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ABSTRACT

DYNAMIC LED-BASED OPTICAL LOCALIZATION OF A MOBILE ROBOT

By

Jason N. Greenberg

Autonomous mobile robots operating in areas with poor GPS and wireless coverage (e.g., under-

water) must rely on alternative localization and communication techniques to navigate the field,

share their data, and accomplish other missions. This dissertation is focused on the design of an

LED-based optical localization system that achieves Simultaneous Localization and Communi-

cation (SLAC), where the bearing angles, needed for establishing optical line-of-sight (LOS) for

LED-based communication between beacon (base) nodes and amobile robot, are used to triangulate

and thereby localize the robot. A two-dimensional (2D) setup is considered in this work.

First, themeasurement process and procedural steps necessary for implementing the localization

scheme are developed. Critical to the success of this scheme is the maintenance of the LOS, which

is difficult due to the robot’s mobile nature. A Kalman filtering-based approach is proposed to

predict the mobile robot’s position, allowing the system to reduce the overhead of establishing

and maintaining the LOS, therefore significantly improving the quality of the localization and

communication. The effectiveness of this approach is evaluated with extensive simulation and

experiments, including a comparison to an alternative approach not using Kalman filtering-based

location prediction.

The initial design of the localization system involves two base nodes, which could result in a

singularity problem in position measurement when the mobile robot is close to forming a collinear

relationship with the base nodes. To address this issue, a setup involving more than two base

nodes is considered, where one could dynamically change the base node pair for localization. An

important design consideration for this approach is how to best exploit the redundancy in base

nodes to provide robust localization. A sensitivity metric is introduced to characterize the level of

uncertainty in the position estimate relative to the bearing angle measurement error, to dynamically



select a desired pair of beacon nodes. The proposed solution is evaluated with simulation and

experimentation, in a setting of three beacons nodes and one mobile node, and its efficacy is

demonstrated via comparison with multiple alternative approaches.

The aforementioned work assumes that the bearing angles with respect to all base nodes

are captured simultaneously (or when the robot is at a single location). Consequently, because

scanning for the light intensity to determine the bearing angle takes time, a stop-and-go motion has

to be used to ensure that the robot is at a single location during the angle measurement process,

which significantly slows the robot’s movement. To counter this issue, a scheme is proposed to

dynamically localize a robot undergoing continuousmovement, by exploiting the velocity prediction

fromKalman filtering to properly correlate two consecutivemeasurements of bearing angles relative

to the base nodes. Simulation and experiments show that, with this approach, the robot can be

successfully localized when it is continuously moving.
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CHAPTER 1

INTRODUCTION

Localization and communication are essential functions to any sensor network, thus it would be

considerably valuable to the design of resource-limited robots if both tasks could be achieved using

the samemechanism, to accomplish SimultaneousLocalization andCommunication (SLAC). In this

chapter, we start with a brief discussion on the many varieties of localization. Then the focus of the

discussion is narrowed down to themany approaches of triangulation, which is followed by touching

upon some of the existing works that have approached sensitivity analysis of triangulation. Next

the challenges and drawbacks to achieving underwater localization and communication using the

current standards are discussed, followed by an introduction to the promising new optical approach

to underwater localization and communication and the current state of this field. Afterwards an

overview of the contributions of the proposed LED-based optical system is presented.

1.1 Literature Review

1.1.1 Localization Techniques

Autonomous robots rely on accurate positioning for essential functions such as navigation, data

collection, and environmental monitoring [1, 2, 3]. GPS, which is arguably the most common tool

for localization, is not available in all environments, such as underwater and indoors [4, 3, 5]. There

exist many approaches to solving this challenge and they vary based on factors such as the type of

data used, how the data is captured, and the algorithm that converts the measured data into position.

For example, some of the varieties of observed data include distance, angle and signal strength

measurements, which can be captured by sensors such as sonar scanners, RF antenna, inertial

sensors, and optical-based sensors, and then processed with techniques like SLAM (Simultaneous

Localization and Mapping), dead-reckoning, triangulation, and trilateration [6, 7, 8, 9, 10, 3].
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1.1.2 Triangulation

Of these various approaches, group-based approaches offer a unique perspective in that the local-

ization is achieved through a collaborative effort where the various members of the group share

their data in order to localize. Triangulation is one of these collaborative approaches, in which

the angles relative to several neighbors with known positions, often referred to as beacons (or base

nodes), are used to localize the individual robot [11, 12].

Localization through triangulation is, itself, a large field with many implementation techniques

in both robotics and surveying engineering, with the latter field referring to triangulation as the

three-point resection problem [13, 14, 15]. In their comprehensive review of the subject Pierlot and

Van Droogenbroeck grouped these many approaches into four general categories, Geometric Circle

Intersection, Iterativemethods, Geometric Triangulation, andMultiple Beacons Triangulation, with

one of the more commonly used approaches being Geometric Circle Intersection [16, 17, 18]. In

this particular type of triangulation, two arcs are derived from the bearing angles that are between

three beacons and a target. Each arc spans between one unique pairing of the beacons and passes

through all possible coordinates of the target. Thus the intersection point of two of these arcs leads

to the position of the target [13, 16, 17, 19].

A form of Geometric Triangulation is implemented by Sergiyenko and coworkers in [20, 21, 22]

by finding the bearing angles of a laser transmitter and a receiver necessary for the receiver to detect

the light from the transmitter that is deflected off the object of interest. The transmitter and receiver

units are mounted on a beam at a fixed distance apart; this combined with measured angles allows

for the Laws of Sines to be used to triangulate the coordinates of the point of deflection on the

object.

1.1.3 Triangulation Sensitivity Analysis

Sensitivity or error analysis of triangulation methods to improve certain aspects of the system has

been done previously [13, 23, 24]. Tekdas and Isler [23] used a common uncertainty function

to implement a beacon placement algorithm and Font-Llagunes and Batlle [13] presented an
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error analysis of their triangulation method to also generate a preferred configuration of beacons.

However, in both works the analysis is used to only create a static solution and is not used

to dynamically improvise the measurement process to adapt to changes in robot location. A

dynamic approach was developed byMadsen et al. [24] for their robot self-positioning triangulation

technique, in which the position of the robot was computed from the angles of separation between

the landmarks, i.e., points of interest, detected by a camera. Their method employed a specially

designed metric that characterized the relationship between the error in locating the positions of

landmarks in the captured image and the error in the computed robot position. This metric would

then be used to find the best landmark triplet, within an environment that had many landmarks, to

best localize the robot at each point in its trajectory.

1.1.4 Localization with Kalman Filtering

Due to the mobility of a robot, triangulation alone is not enough to effectively track its position

since the measurements could be noisy corresponding to different poses [13, 25]. Consequently it is

common to use an estimation technique to determine amore refined location of the robot, by filtering

a measured position with a predicted position based on previous estimations [13, 26, 27, 28]. There

are several estimation tools which could be used; however, Kalman filtering-based methods are

often preferred due to their simplicity, fast responsiveness, minimal storage requirements, and low

computation costs [28, 29, 30]. There are many examples and variations of Kalman filtering being

used for position estimation in literature; for instance, Rana et al. [31] used Kalman filtering to

estimate the position and velocity of a 2D-moving object for video surveillance, and Feng et al.

[32] used a Kalman filter to predict the future location of a vehicle.

1.1.5 Underwater Localization and Communication

A noticeable advantage of group-based localization methods is an ability to be functional in envi-

ronments where GPS signals are inaccessible such as indoors and underwater. Of the handful of

techniques that can be used underwater, many are implemented with the use of acoustic signals,
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which is currently the predominant means for underwater localization and communication. How-

ever, acoustic approaches tend to further complicate or constrain the localization algorithm due

to the inherent limited bandwidth, long propagation delays, and multipath effect, which result in

low data rates and low signal reception reliability [33, 34, 35]. Moreover, devices that implement

acoustic-based methods tend to be bulky and power-hungry, making them unsuitable for small

underwater robots with limited resources [36].

1.1.6 LED-based Communication

Optical communication systems based on Light-Emitting Diodes (LEDs) are an up-and-coming

alternative to acoustic-based methods. In recent years, LED systems have shown promise in

high-rate, low-power underwater communication over short-to-medium distances [37, 38, 39].

For example, the system developed by Brundage [40], which used a Titan blue lighting LED,

achieved communication rates of roughly 1 Mb/s at a distance of 13 m, while Doniec and Rus

[41] demonstrated data rates of 4 Mb/s at a distance of 50 m with their communication system,

AquaOptical II, which used an array of 18 Luxeon Rebel LEDs for the transmitter. However, a

downside of LED-based communication is the requirement of near line-of-sight (LOS) between

the transmitter and the receiver. The latter challenge has been addressed in several ways, including

the use of redundant transmitters/receivers [42, 43, 44, 45] and active alignment [38, 46, 47].

1.1.7 LED-based Localization and Communication

Indoor LED-based optical localization and communication systems have been developed by using

visible light communication (VLC) systems, inwhich the overhead lights used to illuminate the room

can also be used as the transmission medium for both data and localization purposes [48, 49, 5].

Nguyen et al. [50] developed a VLC localization approach that integrates the angle of arrival

(AOA) and received signal strength (RSS) of the light to compute the location, getting a minimum

simulated error of 10 cm. Qiu et al. [48] achieved a localization accuracy of 0.56 m using a

fingerprint matching approach, where fingerprints are a mapping of position and the light intensities
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of each light in the environment, and each light transmits a unique beacon pattern allowing the

localizing robot to associate a light intensity with a particular overhead fixture. While VLC-

based localization approaches are an alternative to radio-frequency methods indoors and can work

underwater in theory [51, 52], they are not practical for a typical aquatic environment due to the

difficulty in illuminating the significantly larger and more complex environment.

An alternative form of LED-based optical localization is through the use of cameras as the

means for capturing the light. For instance, while Nguyen et al. [50] used an array of photodiodes

in their VLC approach, Zachár et al. [5] and Liang et al. [49] used cameras to identify the light

in their works. Cameras can also be used for LED-based optical localization in other ways too.

For instance, Giguere et al. [53] used cameras mounted on several robots which interacted in a

cooperative manner to derive the relative position and orientation relative to each of the robots

based on the LED landmarks mounted on each robot. Suh et al. [54] proposed a similar approach

where a group of robots with cameras localized themselves by splitting the robots into alternating

groups of stationary and moving robots. The stationary robot would track the LED markers on

the mobile robots using a multiview geometry. However, implementing camera-based techniques

underwater is challenging, due to various degradation problems with obtaining the images, such

as light absorption and scattering [55, 56]. While there are techniques for enhancing the imaging

quality (for example, histogram equalization), these involve additional processing that is simply not

needed when using photodiodes.

An underwater LED-based localization and communication system was presented by Rust and

Asada in [44]. This approach relies on a nonlinear light intensity model to calculate the distance

between the transmitting LED and the receiving photodiode. However, such an approach is prone to

error since light intensity depends on both distance and receiver-transmitter alignment. The method

in [44] also uses a photodiode array to determine the angle of the light source, which increases the

size and complexity of the system.

In this dissertation, an alternative concept of LED-based Simultaneous Localization and Com-

munication (SLAC) is proposed, where the line of sight (LOS) requirement in LED-based commu-
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nication is exploited to extract the relative bearing of the two communicating parties. Such bearing

information for a mobile robot, with respect to multiple nodes with known locations (called base

nodes), can then be used to infer the location of the robot via triangulation. To cope with the mobile

nature of the robot, we further propose the use of a Kalman filter to predict the position of the robot,

to facilitate the establishment of the LOS between the base nodes and the mobile robot.

1.2 Overview of Contribution

The contributions of this research reside within the extensive design work of the proposed LED-

based Simultaneous Localization and Communication system for terrestrial use with the overall

intention that its design would be readily extended to an underwater setting. The details of these

contributions are as follows.

1.2.1 Dynamic Localization Using Position Prediction

First, the design of an LED-based system that achieves Simultaneous Localization and Communi-

cation (SLAC), where the line of sight (LOS) requirement for communication is exploited to extract

the relative bearing of the communicating parties for localization, is presented. A key contribution

of this design is the proposal of Kalman filter-based position prediction of the mobile robot, to

reduce the overhead of establishing the LOS, thereby significantly improving on the quality of the

localization.

The effectiveness of this proposed optical localization system is demonstrated with extensive

simulation and experiments, with a comparison with an alternative approach not using Kalman

filtering-based location prediction. In particular, the robustness of the proposed approach with

respect to the LOS angle measurement error and the uncertainty in the robot’s initial position is

assessed in simulation. Simulation results show that the system can localize effectively when the

angle measurements have an error with a standard deviation of 3.0◦ or less. Experimental results

show that the system is able to consistently localize the mobile node and maintain tracking of the

robot indefinitely. In contrast, a version of the approach that does not use the Kalman filtering-based
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position prediction is only able to localize the mobile node for a relatively small number of steps

of the trajectory before losing track of its position.

1.2.2 Sensitivity-based Data Fusion for Localization

Second, we consider the design of a localization system which uses a group of (more than two)

base nodes, with the main focus set on finding the best way to fuse the data from the multiple

sources so to enhance the positioning accuracy. One of the goals of this design is to address

the singularity issue that arises with the position measurement when the mobile robot becomes

close to collinear with a pair of base nodes. The redundancy from the extra nodes allows for

alternative base node pairings when one or more pairings are in a collinear configuration with

the robot. An important consideration of this design is how to fuse the additional bearing angle

information effectively. Thus this design proposes the use of a sensitivity metric, which represents

how sensitive a triangulated position is with respect to the bearing measurement error, to choose

a pair of base nodes for triangulation that are the most robust at that time instance. In particular,

the base node pairing with the lowest sensitivity metric is chosen to compute the target’s position

using the corresponding measured bearings. The resulting position is then fed into the Kalman

filter to predict the target’s next position, which is critical for facilitating the LOS establishment for

the next round of communication and localization.

The proposed solution is evaluated with simulation and experimentation, in a setting of three

beacons nodes and one mobile node. Both the simulation and experimentation compare the

performance of the proposed sensitivity metric-based approach against three alternatives methods.

These three approaches include a different means of data fusion in the form of averaging the

triangulated target positions computed from the bearing angles of each base node pairing, a variation

to the filtering scheme by incorporating the current angle measurements in the measurement noise

covariance matrix, and a combination of the averaging fusion technique with this filtering scheme

variation. A fourth alternative approach is also examined in simulation, in which the captured

bearing angles are used directly as the system output and are nonlinear functions of the states,
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thereby entailing the use of an extended Kalman filtering (EKF) scheme [57].

Results show that the proposed sensitivity metric-based approach outperforms the alternative

variations and achieves an average estimated position error of roughly 0.18 grid units in experi-

ments, whereas the alternative averaging and filtering scheme approaches achieve average estimated

position errors of approximately 0.19, 0.28, and 0.25 grid units in experiments, respectively. The

alternative EKF-based approach yielded relatively poor results with the estimated velocity diverg-

ing away from the ground truth fairly quickly, thereby causing the system to consequently fail at

maintaining the LOS.

1.2.3 Localization of a Mobile Robot During Continuous Motion

The third and final contribution is the design of an LED-based localization which is capable of

capturing the position of the robot while it is continuously moving. In particular, the proposed

approach takes advantage of the estimated velocity from the Kalman filter, to properly correlate the

two consecutive measurements of bearing angles with respect to the two base nodes for the position

computation. In contrast to the previous works, this approach also now uses for the first time a

rigid-body model to more accurately estimate the robot’s movement.

The effectiveness of this proposed optical localization system is demonstrated with simulation

and experimentation in a two-dimensional setting, with a comparison to an alternative approach

which does not use the predicted velocity method, i.e., the traditional approach used in our previous

works. In particular, the simulation analyses the systems performance over a range of noise levels

for the body orientation measurement and a variety of different velocities of the robot. Results

from both simulation and experiments show that the proposed dynamic-prediction method does

consistently better than the traditional method.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, the design of our two

base-node LED-based optical localization system is presented and the importance of using Kalman
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filtering to predict the future positions of the robot is highlighted. The design of multi-base-node

system which uses our proposed sensitivity metric for data fusion is shown next in Chapter 3. This

is followed by Chapter 4, which discusses the approach for localizing a continuously moving robot.

Finally, concluding remarks are provided in Chapter 5.
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CHAPTER 2

DYNAMIC LOCALIZATION USING KALMAN FILTERING-BASED POSITION
PREDICTION

2.1 Basic Concept of Optical Localization

To simplify the discussion, in this work, the localization approach is considered in the two-

dimensional space. It is assumed that each node is equipped with an optical transceiver comprised

of an LED transmitter and a photodiode receiver, and that the transceiver is able to rotate a full 360◦.

Furthermore, the node is able to identify at any particular moment the angle at which its transceiver

is facing with respect to a reference direction such as the east axis identified by a magnetic compass.

Consider a three-node network composed of a pair of base nodes (with known locations) and a

mobile node to be localized, as illustrated in Figure 2.1. Through the LOS measurement, the base

nodes, denoted as BN1 and BN2, respectively, determine the bearing angles of the mobile node

(MN) with respect to a common G-axis, denoted as \1 and \2.

The location of the mobile node can then be found using the locations of BN1 and BN2 and the

bearing angles \1 and \2: 
=G

=H

 =

�1G + |+1 | cos \1

�1H + |+1 | sin \1

 (2.1)

where
[
=G , =H

]) is the position vector of the mobile node MN, �1G and �1H are the respective

G− and H− coordinate for BN1 and |+1 | is the magnitude of vector +1 shown in Figure 2.1 and is

obtained using the Laws of Sines:

|+1 | =
3 sin(\̄2)
sin(\=)

(2.2)

Here 3 is the distance between BN1 and BN2, \̄2 is the complement of \2, \̄2 = 180◦ − \2, and \=

is the angle corresponding to the side BN1-BN2 within the MN-BN1-BN2 triangle, \= = \2 − \1.

Although this localization process seems simple, the task is involved, especially when the target

is mobile. The challenge comes from the need to have sufficient synchronization and coordination
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Figure 2.1: Illustration of base nodes BN1 and BN2 calculating the position of the target node.

among all three nodes to produce proper LOS measurements. Otherwise the mobile node could

be “spotted” (via LOS) too infrequently, not at all, or not nearly simultaneously by both base

nodes. Another challenge results from the error in the measured \1 and \2 – purely relying on the

algebraic calculation (2.1) will lead to highly variable (instead of smooth) estimated trajectories for

the mobile node MN. To help address both challenges, Kalman filtering is proposed for predicting

and estimating the location of the MN, based on the measured location computed via (2.1). In

particular, the prediction of the MN location is exploited to significantly reduce the effort searching

for LOS and thus enable efficient and accurate localization. The Kalman filtering algorithm is

presented next.

2.2 The Kalman Filter Algorithm

Kalman filtering is a powerful and computationally efficient technique for estimating the state of

linear systems with Gaussian noises [58, 59, 60] and it has been widely adopted for estimation and

control in various applications including robotics. The main focus of this work is the maintenance

of the line of sight (LOS) between the base nodes and the mobile node. This is achieved using a

Kalman filter to predict the future location of the robot in order to generate anticipated angles for

transceiver orientation. The mobile node’s dynamics are assumed to be sufficiently described by a
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constant velocity model corrupted with Gaussian noise, since it is not practical for the base nodes

to have precise prior knowledge of the mobile node’s movement. While other filtering schemes can

be potentially used, our assumption enables the use of computationally efficient Kalman filtering

for predicting the mobile node’s position. As demonstrated later in this chapter, these predictions

are crucial for efficient establishment of LOS measurement and thus the success of the localization

scheme. The dynamics for the mobile node can be represented as:

n:+1 = n: + v:Δ: + F1,: (2.3)

v:+1 = v: + F2,: (2.4)

where n: =
[
=G,: , =H,:

]) and v: =
[
EG,: , EH,:

]) are the position and velocity vectors of the

mobile node at the :−th time instance, F1,: and F2,: are independent, zero-mean, white Gaussian

noises, and Δ: is the :−th sampling interval. The observation z: is the noise-corrupted location

measurement, computed based on (2.1) – (2.2)

z: = n: + F3,: , (2.5)

where F3,: is assumed to be white, zero-mean Gaussian, and independent of the process noises

F1,: and F2,: .

The state vector x̂: of the Kalman filter is defined as

x̂: =
[
=̂G , =̂H, ÊG , ÊH

]) (2.6)

where [=̂G , =̂H]) and [ÊG , ÊH] are the estimated position and velocity, respectively of the mobile

node.

The Kalman filter uses the following noiseless version of the mobile node’s motion model to

generate the next predicted position and velocity of the node:

x̂−
:
= �:−1x̂:−1 (2.7)

P̂−: = �:−1P̂:−1�
) +&:−1 (2.8)
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where x̂−
:
is the a priori state estimate, P̂−: is the predicted state covariance matrix, &: is the

process noise covariance matrix, and �: is the matrix form of the mobile node’s motion model and

is defined as:

�: =



1 0 Δ: 0

0 1 0 Δ:

0 0 1 0

0 0 0 1


Based on the measurement, the state estimate is updated as follows:

K: = P̂−:H):
(
H: P̂

−
: H): + ':

)−1
(2.9)

x̂: = x̂−
:
+K:

(
z: −H: x̂−:

)
(2.10)

P̂: = (I − K: H: ) P̂
−
: (2.11)

where K: is the Kalman gain, R: is the measurement noise covariance matrix, P̂: is the posterior

estimate of the system’s covariance matrix, and H: is the observation matrix:

H: =


1 0 0 0

0 1 0 0


At time : , the base nodes perform an angular search process to ultimately generate the obser-

vation z: to be used in the state estimate update in (2.9)–(2.11). The angular search process for

each base node is centered about the anticipated values of \1 and \2 (recall Figure 2.1) computed

from the position component of the predicted state estimate x̂−
:
.

In particular, these anticipated angles, \̂1,: , \̂2,: are computed by using:

\̂8,: = cos−1 ©­­«
+18
· +<8���+18 ��� ��+<8 ��

ª®®¬ , for 8 = 1, 2 (2.12)
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where,

+11 =


0

0

 −

�1G

�1H

 (2.13)

+12 =


�2G

�2H

 (2.14)

+<8 =


=̂−G

=̂−H

 −

�8G

�8H

 , for 8 = 1, 2 (2.15)

Here
[
�1G , �1H

]) and
[
�2G , �2H

]) are the locations of the base nodes BN1 and BN2, respectively

and +18 · +<8 is the dot product between vectors +<8 and +18 . The mobile node, in the meantime,

will use its predicted position to calculate the angular locations of the base nodes relative to itself,

and focus its light along these angles during the angular search.

2.3 System Implementation

2.3.1 Localization Procedure

The proposed localization method uses the following 5-step procedure:

1. Synchronization : The mobile node waits until it receives an optical message from one of the

base node. The transmitted message contains the latest state estimate from the Kalman filter,

i.e., both the position and velocity of the mobile node.

2. Movement : Upon receiving the message, the mobile node moves along its predetermined

trajectory for a fixed amount of time and stops.

3. Measurement : The mobile node uses its recently received state estimate and orientation data

to approximate its current position and the angular locations of the base nodes. It will then

use this information to shine its LED light at the base nodes. On the other hand, the base
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nodes use the state estimate to predict the mobile node’s next position and the corresponding

angles \̂1,:+1 and \̂2,:+1 from (2.12) – (2.15) so each base node can scan the light coming

from the mobile node.

4. Update : After scanning, the collected angles \1 and \2 are used to generate the observed

position z: through (2.1) – (2.2), which is then used to update the state vector.

5. Repeat : Repeat steps 1 – 4.

At the start of the program, before the first synchronization sequence, it is assumed that all of the

nodes have knowledge of the initial position and velocity of the mobile node, but such knowledge

could have error. This chapter will study the impact of the initial estimate error on the system

performance. The mobile node’s stop-and-go movement ensures that its position is the same for

each of the base nodes’ scans. This is crucial to the localization accuracy since the measurement

equations in (2.1) – (2.2) assume that the observed angles correspond to the mobile node at a single

location. Overall, it is important to point out that, because of the synchronization process, this

approach is able to keep a relatively constant sampling time between the measurements despite the

stop-and-go movement from the mobile node. In particular, the Kalman filter is able to capture

reasonably well the average velocity of the robot.

2.3.2 Scanning Procedure

The base node scanning procedure, mentioned above, is the light searching measurement process

executed individually on each base node to obtain the angle of the mobile node relative to each

base node that will be collectively used in (2.1) – (2.2) to generate the mobile node’s current

position. For each base node, the process involves four consecutive sweeps, composed of 2 pairs of

clockwise then counter-clockwise sweeps, about the anticipated angle of the mobile nodes. During
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regular increments of each of the sweeps, which have a range of 60◦, the base node reads and then

records the light intensity, associating it with the corresponding orientation of the transceiver at that

particular instant. After each sweep, the intensities are processed through a linear filter to smooth

out any irregularities in the intensities such as spikes or dips. The angle associated with the median

of the group of highest intensities is used as the measured angle of that sweep. This last process

helps to mitigate problems associated with moderate light saturation, where a significant span of

angles have the same or very similar intensity levels, which obscures the correct angle associated

with the direction of the mobile node.

After all four sweeps, the angles from each of the sweeps that have an intensity greater than a

pre-determined amount are averaged and used as that base node’s measurement for that scan. The

predetermined threshold is used to determine that the intensity belongs to the mobile node’s light

and not the lights of the surrounding room. If none of the angles from the sweeps has an intensity

greater than the threshold, then the base node is unable to the report a measured angle and no

position can be measured for that iteration.

In addition to requiring that both base nodes produce an observed angle, the observed position

is only computed when the observed angles make the following relationship about them true:

\2 > \1, 0◦ < \1, \2 ≤ 180◦ (2.16)

\1 > \2, 180◦ < \1, \2 ≤ 360◦

These relationships help to ensure that the collected angles actually converge to a point on the same

half of the G-axis as where the scan has taken place.

2.4 Simulation

Prior to testing the approach experimentally, simulation was conducted to examine the perfor-

mance of the scheme, especially its robustness against measurement errors and uncertainty in the

initial state estimate.

16



2.4.1 Simulation Setup

The simulation environment had an area defined as G ∈ [−6, 6], H ∈ [−11, 1] in grid units to mimic

the physical space of the experiment, where a grid unit is equivalent to approximately 23 cm. The

base nodes, BN1 and BN2, were positioned at [−3, 0]) and [3, 0]) respectively. Two different

trajectories for the robot were used. The first was a simple closed loop as shown in Figure 2.2, and

the second was a figure 8-shaped loop as shown in Figure 2.3. Each trajectory was composed of a

number position points, which were used as the ground truth positions in the simulation.

In the absence of physical LED and photodiode components, a simulated version of LOS

detection was developed. In particular, two nodes, A and B, have an LOS between themselves if

and only if A can view the light emitted from B and B can view the light emitted from A or as

rewritten as a logical expression:

(� ↔ �) ⇐⇒ (�→ �) ∧ (�→ �) (2.17)

In simulation, to determine if node A could view node B, (�→ �), node A would project its field

of view (FOV) as a virtual triangle over the simulation environment. Assume that node B was

already directly oriented towards node A. Then under these conditions the only way node B would

be able to see node A’s light was if node B was within the area of the projected FOV triangle. Node

B is within the area of the triangle, if the sum of angles between the corner vectors, which point

from node B’s position to the corners of the triangle, sum to 360◦. This method is illustrated in

Figure 2.4, where a slotted-lined triangle is projected from the center of node A to the edge of the

simulated area, the corner vectors are represented by the solid arrows stemming from the center of

node B and the angles between them are labeled U1, U2, and U3.

For the simulated measurement step, the orientation value supplied to the mobile node for

adjusting its simulated transceiver’s direction, was obtained by finding the angle between the

0◦ orientation vector and the vector that points from the previous to the current ground truth

position with an added zero-mean Gaussian noise, with a standard deviation of 0.5◦, to simulate the

imperfection of a physical orientation sensor. The “measured” position in simulation is obtained by
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Figure 2.2: Comparison of the ground truth and estimated positions for one of the simulated
trials using the simple loop trajectory, for the case when the measurement angles of the base
nodes are subjected to Gaussian noises with a standard deviation of 0.5◦.
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Figure 2.3: Comparison of the ground truth and estimated positions for one of the simulated
trials using the figure-eight trajectory, for the case when the measurement angles of the base
nodes are subjected to Gaussian noises with a standard deviation of 0.5◦.

triangulation using the simulated measured bearing angles, and the latter are obtained by corrupting

the ground-truth bearing angles with independent, zero-mean, white Gaussian noise. The amount

of error introduced to these angle measurements was controlled by changing the standard deviation

of the Gaussian noise.
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Figure 2.4: Illustration of base nodes BN1 and BN2 calculating the position of the target node.

2.4.2 Simulation Results

2.4.2.1 Impact of Angle Measurement Error

First the system was analyzed under different levels of angle measurement error. This was achieved

by ranging the standard deviation from 0.5◦ to 5.0◦ in increments of 0.5◦. For each level of

standard deviation, 100 trials were conducted. To control the randomness so it would be repeatable,

a vector of 100 random seeds was chosen and used for the corresponding trial number for each of

the different levels of standard deviation.

Figure 2.2 and Figure 2.3 show the comparison between the ground truth positions and the

corresponding Kalman filtering-based estimated positions of the robot in a sample run for the

simple loop trajectory and the figure-8 trajectory, respectively, where the angle measurement error

had a standard deviation of 0.5◦. Figure 2.5 shows the average estimated position error and the

measured position error among all of the trials for the simple loop trajectory, under each level of

standard deviation for the angle measurement error. The estimated (resp., measured) error is the

magnitude of the error obtained by comparing the estimated (resp., measured) positions with the

corresponding ground truth position. The estimated positions are the output positions from the
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Figure 2.5: Average error computed among all of the simulated trials for the simple loop
trajectory for varying amounts of standard deviation in the Gaussian noise added to the
angular measurements of the base nodes.
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Figure 2.6: Bar graph showing how many of the 100 simulated trials for the simple loop
trajectory were able to track the complete trajectory for each level of standard deviation of
the Gaussian noise added to the angular measurements of the base nodes.

Kalman filter, whereas the measured positions, z: , are computed directly from the observed bearing

angles. The average errors shown in Figure 2.5 were computed using the mean errors from each

trial, which were obtained in each trial by averaging the estimated and measured errors from all

of the steps of the trajectory the system had reached during that trial. As the standard deviation

of the Gaussian noise gets larger, fewer number of trials were able to reach all of the steps of the

trajectory. This is reflected in Figure 2.6, which shows for each standard deviation, how many of

the 100 trials were able to reach all the steps. Similarly Figure 2.7 shows the average measured and
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Figure 2.7: Average error computed among all of the simulated trials for the figure-eight
trajectory for varying amounts of standard deviation in the Gaussian noise added to the
angular measurements of the base nodes.
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Figure 2.8: Bar graph showing how many of the 100 simulated trials for the figure-eight
trajectory were able to track the complete trajectory for each level of standard deviation of
the Gaussian noise added to the angular measurements of the base nodes.

estimated errors from the 100 runs for the figure-8 trajectory, and Figure 2.8 shows the number of

trials that were fully completed for the figure-8 trajectory.

Collectively the graphs show that the system functions well when the angular measurement

error has a standard deviation of 2.0◦ or less, as it allows the system to track the mobile robot for

the entire trajectory with a 100% success rate. The system performance is still largely satisfactory

when the standard deviation is about 3.0◦. As the standard deviation of the angle measurement

error increases, both the measured and estimated position errors increase, as expected, and the
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number of trials that fail to track the full trajectory rises. We also note that the estimated position

is always slightly more accurate than the measured position computed directly from the bearing

angles. Finally, the localization performance for the simple loop case is largely comparable to

that for the figure-8 case, with slight performance degradation for the latter, suggesting that the

proposed scheme is robust to different trajectories for the mobile robot.

2.4.2.2 Impact of the Error in Initial MN Position Estimation

The simulation next examined the case where the position of the mobile node initialized into the

state vector had varying amount of error from the ground truth. Similar to the angle measurement

error case, independent, zero-mean, white Gaussian noises were added to the G and H coordinates

of the mobile node’s initial ground truth position, to obtain the initial estimate of the position. As

was done in the previous case, the amount of error introduced to this initial position estimate was

controlled by changing the standard deviation of the injected noise from 0.5 grid units to 3.0 grid

units in increments of 0.5 grid units.

Figures 2.9 and 2.10 show for each level of the standard deviation, the corresponding numbers of

trials completing all steps of the trajectory for the simple loop and figure-8 trajectories, respectively.

The trend from these figures indicates that, with an increased error in the initial position estimate,

the number of runs completing the full trajectory drops. We note that the system does not have a

100% success rate completing the full trajectories even when the standard deviation is as low as

0.5 grid units. Analysis of simulation data indicates that the latter was caused by the relatively big

(larger than 1) realizations of the random variable for those runs.

2.4.2.3 Justification of Gaussian Noise in Position Measurement Error

Themeasurement model, Eq. (4.5), assumes a Gaussian noise in the measurement of robot location.

This assumption, along with the assumptions made on the process noise, facilitated the use of the

Kalman filter for position prediction and estimation. The physical implementation of the position

measurement, of course, is through triangulation using themeasured bearing angles. Nextwe justify
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Figure 2.9: Bar graph showing how many of the 100 simulated trials for the simple loop
trajectory were able to track the complete trajectory for each level of standard deviation of
the Gaussian noise added to the initial position of the mobile node.
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Figure 2.10: Bar graph showing how many of the 100 simulated trials for the figure-eight
trajectory were able to track the complete trajectory for each level of standard deviation of
the Gaussian noise added to the initial position of the mobile node.

the assumption in (4.5) by evaluating via simulation the measured position error distribution, based

on the statistics of error in the bearing angle measurement. In particular, the simulation examined

the error distribution in the computed position of the mobile node when the ground truth angular

measurements were corrupted with Gaussian noise and uniformly distributed noise. In simulation

the same set of 1,000 random location points, uniformly distributed throughout the simulation area,

were used. For each of these location points, 100 samples of the position error were computed

based on the error in bearing angle measurements. Figure 2.11 shows the resulting position
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Figure 2.11: Error distribution of the mobile node’s position in terms of x and y when
the angular measurements are corrupted with Gaussian noise of zero-mean and a standard
deviation of 1.96◦.
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Figure 2.12: Error distribution of the mobile node’s position in terms of x and y when
the angular measurements are corrupted with noise that is uniformly distributed between
[−3.43◦, 3.43◦].

error distribution when the bearing angle measurement was corrupted with a Gaussian noise with a

standard deviation of 1.96◦, while Figure 2.12 shows the resulting positionmeasurement distribution

when the angle measurement was corrupted with a uniform noise randomly distributed between

[−3.43◦, 3.43◦]. It can be seen that these distributions resemble well the Gaussian distributions. In

addition, treating the position measurement error as Gaussian is also supported by the effectiveness

of the proposed localization scheme in both simulation results in this section and experimental

results in the next section.
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2.5 Experiment

2.5.1 Setup

The transceiver for each node consisted of a single CREEXRE 1Watt Blue LED (transmitter) and a

Blue Enhanced photodiode (receiver) mounted on a circular PCB board that housed the transceiver

circuitry developed by Al-rubaiai in [46]. For the transceiver PCB to achieve 360◦ rotation, it was

connected to the shaft of a stepper motor, which extended through the hollow center of a slip ring,

allowing the wiring between the PCB circuit and the embedded controller to rotate freely with the

motor. The motor and slip ring are mounted together via a 3D-printed base structure. Figure 2.13a

illustrates the locations of these components on each node.

The main processing unit for each node was an Intelr Edison Board with an Arduinor

Expansion Board. It controlled the rotation of the stepper motor, transmission and reception of the

LED signals as well as the processing of the Kalman filter data. The Intelr Edison Boards had a

500 MHz Intelr Atom dual-core processor with 1 GB of DDR3 RAM, and a built-in dual-band

2.4 GHz and 5 GHz Broadcomr 43340 802.11 a/b/g/n Wi-Fi adapter.

The steppermotor was controlled through a Sparkfunr Big EasyDriver, with the step resolution

set to a rate of 0.225◦/step. The orientation of the transceiver, was determined by keeping count

of the number steps rotated and converting back and forth to degrees when needed.

The output of the photodiode connected on the circular PCB had an approximate range of

intensities between 0.0 − 7.45 V. However, because the Analog to Digital (A2D) circuitry of the

Intelr Edison Board could only read from 0.0− 5.0 V, an external potentiometer was used to scale

down the maximum output of the photodiode so that the range of values entering the board was

between 0.0 − 5.0 V. Then later in the code the values that were read from the particular A2D pin

were scaled back up to the original range of 0.0 − 7.45 V.

For the mobile node, its 3D-printed base was mounted on the top of a Lynxmotionr Aluminum

4WD1 Rover Kit, whereas for the base nodes, the same 3D-printed part was mounted to a 80/20r

metal beam that was 64 in. (1.63 m) long. Mounting the base nodes onto the metal beams helped
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(a)
(b)

(c)

Figure 2.13: Hardware implementations used for the experiments in this work. a) Hardware
components on each of the nodes. b) The implementation of based nodes are mounted onto a
80/20r metal beam and communicate data between each other using a physical UART line.
c) The mobile node implementation.

in maintaining their fixed position and orientation. Figures 2.13b and 2.13c illustrate the various

components of the base nodes and mobile node, respectively.

The Kalman filter computations were done solely on BN1. However, because BN1 and BN2

each capture their own angle data separately, BN2 needed to transmit its measurements to BN1

over a physical three-wire Universal Asynchronous Receiver/Transmitter (UART) line as shown in

Figure 2.13b. In addition to exchanging angle data, the UART line was also used by BN1 to update

BN2 with the state vector estimates of the MN that had been computed from the Kalman filter

which allowed BN2 to update its search angle accordingly.
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The mobile node moved around using four 12V DC gear head motors, which had a gear reduc-

tion of 50:1 and a no-load RPM output of 120. The motor outputs were controlled by a Dimension

Engineeringr Sabertooth 2×32 Dual Motor Driver, which received simulated radio control (RC)

servo pulses from an BotBoarduino microcontroller, which was an Arduinor Duemilanove micro-

controller variation made specifically for Lynxmotionr robots. The Intelr Edison Board would

instruct the BotBoarduino when to send the next set of RC commands to the Sabertooth motor

driver, by using the high and low states of the two general purpose input-output (GPIO) pins

connected between them as go and stop flags for turning and forward motions.

The value for the systems’ measurement noise covariance matrix, R: , was calculated prior to

the experiments by having the system try scanning the angles of the mobile node’s position while

the mobile node remained at a fixed location. Comparing the base node’s measured position against

this fixed position of the mobile node, errors for the G and H coordinates were computed and then

used to generate a covariance matrix using the formula

R =


RG,G RG,H

RH,G RH,H

 (2.18)

=
1
 


 ∑
:=1
(G̃: − `G)2

 ∑
:=1
(G̃: − `G) ( H̃: − `H)

 ∑
:=1
( H̃: − `H) (G̃: − `G)

 ∑
:=1
( H̃: − `H)2


where  is the total number of measurements the base nodes captured, G̃ and H̃ are the magnitudes

of the errors for the G and H coordinates, respectively, and `G and `H are the average errors among

all of the captured measurements for G and H, respectively.

All of the experiments were contained within a grid structure laid out on the floor with blue

painters tape which followed the grout line of the tiles. The side length of each tile’s grout was

approximately 23 cm and was used to represent 1 grid unit which was the generic unit of length

used in the experiments to measure motion and position, see Figure 2.14. The area used in the

experiments was defined as G ∈ [−6, 6], H ∈ [−11, 1] in grid units, where the G-axis and H-axis

run parallel and perpendicular to the metal beam holding the base nodes, respectively.
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Figure 2.14: Overhead view of the grid floor used in experiments. In the image the base nodes
are connected to 80/20r metal beam that was 64 in. (1.63 m). The positive x and y axes run
from left to right and down to up respectively.

The mobile node’s orientation needed to be measured to compute the required rotation for

the transceiver to establish the LOS by properly accommodating the rotation of the robot itself.

The orientation was initially intended to be obtained via the magnetic compass of an Inertial

Measurement Unit (IMU) mounted on the robot; however, the testing environment was surrounded

by many sources of static magnetic interference and despite several attempts at calibrating and

offsetting for these interferences, the resulting orientation output was too inconsistent and inaccurate

to be useful in this application. We make an assumption that the magnetic compass approach will

be more applicable when experimenting in an underwater environment. Consequently, for the

experimental results shown here, the orientation data was captured with the use of NaturalPointr’s

OptiTrack motion tracking system, which used infrared cameras placed at strategic points above the

perimeter of the grid, to illuminate and then capture the locations of reflective markers attached to a

rectangular sheet of non-transparent acrylic mounted on the mobile node. During the experiments

OptiTrack would stream its tracked pose data to the mobile node over Wi-Fi using Universal

Datagram Protocol (UDP) packets. This pose data also included the ground truth position of the

MN, whichwas recorded into the node’s data log purely for post processing analysis. The orientation
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data from the motion tracking system had an average error of 0.2◦, which had negligible impact

on the localization. However, in an outdoor (including underwater) environment, the orientation

sensor (compass) will likely have larger errors, in which case one could use wider angle lens for

the LED to increase its angular field of coverage but at the cost of its light intensity.

2.5.2 The Effect of Kalman Filter-based Position Prediction

To further demonstrate the importance of Kalman filtering-based position prediction to the success

of the proposed localization scheme, an alternative implementation of the system where position

prediction was not used was evaluated. In this implementation, the latest measured position, instead

of the predicted position, was used as the basis for the LOS establishment for the mobile node and

the base nodes. In particular, the previously measured position was used to generate the angles in

which the base nodes and mobile node would use for centering the scans and LED light shining,

respectively.

In this comparative experiment, the two versions were tasked to localize the mobile node as it

traversed a short linear trajectory parallel to the base nodes, from [−3.0, −6.0]) to [3.5, −6.0])

in increments of 0.5 grid units in the positive G direction, a total of 13 steps. Three trials for each of

the two versions were conducted. Figures 2.15 and 2.16 show the trajectory plots from one of the

trials of the versions without and with the use of the predicted positions, respectively. Both figures

compare the position that the system perceives to be its location against the corresponding ground

truth. For each position, the corresponding step number of the trajectory is placed next to it. For

the version of the system without prediction all of the trials were unable to complete all 13 steps.

Consequently, the trial shown in Figure 2.15 can only show the ground truth positions for the steps

at which it was able to localize, since it only receives the ground truth data with orientation angle at

the start of each step of the trajectory, and the remaining points are filled in by the intended points

from the designed trajectory. On the other hand, all 3 trials of the version with prediction were able

to complete all 13 steps of this trajectory.
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Figure 2.15: Trajectory plot of one of the trials where prediction of the mobile node’s position
was not used for localizing. The system perceives its location to be the measured position
computed from the bearing angles.
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Figure 2.16: Trajectory plot of one of the trials where Kalman filter-based prediction of the
mobile node’s position was used for localizing. The system perceives its location to be the
Kalman filtering-based estimated position.
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2.5.3 Results - Localization around a Closed Loop

Two experimental trials of the system, with the mobile node following a simple loop trajectory, were

conducted with the goal of showing the localization accuracy of the system when it was revisiting

points of the trajectory it had already traversed and localized. Figures 2.17 – 2.19 show the results

obtained during one of these trials. Figure 2.17 compares the trajectory points of ground truth

and estimated positions. Figure 2.18 shows the measured and estimated position errors, which

are the errors between the measured (resp., Kalman filter-estimated) position and the ground truth

position, for each step of the trajectory in the experiment. Both Figures 2.17 and 2.18 show that

the proposed method is capable of localizing the mobile robot around the full trajectory with an

error of less than 2 grid units. These figures also indicate the system has more difficulty measuring

the robot’s position between the two turning portions of the trajectory in which the mobile node is

the furtherest away from the base nodes. Figure 2.19 shows the measured angle error for both \1

and \2, which indicates that the measurement and filtering scheme is able to limit the measurement

error within ±3◦.
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Figure 2.17: Comparison of the ground truth and estimated positions of the experiment.
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Figure 2.18: Measured and estimated position error for each step of the trajectory.
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Figure 2.19: Measured angle error is within the limits described by the simulation analysis.
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2.6 Summary

This chapter has presented the algorithm design and system implementation for an LED-based

localization scheme with a single-transmitter-single-receiver setup. A key idea exploited is the use

of Kalman filtering for predicting the position of the mobile node, to facilitate the establishment

and maintenance of LOS. Simulation analysis has been presented on how much error in LOS

measurement and knowledge of initial location that the system can withstand and still report

sufficient localization accuracy. Experimentation shows the significance of the predicted position

from the Kalman filter and how that allows the system to localize dynamically.

The work presented in this chapter was published in IEEE Transactions on Mechatronics [61].

Some preliminary results of the proposed approach were reported at the 2016 and 2017 ASME

Dynamic Systems and Control Conferences [62, 63].
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CHAPTER 3

SENSITIVITY-BASED DATA FUSION FOR MOBILE ROBOT LOCALIZATION

In the previous chapter a solution to Simultaneous Localization and Communication (SLAC) using

an LED-based optical system was proposed. Localization was accomplished using the bearing

angles needed to establish optical LOS between two base nodes (or beacons) with known positions

and a mobile robot. One drawback to this approach of using two base nodes, is that, when the

mobile robot is close to forming a collinear configuration with the base nodes, a singularity issue

arises with the position measurement.

This chapter explores the optical localization of a mobile robot using a group of (more than two)

base nodes, as means of address the singularity limitation of the two-base-node method by allowing

for alternative base-node pairings when one or more pairings are in a collinear configuration with

the robot. Important to the design of this multi-base-node system is the consideration of how to

best fuse the additional bearing angle information effectively. This chapter proposes the use of

a sensitivity metric, which represents how sensitive a triangulated position is with respect to the

bearing measurement error, to choose a pair of base nodes for triangulation that are the most robust

at that time instance. In particular, the base node pairing with the lowest sensitivity metric is chosen

to compute the target’s position using the corresponding measured bearings.

Both the simulation and experimentation compare the performance of our proposed sensitivity

metric-based approach against three alternatives methods. These three approaches include a differ-

ent means of data fusion in the form of averaging the triangulated target positions computed from

the bearing angles of each base node pairing, a variation to the filtering scheme by incorporating

the current angle measurements in the measurement noise covariance matrix, and a combination of

the averaging fusion technique with this filtering scheme variation. A fourth alternative approach

is also examined in simulation, in which the captured bearing angles are used directly as the system

output and are nonlinear functions of the states, thereby entailing the use of an extended Kalman

filtering (EKF) scheme [57].
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Results show that the proposed sensitivity metric-based approach outperforms the alternative

variations and achieves an average estimated position error of roughly 0.18 grid units in experi-

ments, whereas the alternative averaging and filtering scheme approaches achieve average estimated

position errors of approximately 0.19, 0.28, and 0.25 grid units in experiments, respectively. The

alternative EKF-based approach yielded relatively poor results with the estimated velocity diverg-

ing away from the ground truth fairly quickly, thereby causing the system to consequently fail at

maintaining the LOS.

3.1 The Two-Base-Node Localization Approach

3.1.1 Measurement Process

The approach discussed in this chapter builds upon themeasurement process developed inChapter 2.

In particular, we assume each node has a photodiode receiver and an LED transmitter as components

of its optical transceiver, which is able to rotate 360◦ and keep track of the changes in its orientation.

As the MN shines its light at each base node, the base nodes rotate their transceivers to determine

the LOS measurement with respect to the MN based on the received light intensity, thus extracting

their respective bearing angles \1 and \2. Through the use of these angles and the locations of the

base nodes, the mobile node’s G and H coordinates are computed using (2.1) – (2.2).

As was the case before, this seemingly straightforward approach has its challenges, such as

insufficient synchronization and coordination among all of the nodes causing inadequate LOS.

There is also the complication of relying on pure algebraic calculations for the position (2.1),

since the inherent noise in the measurement angles will lead to highly variable (instead of smooth)

estimated trajectories for the mobile node MN.

Again, Kalman filtering addresses this issue by exploiting the predicted positions of the MN

it generates from the robot’s dynamics and the measurements computed by (2.1), to significantly

reduce the effort of searching for the LOS and thus enabling efficient, accurate, and dynamic

localization.

The designs of the proposed position measurement-based Kalman filtering algorithm as well as
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an alternative angle measurement-based extended Kalman filtering algorithm are presented next.

3.1.2 The Kalman Filtering Algorithms

As was the case in Chapter 2, the main purpose for using Kalman filtering is to facilitate the

maintenance of the line of sight between the base nodes and the mobile node, by predicting

the future positions of the robot so to produce anticipated angles for the transceiver orientation.

Likewise we continue to assume that the dynamics of the mobile node are captured with a constant

velocity model corrupted with Gaussian noise, since precise prior knowledge of the mobile node’s

movement would in general not be available to the base nodes. Potentially, alternative filtering and

predictive schemes, such neural networks [64], could have been used. However, the assumption

on the dynamics enables the use of computationally efficient Kalman filtering for predicting the

mobile node’s coordinates. Moreover, other approaches tend to require additional overhead; for

example, in the case of neural networks one needs to train the system in advance.

The dynamics for the mobile node are the same from Chapter 2; however, in this chapter we

have elaborated more on our system set up for the Kalman filtering. Therefore, we have included

the dynamics again here for easier referencing while reading the rest of this subsection.

n:+1 = n: + v:Δ: + F1,: (3.1)

v:+1 = v: + F2,: (3.2)

where v: =
[
EG,: , EH,:

]) and n: =
[
=G,: , =H,:

]) are the velocity and position vectors of the

mobile node at the :−th time instance, F1,: and F2,: are independent, zero-mean, white Gaussian

noises, and Δ: is the :−th sampling interval.

A state vector x: is used in the Kalman filter and is comprised of n: and v: stacked together,

in particular:

x: =
[
=G , =H, EG , EH

]) (3.3)

With this state vector, (3.1) and (3.2) can be rewritten as:

x:+1 = �:x: +
[
F1,: , F2,:

]) (3.4)
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where �: is the matrix derived from the mobile node’s motion model (3.1) and (3.2):

�: =



1 0 Δ: 0

0 1 0 Δ:

0 0 1 0

0 0 0 1


The next predicted state and error covariance are generated with:

x̂−
:
= �:−1x̂:−1 (3.5)

P̂−: = �:−1P̂:−1�
)
:−1 +&:−1 (3.6)

where x̂:−1 is the previous state estimate, x̂−
:
is the a priori state estimate, P̂−: is the predicted state

covariance matrix, and &: is the process noise covariance matrix.

This chapter will consider two Kalman filtering schemes. In the scheme that is proposed, the

observation, z: , is considered to be a noise-corrupted position measurement (derived from the

raw bearing angle measurements). In the alternative scheme, the observation, ': , is a pair of

noise-corrupted angles captured directly from the measurement process.

3.1.2.1 Position-based Kalman Filtering

The noise-corrupted position observation, z: , is computed based on (2.1):

z: = n: + F3,: , (3.7)

where F3,: is assumed to be a white, zero-mean Gaussian noise, and independent of the process

noises F1,: and F2,: . The physical implementation of the position measurement (3.7) is through

the triangulation of the measured bearing angles. In Chapter 2 we showed through simulation

that the noise in the position measurement exhibits a Gaussian form when the noise applied to the

bearing angles is uniform or Gaussian, thus justifying our use of Gaussian noise in this position

measurement model.
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This position measurement (3.7) can also be rewritten in terms of the state vector as:

z:+1 = �:x: + F3,: (3.8)

where H: is the observation matrix:

H: =


1 0 0 0

0 1 0 0


The observation z: is used in the state estimate:

x̂: = x̂−
:
+K:

(
z: −H: x̂−:

)
(3.9)

where

K: = P̂−:H):
(
H: P̂

−
: H): + ':

)−1
(3.10)

P̂: = (I − K: H: ) P̂
−
: (3.11)

K: is the Kalman gain, ': is the covariance matrix of measurement noise, and P̂: is the posterior

error covariance matrix.

3.1.2.2 Angle-based Extended Kalman Filtering

For the alternative scheme, the observation, ': , is expressed as:

'k = �: + l4,:

where F4,: is assumed to be a white, zero-mean Gaussian noise, and independent of noises F1,:

and F2,: and�: =
[
\0,: , \1,:

]) consists of the two bearing angles, \0,: and \1,: , associated with

the pair of base nodes, BNa and BNb, used for the measurement at the :−th time instance. The

physical implementation of this measurement is directly the result of extracting the bearing angles

from the scanned light intensities. These angles can be expressed as nonlinear functions of the
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states:

6(=G,: , =H,: ) =

\0,:

\1,:

 =

61(=G,: , =H,: )

62(=G,: , =H,: )



=



cos−1
©­­­­«

(=G,: − �0G)√(
=G,: − �0G

)2 +
(
=H,: − �0H

)2

ª®®®®¬
cos−1

©­­­­«
(=G,: − �1G)√(

=G,: − �1G
)2 +

(
=H,: − �1H

)2

ª®®®®¬


(3.12)

where
[
�0G , �0H

]) and
[
�1G , �1H

]) are the position vectors of BNa and BNb, respectively. This

nonlinear relationship between the states and the measurement requires the use of the extended

Kalman filtering (EKF) scheme. Consequently, the observation matrix �: is computed as the

Jacobian of function 6 evaluated at the current predicted position [=̂−
G,:
, =̂−
H,:
]:

�: =


m61
m=G,:

( n̂−
:
) m61

m=H,:
( n̂−
:
) 0 0

m62
m=G,:

( n̂−
:
) m62

m=H,:
( n̂−
:
) 0 0


(3.13)

where

n̂−
:
=


=̂−
G,:

=̂−
H,:

 (3.14)

The state estimate is then computed as:

x̂: = x̂−
:
+K: (Z: − 6(=̂: )) (3.15)

where

K: = P̂−:G):
(
G: P̂

−
: G): + '0

)−1
(3.16)
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P̂: = (I − K: G: ) P̂
−
: (3.17)

K: is the Kalman gain, '0 is the covariance matrix of angle measurement noise, and P̂: is the

posterior error covariance matrix.

3.2 Sensitivity Metric-based Data Fusion

Increasing the number of base nodes allows the system to capture multiple perspectives of

the mobile node’s location; however, the challenge then becomes how to best incorporate all of

the available information. In this chapter, the proposed approach is to use a sensitivity metric to

evaluate the level of uncertainty in a computed position based on the level of uncertainty in the pair

of measured bearing angles. In particular, this sensitivity metric can be applied to the captured

angles of each base node pair in order to characterize the level of uncertainty in the resulting

position for that pair. This allows for the position from the base node pair with the lowest level of

uncertainty to be used as the location observation, z: , for that cycle.

In this work the sensitivity metric is defined in terms of the infinity norms of the Jacobians in the

G and H directions, | |�G | |∞ and | |�H | |∞, respectively, of the measurement equation (2.1) with respect

to angles \1 and \2. Rewritten to be expressed in terms of the angles, (2.1) becomes 5G (\1, \2)

and 5H (\1, \2) where

5G = �1G +
3 sin \2

sin(\2 − \1)
cos \1 (3.18)

5H = �1H +
3 sin \2

sin(\2 − \1)
sin \1 (3.19)
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Figure 3.1: Illustration of the spatial sensitivity of the two base node measurement function,
half symmetry.
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Figure 3.2: Illustration of the spatial sensitivity of the two base node measurement function,
full symmetry.
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Then | |�G | |∞ and | |�H | |∞ can be defined as:

| |�G | |∞ =




 m 5Gm\1

m 5G
m\2






∞

=
3

2

���� 1
sin2(\2 − \1)

����max( |sin 2\2 | ,|sin 2\1 |) (3.20)

| |�H | |∞ =




m 5Hm\1

m 5H

m\2






∞

= 3

���� 1
sin2(\2 − \1)

����max(
���sin2 \2

��� , ���sin2 \1
���) (3.21)

These functions characterize how small changes in the measurement angles for a given pair of

base nodes result in changes to the computed position. Visual representations of this uncertainty

characterization is shown in Figures 3.1, 3.2, and 3.3. In Figure 3.1 the plot shows the relationship

for a range of positions within G ∈ [−10, 10] and H ∈ [0,−20] for a pair of base nodes (BN1, BN2)

located at [−3, 0]) , and [3, 0]) for BN1 and BN2, respectively. In this plot the I-axis indicates the

level of sensitivity, calculated as the Euclidean norm of | |�G | |∞, | |�H | |∞.

A notable observation from this illustration is that the level of sensitivity, and correspondingly

the localization uncertainty, is best along the perpendicular bisector of the base nodes with the

sensitivity getting worse as the mobile node gets further away from the base nodes and/or deviates
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away from the bisector. Figure 3.1 also shows that the sensitivity is the highest as the mobile

node gets closer to being collinear with the base nodes. In Figure 3.2 this uncertainty relationship

is shown to be symmetric about the collinear axis of the base nodes. Figure 3.3 shows how the

spatial sensitivity changes with different distances between the two base nodes BN1 and BN2. In

particular, it shows how the spatial sensitivity maps when the base nodes are separated by a distance

of 4 and 10 grid units, respectively. In particular, it can be seen that the level of sensitivity generally

decreases as the distance between the base nodes increases, with the exception of a small area

immediately in front of the base nodes, where the sensitivity is slightly lower when the base nodes

are closer together.

In implementation the captured angles from each pair combination of base nodes will be used

to evaluate the magnitude of � = ( | |�G | |∞, | |�H | |∞), which is the sensitivity metric. The angles from

the base node pairing that generates the lowest sensitivity value are used to calculate the observed

position I: , to be used in the Kalman filtering to estimate the mobile node’s position.

3.3 Simulation

The proposed minimum sensitivity-based data fusion approach uses a constant value, R2, for

its measurement noise covariance matrix, ': , which was computed in advance using data collected

from hardware. It is discussed in detail in Section 3.4.1. In simulation this proposed approach is

evaluated by comparing it to four alternatives methods, when each method is exposed to a range of

angle measurement noises.

3.3.1 Alternative Approaches

3.3.1.1 Variable-R with Minimal Sensitivity

In this approach the measurement noise covariance matrix, ': , is redefined in terms of the variance

of the angle measurement and thus varies depending on the mobile robot’s current location. In
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particular, ': is computed via:

R: = ":R0")
:

(3.22)

where

": =



m 5G

m\1

m 5G

m\2

m 5H

m\1

m 5H

m\2


(3.23)

R0 is the (constant) error covariance matrix of the angle measurement, and 5G and 5H are as defined

in (3.18) and (3.19), respectively.

The value of ": is re-computed for each step in the trajectory since it is dependent on the

latest angles measured at that step. Just like in the proposed approach, the observed position z: is

computed from the base node pair with the minimal sensitivity metric. For consistency purposes

these same angles are also used to evaluate ": .

3.3.1.2 Fixed-R with Averaging

For this approach data fusion is achieved by averaging the triangulated positions from each base

node pair. As with the proposed approach, the measurement noise covariance matrix, R: , is set to

the constant value, R2.

3.3.1.3 Variable-R with Averaging

This alternative approach uses both the averaging technique for data fusion and the variable mea-

surement noise covariance matrix that depends on the angles measured from the current trajectory

step. To mirror the fact that the observed position z: is a blend of all 3 base node pairs, the value of

": is computed as the average of each instance of (3.23) that is generated from each pair of base

node angles.
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3.3.1.4 Extended Kalman Filtering Scheme

In this alternative approach, the captured bearing angles are directly used as the system output

and are related to the states through nonlinear functions, thereby requiring the use of the extended

Kalman Filter (EKF). Similar to the proposed approach, the measurement noise covariance matrix,

R: , is set to a constant value, R2. However, in this case the value of R2 is built from the variances

of the measurement angles’ noise.

3.3.2 Simulation Setup

The simulation involves a network that includes 3 base nodes, even though the proposed approach

applies to a network with an arbitrary larger number of base nodes. The base nodes are positioned

into a configuration where the perpendicular bisector of each base node pair allows near overlapping

coverage at any angle relative to the center of the configuration. In particular, the three base nodes,

BN1, BN2, and BN3, are stationed at the coordinates [−3,−3]) , [0, 0]) , and [3,−3]) , respectively.

While other configurations, in particular an equilateral triangle, of the base nodes may potentially

have greater coverage capabilities, limited space in the experiment environment makes this difficult

to implement while still maintaining sufficient distance between the base nodes. The trajectory

used to evaluate the system is a single loop around all of the base nodes where the direction of the

mobile node does not reverse, as shown in Figure 3.4.

Simulation of angle measurement errors is achieved by adding independent, zero-mean, white

Gaussian noises to each of the ground truth angles, corresponding to the base nodes that are able to

establish LOS with the MN during the measurement sequence. By adjusting the standard deviation

of the Gaussian noise, the level of angle error can be controlled.

3.3.3 Simulation Results

Each of the approaches is evaluated in simulation under different levels of angular measurement

error. The standard deviation of the Gaussian noise ranges from 0.5◦ to 3.0◦ in increments of 0.5◦,
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with 200 trials conducted for each level of error. A set of 200 randoms seeds is used, one seed

for each trial, to control the randomness of the simulation so it would be repeatable and consistent

across the different levels of angular measurement error.

Figure 3.4: Illustration of the single loop trajectory with the base nodes, BN1, BN2, and BN3,
located at the coordinates [−3,−3]T, [0, 0]T, and [3,−3]T, respectively.
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Figure 3.5: Line graph showing the average estimated position error for four of the algorithm
variations under each level of standard deviation for the angular measurements.
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Figure 3.5 compares the average estimated position error for four of the algorithm variations

under each level of standard deviation for the angular measurements; the extended Kalman filtering

scheme is not included in this plot. The results in the figure show that in general the proposed

minimal sensitivity algorithm out performs both cases of the averaged-based fusion technique.

Both cases of the minimal sensitivity algorithm show very similar performance output, with the

proposed fixed-R approach showing a slight advantage over the variable-R approach as the level of

standard deviation for the angle measurement error gets larger.

Results from the angle-based extended Kalman filtering approach are shown in Figures 3.6

and 3.7, which compare the estimated position and estimated velocity against their ground truth

counterparts, respectively. The results shown are from a single simulated trial in which the angular

measurement noise had a standard deviation of 0.5◦. The figures show that the velocity estimates

diverge from the ground truth fairly early-on in the trajectory, which causes the position estimates

to suffer, resulting in the system failing to maintain the LOS between the mobile and base nodes

any further. The latter observation indicates that this EKF approach was only able to localize until

trajectory step 12 of 78, roughly 15% of the entire trajectory, which is not surprising since the

stability of an EKF is not guaranteed in general. Based on this, this approach is not further tested

in experiments.
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Figure 3.6: Simulation results from one of the trials of the angle-based extended Kalman
filtering approach in which the angular measurements experienced noise with a standard
deviation of 0.5◦. The graphs compares the x and y coordinates of the estimated and ground
truth positions for each the trajectory steps reached by the system during the trail.
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Figure 3.7: Simulation results from one of the trials of the angle-based extended Kalman
filtering approach in which the angular measurements experienced noise with a standard
deviation of 0.5◦. The graphs compares the x and y coordinates of the estimated and ground
truth velocities for each the trajectory steps reached by the system during the trail.
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3.4 Experiment

3.4.1 Setup

The nodes used in these experiments were equipped with the same hardware that was shown in

Chapter 2; see Section 2.5 for the detailed description. One minor change to the hardware in this

chapter is the use of a self-designed UART network. It enabled the angle data exchange across the

three base nodes and also allowed for BN3 to orchestrate the actions of the other base nodes as

well as broadcasting the updated state estimates of the MN, so that each node could search in the

appropriate area for the next measurement angle. Figure 3.8 shows the experiment setup used with

the mobile node and base nodes together on the grid floor.

For the proposed approach, the measurement noise covariance matrix, R: , is a constant value,

R2, that was calculated in advance of the experiments by having the system try to scan the angles

of the mobile node’s position while the mobile node remained at a fixed location. The values of

this matrix were found using 3 separate fixed positions, with each position selected to ensure that

each base node combination equally contributed to the matrix, and with 50 measurements for each

location so to best characterize the error of this 3 base node approach. The G and H errors generated

from comparing the base node’s measured position against these fixed positions were then fused

together in the following formula to generate the matrix.

R2 =


RG,G RG,H

RH,G RH,H


=

1
 


 ∑
:=1
(G̃: − `G)2

 ∑
:=1
(G̃: − `G) ( H̃: − `H)

 ∑
:=1
( H̃: − `H) (G̃: − `G)

 ∑
:=1
( H̃: − `H)2

 (3.24)

where  is the total number of measurements the base nodes captured, G̃ and H̃ are the magnitudes

of the errors for the G and H coordinates, respectively, and `G and `H are the average errors among

all of the captured measurements for G and H, respectively.
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Figure 3.8: Overhead view of the grid floor used in experiments.

Estimated Position Error

Mean Standard
Deviation

Min.
Sensitivity

Fixed R 0.1813 0.0833
Variable R 0.1998 0.1272

Averaged Fixed R 0.2817 0.2245
Variable R 0.2518 0.2738

Table 3.1: Summarized experimental results from the three trials of each algorithm varia-
tion. The results include the mean and standard deviation of the estimated position error
magnitude.

3.4.2 Results

Three experimental trialswere conducted for each of the algorithmvariations. Table 3.1 summarizes

the performance for each algorithm variation across each of the three trials. In particular, it shows

the mean and standard deviation of the estimated position error magnitude. Figures 3.9, 3.10, 3.11,

and 3.12 compare the estimated and ground truth positions of the mobile node along the G and H

coordinates from one of the three trials for the minimal sensitivity with fixed-R, minimal sensitivity

with variable-R, averaging with fixed-R, and averaging with variable-R approaches, respectively.

Collectively these results mirror the observations noticed in the simulation. In particular, both

minimal sensitivity approaches having similar performance metrics, with the proposed fixed-R
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approach showing a slight advantage with a lower mean and standard deviation of its estimated

position error. Both averaging based approaches significantly under-performed as both versions

were unable to track the robot to the end of the trajectory. This is because the averaging approaches,

unlike the minimal sensitivity approach, are unable to effectively mitigate the effect of large position

measurement errors.
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Figure 3.9: Experimental results from one of the trials of the proposed minimal sensitivity
with fixed-R approach. The plot shows theMN’s estimated position plotted against the ground
truth.
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with variable-R approach. The plot shows the MN’s estimated position plotted against the
ground truth.
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Figure 3.11: Experimental results from one of the trials of the alternative averaging with
fixed-R approach. The plot shows the MN’s estimated position plotted against the ground
truth.
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Figure 3.12: Experimental results from one of the trials of the alternative averaging with
variable-R approach. The plot shows the MN’s estimated position plotted against the ground
truth.
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3.5 Summary

This chapter has presented the algorithm design and system implementation of a mobile robot

LED-based optical localization system that uses a network of multiple beacon nodes to compute

the coordinates of the robot. In particular, the proposed approach builds upon our previous two-

beacon system which used the bearing angles needed to establish LOS communication between

the beacons and the robot to compute the robot’s measured position. To optimize data fusion from

multiple beacons and improve the positioning process, a sensitivity metric has been proposed which

characterizes the level of uncertainty in the computed position from the measured bearing angles

of the beacons. The metric is used to select the optimal pair of beacons for the measured position.

This approach overcomes the limitations of the two-base-node approach and enables a high level

of localization accuracy. It is important to note that while our simulations and experiments are

carried out with three base nodes, the proposed approach is easily extendable to work with groups

containing more base nodes.

The work presented in this chapter was published in the Mechatronics journal [65], and a pre-

liminary version of this was work also presented at the 2019 IEEE/ASME International Conference

on Advanced Intelligent Mechatronics (AIM) [66].
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CHAPTER 4

DYNAMIC LOCALIZATION OF A ROBOT IN CONTINUOUS MOTION

The previous chapters presented approaches to LED-based Simultaneous Localization and Commu-

nication that took advantage of the line of sight (LOS) requirement in LED-based communication

to extract the relative bearing between a mobile robot and two base nodes with known positions.

The bearing angles were then used to triangulate the position of the mobile robot. A Kalman

filter was implemented to combat the challenge of measurement noises and to allow robot position

prediction to facilitate the light scan for bearing measurement. However, those approaches came

with the assumption that the angles were captured at the same time, i.e., when the mobile robot

was at a single location. Consequently, because scanning for the light intensity with a rotating

receiver cannot capture both angles simultaneously, our implementation used a stop-and-go motion

in order to ensure the robot was at a single location. However, this significantly slowed the robots

movement, making it unsuitable for time-sensitive tasks.

In this chapter, we propose a novel solution to LED-based localization which is capable of

capturing the position of the robot while it is continuously moving. In particular, the proposed

approach takes advantage of the estimated velocity from the Kalman filter, to properly correlate

the two consecutive measurements of bearing angles with respect to the two base nodes for the

position computation. In contrast to the previous chapters, this approach also now uses for the first

time a rigid-body model to more accurately estimate the robot’s movement. The performance of

this proposed dynamic-prediction approach is evaluated through simulation and experiments and is

compared with the performance of an alternative approach that assumes both angle measurements

to be taken at the same point, which we term the “traditional” approach in this chapter. The results

show that the dynamic-prediction method is capable of localizing the robot and does consistently

better than the traditional approach.
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4.1 Overview of the LED-Based Localization Process

4.1.1 Measurement Process

The approach discussed in this chapter builds upon the measurement processes developed in the

previous chapters. That is all nodes have an optical transceiver which can rotate 360◦ while also

maintaining the state of its orientation. The mobile node’s coordinates can then be computed using

the bearing angles \1 and \2, and the known locations of the base nodes BN1 and BN2 using (2.1)

and (2.2).

Similarly, although it seems simple, improper LOS due to insufficient synchronization and

coordination among the nodes, in addition to the inherent noise in the angle measurement error,

makes the approach non-trivial. These concerns are again addressed using Kalman filtering which

generates the predicted positions of the MN from the robot’s dynamics and the measurements

computed by (2.1), to significantly reduce the effort of searching for the LOS and thus enabling

efficient, accurate, and dynamic localization. A brief overview of the Kalman filter used in this

work is discussed next.

4.1.2 The Kalman Filtering Algorithms

Similar to previous chapters, the purpose for using Kalman filtering is to help establish the LOS

between the mobile node and base nodes, by predicting the future state of the robot so that the

base nodes and mobile node can anticipate each other’s angular locations. In previous chapters,

the mobile robot was modeled as a point mass, only focusing on the changes in G, H coordinates.

In this chapter, the robot’s motion is being represented as a rigid-body model, monitoring changes

to both the body’s orientation and the position. This could potentially allow for the system to

produce smooth trajectories of the estimated orientation to best compensate the body rotation in

the alignment/scanning process.

For both position and orientation, a constant (angular) velocity model corrupted with Gaussian

noise is used for themobile node’s dynamics, since in general the precise knowledge of itsmovement
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is not known. These dynamics can be represented as:

n:+1 = n: + v:Δ: + @1,: (4.1)

v:+1 = v: + @2,: (4.2)

7:+1 = 7: + 8:Δ: + @3,: (4.3)

8:+1 = 8: + @4,: (4.4)

where n: =
[
=G,: , =H,:

]) and v: =
[
EG,: , EH,:

]) are the position and velocity vectors of the

mobile node in terms of the G and H coordinates at the :−th time instance, 7: and 8: are the

body orientation angle and the body’s angular velocity, respectively,@1,: , @2,: , @3,: , and @4,:

are independent, zero-mean, white Gaussian noises, and Δ: is the :−th sampling interval. The

observations z: and s: are the noise-corrupted location and orientationmeasurements, respectively.

They are represented as:

z: = n: + @5,: , (4.5)

s: = 7: + @6,: , (4.6)

where @5,: and @6,: are assumed to be white, zero-mean Gaussian, and independent of each other

and the process noises @1,: , @2,: , @3,: , and @4,: .

The measurement z: is computed from (2.1) and (2.2), which is only possible in physical

implementation when the bearing angles, \1 and \2, are measured by the MN at a single fixed

position. The main focus of this work addresses how z: can be computed when the bearing angles

are captured by the mobile node at different positions due to the robot’s movement.

The measurement s: is obtained from an orientation sensor such as a magnetic compass. Body

orientation estimation is needed for the mobile robot to compute the required rotation for the

transceiver to establish the LOS, by properly accommodating the rotation of the robot itself.

Two state vectors are used for Kalman filtering in this work. The first state vector, x̂: , maintains

the estimate of the position and velocity, whereas the second state vector, b̂: , tracks the estimate of
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the body orientation angle and the angular velocity. The two state vectors are defined as

x̂: =
[
=̂G , =̂H, ÊG , ÊH

]) (4.7)

b̂: =
[
k̂, l̂

]) (4.8)

where [=̂G , =̂H]) , [ÊG , ÊH], k̂, and l̂ are the estimated position, velocity, body orientation angle,

and angular velocity of the mobile node at the :−th time instance, respectively. The equations for

the implementation of the Kalman filter, which are standard [58], are omitted here for brevity.

4.1.3 Challenges with Continuously Moving Robot

The traditional measurement system, (2.1) and (2.2), used in the previous chapters assumed that the

bearing angles were captured when the mobile robot was at a single fixed position. Consequently,

because the physical angle scanning process takes time, i.e., it is not physically possible to instan-

taneously capture both angles with a rotating transceiver, it required the mobile node’s trajectory

to be executed in a stop-and-go manner in order to ensure that the robot was at the same position

for both angle captures.

As beneficial as it is, the stop-and-go implementation is time-consuming and thus limits how

quickly the robot can traverse its environment, making it unsuitable for time-sensitive tasks. In this

work we propose an approach that allows the robot to localize while also moving continuously in

its environment. That is, we propose an algorithm that can compute the robot’s position despite the

fact that the two consecutive measurements of bearing angles, with respect to the two base nodes,

are captured at different times and positions.

4.2 Proposed Approach

The bearing angles, \1 and \2, are captured by the MN while it moves along its trajectory, where

each angle is captured at a distinct position along this path. These spotting positions are labeled

as Pa and Pb, where Pa is the position whose G-coordinate is the smallest and not necessarily

the position where the first bearing angle is spotted. Localization of the robot is achieved by
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Figure 4.1: Illustration comparing the traditional approach and the proposed dynamic-
prediction approach, for the case when \1 and \2 are at spots Pa and Pb, respectively.

determining the coordinates of these spotting positions, and treating one of these positions as the

observed location z: of the robot.

The concept for calculating these positions is considerably more involved than the traditional

approach described in (2.1) and (2.2). To better contrast their differences, Figure 4.1 illustrates

how the two approaches would determine a position given the same measured bearing angles. In

particular, the diagram shows that the traditional approach would use the two angles to find a

converging point at Pf , which could be significantly distant from the two ground-truth locations, Pa

and Pb, where the angles were actually captured by the robot. Moreover, with access to only the

bearing angles, the coordinates for Pa and Pb could be any of the points along the two edges of the

triangle formed by Pf , BN1, and BN2. To determine an estimate of the positions for Pa or Pb, this

work exploits the MN’s most recently estimated velocity to properly combine the two measured

angles.
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4.2.1 Measurement Equations

The locations of the mobile node, Pa and Pb, where a bearing angle is measured, can be determined

by solving for the G and H distances between each spot location and the base node of the correspond-

ing captured angle, by using these angles along with the estimated velocity of the mobile node. For

instance, in Figure 4.1, BN1 and Pa are separated from each other by G0 and H0. Similarly, BN2

and Pb are related by G1 and H1. These distances can be expressed in generalized mathematical

relationships as:

%0G = �#1G + AG0 (4.9)

%1G = �#2G + BG1 (4.10)

%0H = �#1H + CH0 (4.11)

%1H = �#2H + DH1 (4.12)

where %0G , %1G and %0H, %1H are the G and H coordinates of Pa and Pb, respectively, �#1G , �#2G

and �#1H, �#2H are the G and H coordinates of BN1 and BN2, respectively, and A, B, C, and D

are the sign values of the distances G0, G1, H0 and H1, respectively. A, B, C, and D reflect where

the spot locations are relative to the base nodes, and can be determined by inspecting the properties

of the captured bearing angles. In particular, A and B take on the sign value of cos \1 and cos \2,

respectively, and C and D take on the sign value of sin \1 and sin \2, respectively.

From the relationships in (4.9) – (4.12), expressions for the distances G0, G1, H0 and H1 can be

derived as:

G0 =

3 − [ + BE
W sin i
tan V

A − B
tanU
tan V

(4.13)

H0 = G0 tanU (4.14)

H1 = H0 + E_ (4.15)

G1 =
H1

tan V
(4.16)
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where,

3 = �#2G − �#1G (4.17)

[ = W cos i (4.18)

_ = W sin i (4.19)

d =


+1, (0◦ ≤ i < 90◦)

−1, (−90◦ < i < 0◦)
(4.20)

E =



(1 = +1) ∧ (C = +1) ∧ (D = +1)

+1, ∨

(1 = −1) ∧ (C = −1) ∧ (D = −1)

(1 = −1) ∧ (C = +1) ∧ (D = +1)

−1, ∨

(1 = +1) ∧ (C = −1) ∧ (D = −1)

(4.21)

In these equations, 3 is the distance between the base nodes, [ is the G-distance between the spotted

points, i.e., the distance from Pa to Pb, and _ is the H-distance between the spotted points with E

being its associated sign value, which is determined from a combination of the slope, d, and the

sine values of the bearing angles. The variables U and V represent the inner angles of the triangles

that each base node makes with its corresponding spotting point and are computed from \1 and

\2, respectively, and W and i are the magnitude and angle of the Kalman filter-estimated velocity

of the mobile node’s movement, respectively. To simplify the discussion, it is assumed, without

loss of generality, that the base nodes are separated only along the G-axis. By using the two sets

of relationships, (4.9) – (4.12) and (4.13) – (4.16), the position of Pa (or Pb) can be computed and

then used in the Kalman filter’s state estimate update.

The above relationships, (4.9) – (4.16), are developed from the situation shown in Figure 4.1,

where \1 and \2 are captured at spots Pa and Pb, respectively. In the case where \1 and \2 are
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Figure 4.2: Illustration of the moving measurement approach, which shows the situation
when \1 and \2 are at spots Pb and Pa, respectively.

alternatively captured at spots Pb and Pa, respectively, as is illustrated in Figure 4.2, equations (4.9)

– (4.16) would be simply adjusted to reflect the new association between the angles spot positions

and the base nodes.

4.3 Simulation

Simulation of the proposed dynamic-prediction approach was conducted, with its performance

compared to the traditional approach of computing the measured position. In particular, the

robustness of both approaches were tested against varying levels of measurement error in the body

orientation, as well as varying levels of the MN’s velocity. Both factors have influence on the

position measurement. The former results in error in the bearing angle measurement, whereas the

latter affects the distance between the two consecutive measurements of bearing angles.
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4.3.1 Simulation Setup

The robot was evaluated on a straight line trajectory starting at [−7, −6]) and ending at [9, −6]) ,

to mimic the trajectory of the MN in experiments as shown in Figures 4.3 and 4.4. The ground

truth positions were determined by advancing the robot’s position from the starting point to the

end point by repeatedly applying the ground truth velocity in small increments of time. The time

increment should be small enough to allow for the ground truth position at any time instance to be

determined. Base nodes BN1 and BN2 were positioned at [−3, 0]) and [3, 0]) , respectively.

4.3.2 Simulation Measurements

The simulated robot body orientation measurement was generated by adding zero-mean Gaussian

noise to the ground truth orientation value. The simulated ground truth body orientation of the

mobile node was obtained by finding the angle between the 0◦ orientation vector and the vector that

points from the previous to the current ground truth position. The amount of error in the orientation

measurement was controlled by adjusting the standard deviation of the Gaussian noise.

The Kalman filter-estimated body orientation (based on the body orientation measurement)

was used to adjust the mobile node’s transceiver angle in order to establish LOS by properly

accommodating the robot’s own rotation. The error in the estimated orientation angle had the effect

of eschewing the scanned light intensities thus resulting in errors in the angle error.

Angle measurements were generated by simulating the process of the MN scanning the light

intensities shown by the base nodes. The range of the mobile node’s scan was the angular distance

between the predicted angles, \̂1,:+1 and \̂2,:+1, computed in (2.12), plus an additional 30◦ in the

opposite direction of each angle. The scan resolution was set to a step size of 0.225◦, to mimic

the rotation resolution of the stepper motor used in the hardware implementation of our previous

works. The amount of time that elapsed between the steps of the scan was determined by averaging

the amount of time that elapsed between steps in hardware trials.
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Figure 4.3: Comparison of the ground truth and estimated positions for one of the simulated
trials using the proposeddynamic-prediction approach, for the casewhen the body orientation
measurement angle was subjected toGaussian noises with a standard deviation of 1.0◦ and the
MN’s velocity was 0.27 (grid units/s). The timestamp associated with every other estimated
position is shown slightly above the corresponding markers to indicate the progression of
time.
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The strength of the artificial light intensity was based on the degree of LOS achieved between

the transceivers of the mobile node and the base nodes at each step of the mobile node’s transceiver

rotation. This degree of LOS, which ranged from [0.0, 1.0] with a value of 1.0 representing direct

LOS, was first scaled by 7.3 to mimic the range of voltages measured by the photodiode, and was

then injected with zero-mean Gaussian noise with a standard deviation of 0.5 volts to represent the

inherent error associated with the light measuring process. The bearing angles were extracted from

the simulated light intensities by determining the angular position of mobile node’s transceiver at

the center point of the two peaks in the intensity scan.

4.3.3 Simulation Results

4.3.3.1 Impact of Body Orientation Angle Measurement Error

First the system was simulated under different levels of measurement error to the body orientation

angle. In particular, the standard deviation of the Gaussian noise ranged from 1.0◦ to 5.0◦ in

increments of 1.0◦, where for each noise level, 100 trials were conducted. A vector of 100 random

seeds, one for each trial number, was used to ensure the randomness of each trial was repeatable.

The MN’s velocity for all of these trials was 0.27 (grid units/s). The MN’s transceiver was adjusted

using the estimated orientation angle, k̂, which was influenced through Kalman filtering by the

noise corrupted measured body orientation angle, s: .

Figures 4.3 and 4.4 show the comparison between the ground truth position and the Kalman

filtering-based estimated positions of the robot corresponding to the same timestamps for one of the

simulated trials using the proposed dynamic-prediction and traditional measurement approaches,

respectively, where the standard deviation of the Gaussian noise applied to the body orientation

measurement angle was 1.0◦. Figures 4.5 and 4.6 show the mean and standard deviation of the

estimated position and velocity errors, respectively, among all of the trials for (a) the traditional

measurement approach and (b) the proposed dynamic-prediction measurement approach, under

each level of standard deviation for the body orientation angle measurement error. The estimated
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Figure 4.5: Plot of themean and standard deviation of the estimated position errors computed
among all of the trials for varying amounts of standard deviation in the Gaussian noise added
to the body orientation measurements of the mobile node. a) Average error for the traditional
approach; b) Average error for the proposed dynamic-prediction approach.
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Figure 4.6: Plot of themean and standard deviation of the estimated velocity errors computed
among all of the trials for varying levels of noise to the body orientation angle measurements.
a) Average error for the traditional approach; b) Average error for the proposed dynamic-
prediction approach.

position error is the magnitude of the difference between the ground truth position and the position

from the Kalman filter’s state vector x̂: =
[
=̂G , =̂H

]
after processing the observed position z: that

correspond to the same timestamp. Similarly, the estimated velocity error is the magnitude of the

difference between the ground truth velocity and the velocity from the Kalman filter’s state vector
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x̂: =
[
ÊG , ÊH

]
after processing the observed position z: . Figure 4.7 shows the average number of

scanned measurements the MN was able to capture before either reaching the end of the trajectory

or losing LOS with the base nodes.
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Figure 4.7: The average number of angle measurements captured during the trials across
each of the different levels of noise to the body orientation angle measurements, for both the
dynamic-prediction and traditional approaches.

Figures 4.3 and 4.4 show that the proposed dynamic-prediction approach is more tightly aligned

with ground truth positions and velocity, whereas the traditional approach seems to beweaving about

the ground truth positions and is struggling to capture the true velocity of the system. Figure 4.5

shows that for each level of orientation error, the mean position error of the proposed dynamic-

prediction approach is lower than the traditional approach; despite the face that the rate of change

in the mean position error of the traditional approach is more shallower rate than the proposed

dynamic-prediction approach, with an average rate of 0.07 (grid units/°) and 0.095 (grid units/°)

error, for the traditional and dynamic-prediction approaches, respectively. Figure 4.6 initially shows

a similar trend to Figure 4.5, where for most of the levels of orientation error the proposed dynamic-

prediction approach does better than the traditional approach. The exception is when the standard

deviation of the Gaussian noise to the body orientation is 4◦, in which case the dynamic-prediction

approach does slightly worse than the traditional approach. Figure 4.7 shows that there is not

particular trend, and that both approaches capture a similar number of angle measures, relative to

67



each other, across all the levels of orientation error.

Collectively, the graphs indicate that the proposed dynamic-prediction measurement approach

is not only capable of localizing the mobile robot sufficiently under each level of body orientation

angle measurement error but overall it seems to out perform the traditional measurement approach

as well, despite both approaches capturing a similar number of measurements per trial.

4.3.3.2 Impact of the Robot’s Velocity

The simulation next examined the systems performance under different velocity settings of the MN.

In particular the MN’s velocity ranged from 0.17 (grid units/s) to 0.37 (grid units/s) in increments

of 0.05 (grid units/s), with each velocity setting being used for 100 trials with each trial associated

with a unique random seed. The standard deviation of the Gaussian noise applied to mobile node’s

body orientation angle measurement during these trials was kept at 1.0◦.

Figures 4.8 and 4.9 show the mean and standard deviation of the estimated position and velocity

errors, respectively, among all of the trials for (a) the traditional measurement approach and (b) the

proposed dynamic-prediction measurement approach, under each of the different velocity settings.

Figure 4.10 shows the average number of scanned measurements the MN was able to capture

before either reaching the end of the trajectory or losing LOS with the base nodes. From these

figures, it can be seen that the proposed dynamic-prediction approach is able to maintain a relatively

consistent level of estimated position and velocity accuracy as the robot’s velocity increases. In

comparison, the traditional measurement approach shows that it has a more difficult time in terms

of both position estimation and velocity estimation as the speed increases. Moreover, these graphs

show that the change in the robot’s velocity has a much more dramatic effect in distinguishing the

two approaches in comparison to the altering the body orientation measurement angle.
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Figure 4.8: Plot of themean and standard deviation of the estimated position errors computed
across each of the different levels ofMNvelocity. a)Average error for the traditional approach;
b) Average error for the proposed dynamic-prediction approach.
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Figure 4.9: Plot of the mean and standard deviation of the velocity errors computed across
each of the different levels of MN velocity. a) Average error for the traditional approach; b)
Average error for the proposed dynamic-prediction approach.
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approaches.
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4.4 Experiment

4.4.1 Setup

Most of the same hardware used for the nodes in Chapters 2 and 3 was reused for these experiments.

In Chapters 2 and 3 each base node was responsible for capturing their own respective bearing angle

by scanning the light shown by the MN, which had to aim its light at each base node separately,

thereby increasing the amount of time needed to establish the robot’s measured position. However,

for the experiments in this chapter, the setup was changed so that the MN was responsible for

measuring all of the bearing angles from a single scanning sweep of the light shown by the base

nodes, BN1 and BN2. Consequently, a second Intelr Edison Board was installed on the robot’s

chassis so that its twomain tasks of collecting pose data from themotion tracking system and optical

localization could be processed in parallel. The two Edison boards, as shown in Figure 4.11, would

periodically communicate with each other so that the localization algorithm could get access to the

measured orientation data from the motion tracking system. The communication between the two

boards was achieved using a combination of GPIO pins as flags, to trigger an event on the pose

capturing board, and unidirectional serial communication to send the pertinent data back to the

board processing the optical localization. Figure 4.12 shows the experiment setup used with the

mobile node and base nodes together on the grid floor.

4.4.2 Results

Experimental trials using the proposed dynamic-prediction and traditionalmeasurement approaches

were conducted, with nine trials for both approaches, respectively. Table 4.1 summarizes the

performance across each set of trials. In particular, it shows the mean and standard deviation of the

estimated position and estimated velocity error magnitudes for each algorithm.

Figures 4.13 and 4.14 show the estimated position and estimated velocity, respectively, against

the corresponding ground truth over time for one of the trials which used the proposed dynamic-

prediction measurement approach. Similarly, Figures 4.15 and 4.16 show the estimated position
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Figure 4.11: The mobile node implementation used with two Intelr Edison Boards.

Figure 4.12: Overhead view of the grid floor used in experiments.

and estimated velocity, respectively, against the corresponding ground truth over time for one of

the trials which used the traditional measurement approach. The ground truth position shown in

Figures 4.13 and 4.15 was extracted from the datalog of the motion tracking system for that trial.

This ground truth position was then undersampled to compute the ground truth velocity shown

Figures 4.14 and 4.16. Figure 4.19 compares the estimated position with the ground truth position

for one of the trials which used the dynamic-prediction approach. Figures 4.17 and 4.18 shows the

numbers of angle measurements that the system is able to scan before either reaching the end of
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Estimated Position Error Estimated Velocity Error

Mean Standard
Deviation Mean Standard

Deviation
Dynamic
Prediction 0.3601 0.0677 0.0574 0.0066

Traditional 0.7985 0.2144 0.0928 0.0364

Table 4.1: Summarized experimental results from the trials of each algorithm. The results
include the mean and standard deviation of the estimated position error magnitude and the
estimated velocity error magnitude.

the trajectory or losing the LOS with the base nodes. Together the table and the graphs show that

the dynamic-prediction approach is able to sufficiently localize the robot whereas the traditional

approach struggles.
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Figure 4.13: Comparison of the estimated position against the ground truth position over
time for one of the trials which used the dynamic-prediction approach.
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Figure 4.14: Comparison of the estimated velocity against the ground truth velocity over time
for one of the trials which used the dynamic-prediction approach.
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Figure 4.15: Comparison of the estimated position against the ground truth position over
time for one of the trials which used the traditional approach.
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Figure 4.16: Comparison of the estimated velocity against the ground truth velocity over time
for one of the trials which used the traditional approach.
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Figure 4.17: Bar graph showing the number of scanned measurements for each trial using
the proposed dynamic-prediction measurement approach.

2 2

1

4

2

4 4

1

2

1 2 3 4 5 6 7 8 9

Trial Number

0

1

2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

M
e

a
s

u
re

m
e

n
ts

Figure 4.18: Bar graph showing the number of scanned measurements for each trial using
the traditional measurement approach.
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4.5 Summary

This chapter has presented an approach to LED-based localization of a continuously moving

robot. By utilizing the estimated velocity of the mobile robot we were able to address the main

challenge of measuring the robot’s position despite the bearing angles being measured at different

times and positions.

It was shown in simulation and experiments that the proposed dynamic-prediction approach was

capable of localizing the mobile robot despite the bearing angles being captured at different times

and locations. In addition, it also performed better than the traditional approach, which assumed

the bearing angles were measured at a single location.

Preliminary work on this proposed idea was presented in the 2020 ASME Dynamic Systems

and Control Conference [67].
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CHAPTER 5

CONCLUSION AND FUTUREWORK

5.1 Concluding Remarks

In this work we developed optical LED-based localization schemes for tracking a mobile robot.

The designed system utilizes the bearing angles needed for maintaining the line of sight (LOS) for

communication to triangulate the position of the robot.

First, we presented a key idea in our approach, which exploits the use of Kalman filtering for

predicting the position of the mobile node, to facilitate the establishment and maintenance of LOS.

Simulation that analyzed the system’s performance under varying levels of error to the bearing angle

measurements and the initial location of the robot was presented and showed the system’s ability

to still offer sufficient localization accuracy. Experimentation then showed the significance of the

predicted position from the Kalman filter and how that allows the system to localize dynamically.

Second, we presented an algorithm and its implementation for best localizing a robot using

a network of more than two beacon nodes. To optimize data fusion from multiple beacons and

improve the positioning process, a sensitivity metric was proposed which characterizes the level

of uncertainty in the computed position from the error in measured bearing angles. The metric

was used to select the optimal pair of beacons for the measured position. This approach overcame

the singularity limitation of the two-base-node approach and enabled a high level of localization

accuracy. Simulation and experiments were presented that compared the proposed approach

against three other alternative approaches, and showed that the proposed approach out performed

the alternatives.

Finally, we presented a design for LED-based optical localization that is capable of tracking a

continuously moving robot. The key to this approach was utilizing the estimated velocity of the

mobile robot to connect the bearing angular measurements of the robot that are captured at different

times and positions. Simulation results were presented which analyzed the proposed approach’s
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performance under varying levels of body orientation angle measurement error and different speed

settings of the robot. Experiment results were also presented. Both the simulation and experiments

showed that the proposed method is capable of localizing and had better performance over the

traditional approach which assumed the bearing angles were measured at a single location.

5.2 Future Work

The work presented here can be extended further in future studies. While a rigid body model

has been introduced in the current work, its full usefulness has yet to be explored. In particular,

future designs could explore using this model to help enhance the localization accuracy of the robot

in more complicated trajectories.

Another aspect that is worth exploring is to use the sensitivity metric of the multi-base node data

fusion approach to help localize the continuously moving robot when it comes close to collinear

relationships with some of the base nodes.

Hardware design is limited by the intensity of the LED. If it is too bright the robot cannot

localize close to the base nodes; and if not bright enough, the robot can only be localized a certain

distance away from the base nodes. It would be desirable for future designs to improve the current

hardware with a dynamically adjustable light intensity.

The main inspiration of this work is an alternative localization mechanism for underwater

environments. Naturally, extending this work to an underwater environment should be explored.

However, experimentation in underwater environments presents numerous additional challenges

on top of the concerns associated with validating the design. These overhead concerns include

waterproofing the electronics, adjusting for light refraction and general light disturbances to name

a few.

Finally, underwater implementation would also require an extension of this approach to the 3D

setting, since it would be difficult as well as impractical to maintain all of the parties at a level

depth. Multiple aspects of the existing methods would need to be addressed and changed for this

extension to 3D, such as the scanning procedure and measurement equations.
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