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ABSTRACT 

GEOGRAPHIC APPLICATIONS OF KNOWLEDGE-RICH MACHINE LEARNING 

APPROACHES IN SPATIOTEMPORAL DATA ANALYSIS 

By 

Pouyan Hatami Bahman Beiglou 

In the modern realm of pervasive, frequent, sizable and instant data capturing with advancements 

in instrumentation, data generation and data gathering techniques, we can benefit new prospects 

to comprehend and analyze the role of geography in everyday life. However, traditional geographic 

data analytics are now strictly challenged by the volume, velocity, variety and veracity of the data 

requiring analysis to extract value. As a result, geographic data science has garnered great interest 

in the past two decades. Considering that much of data science’s success is formed outside of 

geography, there is an increased risk within such perspectives that location will remain simply as 

an additional column within a database, no more or less important than any other feature. 

Geographic data science combines this data with spatial and temporal components. The spatial and 

temporal dependence allow us to interpolate and extrapolate to fill gaps in the presence of 

inadequate data and infer reasonable approximations elsewhere by incorporating information from 

diverse data types and sources. However, within scientific communities there exist arguments 

regarding whether geographic data science is a scientific discipline of its own. Because data 

science is still in its early adoption phases in geography, geographic data science is required to 

develop its unique concepts, differentiating itself from other disciplines such as statistics or 

computer science. This becomes possible when geographers, within a community of practice, are 

enabled to learn and connect the current tools, methods, and domain knowledge to address the 

existing challenges of geographic data analysis. To take a step toward that purpose, in this 

dissertation, three knowledge-rich applications of data science in the analysis of geographic 



spatiotemporal big datasets are studied, and the opportunities and challenges facing this research 

along the way are explored. The first chapter of this dissertation is allocated to review the 

challenges and opportunities in the era of spatiotemporal big data, followed by tackling three 

different problems within geography, one within the subfield of human geography, and two within 

physical geography. Finally, in the last chapter, some final thoughts on the current state of 

geographic data science are discussed and the potential for future studies are considered.
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Chapter 1 SPATIOTEMPORAL BIG DATA: A SURVEY OF CHALLENGES AND 

OPPORTUNITIES 

1.1 Introduction 

Ongoing data growth has launched us into the ‘Big Data’ era, in which different types and formats 

of data resources are produced in many fields of study, due in part to advancements in 

instrumentation, data generation and data gathering techniques. Significant changes have been 

made to data gathering in terms of capacity, as well as the performance of instruments and 

equipment; calculations and archives from the 1970s to 2000 have been improved from 1-

Dimensional to multi-Dimensional, and from megabyte to petabyte, respectively (Li et al., 2006). 

The surge of big data has impacted many commercial and scientific areas, and the field of 

geography has been no exception, moving from a data-poor to a data-rich era (Miller & Han, 2009). 

Geographical data have always been large resources, where most big data from phenomena of 

interest are recorded with stamps in three dimensions of space and one dimension in time, generally 

called big spatiotemporal data (Yang et al., 2020). The McKinsey Global Institute reported that 

location data was 1 petabyte in 2009 with a growth rate of 20% per year (Dasgupta, 2013); the 

United Nations Initiative on Global Geospatial Information Management (UN-GGIM) estimated 

2.5 quintillion bytes of data are generated every day,  and a large portion of the data is location-

aware (Lee & Kang, 2015). The availability of big data has become more ubiquitous with 

improvements to measurement sensors (e.g., remote sensing satellites, mobile sensors), increases 

in computation power to run more and larger earth system simulation models, and crowdsourcing 

data that are generally publicly available (Dennis et al., 2012; Giachetta, 2015; Rice et al., 2012). 

Geography is concerned with the study of Earth’s physical structures and inhabitants spatially and 

temporally. Crucial challenges to Earth’s inhabitants are naturally tied to study and modeling of 

physical features. Those challenges can include predicting climate change consequences, water 
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resources management, food security measurement, spread of disease during pandemics and 

recognition of contributing aspects in events like flood, drought, hurricanes, and earthquakes, 

among many others. The accessibility of spatiotemporal data delivers prospects for obtaining a 

new insight of complex geographic phenomena at macroscale and microscale. Furthermore, big 

data can facilitate innovations and productivity in various aspects of applications from hardware 

to software (Manyika et al., 2011). Big data was initially defined by the “3Vs”: volume, velocity 

and variety by Laney (2001), which was then redefined to “5Vs” by adding veracity and value to 

it (Tiguint & Hossari, 2003; Zikopoulos et al., 2013). Li (2020) argues that although big data can 

be inherently beneficial for advancing science, obtaining an effective, time-sensitive and 

meaningful extraction of information presents some challenges. They note that volume (the size 

of data), velocity (high pace of data generation), variety (high data heterogeneity), and veracity 

(uncertainty and inadequate quality of data) are the challenges we face when extracting value in a 

spatiotemporal context. 

As the importance of big spatiotemporal data have become clearer in recent years, more studies 

have been published on this topic. Yang et al. (2020) examined the number of articles in Web of 

Science published on topics containing related keywords, and found a rapid rise in the number of 

publications since 2009 (Figure 1-1). However, traditional spatial analysis techniques were 

established at a time when data were somewhat limited and computational capacity was not as 

powerful as it is today (Miller & Han, 2009; Yang et al., 2020). As a result, the capabilities of 

traditional data analysis methods show limitations, and spatiotemporal data analytics have become 

more challenging (Cheng et al., 2014; Yang et al., 2020).  
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Figure 1-1 Ten-year history of the number of publications in the big spatiotemporal data 

area (Yang et al., 2020) 
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1.2 Big Spatiotemporal Data Sources, Properties and Challenges 

1.2.1 Data Sources 

Li (2020) organizes big geographic data into four typical sources: Earth observations, geoscience 

models simulations, Internet of Things (IoT) and volunteered geographic information. 

1.2.1.1 Remote sensing 

Earth observation refers to huge quantities of data obtained by remote sensing or sensing devices. 

Remote sensing data, which are measured over distances (e.g. radar, satellites, lidar) provided by 

space research organizations such as National Aeronautics and Space Administration (NASA), 

Japan Aerospace Exploration Agency (JAXA) and European Space Agency (ESA), delivers a 

worldwide history of geoscience variables such as land surface temperature, soil moisture and 

temperature at different spatial resolution and at consistent time intervals (Zhang, 2010). For 

specific studies on particular geographic areas of interest, devices such drones or airplanes can 

also be used as remote sensing methods (Frankenberg et al., 2016). Remotely sensed data are 

frequently captured throughout regularly spaced grid cells spatially and temporally, and the data 

is usually directly available, however, the time series often suffer from having a relatively short 

history of records. 

1.2.1.2 In-situ Sensors 

Another major supply of Earth observations is the in-situ sensors measuring at or near the Earth’s 

surface, such as weather stations, or movement in the atmosphere or the ocean such as balloons, 

ships and ocean buoys (Bonnefond et al., 2011; Karpatne et al., 2017c). Sensor data, which are 

referred to as point reference data, are considered to be one of the most dependable sources of 

information about the geoscience variables. In-situ sensors are not evenly distributed in space and 
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time, however; there are inhomogeneities in the time series due to changes in the measurement 

sites (Horton et al., 2010). 

1.2.1.3 Physical Models 

One of the massive geographic data resources is produced by physics-based models known as 

geoscience simulation models. In these models, different elements of Earth system are simulated 

using laws of physics (e.g., first law of thermodynamics, Stefan-Boltzmann Law). The big data 

supplied by the simulation models have constantly been increasing in terms of volume, 

spatiotemporal resolution and coverage due to speedy progression of computing capacity. For 

example, Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) 

solely generated ten petabytes of simulated climate data (Li et al., 2017). 

1.2.1.4 Internet of Things (IoT) 

Internet of Things, also known as Internet of Objects, illustrates the network of everyday physical 

objects that are connected wirelessly via smart sensors and can work together without human 

interference (Ashton, 2009; Li et al., 2015). The devices that are uniquely identifiable, from 

sensors, cellphones, and smart factory equipment to connected appliances and wearable health 

monitors, can form an interconnected worldwide network for a new era of information. Objects 

combined with location-aware sensors, are capable of producing enormous sizes of spatiotemporal 

data. However, the amorphous flows of information across the globe can produce more 

heterogeneous and noisy data compared to more structured Earth observation data, which 

potentially confronts us with difficulties to take advantage of.  

1.2.1.5 Volunteered Geographic Information (VGI) 

Volunteered geographic information (VGI) is a term first introduced by Goodchild (2007), and in 

this context citizens are considered as sensors to participate in generating georeferenced data along 
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with other properties at their locations. Social media and crowdsourcing websites such as Twitter 

have proven to be beneficial during natural crises. Citizen Science, which is another form of VGI, 

involves a broad range of projects in which the public cooperates with scientists to acquire data 

for a national database. VGI has the advantage of being low cost compared to official data 

collection methods and significantly enhances geospatial databases. However, quality assurance is 

not guaranteed. 

1.2.2 Spatiotemporal Data Properties and Challenges 

Several common properties of spatiotemporal data that are widespread throughout many 

applications either arise out of the nature of spatiotemporal processes or are anticipated from the 

data collection techniques (Karpatne et al., 2018). Two natural and universal characteristics of 

spatiotemporal data that bring both challenges and opportunities for traditional data analysis 

algorithms are autocorrelation and heterogeneity (Shekhar et al., 2015). Conventional prediction 

methods assume samples hold an identical and independent distribution (i.i.d.) (Xie et al., 2017). 

In domains containing geographic spatiotemporal data the observations commonly reveal 

spatiotemporal autocorrelation because every phenomenon happens in space and time and most 

phenomena show short-scale dependence. This is known as Tobler’s First Law of Geography 

(Miller, 2004). The presence of autocorrelation shows that the observations at nearby locations 

and time marks are correlated and cannot be considered independent; this can be problematic for 

classical data analysis methods as their assumption about independence between observations is 

not valid and can often consequently result in weak performance with salt-and-pepper errors (Jiang 

et al., 2014). The homogeneity, or stationarity, of observations indicates that every occurrence is 

from the same population and as a result has an identical distribution. However, spatiotemporal 

data are heterogeneous spatially and temporally at different levels. Additionally, non-stationarity 
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of the Earth system in time due to seasonal, decadal or long-term geological cycles can influence 

processes (Karpatne et al., 2018). 

The rest of the spatiotemporal data properties, which are due to data collection procedures, can be 

identified as high dimensionality, absence of structured object definitions and boundaries, 

uncommon classes, multi-source and resolution data, poor data quality, insufficient sample size 

and in-situ observation (Karpatne et al., 2018). These properties may cause a variety of 

shortcomings in data-driven analysis and modeling. High dimensionality refers to the requirement 

to include numerous variables in the analysis due to complexity of the system. Object boundaries 

and their definitions are not as crisp spatially and temporally as are for common discrete spaces 

that data-driven methods usually deal with. Hurricanes are a good example for unclear object 

boundaries, as they continuously reshape in complex aspects during time. Extreme events such as 

heatwaves, which occur infrequently but cause significant impacts on society, are considered as 

uncommon categories of events. Multi-scale and resolution involve the integration of data with 

different sampling frequency, accuracy, as well as uncertainty within the system, as spatiotemporal 

information is often collected from various sources at different spatial and temporal resolutions 

(e.g., blending satellite images at different time intervals). Although this may appear to be a 

challenge, the analysis of multi-resolution geographic spatiotemporal datasets can assist in 

portraying processes that emerge on varying scales of space and time. Poor data quality is another 

characteristic of geographic spatiotemporal datasets, as many of them are subject to noise and 

missing values due to sensors failure, malfunctions or upgrades. Because of these differing levels 

of accuracy throughout time, establishing a consistent methodology of analysis is challenging. This 

is also the case for datasets generated by physics-based models as a result of the simplified 

representation of the system in the models as well as our imperfect knowledge of the initial and 
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boundary conditions of the system. Insufficient sample size presents yet another challenge in 

geographic analytical studies. Although there are many geographic datasets captured at high 

spatiotemporal resolutions, the historical datasets do not extend over a long time span or large 

spaces, which introduces additional challenges when adequate knowledge about the past and at 

some locations is unavailable. For instance, the majority of the satellite records available are 

relatively recent; satellite data has been captured since 1970s, and early records of precipitation 

are limited to land areas, and records for seas and oceans are lacking. Insufficient in-situ 

measurements may be considered to be another difficulty in geographic spatiotemporal datasets 

particularly when performing supervised learning problems. This is due to expensive and time-

consuming procedures of high-quality data measurement which significantly limit the compilation 

of ground truth experiments. Some application processes, such as subsurface flow, do not have 

ground truth due to the system complexity, making it challenging to fully understand the state of 

the system. The lack of ground truth makes supervised models training, evaluation and testing 

difficult. This differs from commercial uses of data science, where significant quantities of labeled 

data have been essential for the success of machine learning methodologies. 

Kanevski et al. (2008) recorded the difficulties that the typical characteristics of geospatial 

phenomena can place in front of the traditional data analysis algorithms. They recognized 

nonlinearity as geographic phenomena that may cause inadequate applicability in linear models; 

in many circumstances, spatial and temporal non-stationarity models can be in conflict with the 

hypotheses of spatiotemporal stationarity (second-order stationarity, inherent hypotheses), and the 

rest, including multi-scale variability, presence of noise and extremes/outliers, the multivariate 

nature fail practicality of traditional methods (including many geostatistical models) and extremely 

complex analysis, modelling and visualization of geographical data. Mennis and Guo (2009) 
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asserted that traditional methods for analysis regularly have several of the following limitations. 

First, generally current procedures emphasis on a limited perspective or a particular sort of relation 

model. Additionally, large volumes of data cannot be easily processed by traditional models. 

Finally, newly emerging data types such as trajectories of moving objects necessitate new tactics 

to analyze such data and uncover relationships and information.  

Because of the fundamental shortcomings of the current methods due to complexity of geographic 

spatiotemporal datasets, there is a critical demand for more successful and efficient methods to 

uncover undetermined and unforeseen information. For this purpose, a new structure of 

information-rich systems with the use of new machine learning approaches offers the chance to 

meaningfully adjust geographic research procedures and acquire improved understanding from 

data (Gil et al., 2018).  

1.3 Machine Learning 

In recent years there has been unpredictable increase in the advancement of adaptive and data-

driven methodologies in scientific communities; the geospatial perspective has been no exception. 

Today, machine learning (ML) provides important tools for intelligent geographical data analysis, 

processing, and visualization and is an essential aspect that complements traditional techniques 

like geostatistics (Kanevski et al., 2008). Research began when an overview of the topic written 

by Roddick and Lees (2001) brought the necessity of the study of ML into geographic information 

science. The use of ML in geography is often arranged under various names, such as spatial 

statistics, geo-computation, geo-visualization, and geo-spatial data mining, based on the 

procedures the research is centered on. 
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1.3.1 Framework 

ML in a framework, that can be seen as a subfield of artificial intelligence, involved with the 

development, and application of algorithms and methods to let computers to discover the patterns 

from the data supplied. The ML process is inherently iterative (Andrienko & Andrienko, 1999), 

and is closely connected to nonparametric statistics. ML has grown from the simulated of a simple 

neuron and artificial neural networks to a solid, interdisciplinary field of fundamental and applied 

research with impact in many subjects (Kanevski et al., 2008). ML is an effective empirical tactic 

for both supervised and unsupervised learning of nonlinear systems that can be enormously 

multivariate containing from a few to thousands of variables (Lary et al., 2016). The use of ML is 

suitable for dealing with the obstacles where our theoretical understanding is still inadequate but 

a decent amount of data samples are available. There would not be a necessity for ML in a utopian 

world, if we had full theoretical understanding of phenomena. 

1.3.2 Features 

The most beneficial feature of the machine learning models/algorithms is their ability to learn the 

essential behavior of a system from training datasets. ML can be used in cases where the modeled 

phenomena and the nature of the relationships between variables is not well described, and we do 

not have or need prior knowledge about it, which is the case in many applications of geospatial 

data (Lary, 2010). Data-driven models built by ML are adaptive tools, which are broadly used to 

answer prediction, classification, optimization, and many other challenges. Lary et al. (2016) 

recorded three situations where the applications of ML in geoscience shines: (1) the use of a 

physics-based model is computationally costly, (2) no physics-based model exists but an empirical 

ML model may be developed using the available data, and (3) classification problems. Fayyad et 

al. (1996) listed two types of ML tasks: descriptive tasks, which describe the intrinsic 
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characteristics of the existing data, and predictive tasks that make an effort to achieve predictions 

based on inference from available data. Building a data model for the given dataset is the ultimate 

goal. The major tasks of ML in the analysis of spatiotemporal datasets incorporate regression, 

clustering, classification, and visualization, and the approaches designed to implement these tasks 

should consider spatiotemporal autocorrelation and heterogeneity, which differentiate them from 

older data mining procedures (Cheng et al., 2014). 

Various tasks in ML such as regression, classification, association, clustering, ensemble learning, 

feature extraction, dimensionality reduction, principal component analysis (PCA), maximum 

likelihood estimation (MLE) fall within four particular learning approaches: supervised, 

unsupervised, semi-supervised and reinforcement learning. Common algorithms in ML include 

linear regression, logistic regression, Naïve Bayes, K-Nearest Neighbors, K-mean clustering, 

dimensionality reduction algorithms such as PCA and Factor Analysis, artificial neural networks 

(ANN), support vector machines (SVM), decision trees (DT), ensemble learning techniques such 

as random forests (RF), and etc.  

In the next section, the applications that ML can be deployed will be discussed along with the 

challenges arising from the spatiotemporal data properties and the possible opportunities for the 

ML field for further advancement. 

1.4 ML Applications, Challenges and Opportunities in Spatiotemporal Data Analysis 

ML algorithms have been applied to analyze numerous application domains containing big 

spatiotemporal data. The domains can include urban studies such as crime prediction (Kim et al., 

2018; Lin et al., 2018; Yu et al., 2020), infectious disease spread and control (Barratt & Sapp, 

2020; Torrats-Espinosa, 2021; Valdes-Donoso et al., 2017), poverty distribution (Li et al., 2019; 

McBride et al., 2021; Vaz et al., 2021), transportation dynamics such as travel pattern (Hagenauer 
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& Helbich, 2017; Zhou et al., 2019), traffic dynamics (McCarthy, 2020; Rahman, 2020), 

environmental science such as air and water quality management (Chen et al., 2018; Lee et al., 

2020; Ma et al., 2020; Muharemi et al., 2019; Wu et al., 2021), natural hazards (Resch et al., 2018) 

such as flood (Costache et al., 2020a; Costache et al., 2020b; Zhao et al., 2019), heatwaves (Park 

et al., 2020; Shi et al., 2021) and earthquakes (Akyol et al., 2020; Ghorbanzadeh et al., 2019), 

ecology such as land-use land cover classification (Talukdar et al., 2020) , and Earth system 

science such as climate science (Liu et al., 2018; Rolnick et al., 2019a; Xu et al., 2018), 

meteorology (Camporeale, 2019; Scher & Messori, 2018), ecosystem (Valerio et al., 2021; 

Willcock et al., 2018) and oceanographic (Hicks & Abuomar, 2019; Sonnewald et al., 2019) where 

a vast amount of spatiotemporal data are generated. In addition to the large amount of ML in 

geographic applications, there have been a number of research surveys in which the challenges 

and opportunities are discussed as a general standing of ML in geography or a specific domain. 

Table 1-1 briefly describes the different focused domains of surveys, as well as the opportunities 

and suggestion for covering the current gaps.
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Table 1-1 A summary of surveys conducted on the use of spatiotemporal data 

Study Title keywords Key points Challenges and Opportunities 

Kiwelekar et 

al. (2020) 

Deep learning for geospatial data 

analysis 

• Overview of DL algorithms 

• Geospatial analysis with data science 

• DL for analyzing remote sensing, GPS 

data and RFID data 

• CNN and Autoencoders vastly used in 

remote sensing and UAV in 

applications such as land use land cover 

• RNN along with CNN vastly used for 

GPS in applications such as traffic and 

mobility 

• CNN is used for RFID devices over 

smaller study areas 

• Small sample size 

• Large number of objects in images to be 

detected 

Joshi and 

Miller (2021) 

Machine learning for mosquito 

control 

• Reviewed 120 papers in ML techniques 

for mosquito control in urban areas 

• Geospatial, visual and audio models for 

mosquito control 

• Geospatial approaches use 

environmental factors on macro-scale 

for population modeling and prediction 

• Disease forecasting for dengue, malaria 

• Use of citizen science and crowd-sourced 

data is essential in global awareness and 

prevention efforts 

• Open-source ML pipeline to use more 

private datasets and ability for model 

replication 

• Use of new techniques; transfer learning 

for local contexts, reinforcement learning 

for optimized resource distribution for 

mosquito control 

• Explore the use of online, active and 

multi-task learning 

• Integrate workspace between experts from 

multiple disciplines  

Yekeen and 

Balogun 

(2020) 

Advances in remote sensing, ML 

and DL in marine oil spill 

detection, prediction, and 

vulnerability assessment 

• Reviews different oil spill detection by 

remote sensing methods 

• There is no single best remote sensing 

technique 

• Automatic detection techniques 

• ML classifiers for feature classification 

• SVM and ANN are the most used 

algorithms in oil spill detection 

• Challenge of false positive appearance of 

similar oil spills in the imageries 

• Improve oil spill classification using ML 

and DL 

• Explore the use of image fusion methods 

• DL can help to develop a universal model 

for oil spill detection 

• No uncertainty measurement 
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Table 1-1 (cont’d) 

Kovacs-Györi 

et al. (2020) 

Geospatial analysis with big data 

and ML for promoting urban 

livability 

• Reliability of crowdsourced and VGI 

data 

• ML in urban livability assessment and 

planning 

• Identification of relevant information in 

urban big data for livability progress 

• Issue of users data privacy and ethics 

• Collaborative work between academia, 

stakeholders and policymakers is 

necessary 

• Data-driven approaches need to be 

combined with qualitative considerations 

• There is a need to move from 

Singleton and 

Arribas‐Bel 

(2019) 

Geographic data science • General review of the use of data 

science in geography 

• Development of spatial databases and file 

formats for geographic Big Data 

• Data-driven geographic epistemology 

modeling (extension of scientific theories 

instead of testing the existing theories) 

Atluri et al. 

(2017) 

Spatiotemporal data mining • General review of problems and views 

in spatiotemporal data mining 

• New research methods in spatiotemporal 

data mining are needed 

• Novel representation of dynamic edges of 

Spatiotemporal raster data (as compared to 

existing methods focused on static edges) 

• Develop more multi-modal spatiotemporal 

datasets 

• Theory-guided data science is needed 

• Data granularity is a challenge 

Li et al. 

(2016) 

Geospatial big data theories and 

methods 
• General review and examination of the 

existing geospatial data handling 

methods and theories 

• Develop real-time modeling 

• Develop methods for explanatory 

relationships 

• Develop 3D spatial and 1D temporal 

displaying methods 

Xie et al. 

(2017) 

Transdisciplinary foundations of 

geospatial data science 
• General review of data mining methods 

from mathematics, statistics and 

computer science perspectives 

• Statistical strength of existing techniques 

needs improvement (p-value is not 

enough) 

• Transdisciplinary foundations instead of 

siloed (many techniques are strong from 

computational and mathematical 

perspective, but less statistical robustness) 

• Develop new techniques particularly for 

spatiotemporal data analytics 
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Table 1-1 (cont’d) 

Yuan et al. 

(2020) 

Deep learning in environmental 

remote sensing 
• DL potential for tasks such as land 

cover mapping, environmental 

parameter retrieval, data fusion and 

downscaling, handling missing values 

• Popular DL algorithms in remote 

sensing applications 

• DL cannot fully replace physical models 

• DL can be used for forward simulation of 

physical models to save computation cost 

• Physical model calibration with DL 

• Physics-guided DL architecture design 

• Combining geographical laws into DL 

such as introducing autocorrelation as 

input variable 

• Limited sample size can be addressed by 

transfer learning 

Zhao and 

Tang (2018) 

Crime in urban areas from a data 

mining perspective 
• A review of theories in criminology and 

crime analysis algorithms 

• Use of deep learning to better capture 

complex spatiotemporal patterns 

• Reinforcement learning to capture the 

dynamic nature of urban crime 

• Urban environment simulation to gain 

insights for policing strategies 

Jain et al. 

(2020) 

ML in wildfire science and 

management 
• Fuel characterization, Fire detection and 

mapping 

• Fire weather and climate change 

• Fire occurrence prediction, 

susceptibility mapping and landscape 

control 

• Fire behavior prediction 

• Fire effects such as soil erosion or 

smoke level 

• Fire management 

• ML has not been applied enough in 

predictive or optimization analytics 

• Deep learning can be used considering the 

vast amount of available data 

• Domain knowledge needs to be considered 

more 

• Wildfire is a diverse discipline so it needs 

a diverse analysis aspect 

Moreno-

Indias et al. 

(2021) 

Statistical and ML in human 

microbiome studies 
• Review of dimensionality reduction, 

clustering, classification, deep learning, 

association 

• Spatiotemporal modeling of 

microbiome as well as biogeographical 

variation 

• Bayesian ML techniques can help to deal 

with uncertainties 

• Limited labeled data can be addressed 

using semi-supervised methods 

• Prospective analysis predicting long-term 

disease risks is still at early stages 
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Table 1-1 (cont’d) 

Niu and Silva 

(2020) 

Crowdsourced data mining for 

urban activities 
• VGI and crowdsourced data sources 

• Urban activity types and analysis such 

as mobility pattern, functional areas and 

event detection 

• Sociodemographic and perception 

analysis such as city attractiveness and 

sentiment detection 

• Challenges in inherent sampling bias and 

representativeness 

• Reliability of the data needs more 

attention 

• Multisource and multi-format data 

processing challenges 
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In order to cope with the challenges of analyzing spatiotemporal big data, ML has found its way 

and has proven to be helpful. Although ML models generated from data alone are not enough and 

new machine learning tactics that integrate domain knowledge will be essential so that achieved 

conclusions will be more meaningful than from data alone. 

Gil et al. (2018) discussed three broad shortcomings of the current approaches due to complexity 

of the system, including domain theories in developing models instead of using the data alone, 

employment of more effective and efficient data collection by taking advantage of prior knowledge 

of the problem, and blending different data and models throughout different disciplines needs to 

be context intellectual to validate the combination. They also detail the challenges and 

opportunities for ML that appear before or during the analysis of spatiotemporal data, particularly 

in geoscience, and offer the existing or possible future research path. 

One of the general prospects is the integration of domain knowledge into ML algorithms (Karpatne 

et al., 2017b) to reduce the phenomena complexities and nonlinearity in order to learn from smaller 

sample size. This approach is necessary due to the scarcity of labeled data and the presence of 

noise and missing values within the data. By integrating prior domain knowledge, it is possible to 

catch the underlying relationships among the variables with less data, and consequently, the 

complexity of the learning task is reduced. Active learning is an area of research in ML which can 

reduce the demand for labeled data by leveraging the information from areas with rich labeled data 

to the areas with few or no recorded data. However, this branch of ML is still in its infancy, and 

there is still a great deal to be studied and developed. Combining ML and physics-based simulation 

models known as hybrid modeling, is another tactic to avoid developing expensive physics-based 

models for the entire analysis to become more effective and efficient. Modeling of extreme events 

is already a challenge for simulation models with untrustworthy results. Likewise, this is currently 
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a challenge for ML algorithms due to spatiotemporal nature which needs to be studied further. 

Lack of ground-truth data poses additional challenges for supervised ML methods while estimating 

values because they are strongly dependent on benchmark values for evaluation during training 

the models. One possible solution could entail using simulation data during training, which 

provides an opportunity to train, evaluate and test ML algorithms. Causal discovery, which is the 

process of inferring the causal structure of a closed system using observational data, such as the 

cause of sea surface temperature and heatwaves, is another area that ML can be very effective by 

using graphical models, particularly in this era where there is a plethora data. A large array of ML 

methods can be efficiently applied to geoscience problems. Additionally, geoscience problems 

lead researchers to create completely new machine learning algorithms. Another challenging area 

– which is not from data, but from ML itself – is that ML algorithms are usually regarded as a 

black box with lack of interpretability, but so far have been acknowledged given their modeling 

accuracy. However, in geography it is required to be able to explain and interpret the models. An 

important research area is to integrate domain knowledge and causal inference to facilitate the 

structure of interpretive machine learning methods. Karpatne et al. (2018) reviews challenges and 

opportunities in four general types of problems in geoscience and includes in-detail ML solutions 

in addition to exploring the challenges along the way that ML can confront, as presented in Table 

1-2. 
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Table 1-2 A Summary of the existing challenges and opportunities For ML in the analysis 

of geoscientific data by Karpatne et al. (2018) 

Task Example 
Current 

Challenge 
Solution by ML 

Possible Challenges 

from Data Properties 

Identifying 

objects and 

events 

Cyclones, 

weather fronts, 

atmospheric 

rivers, ocean 

eddies 

Conventional 

techniques are 

founded on hand-

coded features  

• Pattern mining 

techniques 

• Convolutional 

Neural Network 

 

• Absence of 

structured object 

definitions and 

boundaries 

Approximating 

variables 

Methane 

concentration, 

groundwater 

seepage in soil 

Difficult to 

monitor directly 

• Supervised 

learning 

• Multi-task 

learning (to 

tackle joint 

effect of 

heterogeneity 

and paucity of 

ground-truth) 

• Online learning 

(in case of 

heterogeneity) 

• Downscaling 

variables (in 

case of 

heterogeneity) 

• Semi-supervised 

learning (in case 

of paucity of 

ground-truth) 

• Heterogeneity, 

unidentified 

source of 

heterogeneity 

(changes in 

topography, land 

cover, season, 

etc) 

• Insufficient in-

situ observation 

for developing 

different model 

for every 

homogeneous 

part 

• Uncommon 

classes in case of 

studying rare 

phenomena, 

poor data quality 

Long-Term 

Forecasting 

Temperature, 

greenhouse gas 

concentrations 

Computationally 

expensive 

physics-based 

models 

• Time-series 

regression 

(exponential 

smoothing, 

ARIMA, 

Markov models 

and Kalman 

filters) 

• Insufficient 

sample size 

Mining 

Relationships 

Variation in sea 

surface 

temperature and 

ENSO and 

impacts on 

flood, droughts 

and wildfires 

Study 

teleconnections 

• Graph-based 

representations 

of locations 

• Causality-based 

network 

(Granger 

causality, Pearl 

causality) 

• High 

dimensionality 

(high number of 

variables to 

include), 

insufficient 

sample size 

(limited number 

of years of data) 

1.5 ML Is Not Perfect, but Necessary 

Despite the capabilities of ML, there are always drawbacks and limitations along the way that must 

be tackled. ML, like anything else, does not always create a better world, but can become part of 
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the unraveling; is a capable mean that unlocks other paths and activates other tools across fields 

(Rolnick et al., 2019b). The problems that were discussed emphasize innovative areas of ML, such 

as interpretability, causality, and uncertainty quantification. However, profound action on real 

geographic challenges from a ML standpoint necessitates collaboration with fields inside and 

beyond computer science to move toward an interdisciplinary methodological innovation. As an 

example, Rolnick et al. (2019) studied the application of ML in climate change mitigation and 

adaptation from a diverse standpoint, combining the need to include versatile perspectives such as 

electricity systems, transportation, buildings, industry and land use in order to have a successful 

contribution of ML. They argued that ML can bring benefits to the scientific community in dealing 

with climate change by monitoring automation, expediting the progression of scientific findings, 

optimizing systems for better effectiveness, and expediting the computationally of expensive 

physics-based simulations through hybrid modeling with ML. 

While utilizing machine learning is a key discipline for dealing with many challenges, there is also 

the potential to mutually benefit society and to improve the field of ML. In other words, the rising 

accessibility of big spatiotemporal data provides great possibility for ML to advance. Due to the 

growing number of successful results, ML has founded its valuable position in geographic 

conferences and journals. Yang et al. (2020) studied the emerging concepts through publications 

from the Web of Science, and discovered the top keywords were mostly related to human 

dynamics, technology and methods, such as spatiotemporal analyses, data mining, machine 

learning, deep learning, cloud computing, Hadoop/Spark, network, and data and information to 

assert that spatiotemporal data analytics has become a booming research route with a wide 

influence among diverse disciplines (Figure 1-2). 
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Figure 1-2 The emerging keywords obtained from the Web of Science publications (Yang et 

al., 2020) 

1.6 Geographic Spatiotemporal Data Science Research Prospects 

Gil et al. (2018) argues that a new research theme for the use of ML should consist of an 

“integrative workspace” where researchers from different backgrounds related to the study are able 

to communicate for a better understanding of the assumptions and uncertainties. These new 

crossing points and collaboration processes will sustain the discovery of data, as well as unearthing 

the knowledge to provide context to the data. This paradigm was called ‘theory-guided data science 

(TGDS)” by (Karpatne et al., 2017a) where they argue that the popular commercial data science 

models have restricted applicability in scientific problems concerning physical phenomena. TGDS 

seeks to take advantage of the plethora of scientific knowledge available to expand the 

effectiveness of data science models in empowering scientific discovery.  In other words, TGDS 

tries to lessen the challenges of physics only and data-only techniques by finding a balance 

between physics and data. For instance, to understand the Earth system, there is a need to combine 

broad information about the physical, geological, chemical, biological, ecological, and 

anthropomorphic elements that influence system by employing the most recent data science 

approaches. In a recent study, Karpatne et al. (2017d), presented a new framework blending 

physics-based models and deep learning methods, called physics-guided neural networks (PGNN) 
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to model lake temperature. In their work, the combined model was developed to use the output of 

physics-based models as the input of a deep learning architecture, where the results were 

significantly superior when compared to the absolute physics-based models or deep learning 

models. Additionally, the used loss functions in the proposed PGNN model evaluated the 

prediction to stay in accordance with the physics-based equations so it was capable of producing 

generalizable results as perfectly as physical models, even in the midst of scarcity in ground-truth 

data. 

1.7 Conclusion and Dissertation Layout 

Prospects in the data science analytics of geographic spatiotemporal datasets inspired by the 

challenges were discussed. Key skills are needed that require significant research in data collection 

and sampling, knowledge representation and integration, machine learning, and collaborative 

analytics to enable new findings. Being in the era of “big data”, data science has formed as an 

interdisciplinary method that transforms large amounts of data into information. However, despite 

being common in other fields of science, data science is still in its early adoption phases in 

Geography. Considering that much of data science’s success is formed outside of geography, there 

is an increased risk within such perspectives that location stays only as an additional column within 

a database, no more or less important than any other feature (Singleton & Arribas‐Bel, 2019).  

Such separation amid geography and data science, encouraged this research with an opportunity 

for pairing the two fields from a geographer’s viewpoint and not that of a computer scientist. This 

research essentially takes one step forward to explore the challenges and opportunities that ML 

can encounter in three different problems within geography in order to continue constructing 

scientific ties between data science and geography. The first chapter is covered from a topic in the 

subfield of human geography and the next two are included from physical geography, particularly 
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focused on the area of hydroclimatology. The contributions of the three topics are going to better 

account some of the key challenges in building models with spatiotemporal big data. The proposed 

frameworks in all three studies are knowledge-rich, which means that they not only apply data 

science methods for improving the predictive power within the field of geography, but also extend 

our ability to integrate domain knowledge and causal inference to facilitate the shape of 

interpretive machine learning. As Graham and Shelton (2013) stated: “the futures of geography 

and big data are still to be made.”
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Chapter 2 FINE-RESOLUTION PREDICTION OF THE NUMBER OF CRIMES USING 

MULTI-TASK LEARNING 

2.1 Introduction 

Crime is a ubiquitous social problem that could potentially become more serious as urbanization 

increases. Urbanization helps growth of industries and economic development; however, one of 

the drawbacks of urbanization may be the boost of crime occurrence as well because crimes happen 

more frequently in large cities (Malik 2016). Factors such as size, density, heterogeneity and 

impersonality of urban areas and the tendency toward crime have been studied as undeniable 

evidence for the connection between urbanization and more crime (Wirth 1938, Wirth 1964, 

Clinard 1942). Furthermore, crime can affect the life quality of a society; it may influence 

opportunities for new investments, tourism, or other aspects of the economy (Arulanandam, 

Savarimuthu and Purvis 2014). 

The importance of safety has led law enforcement agencies to demand scholars and practitioners 

to focus on crime prevention by improving crime analytics and predictions. However, it is a 

complex phenomenon to give a comprehensive cause for the crime (Weatherburn 2001) and in 

contrast to many foreseeable events, crime is sparse (Wang et al. 2017). The associated 

distinctiveness and arbitrariness with crime makes the prediction a difficult task, though, there are 

patterns (Gorr and Harries 2003). 

Researchers have developed various crime prediction frameworks using different statistical to 

machine learning techniques along with combination of multiple data sources in addition to 

historical crime data. Crime occurrence is a multi-dimensional  phenomenon associated with 

temporal, spatial, societal, and ecological factors (Yu et al. 2014) so the research community have 

been attempting to create more accurate predictive models with the assistance of different types of 
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data sources besides historical crime. Initially, crime prediction models mostly relied on 

demographics as the only additional data tributary, however, due to its failure to obtain the 

dynamic aspects of human activity (Zhao and Tang 2017), they gradually moved toward 

contributing other data sources into the analysis. New data streams such as weather (Chen, Cho 

and Jang 2015), social media (Chen et al. 2015, Wang and Gerber 2015, Gerber 2014), Point-of-

Interests (POI) (Wang et al. 2016), transit flow (Smith, Quercia and Capra 2013, Kadar and 

Pletikosa 2018), mobile data (Bogomolov et al. 2014) have been used either solely or combined in 

the crime prediction models. 

Since crime does not occur randomly, and the frequency of crime occurrence tends to be correlated 

with the location of victims, offenders, and the opportunity of committing crime (Chainey, 

Tompson and Uhlig 2008), hotspot mapping became popular among researchers  (Gerber 2014, 

Gruenewald et al. 2006, Yang et al. 2017, Das and Choudhury 2016). Hotspots are the areas with 

higher concentration of crime events compared to the rest of the study region and historical data 

show that crimes do occur in concentrated patterns (Chainey and Ratcliffe 2013). Crime hotspot 

prediction uses historical data to detect geographical areas vulnerable to crime events in the future. 

The drawback of most of the frameworks in crime hotspot prediction is that it is limited to the 

employment of historical crime records (Yang et al. 2017, Wang and Gerber 2015), while 

disregarding the use of other types of data such as environmental factors and urban data. A large 

number of hotspot mappings (Liu and Brown 2003, Xue and Brown 2006, Brown, Dalton and 

Hoyle 2004) solely focused on the spatial distribution of crimes, whereas knowing the temporal 

likelihood of crime occurrence is needed for tactical purposes including for urban planning and 

police protection. In other words, from the predictive perspective, temporally aggregated hotspots 

which are relying on shorter prior time periods is less operative (Groff and La Vigne 2002). 
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Additionally, hotspot models are not generalizable to ranges without historical data (Mookiah, 

Eberle and Siraj 2015). 

Similar to spatial crime studies, there are a great deal of spatiotemporal crime statistics studies as 

well in which they quantify the count or rate of crime variation over space and in each of the time 

periods under study (Chainey and Ratcliffe 2013). A majority of the previous studies suffer, as 

they do not take spatial dependencies and heterogeneity into consideration (Liu 2017). In reality, 

crime rate and type fluctuates from region to region while existing crime prediction models have 

not accounted for this variation, resulting in a preference for global models that compensate for 

low resolution (Yu et al. 2014). 

To fill this gap, for the first time, we attempt to capture the related spatial and temporal information 

in crime prediction using a multi-task learning model with a Graph Laplacian regularization. 

Essentially, we aim to examine the spatiotemporal crime-prediction performance of a multi-task 

learning method against linear local models and global models in the role of the commonly used 

crime prediction methods. We also contribute a new combination of variables in the modeling 

which could represent the social, environmental and ecological factors in crime occurrence. The 

rest of the paper is structured as follows. We discuss the data and the methods in Section 2.2. In 

this section, we explain and justify the use of local, global and multi-task learning methods in our 

analysis. In Section 3, we present and discuss the results of each step and finally, in Section 4, we 

conclude this paper with a brief discussion of the significance of the results. 
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2.2 Data and Methods 

This section presents the data, the method used, and the description of algorithms and metrics. 

2.2.1 Data 

The selected study area in this research was New York City (NYC), which is the most populous 

city in the United States. The population of the city in 2016 was estimated about 8.5 million over 

a land area of about 303 square miles. NYC is an important city and its known as a global city due 

to its significant political and socio-economic impact around the world (Sassen 2016). Hence, 

given its socio-demographic profile, NYC could provide a data rich location with abundant 

available information which would help us to better understand the potential underlying factors in 

crime occurrence. 

To examine this research question, we obtained twelve years of historical crime data of NYC from 

www.data.cityofnewyork.us, which is recorded by the NYC Police Department. The record spans 

from January 2005 through December 2016 with 5,002,053 incidents in which for every 

occurrence includes date and time, offense description, law enforcement offense category (i.e. 

violation, misdemeanor, felony), borough, precinct, latitude, and longitude. NYC is composed of 

five boroughs - Manhattan, Brooklyn, Queens, the Bronx and Staten Island - and 77 Police 

Precincts. To build better predictive models, we collected additional information which could have 

a significant or near-significant relationship with crime occurrence. The information included 

demographics, daily weather data and zoning districts of NYC, which have been previously noted 

as useful statistics for crime control and prevention (Flowers 1989, Cohn 1990, Horrocks and 

Menclova 2011, Poulsen and Kennedy 2004). Demographics were downloaded from 

www1.nyc.gov for all five boroughs from 2005 to 2016 including the population of male, female, 

white, black, Indian American and Alaska Native, Asian, Hawaiian, Hispanic, other races, and the 
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number of total households. Weather data including daily summary of precipitation, snowfall, 

wind, and average temperature was obtained from NCDC (National Climatic Data Center)1 for the 

time span of January 1, 2005 through December 31, 2016 from three land-based stations located 

in NYC. Among all available weather stations located inside or close to the border of NYC, only 

three stations covered the desired data range. Lastly, zoning data which included residential, 

commercial, park, and manufacturing areas of the city was obtained from www1.nyc.gov. Figure 

2-1 shows the map of NYC zoning districts and police precincts.  

 

 
1 http://www.ncdc.noaa.gov/ 
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Figure 2-1 Geographic boundary of NYC with Zoning Districts and Police Precincts 

Numbers (Polygons in Blue, Red, Pink, Green are Residential, Commercial, Manufacturing 

and Park, respectively) 

2.2.2 Methods 

The methods considered in this study include three approaches to predict the number of crime 

occurrence; 1) linear local models, 2) a linear global model and 3) local models built by a multi-

task learning (MTL) method. First, we need to define the temporal and spatial resolution of the 

study in an optimal resolution, which was a trade-off between the available data and the practicality 

of crime prediction. The practicality of prediction means that the temporal and spatial resolution 

Commercial 

Manufacturing 

Residential 

Park 
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should be somehow informative enough if there is a need to know the probability of crime 

occurrence at a specific time and location. Toward this purpose, based on the available data, the 

temporal and spatial resolutions of the study were designed to be a 6-hour window of time and the 

police precincts, respectively. Therefore, we split a day into four 6-hour time-frames: 12 a.m. to 6 

a.m., 6 a.m. to 12 p.m., 12 p.m. to 6 p.m., and 6 p.m. to 12 a.m. This means that using the models, 

we would be able to predict the number of crimes in a desired precinct for each quarter of a day. 

As this study was the examination of MTL as an emerging machine learning method against 

traditional statistical methods in spatiotemporal crime prediction, all types of reported incidents 

were stacked as only one crime type. The goal was to establish MTL to aid future research into 

crime prediction which could be improved upon the current one. In the following sections, we 

begin to explain all three approaches along with the data preprocessing steps. 

2.2.2.1 Local models 

To examine this research question, as the initial investigation, we started with building local 

models for all 77 precincts of the NYC as the traditional single-task learning. A local model is an 

isolated model which is created specifically for a precinct with its data, regardless of the 

information in other existing precincts. To this end, we conducted preprocessing to create a 

suitable format with the data that was already collected. Since variation in precincts’ demographics 

and zoning information were almost static during the twelve years of data, we did not reflect them 

as local model features; however, they were being featured in the global model that will be 

explained in the next section. Because a global model takes the data of precincts all together, the 

variation in demographics can be meaningful for the model to better learn the attributes of the 

precincts while they do not make a change in a local model by zero variation. 
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The taken preprocessing steps are as follows: 1) extract twelve years data of every 77 precincts 

from the entire historical crime data, 2) count the number of crimes for 6-hour time window based 

on the occurrence time of the crimes from January 1, 2005 to December 31, 2016 (17532 cases), 

3) assign a number from 1-4 for the time, 1-7 for the day of week, 1-53 for the week of the year to 

each case, 4) add weather features from the closest weather station to the geographical coordinates 

of the crime for each case. Precipitation and snowfall were designed as a binary classification as 

rainy and non-rainy days and snowy and non-snowy days, 5) add the moving average of the 

number of crimes in the past 7 days, past 14 days and past 21 days of every case in order to 

investigate the crime periodicity influence in crime occurrence (Zhao and Tang 2018). To create 

these features, the first 21 days of the records were eliminated and the first day of our crime record 

with 21 days behind was day 22 of the year 2005. 

As previously discussed, every precinct has its own specific model which means there are 77 local 

models for the 77 precincts of NYC. In the Modeling section, we will discuss the steps taken to 

build the local models. 

2.2.2.2 Global Models 

In contrast to a local model, a global model is a model which is built using information from all 

precincts. In this study, as another examination of single-task learning methods, we built two 

global models. The first one was with the same exact information as for the local models in the 

previous sections, however, the only difference was adding precinct number variables so that we 

could have the spatial predictive feature in the global model. In other words, for every precinct we 

had a model in local modeling whereas with a global model, there is only one single model for all 

the precincts for prediction, therefore we needed to define a spatial feature in addition to temporal 

one so that the model distinguishes the locations. 
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The other global model was created using the data with the extra information which were not used 

in the local models because of close-to-zero variation for twelve years. That information were 

demographics (population of Male, Female, White, Black, American Indian/Alaska Native, Asian, 

Hawaiian, Hispanic, Other races, Total households), boroughs (Manhattan, Brooklyn, Queens, the 

Bronx and Staten Island), and zoning areas (Residential, Commercial, Manufacturing and Park). 

As the final step, we aggregated precincts’ crime data and joined the additional data during the 

preprocessing procedure. 

The following preprocessing step for the global model 1 stops at step one; however, for global 

model 2, we had to take multiple extra steps forward: 1) counting the number of crimes for 6-hour 

time window based on the occurrence time of the crimes from January 1, 2005 to December 31, 

2016 (17532 cases) for each precinct, 2) adding the percentage of zoning areas within each 

precinct. Utilizing this feature could help the model to learn to differentiate between precincts with 

diverse environmental designs (Carter, Carter and Dannenberg 2003), 3) demographics with 

borough-sized spatial resolution and yearly temporal resolution were added to the data. 

2.2.3 Modeling 

2.2.3.1 Ridge Regression 

Once the data was preprocessed accordingly, the modeling for local models and the global model 

was fulfilled using the ridge regression method. Based on our experience with the type of data 

being used in this study, multiple linear regression is prone to the circumstance of multicollinearity 

between predicters, so ridge regression was selected as the alternative. Multicollinearity between 

variables causes a multiple linear regression to gain incorrect magnitude or sign of coefficients 

with large standard errors (Morrow-Howell 1994, Hoerl and Kennard 1970). Instead, ridge 

regression is a regularized form of linear regression with a regularization term 𝛼 ∑ 𝜃𝑖
2𝑛

𝑖=1  which is 
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added to the cost function. The regularization forces the learning algorithm to fit the data and 

simultaneously maintain the model coefficients as small as possible (Hoerl and Kennard 1970). 

The hyperparameter α in the model controls the magnitude of regularizing the model. To select the 

best hyperparameter value and subsequently the best model, 10-fold cross validation for each 

model with the split of 75 percent training and 25 percent testing data was utilized. 

To create a meaningful predictive model which is able to hold both categorical and numerical data, 

we used one-hot encoding to handle categorical features2.  One-hot encoding is a tool which 

transforms categorical features to a binary format for a model which work with numerical data. 

Using one-hot encoding the categorical encoded variable is removed and a new binary variable is 

added for each unique categorical value. Since the we dealt with relatively big data, we fulfilled 

one-hot encoding of the categorical features during the modeling process as a storage management 

strategy. For the rest of the features3, since each of which has a different range, we used 

normalization; 𝑥 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 to rescale them to the same range of values which was between 0 

and 1. Coefficient of determination (𝑅2) was used to evaluate the goodness of fit of the models. 

2.2.3.2 Multi-Task Learning 

Countless daily real-world prediction applications that we deal with consist of multiple correlated 

tasks. However, the standard strategy to resolve such problems has normally assumed 

independence between the tasks known as single-task learning (STL). STL does not leverage 

knowledge from nearby regions and may produce poor results in complex circumstances with 

 
2 For the local models the categorical features are Time, Day, Week, Rain and Snow and for the global model the 

features are the above-mentioned features plus Precinct and Borough. 
3 For the local models the features are Wind, Average Temperature, Past 7-days Average Crime, Past 14-days Crime 

Average and Past 21-days Crime Average. For the global model the features are the above-mentioned features plus 

Park_area, Commercial area, Manufacturing area, Residential area, Male, Female, White, Black, 

American_Indian/Alaska_Native, Asian, Hawaiian, Other races, Hispanic, Total households 
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insufficient data. To take the tasks’ dependencies into consideration, multi-task learning (MTL) is 

proposed. MTL introduced by Caruana (1997), is a machine learning paradigm in which multiple 

learning tasks are solved simultaneously in prediction tasks. An MTL advances the generalization 

performance of all the tasks by leveraging valuable information included in several related tasks 

(Zhang and Yang 2017). 

Crime prediction is not an exception, and there are many spatial and temporal relatedness among 

different locations in a city that cannot be disregarded. Therefore, it could provide the research 

communities a better opportunity to take the advantage of methods such as MTL so that it enables 

them to catch related information from similar locations to possibly improve the overall prediction 

results. 

A frequently used minimization of penalized loss in predictive algorithms of machine learning is 

𝑚𝑖𝑛
𝑊

ℒ(𝑊) +  𝛺(𝑊), where w is approximate coefficients, L(W) is the loss on the training set, and 

Ω(W) is the regularization that determines the tasks similarity (Zhou, Chen and Ye 2011). Based 

on the assumption on tasks relatedness, a distinct regularization terms can be derived. There have 

been numerous studies utilizing novel regularizations on modeling the tasks relatedness  

(Tibshirani 1996, Evgeniou and Pontil 2004, Argyriou, Evgeniou and Pontil 2007, Jalali et al. 

2010, Ji and Ye 2009, Chen, Liu and Ye 2012, Chen et al. 2009, Zhou, Chen and Ye 2011, Zhou 

et al. 2012, Zhou et al. 2011). In some applications, the task association can be characterized 

employing a graph where every task is a node, and two nodes are linked through an edge if they 

are related. For more information refer to Zhou et al. (2011). The graph is described as ‖𝑊𝑅‖𝐹
2 =

𝑡𝑟((𝑊𝑅)𝑇(𝑊𝑅)) = 𝑡𝑟(𝑊𝑅𝑅𝑇𝑊𝑇) = 𝑡𝑟(𝑊ℒ𝑊𝑇) where ℒ = 𝑅𝑅𝑇, known as the Laplacian 

matrix, which is symmetric and positive definite. 
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In this study, we defined R matrix as: 

 

[
 
 
 
 
 
 
 √𝐷12 √𝐷13 … 0 0 … 0

−√𝐷12 0 … √𝐷23 √𝐷24 … 0

0 −√𝐷13 … −√𝐷23 0 … 0
… … … … … … …

0 0 0 0 0 … √𝐷𝑁−1,𝑁

0 0 0 0 0 … √𝐷𝑁−1,𝑁]
 
 
 
 
 
 
 

  (1) 

 

where 𝐷𝑝𝑞 is the spatial proximity between 𝑝th and 𝑞th nodes.  

The size of the R matrix equals to 𝑛 ×
(𝑛−1)×𝑛

2
 . In this study R is a 77 × 2926 matrix. To apply 

MTL with Graph Laplacian regularization on the case study, the precincts were regarded as nodes. 

To measure the spatial proximity (D) between precincts, we defined a new measurement named 

Weighted Four-Dimensional Spatial Similarity Matrix.  

2.2.3.3 Weighted Four-Dimensional Spatial Similarity Matrix 

The spatial proximity between two precincts is a metric to find the similarity between them which 

varies between 0 to 1. This means that a precinct which is the most similar one to itself, receives a 

proximity equal to 1 and the rest of the precincts based on the similarity definition could receive a 

number between 0 to 1. The simplest metric of spatial similarity can be calculated using a 

Euclidean Distance in which the closest precincts are more similar while the farthest are the most 

dissimilar. However, to create a more meaningful similarity matrix, we contributed spatial factors 

which were percentage of zoning areas within each precinct and the geographical distance. 

Primarily, the dissimilarity of two precincts was defined and then it was converted to a similarity 

matrix. 

The dissimilarity between two precincts was defined as: 
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𝐷(𝑃𝑖 , 𝑃𝑗) = 𝑤𝑖𝑗  × √(𝑅𝑃𝑖
− 𝑅𝑃𝑗

)2 + (𝐶𝑃𝑖
− 𝐶𝑃𝑗

)2 + (𝑀𝑃𝑖
− 𝑀𝑃𝑗

)2 + (𝑃𝑃𝑖
− 𝑃𝑃𝑗

)2  (2) 

𝑤𝑖𝑗 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃𝑖,𝑃𝑗)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
     (3) 

where R, C, M and P are the percentage of the residential, commercial, manufacturing and park 

areas within a precinct, respectively. The greater the difference between the environmental design 

of two precincts, the greater the dissimilarities. We also added the weight 𝑤𝑖𝑗 to the formula which 

is a normalized geographical distance between two precincts. The distance between two precincts 

is divided by the maximum magnitude of the distances between precincts. It intensifies/abates the 

overall dissimilarity of distant/close precincts in the final matrix product. For example, say the 

environmental design dissimilarities of precincts 1 and 5 to precinct 6 are equal, the more distant 

precinct to 6 would become more dissimilar using the weighting system. The dissimilarity of each 

pair of precincts were calculated and used to create a matrix of 77×77 with diagonal elements all 

equal to zero.  

As the dissimilarity to similarity conversion, we used 
1

1+𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
 to convert all the elements of 

the dissimilarity matrix to the similarity. Obviously, the final similarity matrix would become a 

matrix with diagonal elements all equal to one. 

Ultimately, the 75 percent training and 25 percent testing data which were used in the local 

modeling were input in the MTL with Graph Laplacian regularization using MALSAR package 

(Zhou et al. 2011). The MALSAR (Multi-Task Learning Via Structural Regularization) is a MTL 

package with different regularizations which is only available in MATLAB4. To tune the 

 
4 http://www.mathworks.com/products/matlab/ 
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hyperparameters of the regularization and select the best model, a 10-fold cross validation was 

implemented.  

In the following section, we present our assessment of the utility of MTL against local and global 

modeling in crime prediction. We begin by examining the local and global models’ performance. 

We then examine MTL with Graph Laplacian regularization in crime prediction and lastly is 

compared to the local models and the global model. 

2.3 Results and Discussion 

2.3.1  Local Modeling 

The data for 77 precincts of the NYC was preprocessed according to the steps explained 

previously. Of the 4,383 days across the time period of January 1, 2005 to December 31, 2016, in 

order to create the three features, the average of number of crimes in the past 7 days, past 14 days 

and past 21 days for each 6-hour time window, the first 21 days were removed. The remaining 

4,362 days resulted in 17,448 cases as a day contains four time intervals. Overall, 77 data files 

with 10 input features of Time, Day, Week, Wind, Precipitation, Snow, Temperature, Past 7 days  

moving average number of Crime, Past 14 days moving average Number of Crimes and Past 21 

days moving average number of crimes were produced. With one-hot encoding the categorical 

features5, a matrix size of 17,448 rows and 73 columns for each precinct was formed. The 𝑅2 of 

the best model using 10-fold cross validated ridge regression modeling with 75 percent training 

and 25 percent testing for each precinct is presented in Figure 2-2. Note that the predictand of the 

modeling was the number of crimes. 

 
5 Time (4), Day (7), Week (53), Wind (1), Precipitation (2), Snow (2), Temperature (1), Past 7-days moving average 

number of crime (1), Past 14-days moving average number of crimes (1) and Past 21-days moving average number 

of crimes (1). The numbers greater than 1 for the features are the number of features after transformation with one-

hot encoding. 
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Precincts 22 and 121 with 𝑅2 equal to 0.08 and 0.64 had the lowest and the highest predictive 

performances where the average 𝑅2 of the local models was equal to 0.39. Evaluation of the 

coefficients of the regression models indicated that time interval 3 (12 pm-6pm) had the largest 

magnitude among the four time intervals. The total number of crimes across NYC for the entire 

twelve years of data are presented in Figure 2-2. Accordingly, the local models were capable to 

properly recognize its significance. Additionally, Friday had the largest magnitude of the 

coefficients compared to other six days of week. Figure 2-3 illustrates the statistics of crime in 

each day of the week. The models were again able to distinguish the importance of Friday as the 

most dangerous day of the week. However, the models did not signify any week of year as the 

most likely week for crime occurrence. The 12 years of data for the total number of crimes in each 

week is presented in Figure 2-4, where the models and the data show agreement.  Finally, the 

models recognized that possibility of crime occurrence in snowy and rainy days by showing 

negative coefficients, where the coefficient of temperature was positive. In other words, an 

increase in temperature correlates with the increase in crime occurrence. Windy days coefficient 

is also positive which results in more crime occurrence. 
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Figure 2-2 Total number of crimes in each 6 hours of day 

 

 

 

Figure 2-3 Total number of crimes during each day of week 
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Figure 2-4 Total number of crimes during each week of year
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Figure 2-5 R2 of the local models 
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2.3.2 Global Modeling 

The data for the first global model was preprocessed and a matrix size of 1343496 × 11 with the 

same exact features as was input in the local models plus the precinct feature was created. One-

hot encoding of the categorical features6 increased the size of the matrix to 1343496 × 150. The 

𝑅2 of the best model using 10-fold cross validated ridge regression modeling with 75 percent 

training and 25 percent testing was equal to 0.33. The results show that this global model on the 

average, is performing worse than the local models. However, the second global model including 

demographics and zoning area percentage, was supplied with an 1343496 × 26 matrix, which was 

resized to a 1343496 × 169 matrix after one-hot encoding the categorical features7. Since we added 

more features to the model, the 𝑅2 of the best model using 10-fold cross validated ridge regression 

modeling with 75 percent training and 25 percent testing improved to 0.48. Although the accuracy 

of the models may not be satisfying, however, in a fair comparison between the local and global 

models, the results indicated that local models were better suited in modeling as there was less 

heterogeneity in the used data. 

  

 
6 Time (4), Day (7), Week (53), Wind (1), Precipitation (2), Snow (2), Temperature (1), Past 7-days Average 

Number of Crime (1), Past 14-days Average Number of Crimes (1), Past 21-days Average Number of Crimes (1) 

and Precinct (77). The numbers greater than 1 for the features are the number of features after transformation with 

one-hot encoding. 
7 The features being used in the first global model plus Male (1), Female (1), White (1), Black (1), American 

Indian/Alaska Native (1), Asian (1), Hawaiian (1), Hispanic (1), Other races (1), Total households (1), Boroughs (5), 

Residential (1), Commercial (1), Manufacturing (1) and Park (1). 
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2.3.3 MTL modeling 

As it was previously discussed, an MTL model captures the spatial and temporal correlation 

between the tasks. Considering each precinct as a single task, the preprocessed data of each 

precinct in the local modeling part along with the R matrix were imported into the MTL model. 

The 𝑅2 of the best models using 10-fold cross validated ridge regression modeling with 75 percent 

training and 25 percent testing for each precinct is presented in Figure 2-6. Similar to the local 

models, the highest prediction performance belonged to precinct 121 while the precinct 22 showed 

the weakest performance. Interestingly, the average 𝑅2 of MTL modeling was equal to 0.39 equal 

to the local models average while both the MTL and the local models outperformed the first global 

model. However, the second global model was still superior in terms of results because of 

benefiting from more input information. A side-by-side comparison of the performance of the local 

models and MTL models for each precinct is presented in Figure 2-7.  
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Figure 2-6 R2 of the MTL models 
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Figure 2-7 Local models versus MTL models 
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Figure 2-8 Skewness of the distribution of the dependent variable (number of crimes) in every precinct 



56 

 

2.3.4 Data Sparsity Impact 

To better understand the problem, we took a deeper look into the data using a skewness test of the 

distribution of the dependent variable, the number of crimes in each precinct. Since the defined 

temporal resolution of the study was fine, in most of the 6-hour time intervals of every precinct, 

there was no crime happening so the predictand contained too many zeros. The skewness of the 

distribution of number of crimes for every precinct is presented in Figure 2-8. Positive skewness 

in all precincts implies that we face a heavily right-skewed distribution in which the peak is closer 

to zero (data sparsity). To evaluate the susceptibility of the local and MTL modeling, we fulfilled 

a Pearson’s correlation with two-tailed test of significance. The test measured the linear correlation 

of the obtained 𝑅2 and the skewness of the predictand distribution. Table 2-1 presents the 

correlation coefficients, significant at 0.01 level.  

Table 2-1 Pearson's Correlation Test of the Methods’ Performances and Skewness of the 

Number of Crimes Distribution 

Variable Skewness of number of crimes 

Local Modeling R2 -0.275 

MTL Modeling R2 -0.449 

 

The results indicate that MTL is more susceptible to the skewness of the predictand and as the 

skewness increases, there is a stronger decline in the performance of the MTL compared to the 

local models. Essentially, the result imply that we needed a coarser temporal resolution to 

subsequently decrease the data sparsity to experience an improvement with MTL performance. 
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2.3.5 Effect of Precinct Spatial Design 

Another perspective is to investigate the relationship between the modeling results and the effect 

of spatial properties. Figure 2-10 portrays the ratio of crime per area (CPA) in each precinct of 

NYC. In one test, we evaluated the results of both local models and MTL against CPA. Figure 2-

9 shows the obtained 𝑅2 in each precinct and the corresponding CPA. Although, there is no 

observed consistency between the methods performances and CPA, we assessed the correlation of 

the performance of the two methods with the city spatial design including percentage of four 

different zonings of the city. 

 

Figure 2-9 Ratio of crime per area in every precinct of NYC 

The results can be found in Table 2-2. The result indicates that there is a significant negative 

correlation between the performances of the models as the park area increases, however the rest of 

the correlations are not significant. With the help of those information, a deeper look into the 
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percentage of zoning areas in each precinct assisted to find that precinct 22 contains 95 percent 

park area which is the highest percentage and the reason for poor performance of its models. The 

median of park area percentages in all precincts was equal to 7 percent whereas the 95 percent 

park area in precinct 22 would affect the models’ generalizability.  

Table 2-2 Correlation analysis of the impact of spatial design of the NYC with the models 

performances 

 

 

  

  MTL 𝐑𝟐 Local 𝐑𝟐 

Park Pearson Correlation -0.325** -0.327** 

Sig. (2-tailed) 0.004 0.004 

Commercial Pearson Correlation 0.099 0.091 

Sig. (2-tailed) 0.389 0.430 

Manufacturing Pearson Correlation -0.007 -0.002 

Sig. (2-tailed) 0.951 0.985 

Residential Pearson Correlation 0.152 0.156 

Sig. (2-tailed) 0.188 0.176 

** Correlation is significant at the 0.01 level (2-tailed) 
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Figure 2-10 MTL and Local Models' Performances and CPA 
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2.3.6 Training Size Impact 

MTL is supposed to be a better algorithm in case of limited training samples comparing to STL 

methods (Zhang and Yang 2017). Hence, we tested the performance of MTL against the local 

models using different data sizes by incrementally reducing the training samples. It should be noted 

that the global model with the same number of features, was not tested as it already showed the 

worst performance. The results of the test are presented in Table 2-3 which indicates that MTL 

modeling performs slightly better than the STL (i.e., local models build by ridge regression) 

models as the training size becomes more limited. However, the small difference between their 

performances may be due to still large data in our case study, even with using only 10 percent of 

training samples. 

Table 2-3 Comparison of the performance of local Modeling and MTL with different 

training sizes 

Training (percent) Testing (percent) Local Modeling Mean 𝑹𝟐 MTL Modeling Mean 𝑹𝟐 

75 25 0.39 0.39 

60 40 0.39 0.39 

50 50 0.38 0.39 

30 70 0.38 0.39 

10 90 0.37 0.38 
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2.4 Conclusions 

In this study, we examined the spatiotemporal crime-prediction performance of a multi-task 

learning method against linear local models and a global model. The result showed that the multi-

task learning model outperformed the global model in prediction, however, its prediction 

performance on average stood equal to the performance of the local models. Two important 

findings of this study were first, the more negative effect of dependent variables skewness on MTL 

models as opposed to STL models. Second, the effect of training size which in case of limited 

samples, MTL performed better than the local modeling. Despite the equal performance of the 

MTL and the local models, several limitations were observed that they may have utility for future 

crime prediction. 

Spatial and temporal scale is a vital subject in crime prediction. From a practical point of view, we 

need to address them adequately, however, finer spatial and temporal resolutions significantly 

influence the prediction results. If the used resolutions are too fine, then there will be too small 

historical crime data which results in data sparsity. Consequently, the models are not able to 

acquire a good estimate of crime rate. On the other hand, too coarse resolutions do not make the 

predictions sufficient for police preemptive actions. Besides that, an optimized spatial and 

temporal scale for one specific area, is not certainly ideal for other areas (Liu 2017).  

Considering all crime types under one single crime class to prevent more data sparsity presented 

another challenge for this study. We could improve the results by designing a more 

accommodating framework by either choosing a coarser spatial scale (e.g., borough size instead 

of precinct size) or a coarser temporal resolution (e.g., daily basis) to avoid data sparsity while 

increasing the dependent variable range. This was a challenging task, not only because of efforts 

to save the practicality of the predictive models, but also due to the structure of the available crime 
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data and its supplementary information. Data acquisition from diverse sources, cleansing and 

processing data from a collected pool of unstructured data, aggregation and integration of the 

cleaned data were all the influential factors in making this study more difficult.  

Demographic factors have been referred to as the most important determinants of crime rates. 

However, the demographic data that precisely overlapped the precinct borders were available only 

at a course resolution, borough level. As a result, the valuable information from demographics 

could not be used in the local models at the precinct level. Demographic data from census tract 

could be used, however, the more significantly challenging task was to obtain and preprocess the 

data to exactly match the precinct borders. As was discussed in the first chapter, one challenging 

aspect of spatiotemporal data analysis involves the difficulty of joining and relating different 

resolutions and sources of data. Furthermore, we studied the correlation of crime rate per area, but 

with the availability of demographic information at precinct resolution, we could have included a 

study of the crime rate correlation with population density, income level and economic condition 

in relation to different zonings. Additional improvement that could potentially be made for this 

study involves including more accurate zoning description of the areas within each precinct. The 

makeup of New York City’s zones is broken down into four main categories: residential, 

commercial, manufacturing and parks. However, each major zone is also divided into multiple 

subzones. For example, residential areas include ten basic residence districts - R1 through R10 – 

and each zone differs in population density and required parking. In this study, to simplify the data 

processing and modeling, only the major zones in each block were used in the models. By using 

more detailed zoning information, there was a possibility to improve the modeling tasks. Finally, 

the available weather information at daily temporal resolution and solely from three stations in the 
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area could not show an ideal effectiveness at precinct level spatial resolution, when 77 precincts 

were receiving relatively similar information.  

Other important factors such as economy and income could be employed in this study, however, 

the data acquisition and processing for the scope of this study was challenging. Certainly, there is 

room for improvement of the results if one were to consider the aforementioned angles, however, 

the primary purpose of this study to establish a basis for future crime studies by introducing MTL 

to the research community. We believe that appropriate variable selection at proper spatial 

resolution correlated to crime occurrence is critical to the success of the models, and in the future, 

adding other sources of data could be another step forward of such framework. 

  



64 

 

BIBLIOGRAPHY



65 

 

BIBLIOGRAPHY 

 

Argyriou, A., T. Evgeniou & M. Pontil. 2007. Multi-task feature learning. In Advances in neural 

information processing systems, 41-48. 

Arulanandam, R., B. T. R. Savarimuthu & M. A. Purvis. 2014. Extracting crime information 

from online newspaper articles. In Proceedings of the Second Australasian Web 

Conference-Volume 155, 31-38. Australian Computer Society, Inc. 

Bogomolov, A., B. Lepri, J. Staiano, N. Oliver, F. Pianesi & A. Pentland. 2014. Once upon a 

crime: towards crime prediction from demographics and mobile data. In Proceedings of 

the 16th international conference on multimodal interaction, 427-434. ACM. 

Brown, D., J. Dalton & H. Hoyle. 2004. Spatial forecast methods for terrorist events in urban 

environments. In International Conference on Intelligence and Security Informatics, 426-

435. Springer. 

Carter, S. P., S. L. Carter & A. L. Dannenberg (2003) Zoning out crime and improving 

community health in Sarasota, Florida:“crime prevention through environmental design”. 

American Journal of Public Health, 93, 1442-1445. 

Caruana, R. (1997) Multitask learning. Machine learning, 28, 41-75. 

Chainey, S. & J. Ratcliffe. 2013. GIS and crime mapping. John Wiley & Sons. 

Chainey, S., L. Tompson & S. Uhlig (2008) The utility of hotspot mapping for predicting spatial 

patterns of crime. Security journal, 21, 4-28. 

Chen, J., J. Liu & J. Ye (2012) Learning incoherent sparse and low-rank patterns from multiple 

tasks. ACM Transactions on Knowledge Discovery from Data (TKDD), 5, 22. 

Chen, J., L. Tang, J. Liu & J. Ye. 2009. A convex formulation for learning shared structures from 

multiple tasks. In Proceedings of the 26th Annual International Conference on Machine 

Learning, 137-144. ACM. 

Chen, X., Y. Cho & S. Y. Jang. 2015. Crime prediction using twitter sentiment and weather. In 

Systems and Information Engineering Design Symposium (SIEDS), 2015, 63-68. IEEE. 

Clinard, M. B. (1942) The process of urbanization and criminal behavior. American Journal of 

Sociology, 48, 202-213. 

Cohn, E. G. (1990) Weather and crime. The British Journal of Criminology, 30, 51-64. 



66 

 

Das, S. & M. R. Choudhury (2016) A Geo-Statistical Approach for Crime hot spot Prediction. 

International Journal of Criminology and Sociological Theory, 9. 

Evgeniou, T. & M. Pontil. 2004. Regularized multi--task learning. In Proceedings of the tenth 

ACM SIGKDD international conference on Knowledge discovery and data mining, 109-

117. ACM. 

Flowers, R. B. 1989. Demographics and criminality: The characteristics of crime in America. 

Greenwood Press New York. 

Gerber, M. S. (2014) Predicting crime using Twitter and kernel density estimation. Decision 

Support Systems, 61, 115-125. 

Gorr, W. & R. Harries (2003) Introduction to crime forecasting. International Journal of 

Forecasting, 19, 551-555. 

Groff, E. R. & N. G. La Vigne (2002) Forecasting the future of predictive crime mapping. Crime 

Prevention Studies, 13, 29-58. 

Gruenewald, P. J., B. Freisthler, L. Remer, E. A. LaScala & A. Treno (2006) Ecological models 

of alcohol outlets and violent assaults: crime potentials and geospatial analysis. 

Addiction, 101, 666-677. 

Hoerl, A. E. & R. W. Kennard (1970) Ridge regression: Biased estimation for nonorthogonal 

problems. Technometrics, 12, 55-67. 

Horrocks, J. & A. K. Menclova (2011) The effects of weather on crime. New Zealand Economic 

Papers, 45, 231-254. 

Jalali, A., S. Sanghavi, C. Ruan & P. K. Ravikumar. 2010. A dirty model for multi-task learning. 

In Advances in neural information processing systems, 964-972. 

Ji, S. & J. Ye. 2009. An accelerated gradient method for trace norm minimization. In 

Proceedings of the 26th annual international conference on machine learning, 457-464. 

ACM. 

Kadar, C. & I. Pletikosa (2018) Mining large-scale human mobility data for long-term crime 

prediction. arXiv preprint arXiv:1806.01400. 

Liu, H. & D. E. Brown (2003) Criminal incident prediction using a point-pattern-based density 

model. International journal of forecasting, 19, 603-622. 

Liu, X. 2017. Temporal and Spatiotemporal Models for Short-Term Crime Prediction. Illinois 

Institute of Technology. 



67 

 

Malik, A. A. (2016) Urbanization and Crime: A Relational Analysis. J. HUMAN. & Soc. Scl., 21, 

68, 69-70. 

Mookiah, L., W. Eberle & A. Siraj. 2015. Survey of Crime Analysis and Prediction. In FLAIRS 

Conference, 440-443. 

Morrow-Howell, N. (1994) The M word: Multicollinearity in multiple regression. Social Work 

Research. 

Poulsen, E. & L. W. Kennedy (2004) Using dasymetric mapping for spatially aggregated crime 

data. Journal of Quantitative Criminology, 20, 243-262. 

Sassen, S. 2016. The Global City: Strategic Site, New Frontier. In Managing Urban Futures, 89-

104. Routledge. 

Smith, C., D. Quercia & L. Capra. 2013. Finger on the pulse: identifying deprivation using 

transit flow analysis. In Proceedings of the 2013 conference on Computer supported 

cooperative work, 683-692. ACM. 

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society. Series B (Methodological), 267-288. 

Wang, B., D. Zhang, D. Zhang, P. J. Brantingham & A. L. Bertozzi (2017) Deep learning for real 

time crime forecasting. arXiv preprint arXiv:1707.03340. 

Wang, H., D. Kifer, C. Graif & Z. Li. 2016. Crime rate inference with big data. In Proceedings 

of the 22nd ACM SIGKDD international conference on knowledge discovery and data 

mining, 635-644. ACM. 

Wang, M. & M. S. Gerber. 2015. Using Twitter for Next-Place Prediction, with an Application 

to Crime Prediction. In Computational Intelligence, 2015 IEEE Symposium Series on, 

941-948. IEEE. 

Weatherburn, D. (2001) What causes crime? BOCSAR NSW Crime and Justice Bulletins, 11. 

Wirth, L. (1938) Urbanism as a Way of Life. American journal of sociology, 44, 1-24. 

--- (1964) LOUIS WIRTH ON CITIES AND SOCIAL LIFE; SELECTED PAPERS. 

Xue, Y. & D. E. Brown (2006) Spatial analysis with preference specification of latent decision 

makers for criminal event prediction. Decision support systems, 41, 560-573. 

Yang, D., T. Heaney, A. Tonon, L. Wang & P. Cudré-Mauroux (2017) CrimeTelescope: crime 

hotspot prediction based on urban and social media data fusion. World Wide Web, 1-25. 



68 

 

Yu, C.-H., W. Ding, P. Chen & M. Morabito. 2014. Crime forecasting using spatio-temporal 

pattern with ensemble learning. In Pacific-Asia Conference on Knowledge Discovery and 

Data Mining, 174-185. Springer. 

Zhang, Y. & Q. Yang (2017) A survey on multi-task learning. arXiv preprint arXiv:1707.08114. 

Zhao, X. & J. Tang. 2017. Modeling temporal-spatial correlations for crime prediction. In 

Proceedings of the 2017 ACM on Conference on Information and Knowledge 

Management, 497-506. ACM. 

--- (2018) Crime in Urban Areas:: A Data Mining Perspective. ACM SIGKDD Explorations 

Newsletter, 20, 1-12. 

Zhou, J., J. Chen & J. Ye. 2011. Clustered multi-task learning via alternating structure 

optimization. In Advances in neural information processing systems, 702-710. 

--- (2011) Malsar: Multi-task learning via structural regularization. Arizona State University, 21. 

Zhou, J., J. Liu, V. A. Narayan & J. Ye. 2012. Modeling disease progression via fused sparse 

group lasso. In Proceedings of the 18th ACM SIGKDD international conference on 

Knowledge discovery and data mining, 1095-1103. ACM. 

Zhou, J., L. Yuan, J. Liu & J. Ye. 2011. A multi-task learning formulation for predicting disease 

progression. In Proceedings of the 17th ACM SIGKDD international conference on 

Knowledge discovery and data mining, 814-822. ACM. 

 

 

  



69 

 

Chapter 3 AUTOMATED ANALYSIS OF THE US DROUGHT MONITOR MAPS WITH 

MACHINE LEARNING AND MULTIPLE DROUGHT INDICATORS 

3.1 Introduction 

Drought is a common, periodic and one of the costliest natural disasters that has direct and indirect 

economic, environmental and social impacts (Wilhite et al., 2007). These impacts become even 

more serious with the potential increase of drought occurrence and severity caused by climate 

change (Dai, 2011). A systematic and effective drought monitoring, prediction and planning 

system is thus crucial for drought mitigations (Boken, 2005). However, as discussed in Hao et al. 

(2017), drought analysis is not an easy task for a number of reasons. To start with, there is a lack 

of an explicit and universally accepted definition for drought since it is a multi-faceted 

phenomenon. Based on the variables in consideration, there are four general types of droughts, 

namely meteorological, agricultural, hydrological and socioeconomic drought, for each of which 

different combinations of drought indices are used to characterize them (Keyantash & Dracup, 

2002).  Yet, there is no agreement on typical indices and their thresholds for those drought types 

(M. Hayes et al., 2011) since they do not work for all circumstances (Wilhite, 2000). 

Although developing and choosing a proper set of physical drought indices is the basis of drought 

monitoring to capture the complexity and describe the consequences of drought, a composite index 

method has been proved to bring more success to the analysis (Hao et al., 2017). The U.S. Drought 

Monitor (USDM) was developed as the landmark tool in this regard as it not only uses physical 

drought indices, but also relies on experts’ knowledge in the information interpretation (Anderson 

et al., 2011). This type of composite drought monitoring, which transforms an abundant set of 

indicators into a sole product, is called the “hybrid monitoring approach”  (M. J. Hayes et al., 

2012). 
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The USDM was established in 1999 aiming at presenting current drought severity magnitude in 

the categorical means across the U.S. in a weekly map published every Thursday.  In the USDM 

maps, drought is categorized into five categories starting from D0 (abnormally dry), to D1 

(moderate drought), D2 (severe drought), D3 (extreme drought) and D4 (exceptional drought). The 

categories are based on a percentile approach which allows the users to interpret the drought 

intensity concerning the odds of event occurrence in 100 years (Svoboda, 2000). For example, D0 

corresponds to a 20-30% chance for the drought to occur in ranges from 20 to 30 while for D4 it 

is less than 2%. A USDM map for the week of August 2018 is shown in Figure 3-1 as an example. 

The map shows areas of the U.S. that are experiencing drought in various severities as well as its 

impact levels. 

To date, there are six main physical indicators in USDM to define the intensity of the categories: 

Palmer Drought Severity Index (PDSI) (Palmer, 1965), Climate Prediction Center (CPC) Soil 

Moisture Model Percentiles, U.S. Geological Survey (USGS) Daily Streamflow Percentiles, 

Percent of Normal Precipitation and Standardized Precipitation Index (SPI), and remotely sensed 

Satellite Vegetation Health Index (VT) along with many other supplementary indices such as the 

Keetch-Bryam Drought Index (KBDI) for fire, Surface Water Supply and snowpack (Svoboda et 

al., 2002), etc. These indices merged with other in situ data are jointly analyzed by experts to depict 

the drought categories across the country (M. J. Hayes et al., 2012). 
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Figure 3-1- USDM map for the Week of August 7, 2018 (droughtmonitor.unl.edu, 2018) 

The characteristics of the USDM which makes it a distinct effort in terms of drought monitoring 

are provided in Table 3-1. Since the uniqueness of the USDM has made it extremely popular, much 

attention is drawn to it from media, policy makers and managers (USDA, 2018) as a benchmark 

in their drought related communications and interpretations. Similarly, researchers have started 

using the USDM product as a reference observation to compare and validate their proposed 

drought monitoring and prediction methods (Anderson et al., 2013; Anderson et al., 2011; Brown 

et al., 2008; Gu et al., 2007; Hao & AghaKouchak, 2014; Lorenz et al., 2017a, 2017b; Otkin et al., 

2016; Quiring, 2009). Although it is desirable to predict the USDM drought conditions which are 

in categorical format, it would not be an easy task due to the subjectivity included in the production 

process by the experts. A few studies (Hao, Hao, et al., 2016; Hao, Hong, et al., 2016) predicted 

the monthly average USDM drought categories using ordinal regression by integrating multiple 

drought indices. However, there has been no previous study using machine learning approaches to 
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predict the USDM drought categories specifically in the original weekly format as the USDM 

publishes the maps.  

Table 3-1 Uniqueness of the US Drought Monitoring (droughtmonitor.unl.edu, 2019; 

Svoboda et al., 2002) 

Characteristics Details 

The first nationwide 

unifying drought 

monitoring of multiple 

entities 

- Authors from National Drought Mitigation Center (NDMC), United States 

Department of Agriculture (USDA), Climate Prediction Center (CPC), and 

National Climatic Data Center (NCDC) have the responsibility of drawing 

the maps who take turns for two weeks 

- The authors blend the best available data from various resources for 

interpretation 

Receives local observers’ 

collaboration 

 

- More than 425 local observers such as state climatologists, National 

Weather Service staff, agricultural and water resources managers, and 

hydrologists  

- They provide drought impacts for the products using their familiarity and 

knowledge of the region so that the experts can depict the most accurate 

classification on the map 

Simple and effective 

 

- The classification system for droughts is easy to understand for public 

- Drought spatial extent, intensity, and duration are all considered 

- Flexibility with new technologies and data incorporation 

Timely 
- It is a weekly product which illustrates drought conditions and impacts in a 

timely manner 

 

In this study, we aim to reproduce the same USDM drought analysis map over conterminous 

United States (CONUS) based on meteorological observations and land surface model simulated 

hydrological quantities through a machine learning approach and using multiple drought 

indicators. We apply linear and nonlinear machine learning approaches using multiple 

combinations of drought indices against a persistence model serving as the baseline model.  The 

developed framework basically mimics the map synthesizing process executed by the USDM 
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authors. This will not only test the suitability of machine learning methods in drought monitoring 

and prediction, but also helps us to develop tools that can translate predictions with numerical 

models to easy-to-understand categorical drought forecasts.  

The rest of this paper is organized as follows. Section 3-2 elaborates the study area, data and 

describes the methodology. Section 3-3 presents the results and discussions. Finally, in the last 

section we summarize and conclude the findings of this study. 

3.2 Data and Methodology 

In this section the framework of the study to reproduce the USDM drought maps is explained. The 

process of developing the framework is presented in Figure 3-2, starting from data preparation 

including data collection and simulation followed by data preprocessing prior to inputting into the 

models. Each task is explained in the following sub-sections. 

As the drought indices used in our study were derived from land-surface model outputs forced by 

the North American Land Data Assimilation System Phase 2 (NLDAS2)’s meteorological forcing 

fields, in this study, we deliberately designed our modeling domain to be consistent with the 

NLDAS2 grids. Thus, the modeling grids span the entire CONUS from 25.0625 to 52.9375 degree 

latitude and -67.0625 to -124.9375 degree longitude, at 1/8º latitude-longitude degree resolution 

which forms a meshed area with 224 rows and 464 columns (Mitchell et al., 2004).  



74 

 

 

Figure 3-2 Flowchart of the proposed framework for USDM drought categories prediction 
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3.2.1 Data Collection, Simulation and Preprocessing 

To reproduce the USDM maps, a collection of predictor variables, which correspond to drought 

indices were needed to predict the USDM categories. In the following paragraphs, the process of 

data collection, simulation and preprocessing are described. We also explain the rationale behind 

the selection of each variable and how we obtained, calculated, and resampled the values for each 

of them prior to modeling.  

3.2.1.1 USDM Data 

The USDM weekly drought maps were retrieved from the USDM archived data at 

https://droughtmonitor.unl.edu/Data/GISData.aspx for the years of 2000 through 2013, starting on 

January 4 of 2000 and ending on December 31 of 2013, creating a total of 731 weeks of data. The 

USDM drought maps are vector data that outline the regions in each drought category. As the goal 

of this study is to reproduce the weekly USDM drought condition across CONUS, each weekly 

map has to be rasterized to 1/8 degree NLDAS2 grid. Then for every week, each grid cell is labeled 

as one of the five USDM drought categories or “No Drought” which makes an overall of six 

possible states. In the resterization process, any grid cell covering two or more different drought 

categories is labeled with the drought category which occupied the largest area. 

3.2.1.2 Land Surface Model Outputs and Drought Indices 

As the input variables of the actual USDM weekly report vary widely, we selected the frequently 

used indices in forecasting and monitoring drought. These indices are also the ones that benefit the 

USDM weekly map production (Anderson et al., 2011). Standardized Precipitation Index (SPI), 

Standard Runoff Index (SRI), Soil Moisture Percentile (SMP) and Palmer Drought Severity Index 

(PDSI) are the employed indices in this study which are summarized in Table 3-2 and are used as 

the predictors of the models to predict the USDM drought categories.  
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Table 3-2 Summary of the drought indices 

Drought Index Definition 
Used in This 

Study 

Source(s) of Data 

in This Study 
Reference 

Standardized 

Precipitation 

Index (SPI) 

The number of standard deviations that the 

cumulative precipitation deficit would 

deviate from the long-term normalized 

mean. SPI value can be calculated for 

multiple time scales, covering the last 1, 2, 

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 24, 30, 

36, 48, 60, and 72 months. 

SPI for the 

30, 60, and 90 

days prior to 

the day of 

forecast 

NLDAS-2 

Forcing File A 

Precipitation 

McKee et 

al. (1993) 

Standardized 

Runoff Index 

(SRI) 

Defined the same as SPI, except for runoff, 

the number of standard deviation that the 

percentile of cumulative hydrologic runoff 

would deviate over a particular duration. 

SRI for the 

30, 60, and 90 

days prior to 

the day of 

forecast 

Noah3.6, 

NoahMP3.6, 

clsmf2.5 Surface 

and Subsurface 

Outputs 

Shukla and 

Wood 

(2008) 

Soil Moisture 

Percentile 

(SMP) 

The quantile of the current day top 1-m 

total soil moisture among all the data pools 

from the historical period over a particular 

onward and backward time window. 

Top 1-m soil 

moisture 29 

Days Time 

Window 

Noah3.6, 

NoahMP3.6, 

clsmf2.5 Soil 

Moisture Outputs 

Sheffield et 

al. (2004) 

Palmer 

Drought 

Severity Index 

(PDSI) 

A standardized index in which the inputs 

of monthly temperature, precipitation and 

the available water capacity (AWC) of the 

soil are used for estimation of dryness. 

PDSI 

Obtained from 

Abatzoglou 

(2019) 

Palmer 

(1965) 

SRI and SPI are typically calculated based on monthly data, and can be calculated for up to 72 

month historical time periods. In this study, as we try to predict USDM weekly maps, we calculate 

the SPI and SRI based on daily data (Table 3-2) at 30-day, 60-day, and 90-day periods.  These are 

the periods that prior to the day of forecast.  For convenience, we still call them SPI1, SPI2 and 

SPI3, just to be consistent with other literature as their time scales are roughly equivalent to one 

months, two months and three months. In order to create the indices, we first gathered the outputs 

of both NLDAS-2 Forcing precipitation data and the Land Information System (LIS) models 

(Noah-3.6, Noah-MP3.6, CLSM-F2.5) runoff and soil moisture from 1979 to 2013. The NLDAS-

2 Precipitation, and LIS models hydrological runoff and soil moisture were used to calculate SPI, 

SRI and SMP, respectively. It is notable that the calculations of SRI and SMP were based on the 

average value of three LIS models outputs. SMP values were calculated at the top 1 meter for 29-

days time window. More specifically, the soil moisture data of two weeks backward and onward 
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time window were added to the data of the target day soil moisture to form the data pool for this 

date in order to compute SMP. Lastly, PDSI data was obtained from Abatzoglou (2019) in 1/24 

degree, which then was projected and resampled to the NLDAS extents. Altogether, throughout 

the entire domain, every grid cell holds 731 values for each index where each was calculated for 

the dates that the USDM weekly maps between 2000 to 2013 were published. 

3.2.1.3 Predictors Grouping 

Different groups of predictors were used to fit the models so that the impact of different 

combinations of predictors on the model prediction abilities could be assessed. One of the 

commonly used terms in this study is the past week USDM drought category or 𝑈𝑆𝐷𝑀𝑡−1. Here, 

t is time with weekly intervals, so t-1 takes place a week lagging from the current time. As drought 

phenomena is a slow-moving process, the likelihood of switching the drought condition from 

current week to next week is usually low. Considering that fact, we attempt to examine the 

proposed models performances with inclusion or exclusion of the 𝑈𝑆𝐷𝑀𝑡−1 as an input feature, in 

order to find this feature importance in the prediction tasks. Moreover, by the idea of using past 

week drought condition as a predictor, we aim to discover how the USDM experts, aside from the 

use of all the physical indicators in quantifying the drought categories, would also reflect the past 

week drought condition as a basis in producing the current week drought map.  

Toward this purpose, we defined five groups of predictors which are presented in Figure 2. It 

shows how different combinations of inputs (in color) supply each group of predictors. Group 1 

consists the eight drought indices while Group 2 includes the past week USDM drought condition 

in addition to Group 1 data as one more extra predictor. In contrast to Groups 1 and 2 which solely 

use the target grid cell information, Groups 3 and 4 include the information of the eight 

neighboring grid cells as supplementary data. In other words, these Groups of data contains a three 
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by three matrix of grid cells, centered on the target grid cell with nine times more data points. 

Similar to Group 1, Group 3 includes only the eight drought indices while Group 4 includes the 

past week USDM data of the grid cells as an additional predictor. Accordingly, one of the five 

groups of data is imported in the persistence model. This group of data only takes 𝑈𝑆𝐷𝑀𝑡−1 data 

and contributes in the baseline model. The baseline model is explained in the modeling section 

thoroughly. 

After grouping the data, standardization of the drought indices values as well as encoding the 

categorical variable (i.e. 𝑈𝑆𝐷𝑀𝑡−1) were completed prior to inputting them in the models. 

Altogether, we attempt to predict the USDM drought condition labels for each grid cell by five 

different groups of input in the modeling. The schematic of the prepared data for the modeling in 

the entire domain is presented in Figure 3-3.  

 

Figure 3-3 Schematic of the produced data domain 
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3.2.2 Modeling 

3.2.2.1 Persistence Model 

In machine learning context, generally the performance of an algorithm is compared against a 

simple and basic method called a baseline model. The performance metric (e.g. accuracy) will then 

become a benchmark to compare any other machine learning algorithm against. In this study a 

persistence model plays the role as the baseline model. We define a persistence model as a model 

which assumes the current week drought condition persists in next week. In other words, the model 

predicts the USDM drought category of an area for a specific week as its past week drought 

category. In this study, the rationale for using a persistence model as the baseline model is the 

slow-moving nature of drought, hence the probability of a drought (or wetness) condition 

persisting in the next weeks could have a relatively high likelihood. Obviously, the persistence 

modeling for the areas with more weekly variation in drought category is subject to more 

prediction error. Figure 3-2 shows how the corresponding input data is being carried over to the 

persistence model.  

3.2.2.2 Machine Learning Models 

Prediction of the USDM categories is an ordinal classification problem, as it is a forced choice for 

the models to predict six discrete responses, No Drought, D0, D1, D2, D3 and D4.  Toward this 

purpose, three machine learning algorithms, logistic regression, random forest classifier and 

support vector machines (SVM) are selected to be examined for classification prediction.  

The logistic regression model is used as a linear classification algorithm which uses the sigmoid 

function to limit the output of a linear equation between 0 and 1 as the probability outcome of the 

default class (Hosmer Jr et al., 2013). The estimation of the algorithm coefficient must be done on 
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training data using maximum likelihood. Logistic regression is a widely used classification 

technique due it its computational efficiency and being easily interpretable. 

Random Forest (Ho, 1995) have successfully been implemented in various classification problems 

(banking, image classification, stock market, medicine and ecology) and is one the most accurate 

classification algorithms that works well with large datasets. The Random Forest classifier is a 

nonlinear classifier which consists an ensemble of decision tree classifiers. Each classifier is 

generated by a random set of features sampled independently from the input features, and each 

tree deposits a unit vote for the most suitable class to classify an input vector (Breiman, 2001). 

There are not many hyperparamters and they are easy to understand. Although, one of the major 

challenges in machine learning is overfitting, but the majority of the time this will not occur to a 

Random Forest classifier as there are sufficient trees in the forest. 

SVM are broadly used as a classification tool in a variety of areas. They aim to determine the 

position of decision boundaries that produce the most optimum class separation (Cristianini & 

Shawe-Taylor, 2000). In classification, a maximal margin hyper-plane separates a specified set of 

binary labeled training data. However, if there is no possible linear features separation, SVM 

employ the techniques of kernels to make them linearly separable after they are mapped to a high 

dimensional feature space. The two standard kernel choices are polynomial and Radial Basis 

Function (RBF). In this study, we use an RBF kernel in SVM classifiers since RBF kernel is more 

capable compared to polynomial in representing the complex relationships in data especially the 

synergic complexities associated with growing data. 

3.2.2.3 5-fold Cross-Validation 

With the use of each machine learning algorithm and group of input variables, for each grid cell 

in the domain we build its own specific models. In all the three modeling algorithms, choosing the 
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optimal learning parameter(s) of the models known as “hyperparameter tuning” was performed by 

splitting the data to 80% training and 20% testing and executing 5-fold cross-validation on the 

training to select the best model. The logistic regression has only one hyperparameter, C with an 

𝐿2 regularization (i.e. squared degree of coefficient as penalty term to loss function) in this study. 

For the Random Forest we set 200 trees as the number of estimators and then search in the 

parameter grid of maximum features, maximum depth, minimum samples leaf to find the optimum 

combination. Lastly, the hyperparameters in SVM with RBF kernel are C and γ, where C is the 

penalty of the objective function for misclassification and γ is the parameter of the kernel which 

controls the tradeoff between error of bias and variance in the model. 

3.2.2.4 Metric of Performance Assessment 

In this study, 𝐹1 Score and Heidke Skill Score (HSS) are selected as the metric to evaluate the 

model performance. 𝐹1 Score is usually more useful than Accuracy, especially when there are 

uneven class distributions. This is the case in our study as in general the number of weeks that the 

area of a grid cell may experience the extreme (D3) or the exceptional (D4) drought is far less than 

the rest of the drought categories, while the number of No Drought, D0, D1 and D3 are not equal 

either. 𝐹1 Score is defined as the harmonic average of precision and recall (Goutte & Gaussier, 

2005): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (2) 

 

𝐹1 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
   (3) 
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The Heidke skill score (Heidke, 1926) also known as kappa Index of Agreement (KIA) is a skill 

score for categorical prediction which presents the improvement of the prediction over the standard 

forecast which is usually a chance forecast. The range of the HSS is -∞ to 1 where a negative score 

suggests that the chance forecast is better, 0 means no skill, and a perfect forecast is equal to 1. 

For a multi-category event HSS is defined as (Barnston, 1992): 

Table 3-3 Heidke Skill Score 

 Observed Category 

Forecast Category 1 2 … n ∑Forecast 

1 X11 X12 … X1n ∑f1 

2 X21 X21 … X2n ∑f2 

… … … … … … 

n Xn1 Xn2 … Xnn ∑fn 

∑ Observation ∑O1 ∑O2 … ∑On Total 

 

HSS = 
∑𝑋𝑖𝑖 − ∑(𝑋𝑖𝑛𝑋𝑛𝑖)/𝑇𝑜𝑡𝑎𝑙 

𝑇𝑜𝑡𝑎𝑙−    ∑(𝑋𝑖𝑛𝑋𝑛𝑖)/𝑇𝑜𝑡𝑎𝑙 
   (4) 

Depending on the aforementioned five different groups of data, the number of the indices (i.e., X) 

can be one for the persistence model, eight (Groups 1 and 3) or nine (Groups 2 and 4) for the 

machine learning models. Then the models would predict the dependent variable (y) which is the 

USDM drought categories. Once the Groups 1, 2, 3 and 4 input features of each grid cell are 

modeled and tested using the three proposed classifiers, twelve different accuracy outcomes are 

produced. Ultimately, all the outcomes are compared against the persistence model accuracy one 

by one (grid cell by grid cell) across the entire domain so that the best general combination in 

terms of group of features and algorithm performance is determined. 
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3.3 Results and Discussion 

Our introductory analysis to the data was to explore the spread of different drought conditions 

across the domain during the 731 weeks.  By utilizing the outcome, we can better perceive the 

contribution associated to the number of data points with the models prediction performance. Out 

of 103,936 grid cells within the domain, 51,997 grid cells never experienced any USDM drought 

condition during the 14 years of data which means they were always labeled as No Drought or 

were not in the USDM weekly maps CONUS domain. The remaining 51,939 grid cells have 

experienced both D0 and D1 drought categories at least once during that time period. Therefore, 

in our classification task, there were at least three different classes, No Drought, D0 and D1 which 

are to be predicted. However, for the grid cells experiencing more of the drought conditions other 

than D0 and D1, the prediction is a multi-class classification task of four or more classes. During 

731 weeks of the USDM data, there were 50,546 grid cells experiencing D2 (as well as No 

Drought, D0 and D1), 44,203 grid cells experiencing D3 (in addition to No Drought, D0, D1, and 

D2) and 24,210 grid cells experiencing D4 (along with No Drought, D0, D1, D2 and D3) at least 

once. Figure 3-4 presents the histograms of each drought category throughout the entire domain. 

The included grid cells in the histograms are out of those 51,939 which have experienced more 

than one type of USDM drought condition. From the histograms we can observe as the drought 

conditions become more severe (from No Drought to D4), the grid cell mean count of the 

categories decrease from 369.51 for No Drought down to 25.01 for D4. 
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Figure 3-4 Histograms of the USDM drought categories counts across the domain in 14 

years 
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3.3.1 Persistence Model 

As we discussed earlier, the group of data which solely contained the 𝑈𝑆𝐷𝑀𝑡−1 was the input of 

the baseline predictive model known as the persistence model. The persistence model overall 

performance is presented in Tables 3-4 and 3-5, including the minimum, maximum and mean 

prediction  𝐹1 scores and HSS for every USDM drought category as well as the weighted average 

𝐹1 score.  

Table 3-4 Persistence model descriptive statistics over the entire domain 

 

 

 

 

 

 

Table 3-5 Persistence model Heidke Skill Score 

 

 

 

 

 

The results in Tables 3-4 and 3-5, show that the persistence model prediction score for all the 

classes and the weighted average is relatively high. This is basically an endorsement for the slow-

moving nature of drought so that a persistence model achieves such high scores at all levels.  

  Min 𝐅𝟏 Max 𝐅𝟏 Mean  𝐅𝟏 Std. Dev 

No Drought 0.90 0.99 0.96 0.01 

D0 0.42 0.96 0.81 0.08 

D1 0 0.98 0.83 0.09 

D2 0 0.99 0.84 0.11 

D3 0 0.99 0.85 0.14 

D4 0 0.99 0.83 0.20 

Weighted Average 0.81 0.97 0.91 0.03 

  Min 𝐇𝐒𝐒 Max HSS Mean  HSS Std. Dev 

No Drought -0.01 1 0.88 0.17 

D0 0.22 1 0.78 0.11 

D1 -0.02 1 0.80 0.12 

D2 -0.02 1 0.84 0.14 

D3 -0.02 1 0.86 0.18 

D4 -0.02 1 0.83 0.26 
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The persistence model performs worse in the areas with more drought weekly fluctuations since 

an alteration in the drought condition from the current week to the next corresponds to one 

prediction error for the model. Furthermore, the standard deviation of the accuracies from No 

Drought to D4 constantly increases, yet the Weighted Average standard deviation (in Table 3-4) 

stays as small as 0.03 because of the larger weights of the less severe drought conditions in contrast 

to D3 and D4 categories.  

 

Figure 3-5 Spatial presentation of the number of weekly fluctuations for each grid cell 

during 731 weeks 

 

Figure 3-6 Spatial distribution of the persistence model weighted average F1 Score across 

the domain of study 
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The spatial distribution of the grid cells weekly fluctuation is presented in Figure 3-5 showing the 

lowest variation between the USDM drought categories during 731 weeks of data is 23, while the 

largest is 136. As we can see, the highest weekly fluctuations are located in Southeast and Plains 

areas where the climate is warm temperature, humid with hot summers (Kottek et al., 2006). Figure 

3-6, on the other hand, displays the persistence model weighted average 𝐹1 score across the 

domain. As it is noticeable from the Figures, the spread patterns of colors look similar, however, 

in the opposite direction displaying the message that the areas with more weekly fluctuations 

achieve less prediction accuracy by the persistence model and vice versa. 

3.3.2 Machine Learning Models 

3.3.2.1 Results for Using Group 1 

In this section, we present and discuss the results of the logistic regression, Random Forest and 

SVM using four different Groups of input data. Tables 3-6 and 3-7 contain the summary of the 

obtained scores for entire domain by three models by running on the Group 1 data. As we can see, 

the nonlinear models (i.e., Random Forest and SVM) substantially perform better than the linear 

model (i.e. logistic regression), while the highest scores as well as the average score are obtained 

by SVM for all the drought categories. However, none of the models can reach the scores that were 

obtained by the persistence model by any means, neither for any of the six drought classes, nor on 

average. Moreover, the scores standard deviations of all three models are more than the baseline 

model so the prediction accuracies are also less consistent. 
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Table 3-6 Descriptive statistics of the models performances using Group 1 input features 

over the entire domain 

Table 3-7 Heidke Skill Score descriptive statistics of the models performances using Group 

1 

 

3.3.2.2 Results for Using Group 2 

The results of the modeling with the Group 2 data set are presented in Tables 3-8 and 3-9. All three 

models especially the logistic regression demonstrate a great improvement over the Group 1 input 

feature just by adding 𝑈𝑆𝐷𝑀𝑡−1 as another variable. This indicates that the models learned to put 

a great weight on the extra added variable which is revealed to play an important role in terms of 

 Logistic Regression Random Forest SVM 
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No Drought 0.00 1.00 0.76 0.17 0.00 1.00 0.85 0.12 0.00 1.00 0.85 0.15 

D0 0.00 0.78 0.20 0.18 0.00 0.92 0.55 0.13 0.00 0.94 0.60 0.12 

D1 0.00 1.00 0.18 0.22 0.00 1.00 0.56 0.17 0.00 1.00 0.60 0.16 

D2 0.00 1.00 0.24 0.26 0.00 1.00 0.60 0.20 0.00 1.00 0.63 0.19 

D3 0.00 1.00 0.28 0.31 0.00 1.00 0.59 0.27 0.00 1.00 0.65 0.24 

D4 0.00 1.00 0.44 0.39 0.00 1.00 0.63 0.34 0.00 1.00 0.70 0.29 

Weighted Average 0.11 0.95 0.54 0.15 0.43 0.97 0.75 0.07 0.47 0.98 0.77 0.07 

 Logistic Regression Random Forest SVM 
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No Drought -0.25 1 0.47 0.18 -0.04 1.00 0.70 0.13 -0.04 1.00 0.70 0.14 

D0 -0.28 0.74 0.11 0.14 -0.07 0.94 0.48 0.14 -0.08 0.92 0.52 0.13 

D1 -0.25 1 0.12 0.17 -0.07 1.00 0.51 0.17 -0.10 1.00 0.55 0.16 

D2 -0.22 1 0.19 0.23 -0.06 1.00 0.56 0.21 -0.06 1.00 0.59 0.19 

D3 -0.15 1 0.27 0.31 -0.05 1.00 0.60 0.27 -0.05 1.00 0.65 0.24 

D4 -0.06 1 0.43 0.38 -0.05 1.00 0.62 0.35 -0.03 1.00 0.67 0.31 
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improving the model’s prediction capabilities. Also, the models can surpass the persistence model 

performance in D4 prediction score, however, on average all of them achieved an equal 𝐹1 score 

of 0.91. However, the HSS for all three models when compared to the persistence model, we realize 

that the scores are still lower or at the best equal which means no superiority proven by the machine 

learning models. 

Table 3-8 Descriptive statistics of the models performances uing Group 2 input features 

over the entire domain 

 Logistic Regression Random Forest SVM 
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No Drought 0.00 1.00 0.94 0.13 0.00 1.00 0.94 0.13 0.00 1.00 0.94 0.14 

D0 0.00 1.00 0.81 0.10 0.00 1.00 0.80 0.11 0.00 1.00 0.81 0.10 

D1 0.00 1.00 0.82 0.14 0.00 1.00 0.81 0.15 0.00 1.00 0.82 0.15 

D2 0.00 1.00 0.83 0.18 0.00 1.00 0.83 0.17 0.00 1.00 0.83 0.17 

D3 0.00 1.00 0.83 0.23 0.00 1.00 0.83 0.22 0.00 1.00 0.84 0.22 

D4 0.00 1.00 0.84 0.26 0.00 1.00 0.85 0.25 0.00 1.00 0.85 0.26 

Weighted Average 0.77 0.99 0.91 0.03 0.75 0.99 0.91 0.03 0.75 0.99 0.91 0.03 

Table 3-9 Heidke Skill Score of models performances using Group 2 

 Logistic Regression Random Forest SVM 
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No Drought -0.01 1.00 0.89 0.14 -0.01 1.00 0.89 0.14 -0.01 1.00 0.89 0.15 

D0 -0.01 1.00 0.78 0.11 0.10 1.00 0.77 0.12 0.12 1.00 0.78 0.11 

D1 -0.02 1.00 0.80 0.14 -0.04 1.00 0.79 0.14 -0.03 1.00 0.80 0.14 

D2 -0.02 1.00 0.83 0.18 -0.02 1.00 0.82 0.18 -0.02 1.00 0.83 0.17 

D3 -0.02 1.00 0.84 0.21 -0.02 1.00 0.84 0.21 -0.02 1.00 0.85 0.20 

D4 -0.01 1.00 0.80 0.29 -0.01 1.00 0.80 0.29 -0.01 1.00 0.81 0.29 
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During the model training with Group 1 and 2 data, the range of the 𝐹1 scores of the Random 

Forest and SVM varied from 0.99 to 1 which was almost perfect. However, on the testing data, the 

scores dropped down to 0.91 to show an overfitting problem. This type of challenge sometimes 

happens in nonlinear models when the number of data points compared to the number of features 

are small even though a cross validation is used. By observing the histograms in Figure 3-4, we 

could find the reason nested in the average count of D3 and D4 drought categories which are 

usually low. With using 80% of data in training even though randomly selected, the chances of a 

model seeing fewer of those categories during learning process become higher. This causes the 

models memorize instead of learn so while testing, the scores are not as promising as training. 

With the use of Group 2 data in the modeling, on average in 31732 grid cells (61% of the domain) 

logistic regression performed better than or equal to the persistence model. This is the case for the 

Random Forest model in 27139 grid cells (52% of the domain) and in 31085 grid cells (60% of 

the domain) for the SVMs. Adding the past week information to the data, helped the models to 

improve their prediction accuracy, however, it was still challenging to be assertive about 

outperforming the baseline model. With the presumption that lack of data point may be the cause 

of underperformance, we tried the Groups 3 and 4 in the models so that we could possibly find out 

whether there would be any improvement in prediction accuracy. 

3.3.2.3 Results for Using Group 3 

The performance of the machine learning models without 𝑈𝑆𝐷𝑀𝑡−1 label as the predictor, yet with 

borrowing the neighboring grid cells which created Group 3 data were examined and are 

summarized in Tables 3-10 and 3-11. 
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Table 3-10 Descriptive statistics of the models performances using Group 3 input features 

over the entire domain 

 Logistic Regression Random Forest SVM 
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No Drought 0.00 0.98 0.78 0.14 0.00 1.00 0.93 0.06 0.00 1.00 0.94 0.08 

D0 0.00 0.72 0.24 0.16 0.07 0.96 0.79 0.07 0.00 0.99 0.83 0.06 

D1 0.00 1.00 0.21 0.20 0.00 1.00 0.79 0.08 0.00 1.00 0.83 0.07 

D2 0.00 1.00 0.28 0.24 0.00 1.00 0.80 0.11 0.00 1.00 0.84 0.09 

D3 0.00 1.00 0.31 0.30 0.00 1.00 0.80 0.15 0.00 1.00 0.84 0.13 

D4 0.00 1.00 0.44 0.36 0.00 1.00 0.78 0.24 0.00 1.00 0.83 0.20 

Weighted Average 0.17 0.93 0.55 0.14 0.61 0.99 0.87 0.05 0.63 1.00 0.90 0.05 

Table 3-11 Heidke Skill Score of the models using Group 3 

 Logistic Regression Random Forest SVM 
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No Drought -0.17 1.00 0.50 0.16 0.00 1.00 0.90 0.12 -0.01 1.00 0.92 0.14 

D0 -0.21 0.80 0.14 0.14 0.00 1.00 0.83 0.10 0.06 1.00 0.87 0.08 

D1 -0.21 1.00 0.15 0.18 -0.02 1.00 0.84 0.11 -0.01 1.00 0.88 0.10 

D2 -0.20 1.00 0.22 0.24 -0.02 1.00 0.86 0.14 -0.03 1.00 0.89 0.11 

D3 -0.15 1.00 0.30 0.33 -0.02 1.00 0.87 0.17 -0.02 1.00 0.90 0.15 

D4 -0.05 1.00 0.48 0.39 -0.02 1.00 0.87 0.24 -0.02 1.00 0.90 0.20 

 

The weighted average accuracy of the logistic regression dropped significantly once again when 

the past week information predictor was eliminated. Despite the importance of the eliminated 

predictor, the nonlinear models, Random Forest and SVM could sustain fairly close to the 

persistence model on average but still lower, with 0.87 and 0.90 𝐹1 prediction score, respectively. 

The results showed that the SVM model with Group 3 data could predict better than the persistence 

model for D0, while it had an equal score but less standard deviation for D1 and D2, and an equal 
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score and standard deviation for D4. However, comparing the HSS shows that our nonlinear 

models could outperform the persistence model in six classes in terms of mean score with less 

deviations in prediction score. 

When compared the weighted average 𝐹1 score across the entire domain, the logistic regression 

could not defeat the persistence model prediction scores in any of the grid cells, while the Random 

Forest and SVM were successful in 17,385 (33% of the grid cells) and 27,743 (53% of the grid 

cells), respectively. The results of modeling with Group 3 indicates that by employing the 

neighboring grid cells data and consequently a larger training set, we could improve the models, 

particularly the nonlinear ones, to capture the relationships between the variables and drought 

categories more precisely. However, the feature 𝑈𝑆𝐷𝑀𝑡−1 still illustrates a stronger impact than 

the size of training data when Group 2 and 3 are compared side by side. 

3.3.2.4 Results for Using Group 4 

The results of using Group 4 dataset in the modeling is presented in Tables 3-12 and 3-13. 

Compared to the Groups 1, 2 and 3 results, there is  a noticeable improvement in both 𝐹1 score and 

HSS, for the Random Forests and SVM. The logistic regression performs slightly better than the 

persistence model in the prediction score for the categories, however the 𝐹1 weighted average 

scores are equal. On the other hand, the Random Forest and SVM outperform the persistence 

model in all the categories and 𝐹1 weighted average scores with the highest scores equal to 0.96 

achieved by the SVM. Using Group 4 of data, indicates that borrowing the neighboring grid cells 

information and including 𝑈𝑆𝐷𝑀𝑡−1, could certainly and significantly help the models learning 

curve to improve. Clearly, the lack of data points was preventing the models to capture a more 

comprehensive pattern while just using one single grid cell data. 
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Table 3-12 Descriptive statistics of the models performances using Group 4 input features 

over the entire domain 

 Logistic Regression Random Forest SVM 
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No Drought 0.00 1.00 0.96 0.05 0.00 1.00 0.98 0.04 0.00 1.00 0.98 0.06 

D0 0.36 0.96 0.81 0.08 0.51 0.99 0.90 0.04 0.61 1.00 0.93 0.03 

D1 0.00 1.00 0.83 0.09 0.00 1.00 0.91 0.05 0.00 1.00 0.93 0.04 

D2 0.00 1.00 0.85 0.11 0.00 1.00 0.92 0.08 0.00 1.00 0.94 0.07 

D3 0.00 1.00 0.87 0.14 0.00 1.00 0.92 0.11 0.00 1.00 0.93 0.10 

D4 0.00 1.00 0.85 0.20 0.00 1.00 0.90 0.18 0.00 1.00 0.91 0.17 

Weighted Average 0.82 0.98 0.91 0.03 0.86 1.00 0.95 0.02 0.87 1.00 0.96 0.01 

Table 3-13 Heidke Skill Score of the models using Group 4 data 

 Logistic Regression Random Forest SVM 
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No Drought -0.01 1.00 0.90 0.13 0.00 1.00 0.96 0.08 -0.01 1.00 0.97 0.09 

D0 0.22 1.00 0.79 0.11 0.46 1.00 0.91 0.06 0.34 1.00 0.95 0.05 

D1 -0.01 1.00 0.81 0.12 -0.01 1.00 0.93 0.07 -0.01 1.00 0.95 0.05 

D2 -0.02 1.00 0.85 0.14 -0.01 1.00 0.94 0.09 -0.02 1.00 0.96 0.07 

D3 -0.02 1.00 0.87 0.17 -0.02 1.00 0.94 0.12 -0.01 1.00 0.96 0.10 

D4 -0.02 1.00 0.86 0.23 -0.01 1.00 0.93 0.18 -0.01 1.00 0.95 0.16 

By looking into the one by one obtained 𝐹1 weighted average scores for each grid cell across the 

domain, on average in 10794 grid cells (21% of the domain) the logistic regression performs worse 

than the baseline model, whereas in only 419 grid cells (0.8% of the domain) the random forest 

performs worse than the persistence. The SVM with the best results, misclassified just 18 grid cells 

with 1 percent difference weighted average score compared to the persistence model. Figure 3-7 

shows the color map of the spatial distribution of the difference between the SVM and persistence 

model average score all over the domain. Aside from those 18 points with -0.01 accuracy 
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difference, the rest of them vary between 0 to 0.13. From Figures 3-6 and 3-7, it can be observed 

that in the Southeast and Plains areas which the persistence model performs worse (i.e. higher 

weekly fluctuation) the SVM model showed a larger difference in the prediction accuracy. We will 

discuss more about the comparison of the models predictions against the persistence model in 

boxplots later on in this section, although the purpose of outperforming the persistence model by 

the machine learning models has been met.  

1)  

Figure 3-7 Spatial distribution of the weighted average F1 Score difference between the 

Group4-SVM and persistence model 

3.3.2.5 Side-by-Side Boxplot Comparison of the Model Performance Using Different 

Groups of Data 

In this section, we present and discuss the performances of all the 13 different types of modeling 

in this study, next to each other in the format of boxplots. Figures 3-8 provides a side-by-side 

overall performance of the models while Figure 3-9 contains the results of the models for each 

USDM category. In the boxplots, the box middle line, bottom line and top line are the median, 25th 

percentile and 75th percentile, respectively. The whiskers extend 1.5 times the height of the box 
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(Interquartile range or IQR), and the points are extreme outliers which are three times greater than 

the IQR. From Figure 3-8, we could clearly find out that the USDM drought labels were better 

predicted by the nonlinear functions in terms of accuracy and deviation. The linear model fulfilled 

a meaningfully better prediction with the presence of the 𝑈𝑆𝐷𝑀𝑡−1 information as a predictor 

(Groups 2 and 4). The importance of this predictor can be observed by comparing the Groups 2 

and 3 results, while modeling with Group 2 could obtain better results than Group 3, even with 

using fewer number of data points. The detected pattern in Figure 3-8 can be observed in all the 

six categories of Figure 3-9 where Group 4 performs the best, followed by Group 2, then Groups 

3 and lastly Group 1. 

In terms of feature importance in the models, both the logistic regression and random forest 

commonly recognized PDSI as the most important predictor in Group 1 and Group 3, while in 

Groups 2 and 4 𝑈𝑆𝐷𝑀𝑡−1 received the largest coefficient, followed by PDSI as the second most 

important feature. The importance of the rest of the features in the models were relatively close to 

each other. Unfortunately, as the RBF kernel in SVM transforms the features into a high 

dimensional space, the implicit transformation does not allow us to obtain the feature importance. 
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Figure 3-8 Side by side models' overall performances comparison 
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Figure 3-9 Side by side models' performances in prediction of each USDM drought 

category 
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For a better illustration in comparing the reproduced maps by the models and the actual USDM 

map, we also selected three random dates. In Figure 3-10 the actual USDM map is not experiencing 

any D4 but two spots of D3 in Midwest and Northwest regions, whereas Figure 3-11 shows the 

southern part of Plains experiencing D4 as well as D3. Figure 3-12, however, shows larger and 

more scattered areas of D3 and D4 across the domain.  

3.3.2.6 Visual Comparison of the Models Over CONUS 

In Figure 3-10, the persistence model can closely catch D3 areas however, it does not perform well 

in predicting the D0, D1 and D2 while the large areas of D0 are replaced with D1 and D2. This is 

possibly due to precipitations during the past week generated map date (9/27/2005) and the date 

of this map (10/04/2005) in which has made those areas drought severity one category less 

extreme. The generated maps from Groups 1 and 3 models do not look well reproduced except 

Group 3 RF and SVM, however, both still are not as smooth as expected. The entire Group 2 map 

plus Group 4 LR are very similar to the persistence model map which means the models are heavily 

relying on the 𝑈𝑆𝐷𝑀𝑡−1 as their predictors. Finally, the best performing model, Group 4 SVM is 

able to generate very similar map to the actual USDM map followed by Group 4 RF as the second-

best model. If pay a closer attention, there is a slight difference between Group 4 RF and SVM in 

which RF is still mispredicting few spots on the map.  

In Figure 3-11, the models produced more similar maps to the actual USDM compared to Figure 

3-10 especially for Group 2. The similarity is due to less change from past week to this week which 

the persistence model is showing clearly. In other words, as it was discussed earlier, the models 

are using  𝑈𝑆𝐷𝑀𝑡−1 as the most important feature so once we have a more accurate persistence 

model (i.e. less change from past week) for a week, the rest of the models would be likewise more 

accurate. However, Group 4 RF and SVM could still generate the closest map to the actual 
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specifically in the regions with D3 and D4 as they are inherently capable of capturing nonlinear 

relationships while using more data for training.  

Similar to Figure 3-11, Figure 3-12 has also a relatively similar persistence model to the actual 

USDM map except a few small areas such as not being able to recognize an D3 area in California 

and replacing a No Drought region in Indiana with D0. As it can be seen, the models in Groups 1 

are not doing well, however, there is a significant improvement once the models are fed with 

𝑈𝑆𝐷𝑀𝑡−1 as another feature in Group 2. The maps of Group 3 models are not as smooth, but we 

can see the above-mentioned areas that the persistence model was not able to catch are relatively 

being recognized by them especially by the SVM model. Lastly, the best performing model is 

Group 4 SVM which was able to produce almost as similar as the actual USDM map. 
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Figure 3-10 Produced maps 10/04/2005 by each model 
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Figure 3-11- Produced maps of 03/17/2009 by each model 
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Figure 3-12 Produced maps of 08/13/2013 by each model 

As the last step, in order to show a more in detail models comparison instead of the overall average 

performance, we selected a random sample grid cell located at the latitude of 35.0630, and 

longitude - 105.3130 (appeared to be in New Mexico) and put the test data from the years 2010 to 

2013 in a time series graph. Figure 3-12 presents the actual test data into the models and each 

model prediction. It is notable that the graph is an ordered time series of the test data points, but 

the dates are not consecutive due to random selection of training and test set, while the weeks in 

between were used as training data for the models. Similar to the above generated maps, here the 

Group 2 models are significantly relying on the 𝑈𝑆𝐷𝑀𝑡−1 feature as whenever the persistence does 
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or does not predict correctly, Group 2 models are predicting accordingly. Group 1 models and 

Group 3 LR are the least consistent models, while Group 3 RF and SVM showed a fairly good 

performance even though they were not using 𝑈𝑆𝐷𝑀𝑡−1. Group 4 models show the best modeling 

results especially Group 4 SVM by being able to predict the date 8/23/2011 correctly where the 

majority of the models failed.  

 

Figure 3-13 Time series of test data of grid cell located in (35.0629, -105.3130) New Mexico 

3.4 Conclusions 

Our proposed framework successfully reproduced the USDM drought categories using multiple 

drought indices and machine learning algorithms, logistic regression, Random Forest and SVM. 

The framework was compared to a persistence model as the baseline model in which it was 

assumed that current week drought condition would persist in next week. As this study was a 

classification task, the machine learning models were evaluated by their overall prediction scores 

(only for F1 score) as well as each class prediction score. Although, in terms of prediction 

accuracy, there was not much room left for improvement by the baseline model, our proposed 

framework could outperform it by testing different scenarios of the data inputs and machine 

learning algorithms to find the best combination.  
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We found out that employing the past week drought data as a predictor in the models played an 

important role in achieving high prediction scores especially for the logistic regression. The 

nonlinear models, Random Forest and SVM suffered less without the use of that predictor in terms 

of prediction score. Furthermore, taking the neighboring grid cells information into account, could 

compensate the lack of data points for  training the models. It was essentially rectification of the 

temporal shortage of the available USDM data (731 weeks) by increasing it spatially. Training the 

models faced the lack of data problem particularly for the categories D3 and D4. In some grid cells 

when the number of D3 and D4 were smaller than the number of the folds in cross validation (i.e. 

5 in this study) as well as random selection of training and test splits, technically some folds could 

not contain those categories during the learning process which resulted in poor predictive skill.  

Future works could be the examination of a multi-task learning approach which works well with 

limited data by leveraging information from nearby locations. Also, since we have been successful 

in being close to mimicking the USDM experts drought categories synthesizing, this methodology 

could be used in an automated system in generating the weekly maps. The system would be using 

LSMs to produces the outputs which are needed to calculate the drought indices which represent 

meteorological, agricultural, and hydrologic drought. Thereafter by creating the indices for the 

target day that the map is going to be published and using the past week drought condition as 

another variable, the SVM model as the best performing model in this study would predict the 

drought conditions across the entire United States.
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Chapter 4 DOWNSCALING SMAP SATELLITE RETRIEVED SOIL MOISTURE USING 

MACHINE LEARNING APPROACHES WITH AN UNCERTAINTY PERSPECTIVE 

4.1 Introduction  

Soil moisture (SM) is a crucial variable within the Earth’s system, and plays a key role in regulating 

various processes in water, energy, and carbon fluxes among the land surface and the atmosphere 

(Ochsner et al., 2013; Robock et al., 2000; Seneviratne et al., 2010). As a result, soil moisture 

becomes important for various geoscience models, such as hydrology, meteorology, and Earth 

thermodynamics (Vereecken et al., 2008). Soil moisture is defined and referred to as the quantity 

of water contained by the upper soil sector, also known as the unsaturated zone (Hillel, 1998). 

The advancement of remote sensing technologies has increased the accessibility of soil moisture, 

to the point that it is possible to obtain an exceptional volume of remotely measured soil moisture 

spatially and temporally, a task that is not feasible from ground observation networks (Kerr, 2007). 

Several remote sensing satellite systems for worldwide soil moisture measurements are METOP-

A/B, Advanced Scatterometer (ASCAT), the National Aeronautics and Space Administration’s 

(NASA) Soil Moisture Active Passive (SMAP), the Advanced Microwave Scanning Radiometer 

for Earth Observing System (AMSR-E), the Advance Microwave Scanning Radiometer 2 

(AMSR2), and the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) 

(Entekhabi, Njoku, et al., 2010; Kerr et al., 2016; Qu et al., 2021). Each entity delivers significant 

global soil moisture retrievals at 25–50 km spatial resolution every 2–3 days (Qu et al., 2021; 

Senyurek et al., 2020). 

NASA’s SMAP was launched on January 31, 2015 as an environmental monitoring satellite, and 

offers soil moisture on a global level. It is equipped with an L‐band (active) radar and an L-band 

(passive) radiometer (Entekhabi, Njoku, et al., 2010). The active and passive instruments obtain 
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soil moisture measurements with a spatial resolution of 3 and 36 km, respectively (Chan et al., 

2016). In July 2015, the active sensor failed to operate correctly, and since then, SMAP soil 

moisture has been retrieved solely by the passive instrument. Figure 4-1 shows the global soil 

moisture obtained by the radar-based instrument for an 8-day cycle in June 2015. 

 

Figure 4-1 SMAP radar-based soil moisture for one 8-day cycle of June 19 to 26, 2015 

(Retrieved from NASA (2015)) 

The SMAP soil moisture observation provides a suitable spatial resolution for global scale uses. 

However, the measurements cannot be utilized effectively for regional or local applications, such 

as agricultural purposes (e.g., yield estimation), drought, and flood monitoring. To avoid this 

problem, there is a need to obtain soil moisture at finer resolutions, from a multiple kilometer to 

less than one kilometer spatial resolution. As a result, a spatial downscaling is necessary for 

hydrological and agricultural applications (Peng et al., 2017). Soil moisture downscaling can be 

employed using different tactics, including satellite-based techniques (Active and Passive 

Microwave Data Fusion Methods), downscaling utilizing geoinformation data, and model-based 

approaches, which can be divided into statistical or land surface model downscaling (Peng et al., 

2017). Numerous model-based soil moisture downscaling techniques have been proposed with 
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varying considerations of the effect of several environmental variables. The supporting theory of 

these techniques is to create either a statistical association or a physics-based model among satellite 

soil moisture retrieval and fine-scale ancillary variables (e.g., soil type, temperature, soil depth, 

topography) (Peng et al., 2017). Machine learning (ML) approaches in soil moisture downscaling 

fall within the category of statistical models where the model illustrates the spatial statistics of the 

soil moisture area to connect the spatial variability to the spatial average, or to disclose in what 

manner statistics vary throughout scales. 

In recent years, downscaling large-scale satellite soil moisture with ML techniques has attracted 

significant interest due to their exceptional accuracy and stability in all aspects when compared to 

the other downscaling techniques (Kim et al., 2018; Qu et al., 2021). Techniques including Support 

Vector Machines (Jin et al., 2020; Kim et al., 2018), neural networks (Alemohammad et al., 2018), 

Random Forest (RF) (Abbaszadeh et al., 2019; Qu et al., 2021) are among the most popular  in 

downscaling soil moisture measurement. Their results showed that Random Forest, which is an 

ensemble decision tree algorithm, seems to perform better in downscaling remotely sensed soil 

moisture when compared to other ML techniques (Abbaszadeh et al., 2019; Im et al., 2016; Jing 

et al., 2016; Pelletier et al., 2016; Qu et al., 2021; Teluguntla et al., 2018).  

Soil moisture spatial variability is controlled by a multitude of land-atmosphere components, such 

as precipitation, temperature, soil type, vegetation and topography, and the combined effects of 

these variables’ consequences in high soil moisture spatial heterogeneity. As a result, a soil 

moisture downscaling method that can take complex and nonlinear relationships into account is 

necessary to achieve accurate and fine spatiotemporal soil moisture.  
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Abbaszadeh et al. (2019) successfully downscaled SMAP soil moisture by using RF over CONUS 

from April 2015 to December 2015. This study attempts to replicate their study using similar 

variables, but using three different machine learning algorithms and different subsets of data to 

quantify the uncertainty of the process. The machine learning algorithms, RF, XGBoost, and a 

deep learning algorithm are employed to downscale the SMAP soil moisture passive (radiometer) 

measurements from 36 to 1-km resolution over the Contiguous United States (CONUS). 

4.2 Dataset 

In this study, SMAP soil moisture data, the ancillary data consisting of NDVI (to capture the effect 

of vegetation dynamics on soil moisture), land surface temperature and precipitation (i.e., 

atmospheric variables to catch the temporal dynamics), topography and soil texture (i.e., 

geophysical variables to maintain spatial variability), and ground truth data (i.e., in-situ soil 

moisture measurements) were obtained for CONUS over the course of 45 months, from April 2015 

to December 2018 to be used in the proposed downscaling framework. The ancillary data are 

anticipated to enhance satisfactory explanatory power on the soil moisture profile on various 

scales. The data and sources are explained in the following subsections: 

4.2.1 SMAP Radiometer Soil Moisture 

SMAP satellite measures daily global soil moisture at a depth of 5 centimeters at AM (descending) 

and PM (ascending) overpasses (Entekhabi et al., 2008). In this study, using the proposed 

framework, the level 3 descending SMAP measured soil moisture from the passive sensor 

(radiometer) with 36 km resolution is downscaled throughout the CONUS (USGS, 2020).  
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4.2.2 Ancillary Data 

4.2.2.1 Vegetation 

Vegetation is an essential component of soil moisture variability that has a profound influence on 

runoff. Additionally, vegetation is strongly linked to soil, water, and atmosphere, so variation in 

vegetation can be a good indicator of soil moisture content dynamics (Engstrom et al., 2008). 

Because of its significance, vegetation has frequently been used as a supplementary variable in 

satellite soil moisture downscaling (Fang & Lakshmi, 2014; Peng et al., 2015). The normalized 

difference vegetation index (NDVI) is a practical indicator for quantifying vegetation coverage, 

which can assess vegetation dynamics (Zhang et al., 2018). For the time span of the study, NDVI 

was obtained from MODIS Terra at 1 km resolution generated every 16 days (MOD13Q1). 

4.2.2.2 Land Surface Temperature 

Land surface temperature (LST) is a key climate variable that regulates and substantially impacts 

soil moisture (Pablos et al., 2016). As a result, land surface temperature has been widely used as a  

predictive variable in satellite soil moisture measurements (Fang et al., 2018; Zhao et al., 2018). 

MODIS Terra produces daily LST (MOD11A1) at 1 km resolution with local equatorial crossing 

time of approximately 10:30 a.m. in descending node (Wan, 2006). 

4.2.2.3 Precipitation 

Soil moisture dynamics across space and time are markedly dependent on precipitation variation. 

Its correlation with soil moisture has been studied on different geographical scales (Hohenegger 

et al., 2009; Wei & Dirmeyer, 2012). As a result, precipitation can play a significant role as an 

ancillary variable in downscaling SMAP soil moisture. The precipitation data for this study was 

obtained from NASA’s Daymet Version 3 model output data. The Daymet dataset provides daily 

surface weather data, such as minimum temperature, maximum temperature, vapor pressure and 
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precipitation at 1 km resolution in North America and Hawaii (DAAC, 2020; Thornton et al., 

2014). 

4.2.2.4 Topography 

Studies have identified associations between soil moisture and topography as  surface variables, 

particularly throughout wet cycles when precipitation is occurs more frequently than evaporation 

(Nyberg, 1996; Tromp-van Meerveld & McDonnell, 2006). Elevation has been proven to be a 

crucial element used in topography to improve downscaling satellite soil moisture (Colliander et 

al., 2017; Im et al., 2016). Therefore, elevation is selected to be another ancillary variable in this 

study.  The elevation data source was obtained from GTOPO30, a global digital elevation model 

(DEM) with an approximately 1 km resolution provided by the USGS Earth Resources 

Observation and Science (EROS) archive (EROS, 2020). 

4.2.2.5 Soil Texture 

Soil texture (or type) refers to what the proportion of a soil mass is composed of regarding the 

quantity of small (clay), medium (silt), and large (sand) particles. By gaining an understanding of 

the soil texture and its physical properties, we can learn more about its relationship to soil moisture 

content (e.g., infiltration rate and permeability). Soil texture information has been exploited 

utilized as an effective source of information for improved downscaling satellite soil moisture 

measurements (Abbaszadeh et al., 2019; Kim & Barros, 2002; Montzka et al., 2018). In this study, 

the top 5 cm of soil type data were collected from Soil Datasets at Pennsylvania State University 

available at 1 km spatial resolution (PSU, 2020). 

4.2.3 Ground soil moisture observation 

To validate the results of the proposed downscaling framework, there is a need for an in-situ soil 

moisture observation known as ground-truth. The U.S. Climate Reference Network (USCRN) and 
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Soil Climate Analysis Network (SCAN) are two systematic and persistent networks of climate 

monitoring with stations throughout CONUS, Alaska and Hawaii. Their sites utilize excellent 

sensors to measure variables such as temperature, precipitation, wind speed, and soil conditions 

(Coopersmith et al., 2016; Schaefer & Paetzold, 2001). Both networks offer soil moisture 

measurements at different depths (i.e., 5, 10, 20, 50 and 100 cm) and time scales. To conform with 

SMAP measurement however, the daily soil moisture data was obtained at a depth of 5 cm. The 

number of stations during the selected 45 months of the study were equal to 191 SCAN and 132 

USCRN sites that are shown in Figure 4-2. The Figure suggests that SCAN and USCRN stations 

are well distributed throughout CONUS to involve various climates and soil textures. 

 

Figure 4-2 SCAN and USCRN stations networks across CONUS 

 



116 

 

4.3 Methodology 

4.3.1 Data Arrangement and Modeling Schemes 

To downscale SMAP radiometer soil moisture from a 36 km resolution to 1 km resolution, the fine 

resolution (1 km) auxiliary data including NDVI, precipitation, LST, elevation and soil type, which 

are known to be significantly correlated in capturing soil moisture, spatial and temporal dynamics 

are used. It should be noted that the input features are obtained for the location coordinates of the 

in-situ stations. The in-situ soil moisture measurements from USCRN and SCAN networks are 

considered as the predictand which the SMAP retrievals are validated against. The main 

assumption of downscaling is that the measured in-situ soil moisture is the representative value for 

the whole 1 km grid cell where the station is located. 

The proposed framework incorporates two modeling schemes: local and global models. In local 

modeling, the stations are categorized based on their soil texture properties, where SMAP, as well 

as the rest of the ancillary variables (except soil type), are used as predictors in the model. Once 

all the data from each station for each soil type are combined, a local model for each soil type is 

developed to predict the in-situ soil moisture measurements. In global modeling, unlike the local 

model, soil texture is similarly managed to be employed as another predictor in addition to the rest 

of the input feature. Figure 4-3 shows all 15 soil textures and their covered area percentage across 

CONUS. Approximately 72 percent of the CONUS surface layer is covered with loam, silty loam, 

and sandy loam soil textures. Out of the remainder, water and bedrock are not considered soil 

layers, and for silt, no measurement station is available. Thus, there are 12 soil textures 

encompassing 98.74% of CONUS to be input into the downscaling framework.  
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Figure 4-3 Soil textures and the covered area percentage across CONUS 

The structure of the framework is illustrated in Figure 4-4. As can be seen, the data from the time 

span of the study is divided into three different temporal arrangements: cumulative, yearly, and 

quarterly, where each consists of four different data subsets. Cumulative data begins with data 

from the year 2015, and in succeeding years, data are added incrementally to previous 

combinations to create four different subsets: 2015, 2015 to 2016, 2015 to 2017, and 2015 to 2018. 

The motivation for employing this data arrangement is to recognize the impact of the data size on 

the accuracy of the prediction against the computational expenses. Yearly data isolates each year’s 

data into four distinct years: 2015, 2016, 2017 and 2018. With the use of this yearly data, with a 

nearly identical number of data points, any present inconsistency and irregularity in data sources 

can be identified. Quarterly data contains each season’s data with the specific purpose of gaining 

insight into the effect of seasonality and repeating patterns during soil moisture downscaling. 
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4.3.2 Machine Learning Algorithms, Model Selection and Metrics of Performance 

In this study, three machine learning regression algorithms, RF, XGBoost and an artificial neural 

network (ANN), are utilized to implement the modeling of the framework. RF is a robust ensemble 

decision tree with a bagging algorithm. Bagging in RF strengthens the model to reduce variance 

and avoids overfitting by creating various models by resampling the data (Breiman, 2001). RF has 

been a highly successful machine learning algorithm in satellite soil moisture downscaling. 

XGBoost is termed as Extreme Gradient Boosting Algorithm which is also an ensemble technique 

that operates with boosting trees (Chen et al., 2015). XGBoost utilizes a gradient descent algorithm 

to remedy the preceding error created by the model by learning from it to improve next step 

performance. The previous results are rectified, and performance is enhanced. RF generates many 

trees, all with equivalent weight for leaves within the model, whereas XGBoost initiates leaf 

weighting to correct the ones that do not enhance the model predictability. XGBoost has gained 

popularity among data scientists, especially in machine learning competitions due to its speed and 

scalability. 

The ANN algorithm in this study is chosen to be a Fully Connected Neural Network (FCNN). 

FCNNs are a form of ANN where the architecture is comprised of a sequence of fully connected 

layers, such that all their nodes (i.e., neurons) in one layer are connected to all the neurons in the 

following layer. The network architecture requires an input layer, one or multiple hidden layers 

and an output layer. The key advantage of FCNNs is that there are no specific assumptions required 

concerning the input. The ability of ANNs in learning complex nonlinear relationships between 

inputs and objective data is the reason for their popularity in geoscience. Over the past decade, 

ANNs have constantly been regularly applied to downscale soil moisture retrieval (Aires et al., 

2017; Alemohammad et al., 2018; Jimenez et al., 2009). 
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Model hyperparameters tuning, evaluation and selection are attained by 10-fold cross-validation 

on 80% of training data. The best estimator is thereafter tested with 20% of the data. The 

performance metrics used to test the best trained models are 𝑹𝟐 and unbiased Root Mean Square 

Error (ubRMSE). 𝑹𝟐 is a measure of goodness of fit and the explanatory power of the model to 

the dependent variable. ubRMSE defined by Entekhabi, Reichle, et al. (2010), is a metric that 

SMAP employs to determine the measurement accuracy. As opposed to RMSE, ubRMSE is not 

harshly affected in presence of biases in the mean of the magnitude of variations in the retrievals. 

The ubRMSE is assumed to indicate the RMSE of soil moisture anomalies that are calculated by 

eliminating the mean seasonal cycle. 

While RMSE is: 

𝑅𝑀𝑆𝐸 = √
∑ (𝒙𝒊− 𝒙̂𝒊)𝟐

𝑵
𝒊=𝟏

𝑵
     (1) 

Where N is the number of data points, 𝒙𝒊 is the actual observation and 𝒙̂𝒊 is the estimated value. 

ubRMSE is defined as below: 

𝑢𝑏𝑅𝑀𝑆𝐸 = √
∑ ((𝒙̂𝒊− ∑

𝒙̂𝒊
𝑵

𝑵
𝒊=𝟏 )− (𝒙𝒊− ∑

𝒙𝒊
𝑵

𝑵
𝒊=𝟏 ) )𝟐𝑵

𝒊=𝟏

𝑵
   (2) 

and the relationship between RMSE and ubRMSE is: 

𝑅𝑀𝑆𝐸2 = 𝑢𝑏𝑅𝑀𝑆𝐸2 + 𝑏2     (3) 

Where b is the mean-bias. 

Ultimately, with 11 data subsets and 12 soil types, there are 132 local models to be developed by 

each algorithm, resulting in a total of 396 local models. In contrast, given that global models 
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receive all data as input, and not for each soil type (soil type is used as a predictive feature), the 

number of global models is equal to 33, where the three aforementioned algorithms are supplied 

by 12 different data subsets. Overall, the framework develops 429 different local and global 

models. The major contributions of this research are to propose: 1) a soil moisture downscaling 

framework using machine learning, 2) a comparison between local and global modeling, 3) an 

assessment of three machine learning algorithm in soil moisture downscaling and 4) the 

uncertainty associated with the proposed models. 

 

 

 

 

 

 

Figure 4-4 Flowchart of the proposed soil moisture downscaling framework 
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4.4 Results and Discussion 

In this section, the results are discussed in three parts. An overview of the preprocessed data is 

presented in the first section. The following section includes the performance of the local models, 

and in the third section, the global model’s results are presented. The highest performing model 

results are discussed in the fourth section, and in the final section, a deeper look into the overall 

downscaling results with an uncertainty perspective are presented. 

4.4.1 Data Preprocessing 

In this section, a summary of the preprocessed data before modeling is explained. In the first step, 

missing and outlier values were handled. Some in-situ stations did not have any reported value for 

the time of the study. Additionally, SMAP values for some stations during the entire four years of 

the data remained the same throughout the entire four years of data collection. After removing all 

those stations, out of 323 primary SCAN and USCRN stations, 296 stations remained to be used 

in the analysis. Table 4-1 shows the number of stations from both networks located on each soil 

texture, the percentage of the number of stations on each soil texture, as well as and the percentage 

area over CONUS covered with that soil texture. As can be seen in Table 4-1, the percentage of 

the number of stations from both networks together on each soil texture, and the soil texture 

covered area percentage, are very close. Organic material and sandy clay loam have only one in-

situ station, and loam with 62, silty loam with 71 and sandy loam with 77 have the greatest number 

of stations (~ 71% of the stations). This insight contributes to the understanding that the data 

allocated to each soil texture has a fair spatial distribution when compared to the proportion they 

cover the area of across CONUS. Once the data of the stations for each soil texture are combined, 

the data subsets Quarterly, Yearly and Cumulative are created for the modeling task. Table 4-2 

contains the number of data points in each data subset for every soil texture. Quarter 1 has the 
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fewest data points compared to the other three quarters. This is because data collection began in 

April 2015, and as a result, 2015 includes only nine months of data, while 2016, 2017, and 2018 

have a full year of data. For organic material and sandy clay loam, the number of data points are 

small, and this is because only one station for each soil texture measuring soil moisture exists. 

Table 4-1 Number of in-situ soil moisture stations on each soil texture 

Soil Texture Number of Stations Percentage of Station Area in CONUS % 

Clay 8 2.70 3.243 

Clay Loam 14 4.73 4.186 

Loam 62 20.95 25.021 

Loamy Sand 14 4.73 3.620 

Other 3 1.01 1.541 

Organic Material 1 0.34 1.169 

Sand 19 6.42 6.734 

Sandy Clay Loam 1 0.34 0.358 

Silty Clay 3 1.01 1.539 

Silty Clay Loam 23 7.77 4.439 

Silty Loam 71 23.99 24.631 

Sandy Loam 77 26.01 22.258 

Table 4-2 - Number of data points in in each subset of data for different soil types 
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Quarter 2 354 719 4012 852 159 33 1054 30 178 1170 3143 3214 

Quarter 3 386 952 4226 821 167 37 1086 27 206 1269 3734 3336 

Quarter 4 355 670 3386 797 134 21 967 34 156 1185 3037 3301 

2015 317 562 2709 583 123 16 778 23 127 863 2327 2246 

2016 389 756 3554 864 177 35 1041 21 173 1246 3185 3257 

2017 351 706 3594 802 141 19 928 50 164 1104 3064 3122 

2018 244 719 3397 686 81 25 916 37 149 1082 2813 3000 

2015-16 706 1318 6263 1447 300 51 1819 44 300 2109 5512 5503 

2015-17 1057 2024 9857 2249 441 70 2747 94 464 3213 8576 8625 

2015-18 1301 2743 13254 2935 522 95 3663 131 613 4295 11389 11625 
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4.4.2 Local Models 

In this section, the results of the local models are compared. Because there were 396 local models, 

only the results of the best-performing models are reported. The preprocessed data of each data 

subset for each soil texture were input into three algorithms, RF, XGBoost and FCNN. Among 

those three algorithms, FCNN did not perform well enough compared to RF and XGBoost. ANN 

models are data demanding algorithms, and consequently, they usually do not result in consistent 

findings in cases of insufficient data size. ANN algorithms do require large datasets to find hidden 

relationships between variables in a complex system.  Because of this, only the results of the best-

performing models (RF and XGBoost) are reported. Tables 4-3 and 4-4 present the 𝑹𝟐 and 

ubRMSE of RF and XGBoost local models, respectively. As previously mentioned, 

hyperparameters for the models were executed through a 10-fold cross-validation of 80 percent of 

the data (i.e., training) and the remaining 20 percent were used for testing the trained model. It 

should be noted that to have a fair comparison, the training and the testing data points of each data 

subset were the same in both the RF and XGBoost, as well as the global model. The local models 

for organic material and sandy clay loam were not able to settle on a stable result. An insufficient 

number of data points to train and test the data were the reason for the inconsistency in the results. 

Insufficient data increases bias and in case of underfitting, variance decreases and results in higher 

inconsistency of the model prediction for a given data point that the model has not seen before. 

The elevation variable also contributed to the weak performance of the local models for organic 

material and sandy clay loam local models. Elevation, unlike the other used variables in this study, 

is spatially and temporally static. As a result, the effect of elevation in the models becomes 

apparent when there is more than one station available in the model. As this was not the case for 
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organic material and sandy clay loam, the models were lacking one input feature compared to the 

other soil textures. 
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Table 4-3 Performance of the Random Forest models in downscaling the SMAP soil moisture for different soil types across 

CONUS; ubRMSE is in m3/m3; NC = Not Consistent 
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Table 4-3 (cont’d) 

2016 

0
.8

8
 

0
.0

5
9
 

0
.8

7
 

0
.0

4
2
 

0
.7

6
 

0
.0

3
6
 

0
.8

5
 

0
.0

2
7
 

0
.8

7
 

0
.0

3
9
 

N
C

 

N
C

 

0
.7

1
 

0
.0

1
9
 

N
C

 

N
C

 

0
.8

1
 

0
.0

7
7
 

0
.8

8
 

0
.0

4
9
 

0
.9

0
 

0
.0

4
2
 

0
.8

4
 

0
.0

3
9
 

2017 

0
.8

7
 

0
.0

6
4

 

0
.8

4
 

0
.0

4
4

 

0
.8

1
 

0
.0

3
1

 

0
.8

4
 

0
.0

2
7

 

0
.9

4
 

0
.0

2
4

 

N
C

 

N
C

 

0
.6

6
 

0
.0

2
1

 

N
C

 

N
C

 

0
.9

6
 

0
.0

3
6

 

0
.9

1
 

0
.0

4
8

 

0
.8

7
 

0
.0

5
1

 

0
.8

9
 

0
.0

3
4

 

2018 

0
.9

2
 

0
.0

4
1
 

0
.7

9
 

0
.0

4
6
 

0
.8

0
 

0
.0

3
1
 

0
.8

3
 

0
.0

2
6
 

0
.8

8
 

0
.0

3
0
 

N
C

 

N
C

 

0
.7

0
 

0
.0

2
0
 

N
C

 

N
C

 

0
.8

4
 

0
.0

6
9
 

0
.8

6
 

0
.0

6
1
 

0
.8

6
 

0
.0

5
0
 

0
.8

4
 

0
.0

4
1
 

2015 -2016 

0
.8

8
 

0
.0

5
8
 

0
.8

4
 

0
.0

4
5
 

0
.8

1
 

0
.0

3
2
 

0
.7

9
 

0
.0

3
2
 

0
.9

1
 

0
.0

3
6
 

N
C

 

N
C

 

0
.8

6
 

0
.0

1
6
 

N
C

 

N
C

 

0
.9

0
 

0
.0

5
1
 

0
.9

2
 

0
.0

4
4
 

0
.9

0
 

0
.0

4
2
 

0
.8

6
 

0
.0

3
9
 

2015 -2017 

0
.9

2
 

0
.0

5
3
 

0
.8

4
 

0
.0

4
6
 

0
.8

0
 

0
.0

3
3
 

0
.7

5
 

0
.0

3
5
 

0
.8

7
 

0
.0

4
2
 

N
C

 

N
C

 

0
.7

3
 

0
.0

2
0
 

N
C

 

N
C

 

0
.8

8
 

0
.0

6
2
 

0
.8

8
 

0
.0

5
3
 

0
.8

7
 

0
.0

4
7
 

0
.8

7
 

0
.0

3
8
 

2015 -2018 

0
.8

8
 

0
.0

5
7
 

0
.7

6
 

0
.0

5
6
 

0
.8

0
 

0
.0

3
3
 

0
.7

9
 

0
.0

2
9
 

0
.8

8
 

0
.0

3
7
 

N
C

 

N
C

 

0
.7

8
 

0
.0

1
7
 

N
C

 

N
C

 

0
.8

8
 

0
.0

5
6
 

0
.8

9
 

0
.0

5
1
 

0
.8

8
 

0
.0

4
8
 

0
.8

6
 

0
.0

3
8
 

 

  



127 

 

Table 4-4- Performance of the XGBoost models in downscaling the SMAP soil moisture for different soil types across CONUS; 

ubRMSE is in m3/m3; NC = Not Consistent 
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Table 4-4 (cont’d) 
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The results of the local models for each soil texture using the data subsets shows that RF and 

XGBoost performed similarly. Table 4-5 shows the results of the best performance obtained by 

RF and XGBoost local models for each soil texture, indicating that both RF and XGBoost 

performed in remarkably similar ways to choose the best data subset, with the exception of sand 

and silty clay loam. 

Table 4-5 The data subsets resulting in the best prediction accuracy of RF and XGBoost 

models for each soil texture; ubRMSE is in m3/m3; NA = Not Available; NC = Not 

Consistent 

 Random Forest XGBoost 

Soil Texture Best Data Subset 𝐑𝟐 ubRMSE Best Data Subset 𝐑𝟐 ubRMSE 

Clay Quarter 1 0.97 0.036 Quarter 1 0.93 0.053 

Clay Loam 2016 0.87 0.042 2016 0.87 0.044 

Loam Quarter 4 0.83 0.029 Quarter 4 and 2017 0.84 0.028 

Loamy Sand Quarter 2 0.87 0.023 Quarter 2 0.85 0.023 

Other 2017 0.94 0.024 2017 0.93 0.025 

Organic Material NA NC NC NA NC NC 

Sand 2015-2016 0.86 0.016 2015 0.79 0.015 

Sandy Clay Loam NA NC NC NA NC NC 

Silty Clay 2017 0.96 0.036 2017 0.95 0.044 

Silty Clay Loam 2015 0.93 0.042 Quarter 4 0.93 0.038 

Silty Loam Quarter 4 0.90 0.039 Quarter 4 0.90 0.040 

Sandy Loam 2017 0.89 0.034 2017 0.89 0.034 

4.4.3 Global Model 

In this section, the results of the global model are explained. Out of 33 developed global models, 

FCNN with the data from 2015 to 2018 performed the best. The model hyperparameters were 

tuned using a 10-fold cross-validation on 80 percent of the data and finally tested with the 

remaining 20 percent. The FCNN architecture achieved the best results when five hidden layers 

were employed with the overall 88% accuracy for training and 85% testing. The results of the 

global model are presented in Table 4-6. The global model performance for each soil texture was 

generally lower than the local models. However, the model exhibited a consistent result for organic 

material and sandy clay loam when the models were validated with different splits of data. 
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However, the accuracies were not yet close enough to the other soil textures. Given that the local 

models were not able to offer consistent generalizability, a global model highlights its advantage 

in gaining a relative consistent accuracy by learning from similar information in other soil textures. 

In the next section, a more comprehensive evaluation of the local and global models through 

ensemble averaging will be discussed. 

Table 4-6 Performance of the FCNN model as the best performing global model with 2015 -

2018 data 

Soil Texture 𝐑𝟐 ubRMSE 

Clay 0.88 0.055 

Clay Loam 0.75 0.060 

Loam 0.78 0.034 

Loamy Sand 0.73 0.034 

Other 0.92 0.038 

Organic Material 0.60 0.060 

Sand 0.75 0.020 

Sandy Clay Loam 0.30 0.048 

Silty Clay 0.89 0.055 

Silty Clay Loam 0.78 0.076 

Silty Loam 0.87 0.050 

Sandy Loam 0.82 0.045 

4.4.4 Ensemble Averaging 

Ensemble averaging is a method used to learn from multiple models where the contribution of 

every member is equal to the final result. In this study, because the accuracy of the local models 

for each soil texture ranges within each data subset, the final accuracy of predictions for each 

algorithm (RF and XGBoost) regarding the soil textures can be calculated by the model averaging 

ensemble. Table 4-7 shows the results of this averaging. As indicated in the Table, the results are 

almost equal, with a slight outperformance for RF in six soil textures, as compared to XGBoost, 

which achieved better results in four. Aside from organic material and sandy clay loam, the global 

model outperformed the local models in Other, Sand and Silty Clay. 
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Table 4-7 Ensemble averaging results of RF and XGBoost local models versus FCNN 

global model 

 Random Forest XGBoost FCNN 

Soil Texture 
Average  

𝐑𝟐 

Average 

ubRMSE 

Average  
𝐑𝟐 

Average 

ubRMSE 

Average  
𝐑𝟐 

Average 

ubRMSE 

Clay 0.89 0.055 0.88 0.059 0.88 0.055 

Clay Loam 0.80 0.050 0.79 0.053 0.75 0.060 

Loam 0.79 0.034 0.81 0.032 0.78 0.034 

Loamy Sand 0.82 0.028 0.80 0.028 0.73 0.034 

Other 0.88 0.037 0.88 0.036 0.92 0.038 

Organic Material NC NC NC NC 0.60 0.006 

Sand 0.74 0.018 0.72 0.019 0.75 0.020 

Sandy Clay Loam NC NC NC NC 0.30 0.048 

Silty Clay 0.87 0.059 0.87 0.062 0.89 0.055 

Silty Clay Loam 0.89 0.050 0.89 0.051 0.78 0.076 

Silty Loam 0.87 0.048 0.88 0.047 0.87 0.050 

Sandy Loam 0.84 0.040 0.86 0.038 0.82 0.045 

4.4.5 Local Models Ranking 

From Table 4-5, it can be inferred that the 2017 data subset resulted in the highest accuracy for 

both RF and XGBoost in multiple soil textures, but inconsistently. By ranking the local models for 

each soil texture, it is noticeable that the local models in conjunction with any specific data 

arrangement could not indicate a consistent dominance over the rest (Tables 4-8 and 4-9). The 

median ranking of the between different data arrangements suggests the local models within the 

2017 data subset could generate the overall highest accuracy. To obtain better comprehension of 

the models’ performances in downscaling the soil moisture, the RF model with the data from the 

year 2017 was selected as an example with the best scoring data arrangement. Figure 4-5 presents 

the ranking of the RF for all the soil texture, excluding organic material and sandy clay loam. The 

RF models with 2017 data subsets could contain the best in three soil textures: Other, Silty Clay. 

and Sandy Loam. However, in Sand and Clay, the performances were among the lowest.  
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Figure 4-5 Random Forest 2017 models soil moisture prediction accuracy rankings for each 

soil type when compared to the rest of the models with different data subsets 

The scatterplots of the RF model for each soil texture, excluding organic material and sandy clay 

loam are presented in Figure 4-6. The plots show the in-situ values on the X-axis, and downscaled 

soil moisture values on the first Y-axis, and SMAP values on the second Y-axis. The models were 

properly capable of capturing the trend, while the SMAP 36 km values are scattered without 

showing any clear correlation with the in-situ values. 
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Table 4-8 Ranking of the Random Forest models for each soil type and the median of the overall used data subset 

 Clay 
Clay 

Loam 
Loam 

Loamy 

Sand 
Other 

Organic 

Material 
Sand 

Sandy 

Clay 

Loam 

Silty 

Clay 

Silty 

Clay 

Loam 

Silty 

Loam 

Sandy 

Loam 

Median 

Rank 

Quarter 1 1 6 10 6 2 - 9 - 2 10 10 5 6 

Quarter 2 4 9 8 1 10 - 5 - 5 6 9 8 7 

Quarter 3 11 11 11 7 11 - 10 - 8 7 8 11 10.5 

Quarter 4 5 8 1 2 5 - 4 - 11 4 1 9 4.5 

2015 10 2 2 8 4 - 2 - 3 1 11 10 3.5 

2016 6 1 9 3 8 - 7 - 10 8 2 6 6.5 

2017 9 3 4 4 1 - 11 - 1 3 6 1 3.5 

2018 3 7 5 5 6 - 8 - 9 11 7 7 7 

2015 -16 7 4 3 9 3 - 1 - 4 2 3 3 3 

2015 -17 2 5 6 11 9 - 6 - 6 9 5 2 6 

2015 -18 8 10 7 10 7 - 3 - 7 5 4 4 7 
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Table 4-9 Ranking of the XGBoost models for each soil type and the median of the overall used data subset 

 Clay 
Clay 

Loam 
Loam 

Loamy 

Sand 
Other 

Organic 

Material 
Sand 

Sandy 

Clay 

Loam 

Silty 

Clay 

Silty 

Clay 

Loam 

Silty 

Loam 

Sandy 

Loam 

Median 

Rank 

Quarter 1 1 8 7 3 4 - 11 - 2 5 9 2 5 

Quarter 2 9 9 10 1 10 - 5 - 8 8 11 9 9 

Quarter 3 10 11 11 7 11 - 10 - 6 9 10 11 10 

Quarter 4 6 7 2 2 8 - 4 - 9 1 1 8 4 

2015 7 3 3 9 6 - 2 - 4 3 5 10 4 

2016 5 1 5 4 7 - 7 - 11 11 3 7 5 

2017 11 2 1 5 1 - 8 - 1 2 4 1 2 

2018 2 6 9 6 3 - 9 - 10 7 8 5 7 

2015 -16 8 4 4 8 2 - 1 - 3 4 2 4 4 

2015 -17 3 5 6 11 9 - 6 - 7 10 7 3 7 

2015 -18 4 10 8 10 5 - 3 - 5 6 6 6 6 
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Figure 4-6 Scatterplot of the predicted soil moisture for each soil type by the Random 

Forest Models with the 2017 data 
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4.4.6 Uncertainty Analysis of Local Models 

Although the accuracies of the local models were high, none of the data subsets suggested 

performed the best in all soil textures. The variability of the results in each model, necessitates an 

investigation of the underlying reason. Therefore, in this part, the uncertainty associated with the 

obtained results of the downscaling is discussed. It should be noted that since the RF and XGBoost 

performed almost identically, RF model results were selected in this part of the analysis. For this 

purpose, the ranges between the maximum and minimum accuracies of the 11 models for each soil 

type were calculated and were compared to the variabilities in spatial properties (NDVI, elevation) 

of each soil textures. The comparison was evaluated by a Pearson Correlation Coefficient test 

(Benesty et al., 2009). The results did not indicate any significant correlation between the range of 

accuracies and the ranges in NDVI and elevation. However, when the ranges of accuracies were 

tested against the data size properties, including the number of stations in each soil texture, the 

number of data points range in each soil texture, and in the covered area percentage of each soil 

texture, significant correlations were discovered. The correlation coefficient between the 𝐑𝟐 range 

and the number of stations, number of data points range and area percentage across CONUS were 

equal to - 0.72, - 0.71, and - 0.68. Additionally, the correlations were significant at the 0.05 level 

with p-values equal to 0.017, 0.022 and 0.034. The results are included in Tables 4-10 and 4-11, 

and Figure 4-7. 
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Table 4-10 The accuracy range of the local models and the data size properties of each soil 

texture 

Soil Texture 𝐑𝟐 Range Number of Stations 
Number of Data 

Points Range 
Area in CONUS 

Clay 0.14 8 1095 3.243% 

Clay Loam 0.19 14 2341 4.186% 

Loam 0.09 62 11624 25.021% 

Loamy Sand 0.12 14 2470 3.620% 

Other 0.17 3 460 1.541% 

Sand 0.20 19 3107 6.734% 

Silty Clay 0.20 3 540 1.539% 

Silty Clay Loam 0.07 23 3624 4.439% 

Silty Loam 0.06 71 9914 24.631% 

Sandy Loam 0.09 77 9851 22.258% 

Table 4-11 Pearson correlation coefficient between R2 ranges and data size properties with 

significance at the 0.05 level 

  
𝐑𝟐 

Range 

Number of 

Stations 

Range in Number of Data 

Points 

Area 

Coverage 

𝐑𝟐 

Range 

Pearson 

Correlation 
1 - 0.72 - 0.71 - 0.68 

 
Significance (2-

tailed) 
 0.017 0.022 0.034 

 

 

 

Figure 4-7 Relationship between the models R2 ranges and the range in the number of data 

points for each soil texture 

The significant correlation coefficients imply that as the number of data points increases, the 

variability of the model explanatory power consequently tends to decrease. The outcome of the 
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test advises that in a downscaling task, a particular set of data in a model may result in high 

accuracies, but the results may vary significantly if the task is implemented using another time 

span of data. Using this finding, it was possible to define an uncertainty interval for the 

downscaling performance. Table 4-12 illustrates the uncertainty intervals for each soil texture. The 

accuracies are attained by the ensemble averaging of the local models created for each data subset 

in each soil texture.  

Table 4-12 Downscaling accuracy uncertainty interval for each soil texture across CONUS 

Soil Texture Downscaling Accuracy Uncertainty Interval 

Clay 89 ± 7% 
Clay Loam 80 ± 9.5% 

Loam 79 ± 4.5% 
Loamy Sand 82 ± 6% 

Other 88 ± 8.5% 
Sand 74 ± 10% 

Silty Clay 87 ± 10% 
Silty Clay Loam 89 ± 3.5% 

Silty Loam 87 ± 3% 
Sandy Loam 84 ± 4.5% 

 

A visual illustration of uncertainty intervals is shown in Figure 4-8 regarding the area percentage 

of each soil texture. It is noteworthy that the higher the percentage area, the less uncertainty was 

associated with the downscaling procedure. This signified that the achieved downscaling 

performances for most of the CONUS area was coupled with more confidence. In general, the 

models that received more input data were more skilled in generalizing the hidden relationships 

among them with less variance. For example, the uncertainty for loam, silty loam and sandy clay, 

which constitute 72% of the CONUS, varied between 3% to 4.5%, whereas for the remaining 25% 

area of CONUS the uncertainty differed in a range of 6% to 20%.  
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Figure 4-8 Downscaled soil moisture ensemble averaged accuracy band and the covered 

area percentage in each soil texture 

4.5 Conclusions 

In this study, SMAP soil moisture 36 km was downscaled to 1 km spatial resolution.  SMAP soil 

moisture data, the ancillary data consisting of NDVI (to capture the effect of vegetation dynamics 

on soil moisture), land surface temperature and precipitation (i.e., atmospheric variables to catch 

the temporal dynamics), topography and soil texture (i.e., geophysical variables to maintain spatial 

variability), and ground truth data (i.e., in-situ soil moisture measurements) were obtained for 

CONUS over the course of 45 months, from April 2015 to December 2018 to be used in the 

propose downscaling framework. The proposed framework incorporated two modeling schemes: 

local and global models. In local modeling, the stations were categorized based on their soil texture 

properties, where SMAP, as well as the rest of the ancillary variables (except soil type), are used 

as predictors in the model. In global modeling, unlike the local model, soil texture was similarly 

managed to be employed as another predictor in addition to the rest of the input feature. Three 

machine learning regression algorithms, RF, XGBoost and fully connected neural networks were 
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utilized to implement the modeling of the framework. The time span of the study was divided into 

three different temporal arrangements: cumulative, yearly, and quarterly, where each consisted of 

four different data subsets. A total of 396 local models, and 33 global models, the framework 

developed 468 different models. The results suggested that RF and XGBoost local models 

performed almost equally, but significantly better than FCNN. Conversely, FCNN outperformed 

RF and XGBoost in global modeling. The advantage of the global scheme over local scheme was 

its capacity to offer a consistent result for two soil textures: organic material and sandy clay loam, 

even though the accuracies were not close enough to other soil textures. The proposed framework 

also managed to offer high downscaling accuracies by using an ensemble averaging of the local 

models. With the help of an uncertainty analysis, the results suggested that the accuracy of the 

models significantly depended on the temporality of the selected data. By ensemble averaging the 

results of the local models for each soil texture, and the range of the variability between the 

minimum and maximum accuracy, the proposed framework was able to offer a consistent result 

with an uncertainty interval. Another finding of this study was the significant correlation between 

the uncertainty intervals and the data size, where the soil texture with more in-situ stations had a 

lower degree of uncertainty. Future works could add more in-situ stations from different 

measurement networks, and potentially include more topographical data such as landforms to 

increase the spatial features of the grid cells.
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Chapter 5 CONCLUSIONS 

In the modern realm of ubiquitous, large, frequent, and instant data capturing with the 

advancements in instrumentation, data generation and data gathering techniques, we are offered 

new prospects to comprehend and analyze the role of geography in everyday life. However, 

traditional geographic data analytics are now strictly challenged by the volume, velocity, variety 

and veracity of the data requiring analysis to extract value. Because of that, geographic data science 

has received a remarkable attention in the past two decades to tackle those challenges. However, 

considering that much of data science’s success is formed outside of geography, there is an 

increased risk within such perspectives that location stays only as an additional column within a 

database, no more or less important than any other feature. Geographic data science combines the 

data with spatial and temporal components. The spatial and temporal dependence allow us to 

interpolate and extrapolate to fill gaps in the presence of inadequate data and infer reasonable 

approximations elsewhere by the incorporation of information of diverse kinds and sources. 

Although, within scientific communities, there exist arguments regarding whether geographic data 

science is a scientific discipline of its own. Since data science is still in its early adoption phases 

in geography and for the transformation from a practice to a discipline, geographic data science is 

required to develop its unique concepts, differentiating itself from other disciplines such as 

statistics or computer science. This becomes possible when geographers, within a community of 

practice, are enabled to first learn and connect the current tools, methods, and domain knowledge 

to address the existing challenges of geographic data analysis. To take a step toward that purpose, 

in this dissertation, knowledge-rich applications of data science in the analysis of geographic 

spatiotemporal big datasets inspired by the existing challenges were studied and examined. In the 

first chapter, the challenges and opportunities in the era of “big data” were reviewed and it was 

explained that data science has formed as an interdisciplinary method to transform large amounts 
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of data into information. However, despite being common in other fields of science, data science 

is still in its initial implementation phases in the geography discipline. Furthermore, the 

opportunity to bridge the gap between geography and data science, and to explore the opportunities 

and challenges facing machine learning encouraged this research.  

This research tackled three different problems within geography; one within the subfield of human 

geography, and two within physical geography. In the second chapter, a fine resolution 

spatiotemporal crime prediction framework was proposed to evaluate the performance of multi-

task learning methods against the commonly used single-task learning methods. Although, there 

existed many gaps and challenges due to the limited scope of the study, and the complexity of 

human dynamics prediction, several findings were discovered.  In case of limited samples, MTL 

could perform better than the local modeling. Finer spatial and temporal resolutions significantly 

influenced the prediction results due to insufficient data causing sparsity in the dependent variable. 

On the other hand, by choosing larger spatiotemporal resolutions, the framework could not make 

the predictions practical for police preemptive actions. However, the purpose of this study was to 

establish a basis for future crime analytical studies by introducing MTL to the community for 

further research. 

In the third chapter, a framework using machine learning and land surface model outputs was 

developed to reproduce the USDM weekly drought maps. The results showed that the proposed 

framework could reproduce the USDM maps to a near-perfect level. Although, in terms of 

prediction accuracy, there was not much room left for improvement by the baseline model, our 

proposed framework could outperform it by testing different scenarios of the data inputs and 

machine learning algorithms to find the best combination. It was found out that employing the past 

week drought data as a predictor in the models played an important role in achieving high 
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prediction scores especially in the logistic regression.  Additionally, the drought classification task 

in this study was a nonlinear problem since Random Forest and SVM outperformed the logistic 

regression. One of the main challenges in this study was the lack of data points and imbalanced 

distribution of the extreme drought categories in the multi-class classification tasks across the 

domain of study which led to biased models to perform poorly for those categories. The issue was 

resolved by leveraging data from the neighboring grid cells to improve model performance for 

these categories that was essentially compensation of the temporal shortage of the available USDM 

data by increasing it spatially. 

In the fourth chapter, a framework was proposed to downscale SMAP satellite soil moisture 

retrievals from 36 to 1 km spatial resolution. A group of ancillary data were utilized to improve 

the downscaling task. NDVI to capture the effect of vegetation dynamics on soil moisture, land 

surface temperature and precipitation as the atmospheric variables to catch the temporal dynamics, 

and topography and soil texture as the geophysical variables to maintain spatial variability, were 

the variables that have been proven to improve the process. Three different machine and different 

data subsets in the proposed framework, managed to offer high downscaling accuracies by using 

an ensemble averaging of the local models. With the help of an uncertainty analysis, the results 

suggested that the accuracy of the models significantly depended on the temporality of the selected 

data. By ensemble averaging the results of the local models for each soil texture, and the range of 

the variability between the minimum and maximum accuracy, the proposed framework was able 

to offer a consistent result with an uncertainty interval. One of the main challenges in this study 

was the insufficient in-situ validation data points, particularly in soil textures with very few ground 

stations.  
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The contributions made in this research offer machine learning methods to effectively and 

efficiently overcome the existing challenges facing traditional approaches to analyzing 

spatiotemporal data. Additionally, this research recognizes the challenges that naturally arise with 

spatiotemporal data analysis for machine learning methods and offers solutions along the way. 

Overall, with the use of domain knowledge, machine learning algorithms proved their ability to 

learn the essential behavior of a system from training datasets. Although, insufficient sample size 

and in-situ observations related to the selected spatial and temporal resolution were found to be 

yet the primary obstacle in this research. Other challenges were originating from multi-source and 

resolution data which limited the more detailed studies. Poor data quality (e.g., SMAP data in this 

research) was another challenge which undermined the overall data quality and size, which 

consequently affected the modeling tasks performance. In the future, using our understanding of 

the challenges from the data and the shortcomings of the existing machine learning methods in 

every specific topic, there will opportunities to outline geographic data science as a unique 

discipline with its own concepts and immediate solutions in the analysis of the data. 


