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ABSTRACT

GEOGRAPHIC APPLICATIONS OF KNOWLEDGE-RICH MACHINE LEARNING
APPROACHES IN SPATIOTEMPORAL DATA ANALYSIS

By

Pouyan Hatami Bahman Beiglou

In the modern realm of pervasive, frequent, sizable and instant data capturing with advancements
in instrumentation, data generation and data gathering techniques, we can benefit new prospects
to comprehend and analyze the role of geography in everyday life. However, traditional geographic
data analytics are now strictly challenged by the volume, velocity, variety and veracity of the data
requiring analysis to extract value. As a result, geographic data science has garnered great interest
in the past two decades. Considering that much of data science’s success is formed outside of
geography, there is an increased risk within such perspectives that location will remain simply as
an additional column within a database, no more or less important than any other feature.
Geographic data science combines this data with spatial and temporal components. The spatial and
temporal dependence allow us to interpolate and extrapolate to fill gaps in the presence of
inadequate data and infer reasonable approximations elsewhere by incorporating information from
diverse data types and sources. However, within scientific communities there exist arguments
regarding whether geographic data science is a scientific discipline of its own. Because data
science is still in its early adoption phases in geography, geographic data science is required to
develop its unique concepts, differentiating itself from other disciplines such as statistics or
computer science. This becomes possible when geographers, within a community of practice, are
enabled to learn and connect the current tools, methods, and domain knowledge to address the
existing challenges of geographic data analysis. To take a step toward that purpose, in this

dissertation, three knowledge-rich applications of data science in the analysis of geographic



spatiotemporal big datasets are studied, and the opportunities and challenges facing this research
along the way are explored. The first chapter of this dissertation is allocated to review the
challenges and opportunities in the era of spatiotemporal big data, followed by tackling three
different problems within geography, one within the subfield of human geography, and two within
physical geography. Finally, in the last chapter, some final thoughts on the current state of

geographic data science are discussed and the potential for future studies are considered.
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Chapter 1 SPATIOTEMPORAL BIG DATA: A SURVEY OF CHALLENGES AND
OPPORTUNITIES

1.1 Introduction

Ongoing data growth has launched us into the ‘Big Data’ era, in which different types and formats
of data resources are produced in many fields of study, due in part to advancements in
instrumentation, data generation and data gathering techniques. Significant changes have been
made to data gathering in terms of capacity, as well as the performance of instruments and
equipment; calculations and archives from the 1970s to 2000 have been improved from 1-
Dimensional to multi-Dimensional, and from megabyte to petabyte, respectively (Li et al., 2006).
The surge of big data has impacted many commercial and scientific areas, and the field of
geography has been no exception, moving from a data-poor to a data-rich era (Miller & Han, 2009).
Geographical data have always been large resources, where most big data from phenomena of
interest are recorded with stamps in three dimensions of space and one dimension in time, generally
called big spatiotemporal data (YYang et al., 2020). The McKinsey Global Institute reported that
location data was 1 petabyte in 2009 with a growth rate of 20% per year (Dasgupta, 2013); the
United Nations Initiative on Global Geospatial Information Management (UN-GGIM) estimated
2.5 quintillion bytes of data are generated every day, and a large portion of the data is location-
aware (Lee & Kang, 2015). The availability of big data has become more ubiquitous with
improvements to measurement sensors (e.g., remote sensing satellites, mobile sensors), increases
in computation power to run more and larger earth system simulation models, and crowdsourcing

data that are generally publicly available (Dennis et al., 2012; Giachetta, 2015; Rice et al., 2012).

Geography is concerned with the study of Earth’s physical structures and inhabitants spatially and
temporally. Crucial challenges to Earth’s inhabitants are naturally tied to study and modeling of

physical features. Those challenges can include predicting climate change consequences, water
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resources management, food security measurement, spread of disease during pandemics and
recognition of contributing aspects in events like flood, drought, hurricanes, and earthquakes,
among many others. The accessibility of spatiotemporal data delivers prospects for obtaining a
new insight of complex geographic phenomena at macroscale and microscale. Furthermore, big
data can facilitate innovations and productivity in various aspects of applications from hardware
to software (Manyika et al., 2011). Big data was initially defined by the “3Vs”: volume, velocity
and variety by Laney (2001), which was then redefined to “5Vs” by adding veracity and value to
it (Tiguint & Hossari, 2003; Zikopoulos et al., 2013). Li (2020) argues that although big data can
be inherently beneficial for advancing science, obtaining an effective, time-sensitive and
meaningful extraction of information presents some challenges. They note that volume (the size
of data), velocity (high pace of data generation), variety (high data heterogeneity), and veracity
(uncertainty and inadequate quality of data) are the challenges we face when extracting value in a

spatiotemporal context.

As the importance of big spatiotemporal data have become clearer in recent years, more studies
have been published on this topic. Yang et al. (2020) examined the number of articles in Web of
Science published on topics containing related keywords, and found a rapid rise in the number of
publications since 2009 (Figure 1-1). However, traditional spatial analysis techniques were
established at a time when data were somewhat limited and computational capacity was not as
powerful as it is today (Miller & Han, 2009; Yang et al., 2020). As a result, the capabilities of
traditional data analysis methods show limitations, and spatiotemporal data analytics have become

more challenging (Cheng et al., 2014; Yang et al., 2020).
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Figure 1-1 Ten-year history of the number of publications in the big spatiotemporal data
area (Yang et al., 2020)



1.2 Big Spatiotemporal Data Sources, Properties and Challenges
1.2.1 Data Sources
Li (2020) organizes big geographic data into four typical sources: Earth observations, geoscience

models simulations, Internet of Things (loT) and volunteered geographic information.

1.2.1.1 Remote sensing

Earth observation refers to huge quantities of data obtained by remote sensing or sensing devices.
Remote sensing data, which are measured over distances (e.g. radar, satellites, lidar) provided by
space research organizations such as National Aeronautics and Space Administration (NASA),
Japan Aerospace Exploration Agency (JAXA) and European Space Agency (ESA), delivers a
worldwide history of geoscience variables such as land surface temperature, soil moisture and
temperature at different spatial resolution and at consistent time intervals (Zhang, 2010). For
specific studies on particular geographic areas of interest, devices such drones or airplanes can
also be used as remote sensing methods (Frankenberg et al., 2016). Remotely sensed data are
frequently captured throughout regularly spaced grid cells spatially and temporally, and the data
is usually directly available, however, the time series often suffer from having a relatively short

history of records.

1.2.1.2 In-situ Sensors

Another major supply of Earth observations is the in-situ sensors measuring at or near the Earth’s
surface, such as weather stations, or movement in the atmosphere or the ocean such as balloons,
ships and ocean buoys (Bonnefond et al., 2011; Karpatne et al., 2017c). Sensor data, which are
referred to as point reference data, are considered to be one of the most dependable sources of

information about the geoscience variables. In-situ sensors are not evenly distributed in space and



time, however; there are inhomogeneities in the time series due to changes in the measurement

sites (Horton et al., 2010).

1.2.1.3 Physical Models

One of the massive geographic data resources is produced by physics-based models known as
geoscience simulation models. In these models, different elements of Earth system are simulated
using laws of physics (e.g., first law of thermodynamics, Stefan-Boltzmann Law). The big data
supplied by the simulation models have constantly been increasing in terms of volume,
spatiotemporal resolution and coverage due to speedy progression of computing capacity. For
example, Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5)

solely generated ten petabytes of simulated climate data (Li et al., 2017).

1.2.1.4 Internet of Things (10T)

Internet of Things, also known as Internet of Objects, illustrates the network of everyday physical
objects that are connected wirelessly via smart sensors and can work together without human
interference (Ashton, 2009; Li et al., 2015). The devices that are uniquely identifiable, from
sensors, cellphones, and smart factory equipment to connected appliances and wearable health
monitors, can form an interconnected worldwide network for a new era of information. Objects
combined with location-aware sensors, are capable of producing enormous sizes of spatiotemporal
data. However, the amorphous flows of information across the globe can produce more
heterogeneous and noisy data compared to more structured Earth observation data, which

potentially confronts us with difficulties to take advantage of.

1.2.1.5 Volunteered Geographic Information (VGI)
Volunteered geographic information (VGI) is a term first introduced by Goodchild (2007), and in
this context citizens are considered as sensors to participate in generating georeferenced data along
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with other properties at their locations. Social media and crowdsourcing websites such as Twitter
have proven to be beneficial during natural crises. Citizen Science, which is another form of VGlI,
involves a broad range of projects in which the public cooperates with scientists to acquire data
for a national database. VGI has the advantage of being low cost compared to official data
collection methods and significantly enhances geospatial databases. However, quality assurance is

not guaranteed.

1.2.2 Spatiotemporal Data Properties and Challenges

Several common properties of spatiotemporal data that are widespread throughout many
applications either arise out of the nature of spatiotemporal processes or are anticipated from the
data collection techniques (Karpatne et al., 2018). Two natural and universal characteristics of
spatiotemporal data that bring both challenges and opportunities for traditional data analysis
algorithms are autocorrelation and heterogeneity (Shekhar et al., 2015). Conventional prediction
methods assume samples hold an identical and independent distribution (i.i.d.) (Xie et al., 2017).
In domains containing geographic spatiotemporal data the observations commonly reveal
spatiotemporal autocorrelation because every phenomenon happens in space and time and most
phenomena show short-scale dependence. This is known as Tobler’s First Law of Geography
(Miller, 2004). The presence of autocorrelation shows that the observations at nearby locations
and time marks are correlated and cannot be considered independent; this can be problematic for
classical data analysis methods as their assumption about independence between observations is
not valid and can often consequently result in weak performance with salt-and-pepper errors (Jiang
et al., 2014). The homogeneity, or stationarity, of observations indicates that every occurrence is
from the same population and as a result has an identical distribution. However, spatiotemporal

data are heterogeneous spatially and temporally at different levels. Additionally, non-stationarity



of the Earth system in time due to seasonal, decadal or long-term geological cycles can influence

processes (Karpatne et al., 2018).

The rest of the spatiotemporal data properties, which are due to data collection procedures, can be
identified as high dimensionality, absence of structured object definitions and boundaries,
uncommon classes, multi-source and resolution data, poor data quality, insufficient sample size
and in-situ observation (Karpatne et al.,, 2018). These properties may cause a variety of
shortcomings in data-driven analysis and modeling. High dimensionality refers to the requirement
to include numerous variables in the analysis due to complexity of the system. Object boundaries
and their definitions are not as crisp spatially and temporally as are for common discrete spaces
that data-driven methods usually deal with. Hurricanes are a good example for unclear object
boundaries, as they continuously reshape in complex aspects during time. Extreme events such as
heatwaves, which occur infrequently but cause significant impacts on society, are considered as
uncommon categories of events. Multi-scale and resolution involve the integration of data with
different sampling frequency, accuracy, as well as uncertainty within the system, as spatiotemporal
information is often collected from various sources at different spatial and temporal resolutions
(e.g., blending satellite images at different time intervals). Although this may appear to be a
challenge, the analysis of multi-resolution geographic spatiotemporal datasets can assist in
portraying processes that emerge on varying scales of space and time. Poor data quality is another
characteristic of geographic spatiotemporal datasets, as many of them are subject to noise and
missing values due to sensors failure, malfunctions or upgrades. Because of these differing levels
of accuracy throughout time, establishing a consistent methodology of analysis is challenging. This
is also the case for datasets generated by physics-based models as a result of the simplified

representation of the system in the models as well as our imperfect knowledge of the initial and



boundary conditions of the system. Insufficient sample size presents yet another challenge in
geographic analytical studies. Although there are many geographic datasets captured at high
spatiotemporal resolutions, the historical datasets do not extend over a long time span or large
spaces, which introduces additional challenges when adequate knowledge about the past and at
some locations is unavailable. For instance, the majority of the satellite records available are
relatively recent; satellite data has been captured since 1970s, and early records of precipitation
are limited to land areas, and records for seas and oceans are lacking. Insufficient in-situ
measurements may be considered to be another difficulty in geographic spatiotemporal datasets
particularly when performing supervised learning problems. This is due to expensive and time-
consuming procedures of high-quality data measurement which significantly limit the compilation
of ground truth experiments. Some application processes, such as subsurface flow, do not have
ground truth due to the system complexity, making it challenging to fully understand the state of
the system. The lack of ground truth makes supervised models training, evaluation and testing
difficult. This differs from commercial uses of data science, where significant quantities of labeled

data have been essential for the success of machine learning methodologies.

Kanevski et al. (2008) recorded the difficulties that the typical characteristics of geospatial
phenomena can place in front of the traditional data analysis algorithms. They recognized
nonlinearity as geographic phenomena that may cause inadequate applicability in linear models;
in many circumstances, spatial and temporal non-stationarity models can be in conflict with the
hypotheses of spatiotemporal stationarity (second-order stationarity, inherent hypotheses), and the
rest, including multi-scale variability, presence of noise and extremes/outliers, the multivariate
nature fail practicality of traditional methods (including many geostatistical models) and extremely

complex analysis, modelling and visualization of geographical data. Mennis and Guo (2009)



asserted that traditional methods for analysis regularly have several of the following limitations.
First, generally current procedures emphasis on a limited perspective or a particular sort of relation
model. Additionally, large volumes of data cannot be easily processed by traditional models.
Finally, newly emerging data types such as trajectories of moving objects necessitate new tactics

to analyze such data and uncover relationships and information.

Because of the fundamental shortcomings of the current methods due to complexity of geographic
spatiotemporal datasets, there is a critical demand for more successful and efficient methods to
uncover undetermined and unforeseen information. For this purpose, a new structure of
information-rich systems with the use of new machine learning approaches offers the chance to
meaningfully adjust geographic research procedures and acquire improved understanding from

data (Gil et al., 2018).

1.3 Machine Learning

In recent years there has been unpredictable increase in the advancement of adaptive and data-
driven methodologies in scientific communities; the geospatial perspective has been no exception.
Today, machine learning (ML) provides important tools for intelligent geographical data analysis,
processing, and visualization and is an essential aspect that complements traditional techniques
like geostatistics (Kanevski et al., 2008). Research began when an overview of the topic written
by Roddick and Lees (2001) brought the necessity of the study of ML into geographic information
science. The use of ML in geography is often arranged under various names, such as spatial
statistics, geo-computation, geo-visualization, and geo-spatial data mining, based on the

procedures the research is centered on.



1.3.1 Framework

ML in a framework, that can be seen as a subfield of artificial intelligence, involved with the
development, and application of algorithms and methods to let computers to discover the patterns
from the data supplied. The ML process is inherently iterative (Andrienko & Andrienko, 1999),
and is closely connected to nonparametric statistics. ML has grown from the simulated of a simple
neuron and artificial neural networks to a solid, interdisciplinary field of fundamental and applied
research with impact in many subjects (Kanevski et al., 2008). ML is an effective empirical tactic
for both supervised and unsupervised learning of nonlinear systems that can be enormously
multivariate containing from a few to thousands of variables (Lary et al., 2016). The use of ML is
suitable for dealing with the obstacles where our theoretical understanding is still inadequate but
a decent amount of data samples are available. There would not be a necessity for ML in a utopian

world, if we had full theoretical understanding of phenomena.

1.3.2 Features

The most beneficial feature of the machine learning models/algorithms is their ability to learn the
essential behavior of a system from training datasets. ML can be used in cases where the modeled
phenomena and the nature of the relationships between variables is not well described, and we do
not have or need prior knowledge about it, which is the case in many applications of geospatial
data (Lary, 2010). Data-driven models built by ML are adaptive tools, which are broadly used to
answer prediction, classification, optimization, and many other challenges. Lary et al. (2016)
recorded three situations where the applications of ML in geoscience shines: (1) the use of a
physics-based model is computationally costly, (2) no physics-based model exists but an empirical
ML model may be developed using the available data, and (3) classification problems. Fayyad et

al. (1996) listed two types of ML tasks: descriptive tasks, which describe the intrinsic
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characteristics of the existing data, and predictive tasks that make an effort to achieve predictions
based on inference from available data. Building a data model for the given dataset is the ultimate
goal. The major tasks of ML in the analysis of spatiotemporal datasets incorporate regression,
clustering, classification, and visualization, and the approaches designed to implement these tasks
should consider spatiotemporal autocorrelation and heterogeneity, which differentiate them from

older data mining procedures (Cheng et al., 2014).

Various tasks in ML such as regression, classification, association, clustering, ensemble learning,
feature extraction, dimensionality reduction, principal component analysis (PCA), maximum
likelihood estimation (MLE) fall within four particular learning approaches: supervised,
unsupervised, semi-supervised and reinforcement learning. Common algorithms in ML include
linear regression, logistic regression, Naive Bayes, K-Nearest Neighbors, K-mean clustering,
dimensionality reduction algorithms such as PCA and Factor Analysis, artificial neural networks
(ANN), support vector machines (SVM), decision trees (DT), ensemble learning techniques such

as random forests (RF), and etc.

In the next section, the applications that ML can be deployed will be discussed along with the
challenges arising from the spatiotemporal data properties and the possible opportunities for the

ML field for further advancement.

1.4 ML Applications, Challenges and Opportunities in Spatiotemporal Data Analysis

ML algorithms have been applied to analyze numerous application domains containing big
spatiotemporal data. The domains can include urban studies such as crime prediction (Kim et al.,
2018; Lin et al., 2018; Yu et al., 2020), infectious disease spread and control (Barratt & Sapp,
2020; Torrats-Espinosa, 2021; Valdes-Donoso et al., 2017), poverty distribution (Li et al., 2019;

McBride et al., 2021; Vaz et al., 2021), transportation dynamics such as travel pattern (Hagenauer
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& Helbich, 2017; Zhou et al., 2019), traffic dynamics (McCarthy, 2020; Rahman, 2020),
environmental science such as air and water quality management (Chen et al., 2018; Lee et al.,
2020; Ma et al., 2020; Muharemi et al., 2019; Wu et al., 2021), natural hazards (Resch et al., 2018)
such as flood (Costache et al., 2020a; Costache et al., 2020b; Zhao et al., 2019), heatwaves (Park
et al., 2020; Shi et al., 2021) and earthquakes (Akyol et al., 2020; Ghorbanzadeh et al., 2019),
ecology such as land-use land cover classification (Talukdar et al., 2020) , and Earth system
science such as climate science (Liu et al., 2018; Rolnick et al., 2019a; Xu et al., 2018),
meteorology (Camporeale, 2019; Scher & Messori, 2018), ecosystem (Valerio et al., 2021;
Willcock et al., 2018) and oceanographic (Hicks & Abuomar, 2019; Sonnewald et al., 2019) where
a vast amount of spatiotemporal data are generated. In addition to the large amount of ML in
geographic applications, there have been a number of research surveys in which the challenges
and opportunities are discussed as a general standing of ML in geography or a specific domain.
Table 1-1 briefly describes the different focused domains of surveys, as well as the opportunities

and suggestion for covering the current gaps.
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Table 1-1 A summary of surveys conducted on the use of spatiotemporal data

Study

Title keywords

Key points

Challenges and Opportunities

Kiwelekar et
al. (2020)

Joshi and
Miller (2021)

Yekeen and
Balogun
(2020)

Deep learning for geospatial data
analysis

Machine learning for mosquito
control

Advances in remote sensing, ML
and DL in marine oil spill
detection, prediction, and
vulnerability assessment

Overview of DL algorithms

Geospatial analysis with data science
DL for analyzing remote sensing, GPS
data and RFID data

CNN and Autoencoders vastly used in
remote sensing and UAV in
applications such as land use land cover
RNN along with CNN vastly used for
GPS in applications such as traffic and
mobility

CNN is used for RFID devices over
smaller study areas

Reviewed 120 papers in ML techniques
for mosquito control in urban areas
Geospatial, visual and audio models for
mosquito control

Geospatial approaches use
environmental factors on macro-scale
for population modeling and prediction
Disease forecasting for dengue, malaria

Reviews different oil spill detection by
remote sensing methods

There is no single best remote sensing
technique

Automatic detection techniques

ML classifiers for feature classification
SVM and ANN are the most used
algorithms in oil spill detection

13

e Small sample size
e Large number of objects in images to be
detected

e  Use of citizen science and crowd-sourced
data is essential in global awareness and
prevention efforts

e  Open-source ML pipeline to use more
private datasets and ability for model
replication

e  Use of new techniques; transfer learning
for local contexts, reinforcement learning
for optimized resource distribution for
mosquito control

e Explore the use of online, active and
multi-task learning

e Integrate workspace between experts from
multiple disciplines

e Challenge of false positive appearance of
similar oil spills in the imageries

e Improve oil spill classification using ML
and DL

e Explore the use of image fusion methods

e DL can help to develop a universal model
for oil spill detection

¢ No uncertainty measurement



Kovacs-Gyori
et al. (2020)

Singleton and
Arribas-Bel
(2019)

Atluri et al.
(2017)

Li et al.
(2016)

Xie et al.
(2017)

Geospatial analysis with big data
and ML for promoting urban
livability

Geographic data science

Spatiotemporal data mining

Geospatial big data theories and
methods

Transdisciplinary foundations of
geospatial data science

Table 1-1 (cont’d)

Reliability of crowdsourced and VGI
data

ML in urban livability assessment and
planning

Identification of relevant information in
urban big data for livability progress

General review of the use of data
science in geography

General review of problems and views
in spatiotemporal data mining

General review and examination of the
existing geospatial data handling
methods and theories

General review of data mining methods
from mathematics, statistics and
computer science perspectives
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Issue of users data privacy and ethics
Collaborative work between academia,
stakeholders and policymakers is
necessary

Data-driven approaches need to be
combined with qualitative considerations
There is a need to move from
Development of spatial databases and file
formats for geographic Big Data
Data-driven geographic epistemology
modeling (extension of scientific theories
instead of testing the existing theories)
New research methods in spatiotemporal
data mining are needed

Novel representation of dynamic edges of
Spatiotemporal raster data (as compared to
existing methods focused on static edges)
Develop more multi-modal spatiotemporal
datasets

Theory-guided data science is needed
Data granularity is a challenge

Develop real-time modeling

Develop methods for explanatory
relationships

Develop 3D spatial and 1D temporal
displaying methods

Statistical strength of existing techniques
needs improvement (p-value is not
enough)

Transdisciplinary foundations instead of
siloed (many techniques are strong from
computational and mathematical
perspective, but less statistical robustness)
Develop new techniques particularly for
spatiotemporal data analytics



Yuan et al.
(2020)

Zhao and
Tang (2018)

Jain et al.
(2020)

Moreno-
Indias et al.
(2021)

Deep learning in environmental
remote sensing

Crime in urban areas from a data

mining perspective

ML in wildfire science and

management

Statistical and ML in human
microbiome studies

Table 1-1 (cont’d)

DL potential for tasks such as land
cover mapping, environmental
parameter retrieval, data fusion and
downscaling, handling missing values
Popular DL algorithms in remote
sensing applications

A review of theories in criminology and
crime analysis algorithms

Fuel characterization, Fire detection and
mapping

Fire weather and climate change

Fire occurrence prediction,
susceptibility mapping and landscape
control

Fire behavior prediction

Fire effects such as soil erosion or
smoke level

Fire management

Review of dimensionality reduction,
clustering, classification, deep learning,
association

Spatiotemporal modeling of
microbiome as well as biogeographical
variation
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DL cannot fully replace physical models
DL can be used for forward simulation of
physical models to save computation cost
Physical model calibration with DL
Physics-guided DL architecture design
Combining geographical laws into DL
such as introducing autocorrelation as
input variable

Limited sample size can be addressed by
transfer learning

Use of deep learning to better capture
complex spatiotemporal patterns
Reinforcement learning to capture the
dynamic nature of urban crime

Urban environment simulation to gain
insights for policing strategies

ML has not been applied enough in
predictive or optimization analytics

Deep learning can be used considering the
vast amount of available data

Domain knowledge needs to be considered
more

Wildfire is a diverse discipline so it needs
a diverse analysis aspect

Bayesian ML techniques can help to deal
with uncertainties

Limited labeled data can be addressed
using semi-supervised methods
Prospective analysis predicting long-term
disease risks is still at early stages



Niu and Silva
(2020)

Crowdsourced data mining for
urban activities

Table 1-1 (cont’d)

VGI and crowdsourced data sources
Urban activity types and analysis such
as mobility pattern, functional areas and
event detection

Sociodemographic and perception
analysis such as city attractiveness and
sentiment detection

Challenges in inherent sampling bias and
representativeness

Reliability of the data needs more
attention

Multisource and multi-format data
processing challenges
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In order to cope with the challenges of analyzing spatiotemporal big data, ML has found its way
and has proven to be helpful. Although ML models generated from data alone are not enough and
new machine learning tactics that integrate domain knowledge will be essential so that achieved

conclusions will be more meaningful than from data alone.

Gil et al. (2018) discussed three broad shortcomings of the current approaches due to complexity
of the system, including domain theories in developing models instead of using the data alone,
employment of more effective and efficient data collection by taking advantage of prior knowledge
of the problem, and blending different data and models throughout different disciplines needs to
be context intellectual to validate the combination. They also detail the challenges and
opportunities for ML that appear before or during the analysis of spatiotemporal data, particularly

in geoscience, and offer the existing or possible future research path.

One of the general prospects is the integration of domain knowledge into ML algorithms (Karpatne
etal., 2017b) to reduce the phenomena complexities and nonlinearity in order to learn from smaller
sample size. This approach is necessary due to the scarcity of labeled data and the presence of
noise and missing values within the data. By integrating prior domain knowledge, it is possible to
catch the underlying relationships among the variables with less data, and consequently, the
complexity of the learning task is reduced. Active learning is an area of research in ML which can
reduce the demand for labeled data by leveraging the information from areas with rich labeled data
to the areas with few or no recorded data. However, this branch of ML is still in its infancy, and
there is still a great deal to be studied and developed. Combining ML and physics-based simulation
models known as hybrid modeling, is another tactic to avoid developing expensive physics-based
models for the entire analysis to become more effective and efficient. Modeling of extreme events

is already a challenge for simulation models with untrustworthy results. Likewise, this is currently
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a challenge for ML algorithms due to spatiotemporal nature which needs to be studied further.
Lack of ground-truth data poses additional challenges for supervised ML methods while estimating
values because they are strongly dependent on benchmark values for evaluation during training
the models. One possible solution could entail using simulation data during training, which
provides an opportunity to train, evaluate and test ML algorithms. Causal discovery, which is the
process of inferring the causal structure of a closed system using observational data, such as the
cause of sea surface temperature and heatwaves, is another area that ML can be very effective by
using graphical models, particularly in this era where there is a plethora data. A large array of ML
methods can be efficiently applied to geoscience problems. Additionally, geoscience problems
lead researchers to create completely new machine learning algorithms. Another challenging area
— which is not from data, but from ML itself — is that ML algorithms are usually regarded as a
black box with lack of interpretability, but so far have been acknowledged given their modeling
accuracy. However, in geography it is required to be able to explain and interpret the models. An
important research area is to integrate domain knowledge and causal inference to facilitate the
structure of interpretive machine learning methods. Karpatne et al. (2018) reviews challenges and
opportunities in four general types of problems in geoscience and includes in-detail ML solutions
in addition to exploring the challenges along the way that ML can confront, as presented in Table

1-2.
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Table 1-2 A Summary of the existing challenges and opportunities For ML in the analysis

of geoscientific data by Karpatne et al. (2018)

Current . Possible Challenges
Task Example Challenge Solution by ML from Data Proper%ies
Cyclones, . e  Pattern mining
ldentifying weather fronts, tCo[]lvgntlonal techniques * At\bsetnce(j)f biect
objects and atmospheric eehniques are e Convolutional SrLCITEC ODJEc
events rivers, ocean founded on hand- Neural Network deflnltlo'ns and
L coded features boundaries
eddies
e  Supervised e Heterogeneity,
learning unidentified
e  Multi-task source of
learning (to heterogeneity
tackle joint (changes in
effect of topography, land

Approximating
variables

Long-Term
Forecasting

Mining
Relationships

Methane
concentration,
groundwater
seepage in soil

Temperature,
greenhouse gas
concentrations

Variation in sea
surface
temperature and
ENSO and
impacts on
flood, droughts
and wildfires

Difficult to
monitor directly

Computationally
expensive
physics-based
models

Study
teleconnections

heterogeneity
and paucity of
ground-truth)

e Online learning
(in case of
heterogeneity)

o Downscaling
variables (in
case of
heterogeneity)

e  Semi-supervised
learning (in case
of paucity of
ground-truth)

e Time-series
regression
(exponential
smoothing,
ARIMA,
Markov models
and Kalman
filters)

e  Graph-based
representations
of locations

e  Causality-based
network
(Granger
causality, Pearl
causality)

cover, season,
etc)

Insufficient in-
situ observation
for developing
different model
for every
homogeneous
part

Uncommon
classes in case of
studying rare
phenomena,
poor data quality

Insufficient
sample size

High
dimensionality
(high number of
variables to
include),
insufficient
sample size
(limited number
of years of data)

1.5 ML Is Not Perfect, but Necessary

Despite the capabilities of ML, there are always drawbacks and limitations along the way that must

be tackled. ML, like anything else, does not always create a better world, but can become part of
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the unraveling; is a capable mean that unlocks other paths and activates other tools across fields
(Rolnick et al., 2019b). The problems that were discussed emphasize innovative areas of ML, such
as interpretability, causality, and uncertainty quantification. However, profound action on real
geographic challenges from a ML standpoint necessitates collaboration with fields inside and
beyond computer science to move toward an interdisciplinary methodological innovation. As an
example, Rolnick et al. (2019) studied the application of ML in climate change mitigation and
adaptation from a diverse standpoint, combining the need to include versatile perspectives such as
electricity systems, transportation, buildings, industry and land use in order to have a successful
contribution of ML. They argued that ML can bring benefits to the scientific community in dealing
with climate change by monitoring automation, expediting the progression of scientific findings,
optimizing systems for better effectiveness, and expediting the computationally of expensive

physics-based simulations through hybrid modeling with ML.

While utilizing machine learning is a key discipline for dealing with many challenges, there is also
the potential to mutually benefit society and to improve the field of ML. In other words, the rising
accessibility of big spatiotemporal data provides great possibility for ML to advance. Due to the
growing number of successful results, ML has founded its valuable position in geographic
conferences and journals. Yang et al. (2020) studied the emerging concepts through publications
from the Web of Science, and discovered the top keywords were mostly related to human
dynamics, technology and methods, such as spatiotemporal analyses, data mining, machine
learning, deep learning, cloud computing, Hadoop/Spark, network, and data and information to
assert that spatiotemporal data analytics has become a booming research route with a wide

influence among diverse disciplines (Figure 1-2).
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Figure 1-2 The emerging keywords obtained from the Web of Science publications (Yang et
al., 2020)

1.6 Geographic Spatiotemporal Data Science Research Prospects

Gil et al. (2018) argues that a new research theme for the use of ML should consist of an
“integrative workspace” where researchers from different backgrounds related to the study are able
to communicate for a better understanding of the assumptions and uncertainties. These new
crossing points and collaboration processes will sustain the discovery of data, as well as unearthing
the knowledge to provide context to the data. This paradigm was called ‘theory-guided data science
(TGDS)” by (Karpatne et al., 2017a) where they argue that the popular commercial data science
models have restricted applicability in scientific problems concerning physical phenomena. TGDS
seeks to take advantage of the plethora of scientific knowledge available to expand the
effectiveness of data science models in empowering scientific discovery. In other words, TGDS
tries to lessen the challenges of physics only and data-only techniques by finding a balance
between physics and data. For instance, to understand the Earth system, there is a need to combine
broad information about the physical, geological, chemical, biological, ecological, and
anthropomorphic elements that influence system by employing the most recent data science
approaches. In a recent study, Karpatne et al. (2017d), presented a new framework blending

physics-based models and deep learning methods, called physics-guided neural networks (PGNN)
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to model lake temperature. In their work, the combined model was developed to use the output of
physics-based models as the input of a deep learning architecture, where the results were
significantly superior when compared to the absolute physics-based models or deep learning
models. Additionally, the used loss functions in the proposed PGNN model evaluated the
prediction to stay in accordance with the physics-based equations so it was capable of producing
generalizable results as perfectly as physical models, even in the midst of scarcity in ground-truth

data.

1.7 Conclusion and Dissertation Layout

Prospects in the data science analytics of geographic spatiotemporal datasets inspired by the
challenges were discussed. Key skills are needed that require significant research in data collection
and sampling, knowledge representation and integration, machine learning, and collaborative
analytics to enable new findings. Being in the era of “big data”, data science has formed as an
interdisciplinary method that transforms large amounts of data into information. However, despite
being common in other fields of science, data science is still in its early adoption phases in
Geography. Considering that much of data science’s success is formed outside of geography, there
is an increased risk within such perspectives that location stays only as an additional column within

a database, no more or less important than any other feature (Singleton & Arribas-Bel, 2019).

Such separation amid geography and data science, encouraged this research with an opportunity
for pairing the two fields from a geographer’s viewpoint and not that of a computer scientist. This
research essentially takes one step forward to explore the challenges and opportunities that ML
can encounter in three different problems within geography in order to continue constructing
scientific ties between data science and geography. The first chapter is covered from a topic in the

subfield of human geography and the next two are included from physical geography, particularly
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focused on the area of hydroclimatology. The contributions of the three topics are going to better
account some of the key challenges in building models with spatiotemporal big data. The proposed
frameworks in all three studies are knowledge-rich, which means that they not only apply data
science methods for improving the predictive power within the field of geography, but also extend
our ability to integrate domain knowledge and causal inference to facilitate the shape of
interpretive machine learning. As Graham and Shelton (2013) stated: “the futures of geography

and big data are still to be made.”
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Chapter 2 FINE-RESOLUTION PREDICTION OF THE NUMBER OF CRIMES USING
MULTI-TASK LEARNING

2.1 Introduction

Crime is a ubiquitous social problem that could potentially become more serious as urbanization
increases. Urbanization helps growth of industries and economic development; however, one of
the drawbacks of urbanization may be the boost of crime occurrence as well because crimes happen
more frequently in large cities (Malik 2016). Factors such as size, density, heterogeneity and
impersonality of urban areas and the tendency toward crime have been studied as undeniable
evidence for the connection between urbanization and more crime (Wirth 1938, Wirth 1964,
Clinard 1942). Furthermore, crime can affect the life quality of a society; it may influence
opportunities for new investments, tourism, or other aspects of the economy (Arulanandam,

Savarimuthu and Purvis 2014).

The importance of safety has led law enforcement agencies to demand scholars and practitioners
to focus on crime prevention by improving crime analytics and predictions. However, it is a
complex phenomenon to give a comprehensive cause for the crime (Weatherburn 2001) and in
contrast to many foreseeable events, crime is sparse (Wang et al. 2017). The associated
distinctiveness and arbitrariness with crime makes the prediction a difficult task, though, there are

patterns (Gorr and Harries 2003).

Researchers have developed various crime prediction frameworks using different statistical to
machine learning techniques along with combination of multiple data sources in addition to
historical crime data. Crime occurrence is a multi-dimensional phenomenon associated with
temporal, spatial, societal, and ecological factors (Yu et al. 2014) so the research community have

been attempting to create more accurate predictive models with the assistance of different types of
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data sources besides historical crime. Initially, crime prediction models mostly relied on
demographics as the only additional data tributary, however, due to its failure to obtain the
dynamic aspects of human activity (Zhao and Tang 2017), they gradually moved toward
contributing other data sources into the analysis. New data streams such as weather (Chen, Cho
and Jang 2015), social media (Chen et al. 2015, Wang and Gerber 2015, Gerber 2014), Point-of-
Interests (POI) (Wang et al. 2016), transit flow (Smith, Quercia and Capra 2013, Kadar and
Pletikosa 2018), mobile data (Bogomolov et al. 2014) have been used either solely or combined in

the crime prediction models.

Since crime does not occur randomly, and the frequency of crime occurrence tends to be correlated
with the location of victims, offenders, and the opportunity of committing crime (Chainey,
Tompson and Uhlig 2008), hotspot mapping became popular among researchers (Gerber 2014,
Gruenewald et al. 2006, Yang et al. 2017, Das and Choudhury 2016). Hotspots are the areas with
higher concentration of crime events compared to the rest of the study region and historical data
show that crimes do occur in concentrated patterns (Chainey and Ratcliffe 2013). Crime hotspot
prediction uses historical data to detect geographical areas vulnerable to crime events in the future.
The drawback of most of the frameworks in crime hotspot prediction is that it is limited to the
employment of historical crime records (Yang et al. 2017, Wang and Gerber 2015), while
disregarding the use of other types of data such as environmental factors and urban data. A large
number of hotspot mappings (Liu and Brown 2003, Xue and Brown 2006, Brown, Dalton and
Hoyle 2004) solely focused on the spatial distribution of crimes, whereas knowing the temporal
likelihood of crime occurrence is needed for tactical purposes including for urban planning and
police protection. In other words, from the predictive perspective, temporally aggregated hotspots

which are relying on shorter prior time periods is less operative (Groff and La Vigne 2002).
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Additionally, hotspot models are not generalizable to ranges without historical data (Mookiah,

Eberle and Siraj 2015).

Similar to spatial crime studies, there are a great deal of spatiotemporal crime statistics studies as
well in which they quantify the count or rate of crime variation over space and in each of the time
periods under study (Chainey and Ratcliffe 2013). A majority of the previous studies suffer, as
they do not take spatial dependencies and heterogeneity into consideration (Liu 2017). In reality,
crime rate and type fluctuates from region to region while existing crime prediction models have
not accounted for this variation, resulting in a preference for global models that compensate for

low resolution (Yu et al. 2014).

To fill this gap, for the first time, we attempt to capture the related spatial and temporal information
in crime prediction using a multi-task learning model with a Graph Laplacian regularization.
Essentially, we aim to examine the spatiotemporal crime-prediction performance of a multi-task
learning method against linear local models and global models in the role of the commonly used
crime prediction methods. We also contribute a new combination of variables in the modeling
which could represent the social, environmental and ecological factors in crime occurrence. The
rest of the paper is structured as follows. We discuss the data and the methods in Section 2.2. In
this section, we explain and justify the use of local, global and multi-task learning methods in our
analysis. In Section 3, we present and discuss the results of each step and finally, in Section 4, we

conclude this paper with a brief discussion of the significance of the results.
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2.2 Data and Methods

This section presents the data, the method used, and the description of algorithms and metrics.

2.2.1 Data

The selected study area in this research was New York City (NYC), which is the most populous
city in the United States. The population of the city in 2016 was estimated about 8.5 million over
a land area of about 303 square miles. NYC is an important city and its known as a global city due
to its significant political and socio-economic impact around the world (Sassen 2016). Hence,
given its socio-demographic profile, NYC could provide a data rich location with abundant
available information which would help us to better understand the potential underlying factors in

crime occurrence.

To examine this research question, we obtained twelve years of historical crime data of NYC from
www.data.cityofnewyork.us, which is recorded by the NYC Police Department. The record spans
from January 2005 through December 2016 with 5,002,053 incidents in which for every
occurrence includes date and time, offense description, law enforcement offense category (i.e.
violation, misdemeanor, felony), borough, precinct, latitude, and longitude. NYC is composed of
five boroughs - Manhattan, Brooklyn, Queens, the Bronx and Staten Island - and 77 Police
Precincts. To build better predictive models, we collected additional information which could have
a significant or near-significant relationship with crime occurrence. The information included
demographics, daily weather data and zoning districts of NYC, which have been previously noted
as useful statistics for crime control and prevention (Flowers 1989, Cohn 1990, Horrocks and
Menclova 2011, Poulsen and Kennedy 2004). Demographics were downloaded from
www1.nyc.gov for all five boroughs from 2005 to 2016 including the population of male, female,

white, black, Indian American and Alaska Native, Asian, Hawaiian, Hispanic, other races, and the
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number of total households. Weather data including daily summary of precipitation, snowfall,
wind, and average temperature was obtained from NCDC (National Climatic Data Center)* for the
time span of January 1, 2005 through December 31, 2016 from three land-based stations located
in NYC. Among all available weather stations located inside or close to the border of NYC, only
three stations covered the desired data range. Lastly, zoning data which included residential,
commercial, park, and manufacturing areas of the city was obtained from www1.nyc.gov. Figure

2-1 shows the map of NYC zoning districts and police precincts.

! http://www.ncdc.noaa.gov/
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Residential

Commercial

Manufacturing

Figure 2-1 Geographic boundary of NYC with Zoning Districts and Police Precincts
Numbers (Polygons in Blue, Red, Pink, Green are Residential, Commercial, Manufacturing
and Park, respectively)

2.2.2 Methods

The methods considered in this study include three approaches to predict the number of crime
occurrence; 1) linear local models, 2) a linear global model and 3) local models built by a multi-
task learning (MTL) method. First, we need to define the temporal and spatial resolution of the
study in an optimal resolution, which was a trade-off between the available data and the practicality

of crime prediction. The practicality of prediction means that the temporal and spatial resolution
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should be somehow informative enough if there is a need to know the probability of crime
occurrence at a specific time and location. Toward this purpose, based on the available data, the
temporal and spatial resolutions of the study were designed to be a 6-hour window of time and the
police precincts, respectively. Therefore, we split a day into four 6-hour time-frames: 12 a.m. to 6
a.m.,6am.to 12 p.m., 12 p.m. to 6 p.m., and 6 p.m. to 12 a.m. This means that using the models,

we would be able to predict the number of crimes in a desired precinct for each quarter of a day.

As this study was the examination of MTL as an emerging machine learning method against
traditional statistical methods in spatiotemporal crime prediction, all types of reported incidents
were stacked as only one crime type. The goal was to establish MTL to aid future research into
crime prediction which could be improved upon the current one. In the following sections, we

begin to explain all three approaches along with the data preprocessing steps.

2.2.2.1 Local models

To examine this research question, as the initial investigation, we started with building local
models for all 77 precincts of the NYC as the traditional single-task learning. A local model is an
isolated model which is created specifically for a precinct with its data, regardless of the
information in other existing precincts. To this end, we conducted preprocessing to create a
suitable format with the data that was already collected. Since variation in precincts’ demographics
and zoning information were almost static during the twelve years of data, we did not reflect them
as local model features; however, they were being featured in the global model that will be
explained in the next section. Because a global model takes the data of precincts all together, the
variation in demographics can be meaningful for the model to better learn the attributes of the

precincts while they do not make a change in a local model by zero variation.
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The taken preprocessing steps are as follows: 1) extract twelve years data of every 77 precincts
from the entire historical crime data, 2) count the number of crimes for 6-hour time window based
on the occurrence time of the crimes from January 1, 2005 to December 31, 2016 (17532 cases),
3) assign a number from 1-4 for the time, 1-7 for the day of week, 1-53 for the week of the year to
each case, 4) add weather features from the closest weather station to the geographical coordinates
of the crime for each case. Precipitation and snowfall were designed as a binary classification as
rainy and non-rainy days and snowy and non-snowy days, 5) add the moving average of the
number of crimes in the past 7 days, past 14 days and past 21 days of every case in order to
investigate the crime periodicity influence in crime occurrence (Zhao and Tang 2018). To create
these features, the first 21 days of the records were eliminated and the first day of our crime record

with 21 days behind was day 22 of the year 2005.

As previously discussed, every precinct has its own specific model which means there are 77 local
models for the 77 precincts of NYC. In the Modeling section, we will discuss the steps taken to

build the local models.

2.2.2.2 Global Models

In contrast to a local model, a global model is a model which is built using information from all
precincts. In this study, as another examination of single-task learning methods, we built two
global models. The first one was with the same exact information as for the local models in the
previous sections, however, the only difference was adding precinct number variables so that we
could have the spatial predictive feature in the global model. In other words, for every precinct we
had a model in local modeling whereas with a global model, there is only one single model for all
the precincts for prediction, therefore we needed to define a spatial feature in addition to temporal

one so that the model distinguishes the locations.
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The other global model was created using the data with the extra information which were not used
in the local models because of close-to-zero variation for twelve years. That information were
demographics (population of Male, Female, White, Black, American Indian/Alaska Native, Asian,
Hawaiian, Hispanic, Other races, Total households), boroughs (Manhattan, Brooklyn, Queens, the
Bronx and Staten Island), and zoning areas (Residential, Commercial, Manufacturing and Park).
As the final step, we aggregated precincts’ crime data and joined the additional data during the

preprocessing procedure.

The following preprocessing step for the global model 1 stops at step one; however, for global
model 2, we had to take multiple extra steps forward: 1) counting the number of crimes for 6-hour
time window based on the occurrence time of the crimes from January 1, 2005 to December 31,
2016 (17532 cases) for each precinct, 2) adding the percentage of zoning areas within each
precinct. Utilizing this feature could help the model to learn to differentiate between precincts with
diverse environmental designs (Carter, Carter and Dannenberg 2003), 3) demographics with

borough-sized spatial resolution and yearly temporal resolution were added to the data.

2.2.3 Modeling

2.2.3.1 Ridge Regression

Once the data was preprocessed accordingly, the modeling for local models and the global model
was fulfilled using the ridge regression method. Based on our experience with the type of data
being used in this study, multiple linear regression is prone to the circumstance of multicollinearity
between predicters, so ridge regression was selected as the alternative. Multicollinearity between
variables causes a multiple linear regression to gain incorrect magnitude or sign of coefficients
with large standard errors (Morrow-Howell 1994, Hoerl and Kennard 1970). Instead, ridge

regression is a regularized form of linear regression with a regularization term a Y™ ; 67 which is
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added to the cost function. The regularization forces the learning algorithm to fit the data and
simultaneously maintain the model coefficients as small as possible (Hoerl and Kennard 1970).
The hyperparameter o in the model controls the magnitude of regularizing the model. To select the
best hyperparameter value and subsequently the best model, 10-fold cross validation for each

model with the split of 75 percent training and 25 percent testing data was utilized.

To create a meaningful predictive model which is able to hold both categorical and numerical data,
we used one-hot encoding to handle categorical features?>. One-hot encoding is a tool which
transforms categorical features to a binary format for a model which work with numerical data.
Using one-hot encoding the categorical encoded variable is removed and a new binary variable is
added for each unique categorical value. Since the we dealt with relatively big data, we fulfilled
one-hot encoding of the categorical features during the modeling process as a storage management

strategy. For the rest of the features®, since each of which has a different range, we used

normalization; x = ——™"__ g rescale them to the same range of values which was between 0

Xmax—Xmin

and 1. Coefficient of determination (R?) was used to evaluate the goodness of fit of the models.

2.2.3.2 Multi-Task Learning

Countless daily real-world prediction applications that we deal with consist of multiple correlated
tasks. However, the standard strategy to resolve such problems has normally assumed
independence between the tasks known as single-task learning (STL). STL does not leverage

knowledge from nearby regions and may produce poor results in complex circumstances with

2 For the local models the categorical features are Time, Day, Week, Rain and Snow and for the global model the
features are the above-mentioned features plus Precinct and Borough.

3 For the local models the features are Wind, Average Temperature, Past 7-days Average Crime, Past 14-days Crime
Average and Past 21-days Crime Average. For the global model the features are the above-mentioned features plus
Park area, Commercial area, Manufacturing area, Residential area, Male, Female, White, Black,
American_Indian/Alaska_Native, Asian, Hawaiian, Other races, Hispanic, Total households
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insufficient data. To take the tasks’ dependencies into consideration, multi-task learning (MTL) is
proposed. MTL introduced by Caruana (1997), is a machine learning paradigm in which multiple
learning tasks are solved simultaneously in prediction tasks. An MTL advances the generalization
performance of all the tasks by leveraging valuable information included in several related tasks

(Zhang and Yang 2017).

Crime prediction is not an exception, and there are many spatial and temporal relatedness among
different locations in a city that cannot be disregarded. Therefore, it could provide the research
communities a better opportunity to take the advantage of methods such as MTL so that it enables
them to catch related information from similar locations to possibly improve the overall prediction

results.

A frequently used minimization of penalized loss in predictive algorithms of machine learning is

min

W LW) + Q(W), where w is approximate coefficients, L(W) is the loss on the training set, and

Q( W is the regularization that determines the tasks similarity (Zhou, Chen and Ye 2011). Based

on the assumption on tasks relatedness, a distinct regularization terms can be derived. There have
been numerous studies utilizing novel regularizations on modeling the tasks relatedness
(Tibshirani 1996, Evgeniou and Pontil 2004, Argyriou, Evgeniou and Pontil 2007, Jalali et al.
2010, Ji and Ye 2009, Chen, Liu and Ye 2012, Chen et al. 2009, Zhou, Chen and Ye 2011, Zhou
et al. 2012, Zhou et al. 2011). In some applications, the task association can be characterized
employing a graph where every task is a node, and two nodes are linked through an edge if they
are related. For more information refer to Zhou et al. (2011). The graph is described as ||[WR]||% =
tr(WR)T(WR)) = tr(WRRTWT) = er(WLWT) where £ = RRT, known as the Laplacian

matrix, which is symmetric and positive definite.
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In this study, we defined R matrix as:

/D Dz .. O 0o . 0
- D12 0 \/ng 1/D24_ 0
0 _\,D13 _\/ng 0 0 (1)

where Dpq is the spatial proximity between p™ and g™ nodes.

(n-1)xn

The size of the R matrix equals to n X . In this study R is a 77 x 2926 matrix. To apply

MTL with Graph Laplacian regularization on the case study, the precincts were regarded as nodes.
To measure the spatial proximity (D) between precincts, we defined a new measurement named

Weighted Four-Dimensional Spatial Similarity Matrix.

2.2.3.3 Weighted Four-Dimensional Spatial Similarity Matrix

The spatial proximity between two precincts is a metric to find the similarity between them which
varies between 0 to 1. This means that a precinct which is the most similar one to itself, receives a
proximity equal to 1 and the rest of the precincts based on the similarity definition could receive a
number between 0 to 1. The simplest metric of spatial similarity can be calculated using a
Euclidean Distance in which the closest precincts are more similar while the farthest are the most
dissimilar. However, to create a more meaningful similarity matrix, we contributed spatial factors
which were percentage of zoning areas within each precinct and the geographical distance.
Primarily, the dissimilarity of two precincts was defined and then it was converted to a similarity

matrix.

The dissimilarity between two precincts was defined as:
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D(PB) =iy X [(Re = R+ (Coy = o)) & (Mo, = M)+ (Pr = Pt (2)

distance(Py,Pj) (3)
W. S —
Y Maximum distance

where R, C, M and P are the percentage of the residential, commercial, manufacturing and park
areas within a precinct, respectively. The greater the difference between the environmental design
of two precincts, the greater the dissimilarities. We also added the weight w;; to the formula which
is a normalized geographical distance between two precincts. The distance between two precincts
is divided by the maximum magnitude of the distances between precincts. It intensifies/abates the
overall dissimilarity of distant/close precincts in the final matrix product. For example, say the
environmental design dissimilarities of precincts 1 and 5 to precinct 6 are equal, the more distant
precinct to 6 would become more dissimilar using the weighting system. The dissimilarity of each
pair of precincts were calculated and used to create a matrix of 77x77 with diagonal elements all

equal to zero.

As the dissimilarity to similarity conversion, we used ” to convert all the elements of

1+dissimilarit
the dissimilarity matrix to the similarity. Obviously, the final similarity matrix would become a

matrix with diagonal elements all equal to one.

Ultimately, the 75 percent training and 25 percent testing data which were used in the local
modeling were input in the MTL with Graph Laplacian regularization using MALSAR package
(Zhou et al. 2011). The MALSAR (Multi-Task Learning Via Structural Regularization) isa MTL

package with different regularizations which is only available in MATLAB®*. To tune the

4 http://www.mathworks.com/products/matlab/
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hyperparameters of the regularization and select the best model, a 10-fold cross validation was

implemented.

In the following section, we present our assessment of the utility of MTL against local and global
modeling in crime prediction. We begin by examining the local and global models’ performance.
We then examine MTL with Graph Laplacian regularization in crime prediction and lastly is

compared to the local models and the global model.

2.3 Results and Discussion

2.3.1 Local Modeling

The data for 77 precincts of the NYC was preprocessed according to the steps explained
previously. Of the 4,383 days across the time period of January 1, 2005 to December 31, 2016, in
order to create the three features, the average of number of crimes in the past 7 days, past 14 days
and past 21 days for each 6-hour time window, the first 21 days were removed. The remaining
4,362 days resulted in 17,448 cases as a day contains four time intervals. Overall, 77 data files
with 10 input features of Time, Day, Week, Wind, Precipitation, Snow, Temperature, Past 7 days
moving average number of Crime, Past 14 days moving average Number of Crimes and Past 21
days moving average number of crimes were produced. With one-hot encoding the categorical
features®, a matrix size of 17,448 rows and 73 columns for each precinct was formed. The R? of
the best model using 10-fold cross validated ridge regression modeling with 75 percent training
and 25 percent testing for each precinct is presented in Figure 2-2. Note that the predictand of the

modeling was the number of crimes.

5> Time (4), Day (7), Week (53), Wind (1), Precipitation (2), Snow (2), Temperature (1), Past 7-days moving average
number of crime (1), Past 14-days moving average number of crimes (1) and Past 21-days moving average number
of crimes (1). The numbers greater than 1 for the features are the number of features after transformation with one-
hot encoding.
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Precincts 22 and 121 with R? equal to 0.08 and 0.64 had the lowest and the highest predictive
performances where the average R? of the local models was equal to 0.39. Evaluation of the
coefficients of the regression models indicated that time interval 3 (12 pm-6pm) had the largest
magnitude among the four time intervals. The total number of crimes across NYC for the entire
twelve years of data are presented in Figure 2-2. Accordingly, the local models were capable to
properly recognize its significance. Additionally, Friday had the largest magnitude of the
coefficients compared to other six days of week. Figure 2-3 illustrates the statistics of crime in
each day of the week. The models were again able to distinguish the importance of Friday as the
most dangerous day of the week. However, the models did not signify any week of year as the
most likely week for crime occurrence. The 12 years of data for the total number of crimes in each
week is presented in Figure 2-4, where the models and the data show agreement. Finally, the
models recognized that possibility of crime occurrence in snowy and rainy days by showing
negative coefficients, where the coefficient of temperature was positive. In other words, an
increase in temperature correlates with the increase in crime occurrence. Windy days coefficient

is also positive which results in more crime occurrence.
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2.3.2 Global Modeling

The data for the first global model was preprocessed and a matrix size of 1343496 x 11 with the
same exact features as was input in the local models plus the precinct feature was created. One-
hot encoding of the categorical features® increased the size of the matrix to 1343496 x 150. The
R? of the best model using 10-fold cross validated ridge regression modeling with 75 percent
training and 25 percent testing was equal to 0.33. The results show that this global model on the
average, is performing worse than the local models. However, the second global model including
demographics and zoning area percentage, was supplied with an 1343496 x 26 matrix, which was
resized to a 1343496 x 169 matrix after one-hot encoding the categorical features’. Since we added
more features to the model, the R? of the best model using 10-fold cross validated ridge regression
modeling with 75 percent training and 25 percent testing improved to 0.48. Although the accuracy
of the models may not be satisfying, however, in a fair comparison between the local and global
models, the results indicated that local models were better suited in modeling as there was less

heterogeneity in the used data.

& Time (4), Day (7), Week (53), Wind (1), Precipitation (2), Snow (2), Temperature (1), Past 7-days Average
Number of Crime (1), Past 14-days Average Number of Crimes (1), Past 21-days Average Number of Crimes (1)
and Precinct (77). The numbers greater than 1 for the features are the number of features after transformation with
one-hot encoding.

" The features being used in the first global model plus Male (1), Female (1), White (1), Black (1), American
Indian/Alaska Native (1), Asian (1), Hawaiian (1), Hispanic (1), Other races (1), Total households (1), Boroughs (5),
Residential (1), Commercial (1), Manufacturing (1) and Park (1).
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2.3.3 MTL modeling

As it was previously discussed, an MTL model captures the spatial and temporal correlation
between the tasks. Considering each precinct as a single task, the preprocessed data of each
precinct in the local modeling part along with the R matrix were imported into the MTL model.
The R? of the best models using 10-fold cross validated ridge regression modeling with 75 percent
training and 25 percent testing for each precinct is presented in Figure 2-6. Similar to the local
models, the highest prediction performance belonged to precinct 121 while the precinct 22 showed
the weakest performance. Interestingly, the average R? of MTL modeling was equal to 0.39 equal
to the local models average while both the MTL and the local models outperformed the first global
model. However, the second global model was still superior in terms of results because of
benefiting from more input information. A side-by-side comparison of the performance of the local

models and MTL models for each precinct is presented in Figure 2-7.
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2.3.4 Data Sparsity Impact

To better understand the problem, we took a deeper look into the data using a skewness test of the
distribution of the dependent variable, the number of crimes in each precinct. Since the defined
temporal resolution of the study was fine, in most of the 6-hour time intervals of every precinct,
there was no crime happening so the predictand contained too many zeros. The skewness of the
distribution of number of crimes for every precinct is presented in Figure 2-8. Positive skewness
in all precincts implies that we face a heavily right-skewed distribution in which the peak is closer
to zero (data sparsity). To evaluate the susceptibility of the local and MTL modeling, we fulfilled
a Pearson’s correlation with two-tailed test of significance. The test measured the linear correlation
of the obtained R? and the skewness of the predictand distribution. Table 2-1 presents the

correlation coefficients, significant at 0.01 level.

Table 2-1 Pearson's Correlation Test of the Methods’ Performances and Skewness of the
Number of Crimes Distribution

Variable Skewness of number of crimes
Local Modeling R? -0.275
MTL Modeling R? -0.449

The results indicate that MTL is more susceptible to the skewness of the predictand and as the
skewness increases, there is a stronger decline in the performance of the MTL compared to the
local models. Essentially, the result imply that we needed a coarser temporal resolution to

subsequently decrease the data sparsity to experience an improvement with MTL performance.
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2.3.5 Effect of Precinct Spatial Design

Another perspective is to investigate the relationship between the modeling results and the effect
of spatial properties. Figure 2-10 portrays the ratio of crime per area (CPA) in each precinct of
NYC. In one test, we evaluated the results of both local models and MTL against CPA. Figure 2-
9 shows the obtained R? in each precinct and the corresponding CPA. Although, there is no
observed consistency between the methods performances and CPA, we assessed the correlation of
the performance of the two methods with the city spatial design including percentage of four

different zonings of the city.

Number of Crimes Per Unit Area
Crimel/Area

[ ] 0000066 - 0.001850

[ 0001951 - 0.003833

I 003834 - 0.005717

Figure 2-9 Ratio of crime per area in every precinct of NYC

The results can be found in Table 2-2. The result indicates that there is a significant negative
correlation between the performances of the models as the park area increases, however the rest of

the correlations are not significant. With the help of those information, a deeper look into the
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percentage of zoning areas in each precinct assisted to find that precinct 22 contains 95 percent
park area which is the highest percentage and the reason for poor performance of its models. The
median of park area percentages in all precincts was equal to 7 percent whereas the 95 percent

park area in precinct 22 would affect the models’ generalizability.

Table 2-2 Correlation analysis of the impact of spatial design of the NYC with the models
performances

MTL RZ Local R?

Park Pearson Correlation -0.325"  -0.327™
Sig. (2-tailed) 0.004 0.004

Commercial Pearson Correlation 0.099 0.091
Sig. (2-tailed) 0.389 0.430

Manufacturing  Pearson Correlation -0.007 -0.002

Sig. (2-tailed) 0.951 0.985
Residential Pearson Correlation 0.152 0.156
Sig. (2-tailed) 0.188 0.176

** Correlation is significant at the 0.01 level (2-tailed)
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2.3.6 Training Size Impact

MTL is supposed to be a better algorithm in case of limited training samples comparing to STL
methods (Zhang and Yang 2017). Hence, we tested the performance of MTL against the local
models using different data sizes by incrementally reducing the training samples. It should be noted
that the global model with the same number of features, was not tested as it already showed the
worst performance. The results of the test are presented in Table 2-3 which indicates that MTL
modeling performs slightly better than the STL (i.e., local models build by ridge regression)
models as the training size becomes more limited. However, the small difference between their
performances may be due to still large data in our case study, even with using only 10 percent of

training samples.

Table 2-3 Comparison of the performance of local Modeling and MTL with different
training sizes

Training (percent) Testing (percent) Local Modeling Mean R>  MTL Modeling Mean R?

75 25 0.39 0.39
60 40 0.39 0.39
50 50 0.38 0.39
30 70 0.38 0.39
10 90 0.37 0.38
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2.4 Conclusions

In this study, we examined the spatiotemporal crime-prediction performance of a multi-task
learning method against linear local models and a global model. The result showed that the multi-
task learning model outperformed the global model in prediction, however, its prediction
performance on average stood equal to the performance of the local models. Two important
findings of this study were first, the more negative effect of dependent variables skewness on MTL
models as opposed to STL models. Second, the effect of training size which in case of limited
samples, MTL performed better than the local modeling. Despite the equal performance of the
MTL and the local models, several limitations were observed that they may have utility for future

crime prediction.

Spatial and temporal scale is a vital subject in crime prediction. From a practical point of view, we
need to address them adequately, however, finer spatial and temporal resolutions significantly
influence the prediction results. If the used resolutions are too fine, then there will be too small
historical crime data which results in data sparsity. Consequently, the models are not able to
acquire a good estimate of crime rate. On the other hand, too coarse resolutions do not make the
predictions sufficient for police preemptive actions. Besides that, an optimized spatial and

temporal scale for one specific area, is not certainly ideal for other areas (Liu 2017).

Considering all crime types under one single crime class to prevent more data sparsity presented
another challenge for this study. We could improve the results by designing a more
accommodating framework by either choosing a coarser spatial scale (e.g., borough size instead
of precinct size) or a coarser temporal resolution (e.g., daily basis) to avoid data sparsity while
increasing the dependent variable range. This was a challenging task, not only because of efforts

to save the practicality of the predictive models, but also due to the structure of the available crime
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data and its supplementary information. Data acquisition from diverse sources, cleansing and
processing data from a collected pool of unstructured data, aggregation and integration of the

cleaned data were all the influential factors in making this study more difficult.

Demographic factors have been referred to as the most important determinants of crime rates.
However, the demographic data that precisely overlapped the precinct borders were available only
at a course resolution, borough level. As a result, the valuable information from demographics
could not be used in the local models at the precinct level. Demographic data from census tract
could be used, however, the more significantly challenging task was to obtain and preprocess the
data to exactly match the precinct borders. As was discussed in the first chapter, one challenging
aspect of spatiotemporal data analysis involves the difficulty of joining and relating different
resolutions and sources of data. Furthermore, we studied the correlation of crime rate per area, but
with the availability of demographic information at precinct resolution, we could have included a
study of the crime rate correlation with population density, income level and economic condition
in relation to different zonings. Additional improvement that could potentially be made for this
study involves including more accurate zoning description of the areas within each precinct. The
makeup of New York City’s zones is broken down into four main categories: residential,
commercial, manufacturing and parks. However, each major zone is also divided into multiple
subzones. For example, residential areas include ten basic residence districts - R1 through R10 —
and each zone differs in population density and required parking. In this study, to simplify the data
processing and modeling, only the major zones in each block were used in the models. By using
more detailed zoning information, there was a possibility to improve the modeling tasks. Finally,

the available weather information at daily temporal resolution and solely from three stations in the
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area could not show an ideal effectiveness at precinct level spatial resolution, when 77 precincts

were receiving relatively similar information.

Other important factors such as economy and income could be employed in this study, however,
the data acquisition and processing for the scope of this study was challenging. Certainly, there is
room for improvement of the results if one were to consider the aforementioned angles, however,
the primary purpose of this study to establish a basis for future crime studies by introducing MTL
to the research community. We believe that appropriate variable selection at proper spatial
resolution correlated to crime occurrence is critical to the success of the models, and in the future,

adding other sources of data could be another step forward of such framework.
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Chapter 3 AUTOMATED ANALYSIS OF THE US DROUGHT MONITOR MAPS WITH
MACHINE LEARNING AND MULTIPLE DROUGHT INDICATORS

3.1 Introduction

Drought is a common, periodic and one of the costliest natural disasters that has direct and indirect
economic, environmental and social impacts (Wilhite et al., 2007). These impacts become even
more serious with the potential increase of drought occurrence and severity caused by climate
change (Dai, 2011). A systematic and effective drought monitoring, prediction and planning
system is thus crucial for drought mitigations (Boken, 2005). However, as discussed in Hao et al.
(2017), drought analysis is not an easy task for a number of reasons. To start with, there is a lack
of an explicit and universally accepted definition for drought since it is a multi-faceted
phenomenon. Based on the variables in consideration, there are four general types of droughts,
namely meteorological, agricultural, hydrological and socioeconomic drought, for each of which
different combinations of drought indices are used to characterize them (Keyantash & Dracup,
2002). Yet, there is no agreement on typical indices and their thresholds for those drought types

(M. Hayes et al., 2011) since they do not work for all circumstances (Wilhite, 2000).

Although developing and choosing a proper set of physical drought indices is the basis of drought
monitoring to capture the complexity and describe the consequences of drought, a composite index
method has been proved to bring more success to the analysis (Hao et al., 2017). The U.S. Drought
Monitor (USDM) was developed as the landmark tool in this regard as it not only uses physical
drought indices, but also relies on experts’ knowledge in the information interpretation (Anderson
et al., 2011). This type of composite drought monitoring, which transforms an abundant set of
indicators into a sole product, is called the “hybrid monitoring approach” (M. J. Hayes et al.,

2012).
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The USDM was established in 1999 aiming at presenting current drought severity magnitude in
the categorical means across the U.S. in a weekly map published every Thursday. Inthe USDM
maps, drought is categorized into five categories starting from DO (abnormally dry), to D1
(moderate drought), D2 (severe drought), D3 (extreme drought) and D4 (exceptional drought). The
categories are based on a percentile approach which allows the users to interpret the drought
intensity concerning the odds of event occurrence in 100 years (Svoboda, 2000). For example, DO
corresponds to a 20-30% chance for the drought to occur in ranges from 20 to 30 while for D4 it
is less than 2%. A USDM map for the week of August 2018 is shown in Figure 3-1 as an example.
The map shows areas of the U.S. that are experiencing drought in various severities as well as its

impact levels.

To date, there are six main physical indicators in USDM to define the intensity of the categories:
Palmer Drought Severity Index (PDSI) (Palmer, 1965), Climate Prediction Center (CPC) Soil
Moisture Model Percentiles, U.S. Geological Survey (USGS) Daily Streamflow Percentiles,
Percent of Normal Precipitation and Standardized Precipitation Index (SPI), and remotely sensed
Satellite Vegetation Health Index (VT) along with many other supplementary indices such as the
Keetch-Bryam Drought Index (KBDI) for fire, Surface Water Supply and snowpack (Svoboda et
al., 2002), etc. These indices merged with other in situ data are jointly analyzed by experts to depict

the drought categories across the country (M. J. Hayes et al., 2012).
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Figure 3-1- USDM map for the Week of August 7, 2018 (droughtmonitor.unl.edu, 2018)

The characteristics of the USDM which makes it a distinct effort in terms of drought monitoring
are provided in Table 3-1. Since the uniqueness of the USDM has made it extremely popular, much
attention is drawn to it from media, policy makers and managers (USDA, 2018) as a benchmark
in their drought related communications and interpretations. Similarly, researchers have started
using the USDM product as a reference observation to compare and validate their proposed
drought monitoring and prediction methods (Anderson et al., 2013; Anderson et al., 2011; Brown
etal., 2008; Gu et al., 2007; Hao & AghaKouchak, 2014; Lorenz et al., 2017a, 2017b; Otkin et al.,
2016; Quiring, 2009). Although it is desirable to predict the USDM drought conditions which are
in categorical format, it would not be an easy task due to the subjectivity included in the production
process by the experts. A few studies (Hao, Hao, et al., 2016; Hao, Hong, et al., 2016) predicted
the monthly average USDM drought categories using ordinal regression by integrating multiple

drought indices. However, there has been no previous study using machine learning approaches to
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predict the USDM drought categories specifically in the original weekly format as the USDM

publishes the maps.

Table 3-1 Uniqueness of the US Drought Monitoring (droughtmonitor.unl.edu, 2019;

Svoboda et al., 2002)

Characteristics

Details

The first nationwide
unifying drought
monitoring of multiple
entities

Receives local observers’
collaboration

Simple and effective

Timely

Authors from National Drought Mitigation Center (NDMC), United States
Department of Agriculture (USDA), Climate Prediction Center (CPC), and
National Climatic Data Center (NCDC) have the responsibility of drawing
the maps who take turns for two weeks

The authors blend the best available data from various resources for
interpretation

More than 425 local observers such as state climatologists, National
Weather Service staff, agricultural and water resources managers, and
hydrologists

They provide drought impacts for the products using their familiarity and
knowledge of the region so that the experts can depict the most accurate
classification on the map

The classification system for droughts is easy to understand for public
Drought spatial extent, intensity, and duration are all considered

Flexibility with new technologies and data incorporation

It is a weekly product which illustrates drought conditions and impacts in a
timely manner

In this study, we aim to reproduce the same USDM drought analysis map over conterminous

United States (CONUS) based on meteorological observations and land surface model simulated

hydrological quantities through a machine learning approach and using multiple drought

indicators. We apply linear and nonlinear machine learning approaches using multiple

combinations of drought indices against a persistence model serving as the baseline model. The

developed framework basically mimics the map synthesizing process executed by the USDM
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authors. This will not only test the suitability of machine learning methods in drought monitoring
and prediction, but also helps us to develop tools that can translate predictions with numerical

models to easy-to-understand categorical drought forecasts.

The rest of this paper is organized as follows. Section 3-2 elaborates the study area, data and
describes the methodology. Section 3-3 presents the results and discussions. Finally, in the last

section we summarize and conclude the findings of this study.

3.2 Data and Methodology

In this section the framework of the study to reproduce the USDM drought maps is explained. The
process of developing the framework is presented in Figure 3-2, starting from data preparation
including data collection and simulation followed by data preprocessing prior to inputting into the

models. Each task is explained in the following sub-sections.

As the drought indices used in our study were derived from land-surface model outputs forced by
the North American Land Data Assimilation System Phase 2 (NLDAS2)’s meteorological forcing
fields, in this study, we deliberately designed our modeling domain to be consistent with the
NLDAS?2 grids. Thus, the modeling grids span the entire CONUS from 25.0625 to 52.9375 degree
latitude and -67.0625 to -124.9375 degree longitude, at 1/8° latitude-longitude degree resolution

which forms a meshed area with 224 rows and 464 columns (Mitchell et al., 2004).
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Figure 3-2 Flowchart of the proposed framework for USDM drought categories prediction
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3.2.1 Data Collection, Simulation and Preprocessing

To reproduce the USDM maps, a collection of predictor variables, which correspond to drought
indices were needed to predict the USDM categories. In the following paragraphs, the process of
data collection, simulation and preprocessing are described. We also explain the rationale behind
the selection of each variable and how we obtained, calculated, and resampled the values for each

of them prior to modeling.

3.2.1.1 USDM Data

The USDM weekly drought maps were retrieved from the USDM archived data at
https://droughtmonitor.unl.edu/Data/GISData.aspx for the years of 2000 through 2013, starting on
January 4 of 2000 and ending on December 31 of 2013, creating a total of 731 weeks of data. The
USDM drought maps are vector data that outline the regions in each drought category. As the goal
of this study is to reproduce the weekly USDM drought condition across CONUS, each weekly
map has to be rasterized to 1/8 degree NLDAS2 grid. Then for every week, each grid cell is labeled
as one of the five USDM drought categories or “No Drought” which makes an overall of six
possible states. In the resterization process, any grid cell covering two or more different drought

categories is labeled with the drought category which occupied the largest area.

3.2.1.2 Land Surface Model Outputs and Drought Indices

As the input variables of the actual USDM weekly report vary widely, we selected the frequently
used indices in forecasting and monitoring drought. These indices are also the ones that benefit the
USDM weekly map production (Anderson et al., 2011). Standardized Precipitation Index (SPI),
Standard Runoff Index (SRI), Soil Moisture Percentile (SMP) and Palmer Drought Severity Index
(PDSI) are the employed indices in this study which are summarized in Table 3-2 and are used as

the predictors of the models to predict the USDM drought categories.
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Table 3-2 Summary of the drought indices

Used in This  Source(s) of Data

Drought Index Definition Study in This Study Reference
The number of standard deviations that the
cumulative precipitation deficit would SPI for the
Standardized  deviate from the long-term normalized 30, 60, and 90 NLDAS-2 McKee et
Precipitation ~ mean. SPI value can be calculated for days prior to Forcing File A al. (1993)
Index (SPI) multiple time scales, covering the last 1, 2, the day of Precipitation '
3,4,5,6,7,8,9,10, 11, 12, 15, 18, 24, 30, forecast
36, 48, 60, and 72 months.
. SRI for the Noah3.6,
Standardized ~ Defined thesame as SPI, exceptfor runoff, "5 190 NoahMP36,  Shuklaand
the number of standard deviation that the .
Runoff Index - . . days priorto  clsmf2.5 Surface Wood
percentile of cumulative hydrologic runoff
(SRI) : : . the day of and Subsurface (2008)
would deviate over a particular duration.
forecast Outputs
Soil Moisture The quantile of the current day top 1-m  Top 1-m soil Noah3.6,
Percentile total soil moisture among all the datapools ~ moisture 29 NoahMP3.6, Sheffield et
(SMP) from the historical period over a particular ~ Days Time clsmf2.5 Soil al. (2004)
onward and backward time window. Window Moisture Outputs
Palmer A standardized index in which the inputs Obtained from
Drought of monthly temperature, precipitation and PDSI Abatzoalou Palmer
Severity Index  the available water capacity (AWC) of the (2018) (1965)
(PDSI) soil are used for estimation of dryness.

SRI and SPI are typically calculated based on monthly data, and can be calculated for up to 72
month historical time periods. In this study, as we try to predict USDM weekly maps, we calculate
the SPI and SRI based on daily data (Table 3-2) at 30-day, 60-day, and 90-day periods. These are
the periods that prior to the day of forecast. For convenience, we still call them SPI1, SPI2 and
SPI3, just to be consistent with other literature as their time scales are roughly equivalent to one
months, two months and three months. In order to create the indices, we first gathered the outputs
of both NLDAS-2 Forcing precipitation data and the Land Information System (LIS) models
(Noah-3.6, Noah-MP3.6, CLSM-F2.5) runoff and soil moisture from 1979 to 2013. The NLDAS-
2 Precipitation, and LIS models hydrological runoff and soil moisture were used to calculate SPI,
SRI and SMP, respectively. It is notable that the calculations of SRI and SMP were based on the
average value of three LIS models outputs. SMP values were calculated at the top 1 meter for 29-

days time window. More specifically, the soil moisture data of two weeks backward and onward
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time window were added to the data of the target day soil moisture to form the data pool for this
date in order to compute SMP. Lastly, PDSI data was obtained from Abatzoglou (2019) in 1/24
degree, which then was projected and resampled to the NLDAS extents. Altogether, throughout
the entire domain, every grid cell holds 731 values for each index where each was calculated for

the dates that the USDM weekly maps between 2000 to 2013 were published.

3.2.1.3 Predictors Grouping

Different groups of predictors were used to fit the models so that the impact of different
combinations of predictors on the model prediction abilities could be assessed. One of the
commonly used terms in this study is the past week USDM drought category or USDM,_,. Here,
t is time with weekly intervals, so t-1 takes place a week lagging from the current time. As drought
phenomena is a slow-moving process, the likelihood of switching the drought condition from
current week to next week is usually low. Considering that fact, we attempt to examine the
proposed models performances with inclusion or exclusion of the USDM;_, as an input feature, in
order to find this feature importance in the prediction tasks. Moreover, by the idea of using past
week drought condition as a predictor, we aim to discover how the USDM experts, aside from the
use of all the physical indicators in quantifying the drought categories, would also reflect the past

week drought condition as a basis in producing the current week drought map.

Toward this purpose, we defined five groups of predictors which are presented in Figure 2. It
shows how different combinations of inputs (in color) supply each group of predictors. Group 1
consists the eight drought indices while Group 2 includes the past week USDM drought condition
in addition to Group 1 data as one more extra predictor. In contrast to Groups 1 and 2 which solely
use the target grid cell information, Groups 3 and 4 include the information of the eight
neighboring grid cells as supplementary data. In other words, these Groups of data contains a three
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by three matrix of grid cells, centered on the target grid cell with nine times more data points.
Similar to Group 1, Group 3 includes only the eight drought indices while Group 4 includes the
past week USDM data of the grid cells as an additional predictor. Accordingly, one of the five
groups of data is imported in the persistence model. This group of data only takes USDM;_, data
and contributes in the baseline model. The baseline model is explained in the modeling section

thoroughly.

After grouping the data, standardization of the drought indices values as well as encoding the
categorical variable (i.e. USDM,_,) were completed prior to inputting them in the models.
Altogether, we attempt to predict the USDM drought condition labels for each grid cell by five
different groups of input in the modeling. The schematic of the prepared data for the modeling in

the entire domain is presented in Figure 3-3.

L I J
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Figure 3-3 Schematic of the produced data domain
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3.2.2 Modeling

3.2.2.1 Persistence Model

In machine learning context, generally the performance of an algorithm is compared against a
simple and basic method called a baseline model. The performance metric (e.g. accuracy) will then
become a benchmark to compare any other machine learning algorithm against. In this study a
persistence model plays the role as the baseline model. We define a persistence model as a model
which assumes the current week drought condition persists in next week. In other words, the model
predicts the USDM drought category of an area for a specific week as its past week drought
category. In this study, the rationale for using a persistence model as the baseline model is the
slow-moving nature of drought, hence the probability of a drought (or wetness) condition
persisting in the next weeks could have a relatively high likelihood. Obviously, the persistence
modeling for the areas with more weekly variation in drought category is subject to more
prediction error. Figure 3-2 shows how the corresponding input data is being carried over to the

persistence model.

3.2.2.2 Machine Learning Models

Prediction of the USDM categories is an ordinal classification problem, as it is a forced choice for
the models to predict six discrete responses, No Drought, DO, D1, D2, D3 and D4. Toward this
purpose, three machine learning algorithms, logistic regression, random forest classifier and

support vector machines (SVM) are selected to be examined for classification prediction.

The logistic regression model is used as a linear classification algorithm which uses the sigmoid
function to limit the output of a linear equation between 0 and 1 as the probability outcome of the

default class (Hosmer Jr et al., 2013). The estimation of the algorithm coefficient must be done on
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training data using maximum likelihood. Logistic regression is a widely used classification

technique due it its computational efficiency and being easily interpretable.

Random Forest (Ho, 1995) have successfully been implemented in various classification problems
(banking, image classification, stock market, medicine and ecology) and is one the most accurate
classification algorithms that works well with large datasets. The Random Forest classifier is a
nonlinear classifier which consists an ensemble of decision tree classifiers. Each classifier is
generated by a random set of features sampled independently from the input features, and each
tree deposits a unit vote for the most suitable class to classify an input vector (Breiman, 2001).
There are not many hyperparamters and they are easy to understand. Although, one of the major
challenges in machine learning is overfitting, but the majority of the time this will not occur to a

Random Forest classifier as there are sufficient trees in the forest.

SVM are broadly used as a classification tool in a variety of areas. They aim to determine the
position of decision boundaries that produce the most optimum class separation (Cristianini &
Shawe-Taylor, 2000). In classification, a maximal margin hyper-plane separates a specified set of
binary labeled training data. However, if there is no possible linear features separation, SVM
employ the techniques of kernels to make them linearly separable after they are mapped to a high
dimensional feature space. The two standard kernel choices are polynomial and Radial Basis
Function (RBF). In this study, we use an RBF kernel in SVM classifiers since RBF kernel is more
capable compared to polynomial in representing the complex relationships in data especially the

synergic complexities associated with growing data.

3.2.2.3 5-fold Cross-Validation
With the use of each machine learning algorithm and group of input variables, for each grid cell

in the domain we build its own specific models. In all the three modeling algorithms, choosing the
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optimal learning parameter(s) of the models known as “hyperparameter tuning” was performed by
splitting the data to 80% training and 20% testing and executing 5-fold cross-validation on the
training to select the best model. The logistic regression has only one hyperparameter, C with an
L2 regularization (i.e. squared degree of coefficient as penalty term to loss function) in this study.
For the Random Forest we set 200 trees as the number of estimators and then search in the
parameter grid of maximum features, maximum depth, minimum samples leaf to find the optimum
combination. Lastly, the hyperparameters in SVM with RBF kernel are C and y, where C is the
penalty of the objective function for misclassification and vy is the parameter of the kernel which

controls the tradeoff between error of bias and variance in the model.

3.2.2.4 Metric of Performance Assessment

In this study, F; Score and Heidke Skill Score (HSS) are selected as the metric to evaluate the
model performance. F; Score is usually more useful than Accuracy, especially when there are
uneven class distributions. This is the case in our study as in general the number of weeks that the
area of a grid cell may experience the extreme (D3) or the exceptional (D4) drought is far less than
the rest of the drought categories, while the number of No Drought, DO, D1 and D3 are not equal
either. F; Score is defined as the harmonic average of precision and recall (Goutte & Gaussier,

2005):

.. True Positive
Precision = — — (1)
True Positive+False Positive

True Positive

Recall = 2

True Positive+False Negative

precision Xrecall

F1:2><

©)

precision+recall
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The Heidke skill score (Heidke, 1926) also known as kappa Index of Agreement (KIA) is a skill
score for categorical prediction which presents the improvement of the prediction over the standard
forecast which is usually a chance forecast. The range of the HSS is -0 to 1 where a negative score
suggests that the chance forecast is better, 0 means no skill, and a perfect forecast is equal to 1.

For a multi-category event HSS is defined as (Barnston, 1992):

Table 3-3 Heidke Skill Score

Observed Category

Forecast Category 1 2 n Z Forecast
1 X11 X1 Xin Z f1
2 X Xan X D2
n X X, . X Z fn

ZObservation 201 ZOZ ZOn Total

_ X Xii — X(XinXni)/Total
HSS = rorais Y(XinXni)/Total (4)

Depending on the aforementioned five different groups of data, the number of the indices (i.e., X)
can be one for the persistence model, eight (Groups 1 and 3) or nine (Groups 2 and 4) for the
machine learning models. Then the models would predict the dependent variable (y) which is the
USDM drought categories. Once the Groups 1, 2, 3 and 4 input features of each grid cell are
modeled and tested using the three proposed classifiers, twelve different accuracy outcomes are
produced. Ultimately, all the outcomes are compared against the persistence model accuracy one
by one (grid cell by grid cell) across the entire domain so that the best general combination in

terms of group of features and algorithm performance is determined.
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3.3 Results and Discussion

Our introductory analysis to the data was to explore the spread of different drought conditions
across the domain during the 731 weeks. By utilizing the outcome, we can better perceive the
contribution associated to the number of data points with the models prediction performance. Out
of 103,936 grid cells within the domain, 51,997 grid cells never experienced any USDM drought
condition during the 14 years of data which means they were always labeled as No Drought or
were not in the USDM weekly maps CONUS domain. The remaining 51,939 grid cells have
experienced both DO and D1 drought categories at least once during that time period. Therefore,
in our classification task, there were at least three different classes, No Drought, DO and D1 which
are to be predicted. However, for the grid cells experiencing more of the drought conditions other
than DO and D1, the prediction is a multi-class classification task of four or more classes. During
731 weeks of the USDM data, there were 50,546 grid cells experiencing D2 (as well as No
Drought, DO and D1), 44,203 grid cells experiencing D3 (in addition to No Drought, DO, D1, and
D2) and 24,210 grid cells experiencing D4 (along with No Drought, DO, D1, D2 and D3) at least
once. Figure 3-4 presents the histograms of each drought category throughout the entire domain.
The included grid cells in the histograms are out of those 51,939 which have experienced more
than one type of USDM drought condition. From the histograms we can observe as the drought
conditions become more severe (from No Drought to D4), the grid cell mean count of the

categories decrease from 369.51 for No Drought down to 25.01 for D4.
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Figure 3-4 Histograms of the USDM drought categories counts across the domain in 14
years
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3.3.1 Persistence Model

As we discussed earlier, the group of data which solely contained the USDM,_; was the input of
the baseline predictive model known as the persistence model. The persistence model overall
performance is presented in Tables 3-4 and 3-5, including the minimum, maximum and mean
prediction F; scores and HSS for every USDM drought category as well as the weighted average

F, score.

Table 3-4 Persistence model descriptive statistics over the entire domain

MinF; Max F; Mean F; Std. Dev

No Drought 0.90 0.99 0.96 0.01
DO 0.42 0.96 0.81 0.08

D1 0 0.98 0.83 0.09

D2 0 0.99 0.84 0.11

D3 0 0.99 0.85 0.14

D4 0 0.99 0.83 0.20
Weighted Average 0.81 0.97 0.91 0.03

Table 3-5 Persistence model Heidke Skill Score

Min HSS Max HSS Mean HSS Std. Dev

No Drought -0.01 1 0.88 0.17
DO 0.22 1 0.78 0.11
D1 -0.02 1 0.80 0.12
D2 -0.02 1 0.84 0.14
D3 -0.02 1 0.86 0.18
D4 -0.02 1 0.83 0.26

The results in Tables 3-4 and 3-5, show that the persistence model prediction score for all the
classes and the weighted average is relatively high. This is basically an endorsement for the slow-

moving nature of drought so that a persistence model achieves such high scores at all levels.
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The persistence model performs worse in the areas with more drought weekly fluctuations since
an alteration in the drought condition from the current week to the next corresponds to one
prediction error for the model. Furthermore, the standard deviation of the accuracies from No
Drought to D4 constantly increases, yet the Weighted Average standard deviation (in Table 3-4)
stays as small as 0.03 because of the larger weights of the less severe drought conditions in contrast

to D3 and D4 categories.

50 DI . 36
48 .

46

42
40

38

Latitude

36
34
32
30
28

26

24
=126 -122 -118 -114 -110 -106 -102 -98 -94 -90 -86 -82 -78 -74 -70 -66
Longitude

Figure 3-5 Spatial presentation of the number of weekly fluctuations for each grid cell
during 731 weeks
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Figure 3-6 Spatial distribution of the persistence model weighted average F1 Score across
the domain of study
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The spatial distribution of the grid cells weekly fluctuation is presented in Figure 3-5 showing the
lowest variation between the USDM drought categories during 731 weeks of data is 23, while the
largest is 136. As we can see, the highest weekly fluctuations are located in Southeast and Plains
areas where the climate is warm temperature, humid with hot summers (Kottek et al., 2006). Figure
3-6, on the other hand, displays the persistence model weighted average F; score across the
domain. As it is noticeable from the Figures, the spread patterns of colors look similar, however,
in the opposite direction displaying the message that the areas with more weekly fluctuations

achieve less prediction accuracy by the persistence model and vice versa.

3.3.2 Machine Learning Models

3.3.2.1 Results for Using Group 1

In this section, we present and discuss the results of the logistic regression, Random Forest and
SVM using four different Groups of input data. Tables 3-6 and 3-7 contain the summary of the
obtained scores for entire domain by three models by running on the Group 1 data. As we can see,
the nonlinear models (i.e., Random Forest and SVM) substantially perform better than the linear
model (i.e. logistic regression), while the highest scores as well as the average score are obtained
by SVM for all the drought categories. However, none of the models can reach the scores that were
obtained by the persistence model by any means, neither for any of the six drought classes, nor on
average. Moreover, the scores standard deviations of all three models are more than the baseline

model so the prediction accuracies are also less consistent.
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Table 3-6 Descriptive statistics of the models performances using Group 1 input features
over the entire domain

Logistic Regression Random Forest SVM
i Al > i Al = i i =
£ R c L 29 =3 c D (29 =3 c w
c x & 2 = x & 2 = x 8 &
£ < = £ < = £ < =
S = 5 = = 5 = = &

No Drought 0.00 100 0.76 0.17 0.00 1.00 0.85 0.12 0.00 1.00 0.85 0.15

DO 0.00 0.78 0.20 0.18 0.00 0.92 055 013 0.00 094 060 0.12
D1 0.00 100 0.18 0.22 0.00 1.00 056 0.17 0.00 1.00 0.60 0.16
D2 0.00 100 024 026 000 1.00 060 020 0.00 1.00 0.63 0.19
D3 0.00 100 028 031 000 100 059 027 0.00 1.00 0.65 0.24
D4 0.00 100 044 039 000 100 063 034 0.00 1.00 0.70 0.29

Weighted Average 0.11 0.95 054 0.15 043 097 0.75 0.07 047 098 0.77 0.07

Table 3-7 Heidke Skill Score descriptive statistics of the models performances using Group

1
Logistic Regression Random Forest SVM

8 2 - 3 8 8 - 3 8 8 - 3

I I o (@] T I I @) T I I (@]

c % S B £ % S B £ % S =5

= > s = = 5 = = &
No Drought -025 1 047 018 -0.04 100 0.70 0.13 -0.04 1.00 0.70 0.14
DO -0.28 0.74 011 0.14 -0.07 094 048 014 -0.08 092 052 0.13
D1 -025 1 012 0.17 -0.07 100 051 0.17 -010 1.00 055 0.16
D2 -022 1 019 023 -006 100 056 021 -0.06 100 059 0.19
D3 -015 1 027 031 -005 100 0.60 0.27 -0.05 100 0.65 0.24
D4 -006 1 043 038 -005 100 0.62 035 -0.03 100 0.67 0.31

3.3.2.2 Results for Using Group 2

The results of the modeling with the Group 2 data set are presented in Tables 3-8 and 3-9. All three
models especially the logistic regression demonstrate a great improvement over the Group 1 input
feature just by adding USDM,_, as another variable. This indicates that the models learned to put
a great weight on the extra added variable which is revealed to play an important role in terms of
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improving the model’s prediction capabilities. Also, the models can surpass the persistence model
performance in D4 prediction score, however, on average all of them achieved an equal F; score
of 0.91. However, the HSS for all three models when compared to the persistence model, we realize
that the scores are still lower or at the best equal which means no superiority proven by the machine

learning models.

Table 3-8 Descriptive statistics of the models performances uing Group 2 input features
over the entire domain

Logistic Regression Random Forest SVM

K e 3B oL & e 3 oL & < B

=~ > @ a) - L"‘ @ a) =~ > 3 a)

s 3 £ g £ 3 £ 5 £ & £ 3

= p= 3 = p= 3 = = b
No Drought 0.00 1.00 094 0.13 0.00 100 094 013 0.00 100 0.94 0.4
DO 0.00 1.00 081 010 0.00 100 0.80 011 0.00 100 0.81 0.10
D1 0.00 1.00 082 014 0.00 100 081 015 0.00 100 0.82 0.15
D2 0.00 1.00 083 0.18 0.00 100 0.83 0.17 0.00 100 0.83 0.17
D3 0.00 1.00 083 023 0.00 100 083 022 0.00 100 084 0.22
D4 0.00 1.00 084 026 000 100 085 025 0.00 100 0.85 0.26

Weighted Average 077 099 091 003 075 099 091 003 075 099 091 003

Table 3-9 Heidke Skill Score of models performances using Group 2

Logistic Regression Random Forest SVM

& - 3z 8 B < 3 8 3 - 3

c s £ 5 2 3 & 3 oz & 3

> b ) > S ) S s »
No Drought -0.01 100 089 014 -001 100 089 014 -001 100 0.89 0.15
DO -0.01 1.00 0.78 011 010 100 0.77 012 012 100 078 0.11
D1 -0.02 100 080 0.14 -004 100 079 014 -003 100 080 0.14
D2 -0.02 100 083 0.18 -0.02 100 082 018 -0.02 100 0.83 0.17
D3 -0.02 1.00 084 021 -002 100 084 021 -0.02 100 0.85 0.20
D4 -0.01 100 080 029 -001 100 080 029 -001 100 0.81 0.29
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During the model training with Group 1 and 2 data, the range of the F; scores of the Random
Forest and SVM varied from 0.99 to 1 which was almost perfect. However, on the testing data, the
scores dropped down to 0.91 to show an overfitting problem. This type of challenge sometimes
happens in nonlinear models when the number of data points compared to the number of features
are small even though a cross validation is used. By observing the histograms in Figure 3-4, we
could find the reason nested in the average count of D3 and D4 drought categories which are
usually low. With using 80% of data in training even though randomly selected, the chances of a
model seeing fewer of those categories during learning process become higher. This causes the

models memorize instead of learn so while testing, the scores are not as promising as training.

With the use of Group 2 data in the modeling, on average in 31732 grid cells (61% of the domain)
logistic regression performed better than or equal to the persistence model. This is the case for the
Random Forest model in 27139 grid cells (52% of the domain) and in 31085 grid cells (60% of
the domain) for the SVMs. Adding the past week information to the data, helped the models to
improve their prediction accuracy, however, it was still challenging to be assertive about
outperforming the baseline model. With the presumption that lack of data point may be the cause
of underperformance, we tried the Groups 3 and 4 in the models so that we could possibly find out

whether there would be any improvement in prediction accuracy.

3.3.2.3 Results for Using Group 3
The performance of the machine learning models without USDM,_ label as the predictor, yet with
borrowing the neighboring grid cells which created Group 3 data were examined and are

summarized in Tables 3-10 and 3-11.
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Table 3-10 Descriptive statistics of the models performances using Group 3 input features
over the entire domain

Logistic Regression Random Forest SVM
< € g 2oL X g & & & g &
= ] o 5 £ ] o 5 £ pat L 5
= > = b = > 2 b = p= = b

No Drought 0.00 098 0.78 0.14 0.00 1.00 093 0.06 0.00 1.00 094 0.08

DO 000 072 024 016 007 09 079 007 0.00 099 0.83 0.06
D1 0.00 1.00 021 020 0.00 100 0.79 0.08 000 1.00 0.83 0.07
D2 0.00 100 028 024 000 100 080 011 000 100 0.84 0.09
D3 0.00 100 031 030 0.00 100 080 015 000 1.00 0.84 0.13
D4 0.00 100 044 036 000 100 078 024 000 1.00 0.83 0.20

Weighted Average 0.17 093 055 014 061 099 087 005 063 100 090 0.05

Table 3-11 Heidke Skill Score of the models using Group 3

Logistic Regression Random Forest SVM

& & < 3 3 @& < 3 8 3 < 3

T I s @) T T s @) T T S o

c x - c x c x <

= < S = = < > © = [ > S

= > n = > ) > S n
No Drought -0.17 100 050 0.16 0.00 1.00 090 0.12 -001 1.00 092 0.14
DO -0.21 080 0.14 0.14 0.00 1.00 083 010 0.06 1.00 0.87 0.08
D1 -0.21 100 0.15 0.18 -0.02 100 084 011 -001 1.00 0.88 0.10
D2 -0.20 1.00 022 024 -002 100 086 014 -003 1.00 089 0.11
D3 -0.15 1.00 030 033 -0.02 1.00 087 017 -0.02 1.00 090 0.5
D4 -0.05 1.00 048 039 -002 1.00 087 024 -002 1.00 090 0.20

The weighted average accuracy of the logistic regression dropped significantly once again when
the past week information predictor was eliminated. Despite the importance of the eliminated
predictor, the nonlinear models, Random Forest and SVM could sustain fairly close to the
persistence model on average but still lower, with 0.87 and 0.90 F; prediction score, respectively.
The results showed that the SVM model with Group 3 data could predict better than the persistence

model for DO, while it had an equal score but less standard deviation for D1 and D2, and an equal
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score and standard deviation for D4. However, comparing the HSS shows that our nonlinear
models could outperform the persistence model in six classes in terms of mean score with less

deviations in prediction score.

When compared the weighted average F; score across the entire domain, the logistic regression
could not defeat the persistence model prediction scores in any of the grid cells, while the Random
Forest and SVM were successful in 17,385 (33% of the grid cells) and 27,743 (53% of the grid
cells), respectively. The results of modeling with Group 3 indicates that by employing the
neighboring grid cells data and consequently a larger training set, we could improve the models,
particularly the nonlinear ones, to capture the relationships between the variables and drought
categories more precisely. However, the feature USDM,_; still illustrates a stronger impact than

the size of training data when Group 2 and 3 are compared side by side.

3.3.2.4 Results for Using Group 4

The results of using Group 4 dataset in the modeling is presented in Tables 3-12 and 3-13.
Compared to the Groups 1, 2 and 3 results, there is a noticeable improvement in both F,; score and
HSS, for the Random Forests and SVM. The logistic regression performs slightly better than the
persistence model in the prediction score for the categories, however the F; weighted average
scores are equal. On the other hand, the Random Forest and SVM outperform the persistence
model in all the categories and F; weighted average scores with the highest scores equal to 0.96
achieved by the SVM. Using Group 4 of data, indicates that borrowing the neighboring grid cells
information and including USDM;_, could certainly and significantly help the models learning
curve to improve. Clearly, the lack of data points was preventing the models to capture a more

comprehensive pattern while just using one single grid cell data.
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Table 3-12 Descriptive statistics of the models performances using Group 4 input features
over the entire domain

Logistic Regression Random Forest SVM

< L e & 04 & g & oL L ¢ &

= ] o : £ & L : £ pat L :

s = 2 g 5 = =2 g 5 == =2 Z
No Drought 000 1.00 096 005 0.00 100 098 0.04 000 1.00 0.98 0.06
DO 036 09 081 008 051 099 090 0.04 061 100 0.93 0.03
D1 0.00 1.00 083 0.09 0.00 100 091 0.05 000 1.00 093 0.04
D2 000 100 085 011 0.00 100 0.92 0.08 000 1.00 0.94 0.07
D3 0.00 1.00 087 014 0.00 100 0.92 011 000 1.00 093 0.10
D4 000 100 085 020 0.00 100 090 0.18 000 1.00 091 0.17

Weighted Average 082 098 091 003 086 100 095 0.02 087 100 096 0.01

Table 3-13 Heidke Skill Score of the models using Group 4 data

Logistic Regression Random Forest SVM

& & < 3 3 @& < 3 8 3 < 3

T I s @) T T s @) T T S o

c x - c x c x <

= < > el = < = ie] = T = i)

= > n = > ) > S n
No Drought -0.01 1.00 090 0.13 0.00 1.00 096 0.08 -001 1.00 097 0.09
DO 022 100 079 011 046 100 091 006 034 1.00 095 0.05
D1 -0.01 100 081 012 -001 1.00 093 0.07 -001 1.00 095 0.05
D2 -0.02 100 085 014 -001 100 094 009 -002 1.00 096 0.07
D3 -0.02 1.00 087 0.17 -0.02 1.00 094 012 -001 1.00 096 0.10
D4 -0.02 100 086 023 -001 100 093 018 -0.01 1.00 095 0.16

By looking into the one by one obtained F; weighted average scores for each grid cell across the
domain, on average in 10794 grid cells (21% of the domain) the logistic regression performs worse
than the baseline model, whereas in only 419 grid cells (0.8% of the domain) the random forest
performs worse than the persistence. The SVM with the best results, misclassified just 18 grid cells
with 1 percent difference weighted average score compared to the persistence model. Figure 3-7
shows the color map of the spatial distribution of the difference between the SVM and persistence

model average score all over the domain. Aside from those 18 points with -0.01 accuracy
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difference, the rest of them vary between 0 to 0.13. From Figures 3-6 and 3-7, it can be observed
that in the Southeast and Plains areas which the persistence model performs worse (i.e. higher
weekly fluctuation) the SVM model showed a larger difference in the prediction accuracy. We will
discuss more about the comparison of the models predictions against the persistence model in
boxplots later on in this section, although the purpose of outperforming the persistence model by
the machine learning models has been met.
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Figure 3-7 Spatial distribution of the weighted average F1 Score difference between the
Group4-SVM and persistence model

3.3.2.5 Side-by-Side Boxplot Comparison of the Model Performance Using Different
Groups of Data

In this section, we present and discuss the performances of all the 13 different types of modeling
in this study, next to each other in the format of boxplots. Figures 3-8 provides a side-by-side
overall performance of the models while Figure 3-9 contains the results of the models for each
USDM category. In the boxplots, the box middle line, bottom line and top line are the median, 25"

percentile and 75" percentile, respectively. The whiskers extend 1.5 times the height of the box
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(Interquartile range or IQR), and the points are extreme outliers which are three times greater than
the IQR. From Figure 3-8, we could clearly find out that the USDM drought labels were better
predicted by the nonlinear functions in terms of accuracy and deviation. The linear model fulfilled
a meaningfully better prediction with the presence of the USDM,_, information as a predictor
(Groups 2 and 4). The importance of this predictor can be observed by comparing the Groups 2
and 3 results, while modeling with Group 2 could obtain better results than Group 3, even with
using fewer number of data points. The detected pattern in Figure 3-8 can be observed in all the
six categories of Figure 3-9 where Group 4 performs the best, followed by Group 2, then Groups

3 and lastly Group 1.

In terms of feature importance in the models, both the logistic regression and random forest
commonly recognized PDSI as the most important predictor in Group 1 and Group 3, while in
Groups 2 and 4 USDM,_, received the largest coefficient, followed by PDSI as the second most
important feature. The importance of the rest of the features in the models were relatively close to
each other. Unfortunately, as the RBF kernel in SVM transforms the features into a high

dimensional space, the implicit transformation does not allow us to obtain the feature importance.
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Figure 3-8 Side by side models' overall performances comparison
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Figure 3-9 Side by side models' performances in prediction of each USDM drought

category
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For a better illustration in comparing the reproduced maps by the models and the actual USDM
map, we also selected three random dates. In Figure 3-10 the actual USDM map is not experiencing
any D4 but two spots of D3 in Midwest and Northwest regions, whereas Figure 3-11 shows the
southern part of Plains experiencing D4 as well as D3. Figure 3-12, however, shows larger and

more scattered areas of D3 and D4 across the domain.

3.3.2.6 Visual Comparison of the Models Over CONUS

In Figure 3-10, the persistence model can closely catch D3 areas however, it does not perform well
in predicting the DO, D1 and D2 while the large areas of DO are replaced with D1 and D2. This is
possibly due to precipitations during the past week generated map date (9/27/2005) and the date
of this map (10/04/2005) in which has made those areas drought severity one category less
extreme. The generated maps from Groups 1 and 3 models do not look well reproduced except
Group 3 RF and SVM, however, both still are not as smooth as expected. The entire Group 2 map
plus Group 4 LR are very similar to the persistence model map which means the models are heavily
relying on the USDM,_, as their predictors. Finally, the best performing model, Group 4 SVM is
able to generate very similar map to the actual USDM map followed by Group 4 RF as the second-
best model. If pay a closer attention, there is a slight difference between Group 4 RF and SVM in

which RF is still mispredicting few spots on the map.

In Figure 3-11, the models produced more similar maps to the actual USDM compared to Figure
3-10 especially for Group 2. The similarity is due to less change from past week to this week which
the persistence model is showing clearly. In other words, as it was discussed earlier, the models
are using USDM,_, as the most important feature so once we have a more accurate persistence
model (i.e. less change from past week) for a week, the rest of the models would be likewise more

accurate. However, Group 4 RF and SVM could still generate the closest map to the actual
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specifically in the regions with D3 and D4 as they are inherently capable of capturing nonlinear

relationships while using more data for training.

Similar to Figure 3-11, Figure 3-12 has also a relatively similar persistence model to the actual
USDM map except a few small areas such as not being able to recognize an D3 area in California
and replacing a No Drought region in Indiana with DO. As it can be seen, the models in Groups 1
are not doing well, however, there is a significant improvement once the models are fed with
USDM,_, as another feature in Group 2. The maps of Group 3 models are not as smooth, but we
can see the above-mentioned areas that the persistence model was not able to catch are relatively
being recognized by them especially by the SVM model. Lastly, the best performing model is

Group 4 SVM which was able to produce almost as similar as the actual USDM map.
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Figure 3-12 Produced maps of 08/13/2013 by each model

As the last step, in order to show a more in detail models comparison instead of the overall average
performance, we selected a random sample grid cell located at the latitude of 35.0630, and
longitude - 105.3130 (appeared to be in New Mexico) and put the test data from the years 2010 to
2013 in a time series graph. Figure 3-12 presents the actual test data into the models and each
model prediction. It is notable that the graph is an ordered time series of the test data points, but
the dates are not consecutive due to random selection of training and test set, while the weeks in
between were used as training data for the models. Similar to the above generated maps, here the

Group 2 models are significantly relying on the USDM, _, feature as whenever the persistence does
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or does not predict correctly, Group 2 models are predicting accordingly. Group 1 models and
Group 3 LR are the least consistent models, while Group 3 RF and SVM showed a fairly good
performance even though they were not using USDM,_,. Group 4 models show the best modeling
results especially Group 4 SVM by being able to predict the date 8/23/2011 correctly where the

majority of the models failed.
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Figure 3-13 Time series of test data of grid cell located in (35.0629, -105.3130) New Mexico
3.4 Conclusions

Our proposed framework successfully reproduced the USDM drought categories using multiple
drought indices and machine learning algorithms, logistic regression, Random Forest and SVM.
The framework was compared to a persistence model as the baseline model in which it was
assumed that current week drought condition would persist in next week. As this study was a
classification task, the machine learning models were evaluated by their overall prediction scores
(only for F1 score) as well as each class prediction score. Although, in terms of prediction
accuracy, there was not much room left for improvement by the baseline model, our proposed
framework could outperform it by testing different scenarios of the data inputs and machine

learning algorithms to find the best combination.
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We found out that employing the past week drought data as a predictor in the models played an
important role in achieving high prediction scores especially for the logistic regression. The
nonlinear models, Random Forest and SVM suffered less without the use of that predictor in terms
of prediction score. Furthermore, taking the neighboring grid cells information into account, could
compensate the lack of data points for training the models. It was essentially rectification of the
temporal shortage of the available USDM data (731 weeks) by increasing it spatially. Training the
models faced the lack of data problem particularly for the categories D3 and D4. In some grid cells
when the number of D3 and D4 were smaller than the number of the folds in cross validation (i.e.
5 in this study) as well as random selection of training and test splits, technically some folds could

not contain those categories during the learning process which resulted in poor predictive skill.

Future works could be the examination of a multi-task learning approach which works well with
limited data by leveraging information from nearby locations. Also, since we have been successful
in being close to mimicking the USDM experts drought categories synthesizing, this methodology
could be used in an automated system in generating the weekly maps. The system would be using
LSMs to produces the outputs which are needed to calculate the drought indices which represent
meteorological, agricultural, and hydrologic drought. Thereafter by creating the indices for the
target day that the map is going to be published and using the past week drought condition as
another variable, the SVM model as the best performing model in this study would predict the

drought conditions across the entire United States.
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Chapter 4 DOWNSCALING SMAP SATELLITE RETRIEVED SOIL MOISTURE USING
MACHINE LEARNING APPROACHES WITH AN UNCERTAINTY PERSPECTIVE

4.1 Introduction

Soil moisture (SM) is a crucial variable within the Earth’s system, and plays a key role in regulating
various processes in water, energy, and carbon fluxes among the land surface and the atmosphere
(Ochsner et al., 2013; Robock et al., 2000; Seneviratne et al., 2010). As a result, soil moisture
becomes important for various geoscience models, such as hydrology, meteorology, and Earth
thermodynamics (Vereecken et al., 2008). Soil moisture is defined and referred to as the quantity

of water contained by the upper soil sector, also known as the unsaturated zone (Hillel, 1998).

The advancement of remote sensing technologies has increased the accessibility of soil moisture,
to the point that it is possible to obtain an exceptional volume of remotely measured soil moisture
spatially and temporally, a task that is not feasible from ground observation networks (Kerr, 2007).
Several remote sensing satellite systems for worldwide soil moisture measurements are METOP-
A/B, Advanced Scatterometer (ASCAT), the National Aeronautics and Space Administration’s
(NASA) Soil Moisture Active Passive (SMAP), the Advanced Microwave Scanning Radiometer
for Earth Observing System (AMSR-E), the Advance Microwave Scanning Radiometer 2
(AMSR2), and the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS)
(Entekhabi, Njoku, et al., 2010; Kerr et al., 2016; Qu et al., 2021). Each entity delivers significant
global soil moisture retrievals at 25-50 km spatial resolution every 2-3 days (Qu et al., 2021;

Senyurek et al., 2020).

NASA’s SMAP was launched on January 31, 2015 as an environmental monitoring satellite, and
offers soil moisture on a global level. It is equipped with an L-band (active) radar and an L-band

(passive) radiometer (Entekhabi, Njoku, et al., 2010). The active and passive instruments obtain
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soil moisture measurements with a spatial resolution of 3 and 36 km, respectively (Chan et al.,
2016). In July 2015, the active sensor failed to operate correctly, and since then, SMAP soil
moisture has been retrieved solely by the passive instrument. Figure 4-1 shows the global soil

moisture obtained by the radar-based instrument for an 8-day cycle in June 2015.

Figure 4-1 SMAP radar-based soil moisture for one 8-day cycle of June 19 to 26, 2015
(Retrieved from NASA (2015))

The SMAP soil moisture observation provides a suitable spatial resolution for global scale uses.
However, the measurements cannot be utilized effectively for regional or local applications, such
as agricultural purposes (e.g., yield estimation), drought, and flood monitoring. To avoid this
problem, there is a need to obtain soil moisture at finer resolutions, from a multiple kilometer to
less than one kilometer spatial resolution. As a result, a spatial downscaling is necessary for
hydrological and agricultural applications (Peng et al., 2017). Soil moisture downscaling can be
employed using different tactics, including satellite-based techniques (Active and Passive
Microwave Data Fusion Methods), downscaling utilizing geoinformation data, and model-based
approaches, which can be divided into statistical or land surface model downscaling (Peng et al.,

2017). Numerous model-based soil moisture downscaling techniques have been proposed with

110



varying considerations of the effect of several environmental variables. The supporting theory of
these techniques is to create either a statistical association or a physics-based model among satellite
soil moisture retrieval and fine-scale ancillary variables (e.g., soil type, temperature, soil depth,
topography) (Peng et al., 2017). Machine learning (ML) approaches in soil moisture downscaling
fall within the category of statistical models where the model illustrates the spatial statistics of the
soil moisture area to connect the spatial variability to the spatial average, or to disclose in what

manner statistics vary throughout scales.

In recent years, downscaling large-scale satellite soil moisture with ML techniques has attracted
significant interest due to their exceptional accuracy and stability in all aspects when compared to
the other downscaling techniques (Kim et al., 2018; Qu et al., 2021). Techniques including Support
Vector Machines (Jin et al., 2020; Kim et al., 2018), neural networks (Alemohammad et al., 2018),
Random Forest (RF) (Abbaszadeh et al., 2019; Qu et al., 2021) are among the most popular in
downscaling soil moisture measurement. Their results showed that Random Forest, which is an
ensemble decision tree algorithm, seems to perform better in downscaling remotely sensed soil
moisture when compared to other ML techniques (Abbaszadeh et al., 2019; Im et al., 2016; Jing

et al., 2016; Pelletier et al., 2016; Qu et al., 2021; Teluguntla et al., 2018).

Soil moisture spatial variability is controlled by a multitude of land-atmosphere components, such
as precipitation, temperature, soil type, vegetation and topography, and the combined effects of
these variables’ consequences in high soil moisture spatial heterogeneity. As a result, a soil
moisture downscaling method that can take complex and nonlinear relationships into account is

necessary to achieve accurate and fine spatiotemporal soil moisture.
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Abbaszadeh et al. (2019) successfully downscaled SMAP soil moisture by using RF over CONUS
from April 2015 to December 2015. This study attempts to replicate their study using similar
variables, but using three different machine learning algorithms and different subsets of data to
quantify the uncertainty of the process. The machine learning algorithms, RF, XGBoost, and a
deep learning algorithm are employed to downscale the SMAP soil moisture passive (radiometer)

measurements from 36 to 1-km resolution over the Contiguous United States (CONUS).

4.2 Dataset

In this study, SMAP soil moisture data, the ancillary data consisting of NDVI (to capture the effect
of vegetation dynamics on soil moisture), land surface temperature and precipitation (i.e.,
atmospheric variables to catch the temporal dynamics), topography and soil texture (i.e.,
geophysical variables to maintain spatial variability), and ground truth data (i.e., in-situ soil
moisture measurements) were obtained for CONUS over the course of 45 months, from April 2015
to December 2018 to be used in the proposed downscaling framework. The ancillary data are
anticipated to enhance satisfactory explanatory power on the soil moisture profile on various

scales. The data and sources are explained in the following subsections:

4.2.1 SMAP Radiometer Soil Moisture

SMAP satellite measures daily global soil moisture at a depth of 5 centimeters at AM (descending)
and PM (ascending) overpasses (Entekhabi et al., 2008). In this study, using the proposed
framework, the level 3 descending SMAP measured soil moisture from the passive sensor

(radiometer) with 36 km resolution is downscaled throughout the CONUS (USGS, 2020).

112



4.2.2 Ancillary Data

4.2.2.1 Vegetation

Vegetation is an essential component of soil moisture variability that has a profound influence on
runoff. Additionally, vegetation is strongly linked to soil, water, and atmosphere, so variation in
vegetation can be a good indicator of soil moisture content dynamics (Engstrom et al., 2008).
Because of its significance, vegetation has frequently been used as a supplementary variable in
satellite soil moisture downscaling (Fang & Lakshmi, 2014; Peng et al., 2015). The normalized
difference vegetation index (NDVI) is a practical indicator for quantifying vegetation coverage,
which can assess vegetation dynamics (Zhang et al., 2018). For the time span of the study, NDVI

was obtained from MODIS Terra at 1 km resolution generated every 16 days (MOD13Q1).

4.2.2.2 Land Surface Temperature

Land surface temperature (LST) is a key climate variable that regulates and substantially impacts
soil moisture (Pablos et al., 2016). As a result, land surface temperature has been widely used as a
predictive variable in satellite soil moisture measurements (Fang et al., 2018; Zhao et al., 2018).
MODIS Terra produces daily LST (MOD11A1) at 1 km resolution with local equatorial crossing

time of approximately 10:30 a.m. in descending node (Wan, 2006).

4.2.2.3 Precipitation

Soil moisture dynamics across space and time are markedly dependent on precipitation variation.
Its correlation with soil moisture has been studied on different geographical scales (Hohenegger
et al., 2009; Wei & Dirmeyer, 2012). As a result, precipitation can play a significant role as an
ancillary variable in downscaling SMAP soil moisture. The precipitation data for this study was
obtained from NASA’s Daymet Version 3 model output data. The Daymet dataset provides daily

surface weather data, such as minimum temperature, maximum temperature, vapor pressure and
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precipitation at 1 km resolution in North America and Hawaii (DAAC, 2020; Thornton et al.,

2014).

4.2.2.4 Topography

Studies have identified associations between soil moisture and topography as surface variables,
particularly throughout wet cycles when precipitation is occurs more frequently than evaporation
(Nyberg, 1996; Tromp-van Meerveld & McDonnell, 2006). Elevation has been proven to be a
crucial element used in topography to improve downscaling satellite soil moisture (Colliander et
al., 2017; Im et al., 2016). Therefore, elevation is selected to be another ancillary variable in this
study. The elevation data source was obtained from GTOPQO30, a global digital elevation model
(DEM) with an approximately 1 km resolution provided by the USGS Earth Resources

Observation and Science (EROS) archive (ERQOS, 2020).

4.2.2.5 Soil Texture

Soil texture (or type) refers to what the proportion of a soil mass is composed of regarding the
quantity of small (clay), medium (silt), and large (sand) particles. By gaining an understanding of
the soil texture and its physical properties, we can learn more about its relationship to soil moisture
content (e.g., infiltration rate and permeability). Soil texture information has been exploited
utilized as an effective source of information for improved downscaling satellite soil moisture
measurements (Abbaszadeh et al., 2019; Kim & Barros, 2002; Montzka et al., 2018). In this study,
the top 5 cm of soil type data were collected from Soil Datasets at Pennsylvania State University

available at 1 km spatial resolution (PSU, 2020).

4.2.3 Ground soil moisture observation
To validate the results of the proposed downscaling framework, there is a need for an in-situ soil
moisture observation known as ground-truth. The U.S. Climate Reference Network (USCRN) and
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Soil Climate Analysis Network (SCAN) are two systematic and persistent networks of climate
monitoring with stations throughout CONUS, Alaska and Hawaii. Their sites utilize excellent
sensors to measure variables such as temperature, precipitation, wind speed, and soil conditions
(Coopersmith et al., 2016; Schaefer & Paetzold, 2001). Both networks offer soil moisture
measurements at different depths (i.e., 5, 10, 20, 50 and 100 cm) and time scales. To conform with
SMAP measurement however, the daily soil moisture data was obtained at a depth of 5 cm. The
number of stations during the selected 45 months of the study were equal to 191 SCAN and 132
USCRN sites that are shown in Figure 4-2. The Figure suggests that SCAN and USCRN stations

are well distributed throughout CONUS to involve various climates and soil textures.

Station

SCAN
USCRN

Figure 4-2 SCAN and USCRN stations networks across CONUS
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4.3 Methodology

4.3.1 Data Arrangement and Modeling Schemes

To downscale SMAP radiometer soil moisture from a 36 km resolution to 1 km resolution, the fine
resolution (1 km) auxiliary data including NDVI, precipitation, LST, elevation and soil type, which
are known to be significantly correlated in capturing soil moisture, spatial and temporal dynamics
are used. It should be noted that the input features are obtained for the location coordinates of the
in-situ stations. The in-situ soil moisture measurements from USCRN and SCAN networks are
considered as the predictand which the SMAP retrievals are validated against. The main
assumption of downscaling is that the measured in-situ soil moisture is the representative value for

the whole 1 km grid cell where the station is located.

The proposed framework incorporates two modeling schemes: local and global models. In local
modeling, the stations are categorized based on their soil texture properties, where SMAP, as well
as the rest of the ancillary variables (except soil type), are used as predictors in the model. Once
all the data from each station for each soil type are combined, a local model for each soil type is
developed to predict the in-situ soil moisture measurements. In global modeling, unlike the local
model, soil texture is similarly managed to be employed as another predictor in addition to the rest
of the input feature. Figure 4-3 shows all 15 soil textures and their covered area percentage across
CONUS. Approximately 72 percent of the CONUS surface layer is covered with loam, silty loam,
and sandy loam soil textures. Out of the remainder, water and bedrock are not considered soil
layers, and for silt, no measurement station is available. Thus, there are 12 soil textures

encompassing 98.74% of CONUS to be input into the downscaling framework.
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Figure 4-3 Soil textures and the covered area percentage across CONUS

The structure of the framework is illustrated in Figure 4-4. As can be seen, the data from the time
span of the study is divided into three different temporal arrangements: cumulative, yearly, and
quarterly, where each consists of four different data subsets. Cumulative data begins with data
from the year 2015, and in succeeding years, data are added incrementally to previous
combinations to create four different subsets: 2015, 2015 to 2016, 2015 to 2017, and 2015 to 2018.
The motivation for employing this data arrangement is to recognize the impact of the data size on
the accuracy of the prediction against the computational expenses. Yearly data isolates each year’s
data into four distinct years: 2015, 2016, 2017 and 2018. With the use of this yearly data, with a
nearly identical number of data points, any present inconsistency and irregularity in data sources
can be identified. Quarterly data contains each season’s data with the specific purpose of gaining

insight into the effect of seasonality and repeating patterns during soil moisture downscaling.
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4.3.2 Machine Learning Algorithms, Model Selection and Metrics of Performance

In this study, three machine learning regression algorithms, RF, XGBoost and an artificial neural
network (ANN), are utilized to implement the modeling of the framework. RF is a robust ensemble
decision tree with a bagging algorithm. Bagging in RF strengthens the model to reduce variance
and avoids overfitting by creating various models by resampling the data (Breiman, 2001). RF has
been a highly successful machine learning algorithm in satellite soil moisture downscaling.
XGBoost is termed as Extreme Gradient Boosting Algorithm which is also an ensemble technique
that operates with boosting trees (Chen et al., 2015). XGBoost utilizes a gradient descent algorithm
to remedy the preceding error created by the model by learning from it to improve next step
performance. The previous results are rectified, and performance is enhanced. RF generates many
trees, all with equivalent weight for leaves within the model, whereas XGBoost initiates leaf
weighting to correct the ones that do not enhance the model predictability. XGBoost has gained
popularity among data scientists, especially in machine learning competitions due to its speed and

scalability.

The ANN algorithm in this study is chosen to be a Fully Connected Neural Network (FCNN).
FCNNSs are a form of ANN where the architecture is comprised of a sequence of fully connected
layers, such that all their nodes (i.e., neurons) in one layer are connected to all the neurons in the
following layer. The network architecture requires an input layer, one or multiple hidden layers
and an output layer. The key advantage of FCNNs is that there are no specific assumptions required
concerning the input. The ability of ANNs in learning complex nonlinear relationships between
inputs and objective data is the reason for their popularity in geoscience. Over the past decade,
ANNSs have constantly been regularly applied to downscale soil moisture retrieval (Aires et al.,

2017; Alemohammad et al., 2018; Jimenez et al., 2009).
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Model hyperparameters tuning, evaluation and selection are attained by 10-fold cross-validation
on 80% of training data. The best estimator is thereafter tested with 20% of the data. The
performance metrics used to test the best trained models are R? and unbiased Root Mean Square
Error (UbRMSE). R? is a measure of goodness of fit and the explanatory power of the model to
the dependent variable. ubRMSE defined by Entekhabi, Reichle, et al. (2010), is a metric that
SMAP employs to determine the measurement accuracy. As opposed to RMSE, ubRMSE is not
harshly affected in presence of biases in the mean of the magnitude of variations in the retrievals.
The ubRMSE is assumed to indicate the RMSE of soil moisture anomalies that are calculated by

eliminating the mean seasonal cycle.

While RMSE is:

N 02
RMSE = M‘T") (1)

Where N is the number of data points, x; is the actual observation and X; is the estimated value.

ubRMSE is defined as below:

N (zi-3N %) _ (xy— N Xi)y2
ubRMSE = \/E’_l((x x 1N2’ (x X 1N)) (2)
and the relationship between RMSE and ubRMSE is:
RMSE? = ubRMSE? + b? (3)

Where b is the mean-bias.

Ultimately, with 11 data subsets and 12 soil types, there are 132 local models to be developed by

each algorithm, resulting in a total of 396 local models. In contrast, given that global models
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receive all data as input, and not for each soil type (soil type is used as a predictive feature), the

number of global models is equal to 33, where the three aforementioned algorithms are supplied

by 12 different data subsets. Overall, the framework develops 429 different local and global

models. The major contributions of this research are to propose: 1) a soil moisture downscaling

framework using machine learning, 2) a comparison between local and global modeling, 3) an

assessment of three machine learning algorithm in soil moisture downscaling and 4) the

uncertainty associated with the proposed models.
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Figure 4-4 Flowchart of the proposed soil moisture downscaling framework
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4.4 Results and Discussion

In this section, the results are discussed in three parts. An overview of the preprocessed data is
presented in the first section. The following section includes the performance of the local models,
and in the third section, the global model’s results are presented. The highest performing model
results are discussed in the fourth section, and in the final section, a deeper look into the overall

downscaling results with an uncertainty perspective are presented.

4.4.1 Data Preprocessing

In this section, a summary of the preprocessed data before modeling is explained. In the first step,
missing and outlier values were handled. Some in-situ stations did not have any reported value for
the time of the study. Additionally, SMAP values for some stations during the entire four years of
the data remained the same throughout the entire four years of data collection. After removing all
those stations, out of 323 primary SCAN and USCRN stations, 296 stations remained to be used
in the analysis. Table 4-1 shows the number of stations from both networks located on each soil
texture, the percentage of the number of stations on each soil texture, as well as and the percentage
area over CONUS covered with that soil texture. As can be seen in Table 4-1, the percentage of
the number of stations from both networks together on each soil texture, and the soil texture
covered area percentage, are very close. Organic material and sandy clay loam have only one in-
situ station, and loam with 62, silty loam with 71 and sandy loam with 77 have the greatest number
of stations (~ 71% of the stations). This insight contributes to the understanding that the data
allocated to each soil texture has a fair spatial distribution when compared to the proportion they
cover the area of across CONUS. Once the data of the stations for each soil texture are combined,
the data subsets Quarterly, Yearly and Cumulative are created for the modeling task. Table 4-2

contains the number of data points in each data subset for every soil texture. Quarter 1 has the
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fewest data points compared to the other three quarters. This is because data collection began in
April 2015, and as a result, 2015 includes only nine months of data, while 2016, 2017, and 2018
have a full year of data. For organic material and sandy clay loam, the number of data points are

small, and this is because only one station for each soil texture measuring soil moisture exists.

Table 4-1 Number of in-situ soil moisture stations on each soil texture

Soil Texture Number of Stations Percentage of Station Area in CONUS %

Clay 8 2.70 3.243

Clay Loam 14 4.73 4.186
Loam 62 20.95 25.021
Loamy Sand 14 4,73 3.620
Other 3 1.01 1.541
Organic Material 1 0.34 1.169
Sand 19 6.42 6.734
Sandy Clay Loam 1 0.34 0.358
Silty Clay 3 1.01 1.539
Silty Clay Loam 23 7.77 4.439
Silty Loam 71 23.99 24.631
Sandy Loam 77 26.01 22.258

Table 4-2 - Number of data points in in each subset of data for different soil types

@ — > >
o P - 2 s > c_6 Ry >
& E5 5 BE £ 83 P EEI Y 05 25 5
= O 03 9 So 0O 5 g n FO - E E_I w1 §4a
%) » B

Quarter1 206 402 1630 465 62 4 556 40 73 671 1475 1774

Quarter2 354 719 4012 852 159 33 1054 30 178 1170 3143 3214
Quarter 3 386 952 4226 821 167 37 1086 27 206 1269 3734 3336
Quarter4 355 670 3386 797 134 21 967 34 156 1185 3037 3301
2015 317 562 2709 583 123 16 778 23 127 863 2327 2246
2016 389 756 3554 864 177 35 1041 21 173 1246 3185 3257
2017 351 706 3594 802 141 19 928 50 164 1104 3064 3122
2018 244 719 3397 686 81 25 916 37 149 1082 2813 3000
2015-16 706 1318 6263 1447 300 51 1819 44 300 2109 5512 5503
2015-17 1057 2024 9857 2249 441 70 2747 94 464 3213 8576 8625
2015-18 1301 2743 13254 2935 522 95 3663 131 613 4295 11389 11625
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4.4.2 Local Models

In this section, the results of the local models are compared. Because there were 396 local models,
only the results of the best-performing models are reported. The preprocessed data of each data
subset for each soil texture were input into three algorithms, RF, XGBoost and FCNN. Among
those three algorithms, FCNN did not perform well enough compared to RF and XGBoost. ANN
models are data demanding algorithms, and consequently, they usually do not result in consistent
findings in cases of insufficient data size. ANN algorithms do require large datasets to find hidden
relationships between variables in a complex system. Because of this, only the results of the best-
performing models (RF and XGBoost) are reported. Tables 4-3 and 4-4 present the R? and
UbRMSE of RF and XGBoost local models, respectively. As previously mentioned,
hyperparameters for the models were executed through a 10-fold cross-validation of 80 percent of
the data (i.e., training) and the remaining 20 percent were used for testing the trained model. It
should be noted that to have a fair comparison, the training and the testing data points of each data
subset were the same in both the RF and XGBoost, as well as the global model. The local models
for organic material and sandy clay loam were not able to settle on a stable result. An insufficient
number of data points to train and test the data were the reason for the inconsistency in the results.
Insufficient data increases bias and in case of underfitting, variance decreases and results in higher
inconsistency of the model prediction for a given data point that the model has not seen before.
The elevation variable also contributed to the weak performance of the local models for organic
material and sandy clay loam local models. Elevation, unlike the other used variables in this study,
is spatially and temporally static. As a result, the effect of elevation in the models becomes

apparent when there is more than one station available in the model. As this was not the case for
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organic material and sandy clay loam, the models were lacking one input feature compared to the

other soil textures.
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Not Consistent

Table 4-3 Performance of the Random Forest models in downscaling the SMAP soil moisture for different soil types across
CONUS; ubRMSE is in m3/m3; NC
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Table 4-3 (cont’d)
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Table 4-4- Performance of the XGBoost models in downscaling the SMAP soil moisture for different soil types across CONUS;

Not Consistent

UbRMSE is in m3/m3; NC
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Table 4-4 (cont’d)
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The results of the local models for each soil texture using the data subsets shows that RF and
XGBoost performed similarly. Table 4-5 shows the results of the best performance obtained by
RF and XGBoost local models for each soil texture, indicating that both RF and XGBoost
performed in remarkably similar ways to choose the best data subset, with the exception of sand

and silty clay loam.

Table 4-5 The data subsets resulting in the best prediction accuracy of RF and XGBoost
models for each soil texture; ubRMSE is in m3/m3; NA = Not Available; NC = Not

Consistent
Random Forest XGBoost
Soil Texture Best Data Subset R? UubRMSE Best Data Subset R?* ubRMSE

Clay Quarter 1 0.97 0.036 Quarter 1 0.93 0.053
Clay Loam 2016 0.87 0.042 2016 0.87 0.044
Loam Quarter 4 0.83 0.029 Quarter 4 and 2017 0.84 0.028
Loamy Sand Quarter 2 0.87 0.023 Quarter 2 0.85 0.023
Other 2017 0.94 0.024 2017 0.93 0.025

Organic Material NA NC NC NA NC NC
Sand 2015-2016 0.86 0.016 2015 0.79 0.015

Sandy Clay Loam NA NC NC NA NC NC
Silty Clay 2017 0.96 0.036 2017 0.95 0.044
Silty Clay Loam 2015 0.93 0.042 Quarter 4 0.93 0.038
Silty Loam Quarter 4 0.90 0.039 Quarter 4 0.90 0.040
Sandy Loam 2017 0.89 0.034 2017 0.89 0.034

4.4.3 Global Model

In this section, the results of the global model are explained. Out of 33 developed global models,
FCNN with the data from 2015 to 2018 performed the best. The model hyperparameters were
tuned using a 10-fold cross-validation on 80 percent of the data and finally tested with the
remaining 20 percent. The FCNN architecture achieved the best results when five hidden layers
were employed with the overall 88% accuracy for training and 85% testing. The results of the
global model are presented in Table 4-6. The global model performance for each soil texture was
generally lower than the local models. However, the model exhibited a consistent result for organic

material and sandy clay loam when the models were validated with different splits of data.
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However, the accuracies were not yet close enough to the other soil textures. Given that the local
models were not able to offer consistent generalizability, a global model highlights its advantage
in gaining a relative consistent accuracy by learning from similar information in other soil textures.
In the next section, a more comprehensive evaluation of the local and global models through

ensemble averaging will be discussed.

Table 4-6 Performance of the FCNN model as the best performing global model with 2015 -

2018 data

Soil Texture R? ubRMSE
Clay 0.88 0.055
Clay Loam 0.75 0.060
Loam 0.78 0.034
Loamy Sand 0.73 0.034
Other 0.92 0.038
Organic Material ~ 0.60 0.060
Sand 0.75 0.020

Sandy Clay Loam 0.30 0.048
Silty Clay 0.89 0.055
Silty Clay Loam  0.78 0.076
Silty Loam 0.87 0.050
Sandy Loam 0.82 0.045

4.4.4 Ensemble Averaging

Ensemble averaging is a method used to learn from multiple models where the contribution of
every member is equal to the final result. In this study, because the accuracy of the local models
for each soil texture ranges within each data subset, the final accuracy of predictions for each
algorithm (RF and XGBoost) regarding the soil textures can be calculated by the model averaging
ensemble. Table 4-7 shows the results of this averaging. As indicated in the Table, the results are
almost equal, with a slight outperformance for RF in six soil textures, as compared to XGBoost,
which achieved better results in four. Aside from organic material and sandy clay loam, the global

model outperformed the local models in Other, Sand and Silty Clay.
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Table 4-7 Ensemble averaging results of RF and XGBoost local models versus FCNN

global model
Random Forest XGBoost FCNN

. Average  Average Average  Average Average  Average

Soil Texture R? UWRMSE ~ R?  UbRMSE  R? UbRMSE
Clay 0.89 0.055 0.88 0.059 0.88 0.055
Clay Loam 0.80 0.050 0.79 0.053 0.75 0.060
Loam 0.79 0.034 0.81 0.032 0.78 0.034
Loamy Sand 0.82 0.028 0.80 0.028 0.73 0.034
Other 0.88 0.037 0.88 0.036 0.92 0.038
Organic Material NC NC NC NC 0.60 0.006
Sand 0.74 0.018 0.72 0.019 0.75 0.020
Sandy Clay Loam NC NC NC NC 0.30 0.048
Silty Clay 0.87 0.059 0.87 0.062 0.89 0.055
Silty Clay Loam 0.89 0.050 0.89 0.051 0.78 0.076
Silty Loam 0.87 0.048 0.88 0.047 0.87 0.050
Sandy Loam 0.84 0.040 0.86 0.038 0.82 0.045

4.4.5 Local Models Ranking

From Table 4-5, it can be inferred that the 2017 data subset resulted in the highest accuracy for
both RF and XGBoost in multiple soil textures, but inconsistently. By ranking the local models for
each soil texture, it is noticeable that the local models in conjunction with any specific data
arrangement could not indicate a consistent dominance over the rest (Tables 4-8 and 4-9). The
median ranking of the between different data arrangements suggests the local models within the
2017 data subset could generate the overall highest accuracy. To obtain better comprehension of
the models’ performances in downscaling the soil moisture, the RF model with the data from the
year 2017 was selected as an example with the best scoring data arrangement. Figure 4-5 presents
the ranking of the RF for all the soil texture, excluding organic material and sandy clay loam. The
RF models with 2017 data subsets could contain the best in three soil textures: Other, Silty Clay.

and Sandy Loam. However, in Sand and Clay, the performances were among the lowest.
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Random Forest 2017 Accuracy Ranking

SILTY
CLAY LOAMY SILTY CLAY SILTY ~ SANDY
CLAY LOAM LOAM SAND OTHER SAND CLAY LOAM LOAM LOAM

Figure 4-5 Random Forest 2017 models soil moisture prediction accuracy rankings for each
soil type when compared to the rest of the models with different data subsets

The scatterplots of the RF model for each soil texture, excluding organic material and sandy clay
loam are presented in Figure 4-6. The plots show the in-situ values on the X-axis, and downscaled
soil moisture values on the first Y-axis, and SMAP values on the second Y-axis. The models were

properly capable of capturing the trend, while the SMAP 36 km values are scattered without

showing any clear correlation with the in-situ values.
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Table 4-8 Ranking of the Random Forest models for each soil type and the median of the overall used data subset

oam Loam
Quarter 1 1 6 10 6 2 - 9 - 2 10 10 5 6
Quarter 2 4 9 8 1 10 - 5 - 5 6 9 8 7
Quarter 3 11 11 11 7 11 - 10 - 8 7 8 11 105
Quarter 4 5 8 1 2 5 - 4 - 11 4 1 9 4.5
2015 10 2 2 8 4 - 2 - 3 1 11 10 3.5
2016 6 1 9 3 8 - 7 - 10 8 2 6 6.5
2017 9 3 4 4 1 - 11 - 1 3 6 1 3.5
2018 3 7 5 5 6 - 8 - 9 11 7 7 7
2015 -16 7 4 3 9 3 - 1 - 4 2 3 3 3
2015 -17 2 5 6 11 9 - 6 - 6 9 5 2 6
2015 -18 8 10 7 10 7 - 3 - 7 5 4 4 7
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Table 4-9 Ranking of the XGBoost models for each soil type and the median of the overall used data subset

Quarter 1
Quarter 2
Quarter 3
Quarter 4
2015
2016
2017
2018
2015 -16
2015 -17

2015 -18

Coy O Loam LY omer OO g Gay SV Gy SISy wedan
Loam Loam
1 8 7 3 4 - 11 - 2 5 9 2 5
9 9 10 1 10 - 5 - 8 8 11 9 9
10 11 11 7 11 - 10 - 6 9 10 11 10
6 7 2 2 8 - 4 - 9 1 1 8 4
7 3 3 9 6 - 2 - 4 3 5 10 4
5 1 5 4 7 - 7 - 11 11 3 7 5
11 2 1 5 1 - 8 - 1 2 4 1 2
2 6 9 6 3 - 9 - 10 7 8 5 7
8 4 4 8 2 - 1 - 3 4 2 4 4
3 5 6 11 9 - 6 - 7 10 7 3 7
4 10 8 10 5 - 3 - 5 6 6 6 6
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Figure 4-6 Scatterplot of the predicted soil moisture for each soil type by the Random

Forest Models with the 2017 data
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4.4.6 Uncertainty Analysis of Local Models

Although the accuracies of the local models were high, none of the data subsets suggested
performed the best in all soil textures. The variability of the results in each model, necessitates an
investigation of the underlying reason. Therefore, in this part, the uncertainty associated with the
obtained results of the downscaling is discussed. It should be noted that since the RF and XGBoost
performed almost identically, RF model results were selected in this part of the analysis. For this
purpose, the ranges between the maximum and minimum accuracies of the 11 models for each soil
type were calculated and were compared to the variabilities in spatial properties (NDVI, elevation)
of each soil textures. The comparison was evaluated by a Pearson Correlation Coefficient test
(Benesty et al., 2009). The results did not indicate any significant correlation between the range of
accuracies and the ranges in NDVI and elevation. However, when the ranges of accuracies were
tested against the data size properties, including the number of stations in each soil texture, the
number of data points range in each soil texture, and in the covered area percentage of each soil
texture, significant correlations were discovered. The correlation coefficient between the R? range
and the number of stations, number of data points range and area percentage across CONUS were
equal to - 0.72, - 0.71, and - 0.68. Additionally, the correlations were significant at the 0.05 level
with p-values equal to 0.017, 0.022 and 0.034. The results are included in Tables 4-10 and 4-11,

and Figure 4-7.
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Table 4-10 The accuracy range of the local models and the data size properties of each soil

texture
Soil Texture R? Range Number of Stations N;mber of Data Area in CONUS
oints Range

Clay 0.14 8 1095 3.243%
Clay Loam 0.19 14 2341 4.186%
Loam 0.09 62 11624 25.021%
Loamy Sand 0.12 14 2470 3.620%
Other 0.17 3 460 1.541%
Sand 0.20 19 3107 6.734%
Silty Clay 0.20 3 540 1.539%
Silty Clay Loam 0.07 23 3624 4.439%
Silty Loam 0.06 71 9914 24.631%
Sandy Loam 0.09 77 9851 22.258%

Table 4-11 Pearson correlation coefficient between R2 ranges and data size properties with
significance at the 0.05 level

R? Number of Range in Number of Data Area
Range Stations Points Coverage
R? Pearson
Range Correlation 1 -0.72 -0.71 -0.68
Significance (2- 0.017 0.022 0.034
tailed)
0.25
0.2 * .

0.15

R2 RANGE

=]
=

0.05

0 2000 4000 6000 8000 10000 12000 14000
NUMBER OF DATA POINTS RANGE

Figure 4-7 Relationship between the models R2 ranges and the range in the number of data
points for each soil texture

The significant correlation coefficients imply that as the number of data points increases, the

variability of the model explanatory power consequently tends to decrease. The outcome of the
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test advises that in a downscaling task, a particular set of data in a model may result in high
accuracies, but the results may vary significantly if the task is implemented using another time
span of data. Using this finding, it was possible to define an uncertainty interval for the
downscaling performance. Table 4-12 illustrates the uncertainty intervals for each soil texture. The
accuracies are attained by the ensemble averaging of the local models created for each data subset

in each soil texture.

Table 4-12 Downscaling accuracy uncertainty interval for each soil texture across CONUS

Soil Texture Downscaling Accuracy Uncertainty Interval

Clay 89+ 7%
Clay Loam 80 +£9.5%
Loam 79+4.5%
Loamy Sand 82 £ 6%
Other 88 + 8.5%
Sand 74 £ 10%
Silty Clay 87 +10%
Silty Clay Loam 89 + 3.5%
Silty Loam 87 + 3%
Sandy Loam 84 +4.5%

A visual illustration of uncertainty intervals is shown in Figure 4-8 regarding the area percentage
of each soil texture. It is noteworthy that the higher the percentage area, the less uncertainty was
associated with the downscaling procedure. This signified that the achieved downscaling
performances for most of the CONUS area was coupled with more confidence. In general, the
models that received more input data were more skilled in generalizing the hidden relationships
among them with less variance. For example, the uncertainty for loam, silty loam and sandy clay,
which constitute 72% of the CONUS, varied between 3% to 4.5%, whereas for the remaining 25%

area of CONUS the uncertainty differed in a range of 6% to 20%.
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Figure 4-8 Downscaled soil moisture ensemble averaged accuracy band and the covered
area percentage in each soil texture

4.5 Conclusions

In this study, SMAP soil moisture 36 km was downscaled to 1 km spatial resolution. SMAP soil
moisture data, the ancillary data consisting of NDVI (to capture the effect of vegetation dynamics
on soil moisture), land surface temperature and precipitation (i.e., atmospheric variables to catch
the temporal dynamics), topography and soil texture (i.e., geophysical variables to maintain spatial
variability), and ground truth data (i.e., in-situ soil moisture measurements) were obtained for
CONUS over the course of 45 months, from April 2015 to December 2018 to be used in the
propose downscaling framework. The proposed framework incorporated two modeling schemes:
local and global models. In local modeling, the stations were categorized based on their soil texture
properties, where SMAP, as well as the rest of the ancillary variables (except soil type), are used
as predictors in the model. In global modeling, unlike the local model, soil texture was similarly
managed to be employed as another predictor in addition to the rest of the input feature. Three

machine learning regression algorithms, RF, XGBoost and fully connected neural networks were
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utilized to implement the modeling of the framework. The time span of the study was divided into
three different temporal arrangements: cumulative, yearly, and quarterly, where each consisted of
four different data subsets. A total of 396 local models, and 33 global models, the framework
developed 468 different models. The results suggested that RF and XGBoost local models
performed almost equally, but significantly better than FCNN. Conversely, FCNN outperformed
RF and XGBoost in global modeling. The advantage of the global scheme over local scheme was
its capacity to offer a consistent result for two soil textures: organic material and sandy clay loam,
even though the accuracies were not close enough to other soil textures. The proposed framework
also managed to offer high downscaling accuracies by using an ensemble averaging of the local
models. With the help of an uncertainty analysis, the results suggested that the accuracy of the
models significantly depended on the temporality of the selected data. By ensemble averaging the
results of the local models for each soil texture, and the range of the variability between the
minimum and maximum accuracy, the proposed framework was able to offer a consistent result
with an uncertainty interval. Another finding of this study was the significant correlation between
the uncertainty intervals and the data size, where the soil texture with more in-situ stations had a
lower degree of uncertainty. Future works could add more in-situ stations from different
measurement networks, and potentially include more topographical data such as landforms to

increase the spatial features of the grid cells.
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Chapter 5 CONCLUSIONS

In the modern realm of ubiquitous, large, frequent, and instant data capturing with the
advancements in instrumentation, data generation and data gathering techniques, we are offered
new prospects to comprehend and analyze the role of geography in everyday life. However,
traditional geographic data analytics are now strictly challenged by the volume, velocity, variety
and veracity of the data requiring analysis to extract value. Because of that, geographic data science
has received a remarkable attention in the past two decades to tackle those challenges. However,
considering that much of data science’s success is formed outside of geography, there is an
increased risk within such perspectives that location stays only as an additional column within a
database, no more or less important than any other feature. Geographic data science combines the
data with spatial and temporal components. The spatial and temporal dependence allow us to
interpolate and extrapolate to fill gaps in the presence of inadequate data and infer reasonable
approximations elsewhere by the incorporation of information of diverse kinds and sources.
Although, within scientific communities, there exist arguments regarding whether geographic data
science is a scientific discipline of its own. Since data science is still in its early adoption phases
in geography and for the transformation from a practice to a discipline, geographic data science is
required to develop its unique concepts, differentiating itself from other disciplines such as
statistics or computer science. This becomes possible when geographers, within a community of
practice, are enabled to first learn and connect the current tools, methods, and domain knowledge
to address the existing challenges of geographic data analysis. To take a step toward that purpose,
in this dissertation, knowledge-rich applications of data science in the analysis of geographic
spatiotemporal big datasets inspired by the existing challenges were studied and examined. In the
first chapter, the challenges and opportunities in the era of “big data” were reviewed and it was

explained that data science has formed as an interdisciplinary method to transform large amounts
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of data into information. However, despite being common in other fields of science, data science
is still in its initial implementation phases in the geography discipline. Furthermore, the
opportunity to bridge the gap between geography and data science, and to explore the opportunities

and challenges facing machine learning encouraged this research.

This research tackled three different problems within geography; one within the subfield of human
geography, and two within physical geography. In the second chapter, a fine resolution
spatiotemporal crime prediction framework was proposed to evaluate the performance of multi-
task learning methods against the commonly used single-task learning methods. Although, there
existed many gaps and challenges due to the limited scope of the study, and the complexity of
human dynamics prediction, several findings were discovered. In case of limited samples, MTL
could perform better than the local modeling. Finer spatial and temporal resolutions significantly
influenced the prediction results due to insufficient data causing sparsity in the dependent variable.
On the other hand, by choosing larger spatiotemporal resolutions, the framework could not make
the predictions practical for police preemptive actions. However, the purpose of this study was to
establish a basis for future crime analytical studies by introducing MTL to the community for

further research.

In the third chapter, a framework using machine learning and land surface model outputs was
developed to reproduce the USDM weekly drought maps. The results showed that the proposed
framework could reproduce the USDM maps to a near-perfect level. Although, in terms of
prediction accuracy, there was not much room left for improvement by the baseline model, our
proposed framework could outperform it by testing different scenarios of the data inputs and
machine learning algorithms to find the best combination. It was found out that employing the past

week drought data as a predictor in the models played an important role in achieving high
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prediction scores especially in the logistic regression. Additionally, the drought classification task
in this study was a nonlinear problem since Random Forest and SVM outperformed the logistic
regression. One of the main challenges in this study was the lack of data points and imbalanced
distribution of the extreme drought categories in the multi-class classification tasks across the
domain of study which led to biased models to perform poorly for those categories. The issue was
resolved by leveraging data from the neighboring grid cells to improve model performance for
these categories that was essentially compensation of the temporal shortage of the available USDM

data by increasing it spatially.

In the fourth chapter, a framework was proposed to downscale SMAP satellite soil moisture
retrievals from 36 to 1 km spatial resolution. A group of ancillary data were utilized to improve
the downscaling task. NDVI to capture the effect of vegetation dynamics on soil moisture, land
surface temperature and precipitation as the atmospheric variables to catch the temporal dynamics,
and topography and soil texture as the geophysical variables to maintain spatial variability, were
the variables that have been proven to improve the process. Three different machine and different
data subsets in the proposed framework, managed to offer high downscaling accuracies by using
an ensemble averaging of the local models. With the help of an uncertainty analysis, the results
suggested that the accuracy of the models significantly depended on the temporality of the selected
data. By ensemble averaging the results of the local models for each soil texture, and the range of
the variability between the minimum and maximum accuracy, the proposed framework was able
to offer a consistent result with an uncertainty interval. One of the main challenges in this study
was the insufficient in-situ validation data points, particularly in soil textures with very few ground

stations.
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The contributions made in this research offer machine learning methods to effectively and
efficiently overcome the existing challenges facing traditional approaches to analyzing
spatiotemporal data. Additionally, this research recognizes the challenges that naturally arise with
spatiotemporal data analysis for machine learning methods and offers solutions along the way.
Overall, with the use of domain knowledge, machine learning algorithms proved their ability to
learn the essential behavior of a system from training datasets. Although, insufficient sample size
and in-situ observations related to the selected spatial and temporal resolution were found to be
yet the primary obstacle in this research. Other challenges were originating from multi-source and
resolution data which limited the more detailed studies. Poor data quality (e.g., SMAP data in this
research) was another challenge which undermined the overall data quality and size, which
consequently affected the modeling tasks performance. In the future, using our understanding of
the challenges from the data and the shortcomings of the existing machine learning methods in
every specific topic, there will opportunities to outline geographic data science as a unique

discipline with its own concepts and immediate solutions in the analysis of the data.
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