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ABSTRACT 

 

ANALYZING FACTORS WHICH AFFECT LEGIONELLA OCCURRENCE IN A FULL-

SCALE GREEN BUILDING PREMISE PLUMBING SYSTEM 

 

By 

Ryan Julien 

Water consumption in the United States has decreased in recent decades. However, 

plumbing design guidance has not been updated to reflect this change, resulting in increased 

hydraulic retention time, disinfectant decay, and the proliferation of opportunistic premise 

plumbing pathogens (OPPPs) such as Legionella pneumophila. Time spent in premise plumbing 

systems has been shown to impact water quality through such mechanisms as the loss of residual 

disinfectant, leaching of pipe materials, biofilm formation, and increased concentrations of 

opportunistic pathogens such as Legionella spp. 

Quantitative Microbial Risk Assessment (QMRA) is a tool used to evaluate human health 

risks, and has been used to assess risks associated with Legionella. However, these assessments 

require data regarding the concentration of Legionella in water. Due to the ubiquity of Legionella 

in plumbing systems, their growth in biofilms, and the sporadic nature of biofilm detachment, 

Legionella concentrations are poorly understood, thus limiting the utility of QMRA in this 

instance. Factors which influence the prevalence of Legionella have been studied at the bench 

scale, but never in a full-scale building water system. The work presented herein takes a risk 

factor approach in exploring how to better monitor or predict concentrations of Legionella spp. 

This dissertation presents research to help better understand factors which best predict 

Legionella spp. Research objectives of this work were to: (1) identify variables which most 

effectively predict Legionella spp. concentrations, (2) determine the time water spends stored in 

building plumbing using a novel model, and (3) determine whether compliance with common 



 

 
 

temperature guidelines to limit Legionella proliferation have a significant impact on 

cencentrations. This research employs a rich data set from a full-scale home, equipped with 

flowmeters and temperature sensors to assess water conditions. Analytical samples were also 

collected to determine common water quality variables, as well as enumeration of Legionella 

spp. Multiple statistical analyses were used to investigate variable relationships and to evaluate 

the value of model results in predicting Legionella spp. concentrations. 

Principal component analysis suggests that water age and biofilm detachment are the 

primary drivers of changes observed in water quality, accounting for 53% of the total variance in 

the data. General linear modeling revealed that heterotrophic plate count, total organic carbon, 

total cell count, maxTSL and meanTSL, and modeled water age were significant predictors of 

Legionella spp. concentrations. Bayesian variable selection indicated that the 95th percentile of 

water age and maxTSL were most predictive of Legionella spp. concentrations. Results from the 

water age model were evaluated, indicating that modeled water age is a statistically significant 

predictor of Legionella spp. Compliance with temperature guidelines was found to be 

significantly correlated to Legionella spp. 

Results of this research indicate that water quality and use have significant implications 

to Legionella occurrence. Results also provide a framework to investigate Legionella spp. using 

variables which are more commonly and cheaply measured than direct measurement, potentially 

leading to more widespread monitoring for Legionella and reducing cases. These results show 

that water age is a critical factor in determining Legionella spp. prevalence. This knowledge 

should be applied to plumbing design and maintenance to limit water age and thereby Legionella 

spp. concentrations. 
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1 Chapter 1 – Introduction 

1.1 Opportunistic Premise Plumbing Pathogens and Legionella spp. 

Opportunistic Premise Plumbing Pathogens (OPPPs) are a group of waterborne 

microorganisms, including Legionella species (spp.), Mycobacterium avium and other non-

tuberculosis Mycobacteria, and Pseudomonas aeruginosa. OPPPs are commonly found in water, 

air, and soil around the world. OPPPs are commonly identified in both WDSs and PPSs, and are 

not correlated to indicator organisms such as E. coli. These differ from classical waterborne 

pathogens in that they are naturally-occurring and are selected for within plumbing 

environments, thus increasing their numbers and virulence.1–5 Further, these pathogens target 

especially susceptible hosts, such as the immunocompromised and elderly.1,6,7 Due to their 

ubiquitous presence, OPPPs are considered native to PPS environments and eliminating OPPPs 

from plumbing is not generally feasible. OPPP abundance in drinking water is related to 

conditions of the pipe environment rather than an indication of contamination.8 

OPPPs are specifically adapted to survival in drinking water systems. A review of current 

literature reveals key adaptations that allow OPPPs to flourish and gain a selective advantage 

within premise plumbing.8,9 Several adaptations were identified, some of which are broadly 

applicable while others are specific to only a single OPPP. Key adaptations that have been 

identified in multiple OPPP species are summarized in the following paragraphs to give a broad 

sense of the complex interactions between premise plumbing features and impacts to OPPP 

growth. 

Resistance to disinfectant: Disinfection is effective in inactivating many 

microorganisms, but OPPPs share a relative resistance to disinfectants commonly used in 

drinking water, thus selecting for them in the pipe environment.1,6 For example, Legionella 
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pneumophilia, Mycobacterium avium, and Pseudomonas aeruginosa are 83, 567, and 21 times 

more resistant to chlorine than E. coli, respectively.8 

Proliferation with limited oxygen and carbon: OPPPs are relatively slow growing 

compared to many other microbial inhabitants of premise plumbing. This slow growth rate 

allows OPPPs to survive in lower concentrations of carbon and oxygen that would not support 

other common microbial inhabitants of plumbing.6 Mycobacteria avium has been show to 

proliferate in concentrations of assimilable organic carbon as low as 50 µg/L,10 whereas E. coli 

appears to be growth-limited in concentrations an order of magnitude higher.11 

Persistence through phagocytosis: Several OPPPs are resistant to phagocytic killing by 

free-living amoeba. Phagocytosis, the process by which amoeba engulf materials, is used by 

amoeba to consume bacteria and other nutrients for use in the cell. However, OPPPs such as M. 

avium and Legionella spp. are resistant to killing in this way and have been observed multiplying 

within amoeba instead. Living within amoeba following phagocytosis has been demonstrated to 

protect Legionella spp. from elevated temperatures and concentrations of disinfectant7 as well as 

increase virulence in L. pneumophila and M. avium.1,6,12 

Growth in biofilms: Microorganisms tend to adhere to inner surfaces of water systems 

to form biofilm.13,14 Wingender and Flemming15 reported that roughly 95% of microbial growth 

in plumbing is on surface of pipe with only 5% contained in the bulk-phase water. As such, 

biofilms are often viewed as a reservoir of OPPPs and a source of contamination for downstream 

plumbing. Organisms in biofilm secrete extracellular polymeric substances (EPS) that assist in 

aggregating cells and preventing washout from the plumbing environment.15 EPS in biofilm has 

also been shown to shield microbes from environmental hazards such as disinfection 

compounds,16,17 nutrient deficiencies,18 and thermal shock.19 Biofilm environments are also 



 

3 

 

thought to promote horizontal gene transfer of antibiotic resistance and pathogen virulence.7,20 

Biofilms serve as a source of food and nutrients for OPPPs. Legionella pneumophila has been 

shown to thrive in the presence of dead cells commonly found in biofilm.21 Growth in biofilm 

has been shown to promote phagocytosis by amoeba, which enhances OPPP growth rates as well 

as virulence.1,7 Biofilm becomes detached from pipe walls, leading to suspension into the bulk 

water and washout. Literature suggests that biofilm detachment occurs for two primary reasons; 

cellular erosion driven by increased shear stress of moving water in the pipes, and from large-

scale sloughing, driven by structural failure of biofilm.22–24 Sloughing often occurs after cell die 

off in lower layers of biofilm leading to structural failure, which may be driven by changes in pH 

or dissolved oxygen.23–25 

Multiple exposure routes: OPPPs can initiate infections via multiple exposure routes, 

including inhalation of aerosols, as well as ocular and dermal exposures. However, enteric 

pathogens, which are generally removed or inactivated during drinking water treatment, almost 

exclusively initiate infection via ingestion. This means that OPPPs may present hazards during 

activities like bathing, due to the inhalation of aerosols, where enteric pathogens would not.7,26 

Legionella spp. are the most common OPPPs found in potable water, and are now the 

leading cause of waterborne infection in the United States.1,27 The scope of this dissertation is 

focused primarily on the role of Legionella spp. in PPSs and resulting health implications, 

though other OPPPs will be discussed for context and comparison throughout. Legionella is a 

genus of rod-shaped, gram-negative bacteria with over 50 individual species, and approximately 

70 different serogroups.1,28 While L. pneumophila is the Legionella species most commonly 

associated with human disease,1 roughly 25 other species such as L. longbeachae and L. 

micdadei are pathogenic and have been identified in potable water systems.29 Legionella 



 

4 

 

pneumophila was the first species to be discovered, and was identified following the an outbreak 

at the 1976 American Legion convention in Philadelphia, PA. Of the roughly 2,000 attendees to 

the convention, 182 are known to have developed a Legionella infection, also referred to as 

Legionellosis, with 147 cases requiring hospitalization, and 29 cases resulting in death.30 While 

other species and serogroups have been shown to cause disease, Legionella pneumophila 

serogroup 1 remains the primary etiological agent of Legionellosis.1,27 Multiple species of 

Legionella are not typically analyzed from the same samples, leaving a knowledge gap regarding 

the typical distribution of other pathogenic species.31 Risk characterization of Legionella spp. 

using only L. pneumophila is likely to underestimate risk, as the presence of other, potentially 

pathogenic, Legionella species are not considered. More appropriate, and likely conservative, 

risk estimates may be produced by conducting analysis for Legionella spp. and then treating 

those results as L. pneumophila, the most pathogenic species of Legionella. 

Legionellae can cause infections, especially in those with immunodeficiencies or other 

risk factors such as advanced age.6 Legionella spp. typically infect humans after exposure to 

Legionella-containing aerosols. Common domestic water uses such as showering, toilet flushing, 

humidifiers, and hot tubs can produce these aerosols. When these aerosols are delivered to the 

lungs, Legionellae have been known to survive phagocytosis by pulmonary macrophages, 

allowing them to replicate in the lungs and causing to human disease.  

Legionellosis can be subdivided into two primary diseases; Legionnaires' disease and 

Pontiac fever. Legionnaires’ disease is a type of pneumonia, which, like other respiratory 

infections, is commonly associated with cough, shortness of breath, and fever. However, unlike 

common respiratory infections, Legionnaires’ disease is also associated with gastrointestinal and 

neurological dysfunction, and mortality rates, estimated between 2.9 and 33 percent.1 Pontiac 



 

5 

 

fever is a more mild illness which does not cause pneumonia and is non-fatal. Legionellosis has 

become the most common reportable waterborne disease in the United States, with 6,079 

confirmed cases of Legionnaires’ disease in 2015.32 However, the exposure source for greater 

than 95% of infections is never identified,1 suggesting that the number of legionellosis cases is 

vastly undercounted. 

1.2 Premise Plumbing Factors 

Drinking water treatment in the United States has historically focused on eliminating 

contamination, whether biological or chemical. Tests for fecal bacteria, such as Escherichia coli, 

are used to indicate biological contamination. Most of these monitored pathogens need a 

mammalian host to reproduce,8 so it is often implicitly assumed that concentrations do not 

increase with time in piping. Likewise, concentrations of chemical contaminants do not increase 

in plumbing without a leak or source of contamination. As a result, relatively little attention has 

been focused on HRT, especially in PPSs, as it relates to water quality.  

Except for Legionella, which has a maximum contaminant goal (MCLG) of zero, federal 

statutes do not regulate OPP concentrations in drinking water.33 Further, Legionella’s MCLG is 

non-enforceable and does not require routine monitoring to ensure compliance. Community 

water systems, which supply water for more than 95% of people in the US,34 may therefore serve 

as a reservoir of Legionella spp. and other such pathogens with potential to contaminate 

downstream building plumbing. As such, it is not practical to eliminate these organisms from 

plumbing environments. Instead, focus must be placed on managing their populations and 

limiting human exposure.7 Policy in the United States dictates monitoring standards to ensure 

safe drinking water within WDSs, but these standards do not apply to PPSs which are 

downstream of the property line and/or within buildings. A notable exception to this is the Lead 
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and Copper Rule which contains standards to limit leaching of lead materials within premise 

plumbing by limiting the corrosivity of water in WDSs.4 Existing bulk-water monitoring 

requirements do not adequately address risks related to opportunistic pathogens, such as 

Legionella spp., which do not correspond to fecal indicator tests.3 Further, there are no 

commonly agreed-upon guidelines to limit Legionella spp. exposure in the United States.35 

It is well established that the water quality varies as travels from the water distribution 

system point of entry to building faucets. These changes occur via a variety of mechanisms such 

as decay of residual disinfectant, plumbing material leaching, and interactions between bulk 

water, biofilms, and scales.1,4,5 These processes are primarily time-dependent meaning that water 

age, or the time water spends in contact with plumbing, is a key determinant of water quality 

degradation.4,14 While water conservation efforts have been effective in reducing water 

consumption, existing plumbing and design guidelines have not been updated to reflect changing 

demand.36 This has led to increased water age1,37 which has been linked to degraded water 

quality.1,4,5,14 

Degradation of water quality is accelerated in building plumbing relative to service lines 

due to key differences between the structure and use of the plumbing: 

Pipe diameter and relative surface area: Building plumbing is generally constructed of 

smaller-diameter pipes than WDSs, which leads to an increased surface area to volume ratio.4 It 

has been estimated that PPSs contain ten times more surface area per unit volume than WDSs.4 

Pipe material leaching and area available for biofilm development are functions of wetted 

surface area in pipes.1 

Elevated temperature: Buried pipes, especially in areas like the northern United States, 

are typically well-insulated by soil and maintain a relatively constant cool temperature. As water 
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is delivered to building plumbing it is heated by the ambient temperature of the building.4 

Increasing the water temperature is understood to boost chemical and biological rates of reaction, 

which can cause adverse effects such as accelerated loss of residual disinfectant, additional 

pathogen growth, and accelerated leaching rates by affecting the solubility of plumbing 

materials.5,14,38 Water heaters have the potential to destroy pathogens such as Legionella in 

heated water when temperatures are consistently maintained above 60°C.1,39 However, when 

lower setpoints are used, or if the water temperature in the heated portion of the plumbing 

frequently cools to below 55°C, this added heat can encourage additional pathogen growth.1,9,40 

Intermittent water use patterns: Intermittent water use in buildings can cause 

stagnation in parts or all of the building plumbing between uses, causing both a greater mean 

HRT in general leading to more biofilm growth, as well as intermittent high-velocity events that 

encourage the erosion or detachment of biofilm into bulk water.4,41–43 Many OPPPs are 

particularly well-suited to initiate biofilm formation. For example, Mycobacteria spp. are 

exceptionally hydrophobic enabling them to better adhere to pipe walls have thus been 

considered biofilm “pioneers”,44 and are thus relatively selected for in premise plumbing. 

Variable plumbing materials: A wider array of materials are often used in building 

plumbing than in typical WDSs. Using dissimilar metallic materials in plumbing accelerates 

galvanic corrosion,4 which may in turn provide additional habitat for L. pneumophila.45 

Additionally, certain elastomeric materials have been shown to support additional microbial 

growth.46 

1.3 Contemporaneous Factors 

Water conservation efforts have significantly reduced the rate of water consumption in 

the United States. The United States Geological Survey (USGS) has reported total water 
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withdrawals have decreased from 42.1 billion gallons (159 billion L) per day in 2010 to 39.2 

billion gallons (148 billion L) per day in 2015, a decrease of seven percent.47 During this period 

the US population increased by four percent, and the proportion of the population using public-

supply water systems increased from 86% to 87%. Despite this growth, the national average for 

domestic water use declined from 88 GPCD in 2010 to 82 GPCD in 2015.47 This USGS data 

suggests that total water withdrawals have been decreasing since approximately 1980. Water 

withdrawals in the United States are currently at their lowest point since 1965 despite continued 

increases in population.48 Residential water demand decreased 22% per household from 

1999-2016, and 73% of this change can be attributed to efficiency increases of toilets and 

showerheads.49 

Existing water distribution infrastructure in the United States has been designed to 

accommodate higher flows than currently experienced. The Hunter Fixture Unit Method was 

developed in 1940 and remains widely used to determine pipe sizing for water mains and 

building distribution systems. However, this method is outdated and consistently overestimates 

water flows and resulting pipe size.49 Further, plumbing design guidance from state and local 

ordinances as well as design codes such as the Uniform Plumbing Code and the International 

Plumbing Code, have required high-efficiency water fixtures, leading to additional reductions in 

water use. At the same time, these plumbing codes have not addressed the decrease in demand.50 

These factors have led to oversized plumbing in both WDSs and PPSs, and further contribute to 

increases in HRT. 

Much of the water infrastructure in the United States is now nearing the end of its 

expected lifespan.51,52 The American Society of Civil Engineers (ASCE) estimates that 6 billion 

gallons (23 billion L) of treated drinking water are lost each day to leaking infrastructure.53 The 
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AWWA has estimated that existing water infrastructure will require $1 trillion for repairs and 

upgrades over the next 25 years.54 Reductions in demand have prolonged the useable life of 

water distribution infrastructure and reduced utility spending on operation and maintenance 

activities. However, these reductions have also decreased water sales and limited utility 

revenue.55 

Water is becoming increasingly unaffordable for many in the United States, driving down 

demand. It has been projected that water rates will exceed the EPA’s water unaffordability index 

for 35.6% of United States households by 2022.56 Utilities may shut off water for delinquent 

accounts resulting in immediate risks to that household, but also economic risks to the broader 

community. Infrastructure maintenance costs are largely fixed, meaning that shutoffs cause 

maintenance costs to be distributed over a smaller population and thus an increased marginal rate 

on water. This is likely to further increase water rates for the remaining customers, creating a 

positive feedback loop that may cause cascading rate increases and water shut-offs.56 Shutoffs 

also limit the throughput of utility distribution systems leading to increased HRT, presumably 

increasing concentrations of OPPPs. 

In addition to factors which increase the prevalence of OPPPs in potable water, risk 

factors for the general population in the United States have also increased. Advanced age and 

immune status are critical risk factors for Legionella infections.1,7,40 Records show that the 

United States population is growing older, with the proportion of people over age 65 increasing 

from 13.7% in 2002 to a projected 20.3% by 2030,57 and evidence suggests immunosuppression 

is also becoming more common.58 Given the increased prevalence of Legionella spp. in potable 

water and increased risk factors of those using it, it is perhaps unsurprising that incidence of 
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Legionellosis has increased. Between 2000 and 2015, cases of Legionnaires’ disease in the 

United States have increased by 450%.27 

1.4 Modeling Water Age 

Water age, the duration that water spends in a plumbing system prior to use, cannot be 

measured directly but may be indirectly estimated using either tracer studies or mathematical 

simulations.4,14,59 Tracers studies use changes in water chemistry, typically induced by injecting 

tracing compounds such as salts or radionuclides at a reference point, and monitoring for those 

tracing compounds downstream.14 Tracer studies are labor intensive and provide water age 

results only for a single snapshot in time based on the water usage pattern at the time of the 

study. In contrast, mathematical simulations use plumbing network information (e.g. pipe 

segment lengths and diameters) and flowrate data to simulate the movement of water through 

plumbing networks. These simulations are limited by the accuracy and representativeness of the 

input data and the assumptions made by the model.14 Mathematical simulations can be used to 

estimate water age during an extended period of time, but require much more data about the 

plumbing system and significant effort to calibrate and validate the results. 

With the exception of the lead and copper rule, federal monitoring requirements do not 

extend to building plumbing.4 Perhaps unsurprisingly then, currently available hydraulic 

modeling software is designed specifically for distribution systems, not necessarily building 

plumbing. The most widely cited of these software is EPANET, a public-domain software which 

simulates hydraulic and water quality behavior in pressurized water delivery piping.60 Several 

other software packages have been developed to achieve the same goals, but most alternatives 

rely on EPANET’s computational model61 which uses Lagrangian transport theory to model 

water flow, subdividing water volume into “fronts” and tracking their movement over time. 
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During advective transport, volumes of water occasionally must be created or destroyed to 

maintain assumptions regarding the fixed volume of the plumbing.59,60 EPANET, and alternates 

for that matter, are configured for pipe diameters and use patterns common in water distribution 

plumbing which reduces the impact of this error. However, the plumbing found in buildings is 

typically of smaller diameter, leading to a much smaller ratio of volume to pipe length.4 This 

exacerbates the issue of creating and/or destroying water volume. Further, the age of water in 

premise plumbing is anticipated to be more stratified than in distribution plumbing due to the 

intermittent operation of premise plumbing fixtures.  

Schück59 provides a demonstration of erroneous results when using EPANET to model 

water age in model premise plumbing system, and discusses modifications to EPANET source 

code and pipe network description to reduce the impact of these errors and generate plausible 

water age results.59 However, these are complicated and do not fundamentally address the error. 

All hydraulic modeling software built using EPANET’s computational engine are assumed to 

suffer from the same error, and no similar software specifically designed for building plumbing 

were identified. Thus a simple, accurate tool to determine water age in premise plumbing was 

desired to better examine the relationship between OPPP concentrations and water age. 

1.5 Assessing Risks with QMRA 

Quantitative microbial risk assessment (QMRA) is a framework used to quantify human 

health risks associated with exposure to pathogenic microorganisms. QMRA is typically 

conducted in five steps: hazard identification, dose response, exposure assessment, risk 

characterization, and risk management. During hazard assessment, a specific microbial hazard of 

concern is selected for analysis. Dose-response establishes the relationship between the dose of 

microorganism received and the probability of an individual developing ill-effects, such as an 
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infection or even death. An exposure assessment is conducted to determine the dose of microbial 

hazard delivered to individuals. Risks are then characterized, providing an overview of potential 

risks. The final step, risk management, uses each of the previous steps to find methods which 

reduce risks. These steps build upon one another and are conducted sequentially, except for dose-

response and exposure assessment, which can be addressed simultaneously. This process, along 

with data and tools to help complete such assessments, is further detailed in Quantitative 

Microbial Risk Assessment: Second Edition.62 

QMRA is typically carried out stochastically using Monte-Carlo simulations, and has 

been used to quantify human health risks associated with Legionella exposure.63,64 For example, 

concentrations of Legionella spp. in water may be taken from primary research to develop a 

distribution. Samples may then be taken from this distribution to simulate concentrations of 

Legionella spp. in water to estimate human health risks. By conducting this assessment 

stochastically as described, the aleatory and epistemic uncertainty associated with natural 

variation in stochastic processes and the imperfect measurements of the data, respectively, are 

retained in analysis. 

Data regarding Legionella spp. concentrations is generally sparse, and given the impacts 

of water quality on Legionella spp. concentrations, it may not be appropriate to apply 

concentrations measured in literature to a particular scenario. Modeling to determine 

concentrations of Legionella spp. based on water quality data may prove useful in addressing this 

gap in information, and help to resolve uncertainty regarding human health risks associated with 

exposure to water containing Legionella spp. 

A significant body of literature has been published investigating factors that contribute to 

the growth of OPPPs, methods to reduce OPPP numbers, and in quantifying OPPP risks in 
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PPSs.3,5,65,66 However, PPSs are inherently heterogenous due to differences in configurations, 

materials of construction, water use patterns, typical temperature range, and quantity and type of 

residual disinfectant. This degree of heterogeneity makes drawing generalized conclusions from 

plumbing studies difficult and potentially inappropriate. Bench scale studies have thus far been 

the primary tool to investigate the impacts of individual factors on OPPP prevalence. Bench 

scale studies allow specific variables, such as water temperature, to be isolated for their effects 

on pathogen concentrations to be better evaluated. However, this leaves the interactive effects of 

these variables unknown despite the dynamic nature of plumbing systems. The work presented 

here draws from data collected from a full-scale residential home, enabling a more holistic 

investigation of factors which influence Legionella spp. prevalence. 
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2 Chapter 2 – Objectives 

Concerns about water scarcity and degraded source water quality have generated much 

interest in water efficiency and conservation programs in recent decades. Policies such as the 

Energy Policy Act of 1992 have set mandatory efficiency limits for consumer goods, while other 

programs like the Environmental Protection Agency’s (EPA) WaterSense are voluntary and 

meant to encourage adoption of more water-efficient technologies.67 Water use rates in the 

United States have changed significantly in recent years. Residential water consumption 

decreased 22% on a per household basis from 1999 to 2016.49 Additionally, water withdrawals in 

the United States decreased 7% between 2010 and 2015 despite a population increase of 4% over 

the same period.48 

Ninety-five percent of people in the United States receive their water from a community 

water system.34 In these water systems, drinking water is typically collected by a utility or 

municipality, treated, and then delivered to consumers via water distribution system (WDS) 

infrastructure. Water delivery piping within a WDS or within the plumbing of a building (i.e. 

premise plumbing system (PPS)), is frequently difficult to access. Hence, water infrastructure is 

designed to accommodate flows over the full lifespan of the pipes, thus sizing and capacity over 

this time period must be predicted during the design phase. Unfortunately, methodologies for 

predicting water demand are outdated and consistently overestimate water demand,49 especially 

in light of the pervasiveness of water-efficient technologies. Additionally, residential plumbing 

codes have not been updated to address reduced water consumption, further compounding this 

issue. WDS and PPS plumbing are typically oversized as a result, increasing the duration of time 

that water spends in the piping, or the hydraulic retention time (HRT), also referred to as “water 

age”. Water quality is affected by elevated HRT through a variety of mechanisms including; 
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decay of residual disinfectant, the formation of carcinogenic disinfectant by-products, leaching 

of pipe materials into water, and the proliferation of opportunistic pathogens.14 In the United 

States, WDS plumbing has a combined total length of roughly one million miles (1.4 million 

km), while PPSs account for greater than 6 million miles (9.7 million km) in combined length,4 

Further, while municipalities or utilities are responsible for water quality in WDSs, this 

responsibility in PPSs falls to the property owner who may not have the skills and expertise to 

properly address risks.  

Health risks are climbing due to elevated concentrations of waterborne opportunistic 

plumbing pathogens (OPPPs) in treated drinking water as well as increased risk factors such as 

advanced age and chronic illness.57,68 Several OPPPs, such as Legionella spp., Pseudomonas 

aeruginosa, and Non-tuberculosis Mycobacteria, are commonly identified in drinking water8. 

This research focuses on Legionella spp., which has become the most common cause of 

waterborne illness in the United States.32 Evidence suggests that concentrations of OPPPs, 

including Legionella spp., are increasing.6 The proportion of the United States population over 

age 65, who are at higher risk of infection,7 is projected to increase from 13.7% in 2012 to 20.3% 

by 2030.57 The incidence of Legionnaire’s disease, caused by Legionella pneumophilia, a 

common waterborne opportunistic pathogen, has increased by 450% in the United States 

between 2000 and 2015.27 Healthcare costs associated with treating Legionnaire’s disease and 

other such infections has been estimated to be $850 million per year,6,69 while Naumova et al.13 

estimated these costs at over $2 billion per year. 

A more complete understanding of actual water demand and the impacts of plumbing 

components and configurations, such as pipe configuration, pipe materials, water use patterns, 

water age, and temperature, on waterborne disease is required to develop improved 
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recommendations regarding plumbing design and ultimately combat rising infection rates. 

Developing this knowledge prior to updating plumbing codes and repairing much of the United 

States water infrastructure has the potential to reduce incidence of drinking water associated 

disease. 

Key knowledge gaps currently act as barriers to better informed plumbing design 

guidance and to ultimately reducing the health impacts and financial burden presented by 

Legionella spp. This research aims to address the following knowledge gaps: 

1. Monitoring of Legionella spp. in PPSs is not required by any federal regulation. 

Additionally, such monitoring often not even feasible in many PPSs. Identifying 

key water quality properties which contribute to Legionella spp. prevalence could 

help to assess risks without widespread resource-intensive laboratory testing 

required to directly monitor bacterial concentrations. This research aims to 

identify a set of water quality variables which most-effectively inform Legionella 

spp. concentrations in a full scale PPS. 

2. Water age has consistently been noted as a variable with significant impact on 

Legionella spp. concentrations, but computational methods or models to 

determine HRT are currently lacking. This research presents a novel method to 

estimate water age in a full-scale PPS, and investigates the utility of these results 

in predicting Legionella spp. concentrations. 

3. Water temperature is also frequently cited in the literature as a variable with an 

impact on Legionella spp. prevalence. However, like water age, computational 

methods or models to assess the impacts of water temperature in premise 

plumbing systems have yet to be developed. This work presents a method to 
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determine whether water conforms to thermal guidance to control Legionella spp., 

and investigates its significance on resulting Legionella spp. concentrations. 
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3 Chapter 3 – Introduction to Methodological Approach and Exploratory Data Analysis 

3.1 Primary Data Source 

Experimental data for this study was collected from the Retrofitted Net-zero Energy, 

Water, and Waste (ReNEWW) house.70 This home, located in West Lafayette, IN, was originally 

constructed in 1928 and underwent a complete plumbing retrofit in 2016. During the retrofit, all 

piping in the home was replaced with cross-linked polyethylene (PEX) type A pipe using a 

trunk-and-branch design. Brass fittings and valves are present in the plumbing. Additionally, 

several flowmeters and thermistors were installed to monitor water use and temperature. The 

house was designed to conserve water and energy compared to conventional homes. Fixtures 

throughout the home were selected for their efficient water use. Due to these design 

considerations, the ReNEWW house cannot be considered a typical residential building. 

However, these design elements are becoming more prevalent in homes across the United States. 

Further detail regarding the plumbing design and data collection efforts can be found in Salehi et 

al.,71,72 respectively. This data set is unique in scope due to the resources required to collect it. 

Instrumentation required to record flowrates and water temperatures cost approximately 

$100,000 and over 220,000 labor hours were spent on sample collection and analysis over a one 

year period.72 

Plumbing at the ReNEWW house was surveyed to determine pipe length, pipe diameter, 

and to summarize plumbing configuration for this research. A piping and instrumentation 

diagram (P&ID) was developed using these results and is presented as Figure 1. The premise 

plumbing consists of ¾-inch and ½-inch nominal PEX-A style pipe, as denoted in Figure 1. The 

inner diameters of these pipes were assumed to be 1.73 and 1.23 cm, respectively. The locations 

of flowmeters, thermocouples, and sample locations are shown in Figure 1. Flowmeter 
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calibration was confirmed in May 2017 by manually collecting a measured volume of water from 

each plumbing fixture and comparing the volume to that recorded by the flowmeter. This process 

was repeated thrice for each flowmeter and showed the flowmeters were operating consistently 

and accurately. The plumbing configuration employed at the ReNEWW house is somewhat 

atypical for a residential PPS as it includes a hot-water recirculation loop to limit cooling of 

water at distal fixtures. This PPS also uses a thermostatic mixing valve to enable the water heater 

to achieve pathogen-killing temperatures of 60°C1,8,73 while limiting the potential for scalding 

users with excessively hot water. 
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Figure 1 - ReNEWW house piping and instrumentation diagram. Pipe diameter is depicted with 

line width, flowmeters with squares, sample locations in shaded rectangles, and the approximate 

location of thermistors shown in numbered circles. 

3.1.1 Analytical Data 

Data from water samples were collected during 58 separate sampling events from 

October 2017 to October 2018. Each of the seven fixtures listed in Table 1 was sampled during 

every event for a total of 406 total samples. Samples were collected from each of the fixture 

locations listed in Table 1 in descending order during each sampling event. The design flowrate 
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of each sampled fixture was identified, as well as the cumulative volume and percent of total 

whole-home water consumption were calculated. Each of the collected samples was analyzed for 

each of the water quality variables listed in Table 2. Additional detail regarding water quality 

sampling and analysis can be found in Salehi et al.72 Additional data regarding the total and 

dissolved metals, as well as chromatography for ions commonly identified in water, were also 

collected. These data, such as iron and manganese concentrations, have been linked to increased 

Legionella concentrations.74–76 However, these data were ultimately not used in analysis because 

most results were below detection limits, providing little utility in data analysis. Legionella spp. 

were quantified using qPCR for Legionella’s 23s gene. Specific tests for the Legionella 

pneumophila mip gene were also performed, however each of these results was below detection 

limits77. Further detail regarding the enumeration of Legionella spp. can be found in Ley et al.77 

Table 1 - Sample Collection Locations 

Fixture Name Abbreviation 

Design 

Flowrate 

(LPM) 

Total Volume 

(m3) 

Percent 

of Total 

Service Line SL NA 130.7 100% 

Kitchen Sink - Cold CKS 6.8 5.9 4% 

Bathroom Sink - Cold CBS 4.5 2.0 2% 

Water Heater WH NA 40.6 31% 

Kitchen Sink - Hot HKS 6.8 5.2 4% 

Bathroom Sink - Hot HBS 4.5 16.2 12% 

Bathroom Shower - Mixed BSM 7.6 36.6 28% 
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Table 2 - Monitored Variables 

Variable 

Name 
Variable 

Description 
Units 

Log 

transformed 

Percentile (natural scale) Number of 

Observations 
2.5% 50.0% 97.5% 

pH pH NA No 7.36 8.00 9.04 406 

Temp Temperature C No 15.63 22.90 26.30 406 

DO Dissolved oxygen mg/L No 4.30 8.40 10.56 406 

Total.Cl Total Chlorine mg/L Yes BDL 0.10 1.00 406 

Free.Cl Free Chlorine mg/L Yes BDL 0.01 0.75 259 

TOC 
Total Organic 

Carbon 
mg/L Yes 0.42 0.81 15.36 406 

DOC 
Dissolved Organic 

Carbon 
mg/L Yes 0.42 0.73 18.97 371 

Alka Alkalinity 
mg/L as 

CaCO3 
Yes 264.15 287.25 332.65 377 

TTHM 
Total 

Trihalomethanes 
mg/L No 0.05 15.57 31.55 399 

TCC Total Cell Count #cells/mL Yes 1.54E+03 3.77E+04 1.56E+06 406 

HPC 

Heterotrophic 

Plate Count  

(by culture) 

CFU/100mL Yes 4.03E+00 1.01E+04 3.60E+07 390 

Leg.sp 
Legionella spp.  

(by qPCR) 

gene copies/ 

100mL 
Yes 2.29E+01 4.02E+03 1.78E+05 258 

Despite best efforts to ensure complete data were collected, several results are missing for 

individual variables, as indicated in Table 2. Many results were found to be below method 

detection limits for free and total chlorine, TTHM, and Legionella spp. The lower detection limit 

(LDL) for chlorine and TTHM testing was 0.1 mg/L. The LDL for Legionella spp. was variable 

depending on the final sample concentration, and ranged from 13.3 to 38.9 gene copies per 100 

mL. For each set of these results below the respective LDL, half of that LDL was taken as the 

result of the analysis.  

The Shapiro-Wilks diagnostic78 was used to test the data for normality and was 

performed in R,79 implemented in RStudio.80 The test diagnostic, W, was used to determine 

whether natural or log-transformed data resulted in a higher W-statistic. This tests whether the 

data from each variable more closely conforms to a normal distribution before or after the log 

transformation. In each case where W for the log-transformed data was less than that of the 

natural-scale data, indicating the log-transformed data more closely conformed to a normal 
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distribution, further analyses were conducted on that log-transformed data. This distinction is 

noted in Table 2. Log-transformation of these variables was performed to better linearize the 

relationships between variables for subsequent analyses which assume linear relationships (e.g. 

principal component analysis and generalized linear modeling). Log transformation has no effect 

on Spearman’s rank-order correlation coefficient.  

3.1.2 Electronically Recorded Data 

Water flowrates were monitored in the ReNEWW house with 19 Omega FPR30081. 

These flowmeters recorded data with a one-second resolution between August 2015 and May 

2019. The location of each of these flowmeters is depicted in Figure 1. Water use events were 

defined from flowmeter data as any time water was used for longer than three consecutive 

seconds from a single water fixture.71 Further, any use events with less than five seconds 

between them where combined to reduce noise in the data. During data analysis two flowmeters, 

located at the hot kitchen island sink and hot bath 2 sink, were found to have errant results far 

greater than the design flowrate of these fixtures, likely as a result of a poor electrical connection 

with the sensors. These data were evaluated and ultimately replaced with a ratio multiple of the 

cold water data from adjacent fixtures as a reasonable estimate for water use. This process is 

detailed in the Appendix. 

3.1.3 Development of water use metrics 

The time that water spends in building plumbing (i.e., the difference in time from entry to 

the home and exiting the tap) is referred to as water age. However, it is important to note that 

water age cannot be directly measured. To approximate water age, four water use metrics were 

developed as surrogates from water use records: the number of uses (num.events), the 

cumulative volume used (vol.events), and the mean and maximum time since last water use 
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(meanTSL and maxTSL). It is important to note that none of these measures accurately represent 

water age because the age of water stored in the plumbing immediately preceding water use is 

not considered. The metrics num.events, meanTSL, and maxTSL are instead related to the 

frequency of water use, and vol.events is related to the total water volume consumed at each 

fixture. Each of these water use metrics are calculated over a specific time period.  

While it is well-established that water age impacts water quality,4,14 it is largely unknown 

how long elevated water age must be maintained in building plumbing for degradation of water 

quality to manifest in sampling results. To select an appropriate time period, Spearman 

correlation coefficients calculated between analytical results and water use metrics were 

evaluated over the time period time period from 1-120 days, as shown in Figure 2 to determine a 

relationship between these correlations and time. Variables appear to be affected by time period 

differently. As the time period increases from a single day the strength of correlation with water 

use metrics increases for most variables. The absolute value of the correlation begins to decline 

for most variables, including total chlorine, temperature, HPC, and Legionella spp., after 5-20 

days of use data are incorporated into the calculation of the use metrics. The strength of 

correlation increases again for several variables when using a time period >60 days. Ultimately, a 

period of 14 days, shown as a red vertical line in Figure 2, was selected with the goal of 

capturing strong correlations for as many variables as possible while still using a consistent time 

period for further analyses. A single time period, rather than multiple and/or parameter-specific 

periods, was chosen for simplicity and to ease further analyses. 
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Figure 2 - Absolute value of Spearman correlation coefficients between water quality 

variables and water use metrics, calculated using varying time periods from 1 to 120 days prior 

to sample collection. The red vertical line represents the time period selected for analysis, 14 

days. 
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These findings demonstrate that the strength of correlations between water quality and 

water use metrics vary depending on the duration of water use considered. Based on visual 

inspection of Figure 2, there appear to be two local maxima for many variables, which may be 

explained by two types of processes that have been discussed in literature: (i) those directly 

affected by use such as leaching,82 flushing,4 and biofilm detachment;15,22 and (ii) those mediated 

by established biofilm46,83 Several of these correlations, including free and total chlorine, TTHM, 

and DO, appear less sensitive to changes in time period as that period becomes larger (i.e. greater 

than 100 days). This may suggest that long-term trends at each fixture have an important role 

regarding changes in water quality as well as to the biological and mechanical stability of biofilm 

as has been noted in the literature.15,23,24 Note that variables are affected differently by the choice 

of time period. Selecting an alternative time period may impact relationships described in 

subsequent analyses that rely on water use metrics. 

3.2 Statistical Analyses Conducted 

Multiple statistical methods were used to evaluate data collected from the ReNEWW 

house, including correlation analysis, principal component analysis (PCA), and generalized 

linear modeling (GLM). Spearman correlation coefficients provide a sense of the 

interdependence between variables, and were used as a screening mechanism to eliminate highly 

correlated analytical variables with missing observations from PCA and GLM, allowing 

additional data to be considered in these analyses. PCA was used to identify phenomena 

influential to water quality which were not directly measured in the study. Multiple iterations of 

GLM were considered to identify variables with the strongest predictive power to Legionella 

spp. concentrations. The value of each variable in predicting Legionella spp. was also evaluated 

using a Bayesian generalized linear regression (BGLR) variable selection technique. The results 
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of each of these analyses were considered in concert to provide a more holistic understanding of 

the interactions which drive changes in building water quality. Results of these analyses are 

presented in Chapter 4, and are used to assess the significance of relationships measured 

variables have on concentrations of Legionella spp. These analyses are then again repeated in 

Chapter 5 to assess the impact of including a metric to represent water age on the overall results. 

3.2.1 Spearman’s Rank Correlation 

Spearman’s rank correlation coefficient is a bivariate, non-parametric measure which 

expresses the degree of statistical dependence of a pair of variables based on a comparison of 

their ordinal ranks. As such, Spearman’s rank makes no assumption about the linearity of 

relationship between variables as is required of alternative methods such as Pearson’s correlation 

coefficient. Spearman’s rank has been used in previous literature to explore similar water quality 

relationships in PPSs as those evaluated in this dissertation, such as Legionella relationships with 

HPC, TCC, water temperature, and chlorine concentration.77,84,85  It is also important to 

recognize that Spearman’s rank, much like Pearson’s correlation coefficient, is not suited to 

assess non-monotonic relationships. Bivariate scatterplots were visually inspected for obvious 

signs of nonmonotonicity, though no such relationships were identified. Spearman’s rank 

correlation coefficients (denoted as ρ) were calculated using the “rcorr()” function of the Hmisc 

library86 in R,79 implemented in RStudio.80 

3.2.2 Principal Component Analysis 

PCA analysis is a linear dimensionality reduction technique that maps data into a 

subspace with fewer dimensions. Orthogonal vectors called principal components (PCs) are 

selected within that subspace to maximize variance attributed to each PC, effectively indicating 

their significance to the data as a whole. In some instances it is possible to relate a PC with a 
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known physical phenomenon.87 PCA was selected for these analyses for its potential to identify 

key features in the data and important physical phenomena associated with interactions among 

variables. PCA was conducted in RStudio.80 Bartlett’s Sphericity Test88 was used to verify that 

PCA efficiently reduces the dimensionality of each data set analyzed. PCA was utilized in each 

study to investigate the influence of individual variables on the overall water quality in the 

plumbing. In Chapter 4, this includes water quality measurements as well as water use metrics 

developed from flowmeter data. PCA is also used in Chapter 5 to determine whether the 

addition of a mechanistically plausible water age metric clarifies any relationships. The goal of 

PCA in this application was to identify processes which result in the greatest variability in the 

water quality data to better describe factors associated with increased concentrations of 

Legionella spp. Specific hypothesis regarding this PCA were not developed beforehand to allow 

the data to drive the analysis and to better identify risk factors. 

3.2.3 Generalized Linear Modeling and Generalized Linear Mixed Modeling 

Generalized linear modeling (GLM) is a multivariate linear regression technique in which 

multiple independent continuous variables are used to predict a single continuous dependent 

variable. Relationships between water quality variables in this study were not presumed to be 

linear, and as such, the results from GLM are not intended for use as a predictive model of 

Legionella spp. concentrations. Instead, GLM is used here to determine how effectively water 

quality variables explain the variance observed in Legionella spp. concentrations. GLM has been 

used in published literature to explore similar relationships as those investigated in this 

dissertation89 

Only data with complete observations (i.e., no observations are missing for any variables) 

may be analyzed using GLM. With all analytical predictors included (i.e. water quality variables 
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and water use metrics), a total of 133 observations were available and used in the GLM analysis 

due to missing data. No data developed from flowmeter data (e.g. meanTSL, age.mean) were 

missing. Analytical, variables were selectively eliminated based on the results of a preliminary 

GLM to increase the robustness of the data set and improve model performance. Free.Cl and 

DOC were eliminated from GLM analyses due to frequent missing data and a high degree of 

correlation with alternative variables. Free.Cl was missing 147 observations and exhibited a 

correlation of 0.791 with Total.Cl, for which all data were observed. DOC was missing 35 

observations and exhibited a correlation of 0.966 with TOC, for which all data were observed. 

As such, Total.Cl and TOC were selected as proxies for Free.Cl and DOC, respectively. This 

allowed for the inclusion of 89 additional observations, for a total of 222, in GLM analysis. 

GLM was conducted in an iterative fashion, using the second-order Akaike Information 

Criterion (AICC) to further eliminate insignificant variables as described in the results of 

Chapter 4 and Chapter 5. AICC is a modified version of the Akaike Information criterion, 

modified to address small sample sizes. As a general rule of thumb, when the ratio of the number 

of observations to the number of variables in the model is less than 40, AICC is preferred to 

AIC.90 All possible combinations of first-order effects were evaluated using the ‘dredge()’ 

function from the R library, “MuMin”.91 In each case, the model with the lowest AICC was 

identified as the top-performing model (m.top). A competing model (m.comp) was defined as 

including all the variables found in models with a difference in AICC  (ΔAICC) of less than two. 

The variable sets identified in m.top and m.comp were each further investigated using a 

generalized linear mixed model (GLMM) which included a random effect to address the 

categorical impact sample location. 
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This process was conducted in Chapter 4 and Chapter 5 to identify variables that 

predict Legionella spp. concentrations with statistical significance. It was again conducted in the 

water age modeling study to determine whether the inclusion of plausible water age metrics 

resulted in a selection of alternative variables. 

3.2.4 Bayesian Generalized Linear Regression 

A Bayesian variable selection method was utilized to further investigate relationships 

between water quality variables and Legionella spp. concentrations. Each of the two models 

defined from GLMM analysis were fit using the R package BGLR.92 Studies such as O’Hara and 

Sillanpää93 and Woznicki et al.94 have reported the effectiveness of Bayesian variable selection. 

In this research, the BGLR library was used to calculate the probability of each parameter having 

a non-zero estimate, which is taken as evidence that the variable has a significant impact on 

Legionella spp. concentrations. This library relies on Gibbs sampling and employs scalar updates 

in parameter estimation.92 The BGLR library includes several options for the selection of prior 

probabilities in the Bayesian framework, including Gaussian and scaled-t mixtures that include a 

large point-mass at zero and are suitable for variable selection.95 
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4 Chapter 4 – Variable Selection 

4.1 Introduction 

Quantifying concentrations of Legionella is critical to assessing and managing human 

health risks. Identifying a limited set of factors which most influence Legionella spp. 

concentrations in full-scale building plumbing systems is expected to alleviate some of the 

challenge and expense of conducting water quality monitoring. This would enable sampling for 

less-costly analytes to inform Legionella spp. risks. Several studies have been conducted to this 

end but have not identified suitable surrogate monitoring strategies.84,96–98 Building plumbing 

environments undergo significant spatiotemporal variation in chemical and biological 

conditions.3,72 As such, large data sets are necessary to distinguish between mechanistic effects 

and variability inherent to building plumbing. 

4.2 Methods 

This study relies on a rich data set from a residential home equipped with high-efficiency 

fixtures and appliances. Previous literature has identified water quality degradation in bench-

scale studies pertaining to building plumbing, such as the leaching of carbon from pipes82 and 

proliferation of Legionella spp. over time.99 These previously unavailable, high-resolution data 

increase confidence in these bench-scale assessments. Further, this study presents an opportunity 

to confirm phenomena observed at bench-scale are also apparent at full-scale and to assess the 

relative strength of these processes. The objectives of this study were to (i) identify water quality 

variables that are most strongly related with Legionella spp.; and (ii) elucidate interactions 

between variables that ultimately influence Legionella spp. concentrations. 

To achieve these goals, relationships in the data were analyzed using a suite of statistical 

tools. Spearman’s correlation coefficient was selected to evaluate bivariate relationships between 
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each pair of variables. Spearman’s correlation was selected because it is non-parametric and 

makes no assumption about the distribution of the variables. Spearman’s correlation coefficient 

is suited only to characterize monotonic relationships. Scatterplots of each variable were visibly 

inspected for signs of nonmonotonicity, and no such patterns were identified. Principal 

component analysis was used to reduce the dimensionality of the data and identify phenomena 

related to the variation across all variables. GLM was selected to evaluate the statistical 

significance of each variable on Legionella spp. concentrations. These results informed a 

GLMM, which included the sample location as a random variable to account for variation 

between fixtures. The significance of each variable in this analysis are taken as evidence of the 

predictive value of each variable on Legionella spp. Finally, a Bayesian generalized linear 

regression technique used in variable selection was performed. These results present the 

probability of each variable having a non-zero parameter in a linear model to predict Legionella 

spp., which is taken as evidence the variable has a significant relationship with Legionella spp. 

concentrations. 

4.3 Results 

4.3.1 Correlation Coefficients 

Spearman’s Rank was selected to measure the degree of association between each of the 

variables in this analysis. These results were used as a screening technique to inform further 

analyses and can be found in Table 3. These results support the notion that building plumbing 
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environments are complex. Changes in one variable likely propagate to other variables or may be 

muted due to equilibria and buffering. 

Table 3 - Spearman's rank correlation coefficients 
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pH 1.00 0.09 -0.30 -0.20 -0.19 0.19 0.17 0.07 0.24 -0.06 0.19 0.15 -0.11 -0.19 0.18 0.14 

Temp 0.09 1.00 -0.40 -0.51 -0.41 0.49 0.53 0.31 0.20 0.48 0.46 0.35 -0.27 -0.29 0.34 0.47 

DO -0.30 -0.40 1.00 0.27 0.22 -0.42 -0.45 -0.14 -0.34 -0.23 -0.35 0.08 0.34 0.38 -0.39 -0.50 

Total.Cl -0.20 -0.51 0.27 1.00 0.79 -0.35 -0.42 -0.21 -0.29 -0.28 -0.30 -0.48 0.19 0.16 -0.21 -0.26 

Free.Cl -0.19 -0.41 0.22 0.79 1.00 -0.25 -0.27 -0.12 -0.33 -0.14 -0.16 -0.32 0.15 0.04 -0.07 -0.12 

TOC 0.19 0.49 -0.42 -0.35 -0.25 1.00 0.97 0.36 0.65 0.53 0.61 0.53 -0.57 -0.53 0.53 0.61 

DOC 0.17 0.53 -0.45 -0.42 -0.27 0.97 1.00 0.36 0.62 0.56 0.60 0.52 -0.57 -0.53 0.54 0.63 

Alka 0.07 0.31 -0.14 -0.21 -0.12 0.36 0.36 1.00 0.32 0.56 0.50 0.54 -0.17 -0.12 0.14 0.29 

TTHM 0.24 0.20 -0.34 -0.29 -0.33 0.65 0.62 0.32 1.00 0.26 0.37 0.33 -0.47 -0.31 0.30 0.38 

TCC -0.06 0.48 -0.23 -0.28 -0.14 0.53 0.56 0.56 0.26 1.00 0.70 0.54 -0.16 -0.19 0.23 0.38 

HPC 0.19 0.46 -0.35 -0.30 -0.16 0.61 0.60 0.50 0.37 0.70 1.00 0.62 -0.24 -0.40 0.42 0.49 

Leg.sp 0.15 0.35 0.08 -0.48 -0.32 0.53 0.52 0.54 0.33 0.54 0.62 1.00 -0.22 -0.35 0.39 0.22 

vol.events -0.11 -0.27 0.34 0.19 0.15 -0.57 -0.57 -0.17 -0.47 -0.16 -0.24 -0.22 1.00 0.75 -0.74 -0.72 

num.events -0.19 -0.29 0.38 0.16 0.04 -0.53 -0.53 -0.12 -0.31 -0.19 -0.40 -0.35 0.75 1.00 -0.99 -0.79 

meanTSL 0.18 0.34 -0.39 -0.21 -0.07 0.53 0.54 0.14 0.30 0.23 0.42 0.39 -0.74 -0.99 1.00 0.79 

maxTSL 0.14 0.47 -0.50 -0.26 -0.12 0.61 0.63 0.29 0.38 0.38 0.49 0.22 -0.72 -0.79 0.79 1.00 

 

Several variables exhibit a relatively high degree of correlation because the variables are 

intrinsically related. For example, the four water use metrics were highly correlated with one 

another. The number of water uses and meanTSL are nearly perfectly negatively correlated 

(-0.989). The high strength of this correlation is expected because meanTSL is essentially an 

inversion of num.events. num.events and maxTSL show a similar correlation, albeit weaker 

(-0.793) as maxTSL represents a single value rather than a mean over the two-week period. 

num.events and vol.events are also strongly correlated (0.754) because both the volume and 

frequency of use increase whenever water is used. Typical duration and flowrate of water use 

differ across fixtures, which are not accounted for in the metrics, making the correlation weaker. 
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As a consequence of these two points, vol.events has very similar correlations to num.events 

(0.754), meanTSL (-0.740), and maxTSL (-0.715). Some pairs of analytical results exhibit high 

correlation as well, such as DOC and TOC (0.966), as well as Free.Cl and Total.Cl (0.791), 

which is expected given that these tests have some overlap (e.g., DOC is a constituent of TOC). 

These correlations were considered as a data screening technique to determine which variables to 

include in linear modeling and principal component analysis. For any pair of variables with 

missing data, if the absolute value of the correlation coefficient was greater than 0.75, the 

variable with more missing data was excluded from subsequent analysis. As such, Free.Cl and 

DOC were not included in PCA or GLM analyses. As such, TOC and Total.Cl can be considered 

surrogates for DOC and Free.Cl, respectively, in the subsequent analyses. 

4.3.2 Principal Component Analysis 

A summary of the PCA results can be found in Table 4. PCs one through three (i.e., PC1, 

PC2 and PC3) have a standard deviation of greater than one and were considered relevant, 

cumulatively accounting for 62% of the variance in the data. Loading factors for each of the first 

three PCs were reviewed in concert, incorporating knowledge gained through expert knowledge 

and published literature, to synthesize plausible hydraulic, chemical, or biological interpretations 

of each PC.87 PC1 appears to be related to elevated water age due to loading factors such as those 

on vol.events (-0.280) and meanTSL (0.206). In other words, PC1 is positively associated with 

the time between water uses and negatively associated with flushing the plumbing with water 

from the service line. Relationships between other variables offer further support to interpret PC1 

as a metric for water age. PC2 has strong loading factors of 0.466 and -0.545 on pH and DO, 

respectively, which have been related to biofilm sloughing.23,24 PC2 has a negative loading factor 

on vol.events (-0.282), with minimal loadings on meanTSL (0.018), or Temp (0.038) further 
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supporting this interpretation. Additionally, all three microbial measures have negative PC2 

loading factors (-0.430, -0.283, -0.161), suggesting microbial washout. Taken together, these 

loading factors suggest PC2 is related to biofilm detachment. The strongest loadings on PC3 

were on meanTSL (-0.519), Total.Cl (-0.430), TTHM (0.347), pH (-0.342), and vol.events 

(-0.300). No specific phenomena were identified in the literature to definitively explain these 

loadings. 

Table 4 - Principal Component Analysis Results 

 Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

pH 0.16 0.47 -0.34 0.47 -0.10 0.05 -0.14 0.61 -0.07 -0.12 -0.05 -0.04 

Temp 0.32 0.04 0.14 0.08 0.62 -0.16 0.38 0.03 0.23 -0.35 -0.38 0.04 

DO -0.17 -0.55 0.34 -0.05 0.15 -0.04 -0.24 0.65 -0.14 0.02 -0.09 0.15 

Total.Cl -0.29 -0.14 -0.43 -0.34 -0.29 -0.13 0.03 0.16 0.57 -0.25 -0.29 -0.05 

TCC 0.32 -0.43 -0.08 0.09 -0.12 0.19 0.01 -0.01 -0.09 -0.42 0.20 -0.65 

HPC 0.37 -0.28 -0.19 0.16 -0.07 0.09 -0.05 -0.06 0.27 -0.17 0.42 0.66 

Leg.sp 0.37 -0.16 -0.01 0.19 0.01 0.15 -0.44 -0.15 0.35 0.49 -0.43 -0.14 

TOC 0.33 0.04 0.03 -0.36 -0.14 0.38 0.55 0.35 0.07 0.40 0.07 -0.03 

Alka 0.26 -0.25 -0.21 0.10 -0.27 -0.71 0.26 -0.01 -0.31 0.23 -0.15 0.03 

TTHM 0.30 0.18 0.35 -0.24 -0.48 0.11 -0.16 -0.06 -0.23 -0.38 -0.41 0.24 

vol.events -0.28 -0.28 -0.30 0.32 -0.02 0.47 0.30 -0.16 -0.32 -0.01 -0.41 0.20 

meanTSL 0.21 0.02 -0.52 -0.53 0.40 0.06 -0.31 0.00 -0.38 -0.01 -0.04 0.06 

Standard 

deviation 
2.17 1.28 1.05 0.98 0.92 0.85 0.69 0.66 0.60 0.56 0.49 0.43 

Proportion 

of Variance 
0.39 0.14 0.09 0.08 0.07 0.06 0.04 0.04 0.03 0.03 0.02 0.02 

Cumulative 

Proportion 
0.39 0.53 0.62 0.70 0.77 0.83 0.87 0.91 0.94 0.96 0.98 1.00 

 

4.3.3 General Linear Model 

An initial GLM was constructed to reduce the number of variables. This model relied on 

13 variables and included 222 observations of; pH, Temp, DO, Total.Cl, TCC, HPC, TOC, Alka, 

TTHM, num.events, vol.events, meanTSL, maxTSL; as input variables to predict the 

corresponding concentration of Legionella. All possible combinations of these variables as main-

effects were evaluated using the ‘dredge’ function of the R library, “MuMin”,91 and sorted using 

the second-order Akaike Information Criterion (AICC), to identify variables in best-performing 
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models. Eleven models were identified as having a difference in AICC (ΔAICC) of less than 2.0 

from the top-performing model. Of the 13 predictor variables included in the GLM, only Alka 

did not appear within these top-performing models. As a result, Alka was excluded from further 

analysis, allowing for 13 more observations to be included in the next iteration of the GLM. 

A second GLM was initiated to predict Leg.sp using the 12 variables identified in top-

ranked GLM models: DO, HPC, maxTSL, meanTSL, num.events, pH, TCC, Temp, TOC, 

Total.Cl, TTHM, and vol.events as predictors. This GLM utilized 235 observations of the data. 

Combinations of variables were again evaluated using the “dredge” function from the “MuMin” 

library available for R,91 and the top-ranked model included the variables pH, DO, HPC, 

maxTSL, meanTSL, num.events, TCC, TOC, and Total.Cl. Competing models with a ΔAICC of 

less than 2.0 were also considered, identifying only TTHM in addition to variables identified in 

the top-ranked model. 

Finally, two generalized linear mixed models (GLMMs) were constructed, including the 

variables from the top-ranked model (m.top) and variables from competing models (m.comp), as 

well as a random effect to describe sample location. Both models exhibited model convergence, 

homoscedasticity, and low multicollinearity, and are summarized in Table 4. Both models 

exhibited similar performance. DO and HPC were identified as statistically significant at the 

p < 0.001 level in both models. TOC was significant at the p < 0.001 level in m.top but only at 

the p < 0.01 level in m.comp. TCC was significant at the p < 0.01 level, and Total.Cl, meanTSL, 

and pH were each significant at p < 0.05 in both models. maxTSL and num.events were not 

significant. m.comp was unique in that it used TTHM as a predictor variable. However, the 

significance of TTHM was limited as it had a p-value of > 0.1. m.top and m.comp exhibited 
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AICC values of 992.7 and 994.2, respectively. m.top was selected as the preferred model based 

on the lower AICC and fewer variables. 

Table 5 - Comparison of Generalized Linear Mixed Models m.top and m.comp 

Variable 

m.top m.comp 

Estimate 

Std. 

Error 

z-

value Pr(>|z|) Estimate 

Std. 

Error 

z-

value Pr(>|z|) 

Intercept -5.14E+00 1.46E+00 -3.52 4.38E-04 -5.34E+00 1.49E+00 -3.59 3.37E-04 

DO 3.03E-01 4.99E-02 6.06 1.34E-09 3.05E-01 5.00E-02 6.10 1.05E-09 

HPC 2.64E-01 5.39E-02 4.91 9.32E-07 2.70E-01 5.44E-02 4.96 7.11E-07 

maxTSL -1.21E-06 7.09E-07 -1.71 0.09 -1.15E-06 7.13E-07 -1.62 0.11 

meanTSL 6.76E-06 2.93E-06 2.30 0.02 6.66E-06 2.94E-06 2.27 0.02 

num.events 3.37E-07 7.92E-05 0.00 1.00 7.02E-08 7.90E-05 0.00 1.00 

pH 3.34E-01 1.53E-01 2.18 0.03 3.47E-01 1.55E-01 2.25 0.02 

TCC 3.26E-01 1.04E-01 3.13 1.72E-03 3.18E-01 1.04E-01 3.05 2.28E-03 

TOC 7.17E-01 2.14E-01 3.35 8.04E-04 6.52E-01 2.34E-01 2.79 0.01 

Total.Cl -3.12E-01 1.26E-01 -2.47 0.01 -2.95E-01 1.28E-01 -2.31 0.02 

TTHM NA NA NA NA 6.49E-03 9.53E-03 0.68 0.50 

AICC 992.7 994.2 

 

4.3.4 Bayesian Variable Selection Method 

The probability that each parameter had a non-zero probability was estimated for each of 

the linear models using the BGLR library in RStudio.92 This estimate, as well as estimates for 

parameter and standard deviation, are presented in Table 6 for each of the three variable sets 

analyzed using the frequentist GLM presented above. The resulting parameter estimates were 

much closer to zero than frequentist GLM results. All variables except for maxTSL and 

meanTSL showed probabilities for non-zero parameter estimates of between 52% and 57%. 

meanTSL showed probabilities of a non-zero parameter of between 98% and 100% depending 

on the variable set, whereas probabilities for maxTSL were lower, between 14% and 38%. 
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Table 6 - BLGR Variable Selection Results (BayesC priors) 

 Variable 

m.full m.top m.comp 

Prob. β SD(β) Prob. β SD(β) Prob. β SD(β) 

DO 0.54 6.99E-09 1.89E-05 0.53 -1.26E-07 1.41E-05 0.56 1.12E-07 1.35E-05 

HPC 0.54 3.40E-08 1.92E-05 0.52 -2.25E-08 1.42E-05 0.57 -5.77E-08 1.35E-05 

maxTSL 0.22 3.36E-07 1.76E-05 0.14 1.07E-07 1.32E-05 0.38 5.38E-07 1.13E-05 

meanTSL 0.98 1.43E-05 5.20E-06 1.00 1.51E-05 3.30E-06 0.99 1.33E-05 4.31E-06 

num.events 0.56 -5.45E-06 2.08E-05 0.52 5.73E-07 1.40E-05 0.56 3.92E-07 1.33E-05 

pH 0.53 -1.71E-07 1.89E-05 0.52 1.40E-07 1.41E-05 0.57 -3.52E-08 1.35E-05 

TCC 0.54 -2.08E-07 1.92E-05 0.53 7.85E-08 1.43E-05 0.57 2.36E-07 1.35E-05 

TOC 0.54 2.81E-07 1.89E-05 0.52 -4.95E-08 1.41E-05 0.56 -1.28E-08 1.35E-05 

Total.Cl 0.54 -1.65E-08 1.89E-05 0.52 -2.09E-07 1.41E-05 0.57 -9.28E-08 1.36E-05 

TTHM 0.54 4.10E-08 1.89E-05 NA NA NA 0.57 -3.46E-09 1.35E-05 

vol.events 0.55 -3.31E-06 2.01E-05 NA NA NA NA NA NA 

Temp 0.54 2.21E-07 1.90E-05 NA NA NA NA NA NA 

 

While these results suggest that meanTSL has a strong influence on Leg.sp, no other 

variables were identified as likely contributors. The same analysis was conducted using flat, 

uninformative priors, which resulted in parameter estimates nearly identical to those obtained 

using the frequentist GLMs, lending support to the methods employed by BGLR. It is 

hypothesized that the relationships each variable have with Leg.sp are not strong enough to 

overcome the zero-biased prior assumptions used in variable selection, leading to near-zero 

parameter estimates due to the high degree of correlation and interrelatedness of the variables in 

this analysis. 

4.4 Discussion 

To date, published research on this topic has been most often conducted at the bench-

scale. Results from the analyses for a full-scale plumbing system largely corroborate effects 

observed in published literature conducted at bench-scale, such as the positive association of 

water age with increased concentrations of Legionella spp.2,4,7,10 and TOC.82,99,100 Building 

plumbing environments are highly variable due to differences in several factors such as 
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operation, materials of construction, piping layout, incoming water quality, and water 

temperature. This variability makes it difficult to develop generic guidance for reducing 

pathogen risks regarding building plumbing. 

This study is unique in that it was conducted in a full-scale residential home with online 

monitoring capabilities unmatched by other buildings across the United States based on 

discussions with the plumbing and green building industries. In addition to the high level of 

resources expended to collect this rich data set for analyses, the close proximity of the sampling 

location to the analytical lab facilitated increased data collection by eliminating the logistical 

requirements associated with sample handling such as long-term storage and transportation. The 

wealth of analytical and electronic water use data collected provide a unique opportunity to study 

how these effects interact with real plumbing and water use patterns. The scale of this study and 

its data collection efforts provide a unique opportunity to examine variable interactions in fully 

operational building plumbing. Our results indicate that Legionella spp. concentrations are most 

closely related to a limited subset of the water quality variables measured in this study. These 

findings have the potential to reduce labor and analysis costs of future OPP studies by 

identifying variables most relevant to Legionella spp. Further, the results of this study 

corroborate several relationships identified in previous literature, lending credibility to these 

findings. These relationships are explored in the following subsections. 

4.4.1 Flushing, Stagnation, and Water Age 

Water consumption at any fixture draws water through the system, refreshing the pipes 

with water from the service line. This effect also dictates the age of water within the plumbing, 

which has implications on how each of the measured constituents and properties accumulate or 

degrade within the water. PCA appears to have identified these effects as PC1. By flushing 
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plumbing with water from the service line dissolved oxygen and chlorine, which are consumed 

in building plumbing, can be replenished.4 Flushing also reduces water temperature, which is 

known to increase with age due to the indoor building temperature.4 These relationships are 

apparent in the data as DO, Free.Cl, and Total.Cl were each positively correlated with vol.events 

and num.events, and negatively correlated with meanTSL and maxTSL. Correlations of the 

opposite sign were noted for temperature. As further support, PC1 also exhibited loading factors 

of -0.23, -0.31, and 0.36, on DO, Total.Cl, and Temp, respectively. 

4.4.2 Fate of Residual Disinfectant 

Free and total chlorine were observed at each sample location. However, both forms of 

chlorine were often found to be below the method detection limit of 0.1 mg/L. Free and total 

chlorine were below detection limits in 44% and 27% of respective samples. These data were 

replaced with one half the detection limit (i.e. 0.05 mg/L) for analysis. A challenge encountered 

by monitoring a full-scale plumbing system was that more than 10% of the discrete water 

samples from the service line had no detectable chlorine. Meaning, the utility was delivering 

water of different quality than is typically expected. This degree of variation of water entering 

the service line has not previously been widely reported in the literature. Though, intensive water 

sampling as conducted in this study has not been previously reported in the literature either. 

Notwithstanding these challenges, free and total chlorine were strongly correlated (0.791) and 

correlations with other variables each had the same sign. Correlations with total chlorine were 

generally larger than those observed with free chlorine. The rate of chlorine decay is known to 

increase with temperature101,102 which was observed with negative correlations with total 

chlorine (-0.506) and free chlorine (-0.408).  
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Chlorine concentrations were negatively correlated to TCC, HPC, and Leg.sp. These 

results corroborate the susceptibility of the organisms which comprise these measures to chlorine 

disinfectants found in the literature.1,103 Additionally, Total.Cl was negatively associated with 

Leg.sp in the final GLMM and statistically significant at p < 0.05, demonstrating Legionella’s 

susceptibility to chlorine disinfection.1,7 Chlorine is known to react with organic matter to 

produce disinfection by-products (DBPs) such as TTHMs.104 The reaction rate is affected by 

temperature38,102 and the concentration of available carbon.105 TTHM production has been 

associated with elevated water age.4,14,102 Correlations suggest the same effects were present in 

these data. TTHM was correlated with TOC (0.652) and DOC (0.618), demonstrating a link 

between TTHM formation and available carbon. Correlations with free and total chlorine were 

much lower and negative, -0.334 and -0.288, respectively, supporting literature indicating that 

chlorine is consumed in forming TTHMs.104 This same consumptive effect is not apparent in 

TOC and DOC, perhaps due to the relative abundance of organics and the relative lack of 

disinfectant, or that only a fraction of organics are reactive with chlorine. Results of these 

analyses show that TTHM is negatively correlated with num.events (-0.305) and vol.events 

(-0.470), positively correlated with meanTSL (0.227) and maxTSL (0.379), and has a loading 

factor of 0.300 on PC1, all which imply TTHM concentrations increase with water age. 

PEX has been shown to leach carbon into water with time,82,99,100 implying organic 

carbon concentration may increase with water age. Leaching rates have also been positively 

associated with temperature.9,72 TOC and DOC are negatively correlated with vol.events and 

num.events, and positively correlated with meanTSL and maxTSL, implying that water use 

flushes TOC and DOC from the plumbing and resultingly that this carbon originates in the 

plumbing itself, whether through pipe leaching or biofilm sloughing. TOC’s positive loading 
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factor of 0.325 on PC1 is supportive of this as well. Further, temperature is positively correlated 

with TOC (0.488) and DOC (0.526). TOC proved to be an influential predictor of Legionella in 

both evaluated general linear models. These results may be evidence that microbial growth was 

carbon-limited in the plumbing, which is common in drinking water,106 or that the leaching of 

carbon from PEX allows TOC to act as an indicator of elevated water age. 

4.4.3 Microbial Contaminants 

TCC was correlated with HPC (0.701), HPC with Leg.sp (0.617), and TCC with Leg.sp 

(0.538). TCC and HPC also had positive parameter estimates in both GLMMs, indicating both 

are potential predictors of Legionella in this system. These relationships provide evidence that 

conditions favoring Legionella also favor higher concentrations of TCC and HPC. TCC, HPC, 

and Leg.sp are each expected to increase with water age.2,4,7,10 This is supported by correlation 

results and positive loading factors on PC1. Further, Bayesian methods showed that meanTSL, a 

proxy for water age, was most predictive of Legionella concentrations. Frequentist GLMM 

results included meanTSL with a statistical significance of p < 0.05. Bayesian linear modeling 

using BGLR suggests that meanTSL is the most likely contributor to Legionella concentrations, 

with the probability of a non-zero parameter estimate of ≥ 98% for all three evaluated models. 

The probability of a non-zero estimate for all other parameters was ≤ 57%. 

HPC and TCC had similar correlations to Temp (0.477 and 0.460, respectively), though 

Leg.sp had a weaker correlation (0.347). This is perhaps because Legionella spp. are better-

suited to the low-temperature environments found in plumbing.8 TCC, HPC, and Leg.sp were 

each negatively correlated with vol.events and num.events, and positively correlated with 

meanTSL, and had positive loading factors on PC1 of 0.324, 0.368, and 0.368, respectively. 

These results corroborate previous findings that these constituents increase with water age.100,107 
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TCC and HPC were each more strongly correlated to maxTSL than with meanTSL, though this 

relationship was reversed for Leg.sp. Further, GLMM results showed that Leg.sp increased with 

meanTSL. However, the association with maxTSL was weaker (p < 0.1) and inverted. Pathogens 

such Legionella spp. are relatively slow growing.6 These results suggest that consistent 

stagnation may be required for elevated concentrations of Legionella to develop compared to 

other measured microbes in this example water system. TCC, HPC, and Leg.sp had similar 

correlations with DOC, TOC, and Alka, implying these organisms favored similar conditions. 

Negative correlations with DO are stronger for HPC and TCC than with Leg.sp. The difference 

in these correlations may serve as evidence of selective pressures which favor Legionella in low-

oxygen environments.8 

Biofilm becomes detached for two primary reasons; cellular erosion due to shear stress 

induced by moving water, and bulk sloughing which may be induced by rapid changes in 

nutrient concentrations, temperature, shear stress, or a variety of other forces.22,23 Bulk sloughing 

is responsible for a majority of biofilm detachment.22,25 Correlation analysis shows that TCC, 

HPC, and Leg.sp are more strongly correlated with num.events than with vol.events, perhaps 

suggesting that the disruption caused by initiating each water use is more related to washout than 

the volume. DO exhibits a negative loading factor (-0.545) on PC2. Given the literature and the 

data, it appears that bulk sloughing may be occurring and that it may be driven by oxygen 

scarcity. 

TCC, HPC, and Leg.sp are anticipated to be washed out from pipes due to biofilm 

detachment, causing a transient increase in bulk water microbial concentrations as the sloughed 

biofilm is carried out by the bulk water, followed by a period with lower microbe concentrations 

as the biofilm becomes reestablished. Negative loading factors on PC2 were identified for TCC 
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(-0.430), HPC (-0.283), and Leg.sp (-0.161). The weaker loading factor on Leg.sp may be 

indicative of Legionella’s adaptations to resist washout 6. This sloughing of biofilm may also be 

associated with loading factors on Total.Cl (-0.143) and TTHM (0.176) as organic matter in 

detached biofilm is anticipated to consume chlorine and result in the formation of TTHM. TOC 

was presumed to increase with biofilm detachment but has a weak loading factor of 0.037 on 

PC2. The 14-day time period selected to calculate water use metrics appears to have captured a 

decreased microbial population resulting from the removal of biofilm but did not capture the slug 

of the biofilm itself as it exited the pipe network. Selecting a shorter time period may capture this 

as a temporary increase in microbial concentrations. Likewise, a longer time period may instead 

capture an increase in the same concentrations as the biofilm becomes well-established. 

Identifying the timeframe, which best corresponds with this increase resulting from biofilm 

sloughing was not attempted in this analysis. 

4.4.4 Research Objectives 

Data in this study were evaluated using multiple iterations of GLM, with both frequentist 

and Bayesian methods, to identify variables strongly related to Legionella spp. concentrations. 

Variable selection using Bayesian methods failed to identify an adequate subset of variables for 

Legionella prediction; however, both Bayesian and frequentist methods were used to develop 

parameter estimates with similar results. The top-performing GLM includes DO, HPC, TOC 

(each significant in the frequentist GLMM at p < 0.001), TCC (p < 0.01), Total.Cl, meanTSL, 

pH (p < 0.05), maxTSL, and num.events (not significant) as variables. Based on literature 

describing the influence of water age on Legionella concentrations,1,2,5 we anticipated that at 

least one water use metric would prove significant. However, PCA revealed that 39% of the total 

variance could be attributed to PC1, which was identified as water age. Additionally, although 
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maxTSL and num.events were determined to not be statistically significant in the top-ranked 

GLM, both were selected for inclusion in that model. Bayesian results for m.top indicated the 

highest probability of a non-zero parameter estimate for meanTSL at >99%. Taken together, 

these results illustrate the need for a more realistic indicator of water age. 

This study also aimed to elucidate interactions which influence Legionella spp. 

concentrations. Analyses presented here associated increased water age with decreased 

concentrations of chlorine and dissolved oxygen as well as increases in temperature, TOC, DOC, 

TTHMs, TCC, HPC, Legionella spp., alkalinity, and pH through correlation coefficients, 

loadings on PCs, and GLMM fitting. Concentrations of Legionella spp. appear primarily driven 

by water age. The effect of water age is manifested in this data set as a combination of the water 

age metrics, where age is negatively related with num.events and vol.events, but positively 

related to meanTSL and max TSL. Further, PC1, which accounted for 39% of the total variance, 

appears to represent water age in PCA. Further analysis, including an accurate representation of 

water age, is necessary to further investigate and distinguish these effects. 

4.4.5 Limitations of this Study 

While the ReNEWW house is a single family home, it differs from most homes in that it 

was specifically designed to reduce water and energy consumption. Water is heated in the home 

using waste heat from a roof-top photovoltaic system, which provides electrical power to the 

home. Water absorbs this waste heat in a series of large water heating. The combined volume of 

these tanks is much larger than would be expected for a typical residence. A thermostatic mixing 

valve then combines this heated water with unheated water to limit scalding risks throughout the 

plumbing. Additionally, the building experiences transient occupancy as it is used by students 

who live in the home during the school year. These factors may make generalizing results to 
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other homes difficult. However, the unique design elements at ReNEWW are expected to 

become more common as more water-efficient technologies are adopted. Further, focus on the 

analyses is placed on relationships between water quality characteristics. As such, this study was 

focused on conditions that contribute to OPP concentrations and not the water use that drive 

those conditions. 

Another challenge is that water age cannot be directly measured, and instead, the water 

use metrics vol.events, num.events, meanTSL, and maxTSL were considered for analysis. While 

each of these metrics are expected to inform water age, it is important to recall that none consider 

the age of water in the plumbing . This is thought to have a relatively minor impact on the cold-

water fixtures in the home due to the limited storage capacity of the water delivery piping (i.e., 

the system is effectively flushed with “new” water). While hot water delivery piping is similar, 

these pipes receive water from the water heating system rather than drawing water from the 

service line. The large storage volume (approximately 1,378 liters) and limited hot water use 

(mean 107.6 L per day) lead to a high hydraulic retention time (mean 12.8 days), which is 

unaccounted for in all four water use metrics. The variables meanTSL and vol.events were both 

used in PCA, but each has slightly different implications to water age. Given the importance of 

water age to Legionella spp. concentrations, an accurate, practical means of evaluating water age 

in a PPS is desirable. The development of such a model is described in the next chapter of this 

dissertation. 
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5 Chapter 5 – Water Age Modeling 

5.1 Introduction 

Water age, the time water spends in contact with a plumbing system, has been noted as a 

key factor influencing OPPP concentrations in Chapter 4 as well as published literature.1,4,5,8 

Water consumption rates have declined in recent decades.48 However, this trend has not been 

addressed in plumbing design guidelines,36 leading to increased water age.1,37 Guidance to limit 

the impacts of elevated water age include limiting stagnation (i.e. long periods of no flow or lack 

of water use) and implementing flushing protocols1. However, this advice is often prescriptive 

due to the inherent heterogeneity of premise plumbing and as a result may not adequately 

address risks in all circumstances. 

The goals of this work were to (i) produce a tool to determine the duration of time that 

water spends within the premise plumbing, referred to as water age, of a full-scale residential 

home; (ii) compare results to those produced by EPANET; and (iii) review the resulting water 

age to evaluate effects of water age on concentrations of Legionella spp. and common water 

quality variables. 

This study relies on a wealth of data collected from the ReNEWW house. Data include 

electronic water use records from September 2015 to May 2019, and detailed water quality 

analyses from sampling which ranged from October 2017 to October 2018. This data set is 

unique in scope due to the resources required to collect it. Instrumentation required to record 

flowrates cost approximately $100,000 for a three-bedroom home and sample collection efforts 

required over 220,000 labor hours 72. Water samples were collected 58 separate times from seven 

different fixtures in the house for a total of 406 samples, which were analyzed for a variety of 

common water quality variables. Flowrate data was recorded at one-second resolution from 18 
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flowmeters situated throughout the building plumbing as shown in Figure 1. The plumbing 

design and data collection efforts are described in additional detail in Salehi et al.71,72, 

respectively. Simulating water age was preferred in this instance due to the labor requirements of 

a tracer study, availability of flowmeter data, and desire to determine water age over extended 

periods of time. 

5.2 Methods 

Plumbing configuration and water use data are utilized to simulate the flow of water 

through the premise plumbing. The storage volume of the entire plumbing network is divided 

into equal-volume (5mL) segments. Water flowrates are also discretized by the same unit 

volume. Flowmeter data is then used to direct each unit-volume of water through a series of 

states which represent the plumbing network using a plug-flow regime. Each unit of water is 

labeled with the time it is added to the plumbing from the service line. Analytical samples were 

collected from seven fixtures in the premise plumbing. Water age is calculated at each of these 

seven nodes as water exits the plumbing in the simulation. This simplified Eulerian approach 

eliminates the ability to model hydraulics, but also fundamentally eliminates the advective 

mixing error generated by EPANET. The process to simulate water flow is described in 

additional detail in the following sections. 

Plumbing at the ReNEWW house was surveyed to determine pipe length, pipe diameter, 

and to identify plumbing configuration. A piping and instrumentation diagram (P&ID) was 

developed using these results and is presented as Figure 1. The premise plumbing consists of ¾-

inch and ½-inch nominal PEX-A style pipe, as denoted in Figure 1. The inner diameters of these 

pipes were assumed to be 1.73 and 1.23 cm, respectively. The volume of each pipe in the 

network was determined by data collected during a plumbing survey, and then expressed in 
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integer counts of 5 mL units. The volume of the water heater tanks was assumed to be part of the 

pipe immediately downstream in the plumbing model. For example, tanks 1-3 have a combined 

volume of 1227 L (324 gallons), which was incorporated into the volume of pipe segment T3-

WH (see Figure 1Error! Reference source not found.). The upstream and downstream node of e

ach pipe are also noted, which informs how water passes from one pipe to the next. 

5.2.1 Water Age Model Development Process 

Cumulative flow was discretized rather than instantaneous flow to ensure the full water 

volume passing through the pipe network was accounted for, regardless of choice of unit volume. 

The finest resolution of any flowmeter used in the premise plumbing was 5.9 mL. Thus, a 5 mL 

unit volume was selected to balance the need to capture flow with a fine resolution and with the 

computational complexity that arises from using a smaller unit volume.  

Cumulative flow recorded by the 19 flowmeters in the pipe network were assigned to 

corresponding nodes as shown in Figure 1. Fixtures with no associated flowmeter (e.g., 

basement sink) were assumed to experience no water use. During the sampling period, residents 

of the home were asked to minimize water use at each of these unmetered fixtures, and their 

contribution to water use is thus assumed negligible. Further, it was assumed that the flowrate 

into the water heater never exceeded the sum of all monitored hot water use (i.e., water does not 

enter the heater unless there is equal downstream demand). 

The cumulative flow was then calculated for each of the nodes not associated with a 

flowmeter. When the cumulative flow of all immediately downstream nodes was known, the sum 

of the cumulative flow of those nodes was taken as the cumulative flow of the upstream node. 

Likewise, when the cumulative flow of all immediately upstream nodes was known, the 
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cumulative flow at the downstream node was taken to be the sum of that flow, minus any flow 

directed to any alternative nodes. 

A list is then prepared which contains a vector for each pipe segment in the network. 

Each of these vectors are to be populated by the units of water as they enter the pipe. Each unit 

of water that passes through a pipe is represented by a single element in that pipe’s vector, the 

value of which is equal to the time that unit of water entered the premise plumbing. The order of 

each unit represented in these vectors is preserved to model a plug-flow regime. The water age of 

every unit water leaving the seven monitored fixtures is calculated as the difference between the 

time that unit exited that node and time it entered the building from the service line. 

To initiate the simulation, the first n elements of the entry time vector for each pipe are 

populated with the starting time of the simulation, where n is equal to the pipe volume, in units 

of water. This has the effect of filling the pipes with water upon initiating the simulation. Due to 

the large volume and elevated hydraulic retention time (HRT) of the water heater tanks, the 

volume corresponding to those tanks began the simulation with an entry time equivalent to the 

mean HRT of the tanks (13.82 days). This was done to generate more realistic water age results 

for hot-water fixtures. This water with an assumed age is replaced as hot water is consumed in 

the house. Another vector is initialized to track the cumulative flow experienced by each pipe, 

which is used to identify water which is still available to be passed downstream. This tracker is 

used to essentially shift water forward in pipes to accommodate flow. Recall that water is not 

mixed during the simulation. 

The model loops through each row of the cumulative flow matrix and identifies all nodes 

and pipes which experience flow during that second. Each second, the script then loops through 

each active node in the network sequentially, starting at the service line and moving downstream. 
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All upstream flow to be delivered to the node is identified by indexing the entry time vectors of 

those upstream pipes using the cumulative flow matrix. The volume of the pipe is included as an 

offset to identify only water which has passed through the full volume of the upstream pipe. 

Likewise, the cumulative flow experienced by the pipe is used as an offset to ensure only flow 

which is still present in the pipe is available to be moved downstream. When the active node is 

the service line, new water is added to the premise plumbing by adding a vector with length 

equal to the change in cumulative flow at that pipe at that second, equal to the current time. All 

upstream flow is combined as a single vector to represent the slug of water that passes through 

the node at that second. Next, if the node is in the list of monitored fixtures, water age is 

calculated as the difference between the current time in the simulation and the entry time of 

water at the node. Finally, the slug of water is then delivered to downstream pipes by directing 

elements of that slug to account for the volume of water moving through those pipes. An 

equivalent volume is added to the cumulative tracker, effectively shifting the water forward in 

the pipe. This process is then repeated for every node, and for each second of recorded data. 

5.2.2 Comparison with EPANET 

Water age was calculated using a simplified version of the ReNEWW plumbing network 

by both EPANET 2.260 and the novel model presented here to draw comparisons between the 

two. Water age was calculated using both methods for three cold water fixtures, cold kitchen 

sink (CKS), as well as cold bathroom sink (CBS) and the cold portion of mixed bathroom 

shower (MBS) (referred to in this section as CBSi and CBSh, respectively). This simplified 

plumbing network eliminates all water use except from these three fixtures, as well as the hot 

water recirculation loop and thermostatic mixing valve, which are incompatible with EPANET. 
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EPANET calculates the water age at each fixture using a time step of one-minute. The 

water age model presented here, however, calculates the water age of each 5mL parcel to exit 

each fixture. To more directly compare the two models, the water age calculated by EPANET 

was assigned to each parcel based on the time of water use. This serves to weight the age of 

water by volume rather than time. Scatterplots, boxplots, and correlation coefficients were used 

to draw general comparisons between the two methods. 

5.2.3 Variable Selection 

Published literature highlights the importance of water age to the growth of pathogens 

such as Legionella spp.1,4 To gauge the importance of the results from the water age modeling 

presented here, the variable selection process implemented in Chapter 4 was repeated with the 

inclusion of results from the water age model presented here to investigate its influence on water 

quality. Mean, median, and 95th percentile of water age were calculated for each of the 406 water 

samples collected. This summarized water age for two weeks prior to the collection of each 

sample. Correlation between variables was assessed using the Spearman correlation coefficient. 

Principal component analysis (PCA) was conducted in R on the variables Temp, DO, 

Total.Cl, TCC, HPC, Leg.sp, TOC, Alka, TTHM, vol.events, meanTSL, age.mean, age.median, 

and age.95per. As in Chapter 4, the variables Free.Cl and DOC were excluded due to high 

correlation with other variables and the number of missing observations which limit the data 

which can be used in PCA. The suitability of PCA to efficiently reduce the dimensionality of this 

data set was confirmed with Bartlett’s sphericity test.108 The Kaiser-Meyer-Olkin Measure of 

Sampling Adequacy (MSA)109 was also calculated, indicating an overall MSA of 0.72 which is 

considered “middling”.110 These suggest that PCA offers value in dimensionality reduction on 

these data.  
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Generalized linear modeling (GLM) was conducted in an iterative fashion to exclude 

variables with low importance and high degree of missing data, as in Chapter 4. A specific 

description of this process is provided in the along with results. Bayesian generalized linear 

regression (BGLR) was also utilized to assess the significance of variables, including water age 

results from this model. BGLR was conducted using the BGLR library in R.95 This analysis 

calculated the probability that each variable in the linear model has an associated non-zero 

parameter estimate, taken here as evidence the variable influences Legionella spp. 

concentrations. 

5.3 Results 

5.3.1 Water Age 

A summary of the calculated water age at each fixture is presented in Figure 3.  Results 

indicate that water age was lower at cold fixtures than hot. This is especially true of the service 

line, where water enters the building. As expected, the highest and most consistent water age was 

identified at the water heater. These results indicate that water age at the hot fixtures is typically 

highest at hot kitchen sink (HKS) followed by the hot bathroom sink (HBS). The ReNEWW 

house relies on a thermostatic mixing valve downstream of the water heater to regulate the 

temperature of water. Thus, a significant volume delivered to HKS and HBS bypassed the large 

heating system that feeds the water heater (WH), resulting in lower water age. The mixed 

bathroom shower (MBS) location is a shower fixture, where the user may change the proportion 

of hot and cold water. This is expected to have implications on water age, and indeed, 56.8% of 

water from MBS has an age of less than one week. Further, water use at MBS is generally over a  

prolonged period of time in comparison to other fixture types, thus flushing older water from 

nearby plumbing. This may help to explain the lower age of HBS relative to HKS. Water age 
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results, when evaluated with consideration of the configuration of the system, appear to explain 

general trends in observed water age. 

 

Figure 3 - Boxplot of water age results 

Mean water age as calculated by this method (age.mean) was found to be similar to the 

mean time since last use (meanTSL) for the cold water locations, as shown in Figure 4. The cold 

water sample locations; the service line (SL), cold kitchen sink (CKS), and cold bathroom sink 

(CBS); exhibit a linear trend between age.mean and meanTSL. Spearman correlation coefficients 

between these two metrics were found to be 0.91, 0.86, and 0.73 were calculated for SL, CKS, 

and CBS, respectively. The hot water samples, however, do not visually follow this trend, and 

tend to have lower meanTSL than would be implied by a linear trend with age.mean. Spearman 

correlations for the hot water sample locations, WH, HKS, HBS, MBS are lower, at 0.70, 0.72, 

0.60, 0.52, respectively.  
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Figure 4 - Scatterplot comparison of the water age metric age.mean with the water use 

metric meanTSL. The color of each point indicates the location from which each sample was 

collected, as shown in the legend. 

The water age model produced results which were more distinct between fixtures than 

use metrics. age.mean and meanTSL are compared by fixture in Figure 5. Water age model 

results show stratification between the cold and hot water sample locations, whereas substantial 

overlap exists across sample locations for the water use metric results (meanTSL). This again 

demonstrates the impact of water heater HRT on water age model results which is unaccounted 

for in each of the water use metrics (meanTSL, maxTSL, num.events, vol.events). 
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Figure 5 - Boxplots comparing the water age metric age.mean (left) with the use metric 

meanTSL (right) 

Histograms of water age at each fixture sampled for water quality parameters are 

presented in Figure 6. Each location exhibits a unique pattern, though CBS and HBS appear to 

have a similar shape for water age below one week. This effect appears present between CKS 

and HKS as well, but to a much lesser extent. Recall that water use at HKS and HBS were 

assumed to be a ratio of use at meters for CKS and CBS, respectively. These similar use patterns 

appear to have manifested as similar patterns in water age. This seems to suggest that water use 

patterns, rather than the HRT of the upstream plumbing, has a more substantial influence on 

water age in this PPS.  
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Figure 6 - Histogram of water age results by fixture 

31.5% and 81.2% of water delivered to HKS and HBS respectively had an age of less 

than one week. This could be evidence of a problem with the assumption about cold water 

coming from the thermostatic mix valve whenever hot water is used by not metered at WH. 

5.3.2 Variable Selection Including Water Age 

 Correlations 

Spearman correlation coefficients were calculated for each pair of analytical and water 

use variables as in Chapter 4 with the inclusion of mean, median, and 95th percentile of water 

age (referred to as age.mean, age.median, and age.95per, respectively) calculated during the 

same two week period prior to sample collection. All three metrics had the same sign for all 

correlations, and the magnitude of these correlations was generally higher for age.mean than for 
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age.median or age.95per. These water age metrics showed relatively weak correlations with the 

water use metrics evaluated in Chapter 4. For example, age.mean showed correlation 

coefficients of -0.156, -0.312, 0.330, and 0.379 with the cumulative volume (vol.events), number 

of water uses (num.events), mean time between water uses (meanTSL), and maximum time 

between uses (maxTSL), respectively, with each of these four metrics calculated over the same 

two-week period prior to sample collection. These weak correlations suggest that water age 

calculated in this paper represents unique data. 

 Principal Component Analysis 

PCs one through three (i.e. PC1, PC2, and PC3) exhibited a standard deviation of greater 

than one. As such, these PCs were considered for interpretation using loading factors and 

variable relationships identified in published literature.87 PCs one through three have a combined 

variance of 0.57, and are presented in Table 7. 



 

59 

 

Table 7 - PCA results for PC1 through PC3 

Variable PC1 PC2 PC3 

pH 0.080 -0.370 -0.495 

Temp 0.271 -0.240 0.181 

DO -0.116 0.402 0.404 

Total.Cl -0.225 0.292 -0.136 

TCC 0.359 0.170 0.018 

HPC 0.294 0.221 -0.024 

Leg.sp 0.140 0.019 -0.473 

TOC 0.028 -0.236 0.368 

Alka 0.278 0.037 -0.031 

TTHM 0.199 -0.328 0.315 

vol.events -0.227 0.348 -0.219 

meanTSL 0.144 -0.208 -0.092 

age.mean 0.396 0.248 0.004 

age.median 0.363 0.259 0.066 

age.95per 0.378 0.150 -0.140 

Standard 

deviation 
2.22 1.51 1.13 

Proportion 

of 

Variance 

0.33 0.15 0.08 

Cumulative 

Proportion 
0.33 0.48 0.57 

 

The water age metrics age.mean, age.95per, and age.median had the highest magnitude 

loadings of any variable on PC1 at 0.396, 0.378, and 0.363, respectively. TCC and HPC have the 

next highest loading factors at 0.363 and 0.298. These results suggest that PC1 is related to water 

age. The sign of each loading factor aligns with expectations about how water age effects each 

variable. For example, literature suggests that with increasing water age, HPC concentrations and 

water temperature will increase and concentrations of residual chlorine and DO will 

decline.2,14,38,98,111 The water metrics vol.events and meanTSL are negatively and positively 

related to PC1, respectively, further associating PC1 with water age. Alka showed a loading 

factor of 0.278. A literature search was conducted to identify other instances relating alkalinity to 

water age in premise plumbing, however, no meaningful results were identified. Alkalinity may 



 

60 

 

be produced or consumed in some biological reactions.112 While no direct mechanistic link 

between water age and alkalinity is identified here, it appears plausible that alkalinity could 

increase with water age as the result of a process such as denitrification. Additional investigation 

would be required to conclusively determine this relationship in the ReNEWW plumbing. 

Loading factors on PC2 were of the highest magnitude for DO (0.402), pH (-0.370), 

vol.events (0.348). Each of these variables have documented impacts on biofilm detachment, 

either by weakening the structure of biofilm or by encouraging washout due to the increased 

shear stress caused by changes in water velocity.15,23 Leg.sp had the lowest PC2 loading factor at 

0.019, which is perhaps evidence of Legionella’s adaptations to resist washout.6,83 As such, PC2 

appears to be related to biofilm detachment, just as in Chapter 4. The water age metrics 

age.median, age.mean, and age.95per have lower-magnitude loading factors on PC2 at 0.259, 

0.248, and 0.150). These weaker factors may be related to the time that it takes biofilm to 

become reestablished following biofilm washout. The highest-magnitude loading factors on PC3 

were pH (-0.495), Leg.sp (-0.473), and DO (0.404). Weaker loadings were found for age.95per 

(-0.140), age.median (0.066), and age.mean (0.004), suggesting PC3 has little to do with water 

age. PC3 may then also be related to biofilm detachment, and appears to be more closely related 

with inducing structural failure of biofilm than with hydraulic washout.  

 General Linear Modeling 

An initial GLM to predict Leg.sp was implemented using 16 independent variables; pH, 

Temp, DO, Total.Cl, TCC, HPC, TOC, Alka, TTHM, num.events, vol.events, meanTSL, 

maxTSL, age.mean, age.median, age.95per; and 222 useable observations. Combinations of 

these variables were reviewed using the ‘dredge’ function from the “MuMin” R library91. The 

second-order Akaike Information Criterion (AICC) was used to identify the best-performing 
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models. A total of 39 models with a difference in AICC (ΔAICC) of less than 2.0 from the top-

performing model were identified in this way, which included the variables age.95per, age.mean, 

age.median, HPC, maxTSL, meanTSL, num.events, pH, TCC, TOC, and vol.events. 

A second GLM was then implemented using only those 11 variables as predictors, 

allowing a total of 242 observations to be included. Variable combinations were again evaluated 

based on ΔAICC and the “dredge” function from the “MuMin” R library.91 The top performing 

model (m.top) incorporated age.95per, HPC, maxTSL, mean.TSL, num.events, pH, TCC, and 

TOC as independent variables to predict Leg.sp. A competing model (m.comp) was defined to 

include all variables which were included in models with a ΔAICC of less than 2.0, which 

included all 11 independent variables. Finally, two GLMMs were defined using the “glmTMB” 

library in R.113 These included variables defined in the top and competing models of the previous 

GLM, as well as a random effect to describe sample location. The top and competing models are 

defined as m.top and m.comp, respectively. m.top included age.95per, HPC, maxTSL, 

mean.TSL, num.events, pH, TCC, TOC, and sample location as independent variables to predict 

Leg.sp.In addition to the independent variables in m.top, m.comp also included age.mean, 

age.median, and vol.events as independent variables to predict Leg.sp.  

m.top exhibited model convergence, homoscedasticity, and low-multicollinearity. 

m.comp, however, failed to converge. Fitted results for m.top are provided in Table 8. These 

results show that age.95per is statistically significant at the p < 0.05 level, that meanTSL is 

significant at p < 0.01, and HPC, maxTSL, TOC, and TCC were significant at the p < 0.001 

level. 
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Table 8 - GLMM Results for m.top 

Variable Estimate Std. Error z value Pr(>|z|) Significance 

(Intercept) -9.30E-01 1.34E+00 -0.70 4.87E-01  

age.95per 8.56E-08 3.47E-08 2.47 1.36E-02 p < 0.05 

HPC 2.64E-01 5.96E-02 4.44 9.20E-06 p < 0.001 

maxTSL -3.20E-06 7.20E-07 -4.44 9.03E-06 p < 0.001 

meanTSL 8.72E-06 3.22E-06 2.71 6.66E-03 p < 0.01 

num.events 3.24E-05 8.76E-05 0.37 7.12E-01  
pH 9.08E-02 1.56E-01 0.58 5.60E-01  
TCC 4.39E-01 1.06E-01 4.13 3.68E-05 p < 0.001 

TOC 8.05E-01 2.30E-01 3.50 4.69E-04 p < 0.001 
 

 Bayesian Generalized Linear Regression 

The BGLR library92 in R was utilized to estimate the probability that each variable is 

associated with a non-zero parameter in the linear model. The probability of a non-zero 

parameter, the parameter estimate, and the standard deviation are presented for both m.top and 

m.comp in Table 9. m.top showed a near 100% probability of a non-zero parameter estimate for 

age.95per, and a probability of 0.785 for maxTSL. The remaining parameters had probabilities 

ranging from 0.641 to 0.674. m.comp showed less certainty in any one parameter estimate, and 

instead the highest probabilities were associated with age.mean (0.843), maxTSL (0.711), 

age.95per (0.623), and meanTSL (0.610). The remaining parameters in m.comp had non-zero 

probabilities between 0.442 and 0.587. BGLR parameter estimates were closer to zero than 

GLMM parameter estimates for all except the larger parameter estimate for age.95per in m.top. 
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Table 9 - BGLR Results 

  m.top m.comp 

  Prob. β SD(β) Prob. β SD(β) 

age.95per 1.000 2.39E-07 3.85E-08 0.623 9.06E-08 3.38E-07 

maxTSL 0.785 5.06E-07 5.69E-07 0.711 3.25E-07 4.58E-07 

meanTSL 0.674 2.93E-07 7.18E-07 0.610 1.56E-07 5.42E-07 

HPC 0.642 -4.57E-09 6.39E-07 0.581 -3.27E-10 4.55E-07 

num.events 0.640 2.03E-09 6.32E-07 0.579 -4.95E-09 4.43E-07 

pH 0.639 7.99E-09 6.44E-07 0.581 4.53E-09 4.47E-07 

TCC 0.638 -3.60E-09 6.37E-07 0.587 -1.98E-09 4.47E-07 

TOC 0.641 7.21E-10 6.37E-07 0.580 -2.47E-09 4.54E-07 

age.mean NA NA NA 0.843 2.89E-07 2.64E-07 

vol.events NA NA NA 0.580 -4.86E-09 4.46E-07 

age.median NA NA NA 0.442 -4.99E-08 3.67E-07 
 

These results are markedly different than those presented in Chapter 4. Water age is 

highlighted as relevant in these results with high probabilities of non-zero parameters for 

age.95per and maxTSL in m.top and age.mean, maxTSL, and meanTSL in m.comp. This 

corroborates literature indicating water age is positively related to Legionella concentrations1,4 

Parameter estimates differ substantially between GLMM and BGLR results, and parameter 

estimates for maxTSL, HPC, and TCC even have different signs. It is hypothesized that 

including the water age metrics in this analysis allows the water use metrics presented in 

Chapter 4 to primarily convey information about hydraulic disruption.  

5.3.3 Comparison with EPANET 

Water age was generated using both EPANET as well as the water age model presented 

in this paper. This comparison was conducted on data recorded between 1/22/2018 and 2/5/2018. 

A Spearman correlation coefficient of 0.666 was measured between the two methods. Water age 

results were generally lower for the water age model than for EPANET (Figure 7). Notably, the 

median of CBSh is much lower for the water age model (2.9 minutes) than EPANET (35.2 

minutes). The low water age at this fixture is unsurprising, as showers can be expected to 
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operated continuously for a longer period than sinks, potentially consuming enough volume to 

completely flush the plumbing all the way back to the service line. The design flowrate of the 

shower is 7.6 LPM. When operating at this flowrate, the HRT of the cold water plumbing 

leading directly to this shower is 1.5 minutes. However, the shower flowrate is composed of both 

hot and cold water. Assuming an equal mix of hot and cold water, the HRT of the cold water 

plumbing to the shower is then 3.0 minutes. This HRT is nearly identical to the median age of 

CBSh calculated by the water age model presented here, and more than an order of magnitude 

below that calculated by EPANET. 

 

Figure 7 - Boxplot comparison of water age results for both models 

5.4 Discussion 

5.4.1 Water Age Results 

Water age results appear plausible given the description of the building monitored by the 

data in this study. ReNEWW is unique due to its extensive water and energy efficiency measures 
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and expected to have greater water age than typical homes. Differences in water age appear 

primarily driven by water use patterns. Cold water fixtures exhibited substantially lower water 

age than of hot-water fixtures, primarily due to the large volume of the water heating system. 

This large volume causes water age in those hot water fixtures to be higher than would be 

expected in conventional homes. Calculated water age for hot-water fixtures is substantially 

higher than the water use metric meanTSL. This is expected, as the HRT of the water heating 

system is accounted for by age.mean but not by meanTSL, and illustrates that the water age 

metrics calculated by this model are more representative of actual water age. 

Water age results from HKS and HBS are suspect due to the interference between the 

assumptions that hot water use at the sinks is a ratio of the cold, and that water use at hot fixtures 

that exceeds that metered at the water heater must bypass the heater via the thermostatic mixing 

valve. These assumptions interact, in that assumed hot water use is unlikely to occur at the exact 

same time as actual water use, leading the simulation to route water through the thermostatic 

mixing valve to make up the appropriate volume at the fixture. This effect appears to primarily 

affect water age at HKS and HBS, however, it is important to note that this could drive water age 

down within all hot water plumbing upstream of these locations. Additional study with complete 

flowmeter data would be useful in evaluating the impact of these interfering assumptions. 

5.4.2 Comparison with EPANET 

Substantial variations were found between EPANET and the model presented here. Water 

age calculated by the water age model was generally lower that that by EPANET for all three 

fixtures. Results show these two methods are most similar for CKS, with larger differences in the 

bathroom fixtures. Notably, the median of CBSh is much lower for the water age model (2.9 

minutes) than EPANET (35.2 minutes). The low water age at this fixture is unsurprising, as 
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showers can be expected to operate continuously for a longer period than sinks, potentially 

consuming enough volume to completely flush the plumbing all the way back to the service line. 

Assuming the plumbing between the shower and service line are completely flushed during a 

typical shower, the HRT of the plumbing between the service line and shower is 1.45 minutes at 

the 7.6 LPM design flowrate of the shower. While the cold water makes up only a fraction of the 

water delivered to the shower, this HRT helps demonstrate much of the water delivered to the 

shower is expected to have a lower age than EPANET results suggest. 

The difference in methods stems from water mixing within pipes, which is modeled only 

in EPANET, where water from inactive pipes becomes mixed with water flowing through pipes 

actively in use. However, these results should cause only local variations in age, as any mixing 

that results in lower water age in one part of the plumbing would act to increase age in another. 

These results indicate EPANET resulted in higher water age for all three monitored fixtures. 

5.4.3 Variable Selection 

Microbial variables were more closely correlated with water age metrics than with the 

water use metrics. For example, age.mean had correlations of 0.513, 0.653, and 0.627 with TCC, 

HPC, and Leg.sp, respectively. The magnitude of these correlation coefficients with meanTSL 

was lower at just 0.225, 0.412, and 0.391, respectively. TOC and DOC were more highly 

correlated with use metrics like meanTSL (coefficients of 0.528 and 0.535) than with mean water 

age (coefficients of 0.514 and 0.472). This may suggest that TOC and DOC concentrations are 

more influenced by the dynamics of water use (i.e. flushing pipes) than by water age itself. 

However, the differences between these correlations are small. Free and total chlorine exhibited 

larger magnitude correlations with age.mean (-0.368 and -0.336) than with meanTSL (-0.210, -
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0.065). However, correlations with temperature, carbon concentrations, and microbial 

constituents remain highly relevant for chlorine. 

PCA results here are similar to those presented in Chapter 4, with little change in 

interpretation of the PCs. Water age metrics appear to have taken on the primary role as 

indicators of water age, with water use metrics (e.g. meanTSL, vol.events) perhaps representing 

information more related to hydraulic disruption and its effects on biofilm detachment. 

GLMM results show that age.95per as significant (p < 0.05) to Legionella concentrations, 

as well as HPC, maxTSL, TCC, TOC (all at p < 0.001) and meanTSL (p < 0.01). The inclusion 

of the water age metrics developed here eliminated DO, Total.Cl and pH as significant variables, 

and added maxTSL and age.95per. These results are more representative of literature on the topic 

as water age, HPC, and carbon concentrations have been correlated with Legionella 

concentrations. However, no direct relationships showing DO or pH were identified in the 

literature. Concentrations of residual disinfectant are indeed related to Legionella 

concentrations,1,28,114 but the concentrations typically observed during this study period, 95% of 

which ranged from below detection limits (0.1 mg/L) to 0.71 mg/L, may be low enough to not 

effectively inhibit Legionella growth1. These results expand upon the findings of Chapter 4 by 

further supporting water age as a critical to modeling Legionella spp. concentrations and 

allowing less-important factors such as DO or pH, to be excluded from the selection process. No 

literature was identified that supports a direct mechanistic relationship between Legionella spp. 

These results, including metrics for water age, better corroborate the literature by identifying 

only variables that have been previously identified as being related to Legionella spp.1,4,9,77,97,99 

Further, BGLR results show that age.95per and age.mean are more better predictors of 

Legionella spp. concentrations than water use metrics in m.top and m.comp, respectively. 



 

68 

 

5.4.4 Conclusions 

The novel water age model presented herein results in plausible estimates of water age 

for the full-scale, water-efficient home in this study. Water age results exhibit merit in prediction 

the concentration of Legionella spp. due to higher correlations with the measured variable Leg.sp 

and loading factors on PC1 than water use metrics. GLMM results also suggest that age.95per is 

a significant variable in predicting Leg.sp. While age.95per is not more significant than the use 

metric meanTSL, PCA results suggest this could be due to an alternative interpretation of 

meanTSL as having to do with hydraulic disruption, which is important to biofilm detachment 

and Legionella washout. As such, the water age model provides benefit in predicting Legionella 

spp. concentrations. Validating these results as an accurate means of describing water age would 

require additional research. 

5.4.5 Limitations 

This novel method to determine water age in a residential PPS provides several 

advantages over existing methods to estimate age, such as tracer studies or hydraulic modeling 

software designed for WDSs. However, several limitations exist including the inability to model 

hydraulic pressure and its effects, in-pipe mixing, and discretization errors arising from using a 

unit volume. Further, recall that water use at the hot sink fixtures was assumed to be a ratio of 

the use at corresponding cold fixtures (Appendix). This assumption causes the timing of hot 

water use to become misaligned with that recorded by the flowrate into the water heater. Further, 

a thermostatic mixing valve is present in the plumbing, allowing a portion of water to bypass the 

water heater. Because the flow at HBS and HKS was assumed from CBS and CKS, respectively, 

this flow will not have been recorded as passing through the water heater, and is thus assumed to 

be delivered through the thermostatic mixing valve’s bypass line, resulting in lower water age 
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than would have been observed if those flowmeters had been operational. Resolving these issues 

would require additional metering and falls outside the scope of this work.  
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6 Chapter 6 – Assessing Compliance with Thermal Guidance 

6.1 Introduction 

Published literature,1,4,5,36 as well as the results presented in Chapter 4, indicate that 

water temperature has a significant effect on Legionella spp. concentrations. Past studies have 

investigated the effect of water temperature, as measured during sample collection, on Legionella 

spp. concentrations.71,84 However, using only the temperature at end use ignores the temporal 

thermal profile experienced by the water as it moved through the plumbing. Literature has shown 

that water temperatures fluctuate while stored in pipes between uses, tending toward the ambient 

temperature of the building.38 Accounting for the water temperature during stagnation is 

anticipated to better inform effluent concentrations of Legionella spp. 

Current guidance suggests that unheated water be kept below 20°C, that heated water 

achieve a temperature of no less than 60°C, and that heated water is delivered for end use at no 

less than 55°C.1,28,39 This ensures that water spends little time at Legionella’s ideal growth 

temperature range, approximately 25°C-43°C.1,7 Maintaining water temperatures outside of this 

range is expected to limit the potential for Legionella growth in PPSs by limiting growth in cold 

water (<20°C), achieving elevated water temperatures sufficient to inactivate Legionellae during 

heating (≥60°C), and maintaining sufficient temperatures (≥55°C) throughout distal plumbing to 

prevent regrowth. However, these guidelines do not account for the cooling or heating of water 

stored in plumbing between uses. 

Data collected from the ReNEWW house includes measurements of flowrate and 

temperature from flowmeters and thermocouples situated throughout the plumbing as shown in 

Figure 1. Further, samples were collected while electronic data were being monitored, and 

analyzed for Legionella spp. concentrations. These data provide a unique opportunity to evaluate 
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the efficacy of adhering to common temperature guidelines on resulting Legionella spp. 

concentrations, and is the first such study conducted at full-scale. The goals of this study were to 

develop a model to evaluate compliance with thermal guidance to limit Legionella proliferation 

by considering the temperature of water samples prior to sample collection. 

6.2 Methods 

The water age model presented in this dissertation was modified to evaluate whether each 

5 mL parcel of delivered water complied with thermal guidance designed to limit Legionella spp. 

proliferation. In the initial water age model, presented in Chapter 5, a list is prepared, with a 

vector for every pipe segment, to track the entry time of each water parcel. This list is then used 

to determine the water age of each parcel as the difference in time from entry into the home to 

exit at end use. 

To develop the temperature model, a second list containing a vector representing each 

pipe segment, much like the list for water age, was created to track temperature compliance. Like 

the water age list, each element represents a 5 mL parcel of water. However, instead of being 

populated with the entry time, each element contains a Boolean value, true if the parcel complies 

with temperature guidance, and false if it ever violates that guidance while retained in the 

plumbing system. There are 11 thermistors located through the plumbing, whose approximate 

locations are shown in Figure 1. Each pipe in the plumbing was assigned a temperature zone, as 

shown in Figure 8, by considering the proximity to the nearest thermistor, the flow direction, 

and fixtures which generally consume the most water. While temperature was recorded at 1 

second intervals, the mean temperature every three minutes was taken as the temperature instead 

to reduce the impact of momentary deviations in temperature and noise, as well as to reduce the 

computational complexity of the model. 
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Figure 8 - ReNEWW P&ID with temperature zone information. Each pipe is labeled with a 

number indicating the temperature zone, with each number corresponding to the thermistors 

depicted in Figure 1. 

Parcels of water are directed through the plumbing using the methods described in the 

water age modeling chapter of this dissertation. This movement is applied to both the lists of 

water age entry times and of Boolean temperature compliance. Upon entry to the home from the 

service line each parcel is labeled as true if the water temperature in zone 1 is below 20°C, and 

false if above. Each time a parcel is shifted forward, it is evaluated for temperature compliance. 

By checking the three-minute mean of the thermistor associated with the temperature zone that 

parcel is currently in. If that temperature is between 20°C and 55°C, the parcel is marked false. If 
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that temperature is above 60°C, the parcel is marked true. If that temperature is either below 

20°C or above 55°C, the parcel’s value is left as-is. Thus, each parcel exits the system marked 

true if it either remains below 20°C or achieves a temperature of at least 60°C and maintains a 

temperature of at least 55°C before end use. 

Water samples were collected from the ReNEWW house from 10/10/2017 to 10/9/2018. 

Water use and temperature data from 9/1/2017 through 11/1/2018 were input to the model to 

calculate temperature compliance over the sampling period, with a period analyzed prior to 

sample collection to flush the PPS of water whose age and temperature compliance status were 

assumed at the start of the simulation. Temperature compliance was associated with each 

collected sample by taking the mean compliance of all parcels delivered to that location during 

the two-week period prior to sample collection, referred to here as compliance rate. Parcels 

which complied with guidance took on the value 1.0, with non-compliant parcels equal to 0.0. 

6.3 Results 

The mean compliance rate over the entire evaluated period was calculated for each 

fixture, as shown in Figure 9. The service line (SL), where water enters the home, showed a 

compliance rate of 96%. The cold kitchen sink (CKS) had a higher compliance rate (95%) than 

the cold bathroom sink (CBS) (60%). Compliance generally decreased for downstream sample 

locations, as expected, with cold water more compliant than hot. However, the water heater 

(WH) exhibited higher compliance (91%) than CBS. This is a result of water temperature 

exceeding 60°C at the WH, which resets the compliance variable. Compliance decreased for 

fixtures downstream of the WH at the hot kitchen sink (HKS), hot bathroom sink (HBS) and the 

mixed bathroom shower (MBS) at 18%, 8%, and 0.7%, respectively. 
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Figure 9 – Mean temperature compliance by fixture from 9/1/2017 through 11/1/2018 

Temperature compliance was also compared with Legionella spp. concentrations 

observed in the samples collected at the ReNEWW house. A Spearman correlation of ρ = 0.22 (p 

< 0.001) was measured between these data. These data are presented in Figure 10. Visual 

inspection suggests that Legionella spp. concentrations remain relatively low (< 104 GC/100 mL) 

when temperature compliance is held above 30%. However, some samples, especially from WH 

and MBS show high compliance (>80%) as well as high concentrations of Legionella spp.  
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Figure 10 - Scatterplot of mean temperature compliance during two-week period preceding each 

sample and measured Legionella spp. concentration. The color of each point represents the 

location from which that sample was collected. 

6.4 Discussion 

Results of this model show substantially higher compliance with temperature guidance in 

cold-water than in hot. These results are unsurprising, as it is known that hot-water temperatures 

are known to cool to the ambient temperature of the building given time.38 Hot-water sample 

locations exhibited very low compliance rates with thermal guidelines, especially MBS with only 

a 0.7% compliance rate. Each of these hot-water fixtures are downstream of the water heater, 

with relatively long (>9 meters) section of uninsulated pipe between the heater and each end use. 

Results showing poor compliance with temperature guidance reflects the problematic cooling 

which occurs, especially in longer pipes and between water uses. The low compliance rate at 

MBS may also result from the longer period between shower uses compared to sinks, and 

potential heat transferred from heated to unheated water at the mixing valve of the shower. The 

low compliance at MBS may present human health concerns as water used in showers is 

aerosolized, presenting inhalation risks for the user. 
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Especially for hot and mixed water samples, it is important to consider that Legionella 

spp. is measured using qPCR. This test method quantifies concentrations of genetic material 

unique to the analyzed organism (in this case, the 23s gene of Legionella spp.) by identifying 

RNA segments present in the sample. Achieving sufficient temperature to inactivate Legionella 

is indeed expected to prevent additional growth, but does not necessarily destroy the Legionella 

RNA already present in the water. As such, samples from heated water fixture may contain 

limited concentrations of viable bacteria. Further investigation is required to interpret these 

results and their influence on concentrations of Legionella spp. 
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7 Chapter 7 – Conclusions 

The research presented in this dissertation explores factors in premise plumbing systems 

which support the growth and proliferation of the opportunistic pathogen Legionella spp. 

Multiple variable selection techniques were applied to a rich, novel data set to uncover 

relationships associated with increased Legionella spp. concentrations. These findings prompted 

the development of a novel water age model used to quantify the hydraulic residence time, also 

referred to as water age, experienced by water in the ReNEWW house, a full-scale water-

efficient home. This model was then expanded to determine whether water adhered to common 

thermal maintenance strategies designed to limit Legionella growth in premise plumbing. 

Each of these contributions to the science were performed to better understand the 

concentrations of Legionella spp. in the water of PPSs. A better understanding of the 

concentrations of pathogens such as Legionella in PPSs is critical to assessing and reducing 

associated human health risks. 

7.1 Implications for Quantitative Microbial Risk Analysis 

QMRA has been used in previous literature to assess OPPP risks.63,64,115 The basic 

approach used in Hamilton et al.63 to describe Mycobacterium Avium Complex (MAC) risks was 

modified to quantify risks human health risks from Legionella spp. A distribution of Legionella 

spp. concentrations was developed from Filipis et al.,116 and dose-response data was assumed 

from Hamilton et al.64 Exposure dose and risk were each calculated for showering, for both 

conventional and low-flow showerheads. Aerosol generation for these fixtures was modeled 

using data from O’Toole et al.117 Three styles of toilets were also evaluated to assess inhalation 

risks from toilet flushing. Aerosol generation for these three toilets was adapted from Johnson et 
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al.118 MAC concentrations were assumed from Donohue et al.119 to additionally evaluate MAC 

risks for each water use. 

Results from that model are summarized in the Supplemental Information, and show 

that both exposure dose and resulting risk are highly correlated to the concentration of Legionella 

spp. For example, exposure dose and risk estimated during a low-flow shower show Spearman 

correlations with Legionella spp. concentrations of 0.99 and 0.96. Similar correlations were 

found in the conventional shower and toilet flushing results. These results highlight the 

importance of pathogen concentrations of potable water in PPSs on determining human health 

risks. The research presented in this dissertation aims to advance the science regarding 

understanding of Legionella spp. concentrations in building water systems, and is expected to 

prove useful in improving in the capacity for more case-specific QMRA related to premise 

plumbing systems. 

7.2 Limitations of These Studies 

Despite care and best efforts to address gaps in data and methodology, several limitations 

regarding the research presented herein persist: 

• Several observations of the measured water quality analytes (e.g. free chlorine, 

DOC) were missing from this dataset. A more complete dataset is likely to 

improve the confidence of these findings.  

• Data for two flowmeters used in this study (located at HKS and HBS) were shown 

to intermittently record implausible flowrates, leading to those data being 

removed from analysis and replaced with a ratio-multiple of the cold water 

metered at those locations. 
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• The plumbing configuration at the ReNEWW house allows unheated water to 

bypass the water heating system and is added at a thermostatic mixing valve 

downstream of the water heater to reduce the risks of scalding users. However, 

this bypass did not include a flowmeter, and was instead flow through this piping 

was assumed as the difference between the sum of all hot water consumed and the 

water passing through the water heater. Adding a flowmeter to this bypass line 

would have eliminated the need to make assumptions about the proportion of 

water bypassing the heater, and would increase confidence in water age and 

temperature modeling results. 

The following conclusions are drawn from the body of research presented in this 

dissertation: 

• Water age is critical: Water age is consistently identified as a significant predictor 

of Legionella spp., whether using water use metrics or modeled water age. As 

such, water age should be considered when inferring Legionella concentrations 

from alternative data to directly-measured Legionella counts. 

• Analytical variables of importance: The water quality variables total chlorine, 

total organic carbon, and the alternative microbial metrics total cell count and 

heterotrophic plate count, were found to have significant impacts on Legionella 

spp. concentrations. However, these variables alone are not sufficient to produce 

realistic predictive estimates of Legionella spp. concentrations. 

• Modeled water age predictive of Legionella: Water age as modeled in this 

dissertation is more indicative of residence time experienced by individual parcels 

of water than metrics describing stagnation between uses, especially for hot-water 
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fixtures. This modeled age incorporates the HRT of the water heating system, 

making it a more plausible descriptor of water age. Results show modeled water 

age as a significant predictor of Legionella spp. concentrations, supporting 

existing literature,1,5,36 and suggesting an increased confidence in these results. 

• Compliance with temperature guidelines significant to Legionella spp.: 

Compliance with common temperature guidelines,1,28,39 as determined by the 

novel model presented herein, are statistically significant to Legionella spp. 

concentrations. 
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8 Chapter 8 – Future Research 

Complex interactions between water quality parameters, water use patterns, and water 

temperature have been demonstrated to influence Legionella concentrations. This dissertation 

explores a rich, novel data set and presents a foundation by which to make comparisons between 

these impacts. However, much work is yet to be done to quantify the effects of these changing 

conditions on pathogen concentrations and ultimately, to human health risks. The following 

research would help advance the science towards these goals: 

o Compare findings from the ReNEWW house with alternative premise plumbing systems: 

Premise plumbing systems are inherently heterogenous due to countless differences in 

water use patterns, fluctuating temperatures, varying influent water quality, plumbing 

configuration, pipe materials, etc. While the relationships identified in this research are 

largely corroborated by published literature, the interactions between effects and relative 

impact of each on Legionella concentrations could be different in alternative plumbing 

systems. Comparing results from similar full-scale research other premise plumbing 

systems will help to generalize these findings. 

o Investigate the predictive value of metals: Concentrations of metals have been linked to 

concentrations of Legionella in previous research.74–76 These data were collected from the 

ReNEWW house, but were not included in this analysis due to excessive observations 

below detection limits. Conducting further analyses after accounting for the limited 

detection of these metals could help to identify additional factors associated with 

increased Legionella spp. concentrations. 
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o Validate water age model: Results for water age were presented based on flowmeter data. 

Conducting additional study, including a tracer study, could be used to validate these 

results and explore the effects of in-pipe water mixing. 

o Extend thermal modeling to address Legionella growth in biofilm: Modeling to assess 

compliance with temperature guidance to limit Legionella proliferation was conducted 

using parcels of water as the base unit, which is thus focused on the bulk-phase of water. 

However, Legionella growth occurs primarily in biofilm.15 Developing a temperature 

compliance heuristic based on the temperature of the spatially-fixed pipes could prove 

useful in predicting concentrations of Legionella measured in samples. 

o Investigate the influence of biofilm detachment: Biofilm sloughing events distribute 

biofilm previously attached to pipe walls into potable water. These discrete sloughing 

events are often precipitated by changes in water quality (e.g. DO or pH),15 and are 

expected to significantly contribute to the concentrations of Legionella spp. and other 

such pathogens at the tap. Future research investigating the frequency and quantity of 

sloughed biofilm, especially considering the factors which drive sloughing, would 

improve the scientific understanding of Legionella spp. variability and concentrations at 

end use. 

o Simulate water quality and its effects on Legionella risks: Future research should be 

conducted to simulate water quality and its influences on Legionella prevalence and 

growth in PPSs. The relationships investigated in this dissertation can be used to inform 

and calibrate simulations of Legionella. The results of these simulations may be passed to 

QMRA models which determine health risks based on the anticipated use of each fixture. 

Conducting this work at full-scale will inform risk management strategies by highlighting 
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plumbing configurations, use patterns, or water quality conditions that most contribute to 

Legionella risks.
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APPENDIX
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During data analysis, it was discovered that some flowmeters recorded data in excess of 

what was plausible. Data from each meter was subsequently reviewed to determine the ratio of 

the total flow received at a rate less than 15 LPM over the cumulative volume recorded by the 

flowmeter. This check ensured that observed flowrates fell within a plausible range (0-15 LPM). 

While this range is not plausible for all fixture types due to differing design flowrates, it provides 

a consistent basis to evaluate all flowmeter data. This ratio was > 0.999 for all but three 

flowmeters; cold.heater (0.976), hot.kitchen.isl (0.030), and hot.bath2.sink (0.287). Because 

cold.heater captures the flowrate into the water heater, it may occasionally experience water use 

from a combination of hot-water fixtures simultaneously. The instantaneous flowrate from 

cold.heater over the entire span of data was reviewed visually, and no indications of noise were 

identified. Flowmeter data from the hot kitchen island sink included intermittent signals 

indicating far higher flowrates than were plausible at the fixture. Similar issues were identified at 

the hot bathroom 2 sink flowmeter. 

 

Figure 11 - Raw instantaneous flowrate at hot.kitchen.isl 
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Figure 12 - Raw instantaneous flowrate at hot.bath2.sink 

Both of these flowmeters were installed on hot water lines. Hot water that is left stagnant 

in pipes between uses cools toward the ambient temperature of the house. As water is consumed 

at a hot fixture, it draws hot water through the plumbing thus increasing water temperature. In 

addition to flowrate, water temperature was measured at the locations depicted in Error! R

eference source not found. with one-second resolution. The decrease in hot water temperature as 

a result of stagnation can be seen in these data shown in Figure 13. Note how water use at 

hot.kitchen.isl aligns with water use at the service line, and with deviations in water temperature 

measured just upstream of hot.kitchen.isl’s fixture. 
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Figure 13 - Example data showing the impact of flowrate on temperature on 5/4/2017 

However, flow at this meter does not always align with changes in service line flowrates 

or temperature data as shown in Figure 14. Here, water use at hot.kitchen.isl does not 

correspond to water use at the service line. Further, water use at hot.kitchen.isl has no apparent 

influence on measured water temperature, and changes in flowrate at hot.kitchen.isl appear to 

loosely correspond to flowrates observed at the service line potentially indicating poor sensor 

grounding or electrical interference. As such, it appears that all water use at hot.kitchen.isl over 

the time period shown in Figure 14 is erroneous. 
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Figure 14 - Example data showing flowmeter noise with no influence on water 

temperature on 9/5/2016. The design flowrate of hot.kitchen.isl is shown as a horizontal red line. 

These two meters exhibiting noise were each installed on the hot line of a sink, and thus 

each had a cold-water counterpart. Further, two kitchen sinks (kitchen.sink and kitchen.isl) and 

two bathroom sinks (bath1.sink and bath2.sink) were monitored during the study. It was assumed 

that the ratio of hot to cold water consumed was equal at each type of sink (i.e. kitchen or 

bathroom). Thus, the flowrate data from hot.kitchen.isl and hot.bath2.sink were replaced as 

follows: 

hot.kitchen.isl = cold.kitchen.isl * sum(hot.kitchen.sink) / sum(cold.kitchen.sink) 

hot.bath2.sink = cold. bath2.sink * sum(hot.bath1.sink) / sum(cold.bath2.sink) 

While accurate flowmeter data for all sample locations is obviously preferable, that was 

not available for this data set. Replacing the data from these two flowmeters exhibiting noise 

with a ratio multiple of their noise-free cold counterparts provides several advantages, such as 

achieving plausible flowrates from all monitored fixtures and realistic stagnation between water 
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uses. This method is also simple to understand and implement, with no need to model the house 

occupancy or time of use.
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