of its genotype as nop-C instructions and several instructions 

unrepresented, the pre-evolved ancestor had a frequency distribution approximately 

comparable to biological organisms, with only 9.9% of its genome as nop-C. Ancestors did not 

substantively differ in sequence variation between neutral and selection treatments, with the 

same genotypic sequence of instructions used for each but under differing instruction sets (i.e., 
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the C instruction coded for nop-C in selection treatments and nop-XC in neutral treatments). 

The only sequence difference was the presence of the additional final instruction for neutral 

treatments, which was necessary for reproduction, and was excluded from all phylogenetic 

analyses. 

Table 3.01. Summary statistics for empirical amino acid frequencies for ancestor Avidian 
instruction frequencies and sets of biological taxa, with values scaled to 0–1,000 for ease of 
comparison to a 1,000-loci genome. For example, a minimum of 8 indicates that the lowest 
frequency for any of the twenty amino acid frequencies in the dataset was 8 out of 1000 (i.e., 
0.8%). Some empirical frequencies were accessed via the ExPASy resource portal (2012). 

 
Pre-evolved 

ancestor 
Naïve 

ancestor 

Brooks 
et al. 

(2002) 

UniProt 
Consortium 

(2017) 

McCaldon 
and Argos 

(1988) 
Hormoz 
(2013) 

King and 
Jukes 
(1969) 

Minimum 10 0 8 11 13 9 13 

Median 55 0 48 54 53 53 47 

Maximum 99 988 89 97 90 102 81 
Standard 
Deviation 23 215 25 22 21 24 20 

Asexual versus sexual reproduction 

Recombination in sexual reproduction treatments occurred differently than in Chapter 

2. In Avida there are four settings that determine the genetical recombination process, with 

additional settings related to other factors like mate choice or the two-fold cost of sex, which 

are of no concern here. The first setting is RECOMBINATION_PROB, which is the probability that 

recombination will occur between a pair of mates. A value of 0 was used for the asexual 

reproduction treatments and 1 for sexual treatments both here and in Chapter 2. Note that this 

setting is different from the recombination rate value used for biological organisms, where a 

rate of 0 means there is a nil chance of recombination between two specified loci (i.e., 

complete genetic linkage disequilibrium) and the maximum rate is 0.5 in which there is a 50% 

chance of recombination between two loci, (i.e., independent assortment). The second setting 

is MODULE_NUM, or the number of “modules” in the genome, which determines the fixed 

position of recombination breakpoints. Modules divide the genome evenly such that 25 

modules for a 100-length genome would be four loci each. The end of each module is a 
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potential recombination breakpoint. Each module is evaluated independently when 

recombination occurs between a pair of mates, and each module has a 50% chance that 

recombination will occur. The other two settings, CONT_REC_REGS and 

CORESPOND_REC_REGS govern how modules are swapped, and are unimportant here, with 

values of 0 used for each. In Chapter 2, recombination occurred via independent assortment 

among all loci, with the number of modules set as the genome size. Here, the number of 

modules was set to 0, which causes two breakpoints to be chosen at random within the 

genome. Thus, linkage disequilibrium between two loci is negatively associated with greater 

genomic distance and will degrade over generations of reproduction as recombination 

probabilistically disassociates alleles. Therefore, Chapter 2 recombination is biologically 

analogous to each locus being like genes far apart on a chromosome or as different 

chromosomes altogether, while recombination in these experiments is more analogous to a 

sequence of DNA for which only very far apart loci associate independently. 

Analyses 

Distribution of mutational effects 

The fitness of all one-step mutants was calculated with respect to a randomly chosen 

Avidian to evaluate whether the distribution of mutational effects was approximately like that 

observed for biological organisms. Since the genome was 1,000 characters in length and with 

19 possible mutant instructions at each position, the relative fitness of 19,000 Avidians was 

recorded for each genotype evaluated. A systematic examination of the distribution of 

mutational effects was not conducted across an entire evolutionary lineage nor for all extant 

organisms at a population timepoint. Instead, genotypes were evaluated at random across a 

few treatments to roughly gauge adherence to biological examples. The genotypes chosen for 

inclusion here are approximately representative of others evaluated from similar evolutionary 

histories evolved under selection and include the following: The genotype of the pre-evolved 

ancestor was evaluated in both its ancestral (71-task) environment and in the 10-task 

environment at the root of the selection tree. The naïve ancestor’s genotype was also 
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evaluated in the root selective environment. A descendant of the pre-evolved ancestor at the 

last timepoint on one external branch was evaluated in that branch’s unique 110-task 

environment, as well as that for a descendant of the naïve ancestor in the same selective 

environment. In this manner, the distribution of mutational effects was recorded at the 

beginning and very end of the evolutionary history for both naïve and pre-evolved treatment 

conditions in addition to the final state of the pre-evolved ancestor in its ancestral 

environment. 

Characterization of observed substitutions and empirical models of evolution 

All alleles that reached fixation in a population were identified and tracked throughout 

their frequency trajectory during segregation. Alleles were considered as segregating within a 

population if their frequency was between 5% and 95%, above which they were effectively 

fixed and below which they were too infrequent to track. A substitution occurred when an 

ancestral fixed allele was supplanted by a derived allele that reached fixation, assessed as 

greater than 95% frequency. The fifty 100-generation population timepoints for each branch 

were evaluated for all such occurrences. If a substitution entirely occurred between data 

samples, i.e., within 100 generation, then it was considered a quick selective sweep, or “quick 

sweep.” Otherwise, the frequency of the substitution and all other segregating alleles at that 

locus were recorded for each timepoint during which it was segregating. For each substitution, 

its locus, derived and ancestral state, origin and fixed branch, and number of generations to 

reach fixation were recorded. Data were used to evaluate various distributions, including the 

frequency of fixations per branch, frequency of fixations per generation per branch timepoint, 

substitutions per locus, number of generations to fix, and the generation on the fixed branch. 

For selection treatments, the relative fitness of each substitution was then evaluated 

throughout its frequency trajectory. This was calculated for each timepoint by dividing the 

average fitness of all extant organisms with the derived state by the average fitness of all other 

extant organisms in the population. If at any timepoint there were no organisms that did not 

have the derived state, then the relative fitness was considered as 1, although such timepoints 



94 

were not considered when classifying by fitness type, below. If there was only one such 

timepoint then it was considered a quick sweep substitution.  

The minimum and maximum relative fitness values across measured timepoints were 

used to classify substitutions by selection type (Table 3.02), using thresholds calculated 

following nearly neutral theory (Ohta and Kimura, 1971). Alleles of sufficiently small selection 

coefficients, s, have a probability of fixation primarily due to genetic drift when |𝑠| ≤ 1 𝑁𝑒⁄ . The 

effective population size, 𝑁𝑒, is less than the maximum population size 1,000, so the threshold 

0.001 used here is conservative in classifying substitutions as neutral. For example, beneficial 

and deleterious substitutions were never measured as having a relative fitness within the range 

1 ± s, s = 0.001 for which genetic drift should be the dominant evolutionary determinant of 

their probability of fixation. Neutral-beneficial and neutral-deleterious substitutions had at least 

one timepoint for which their relative fitness was within this range and at least one timepoint 

above or below, respectively, and beneficial-deleterious substitutions may or may not have had 

one or more timepoints within the neutral range although they had at least one timepoint with 

a fitness above and at least one below. 

Table 3.02. Classification of substitutions by the minimum and maximum relative fitness 
recorded across measurable timepoints throughout their frequency trajectory. Threshold 
values were determined based on nearly neutral theory (Ohta and Kimura, 1971) for a 
population size of 1,000, and fitness types are mutually exclusive. See the text for a description 
of a seventh type, quick sweep. 

Substitution Fitness Type Minimum Relative Fitness Maximum Relative Fitness 

Beneficial > 1.001 – 

Neutral–Beneficial (“neu-ben”) ≥ 0.999 & ≤ 1.001  > 1.001 

Neutral ≥ 0.999 ≤ 1.001 

Neutral-Deleterious (“neu-del”) < 0.999 ≥ 0.999 & ≤ 1.001 

Deleterious – < 0.999 

Beneficial-Deleterious (“ben-del”) < 0.999 > 1.001 

 

The tracking of ancestral and derived states for all substitutions also allowed the 

creation of empirical fixed-rate models of Avidian instruction substitution. The structure of the 
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models resembles empirically-derived amino acid models (e.g., Dayhoff et al. 1978; Jones et al. 

1992; Whelan and Goldman 2001; Le and Gascuel 2008) of unequal, fixed state frequencies for 

the 20 amino acid characters and the 190 general time-reversible substitution rates. Each 

model was parameterized using substitution rates and state frequencies pooled across all ten 

replicates for each of the eight experimental treatments. Note that substitution rates were 

treated as time-reversible, i.e., not differentiating between ancestor and derived character 

states in pooling X-to-Y and Y-to-X substitutions together, since greater-parameterized models 

were not compatible with the phylogenetic programs.  

Phylogenetic analyses 

For each of the eighty experimental treatment replicates, taxon-character datasets were 

created using all 1,024 extant populations. As in Chapter 2, a random organism was sampled 

from each population and the outgroup taxon was a randomly sampled organism from an 

extant population of a different replicate of the same experimental treatment. The complete 

sequence of a sampled organism was used, except for the final 1,001st character for neutral 

treatment organisms. As in Chapter 2, three characters, J, O, and B, were translated to amino 

acid abbreviation counterparts W, Y, and V, respectively, for compatibility with phylogenetic 

programs designed to handle amino acid abbreviations. Perfect positional homology was 

maintained with fixed organism genome lengths, so alignment was not required. Each of these 

datasets was used to conduct six different phylogenetic analyses. 

Phylogenetic analyses generally occurred identically to those in Chapter 2, although no 

consensus methods were used, with only the “best” tree reported for each analysis. Neighbor-

joining (NJ) trees were constructed using QuickTree, version 2.0 (Howe et al., 2002), and 

maximum parsimony (MP) was implemented using MPBoot, version 1.1.0 (Hoang et al., 2018, 

2017). As before, the number of parsimony trees evaluated was 10,000 to conduct a more 

thorough heuristic search, and the “best” tree reported here is a random choice among the 

identified equally parsimonious trees. ML was implemented using IQ-TREE, version 1.5.5 (Minh 

et al., 2017; Nguyen et al., 2015), and the “best” tree was the phylogram with the greatest 
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likelihood value. A total of 100 nonparametric bootstrap replicates were also produced and 

used to determine the relative proportions of true and false clades with support values over 

10%, a cutoff that excluded the excessive number of very infrequently inferred clades. BI was 

implemented using MrBayes, version 3.2.5 (Ronquist et al., 2012, 2011), with the parallel 

processing implementation and the BEAGLE library (Altekar et al., 2004; Ronquist et al., 2012), 

with the Markov chain sampled every 100 generations. The “best” tree reported here is the 

single phylogram with the greatest posterior probability, also termed the maximum clade 

credibility tree. The post-burnin sampled trees were used to determine the relative proportions 

of true and false clades with support values over 10%. For maximum likelihood (ML) and 

Bayesian inference (BI), separate analyses were performed using the Poisson fixed-rate model 

and the calculated empirical model corresponding to the treatment. For example, analyses of 

taxon-character datasets from the neutral treatment under asexual reproduction and starting 

from the naïve ancestor used the empirical model as calculated from the substitution data 

pooled across all replicates from that treatment. Python, version 2.7, and the following 

packages were used to organize and present these data: Jupyter, version 0.27.0 (Kluyver et al., 

2016; Perez and Granger, 2007); Matplotlib, version 1.3.1 (Hunter, 2007); ETE2, version 2.2.1 

(Huerta-Cepas et al., 2016); and DedroPy, version 3.12 (Sukumaran and Holder, 2010). 

Topological accuracy between the true tree and inference tree was calculated using the 

variants of the Robinson-Foulds (RF) distance discussed in Chapter 2. Briefly, the RF distance is 

the sum of false positive (FP) branches and false negative (FN) branches, which can also be 

calculated as rates. To emphasize the accuracy of these inference methods, I report 

complement values. “Clade Accuracy” is the complement of the FP rate (i.e., FP divided by the 

number of internal branches in the true tree), and “Clade Resolvability” is the complement of 

the FN rate (i.e., FN divided by the number of internal branches in the inferred tree). The 

arithmetic mean of the FP and FN rates is the average topological error (Swenson et al., 2010) 

and I report its complement here, “Average Topological Accuracy.” This metric indicates the 

overall accuracy of the phylogenetic inference by equally weighting correctly resolved clades 
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and unresolved clades. Examples of these metrics are shown for a comparison of a known (or 

correctly inferred) cladogram (Fig. 2.03a) to four variously inaccurate inferred cladograms (Fig. 

2.03b-e). Note that the trees reported here, i.e., the best tree topology produced by each 

analysis, is fully resolved for each analysis except BI (since maximum clade credibility trees are 

not necessarily fully resolved). Since each non-BI best tree may include incorrect clades, each 

false positive clade requires a counterpart false negative clade, and therefore clade accuracy, 

clade resolvability, and average topological accuracy are equivalent values (e.g., Fig. 2.03b,e). 

Additional measures include comparisons of inferred branch lengths and the amount of 

variable and parsimony informative sites in the taxon-character dataset. Branch lengths are 

summarized as the median length across all internal branches and, separately, across all 

external branch lengths. Tracking all substitutions that occurred within each evolutionary 

history allows the calculation of the true median substitutions per site per branch. These rates 

are compared to the median inferred branch lengths, as well as the expected value based on 

neutral theory (Kimura, 1983). Locus positions are variable if at least two types of characters 

exist among the set of taxa, and parsimony informative if at least two sets of characters are 

found among at least two taxa each. 

Statistics 

Statistical tests were used to evaluate the significance of differences between 

treatments and population genetic expectations. When comparing variation across replicates 

per treatment with a null hypothesis derived from population genetics theory, single-sample t-

tests were conducted. For example, the number of substitutions per evolutionary history was 

evaluated using single-sample t-tests with the null hypothesis being that they were equivalent 

to the product of the mutation rate, genome size, number of generations per branch, and 

number of branches per tree, and this was conducted separately for each treatment. To 

evaluate significant differences among treatments, one-way ANOVA analyses were used, e.g., if 

there was a significant difference in the number of substitutions per evolutionary history 

among neutral treatments. Post-hoc analyses to determine the pairwise treatments driving the 
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statistical significance were conducted using t-tests with Bonferroni corrections for multiple 

comparisons. For the relative proportions of substitutions by fitness type, Chi-square tests were 

used. These included a four-by-two test to evaluate a difference among neutral treatments for 

quick sweep versus those taking greater than 100 generations to fix, and a four-by-seven test to 

evaluate a difference among all fitness types for selection treatments. Following this, the 

adjusted standardized residuals were evaluated for significance using a Bonferroni adjustment 

to the z critical value for the table size, and a four-by-two Chi-square test was used with a 

“ransacked” portion of the full table (Sharpe, 2015). 

As in Chapter 2, the focus of the phylogenetic results is on comparisons of median 

values and trends across treatment replicates due to the recognized lack of independence in 

phylogenetics, including among topology metrics such as clade accuracy and resolvability and 

for branch lengths, since the presence of a non-zero branch length is dependent on the clade’s 

inclusion in the tree. 

Results 

Empirical models of evolution 

Separate empirical fixed-rate models of Avidian instruction substitution were created 

for each treatment and parameterized with rates and state frequencies pooled across all ten 

replicates per treatment. The two models presented in Table 3.03 represent the extremes of 

two trends of lesser versus greater frequency variation among the full set of eight models 

constructed. Within neutral evolution treatments, as shown in the first model in Table 3.03, the 

character-to-character substitution rates and per character state frequency values were 

approximately equalized, at least for all non-C characters, since all mutations were equally likely 

to occur and therefore result in substitution since fitness effects were nil. Within naïve ancestor 

treatments (e.g., the first model in Table 3.03), substitution rates and character state 

frequencies remained high for all values involving character C (i.e., nop-C in selection or nop-XC 

in neutral treatments) due to its prevalence within the naïve ancestor genotype (i.e., 
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constituting 988 out of 1,000 characters; Table 3.01). Conversely, and as shown in the second 

model presented in Table 3.03, selection treatments had greater variation among substitution 

rates and character state frequencies, at least for all non-C characters, since fitness effects were 

not equivalent among character states. And pre-adapted ancestor treatments (e.g., the second 

model in Table 3.03) had lesser variation among substitution rates and character state 

frequencies for values involving character C due to greater uniformity among character state 

frequencies in the pre-adapted ancestor genotype (Table 3.01). For reference, the Poisson 

model has equivalent rates and state frequencies for all values (Bishop and Friday, 1987).  

Using the scaling in Table 3.03, substitution rates are uniformly 2.63 (i.e., 
500

20∗19 2⁄
) and character 

state frequencies are 5 (i.e., 
100

20
) under the Poisson model.  
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Table 3.03. Two examples of empirical fixed-rate models of Avidian instruction substitution out 
of the eight models constructed, one per experimental treatment, by pooling substitutions 
observed across all ten replicates. Character-to-character substitution rates for the neutral, 
asexual evolution treatment starting with the naïve ancestor are above the diagonal and 
character state frequencies are the *first line of values below. Substitution rates for the 
selection, asexual evolution treatment from the pre-evolved ancestor are below the diagonal 
and state frequencies are the **second line. Note that the instructions are arrayed by the 
alphabetical order for full amino acid names, as is the convention for phylogenetic programs. 
Substitution rates are specified relative to a total of 500 per treatment, and state frequencies 
are out of 100 per treatment. 

  Neutral, Asexual, Naïve Treatment Model of Substitution Rates and Character State Frequencies* 
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 A  0.6 0.6 0.6 21.4 0.6 0.6 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

R 4.6  0.5 0.5 21.2 0.6 0.6 0.5 0.5 0.6 0.5 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.6 

N 4 5  0.5 21.3 0.6 0.6 0.6 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.5 

D 3.9 5 4.7  21.2 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.6 0.6 

C 5.6 5.5 4.9 5.5  21.6 21.4 21 21.3 21.5 21.4 21 21.5 21.3 21.3 21.3 21.5 21.4 21.3 21.5 

E 4.7 5.1 4.7 4.7 5.2  0.6 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.6 0.5 0.6 0.6 

Q 4.1 4.6 4.3 4.2 4.7 4.3  0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.5 0.6 

G 0.6 1 0.9 1.1 0.9 0.8 0.5  0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.6 0.6 

H 4 4.7 4.6 4.4 4.8 4.4 4 0.9  0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.6 0.6 

I 3.8 4.5 5 4.2 4.8 4.2 3.8 1 4.2  0.5 0.5 0.5 0.6 0.6 0.5 0.6 0.5 0.6 0.6 

L 1.1 1.3 1.2 1.4 1.4 1.3 1.2 0.3 1.2 1.3  0.5 0.5 0.5 0.5 0.4 0.6 0.5 0.5 0.6 

K 2.7 3 3.1 2.6 2.9 2.9 2.7 0.8 2.8 3 1.6  0.5 0.7 0.6 0.6 0.6 0.6 0.6 0.5 

M 3.3 3.7 3.9 3.4 4.4 3.3 3.2 0.6 4.2 3.6 0.9 2.3  0.6 0.6 0.6 0.5 0.5 0.5 0.6 

F 0.4 0.9 0.8 1.1 0.7 0.7 0.5 0.6 0.7 0.9 0.1 0.5 0.6  0.6 0.6 0.6 0.6 0.6 0.6 

P 1.3 1.7 1.6 1.4 1.8 1.5 1.5 0.3 1.4 1.1 0.3 0.8 1.2 0.5  0.6 0.6 0.5 0.6 0.6 

S 4.2 4.7 5.2 3.9 5.3 4.4 3.7 0.8 4.8 4.1 1.1 4 3.3 1.2 1  0.5 0.5 0.6 0.5 

T 0.9 0.8 1 0.9 1.1 0.8 0.7 0.4 0.9 1.1 0.4 0.9 0.8 0.3 0.2 0.9  0.6 0.6 0.6 

W 2.9 3.1 2.8 2.7 2.9 2.9 2.6 0.8 2.5 2.5 1.4 2.9 1.9 0.5 0.9 2.5 0.7  0.6 0.6 

Y 4.1 4.3 5.5 4.2 4.8 4.3 3.8 0.9 4.4 4.7 1.3 2.8 4 0.8 1.3 5.8 1 2.5  0.6 

V 4.7 5 4.6 4.7 5.7 4.8 4.3 0.9 4.7 4.3 1.2 2.7 3.6 0.8 1.9 4.6 0.8 2.9 4.3  

 * 3.2 3.1 3.1 3.1 40.5 3.2 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.1 3.2 3.1 3.1 3.2 

 ** 6.1 6.8 6.8 6.4 7.3 6.5 5.9 1.4 6.4 6.2 2 4.5 5.2 1.3 2.1 6.5 1.5 4.2 6.5 6.6 

 

Distribution of mutational effects 

Clear trends were found when the fitness of all mutants with a single difference was 

evaluated for a randomly chosen Avidian from a specified population in its selective 
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environment. The proportion of lethal mutations (i.e., relative fitness equal to 0) is largely 

consistent across genotypes and environments, averaging 11% per genotype (Fig. 3.01). Using 

the conservative nearly neutral theory threshold of mutations being fitness neutral within the 

fitness range of 1 ± 0.001 (Table 3.02), neutral mutations were the largest category of possible 

mutations, with 42–83% per genotype. Neutral mutations were more common for the two root 

genotypes than the three genotypes evaluated at the termination of their evolutionary history 

in the selective environment, at 78% and 48% on average respectfully. Terminal genotypes 

include descendants in the tip environments of the evolutionary history as well as the pre-

evolved ancestor in its ancestrally adapted environment. Small effect beneficial mutations, 

having up to 1% fitness effect, were extremely rare for all organisms, averaging less than 0.09% 

of possible mutations, and large effect beneficial mutations (i.e., relative fitness greater than 

1.01) were rare, averaging less than 0.7%. Small effect deleterious mutations were relatively 

more common than beneficial mutations, with 10% on average for root genotypes and 3% for 

terminal genotypes. Finally, moderate and large effect deleterious mutations (i.e., relative 

fitness greater than 0 and less than 0.99) were more prevalent for the three terminal 

genotypes, averaging 37% compared to the root genotypes at 4%. Note that although relative 

fitness was calculated with high precision, values are collected here in bins of varying size to 

highlight proportions of mutants of certain effects. 
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Figure 3.01. The distribution of mutational effects for five genotypes with the relative fitness 
proportions of all genotypes differing from a randomly chosen genotype by one mutation. 
Relative fitness bin size varies between 0.1, 0.5, and a logarithmic scale of base 10, with 
differences in scaling demarcated by red dashed lines below the x-axis. The genotypes 
evaluated included the pre-evolved ancestor in its ancestral selection environment (black), the 
same genotype in the selective environment at the root of the evolutionary history (orange), 
the naïve ancestor in the same root environment (yellow), a final descendant of the pre-
evolved ancestor at the tip of the evolutionary history (blue), and a final descendant of the 
naïve ancestor in the same tip environment (green).  

Characterization of observed substitutions 

Fewer total substitutions occurred than expected under the neutral theory for all 

treatments. According to neutral theory (Kimura, 1983), the per locus per generation mutation 

rate is equal to the substitution rate for neutral alleles. Therefore, across 2,047 lineages (i.e., 

evolutionary history branches) each of 5,000 generations with a mutation rate of 5 * 10-6, the 

genome of 1,000 loci should experience 51,175 substitutions. Each of the eight treatments 

were evaluated for a significant difference from this expected value for neutral alleles and was 

significantly lower (t9 > 3, p < 0.05; Fig. 3.02).  
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Figure 3.02. Number of recorded substitutions per treatment (mean ± 95% CI) relative to the 
expectation from neutral theory (dashed line). Experimental treatments are denoted by their 
selective condition (green labels), starting ancestor genotype (pink labels), and recombination 
condition (orange labels). 

Evolutionary histories exhibited variation in total substitutions recorded per treatment 

condition. Compared to neutral evolution treatments that had a mean of approximately 50,500 

substitutions per treatment, the selection treatments had at least 30% fewer total fixations, 

and within selection treatments those with the pre-evolved ancestor had about 15% fewer 

fixations than with the naïve ancestor (Fig. 3.02). Among the four neutral treatments there was 

no significant difference between the mean number of fixations per replicate (F3,36 = 0.141, p = 

0.935), as also shown in the confidence intervals labeled “a” in Figure 3.02, and therefore 

neither the mode of reproduction nor ancestor genotype had an effect. Among the four 

selection treatments there was a highly significant difference between the mean number of 

fixations per replicate (F3,36 = 41.28, p < 0.001). Post-hoc analyses demonstrated a highly 

significant difference (t36 > 7, adjusted p < 0.001) between four of the six pairwise treatments. 

The exceptions were in the comparison of treatments otherwise identical except for having 
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asexual or sexual recombination. There was a non-significant difference in mean number of 

fixations per replicate between the recombination treatments with selection and the naïve 

ancestor (t36 = 0.556, adjusted p = 1), shown in Figure 3.02 with confidence intervals labeled 

“b”, and the recombination treatments with selection and the pre-evolved ancestor (t36 = 

2.775, adjusted p = 0.052), although the latter was significant for 95% normal-distribution 

confidence intervals, labeled “c”. Thus, selection treatments starting with the pre-evolved 

ancestor fixed significantly fewer substitutions than those starting with the naïve ancestor, and 

while treatments with asexual reproduction fixed fewer substitutions than under sexual 

reproduction the difference was not significant for the naïve ancestor and borderline significant 

for the pre-evolved ancestor. 

Within selection treatments, natural selection influenced nearly all substitutions, both 

positively and negatively, for at least one generation timepoint sampled across each 

substitution’s population frequency trajectory. Across all treatments, as shown in Figure 3.03, 

95–99% of all substitutions were beneficial for at least one timepoint (i.e., pooling beneficial, 

neutral-beneficial, and beneficial-deleterious fitness type categories) and 77–90% were 

deleterious for at least one timepoint (i.e., pooling deleterious, neutral-deleterious, and 

beneficial-deleterious). Most substitutions were of fitness type beneficial-deleterious (74–89% 

across treatments) or beneficial (12–20%). There was inconsistent ordering among the next 

three fitness classes, although neutral-beneficial substitutions were usually the third most 

common (0.75–4%), followed by deleterious (0.28–1.64%), and neutral-deleterious (0.4–

0.67%). Quick sweep substitutions, whose relative fitness was indeterminable, since the allele’s 

mutation and fixation happened within the 100-generation data collection window, was the 

second least common class (0.04–0.26%) and neutral the very least (0.02–0.09%). There was a 

significant difference in these proportions by fitness type among treatments (χ2
18,1268850 = 

37028, p < 0.01). Evaluation of the adjusted residuals compared to the Bonferroni adjusted 

threshold indicated that all but four of the 28 factors drove this significance. Two of the 

exceptions are not especially enlightening (deleterious substitutions for the asexual 



105 

reproduction using the naïve ancestor treatment, and neutral substitutions for the sexual 

reproduction using the pre-evolved ancestor treatment); and the other two concern the 

observed proportion of quick sweeps in those same treatments, indicating that while they are 

not different from one another (0.13%), they are different with respect to sexual versus asexual 

reproduction treatments with the same starting ancestor. In comparison, for the neutral 

treatments only 0.001–0.002% were found to be quick sweeps (i.e., fixation within 100 

generations) and there was no significant difference among treatments for the proportion of 

quick sweeps versus substitutions taking longer to fix (χ2
3,2022416 = 1.996, p = 0.573). Comparing 

among other experimental conditions for the selection treatments, asexual treatments had 

approximately 10% relatively fewer beneficial-deleterious substitutions than their counterpart 

for the same starting ancestor. This was compensated with twice to four times greater 

proportions of each other class, especially neutral-beneficial substitutions.  
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Figure 3.03. Number of observed substitutions by fitness type per selection experiment. 
Experiments began with either the naïve ancestor under asexual (a, N = 338,936) or sexual (b, N 
= 341,842) reproduction, or with the pre-evolved ancestor under asexual (c, N = 286,780) or 
sexual (d, N = 301,292) reproduction. For each treatment, data from all replicates are pooled, 
and substitutions are colored by fitness type as per Table 3.02. 

The number of fixations were random with respect to position in the genome for neutral 

treatments and highly variable for each individual treatment replicate for selection experiments 

starting with the naïve ancestor, and there were greater regions of invariance across treatment 

replicates for selection experiments starting with the pre-evolved ancestor. All neutral 
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treatments exhibited random variation in which loci experienced substitution, as shown in 

Figure 3.04a for a single replicate. All selection treatment replicates exhibited a diversity in the 

number of substitutions per locus, with many sites being invariant or nearly invariant (e.g., Fig. 

3.04c). The identity of sites with exceptionally low substitution rates differed for each replicate 

of the treatment starting with the naïve ancestor; for example, the variation shown in Figure 

3.04c for a single replicate is largely averaged out when all replicates of that treatment are 

pooled (e.g., Fig. 3.04b). Selection treatment replicates initiated by the pre-evolved ancestor 

did not have as much variation in which sites had exceptionally low substitution rates, as shown 

in the pooled replicate data of Figure 3.04d, with many of the same sites remaining invariant 

for each replicate. In all selection treatments, the regions approximately corresponding to the 

reproduction machinery of the original naïve ancestor—the approximately five positions at the 

very beginning and very end of the genome—experienced few substitutions; further, the pre-

evolved ancestor’s genotype shared the first four and last five instruction sequences with the 

naïve ancestor, whose genotype was also its own ancestor prior to millions of generations of 

descent. After the first few positions, approximately the next fifty exhibited relatively higher 

rates of beneficial as well as deleterious substitutions. Only asexual reproduction treatments 

are shown because these trends do not appear to vary due to reproductive mode alone (i.e., 

treatments otherwise identical except for sexual versus asexual reproduction have similar 

distributions).  
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Figure 3.04. Representative treatment patterns for the number of fixations by Avidian locus. 
Selected patterns include single treatment replicates (a and c) or pooled treatment replicates (b 
and d), under neutral evolution (a) or selection (b–d), and starting with the naïve ancestor (a–c) 
or pre-evolved ancestor (d). Substitutions are colored by fitness type as per Table 3.02. 

Recombination strongly affected how many substitutions fixed within the first couple 

generations after a population was introduced to a new selective environment. For asexual 

selection treatments (e.g., Fig. 3.05a), a much greater proportion of substitutions fixed every 

100 generations during the first 600 generations than over the remainder of the lineage’s 

evolution in that branch’s selective environment. Sexual treatment replicates exhibited a 
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similar trend but with a lesser magnitude of difference across the branch (Fig. 3.05b). For either 

reproduction condition, the sampling interval which exhibited the greatest fixations was the 

second 100 generations, during which a much greater proportion of beneficial substitutions 

fixed. Only treatments initiated with the naïve ancestor are shown because these trends do not 

appear to vary due to ancestor genotype alone (i.e., otherwise identical treatments have similar 

distributions). Neutral evolution treatments did not exhibit variation with respect to the 

generation alleles fixed within a lineage.  



110 

 
Figure 3.05. Representative patterns for asexual (a) and sexual (b) treatments under selection 
for the number of observed substitutions fixed per 100-generation population timepoint across 
all lineages (i.e., branches) in the evolutionary history. For each treatment, data from all 
replicates are pooled, and substitutions are colored by fitness type as per Table 3.02. 

Alleles fixed slower than expected under neutral evolution. The time to fixation for 

neutral alleles in a haploid population should be 2Ne generations (Kimura, 1983), or at most 

2,000 for this experiment. Each of the four neutral evolution treatments was evaluated for a 

significant difference from this expected value and was significantly higher (t>500000 > 124, p < 

0.001), each with a mean of approximately 2,230 generations and a Poisson-like distribution. 



111 

Among these treatments there was a significant difference between the mean time to fixation 

(F3,2022412 = 4.23, p < 0.01). Post-hoc analyses demonstrated that this was driven by a significant 

difference in two of the six pairwise comparisons:  between asexual treatments using the pre-

evolved versus naïve ancestor (t2022412 = 3.17, adjusted p < 0.01) and between asexual versus 

sexual reproduction treatments starting with the naïve ancestor (t2022412 = 2.66, adjusted p < 

0.05), however the largest difference in treatment means was less than 9 generations. Owing to 

this relatively miniscule effect size and with no clear pattern with respect to the effect of 

reproductive mode or starting genotype, the statistically significant differences between 

neutral treatments likely bears little importance. 

Alleles fixed much slower with sexual compared to asexual reproduction when under 

selection. For each selection treatment, beneficial, neutral, deleterious, and quick sweep 

substitutions peak in fixing within their first hundred generations (Fig. 3.06); neutral-beneficial 

and neutral-deleterious alleles peak in fixing within their second hundred generations; and the 

mean fixation of beneficial-deleterious alleles is not until after approximately 1,100 generations 

under asexual reproduction and 1,300 under sexual reproduction after they are introduced to 

the population. Treatments with the pre-evolved ancestor (Fig. 3.06c,d) also fixed beneficial-

deleterious alleles quicker compared to counterpart treatments with the naïve ancestor (Fig. 

3.06a,b).  
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Figure 3.06. Number of observed substitutions by how many generations elapsed between 
entry in the population until fixation for selection treatments. Under sexual reproduction (b and 
c) the tail for beneficial-deleterious substitutions extends until 12,000 generations. For each 
treatment, data from all replicates are pooled, and substitutions are colored by fitness type as 
per Table 3.02. 

Fewer fixations occurred every 100 generations under selection, and especially with 

sexual reproduction. For example, the selection with sexual reproduction treatment (Fig. 3.07d) 

exhibited fewer fixations per sampled timepoint compared to under neutral evolution (Fig. 

3.07b), or with asexual reproduction (Fig. 3.07c), and far fewer when under neutral evolution 
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with asexual reproduction (Fig. 3.07a). Only treatments initiated with the naïve ancestor are 

shown because these trends do not appear to vary due to ancestor genotype alone (i.e., 

otherwise identical treatments have similar distributions). 

 
Figure 3.07. Representative treatment patterns for the number of observed substitutions fixed 
per 100 generations. Selected patterns include asexual (a and c) or sexual reproduction (b and 
d), and under neutral evolution (a and b) or selection (c and d). For each treatment, data from 
all replicates are pooled, and substitutions are colored by fitness type as per Table 3.02. 

Neutral evolution caused stochastic frequency trajectory patterns, and asexual 

reproduction caused the periodic simultaneous fixation of more numerous substitutions 

compared to sexual reproduction. Population frequency change appears stochastic for 
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substitutions under neutral evolution, for example, as shown in Figure 3.08 for all substitutions 

occurring within one evolving population (i.e., one branch) in the evolutionary history. A 

greater number of fixations occurred together under asexual versus sexual reproduction, as 

represented by relative line thickness linking observed substitution frequencies in Figure 3.08. 

For example, at generation 500 and 3,200 of the asexual population (Fig. 3.08a), many alleles 

fixed together, while nearly all alleles in the sexual population fixed alone (Fig. 3.08b). 

Additionally, fewer unique genotypes at any given time contained an allele that would 

eventually reach fixation under asexual reproduction compared to sexual reproduction. For 

example, at the end of the branch (i.e., generation 5,000) in the asexual population, only one 

genotype of all that existed in the population is shown because only it contains alleles that 

reached fixation on a subsequent lineage following cladogenesis in the evolutionary history. In 

contrast, at the end of the branch in the example sexual population, more than ten genotypes 

contain one or more alleles that reach fixation following segregation on one or both 

subsequent branches. 
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Figure 3.08. Representative patterns for asexual (a) and sexual (b) treatments under neutral 
evolution for how alleles that became substitutions changed in frequency between entry in a 
population (measured as ≥ 5% frequency) until fixation (≥ 95% frequency). Each panel shows a 
single population (i.e., one branch from one treatment replicate) on a middle tree level in the 
evolutionary history, and all substitutions that were segregating before, during, or after this 
lineage between cladogenic events. Observed substitution frequencies are shown as circles, 
and straight lines connect measurements every 100 generations. Line thickness indicates the 
relative number of substitutions on the same fixation trajectory. 

Natural selection caused punctuated equilibrium patterns for average population 

fitness, which tended to be caused by beneficial alleles quickly fixing. Average population 

fitness tended to plateau before increasing by approximately 10%, for example, as shown in 

one evolving population in Figure 3.09d at generation 1,500. Such large increases in average 

population fitness tended to be caused by a beneficial allele quickly fixing and eliminating all 

variation at that locus, which is why fitness was indeterminable at that timepoint for the allele 
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(i.e., orange star in circle at 100% frequency at generation 1,500 in Figure 3.09c). Under either 

mode of reproduction, genotypes that eventually reached fixation were often influenced by 

positive and negative selection for at least one timepoint in their population frequency 

trajectory, in addition to neutral evolution caused by genetic drift. For example, the genotype in 

the example asexual population (Fig. 3.09a,b) that entered the population by generation 1,200 

experienced strong negative selection within its first couple hundred generations, was within 

the 1% fitness range around neutrality for most of its trajectory and was under strong positive 

selection for at least the 200 generations before fixing by generation 2,800. As under neutral 

evolution (Fig. 3.08), asexual reproduction with selection caused many more alleles to fix 

together, and fewer unique genotypes at any given time contained an allele that would reach 

fixation (Fig. 3.09a) compared to sexual reproduction (Fig. 3.09c). 
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Figure 3.09. Representative patterns for asexual (a and b) and sexual (c and d) treatments 
under natural selection for how alleles that became substitutions changed in population 
frequency (a and c) and fitness (a–d), and their effects on average population fitness (b and d). 
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Figure 3.09 (cont’d). Panels a and b show a single population and panels c and d show a single 
population, each on a middle tree level in the evolutionary history, and include all substitutions 
that were segregating before, during, or after this lineage between cladogenic events. Panels a 
and c:  Observed substitution frequencies are shown as circles, and straight lines connect 
measurements every 100 generations. Line thickness indicates the relative number of 
substitutions on the same fixation trajectory. Relative fitness is shown by coloration with values 
as indicated in the color bar, which includes the nearly neutral theory thresholds for neutrality 
(Table 3.02) as dashed lines. Orange stars within circles at 100% frequency indicate that fitness 
was indeterminable. Panels b and d:  Relative fitness of substitutions are shown as solid black 
lines, with thickness indicating the relative number of substitutions on the same fixation 
trajectory. Dashed black lines indicate the nearly neutral threshold and dashed colored lines 
indicate a 1% selection advantage (blue) and disadvantage (red). Average population fitness is 
shown by the dotted green line and with values on the secondary y-axis.  

Phylogenetic accuracy 

Topological accuracy was high across treatments, including perfect for sexual 

reproduction treatments, and asexual reproduction treatments yielded improved accuracy 

when selection occurred. All analyses performed with greater than 96% topological accuracy 

(Fig. 3.10), although note that for these 1,024-ingroup taxon topologies, a 1% difference in 

accuracy is approximately equivalent to 10 clades being incorrectly inferred. Topological 

accuracy was perfect in sexual recombination treatments, reduced to about 99.8% (i.e., around 

2 incorrect clades) for asexual selection treatments, and reduced to approximately 98% (i.e., 

around 20 incorrect clades) for asexual neutral evolution treatments. Ancestor genotype did 

not seem to affect topological accuracy.  
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Figure 3.10. Topological accuracy, the average percentage of clades correctly inferred and 
correctly resolved, for each phylogenetic analysis’ best tree per treatment. Analyses include 
neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML) and Bayesian 
inference (BI) with the Poisson or empirical model of evolution; open symbols for individual 
replicates and closed for the median across replicates. Experimental treatments are denoted by 
their selective condition (green labels), starting ancestor genotype (pink labels), and 
recombination condition (orange labels). 

Differences between phylogenetic analysis performance among the asexual treatments, 

which did not reach perfect topological accuracy, was slight. The overall trend was that the 

median NJ replicate performed slightly worse than other analyses and BI tended to perform the 

best (Fig. 3.10). The exception is the most inaccurate treatment (i.e., asexual reproduction 

neutral evolution with the naïve ancestor), for which the median MP tree was more accurate 

than all other analyses, and this is especially surprising considering that the MP best tree 

selection was chosen from between six to 100 equally parsimonious trees across this 

treatment’s ten replicates. With respect to median topological accuracy, ML and BI analyses 
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only slightly varied when conducted with the Poisson versus empirical model of evolution. The 

greatest difference was in the selection treatment with asexual reproduction and the naïve 

ancestor for which the Poisson model had 0.05% greater median accuracy. 

Unlike in Chapter 2, the number of taxa analyzed here contributed to a lack of full 

resolvability in BI tree inferences. All non-BI analyses produced fully-resolved trees, so for these 

trees, topological accuracy is equivalent to clade accuracy and clade resolvability. Clade 

resolvability was equivalent for each BI model comparison per treatment and very nearly so for 

each treatment comparison among neutral and among selection treatments, so the very slight 

differences in topological accuracy between such comparisons are attributable to slight 

differences in clade accuracy alone. The greatest difference in accuracy between any such 

comparisons is for the selection treatment with asexual reproduction and the pre-evolved 

ancestor, for which the empirical model had 0.05% greater median accuracy and therefore 

0.025% greater median topological accuracy. Since this lack of full resolution among BI trees 

caused such minor difference in median topological accuracy, only topological accuracy is 

presented here to ease comparison among analyses. 

Bootstrap and posterior probability clade support values are overly liberal for neutral 

evolution treatments, and often overly conservative for selection treatments, with neither type 

of clade support value being a close approximation of clade accuracy. Clade support values 

greater than the 50% threshold, which is the minimum value of relevance for consensus 

support, are conservative estimates of accuracy for selection treatments (filled lines, Fig 3.11). 

The exception to this trend is that the 90% BI posterior support threshold produced liberal 

estimates of accuracy. For neutral treatments, clade support values greater than 50% are 

consistently liberal estimates of accuracy (unfilled lines, Fig 3.11). For either analysis type, ML 

versus BI (solid versus dashed lines), or the model of evolution used, empirical versus Poisson 

(blue versus orange), no consistent trends were observed. Treatments otherwise identical 

except for the starting ancestor produced very similar results, so such treatment pairs are 

pooled here. Unlike the analyses of asexual reproduction treatments, which resulted in both 
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true and false clades across most support thresholds, sexual reproduction treatments resulted 

in near-perfect sets of bootstrap and posterior sample topologies (i.e., exceedingly low 

frequencies of false clades), so the treatments shown here with asexual reproduction. 

 
Figure 3.11. Relationship between clade accuracy as the percent of correct clades for values of 
bootstrap support for ML analyses and posterior probability support for BI analyses of asexual 
reproduction treatments pooled across naïve and pre–evolved ancestor conditions. Results 
include comparisons to bootstrap support for ML analyses (solid lines) or posterior probability 
support for BI analyses (dashed), using the empirical model of evolution (blue) or Poisson 
model (orange), and under selection (filled lines) or neutral evolution (unfilled lines). The grey 
line is the one-to-one accuracy-to-support relationship; values above are conservative as being 
an underestimation of accuracy and values below are liberal as an overestimation of accuracy. 
Note only support greater than 10% was assessed due to the large number of very low-
supported clades. 

The observed substitution rate (i.e., the empirical equivalent to branch length) per 

internal and external evolutionary lineage was less than the neutral theory expectation for all 

treatments. The expected substitution rate for neutral alleles (Kimura, 1983) is the product of 

the mutation rate and the number of generations per branch, so a lineage (i.e., evolutionary 

history branch) of 5,000 generations with a mutation rate of 5 * 10-6 should have 0.025 

substitutions per site (Figure 3.12, solid line). Observed internal branch substitution rates 

(Figure 3.12, dashed lines) were found to be significantly lower than this expectation for seven 
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treatments (t1022 > 2, p < 0.01), with the exception being the treatment of neutral evolution 

with asexual reproduction starting with the naïve ancestor (t1022 = 1.784, p = 0.0747). Observed 

external branch substitution rates were also found to be highly significantly lower than the 

neutral theory expectation for seven treatments (t1023 > 3, p < 0.001), and although the 

exception—neutral evolution with asexual reproduction starting with the pre-evolved 

ancestor—was also significantly different, it was not as highly significant (t1023 = 2.210, p = 

0.0273). Note that the observed substitution rates shown in Figure 3.12 are median values for 

consistency with the inferred branch lengths, while all statistical tests performed are for means. 

 
Figure 3.12. Empirical, theoretical, and inferred median internal (yellow) and external (orange) 
branch lengths per treatment. The empirically observed rates of substitutions per site (dashed 
lines) and the expectation under neutral theory (solid line) are included for comparison to the 
branch lengths inferred for the single best tree resulting from each analysis and model of 
evolution. Analyses include NJ (square), ML with Poisson model (triangle pointing up), ML with 
empirical model (triangle pointing down), BI with Poisson model (plus), and BI with empirical 
model (cross); open symbols for individual replicates and closed for median across replicates. 
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Only for selection treatments was the observed substitution rate, on average, higher for 

internal branches than external branches (Fig. 3.12). For neutral treatments, there was no 

significant difference in mean substitution rate between internal and external branches for 

three treatments (t2045 < 1.5, p > 0.1), with the exception being the treatment with sexual 

reproduction and naïve ancestor, which had significantly higher rates for external branches 

than internal branches (t2045 = 2.7, p < 0.01). For each selection treatment, the mean 

substitution rate for internal branches was higher than for internal branches (t2045 > 6, p < 

0.001). 

Ancestor genotype and mode of reproduction did affect the observed substitution rate 

for either internal or external branches for neutral evolution treatments, however for selection 

treatments, ancestor genotype and, less often, mode of reproduction affected observation 

substitution rates for both internal and external branches (Fig. 3.12). Among neutral 

treatments, there was no significant difference in mean substitution rate for internal branches 

(F3,4088 = 0.36, p = 0.785) and external branches (F3,4092 = 1.45, p = 0.226). Selection treatments 

demonstrated a highly significant difference in mean substitution rate for internal branches 

(F3,4088 = 409.6, p < 0.001) and external branches (F3,4092 = 406.1, p < 0.001). Post-hoc analyses 

for internal branches demonstrated a highly significant difference (t4088 > 8, adjusted p < 0.001) 

between all pairwise treatments except for the comparison of asexual and sexual reproduction 

treatments with the naïve ancestor (t4088 = 1.397, adjusted p = 0.975). Similarly, post-hoc 

analyses for external branches also showed a highly significant difference (t4092 > 7, adjusted p < 

0.001) between all pairwise treatments except for the comparison of asexual and sexual 

reproduction treatments with the naïve ancestor (t4092 = 1.952, adjusted p = 0.306). 

For each treatment and phylogenetic analysis, external branches were inferred to be 

longer than internal branches (Fig. 3.12). And for most treatments and analyses, as 

demonstrated by the observed median substitution rates (i.e., the empirical equivalent to 

branch length) for both internal and external branches being in between these sets of 

inferences, internal branches were inferred as shorter and external branches as longer than 
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what occurred during lineage evolution. Among neutral treatments, sexual reproduction 

produced slightly greater inferred branch lengths across analyses, while the ancestor genotype 

did not have an effect. NJ tended to infer shorter branches than did ML and BI, and this was 

especially the case for internal branches. Selection treatments starting with the naïve ancestor 

produced more accurate branch length inferences, and this was especially true for asexual 

reproduction. For this treatment pair, BI outperformed NJ and ML with respect to external 

branches, while ML slightly outperformed NJ and BI for internal branches. For selection 

treatments starting with the pre-evolved ancestor, the branch length inference accuracy of NJ 

was greater than BI and ML. This treatment regime with asexual reproduction was the only 

treatment in which ML and BI markedly differed, with BI even inferring shorter branches than 

NJ; although, several ML replicates using the Poisson model inferred similarly short internal and 

external branches as the median BI and NJ inference, and a few BI replicates using either model 

inferred similarly long external branches as median ML values. ML consistently inferred more 

accurate lengths than did BI for the sexual reproduction treatment, while each inferred either 

internal or external branch lengths better than the other for the asexual treatment. There was 

much greater variation among inferred branch lengths for selection treatments, with at least a 

few treatments per analysis and model of evolution for ML or BI being very different from the 

others. 

The model of evolution made a difference in branch length inference most prominently 

among ML analyses compared to among BI analyses, which inferred very similar lengths using 

either model (Fig. 3.12). For neutral treatments, analyses using the Poisson model inferred 

greater median branch lengths than did those using the treatment’s empirical model, and this 

was especially true for ML analyses of treatments starting with the naïve ancestor. This trend 

was not consistent among selection treatments, as only selection with sexual reproduction 

starting from the naïve ancestor produced this trend for both ML and BI, and ML alone did so 

for the otherwise equivalent treatment under asexual reproduction. For all others, the 

empirical model inferred greater branch lengths. Since both analyses consistently inferred 
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shorter internal and longer external branch lengths than that the observed substitution rates, 

model use impacted branch length accuracy differently for external and internal branches. For 

example, with neutral treatments the Poisson model was relatively more accurate at inferring 

internal branch lengths and less so for external branches compared to the empirical model. 

Under neutral evolution every locus in the taxon-character datasets used for 

phylogenetic inference was parsimony informative, and under selection most loci were 

parsimony informative, but with fewer especially among the descendants from the pre-evolved 

ancestor. There was no variation among neutral treatments for either the number of variable or 

informative sites, with all replicates having the entire genomic sequence exhibiting variation 

and each character being informative (Fig. 3.13). One-way ANOVA analyses among selection 

treatments demonstrated a highly significant difference between the mean number of variable 

sites per replicate (F3,36 = 16.52, p < 0.01) as well as the number of informative sites (F3,36 = 

28.71, p < 0.01). Post-hoc analyses demonstrated a highly significant difference between four of 

the six pairwise treatments for both the number of variable sites (t36 > 5, adjusted p < 0.01) and 

informative sites (t36 > 7, adjusted p < 0.01). For both measures, the exceptions were in the 

comparison of treatments otherwise identical except for having asexual or sexual 

recombination (t36 < 1, adjusted p = 1). Thus, selection treatments starting with the pre-evolved 

ancestor had significantly fewer, on average 21, variable and significantly fewer, on average 40, 

parsimony informative sites than those starting with the naïve ancestor, and recombination did 

not cause a difference. 
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Figure 3.13. Number of variable sites (blue pentagons) and parsimony informative sites (purple 
stars) for all experimental treatment taxon-character datasets, with open symbols for individual 
replicates and closed for the median across replicates. 

Discussion 

The experimental evolution conditions were successfully configured so that digital 

evolution closely approximated the biological reality of molecular evolutionary dynamics. 

Establishing the congruity in molecular dynamics allows a stronger evaluation via analogy of 

whether natural selection aids phylogenetic inferences. Indeed, selection, at least directional 

and stabilizing selection, does increase topological accuracy and may increase branch length 

accuracy. Sexual reproduction, at least as implemented in this system, aided phylogenetic 

inference even more so than natural selection. And deviations from the model of molecular 

evolution used in the phylogenetic analysis made minor impact. Finally, neutral evolutionary 

dynamics did not entirely proceed as expected in neutral evolution treatments, and branch 



127 

length inference was especially problematic and clade support measures especially 

overestimated accuracy in these treatments. 

Distribution of mutational effects 

The distributions of mutational effects for Avidians evaluated after adaptation to their 

selective environment were similar to those observed for biological organisms (Fig. 3.01). All 

potential genotypes accessible by a single mutational change were evaluated for five genotypes 

and classified as lethal, large (i.e., > 1%) or small effect deleterious or beneficial, and neutral 

(i.e., relative fitness effect of 0.999 through 1.001) according to the nearly neutral framework 

(Ohta and Kimura, 1971) for the maximum population size of 1,000 organisms. As with 

biological organisms (Eyre-Walker and Keightley, 2007), most potential mutations for these 

genotypes are neutral with respect to fitness, a large collection are deleterious, a reduced 

proportion are lethal, and a small proportion are beneficial. The pre-evolved ancestor evaluated 

in its ancestral environment, having been evolved for millions of generations in that selective 

environment, most closely fit this expected profile. The descendant of either the naïve or pre-

evolved ancestor at the tip of the 55,000-generation evolutionary history also fit this profile 

quite well. This is evidence that these Avidians adapted to their selective environment in 

contrast to the ancestors at the root of the tree, which did not have a history of adaptive 

evolution in the root environment. Compared to genotypes evaluated after many generations 

of evolution in their selective environment, the potential single-step mutations available to 

ancestor organisms evaluated at the root of the tree were proportionally more neutral (78% 

versus 48%), more small effect deleterious (10% versus 3%), and less non-lethal large effect 

deleterious (4% versus 37%, Fig. 3.01). As Avidian adaptation proceeds, greater numbers of loci 

are necessary for the completion of environmentally rewarded tasks (i.e., fitness-increasing 

phenotypes); further, some loci evolve to be pleiotropic in that they are necessary for the 

completion of multiple tasks. A mutation that confers a loss of a task within these selective 

environments yields a merit (and approximate fitness) loss of 9.1% per task, and a mutation 

that confers the gain of a task yields a 10% increase in merit (and approximately so for fitness). 
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The pools of potential deleterious and beneficial mutations observed here are in accord with 

these values or multiple thereof, with the latter being evidence that numerous loci are 

pleiotropic. The very large proportion of slightly beneficial albeit neutral mutations for the pre-

evolved ancestor in the root environment were likely due to slight offspring cost optimization 

when not requiring the maintenance of previously phenotype-conferring loci in the ancestral 

environment. 

Characterization of observed substitutions 

Compared to the neutral treatments, the decreased number of fixed alleles (Fig. 3.02) 

and reduced branch lengths (Fig. 3.12) for the selection treatments agrees with the population 

genetics expectation and other data shown here. As expected, and shown by the distribution of 

mutation effects (Fig. 3.01), many mutations were deleterious and therefore eliminated by 

selection, causing a net loss of fixations compared to neutrality. The statistically significant 

difference in the total number of fixations between selection treatments with the naïve versus 

pre-evolved ancestor (Fig 3.02) would be expected due to greater mutations being deleterious 

for the latter; that is, stabilizing selection was more strongly occurring for experiments starting 

with the pre-evolved ancestor. This was not shown in Figure 3.01, where each tip-environment 

descendant had approximately 55% deleterious or lethal mutations, although the statistically 

significant greater proportion of invariant loci for the pre-evolved treatments (Fig. 3.12) suggest 

that a more thorough examination of mutational effects might demonstrate this as not 

uniformly the case among extant Avidians across tip environments. 

The relative proportions of substitutions by fitness type for selection treatments broadly 

agrees with the population genetics expectation and prior research using Avida (Fig. 3.03). Since 

recombination decreases linkage disequilibrium, it is also expected to magnify the influence of 

selection in that an allele’s evolution is more directly a consequence of its own effect on fitness 

rather than that of the broader genetic background to which it is linked (Felsenstein, 1974). This 

effectively makes selection more efficient by increasing the fixation of beneficial alleles and 

decreasing that for deleterious alleles. And neutral alleles have a decreased chance of fixation 



129 

due to being associated with beneficial alleles. The relative proportions shown in Figure 3.03 do 

exhibit fewer deleterious, neutral, and neutral-deleterious substitutions fixed in sexual 

treatments. While these treatments show fewer strictly beneficial substitutions, for each pair of 

otherwise identical treatments, this proportion is more than compensated by an even greater 

increase in beneficial-deleterious alleles.  

There is a remarkable prevalence of individual substitutions being so prominently 

influenced by a diversity of evolutionary forces (i.e., positive selection, genetic drift, and/or 

negative selection), as suggested by fitness type proportions (Fig. 3.03). This finding is likely 

evidence of the pervasiveness of epistasis within evolved Avidian genomes (Lenski et al., 1999b; 

Strelioff et al., 2010; Valverde et al., 2012). For example, Covert et al. (2012) has demonstrated 

that sign-epistasis, that is, the beneficial-deleterious substitutions under the formulation here 

(Table 3.02), is common in Avida and may greatly contribute to adaptation. The prevalence of 

sign-epistasis has been predicted for biological systems too (Kvitek and Sherlock, 2011), 

however it is incredibly difficult to collect precise fitness data for individual alleles over multiple 

generations of population frequency change. It should be noted that the calculated prevalence 

of substitutions with mixed fitness effects throughout their frequency trajectory is likely an 

undercount since relative genomic fitness was evaluated only every 100 generations. 

Calculating fitness effects more often (e.g., every generation) likely would have shown that 

substitutions defined as purely beneficial, neutral, or deleterious substitutions as sampled 

every 100 generations were influenced by additional evolutionary forces between these point 

estimates. 

The nearly neutral threshold used here is conservative in that the effective population 

size is not as great as the maximum population size. Yet it is unlikely conservative enough to 

account for the large proportions of substitutions that cross selection boundaries throughout 

their frequency trajectory, i.e., those that are not strictly neutral, beneficial, or deleterious. For 

example, increasing the neutral threshold from 0.001 to 0.005 for these analyses would be 

purposefully liberal in overestimating neutrality in a population of 1,000 individuals, because 
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0.005 is the neutrality threshold expectation for an effective population size of 500 organisms. 

Using a 0.005 threshold still results in very large proportions of substitutions such as beneficial-

deleterious, with between 45–67% per treatment (not shown) compared to the 74–89% shown 

in Figure 3.03. With this liberal threshold, the proportion of strictly neutral substitutions in 

selection treatments is still quite low, with between 2.8–6.2% per treatment, although much 

higher than the 0.02–0.09% shown in Figure 3.03. 

A few of the results in neutral evolution treatments exhibited deviations from neutral 

theory expectations and have an as-yet unidentified cause. The number of substitutions for 

entirely neutral alleles in the neutral evolution treatments was significantly less than expected 

(Fig. 3.02). The neutral theory expectation is that the mutation rate, here 5 * 10-6, should be 

equal to the substitution rate, which was found to be approximately 4.94 * 10-6 pooled across 

treatments and branches. And a similarly reduced rate of evolution was found with respect to 

substitutions per site per lineage (i.e., branch length) across internal branches and, separately, 

external branches, with medians and the neutral expectation shown in Figure 3.12. One 

suggestion is that since allele frequencies were sampled every 100 generations, these 

approximately 615 “missing” substitutions per evolutionary history may have swept to fixation 

and gone uncounted if more than one substitution occurred at the same locus within those 100 

generations. This is impossible, however, since only 34 substitutions or 0.002% across all 80 

neutral treatment evolutionary histories were identified as quick sweeps, which is over 700 

times less frequent than would need to occur, let alone the improbability of two sweeping at 

the same site within 100 generations.  

Another deviation from neutral theory involves the time to fixation of neutral alleles, 

which in a haploid population should be 2Ne generations (Kimura and Ohta, 1969). Across 

neutral treatments, the average time to fixation was approximately 2,230 generations, which 

was significantly different from the 2,000-generation expectation. This value would yield an 

effective population size of 1,115, which would be impossible with the maximum population 

size of 1,000 experimentally limited here. Conservatively, with an estimated effective 
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population size of the maximum population size, fixation time was observed to take 230 

generations longer than expected. In fact, it took even longer than this since segregation below 

5% and greater than 95% in the population was not tracked. While allele frequencies were 

sampled at population timepoints every 100 generations, this should systemically undercount 

both their entrance and fixation into the population, and therefore not affect the observed 

average fixation times of neutral alleles. Note that although there was a significant difference 

between neutral evolution treatments in time to fixation, the relatively miniscule effect size of 

9 generations and lack of a clear pattern with respect to the effect of reproductive mode or 

starting genotype suggests that this difference bears little importance compared to the overall 

difference from the neutral theory expectation. 

The fixation trends exhibited by the neutral and selection treatments agree with the 

population genetics expectations. For selection treatments, each lineage or branch of the 

evolutionary history experienced a new selective environment. The population tended to 

experience a burst of adaptive evolution, with many beneficial and beneficial-deleterious 

substitutions being fixed after a brief lag from its introduction to the environment (Fig. 3.05). 

For the remaining approximately 75% of the branch, the population underwent further 

adaptive evolution although with no trend in when alleles fixed, and with little difference in the 

relative proportion of substitutions by fitness type. Beneficial substitutions fix rapidly and 

appear to sweep to fixation neutral, deleterious, and quick sweep alleles, which all peak in 

fixing within their first hundred generations in the population (Fig. 3.06). And the frequency 

trajectory of beneficial alleles within a population was highly dependent on their relative fitness 

(Fig. 3.09). For comparison, evolution in neutral treatments seemed uniform and stochastic in 

that there was no variation in which generation along a lineage a fixation occurred, treatment 

conditions did not alter their time to fixation, and their frequency trajectory in the population 

appeared to be textbook (Hartl and Clark, 2007). Curiously, the time to fixation of beneficial-

deleterious alleles in selection treatments seems distinct from alleles of other fitness types 

within those same treatments (Fig. 3.06). While these alleles did fix after fewer generations 
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than for alleles in the neutral evolution treatments, their fixation dynamics in aggregate appear 

to be much closer to neutral in effect size rather than beneficial or deleterious. 

The fixation trends exhibited by the sexual and asexual treatments also agree with the 

population genetics expectation. In comparison to asexual treatments, there is two- to three-

fold fewer quick sweep alleles fixed in the sexual treatments (Fig. 3.03). Recombination caused 

a much lower increased rate of fixation when a population was first introduced to a new 

selective environment (Fig. 3.05), although this burst involved a relatively greater proportion of 

beneficial alleles compared to other fitness types (Fig. 3.06). There was a much greater 

distinction between substitutions fixed quickly versus slowly upon their introduction to the 

population, with beneficial and hitchhiking alleles fixing rapidly and quickly decaying in their 

time to fixation. There was also a more distinct proportion of beneficial-deleterious alleles with 

respect to their time to fixation, and they took longer to fix on average than their asexual 

treatment counterparts. The starkest difference between sexual and asexual treatments was in 

the number of alleles that hitchhiked to fixation among linkage groups, with many fewer alleles 

fixing every hundred generations under sexual reproduction (Fig. 3.07).  

Clonal interference in asexual population and the Hill-Robertson effect in sexual 

populations are nicely illustrated in these evolving Avidian populations. Figure 3.09a illustrates 

the dynamic under adaptive asexual reproduction in which new advantageous alleles can only 

become substitutions once a prior linkage group has fixed (e.g., at 1,100 and 2,700 generations) 

unless they arise on a background that is already fixing in the population (e.g., 3,000, 3,200, 

4,400 generations, etc.). This is clonal interference (Gerrish and Lenski, 1998) and while we 

cannot see the frequency trajectories of competitors that had relatively high fitness but went 

extinct because only alleles that fixed were tracked, the decrease in relative fitness that made 

the fixing allele deleterious or neutral from generations 1,900 through 2,300 was likely caused 

by one or more relatively higher fit competitors. And finally, Figure 3.09b illustrates the Hill-

Robertson effect (Hill and Robertson, 1966) in which advantageous alleles can be combined 

onto the same linkage block and increase in frequency together. For example, the very highly 
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advantageous new mutant at generation 1,200 quickly rose in frequency and fixed in the 

population. At generation 1,500, when the allele fixed, at least four other alleles that later fixed 

in the population were segregating; their maintenance in the population required 

recombination onto the genetic background that included the highly beneficial allele. In 

contrast, under clonal interference in an asexual population, at the time of fixation, only at 

most one other allele destined for fixation would be segregating in the population (e.g., at 

2,700 generations, Fig. 3.09a). 

Phylogenetic accuracy 

All phylogenetic analysis methods for all treatments with sexual reproduction produced 

the correct 1,024-taxa topology, and when reduced under asexual reproduction, selection 

improved accuracy (Fig. 3.12). It’s not entirely clear why sexual reproduction improved 

phylogenetic inference compared to asexual reproduction irrespective of natural selection or 

other deviations to the model of evolution. The few trends that varied due to sexual versus 

asexual reproduction alone are that fewer fixations per 100 generations occurred with sexual 

reproduction (Fig. 3.07), which was at least in part driven by fewer fixations occurring 

simultaneously (e.g., Fig. 3.08 and Fig. 3.09), even though there tended to be no difference in 

the number of total substitutions (Fig. 3.02) or the per lineage substitution rate (Fig. 3.12) for 

otherwise identical treatment conditions. Together these trends suggest that phylogenetic 

inference is improved by substitutions occurring gradually throughout lineage evolution, 

instead of in bursts (e.g., Fig. 3.08). Note that this is a different phenomenon than a molecular 

clock (Kimura, 1968), because under neutral evolution an asexual population would still have a 

molecular clock; this is more akin to how loud versus quiet the clock ticks (i.e., fewer 

substitutions fixing simultaneously) rather than the clock ticking regularly versus irregularly or 

ticking faster versus slower. This hypothesis could help support why natural selection aided 

phylogenetic inference under asexual reproduction (Fig. 3.12), because selection itself causes 

fewer fixations per 100 generations (Fig. 3.07).  
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While topological accuracy was very high, the population processes and genomic 

evolution processes occurring in this digital evolution system likely contributed to the 

inaccuracy observed. The lowest performing analyses had about 2% of clades incorrectly 

inferred, which is about 20 clades; surprisingly, this relatively poor performance was the neutral 

evolution treatments without sex (Fig. 3.10). Since coalescent and other population genetic 

processes are commonly evaluated with respect to simulations of neutral evolution, this result 

demonstrates that such modeling is missing important population processes that decrease 

phylogenetic algorithm performance. And this modeling is additionally failing to account for 

other processes that may promote accuracy, such as selection as evidenced here, which had an 

order of magnitude less inaccuracy, about 0.2% (Fig. 3.10). One explanation for selection, 

particularly stabilizing selection, improving topological accuracy over neutral evolution may be 

the maintenance of synapomorphic loci important in contributing to rewarded tasks (i.e., 

phenotypes). As shown in Figures 3.04 and 3.13, these treatments had greater frequencies of 

invariant sites and sites that otherwise experienced reduced rates of change.  

Branch length inferences were highly inaccurate across most treatments, and there was 

no relationship between topological accuracy and branch length accuracy for a given treatment. 

For example, the median external branch for the selection treatment with sexual reproduction 

and the pre-adapted ancestor had an inferred branch length about 40% longer (for analyses 

other than NJ) than the median observed substitution rate for those lineages (Fig. 3.12); and 

this was despite clade accuracy being perfect for this treatment (Fig. 3.10). In contrast, the 

median external branch for the selection treatment with asexual reproduction and the naïve 

ancestor had an inferred branch length of only about 5% longer than the median observed 

substitution rate (Fig. 3.12); and clade accuracy was about 99.8% or around two incorrect 

clades (Fig. 3.10). Inferred median external branch lengths for neutral treatments were about 

40% longer than the observed substitution rates (Fig. 3.12), and although this was consistent 

across treatments differing by mode of reproduction or ancestor genotype, topological 

accuracy varied between 98% and 100% (Fig. 3.10).  
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Specific explanations to explain the inaccuracy of inferred branch lengths are lacking. 

With random genotype population sampling for the taxa, the overestimation of external 

branches agrees with such random sampling of segregating variation as being interpreted as 

fixed differences. However, this should not have been the case for internal branches, which 

were generally underestimated. This underestimation may be attributable to multiple 

substitutions occurring at the same loci and the models not sufficiently accounting for this 

(Sullivan and Joyce, 2005). However, the treatments that produced overestimated internal 

branches, those starting from the pre-evolved ancestor under selection, were the treatments 

that had many more invariant sites, as shown in Figures 3.04d and 3.13. While a few sites 

especially near the beginning of the genome had a much greater turnover rate, there did not 

seem to be an overall tendency to have a greater number of sites with higher rates of change 

than on average for these treatments with the naïve ancestor (Fig. 3.04). NJ produced similar 

internal branch lengths for this pair of treatments, selection with the pre-evolved ancestor, 

although it showed lower and more accurate branch lengths under asexual reproduction (Fig. 

3.12). For this pair of treatments, ML and BI exhibited a great deal of variation in inferred 

branch lengths across replicates, and for the treatment under asexual evolution, this variation 

was substantial enough that median values for BI were about 22% lower than the observed 

substitution rate while ML produced values about 32% greater (Fig. 3.12). Looking across 

experimental conditions, it is unclear which of these analyses has greater resiliency in inferring 

branch lengths under the complex biologically realistic phenomena explored here, although all 

are affected. 

The inaccuracy of branch length inference was especially surprising for the neutral 

evolution treatments. With a lack of natural selection occurring, the molecular evolutionary 

dynamics should be closer to the models of evolution upon which the phylogenetic analyses are 

based, and therefore lead to greater accuracy, but this was not the case. Especially considering 

other found deviations from neutral theory expectations, such as substitution rate and time to 
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fixation, branch length inaccuracy adds to the evidence that complex population processes in 

an evolving system are not being captured by models of evolution used in phylogenetics.  

This work has demonstrated the possibility of evaluating phylogenetic analyses using 

highly customized fixed-rate models of evolution constructed from close observations of 

population genetic history across hundreds of thousands of generations. The model used for 

each experiment was parameterized using the recorded substitutions from across the ten 

replicates for that experiment, so substitution rates and state frequencies were highly accurate; 

much more accurate than biological amino acid model counterparts that estimate values using 

ancestor reconstruction for molecular datasets (e.g., Dayhoff et al. 1978; Jones et al. 1992; 

Whelan and Goldman 2001; Le and Gascuel 2008) due to the infeasibility of collecting observed 

substitution data in biological populations. And the empirical models were as precise as 

possible given the general time-reversibility assumptions necessary for use with the 

phylogenetic programs, despite the character polarity for each recorded substitution being 

known. However, at least for the phylogenetic difficulty evaluated in these treatments, the 

empirical model of evolution did not consistently yield more accurate results for inferred 

branch lengths (Fig. 3.12), topological accuracy (Fig. 3.10), or clade support (Fig. 3.11). When 

model choice made a difference, often the Poisson model outperformed the empirical model, 

as is especially evident for the internal branch length inferences of the neutral asexual 

reproduction treatment with the naïve ancestor (Fig. 3.12).  

It is unclear why the highly accurate empirical models of evolution performed as poorly, 

if not worse, than the basic Poisson model. Differences in model performance are not 

attributable to overfitting, as both types of models have fixed rates and are therefore equally 

highly parameterized. While “all models are wrong, but some are useful” (Box, 1976; Sullivan 

and Joyce, 2005), it is unclear why the basic Poisson model functioned relatively well, or at least 

not substantially worse, than the empirical models. While the Poisson model is accurate with 

respect to the Avidian mutational model, it would not appear to at all characterize the 

substitution patterns occurring across experimental treatments (e.g., Table 3.03). Model choice 
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may especially have significant consequences over greater extents of evolutionary time, for 

example in the correction of multiple substitutions per site, and long branches should be 

affected more so than short branches (Felsenstein, 1978; Sullivan and Swofford, 2001). It seems 

plausible that the symmetrical, equidistant, and short branched topology evolved here did not 

offer difficulty that models of evolution may improve. Yet the inability for either model to 

closely resolve both branch lengths and topological accuracy for any taxon-character dataset 

should be highly concerning to systematists, because modern phylogenetics methods rely on 

the joint optimization of both aspects of a phylogeny. 

Following the analysis presented in Chapter 2 and as first conducted by Hillis and Bull 

(1993) for their biological experimental phylogenetics research, the relationship between 

support values and clade accuracy is shown in Figure 3.11. The treatments analyzed in Chapter 

2 produced conservative estimates of clade accuracy for support values greater than 30%, 

except for a single BI support value which was slightly conservative. The selection treatments 

analyzed here reproduced this result for only support values greater than 50%, and the neutral 

treatments were the opposite as in being liberal estimates for all such support values. This is a 

concerning result, as it indicates that the support-accuracy conclusions first shown by Hillis and 

Bull (1993) and still relied on by researchers (e.g., Sleator 2011) may not hold. The distinction 

between selection and neutral treatments may indicate that selection cannot just improve 

accuracy but also improve our estimate of it, but more research is warranted using other 

experimental designs and in other systems. An alternative hypothesis is that this result is not 

especially related to the experimental treatment conditions that produced the molecular data 

analyzed, but rather a factor of the absolute number of true clades insufficiently supported. For 

example, in the analyses shown in Chapter 2, and also by Hillis and Bull (1993), the maximum 

number of incorrect clades observed for any replicate was six, which is also the maximum 

possible for these eight-ingroup taxon evolutionary histories, while for these histories the 

maximum observed was 31 and maximum possible is 1022. Perhaps these larger trees, which 

are not exceptionally large compared to contemporary work (Li et al., 2015), have a greater rate 
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of false positive clade identification owing to their size. The implication of this would be that 

the greater number of alternative topologies necessitates an even greater bootstrap or 

posterior support sampling to alleviate the increased random error. 

Conclusions 

The work presented here demonstrates the potential of using digital evolution to 

conduct experimental phylogenetics. I have systematically evaluated a few of the complex 

processes that may affect phylogenetic accuracy. I did so using a much larger experimental 

design than any experimental phylogenetics research to date, and a much more biologically 

realistic experimental design than in Chapter 2, with the goal of demonstrating the biological 

realism, utility, generality, and overall potential of digital experimental phylogenetics. 

Compared to evaluating phylogenetic methods using simulations alone, this work has produced 

molecular evolutionary dynamics that closely resemble those observed in biological systems, 

and these processes led to curious phylogenetic inference results. The work presented here 

shows that complex population processes occur even in a digital system that is experiencing 

entirely neutral evolution, leading to differences from neutral theory expectations. When 

organisms reproduce sexually with recombination, as implemented in Avida, their evolutionary 

histories can be perfectly inferred, and under asexual reproduction natural selection restores 

some of the reduced accuracy, suggesting that both recombination and selection may aid 

phylogenetics. Digital evolution allows the construction of precise models of evolution, but 

phylogenetic methods were not improved with their use, producing similarly inaccurate branch 

lengths and clade relationships under very different models. Clade accuracy is not predictive of 

branch length accuracy for these evolutionary trees, and the clade support metrics of bootstrap 

support and posterior clade support are not close estimates of clade accuracy.  

Analyses of the substitutions that occurred have begun to show the biological realism 

capable with this system. For example, natural selection’s well-recognized effects of altering 

the distribution of mutational effects for adapted genotypes, reducing the total number of 
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substitutions that occur due to negative and stabilizing selection, and increasing the number of 

substitutions that co-occur in selective sweeps were each observed. Similarly, the combined 

effects of recombination and selection occurring together were observed, such as the fixation 

of greater numbers of beneficial alleles, greater rates of fixation in novel adaptive 

environments, and the combining of advantageous alleles onto the same linkage block. And yet, 

differences from neutral theory predictions indicate that the population genetic and genome 

evolution processes occurring in an evolving system are complex. For example, with neutral 

evolution treatments the number of substitutions and time to fixation were significantly 

different from expectations, and with selection treatments most substitutions exhibited sign-

epistasis. Especially since the phylogenetically worst-performing treatments were those 

conducted under neutral evolution, these results suggest that such complex dynamics may not 

yet be adequately investigated using simulation approaches alone.  

Surprisingly, and at least under the conditions evaluated here, selection and especially 

recombination restored reduced phylogenetic accuracy under asexual reproduction and neutral 

evolution. These results suggest an intriguing and novel mechanism by which phylogenetic 

patterns may be better inferred due to substitutions occurring throughout lineage evolution 

instead of in simultaneous bursts. This would be a similar dynamic to a molecular clock, but due 

to natural selection and recombination, and would seem to be relatively more beneficial to 

phylogenetic inference since neutral evolution treatments showed reduced accuracy. These 

results point to a novel benefit that recombination and natural selection could provide 

systematists, albeit these processes in even more complex contexts (i.e., even closer to 

biological reality) may have more costs than benefit (e.g., Lanier and Knowles 2012; Adams et 

al. 2018; Pang 2020). For example, recombination here could not disrupt positional homology 

since genomes had fixed length, so alignment was not required. Still, it would be nice to 

establish that recombination is not just a “nuisance” for phylogenetics, as it is perceived to be 

(Martin et al., 2011).  
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The unexpected phylogenetic benefits of recombination and selection observed here 

should be approached with a nod towards the generality of the experiment and system. An 

important caveat to experimental phylogenetics research is that an experiment shows exactly 

what happened under one set of conditions, but not every set of conditions. And with digital 

evolution especially, it’s important to investigate results in multiple systems, including in 

biological contexts, to ensure the phenomena isn’t system specific. For example, Avida 

currently implements two very different approaches to recombination, and it would be helpful 

to add a third setting to better approximate recombination rate as interpreted by biologists. 

Currently, one approach is to configure the genetical system for the number of equally sized 

modules, with each module having independent assortment from one another; this was 

employed in Chapter 2 with the number of modules equal to the genome length so that all loci 

exhibited independence. A second current approach is to have a single module but with two 

recombination breakpoints chosen randomly in the genome; this was the approach for the 

experiments in this chapter. A not-yet-implemented third approach would be to alter the 

number of randomly chosen paired breakpoints:  zero (no recombination), one (as used here), 

and so on up to the size of the genome less one which would entail breakpoints between every 

locus and be equivalent to independent assortment among all loci. The benefit to this approach 

would be the ability to increase the recombination rate as biologists interpret it to have better 

control over how the evolving population approaches linkage equilibrium. For example, humans 

have much larger linkage blocks than do species like maize or Arabidopsis thaliana (Rafalski and 

Morgante, 2004; Wall and Pritchard, 2003), and with this new setting experimenters could 

better match such differences in molecular evolution otherwise produced by differences in life 

history or evolutionary history. 

The influence of selection on phylogenetic accuracy might also be system dependent. In 

Avida, selection greatly improved phylogenetic accuracy under asexual reproduction conditions. 

However, biological experimental phylogenetics research tends to show that selection inhibits 

phylogenetic inference by producing homoplasy (Bull et al., 1997; Cunningham et al., 1997; 
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Fares et al., 1998), although see Leitner et al. (1996). The accuracy of inferences of digital 

evolution histories have been shown to be aided by selection via the production of more 

synapomorphies (Hagstrom et al., 2004; Hang et al., 2007, 2003). Unfortunately, the 

experiments presented in this chapter did not offer an ideal test of this, since these selective 

environments were explicitly designed to promote diversifying selection throughout the entire 

evolutionary history, so by design there should be greater synapomorphies. A hypothesis that 

remains to be tested is that the diversity in the potential genotype-to-phenotype map for 

digital organisms such as Avidians may make them especially unlikely to produce homoplasious 

evolution. For example, there are relatively few constraints to the genetic programming such 

that there are innumerable genotypes that code for the same phenotype. However, the 

impression that prompts this hypothesis may be biased since digital evolution experiments tend 

to start with a naïve ancestor, and such a “blank tape” genome would be especially unburdened 

by genotype-phenotype limitations due to historical contingency or other constraints. Further 

work exploring these trends of selection’s impact on phylogenetic inference among both digital 

and biological systems is needed. 

Digital evolution has great utility in allowing the tracking of data that would be 

impossible or incredibly burdensome to collect for biological systems. Digital evolution allowed 

the construction of models of evolution tailored to the substitution rates and state frequencies 

of the evolving populations under study with much greater precision than has been 

accomplished for biological systems. The sensitivity of model-based approaches was evaluated 

in this study with great accuracy while still maintaining the increased biological realism of 

experimental phylogenetics approaches. Although the model of evolution made little difference 

in the work presented, perhaps this would not be so under conditions dissimilar from the fully 

symmetrical and ultrametric evolutionary histories evolved here. Future work to this end could 

explore how model choice becomes increasingly important under varying adaptive evolution 

dynamics in addition to differently long branches, asymmetrical topologies, and other 

evolutionary divergence conditions. The construction of empirical models of evolution has 
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fulfilled the expectation of Hagstrom et al. (2004) who remarked that it “will be available in the 

near future” for Avidian systems. Although, the work presented here has not attempted to 

determine a single model widely applicable to differently parameterized Avida experiments. 

This may be a fruitful research direction that, as predicted by Hagstrom et al. (2004), would 

“further energize research.” 

The phylogenetic accuracy trends presented by these results are curious and their 

implications should be further investigated. Although clade accuracy was high across all 

treatments, it was comparatively low for the neutral evolution treatments. The treatments 

conducted under neutral evolution with asexual reproduction and inferred using the empirical 

model of evolution were predicted to have the greatest clade and branch length accuracy, since 

the evolutionary dynamics occurring should have been closest to the model of evolution and 

other assumptions used in the analysis. Yet these were among the lowest performing. 

Phylogenetic methods such as maximum likelihood and Bayesian inference iteratively optimize 

tree topology and branch lengths concurrently to produce the overall best tree. However, there 

was little relationship between clade accuracy and branch length accuracy in these analyses, 

perhaps suggesting room for improvement in the model of evolution or its use. And yet the use 

of very different models of evolution made little difference. Finally, the common metrics of 

clade support, bootstrap support values under maximum likelihood and posterior clade support 

probability under Bayesian inference, were not close estimates of clade accuracy, and their 

being under- or overestimations depended on whether natural selection was occurring. More 

research questions and hypotheses have been proposed than answered with these case-study 

experiments, and digital evolution will be a valuable tool among others in helping 

phylogeneticists to address them. 

The T7 phage work of Hillis et al. (Hillis et al., 1992) presented the experimental 

approach in order to inspire work that “will fill an important void in the science of phylogenetic 

reconstruction.” While the paucity of experimental phylogenetic research to date has left this 

void largely unfilled, the work presented here aims to spur greater research by presenting the 
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potential contributions digital evolution may bring. This potential rests on the approach’s 

greater biological realism than simulations and greater utility and generality than biological 

experimental systems. By navigating these inherent tradeoffs in conducting phylogenetics 

research differently than past approaches, digital evolution just may “become the wave of the 

future in phylogenetics” as its trajectory was envisioned two decades ago. As we build better 

computational machinery and discover more about the underlying facets of molecular 

evolution, digital evolution has the potential to become more and more powerful and therefore 

relevant – for if reality is but a simulation (Bostrom, 2003) then what is digital evolution if not a 

proto-reality? 
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CHAPTER 4: 
 

Shifting Student Understanding of the Importance of Variation for 
Evolution in a Course Featuring Digital Evolution 

Introduction 

Natural selection, and the basics of evolutionary change generally, are “staggeringly 

simple” (Coyne, 2010), “breathtakingly simple” (Chown, 2013), and so simple that Huxley 

remarked that it was stupid of him to not have thought of it (Huxley, 1887; Kalinowski et al., 

2016). Evolution requires three concepts – variation, heredity, and differential reproduction 

(Godfrey-Smith, 2007):  Mutation, heritable from parent to offspring, is the ultimate source of 

genetic variation that may affect phenotypic variation and variation in reproduction. Natural 

selection is the resulting process if phenotypic variation non-randomly changes in a population 

due to its effect on reproductive ability, and genetic drift is the resulting process if variation 

randomly changes due to random differences in reproduction (Gregory, 2009; Tibell and Harms, 

2017). Yet evolution remains elusively difficult to teach, likely because “evolution, in a way, 

contradicts common sense” (Mayr, 1982) and “is probably one of the most counterintuitive 

ideas the human mind has encountered, so far” (Evans, 2008). Yet evolution is “the single best 

idea anyone has ever had” and is therefore worth the tremendous effort to teach well (Dennet, 

1995; Gregory, 2009).  

Among the many difficulties in understanding evolution, a large set of them are 

ultimately related to those borne from misapplying the intuitive reasoning strategy of 

essentialism to understand the concepts of species, inheritance, mechanisms of evolutionary 

change including natural selection, and the crux of the matter – the importance of individual-

level variation for evolution. Essentialist thinking applied to a species entails individuals who are 

united by something that makes them unique, and this essence precludes evolutionary change. 

Taken in an absolute sense, essentialist thinking underlies creationist claims that a present-day 

species cannot be derived from any other species (Evans, 2008).  
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Essentialist reasoning can be incorporated into a conception of evolutionary change as 

transformationalism, which is distinguished from the scientifically valid explanation referred to 

as variationalism (Mayr, 2001). In transformationalism, evolution is defined as the change in the 

overall characteristics of one generation to the next. In variationalism, within-population 

variation is of utmost importance, so evolution is commonly defined as the change in the 

frequency of alleles, i.e., the genetic constituents of variation, over time (Freeman and Herron, 

2014). This distinction of valuing individual-level differences in one generation and population-

level differences between multiple generations in variationalism versus only valuing the latter 

in transformationalism may seem slight, but it is integral to understanding the mechanisms of 

modern evolutionary biology, especially natural selection. For example, differences between 

individuals are consequential enough to cause evolution under variationalism via differential 

reproduction, but under transformationalism, any difference between individuals is immaterial 

to evolution because it would be impossible for individuals to differ enough to produce such an 

effect. 

I hypothesized that the direct exposure to and experimentation regarding variation and 

its importance using integrative thinking, statistical reasoning, and computer modeling via 

Avida-ED would produce transformational-to-variational shifts in student understanding. This 

hypothesis was tested within the whole-semester course context of a novel undergraduate 

introductory biology course, Integrative Biology: From DNA to Populations. Herein, I discuss a 

few of the difficulties in understanding, and therefore teaching, evolution, focusing on 

essentialism and its evolutionary formulation as transformationalism as contrasting the modern 

scientific formulation – variationalism. I then describe the features of the Avida-ED digital 

evolution platform that allow experiential learning of variationalism and outline further 

motivation for the curriculum development of the course. The course features addressed here, 

of which the digital evolution lab component is both key and one of many that address student 

understanding of variation, may collectively contribute to shifting student understanding of 

biological variation from transformationalism to variationalism. I describe the development, 
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use, and results of a modified transformationalism-variationalism assessment in a pre-/post-

course design to measure this shift. And I conclude with suggestions regarding the 

incorporation of instructional material that engages students in developing a scientifically-

modern understanding of variation and the evolutionary process. 

A few of the difficulties in understanding and teaching evolution 

Instruction in evolutionary concepts is not a matter of addition to students’ existing set 

of knowledge, but rather fundamentally altering the way they see the world – an ontological 

shift (Sinatra et al., 2008; Tibell and Harms, 2017). Difficulty in understanding evolution and 

natural selection at least in part may rely on incorrect systems thinking, or misattribution at the 

appropriate level of organization (Chi, 2005). Humans are accustomed to direct, causal 

processes that typically have a central controlling agent that interacts in a series of sequential 

steps from a beginning to endpoint. Conversely, emergent process-type phenomena like 

evolution result in hierarchical systems “where patterns in a collective are generated by 

interactions between agents at the lower level” (Cooper, 2017). A failure to understand 

statistics and randomness can magnify the effects of misapplying systems thinking (Cooper, 

2017; Fiedler et al., 2019; Speth et al., 2014; Tibell and Harms, 2017) – how could one 

understand that patterns such as distributions of traits can result from emergent processes 

based, at least in part, on random interactions among lower-level units? Additionally, Tibell and 

Harms (2017) point out that applying systems thinking in understanding evolution across large 

temporal and spatial scales is especially difficult.  

A relatable inability in applying systems thinking is the vernacular of evolutionary 

biology, which includes many terms that have a different common folk application. The folk 

usages of “adapt” applies to individual organisms and occurs within a lifespan, whereas the 

scientific usage applies to a population across generations of evolution (Coley and Tanner, 

2015; Shtulman, 2006). Biologists may seem to apply agency or intentionality to natural 

selection by using words like “force” or “pressure” even though they do not actually mean that 

natural selection is a direct causal process (Cooper, 2017; Gregory, 2009). Among yet other 
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misconceptions (also called naïve intuitions) are ideas related to organisms evolving in response 

to a need or the use/disuse of body parts (Coley and Tanner, 2012). These are just a few of the 

persistent folk ideas that differ from modern scientific thinking. 

Increased undergraduate biology education, at least as has been implemented and 

assessed, can sometimes lead to the suppression but not supplantation of intuitive means of 

understanding (Shtulman and Valcarcel, 2012), or even strengthen misconceptions based on 

misapplications of fundamental modes of understanding (Coley and Tanner, 2015). So-called 

“intuitive conceptual systems,” or mental shortcuts, are integral to helping us understand the 

world, especially as we develop this understanding as children, allowing us to simplify, 

categorize, and otherwise reduce the amount of information we process to make sense of the 

complexity that we encounter (Heddy and Sinatra, 2013; Sinatra et al., 2008). For example, 

knowing that an organism is a member of a certain species allows you to reliably predict (at 

least some of) its properties (Shtulman and Schulz, 2008). However these mental shortcuts 

cannot be applied in every application in which we might like to use them, and when we apply 

them incorrectly, they entail a serious cost as persistent and overarching misconceptions 

(Evans, 2008; Sinatra et al., 2008). Evolution is perhaps a quintessential example of this, with an 

array of common misconceptions (Gregory, 2009) stemming from multiple underlying cognitive 

construals (also called cognitive biases), including essentialism, teleology, intentionality, and 

anthropocentric thinking (Coley and Tanner, 2012; Evans, 2008; Sinatra et al., 2008). Within the 

field of evolutionary psychology, cognitive construals have been thought of as complex 

evolutionary adaptations for dealing with complex environments (Geary, 2007), and the 

stickiness or resistance in not applying these ideas by changing one’s intuitive understanding 

may be an adaptation too (Sinatra et al., 2008). 

Essentialism is the general idea that things can separately be placed into real and named 

categories (Gelman, 2003) that exhibit an underlying innateness (Knobe and Samuels, 2013), 

essence (Evans, 2008) or hidden causal power (Shtulman, 2006), whether or not we know, or 

can know, what that underlying nature is (Coley and Tanner, 2012). Crucially, this essence is 
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immutable or unchanging. Essentialist thinking can be applied to multiple levels of biology and 

is overall the idea that a core underlying facet of a level of organization (e.g., biological 

structure, species, or system) determines it’s features and persistent identity (Coley and 

Tanner, 2015). 

Essentialism is an example of natural history theory recapitulating the ontogeny of 

human cognitive development (Shtulman and Schulz, 2008). As recorded by Aristotle, in ancient 

Chinese thinking, and in folk ideas throughout other cultures, humans have long exhibited an 

essentialist understanding of living organisms (Evans, 2008; Shtulman, 2006). This was a 

formidable historical obstacle to modern evolutionary theory (Kalinowski et al., 2016), and 

Darwin spent great care dismantling it by writing at length on the importance of individual-level 

variation (Gregory, 2009). This understanding is also exhibited by children, especially until 

about 8-10 years old, after which they may be able to start to understand concepts like modern 

scientific notions of common descent and other variationalist concepts (Evans, 2008; Sinatra et 

al., 2008). This conceptual change is like a scientific revolution experienced within their own 

personal understanding (Sinatra et al., 2008).  

Transformationalism and variationalism 

In essentialism a species has an immutable essence that defines its nature; in 

transformationalism this essence is mutable and its change over time is evolution. Under 

transformationalism, individuals in a population change all-together over time because the 

underlying essence is evolving, for example all individual moths in a population becoming 

successively darker each generation. Under the scientifically-modern understanding of 

variationalism, genotypic (or phenotypic) individual variation changes in frequency within a 

population across generations, for example a black moth variant increasing in population 

frequency over generations (Shtulman, 2006). Note that someone with a transformational 

understanding is not blinded to variation within a population. They may admit that slight 

variation exists between individuals, but that this variation is inconsequential to the 

evolutionary process, since evolution must involve a change to the shared essence of the 
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species and therefore must act on all individuals (Coley and Tanner, 2015). Under both 

transformationalism and variationalism, individuals vary in terms of their genetic information 

(i.e., genotype) and/or expressed characteristics (i.e., phenotype), and over time generations of 

organisms change (i.e., evolve). Yet these conceptualizations vary in important respects. 

In transformationalism, evolution acts in a single step where the environment directly 

affects the essence of all individuals of a species (Gregory, 2009; Shtulman, 2006). Modern 

molecular reductionism in biology may even provide a pseudoscientific species essence in the 

guise of DNA, genes, and chromosomes (Coley and Tanner, 2012; Fodor, 1998; Gelman, 2004). 

In my opinion, this could be at least one means by which increased biology education may reify 

essentialist reasoning for some students. In comparison, variationalism requires at least two 

steps:  Mutation is the originator of variation by creating a variant allele in only one individual 

in the population. This is followed by an evolutionary process (e.g., natural selection or genetic 

drift) that operates to change the frequency of this variant in the population over successive 

generations (Gregory, 2009; Speth et al., 2014). Highlighting the importance of mutation as the 

source of variation, Gregory (2009) asks the rhetorical question, “How can an eliminative 

process like natural selection ever lead to creative outcomes?”  

A byproduct of essentialist thinking is the persistent undervaluation of within-species 

variation; although individuals within a population may vary in some respects, this variation is 

limited and not important in an evolutionary context (Coley and Tanner, 2015; Shtulman and 

Schulz, 2008). Species are “manifestations of an underlying essence in which variability is 

irrelevant noise” (Coley and Muratore, 2012). Shtulman (2006) takes this further by claiming 

that transformationalists would intuit that any individual variation must be non-adaptive or 

maladaptive. In variationalism, differences between individuals are of critical importance (Coley 

and Muratore, 2012) and are characterized in terms of population frequencies, i.e., the number 

of individuals of the generation with a certain characteristic. In transformationalism, the 

population average (or something similar) is ontologically reified, i.e., made real (Gould and 

Duve, 1996; Shtulman, 2006). In variationalism, the population average is an abstraction and 
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not something real in and of itself (Coley and Muratore, 2012); it is a statistical property of a 

distribution of separate individual-level features, an emergent pattern (Cooper, 2017).  

Variationalism requires the shift in thinking of natural selection not as an event but as 

an unbounded process (Gregory, 2009; Sinatra et al., 2008). Evolution is an emergent process at 

the population level resulting from random, undirected mutation occurring to individuals and 

inheritance of this genetic variation that may be expressed phenotypically as, ultimately, 

variation in reproduction among those individuals in the population (Gregory, 2009). In this 

way, natural selection results from a series of contingent events and continues unendingly 

(Cooper, 2017). Transformationalism is much simpler and intuitive because it uses folk 

understandings of causation – individual-level events like mutation and natural selection are 

neither necessary nor consequential, what matters is the direct inheritance among all members 

of the population of those traits which are suited to the environment (Sinatra et al., 2008). 

Further, transformationalism may lead to saltationist notions of complex traits arising suddenly 

in a single generation in response to a need (Gregory, 2009). 

Trouble dislodging transformationalism 

Biology education research has shown that novices tend to hold transformational views, 

and that it can be difficult to transform their thinking towards variationalism. As with other 

ideas that have a firmly intuitive basis, such as teleological reasoning, the transformationalist 

idea of a species having a shared essence is a sticky concept – one that is often impervious to 

dislodgement (Speth et al., 2014). Studies have shown that large proportions of children (Evans, 

2008; Shtulman and Schulz, 2008), high school students (Furtak et al., 2014; Shtulman, 2006), 

and college students (Richard et al., 2017; Shtulman, 2006; Shtulman and Calabi, 2008) hold a 

transformational if not essentialist understanding of biological variation. Shtulman and Schulz 

(2008) found that only people with variationalist thinking could, across a majority of taxonomic 

and trait-class examples, affirm that within-species variation is both prevalent and probable. 

When expert and novice biologists have been asked to explain natural selection, a majority of 

experts exhibited variationist thinking by valuing this first step—the origin of heritable 
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variation—enough to include it in their explanations of natural selection while only 10% of 

undergraduates did so (Nehm and Ridgway, 2011; Speth et al., 2014). Coley and Tanner (2015) 

reported that a majority of non-biology major undergraduates agreed with an essentialist 

statement, while a minority of biology majors did, perhaps demonstrating a predilection 

towards opposing essentialist thinking with greater innate interest or curiosity if not increased 

expertise alone. While Shtulman and Schulz (2008) argue that an understanding of 

variationalism should be considered a necessary condition for understanding natural selection, 

other research has demonstrated that instruction in evolution, especially the variational 

processes of mutation and natural selection, is insufficient in altering these misconceptions 

(Gregory, 2009; Kalinowski et al., 2016). Instead, these authors report that it is most important 

to draw students’ attention to variation between individuals and to provide examples of how 

important that variation is for evolution.  

When helping students shift from transformationalism to variationalism, the 

incorporation of new information into students’ mental models may result in mixed models of 

understanding (Evans, 2008). Shtulman (2006) even termed such models as “pre-

variationalism” on a continuum between transformational and variational modes; although the 

learning progression of Furtak et al. (2014) had separate dimensions for “transformationist 

incorrect” and “variation,” suggesting disagreement among researchers regarding the mutual 

incompatibility of these modes of understandings. The difficulty in fostering a shift in student 

thinking, and the likelihood of mixed model formation, is related to the cognitive “stickiness” of 

the essentialist intuitive reasoning strategy, which is innate and impervious to change (Gelman, 

2004; Speth et al., 2014). Although difficult, Shtulman and Calabi (2008) describe a decrease in 

undergraduates reporting transformational understanding following instruction on Darwin’s 

formulation of evolution by natural selection. However, Richard et al. (2017) discovered no 

significant differences between introductory and advanced biology majors’ agreement with 

essentialist statements. Concerningly, the results of Coley and Tanner (2015) suggest that 

formal biology education can reify the relationship between essentialist intuitive reasoning and 
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essentialism among students who hold such views, which could strengthen the hold of 

transformational understanding among advanced biology students.  

Experimentation in Avida-ED emphasizes individual variation 

Evans (2008) describes the need of an instrument to observe evolution happening in 

action: 

“If we could speed up time, we would ‘see’ species as dynamic and biological 

change as contingent and non-directional; in effect, species would morph from 

one to another as environments change, or disappear entirely. Yet everyday 

cognition, mired as it is in a particular time and place, appears to obstruct this 

view of a dynamic world. What is needed is the equivalent of a microscope or 

telescope, such as a time-machine that transcends human cognitive and 

perceptual limitations.” 

Although we do not yet have such a machine to observe the evolution of biological organisms, 

we might have the next best thing in the Avida-ED model system, which allows students to 

readily observe the processes of evolution in action for digital organisms. By having a simplified 

genetic model and the color-coding of genotypic, phenotypic, and fitness differences, students 

observe that variation among individuals is created from parent to offspring and that this 

variation exists within a population context. And by engaging in what is occurring within rapidly 

changing populations, students have an opportunity to recognize that variation among 

individuals not only exists but that it is the raw material of evolution. Therefore, Avida-ED may 

be especially illustrative of variationalism. 

Digital organisms have a greatly simplified genetic model compared to biological 

organisms. This may aid in highlighting genotypic differences between individuals as such 

variation may be obfuscated by complex genotype to phenotype relationships. In biological 

organisms, genetic information is transferred across multiple levels of organization and 

expression within an organism, for example, from DNA to RNA to protein and other molecular 

machinery to expressed phenotype. Avidian genetics is limited to the information transfer 
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between the instruction sequence to programmatic machinery (i.e., interactions between 

instructions’ execution) and the expressed phenotype. This provides a simplified model that 

may lead to increased understanding of genetic differences by allowing students to focus on 

differences between organisms rather than focusing on the transfer of genetic information 

within an organism. Further, the myriad causes, types, and effects of mutations in biology add 

further complication to understanding genotype to phenotype relationships (Tibell and Harms, 

2017). Avidians and Avida-ED provide a straightforward representation of how differences in 

genotypes are expressed as differences in phenotypes (Smith et al., 2016). 

In Avida-ED, genotypic variation between individuals, as well as the cause of that 

variation, is readily observable. Using the organism viewer, students observe the life process of 

an Avidian, including reproduction. During reproduction random mutation may create variation 

in the genome of a single organism—the offspring—leaving the parent unchanged. 

Transformationalism would require a mutation to occur for both the parent and its offspring, or 

at least all of a population’s progeny born at the same time or in the same generation. 

Differences between the parent and offspring are observed by evaluating changes in the 

labeled sequence of instructions, with mutations outlined in black. These genomic sequence 

differences are also often reinforced with a color difference, since sets of Avidian instructions 

are color-coded according to their approximate computational or programmatic function. 

In Avida-ED, as in biological systems, single mutations may have an appreciable 

likelihood of resulting in consequential phenotypic and fitness effects in an evolving population. 

Using the population viewer, sets of organisms with discrete phenotypes (i.e., computational 

task completion) may be outlined in color, and the number of organisms performing each 

function is displayed among the population statistics. By default, organisms in the population 

are color-coded by fitness, and the average fitness of a population is displayed among the 

population statistics. Slight fitness differences often exist even for organisms with shared 

phenotypes, since genotypic differences may have consequences for reproduction efficiency 

(i.e., offspring cost). These differences are easily observable due to the high sensitivity of the 
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fitness color scale. Instead of a transformational depiction of all organisms having similar if not 

identical genotype, phenotype, fitness, and therefore color, a great deal of variation at each of 

these levels exists among contemporaneous individuals, producing a multitude of colors at any 

given timepoint.  

When the environment is configured to reward certain tasks (in Avida-ED verbiage, 

when the resources associated with tasks are present in the environment), then the gain or loss 

of these phenotypes has significant fitness consequences. Avidians have short lifespans and 

rapidly reproduce to create large populations that experience hundreds of generations within 

minutes. Instead of a transformational picture of the entire population gradually changing color 

altogether over generations, differences among individuals are readily apparent as spatial, 

patchy changes in color-coded fitness over seconds or minutes. Slightly more efficient Avidians 

evolve over time, slowly altering the color across the population as their descendants with 

greater relative fitness increase in frequency; and Avidians with de novo mutations for task 

performance are observed to quickly produce similarly fitness-colored offspring, drastically 

changing the genotypic, phenotypic, and fitness makeup of the population. This provides a 

powerful visualization of variationalism as colors appear to rapidly evolve (i.e., change 

frequency) onscreen. Of course, it is not the color that is evolving, but rather the population of 

digital organisms.  

This presentation of fitness driving the evolution of a population is key. However, fitness 

in biology can be extremely difficult to measure and track over time. In Avida-ED, fitness is 

automatically recorded for both individual organisms and the population average, and its 

change over time is graphed dynamically. These data are quantitative and readily exportable for 

further analyses. The lighter-colored genotypes produce more offspring and the population 

evolves accordingly – genotypic differences are driving fitness differences that drive the 

evolution of the population. Further, students observe this change quickly, being able to see 

how fitness at one time point affects a later time point by observing a series of intermediates. 
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Motivation for curriculum 

Over the last couple decades, interest in modernizing science education in the United 

has reached a critical mass, resulting in the publication of several calls for instruction, 

curriculum, and assessment reform. With respect to biology content, calls for reform emphasize 

the curricular centrality of evolution as a major unifying theme. And they emphasize variational 

understanding of the evolutionary process. For example, as established in “Next Generation 

Science Standards” (2013), instruction in variationalism begins in first grade by establishing that 

phenotypic variation exists within a species. In third grade, the connection between genotypic 

and phenotypic variation is established, and, separately, differential fitness leading to 

adaptation. Middle school life sciences curriculum includes that mutation is the ultimate source 

of variation, that variation due to mutation may affect fitness, and that natural selection 

changes phenotypic frequency within a population. In high school, the requirements of natural 

selection, heritable variation causing differential fitness, are more greatly explored, connecting 

concepts established across primary and secondary education. Similar emphasis on individual-

level within-population variation being required for evolution to occur is found within the life 

sciences core ideas in “A Framework for K-12 Science Education” (2012a) and is the first big 

idea in “AP Biology Curriculum Framework” (2011).  

The most relevant reform product in the undergraduate biology curriculum space is 

“Vision and Change in Undergraduate Biology Education” (2011), which identifies five core 

foundational concepts that unify biological knowledge. Two of these, Evolution, and 

Information Flow, prominently feature variationalist understanding, as exhibited within the 

content-specific statements offered in the BioCore Guide (Brownell et al., 2014), which 

operationalized “Vision and Change” for a general biology curriculum.  

Calls for reform also emphasize the importance of science and engineering practices in 

STEM education through the engagement of students in inquiry-based and research-based 

pedagogies (Auchincloss et al., 2014; Corwin et al., 2015; Linn et al., 2015; Weaver et al., 2008). 

For example, “A Framework for K-12 Science Education” (2012a) identified eight science and 
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engineering practices. These practices embody the means by which scientists discover and 

investigate the natural world and by which engineers evaluate and design the built world 

(National Research Council, 2012a), and are applicable in undergraduate education (Cooper, 

2013). 

Another national report, “Thinking Evolutionarily: Evolution Education Across the Life 

Sciences” (2012b), identified inquiry-based laboratory experiences as being especially key for 

helping students gain a better understanding of evolution. Furthermore, it has been shown that 

exercises and labs that directly address common misconceptions can be the most successful at 

overcoming the cognitive dissonance occurring when students’ preexisting views are challenged 

(Grant, 2009; Robbins and Roy, 2007), a factor of special and significant concern for evolution 

education (Nelson, 2012). “Vision and Change” (2011) additionally highlighted that “themes of 

adaptation and genetic variation provide rich opportunities for students to work with relevant 

data and practice quantitative analysis and dynamic modeling.”  

Collectively, these documents call for a revolution in how students are taught, with best 

practices being both evidenced-based and backed by sound theoretical rationale. The Avida-ED 

lab curriculum has been designed to address the recommendations and best practices put 

forward by these documents. 

Primarily four curricular components have been suggested to produce transformational-

to-variational shifts in understanding. Since this is a profound conceptual change, Sinatra et al. 

(2008) proposed that direct exposure to the evolutionary phenomenon in class, and especially 

with a high degree of experimental engagement, has the greatest likelihood of success. 

Shtulman and Schulz (2008) and Shtulman and Calabi (2008) recommend that instructors make 

a point to highlight within-species variation across a multitude of traits. Cooper (2017) stresses 

the importance of introducing statistical reasoning and computer simulations or modeling as 

means to distinguish between the individual and population level understanding of emergent 

processes like natural selection. And Kalinowski et al. (2010) suggest that explicitly connecting 

molecular genetics concepts to evolutionary phenomenon, or further, connecting biological 
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ideas across fields of biology, especially molecular biology and genetics (Smith et al., 2009), may 

allow students to “make sense of the entire process from genes to populations” (Nehm et al., 

2009; Speth et al., 2014). Engaging across biological fields in this manner is referred to as 

“integrative thinking” (Wake, 2008). For these reasons, I hypothesized that a course experience 

featuring direct exposure to and experimentation regarding variation and its importance (i.e., 

the introduction via mutation and change via population processes) using Avida-ED, and 

especially embedded within broader integrative biology contexts, would shift students from 

transformational to variational understanding. 

Methods 

University and course population context 

Michigan State University is a large public research-intensive university located in the 

Midwestern United States, with an enrollment of 39,000 undergraduate students across 

fourteen colleges. While several introductory biology courses are taught, Integrative Biology 

was uniquely designed to be a one-semester course that explores many aspects of what is more 

commonly a two-semester introductory biology curriculum while maintaining the intellectual 

rigor required of STEM majors. We, principally Louise Mead and I, tailored the course to its 

target population of STEM students, consisting of engineering and non-life sciences majors 

needing only one semester of an introductory biology course and not requiring a separate 

laboratory course. 

Fall 2016 through Summer 2018, a total of 354 students took the course, with one 

course section offered each of the six semesters (Table 4.01). A total of 95 student group 

research projects and poster presentations were produced at the culmination of these 

semesters. In-person classes met three times weekly for 50-minute learning sessions, one of 

which was reserved for the digital evolution lab, for 16 weeks; and online-only classes used an 

online video conferencing platform, Zoom, to facilitate individual student groups in meeting 

three times weekly for one-hour active learning sessions, two of which were reserved for digital 
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evolution labs, for seven weeks. Demographically, the students were primarily first-year (55%) 

or second-year (24%) students, and most were men (80%). Students were largely enrolled in 

the College of Engineering (60%) or College of Natural Sciences (29%), with the remainder 

enrolled across seven other colleges. Students majoring in 36 distinct major concentrations 

completed the course, with 85% of these being non-life sciences STEM majors, and 57% being 

either Mechanical Engineering, Computer Science, Mathematics, or Physics majors. 

Table 4.01. Enrollment in Integrative Biology: From DNA to Populations in six consecutive 
semesters (N = 354). 

Year 2016 2017 2018 

Semester Fall Spring Summer Fall Spring Summer 

Enrollment 86 72 16 74 74 32 

Course design 

Avida-ED digital evolution lab 

The accessible presentation of variationalism in Avida-ED is reinforced by the 

instructional circumstances of the digital evolution lab experience. The lab book is grounded by 

a core curriculum sequence of five activities culminating in an independent group-based 

research project (Smith et al., 2016; Kohn et al. 2018). The core curriculum has been classroom-

tested in full and in part in undergraduate courses and high school Advanced Placement 

courses across the United States (Smith et al. 2016; Kohn et al. 2018; Lark et al. 2018). Avida-ED 

curriculum resources, distributed as ancillary to the lab book, include a popular science article 

on Avidians (Zimmer, 2005), the Avida-ED Quick Start Manual (accessible from the Help toolbar 

in Avida-ED), and curriculum activities exploring additional topics, such as genetic engineering 

and mutation rate evolution (Johnson et al., 2011a, 2011b; Lark et al., 2014). 

The first five activities, constituting the core Avida-ED curriculum, are designed to 

support student understanding of evolution, the Avidian experimental system, and 

experimentation in science generally. First presented by Smith et al. (2016), the activities were 

expanded and modified by Kohn et al. (2018) to include an additional exercise on genetic drift, 
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further develop student expertise in the features of the Avida-ED system, incorporate 

assessment of science and engineering process skills, and otherwise expand the treatment of 

evolutionary concepts. Student familiarity with the system is jointly scaffolded with 

fundamental biology concepts. The biology content supports a conceptual progression from the 

initiation of differences between individuals in a population to the consequences of those 

differences:  the origin of biological variation via mutation, the randomness by which mutations 

occur, the environment-specific concept of absolute fitness and population-specific concept of 

relative fitness, and finally the evolutionary processes of natural selection and genetic drift, 

highlighting the effects adaptive and non-adaptive change have on variation in an evolving 

population. The modern scientific understanding of variationalist evolutionary progression is 

emphasized, experimented on, and discussed throughout each of these core curriculum 

activities. 

Being a true experimental study system, each of these activities involves the collection 

of novel data, and the results of any given Avida-ED lab experiment will likely not be as the 

instructor would predict for each individual student. Data sharing, statistical analysis, and 

classroom discussion uncovers the processes underlying the biological and experimental 

replicate variation. Since the aggregate results for each activity is highly predictable to the 

instructor although not to the average student, this portion of the curriculum fits the inquiry as 

opposed to traditional model of research authenticity (Fig. 4.01). Avida-ED activities include a 

ready means of online data collection, analysis, and presentation using established Google 

Sheets files. This allows students to compare their relatively limited set of data with that 

collected by a much larger set of students. By contributing their de-identified data, students can 

see their contributions towards an accumulating research dataset. These methods provide an 

excellent opportunity to discuss the importance of sample size when investigating phenomena 

fraught with experimental variation and, further, the potential for human error. For example, 

the accumulated results for the first lab exercise show two systematic differences from 

theoretically predicted outcomes. Such results are organic to the research experience, being 
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explainable by rare, though repeated student methodological and data transcriptional errors. 

The ensuing conversation highlights the reality of science being a human endeavor. 

 
Figure 4.01. Models of research authenticity compiled from the literature on modes of 
investigation in laboratory environments (Ballen et al., 2017; Buck et al., 2008; Corwin et al., 
2015; Domin, 1999; Goodwin et al., 2021; Seymour et al., 2004). 

In Avida-ED curricula such as that used in the present study, after completing the core 

curriculum activities and gaining a familiarity with the model system specifically and 

experimentation in science generally, groups of students conduct independent research 

projects. Students are expected to draw connections across research systems by exploring 

biological phenomena within the digital experimental evolution system, and by testing 

evolutionary mechanisms that cannot typically be addressed during other types of biology lab 

experiences. This aspect of the Avida-ED curriculum highlights the full potential of the model 

system by encouraging students to conduct their own experiments, all while exploring the 

nature of scientific reasoning itself. For instance, students can change environmental and other 

variables and perform controlled experiments to test their own evolutionary hypotheses. 

Students can see for themselves how evolutionary hypotheses can be supported by empirical 

tests. Thus, students learn first-hand that scientists base conclusions upon repeatable empirical 

observations to construct arguments from evidence. By doing so, Avida-ED provides an 

environment for students to directly confront and correct their misconceptions about the 

scientific status of evolutionary theory and about the nature of scientific practices. 
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Student groups first brainstorm a research question and take ownership of the resulting 

research. Early in the process, each group prepares and presents a research proposal; this 

requirement is designed to prompt careful planning, and it allows the instructors an 

opportunity to provide formalized feedback early in the process when it can hopefully have the 

greatest impact. Feedback via critical yet encouraging guidance continues throughout the 

semester and, as is similar for other experimental evolution labs (Cotner and Hebert, 2016), is 

often crucial to helping students overcome common experimental pitfalls – for example, basic 

misunderstandings regarding Avidian biology, experimental design flaws, or failure to 

investigate phenomena left unexplored in the introductory exercises. Depending on the 

originality and experimental design creativity of the students, a proportion of experiments each 

semester investigate phenomena whose results are unknown to the instructor and potentially 

the scientific community broadly, and therefore clearly fit the discovery-based inquiry model of 

research authenticity (Fig. 4.01). The remaining experiments are inquiry-based, with results 

expected by the instructor with varying degrees of accuracy. Based on the sophistication of 

students’ biology expertise, published research using biological systems may be sought by the 

students during their research process or provided by the instructors. Related publications may 

provide students with conceptual or experimental design inspiration for their research, in 

addition to reinforcing the analogy of Avidian experimentation with biology research in other 

living systems. Before completing the final draft of their research poster, students participate in 

a peer review process; this provides an opportunity for students to engage in the critical 

assessment of the content and practices involved in the work of others and, ideally, to 

metacognitively examine their own work. The conclusion of the digital evolution laboratory 

experience is a public poster presentation session in which student groups present their work 

to one another, the instructors, and members of the university community. This professional 

presentation opportunity is similar to that of a scientific conference poster session. 
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Other course features 

The Integrative Biology curriculum is exemplified by its name – using integrative thinking 

(Wake, 2008) to unify the disciplines of biology across spatial, temporal, and taxonomic scales 

to holistically examine biological systems and processes. This provides context to and 

strengthens the variationalist patterns experimented upon in the digital evolution lab. A case-

based approach was used with evolution as the organizing force across both the biological 

world and the course material. As Theodosius Dobzhansky (1973) famously remarked, “nothing 

in biology makes sense except in the light of evolution.” The otherwise sundry biological 

minutiae and content is best understood and appreciated through the evolutionary lens. As 

such, evolution is an explicit theme of Integrative Biology, which consists of a sequence of 

seven content units. Each unit, except the first on tree-thinking, focuses on a specific biological 

system (for example, Caribbean anole lizards) and the scientists actively conducting that work. 

Integrative thinking allows the students to holistically investigate the biological phenomena of 

each unit. For example, students may examine the progression of a biological trait, exploring its 

genotypic basis, genetic expression, intracellular function, and resulting tissue- and organismal-

evident phenotypic expression, and finally its population-level change due to an evolutionary 

process like natural selection (White et al., 2013). Other example progressions entail a different 

suite of biological subfields: organismal trait expression, population-level frequency variation, 

ecological mechanisms, and finally ecosystem effects. For each case, evolutionary origins, 

mechanisms, and/or consequences are investigated. This integrative approach emphasizes 

variationalism by highlighting the evolutionary consequences of variation among individuals in 

a population, and across a range of taxonomic diversity. Further, these biological examples 

reinforce the processes and patterns observed in the digital evolution lab using explicit 

analogies and discussions connecting the systems. 

In addition to their research with Avida-ED, students interact with authentic biological 

data collected by the scientists researching the biology of the cases under study. Depending on 

the activity, students work with this data at multiple stages of the scientific process: selecting 
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which variable to research, collecting data, summarizing data statistically, graphing results, 

interpreting evidence, and/or presenting conclusions. One activity is meant to demonstrate 

how meticulous data collection in science can often be (“Lizard Evolution Virtual Lab,” 2014). In 

this work, students measure several phenotypic characters of individuals among related 

species. Of course, it also prompts them to become familiar with individual-level variation – 

variation that is then discussed in terms of the macroevolution of several related species. 

Fulfillment of calls for curriculum reform 

Throughout the Avida-ED lab curriculum, students engage with each of the eight science 

and engineering practices identified in “A Framework for K-12 Science Education” (National 

Research Council, 2012a), including both the science and engineering-specific framings (Kohn et 

al., 2018). However, some practices incur lesser student engagement in the core activities as 

compared to the independent research project. For example, while the research topic, 

experimental methodology, and statistical analyses are provided as part of the core activities, 

students are prompted to engage with each of these through short answer assessment items 

and instructor-facilitated discussion. These early experiences prepare students to 

independently participate in the eight practices while conducting their research projects.  

Working with authentic biological data, students further develop their science and 

engineering practices in contexts other than with Avidians. While most Avida-ED activities 

approach biological phenomena with a scientific lens by asking questions and constructing 

explanations, a few of the non-Avida-ED activities explicitly use the lens more associated with 

engineering, that of identifying problems and designing solutions. Proposing, evaluating, and 

iteratively adjusting a scientific model is explicitly practiced in some activities so that students 

actively engage in evaluating their own mental model of the phenomenon. For example, 

students iteratively create increasingly complex models of the interplay between 

communicative and morphological phenotypes with sexual and natural selection in the context 

of crickets and their parasites. Students also practice data management and basic statistical 

analyses and interpretations, including measures of experimental variation such as confidence 



164 

interval construction and statistical significance determination, emphasizing how important 

variation is for understanding biological mechanisms and interpreting hypotheses and 

experimental results. 

Most recommended introductory undergraduate biology education content from 

“Vision and Change in Undergraduate Biology Education” (2011) and The BioCore Guide 

(Brownell et al., 2014) is addressed in the course. Across the course, over ninety percent of the 

BioCore Guide content statements are addressed and assessed at least once, with many 

revisited in multiple systems and using varied assessment styles. This fact highlights the 

pervasiveness of integrative thinking throughout the course along with the opportunity to show 

the connection between individual trait variation and its evolution. For example, the unit on 

selection and convergence in mouse coat color variation, adapted from White et al. (2013), 

revisits ten content statements covered earlier in the course and introduces ten new content 

statements from across four core concepts and all major subdisciplines of biology. Twenty 

percent of the content statements are specifically explored in the Avida-ED lab core activities. 

For example, one of the statements investigated in the third Avida-ED lab exercise is: 

“Mutations and epigenetic modifications can impact the regulation of gene expression and/or 

the structure and function of the gene product. If mutations affect phenotype and lead to 

increased reproductive success, the frequency of those alleles will increase in the population.” 

This statement corresponds to the core concept of Evolution with connections to the biology 

subfields of Molecular, Cellular, and Developmental Biology. 

Additional content statements may be revealed by student groups during their research 

process. Consider the core concept Evolution, sub-discipline Physiology statement, 

"Physiological systems are constrained by ancestral structures, physical limits, and the 

requirements of other physiological systems, leading to trade-offs that affect fitness." Some 

students discover that the evolution of Avidian functions can involve trade-offs wherein the 

gain of a selectively beneficial complex function requires, due to the Avidian’s particular genetic 

or physiological machinery (Lenski et al. 1999), the loss of a simpler function. Another 
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statement commonly addressed is the Information flow core concept, Ecology/ Evolutionary 

Biology sub-discipline statement, "A genotype influences the range of possible phenotypes in 

an individual; the actual phenotype results from interactions between alleles and the 

environment." Some students come across this genotype-by-environment interaction in which 

an Avidian genotype inconsistently performs a function. This is because Avidian function 

performance requires encountering and utilizing random numbers in the digital environment, 

and some number combinations require fewer computational steps to output the product 

necessary to fulfill a function. Those students that encounter this phenomenon do not have the 

requisite Avidian taxonomic expertise to understand what is occurring. Thus, this can be an 

extenuating factor causing experiments to produce unexpected results. Once this genotype-by-

environment interaction is elucidated by the instructor, this experience can provide a fantastic 

learning opportunity of “failing to succeed,” similar to that described by Linn et al. (2015) and 

Goodwin et al. (2021). 

The course curriculum also addresses ten recommendations by Hillis (2007) for including 

evolution in introductory biology education. It demonstrates that evolutionary research is 

ongoing through units such as those on the E. coli Long Term Evolution Experiment (Lenski et 

al., 2015), in part adapted from the curriculum of White et al. (2013). The evolutionary 

processes of mutation, natural selection, genetic drift, and migration are explored and 

contrasted in multiple systems, clarifying that evolution is not a synonym for natural selection 

but rather change in individual variation over time. Fresh examples are used and continually 

updated, for example additional research on the evolution of quiet Hawaiian crickets (Balenger 

and Zuk, 2015) has recently been published (Schneider et al., 2018) and will be included in 

future iterations of the course. Examples such as the co-evolutionary significance of the human 

skin and gut microbiome are used to show how evolution is relevant to human lives. Numerous 

examples of evolutionary biology from popular media are incorporated, including many 

YouTube videos and NPR interviews of researchers conducting and explaining their work. The 

course includes experimental evolution both with a unit on biological experimentation in the E. 
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coli Long Term Evolution Experiment (Blount et al., 2008; Lenski and Travisano, 1994) and the 

digital evolution lab in which students conduct their own experimental research. Instead of 

being taught only in the context of organismal biology and ecology, Evolution is integrated 

throughout the course and is the unifying thread connecting the material, as has been called for 

by Smith et al. (2009), among others. Tree-thinking is explored in the first unit of the course to 

provide a conceptual basis and means of understanding later material. The diversity of life is 

highlighted using units featuring taxa from across biological diversity, including plants, 

mammals, bacteria, insects, mollusks, and reptiles. And finally, the great magnitude of 

evolutionary time is emphasized through discussions on the origin of sex and photosynthesis. 

The Avida-ED laboratory experience shares features with other experiences that have 

been shown to have a multitude of benefits. Corwin et al. (2015) suggests that similar 

combinations of activities, especially in the context of course-based undergraduate research 

experiences, improves cognitive, psychosocial, and behavioral outcomes. For example:  Avida-

ED and other activities throughout the course require students to work in small, cooperative 

groups, a context with well-documented benefits (Smith, 1996; Smith et al., 2005). The research 

project, in particular, provides teamwork experience in addition to the greater student 

interaction facilitated by inquiry-based learning (Aditomo et al., 2013; Felder and Brent, 1996). 

Research experiences prompt students to more greatly identify themselves as being scientists 

or part of the science community (Carlone and Johnson, 2007), in addition to promoting 

interest in their degree and retention in STEM generally (Bangera and Brownell, 2014), 

especially for unrepresented persons in these fields (Eagan Jr. et al., 2013; Espinosa, 2011).  

Furthermore, conducting research using Avidians necessitates an explicit 

interdisciplinary connection between biology and computer science; by solving conceptual 

problems in complex interdisciplinary systems students may improve learning and cognitive skill 

development (Betz, 1995). Computational tools in education have been shown to have well-

documented benefits with regards to student learning and engagement. For example, such 

tools facilitate the connection of observed phenomena with underlying causal processes 
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(Magana, 2017), and allow students to observe the unobservable (Trey and Khan, 2008), for 

example electrons moving in electrical circuits or, as with Avida-ED, variationalism as individual-

level variation producing population-level evolutionary change within minutes. In some cases, 

students prefer computational tools over conventional tools and knowledge sources, reporting 

greater interest in the material (Akkoyun, 2017). Additionally, some students interact with 

Avida-ED in a manner akin to gamification, which can strongly encourage student engagement 

(Drace, 2013). Interest, in turn, influences affective response and persistence, which influences 

learning (Ainley and Ainley, 2011; Rotgans and Schmidt, 2009, 2014). Furthermore, by 

conducting authentic scientific investigation as part of a course, students tend to experience 

greater gains in content knowledge (Minner et al., 2010). While most of these benefits have not 

yet been shown with the use of Avida-ED specifically, the features of the digital evolution lab 

experience suggest they may indeed occur. 

Assessment 

To assess transformational and variational reasoning, I used a three-item assessment 

featuring a graphical representation of color variation in the peppered moth Biston betularia 

during the industrial revolution in England (Fig. 4.02). The assessment stem established that 

moths darkened over time, that the coloration is heritable, and that the proposed samples are 

representative of the historical populations. Two potential collections of moths sampled across 

100 years in 25-year intervals are proposed, Panel A and Panel B. Respondents are prompted to 

provide a separate explanation for each sample's phenotypic pattern and then choose and 

defend which collection would be more likely to have existed. Panel A presents sequentially 

darker populations that exhibit individual-level variation in white and dark moth variants, with 

dark moths increasing in frequency over time (Fig. 4.02). Note that in this panel, the population 

neither begins with all white moths (i.e., prior to a mutation conferring the dark coloration) nor 

ends with all black moths (i.e., fixation of the dark variant), but rather maintains 

contemporaneous phenotypic variation at each sampling interval. Panel B presents sequentially 



168 

darker populations that each exhibit a lack of variation among individuals, with each successive 

population being slighter darker than the previous sampling interval. 

 
 
Figure 4.02. The assessment regarding melanic moth populations with idealized variational 
(Panel A) and transformational (Panel B) evolutionary trends, as modified from Shtulman 
(2006). 

The assessment tool used in this study is modeled after a portion of an assessment by 

Shtulman (2006) that also addresses transformational and variational understanding of 
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biological variation. The entire assessment of Shtulman (2006) consisted of thirty items that 

aimed to distinguish variational and transformational interpretations for each of six 

evolutionary phenomena:  variation, inheritance, adaptation, domestication, speciation, and 

extinction. The five-item subset on variation first presented the peppered moth scenario within 

an explicit adaptive evolution context and inquired “how might a change in the moths’ 

environment brought about a change in the moths’ color?” The remaining four items involved 

shading a set of 25 moth outlines, arrayed with five moths every 25 years as per Panel A or B in 

our assessment, but with no color variation other than that which the participant selected. 

Participants shaded each moth per row to reflect the color variation they would expect to have 

been observed historically, choosing from one of five grayscale values for each moth.  

Our goals in modifying the assessment of Shtulman (2006) were to exclude the 

requirement of natural selection, to reduce the measurement error associated with the original 

scoring system, for which 31% of respondents produced uninterpretable shading patterns, and 

to facilitate digital survey collection by using standard item formatting. The moth figure used in 

our assessment (Fig. 4.02) reflects two competing scenarios – the ideal variational (panel A) and 

transformational (panel B) shading patterns sought by Shtulman (2006) in his Figure 2. While 

Shtulman (2006) offered some limited evidence on content validity for his assessment (i.e., 

three biology doctorates reviewed the items), it is unclear how this evidence relates to the 

entire instrument versus the specific portion used here with modifications. 

Responses 

Using an online survey platform, students completed the assessment twice, during the 

first week and then during the last two weeks of instruction for in-person course semesters and 

during the first and last week of online-only course semesters. Completion was incentivized 

with a small amount of extra course credit and was weighted such that completion of both pre- 

and post-course surveys awarded substantially greater extra credit. The transformationalism-

variationalism items analyzed here (Fig. 4.02) were a subset of the survey, which additionally 

contained multiple choice and other open-ended items addressing other facets of evolution 
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education. A total of 649 surveys were returned, of which 611 were fully completed with 

respect to the transformationalism-variationalism portion, for an overall response rate of 84%. 

Of these, 103 students completed only the pre- or post-course survey, while 254 students 

completed both the pre- and post-course surveys for a joint response rate of 70%. 

Scoring 

Each survey submission was scored as transformational (T), variational (V), or other (O), 

with the latter including all responses that were not otherwise classifiable (Fig. 4.03). An initial 

scoring rubric was created based on the theoretical distinction between transformational and 

variational understanding (Coley and Muratore, 2012; Coley and Tanner, 2015; Gregory, 2009; 

Shtulman, 2006; Shtulman and Calabi, 2008; Shtulman and Schulz, 2008; Sinatra et al., 2008; 

Speth et al., 2014). Multiple scorers examined a set of responses for non-biology majors in a 

different course and revised the rubric following discussion. Two scorers then independently 

evaluated all Integrative Biology responses reported here, with discussion and rubric revision 

occurring throughout this process, before reaching finalized consensus scoring across all 

responses. Inter-rater reliability was calculated using Cohen’s kappa between the two scorers 

prior to consensus being reached through discussion and was calculated for both all completed 

responses and the subset of paired pre-/post-course responses. 
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Figure 4.03. Melanic moth assessment rubric including the process for choosing which items to 
score and the criteria for awarding scores of variationalism (V), transformationalism (T), and 
other (O). Underlining indicates a scoring distinction between panels A and B, and colored font 
further indicates the same response as being scored differently depending on the chosen panel. 

A single score was given for each participant per survey disbursement. The default score 

was O, with the response requiring explicit endorsement of an appropriate V or T response. The 

rationale for the rubric (Fig. 4.03) is that although both conceptualizations of variation may 

recognize that variation exists among individuals in a population, those with a variational 

understanding will deem it with consequential importance as contributing to evolutionary 

change over time. Note that only rejecting transformationalism by, for example, stating that the 

Scoring process determined from item 3 response: 

If pattern A more likely → Evaluate items 1 and 3 

If pattern B more likely → Evaluate items 2 and 3 

O score – Any other response, including choosing both or neither 

Scoring for items 1 and 3, explanation for panel A: 

V – A variant within the population is changing or should change over time. 

T – Explicitly refers to the essence of the species changing. 

O – Any other response, including: The moth (population or species) is evolving, 

changing, adapting, developing, dominating, etc; natural selection or other 

evolutionary process without mention of phenotypic variation; uncertainty if moth 

variants can mate or if they are in the same population or species; variation among 

selective environments without mention of phenotypic variation. 

Scoring for items 2 and 3, explanation for panel B: 

V – A variant within the population is changing or should change over time and explicitly 

states that variation exists at a single time. 

T – Explicitly refers to the essence of the species changing; or the moth (population, 

species, genotype, phenotype) is evolving, changing, adapting, developing, 

dominating, etc. 

O – Any other response, including: Evolution is occurring rapidly without mention of 

individual variation; natural selection or other evolutionary process without mention 

of phenotypic variation; uncertainty if moth variants can mate or if they are in the 

same population or species; variation among selective environments without 

mention of individual phenotypic variation. 
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population would not change in unison, was insufficient to score a V, as were references to 

genetics concepts alone, e.g., mutation, allele, dominance, or recessivity. The selection of items 

reviewed per participant depended on the item 3 response. If a student indicated that either 

panel A or panel B was most likely to be observed, then their score was based on their answer 

to item 3 and the item corresponding to their selection (item 1 or 2, respectively). The rationale 

for this differential scoring process is that a student may have difficulty justifying the panel that 

does not conform to their understanding of biological variation and evolutionary processes. The 

O (“other”) score represents an inability to differentiate a response as transformational or 

variational (i.e., measurement error) and is not necessarily intended as a determination of a 

mixed model of understanding (Evans, 2008) or pre-variationalism (Shtulman, 2006). 

An identically worded explanation for panel B with it being chosen as most likely may 

result in a different score than if it was the explanation for panel A by a student who chose 

panel A. Such instances are highlighted in Figure 4.03 with underlining and examples are 

provided in Table 4.02. Because the panels presented a distinction between whether variation 

among individuals exists within a population at a given time, we deemed that a student’s choice 

of panel A provided some evidence of variational thinking and likewise for a choice of panel B 

and transformational thinking. Therefore, the rubric indicates a lower scoring barrier for T 

scores when choosing panel B and for V scores when choosing panel A. For example, a vague 

response such as “the moth population is evolving” was awarded an O if it was an explanation 

for panel A as being most likely, but a T for panel B (i.e., the blue text in Fig. 4.03). In describing 

panel B, a V score required additional explication that variation existed within the population at 

a given time, as opposed to simply being different between generations as represented in that 

panel. The additional O response in explanations of panel B, evolution occurring rapidly, was 

added because this may be a scientifically accurate explanation for a variational process, 

although this was insufficient by itself to warrant a V.  
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Table 4.02. Example scored responses of transformational (T), variational (V), and other (O) for 
panel chosen as most likely in item 3, with item 1 or 2 reviewed depending on panel chosen. 

Panel, 
Score 

Item 3 Item 1 or 2 Reason 

A, V Panel A is due to the fact you can 
see moths evolving in order to 
adapt to the area they are in. 

With the predator sight being 
drawn to a darker colored moth, as 
the environment started to change, 
the ability to see the darker colored 
moths where difficult compared to 
seeing the lighter moths. 

Variant should 
change over 
time 

A, V I would say A is more likely to be 
observed because populations 
don't all just change at once. 
Through adaption, one ancestor 
passes the trait on to offspring 

One moth was randomly dark and 
passed this trait on to the offspring. 
This continued down the line 

Variant 
changing over 
time 

A, T No such responses provided by Integrative Biology students surveyed 

A, O A, because it would be gradual, not 
each generation being darker than 
the previous. 

The moths gradually darkened over 
time. 

Moth species 
is evolving 

A, O Panel A, as the evolutionary 
timeline in panel B is a bit fast. 100 
years for a complete colour change. 

The independent population of 
dark butterflies was more fit than 
the light ones. 

Separate 
populations 

B, V B is more likely given that it is a 
more gradual process of color 
change. 

There was a more gradual 
environmental change which 
selected moths with darker color to 
survive and reproduce over those 
without that phenotype. 

Variation 
existing at a 
single time 
changes in the 
population 

B, V I think that panel B is more likely 
because the difference is too great 
in panel A between the moths for 
the two colors to coexist for that 
long. 

Over time, a series of random 
mutations that made the moths 
slightly darker occurred. These 
mutations were beneficial enough 
that they outcompeted the other 
types and the entire population 
became gradually darker over time. 

Variation 
existing at a 
single time 
changes in the 
population 

B, T Panel B because all members of the 
species darkened and had a chance 
at an increased survival rate. 

The whole moth species gradually 
began to darken as opposed to a 
rapid darkening in a few members 
of the species. 

Moth species 
is evolving 

B, T Panel B is definitely more likely to 
occur as all of the moths have 
many of the same survival and 
reproduction genes making it way 
more likely for them to darken as a 
population and gradually rather 
than individuals and suddenly. 

Over the course of the century, the 
moth population as a whole was 
slowly developing a slightly darker 
shade of grey in order for survival. 
As the years progressed the shades 
became darker. 

Moth species 
is evolving 
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Table 4.02 (continued)  

B, O Panel B. It seems unlikely that 
with 100 years of selective 
pressure that there would still be 
a light moth in 1900. 

There was selective pressure 
on the light moths to darken. 

Evolutionary 
process without 
mention of 
individual variation; 
also, rapid 
evolution 

B, O panel B because when an invasive 
species arrives, if its trait was 
more preferable then the other 
one it would take over extremely 
quick were panel A has a slow 
natural selection occurring. 

over time the darker the moth 
became the higher chance of 
surviving the moth had 
allowing for more offspring, 
which slowly changed the 
color of the population. 

Separate species; 
also, rapid 
evolution 

Neither, 
O 

Natural selection is more likely to 
occur because this is how most 
organisms adapt to their 
environment. 

Not reviewed Neither panel 
chosen 

Both, O I think they are both equally likely 
to occur. Both seem to be caused 
by the influence of a trait that 
wasn't there before. 

Not reviewed Both panels chosen 

Statistics 

As an initial control to evaluate whether respondents provided longer responses pre- 

and post-course, repeated-measures t-tests were conducted for the number of words and 

characters, and for both the complete response provided to all three items as well as just the 

scored portion of the response. A three-factor by two-factor Chi-square test was used to 

evaluate an overall difference in transformational (T), variational (V), and indeterminable 

(“other,” O) responses among pre- and post-course scores among all completed responses and, 

separately, among the paired responses. Following this, each was partitioned into orthogonal 

two-by-two tables (Sharpe, 2015). This analysis independently evaluated the pair of factors of 

interest here, i.e., scores of transformational versus variational, and the pair of factors of lesser 

interest, i.e., scores classifiable as transformational or variational versus other. Since these sets 

of data were orthogonal, adjustment for multiple comparisons was not needed.  

A McNemar-Bowker test was used to evaluate symmetry among pre-to-post-course 

score shifts among paired responses only; for example whether the number of students that 
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shifted from transformationalism to variationalism was significantly different from the number 

that shifted from variationalism to transformationalism (i.e., T-V vs. V-T). Individual McNemar 

tests were then used to evaluate each of the three pairs of comparisons (T-V vs. V-T, T-O vs. O-

T, and V-O vs. O-V) and Bonferroni adjustments were conducted for the resulting p-values. All 

Chi-square and related analyses additionally included Cramér's V, which is a measure of 

association or effect size and has the same interpretation as a Pearson correlation coefficient. 

All statistical tests were completed using Microsoft Excel. 

Results and Discussion 

For students that responded to both the pre- and post-assessment, there was no 

significant difference in the length of responses provided for either assessment (Table 4.03) 

regardless of whether all three items or only the scored items were compared. To put these 

values into perspective, the first set of example responses in Table 4.02 for panel choice A & 

score O, choice B & score V, and choice A & score V are representative of the lower quartile, 

mean, and upper quartile word and character lengths. It was often extremely difficult to classify 

student understanding when sparsely detailed responses were provided. Since instances of 

insufficient evidence inflate the number of O scores, it is important that a lack of significant 

difference in response length pre- and post-course was found. 

Table 4.03. Mean word and character counts for paired student responses with repeated-
measures t-tests (N = 254, df = 253) showing no significant differences. Relevant word and 
character counts include only the subset of items used for scoring, see Figure 4.03. 

 
Mean Word 

Count 
Mean Character 

Count 
Mean Relevant 

Word Count 
Mean Relevant 

Character Count 

Pre-course 56.5 324.1 39.2 223.5 

Post-course 54.9 319.8 37.7 217.3 

p-value 0.4 0.69 0.33 0.49 

The rubric appeared to function as expected. Inter-rater reliability was sufficiently high 

(Hallgren, 2012) between the two scorers. Percent agreement was 87.2% across all responses 

(N = 611), with a Cohen’s kappa of 0.783. For the paired responses only (N = 508), percent 
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agreement was 86.8% with a kappa of 0.774. The rubric was designed to differentiate among 

means of understanding depending on the panel chosen as most likely to have been historically 

observable (item 3), with a lower barrier for scoring variationalism when panel A was chosen 

and likewise for transformationalism and panel B. This result was observed. Of the 400 students 

that chose panel A, 76% of the responses were scored as variationalism and 0% as 

transformationalism; and of the 188 that chose panel B, 61% of the responses scored as 

transformational and 14% as variationalism. The remaining proportion of students whose 

understanding was indeterminable when choosing panel A or B, 24% and 26% respectively, was 

near identical, suggesting that scoring for this catch-all category was not biased depending on 

panel chosen. 

There was a significant difference in the proportion of student understanding of 

variation pre- and post-course across all completed responses (Fig. 4.04). The difference in 

student understanding was statistically significant in the omnibus analysis of all responses 

(χ2
2,611 = 15.106, p < 0.001) with an effect size of 0.157. This result was driven by the pre-/post-

course differences in transformational and variational understanding, as evidenced by its 

partitioned analysis (χ2
1,445 = 13.401, p < 0.001) with an effect size of 0.174. This contrasts with 

the orthogonal partitioning of students with transformational or variational thinking compared 

to students whose understanding was indeterminable, which was non-significant (χ2
1,611 = 

1.822, p > 0. 1).  
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Figure 4.04. Percent of all students demonstrating understanding of biological variation pre-
course (dark, N = 340) and post-course (light, N = 271), with asterisks indicating significance.  

There was also a significant difference in student understanding for the subset of 

students that completed both pre- and post-course surveys (Fig. 4.05, overall states of 

understanding and black asterisks; Table 4.04, sums). The difference in student understanding 

was statistically significant in the omnibus analysis comparing changes in the overall states of 

understanding (χ2
2,508 = 12.711, p < 0.001) with an effect size of 0.158. The post-hoc tests 

demonstrated that both orthogonal partitioned datasets were significant, comparing 

transformational and variational understanding (χ2
1,374 = 13.298, p < 0.001) with an effect size 

of 0.189 and comparing transformational or variational thinking to students whose 

understanding was indeterminable (χ2
1,508 = 9.889, p < 0. 005). Therefore, the proportion of 

students with transformational understanding significantly decreased and the proportion with 

variational or indeterminable understanding significantly increased. 
 



178 

 
Figure 4.05. Percent of paired-response students (N = 254) demonstrating understanding of 
biological variation pre- and post-course, with asterisks indicating significance between 
pre/post states of understanding (black) and directionality of shifts between states (pink). 

Table 4.04. Detailed percentage breakdowns for paired-response students (N = 254) 
demonstrating understanding of biological variation pre- and post-course. 

 

Pre-course  

Transformational Other Variational Sum 

P
o

st
-

co
u

rs
e Transformational 5.9% 2.4% 3.9% 12.2% 

Other 8.3% 8.3% 13.4% 29.9% 

Variational 9.8% 12.2% 35.8% 57.9% 

 Sum 24.0% 22.8% 53.1% 100% 

There was asymmetry in the directionality of shifts between states of understanding for 

the paired-response students (Fig. 4.05, colors crossing and pink asterisks; Table 4.04, off-

diagonal percentages). The directionality of shifts in student understanding was statistically 

significant in the omnibus analysis (χ2
3,254 = 14.900, p < 0.005) with an effect size of 0.242. This 

result was driven by two significant factors:  greater transitions from transformational to 

variational understanding rather than in the reverse (χ2
1,35 = 6.429, adj. p < 0.05) and greater 

transitions from transformational to indeterminable understanding than in the reverse (χ2
1,27 = 

8.333, adj. p < 0.005). In comparison, there was a lack of significance in transitions between 

variational and indeterminable understanding (χ2
1,65 = 0.138, adj. p > 0.1). These results 
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provide the means to explain the significant overall shifts in student understanding among 

paired-response students (Fig. 4.05, black asterisks) and potentially, albeit untestable, among 

all students (Fig. 4.04). 

These results are encouraging, especially in comparison to prior work. The pre-course 

proportion of students identified here as transformationalists is similar to that identified for 

nonbiology majors and biology majors by Richard et al. (2017), and for the biology majors by 

Coley and Tanner (2015), although less so than their nonmajors. Unlike Richard et al. (2017), 

who saw no change in transformational understanding between entering and advanced biology 

majors (i.e., after multiple semesters of instruction), the proportion of students here was 

halved at the conclusion of their one, and likely only, college biology course (Fig. 4.04). At least 

half of this change is attributable to students shifting from transformational to variational 

understanding, with the remainder shifting to the catch-all “other” classification (Fig. 4.05). 

Shtulman and Calabi (2008), using the assessment of Shtulman (2006), reported a slightly lower 

prevalence of transformational thinking among biology students than reported here. 

Unfortunately, their results are not comparable to those reported here because their 

assessment measured variational and transformational understanding on a single continuous 

interval scale and with respect to inheritance, adaptation, domestication, speciation, and 

extinction in addition to variation alone. For example, Shtulman (2006) classified students as 

pre-variationalists if they held variational views of adaptation and inheritance but 

transformational views of variation and the other factors assessed. Additionally, it would be 

ideal if the effect size results observed here could be compared to those in prior work (Sun et 

al., 2010); unfortunately, they were not reported. 

The proportion of students that could not be classified as having either variational or 

transformational understanding (i.e., “other”) increased pre-/post-course for paired-response 

students (Fig. 4.05), although not significantly so for all students (Fig. 4.04). Perhaps the 

increased proportion of paired-students coded as “other” may be attributed to their 

incorporation of new information into mixed models of understanding as students shift from 
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transformational to variationalism (Evans, 2008) or pre-variationalism (Shtulman, 2006). This 

might especially explain the 8.3% of paired-response students that shifted from 

transformational to “other,” which was statistically significant from the 2.4% that switched 

from “other” to transformational (Table 4.04). Research will be necessary to test this 

hypothesis, especially using methods with reduced measurement error. While slightly more 

students shifted from variational to “other” than in the reverse direction (13.4% versus 12.2%, 

Table 4.04), this difference was not significant; combined, these groups constitute more than a 

quarter of all paired-response students and are the clearest indicators of measurement error 

for this assessment. Overall, the proportion of “other” is slightly lower than the 31% of 

ambiguous responses in the original assessment (Shtulman, 2006), indicating that our 

assessment had limited success in reducing measurement error.  

It is evident from reviewing student responses that there are a variety of means by 

which a student may preserve a transformationalist perspective. For example, students may 

misunderstand the mutational process as one that acts on all individuals in the population 

simultaneously. In this way, the species’ genomic identity can be construed as its essence and 

the mutation as its means of change (Coley and Tanner, 2012; Fodor, 1998; Gelman, 2004). 

Seemingly based on a reductionist, molecular means, this transformational model might appear 

to have a modern scientific basis; although of course it entails a gross misunderstanding about 

how mutation occurs. It is unclear if these observations support mixed model creation (Evans, 

2008; Shtulman, 2006), the strengthening of transformationalism following biological education 

(Coley and Tanner, 2015), or both. If such student understanding is a conflation of the concepts 

of mutation occurring to an individual and substitution occurring within a population then it 

may be an instance of confusion over levels of the system, i.e., a failure in population thinking 

(Cooper, 2017; Mayr, 1994). Or it could instead be a case of students improperly applying 

terminology for the mechanism of change (e.g., mutation instead of substitution) or the 

product of such change (e.g., mutation instead of allele) and therefore being incorrectly 

classified non-variationalists. 
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Other students seem to propose ecological or physiological processes that were not 

intended. For example, many students were classified as “other” due to their indication that 

multiple populations or species of moth existed in panel A, and others proposed phenotypic 

plasticity to explain panel B. These biologically plausible responses may be due to either 

creative thinking or may instead be a cover for an innate essentialist reasoning strategy by 

suggesting that evolution is not occurring at all. 

Conclusions 

This work demonstrated a significant change in student understanding of variation after 

a single semester of instruction. The cognitive stickiness of the essentialist intuitive reasoning 

strategy as expressed through a transformationalist understanding of the importance of 

individual variation (Gelman, 2004; Speth et al., 2014) was not shown here, as 9.8% of all 

students switched from transformational to variationalism, with the potential improvement of 

up to 18% whose “other” responses may be indicative of mixed-model reasoning (Table 4.04). 

Stated in a different way, relative to the proportion of students that began as 

transformationalists, 40% of them switched to variational understanding and a total of up to 

75% potentially improved their understanding. This result might be attributable to the direct 

exposure to and experimentation regarding variation and its importance using integrative 

thinking, statistical reasoning, and computer modeling via Avida-ED, as hypothesized here and 

suggested generally by Sinatra et al. (2008), Kalinowski et al. (2010), Speth et al. (2014), and 

Cooper (2017). However, the Avida-ED curriculum was one component among many in a course 

that emphasized within-species variation and population thinking in considering evolution 

across multiple levels of biological organization, as also hypothesized here and suggested 

generally by others (Kalinowski et al., 2010; Nehm et al., 2009; Shtulman and Calabi, 2008; 

Shtulman and Schulz, 2008; Smith et al., 2009; Speth et al., 2014). Further, throughout the 

course, observations and results made using Avida-ED were directly compared with those 

gathered from biological sources such that an understanding of the importance of variation in 
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one context may be tied to an understanding in others. Due to the thorough integration of 

Avida-ED in the course and the fact that the assessment was administered not immediately 

before and after specific Avida-ED curricula, it is impossible to attribute the results shown here 

to anything other than the course experience as a whole. Additionally, while the results 

presented here are substantial and intriguing, further assessment development for measuring 

student understanding of variation is welcomed. 

The Avida-ED digital evolution lab experience was a hallmark of the Integrative Biology 

course. This course should serve as an exemplar for how to best incorporate integrative 

thinking using case-based content exploration (see White et al., 2013) and a digital evolution 

lab using Avida-ED into an undergraduate introductory biology curriculum to engage students in 

a variational understanding (Kohn et al., 2018). The goal in designing Integrative Biology was to 

create a rigorous introductory biology course for non-life sciences STEM majors that integrates 

a case-based approach, introducing students to the levels of biological organization while using 

evolution as a central organizing framework. As such, it was designed according to the specific 

circumstances of its institution and student body; yet the curricular niche it fills is likely 

applicable to other universities catering to non-life sciences STEM majors, especially engineers, 

mathematicians, and physicists, and its approach to variational understanding is applicable 

more broadly still.  

While Avida-ED has been used in other courses across a range of geographically and 

educationally diverse contexts (Lark et al., 2018), the effect size of the curricular interventions 

on student understanding of variation reported here may not be equivalent. Lark (2014) has 

established that Avida-ED implementation success is positively correlated with instructor 

familiarity and comfort, presentation and exploration during in-person classes and especially 

laboratory-type learning opportunities and student completion of introductory activities 

followed by guided inquiry investigation. Integrative Biology was instructed by Avida-ED 

curriculum developers whom in reduced-class-size computer lab environments implemented 

the full set of recommended curricula, including the student driven research project. 
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Additionally, Avidians were explicitly analogized with asexual study systems and experiments of 

each were discussed side-by-side, numerous biological concepts initially introduced with 

biological systems were contemporaneously explored in Avida-ED and vice versa, and students 

were given the opportunity to learn through research success and, as importantly, failure with 

instructor guidance. Further, this is, to my knowledge, the first application of a digital evolution 

lab within a larger course context in which the importance of variation among individuals is 

repeatedly explored in multiple biological systems and across biological fields using integrative 

thinking. Instructors interested in similarly shifting student understanding of variation may, 

therefore, find success by incorporating a digital evolution lab using Avida-ED into their 

classroom and integrating student discoveries therein throughout the curriculum. 

Care was taken in this study to measure student understanding of a difficult concept, 

and further improvements to the measurement tool would be useful contributions to the field 

of biology education research. Especially considering the relatively high proportion of 

measurement error observed here, which was marginally improved over Shtulman (2006), 

further efforts to refine our assessment instrument are welcomed. Biology education 

assessments are numerous, difficult to compare, and routinely in a state of development (Mead 

et al., 2019). Since the assessment used here was closely based on that offered by Shtulman 

(2006), the validity of that instrument at least somewhat lends evidence for the validity of this 

instrument. Even so, one or more validity analyses could be conducted to confirm that it is 

measuring the intended distinction between variational and transformational understanding of 

biological variation. Further refinement of the rubric may also be warranted, especially if it 

reduces the classification of indeterminable (“other”) understanding while maintaining its 

validity. For example, the explicit rejection of transformationalism or variationalism alone 

should, I think, necessitate evidence of the other mode, although others may disagree, e.g., 

Furtak et al. (2014).  

The original assessment offered evidence of content validity via agreement among 

experts (Shtulman, 2006), although their expert pool of three biology doctorates was small. The 
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modifications made here, while expected to maintain this validity, could be similarly tested and 

with a larger pool of experts. Additionally, evidence of substantive validity would be most 

convincing (Campbell and Nehm, 2013). Substantive validity is often shown through think-aloud 

interviews demonstrating that the cognitive processes used to answer the assessment are as 

intended. This could confirm, for example, that a student response of “the moth population is 

evolving” is most likely intended as a transformational response in the context of panel B and 

perhaps clarify what the same statement may mean in the panel A context (i.e., the blue text in 

Fig. 4.03). Student interviews may also provide further insight other than with respect to the 

rubric. For example, in our understanding of what students mean when they state or imply that 

the moth variants in panel A are separate species or populations, or in understanding their 

nuanced transformational or perhaps mixed-model explanations, especially because expert 

variationalist biologists may struggle to understand the now-alien transformational form of 

understanding, despite essentialist thinking in biological contexts being universal during 

childhood (Evans, 2008; Sinatra et al., 2008). As an alternative to major revisions to the 

instrument itself, future uses could routinely include structured interviews, especially with 

students otherwise scoring as “other,” with the aim of reducing measurement error by 

classifying a greater proportion of students as holding either transformational or variational 

understanding.  

Follow-up work should explore how changes in variational thinking relates to other 

biology topics. Most notably, Shtulman and Schulz (2008) argue that natural selection can only 

be understood once variational thinking has been established. However, the work of Kalinowski 

et al. (2016) for the CANS instrument showed that student understanding of variation was 

largely independent of their understanding of evolution generally. While it might not be 

possible to tease apart a causal relationship, analyses comparing increased variationalism with 

the understanding of natural selection, genetic drift, mutation, and other factors would be 

interesting. It might also be worthwhile to investigate the correlation between variational 

thinking and acceptance of evolution, although admittedly transformationalism is still an 
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evolutionary process, albeit closely related and perhaps indistinguishable on the present 

assessment from the non-evolutionary essentialism. 
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