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ABSTRACT

ON ORTHOGONAL LOCAL MODELS OF SHIMURA VARIETIES

By

Ioannis Zachos

We study local models that describe the singularities of Shimura varieties of non-PEL

type for orthogonal groups at primes where the level subgroup is given by the stabilizer

of a single lattice. In particular, we use the Pappas-Zhu construction and we give explicit

equations that describe an open subset around the “worst” point of orthogonal local models

given by a single lattice. These equations display the affine chart of the local model as a

hypersurface in a determinantal scheme. Using this we prove that the special fiber of the

local model is reduced and Cohen-Macaulay.

Moreover, by using the explicit description of this affine chart, we resolve the singularities

of our local model. By combining results of Kisin and Pappas, this leads to the construction

of regular p-adic integral models for the corresponding orthogonal Shimura varieties.
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KEY TO SYMBOLS

p an odd prime

F a finite field extension of Qp

OF the ring of integers of F

π a uniformizer of OF

κF the residue field of F

F̄ an algebraic closure of F

F̆ the completion of the maximal unramified extension of F in F̄

O the ring of integers of F̆

k the residue field of F̆

d the dimension of the F -vector space V

Λ an OF -lattice in V

Λ∨ the dual of Λ in V

l the distance of the lattice Λ to its dual Λ∨

L the O[u]-lattice given by L = ⊕di=1O[u] · ēi

O[B1|B2] the polynomial ring over O with variables the entries of the matrix (B1|B2)

LT (f) the leading term of the polynomial f

∧2(B1 |B2) the 2× 2 minors of the matrix (B1|B2)

Mloc(Λ) the Pappas-Zhu local model

Ud,l an affine chart of Mloc(Λ) around the worst point

Ud,l the special fiber of Ud,l
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Chapter 1

Introduction

Local models of Shimura varieties are projective flat schemes over the spectrum of a discrete

valuation ring. These projective schemes are expected to model the singularities of integral

models of Shimura varieties with parahoric level structure. The definition of local model

was formalized to some degree by Rapoport and Zink in [20]. However, it was soon realized

that the Rapoport-Zink construction is not adequate when the group of the Shimura variety

is ramified at p and in many cases of orthogonal groups. Indeed, then the corresponding

integral models of Shimura varieties are often not flat ([14]). In [19], Pappas and Zhu

gave a general group theoretic definition of local models. These local models appear as

subschemes of global (“Beilinson-Drinfeld”) affine Grassmannians and are associated to local

model triples. A LM-triple over a finite extension F of Qp, for p 6= 2, is a triple (G, {µ}, K)

consisting of a reductive group G over F , a conjugacy class of cocharacters {µ} of G over an

algebraic closure of F , and a parahoric subgroup K of G(F ). We denote by Mloc
K (G, {µ})

the corresponding local model.

In the present thesis, we study local models for Shimura varieties for forms of the orthog-

onal group which are of Hodge but not PEL type. An example of such a Shimura variety is

the following: Consider the group G = GSpin(V), where V is a (non-degenerate) orthogonal

space of dimension d ≥ 7 over Q and the signature of VR is (d−2, 2). Let D be the space of

oriented negative definite planes in VR. Then the pair (G,D) is a Shimura datum of Hodge
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type. Further, consider a Zp-lattice Λ in V = V ⊗Q Qp, for which

pΛ∨ ⊂ Λ ⊂ Λ∨,

where Λ∨ is the dual of Λ for the corresponding symmetric form. We denote by l the distance

of the lattice Λ to its dual Λ∨, i.e. l = lgZp(Λ∨/Λ) and we set l∗ = min(l, d− l). We let K1

be the connected stabilizer of Λ in SO(V)(Qp) and let K be the corresponding parahoric

subgroup of G(Qp). The group G is the smooth connected “Bruhat-Tits” group scheme

over Spec (Zp) such that G ⊗Zp Qp = G⊗Q Qp and G(Zp) = K. Now, for a compact open

subgroup K ⊂ G(Af ) of the form K = Kp ·Kp where Kp = K and Kp is sufficiently small,

the corresponding Shimura variety is

ShK(G,D) = G(Q)\(D×G(Af )/K).

This complex space has a canonical structure of an algebraic variety over the reflex field Q

(see [13]). The work of Kisin and Pappas [10] gives that orthogonal Shimura varieties as

above admit integral models SK(G,D), whose singularities are the “same” as those of the

corresponding PZ local models; see Theorem 1.0.1 below where the properties (a) and (b)

imply that SK(G,D) and the corresponding local model are locally isomorphic for the étale

topology. Note that there is a central extension (see [11])

1→ Gm → GSpin(V )→ SO(V )→ 1.

Hence, by [8, Proposition 2.14], the local model that pertains to the above Shimura va-

riety is Mloc(Λ) = Mloc
K1

(SO(V ), {µ}) for the LM triple (SO(V ), {µ}, K1) where V , K1,
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are as above and we take the minuscule coweight µ : Gm → SO(V ) to be given by

µ(t) = diag(t−1, 1, . . . , 1, t). In fact, we will consider a more general situation in which

Qp is replaced by a finite field extension F of Qp with integers OF . As a special case of [10,

Theorem 4.2.7] we have the following:

Theorem 1.0.1. There is a scheme SK(G,D), flat over Spec (Zp), with

SK(G,D)⊗Zp Qp = ShK(G,D)⊗Q Qp,

and which supports a “local model diagram”

S̃K(G,D)

SK(G,D) Mloc(Λ)

πK qK (1.0.0.1)

such that:

a) πK is a G-torsor for the parahoric group scheme G that corresponds to Kp,

b) qK is smooth and G-equivariant.

Let us add that the integral model SK(G,D) satisfies several additional properties, see

[10] and [18, §7]. It is also “canonical” in the sense of [16]. At this point, we want to mention

that one application of such orthogonal Shimura varieties lies in arithmetic intersection

theory. For example, orthogonal Shimura varieties are used in the proof of the averaged

Colmez conjecture (see [3] and [2]).

In the rest of the thesis, we will mainly consider local models and Shimura varieties will

only appear again in Chapter 11 where we discuss how our results apply to GSpin Shimura
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varieties. Moreover, we want to mention that the results in Chapters 10 and 11 are from the

joint work [18].

In this thesis, we first give an explicit description of Mloc(Λ). The difficulty in this

task arises from the fact that the construction of PZ local models is inexplicit and group

theoretical. In particular, in order to define the PZ local model we have to take the reduced

Zariski closure of a certain orbit inside a global affine Grassmannian. We refer the reader to

Section 2.1 where the construction of the PZ local models is reviewed. In the case of local

models of PEL type one can use the standard representation of the group to quickly represent

the local model as a closed subscheme of certain linked (classical) Grassmannians (see [19]).

This is not possible here since the composition i · µ, where i : SO(V ) ↪→ GL(V ) is the

natural embedding, is not a minuscule coweight and we have to work harder. Nevertheless,

we give explicit equations for an affine chart of the “worst” point of the local model. These

equations display this chart as a quadric hypersurface given by the vanishing of a trace in

a determinantal scheme of 2 × 2 minors. Using this and classical results on determinantal

varieties we prove that the special fiber of the affine chart is reduced and Cohen-Macaulay.

This implies that the special fiber of the local model is reduced and Cohen-Macaulay. Note

here that the “reduced” result follows from Pappas-Zhu paper [19], which in turn uses Zhu’s

proof of the Pappas-Rapoport coherence conjecture (see [22]). We want also to mention the

recent work of Haines and Richarz [7], where the authors prove in a more general setting

that the special fiber of the PZ local models is reduced and Cohen-Macaulay.

Here, we give an independent elementary proof of these properties by using the explicit

equations which, as we said above, describe an open subset around the “worst” point of our

local model. We also calculate the number of the irreducible components of the special fiber

of the affine chart. This is equal to the number of irreducible components of the special fiber
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of the local model. The reason behind these implications lies in the construction of the local

model. In particular, as discussed in [19] the geometric special fiber of the PZ local model

is a union of affine Schubert varieties. Among those there is a unique closed orbit which

consists of a single point, the “worst” point. The one-point stratum lies in the closure of

every other stratum. It follows that, if the special fiber of the local model has a certain nice

property at the worst point (for example reducedness), then this should hold everywhere

(see for example [6]).

Moreover, from the above discussion and the construction of the local models in [19], we

deduce that our affine chart is dense and hence it “captures all the singularities” of Mloc(Λ).

By using the explicit description of this affine chart, we prove that the blow up of Mloc(Λ)

at the worst point resolve the singularities (see Theorem 1.0.3), which in turn leads to the

construction of regular integral models for the Shimura varieties ShK(G,D) over the p-adic

integers Zp. We expect that this construction will find applications to the study of arithmetic

intersections of special cycles and Kudla’s program.

Below we denote by O the ring of integers of F̆ , which is the completion of the maximal

unramified extension of F in a fixed algebraic closure, and by k the residue field of F̆ .

The thesis is organized as follows: In Chapter 2 we review the definition of the PZ

local models. In Chapter 3 we show how we derive the explicit equations. We describe an

affine chart of the worst point ∗ of our orthogonal local model in the cases where (d, l) =

(even, even), (d, l) = (odd, odd), (d, l) = (even, odd) and (d, l) = (odd, even). Note that

when l is even the symmetric form on V ⊗F F̆ splits and when l is odd the symmetric form

on V ⊗F F̆ is quasi-split but not split.

The case that l∗ ≤ 1, has been considered by Madapusi Pera in [11] and also in the joint

work of He, Pappas and Rapoport [8]. In the last chapter of [8], the authors easily prove
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that in the case l∗ = 0 the local model is isomorphic to a smooth quadric. With some more

work they prove that in the case l∗ = 1 the local model is isomorphic to a quadric which

is singular in one point. Here, we assume that l∗ > 1 (and also d ≥ 5) and extend these

results.

Before stating our main theorems we need some more notation. Thus, let n = bd/2c,

r = bl/2c and X be a d× d matrix of the form:

X =


E1 O1 E2

B1 A B2

E3 O2 E4

 ,

where Ei ∈ Mat(n−r)×(n−r), Oj ∈ Mat(n−r)×l, B` ∈ Matl×(n−r) and A ∈ Matl×l. We write

O[X], O[B1|B2] for the polynomial rings over O with variables the entries of the matrices

X and (B1|B2) respectively. We also write ∧2(B1 |B2) for the 2 × 2 minors of (B1|B2) and

Jm for the unit antidiagonal matrix of size m,

Jm :=


1

. .
.

1

 .

In the introduction, we state our results in the case that d and l have the same parity, so

d = 2n and l = 2r, or d = 2n + 1 and l = 2r + 1. The results when d and l have different

parity are a bit more involved to state; we refer the reader to Theorem 3.2.2 and Chapter 8.

Theorem 1.0.2. Suppose that d and l have the same parity. Then an affine chart of the

local model Mloc(Λ) around the worst point ∗ is given by Ud,l = Spec (R) where R is the
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quotient ring

R = O[B1|B2]/(∧2(B1 |B2), T r(B2Jn−rB
t
1Jl) + 2π).

Let us mention here that, for l∗ 6= 0, none of these models are smooth or semi-stable (as

follows from [8, Theorems 5.1, 5.6]).

In Chapters 10 and 11, we resolve the singularities of Mloc(Λ) and SK(G,D) respectively.

We consider the blow-up of Mloc(Λ) at the point ∗. This gives a G-birational projective

morphism

rbl : Mbl(Λ) −→ Mloc(Λ).

Using the explicit description of Ud,l above, we show:

Theorem 1.0.3. The scheme Mbl(Λ) is regular and has special fiber a divisor with normal

crossings. In fact, Mbl(Λ) is covered by open subschemes which are smooth over Spec (Zp[u, x,

y]/(u2xy − p)).

We see that the corresponding blow-up S reg
K (G,D) of the integral model SK(G,D)

inherits the same nice properties as Mbl(Λ). In fact, there is a local model diagram for

S reg
K (G,D) similar to (1.0.0.1) but with Mloc(Λ) replaced by Mbl(Λ). See Theorem 11.0.1

for the precise statement about the model S reg
K (G,D); this theorem gives regular p-adic

integral models for ShK(G,D). The construction of S reg
K (G,D) from rbl and the local

model diagram (11.0.0.1) is an example of a “linear modification” in the sense of [14].

Below we discuss how we derive the equations of Theorem 1.0.2 and then we give the

main ingredients of the proof.

We write S0, S1 for the antidiagonal matrices of size d,
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S0 :=


1(n−r)

0(l)

1(n−r)

 , S1 :=


0(n−r)

1(l)

0(n−r)


and we define the ideal

Inaive =
(
X2, ∧2X, XtS0X − 2π (S0 + πS1)X, XtS1X + 2(S0 + πS1)X

)
.

Our first step is to show that an affine chart of the PZ local model around the worst point ∗

is given as a closed subscheme of the quotient M = O[X]/Inaive. We do this in Chapter 3.

This O-flat closed subscheme is obtained by adding certain equations to Inaive: Set

I = Inaive + Iadd

where

Iadd =
(
Tr(X), T r(A) + 2π, B2Jn−rB

t
1 − AJl

)
.

We show that I cuts out the O-flat Mloc(Λ) ∩ M, which is an open affine subscheme of

Mloc(Λ). By an involved but completely elementary manipulation of the relations describing

the ideal I we prove that:

Theorem 1.0.4. Suppose that d and l have the same parity. The quotient O[X]/I is iso-

morphic to O[B1|B2]/
(
∧2(B1 |B2), T r(B2Jn−rBt1Jl) + 2π

)
.

It essentially remains to show that Ud,l = Spec (R) is flat over O. By definition, Ud,l

is a hypersurface in the determinantal scheme D = Spec (O[B1|B2] /(∧2(B1|B2)). Since

D is Cohen-Macaulay, see [21, Remark 2.12], we can easily deduce that Ud,l and Ud,l are
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also Cohen-Macaulay. Flatness of Ud,l follows, see Chapter 5. Theorem 1.0.2 quickly follows

together with the (essentially equivalent) statement:

Theorem 1.0.5. Suppose that d and l have the same parity. An affine chart of the local

model Mloc(Λ) around the worst point is given by Spec (O[X]/I), where I is as above.

Using Theorem 1.0.2 and the reducedness of the fibers of PZ local models (see [19]) we

have that:

Theorem 1.0.6. The special fiber of Ud,l is reduced.

In Chapter 6 we give an independent proof of this result by using that the special fiber

Ud,l is Cohen Macaulay and generically reduced.

In the course of proving the reducedness of Ud,l, we also determine the number of its

irreducible components. We find that when 2 < l∗, where l∗ = min(l, d − l) and l is the

distance of our lattice to its dual, the special fiber Ud,l has two irreducible components.

When l∗ = 2, Ud,l has three irreducible components. In fact, we explicitly describe the

equations defining the irreducible components of the special fiber. Similar arguments extend

to the case that d and l have different parity. We give the corresponding hypersurface in a

determinantal scheme and the equations of irreducible components of the special fiber in all

cases.
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Chapter 2

Preliminaries

Let us fix an odd prime p and consider a finite field extension F/Qp. Denote with OF the

ring of integers of F and let π be a uniformizer of OF . We denote by F̆ the completion

of the maximal unramified extension of F in an algebraic closure F̄ . We denote by κF the

residue field of F and by k the algebraic closure of κF which is also the residue field of F̆ .

We also set O := O
F̆

for the ring of integers of F̆ .

2.1 Local models

We now recall the construction of the Pappas-Zhu local models. For a more detailed presen-

tation we refer the reader to [15] and [19].

LetG be a connected reductive group over F . Assume thatG splits over a tamely ramified

extension of F . Let {µ} be a conjugacy class of a geometric cocharacter µ : GmF̄ → GF̄

and assume that µ is minuscule. Define K to be the parahoric subgroup of G(F ), which is

the connected stabilizer of some point x in the (extended) Bruhat-Tits building B(G,F ) of

G(F ). Define E to be the extension of F which is the field of definition of the conjugacy

class {µ} (the reflex field).

In [19], the authors construct an affine group scheme G which is smooth over Spec (OF [t])

and which, among other properties, satisfies:
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1. The base change of G by Spec (OF ) → Spec (OF [t]) = A1
OF

given by t → π is the

Bruhat-Tits group scheme which corresponds to the parahoric subgroup K (see [1]).

2. The group scheme G|OF [t,t−1]
is reductive.

Next, they consider the global (“Beilinson-Drinfeld”) affine Grassmannian

AffG,A1
OF

→ A1
OF

given by G, which is an ind-projective ind-scheme. By base changing t→ π, they obtain an

equivariant isomorphism

AffG
∼−→ AffG,A1

OF

×A1
OF

Spec (F )

where AffG is the affine Grassmannian of G; this is the ind-projective ind-scheme over

Spec (F ) that represents the fpqc sheaf associated to

R→ G(R((t)))/G(R[[t]]),

where R is an F -algebra (see also [17]).

The cocharacter µ gives an F̄ [t, t−1]-valued point of G and thus µ gives an F̄ ((t))-valued

point µ(t) of G. This gives a F̄ -point [µ(t)] = µ(t)G(F̄ [[t]]) of AffG. Since µ is minuscule

and {µ} is defined over the reflex field E the orbit

G(F̄ [[t]])[µ(t)] ⊂ AffG(F̄ ),

is equal to the set of F̄ -points of a closed subvariety Xµ of AffG,E = AffG ⊗F E.
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Definition 2.1.0.1. Define the local model Mloc
K (G, {µ}) to be the flat projective scheme

over Spec (OE) given by the reduced Zariski closure of the image of

Xµ ⊂ AffG
∼−→ AffG,A1

OF

×A1
OF

Spec (E)

in the ind-scheme AffG,A1
OF

×A1
OF

Spec (OE).

The PZ local models have the following property (see [8, Prop. 2.14]).

Proposition 2.1.0.2. If F ′/F is a finite unramified extension, then

Mloc
K (G, {µ})⊗OE OE′

∼−→ Mloc
K′(G⊗F F

′, {µ⊗F F ′}).

Note that here the reflex field E′ of (G⊗F F ′, {µ⊗F F ′}) is the join of E and F ′. Also, K ′

is the parahoric subgroup of G⊗F F ′ with K = K ′ ∩G.

The above proposition allows us to base change to an unramified extension F ′ over F .

This will play a crucial role in the proof of our main theorems.

2.2 Quadratic forms

Let V be an F -vector space with dimension d = 2n or 2n+1 equipped with a non-degenerate

symmetric F -bilinear form 〈 , 〉. It follows from the classification of quadratic forms over

local fields [5] that after passing to a sufficiently big unramified extension F ′ of F , the base

change of (V, 〈 , 〉) to F ′ affords a basis as in one of the following cases:

1. Split form: there is a basis fi with the following relations:

〈fi, fd+1−j〉 = δij , ∀i, j ∈ {1, . . . , d}.
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2. Quasi-split form (for d = 2n): there is a basis fi with the relations: 〈fi, fd+1−j〉 =

δij , for i, j 6= n, n+ 1, 〈fn, fn〉 = π, 〈fn+1, fn+1〉 = 1, 〈fn, fn+1〉 = 0.

3. Quasi-split form (for d = 2n + 1): there is a basis fi with the relations: 〈fi, fd+1−j〉 =

δij , for i, j 6= n+ 1, 〈fn+1, fn+1〉 = π.

2.3 Normal forms of quadric lattices

Let V be an F -vector space with dimension d = 2n or 2n+1 equipped with a non-degenerate

symmetric F -bilinear form 〈 , 〉. We assume that d ≥ 5. For all the cases below we take the

minuscule coweight µ : Gm → SO(V ) to be given by µ(t) = diag(t−1, 1, . . . , 1, t), defined

over F .

A lattice Λ ⊂ V is called a vertex lattice if Λ ⊂ Λ∨ ⊂ π−1Λ. By Λ∨ we denote the dual

of Λ in V :

Λ∨ := {x ∈ V |〈Λ, x〉 ⊂ OF }.

Let Λ in V be a vertex lattice. So, Λ ⊂l Λ∨ ⊂l′ π
−1Λ with l + l′ = d. Here l (respectively

l′) is the length l = lg(Λ∨/Λ) (respectively l′ = lg(π−1Λ/Λ∨)). We assume that l > 1 and

l′ > 1.

For the following we refer the reader to Rapoport-Zink’s book [20], Appendix on Normal

forms of lattice chains. More precisely, by [20, Appendix, Proposition A.21], after an étale

base change (i.e an unramified base change) we can find an OF -basis {ei} of Λ with the

following property:

For d = 2n:
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1. Split form: Λ = ⊕di=1OF · ei with

〈ei, ed+1−j〉= δij , for i 6∈ [n− r + 1, n+ r],

〈ei, ed+1−j〉= πδij , for i ∈ [n− r + 1, n+ r].

We have Λ⊂l Λ∨ where l = 2r.

2. Quasi-split form: Λ = ⊕di=1OF · ei with

〈ei, ed+1−j〉= δij , for i ∈ [1, d] \ [n− r, n+ r + 1],

〈ei, ed+1−j〉= πδij , for i ∈ [n− r, n+ r + 1] \ {n, n+ 1},

〈en, en〉 = π, 〈en+1, en+1〉 = 1, 〈en, en+1〉 = 0.

We have Λ⊂l Λ∨ where l = 2r + 1.

For d = 2n+ 1:

3. Split form: Λ = ⊕di=1OF · ei with

〈ei, ed+1−j〉= δij , for i 6∈ [n+ 1− r, n+ 1 + r] \ {n+ 1},

〈ei, ed+1−j〉= πδij , for i ∈ [n+ 1− r, n+ 1 + r] \ {n+ 1}.

We have Λ⊂l Λ∨ where l = 2r.
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4. Quasi-split form: Λ = ⊕di=1OF · ei with

〈ei, ed+1−j〉= δij , for i 6∈ [n+ 1− r, n+ 1 + r],

〈ei, ed+1−j〉= πδij , for i ∈ [n+ 1− r, n+ 1 + r].

We have Λ⊂l Λ∨ where l = 2r + 1.

From the above discussion, it follows that we can reduce our problem to the above cases

by passing to a sufficiently big unramified extension of F . Thus, from now on we will be

working over F̆ . Recall that we denote by O its ring of integers and by k its residue field.

In all cases, we will denote by S the (symmetric) matrix with entries 〈ei, ej〉 where {ei}

is the basis above. We can then write

S = S0 + πS1

where S0, S1 both have entries only 0 or 1. For example, in case (1) we have the anti-diagonal

matrices:

S0 :=


1(n−r)

0(2r)

1(n−r)

 , S1 :=


0(n−r)

1(2r)

0(n−r)

 .
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Chapter 3

An Affine Chart of Mloc(Λ)

3.1 Lattices over O[u] and orthogonal local models

We can now extend our data to O[u, u−1]. We define V = ⊕di=1O[u, u−1]ēi and 〈 , 〉 :

V×V→ O[u, u−1] a symmetric O[u, u−1]-bilinear form such that the value of 〈ēi, ēj〉 is the

same as the above for V with the difference that π is replaced by u. Similarly, we define

µ̄(t) : Gm → SO(V) by using the {ēi} basis for V.

We also define L the O[u]-lattice in V by L = ⊕di=1O[u] · ēi. From the above we see that

the base change of (V,L, 〈 , 〉) from O[u, u−1] to F given by u 7→ π is (V,Λ, 〈 , 〉).

Let us now define the local model Mloc(Λ) = Mloc
K (SO(V ), {µ}) where K is the parahoric

stabilizer of Λ. We consider the smooth, as in [19], affine group scheme G over O[u] given

by g ∈ SO(V) that also preserves L and L∨. If we base change by u 7→ π we obtain the

Bruhat-Tits group scheme G of SO(V ) which is the stabilizer of the lattice chain Λ ⊂ Λ∨ ⊂

π−1Λ. The corresponding parahoric group scheme is the neutral component G0 of G. The

construction of [19] produces the group scheme G0 that extends G0. By construction, there

is a group scheme immersion G0 ↪→ G.

In this case, the global (“Beilinson-Drinfeld”) affine Grassmannian

AffG,A1
O
→ Spec (O[u])
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represents the functor that sends the O[u]-algebra R, given by u 7→ r, to the set of projective

finitely generated R[u]-modules L of V⊗O R which are locally free such that (u− r)NLR ⊂

L ⊂ (u− r)−NLR for some N >> 0 and satisfy

L⊂ l L∨⊂ l′ u
−1L

with all graded quotients R-locally free and of the indicated rank. Here, we set LR = L⊗OR.

Consider theO-valued point [L(0)] given by L(0) = µ̄(u−π)L. Then, as in the Section 2.1

the local model is the reduced Zariski closure of the orbit [L(0)] in AffG0,A1
O
×A1
O

Spec (O);

it inherits an action of the group scheme G0 = G0 ⊗O[u] O. As in [19], there is a natural

morphism AffG0,A1
O
→ AffG,A1

O
induced by G0 ↪→ G which identifies Mloc(Λ) with a closed

subscheme of AffG,A1
O
×A1
O

Spec (O) .

By the definition of L(0) we have

(u− π)L ⊂ L(0) ∩ L⊂
⊂
L

L(0)
⊂

⊂
L + L(0) ⊂ (u− π)−1L,

where the quotients along all slanted inclusions are O-free of rank 1 (for more details see

proof of Proposition 3.1.0.1). Let us define M to be the subfunctor of AffG,A1
O
×A1
O

Spec (O)

that parametrizes all L such that

(u− π)L ⊂ L ⊂ (u− π)−1L.

Then M is represented by a closed subscheme of AffG,A1
O
×A1
O

Spec (O) which contains [L(0)].

In that way, Mloc(Λ) is a closed subscheme of M and Mloc(Λ) is the reduced Zariski closure of
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its generic fiber in M. As in [8, Proposition 12.7], the elements of Mloc(Λ) have the following

properties:

Proposition 3.1.0.1. If L ∈ Mloc(Λ)(R), for an O-algebra R, then:

1. L is u-stable,

2. L⊂ l L∨, and

3.

(u− π)LR ⊂ L ∩ LR⊂
⊂
LR

L
⊂

⊂
LR + L ⊂ (u− π)−1LR,

where the quotients arising from all slanted inclusions are generated as R-modules by

one element (we say that they have rank ≤ 1).

Proof. The first two conditions follow directly from the definition of the local model. By the

definition of L(0) we have L(0) = µ̄(u−π)L where µ̄(u−π) = diag((u−π)−1, 1, . . . , 1, u−π).

We can easily see that (3) is true for L(0). Since condition (3) is closed and G-equivariant it

also holds for L and the proposition follows.

Define F ′ to be the image of L by the map

(u− π)−1LR/(u− π)LR
u−π−−−→ LR/(u− π)2LR.

Define the symmetric bilinear form:

〈 , 〉′ : L/(u− π)2L× L/(u− π)2L→ O[u]/(u− π)2O[u],
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by

〈 , 〉′ = 〈 , 〉mod(u− π)2.

Notice, that condition (2) above means that 〈L,L〉 ∈ R[u] under the R-base change of the

bilinear form 〈 , 〉. Thus, F ′ is isotropic for 〈 , 〉′ on LR/(u− π)2LR × LR/(u− π)2LR, i.e.

〈F ′,F ′〉′ = 0. We also observe that rank(u − π) ≤ 1 where u − π : F ′ → F ′. That follows

from condition (3) and the fact that (u− π)2LR = 0 in LR/(u− π)2LR.

3.2 The affine chart Ud,l

For the sake of simplicity we fix d = 2n and l = 2r. We get similar results for all the other

cases.

For any O-algebra R, let us consider the R-submodule:

F = {(u− π)v +Xv | v ∈ Rd} ⊂ (u− π)Rd ⊕Rd ∼= LR/(u− π)2LR

with X ∈ Matd×d(R).

We ask that F satisfies the following three conditions:

1. u-stable: It suffices to be (u − π)-stable. Let (u − π)v + Xv ∈ F . Then there

exists w ∈ Rd such that (u − π)2v + (u − π)Xv = (u − π)w + Xw. This gives

Xuv −Xπv = uw − πw +Xw and so:

w = Xv,

−πXv = −πw +Xw.
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By substituting the former equation to the latter, we have X2v = 0. Because this is

correct for every v, we have X2 = 0. Observe that X is the matrix giving multiplication

by (u− π) on F .

2. Isotropic: Let (u− π)v +Xv ∈ F . We want

〈(u− π)v +Xv, (u− π)v +Xv〉′ = 0

and recall that 〈 , 〉′ = 〈 , 〉mod(u− π)2. By simplifying the above equation we have

−2(u− π)〈v,Xv〉′ = 〈Xv,Xv〉′.

The above relation holds for any v and so we get:

−2(u− π)(S0 + uS1)X = Xt(S0 + uS1)X

where S0, S1 are the matrices with S = S0 + πS1 = (〈ei, ej〉)i,j as in Section 2.3. By

simplifying the above relation we have:

2πS0X + 2π2S1X + u(−2πS1X − 2S0X) = XtS0X + u(XtS1X)

which amounts to

XtS0X = 2π(S0X + πS1X) and XtS1X = −2(S0X + πS1X).

3. rank(u−π| F ′ )≤1: By the above, this translates to ∧2X = 0.
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Let Unaive be the corresponding scheme of F defined by the d × d matrices X which

satisfy the following relations:

X2 = 0, XtS0X − 2π(S0X + πS1X) = 0,

∧2X = 0, XtS1X + 2(S0X + πS1X) = 0.

We denote by Inaive the ideal generated by the entries of the above relations.

The conditions (1)-(3) are necessary but not always sufficient for L to correspond to

an R-valued point of Mloc(Λ). Indeed, the generic fiber of Unaive contains the additional

F̆ -point L = L
F̆

which is not in the orbit [L(0)] of µ̄ in the affine Grassmannian AffG. Also,

calculations in low dimensions show that Unaive has non-reduced special fiber.

Our goal is to calculate the O-flat closed subscheme U = Mloc(Λ) ∩ Unaive of Unaive by

adding some explicit relations in the ideal Inaive. The resulting U is an open subscheme of

Mloc(Λ).

Observe that the point L is fixed by the action of the group scheme G0 and so its our worst

point. Thus, U is an open neighborhood around the worst point L. Then these additional

relations, together with Inaive, give explicit equations that describe an open subset around

the worst point of our local model Mloc(Λ).

We introduce some notation that will help us defining those relations. We first rewrite

our matrix X := (xij)1≤i,j≤d as follows:

X =


E1 O1 E2

B1 A B2

E3 O2 E4


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where Ei ∈ Mat(n−r)×(n−r), Oj ∈ Mat(n−r)×l, B` ∈ Matl×(n−r) and A ∈ Matl×l. We

denote by O[X] the polynomial ring over O, with variables the entries of the matrix X. We

also write Jm for the unit antidiagonal matrix of size m,

Jm :=


1

. .
.

1

 .

We will show that by adding the following relations:

Tr(X) = 0, T r(A) + 2π = 0, B2Jn−rB
t
1 − AJl = 0,

we get the desired O-flat scheme U in the cases where (d, l) =(even,even) and (d, l) =

(odd,odd). By adding similar relations we get the corresponding result in cases where

(d, l) =(even,odd) and (d, l) =(odd,even). Next, we state the main theorems of this the-

sis.

Theorem 3.2.1. Suppose that d and l have the same parity so d = 2n and l = 2r, or

d = 2n+ 1 and l = 2r+ 1. Then an affine chart of the local model Mloc(Λ) around the worst

point is given by Ud,l = Spec (O[X]/I), which is defined by the quotient of the polynomial

ring O[X] = O[(xi,j)1≤i,j≤d] by the ideal

I = Inaive + Iadd

where

Iadd =
(
Tr(X), T r(A) + 2π, B2Jn−rB

t
1 − AJl

)
.
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Next, we state the theorems for the cases where d and l have different parity. In each

case we consider d×d matrices X. In order to define the submatrices (Ei, Oj , B`, A) giving

the block decomposition of X we set:

r′ =


r if l = 2r

r + 1 if l = 2r + 1.

Then write the matrix X as before, with blocks Ei∈Mat(n−r′)×(n−r′), Oj ∈Mat(n−r′)×(l+1),

A∈Mat(l+1)×(l+1) and B`∈Mat(l+1)×(n−r′).

We denote by A′ the l × l matrix which is obtained from A by erasing the part that is

in the (n+ 1)-row and (n+ 1)-column of X. Similarly we denote by B′1, B
′
2 the l× (n− r′)

matrices which are obtained from B1, B2 by erasing the part that is on the (n + 1)-row of

X. Lastly, we denote by Q the (r′ + 1)-column of A and Q′ the (r′ + 1)-column of A with

the (n+ 1)-entry erased.

Theorem 3.2.2. Suppose that d and l have opposite parity, so d = 2n + 1 and l = 2r or

d = 2n and l = 2r + 1. An affine chart of the local model Mloc(Λ) around the worst point

L = L is given by Ud,l = Spec (O[X]/I), which is defined by the quotient of the polynomial

ring O[X] by the ideal

I = Inaive + Iadd

where

Iadd = (Tr(X), T r(A′) + 2π,B′2Jn−r′(B
′
1)t +

1

2
Q′(Q′)t − A′Jl).

In chapters 4-6 we carry out the proof of Theorem 3.2.1 for the case (d, l) = (even, even).

The proof of the remaining cases of parity for d and l is given in Chapter 8.

Using Theorems 3.2.1, 3.2.2 and the fact that PZ local models have reduced special fiber,
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see [19], we obtain:

Theorem 3.2.3. The special fiber of Ud,l is reduced.

Note that in the above theorem we do not specify the parity of d and l. In Chapter 6

we give an independent proof of this theorem, for the case (d, l) = (even, even), by showing

that the special fiber is Cohen Macaulay and generically reduced. A similar argument works

for the rest of the cases of parity for d and l.
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Chapter 4

Reduction of Relations of Ud,l

In all of Chapter 4, we assume d = 2n and l = 2r. Our goal in this chapter is to prove the

simplification of equations given by Theorem 4.0.1. (This corresponds to Theorem 1.0.4 of

the introduction.)

We are working over the polynomial ring S := O[(xi,j)1≤i,j≤d]. We also set

S′′ := O[(xt,s)t∈Z,s∈Zc ]

where Z := {n− (r − 1), . . . , n, n+ 1, . . . , d− n+ r} and Zc := {1, 2, 3, . . . , d} \ Z.

Recall that

I = (X2, ∧2X, Tr(X), T r(A) + 2π, B2Jn−rB
t
1 − AJ2r,

XtS0X − 2π(S0X + πS1X), XtS1X + 2(S0X + πS1X)).

We set

I ′′ =
(
∧2(B1 |B2), T r(B2Jn−rB

t
1J2r) + 2π

)
where

∧2(B1 |B2) := (xi,jxt,s − xi,sxt,j)i,t∈Z, j,s∈Zc .
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Theorem 4.0.1. There is an O-algebra isomorphism S/I ∼= S′′/I ′′.

Proof. We define the ideal:

I ′ =
(
∧2 X, Tr(X), T r(A) + 2π, B2Jn−rB

t
1 − AJ2r,

XtS1X + 2(S0X + πS1X)
)
.

The proof will be done in two steps:

1. Show I = I ′.

2. Show S/I ′ ' S′′/I ′′.

4.1 I = I ′.

Our first reduction is to prove that I ′ = I, which will be given in Proposition 4.1.0.8. To

do that, we are going to show that the entries of X2, XtS0X − 2π(S0X + πS1X) are in the

ideal I ′. Proposition 4.1.0.8 will easily follow. The first relation is more straightforward:

Lemma 4.1.1. The entries of X2 are in the ideal I ′.

Proof. Let (zi,j)1≤i,j≤d := X2, where zi,j =
d∑
a=1

xi,axa,j . Now, set

ti,j := xi,jTr(X) ∈ I ′.

Notice also that

s
i,j
a := xi,axa,j − xi,jxa,a ∈ I ′
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from the minors relations. Therefore

ti,j +
d∑
a=1

s
i,j
a = zi,j ∈ I ′.

We have to work harder in order to show that the entries of XtS0X − 2π(S0X + πS1X)

are in the ideal I ′. The first step is as follows. By a simple direct calculation the relation

XtS1X + 2S0X + 2πS1X = 0 implies that:

E1 = −1

2
Jn−rBt2J2rB1, (4.1.0.1)

E2 = −1

2
Jn−rBt2J2rB2, (4.1.0.2)

E3 = −1

2
Jn−rBt1J2rB1, (4.1.0.3)

E4 = −1

2
Jn−rBt1J2rB2, (4.1.0.4)

O1 = −1

2
Jn−rBt2J2rA, (4.1.0.5)

O2 = −1

2
Jn−rBt1J2rA. (4.1.0.6)

Therefore, all the entries from Ei for i ∈ {1, 2, 3, 4} and O1, O2 can be expressed in terms of

the entries of B1, B2. The second step is the following lemma.

Lemma 4.1.2. Assume that all the 2 × 2 minors of the matrix X are 0. Then, the matrix

B1Jn−rBt2 is symmetric.

Proof. Set (θij)1≤i,j≤2r := B1Jn−rBt2. By direct calculations we find

θij =
n−r∑
t=1

xn−r+i,n−r−t+1xn−r+j,n+r+t.
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So,

θji =
n−r∑
t=1

xn−r+j,n−r−t+1xn−r+i,n+r+t.

From the minor relations we have that xi,jxt,s = xi,sxt,j . Using this and the description of

the θij , θji we can easily see that θij = θji.

A useful observation, which will be used in the following lemma, is that the condition

∧2X = 0 together with the fact that the blocks B1, A, and B2, all share the same rows of

X, easily give

AB1 = Tr(A)B1, AB2 = Tr(A)B2. (4.1.0.7)

We are now ready to show:

Lemma 4.1.3. The entries of XtS0X − 2π(S0X + πS1X) are in the ideal I ′.

Proof. Using the block form of the matrix X and the relation XtS1X+ 2(S0X+πS1X) = 0

modulo I ′, it suffices to prove that:

(i) Et1Jn−rE3 + Et3Jn−rE1 − 2πJn−rE3 = 0,

(ii) Et2Jn−rE4 + Et4Jn−rE2 − 2πJn−rE2 = 0,

(iii) Et1Jn−rE4 + Et3Jn−rE2 − 2πJn−rE4 = 0,

(iv) Et2Jn−rE3 + Et4Jn−rE1 − 2πJn−rE1 = 0,

(v) Ot1Jn−rE3 +Ot2Jn−rE1 − 2π2J2rB1 = 0,

(vi) Ot1Jn−rE4 +Ot2Jn−rE2 − 2π2J2rB2 = 0,

(vii) Ot1Jn−rO2 +Ot2Jn−rO1 − 2π2J2rA = 0
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in the quotient ring S/I ′. We prove the first relation (i) and with the same arguments we can

prove the relations (ii)-(iv). Below we use the relations (1) and (3) for E1, E3 from above,

the relations B2Jn−rBt1 = AJ2r, AB1 = Tr(A)B1 and Lemma 4.1.2.

Et1Jn−rE3 + Et3Jn−rE1 − 2πJn−rE3

=
1

4
Bt1J2rB2Jn−rB

t
1J2rB1 +

1

4
Bt1J2rB1Jn−rB

t
2J2rB1 + πBt1J2rB1

=
1

2
Bt1J2rB2Jn−rB

t
1J2rB1 + πBt1J2rB1

=
1

2
Bt1J2rAB1 + πBt1J2rB1 =

1

2
Tr(A)Bt1J2rB1 + πBt1J2rB1 = 0.

The last equality holds because Tr(A) + 2π = 0.

Next, we prove the relation (v). The relations (vi), (vii) can be proved using similar

arguments. We use the relations (1), (3), (5) and (6) from above to express E1, E3, O1,

O2 in terms of B1 and B2. We use Lemma 4.1.2 and the relations B2Jn−rBt1 = AJ2r and

AB1 = Tr(A)B1.

Ot1Jn−rE3 +Ot2Jn−rE1 − 2π2J2rB1

=
1

4
AtJ2rB2Jn−rB

t
1J2rB1 +

1

4
AtJ2rB1Jn−rB

t
2J2rB1 − 2π2J2rB1

=
1

2
AtJ2rB2Jn−rB

t
1J2rB1 − 2π2J2rB1 =

1

2
AtJ2rAB1 − 2π2J2rB1

= −πJ2rAB1 − 2π2J2rB1 = −π(Tr(A)J2rB1 + 2πJ2rB1) = 0.

Proposition 4.1.0.8. We have I ′ = I.

Proof. From Lemma 4.1.1 and Lemma 4.1.3 we get the desired result.
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4.2 S/I ′ ' S ′′/I ′′.

The goal of this section is to prove that S/I ′ is isomorphic to S′′/I ′′. Recall

I ′ =
(
∧2 X, Tr(X), T r(A) + 2π, B2Jn−rB

t
1 − AJ2r,

XtS1X + 2(S0X + πS1X)
)
.

We first simplify and reduce the number of generators of I ′. The desired isomorphism will

then follow.

Lemma 4.2.1. The trace Tr(X) belongs to the ideal

(
∧2X, Tr(A) + 2π, B2Jn−rB

t
1 − AJ2r, X

tS1X + 2(S0X + πS1X)
)
.

Proof. We first write:

Tr(X) = Tr(E1) + Tr(E4) + Tr(A).

By the relations (1), (4) from Section 4.1 we get that the entries of E1 + 1
2Jn−rB

t
2J2rB1 and

E4 + 1
2Jn−rB

t
1J2rB2, belong to the ideal

(
∧2X, Tr(A) + 2π, B2Jn−rB

t
1 − AJ2r, XtS1X + 2(S0X + πS1X)

)
.

Also, the element

Tr(Jn−rBt1J2rB2)− Tr(A)
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belongs to the above ideal. Thus,

Tr(X) = Tr(E1) + Tr(E4) + Tr(A)

= Tr(E1 +
1

2
Jn−rBt2J2rB1) + Tr(E4 +

1

2
Jn−rBt1J2rB2) + Tr(A)

−1

2
Tr(Jn−rBt1J2rB2)− 1

2
Tr(Jn−rBt2J2rB1)

= Tr(E1 +
1

2
Jn−rBt2J2rB1) + Tr(E4 +

1

2
Jn−rBt1J2rB2),

belongs to the above ideal, as desired.

From the above lemma we obtain

I ′ =
(
∧2X, Tr(A) + 2π, B2Jn−rB

t
1 − AJ2r, X

tS1X + 2(S0X + πS1X)
)
.

Next, we show:

Lemma 4.2.2. We have I ′ =
(
∧2X, Tr(A) + 2π, B2Jn−rBt1 − AJ2r

)
+ I ′, where I ′ is

the ideal generated by the relations (1)-(6) from Section 4.1.

Proof. Using the block form of the matrix X and the relation XtS1X+2(S0X+πS1X) = 0,

it suffices to prove that:

(a) AtJ2rB1 + 2πJ2rB1 = 0,

(b) AtJ2rB2 + 2πJ2rB2 = 0,

(c) AtJ2rA+ 2πJ2rA = 0,

in the quotient ring of S by
(
∧2X, Tr(A) + 2π, B2Jn−rBt1 − AJ2r

)
+ I ′.
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We first discuss (a). Recall that A = B2Jn−rBt1J2r, AB1 = Tr(A)B1 and Tr(A)+2π = 0.

Thus,

AtJ2rB1 + 2πJ2rB1 = J2rB1Jn−rB
t
2J2rB1 + 2πJ2rB1

= J2rAB1 + 2πJ2rB1

= J2rTr(A)B1 + 2πJ2rB1 = 0.

Using similar arguments we can prove that the relations (b) and (c) hold.

The final step is to look more carefully at the minors that come from ∧2X.

Lemma 4.2.3. ∧2X ∈ I ′ +
(
∧2(B1 |B2), T r(A) + 2π, B2Jn−rBt1 − AJ2r

)
.

Proof. In the proof, we use phrases like: “minors only from Ec”, “minors only from A and

B`”, or “minors from A and Ec”. Let us explain what we mean by these terms. Consider

the minor

m
i,j
t,s =

xi,j xi,s

xt,j xt,s

 = xi,jxt,s − xi,sxt,j .

When we say that “the minor comes only from Ec” we mean that all of the entries {xi,j , xt,s,

xi,s, xt,j} are entries of Ec for c ∈ {1, 2, 3, 4}. Similarly, when we say “the minor comes

only from A and B`” we mean that all of {xi,j , xt,s, xi,s, xt,j} are entries either of A or

of B` and at least one of the {xi,j , xt,s, xi,s, xt,j} is an entry of A and at least one of the

{xi,j , xt,s, xi,s, xt,j} is an entry of B`. On the other hand, when we say that “the minor

comes from A and Ec” we mean that at least one of the {xi,j , xt,s, xi,s, xt,j} is an entry of

A and at least one of the {xi,j , xt,s, xi,s, xt,j} is an entry of Ec for c ∈ {1, 2, 3, 4}. We have

the following cases of minors:
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1. only from Ec

2. only from A

3. only from Om

4. from Ec and A

5. only from A and B`

6. only from Ec and Om

7. only from A and Om

8. only from Ec and B`

In each case, we will show that the corresponding minors belong to

I ′ +
(
∧2(B1 |B2), T r(A) + 2π, B2Jn−rB

t
1 − AJ2r

)
.

We will start by considering case (1), i.e. minors only from Ec. It suffices to prove xi,jxt,s =

xi,sxt,j in the quotient ring

S

I ′ +
(
∧2(B1 |B2), T r(A) + 2π, B2Jn−rBt1 − AJ2r

) .
By using minors from B` for ` ∈ {1, 2} and for all i, j ∈ Zc, we have the following equation

in the above quotient ring:

( n∑
a=n−(r−1)

xd+1−a,d+1−ixa,j
)( n∑

a=n−(r−1)

xd+1−a,d+1−txa,s
)

=

( n∑
a=n−(r−1)

xd+1−a,d+1−ixa,s
)( n∑

a=n−(r−1)

xd+1−a,d+1−txa,j
)
.

By using the relations (1)-(4) from Section 4.1 we can express the entries xi,j of Ec as:

xi,j = −
n∑

a=n−(r−1)

xd+1−a,d+1−ixa,j
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with i, j ∈ Zc. Using this and the above equality we obtain:

xi,jxt,s = xi,sxt,j .

The rest of cases (2)-(8) can be handled by similar arguments. More precisely, by using the

relations (1)-(6) from Section 4.1 we can express all the entries from Ei for i ∈ {1, 2, 3, 4} and

O1, O2 in terms of the entries of B1, B2. Also, by using A = B2Jn−rBt1J2r we can express

all the entries of A in terms of the entries of B1, B2. After that, by using the 2 × 2-minors

from the matrix (B1|B2) we get the desired result in all the remaining cases.

End of proof of Theorem 4.0.1: From the above lemma we obtain that

I ′ = I ′ +
(
∧2(B1 |B2), T r(A) + 2π, B2Jn−rB

t
1 − AJ2r

)
.

Observe that an equivalent way of writing I ′ is:

I ′ = I ′ +
(
∧2(B1 |B2), T r(B2Jn−rB

t
1J2r) + 2π, B2Jn−rB

t
1 − AJ2r

)
.

Using this and the fact that I ′ = I the proof of Theorem 4.0.1 follows.
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Chapter 5

Flatness of Ud,l

We continue to assume d = 2n, l = 2r.

Recall that Ud,l = Spec (S/I). The goal of this chapter is to prove that Ud,l is flat over O

as given by Theorem 5.0.4. The simplification that we obtained from Theorem 4.0.1 quickly

gives the following, which in turn plays a crucial role for the proof of Theorem 5.0.4.

Theorem 5.0.1. Ud,l is Cohen-Macaulay.

Proof. Denote by O[B1|B2] the polynomial ring over O with variables the entries of the

matrix (B1|B2). From Theorem 4.0.1 we obtain the isomorphism

S

I
' O[B1|B2](
∧2(B1 |B2), T r(B2Jn−rBt1J2r) + 2π

) .
Set R := O[B1|B2]/(∧2 (B1 |B2)). By [21, Remark 2.12], the ring R is Cohen-Macaulay and

an integral domain. We consider the point P of the determinantal variety which is defined

by the relations: xn−r+1,1 xn−r+1,d

xn+r,1 xn+r,d

 =

1− π 1− π

1 1


and we set all the other variables equal to zero. We can easily observe that Tr(B2Jn−rBt1J2r)+
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2π is not zero over the point P . Therefore, we have

ht((Tr(B2Jn−rB
t
1J2r) + 2π)) = 1.

We apply the fact that if A is Cohen-Macaulay and the ideal I = (a1, . . . , ar) of A

has height r then A/I is Cohen-Macaulay ([12, example 3 (16.F)]) to A = R and a1 =

Tr(B2Jn−rBt1J2r) + 2π. We obtain that

O[B1|B2](
∧2(B1 |B2), T r(B2Jn−rBt1J2r) + 2π

)
is Cohen-Macaulay. This implies the result.

Remark 5.0.2. From the above proof and the standard formula for the dimension of the

determinantal varieties (see [21, Proposition 1.1]) we obtain that dim(S/I) = dim(R)− 1 =

d− 1. Hence, the dimension of Ud,l is d− 1.

Remark 5.0.3. Mimicking the proof of Theorem 5.0.1 and by considering Remark 5.0.2 we

obtain that the special fiber Ud,l of Ud,l is Cohen Macaulay and of dimension d− 2.

Theorem 5.0.4. Ud,l is flat over O.

Proof. From Remark 5.0.2 we have that Ud,l has dimension d − 1. From Remark 5.0.3 we

have that the dimension of Ud,l is d − 2. Using the fact that Ud,l is Cohen Macaulay, see

Theorem 5.0.1, we obtain that ht((π)) = 1. Hence, we have that (π) is a regular sequence

i.e π is not a zero divisor (see [9]). From this, flatness of Ud,l follows.

36



Chapter 6

Reducedness of Ud,l

In all of Chapter 6, we assume d = 2n and l = 2r.

We will prove that the special fiber Ud,l of Ud,l = Spec (S/I) is reduced; see Chapter 4

for undefined terms.

Proof of Theorem 3.2.3. From Remark 5.0.3 we know that Ud,l is Cohen-Macaulay. By

using Serre’s criterion for reducedness, it suffices to prove that the localizations at minimal

primes are reduced. From Lemma 7.1.1 and Lemma 7.2.1 we obtain the minimal primes of

Ud,l. Below, we focus on the localization of Ud,l over I1 for 1 < r < n − 1 (see Section 7.2

for the notation). In the other cases the proof is similar.

We first introduce some additional notation:

Denote by k[B1|B2] the polynomial ring over k with variables the entries of the matrix

(B1|B2). We set Z1 := Z \ {n− r + 1} and Z2 := Zc \ {1}. By direct calculations we get

Tr(B2Jn−rB
t
1Jl) =

∑
n−r+1≤i≤n+r,1≤j≤n−r

xi,j xd+1−i,d+1−j .

Set tr := 1
2Tr(B2Jn−rBt1Jl) and t′r = tr − xn−r+1,1xn+r,d. Lastly, we set m := x−1

n−r+1,dt
′
r.

We refer the reader to Section 7.2 for the rest undefined terms.

From Theorem 4.0.1 and Lemma 4.1.2 we obtain that the special fiber Ud,l is given by
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the quotient of k[B1|B2] by the ideal (∧2(B1 |B2), tr). Set J1 = I1 +
(
∧2(B1 |B2), tr

)
where

I1 =
(

(
n∑

a=n−(r−1)

xd+1−a,d+1−ixa,j)i,j∈Zc , ∧2(B1 |B2)
)
.

By localizing k[B1|B2]/(∧2(B1 |B2), tr) at J1 we have

(
k[B1|B2]

∧2(B1 |B2), tr

)
J1

'
k[B1|B2]I1(
∧2(B1 |B2), tr

)
I1

.

In the proof of Lemma 7.2.1 we used the fact that xn−r+1,1 /∈ I1. Similarly, we have that

xn−r+1,d /∈ I1.

Claim: (
∧2(B1 |B2), tr

)
I1

=
(

(xi,j − x−1
n−r+1,1xi,1xn−r+1,j)i∈Z1, j∈Z2

, (xn+r,1 +m)
)
I1
.

Proof of the claim: From the minors we have xi,jxn−r+1,1−xi,1xn−r+1,j = xn−r+1,1(xi,j−

x−1
n−r+1,1xi,1xn−r+1,j). We rewrite tr as:

tr = xn−r+1,1xn+r,d + t′r. (6.0.0.1)

Combining (6.0.0.1) with the minor xn−r+1,1xn+r,d = xn−r+1,dxn+r,1 we obtain

xn−r+1,1xn+r,d + t′r = xn−r+1,d(xn+r,1 +m).

Now, because xn−r+1,1, xn−r+1,d /∈ I1 the claim follows.
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Combining all the above we have:

k[B1|B2]I1(
∧2(B1 |B2), tr

)
I1

'
k[B1|B2]I1(

(xi,j − x−1
n−r+1,1xi,1xn−r+1,j)i∈Z1, j∈Z2

, (xn+r,1 +m)
)
I1

' k[(xi,1)i∈Z\{n+r}, (xn−r+1,j)j∈Zc , x
−1
n−r+1,1, x

−1
n−r+1,d]J1

where the last one is a reduced ring. Thus, the special fiber of Ud,l is reduced.
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Chapter 7

Irreducible Components of Ud,l Part I

We continue to assume d = 2n, l = 2r.

Recall that Ud,l = Spec (S/I) and Ud,l is the special fiber of Ud,l. In this chapter, the

main goal is to calculate the irreducible components of Ud,l.

Theorem 7.0.1. (i) For r = 1 and r = n− 1, Ud,l has three irreducible components.

(ii) For 1 < r < n− 1, Ud,l has two irreducible components.

The proof of the theorem will be carried out in Section 7.1 (case (i)) and in Section 7.2

(case (ii)).

7.1 l = 2 and l = d− 2

In this section we will prove Theorem 7.0.1 in the case r = 1. A similar argument works in

the case r = n− 1. For this section we introduce the following notation. Observe that when

r = 1, Z = {n, n+ 1} and Zc = {1, 2, 3, . . . , d} \ Z. We rename the variables as follows:

vi = xn,i, for i ∈ Zc andwj = xn+1,j , for j ∈ Zc.

Define the polynomial ring Ssim = k[vi, wj ]i,j∈Zc . From Theorem 4.0.1 we obtain that the
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special fiber is isomorphic to Ssim/Isim where

Isim =
( n−1∑
i=1

viw2n+1−i, (viwj − vjwi)i,j∈Zc
)
.

It is not very hard to observe, by using the minors, that

Isim =
( n−1∑
i=1

viw2n+1−i, (vi

n−1∑
j=1

wjw2n+1−j)i∈Zc , (wi

n−1∑
j=1

vjv2n+1−j)i∈Zc ,

n−1∑
i=1

viv2n+1−i

n−1∑
j=1

wjw2n+1−j , (viwj − vjwi)i,j∈Zc
)
.

Next, we set

I1 =
(

(vi)i∈Zc
)
, I2 =

(
(wi)i∈Zc

)
and

I3 =
( n−1∑
i=1

viv2n+1−i,
n−1∑
i=1

wiw2n+1−i,
n−1∑
i=1

viw2n+1−i, (viwj − vjwi)i,j∈Zc
)
.

Proof of Theorem 7.0.1 (i): From the above, it suffices to calculate the irreducible components

of V (Isim).

Observe that the elements

(vi

n−1∑
j=1

wjw2n+1−j)i∈Zc , (wi

n−1∑
j=1

vjv2n+1−j)i∈Zc ,

n−1∑
i=1

viv2n+1−i

n−1∑
j=1

wjw2n+1−j

belong to Isim.
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Therefore, we can easily see that

V (Isim) = V (I1) ∪ V (I2) ∪ V (I3).

Observe also that

Ssim/I1 ' k[(wj)j∈Zc ], Ssim/I2 ' k[(vj)j∈Zc ].

Thus, the closed subschemes V (I1), V (I2) are affine spaces of dimension d−2 and so they are

irreducible and smooth. We have to check that the third one is irreducible and of dimension

d− 2. Notice that I3 is generated by homogeneous elements. Thus, it suffices to prove that

the projectivization

Vp(I3) ⊆ P2d−5
k

of the affine cone V (I3) is irreducible. Consider

Vv1 := Vp(I3) ∩ Uv1 ,

where Uv1 = D(v1 6= 0). We can see that it is isomorphic to

Spec (k[(vi)i∈Zc\{1,d}, w1]),

and so it is irreducible. By symmetry we have a similar result for every Vvi and Vwj with

i, j ∈ Zc. Moreover, the Vvi and Vwj form a finite open cover of irreducible open subsets of

Vp(I3). Thus Vp(I3) is irreducible and so V (I3) ⊆ A2d−4
k is irreducible. This completes the

proof of Theorem 7.0.1 (i).
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We can go one step further and prove that:

Lemma 7.1.1. The ideals I1, I2, I3 are prime.

Proof. From the proof of Theorem 7.0.1 (i), I1, I2 are clearly prime ideals. It suffices to prove

that I3 is prime. From Theorem 7.0.1 (i) we have that I3 is a primary ideal and so every zero

divisor in D := k[vi, wj ]i,j∈Zc/I3 is a nilpotent element. Hence, it suffices to prove that D is

reduced. From the proof of Theorem 7.0.1 (i) we have that the scheme Spec (D) is smooth

over Spec (k) outside from its closed subscheme of dimension 0 which is defined by the ideal

((vj)j∈Zc , (wi)i∈Zc). Therefore, using Serre’s criterion for reducedness ([12] 17.I) and the

above description it suffices to find a regular element f such that f ∈ ((vj)j∈Zc , (wi)i∈Zc).

Claim: We can take f = w1.

Proof of the claim: Assume that w1 is not a regular element. Then, because I3 is primary,

we have wm1 ∈ I3 for some m > 0. We will obtain a contradiction by using Buchberger’s

algorithm. This is a method of transforming a given set of generators for a polynomial ideal

into a Gröbner basis with respect to some monomial order. For more information about this

algorithm we refer the reader to [4, Chapter 2].

Set R = k[vi, wj ]i,j∈Zc for the polynomial ring. We choose the following order for our

variables:

v1 > v2 > · · · > vd > w1 > · · · > wd.

Then, the graded lexicographic order induces an order of all monomials in R.

Next, we recall the division algorithm in R. We fix the above monomial ordering. Let

J = (f1, . . . , fs) be an ordered s-tuple of polynomials in R. Then every g ∈ R can be written

as

g = a1f1 + . . .+ asfs + r,
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where ai, r ∈ R and either r = 0 or r is a linear combination, with coefficients in k, of

monomials, none of which is divisible by any of LT (f1), . . . , LT (fs). By LT (fi) we denote

the leading term of fi. We will call r a remainder of g on division by J . (See [4, Chapter 2]

for more details.)

Recall that the S-polynomial of the pair f , g ∈ R is

S(f, g) =
LCM(LM(f), LM(g))

LT (f)
f − LCM(LM(f), LM(g))

LT (g)
g.

Here, by LM(f) we denote the leading monomial of f according to the above ordering.

To find the Gröbner basis for the ideal I3, we start with the generating set

{ n−1∑
i=1

viv2n+1−i,
n−1∑
i=1

wiw2n+1−i,
n−1∑
i=1

viw2n+1−i, (viwj − vjwi)i,j∈Zc
}
.

Then, we calculate all the S-polynomials S(f, g), where f, g are any two generators from the

generating set that we have started. If all the S-polynomials are divisible by the generating

set then the generating set already forms a Gröbner basis. On the other hand, if a remainder

is nonzero we extend our generating set by adding this remainder and we repeat the above

process until we have a generating set where all the S-polynomials are divisible by the

generating set. In our case, the generators of I3 are homogeneous polynomials of degree 2.

The monomials of those homogeneous polynomials have one of the following forms:

1. vivj with i 6= j, or

2. wiwj with i 6= j, or

3. wivj with i 6= j.
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Thus, the nonzero remainder of any S-polynomial is a polynomial where each monomial is

divisible by at least one monomial of the above three forms. By this observation we can

see that, the Gröbner basis cannot have a monomial that looks like wmi or vmj . Now, let

{g1 . . . , gN} be the Gröbner basis of I3. From the above we have

wm1 /∈ 〈LT (g1), . . . , LT (gN )〉.

Moreover, because {g1 . . . , gN} is the Gröbner basis of I3 we have that

〈LT (g1), . . . , LT (gN )〉 = LT (I3),

(see [4, Chapter 5]). By LT (I3) we denote the ideal generated by all the leading terms of

elements of I3. Therefore,

wm1 /∈ LT (I3).

Hence, w1 is a regular element and so I3 is a prime ideal. This completes the proof of the

claim and by the above the proof of lemma.

7.2 2 < l < d− 2

In this section we will prove Theorem 7.0.1 in the case 1 < r < n− 1. In this case we have

Z = {n− (r− 1), . . . , n, n+ 1, . . . , d−n+ r} and Zc = {1, 2, 3, . . . , d}\Z. For the undefined

terms below we refer the reader to Chapters 4 and 6. From Theorem 4.0.1 we obtain that

the special fiber Ud,l is given by the quotient of k[B1|B2] by the ideal Is = (∧2(B1 |B2), tr).
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Also with direct calculations and by using the minors we can see that

Is =
(
∧2 (B1 |B2), tr,

( n∑
a=n−(r−1)

xd+1−a,d+1−txa,s
n−r∑
b=1

xi,bxd+1−j,d+1−b
)
i,j∈Z
t,s∈Zc

)
.

Next, set

I1 =
(( n∑

a=n−(r−1)

xd+1−a,d+1−txa,s
)
t,s∈Zc

, ∧2(B1 |B2)
)

and

I2 =
(( n−r∑

a=1

xi,axd+1−j,d+1−a
)
i,j∈Z

, ∧2(B1 |B2)
)
.

Proof of Theorem 7.0.1 (ii): From the above, it suffices to calculate the irreducible compo-

nents of V (Is).

Observe that

( n∑
a=n−(r−1)

xd+1−a,d+1−txa,s
n−r∑
b=1

xi,bxd+1−j,d+1−b
)
i,j∈Z
t,s∈Zc

∈ Is.

Therefore, we can easily see that

V (Is) = V (I1) ∪ V (I2).

Next, we prove that the closed subschemes V (I1) and V (I2) are irreducible of dimension

d − 2. We will start by proving that V (I1) is an irreducible component. Observe that I1 is

generated by homogeneous elements.
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Thus, it suffices to prove that the projectivization

Vp(I1) ⊆ P4r(n−r)−1
k .

of the affine cone V (I1) is irreducible. We look at

Vxn−(r−1),1
:= Vp(I1) ∩ Uxn−(r−1),1

,

where Uxn−(r−1),1
= D(xn−(r−1),1 6= 0). We can see that it is isomorphic to

Spec (k[(xn−(r−1),j)j∈Zc\{1}, (xt,1)n−(r−2)≤t≤n+r−1])

and so it is irreducible. Because of the symmetry of the relations we will have a similar result

for every Vxt,s with t ∈ Z, s ∈ Zc. Moreover,

(Vxt,s)t∈Z, s∈Zc

form a finite open cover of irreducible open subsets of Vp(I1) and thus we get that Vp(I1) is

irreducible and so V (I1) is irreducible of dimension d− 2.

We use a similar argument for V (I2). I2 is generated by homogeneous elements and so

by using the projectivization

Vp(I2) ⊆ P4r(n−r)−1
k

of the affine cone V (I2), it suffices to prove that Vp(I2) is irreducible. We look at

Vxn−(r−1),1
:= Vp(I2) ∩ Uxn−(r−1),1

,
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where Uxn−(r−1),1
= D(xn−(r−1),1 6= 0). We can see that it is isomorphic to

Spec (k[(xn−(r−1),j)j∈Zc\{1,d}, (xt,1)n−(r−2)≤t≤n+r])

and so it is irreducible. Therefore, V (I2) is irreducible of dimension d − 2. This completes

the proof of Theorem 7.0.1 (ii).

Next, we prove that:

Lemma 7.2.1. The ideals I1, I2 are prime.

Proof. To see that I1, I2 are prime ideals one proceeds exactly as in Lemma 7.1.1. So, it

suffices to find a regular element f such that f ∈ ((xt,s)t∈Z,s∈Zc). We claim that xn−r+1,1

is a choice for f . Assume for contradiction that xn−r+1,1 is not a regular element. Then,

because Ii is primary, we should have that xmn−r+1,1 ∈ Ii for some m > 0.

We choose the following order for our variables (xt,s)t∈Z,s∈Zc :

xn−r+1,1 > . . . > xn−r+1,n−r > xn−r+1,n+r+1 > . . . > xn−r+1,d >

xn−r+2,1 > . . . > xn−r+2,d > . . . > xn+r,1 > . . . > xn+r,n−r >

xn+r,n+r+1 > . . . > xn+r,d.

Then, the graded lexicographic order induces an ordering to all the monomials. First, let’s

consider the ideal I1. In order to find the Gröbner basis for I1, we start with the generating

set {( n∑
a=n−(r−1)

xd+1−a,d+1−ixa,j
)
i,j∈Zc

, ∧2(B1 |B2)
}
.

After that we calculate all the S-polynomials S(f, g), where f, g are any two generators
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from the generating set that we have started; so in our case is I1. The generators of I1 are

homogeneous polynomials of degree 2. The monomials of those homogeneous polynomials

have one of the following form:

(xi,jxt,s)

with i, t ∈ Z, j, s ∈ Zc and either i 6= t or j 6= s. Thus, the nonzero remainder of any

S-polynomial is a polynomial where each monomial is divisible by at least one monomial

of the above form. By this observation we can see that, the Gröbner basis cannot have a

monomial that looks like xmn−r+1,1. Now, by using a Gröbner basis argument as in Lemma

7.1.1 we deduce that xn−r+1,1 is a regular element and so I1 is a prime ideal.

Now, by looking the ideal I2 we have the generating set:

{( n−2∑
a=1

xi,axd+1−j,d+1−a
)
i,j∈Z

, ∧2(B1 |B2)
}
.

So, we observe that in this case also the generators of the ideal I2 are homogeneous polyno-

mials of degree 2. All the monomials have one of the following form:

(xi,jxt,s)

with i, t ∈ Z, j, s ∈ Zc and either i 6= t or j 6= s. So, by using the same argument we can

prove that I2 is a prime ideal.
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Chapter 8

The Remaining Cases

In this chapter we sketch the proof of Theorems 3.2.1 and 3.2.2 in the remaining cases of

parity for d and l. The main point is that in all the cases the affine chart Ud,l of the local

model is displayed as a hypersurface in a determinantal scheme. The arguments are similar

with the proof of the case (d, l) = (even, even). In fact, in the case that (d, l) = (odd, odd)

the argument is exactly the same. The case of Theorem 3.2.2 (different parity) is somewhat

different as we explain below.

8.1 Proof of Theorem 3.2.2

Proof. We use the notation from Section 3.2. We also introduce some new notation. Set

Z ′ := {n− r′, . . . , n, n+ 2, . . . , d− n+ r′}, (Z ′)c := {1, 2, 3, . . . , d} \ Z ′.

Also, define the polynomial ring

O[B′1|Q
′|B′2] := O[(xt,s)t∈Z′,s∈(Z′)c ].

Lastly, set

∧2(B′1 |Q
′ |B′2) := (xi,jxt,s − xi,sxt,j)i,t∈Z′ j,s∈(Z′)c .
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We can now sketch the proof. In this case, similar elementary arguments as in the proof of

Theorem 4.0.1 give that the quotient O[X]/I is isomorphic to the quotient of O[B′1|Q
′|B′2]

by the ideal

(∧2(B′1 |Q
′ |B′2), T r((B′2Jn−r′(B

′
1)t +

1

2
Q′(Q′)t)Jl) + 2π).

The rest of the argument deducing flatness is the same as before.
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Chapter 9

Irreducible Components of Ud,l Part II

In this chapter we present the irreducible components of the special fiber Ud,l of Ud,l in the

remaining cases. We omit the proofs which are similar to Theorem 7.0.1. For the notation

we refer the reader to Chapter 4 and Chapter 8.

9.1 (d, l) = (odd, odd)

9.1.1

When l < d − 2, the irreducible components of Ud,l are the closed subschemes V (I1) and

V (I2) where:

I1 =
(

(
n∑

a=n−r+1

xd+1−a,d+1−txa,s +
1

2
xn+1,d+1−txn+1,s)t,s∈Zc , ∧2(B1 |B2)

)

and

I2 =
(

(
n−r∑
a=1

xi,axd+1−j,d+1−a)i,j∈Z , ∧2(B1 |B2)
)
.

9.1.2

When l = d− 2, the irreducible components of Ud,l are the closed subschemes V (I1), V (I2)
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and V (I3) where:

I1 =
(

(xi,1)i∈Z
)
, I2 =

(
(xi,d)i∈Z

)
and

I3 =
( n∑
a=n−r+1

xa,1xd+1−a,1 +
1

2
x2
n+1,1,

n∑
a=n−r+1

xa,dxd+1−a,d +
1

2
x2
n+1,d,

∧2(B1 |B2),
n∑

a=n−r+1

xa,1xd+1−a,d +
1

2
xn+1,1xn+1,d

)
.

9.2 (d, l) = (odd, even)

9.2.1

When l > 2 the irreducible components of Ud,l are the closed subschemes V (I1) and V (I2)

where:

I1 =
(( n∑

a=n−(r−1)

xd+1−a,d+1−txa,s
)
t,s∈(Z′)c

, ∧2((B′1 |Q
′ |B′2),

( n∑
a=n−(r−1)

xd+1−a,n+1xa,j

)
1≤j≤d

)
and

I2 =
(
∧2 ((B′1 |Q

′ |B′2),
( n−r∑
a=1

xi,axd+1−j,d+1−a +
1

2
xi,n+1xd+1−j,n+1

)
i,j∈Z′

)
.

9.2.2

When l = 2, the irreducible components of Ud,l are the closed subschemes V (I1), V (I2) and

V (I3) where:

I1 =
(

(xn,i)i∈(Z′)c
)
, I2 =

(
(xn+2,i)i∈(Z′)c

)
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and

I3 =
( n−1∑
a=1

xn,axn,d+1−a +
1

2
x2
n,n+1,

n−1∑
a=1

xn+2,axn+2,d+1−a +
1

2
x2
n+2,n+1,

∧2((B′1 |Q
′ |B′2),

n−1∑
a=1

xn,axn+2,d+1−a +
1

2
xn,n+1xn+2,n+1

)
.

9.3 (d, l) = (even, odd)

The irreducible components of Ud,l are the closed subschemes V (I1) and V (I2) where:

I1 =
(( n−1∑

a=n−r
xd+1−a,n+1xa,j +

1

2
xn,n+1xn,j

)
1≤j≤d

, ∧2((B′1 |Q
′ |B′2),

( n−1∑
a=n−r

xd+1−a,d+1−txa,s +
1

2
xn,d+1−txn,s

)
t,s∈(Z′)c

)
,

I2 =
(( n−r−1∑

a=1

xi,axn,d+1−a +
1

2
xi,n+1xn,n+1

)
i∈Z′

, ∧2((B′1 |Q
′ |B′2),

( n−r−1∑
a=1

xi,axd+1−j,d+1−a +
1

2
xi,n+1xd+1−j,n+1

)
i∈Z′,j∈Z′\{n}

)
.
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Chapter 10

The Blow-Up of Mloc(Λ)

The statements and the results from this chapter are contained in [18]. The reader is referred

to loc. cit. §5.3 for more details.

Let

rbl : Mbl(Λ)→ Mloc(Λ)

be the blow-up of Mloc(Λ) at the closed point ∗ of its special fiber that corresponds to L = L.

We will show:

Theorem 10.0.1. The scheme Mbl(Λ) is regular and has special fiber a divisor with normal

crossings. In fact, Mbl(Λ) is covered by open subschemes which are smooth over Spec (Zp[u, x,

y]/(u2xy − p)).

Before we start the proof of the above theorem, we first restate Theorems 3.2.1 and 3.2.2

in a different form; see Theorem 10.0.2. Then using this we prove Theorem 10.0.1.

In this chapter we use the notation from Section 3.2 and we also introduce some additional

notation: we set

T(B1|B2) = Tr(B2Jn−rB
t
1Jl), if d ≡ lmod 2,

T(B′1|Q
′|B′2) = Tr((B′2Jn−r′(B

′
1)t +

1

2
Q′(Q′)t)Jl), if d 6≡ lmod 2.
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For simplicity, we define

Z =


[B1|B2], if d ≡ lmod 2,

[B′1|Q
′|B′2], if d 6≡ lmod 2.

Then Z = (zij) ∈ Matl×(d−l), in both cases. By an explicit calculation, we find that

T(Z) =
1

2

∑
1≤i≤l,1≤j≤d−l

zi d−l+1−j zl+1−i j .

(The same expression is valid for any pair (d, l).) Finally, denote by D2
l×(d−l) = {Z | ∧2Z =

0} ⊂ Matl×(d−l) the “determinantal” subscheme of the affine space of matrices Z over

Spec (O).

Using the above notation, Theorems 3.2.1 and 3.2.2 are equivalent to the statement:

Theorem 10.0.2. An affine chart of the local model Mloc(Λ) around the worst point L = L

is given by Ud,l and is isomorphic to the closed subscheme DT of the determinantal scheme

D2
l×(d−l) which is defined by the quadratic equation

∑
1≤i≤l,1≤j≤d−l

zi d−l+1−j zl+1−i j = −4π.

Proof. This follows from the proofs of Theorems 3.2.1 and 3.2.2. More precisely, see Theorem

4.0.1 and Chapter 8.

Now, we are ready to prove Theorem 10.0.1.

Proof. By Theorem 10.0.2, it is enough to show the conclusion of the theorem for the

blow-up D̃T of DT at the (maximal) ideal given by (zij). For simplicity, we write D for
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the determinantal scheme D2
l×(d−l) over Spec (O). This is the affine cone over the Segre

embedding

(Pl−1 × Pd−l−1)O ↪→ Pl(d−l)−1
O .

Also, we set

T =
1

2

∑
1≤i≤l,1≤j≤d−l

zi d−l+1−j zl+1−i j .

Let us consider the blow-up

D̃ −→ D

of the determinantal scheme over Spec (O) along the vertex of the cone, i.e. along the

subscheme defined by the ideal (zij). Then, the blow-up D̃T is isomorphic to the strict

transform of the hypersurface DT ⊂ D given by T + 2π = 0. Let Vs,t be the open affine

chart of D̃ over which the image of zst generates the pull-back of the ideal (zij). Then

Vs,t = Spec (O[(ui,j)1≤i≤l,1≤j≤d−l]/((ui,j − us,jui,t)i,j , us,t − 1).

The intersection Vs,t ∩ D̃T is obtained by substituting zij = ui,jzst and ui,j = us,jui,t, for

all i, j, in the equation T = −2π. This amounts to setting

zij = us,jui,tzst

and gives

4π + z2
st(

∑
1≤i≤l,1≤j≤d−l

us,d−l+1−jui,tus,jul+1−i,t) = 0.
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This is

4π + z2
st(

l∑
i=1

ui,tul+1−i,t)(
d−l∑
j=1

us,jus,d−l+1−j) = 0. (10.0.0.1)

Note that, since us,t = 1, the two sums in the line above are

S1 = ul+1−s,t +
∑
i 6=s

ui,tul+1−i,t , S2 = us,d−l+1−t +
∑
j 6=t

us,jus,d−l+1−j .

We see that u 7→ zst, x 7→ −S1/2, y 7→ S2/2 defines a smooth morphism

Vs,t ∩ D̃T −→ Spec (O[u, x, y]/(u2xy − π)).
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Chapter 11

Application to Shimura Varieties

In this chapter we present one of the main results from the joint work [18]. For a more

detailed presentation we refer the reader to loc. cit. §7.

The goal is to construct regular integral models for GSpin Shimura varieties; see Theorem

11.0.1.

We start with an odd prime p and an orthogonal quadratic space V over Q of dimension

d ≥ 5 and signature (d − 2, 2). We take G = GSpin(V ) and we consider the hermitian

symmetric domain

D = {z ∈ VC : 〈z, z〉 = 0, 〈z, z̄〉 < 0}/C×

of dimension d − 2. The pair (G,D) defines the spin similitude Shimura datum (for more

details see [18, §7.1].).

In addition, we choose a vertex lattice Λ ⊂ V ⊗Q Qp with πΛ∨ ⊂ Λ ⊂ Λ∨ and l =

lengthZp(Λ∨/Λ), l∗ = min(l, d− l), and assume l∗ ≥ 2. This defines the parahoric subgroup

Kp = {g ∈ GSpin(V ⊗Q Qp) | gΛg−1 = Λ, η(g) ∈ Z×p }

which we fix below. (Here, η : GSpin(V ⊗Q Qp) → Q×p is the spinor similitude, and

for v ∈ V ⊗Q Qp, gvg−1 is defined using the Clifford algebra, see [18, §2.3, §2.5].) The

group G is the smooth connected “Bruhat-Tits” group scheme over Spec (Zp) such that
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G ⊗Zp Qp = G ⊗Q Qp and G(Zp) = Kp. Choose also a sufficiently small compact open

subgroup Kp of the prime-to-p finite adelic points G(Apf ) of G and set K = KpKp. The

Shimura variety ShK(G,D) with complex points

ShK(G,D)(C) = G(Q)\D×G(Af )/K

is of Hodge type and has a canonical model over the reflex field Q.

Theorem 11.0.1. For every Kp as above, there is a scheme S reg
K (G,D), flat over Spec (Zp),

with

S reg
K (G,D)⊗Zp Qp = ShK(G,D)⊗Q Qp,

and which supports a “local model diagram”

S̃ reg
K (G,D)

S reg
K (G,D) Mbl(Λ)

π
reg
K

q
reg
K (11.0.0.1)

such that:

a) π
reg
K is a G-torsor for the parahoric group scheme G that corresponds to Kp,

b) q
reg
K is smooth and G-equivariant.

c) S reg
K (G,D) is regular and has special fiber which is a divisor with normal crossings.

In fact, S reg
K (G,D) can be covered, in the étale topology, by schemes which are smooth

over Spec (Zp[u, x, y]/(u2xy − p)).

In addition, we have:
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1) The schemes {S reg
K (G,D)}Kp, for variable Kp, support correspondences that extend

the standard prime-to-p Hecke correspondences on {ShK(G,D)}Kp. These correspon-

dences extend to the local model diagrams above (acting trivially on Mbl(Λ)).

2) The projective limit

S reg
Kp

(G,D) = lim←−Kp SKpKp(G,D)

satisfies the “dvr extension property”: For every dvr R of mixed characteristic (0, p)

we have:

S reg
Kp

(G,D)(R) = ShKp(G,D)(R[1/p]).

Note that (a) and (b) together amount to the existence of a smooth morphism

q̄K : S reg
K (G,D)→ [G\Mbl(Λ)]

where the target is the quotient algebraic stack.

Proof. By [10, Theorem 4.2.7], there are schemes SK(G,D) which satisfy similar properties,

excluding (c), but with Mbl(Λ) replaced by the PZ local model Mloc(Λ). In particular, we

have

S̃K(G,D)

SK(G,D) Mloc(Λ)

πK qK (11.0.0.2)

with πK a G-torsor and qK smooth and G-equivariant. We set

S̃ reg
K (G,D) = S̃K(G,D)×

Mloc(Λ)
Mbl(Λ)
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which carries a diagonal G-action. Since r : Mbl(Λ) −→ Mloc(Λ) is given by a blow-up, is

projective, and we can see ([14, §2]) that the quotient

π
reg
K : S̃ reg

K (G,D) −→ S reg
K (G,D) := G\S̃ reg

K (G,D)

is represented by a scheme and gives a G-torsor. (This is an example of a “linear modifica-

tion”, see [14, §2].) In fact, since blowing-up commutes with étale localization, S reg
K (G,D) is

the blow-up of SK(G,D) at the subscheme of closed points that correspond to ∗ ∈ Mloc(Λ)

under the local model diagram (11.0.0.1). This set of points is the discrete Kottwitz-

Rapoport stratum of the special fiber of SK(G,D). The projection gives a smooth G-

morphism

q
reg
K : S̃ reg

K (G,D) −→ Mbl(Λ)

which completes the local model diagram. Property (c) follows from Theorem 10.0.1 and

properties (a) and (b) which imply that S reg
K (G,D) and Mbl(Λ) are locally isomorphic for

the étale topology. The rest of the properties in the statement follow from the corresponding

properties for SK(G,D) and the construction. For a more detailed presentation of this

proof see the proof of [18, Theorem 7.2.1].
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Existence d’une donnée radicielle valuée. Publ. Math. Inst. Hautes Études Sci. 60
(1984)

[2] F. Andreatta, E. Goren, B. Howard, K. Madapusi Pera, Height pairings on orthogonal
Shimura varieties, Compos. Math., 153 (2017), no. 3, 474–534.

[3] F. Andreatta, E. Goren, B. Howard, K. Madapusi Pera, Faltings Heights of Abelian
Varieties with Complex Multiplication. Ann. of Math. 187, no. 2 (2018), 391-531.

[4] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, Springer Third
Edition.

[5] L. Gerstein, Basic quadratic forms. Grad. Stud. Math. vol. 90, 2008.
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