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ABSTRACT 

MODELING OF NANOSCALE ELECTRICAL JUNCTIONS AND ELECTRICAL 

CONTACTS 

By 

Sneha Banerjee 

Nano-scale electrical contacts are essential for next generation electronics. Based on the 

materials of the contact members and the interfacial layers, these junctions can be of ohmic, 

Schottky or tunneling type. Nonuniform current distribution and current crowding across electrical 

contacts lead to nonuniform heat deposition, formation of local thermal hotspots, aggravation of 

electromigration, and in the worst scenario, lead to thermal runaway and breakdown of the device. 

Contact resistance, on the other hand, severely restricts the current flow, and affects the overall 

device properties. Devices based on thin film junctions, nanotubes or nanowires, and two-

dimensional (2D) materials are especially sensitive to the current transport at electrical contacts, 

due to their reduced dimensions and increased geometrical confinement for the current flow. The 

goal of this thesis is to develop theoretical models to understand, improve, and control current 

transport and to reduce contact resistance in nanoscale electrical contacts. 

First, we study the current density-voltage (𝐽 − 𝑉) characteristics of dissimilar metal-

insulator-metal (MIM) nanoscale tunneling junctions using a self-consistent quantum model. 

Tunneling type contacts are ubiquitous as they can be formed when a thin insulator layer or gap 

exists between two contacting members. Our model includes electron emissions from both the 

cathode and anode, and the effects of image charge potential, space charge and exchange 

correlation potential. The 𝐽 − 𝑉 curves span three regimes: direct tunneling, field emission, and 

space-charge-limited regime. Unlike similar MIM junctions, the 𝐽 − 𝑉 curves are polarity 

dependent. The forward and reverse bias 𝐽 − 𝑉  curves and their crossover behaviors are examined 



in detail for various regimes, over a wide range of material properties. It is found that the 

asymmetry between the current density profiles increases with the work function difference 

between the electrodes, insulator layer thickness, and relative permittivity of the insulator. This 

asymmetry is profound in the field emission regime and is insignificant in the direct tunneling, and 

space charge limited regimes. 

Next, we study the current distribution and contact resistance in ohmic, tunneling and two-

dimensional (2D) material-based Schottky contacts. We modify the standard transmission line 

model (TLM) to include the effects of spatially varying specific contact resistivity 𝜌𝑐 along the 

contact length. Both Cartesian and circular (or annular) contacts are analyzed. The local voltage-

dependent 𝜌𝑐 along the contact length is calculated self-consistently by solving the lumped circuit 

TLM equations coupled with the quantum tunneling model for MIM junctions, or the thermionic 

emission current injection model for 2D materials. We find that current distribution and contact 

resistance depend strongly on input voltage, contact dimension and geometry, and material 

properties. We also propose to reduce contact resistance in 2D-material-based electrical contacts 

by roughness engineering of the contact interfaces. The results for ohmic contact are verified with 

finite element method (FEM) based simulations, and the 2D-material based calculations are 

validated with existing theory and experiments. 

We further extend this work and demonstrate a method to mitigate current crowding, by 

engineering the interface layer properties and geometry. We find that current steering and 

redistribution can be realized by strategically designing the specific contact resistivity 𝜌𝑐 along the 

contact length. We also find that introducing a nanometer scale thin insulating tunneling gap 

between highly conductive contact members can greatly reduce current crowding while maintaining 

similar total contact resistance.  
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CHAPTER 1 

INTRODUCTION 

Nanoscale electrical junctions are prevalent in a diverse set of electronic devices. They are 

naturally formed in transistors [1], [2], scanning tunneling microscopes [3], [4],  thin film contacts, 

and two-dimensional (2D) material, nanowire, nanofiber, or nanorod based novel devices [5]–[7], 

as shown in Figures 1.1 and 1.2 below. Based on the materials of the contact members and the 

interfacial layers, these junctions can be of ohmic, Schottky or tunneling type. Tunneling type 

contacts are especially common where the contacting members are separated by very thin 

insulating layers [8]–[10]. The objective of this work, and the motivation behind, are discussed in 

detail in the following section. 

1.1 Motivation and Background  

This thesis theoretically studies the current transport in nano-scale electrical junctions and 

electrical contacts. First, we focus on the quantum tunneling induced electron transport in metal-

insulator-metal junctions. Next, we study the effects and parametric dependence of current 

distribution and contact resistance for ohmic, tunneling, and Schottky type contacts. The objective 

is to better characterize electrical contacts and to optimize the current flow in such electrical 

junctions by improving controllability. 

1.1.1 Quantum tunneling in metal-insulator-metal junctions 

Quantum tunneling phenomenon, which becomes important in nano scale junctions and 

circuits, imposes some serious challenges to the modern-day electronics. Due to the ever-

increasing demands for physical scaling down, electrodes in the scale of 10 nm or sub-10 nm are 
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common these days in silicon industry [1], [2], [11], [12]. The circuits in this range are so small 

that quantum mechanical effects become critical and cause device malfunction. On the other hand, 

the charge transport through tunnel junctions are utilized to develop novel devices that offer several 

advantages over the shortcomings of scaling. Next-generation transistors, such as, tunnel field-

effect transistors (TFETs) [13], [14], single electron transistors (SETs) [15]–[18], and graphene-

based field effect transistors, rely on quantum tunneling for their operation. TFETs, which 

outperform the traditional Si transistors at low power and can further extend the Moor’s law, switch 

by modulating the quantum tunneling current [14]. Recently, researchers were able to develop a 

highly sensitive detector for terahertz (THz) frequency utilizing the quantum tunneling effect in a 

graphene based TFET [13], [19]. Ultrasensitive detectors based on SETs are also attracting great 

attention [20]–[22]. Nanoscale devices based on quantum tunneling principles are expected to 

become increasingly important in future electronics industry. To enable the practical use of such 

devices, a comprehensive study of the quantum current transport is necessary. 

Tunneling resistivity is one of the major obstacles for the development of low dimensional 

material-based devices. The performance of transistors based on carbon nanotubes (CNTs), carbon 

nanofibers (CNFs), and graphene greatly depend on the tunneling current. In these transistors, 

parallel arrays of nanowires or dense networks of nanotubes (c.f. Fig. 1.1) are used for the channel 

material. The current transport is critically dependent upon the tunneling resistivity between these 

nanostructures [8], [23]–[25]. An example is shown in Fig. 1.1 for illustration. Using carbon 

nanotube network channels, Tang and colleagues fabricated high-speed flexible CMOS ICs that 

offer sub-10 ns stage delays [26]. They found on-state current of the transistors and thus the speed 

of the device, relied on electron tunneling between the nanotubes. To realize the excellent electrical 
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properties of novel low-dimensional materials on the circuit level and to develop flexible 

electronics based on them, contact engineering is crucial [27].  

Tunneling electron emission through vacuum nanogap is also common in miniaturized 

vacuum and plasma electronic devices [28]–[32] and plasmonic nanogaps [33]. Many new 

technologies combine the advantages of ballistic transport through vacuum with the scalability, 

reliability, and low cost of silicon technology [28]. Study of the tunneling induced charge transport 

across nanometer length scale is critical for the development of such technologies. 

 

Figure 1.1 High-speed transistors circuit made from carbon nanotubes. (a) Structure of 

a carbon nanotube transistor. CNTs, carbon nanotubes; SAM, self-assembled 

monolayer. (b) Optical image of nanotube transistors circuit fabricated on a flexible 

polyimide substrate, and (c) a scanning electron microscopy image of the nanotube thin 

film used in these transistors and circuits. [26] (d) A typical CNT-CNT contact present 

in the thin film. 

 

Figure 1.2 A schematic scanning tunneling microscope setup. When a tip is brought 

several angstroms away from a sample and a voltage is applied between them, a very 

small current flows between the last atom of the tip and the sample. As the tip is scanned 

over the surface, image of the surface is recorded with atomic spatial resolution [34]. 
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Figure 1.3 Current crowding at a metal-semiconductor contact.  

1.1.2 Current distribution and contact resistance 

Current flow in an electrical circuit is usually non-homogeneous. Localized increase of current 

density or the current crowding effect [35]–[38] is a serious and persistent problem in the 

electronics industry. Current crowds near a bend or a constriction, and it is especially strong at the 

vicinity of contact edges [39]–[43]. An example of current crowding in a typical metal-

semiconductor contact is shown in Fig. 1.3. Due to the resistivity mismatch between the contact 

members, the current transport is confined only near the front edge of the contact structure. Since 

Joule heating is proportional to the square of current density [44], current crowding leads to non-

uniform heat generation in the contact area. On the other hand, the excessive amount of Joule 

heating deposited at the contact region because of the large contact resistance is another critical 

concern of very-large-scale-integrated (VLSI) circuit engineers [45]–[47]. There are various 

factors that can increase the total contact resistance, such as, formation of oxide layers between 

the contact members, dielectric coating of the electrodes, presence of surface roughness, etc. The 

individual or combined effects of current crowding, non-uniform Joule heating, and contact 

resistance are responsible for about 40% of all electrical/electronics failure, ranging from small 

scale modern consumer electronics, like, hand-held or wearable devices, personal computers etc. 
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to large scale space vehicles, particle accelerators, nuclear facilities, and military systems [28], 

[43], [48]–[54].  

 
Figure 1.4 Atomic Force Microscopy (AFM) topography images of a device before (a) 

and after (b) device failure. Current crowding induced thermal hotspot in two-

dimensional black-phosphorus field-effect transistors. [55] 

In modern semiconductor industry, the contact problems have become more prominent 

nowadays with the growing demands for advanced computation, high speed, and high packing 

density. 2D materials, such as, molybdenum disulfide (MoS2), black phosphorus, boron nitride, 

graphene have been demonstrated to be excellent channel materials for ultrathin field-effect 

transistors [2], [31], [55], [56]. However, the current crowding effect and the unusually high 

contact resistance at the 3D metal and the 2D semiconductor interfaces [55]–[58] hinder the 

development of such electronics. Figure 1.4 shows current crowding induced break down in two-

dimensional black-phosphorus field-effect transistors [55].  
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To reduce cost and enhance performance, engineers are developing technologies that are 

shifting towards three-dimensional (3D) integrated circuits (ICs), where the dies are stacked on 

top of each other [51]. Both horizontal and vertical interconnects are used. In such densely packed 

structures, the power density is significantly increased, albeit with limited choices of dissipation 

options. Heat dissipation is especially difficult for mobile units [51]. This leads to increase of the 

circuit temperature. Current crowding makes the situation worse by heating the junction 

nonuniformly. The thermal gradient at the contact area may result in thermal crosstalk and 

thermomigration. Interconnect junctions in 3D ICs, such as, flip chip joints and solder bumps, 

suffer from electromigration [51], [59]–[63] which moves atoms based on the flow of current 

through a material. In high current density region, the generated heat breaks atoms from the 

material repeatedly and move them from their initial locations. This creates both ‘vacancies’ (Fig. 

1.5) and ‘deposits’ (Fig. 1.6). The vacancies or voids can grow and eventually break circuit 

connections resulting in open-circuits, while the deposits or hillocks can grow and eventually close 

circuit connections resulting in short-circuits. Divergences in atomic flux, induced by current 

crowding, accelerates this process. These issues cause serious safety and reliability concerns [51], 

[63]. 

 

Figure 1.5 Enlarged scanning electron microscope (SEM) images of flip chip solder 

joints showing pancake-type of void formation due to current crowding induced 

electromigration. [51] 
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Figure 1.6 A set of three scanning electron microscope (SEM) images of the initiation 

and growth of a whisker at the upper right corner a solder joint as a result of current 

crowding induced electromigration. [51] 

Furthermore, the combined effect of electromigration and Joule heating can lead to 

catastrophic burn-out type failure [51]. Localized void formation at the copper (Cu) interconnects 

leads to thinning of the conductor which increases the resistance and the corresponding Joule 

heating. Due to the high packing density and poor heat dissipation, the increased Joule heating 

increases the temperature, which in turn increases the electromigration rate. Electromigration, on 

the other hand, reduces the thickness of the electrode, further increasing the resistance and Joule 

heating. This positive feed-back causes thinning of Cu lines in the 3D integrated chips, builds up 

mechanical stress, and eventually, causes burn-out failure [51]. Failures due to “pancake-type” 

void formation and “whisker-type” growth formation are shown in Fig. 1.5 (Fig. 11 of Ref. [51]) 

and Fig. 1.6 (Fig. 12 of Ref. [51]), respectively. 

In addition to electromigration, strong current crowding effect can also lead to localized 

overheating and formation of hotspots [55]. Several theoretical and experimental studies have 

found that the hotspots are usually formed at the contact edges. Figure 1.4 (Fig. 4 of Ref. [55]) 

shows a failed device with a broken region at the inner contact edge after a prolonged operation at 

high voltage. The failure is often caused by thermal runaway. The contact electrode’s resistance 

typically increases with temperature which causes more heating of the junction, which further 
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increases the junction temperature, in a positive feedback loop. If a circuit produces more heat than 

the heatsink can dissipate, then thermal hotspots are formed leading to component breakdown, or 

in the worst-case scenario, a small explosion [51]. In high power microwave sources and pulsed 

power systems, poor electrical contact also prevents efficient power coupling to the load [52], 

produces unwanted plasma [64], and in the worst-case scenario, damages the electrodes and 

circuits.  

Therefore, a comprehensive and systematic modeling of the current transport and electrical 

contacts in nano scale electrical junctions is necessary to further advance modern electronics.  

1.2 Prior Works  

1.2.1 Quantum tunneling in metal-insulator-metal junctions 

The work on quantum tunneling started as early as 1926, when Schrodinger published his 

landmark equation for wave function in quantum mechanics [65]. The same year, Wenzel, 

Kramers, and Brillouin developed a semiclassical method (WKB method) for finding 

approximations to the one-dimensional time independent Schrödinger equation [66], [67]. This 

WKB method is widely used to calculate transmission and reflection coefficients through a smooth 

and slowly varying potential barrier. In 1933 Sommerfeld and Bethe published theoretical study 

of tunneling in metal-insulator-metal (MIM) junctions for very low and high voltages using WKB 

approximation [68]. In 1935 Holm extended the theory to include intermediate voltages [69]. The 

challenge for this kind of study was to determine the actual shape of the potential barrier in the 

vacuum gap or insulator.  
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Figure 1.7 Sommerfeld and Bethe’s rectangular potential barrier theory for metal-

insulator-metal (MIM) junctions [68]. 𝑽𝒈 is the bias voltage, D is the insulator layer 

thickness, 𝑾 is the work function of the metal electrodes, 𝑿 is the electron affinity of the 

insulator, 𝑬𝑭 is the Fermi level energy, and 𝚽(𝒙) is the potential barrier. 

Sommerfeld and Bethe first derived equations for the current density transmitted by a 

trapezoidal barrier Φ(𝑥) = 𝐸𝐹 + 𝑊 − 𝑋 + 𝑒𝑉𝑔(𝑥) (c.f. Fig. 1.7), where 𝑉𝑔 is the bias voltage, D 

is the insulator layer thickness, 𝑊 is the work function of the metal electrodes, 𝑋 is the electron 

affinity of the insulator, and 𝐸𝐹 is the Fermi level energy [68]. However, image charge potential 

rounds off the corners of a trapezoidal barrier and increases the flow of current between the 

electrodes. To obtain an analytic solution, Sommerfeld and Bethe approximated the barrier by a 

symmetric parabola. Later, Holm and Kirschstein, using the same method, improved upon the 

results of Sommerfeld and Bethe by using a symmetric parabola that was a closer fit to the potential 

barrier [69]. In 1963, Simmons modified the shape of the barrier and improved accuracy [9]. 

Tunneling effects between electrodes separated by thin insulating films have been studied 

extensively by Simmons [9], [70] in 1960s. His formulas have since been widely used for 

evaluating tunneling current in MIM junctions. From his study he concluded: a) tunneling current 

increases exponentially when gap distance 𝐷 decreases, b) for low voltages, MIM junctions can 
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be approximated as ohmic, c) tunneling current is polarity dependent for dissimilar electrodes. The 

tunneling current in Al-Al2O3-Al structures have been experimentally studied and evaluated using 

Simmons’ theory [71]. Although widely used, Simmons’ theory has some limitations: a) The 

formulas are derived by considering only the emission process from the electrodes, where the 

effects of image charge are considered, but the electron space charge potential and the electron 

exchange-correlation potential inside the insulator thin films are ignored. b) This model is 

reliable only in the low voltage regime for limited parameter space [10]. c) It fails to predict the 

maximum possible tunneling current in a metal-insulator-metal junction.  

There are several theoretical [72]–[74] and experimental [75], [76] studies on space charge 

effects in a vacuum nanogap. Child-Langmuir (CL) law gives the space-charge limited current 

(SCLC) in a plane-parallel vacuum diode. This classical value for the limiting current can be 

exceeded by a large factor in nanoscale vacuum gap because of tunneling. The new limit is referred 

as the quantum CL (QCL) law [72], [73]. The effects of exchange correlation potential in a vacuum 

nanogap have also been studied systematically [77]. In 2015, a general scaling law for the quantum 

tunneling current in nano- and sub-nanoscale MIM junctions has been developed by self-

consistently solving the coupled Schrödinger and Poisson equations [10]. Zhang’s model [10] was 

formulated for similar electrodes. It includes the effects of space charge and exchange-correlation 

potential, as well as current emission from both electrodes. The current-voltage (J-V) 

characteristics has three distinct regimes: a) the direct tunneling regime, where it follows 

Simmons’s formula [9], b) field emission regime, where it becomes close to Fowler–Nordheim 

law [78], and c) space charge limited (SCL) regime, where it approaches quantum Child–Langmuir 

law [72], [73]. 
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This thesis extends Zhang’s work to include the effects of dissimilar metal electrodes [79]. 

The rectification properties of such junctions have been studied for various materials and input 

parameters [79]. 

1.2.2 Contact resistance 

Different theoretical models have been developed over time to characterize micro and 

nanoscale thin film-based contacts. In these thin-film contacts, the current flow lines bend sharply 

in the immediate vicinity of the contact edges [50]. Hall [80], [81] used conformal mapping 

technique to investigate the two-dimensional (2D) thin film resistance for various patterns in 

Cartesian geometry. Denhoff [82] studied the spreading resistance of a round thin film contact by 

solving Laplace equation. Zhang [50] provided extensive generalization of Hall’s models on 2D 

Cartesian thin-film contacts including the effects of dissimilar materials. By using Fourier series 

analysis, Zhang and Lau [83] in 2010, derived simple analytical scaling laws for the total resistance 

for arbitrary values of dimensions and resistivities. The models were then extended to horizontal 

[39], [84], [85] and vertical [38] type thin film contacts. Current crowding has been 

comprehensively studied by calculating the current flow patterns [28], [37], [85]. Kennedy and 

Murley [86], in 1968, investigated the electrical properties of the diffused semiconductor resistor 

using a two-dimensional mathematical analysis. They calculated the constant voltage contours in 

the ohmic contact region of a diffused silicon resistor and found that only a small portion of the 

contact actively contributes to the electrical properties of the structure. The potential distribution 

is concentrated at the leading edge of the contact, resulting in extensive current crowding. They 

concluded that increasing the length of the ohmic contact has negligible influence on the current 

density at the metal-semiconductor interface.  
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Figure 1.8 (a) Electrical contact and (b) its TLM. In (a), an infinitesimally thin resistive 

interface layer is sandwiched between Regions I and II. 𝝆𝒄 is the specific contact 

resistivity. [84] 

 On the other hand, simple transmission line model (TLM) theory, in plenty of variant or 

extended forms, has been widely used for analyzing metal-semiconductor planar contacts. In 1969, 

Murrmann and Widmann [36] used a simple steady state TLM to characterize planar metal-

semiconductor contacts. Although the formulation is simple, it can extract important contact 

characterization parameters, such as, contact resistance 𝑅𝑐 in ohm, semiconductor sheet resistance 

beneath the contact 𝑅𝑠ℎ in “ohm per square” (denoted by Ω/□), and specific contact resistivity 𝜌𝑐 

in Ω/𝑐𝑚2, as shown in Fig. 1.8. 𝜌𝑐 =
𝑑𝑉

𝑑𝐽𝑐
 is an important parameter in contact characterization, 

where 𝐽𝑐 is the contact current density. Berger [87], in 1972, provided a thorough characterization 

of contact resistance and contact resistivity. The governing equations of the structure shown in 

Fig. 1.8 b are: 

 
𝑑𝑉

𝑑𝑥
= −

𝐼(𝑥)𝑅𝑠ℎ

𝑤
,

𝑑𝐼

𝑑𝑥
=

𝑉(𝑥)

𝜌𝑐
𝑤                                        (1.1) 

where 𝑉(𝑥) and 𝐼(𝑥) are the voltage drop and current flowing along the semiconductor at 𝑥, 𝑤 is 

the width or the transverse dimension of the contact. The solution to Eq. (1.1) is [35], [88],  
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𝑉(𝑥) =
𝐼0√𝜌𝑐𝑅𝑠ℎ

𝑤
cosh [

(𝐿−𝑥)

𝐿𝑇
] /sinh (𝐿/𝐿𝑇),                       (1.2) 

where 𝐿 is the contact length, 𝑤 the contact width, and 𝐼0 the current flowing into the contact, and 

𝐿𝑇 = √𝜌𝑐/𝑅𝑠ℎ is the transfer length. 

 

Figure 1.9 Normalized potential under a contact versus 𝒙 as function of 𝝆𝒄, 𝑳 = 𝟏𝟎 𝛍𝐦 

and  𝑹𝒔𝒉 = 𝟏𝟎 𝛀/□. [35] 

The current transfer from semiconductor to metal takes place over 𝐿𝑇, indicating strong 

current crowding. Equation 1.2 is plotted in Fig. 1.9 (Fig. 3.15 of Ref. [35]). In 1980, Reeves 

extended the formulation for Cartesian contacts to circular contact structures [89]. In 1995, Reeves 

and Harrison [90] further extended the theory to alloyed ohmic contacts using a trilayer 

transmission line model (TTLM). TTLM [90]–[92] considers three layers (metal layer, alloyed 

semiconductor layer, and unalloyed semiconductor layer) and two interfaces between the three 

layers.  

Although TLM theory is one of the most commonly used models to characterize planar 

contacts, allowing important contact parameters (𝜌𝑐 , 𝑅𝑠ℎ, 𝑅𝑐) to be extracted or calculated, this 
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simple model has some limitations: a) the sheet thickness of the contact material is assumed to be 

zero, forcing current flow to be one-dimensional, b) it is applicable only for planar ohmic contacts 

or contacts that can be approximated as ohmic, c) specific contact resistivity is assumed to be 

constant along the contact length. Various modification of this theory have been attempted to 

overcome some of the limitations.  

a) Overcoming zero sheet thickness limitation: For the sake of simplicity, Overmeyer [93], in 

1970, set 𝜌𝑐 = 0 and calculated the current density in the contact area as a function of 

semiconductor layer thickness ℎ2 and contact length 𝐿. Later, the “zero sheet thickness” 

restriction was relaxed by Berger in his extended transmission line model (ETLM) with current 

still restricted to one dimensional flow [87]. Berger added a virtual specific contact resistivity 

of 0.19 𝜌2ℎ2, which yields, 𝜌𝑐
′ = 𝜌𝑐 + 0.19 𝜌2ℎ2, where 𝜌2 is the resistivity and ℎ2 is the 

thickness of the semiconductor layer. This ETLM has been widely used in the literature [84], 

[94]. In 1986, Pimbley [95] extended Berger’s idea and formulated a more sophisticated dual-

level transmission line model (DLTLM). His method introduces two-dimensional 

characteristics to the standard TLM by postulating two parallel lines (at one-quarter and three-

quarters of the semiconductor thickness) to carry the semiconductor current instead of just one. 

DLTLM produces around 12% corrections to the TLM with source resistivity, thickness, and 

specific contact resistivity typical of 1 μm technologies. In 2014, Zhang and Lau [84] did a 

comprehensive comparative study (c.f. Fig. 1.10) of contact resistance using exact field 

solution, TLM and ETLM for several geometric ratios and resistivity ratios. The solid, dashed, 

and dotted lines in Fig. 1.10 (Fig. 3 in Ref. [84]) are for field solution, TLM and ETLM, 

respectively. The ratio 𝜂 = 𝜌𝑐/𝜌2ℎ2 determines the parameter regime where the TLM theory 

can be used with good accuracy [87]. They found that TLM can be used to evaluate contact 
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resistance if 𝜂 > 2 and ETLM can be used when 𝜂 > 0.2 and 𝐿/ℎ2 ≥ 0.2. Electrical junctions 

between thin films, nanotubes, and nanorods generally have 𝜂 = 𝜌𝑐/𝜌2ℎ2 ≫ 2 since the height 

of the contact members are in nanometer. Hence, it is expected that these nanoscale electrical 

contacts can be modeled with the “one-dimensional current flow” restriction of standard TLM. 

Recently, transmission line theory has been used to model and measure various low-

dimensional material based contacts, such as, metal-CNT [96], metal-nanofiber, Gold-MoS2 

[56], [97], [98], Indium- MoS2 [56], Nickel- MoS2 [98], and graphene-metal ohmic contacts 

[99]. 

 

 Figure 1.10 Normalized contact resistance as a function of 𝜼 = 𝝆𝒄/𝝆𝟐𝒉𝟐 for various 𝑳/𝒉𝟐 

(Fig. 1.8a). [84] 

b) Overcoming ohmic contact limitation, considering non-linear current transport: The figure of 

merit used for contacts characterization is the specific contact resistivity 𝜌𝑐, defined as the ratio 

of the voltage drop to current density. It has a constant value for strictly linear contacts. If the 

junction is highly non-linear, the ohmic approximation fails to give accurate characterization 

of the contact. The dependence 𝜌𝑐 = Vc/𝐽𝑐(Vc) needs to be considered. In 1999, Onomura et 
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al. [100] found 𝜌𝑐 for Pt to p-GaN contacts changing nearly 3 orders of magnitude for current 

varying from ≈ 0 to 10 kA/cm2. Piotrzkowski et al. [101], in 2011, presented analytical 

generalization of the TLM formulas which include functional dependence of 𝐽𝑐(Vc), where 𝐽𝑐 

and V𝑐 are the contact current density and contact voltage, respectively. In standard TLM 

measurement, 𝜌𝑐 = 𝑤𝑅𝑐
2/𝜌2, where 𝑤 is the width of the TLM test pattern, 𝑅𝑐 is the contact 

resistance, and 𝜌2 is the resistivity of the semiconductor. Ref [101]’s method obtains 𝜌𝑐 =

𝑤𝑅𝑐𝑅𝑐
∗/𝜌2, where 𝑅𝑐

∗ is the differential resistance of the planar contact. In 2014, He et al. [102] 

proposed a numerical method to characterize non-linear metal-semiconductor contacts. They 

added a Schottky diode to the standard TLM in series with the original pure resistance to 

account for the nonlinearity, as shown in Fig. 1.11 (Fig. 1 of Ref. [102]). Interfacial oxidation 

or sintering processes lead to 𝜌𝑐. In their model, voltage 𝑉 = 𝑉𝑠 + 𝜌𝑐𝐽𝑐(𝑉𝑠), where 𝑉𝑠 is the 

voltage across the Schottky diode.  

 

Figure 1.11 Modified transmission line model (TLM) including the non-linear 

characteristics of the contact. [102] 

c) Overcoming constant specific contact resistivity assumption along the contact length: The 

third and the most important limitation of the standard TLM theory is its constant 𝜌𝑐 

assumption along the entire contact length. 𝜌𝑐 is calculated from the applied voltage and the 

corresponding current density for the two contacting members, treating the junction as one-
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dimensional. This treatment is valid only for ohmic contacts with uniform interfacial layer 

properties. In practical contacts, 𝜌𝑐 depends on local voltage drop and local contact current 

density, and therefore, varies spatially. Physically, this spatial dependence of 𝜌𝑐 may be 

introduced by a variety of factors, such as, the inherent non-linearity of the current density-

voltage (𝐽 − 𝑉) profiles of tunneling and Schottky junctions, rough interfacial layer, 

nonuniform distribution of oxides, contaminants or impurities in the contact layer etc. The 

effects of this non-uniform 𝜌𝑐 along the contact length need to be considered for a more 

accurate characterization of the electrical properties in a contact structure. This important issue 

has not been addressed in the existing literature.  

Here, we propose a two-dimensional TLM theory by including the effects of spatially varying 

specific contact resistivity along the contact length [103]–[106]. We use the two dimensional TLM 

[103], [104] for ohmic contacts, and TLM coupled with the thermionic injection model [105], 

[107] for Schottky contacts and the quantum self-consistent model [10], [79] for tunneling type 

contacts. We demonstrate a method to control current distribution, by engineering the interface 

layer properties and geometry. We find that current crowding can be mitigated by strategically 

designing the specific contact resistivity 𝜌𝑐 along the contact length. 

1.3 Organization of this thesis 

Chapter 2 presents the study of quantum tunneling induced current transport in nano- and 

subnano-meter metal-insulator-metal (MIM) junctions with dissimilar metal electrodes. A self-

consistent model is formulated to calculate the tunneling current density. The results are compared 

with Simmons’ analytical formula. The polarity dependent current density – bias voltage (J-V) 

curves are examined in detail for various parameters in different voltage regimes.  
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Chapter 3 presents the study of current transport and contact resistance in nanoscale parallel 

electrical contacts in Cartesian geometry. Traditional lumped circuit transmission line model 

(TLM) is modified to include the effects of spatially varying specific contact resistivity 𝜌𝑐. At first, 

simple analytical solutions for parallel contacts are derived for the special case of uniform 𝜌𝑐. 

Next, self-consistent numerical solutions are obtained for contacts with linearly varying 𝜌𝑐 along 

the contact length. Finally, local voltage-dependent tunneling resistivity along the contact length 

is examined by solving the TLM equations coupled with the tunneling current self consistently. 

The current and voltage distribution and the overall contact resistance are analyzed in detail, for 

various input voltage, electrical contact dimension, and material properties. The results for ohmic 

contact are verified with finite element method (FEM) based simulations [103].  

Chapter 4 extends the method of chapter 3 to circular contacts. Reeves’s circular 

transmission line model [89], [108] (CTLM) is modified to include the effects of radially varying 

𝜌𝑐. First, ohmic contacts are analyzed and Bessel function based analytical solutions are derived 

for the special case of uniform 𝜌𝑐. Then, tunneling type contacts are analyzed and local voltage-

dependent tunneling resistivity along the contact length is examined by solving the TLM equations 

coupled with the tunneling current self consistently. The current and voltage distributions in such 

contacts and their overall contact resistance are studied in detail, for various input voltages, contact 

dimensions, and material properties. 

Chapter 5 presents a theoretical study of the contact resistance and the current flow 

distribution for electrical contacts between two-dimensional (2D) materials and three-dimensional 

(3D) metals. Self-consistent solutions are obtained by coupling the modified TLM developed in 

chapter 3 with the improved thermionic current injection model for 2D materials [109]. First, we 

study the current and voltage distributions in such contacts and their overall contact resistance for 
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various input voltages, temperatures, contact dimensions, and material properties. Then, we 

propose to reduce contact resistance in 2D-material-based electrical contacts by roughness 

engineering of the contact interfaces. Results are compared with existing theoretical models and 

validated with experimental data [105]. 

Chapter 6 demonstrates a method to mitigate current crowding, by engineering the interface 

layer properties and geometry [106], [110]. Ohmic, Schottky and tunneling type contacts are 

studied based on the formulation derived in chapter 2, 3, 4 and 5. First, current steering and 

redistribution are realized by strategically designing the specific contact resistivity 𝜌𝑐 along the 

contact length. Then, a nanometer thin insulating tunneling gap is introduced between highly 

conductive contact members to reduce the severe current crowding effects while maintaining 

similar total contact resistance. 

The conclusion and suggestions for future work are given in Chapter 7.  

  



20 
 

REFERENCES 



21 
 

REFERENCES 

[1] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon device scaling to the sub-

10-nm regime,” Science, vol. 306, no. 5704, pp. 2057–2060, Dec. 2004, doi: 

10.1126/science.1100731. 

[2] J. Zheng et al., “Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz 

Frequencies with Current Saturation,” Sci. Rep., vol. 3, no. 1, Art. no. 1, Feb. 2013, doi: 

10.1038/srep01314. 

[3] Tersoff and S. B. Hamann, “Theory of the scanning tunneling microscope.,” Phys. Rev. B 

Condens. Matter, vol. 31, no. 2, pp. 805–813, 1985. 

[4] T. L. Cocker et al., “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics, 

vol. 7, no. 8, pp. 620–625, Aug. 2013, doi: 10.1038/nphoton.2013.151. 

[5] M. S. Ghamsari and S. Dhara, Nanorods and Nanocomposites. 2020. 

[6] M. A. Mackey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-Sayed, “The Most 

Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro 

Experiments,” J. Phys. Chem. B, vol. 118, no. 5, pp. 1319–1326, Feb. 2014, doi: 

10.1021/jp409298f. 

[7] S. E. Wawra, L. Pflug, T. Thajudeen, C. Kryschi, M. Stingl, and W. Peukert, “Determination 

of the two-dimensional distributions of gold nanorods by multiwavelength analytical 

ultracentrifugation,” Nat. Commun., vol. 9, no. 1, Art. no. 1, Nov. 2018, doi: 

10.1038/s41467-018-07366-9. 

[8] C. Li, E. T. Thostenson, and T.-W. Chou, “Dominant role of tunneling resistance in the 

electrical conductivity of carbon nanotube–based composites,” Appl. Phys. Lett., vol. 91, no. 

22, p. 223114, Nov. 2007, doi: 10.1063/1.2819690. 

[9] J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar 

Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys., vol. 34, no. 6, pp. 1793–

1803, Jun. 1963, doi: 10.1063/1.1702682. 

[10] P. Zhang, “Scaling for quantum tunneling current in nano- and subnano-scale plasmonic 

junctions,” Sci. Rep., vol. 5, p. 9826, May 2015, doi: 10.1038/srep09826. 

[11] “Making Chips At 3nm And Beyond,” Semiconductor Engineering, Apr. 16, 2020. 

https://semiengineering.com/making-chips-at-3nm-and-beyond/. 

[12] “TSMC Details 3nm Process Technology: Full Node Scaling for 2H22 Volume 

Production.” https://www.anandtech.com/show/16024/tsmc-details-3nm-process-technology-

details-full-node-scaling-for-2h22. 



22 
 

[13] I. Gayduchenko et al., “Tunnel field-effect transistors for sensitive terahertz detection,” 

Nat. Commun., vol. 12, no. 1, Art. no. 1, Jan. 2021, doi: 10.1038/s41467-020-20721-z. 

[14] A. Seabaugh, “The Tunneling Transistor,” IEEE Spectrum: Technology, Engineering, 

and Science News, Sep. 30, 2013. https://spectrum.ieee.org/semiconductors/devices/the-

tunneling-transistor. 

[15] T. Ihn et al., “Graphene single-electron transistors,” Mater. Today, vol. 13, no. 3, pp. 44–

50, Mar. 2010, doi: 10.1016/S1369-7021(10)70033-X. 

[16] C. Thelander et al., “Single-electron transistors in heterostructure nanowires,” Appl. 

Phys. Lett., vol. 83, no. 10, pp. 2052–2054, Sep. 2003, doi: 10.1063/1.1606889. 

[17] H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon Nanotube 

Single-Electron Transistors at Room Temperature,” Science, vol. 293, no. 5527, pp. 76–79, 

Jul. 2001, doi: 10.1126/science.1061797. 

[18] R. Patel, Y. Agrawal, and R. Parekh, “Single-electron transistor: review in perspective of 

theory, modelling, design and fabrication,” Microsyst. Technol., Sep. 2020, doi: 

10.1007/s00542-020-05002-5. 

[19] M. I. of Physics and Technology, “Quantum Tunneling in Graphene Advances the Age of 

High Speed Terahertz Wireless Communications,” SciTechDaily, Feb. 28, 2021. 

https://scitechdaily.com/quantum-tunneling-in-graphene-advances-the-age-of-high-speed-

terahertz-wireless-communications/. 

[20] J. M. Hergenrother, J. G. Lu, and M. Tinkham, “The single-electron transistor as an 

ultrasensitive microwave detector,” IEEE Trans. Appl. Supercond., vol. 5, no. 2, pp. 2604–

2607, Jun. 1995, doi: 10.1109/77.403123. 

[21] M. A. Sillanpää, L. Roschier, and P. J. Hakonen, “Charge sensitivity of the inductive 

single-electron transistor,” Appl. Phys. Lett., vol. 87, no. 9, p. 092502, Aug. 2005, doi: 

10.1063/1.2034096. 

[22] D. Mozyrsky, I. Martin, and M. B. Hastings, “Quantum-limited sensitivity of single-

electron-transistor-based displacement detectors,” Phys. Rev. Lett., vol. 92, no. 1, p. 018303, 

Jan. 2004, doi: 10.1103/PhysRevLett.92.018303. 

[23] J. Yoon et al., “Determination of individual contact interfaces in carbon nanotube 

network-based transistors,” Sci. Rep., vol. 7, no. 1, Art. no. 1, Jul. 2017, doi: 

10.1038/s41598-017-05653-x. 

[24] B. E. Kilbride et al., “Experimental observation of scaling laws for alternating current 

and direct current conductivity in polymer-carbon nanotube composite thin films,” J. Appl. 

Phys., vol. 92, no. 7, pp. 4024–4030, Sep. 2002, doi: 10.1063/1.1506397. 

[25] M. Foygel, R. D. Morris, D. Anez, S. French, and V. L. Sobolev, “Theoretical and 

computational studies of carbon nanotube composites and suspensions: Electrical and 



23 
 

thermal conductivity,” Phys. Rev. B, vol. 71, no. 10, Mar. 2005, doi: 

10.1103/PhysRevB.71.104201. 

[26] J. Tang et al., “Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 

ns stage delays,” Nat. Electron., vol. 1, no. 3, pp. 191–196, Mar. 2018, doi: 10.1038/s41928-

018-0038-8. 

[27] L.-M. Peng, “A new stage for flexible nanotube devices,” Nat. Electron., vol. 1, no. 3, pp. 

158–159, Mar. 2018, doi: 10.1038/s41928-018-0045-9. 

[28] P. Zhang and Y. Y. Lau, “Ultrafast and nanoscale diodes,” J. Plasma Phys., vol. 82, no. 

5, Oct. 2016, doi: 10.1017/S002237781600091X. 

[29] S. Srisonphan, Y. S. Jung, and H. K. Kim, “Metal–oxide–semiconductor field-effect 

transistor with a vacuum channel,” Nat. Nanotechnol., vol. 7, no. 8, Art. no. 8, Aug. 2012, 

doi: 10.1038/nnano.2012.107. 

[30] B. R. Stoner and J. T. Glass, “Nothing is like a vacuum,” Nat. Nanotechnol., vol. 7, no. 8, 

Art. no. 8, Aug. 2012, doi: 10.1038/nnano.2012.130. 

[31] G. Wu, X. Wei, S. Gao, Q. Chen, and L. Peng, “Tunable graphene micro-emitters with 

fast temporal response and controllable electron emission,” Nat. Commun., vol. 7, no. 1, Art. 

no. 1, May 2016, doi: 10.1038/ncomms11513. 

[32] P. 23 J. 2014 | 16:14 GMT, “Introducing the Vacuum Transistor: A Device Made of 

Nothing - IEEE Spectrum,” IEEE Spectrum: Technology, Engineering, and Science News. 

https://spectrum.ieee.org/semiconductors/devices/introducing-the-vacuum-transistor-a-

device-made-of-nothing. 

[33] G. Aguirregabiria, D. C. Marinica, R. Esteban, A. K. Kazansky, J. Aizpurua, and A. G. 

Borisov, “Role of electron tunneling in the nonlinear response of plasmonic nanogaps,” 

Phys. Rev. B, vol. 97, no. 11, p. 115430, Mar. 2018, doi: 10.1103/PhysRevB.97.115430. 

[34] “Hudson Group: Research Background.” 

https://www.personal.psu.edu/ewh10/ResearchBackground.htm. 

[35] D. K. Schroder, Semiconductor Material and Device Characterization. Wiley-Blackwell, 

1998. 

[36] H. Murrmann and D. Widmann, “Current crowding on metal contacts to planar devices,” 

IEEE Trans. Electron Devices, vol. 16, no. 12, pp. 1022–1024, Dec. 1969, doi: 10.1109/T-

ED.1969.16904. 

[37] P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Analysis of current crowding in thin film 

contacts from exact field solution,” J. Phys. Appl. Phys., vol. 48, no. 47, p. 475501, Oct. 

2015, doi: 10.1088/0022-3727/48/47/475501. 



24 
 

[38] P. Zhang and Y. Y. Lau, “Constriction Resistance and Current Crowding in Vertical Thin 

Film Contact,” IEEE J. Electron Devices Soc., vol. 1, no. 3, pp. 83–90, Mar. 2013, doi: 

10.1109/JEDS.2013.2261435. 

[39] P. Zhang, Y. Y. Lau, and R. S. Timsit, “On the Spreading Resistance of Thin-Film 

Contacts,” IEEE Trans. Electron Devices, vol. 59, no. 7, pp. 1936–1940, Jul. 2012, doi: 

10.1109/TED.2012.2195317. 

[40] R. Holm, Electric Contacts: Theory and Application, 4th ed. Berlin Heidelberg: Springer-

Verlag, 1967. 

[41] R. S. Timsit, “Electrical contact resistance: properties of stationary interfaces,” IEEE 

Trans. Compon. Packag. Technol., vol. 22, no. 1, pp. 85–98, Mar. 1999, doi: 

10.1109/6144.759357. 

[42] A. M. Rosenfeld and R. S. Timsit, “The potential distribution in a constricted cylinder: an 

exact solution,” Q. Appl. Math., vol. 39, no. 3, pp. 405–417, 1981. 

[43] R. S. Timsit, “Electrical Contacts: Scientific Fundamentals,” in Encyclopedia of 

Tribology, Q. J. Wang and Y.-W. Chung, Eds. Boston, MA: Springer US, 2013, pp. 903–

905. 

[44] P. Zhang, Q. Gu, Y. Y. Lau, and Y. Fainman, “Constriction Resistance and Current 

Crowding in Electrically Pumped Semiconductor Nanolasers with the Presence of Undercut 

and Sidewall Tilt,” IEEE J. Quantum Electron., vol. 52, no. 3, pp. 1–7, Mar. 2016, doi: 

10.1109/JQE.2016.2516443. 

[45] F. Antoulinakis, D. Chernin, P. Zhang, and Y. Y. Lau, “Effects of temperature 

dependence of electrical and thermal conductivities on the Joule heating of a one 

dimensional conductor,” J. Appl. Phys., vol. 120, no. 13, p. 135105, Oct. 2016, doi: 

10.1063/1.4964112. 

[46] M. Pedram, “Power Minimization in IC Design: Principles and Applications,” ACM 

Trans. Des. Autom. Electron. Syst., vol. 1, pp. 3–56, 1996. 

[47] M. Pedram and S. Nazarian, “Thermal Modeling, Analysis, and Management in VLSI 

Circuits: Principles and Methods,” Proc. IEEE, vol. 94, no. 8, pp. 1487–1501, Aug. 2006, 

doi: 10.1109/JPROC.2006.879797. 

[48] “2000 Review of federal programs for wire system safety National Science and 

Technology Council Final Report.”  

[49] J. S. Kuzniar and G. A. Slenski, “Wire integrity field survey of USAF legacy aircraft 

ReportADP014075," 2001. 

[50] P. Zhang, “Effects of Surface Roughness on Electrical Contact, RF Heating and Field 

Enhancement,” PhD thesis, University of Michigan, 2012. 



25 
 

[51] K. N. Tu, Y. Liu, and M. Li, “Effect of Joule heating and current crowding on 

electromigration in mobile           technology,” Appl. Phys. Rev., vol. 4, no. 1, p. 011101, Jan. 

2017, doi: 10.1063/1.4974168. 

[52] M. R. Gomez, J. C. Zier, R. M. Gilgenbach, D. M. French, W. Tang, and Y. Y. Lau, 

“Effect of soft metal gasket contacts on contact resistance, energy deposition, and plasma 

expansion profile in a wire array Z pinch,” Rev. Sci. Instrum., vol. 79, no. 9, p. 093512, Sep. 

2008, doi: 10.1063/1.2991110. 

[53] M. Park et al., “Effects of a carbon nanotube layer on electrical contact resistance 

between copper substrates,” Nanotechnology, vol. 17, no. 9, pp. 2294–2303, Apr. 2006, doi: 

10.1088/0957-4484/17/9/038. 

[54] F. Antoulinakis and Y. Y. Lau, “A theory of contact resistance under AC conditions,” J. 

Appl. Phys., vol. 127, no. 12, p. 125107, Mar. 2020, doi: 10.1063/1.5142511. 

[55] Q. Wang, X. Tao, L. Yang, and Y. Gu, “Current crowding in two-dimensional black-

phosphorus field-effect transistors,” Appl. Phys. Lett., vol. 108, no. 10, p. 103109, Mar. 

2016, doi: 10.1063/1.4943655. 

[56] Y. Wang et al., “Van der Waals contacts between three-dimensional metals and two-

dimensional semiconductors,” Nature, vol. 568, no. 7750, pp. 70–74, Apr. 2019, doi: 

10.1038/s41586-019-1052-3. 

[57] K. L. Grosse, M.-H. Bae, F. Lian, E. Pop, and W. P. King, “Nanoscale Joule heating, 

Peltier cooling and current crowding at graphene–metal contacts,” Nat. Nanotechnol., vol. 6, 

no. 5, Art. no. 5, May 2011, doi: 10.1038/nnano.2011.39. 

[58] P. Karnatak, T. P. Sai, S. Goswami, S. Ghatak, S. Kaushal, and A. Ghosh, “Current 

crowding mediated large contact noise in graphene field-effect transistors,” Nat. Commun., 

vol. 7, no. 1, Art. no. 1, Dec. 2016, doi: 10.1038/ncomms13703. 

[59] J. S. Huang, E. C. C. Yeh, Z. B. Zhang, and K. N. Tu, “The effect of contact resistance on 

current crowding and electromigration in ULSI multi-level interconnects,” Mater. Chem. 

Phys., vol. 77, no. 2, pp. 377–383, Jan. 2003, doi: 10.1016/S0254-0584(02)00018-4. 

[60] Y. Park, J. Joh, J. Chung, and S. Krishnan, “Current Crowding Impact on 

Electromigration in Al Interconnects,” in 2019 IEEE International Reliability Physics 

Symposium (IRPS), Mar. 2019, pp. 1–6, doi: 10.1109/IRPS.2019.8720448. 

[61] S. W. Liang, Y. W. Chang, and C. Chen, “Relieving Hot-Spot Temperature and Current 

Crowding Effects During Electromigration in Solder Bumps by Using Cu Columns,” J. 

Electron. Mater., vol. 36, no. 10, pp. 1348–1354, Oct. 2007, doi: 10.1007/s11664-007-0232-

3. 

[62] E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, “Current-crowding-

induced electromigration failure in flip chip solder joints,” Appl. Phys. Lett., vol. 80, no. 4, 

pp. 580–582, Jan. 2002, doi: 10.1063/1.1432443. 



26 
 

[63] K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of 

interconnects,” J. Appl. Phys., vol. 94, no. 9, pp. 5451–5473, Oct. 2003, doi: 

10.1063/1.1611263. 

[64] M. D. Haworth et al., “Significant pulse-lengthening in a multigigawatt magnetically 

insulated transmission line oscillator,” IEEE Trans. Plasma Sci., vol. 26, no. 3, pp. 312–319, 

Jun. 1998, doi: 10.1109/27.700759. 

[65] E. Schrödinger, “An Undulatory Theory of the Mechanics of Atoms and Molecules,” 

Phys. Rev., vol. 28, no. 6, pp. 1049–1070, Dec. 1926, doi: 10.1103/PhysRev.28.1049. 

[66] H. A. Kramers, “Wellenmechanik und halbzahlige Quantisierung,” Z. Für Phys., vol. 39, 

no. 10, pp. 828–840, Oct. 1926, doi: 10.1007/BF01451751. 

[67] G. Wentzel, “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der 

Wellenmechanik,” Z. Für Phys., vol. 38, no. 6, pp. 518–529, Jun. 1926, doi: 

10.1007/BF01397171. 

[68] Sommerfield A., Bethe H., Handbuch der Physik. 1933. 

[69] Holm R. and Kirschstein B., Z Tech Phys., no. 16, 488, 1935. 

[70] J. G. Simmons, “Electric Tunnel Effect between Dissimilar Electrodes Separated by a 

Thin Insulating Film,” J. Appl. Phys., vol. 34, no. 9, pp. 2581–2590, Sep. 1963, doi: 

10.1063/1.1729774. 

[71] V. D. Das and M. S. Jagadeesh, “Tunneling in Al Al2O3 Al MIM structures,” Phys. 

Status Solidi A, vol. 66, no. 1, pp. 327–333, 1981, doi: 10.1002/pssa.2210660140. 

[72] Y. Y. Lau, D. Chernin, D. G. Colombant, and P.-T. Ho, “Quantum extension of Child-

Langmuir law,” Phys. Rev. Lett., vol. 66, pp. 1446–1449, Mar. 1991, doi: 

10.1103/PhysRevLett.66.1446. 

[73] L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, “New Scaling of Child-Langmuir Law in the 

Quantum Regime,” Phys. Rev. Lett., vol. 91, no. 20, p. 208303, Nov. 2003, doi: 

10.1103/PhysRevLett.91.208303. 

[74] L. K. Ang and P. Zhang, “Ultrashort-Pulse Child-Langmuir Law in the Quantum and 

Relativistic Regimes,” Phys. Rev. Lett., vol. 98, no. 16, p. 164802, Apr. 2007, doi: 

10.1103/PhysRevLett.98.164802. 

[75] S. Bhattacharjee and T. Chowdhury, “Experimental investigation of transition from 

Fowler–Nordheim field emission to space-charge-limited flows in a nanogap,” Appl. Phys. 

Lett., vol. 95, no. 6, p. 061501, Aug. 2009, doi: 10.1063/1.3194297. 

[76] S. Bhattacharjee, A. Vartak, and V. Mukherjee, “Experimental study of space-charge-

limited flows in a nanogap,” Appl. Phys. Lett., vol. 92, no. 19, p. 191503, May 2008, doi: 

10.1063/1.2928232. 



27 
 

[77] L. K. Ang, Y. Y. Lau, and T. J. T. Kwan, “Simple derivation of quantum scaling in 

Child-Langmuir law,” IEEE Trans. Plasma Sci., vol. 32, no. 2, pp. 410–412, Apr. 2004, doi: 

10.1109/TPS.2004.826366. 

[78] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. 

Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, vol. 119, no. 781, pp. 173–181, 1928. 

[79] S. Banerjee and P. Zhang, “A generalized self-consistent model for quantum tunneling 

current in dissimilar metal-insulator-metal junction,” AIP Adv., vol. 9, no. 8, p. 085302, Aug. 

2019, doi: 10.1063/1.5116204. 

[80] P. M. Hall, “Resistance calculations for thin film patterns,” Thin Solid Films, vol. 1, no. 

4, pp. 277–295, Jan. 1968, doi: 10.1016/0040-6090(68)90046-1. 

[81] P. M. Hall, “Resistance calculations for thin film rectangles,” Thin Solid Films, vol. 300, 

no. 1, pp. 256–264, May 1997, doi: 10.1016/S0040-6090(96)09495-3. 

[82] M. W. Denhoff, “An accurate calculation of spreading resistance,” J. Phys. Appl. Phys., 

vol. 39, no. 9, pp. 1761–1765, Apr. 2006, doi: 10.1088/0022-3727/39/9/009. 

[83] P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Minimization of thin film contact 

resistance,” Appl. Phys. Lett., vol. 97, no. 20, p. 204103, Nov. 2010, doi: 10.1063/1.3517497. 

[84] P. Zhang and Y. Y. Lau, “An exact field solution of contact resistance and comparison 

with the transmission line model,” Appl. Phys. Lett., vol. 104, no. 20, p. 204102, May 2014, 

doi: 10.1063/1.4878841. 

[85] P. Zhang, D. M. H. Hung, and Y. Y. Lau, “Current flow in a 3-terminal thin film contact 

with dissimilar materials and general geometric aspect ratios,” J. Phys. Appl. Phys., vol. 46, 

no. 6, p. 065502, Feb. 2013, doi: 10.1088/0022-3727/46/6/065502. 

[86] D. P. Kennedy and P. C. Murley, “A Two-Dimensional Mathematical Analysis of the 

Diffused Semiconductor Resistor,” IBM J. Res. Dev., vol. 12, no. 3, pp. 242–250, May 1968, 

doi: 10.1147/rd.123.0242. 

[87] H. H. Berger, “Contact Resistance and Contact Resistivity,” J. Electrochem. Soc., vol. 

119, no. 4, pp. 507–514, Apr. 1972, doi: 10.1149/1.2404240. 

[88] D. K. Schroder and D. L. Meier, “Solar cell contact resistance—A review,” IEEE Trans. 

Electron Devices, vol. 31, no. 5, pp. 637–647, May 1984, doi: 10.1109/T-ED.1984.21583. 

[89] G. K. Reeves, “Specific contact resistance using a circular transmission line model,” 

Solid-State Electron., vol. 23, no. 5, pp. 487–490, May 1980, doi: 10.1016/0038-

1101(80)90086-6. 

[90] G. K. Reeves and B. Harrison, “An analytical model for alloyed ohmic contacts using a 

trilayer transmission line model,” IEEE Trans. Electron Devices, vol. 42, no. 8, pp. 1536–

1547, Aug. 1995, doi: 10.1109/16.398670. 



28 
 

[91] G. K. Reeves, P. W. Leech, and H. B. Harrison, “Understanding the sheet resistance 

parameter of alloyed ohmic contacts using a transmission line model,” Solid-State Electron., 

vol. 38, no. 4, pp. 745–751, Apr. 1995, doi: 10.1016/0038-1101(94)00234-7. 

[92] G. K. Reeves and H. B. Harrison, “Using TLM principles to determine MOSFET contact 

and parasitic resistance,” Solid-State Electron., vol. 41, no. 8, pp. 1067–1074, Aug. 1997, 

doi: 10.1016/S0038-1101(97)00062-2. 

[93] J. Overmeyer, “Calculation of the Current Density in the Contacts of a Thin Film 

Resistor,” IBM J. Res. Dev., vol. 14, no. 1, pp. 66–69, Jan. 1970, doi: 10.1147/rd.141.0066. 

[94] E. G. Woelk, H. Krautle, and H. Beneking, “Measurement of low resistive ohmic 

contacts on semiconductors,” IEEE Trans. Electron Devices, vol. 33, no. 1, pp. 19–22, Jan. 

1986, doi: 10.1109/T-ED.1986.22430. 

[95] J. M. Pimbley, “Dual-level transmission line model for current flow in metal-

semiconductor contacts,” IEEE Trans. Electron Devices, vol. 33, no. 11, pp. 1795–1800, 

Nov. 1986, doi: 10.1109/T-ED.1986.22742. 

[96] C. Lan, P. Srisungsitthisunti, P. B. Amama, T. S. Fisher, X. Xu, and R. G. Reifenberger, 

“Measurement of metal/carbon nanotube contact resistance by adjusting contact length using 

laser ablation,” Nanotechnology, vol. 19, no. 12, p. 125703, Mar. 2008, doi: 10.1088/0957-

4484/19/12/125703. 

[97] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, “Improved Contacts 

to MoS2 Transistors by Ultra-High Vacuum Metal Deposition,” Nano Lett., vol. 16, no. 6, 

pp. 3824–3830, Jun. 2016, doi: 10.1021/acs.nanolett.6b01309. 

[98] D. Somvanshi et al., “Nature of carrier injection in metal/2D-semiconductor interface and 

its implications for the limits of contact resistance,” Phys. Rev. B, vol. 96, no. 20, p. 205423, 

Nov. 2017, doi: 10.1103/PhysRevB.96.205423. 

[99] J. S. Moon et al., “Ultra-low resistance ohmic contacts in graphene field effect 

transistors,” Appl. Phys. Lett., vol. 100, no. 20, p. 203512, May 2012, doi: 

10.1063/1.4719579. 

[100] M. Onomura et al., “The analysis of contact resistivity between a p-type GaN layer and 

electrode in InGaN MQW laser diodes,” Mater. Sci. Eng. B, vol. 59, no. 1, pp. 366–369, 

May 1999, doi: 10.1016/S0921-5107(98)00353-5. 

[101] R. Piotrzkowski, E. Litwin-Staszewska, and Sz. Grzanka, “Towards proper 

characterization of nonlinear metal-semiconductor contacts. Generalization of the 

transmission line method,” Appl. Phys. Lett., vol. 99, no. 5, p. 052101, Aug. 2011, doi: 

10.1063/1.3619813. 

[102] K. He et al., “Numerical approach to generalized transmission line model and its 

application to Au/Sn/p-HgCdTe contact,” J. Appl. Phys., vol. 115, no. 16, p. 164506, Apr. 

2014, doi: 10.1063/1.4873303. 



29 
 

[103] S. Banerjee, J. Luginsland, and P. Zhang, “A Two Dimensional Tunneling Resistance 

Transmission Line Model for Nanoscale Parallel Electrical Contacts,” Sci. Rep., vol. 9, no. 

14484, pp. 1–14, Oct. 2019, doi: 10.1038/s41598-019-50934-2. 

[104] S. Banerjee, P. Y. Wong, and P. Zhang, “Contact resistance and current crowding in 

tunneling type circular nano-contacts,” J. Phys. Appl. Phys., vol. 53, no. 35, p. 355301, Jun. 

2020, doi: 10.1088/1361-6463/ab8fe0. 

[105] S. Banerjee, L. Cao, Y. S. Ang, L. K. Ang, and P. Zhang, “Reducing Contact Resistance 

in Two-Dimensional-Material-Based Electrical Contacts by Roughness Engineering,” Phys. 

Rev. Appl., vol. 13, no. 6, p. 064021, Jun. 2020, doi: 10.1103/PhysRevApplied.13.064021. 

[106] P. Zhang, S. Banerjee, and J. Luginsland, “Tunneling Electrical Contacts,” Patent US 

10,755,975 B2, Aug. 25, 2020. 

[107] Y. S. Ang, H. Y. Yang, and L. K. Ang, “Universal Scaling Laws in Schottky 

Heterostructures Based on Two-Dimensional Materials,” Phys. Rev. Lett., vol. 121, no. 5, p. 

056802, Aug. 2018, doi: 10.1103/PhysRevLett.121.056802. 

[108] C. Xu, J. Wang, M. Wang, H. Jin, Y. Hao, and C. P. Wen, “Reeves’s circular 

transmission line model and its scope of application to extract specific contact resistance,” 

Solid-State Electron., vol. 50, no. 5, pp. 843–847, May 2006, doi: 10.1016/j.sse.2006.03.007. 

[109] Y. S. Ang, H. Y. Yang, and L. K. Ang, “Universal Scaling Laws in Schottky 

Heterostructures Based on Two-Dimensional Materials,” Phys. Rev. Lett., vol. 121, no. 5, p. 

056802, Aug. 2018, doi: 10.1103/PhysRevLett.121.056802. 

[110] S. Banerjee, J. Luginsland, and P. Zhang, “Interface Engineering of Electrical Contacts,” 

Manuscript Under Preparation, 2021. 

 

 

 

 

 

 

  



30 
 

CHAPTER 2 

QUANTUM TUNNELING IN METAL-INSULATOR-METAL 

NANOJUNCTIONS 

This chapter is based on the published journal paper “A generalized self-consistent model 

for quantum tunneling current in dissimilar metal-insulator-metal junction,” AIP Adv., vol. 9, no. 

8, p. 085302, Aug. 2019, doi: 10.1063/1.5116204, by S. Banerjee and P. Zhang [1]. It is presented 

here with the permission of the copyright holder. 

2.1 Introduction 

Quantum tunneling [2], [3] is important to nanoelectronic circuit designs, tunneling electrical 

contacts [4], scanning tunneling microscopes (STMs) [5], [6], plasmonic resonators[7]–[9], carbon 

nanotubes[10]–[14], graphene [15], [16] and other two-dimensional (2D) materials based devices 

[17], [18] and novel vacuum nano-devices  [19]–[23]. Quantum tunneling effects impose serious 

challenges to the physical scaling down of traditional electronic circuits [24]. However, it enables 

the development of future tunneling field-effect transistors (TFETs), which are envisioned to 

further extend Moore’s law[25]. Tunneling in electrical contacts can be utilized to mitigate current 

crowding and nonuniform heat deposition in the contact region[4], [26]. Tunneling phenomenon 

may also introduce new regimes in quantum plasmonics [27]. Hence, it is critical to accurately 

characterize the current density-voltage (𝐽 − 𝑉) behaviors in nano-scale metal-insulator-metal 

(MIM) junctions, for a variety of material properties and junction dimensions.  

Tunneling effects between electrodes separated by thin insulating films have been studied 

extensively by Simmons[3], [28]–[31] in 1960s. Although in Simmons’ theory the effects of 
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image charge potential are considered, the electron space charge potential and the electron 

exchange-correlation potential inside the insulator thin films, are ignored. Simmons’ model is 

reliable only in low voltage regime for limited parameter space (insulator gap > 1 nm , barrier 

height > 3 eV)[27]. The effects of space charge in a vacuum nanogap have been studied [32]–[34] 

extensively, with extensions to short pulse [35]. Recently, Zhang [27] proposed a self-consistent 

model (SCM) to characterize quantum tunneling current in similar MIM junctions, considering 

current flowing from both the electrodes. It is found that the 𝐽 − 𝑉 characteristics may be divided 

into three regimes: direct tunneling, field emission, and space-charge-limited regime [27].  

However, the SCM for similar MIM junctions is not sufficient to characterize electron 

tunneling through MIM junctions formed between two electrodes with different work functions, 

where the 𝐽 − 𝑉 characteristic is dependent upon the polarity of the bias voltage [28]. The 

asymmetry of the polarity-dependent 𝐽 − 𝑉 behavior is important to harmonic mixers, rectifiers, 

millimeter wave and infrared detectors [36]. Several efforts have been made to enhance this 

asymmetry in dissimilar MIM tunnel diodes [36]–[38]. Moreover, dissimilar MIM junctions are 

naturally formed between scanning tunneling microscope’s tip and substrate [5], [6] and in 

nanoscale electrical contacts [4], [39], [40].  

In this Chapter, we extend the theory of Zhang [27] to dissimilar MIM junctions  (Figure 2.1). 

Following Simmons [28], we define the forward bias (FB) and reverse bias (RB) of the MIM 

junction, when the metal electrode with higher work function is negatively and positively biased, 

respectively. We provide a detailed study of FB and RB asymmetry and its dependence on a wide 

range of input parameters (work functions of the electrodes, thickness and relative permittivity of 

the insulator), for different voltage regimes. The FB and RB characteristics are found to cross over 

at high voltages in the field emission regime. The asymmetry between the current density profiles 
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increases with the work function difference of the electrodes, the thickness or permittivity of the 

insulator layer. 

2.2 The Self-Consistent Model  

 

Figure 2.1 Dissimilar metal-insulator-metal (MIM) tunneling junction. The metal 

electrodes have equilibrium Fermi level 𝑬𝑭 and work function 𝑾𝟏 and 𝑾𝟐 (in these 

schematics we assume 𝑾𝟐 > 𝑾𝟏). 𝝓𝟏 = 𝑾𝟏 − 𝑿, 𝝓𝟐 =  𝑾𝟐 − 𝑿, where 𝑿 is electron 

affinity of the insulator. The insulator thin film thickness is 𝑫. The applied voltage bias is 

𝑽𝒈. The current densities emitted from the electrode 1 and 2 into the gap are 𝑱𝟏 and 𝑱𝟐, 

respectively. (a), (c) reverse bias (𝑾𝟐 is positively biased) condition; (b),(d) forward bias 

(𝑾𝟐 is negatively biased) condition. (a), (b) represent low and (c), (d) represent high bias 

voltage conditions. [1] 
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Our self-consistent model (SCM) formulation is based on the formulation of similar MIM 

junctions[27]. The potential barrier formed between the two electrodes is, 

Φ(𝑥) = 𝐸𝐹 + Φ𝑤(𝑥) +  Φ𝑖𝑚𝑎𝑔𝑒(𝑥) + 𝑒𝑉(𝑥) + Φ𝑥𝑐(𝑥),                            (2.1) 

where 𝐸𝐹 is the equilibrium Fermi level; Φ𝑤(𝑥) = 𝜙1 + (𝜙2 − 𝜙1)𝑥/𝐷; 𝜙1 = 𝑊1 − 𝑋, 𝜙2 =

 𝑊2 − 𝑋;  𝑊1 and 𝑊2 are the work functions of metal electrode 1 and 2 respectively; 𝑋 is electron 

affinity of the insulator; Φ𝑖𝑚𝑎𝑔𝑒(𝑥) = (−𝑒2/8𝜋𝜖𝑟𝜖0)[1/2𝑥 + ∑ (𝑛𝐷/(𝑛2𝐷2 − 𝑥2) − 1/𝑛𝐷)∞
𝑛=1 ] 

is the image charge potential energy including the effect of anode screening[34], where e is the 

electron charge, 𝜖0 is the permittivity of free space, 𝜖𝑟 is the relative permittivity of the insulator, 

and 𝐷 is the gap distance; the electric potential 𝑒𝑉(𝑥) = 𝑒𝑉𝑔𝑥/𝐷 + 𝑒𝑉𝑠𝑐(𝑥), where the two terms 

are the potential due to the external applied voltage 𝑉𝑔 and the potential due to the electron space 

charge, respectively; and Φ𝑥𝑐(𝑥) = (𝜖𝑥𝑐 − (𝑟𝑠/3) 𝑑𝜖𝑥𝑐/𝑑𝑟𝑠) × 𝐸𝐻 is the electron exchange-

correlation potential calculated by the Kohn-Sham local density approximation (LDA)[41], where 

𝑟𝑠(𝑥) is the local Seitz radius [4𝜋𝑛(𝑥)(𝑟𝑠𝑎0)3/3 = 1] in terms of the Bohr radius 𝑎0 =  0.0529 

nm, n(x) is the electron density, 𝐸𝐻  = 27.2 eV is the Hartree energy, and 𝜖𝑥𝑐 =  𝜖𝑥 + 𝜖𝑐 is the 

exchange-correlation energy [41]–[43]. 𝜖𝑥 = −(3/4)(3/2𝜋) 2/3(1/𝑟𝑠), and 𝜖𝑐 = −2𝐴(1 +

𝑎1𝑟𝑠)ln [1 + 1/2𝜅𝐴] are the exchange energy and the correlation energy respectively, for a 

uniform electron gas of density n, where 𝜅 = 𝑏1𝑟𝑠
1/2 + 𝑏2𝑟𝑠 + 𝑏3𝑟𝑠

3/2 + 𝑏4𝑟𝑠
𝑐+1, and 𝐴, 

𝑐, 𝑎1, 𝑏1, 𝑏2, 𝑏3, and 𝑏4 are constants obtained from[41]. 

The probability 𝐷(𝐸𝑥) that an electron with longitudinal energy 𝐸𝑥 (normal to the surface) 

can penetrate the potential barrier Φ(𝑥) is given by the WKBJ approximation [44], 

𝐷(𝐸𝑥) = exp[−
2

ℏ
∫ √2𝑚𝑒[Φ(𝑥) − 𝐸𝑥]

𝑥2

𝑥1
𝑑𝑥],               (2.2) 
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where 𝑥1 and 𝑥2 are the two roots of 𝐸𝑥 − Φ(𝑥) = 0 , 𝑚𝑒 is the electron rest mass. The tunneling 

current density from electrode 1 to the right, and from electrode 2 to the left, are respectively [3], 

[27], [34], 

     𝐽1 =  𝑒 ∫ 𝑁1(𝐸𝑥)𝐷(𝐸𝑥)𝑑𝐸𝑥
∞

−∞ 
,        (2.3a) 

     𝐽2 =  𝑒 ∫ 𝑁2(𝐸𝑥)𝐷(𝐸𝑥)𝑑𝐸𝑥
∞

−∞
,        (2.3b) 

    𝑁1(𝐸𝑥) =  
𝑚𝑒𝑘𝐵𝑇

2𝜋2ℏ3  ln(1 +  𝑒−(𝐸𝑥−𝐸𝐹) 𝑘𝐵𝑇⁄ ) ,               (2.3c) 

     𝑁2(𝐸𝑥) =  
𝑚𝑒𝑘𝐵𝑇

2𝜋2ℏ3
 ln(1 +  𝑒−(𝐸𝑥+𝑒𝑉𝑔−𝐸𝐹) 𝑘𝐵𝑇⁄ ) ,              (2.3d) 

where 𝐷(𝐸𝑥) is given in Eq. (2.2), 𝑁1,2(𝐸𝑥)𝑑𝐸𝑥 is the total number of electrons inside electrode 1 

(electrode 2) with longitudinal energy between 𝐸𝑥 and 𝐸𝑥 + 𝑑𝐸𝑥 impinging on the surface of 

electrode 1 (2) across a unit area per unit time, calculated by the free-electron theory of metal [45], 

𝑚𝑒 is the electron rest mass, ℏ is the reduced Planch constant, 𝑘𝐵 is the Boltzmann constant, and 

𝑇 is the electrode temperature. 

Inside the insulator, 0 < 𝑥 < 𝐷, we solve the coupled Schrödinger equation and the Poisson 

equation, for the electric potential 𝑒𝑉(𝑥) and the exchange-correlation potential Φ𝑥𝑐(𝑥), 

−
ℏ2

2𝑚𝑒

𝑑2𝜓

𝑑𝑥2 − [𝑒𝑉(𝑥) − 𝛷𝑥𝑐(𝑥)]𝜓 = 𝐸0𝜓,                  (2.4)                              

𝑑2𝑉(𝑥)

𝑑𝑥2
=

𝑒𝜓𝜓∗

𝜀𝑟𝜀0
,       (2.5) 

where 𝜓 is the complex electron wave function, 𝑛 = 𝜓𝜓∗ is the electron density, and 𝐸0 is the 

electron emission energy (with respect to the Fermi energy 𝐸𝐹). We assume 𝐸0 = 0 in the 

calculation. 
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 For a bias voltage 𝑉𝑔, the boundary conditions are, 𝑉(0) = 0, and 𝑉(𝐷) = 𝑉𝑔. We also 

have the boundary conditions that both 𝜓 and  𝑑𝜓/𝑑𝑥 are continuous at 𝑥 = 0, and 𝑥 = 𝐷. Due 

to charge conservation, the net current density 𝐽𝑛𝑒𝑡 = 𝐽1 − 𝐽2  = 𝑒(𝑖ℏ/2𝑚𝑒)(𝜓𝜓∗′ − 𝜓∗𝜓′) is 

constant for all x, where a prime denotes a derivative with respect to x, and 𝑖 = √−1 . 

 For convenience we use nondimensional quantities[27], �̅� =  𝑥/𝐷, 𝜙 = 𝑉(𝑥)/𝑉𝑔, 𝜙𝑥𝑐 =

 Φ𝑥𝑐/𝐸𝐻, 𝜙𝑔 = 𝑒𝑉𝑔/𝐸𝐻, 𝛾 = 𝐽/𝐽𝐶𝐿, 𝐸0
̅̅ ̅ = 𝐸0/𝑒𝑉𝑔, �̅� = 𝑛/𝑛0  = 𝜓𝜓∗/𝑛0, 𝜆 = 𝐷/𝜆0  where 𝜆0 =

 √ℏ2/2𝑒𝑚𝑒𝑉𝑔 , 𝐽𝐶𝐿 = (4/9)𝜖0√2𝑒/𝑚𝑒 𝑉𝑔
3/2

/𝐷2 is the Child-Langmuir law[46], [47], 𝑛0 =

(2𝜖0/3𝑒)𝑉𝑔/𝐷2, and 𝐸𝐻 is the Hartree energy. The wave function in the normalized form is 

𝜓(�̅�) =  √𝑛0𝑞(�̅�)𝑒𝑖𝜃(�̅�), where 𝑞(�̅�) and 𝜃(�̅�) are the nondimensional amplitude and phase 

respectively, both assumed real. Equations 2.4 and 2.5 are normalized to read, 

𝑑2𝑞

𝑑 �̅�2 + 𝜆2 [𝜙 −
𝜙𝑥𝑐

𝜙𝑔
−

4

9

𝛾𝑛𝑒𝑡
2

𝑞4 + 𝐸0
̅̅ ̅] 𝑞 = 0,                  (2.6)                              

𝑑2𝜙

𝑑�̅�2 =
2

3

𝑞2

𝜀𝑟
,        (2.7) 

where 𝛾𝑛𝑒𝑡 = 𝛾1 − 𝛾2 is the net normalized current density. The boundary conditions to eqs. (2.6) 

and (2.7) are, 𝜙(0) = 0, 𝜙(1) = 1, 𝑞(1) = {(
2

3√1+𝐸0̅̅̅̅
) [𝛾1 + 𝛾2 + 2√𝛾1𝛾2 cos (2𝜆√1 + 𝐸0

̅̅ ̅)]}
1/2

, 

and 𝑞′(1) = (
4

3
) (

𝜆√𝛾1𝛾2

𝑞(1)
) sin (2𝜆√1 + 𝐸0

̅̅ ̅). The normalized emission current density 𝛾1 and 𝛾2 

are,  

         𝛾1 =
9

4𝜋

𝜆2

√2𝜙𝑔
 �̅� ∫ ln (1 + 𝑒−

𝐸𝑥̅̅ ̅̅ −𝐸𝐹̅̅̅̅̅

�̅� )𝐷(𝐸𝑥
̅̅ ̅)𝑑𝐸𝑥

̅̅ ̅∞

−∞
,                             (2.8a)  

         𝛾2 =
9

4𝜋

𝜆2

√2𝜙𝑔
 �̅� ∫ ln (1 + 𝑒−

𝐸𝑥̅̅ ̅̅ +1−𝐸𝐹̅̅̅̅̅

�̅� )𝐷(𝐸𝑥
̅̅ ̅)𝑑𝐸𝑥

̅̅ ̅∞

−∞
,                          (2.8b)  
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where �̅� = 𝑘𝐵𝑇/𝑒𝑉𝑔, 𝐸𝑥
̅̅ ̅ = 𝐸𝑥/𝑒𝑉𝑔, and 𝐸𝐹

̅̅ ̅ = 𝐸𝐹/𝑒𝑉𝑔. By solving Eqs. (2.6) - (2.8) iteratively with 

the boundary conditions, we can self-consistently obtain the complete potential barrier profile 

Φ(𝑥), the current density emitted from both electrodes 𝐽1 and 𝐽2, for any metal electrodes (𝑊1, 𝑊2), 

insulator layer (𝜀𝑟 , 𝑋, 𝐷), and bias voltage (𝑉𝑔). It is found the tunneling current emission is 

insensitive to the temperature and the Fermi level[27]. In our calculations, we assume room 

temperature 𝑇 = 300 K and 𝐸𝐹 = 5.53 eV.  

It is worthwhile to note that, although the proposed model is developed for DC condition, it is 

applicable to the excitation of up to the Near Infrared frequency, since in typical metallic tunnel 

junctions, the tunneling events occur on a timescale much shorter than the period of the driving 

fields[27], [48], [49].  

In this formulation, we have assumed, 1) the electron transmission probability during the 

emission process can be approximated by the WKBJ solution, where the metal electrodes are based 

on the free electron gas model; 2) the surfaces of the electrodes are flat and the problem is one-

dimensional; 3) the image potential can be approximated by the classical image charge methods; 

and 4) the two metallic electrodes are separated by a sufficiently thin insulating film (in the nano- 

or subnano- meter scale), so that charge trapping in the insulator are ignored[30], [50]. 

2.3 Results and Discussion 

Figure 2.2a shows the normalized current density 𝛾 as a function of applied gap voltage 𝑉𝑔, 

for two electrodes having work functions, 𝑊1 = 4.1 eV  and 𝑊2 = 5.1 eV (Au), separated by 1 nm 

vacuum gap (𝜖𝑟 = 1, 𝑋 = 0 eV). Metal 2 is given a positive bias (i.e. reverse bias, equivalent to 

Figs. 2.1a and 2.1c). The current densities are calculated from the SCM with both space charge 
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potential and exchange correlation potential 𝑉𝑥𝑐 included. The 𝐽 − 𝑉 curves may be roughly 

divided into three regimes: direct tunneling regime ( 𝑉𝑔 < 1V), field emission regime (1V <  𝑉𝑔 <

10V), and space-charge-limited regime (𝑉𝑔 > 10V), similar to the MIM with electrodes of the same 

material [27]. 

 

 Figure 2.2(a) Normalized (in terms of CL law) current density 𝜸 as a function of applied 

gap voltage 𝑽𝒈, for two electrodes having work functions, 𝑾𝟏 = 𝟒. 𝟏 𝐞𝐕  and 𝑾𝟐 = 𝟓. 𝟏 𝐞𝐕 

(Au), separated by 1 nm vacuum gap (𝝐𝒓 = 1, 𝑿 = 𝟎 𝐞𝐕). Metal 2 is positively biased. The 

calculations are from SCM with both space charge and 𝑽𝒙𝒄 included. Simmons’ formula 

(dashed line) is from Ref [28], Fowler-Nordheim (FN) law (dash-dotted line) is from Ref. 

[51]–[53], calculated with the cathode work function 𝑾 = 𝟒. 𝟏 𝐞𝐕, and the quantum CL law 

(green dotted line) is from Ref. [32], [33]. (b) Current density 𝑱𝒏𝒆𝒕 in 𝐀/𝐜𝐦𝟐 as a function of 

applied gap voltage 𝑽𝒈, for 𝑫 = 1 nm and vacuum gap (𝝐𝒓=1, 𝑿 = 𝟎 𝐞𝐕). Solid and dashed 

lines in (b) represent RB and FB conditions respectively. Top to bottom, 𝑾𝟐 = 3.68 eV 

(Mg), 4.08 eV (Al), 5.1 eV (Au), 6.35 eV (Pt). The work function difference between the two 

metals is kept fixed, 𝚫𝑾= 𝑾𝟐 − 𝑾𝟏 = 1 eV. The inset in (b) represents the zoomed in view 

of the cross over behavior for the case of 𝑾𝟐 = 𝟔. 𝟑𝟓 eV. [1] 

 In the direct tunneling regime, just like similar MIM junctions[27], the tunneling current 

density from cathode 𝛾1 and that from anode 𝛾2 are comparable. The net current density 𝛾𝑛𝑒𝑡 can 
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be orders of magnitude lower than both 𝛾1 and 𝛾2. Therefore, in this regime, both anode emission 

and cathode emission need to be considered for an accurate estimation of the tunneling current in 

the dissimilar MIM junction.  In the direct tunneling regime, 𝛾𝑛𝑒𝑡 increases linearly with 𝑉𝑔, which 

implies that the dissimilar electrode MIM junction behaves like an ohmic resister. The 𝐽 − 𝑉  

characteristic matches well with the Simmons’ formula in the direct tunneling regime[28]. In the 

field emission regime, 𝛾2 is much smaller compared to 𝛾1, because the effective barrier height at 

the cathode is reduced by the bias voltage. The net current density 𝛾𝑛𝑒𝑡 is approaching the Fowler-

Nordheim (FN) law [51]–[53] as Vg increases. However, in the field emission regime, Simmons’ 

formula gives a more accurate fit to the self-consistent SCM result, which is due to the inclusion 

of anode screening in Simmons’ formula. Simmons’ formula breaks down around  𝑉𝑔 = 4V. When 

the gap voltage reaches 𝑉𝑔 = 4V, the effective barrier height is depressed by 𝑉𝑔 below the Fermi 

level of the cathode (i.e. equivalent to Fig. 2.1c).  In the space-charge-limited (SCL) regime, when  

𝑉𝑔 reaches 100V, the cathode current and therefore the net current approaches the quantum CL law 

(QCL) [32], [33], which gives the maximum current density that can be transported across a 

vacuum nano-gap for a given  𝑉𝑔 and  𝐷, with quantum corrections.  

Figure 2.2b shows the net current density 𝐽𝑛𝑒𝑡 in A/cm2 as a function of applied gap voltage 

𝑉𝑔, in dissimilar MIM junctions separated by a 1 nm wide vacuum gap for a fixed Δ𝑊= 𝑊2 − 𝑊1 

= 1 eV. Solid and dashed lines are for reverse biased (RB) (i.e. higher work function metal is 

positively biased) and forward biased (FB) (i.e. higher work function metal is negatively biased) 

current densities, respectively. The tunneling current density of a dissimilar MIM junction is very 

sensitive to its apparent barrier height. Figure 2.2b shows that, at low voltages (𝑒𝑉𝑔 < Δ𝑊), the 

characteristics are almost identical for the FB and RB conditions. In the region of Δ𝑊 < 𝑒𝑉𝑔 <
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𝑊1 −  𝑋, the FB current exceeds slightly. At a higher voltage, the FB and RB characteristics cross 

over. The inset of Fig. 2.2b shows the zoomed in view of this cross over behavior for the case of 

𝑊2 = 6.35 eV. It is shown in Fig. 2.2b, as 𝑊2 (and therefore 𝑊1) increases, the FB and RB 

characteristics intersect at increased values of 𝑉𝑔, which agrees with the results reported by 

Simmons, in 1960 [28]. The underlying reason for this crossover behavior is, in the high voltage 

region, the tilt of the potential barrier changes its direction for the RB condition (Figs. 2.1a and 

2.1c). For (𝑊2 − 𝑋) < 𝑒𝑉𝑔 < 20 eV, the asymmetry between FB and RB characteristics becomes 

significant. In this region, for the same bias voltage, electrons see a lower effective potential barrier 

height in RB condition than that in the FB condition (Fig. 2.1). The asymmetry between FB and 

RB characteristics remains insensitive to the value of 𝑊1 or 𝑊2, when the work function difference 

Δ𝑊 is kept fixed. When 𝑉𝑔 approaches 100 V, the net current density for both FB and RB 

conditions converges to the value of QCL, since the SCL current density depends only on 𝑉𝑔 and 

𝐷, but not on work function. The effect of the electron affinity 𝑋 of the insulating thin film on 𝐽 −

𝑉 characteristics would be similar, that is, increasing 𝑋 would be equivalent to decreasing 𝑊1 and 

𝑊2, provided the relative permittivity 𝜖𝑟 of the insulator and the insulator thickness are unchanged. 
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Figure 2.3 The effects of work function difference 𝚫𝑾 on the 𝑱 − 𝑽 characteristics of a 

dissimilar MIM junction with 𝑫 = 1 nm, vacuum gap (𝝐𝒓=1, 𝑿 = 𝟎 𝐞𝐕). Top to bottom, 𝚫𝑾 

= 4 eV, 3 eV, 2 eV, 1 eV, 0 eV, -1 eV, -3 eV. The work function of metal 2 is kept fixed, 𝑾𝟐 = 

6.35eV (Pt). Solid and dashed lines represent RB and FB conditions respectively. [1] 

The effects of work function difference Δ𝑊 = 𝑊2 − 𝑊1 on the 𝐽 − 𝑉 characteristics of a MIM 

junction separated by a 1 nm wide vacuum gap, are shown in Fig. 2.3. The work function of metal 

2 is kept fixed, 𝑊2 = 6.35 eV (Pt). Solid and dashed lines represent the RB and FB conditions, 

respectively. Unlike the previous case of fixed Δ𝑊 in Fig. 2.2b, in the field emission regime, the 

asymmetry between FB and RB currents increases significantly as |Δ𝑊| increases. Work function 

difference between the two metal electrodes in a dissimilar MIM junction influences the 𝐽 − 𝑉 

characteristics more profoundly than the individual work functions. The dotted line in Fig. 2.3 

(Δ𝑊 = 0) represents the similar MIM junction (𝑊1 = 𝑊2 = 6.35eV) tunneling current density. 

The curves for 𝐽𝑛𝑒𝑡 lie above and below the Δ𝑊 = 0 reference, for 𝑊1 < 6.35 eV  and 𝑊1 >

6.35 eV respectively.  
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Figure 2.4 The effects of gap width (𝑫) on the 𝑱 − 𝑽 characteristics of a dissimilar MIM 

junction with vacuum gap (a) 𝑱𝒏𝒆𝒕 as a function of applied gap voltage 𝑽𝒈. Top to bottom, 

𝑫 = 0.5 nm, 1 nm, 1.5 nm, 2 nm, 3 nm. (b) 𝑱𝒏𝒆𝒕 as a function of gap width 𝑫 for different 

𝑽𝒈. Work function of the two electrodes are 𝑾𝟐 = 5.1 𝐞𝐕 and 𝑾𝟏 = 𝟒. 𝟏 𝐞𝐕 . For the 

vacuum gap 𝝐𝒓 = 1 and 𝑿 = 𝟎 𝐞𝐕. Solid and dashed lines represent RB and FB conditions 

respectively. 

Figure 2.4 shows the effects of gap width (or insulator thickness) 𝐷 on the tunneling current 

density in dissimilar MIM junctions. In Fig. 2.4a, RB and FB tunneling current densities are plotted 

as functions of applied gap voltage 𝑉𝑔 for 𝐷 = 0.5 nm, 1 nm, 1.5 nm, 2 nm and 3 nm. In Fig. 2.4b, 

tunneling current densities are plotted as functions of 𝐷 for different externally applied bias 

voltages 𝑉𝑔. For small gap width (𝐷 = 0.5 nm in Fig. 2.4a), the asymmetry between FB and RB 

current densities tend to disappear. However, when 𝐷 is increased, the asymmetry increases 

significantly. The FB and RB characteristics tend to crossover at about the same voltage. However, 

this crossover voltage is not exactly the same for all 𝐷 (c.f. Fig. 2.4b, 𝑉𝑔 = 5V), as previously 

reported by Simmons [28].  Figure 2.4b shows that the asymmetry between the FB and RB 

tunneling current densities appear only for high voltages. In low voltage regime (𝑉𝑔 ≤ 1V for our 

MIM junction current calculations), for any given gap width (𝐷 = 0.5nm − 3nm), the current 
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density profiles are almost identical for the two biases. The asymmetry increases with the applied 

bias voltage and it tends to disappear as 𝑉𝑔 reaches 100V into the SCL regime. Note that, when 𝐷 

is large, the cathode emission current reaches the SCL current at a higher voltage. This explains 

the increase of asymmetry between FB and RB tunneling densities at high voltages (c.f. Fig. 2.4b, 

𝑉𝑔 = 20V) for large 𝐷.  

 

Figure 2.5 The effects of relative permittivity of the insulating thin film 𝝐𝒓 on the 𝑱 − 𝑽  

characteristics of a dissimilar MIM junction with 𝑫 = 1 nm. (a) 𝑱𝒏𝒆𝒕 a function of applied 

gap voltage 𝑽𝒈. Top to bottom, 𝝐𝒓 = 𝟏 , 𝟐 and 𝟔 respectively. (b) 𝑱𝒏𝒆𝒕 as a function of 𝝐𝒓 for 

different 𝑽𝒈. Work function of the two electrodes are 𝑾𝟐 = 5.1 𝐞𝐕 and 𝑾𝟏 = 𝟒. 𝟏 𝐞𝐕 . 

Electron affinity of the insulator is 𝑿 = 𝟎 𝒆𝐕. Solid and dashed lines represent RB and FB 

conditions respectively. 

Figure 2.5 shows the effects of insulator layer permittivity 𝜖𝑟 on the tunneling current density 

in dissimilar MIM junctions. In Fig. 2.5a, RB and FB tunneling current densities are plotted as 

functions of applied gap voltage 𝑉𝑔 for 𝜖𝑟  = 1, 2 and 6. In Fig. 2.5b, tunneling current densities 

are plotted as functions of 𝜖𝑟 for different externally applied bias voltages 𝑉𝑔. The relative 
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permittivity of insulating layer greatly influences the image charge potential as well as the space 

charge potential (Eq. 2.7), which in turn affect the current transport through the potential barrier. 

The asymmetry between FB and RB tunneling current densities increases with 𝜖𝑟 (Fig. 2.5a). 

However, for low voltages, there is no such asymmetry and the 𝐽𝑛𝑒𝑡 profiles are identical, since in 

this direct tunneling regime the MIM junction is ohmic (Figure 2.5b). The FB and RB 

characteristics crossover at higher voltages for increasing 𝜖𝑟. It is important to note that, for low 

and intermediate bias voltages, 𝐽𝑛𝑒𝑡 decreases with 𝜖𝑟, but when 𝑉𝑔 reaches 100V, this trend 

reverses because larger 𝜖𝑟 reduces the effect of space charge (Eq. 2.7). The asymmetry between 

FB and RB current densities tend to disappear as 𝑉𝑔 reaches the quantum CL limit (Fig. 2.5a and 

Fig. 2.5b, 𝑉𝑔 = 100V). 

2.4 Concluding Remarks 

Our self-consistent model characterizes the tunneling current in nano- and subnano-scale 

asymmetric (metal electrodes with dissimilar work functions) MIM junctions, taking into account 

the effects of both space charge and exchange-correlation potential. It provides accurate estimation 

of tunneling current density in different regimes over a wide range of input parameters. It is found 

that the Simmons’ formulas provide good approximations of the tunneling current for only a 

limited parameter space in the direct tunneling regime. Their accuracy decreases when the 

effective barrier height decreases, where the self-consistent model would give a more accurate 

evaluation. We demonstrated the influences of electrode work functions (𝑊1 and 𝑊2), insulator 

layer properties (𝜖𝑟, 𝑋), insulator thickness (𝐷) and bias voltage (𝑉𝑔) on the FB and RB tunneling 

current density profiles. We found that the work function difference Δ𝑊 influences the asymmetry 

between forward and reverse bias 𝐽 − 𝑉 characteristics more profoundly than their individual work 
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functions. This asymmetry increases with increasing insulator layer thickness and relative 

permittivity. However, for very low (for our calculations, 𝑉𝑔 < 1V) and very high voltages 

(𝑉𝑔 ~ 100V), the tunneling current density profiles are almost similar for the two biased cases. 

It is worthwhile to note that, although the proposed model is developed for DC condition, it is 

applicable to the excitation of up to the Near Infrared frequency, since in typical metallic tunnel 

junctions, the tunneling events occur on a timescale much shorter than the period of the driving 

fields [48]. The effects of electrodes geometry, possible charge trapping inside the insulator film, 

frequency dependence will be subjects of future studies. 
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CHAPTER 3 

PLANAR TUNNELING ELECTRICAL CONTACTS 

This chapter is based on the published journal paper “A Two Dimensional Tunneling 

Resistance Transmission Line Model for Nanoscale Parallel Electrical Contacts,” Sci Rep, vol. 9, 

no. 14484, pp. 1–14, Oct. 2019, doi: 10.1038/s41598-019-50934-2, by S. Banerjee, J. Luginsland, 

and P. Zhang [1]. It has been reproduced here with the permission of the copyright holder. 

3.1 Introduction 

Contact resistance and their electro-thermal effects have become one of the most critical 

concerns of very large scale integration (VLSI) circuit designers, because of the excessive amount 

of  Joule heating being deposited at the contact region [2]–[7]. The electrical contact properties 

have been extensively studied in metal-semiconductor [8]–[10], metal-insulator-semiconductor 

and metal-insulator-metal [11]–[14] junctions. The growing popularity of novel electronic circuits 

based on graphene, carbon nanotubes (CNTs) and other new materials has made contact 

engineering crucial. CNT based devices, in particular, experience significant challenges because 

of the inter-tube connections. On macroscopic level, the exceptional intrinsic electrical properties 

[15], [16] of CNTs become elusive [4], [15], [17]. Contact resistances between CNTs profoundly 

affect the electron transport and reduce the electrical conductivity of carbon nanofiber (CNF) [16]–

[18], and greatly limit the performance of CNT thin film based Field Effect Transistors (FETs) 

[19]–[22].  One can naturally expect these issues also arising from other novel two-dimensional 

materials (boron nitride, molybedenum sulfide, black phosphorus, etc) as well as new nano-

composites. While the work presented here is generalizable to these other material systems, here 

we choose carbon materials as examples. 
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 Tunneling type of electrical contacts[11], [23]–[26] are commonly found for CNT-CNT 

[17], [25], [27]–[31], CNT-Metal [32]–[34] and CNT-graphene [35][36] contacts, where the 

contacting members are separated by very thin insulating layers. Tunneling effects in contact 

junctions significantly lower the electrical conductivity of the CNT/polymer composite thin films 

[26]. It is also found that tunneling resistance plays a dominant role in the electrical conductivity 

of CNT-based polymeric or ceramic composites [28].  

For decades, the basic models of tunneling current between electrodes separated by thin 

insulating films have been those of Simmons [37]–[39] in 1960s. Simmon’s formula have since 

been used for evaluating tunneling current in tunneling junctions [24], [30], [40]. Though there 

have been attempts to extend Simmons’ models to the field emission and space-charge-limited 

regimes [11], [41], [42], it is always assumed that the tunneling junctions are one-dimensional 

(1D), i.e. there is no variations on the voltages drops along the length of the tunneling junction and 

the insulating film thickness is uniform. Thus, these existing models of tunneling junctions give 

no hint on the variation of tunneling current along the contact length and the importance of current 

crowding near the contact area when the two contacting members are partially overlapping (cf. 

Fig. 3.1). On the other hand, the widely used transmission line models (TLM) for electrical 

contacts typically assume the contact resistivity of the interface layers are constant [12], [43]–[45]. 

It is questionable to apply these models to study the tunneling contacts, as the tunneling resistance 

depends on the junction voltage that varies spatially along the contact length.  

 In this chapter, we propose a two-dimensional (2D) transmission line model for partially 

overlapped parallel contacts with spatially varying specific contact resistivity. Spatial dependence 

of specific contact resistivity of the contact interface may be introduced by many factors, such as 

nonuniform distribution of the resistive contaminants, oxides, or foreign objects at the contact 
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interface, formation of contact interfaces with spatially varying thickness, or the presence of 

tunneling contacts between contact members. In the latter case, because of the nonlinear current-

voltage characteristics of the tunneling junctions [11], [37], the specific resistivity along the contact 

length will become spatially dependent, even for a tunneling layer with uniform thickness (Fig. 

3.1). For the tunneling-type contacts, the model considers the variation of potential barrier height 

and tunneling current along the contact length, by solving the TLM equations coupled with the 

tunneling current self consistently. We provide comprehensive analysis of the effects of contact 

geometry (i.e. dimension of the contact, and distance between the contact electrodes), and material 

properties (i.e. work function, sheet resistance of the contact members, and permittivity of the 

insulating layer) on the spatial distributions of currents and voltages across these contacts, and the 

overall contact resistance of parallel contacts.  

The formulation of our Cartesian TLM model are given in Sec. 3.2. We would like to point 

out that, albeit an application of the standard transmission line theory based on the Kirchhoff’s 

laws, the TLM has been used extensively with great success to characterize mesoscale and 

nanoscale electrical contacts. Here we further extend the TLM model with the effects of spatially 

dependent contact resistivity. We have considered three cases of Cartesian parallel contacts in Sec. 

3.3: 1) constant specific contact resistivity (Sec. 3.3.1); 2) linearly varying specific contact 

resistivity (Sec. 3.3.2); and 3) tunneling contact resistivity depending on local junction voltages 

along the contact length (Sec. 3.3.3). The first case of uniform specific contact resistivity along the 

contact length has been verified with COMSOL [46] 2D simulations. For the third case, for 

simplicity, we use the Simmons’ model to determine the local current-voltage characteristics across 

the tunneling junction. Though full scale quantum mechanical calculations may have to be used to 

accurately evaluate the nanoscale circuits, our model based on Simmons formula reveals the 
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fundamental scalings and parametric dependence of current and voltage profiles, as well as electric 

contact resistance of tunneling contacts. Concluding remarks are given in Section 3.4. 

Note that, although this work is focused on the normal Schrodinger tunneling type electrical 

contacts, the proposed TLM with spatially varying contact resistivity can be used for many other 

types of electric contacts, such as nanoscale Schottky contacts based on 2D materials 

heterostructure[47], [48], and Klein tunneling junctions[49]. 

3.2 The 2D Transmission Line Model 

 

 

Figure 3.1 A parallel, partially overlapped electric contact. The contacts are formed 

between (a) nanotube or nanowire 1 and 2, and (b) thin film 1 and 2; (c) side view of the 

contact; (d) its transmission line model. In (a), (b) and (c) a thin resistive interface layer (or 

a tunneling layer of permittivity 𝜺𝒓) is sandwiched between the two contacting members. 

Consider a parallel contact formed between two nanowires or nanotubes or between two 

conducting thin films or layers, as shown in Figs. 3.1(a) and 3.1(b), respectively. The distance 

between the two contact members is 𝐷, and the contact length is 𝐿. A thin resistive interface layer 

is sandwiched between them. Both contacts in Figs. 3.1(a) and 3.1(b) can be described by a two-

dimensional (2D) model, as shown in Fig. 3.1(c). Note that the proposed formulation is generally 
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applicable to parallel Cartesian nanojunctions with different shape of the electrodes, for example, 

electrical contact between a nanowire and a thin film. In the 2D model, the effects of the transverse 

dimension (perpendicular to the paper) can be included in the effective sheet resistances 𝑅𝑠ℎ1 and 

𝑅𝑠ℎ2 for conductor 1 and 2, respectively, such that there is no variation along the width 𝑤 in the 

transverse dimension. The spatial dependent specific interfacial resistivity (also termed specific 

contact resistivity) is 𝜌𝑐(𝑥), which is either predefined, or calculated from the local tunneling 

current in case of insulating tunneling layer [37]–[39]. We use the DC equivalent lump circuit 

transmission line model (TLM) [12], [43]–[45], as shown in Fig. 3.1(d), to model the 2D parallel 

contact in Fig. 3.1(c). 

In the contact region PQNM in Figs. 3.1(c) and 3.1(d), using Kirchoff's laws for current and 

voltage, we get the following equations,  

𝐼1(𝑥) −  𝐼1(𝑥 + ∆𝑥) =
𝑉1(𝑥)−𝑉2(𝑥)

𝜌𝑐(𝑥)
 ∆𝑥 𝑤,                             (3.1a) 

𝑉1(𝑥) − 𝑉1(𝑥 + ∆𝑥) = 𝐼1(𝑥)  𝑅𝑠ℎ1∆𝑥/𝑤,                                  (3.1b) 

𝐼2(𝑥 + ∆𝑥) − 𝐼2(𝑥) =
𝑉1(𝑥)−𝑉2(𝑥)

𝜌𝑐(𝑥)
 ∆𝑥 𝑤,                             (3.1c) 

𝑉2(𝑥) −  𝑉2(𝑥 + ∆𝑥) = 𝐼2(𝑥)  𝑅𝑠ℎ2∆𝑥/𝑤,                              (3.1d) 

where 𝐼1(𝑥) and 𝐼2(𝑥) represent the current flowing at 𝑥 through the lower contact member, MN 

and upper contact member, PQ respectively, and 𝑉1(𝑥) and 𝑉2(𝑥) the local voltage at 𝑥 along MN 

and PQ, respectively, and 𝑤 is the effective transverse dimension of the contacts. When Δ𝑥 → 0, 

Equation (3.1) becomes, 

𝜕𝐼1(𝑥)

𝜕𝑥
= −𝑤𝐽𝑐(𝑥),                  (3.2a) 
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𝜕𝑉1(𝑥)

𝜕𝑥
= −

𝐼1(𝑥)𝑅𝑠ℎ1

𝑤
,                  (3.2b) 

 
𝜕𝐼2(𝑥)

𝜕𝑥
= 𝑤𝐽𝑐(𝑥),                    (3.2c) 

𝜕𝑉2(𝑥)

𝜕𝑥
= −

𝐼2(𝑥)𝑅𝑠ℎ2

𝑤
,                 (3.2d) 

where 𝐽𝑐(𝑥) =  𝑉𝑔(𝑥)/𝜌𝑐(𝑥) and 𝑉𝑔(𝑥) = 𝑉1(𝑥) − 𝑉2(𝑥) are the local current density and the local 

voltage drop across the contact interface at 𝑥, respectively. 

Note that, from Eqs. (3.2a) and (3.2c), 𝐼1(𝑥) +  𝐼2(𝑥) = 𝐼𝑡𝑜𝑡 = constant, where 𝐼𝑡𝑜𝑡 is the 

total current in the circuit, to be determined from the boundary conditions. The boundary 

conditions for Eq. (3.2) are, 

𝑉1(𝑥 =  0) = 𝑉𝑜,                                 (3.3a) 

𝐼2(𝑥 = 0) = 0 ,                                 (3.3b) 

𝐼1(𝑥 = 𝐿) = 0 ,                             (3.3c) 

𝑉2(𝑥 = 𝐿) = 0,                              (3.3d)  

where, without loss of generality, we assume the voltage of the upper contact member at 𝑥 = 𝐿 is 

0, and the externally applied voltage at 𝑥 = 0 of the lower contact member is 𝑉0. Note that 

𝐼1(𝑥 = 0) = 𝐼𝑡𝑜𝑡, and 𝐼2(𝑥 = 0) = 0. From Eqs. (3.2) and (3.3), it is easy to show 𝑉1
′(𝑥 = 0) =

 −𝐼𝑡𝑜𝑡𝑅𝑠ℎ1/𝑤, 𝑉1
′(𝑥 = 𝐿) =  0, 𝑉2

′(𝑥 = 0) =  0, 𝑉2
′(𝑥 = 𝐿) =  −𝐼𝑡𝑜𝑡𝑅𝑠ℎ2/𝑤, where a prime 

denotes a derivative with respect to 𝑥.  For the contact model in Fig. 3.1(d), the contact resistance 

is defined as,  

 

𝑅𝑐 =
𝑉1(0)−𝑉2(𝐿)

𝐼𝑡𝑜𝑡
=

𝑉𝑜

𝐼𝑡𝑜𝑡
.                                                      (3.4) 
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It is convenient to introduce non-dimensional quantities, �̅� =  𝑥/𝐿, �̅�𝑐(�̅�) = 𝜌𝑐(𝑥)/

𝜌𝑐0, �̅�𝑠ℎ2 = 𝑅𝑠ℎ2/𝑅𝑠ℎ1, 𝐼1̅(�̅�) = 𝐼1(𝑥)/𝐼𝑜, 𝐼2̅(�̅�) = 𝐼2(𝑥)/𝐼𝑜,  𝐽�̅�(�̅�) = 𝐽𝑐(𝑥)𝐿𝑊/𝐼𝑜, 𝑉1̅(�̅�) =

𝑉1(𝑥)/𝑉𝑜, 𝑉2̅(�̅�) = 𝑉2(𝑥)/𝑉𝑜, 𝑉�̅�(�̅�) = 𝑉𝑔(𝑥)/𝑉𝑜, and 𝑅𝑐
̅̅ ̅ =  𝑅𝑐/𝑅𝑐0, where we define 𝐼𝑜 =

𝑤𝑉0/𝑅𝑠ℎ1𝐿, 𝜌𝑐0 = 𝑉0𝑤𝐿/𝐼𝑜, and 𝑅𝑐0 = 𝑅𝑠ℎ1𝐿/𝑤. In normalized forms, Eq. (3.2) can be recast 

into the following second order differential equations, 

𝜕2𝑉1̅̅ ̅(�̅�)

𝜕�̅�2
=  𝐽�̅�(�̅�),                                (3.5a) 

𝜕2�̅�𝑔(�̅�)

𝜕�̅�2 =  (1 + �̅�𝑠ℎ2)𝐽�̅�(�̅�),                                             (3.5b) 

�̅�𝑐(�̅�)
𝜕2𝐼1̅(�̅�)

𝜕�̅�2 +
𝜕�̅�𝑐(�̅�)

𝜕�̅�

𝜕𝐼1̅(�̅�)

𝜕�̅�
− (1 +  �̅�𝑠ℎ2) 𝐼1̅(�̅�) +  𝛼�̅�𝑠ℎ2 = 0,       (3.5c) 

where  𝐽�̅�(�̅�) = 𝑉�̅�(�̅�)/�̅�𝑐(�̅�), and 𝑉�̅�(�̅�) = 𝑉1̅(�̅�) − 𝑉2̅(�̅�). The corresponding boundary 

conditions to Eqs. 3.5(a)-3.5(c) are respectively,  

𝑉1̅(�̅� = 0) = 1 , 𝑉1̅′(�̅� = 0) = −𝛼  and 𝑉1̅(�̅� = 1) =  𝑉�̅�(�̅� = 1),                    (3.6a)  

𝑉�̅�
′
(�̅� = 0) =  −𝛼 ,   𝑉�̅�

′
(�̅� = 1) =  𝛼�̅�𝑠ℎ2,                                        (3.6b) 

𝐼1̅(�̅� = 0) =  𝛼,       𝐼1̅(�̅� = 1) =  0 ,                                              (3.6c)  

where the unknown constant 𝛼 =  𝐼𝑡𝑜𝑡/𝐼𝑜 is the normalized total current in the circuit, and prime 

denotes a derivative with respect to �̅�. Note that integrating Eq. (3.5b) subject to Eq. (3.6b) gives 

∫ 𝐽�̅�(�̅�)𝑑�̅� 
1

0
= 𝛼, which means that the total current is conserved across the contact interface. 

Equations (3.5) and (3.6) are solved to give the voltage and current distribution along and 

across the contact interface as well as the total contact resistance, for a given electrical contact 

(Fig. 3.1) with spatially dependent interface specific contact resistivity �̅�𝑐(�̅�). An example of the 
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procedure to solve Eqs. (3.5) and (3.6) numerically is as follows. For an initially guess on 𝛼, Eq 

(3.5b) is solved using the shooting method, subject to Eq. (3.6b). Next, Eq (3.5a) is solved with 

the initial values of 𝑉1̅(0) and 𝑉1̅′(0) from Eq. (3.6a). It is then checked whether 𝑉1̅(1) is equal to 

𝑉�̅�(1), as in Eq. (3.6a). The above-mentioned process repeats for different input 𝛼 until the 

condition 𝑉1̅(1) =  𝑉�̅�(1) is satisfied. Finally, Eq (3.5c) is solved to get 𝐼1̅ (and 𝐼2̅).  

In principle, Eqs. (3.5) and (3.6) can be solved numerically for arbitrary spatial dependence 

of specific contact resistivity �̅�𝑐(�̅�). Here, we focus on a few special cases of practical importance. 

We first consider the case of constant �̅�𝑐, where analytical solutions can be obtained (Sec. 3.3.1), 

which also serve to validate our numerical approach. We then consider the effects of spatially 

dependent �̅�𝑐(�̅�) on the parallel electrical contacts. We focus on two situations: linearly varying 

specific contact resistivity along 𝑥 (Sec. 3.3.2), and thin tunneling junction with uniform thickness 

(Sec. 3.3.3), where analytical solutions to the TLM current and voltage equations are no longer 

available, and Eqs. (3.5) and (3.6) are solved numerically. 

3.3 Results and Discussion 

3.3.1 Constant specific contact resistivity along the contact length 

For the special case of constant specific contact resistivity 𝜌𝑐, the TLM equations, Eqs. (3.5) 

and (3.6), can be solved analytically to give,  

𝐼1̅(�̅�) =
𝑞

𝐾
 [sinh 𝑞(1 − �̅�) +  �̅�𝑠ℎ2(sinh 𝑞 − sinh 𝑞�̅�)]              (3.7a) 

𝐼2̅(�̅�) =
𝑞

𝐾
 [sinh 𝑞(�̅� − 1) + �̅�𝑠ℎ2 sinh 𝑞�̅�  + sinh 𝑞]              (3.7b) 

𝐽�̅�(�̅�) =
𝑞2

𝐾
 [cosh 𝑞(1 − �̅�) +  �̅�𝑠ℎ2 cosh 𝑞�̅�]    (3.7c) 
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𝑉1̅(�̅�) =
1

𝐾
[cosh 𝑞(1 − �̅�) +  �̅�𝑠ℎ2𝑀 +  �̅�𝑠ℎ2𝑞(1 − �̅�) sinh 𝑞]      (3.7d) 

𝑉2̅(�̅�) =  𝑉1̅(�̅�) −   �̅�𝑐𝐽�̅�(�̅�)      (3.7e) 

and    𝑅𝑐
̅̅ ̅ =

(1+�̅�𝑠ℎ2
2

) cosh 𝑞+ �̅�𝑠ℎ2(2 +𝑞 sinh 𝑞)

(1+�̅�𝑠ℎ2)𝑞 sinh 𝑞
                 (3.8) 

where  𝑞 =  
𝐿

𝜆0
=  √

1+�̅�𝑠ℎ2 

�̅�𝑐
 , 𝐾 = (1 + �̅�𝑠ℎ2

2
) cosh 𝑞 +  �̅�𝑠ℎ2(2 + 𝑞 sinh 𝑞) and 𝑀 = cosh 𝑞�̅� +

1 + �̅�𝑠ℎ2cosh 𝑞. 

 

Figure 3.2 (a) Voltage drop across the contact interface  𝑽𝒈
̅̅̅̅ (�̅�), voltage  along (b) contact 

member 1 (MN), 𝑽𝟏
̅̅̅̅ (�̅�), (c) contact member 2 (PQ), 𝑽𝟐

̅̅̅̅ (�̅�), (d) current density across the 

contact interface 𝑱�̅�(𝒙), current along (e) contact member 1, 𝑰�̅�(�̅�), and (f) contact member 

2, 𝑰�̅�(�̅�),for different values of specific contact resistivity �̅�𝒄, for �̅�𝒔𝒉𝟐 = 𝑹𝒔𝒉𝟐/𝑹𝒔𝒉𝟏 = 𝟏. All 

the quantities are in their normalized forms defined in Sec. 3.2. [1] 

 

Figure 3.2 shows the current and voltage distributions along the contact length and across the 

contact interface for various specific contact resistivity �̅�𝑐, for a parallel contact formed between 

similar contact members, �̅�𝑠ℎ2 = 𝑅𝑠ℎ2/𝑅𝑠ℎ1 = 1. The voltage along both contact members 𝑉1̅ 

and  𝑉2̅ decrease with  �̅�, as shown in Figs. 3.2(b) and 3.2(c), respectively.  The current 𝐼1̅ in contact 
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member 1 decreases with  �̅� (Fig. 3.2(e)), whereas 𝐼2̅ in contact member 2 increases with  �̅� (Fig. 

3.2(f)), with the total current  𝐼1̅(�̅�) + 𝐼2̅(�̅�) being kept a constant along  �̅�. The profiles of both 

normalized voltage drop 𝑉�̅�(�̅�) and current density 𝐽�̅�(�̅�) across the interface layer, are symmetric 

along the contact length, with the minimum at the center of the contact structure  �̅� = 0.5 and the 

maximum at the contact edges, as shown in Figs. 3.2(a) and 3.2(d), respectively. The current 

crowding effects near the contact edges are well-known phenomena, as the current density is 

distributed to follow the least resistive path (i.e. minimum overall resistance).  It is important to 

note that as the specific contact resistivity  �̅�𝑐 decreases, the interface current density  𝐽�̅� becomes 

more crowded towards the contact edges, as shown in Fig. 3.2(d). In other words, the less resistive 

the contact interface layer, the more severe of the current crowding effects, which is in agreement 

with previous studies using both TLM [44], [45] and field theory [12], [50], [51].   

 
 

Figure 3.3 (a) Voltage drop across the contact interface  𝑽𝒈
̅̅̅̅ (�̅�), voltage  along (b) contact 

member 1 (MN), 𝑽𝟏
̅̅̅̅ (�̅�), and (c) contact member 2 (PQ), 𝑽𝟐

̅̅̅̅ (�̅�), (d) current density across 

the contact interface 𝑱�̅�(�̅�), current along (e) contact member 1, 𝑰�̅�(�̅�), and (f) contact 

member 2, 𝑰�̅�(�̅�), for different values of �̅�𝒔𝒉𝟐 = 𝑹𝒔𝒉𝟐/𝑹𝒔𝒉𝟏, for �̅�𝒄 = 𝟏. All the quantities 

are in their normalized forms defined in Sec. 3.2. [1] 
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Figure 3.3 shows the current and voltage distributions along the contact length and across the 

contact interface for various parallel contacts formed between dissimilar materials, �̅�𝑠ℎ2 =

𝑅𝑠ℎ2/𝑅𝑠ℎ1, with fixed specific contact resistivity �̅�𝑐 = 1. The voltage  𝑉1,2
̅̅ ̅̅ ̅ and the current  𝐼1,2

̅̅ ̅̅  

along the two contact members show similar behaviors as those in Fig. 3.2. However, the voltage 

drop across the interface layer 𝑉�̅�(�̅�) and the contact current density 𝐽�̅�(�̅�) are no longer symmetric, 

as shown in Figs. 3.3(a) and 3.3(d), respectively. When �̅�𝑠ℎ2 < 1, the maximum of 𝑉�̅�(�̅�) and 𝐽�̅�(�̅�) 

occurs at  �̅� = 0; when �̅�𝑠ℎ2 > 1, the maximum of 𝑉�̅�(�̅�) and 𝐽�̅�(�̅�) occurs at  �̅� = 1. This current 

crowding effect can again be explained by the fact that current flows are self-arranged to take the 

least resistive path in the circuit by adjusting the current distribution according to the local 

resistance.  

 
 

Figure 3.4 Normalized contact resistance  𝑹𝒄
̅̅ ̅ of the parallel contact (Fig. 3.1).  𝑹𝒄

̅̅ ̅ as a 

function of (a) normalized specific contact resistivity, �̅�𝒄 and (b) normalized sheet 

resistance of contacting member 2, �̅�𝒔𝒉𝟐. Dashed lines are for Eq. (3.9), the limiting case of 

�̅�𝒔𝒉𝟐 → 𝟎. The cross symbols are from COMSOL[46] 2D simulations. The length and 

height of both upper and lower contacting members are assumed to be 20 nm and 10 nm 

respectively, and the thickness of the resistive interfacial layer is assumed to be 0.5 nm. The 

resistivities of the upper and lower contact members are in the range of 𝟏𝟎−𝟗Ω𝐦 −
𝟏𝟎−𝟕Ω𝐦, and the resistivity of the interface layer is in the range of 𝟏𝟎−𝟗Ω𝐦 − 𝟏𝟎−𝟓Ω𝐦. [1] 



62 
 

 The normalized contact resistance, 𝑅𝑐
̅̅ ̅ calculated from Eq. (3.8) is plotted in Fig. 3.4 for 

various �̅�𝑐 and �̅�𝑠ℎ2. It is clear that  𝑅𝑐
̅̅ ̅ increases with both  �̅�𝑐 and  �̅�𝑠ℎ2. In general, the contact 

resistance 𝑅𝑐
̅̅ ̅ depends more strongly on the the specific contact resistivity of the interfacial 

layer  �̅�𝑐 than on the sheet resistance ratio of the contact members �̅�𝑠ℎ2.  For the special case 

of   �̅�𝑠ℎ2 = 0, Eq. (3.8) becomes, 

                                           𝑅𝑐
̅̅ ̅ =

coth 𝑞

𝑞
,                                 (3.9)      

with 𝑞 = 𝐿/𝜆0  = 1/√�̅�𝑐 , which is also plotted in Fig. 3.4. Note that Eq. (3.9) is identical to 

the expression typically used for metal-semiconductor contact.  

 

To verify the results obtained from our analytical solution, we performed numerical 

simulations using the COMSOL multiphysics software[46], for various combinations of �̅�𝑠ℎ2 

and �̅�𝑐 on the geometry shown in Fig. 3.1. The finite-element-method (FEM) based COMSOL 

2D simulation results are included in Fig. 3.4 (cross symbols), showing excellent agreement 

with our theory. The convergence iteration error was less than 10−9 for each point. 

3.3.2 Specific contact resistivity varies linearly along the contact length 

We assume the specific resistivity varies linearly along the contact length (Fig. 3.1) as �̅�𝑐(�̅�) =

1 + 𝐴�̅�. By solving Eqs. (3.5) and (3.6) numerically, we obtain the current and voltage 

distributions along the contact interface, as shown in Fig. 3.5. As 𝐴 increases, the overall contact 

interface becomes more resistive, therefore, the voltage drop 𝑉�̅�(�̅�) across the interface layer 

increases (Fig. 3.5a), whereas the current density 𝐽�̅�(�̅�) across the interface layer decreases in 

general (Fig. 3.5d). The maximum 𝑉�̅� occurs at the contact edge with the highest specific resistivity 
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�̅�𝑐 (i.e., at �̅� = 0 when 𝐴 < 0, and at �̅� = 1 when 𝐴 > 0), while the maximum interface current 𝐽�̅�  

occurs at the contact edge with the lowest �̅�𝑐 (i.e., at �̅� = 1 when 𝐴 < 0, and at �̅� = 0 when 𝐴 >

0). The effects of 𝐴 on the voltage  𝑉1,2
̅̅ ̅̅ ̅ and the current  𝐼1,2

̅̅ ̅̅  along the two contact members are 

also shown in Figs. 3.5 (b), (c), (e) and (f), respectively.   

   

Figure 3.5 (a) Voltage drop across the contact interface  𝑽𝒈
̅̅̅̅ (�̅�), voltage  along (b) contact 

member 1 (MN), 𝑽𝟏
̅̅̅̅ (�̅�), and (c) contact member 2 (PQ), 𝑽𝟐

̅̅̅̅ (�̅�), (d) current density across 

the contact interface 𝑱�̅�(�̅�), current along (e) contact member 1, 𝑰�̅�(�̅�), and (f) contact 

member 2, 𝑰�̅�(𝒙), for linear specific contact resistivity �̅�𝒄(�̅�) = 𝟏 + 𝑨�̅� with different linear 

constant 𝑨, for �̅�𝒔𝒉𝟐 = 𝑹𝒔𝒉𝟐/𝑹𝒔𝒉𝟏 = 𝟏 . All the quantities are in their normalized forms 

defined in Sec. 3.2. [1] 

The normalized contact resistance, 𝑅𝑐
̅̅ ̅ calculated from Eq. (3.4) for linear specific contact 

resistivity �̅�𝑐(�̅�) = 1 + 𝐴�̅� is plotted in Fig. 3.6. As 𝐴 increases, 𝑅𝑐
̅̅ ̅ increases, since the contact 

interface becomes more resistive. As �̅�𝑠ℎ2 increases, the contact resistance 𝑅𝑐
̅̅ ̅ depends more 

strongly on the linear constant 𝐴. 
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Figure 3.6 Normalized contact resistance  𝑹𝒄
̅̅ ̅ of the parallel contact (Fig. 3.1) with linear 

specific contact resistivity �̅�𝒄(�̅�) = 𝟏 + 𝑨�̅�, for various value of �̅�𝒔𝒉𝟐 = 𝑹𝒔𝒉𝟐/𝑹𝒔𝒉𝟏. [1] 

3.3.3 Tunneling contact resistance 

Here, we assume the parallel contacts are formed through a tunneling interface layer between 

the two contact members. For simplicity, we have made the following assumptions: 1) the 

thickness of interfacial insulating film in the contact area is uniform, and 2) the insulating film is 

sufficiently thin (in the nano- or subnano-meter scale) so that charge trappings are ignored 

[52][53].  

For dissimilar contact members, the (normalized) current density at any location along the 

contact from contact member 1 to contact member 2 is calculated using Simmons’ formula [38] , 

𝐽�̅�(�̅�) = 𝐵 [�̅�𝐼𝑒−𝐴∆�̅�√�̅�𝐼 − (�̅�𝐼 + 𝑉�̅�(�̅�)) 𝑒
−𝐴∆�̅�√�̅�𝐼+𝑉𝑔̅̅̅̅ (�̅�)

]      (3.10) 

where 𝑉�̅�(�̅�) = 𝑉1̅(�̅�) − 𝑉2̅(�̅�) is the local voltage drop across the contact interface at �̅�, A =

1.025√𝑒𝑉0 [eV]𝐷[Å] , 𝐵 = 615
𝐿2[𝜇𝑚]𝑅𝑠ℎ1[𝛺/□ ]

𝐷2[Å](∆�̅�)2
 and ∆�̅� = �̅�2 − �̅�1. Definitions of  �̅�𝐼, �̅�1 and �̅�2 



65 
 

for forward bias (when lower work function contacting member is given positive bias) are given 

below,  �̅�𝐼 =  �̅�2 − (𝑉�̅�(�̅�) + ∆�̅�)
�̅�1+�̅�2

2
−

1.15�̅�

�̅�2−�̅�1
ln (

�̅�2(1−�̅�1)

�̅�1(1−�̅�2)
) , where ∆�̅� = �̅�2 − �̅�1, �̅�1 =  

𝜑1

𝑒𝑉0
 , 

�̅�2 =  
𝜑2

𝑒𝑉0
 , 𝜑1 = 𝑊1 −  𝜒 and  𝜑2 = 𝑊2 −  𝜒 . 𝑊1 and 𝑊2 are the work functions of contacting 

member 1 and 2 respectively, 𝜒 is the electron affinity of the insulating layer, which is 0 for 

vacuum. For  𝑉�̅�(�̅�) ≤  �̅�1 : �̅�1 =  
1.2  �̅�

�̅�2
, �̅�2 = 1 −

9.2�̅�

3�̅�2+4�̅�−2(𝑉𝑔̅̅̅̅ (�̅�)+∆�̅�)
+ �̅�1 ; and for 𝑉�̅�(�̅�) >  �̅�1: 

�̅�1 =  
1.2  �̅�

�̅�2
, �̅�2 =

�̅�2−5.6�̅�

(𝑉𝑔̅̅̅̅ (�̅�)+∆�̅�)
 , where �̅� =

2.49

𝜀𝑟𝐷[Å]𝑒𝑉0[eV]
 . 

On the other hand, the definitions of �̅�𝐼, �̅�1 and �̅�2 for reverse bias (when higher work function 

contacting member is given positive bias) are:  �̅�𝐼 =  �̅�1 + (∆�̅� − 𝑉�̅�(�̅�))
�̅�1+�̅�2

2
−

1.15�̅�

�̅�2−�̅�1
ln (

�̅�2(1−�̅�1)

�̅�1(1−�̅�2)
), for 0 <  𝑉�̅�(�̅�) ≤  ∆�̅� : �̅�1 =  

9.2�̅�

3�̅�1+4�̅�−(𝑉𝑔̅̅̅̅ (�̅�)−∆�̅�)
−

1.2  �̅�

�̅�2−𝑉𝑔̅̅̅̅ (�̅�)
 , �̅�2 = 1 −

1.2  �̅�

�̅�2−𝑉𝑔̅̅̅̅ (�̅�)
 

; for ∆�̅�  <  𝑉�̅�(�̅�) ≤  �̅�2 : �̅�1 =  
1.2  �̅�

�̅�1
, �̅�2 = 1 −

9.2�̅�

3�̅�1+4�̅�−2(𝑉𝑔̅̅̅̅ (�̅�)−∆�̅�)
+ �̅�1 ; and for 𝑉�̅�(�̅�) >  �̅�2: 

�̅�1 =  
1.2  �̅�

�̅�1
, �̅�2 =

�̅�1−5.6�̅�

(𝑉𝑔̅̅̅̅ (�̅�)−∆�̅�)
 . 

For the special case of the same material for contact members 1 and 2, in Eq. (3.10), �̅�𝐼 =

 �̅�0 − 𝑉�̅�(�̅�)
�̅�1+�̅�2

2
−

1.15�̅�

�̅�2−�̅�1
ln (

�̅�2(1−�̅�1)

�̅�1(1−�̅�2)
) where �̅�0 =  

𝜑0

𝑒𝑉0
 , 𝜑0 = 𝑊 −  𝜒 , 𝑊 is the work function 

of contacting member 1 and 2, and, �̅�1 =  
1.2  �̅�

�̅�0
, �̅�2 = 1 −

9.2�̅�

3�̅�0+4�̅�−2𝑉𝑔̅̅̅̅ (�̅�)
+ �̅�1   for 𝑉�̅�(�̅�) ≤  �̅�0 , 

�̅�2 =
�̅�0−5.6�̅�

𝑉𝑔̅̅̅̅ (�̅�)
   for  𝑉�̅�(�̅�) ≤  �̅�0. Note that we use Simmon’s formula, Eq. (3.10) here for simplicity, 

which is reliable only when the barrier height is relative high and the gap voltage is low in the 

direct tunneling regime [11], [23]. More accurate results for the tunneling current may be 

calculated using quantum models developed in Chapter 2 by solving the coupled Schrodinger 
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equation and Poisson equation with the inclusion of space charge and exchange-correlation effects 

[11], [23]. 

We keep the normalization consistent with our previous calculations in Sec. 3.2. For a given 

parallel tunneling contact (Fig. 3.1), the inputs of our model are the applied voltage 𝑉0, sheet 

resistance (𝑅𝑠ℎ1, 𝑅𝑠ℎ2) and work function (𝑊1, 𝑊2) of contacting members 1 and 2, permittivity 

(𝜀𝑟), thickness (𝐷), and electron affinity (𝜒) of the interfacial insulator layer, and the contact length 

L. Using Eq. (3.10), the specific contact resistivity is obtained from �̅�𝑐(�̅�) = 𝑉�̅�(�̅�)/ 𝐽�̅�(�̅�), which 

is inserted into the TLM equations, Eqs. (3.5) and (3.6), to give a self-consistent solution to the 

voltage and current profiles, as well as the contact resistance for the parallel tunneling contact.  

We consider CNT-vacuum-CNT parallel contact as an example. Both contact members are 

made of the same single-walled CNTs. Using the typical value of linear resistivity of single-walled 

CNT 𝜌𝐿 = 20 kΩ/μm [54][55], and diameter (or the width 𝑤) of 3 nm, an equivalent sheet 

resistance for both CNT contact members are estimated as 𝑅𝑠ℎ1 =  𝑅𝑠ℎ2 = 𝜌𝐿 𝑤 = 60 Ω/□ , 

where the unit of the sheet resistance Ω/□ means “ohm per square” [12], [45].  The work function 

of CNTs is 𝑊1 = 𝑊2 = 4.5 eV [56]. The interfacial layer is assumed to be vacuum (relative 

permittivity 𝜀𝑟 = 1.0, and electron affinity 𝜒 = 0). The voltage drop 𝑉𝑔(𝑥) across and the tunneling 

current density 𝐽𝑐(𝑥) through the contact interface are shown in Fig. 3.7 for various contact length 

𝐿, vacuum gap distance 𝐷, and applied voltage 𝑉0.  The profiles of both 𝑉𝑔(𝑥)  and 𝐽𝑐(𝑥)  are 

symmetric about the center of the contact, as expected for similar contact members (similar to 

Figs. 3.2a and 3.2d above). As the contact length 𝐿 increases, the local voltage drop 𝑉𝑔(𝑥) across 

the contact interface decreases, so does the tunneling current density 𝐽𝑐(𝑥), as shown in Figs. 3.7a 

and 3.7b. However, the total current in the contact structure, 𝐼𝑡𝑜𝑡 = ∫ 𝐽𝑐(𝑥)𝑑𝑥 
𝐿

0
increases with 𝐿, 
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since the total contact resistance of the tunneling junction decreases as the contact length increases 

(cf. Fig. 3.8a below). As shown in Figs. 3.7c and 3.7d, when the gap distance 𝐷 increases, the 

voltage drop 𝑉𝑔(𝑥) increases, but the current density 𝐽𝑐(𝑥) decreases, which is because the 

tunneling junction becomes more resistive (See Chapter 2). Figures 3.7e and 3.7f shows both 

voltage drop 𝑉𝑔(𝑥) and current density 𝐽𝑐(𝑥) increase when the applied voltage 𝑉𝑜 increases. More 

importantly, both 𝑉𝑔(𝑥) and 𝐽𝑐(𝑥) exhibit a stronger spatial dependence as 𝑉0 increases. This strong 

voltage dependence of electrical properties of the tunneling junction is in sharp contrast with those 

of ohmic contacts, where the profiles of 𝑉𝑔(𝑥) and 𝐽𝑐(𝑥), and the total contact resistance is 

independent of the applied voltage, and the current density scales linearly with the voltage drops, 

as discussed in Sec. 3.3.1 and Sec. 3.3.2 above.   

Also plotted in Fig. 3.7 are the analytical results from Eq. (3.7), by assuming constant 

tunneling contact resistivity across the contact length 𝐿 (i.e. the typically assumed one-dimensional 

tunneling junction [24]), by (a), setting 𝑉𝑔 = 𝑉0 and using Eq. (3.10) (dashed lines) and (b), using 

ohmic approximations for the tunneling junction, in the limit of 𝑉𝑔 → 0 (dotted lines)[37], [38]. In 

the latter case, the tunneling current density is a linear function of 𝑉𝑔, 

                               𝐽�̅�(�̅�) = 𝐵�̅�𝐼𝑒−𝐴∆�̅�√�̅�𝐼 𝑉�̅�(�̅�)  , 𝑉𝑔 → 0                              (3.11)  

where = 315.60 √𝑉0

𝐿2[𝜇𝑚]𝑅𝑠ℎ1[ 
𝛺

□
 ]

𝐷[Å]∆𝑦
 . 𝐴 and ∆�̅� are the same as for Eq (3.10). �̅�𝐼 is calculated from 

the same expression for Eq (3.10) by setting 𝑉𝑔 = 0. �̅�1 =  
1.2  �̅�

�̅�2
, �̅�2 = 1 −

9.2�̅�

3�̅�2+4�̅�−2∆�̅�
+ �̅�1 for 

forward bias; �̅�1 =  
9.2�̅�

3�̅�1+4�̅�+∆�̅�
−

1.2  �̅�

�̅�2
 , �̅�2 = 1 −

1.2  �̅�

�̅�2
 for reverse bias; and �̅�1 =  

1.2  �̅�

�̅�0
, �̅�2 = 1 −

1.2  �̅�

�̅�0
 for similar contacting members. �̅�, ∆�̅�, �̅�2, �̅�1, �̅�0 have the same definition as in Eq. (3.10). 
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It is found that both assumptions of constant contact resistivity are not sufficiently reliable, 

especially when the tunneling thickness 𝐷 decreases or the applied voltage 𝑉𝑜 increases. As the 

tunneling junction resistance becomes nonlinear in these cases, it is necessary to use the coupled 

TLM equations, Eqs. (3.5) and (3.6), and the localized tunneling equation, Eq. (3.10), to provide 

more accurate predictions. 

 

Figure 3.7 Similar material CNT-vacuum-CNT parallel tunneling contacts. (a) Voltage 

drop across the contact interface  𝑽𝒈(𝒙), and (b) tunneling current density across the 

contact interface 𝑱𝒄(𝒙) for different contact length 𝑳, with fixed 𝑽𝟎 = 𝟏V,  and D = 0.5 nm; 

(c) 𝑽𝒈(𝒙) and (d) 𝑱𝒄(𝒙) for different 𝑫, with fixed 𝑽𝟎 = 𝟏V  and  L = 50 nm; (e) 𝑽𝒈(𝒙) and 

(f) 𝑱𝒄(𝒙) for different applied voltage 𝑽𝟎 with fixed 𝑫 = 0.55 nm, and 𝑳 = 50 nm.  All the 

material properties are specified in the main text. Solid lines are for self-consistent 

numerical calculations using Eqs. 3.5, 3.6, and 3.10, dashed and dotted lines are for 

analytical calculations from Eq. 3.7 with 𝝆𝒄 calculated using 𝑽𝒈 = 𝑽𝟎 in Eq 3.10 and ohmic 

approximations for the tunneling junction, Eq. 3.11, in the limit of 𝑽𝒈 → 𝟎, respectively. [1] 
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Figure 3.8 The total contact resistance 𝑹𝒄 of the CNT-vacuum-CNT parallel contact. 

Contact resistance is plotted as a function of (a) contact length, L, for different insulating 

layer thickness, D, (b) D, for different L, for a fixed applied voltage, 𝑽𝟎 = 𝟏V ; (c) and (d) 

applied voltage 𝑽𝟎 for different L and D respectively, in CNT-vacuum-CNT contacts. Solid 

lines are for self-consistent numerical calculations using Eqs. 3.5, 3.6, and 3.10, dashed and 

dotted lines are for analytical calculations from Eq. 3.8 with 𝝆𝒄 calculated using 𝑽𝒈 = 𝑽𝟎 in 

Eq 3.10 and ohmic approximations for the tunneling junction, Eq. 3.11, in the limit of 𝑽𝒈 →

𝟎, respectively. [1] 

The total contact resistance 𝑅𝑐 of the CNT-vacuum-CNT parallel contact is shown in Fig. 3.8, 

as functions of contact length 𝐿, vacuum gap distance 𝐷, and applied voltage 𝑉0.  The total contact 

resistance 𝑅𝑐 increases very rapidly with increasing insulating layer thickness, D, and decreases 

with contact length, L. For the low applied voltage regime (𝑉0 < 0.3 V), 𝑅𝑐 is almost independent 

of 𝑉0, as shown in Figs. 3.8c and 3.8d. When the applied voltage 𝑉0 > 0.3 V, 𝑅𝑐 decreases sharply 
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with 𝑉0. This is because the junction is no longer ohmic and the tunneling resistivity 𝜌𝑐  decreases 

nonlinearly with the junction voltage, as a function of position along the contact length. Ohmic 

approximations (Eqs. 3.8, 3.11) fail to give accurate results in the latter case and it is necessary to 

use the self-consistent numerical model. As 𝐿 increases, the dependence of contact resistance on 

L becomes less significant. Similar profiles of contact resistance with 𝐿 were observed in other 

experimental and theoretical works [12], [25], [32]. The contact resistance lies between 5 kΩ to 10 

MΩ for the cases shown in Fig. 3.8, which agrees with previously reported experimental and 

theoretical works [24], [27], [30]. The existing 1D models give an inaccurate estimation of the 

contact resistance because they do not consider the variation of tunneling current density along the 

contact length. 

Next, we extend our calculations for contacts of CNT with different metals – calcium (Ca), 

aluminum (Al), copper (Cu) and gold (Au). The work functions of Ca, Al, Cu and Au are taken as 

2.9, 4.08, 4.7 and 5.1 eV respectively [57]. The work functions and dimensions of the CNT are 

kept same as before. In addition, the dimensions of the CNT and contacting-metal-2 are assumed 

to be same (width of 3 nm, thickness of 3 nm) for the simplicity of calculations. The resistivity of 

Ca, Al, Cu and Au are known to be 3.36 × 10−8 Ω𝑚 , 2.7 × 10−8 Ω𝑚 , 1.68 × 10−8 Ω𝑚 and 

2.2 × 10−8 Ω𝑚 respectively [57], [58].  
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Figure 3.9 Dissimilar material CNT-insulator-metal parallel tunneling contacts. (a) Voltage 

drop across the interfacial insulating layer 𝑽𝒈(𝒙),  and (b) tunneling current density 𝑱𝒄(𝒙),  

in CNT-insulator-Metal contacts, for fixed D = 0.5nm, L =50nm, 𝑽𝟎 = 𝟏V and different 

contacting metals (Ca, Al, Cu, Au). (c) 𝑽𝒈(𝒙), and (d) 𝑱𝒄(𝒙), in CNT-insulator-Al contacts, 

for different insulating layer permittivity 𝜺𝒓, with fixed D = 0.5nm, L =50nm, 𝑽𝟎 = 𝟑V. 

Solid lines are for self-consistent numerical calculations using Eqs. 3.5, 3.6, and 3.10, 

dashed and dotted lines are for analytical calculations from Eq. 3.7 with 𝝆𝒄 calculated 

using 𝑽𝒈 = 𝑽𝟎 in Eq 3.10 and ohmic approximations for the tunneling junction, Eq. 3.11, in 

the limit of 𝑽𝒈 → 𝟎, respectively. [1] 

Figure 3.9 shows the effects of the work function of contacting member 2 (𝑊2) and the 

permittivity of the thin insulating layer (𝜀𝑟), on the current and voltage characteristics in CNT-

insulator-metal contacts. As the two contact members are different, the voltage drop 𝑉𝑔(𝑥) and the 

tunneling current density 𝐽𝑐(𝑥) are no longer symmetric along the contact length 𝐿. Figure 3.9(a) 

and 3.9(b) show that the voltage drop increases and the tunneling current density decreases with 
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increasing 𝑊2. Figure 3.9(c) and 3.9(d) show that the voltage drop increases and the tunneling 

current density reduces significantly when the permittivity of the insulating layer increases from 1 

to 3.9.  Analytical solutions obtained by assuming constant tunneling resistivity along the contact 

length are also included, similar to the previous cases of Fig. 3.7. In general, for the chosen value 

of 𝐷 = 0.5 nm, the ohmic approximations using Eq. 3.11 do not yield accurate results. The 

constant tunneling resistivity approximation using Eq. 3.10 by setting 𝑉𝑔 = 𝑉0 could be a good 

approximation for the self-consistent TLM model (Eqs. 3.5, 3.6, and 3.10), for tunneling layers 

with higher permittivity 𝜀𝑟.  

Figure 3.10 shows the contact resistance (in Ω) for various contact metals and tunneling films 

for CNT-insulator-metal contacts. Contact resistance increases with insulating layer thickness 𝐷, 

insulating layer permittivity 𝜀𝑟 and work function of contacting member 𝑊2. It decreases with 

contact length 𝐿, as in the similar contacts in Fig. 3.8. The potential barrier in the insulating layer 

increases with the increase of work function of the contact metal, resulting in lower tunneling 

current and higher contact resistance.  
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Figure 3.10 The total contact resistance 𝑹𝒄 of the CNT-insulator-metal parallel contact. 

Contact resistance is plotted as a function of (a) contact length L, (b) insulator layer 

thickness 𝑫 and (c) insulator layer permittivity 𝜺𝒓, for CNT-insulator-metal contacts for 

different contacting metals (Ca, Al, Cu, Au). (d) Contact resistance as a function of work 

function of contacting member 2 (𝑾𝟐). The material properties and dimensions for (a)-(c) 

are specified in the text (the same as in Fig. 3.9).  For (d), the resistivity of contacting 

member 2 is assumed to be 𝟐. 𝟎 × 𝟏𝟎−𝟖 𝛀𝒎. The results are from the self-consistent 

numerical calculations using Eqs. 3.5, 3.6, and 3.10. [1] 

3.4 Concluding Remarks 

In this chapter, we proposed a self-consistent model to characterize partially overlapped 

parallel contacts. Our model considers the spatial variation of contact resistivity along the contact 

structure. We solved the TLM equations for three cases: 1) constant specific contact resistivity, 2) 

linearly varying specific contact resistivity, and 3) spatial dependent specific contact resistivity 

along the contact length due to current tunneling. Our study provides a thorough understanding of 
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the contact tunneling resistance, current and voltage distributions across nano and sub-nano scale 

MIM junctions in parallel electrical contacts. The effects of contact geometry (i.e. dimension of 

the contact, and distance between the contact electrodes), and material properties (i.e. work 

function, sheet resistance of the contact members, and permittivity of the insulating layer) on the 

spatial distributions of currents and voltages across these contacts, and the overall contact 

resistance are studied in detail. While predominately classical in nature, the inclusion of tunneling 

current starts to address quantum effects in these small scale objects.  

It is found that in general the ohmic approximation of tunneling junctions (Eq. 3.11) is not 

reliable for predicting the contact resistance of parallel tunneling contacts. The one-dimensional 

(1D) tunneling junction models (Eq. 3.10 with constant voltage across the whole junction) are 

good approximations of the parallel contacts only when the thickness 𝐷 or the permittivity 𝜀𝑟 of 

the tunneling film is relatively large, or the applied voltage across the contact 𝑉0 is relatively small. 

When the 1D models become unreliable for small 𝐷 or 𝜀𝑟, or large 𝑉0, the self-consistent TLM 

equations coupled with the tunneling current (Eqs. 3.5, 3.6 and 3.10) need to be used to accurately 

characterize the parallel tunneling contacts.  

The parallel tunneling contact in this work may be considered as the basic building block to 

better understand the macroscopic electrical conductivity of CNT fibers, which contains a very 

large number of such parallel contacts between individual CNTs. Furthermore, our study 

elucidates key parameters for parallel electrical contacts over a wide range of spatially dependent 

contact resistivity, which paves the way to strategically design of contact structures with controlled 

current distribution profiles and contact resistance, by spatially varying the contact layer properties 

and geometry.  
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In this formulation, we have ignored the effects of space charge and exchange-correlation 

inside the tunneling gap. We have also ignored possible charge trapping inside contact junctions. 

The model is assumed two-dimensional, where the effects of the transverse dimension are 

neglected. These issues will be the subjects of future studies. It is important to note that the 

transmission line model (TLM) is only a simplified approximation of the 2D electrical contacts, 

where the current crowding and the fringing fields near the contact corners cannot be fully 

accounted for. In order to accurately evaluate these effects as well as the impact of finite thickness 

in the contact members and the contact junction, field solution methods need to be used [12], [50], 

[51], [59].  
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CHAPTER 4 

CIRCULAR TUNNELING ELECTRICAL CONTACTS 

This chapter is based on the published journal paper “Contact resistance and current 

crowding in tunneling type circular nano-contacts,” J. Phys. D: Appl. Phys., vol. 53, no. 35, p. 

355301, Jun. 2020, doi: 10.1088/1361-6463/ab8fe0, by S. Banerjee, P. Y. Wong and P. Zhang 

[1]. It is presented here with the permission of the copyright holder. 

4.1 Introduction 

In this chapter, we extend our previous work to demonstrate a 2D circular transmission line 

model (CTLM) for circular and annular nanocontacts. Circular tunneling contacts may be formed 

between two thin films or between a thin film substrate and a standing cylindrical nanorod (or 

nanofiber) as in the configuration of field emitters [2], [3]. Similar to Chapter 3 [4], this model is 

two-dimensional in the sense that we consider radial variation in the contact resistivity 𝜌𝑐, which 

may be introduced by a variety of factors. For instance, the inherent non-linearity of the current 

density-voltage (𝐽 − 𝑉) profiles of tunneling [5], [6] and Schottky junctions [7] may lead to strong 

radial dependence of the electrical properties in practical 2D contacts. Radial variation of the 

interfacial layer thickness for tunneling type contacts and nonuniform distribution of contaminants 

or impurities in the contact layer for ohmic or Schottky contacts can also cause radially changing 

𝜌𝑐. Our model can be applied to characterize electrical properties in nanoscale thin film contacts, 

circular gate transistors (CGTs) [8], nanorod [9], nanowire [10], nano-fiber [2], and novel 2D 

material based devices [11]. 

The tunneling type of nanocontacts, where a thin (in nanometer or sub-nanometer range) 
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interfacial layer (vacuum or insulator) exists between the two contact members [4], [12], [13], are 

ubiquitous. The local tunneling dependent 𝜌𝑐 was calculated from the Simmons formula [14], [15] 

in Chapter 3 (Ref. [4]). Although the Simmons tunneling current formulas [14], [15] reveal basic 

scaling and parametric dependence of the 𝐽 − 𝑉 profiles in metal-insulator-metal (MIM) nanogaps 

for low voltages, they ignore the effects of exchange correlation potential and the space charge 

potential inside the gap, which can modify the tunneling current density by several orders of 

magnitude as we have seen in Chapter 2 [5], [6]. Here we incorporate a more accurate quantum 

analysis based on the self-consistent Schrödinger-Poisson solutions [5], [6], into the 2D circular 

TLM to calculate the local voltage dependent tunneling resistivity along the radial contact length. 

We find that the contact resistance is voltage dependent, and for intermediate voltages when the 

tunneling junction is operated in the field emission regime [5], [6], the dependence is the strongest. 

We also find that the radial current distribution is highly nonhomogeneous. This non-homogeneity 

can be manipulated by engineering the contact layer properties and geometry radially. 

In Sec. 4.2, the formulation of our 2D CTLM is presented. Results and discussions are 

presented in Sec. 4.3, where we consider two cases. Firstly, we assume constant specific contact 

resistivity along the radial contact length and obtain analytical expressions for the local voltage, 

currents, and total contact resistance. Secondly, we perform numerical calculations for 

nanocontacts with spatially dependent contact resistivity induced by local quantum tunneling 

phenomenon (Chapter 2) [5], [6]. Summary and suggestions for future research are given in 

Section 4.4.  Although we focus on tunneling type electrical contacts here, the proposed 2D CTLM 

is general and can be used for other types of circular and annular electrical contacts, such as 

nanoscale ohmic contacts and Schottky contacts based on 2D materials heterostructure [16]–[18].  
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4.2 The 2D-Circular Transmission Line Model  

 

Figure 4.1 Electrical contact between two circular thin films: (a) top view; (b) side view; (c) 

its transmission line model. In (a), (b) and (c) a thin resistive interface layer (or a tunneling 

layer of permittivity 𝝐𝒓) of thickness D is sandwiched between the two contacting members. 

The thicknesses of thin film 1 and 2 are 𝒕𝟏 and 𝒕𝟐, respectively. [1] 

Consider a circular (ring) contact formed between two conducting thin films or layers, as 

shown in Figs. 4.1(a) and 4.1(b). The outer radius of thin film 2 is 𝑟𝑜 and the inner radius of both 

the films is 𝑟𝑖. A thin resistive interface layer of thickness D is sandwiched between them. 

Following Reeves [19]–[21], we modified the basic Cartesian geometry lumped circuit 

transmission line model (TLM) [22]–[25] for circular structures, as shown in Fig. 4.1(c). The sheet 

resistance of the two conductors is 𝑅𝑠ℎ1 and 𝑅𝑠ℎ2, respectively. The radially dependent specific 

interfacial resistivity (also termed specific contact resistivity) is 𝜌𝑐(𝑟), which is either predefined 

or calculated from the local tunneling current in the case of an insulating tunneling layer [14], [15], 

[26].  

In the contact region in Fig. 4.1(c), when Δ𝑟 → 0, Kirchhoff’s laws for current and voltage 

give the following equations,  
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𝑑𝐼1(𝑟)

𝑑𝑟
= 2𝜋𝑟 𝐽𝑐(𝑟), (4.1a) 

 
𝑑𝑉1(𝑟)

𝑑𝑟
=

𝐼1(𝑟)𝑅𝑠ℎ1

2𝜋𝑟
, (4.1b) 

 
𝑑𝐼2(𝑟)

𝑑𝑟
= − 2𝜋𝑟 𝐽𝑐(𝑟), (4.1c) 

 
𝑑𝑉2(𝑟)

𝑑𝑟
=

𝐼2(𝑟)𝑅𝑠ℎ2

2𝜋𝑟
, (4.1d) 

where 𝐼1(𝑟) and 𝐼2(𝑟) represent the currents flowing at 𝑟 along the radial direction of thin films 1 

and 2, respectively, and 𝑉1(𝑟) and 𝑉2(𝑟) are the local voltages at 𝑟 along the radial direction of 

thin films 1 and 2, respectively. 𝐽𝑐(𝑟) =  𝑉𝑔(𝑟)/𝜌𝑐(𝑟) and 𝑉𝑔(𝑟) = 𝑉1(𝑟) − 𝑉2(𝑟) are the local 

current density and the local voltage drop across the contact interface at 𝑟, respectively. 

From Eqs. 4.1(a) and 4.1(c), 𝐼1(𝑟) +  𝐼2(𝑟) = 𝐼𝑡𝑜𝑡 = constant, where 𝐼𝑡𝑜𝑡 is the total current 

in the circuit to be determined from the following boundary conditions for Eq. (4.1), 

 𝑉1(𝑟 =  𝑟𝑜) = 𝑉𝑜, 𝐼1(𝑟 = 𝑟𝑖) = 0,  𝐼2(𝑟 = 𝑟𝑜) = 0, 𝑉2(𝑟 = 𝑟𝑖) = 0, (4.2) 

where we assume the voltage of the upper contact member at 𝑟 = 𝑟𝑖 is 0 and the external voltage 

𝑉0 is applied at 𝑟 = 𝑟𝑜 to the lower contact member. Note that 𝐼1(𝑟 = 𝑟𝑜) = 𝐼𝑡𝑜𝑡, 𝐼2(𝑟 = 𝑟𝑖) = 𝐼𝑡𝑜𝑡, 

and 𝐼𝑡𝑜𝑡 = ∫ 2𝜋𝑟 𝐽𝑐(𝑟) 𝑑𝑟
𝑟𝑜

𝑟𝑖
. From Eqs. (4.1) and (4.2), we get 𝑉1

′(𝑟 = 𝑟𝑜) =  𝐼𝑡𝑜𝑡𝑅𝑠ℎ1/2𝜋𝑟𝑜, 

𝑉1
′(𝑟 = 𝑟𝑖) =  0, 𝑉2

′(𝑟 = 𝑟𝑜) =  0, 𝑉2
′(𝑟 = 𝑟𝑖) =  𝐼𝑡𝑜𝑡𝑅𝑠ℎ2/2𝜋𝑟𝑖, where a prime denotes a 

derivative with respect to 𝑟.  For the contact model in Fig. 4.1(c), the contact resistance is defined 

as,  

 𝑅𝑐 =
𝑉1(𝑟𝑜)−𝑉2(𝑟𝑖)

𝐼𝑡𝑜𝑡
=

𝑉𝑜

𝐼𝑡𝑜𝑡
 . (4.3) 
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For convenience, we introduce non-dimensional quantities, �̅� =  𝑟/𝑟𝑜, 𝛽 = 𝑟𝑖/𝑟𝑜, �̅�𝑐(�̅�) =

𝜌𝑐(𝑟)/𝑅𝑠ℎ1𝑟𝑜
2, 𝑅𝑠ℎ2

̅̅ ̅̅ ̅̅ = 𝑅𝑠ℎ2/𝑅𝑠ℎ1, 𝐽�̅�(�̅�) = 𝐽𝑐(𝑟)𝑅𝑠ℎ1𝑟𝑜
2/𝑉𝑜, 𝑉1̅(�̅�) = 𝑉1(𝑟)/𝑉𝑜, 𝑉2̅(�̅�) = 𝑉2(𝑟)/𝑉𝑜, 

𝑉�̅�(�̅�) = 𝑉𝑔(𝑟)/𝑉𝑜, 𝑅𝑐
̅̅ ̅ =  𝑅𝑐2𝜋/𝑅𝑠ℎ1 , and 𝛼 = 𝐼𝑡𝑜𝑡/𝐼 , where 𝐼 = 2𝜋𝑉𝑜/𝑅𝑠ℎ1. In normalized 

forms, Eq. (4.1) can be written into the following coupled second order differential equations, 

 
𝑑2𝑉1̅̅ ̅(�̅�)

𝑑�̅�2
+

1

�̅�

𝑑𝑉1̅̅ ̅(�̅�)

𝑑�̅�
−

𝑉1̅̅ ̅(�̅�)−𝑉2̅̅ ̅(�̅�)

𝜌𝑐̅̅̅̅ (�̅�)
= 0, (4.4a) 

 
𝑑2𝑉2̅̅ ̅(�̅�)

𝑑�̅�2 +
1

�̅�

𝑑𝑉2̅̅ ̅(�̅�)

𝑑�̅�
+ 𝑅𝑠ℎ2

̅̅ ̅̅ ̅̅ 𝑉1̅̅ ̅(�̅�)−𝑉2̅̅ ̅(�̅�)

𝜌𝑐̅̅̅̅ (�̅�)
= 0. (4.4b) 

Note that 𝑉�̅�(�̅�) = 𝑉1̅(�̅�) − 𝑉2̅(�̅�) and 𝐽�̅�(�̅�) = 𝑉�̅�(�̅�)/𝜌𝑐̅̅̅(�̅�). The corresponding boundary 

conditions to Eqs. (4.4) are,  

 𝑉1̅(�̅� = 1) = 1 , 𝑉1̅′(�̅� = 1) = 𝛼, 𝑉1̅′(�̅� = 𝛽) =  0, (4.5a) 

 𝑉2̅(�̅� = 𝛽) = 0, 𝑉2̅′(�̅� = 1) = 0, 𝑉2̅
′
(�̅� = 𝛽) =

𝛼𝑅𝑠ℎ2̅̅ ̅̅ ̅̅ ̅

𝛽
, (4.5b) 

and the normalized total current, 

 𝛼 = 𝐼𝑡𝑜𝑡/𝐼 = ∫ �̅� 𝐽𝑐
̅̅ ̅(�̅�)𝑑�̅�

1

𝛽

. (4.5c) 

Equations (4.4) and (4.5) are solved to give the voltage distribution along and across the 

contact interface as well as the total contact resistance, for a given electrical contact (Fig. 4.1) with 

radially dependent interface specific contact resistivity 𝜌𝑐̅̅̅(�̅�), following a similar procedure as 

described in Chapter 3. Equations (4.4) and (4.5) can be solved numerically for arbitrary radial 

dependence of specific contact resistivity 𝜌𝑐̅̅̅(�̅�). Here, we focus on two special cases of practical 

importance. We first consider the case of constant 𝜌𝑐̅̅̅, where analytical solutions can be obtained 

(Sec. 4.3.1). This serves to validate our numerical approach. We then consider the effects of 
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radially dependent 𝜌𝑐̅̅̅(�̅�) on the tunneling type electrical contacts (4.3.2). The one-dimensional 

MIM quantum tunneling equations developed in Chapter 2 [5] are coupled with Eqs. (4.4), (4.5) 

and are solved self-consistently.  

4.3 Results and Discussion  

4.3.1 Constant specific contact resistivity along the contact length 

For the special case of constant specific contact resistivity 𝜌𝑐, Eq. (4.4) can be rewritten as,  

                                                                          
𝑑2𝑉𝑔̅̅̅̅ (�̅�)

𝑑�̅�2 +
1

�̅�

𝑑𝑉𝑔̅̅̅̅ (�̅�)

𝑑�̅�
− (1 + 𝑅𝑠ℎ2

̅̅ ̅̅ ̅̅ )
𝑉𝑔̅̅̅̅ (�̅�)

𝜌𝑐̅̅̅̅
= 0.                                                  (4.6) 

The corresponding boundary conditions from Eqs. 4.5(a) and 4.5(b) are, 

 𝑉�̅�
′
(�̅� = 1) = 𝛼, 𝑉�̅�

′
(�̅� = 𝛽) = −

𝛼𝑅𝑠ℎ2̅̅ ̅̅ ̅̅ ̅

𝛽
. (4.7) 

Using Eq. (4.7), the solution to Eq. (4.6) is,  

 𝑉�̅�(�̅�) = 𝑎𝐼0(𝜆�̅�) + 𝑏𝐾0(𝜆�̅�) ,   �̅� > 0 (4.8) 

where 𝐼0 and 𝐾0 are the zeroth order modified Bessel functions of the first and second kind 

respectively and 𝜆 = √(1 + 𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ )/𝜌𝑐̅̅̅ . The constants 𝑎 and 𝑏 are calculated from the boundary 

conditions as, 𝑎 = 𝐶/(𝐶𝑋 + 𝐷𝑌), 𝑏 = 𝐷/(𝐶𝑋 + 𝐷𝑌). The expressions of 𝑋, 𝑌, 𝐶, and 𝐷 are, 

 𝑋 = 𝐼0(𝜆𝛽) −
𝐼0(𝜆𝛽)−𝐼0(𝜆)

𝜌𝑐̅̅̅̅ 𝜆2
+

𝛽𝐼1(𝜆𝛽) ln 𝛽

𝜌𝑐̅̅̅̅ 𝜆
 ,  

 𝑌 = 𝐾0(𝜆𝛽) −
𝐾0(𝜆𝛽)−𝐾0(𝜆)

𝜌𝑐̅̅̅̅ 𝜆2 −
𝛽𝐾1(𝜆𝛽) ln 𝛽

𝜌𝑐̅̅̅̅ 𝜆
 ,  

 𝐶 =
𝑅𝑠ℎ2̅̅ ̅̅ ̅̅ ̅𝐾1(𝜆)+𝛽𝐾1(𝜆𝛽)

𝜆𝛽(𝐾1(𝜆𝛽)𝐼1(𝜆)−𝐾1(𝜆)𝐼1(𝜆𝛽))
 , and  
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 𝐷 =
𝑅𝑠ℎ2̅̅ ̅̅ ̅̅ ̅𝐼1(𝜆)+𝛽𝐼1(𝜆𝛽)

𝜆𝛽(𝐾1(𝜆𝛽)𝐼1(𝜆)−𝐾1(𝜆)𝐼1(𝜆𝛽))
 ,  

where 𝐼1 and 𝐾1 are the first order modified Bessel functions of the first and second kind 

respectively. 

The normalized contact resistance is,  

 𝑅𝑐
̅̅ ̅ =

𝑉1̅̅ ̅(1)−𝑉2̅̅ ̅(𝛽)

𝛼
= 1/𝛼 = (𝐶𝑋 + 𝐷𝑌). (4.9) 

 

Figure 4.2 Normalized voltage drop across the contact interface  𝑽𝒈
̅̅̅̅ (�̅�), along the radial 

direction of an annular contact with uniform contact resistivity, for different values of (a) 

inner radius to outer radius ratio 𝜷, with 𝝆𝒄̅̅ ̅ = 𝟏 and 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅ = 𝑹𝒔𝒉𝟐/𝑹𝒔𝒉𝟏 = 𝟏, (b) specific 

contact resistivity 𝝆𝒄̅̅ ̅, with 𝜷 = 𝟎. 𝟏 and 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅ = 𝟏, (c) sheet resistance ratio 𝑹𝒔𝒉𝟐

̅̅ ̅̅ ̅̅ , with 𝜷 =
𝟎. 𝟏 and 𝝆𝒄̅̅ ̅ = 𝟏. All the quantities are in their normalized forms defined in Sec. 4.2. 

Figure 4.2 shows the profiles of voltage drop 𝑉�̅�(�̅�) along the radial contact length �̅� for a 

parallel annular thin film contact (Fig. 4.1) for different inner to outer radius ratio 𝛽 (Fig. 4.2(a)), 

specific contact resistivity 𝜌𝑐̅̅̅ (Fig. 4.2(b)), and sheet resistance ratio 𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅  (Fig. 4.2(c)). Note that, 

since 𝜌𝑐̅̅̅ is constant along �̅� here, the profiles of contact current density 𝐽�̅�(�̅�) = 𝑉�̅�(�̅�)/𝜌𝑐̅̅̅ follow 

those of 𝑉�̅�(�̅�). The voltage drop across the contact interface increases with increasing inner radius 

to outer radius ratio 𝛽 and specific contact resistivity 𝜌𝑐. For similar contacting members (𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ =

𝑅𝑠ℎ2/𝑅𝑠ℎ1 = 1) the maximum voltage drop occurs at the inner edge (𝑟 = 𝑟𝑖) of the annular contact 
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(c.f. Figs. 4.2a and b). This is because the modified Bessel function of the second kind (𝐾0 term in 

Eq. (4.8)) increases sharply near the center. Physically this means the current in the contact 

interface is mostly crowded near 𝑟 = 𝑟𝑖. The current spreads out as it flows away from the center 

through the least resistive path. Figure 4.2(c) shows a similar trend in 𝑉�̅�(�̅�) for dissimilar 

contacting members with 𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ > 1. In fact, the current crowding at the inner edge (𝑟 = 𝑟𝑖) 

increases with increasing 𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ . The voltage drop (and the contact current density) at the outer edge 

(𝑟 = 𝑟𝑜) increases with decreasing 𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ . For 𝑅𝑠ℎ2

̅̅ ̅̅ ̅̅ ≤ 0.1, the majority of the contact current flows 

near 𝑟 = 𝑟𝑜. It is interesting to note from Fig. 4.2(a) that the voltage drop profiles are highly 

asymmetric at the two edges (𝑟 = 𝑟𝑖 , 𝑟 = 𝑟𝑜) of the annular contact under study (Fig. 4.1) when 𝛽 

is small, and the asymmetry reduces as 𝛽 increases. For the limiting case of 𝛽 → 1 (i.e. 𝑟𝑖 ≈ 𝑟𝑜), 

CTLM reduces to the planar limit (Chapter 3) [4], where the maximum voltage drop occurs at both 

the edges (𝑉𝑔(𝑟 = 𝑟𝑖) ≈ 𝑉𝑔(𝑟 = 𝑟𝑜)) and the minimum occurs at (𝑟𝑖 + 𝑟𝑜)/2, making the profiles 

symmetric.  

 

Figure 4.3 Normalized contact resistance  𝑹𝒄
̅̅ ̅ of the annular contact (Fig. 4.1) as a function 

of inner radius to outer radius ratio 𝜷  for different (a) normalized sheet resistance of 

contacting member 2, 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅ , and (b) normalized specific contact resistivity 𝝆𝒄̅̅ ̅ . The dotted 

lines in (a) are calculated from Eq. (3.8) of Chapter 3, that is, for Cartesian parallel 

electrical contacts. Dashed lines are for Eq. (4.10), the limiting case of 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅ → 𝟎. 
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Figure 4.4 Normalized contact resistance  𝑹𝒄
̅̅ ̅ of the annular contact (Fig. 4.1) as a function 

of normalized specific contact resistivity 𝝆𝒄̅̅ ̅ for different (a) normalized sheet resistance of 

contacting member 2, 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅ , and (b) inner radius to outer radius ratio 𝜷. In (a),  𝜷 = 0.1, 

and in (b), 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅ =1. Dashed lines are for Eq. (4.10), the limiting case of 𝑹𝒔𝒉𝟐

̅̅ ̅̅ ̅̅ → 𝟎. The black 

dotted line in (b) The dotted lines in (a) are calculated from Eq. (3.8) of Chapter 3, that is, 

for Cartesian parallel electrical contacts.  

 

 

Figure 4.5 Normalized contact resistance  𝑹𝒄
̅̅ ̅ of the annular contact (Fig. 4.1) as a function 

of sheet resistance ratio 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅  for different (a) normalized specific contact resistivity �̅�𝒄 and 

(b) inner radius to outer radius ratio 𝜷. In (a),  𝜷 = 0.1, and in (b), 𝝆𝒄̅̅ ̅ = 1. Dashed lines are 

for Eq. (4.10), the limiting case of 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅ → 𝟎. The black dotted line in (b) is calculated from 

Eq. (3.8) of Chapter 3, that is, for Cartesian parallel electrical contacts. 
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The normalized contact resistance 𝑅𝑐
̅̅ ̅ is calculated from Eq. (4.9) and plotted in Figs. 4.3, 4.4, 

and 4.5 as functions of inner radius to outer radius ratio 𝛽, normalized specific contact resistivity 

𝜌𝑐̅̅̅, and sheet resistance ratio of the two contacting members 𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ , respectively. Figures 4.3(a) and 

(b) show that for 𝛽 < 0.8, 𝑅𝑐
̅̅ ̅ decreases with 𝛽 when 𝑅𝑠ℎ2

̅̅ ̅̅ ̅̅  is high or 𝜌𝑐̅̅̅ is low. Figures 4.4(b) and 

4.5(b) also confirm this behavior. However, when 𝛽 is increased above 0.8, 𝑅𝑐 increases drastically 

with 𝛽. Larger 𝛽 means shorter radial contact length 𝑟𝑜 − 𝑟𝑖 (for a fixed 𝑟𝑖 or 𝑟𝑜), resulting in higher 

total contact resistance for the annular contact structure. In general, 𝑅𝑐
̅̅ ̅ increases with the specific 

contact resistivity 𝜌𝑐 or the sheet resistance ratio 𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ . Profiles of total contact resistance for the 

case of  𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ = 0 are also plotted in Figs. 4.3, 4.4 and 4.5 as dashed lines. When 𝑅𝑠ℎ2

̅̅ ̅̅ ̅̅ → 0, Eq. 

(4.9) becomes, 

 𝑅𝑐
̅̅ ̅ =

𝐾1(𝜆𝛽)𝐼0(𝜆)+𝐼1(𝜆𝛽)𝐾0(𝜆)

𝜆(𝐾1(𝜆𝛽)𝐼1(𝜆)−𝐾1(𝜆)𝐼1(𝜆𝛽))
 , (4.10) 

with 𝜆 =  √1/𝜌𝑐̅̅̅. Note that Eq. (4.10) is identical to the expression typically used for metal-

semiconductor contact [24], [25]. The difference between solid lines (Eq. 4.9) and dashed lines 

(Eq. 4.10) decreases when 𝜌𝑐̅̅̅ or 𝛽 is large, as shown in Figs. 4.3(b) and 4.4(b).  

The dotted lines in Figs. 4.3(a), 4.4(b), and 4.5(b) are calculated from the contact resistance 

for parallel Cartesian contacts, that is, Eq. (3.8) of Chapter 3 [4]. Note that the spatial dimensions 

were normalized by the contact length 𝐿 ( = 𝑟𝑜 − 𝑟𝑖 in circular case) in Sec. 3.2 [4], whereas they 

are normalized by the outer radius 𝑟𝑜 for the circular case here. To make the normalization 

consistent for direct comparison, we multiply the normalized specific contact resistivity by 

1/(1 − 𝛽)2 before inserting into Eq. (3.8), which is multiplied by (1 − 𝛽) to obtain the dotted 

lines in Figs. 4.3(a), 4.4(b), and 4.5(b). For 𝛽 > 0.9, the profiles of annular and Cartesian contact 

resistance match exceptionally well, as CTLM approaches the limit of Cartesian TLM. 
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4.3.2 Tunneling dependent contact resistivity 

Next, we consider the case where the parallel annular contacts are formed through a tunneling 

interface layer between the two annular contact members. In this case, due to the nonlinear current 

density-voltage (𝐽 − V) characteristic of metal-insulator-metal (MIM) tunnel junctions, specific 

contact resistivity 𝜌𝑐 varies radially. For simplicity, we have made the following assumptions: 1) 

the thickness of the interfacial insulating film in the contact area is uniform and 2) the insulating 

film is sufficiently thin (in the nano- or subnano-meter scale) so that charge trappings are ignored 

(Chapter 2, Sec. 2.2).  

The local contact current density 𝐽𝑐(𝑟) at any location 𝑟 from contact member 1 to contact 

member 2 is calculated based on the self-consistent 1D Schrödinger-Poisson solutions in the MIM 

junction developed in Chapter 2, Sec. 2.2 [5]. For given values of the work function of the two 

contact members 𝑊1,2, electron affinity 𝑋, thickness 𝐷, and relative permittivity 𝜖𝑟 of the insulator 

layer, the local contact current density 𝐽𝑐(𝑟) can be calculated from this 1D quantum model for an 

input of the contact voltage drop 𝑉𝑔(𝑟) at any location 𝑟 [5], [6]. The calculation of this 𝐽𝑐(𝑟)-

 𝑉𝑔(𝑟) relation is coupled with CTLM, Eqs. (4.4), (4.5), and solved self-consistently.  

We keep the normalization consistent. Since solving the coupled quantum tunneling model 

and CTLM is time expensive, we calculate the one dimensional tunneling current density 

separately for the given MIM parameters (𝑊1, 𝑊2, 𝐷, 𝜖𝑟, 𝑋), over a wide range of bias voltages. 

The obtained 𝐽 − 𝑉 curves are normalized (as in Sec. 4.2) and then fitted with polynomials. Those 

curve-fitted equations are used to find the specific contact resistivity �̅�𝑐(�̅�) = 𝑉�̅�(�̅�)/ 𝐽�̅�(�̅�) =

(𝑉1̅(�̅�) − 𝑉2̅(�̅�))/ 𝐽�̅�(�̅�), which is then inserted into the CTLM equations, Eqs. (4.4) and (4.5), to 
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give a self-consistent solution to the voltage and current profiles, as well as the contact resistance 

for the circular (annular) tunneling contact.  

 
 

Figure 4.6 Tunneling current density across the contact interface 𝑱𝒄(𝒓) for different (a) 

input voltage 𝑽𝟎, with fixed 𝒓𝟎 = 𝟓𝟎 𝐧𝐦, 𝜷 = 𝟎. 𝟎𝟏, and 𝑫 = 𝟎. 𝟔 𝐧𝐦; (b) inner radius to 

outer radius ratio 𝜷, with fixed 𝒓𝟎 = 𝟓𝟎 𝐧𝐦, 𝑽𝟎 = 𝟏 𝐕,  and 𝑫 = 𝟎. 𝟔 𝐧𝐦; (c) outer radius 

𝒓𝟎, with fixed 𝑽𝟎 = 𝟏 𝐕, 𝜷 = 𝟎. 𝟎𝟏, and 𝑫 = 𝟎. 𝟔 𝐧𝐦; (d) interfacial layer thickness 𝑫, with 

fixed 𝒓𝟎 = 𝟓𝟎 𝐧𝐦, 𝜷 = 𝟎. 𝟎𝟏, and 𝑽𝟎 = 𝟏 𝐕. All the material properties are specified in the 

main text. Solid lines are for self-consistent numerical calculations using Eqs. (4.4), (4.5), 

and MIM quantum tunneling formulations (Chapter 2, Sec. 2.2) [5]. Dashed lines are for 

analytical calculations from Eq. (4.8) with 𝝆𝒄 being constant, calculated using 𝑽𝒈 = 𝑽𝟎 in 

the MIM quantum model. 

As an example, we consider Cu-vacuum-Cu circular thin film contacts. For our calculations, 

sub-nanometer scale interfacial layer thicknesses are assumed for the tunneling type of electrical 

contacts [12], [27], [28]. The dimensions of the contacting members are assumed to be in 
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nanoscale. We considered a wide range of electrode diameter, 10 – 160 nm, as electrodes of this 

range are common in transistors [29], [30], nanowire, nanofiber, and nanorod based novel devices 

[31]–[33]. Sheet resistance of both the contact members is estimated as 𝑅𝑠ℎ1 =  𝑅𝑠ℎ2 = 18 Ω/□  

[34], where the unit of the sheet resistance Ω/□ means “ohm per square”. The work function of 

Cu thin films is 𝑊1 = 𝑊2 = 4.56 eV [34]. The interfacial layer is assumed to be vacuum (relative 

permittivity 𝜖𝑟 = 1.0 and electron affinity 𝑋 = 0 eV). The tunneling current density 𝐽𝑐(𝑟) through 

the contact interface is shown in Fig. 4.6 for various input voltages 𝑉0 (Fig. 4.6(a)), inner radius to 

outer radius ratios 𝛽 (Fig. 4.6(b)), outer radii 𝑟0 (Fig. 4.6(c)), and interfacial layer thicknesses 𝐷 

(Fig. 4.6(d)). The profiles of 𝐽𝑐(𝑟) are asymmetric and current crowding occurs mainly at the inner 

edge, as expected for similar contact members (similar to Fig. 4.2 above). As shown in Fig. 4.6(a), 

because of the strong nonlinearity in the 𝐽 − 𝑉 characteristics of a tunneling junction, 𝐽𝑐(𝑟) 

increases and exhibits a stronger radial dependence when the applied voltage 𝑉𝑜 increases. This 

strong voltage dependence of electrical properties of the tunneling junction is in sharp contrast 

with those of ohmic contacts (Sec. 4.3.1), where the profiles of 𝐽𝑐(𝑟) and the total contact 

resistance is independent of the applied voltage and the current density scales linearly with the 

voltage drop. Figure 4.6(b) shows that, as 𝛽 decreases, that is, the contact length 𝑟𝑜 − 𝑟𝑖 increases, 

the tunneling current density 𝐽𝑐(𝑟) decreases. The influence of outer radius 𝑟𝑜 for a fixed 𝛽 is 

shown in Fig. 4.6(c). The tunneling current density 𝐽𝑐(𝑟) decreases when 𝑟𝑜 increases. However, 

the total current in the contact structure, 𝐼𝑡𝑜𝑡 = ∫ 2𝜋𝑟 𝐽𝑐(𝑟)𝑑𝑟 
𝑟𝑜

𝑟𝑖
, increases with 𝑟𝑜 because the 

total contact resistance of the tunneling junction decreases with 𝑟𝑜 (c.f. Fig. 4.7(a) below). In Figure 

4.6(d), when the gap distance 𝐷 increases, the current density 𝐽𝑐(𝑟) decreases quickly because the 

tunneling junction becomes more resistive [5], [6]. 
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Dashed lines in Fig. 4.6 are the analytical results calculated from Eq. (4.8) assuming constant 

tunneling contact resistivity 𝜌𝑐 across the radial contact length, which is the typically assumed 

one-dimensional tunneling contact. This 𝜌𝑐 is calculated from the 𝐽 − 𝑉 curve of the metal-

insulator-metal tunneling junction by setting 𝑉𝑔(𝑟) = 𝑉𝑜 everywhere along the contact length. The 

constant contact resistivity assumptions are inadequate, especially when the tunneling thickness 𝐷 

or inner radius to outer radius ratio 𝛽 decreases, or the applied voltage 𝑉𝑜 or outer radius 𝑟𝑜 

increases. For these cases, one should solve the coupled TLM equations, Eqs. (4.4) and (4.5), and 

the localized MIM tunneling equation (Sec. 2.2) self-consistently to give more reliable predictions. 

The total contact resistance 𝑅𝑐 of the Cu-vacuum-Cu circular thin film contact is shown in 

Fig. 4.7 as functions of applied voltage 𝑉0 and inner to outer radius ratio 𝛽. The total contact 

resistance 𝑅𝑐 decreases with 𝑟𝑜, as shown in Fig. 4.7(a). As 𝑟𝑜 increases, the dependence of contact 

resistance on 𝑟𝑜 becomes less significant. The dashed lines are for analytical solutions of the 1D 

tunneling model with constant 𝜌𝑐 calculated from Eqs. (4.8) and (4.9) as previously stated. The 

difference between the 1D model (Eq. (4.9)) and self-consistent numerical calculations (Eqs. (4.4), 

(4.5)) is significant when 𝐷 or 𝛽 is small, or when 𝑟𝑜 or 𝑉0 is large. In these regimes where the 1D 

tunneling model with constant 𝜌𝑐 approximations fail to provide reliable predictions, it is necessary 

to use the self-consistent numerical model.  
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Figure 4.7 The total contact resistance 𝐑𝐜 across the Cu-vacuum-Cu contact interface as 

functions of input voltage 𝐕𝟎 for different (a) outer radius 𝐫𝟎, with fixed 𝛃 = 𝟎. 𝟎𝟏  and 𝐃 =
𝟎. 𝟔 𝐧𝐦; (b) inner radius to outer radius ratio 𝛃, with fixed 𝐫𝟎 = 𝟓𝟎 𝐧𝐦 and 𝐃 = 𝟎. 𝟔 𝐧𝐦. 

𝐑𝐜 as functions of 𝛃 for different (c) input voltage 𝐕𝟎, with fixed 𝐫𝟎 = 𝟓𝟎 𝐧𝐦 and 𝐃 =
𝟎. 𝟔 𝐧𝐦; (d) interfacial layer thickness 𝐃, with fixed 𝐫𝟎 = 𝟓𝟎 𝐧𝐦 and 𝐕𝟎 = 𝟏 𝐕. All of the 

material properties are specified in the main text. Solid lines are for self-consistent 

numerical calculations using Eqs. (4.4), (4.5), and MIM quantum tunneling formulations 

(Chapter 2, Sec. 2.2) [5], [6]. The black dotted line in (a) is calculated using Simmons 

tunneling current formula [5], [14], [15] and Eqs. (4.4), (4.5) for 𝐫𝐨 = 𝟓 𝐧𝐦. Dashed lines 

are for analytical calculations from Eqs. (4.8) and (4.9) with 𝛒𝐜 calculated using 𝐕𝐠 = 𝐕𝟎 in 

the 1D MIM tunneling model. 

The black dotted line in Fig. 4.7(a) is calculated using Simmons’ tunneling current formula 

[4], [14], [15] and Eqs. (4.4), (4.5) for 𝑟𝑜 = 5 nm. Clearly, the difference between the quantum 

based self-consistent calculations and Simmons’ formula is substantial. Simmons’ formulas, which 

are widely used for these kinds of studies [4], [12], are inadequate in sub-nm scale (see Fig. 3(a) 

of Ref. [6]). For low applied voltages, in the direct tunneling regime, the MIM junction behaves 
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ohmically, thus 𝑅𝑐 varies slightly with 𝑉0, as shown in Figs. 4.7(a) and 4.7(b). When the applied 

voltage is increased into the field emission regime (> 1 V), 𝑅𝑐 decreases sharply with 𝑉0. This is 

because the junction is no longer ohmic and the tunneling resistivity 𝜌𝑐  decreases rapidly and 

nonlinearly with the junction voltage, which is a function of position along the radial contact 

length. As 𝑉0 approaches 10 V, space charge effects become important [5], [6], [35], [36], and 𝑅𝑐 

saturates, increasing only slightly with 𝑉0.  

The effect of the inner radius to outer radius ratio of the upper contact member (𝛽) on the total 

contact resistance (𝑅𝑐) is shown in Figs. 4.7(b), (c), and (d), showing similar trends to Fig. 4.3(b) 

above for the case of constant contact resistivity 𝜌𝑐. Figure 4.7(d) shows that reducing the insulator 

layer thickness 𝐷 even slightly can affect the contact resistance substantially.  

Next, we extend our calculations for Cu thin film contacts to different metals: magnesium 

(Mg), aluminum (Al), gold (Au), and platinum (Pt). The resistivity of a metal thin film 𝜌𝑓𝑖𝑙𝑚 is 

usually different than the metal’s bulk resistivity 𝜌𝑏𝑢𝑙𝑘. 𝜌𝑓𝑖𝑙𝑚 for the metals mentioned above are 

calculated from  𝜌𝑓𝑖𝑙𝑚/𝜌𝑏𝑢𝑙𝑘 =  4/[3(𝑡/𝑙) log(𝑙/𝑡)] for 𝑡 < 𝑙 and 𝜌𝑓𝑖𝑙𝑚/𝜌𝑏𝑢𝑙𝑘  = 1 + 3/8(𝑙/𝑡) 

for 𝑡 > 𝑙 [37], [38] , where 𝑙 is the electron mean free path and 𝑡 is the thickness of the thin film 

(Fig. 4.1). The work function [39], bulk resistivity 𝜌𝑏𝑢𝑙𝑘, and electron mean free path 𝑙 [37], [40], 

[41] for the metals are given in Table 4.1. The film thickness is assumed to be 𝑡 = 10 nm for all 

the cases. 
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Table 4.1 Material parameters for the Cu-insulator-Metal contacts. 

Metal 

 

𝑾𝟐[𝐞𝐕] 𝝆𝒃𝒖𝒍𝒌 [𝛀𝒎] 𝒍 [𝐧𝐦] 

Mg 

 

3.68 [42] 4.46 × 10−8 [43] 22.3 [40] 

Al 

 

4.08 [42] 2.65 × 10−8 [44] 18.9 [40] 

Au 

 

5.1 [6] 2.24 × 10−8 [43] 38 [37] 

Pt 

 

6.35 [42] 10.6 × 10−8 [44] 12 [41] 

Figure 4.8 shows the effects of the work function of contacting member 2 (𝑊2) and the 

permittivity of the thin insulating layer (𝜖𝑟) on the electrical characteristics of Cu-insulator-metal 

contacts. Figure 4.8(a) shows that the tunneling current density 𝐽𝑐(𝑟) decreases with increasing 

𝑊2. Figure 4.8(b) shows that 𝐽𝑐(𝑟) reduces significantly when the permittivity of the insulating 

layer increases from 1 to 2.5. Figures 4.8(c) and (d) show the contact resistance (in Ω) for various 

contact metals and tunneling films for Cu-insulator-metal contacts as functions of 𝛽. Contact 

resistance increases with insulating layer permittivity 𝜖𝑟 and work function of contacting member 

2, 𝑊2. The potential barrier in the insulating layer increases with the increase of the work function 

of the contact metal, resulting in lower tunneling current and higher contact resistance. On the 

other hand, 𝜖𝑟 greatly influences the image charge potential and space charge potential [5], [6] in 

the contact interface.  
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Figure 4.8 Tunneling current density across the Cu-insulator-Metal contact interfaces 𝑱𝒄(𝒓) 

for different (a) contacting metals with work functions 𝑾𝟐 for fixed 𝝐𝒓 = 𝟏, 𝒓𝟎 = 𝟓𝟎 𝐧𝐦, 

𝜷 = 𝟎. 𝟎𝟏, 𝑫 = 𝟎. 𝟔 𝐧𝐦, and 𝑽𝟎 = 𝟏 𝐕; (b) insulator layer permittivity 𝝐𝒓 for fixed 𝑾𝟐 =
𝟒. 𝟎𝟖 (𝐀𝐥), 𝒓𝟎 = 𝟓𝟎 𝐧𝐦, 𝜷 = 𝟎. 𝟎𝟏, 𝑫 = 𝟎. 𝟔 𝐧𝐦, and 𝑽𝟎 = 𝟏 𝐕. The total contact resistance 

𝑹𝒄 across the Cu-insulator-Metal contact interfaces as functions of inner radius to outer 

radius ratio 𝜷 for different: (c) 𝑾𝟐 for fixed 𝝐𝒓 = 𝟏, 𝒓𝟎 = 𝟓𝟎 𝐧𝐦, 𝑫 = 𝟎. 𝟔 𝐧𝐦, and 𝑽𝟎 =
𝟏 𝐕; (d) 𝝐𝒓, for fixed 𝑾𝟐 = 𝟒. 𝟎𝟖 (𝐀𝐥), 𝒓𝟎 = 𝟓𝟎 𝐧𝐦, 𝑫 = 𝟎. 𝟔 𝐧𝐦, and 𝑽𝟎 = 𝟏 𝐕. All of the 

material properties are specified in the main text.  

4.4 Concluding Remarks 

In this chapter, we presented a self-consistent tunneling model to characterize parallel 

electrical contacts between two annular thin films. Our model considers the radial variation of 

contact resistivity along the contact length. We solved the CTLM equations for constant specific 

contact resistivity and radially varying, tunneling dependent specific contact resistivity along the 
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contact length. Our study provides a thorough understanding of the contact tunneling resistance, 

current, and voltage distributions across nano and sub-nano scale MIM junctions in circular ring 

type electrical contacts using an inexpensive model from which many general conclusions may be 

drawn. The effects of contact geometry (i.e. inner and outer radius of the ring contact, distance 

between the contact electrodes) and material properties (i.e. work function, sheet resistance of the 

contact members, and permittivity of the insulating layer) on the radial distributions of currents 

and voltages across these contacts and the overall contact resistance are studied in detail. The 

quantum tunneling model includes the effects of image charge, space charge, and exchange 

correlation potential. 

It is found that the contact current density and voltage drop profiles are highly asymmetric at 

the two edges of the annular contact, even for similar contacting members. This is in sharp contrast 

to the current and voltage profiles of parallel Cartesian nanocontacts. However, the asymmetry 

reduces when inner radius to outer radius ratio 𝛽 increases; for 𝛽 → 1, the profiles become almost 

symmetric. Our calculations for tunneling type contacts show that the contact resistance 𝑅𝑐 is 

voltage dependent, increases sharply with 𝐷, and decreases with 𝑟𝑜. If 𝛽 is increased above 0.9, 

the 𝑅𝑐 of the annular contact increases dramatically. It is found that the analytical solutions of one-

dimensional (1D) tunneling junction models (constant voltage across the whole junction) are good 

approximations of the actual circular (annular) contacts only when the thickness 𝐷 or inner radius 

to outer radius ratio 𝛽 is relatively large, or the applied voltage across the contact 𝑉0 or outer radius 

𝑟𝑜 is relatively small. Otherwise, the 1D tunneling model of constant contact resistivity becomes 

unreliable, and the self-consistent CTLM equations coupled with the spatially dependent tunneling 

current need to be used to accurately characterize the electrical contacts.  
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In existing CTLM [19], [20], the interface contact resistivity is almost always assumed to be 

constant. Thus, the contact resistivity measured using the transmission line method (TLM) would 

consist of possible intrinsic errors when thin tunneling (e.g. oxide) layer at the contact interfaces 

is present. In this case, our model would give more accurate evaluation of contact resistivity. The 

work presented here may be used to better understand the electrical conductivity of nanofiber and 

nanorod based thin-film devices, where such circular (or annular) contacts naturally exist. 

Furthermore, our study reveals that, by varying the contact layer properties and geometry, one can 

strategically design the radially dependent contact resistivity in circular contacts to achieve desired 

current distribution. It is worth mentioning that while the work presented here is for tunneling type 

contacts, our modified CTLM equations with radially varying 𝜌𝑐 can also be used for other types 

of contacts such as ohmic and Schottky contacts. 

 Although a TLM is less computationally expensive and easier to implement, it is a simplified 

approximation of practical 2D electrical contacts. Field solution methods need to be used in the 

future to accurately evaluate current crowding and fringing field effects, the impact of finite 

thickness (or length) in the contact members, and the possible parallel component of current flows 

in the interface layer [4], [25], [45]–[47]. The effects of reactive elements in the circuit, AC 

response, and imperfect insulator layer on the electrical properties of tunneling type contacts may 

also be studied in the future. Future studies may also consider the influence of properties of the 

materials forming the contact and the possible interaction of the semiconductor (or insulator) films 

under the contact region, such as Schottky barrier, band bending, charge redistribution, and 

material defects.   

  



102 
 

REFERENCES 



103 
 

REFERENCES 

[1] S. Banerjee, P. Y. Wong, and P. Zhang, “Contact resistance and current crowding in 

tunneling type circular nano-contacts,” J. Phys. D: Appl. Phys., vol. 53, no. 35, p. 355301, 

Jun. 2020, doi: 10.1088/1361-6463/ab8fe0. 

[2] P. Zhang, S. B. Fairchild, T. C. Back, and Y. Luo, “Field emission from carbon nanotube 

fibers in varying anode-cathode gap with the consideration of contact resistance,” AIP 

Advances, vol. 7, no. 12, p. 125203, Dec. 2017, doi: 10.1063/1.5008995. 

[3] S. B. Fairchild et al., “Carbon Nanotube Fiber Field Emission Array Cathodes,” IEEE Trans. 

Plasma Sci., vol. 47, no. 5, pp. 2032–2038, May 2019, doi: 10.1109/TPS.2019.2900219. 

[4] S. Banerjee, J. Luginsland, and P. Zhang, “A Two Dimensional Tunneling Resistance 

Transmission Line Model for Nanoscale Parallel Electrical Contacts,” Sci Rep, vol. 9, no. 

14484, pp. 1–14, Oct. 2019, doi: 10.1038/s41598-019-50934-2. 

[5] S. Banerjee and P. Zhang, “A generalized self-consistent model for quantum tunneling 

current in dissimilar metal-insulator-metal junction,” AIP Advances, vol. 9, no. 8, p. 085302, 

Aug. 2019, doi: 10.1063/1.5116204. 

[6] P. Zhang, “Scaling for quantum tunneling current in nano- and subnano-scale plasmonic 

junctions,” Scientific Reports, vol. 5, p. 9826, May 2015, doi: 10.1038/srep09826. 

[7] S. Banerjee, L. Cao, Y. S. Ang, L. K. Ang, and P. Zhang, “Reducing contact resistance by 

roughness engineering in 2D-material-based electrical contacts,” under review. 

[8] J. A. de Lima, S. P. Gimenez, and K. H. Cirne, “Modeling and Characterization of 

Overlapping Circular-Gate mosfet and Its Application to Power Devices,” IEEE 

Transactions on Power Electronics, 2012, doi: 10.1109/TPEL.2011.2117443. 

[9] P.-E. Trudeau, M. Sheldon, V. Altoe, and A. P. Alivisatos, “Electrical Contacts to Individual 

Colloidal Semiconductor Nanorods,” Nano Lett., vol. 8, no. 7, pp. 1936–1939, Jul. 2008, doi: 

10.1021/nl080678t. 

[10] S. B. Cronin et al., “Making electrical contacts to nanowires with a thick oxide coating,” 

Nanotechnology, vol. 13, no. 5, pp. 653–658, Sep. 2002, doi: 10.1088/0957-4484/13/5/322. 

[11] K. Khan et al., “Recent developments in emerging two-dimensional materials and their 

applications,” J. Mater. Chem. C, vol. 8, no. 2, pp. 387–440, Jan. 2020, doi: 

10.1039/C9TC04187G. 

[12] C. Li, E. T. Thostenson, and T.-W. Chou, “Dominant role of tunneling resistance in the 

electrical conductivity of carbon nanotube–based composites,” Appl. Phys. Lett., vol. 91, no. 

22, p. 223114, Nov. 2007, doi: 10.1063/1.2819690. 



104 
 

[13] A. M. Lord et al., “Controlling the Electrical Transport Properties of Nanocontacts to 

Nanowires,” Nano Lett., vol. 15, no. 7, pp. 4248–4254, Jul. 2015, doi: 10.1021/nl503743t. 

[14] J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar 

Electrodes Separated by a Thin Insulating Film,” Journal of Applied Physics, vol. 34, no. 6, 

pp. 1793–1803, Jun. 1963, doi: 10.1063/1.1702682. 

[15] J. G. Simmons, “Electric Tunnel Effect between Dissimilar Electrodes Separated by a 

Thin Insulating Film,” Journal of Applied Physics, vol. 34, no. 9, pp. 2581–2590, Sep. 1963, 

doi: 10.1063/1.1729774. 

[16] M. R. Vazirisereshk, S. A. Sumaiya, A. Martini, and M. Z. Baykara, “Measurement of 

electrical contact resistance at nanoscale gold-graphite interfaces,” Appl. Phys. Lett., vol. 

115, no. 9, p. 091602, Aug. 2019, doi: 10.1063/1.5109880. 

[17] E. Pop, “Energy dissipation and transport in nanoscale devices,” Nano Res., vol. 3, no. 3, 

pp. 147–169, Mar. 2010, doi: 10.1007/s12274-010-1019-z. 

[18] X. Hu and A. Martini, “Atomistic simulations of contact area and conductance at 

nanoscale interfaces,” Nanoscale, vol. 9, no. 43, pp. 16852–16857, Nov. 2017, doi: 

10.1039/C7NR05326F. 

[19] G. K. Reeves, “Specific contact resistance using a circular transmission line model,” 

Solid-State Electronics, vol. 23, no. 5, pp. 487–490, May 1980, doi: 10.1016/0038-

1101(80)90086-6. 

[20] C. Xu, J. Wang, M. Wang, H. Jin, Y. Hao, and C. P. Wen, “Reeves’s circular 

transmission line model and its scope of application to extract specific contact resistance,” 

Solid-State Electronics, vol. 50, no. 5, pp. 843–847, May 2006, doi: 

10.1016/j.sse.2006.03.007. 

[21] K. N. Patel, E. Stokes, J. Pagan, C. C. Burkhart, M. Hodge, and P. Batoni, “Circular 

Transmission Line Model (CTLM) Analysis for Non-Linear VI Characteristics on Mg doped 

GaN,” ECS Trans., vol. 11, no. 5, pp. 203–208, Sep. 2007, doi: 10.1149/1.2783873. 

[22] H. Murrmann and D. Widmann, “Current crowding on metal contacts to planar devices,” 

IEEE Transactions on Electron Devices, vol. 16, no. 12, pp. 1022–1024, Dec. 1969, doi: 

10.1109/T-ED.1969.16904. 

[23] H. H. Berger, “Contact Resistance and Contact Resistivity,” J. Electrochem. Soc., vol. 

119, no. 4, pp. 507–514, Apr. 1972, doi: 10.1149/1.2404240. 

[24] D. K. Schroder, Semiconductor Material and Device Characterization. Wiley-Blackwell, 

1998. 

[25] P. Zhang and Y. Y. Lau, “An exact field solution of contact resistance and comparison 

with the transmission line model,” Appl. Phys. Lett., vol. 104, no. 20, p. 204102, May 2014, 

doi: 10.1063/1.4878841. 



105 
 

[26] J. G. Simmons, “Conduction in thin dielectric films,” Journal of Physics D: Applied 

Physics, vol. 4, no. 5, pp. 613–657, May 1971, doi: 10.1088/0022-3727/4/5/202. 

[27] L. Wu, H. Duan, P. Bai, M. Bosman, J. K. W. Yang, and E. Li, “Fowler-Nordheim 

tunneling induced charge transfer plasmons between nearly touching nanoparticles,” ACS 

Nano, vol. 7, no. 1, pp. 707–716, Jan. 2013, doi: 10.1021/nn304970v. 

[28] M. S. Tsagarakis and J. P. Xanthakis, “Tunneling currents between carbon nanotubes 

inside the 3-dimensional potential of a dielectric matrix,” AIP Advances, vol. 7, no. 7, p. 

075012, Jul. 2017, doi: 10.1063/1.4990971. 

[29] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon device scaling to the 

sub-10-nm regime,” Science, vol. 306, no. 5704, pp. 2057–2060, Dec. 2004, doi: 

10.1126/science.1100731. 

[30] J. Zheng et al., “Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz 

Frequencies with Current Saturation,” Scientific Reports, vol. 3, no. 1, Art. no. 1, Feb. 2013, 

doi: 10.1038/srep01314. 

[31] M. S. Ghamsari and S. Dhara, Nanorods and Nanocomposites. 2020. 

[32] M. A. Mackey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-Sayed, “The Most 

Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro 

Experiments,” J. Phys. Chem. B, vol. 118, no. 5, pp. 1319–1326, Feb. 2014, doi: 

10.1021/jp409298f. 

[33] S. E. Wawra, L. Pflug, T. Thajudeen, C. Kryschi, M. Stingl, and W. Peukert, 

“Determination of the two-dimensional distributions of gold nanorods by multiwavelength 

analytical ultracentrifugation,” Nature Communications, vol. 9, no. 1, Art. no. 1, Nov. 2018, 

doi: 10.1038/s41467-018-07366-9. 

[34] E. Schmiedl, P. Wissmann, and H.-U. Finzel, “The Electrical Resistivity of Ultra-Thin 

Copper Films,” Zeitschrift für Naturforschung A, vol. 63, no. 10–11, pp. 739–744, 2014, doi: 

10.1515/zna-2008-10-1118. 

[35] Y. Y. Lau, D. Chernin, D. G. Colombant, and P.-T. Ho, “Quantum extension of Child-

Langmuir law,” Physical Review Letters, vol. 66, pp. 1446–1449, Mar. 1991, doi: 

10.1103/PhysRevLett.66.1446. 

[36] L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, “New Scaling of Child-Langmuir Law in the 

Quantum Regime,” Phys. Rev. Lett., vol. 91, no. 20, p. 208303, Nov. 2003, doi: 

10.1103/PhysRevLett.91.208303. 

[37] K. L. Chopra, L. C. Bobb, and M. H. Francombe, “Electrical Resistivity of Thin Single‐

Crystal Gold Films,” Journal of Applied Physics, vol. 34, no. 6, pp. 1699–1702, Jun. 1963, 

doi: 10.1063/1.1702662. 



106 
 

[38] K. Fuchs, “The conductivity of thin metallic films according to the electron theory of 

metals,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 34, no. 1, 

pp. 100–108, Jan. 1938, doi: 10.1017/S0305004100019952. 

[39] D. R. Lide, G. Baysinger, S. Chemistry, L. I. Berger, R. N. Goldberg, and H. V. 

Kehiaian, CRC Handbook of Chemistry and Physics. 2003. 

[40] D. Gall, “Electron mean free path in elemental metals,” Journal of Applied Physics, vol. 

119, no. 8, p. 085101, Feb. 2016, doi: 10.1063/1.4942216. 

[41] G. Fischer, H. Hoffmann, and J. Vancea, “Mean free path and density of conductance 

electrons in platinum determined by the size effect in extremely thin films,” Phys. Rev. B, 

vol. 22, no. 12, pp. 6065–6073, Dec. 1980, doi: 10.1103/PhysRevB.22.6065. 

[42] P. A. Tipler and R. Llewellyn, Modern Physics, 6th ed. Freeman, 2012. 

[43] “Resistivity and Conductivity - Temperature Coefficients for Common Materials.” 

https://www.engineeringtoolbox.com/resistivity-conductivity-d_418.html. 

[44] D. C. Giancoli, Physics, 4th ed. Prentice Hall, 1995. 

[45] P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Analysis of current crowding in thin film 

contacts from exact field solution,” J. Phys. D: Appl. Phys., vol. 48, no. 47, p. 475501, 2015, 

doi: 10.1088/0022-3727/48/47/475501. 

[46] P. Zhang, D. M. H. Hung, and Y. Y. Lau, “Current flow in a 3-terminal thin film contact 

with dissimilar materials and general geometric aspect ratios,” J. Phys. D: Appl. Phys., vol. 

46, no. 6, p. 065502, Feb. 2013, doi: 10.1088/0022-3727/46/6/065502. 

[47] P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Minimization of thin film contact 

resistance,” Appl. Phys. Lett., vol. 97, no. 20, p. 204103, Nov. 2010, doi: 10.1063/1.3517497. 

  



107 
 

 CHAPTER 5 

2D-MATERIAL-BASED SCHOTTKY CONTACTS 

This chapter is based on the published journal paper “Reducing Contact Resistance in Two-

Dimensional-Material-Based Electrical Contacts by Roughness Engineering”, Phys. Rev. Appl., 

vol. 13, no. 6, p. 064021, Jun. 2020, doi: 10.1103/PhysRevApplied.13.064021, by S. Banerjee, L. 

Cao, Y. S. Ang, L. K. Ang, and P. Zhang [1]. It is presented here with the permission of the 

copyright holder. 

5.1 Introduction 

The undesirably large contact resistance between two-dimensional (2D) semiconductor and 

three-dimensional (3D) metallic electrodes represent one of the major obstacles towards the 

development of practical 2D electronic and optoelectronic devices[2]. The engineering of better 

electrical contacts has become a key research objective in recent years. Extensive efforts have been 

made to improve current flow through contacts and device performance in 2D material based 

devices[3]–[8]. Recent experimental breakthroughs have demonstrated that the van der Waals metal 

contact to 2D semiconductor can significantly improve the quality of electrical contact[9], [10]. 

This advancement opens up exciting avenues for the exploration how 2D/3D electrical contacts can 

be further improved. This motivates the need of a physical model that comprehensively includes 

both the material properties of 2D semiconductors and the geometrical electrostatic effect in mixed-

dimensional nanostructures, which remains rarely studied in the literature thus far.  

In this chapter, we present a consistent model for calculating the contact resistance, which is 

important for realizing 2D-material-based electronics. The model is based on the self-consistent 
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spatial-dependent transmission line model (TLM) developed in Chapter 3, the correct charge 

injected model for 2D material based electrical contacts, and the effects of roughness [1]. The 

recently developed thermionic charge injection model in 2D materials[11] is coupled with the 2D 

transmission line model (TLM) accounting for the varying specific contact resistivity along the 

contact length[12]. The profiles of current and voltage distribution along contact region and the 

total contact resistance are calculated for various input voltage, contact dimension, material 

properties, and temperature. It is found the one-dimensional (1D) models become less reliable when 

Schottky barrier height (SBH) becomes smaller or when the applied voltage becomes larger, where 

our self-consistent model is expected to provide an improved evaluation of the 2D-material-based 

electrical contacts. Our self-consistent calculation results have been compared with that using the 

classic Richardson-Dushman (RD) thermionic law. We found that RD law significantly 

underestimates the contact resistance and overestimates the contact current density for 2D-material-

based contacts. We obtain excellent agreement by comparing our numerically calculated results 

with the reported experimental data [10], [13], [14]. 

We further incorporate the effects of interface roughness in the 3D/2D electrical contacts in 

our 2D TLM model. The interface roughness can be introduced (or engineered) by substrate 

doping[15] and is inherently present due to the inevitable presence of interfacial defects during the 

fabrication process. The impact of surface roughness on contact resistance for ohmic contacts have 

been studied previously[16]–[19]. Previous experiment has also demonstrated that substrate 

roughness can improve the mobility of 2D transition metal dichalcogenide (TMD) by several orders 

of magnitude[20]. In our model, the contact interface roughness is modelled as fluctuating Schottky 

barrier heights (SBH)[21] along the electrical contacts. Using experimental device parameters of 

Au/MoS2 electrical contact[13], we show that the contact resistance at the 2D/3D Schottky contact 



109 
 

can be reduced by more than one order of magnitude. The key finding that roughness can improve 

the 2D/3D electrical contact quality further highlights the technological importance of roughness 

engineering for improving the device performance of 2D electronics and optoelectronics. Our 

findings pave a theoretical foundation for the modeling of contact resistance in 2D/2D and 2D/3D 

electrical contact and establishes a new viable route towards the design of better electrical contacts 

to 2D materials using roughness engineering.  

5.2 The Model  

 

Figure 5.1 (a) A typical parallel contact between Au and MoS2. (b) its transmission line 

model. The width (transverse dimension) of the two contact members is 𝑤. 

Due to the reduced dimensionality and the exotic electronic properties of 2D materials, the 

electron emission physics deviates significantly from traditional 3D materials [11], [22]–[24]. The 

thermionic emission of charged carriers across a 2D-material-based metal/semiconductor Schottky 

contact is found to be universally governed by a simple current-temperature (𝐽 − 𝑇) scaling law 

[11], ln(𝐽/𝑇𝛽) = 𝐴 − 𝐵/𝑇, where 𝐴 and 𝐵 are materials/device-dependent parameters, and 𝛽 = 1 

(and 3/2) for a vertical (and lateral) Schottky contact. For 2D transition metal dichalcogenide 

(TMDC), such as atomically-thin MoS2, the thermionic emission is governed by 
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𝐽𝑡ℎ(𝑉, 𝑇) =
2𝑒Φ𝐵0𝑘𝐵𝑇

𝜋𝜏ℏ2𝑣𝐹
2 (1 +

𝑘𝐵𝑇

Φ𝐵0
) exp (−

Φ𝐵0−𝜀𝐹

𝑘𝐵𝑇
),                           (5.1) 

where Φ𝐵0 is the intrinsic SBH, the Fermi velocity 𝑣𝐹 = 1.1 × 106 m/s for MoS2, 𝜀𝐹 is the Fermi 

level, and 𝜏 ≈ (0.1 ∼ 10) ps is the carrier injection time determined experimentally [25]. Equation 

(5.1) deviates significantly from the classic Richardson-Dushman (RD) thermionic law for 3D 

materials, i.e. ln(𝐽3𝐷/𝑇2)  ∝  1/𝑇 [26]. The Shockley diode equation can thus be modified as 

𝐽2𝐷(𝑉, 𝑇) = 𝐽𝑡ℎ(𝑉, 𝑇) [exp (
𝑒𝑉

𝑘𝐵𝑇
) − 1],                                      (5.2) 

which is obtained based on the detailed balance principle [26]. Equation (5.2) represents the 

generalized 2D Shockley diode equation for 2D electronic systems. For comparison, the Shockley 

diode equation based on the 3D classic RD thermionic law is 𝐽3𝐷(𝑉, 𝑇) = 𝐽𝑅𝐷(𝑉, 𝑇) [exp (
𝑒𝑉

𝑘𝐵𝑇
) −

1], where 𝐽𝑅𝐷(𝑉, 𝑇) =
4𝜋𝑚∗𝑘𝐵

2 𝑒

ℎ3 𝑇2 exp (−
Φ𝐵0−𝜀𝐹

𝑘𝐵𝑇
), 𝑚∗ = 0.54𝑚𝑒[27], 𝑚𝑒 is the mass of an 

electron. 

TLM equations developed in Chapter 3 (Eqs. 3.5 and 3.6 ) coupled with Eq. 5.2 are used to 

predict the profiles of current and voltage distributions, and the total contact resistance in nanoscale 

2D/3D Schottky contacts (Fig. 5.1). The contact current density 𝐽𝑐(𝑥) in Fig. 5.1 is calculated 

iteratively from the coupled TLM with Eq. 5.2. Sheet resistance of MoS2 under the contact can be 

calculated semi-empirically [13] as, 𝑅𝑠ℎ = 1/𝑛𝑒𝜇(𝑇), where 𝑛 is the 2D carrier density with 

typical value of 5 × 1012 cm−2, 𝑒 is the electric charge, and 𝜇(𝑇) = 𝜇0(𝑇/300)−1.6 is the 

temperature-dependent mobility. 
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5.3 Results and Discussion  

 

Figure 5.2 (a) Voltage drop 𝑽(𝒙), (b) current density 𝑱𝒄(𝒙), and (c) specific contact 

resistivity 𝝆𝒄(𝒙) across the contact interface for a monolayer 𝐌𝐨𝐒𝟐 (2D semiconductor) 

and gold (3D metal) contact for different carrier injection time 𝝉 with fixed applied voltage 

𝑽𝟎 = 𝟎. 𝟏 𝐕, and contact length 𝑳 = 20 nm. Here, 𝐑𝐬𝐡𝟏(𝐌𝐨𝐒𝟐) = 𝟑𝟓𝟕𝟏𝟒 𝛀/□, 𝐑𝐬𝐡𝟐(𝐀𝐮) =
𝟒. 𝟒 𝛀/□, 𝝓𝑩 = 𝟎. 𝟏 𝐞𝐕 ,  𝜺𝑭 = 𝟎. 𝟖 𝐞𝐕 and  𝑻 = 𝟑𝟎𝟎 𝐊. [1] 

In Fig. 5.2, we show the self-consistent calculation of the voltage drop 𝑉(𝑥), injection current 

density 𝐽𝑐(𝑥), and the contact resistivity 𝜌𝑐(𝑥) across the contact region for a fixed bias voltage of 

𝑉0 = 0.1 V with different interface charge injection time, τ, for a MoS2/Au contact using the 

experimentally determined device parameter reported previously [13]. In Fig. 5.2(a), it is found that 

𝑉(𝑥) is nonuniform across the contact length. The variation of the 𝑉(𝑥) increases with a decreasing 

charge injection time, which indicates a stronger current crowding effect in 2D/3D interface with 

high carrier injection efficiency, as shown in Fig. 5.2(b). This is consistent with previous studies 

that current crowding effect increases with more conductive contact interfaces[28], [29]. The spatial 

dependent contact resistivity is more evenly distributed across the contact region for contact with 

longer injection time [Fig. 5.2(c)].  
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In Figs. 5.3(a) and 5.3(b), the contact resistance 𝑅𝑐 calculated from Eqs. (3.4) is shown as a 

function of the bias voltage for two different SBHs for 2D/3D contacts. The 2D/3D contact exhibits 

a transition from Schottky contact characteristic, in which 𝑅𝑐 increases with decreasing temperature 

for  𝑉0 < ΦB, to a Ohmic contact characteristic, in which 𝑅𝑐 increases with increasing temperature 

for 𝑉0 > ΦB. Such transition is due to the offset of the SBH by the external bias voltage. In Figs. 

5.3(c) and 5.3(d), the temperature dependence of 𝑅𝑐 further confirms the Schottky-to-ohmic 

transition at 𝑉0~ ΦB observed in Figs. 5.3(a) and 5.3(b), which is also consistent with the 

experiments [13].  

 
Figure 5.3 Contact resistance 𝑹𝒄 as a function of applied voltage 𝑽𝟎 for different 𝑻, for (a) 

𝚽𝑩 = 𝟎. 𝟏 eV, (b) 𝚽𝑩 = 𝟎. 𝟐 eV. 𝑹𝒄 as a function of temperature 𝑻 for different 𝑽𝟎, for (c) 

𝚽𝑩 = 𝟎. 𝟏 eV, (d) 𝚽𝑩 = 𝟎. 𝟐 eV. Here, the contact is between a monolayer 𝐌𝐨𝐒𝟐 and Au, 

with 𝝉 = 𝟎. 𝟏 𝐩𝐬, and 𝑳 = 50 nm. [1] 
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Figure 5.4 (a) Voltage drop 𝑽(𝒙), (b) current density 𝑱𝒄(𝒙), and (c) specific contact 

resistivity 𝝆𝒄(𝒙) across the contact interface for 𝐌𝐨𝐒𝟐/Ag contact for different contact 

length 𝑳 with fixed applied voltage 𝑽𝟎 = 𝟎. 𝟏 𝐕. Solid lines are for the self-consistent 

calculations of Model (A), and dashed lines are for Model (C). See text for details. Here, 

𝝉 = 𝟎. 𝟏 𝐩𝐬, 𝐑𝐬𝐡𝟏(𝐌𝐨𝐒𝟐) = 𝟑𝟎𝟎𝟎𝟎 𝛀/□, 𝐑𝐬𝐡𝟐(𝐀𝐠) = 𝟑. 𝟏𝟖 𝛀/□,  𝜺𝑭 = 𝟎. 𝟐𝟒𝟗 𝐞𝐕,   𝝓𝑩 =
𝟎. 𝟐𝟏𝟐 𝐞𝐕 , and  𝑻 = 𝟑𝟎𝟎 𝐊. [1] 

In Fig. 5.4 the 𝑉(𝑥), 𝐽𝑐(𝑥), and 𝜌𝑐(𝑥) for MoS2/Ag contact are shown for varying contact 

length 𝐿. The current crowding is strongly amplified in the case of long contact length, because the 

applied voltage is distributed over a longer resistive network, resulting in increased interface contact 

resistivity due to the voltage-dependent Schottky barriers. The influence of 𝐿 on 𝑅𝑐 is shown in Fig. 

5.5 for different applied voltages. In Figs. 5.4 and 5.5, we calculate the results using four different 

approaches: Model (A): self-consistent calculations using Eqs. (3.5),(3.6) and (5.2) (solid lines); 

Model (B): analytical solution (3.7), assuming constant 𝜌𝑐, calculated using fixed 𝑉 = 𝑉0 in Eq. 

(5.2) (dotted lines); Model (C): calculations of Eq. (3.5),(3.6) with the 3D Richardson-Dushman 

injection model 𝐽3𝐷(𝑉, 𝑇) (dashed lines); and Model (D): analytical solution (3.7) assuming 

constant 𝜌𝑐, calculated using fixed 𝑉 = 𝑉0 in the Richardson-Dushman injection model 

𝐽3𝐷(𝑉, 𝑇)(dash-dotted lines). It is found that, for 2D-3D contacts, the classic Richardson-Dushman 
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injection model significantly underestimates the contact resistance and overestimates the contact 

current density. We also found that, as 𝑉0 increases, the analytical solutions [12] of the TLM with 

constant 𝜌𝑐 calculated using 𝑉 = 𝑉0 in the charge injection model, which is almost always used in 

the literature[10], [13], [14], become less reliable; and our proposed self-consistent model may be 

used to obtain a more accurate evaluation of such contacts. This aspect is particularly important in 

the development of industrial-grade field-effect transistor based on 2D semiconductors. According 

to the International Roadmap of Devices and Systems (IRDS)[30], the required industry standard 

bias voltage is 0.65 V and 0.60 V, respectively, for year 2021 and 2030. At these bias-voltage 

values, we found that the analytical model with both constant 𝜌𝑐 and Richardson thermionic 

injection model severely underestimate the contact resistance by at least 75% (Model (B)), 30% 

(Model (C)), and 83% (Model (D)) when compared to our self-consistent model combined with 

the 2D thermionic charge injection theory (Model (A)), over a wide range of contact length 𝐿 of 20 

nm – 100 nm.  
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Figure 5.5 Contact resistance 𝑹𝒄 for 𝐌𝐨𝐒𝟐/Ag contact as a function of contact length 𝑳 for 

different applied bias 𝑽𝟎 = (a) 0.1 V, (b) 0.3 V, (c) 0.60 V, and (d) 0.65 V. The two bias 

voltages in (c) and (d) are the required industry standards according to the International 

Roadmap of Devices and Systems (IRDS) [30] for year 2030 and 2021, respectively. Solid 

lines are for the self-consistent calculations of Model (A), dotted lines are for Model (B), 

dashed lines are for Model (C), and dash-dotted lines are for Model (D). See text for details. 

Here, 𝝉 = 𝟎. 𝟏 𝐩𝐬, 𝐑𝐬𝐡𝟏(𝐌𝐨𝐒𝟐) = 𝟑𝟎𝟎𝟎𝟎 𝛀/□, 𝐑𝐬𝐡𝟐(𝐀𝐠) = 𝟑. 𝟏𝟖 𝛀/□,  𝜺𝑭 =
𝟎. 𝟐𝟒𝟗 𝐞𝐕,   𝝓𝑩 = 𝟎. 𝟐𝟏𝟐 𝐞𝐕 , and  𝑻 = 𝟑𝟎𝟎 𝐊. [1] 

Next, we compare our self-consistent model with the existing experimental works (c.f. Figs. 

5.6 and 5.7), for various 2D carrier density 𝑛, temperature, and MoS2 − metal interface. With 

suitable values of 𝑉0 and 𝜏, the results from our self-consistent model are in excellent agreement 

with the experimental data. Figure 5.6 shows that for a given temperature 𝑇, the contact resistance 

𝑅𝑐 decreases with 𝑛, as it has been reported previously [10], [13], [14]. It is evident that, calculations 

from our self-consistent model provide much better fitting to the experimental data for 2D material-

metal electrical contacts than models based on 3D Richardson-Dushman injection law. 



116 
 

 

 

Figure 5.6 𝑹𝒄 as a function of 2D carrier density 𝒏 for different temperatures for (a) 

𝐌𝐨𝐒𝟐 − Au contacts, and (b) 𝐌𝐨𝐒𝟐 − In contacts. Crossed symbols are from experiments 

[10], [13], [14]; solid lines are from our self-consistent model from Eqs. 3.5, 3.6 and 5.2, 

Model (A); and dashed lines are from Eqs. (3.5), (3.6) with the Richardson-Dushman 

injection model, Model (C). In the calculation, we used 𝐑𝐬𝐡(𝐀𝐮) = 𝟐. 𝟐 𝛀/□, 𝐑𝐬𝐡(𝐈𝐧) =
𝟖. 𝟑𝟕 𝛀/□, 𝝁𝟎 = 𝟐𝟎 𝒄𝒎𝟐𝑽−𝟏𝑺−𝟏 for 𝐌𝐨𝐒𝟐 − 𝐀𝐮 contacts [13], and 𝝁𝟎 = 𝟏𝟕𝟎 𝒄𝒎𝟐𝑽−𝟏𝑺−𝟏 

for 𝐌𝐨𝐒𝟐 − 𝐈𝐧 contacts [10]. The parameters 𝜺𝑭 = 𝟎. 𝟎𝟕𝟕 𝐞𝐕 [31], 𝟎. 𝟔 𝐞𝐕 [10], 𝟎. 𝟓 𝐞𝐕, 

𝝓𝑩 = 𝟎. 𝟕𝟔𝟑 𝐞𝐕 [31], 𝟎. 𝟑 𝐞𝐕 [10], 𝟎. 𝟏𝟓 𝐞𝐕 [13], and 𝝉 = 𝟎. 𝟏 𝐩𝐬, 𝟎. 𝟏𝟓 𝐩𝐬, 𝟎. 𝟏 𝐩𝐬 are used to 

fit the experimental results in Refs. [14], [10] , [13] respectively. For different cases, from 

top to bottom, different input voltages 𝑽𝟎 = 𝟎. 𝟕𝟑𝟏 𝐕, 𝟎. 𝟕 𝐕, 𝟎. 𝟏 𝐕 and 𝑽𝟎 =
𝟎. 𝟐𝟕𝟏 𝐕, 𝟎. 𝟏𝟕 𝐕 are used in (a) and (b) respectively. 𝑳 = 𝟓𝟎𝟎 𝐧𝐦 [13] is assumed for all 

the cases. [1] 
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Figure 5.7 𝑹𝒄 as a function of temperature 𝑻 with (a) an increasing trend, and (b) a 

decreasing trend, for 𝐌𝐨𝐒𝟐 − metal contacts with different 𝒏. Crossed symbols are from 

experiments[10], [13], [14]; solid lines are from our self-consistent Model (A), and dashed 

lines are extracted from model calculations in Ref. [13]. In the calculation, we used 

𝐑𝐬𝐡(𝐀𝐮) = 𝟐. 𝟐 𝛀/□, and 𝐑𝐬𝐡(𝐍𝐢) = 𝟏𝟑. 𝟖 𝛀/□. The parameters 𝜺𝑭 = 𝟎. 𝟓𝟖𝟖 𝐞𝐕, 𝝓𝒃 =
𝟎. 𝟔𝟑𝟑 𝐞𝐕 [31], and 𝜺𝑭 = 𝟎. 𝟓 𝐞𝐕, 𝝓𝒃 = 𝟎. 𝟏𝟓𝟎 𝐞𝐕 [13] are used for 𝐌𝐨𝐒𝟐 − 𝐍𝐢, 𝐀𝐮 contacts 

respectively. In (a), for the three solid red lines, from top to bottom, 𝑽𝟎 =
𝟎. 𝟔𝟑𝟓 𝐕, 𝟎. 𝟔𝟒 𝐕, 𝟎. 𝟔𝟒𝟓 𝐕, 𝐫𝐞𝐬𝐩𝐞𝐜𝐭𝐢𝐯𝐞𝐥𝐲, and all with 𝝉 =

𝟎. 𝟒𝟓 𝐩𝐬; 𝐟𝐨𝐫 𝐭𝐡𝐞 𝐠𝐫𝐞𝐞𝐧 𝐬𝐨𝐥𝐢𝐝 𝐥𝐢𝐧𝐞, 𝐕𝟎 = 𝟎. 𝟏𝟔𝟓 𝐕, 𝐚𝐧𝐝 𝛕 = 𝟎. 𝟕 𝐩𝐬. In (b), 𝑽𝟎 =
𝟎. 𝟏𝟑 𝐕, 𝟎. 𝟏𝟒𝟏 𝐕 and 𝝉 = 𝟎. 𝟏 𝐩𝐬, 𝟎. 𝟐 𝐩𝐬 for the blue and purple solid lines, respetively. The 

value of 𝝁𝟎 = 𝟐𝟎 𝒄𝒎𝟐𝑽−𝟏𝑺−𝟏 [13], and 𝑳 = 𝟓𝟎𝟎 𝐧𝐦 [13] is assumed for all the cases. [1] 

Figure 5.7 shows the comparison of our self-consistent model with experiments on 𝑅𝑐 as a 

function of temperature 𝑇 for different 𝑛, for MoS2 − metal contacts. For all the cases, our self-

consistent calculation from Model (A) (solid lines) provides a much better fitting to the 

experimental data (symbols) compared to existing models [10], [13], [14] (dashed lines). The three 

red lines in Fig. 5.7(a), with input voltage 𝑉0 = 0.635 V, 0.64 V, 0.645 V from top to bottom, show 

that the increasing (ohmic characteristic) or decreasing (Schottky characteristic) trends of 𝑅𝑐 with 

temperature depends very sensitively on the input voltage 𝑉0 to the contact, which is also evident 

in Fig. 5.3. This voltage dependence of the contact resistance has not been emphasized and is 

generally missing in the previous works [10], [13], [14]. Our model suggests that the input voltage 
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must be specified in order to give a meaningful characterization of contact resistance for a given 

2D material-metal contacts.  

 

Figure 5.8 (a) Roughness in Schottky barrier height 𝝓𝑩, the resulting (b) current density 

𝑱𝒄(𝒙), and (c) specific contact resistivity 𝝆𝒄(𝒙) across the contact interface for a monolayer 

MoS2-Au 2D/3D contact for different standard deviations (sd). (d) Contact resistance 𝑹𝒄 as 

a function of surface roughness (standard deviation/𝝓𝑩) for different mean values of 𝝓𝑩. 

Here, applied voltage 𝑽𝟎 = 𝟎. 𝟏 𝐕, and contact length 𝑳 = 𝟓𝟎 𝐧𝐦. [1] 

We further model the effect of interface’s roughness at the 2D/3D electrical contact by 

including a SBH fluctuation term, i.e. Φ𝐵 → Φ𝐵 + ΔΦ𝐵, where ΔΦ𝐵 is calculated by assuming 

that the SBH fluctuation follows a Gaussian distribution. The fluctuation of the SBH, injection 

current and contact resistivity profiles are shown in Figs. 5.8(a)-5.8(c) respectively. As shown in 

Fig. 5.8(d), the SBH variation has a dramatic effect on the contact resistance. In general, 𝑅𝑐 is 

reduced significantly in the presence of roughness. Such reduction is particularly effective for 
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MoS2/Au contact with large SBH (e.g. 0.3 eV). Such roughness-induced contact resistance 

reduction is reminiscent to the previously reported mobility enhancement of 2D TMDs due to the 

presence of crested rough substrate [20]. Thus, the finding in Fig. 5.8(d) suggests that roughness 

not only improves the mobility but also decreases the contact resistance with 3D metals. The 

reduction of contact resistance with interface roughness is also achieved in 1D electrical contacts, 

i.e. both contact members with constant voltages applied uniformly across the contact region (not 

shown).  

The reduction in contact resistance due to fluctuation of interface resistance can be easily 

understood from a general circuit theory. Consider a rough resistive interface presented between 

two conductors. Because of fluctuation of the conductivity along the interface, there will be local 

regions of highly conductive spots formed, whose resistance can be much smaller than that of a 

uniform interface. Such a resistive interface may be considered as a set of equivalent element 

resistors connected in parallel along the interface between the two contacting members, whose 

total interface resistance is 𝑅𝑡𝑜𝑡𝑎𝑙 = 1/ (
1

𝑅1
+

1

𝑅2
+ ⋯ +

1

𝑅𝑁
) ~ {𝑅𝑖}𝑚𝑖𝑛𝑖𝑚𝑢𝑚, which is determined 

by the smallest resistor in the parallel connection, i.e. the equivalent resistor at the highly 

conductive spots. As a result, this leads to a reduced overall interface resistance compared to a 

uniform interface. Note the interface “roughness” represents the variation or fluctuation in the 

conductivity along the interface (e.g. induced by doping, SBH, etc) and needs not be to physical 

roughness. Similar benefits of surface roughness are found to decrease the contact resistance in 

organic transistors [17] and to increase the mobility of charge carrier injection in organic and 2D 

transistors [17],[20]. 
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5.4 Concluding Remarks 

A self-consistent transmission line model to quantify and model the current distribution and 

contact resistance in 2D materials based contacts is constructed and validated with the existing 

experimental works. It is found that interface roughness can significantly reduce 2D/3D electrical 

contact resistance. Our findings provide a theoretical foundation for the modeling of 2D/2D and 

3D/2D electrical contacts and further reveal a new route towards efficient 2D material electrical 

contact through roughness engineering.  
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CHAPTER 6 

INTERFACE ENGINEERING OF ELECTRICAL CONTACTS 

This chapter is based on the manuscript under review for a journal publication, “Interface 

engineering of electrical contacts,” by S. Banerjee, J. Luginsland, and P. Zhang [1].  

6.1 Introduction 

Engineering electrical contacts to achieve desired interface current transport is crucial for next 

generation electronics [2], [3]. Several efforts have been made to reduce the current crowding and 

improve the current transport in electrical contacts by making the proper choice for electrode 

thickness [4], doping, electrode material and its geometry [5] [6], [7], optimizing the current 

spreading layer [8] and the gate bias voltage [9]. The existing studies give no hint on the variation 

of current along the contact length and the importance of interface layer engineering to diminish 

the current crowding effects. The crowding is especially strong for contacts with low specific 

contact resistivity [10][11], [12]. Increasing specific contact resistivity tends to reduce current 

crowding; however, it increases the total contact resistance that may lead to increased Joule heating 

and degradation of the contact. Because of this tradeoff, it is particularly challenging to design 

electrical interfaces to reduce current crowding without decreasing the total current in the circuit.  

Our previous studies (Chapters 3, 4, and 5) [12]–[14] showed that current and voltage 

distribution along the contact length greatly depend on the interfacial layer properties and 

geometry. In this chapter, we demonstrate how to precisely customize their profiles along the 

contact length by interface engineering. We characterize ohmic, Schottky [14], [15] and tunneling 

type [12], [16]–[18] electrical contacts. Our goal is to maximize the control over electrical contact 
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operation and heat distribution by strategically varying the specific contact resistivity 𝜌𝑐 along the 

contact length. We use modified two-dimensional transmission line model (TLM) [12], [13], 

where 𝜌𝑐 depends upon the local voltage drop and contact current density. The spatial variation of 

𝜌𝑐 may be achieved by varying the doping, thickness, or shape of the contact layer, or by 

introducing impurities, such as, resistive contaminants, oxides, or foreign objects along the 

interface. Electrical properties of the engineered interfaces are investigated for various input 

voltage, contact dimension and geometry, and material properties. Solving the TLM equations 

self-consistently, we find spatial profiles of 𝜌𝑐 that can reduce current crowding, increase current 

transfer length, improve current transport, steer and redistribute current in the contact area. Most 

importantly, we find that the severe current crowding in highly conductive ohmic contacts can be 

eliminated by introducing a thin tunneling layer between the contact members. If the tunneling 

layer is sufficiently thin and the contact length is large, the change in the total contact resistance is 

found to be insignificant. 

The methods used here can be applied to characterize various contact geometries shown in 

Fig. 6.1. Controlled current and voltage distribution can be achieved via engineered spatially 

varying contact layer properties and geometry (Fig. 6.1) [3]. Note that, the transmission-line 

model, in general, underestimates the extent of the current crowding, which may be more 

accurately accounted for by the field solution approaches [9]–[11]. However, such simplified 

models have been used successfully to capture the basic scalings and physics for the 

characterization of mesoscale and nanoscale electrical contacts [12], [13], [19]–[22]. In this 

chapter, we analyze nanoscale copper (Cu) thin film contacts and Gold-MoS2 contacts as 

examples. The concepts, approaches, and results should be important to the design of any circuits 

where electrical contacts are of concern, such as semiconductor devices [20], [23], integrated 
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circuits [24], low-dimensional materials based electronics [2], [25]–[27], and all solid-state 

batteries [28].  

 

Figure 6.1 Electrical contact between contact member 1 and 2 for different electrode 

geometry. (a) Electrical contact with uniform contact interface, (b) electrical contact with a 

spatially varying engineered interfacial layer, which is used to control the voltage and 

current distribution. 

6.2 The Model 

The formulation is based on the modified transmission line model for Cartesian (Chapter 3) 

[12] and circular (Chapter 4) [13] contact structures, coupled with the improved thermionic 

emission current injection model for 2D materials [14], [15] (for 2D/3D Schottky contacts), or the 

self-consistent quantum model for one-dimensional MIM junctions (Chapter 2) [18], [29] (for 

tunneling type contacts). As shown in Fig. 6.2, the sheet resistance of the two contacting members 

is 𝑅𝑠ℎ1 and 𝑅𝑠ℎ2, respectively. The spatially dependent specific interfacial resistivity (also termed 

specific contact resistivity) is 𝜌𝑐(𝑥) and 𝜌𝑐(𝑟) for the Cartesian and circular contacts, respectively. 

The goal is to engineer a spatial profile of 𝜌𝑐(𝑥) or 𝜌𝑐(𝑟) in order to suppress current crowding. 
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While the modified TLMs have been presented in Chapters 3 and 4 before [12], [13], the governing 

equations are given below for completeness. 

 

Figure 6.2 Electrical contact between two contacting members in (a) Cartesian, (b) circular 

geometry. (c), (d) its corresponding transmission line model. In (a) and (b), a thin interface 

layer (ohmic, Schottky, or tunneling type) is sandwiched between the two contacting 

members. The thicknesses of thin film 1 and 2 are 𝒕𝟏 and 𝒕𝟐, respectively. 

For Cartesian electrical contacts in Fig. 6.2a, its TLM in Fig. 6.2c gives [12],  

𝜕𝐼1(𝑥)

𝜕𝑥
= −𝑤𝐽𝑐(𝑥), 

𝜕𝑉1(𝑥)

𝜕𝑥
= −

𝐼1(𝑥)𝑅𝑠ℎ1

𝑤
, 

𝜕𝐼2(𝑥)

𝜕𝑥
= 𝑤𝐽𝑐(𝑥), 

𝜕𝑉2(𝑥)

𝜕𝑥
= −

𝐼2(𝑥)𝑅𝑠ℎ2

𝑤
 ,   (6.1) 

where 𝐼1,2(𝑥) represents the current flowing at 𝑥 through the lower or upper contact member 

respectively, and 𝑉1,2(𝑥) is the local voltage at 𝑥 along the lower or upper contact member, 

respectively, and 𝑤 is the effective transverse dimension of the contacts, 𝐽𝑐(𝑥) =  𝑉𝑔(𝑥)/𝜌𝑐(𝑥) 

and 𝑉𝑔(𝑥) = 𝑉1(𝑥) − 𝑉2(𝑥) are the local current density and the local voltage drop across the 

contact interface at 𝑥, respectively. Note that, from Eq. (1) 𝐼1(𝑥) +  𝐼2(𝑥) = 𝐼𝑡𝑜𝑡 = constant, 

where 𝐼𝑡𝑜𝑡 is the total current in the circuit, to be determined from the boundary conditions,  

𝑉1(𝑥 =  0) = 𝑉𝑜, 𝐼2(𝑥 = 0) = 0, 𝐼1(𝑥 = 𝐿) = 0, 𝑉2(𝑥 = 𝐿) = 0 ,         (6.2) 
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where we assume the voltage of the upper contact member at 𝑥 = 𝐿 is 0, and the externally applied 

voltage at 𝑥 = 0 of the lower contact member is 𝑉0. Note that 𝐼1(𝑥 = 0) = 𝐼𝑡𝑜𝑡, and 𝐼2(𝑥 = 0) =

0. For the contact model in Fig. 6.2(b), the contact resistance is defined as,  

𝑅𝑐 =
𝑉1(0)−𝑉2(𝐿)

𝐼𝑡𝑜𝑡
=

𝑉𝑜

𝐼𝑡𝑜𝑡
.                                                      (6.3) 

For circular (ring) electrical contacts shown in Fig. 6.2b with its TLM in Fig. 6.2d, we have 

[13],  

𝜕𝐼1(𝑟)

𝜕𝑟
= 2𝜋𝑟 𝐽𝑐(𝑟), 

𝜕𝑉1(𝑟)

𝜕𝑟
=

𝐼1(𝑟)𝑅𝑠ℎ1

2𝜋𝑟
, 

𝜕𝐼2(𝑟)

𝜕𝑟
= − 2𝜋𝑟 𝐽𝑐(𝑟), 

𝜕𝑉2(𝑟)

𝜕𝑟
=

𝐼2(𝑟)𝑅𝑠ℎ2

2𝜋𝑟
,  (6.4) 

where 𝐼1,2(𝑟) represents the current flowing at 𝑟 along the radial direction of thin films 1 and 2, 

respectively, and 𝑉1,2(𝑟) is the local voltage at 𝑟 along the radial direction of thin films 1 and 2, 

respectively. 𝐽𝑐(𝑟) =  𝑉𝑔(𝑟)/𝜌𝑐(𝑟) and 𝑉𝑔(𝑟) = 𝑉1(𝑟) − 𝑉2(𝑟) are the local current density and 

the local voltage drop across the contact interface at 𝑟, respectively. From Eq. 6.4, 𝐼1(𝑟) +  𝐼2(𝑟) =

𝐼𝑡𝑜𝑡 = constant, where 𝐼𝑡𝑜𝑡 is the total current in the circuit to be determined from the following 

boundary conditions, 

 𝑉1(𝑟 =  𝑟𝑜) = 𝑉𝑜, 𝐼1(𝑟 = 𝑟𝑖) = 0,  𝐼2(𝑟 = 𝑟𝑜) = 0, 𝑉2(𝑟 = 𝑟𝑖) = 0,           (6.5) 

where we assume the voltage of the upper contact member at 𝑟 = 𝑟𝑖 is 0 and the external voltage 

𝑉0 is applied at 𝑟 = 𝑟𝑜 to the lower contact member, 𝑟𝑜 is the outer radius of thin film 2 and 𝑟𝑖 is 

the inner radius of both the films. Note that 𝐼1(𝑟 = 𝑟𝑜) = 𝐼𝑡𝑜𝑡, 𝐼2(𝑟 = 𝑟𝑖) = 𝐼𝑡𝑜𝑡, and 𝐼𝑡𝑜𝑡 =

∫ 2𝜋𝑟 𝐽𝑐(𝑟) 𝑑𝑟
𝑟𝑜

𝑟𝑖
. For the contact model in Fig. 6.1(c), the contact resistance is defined as,  

 𝑅𝑐 =
𝑉1(𝑟𝑜)−𝑉2(𝑟𝑖)

𝐼𝑡𝑜𝑡
=

𝑉𝑜

𝐼𝑡𝑜𝑡
 . (6.6) 

 For ohmic contacts, 𝜌𝑐(𝑥) and 𝜌𝑐(𝑟) can be prescribed. For 2D-semiconductor/3D-metal 

Schottky contacts, the local contact current density 𝐽𝑐(𝑥) or 𝐽𝑐(𝑟) is calculated from the 2D 
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thermionic emission model [14], [15] and for metal-insulator-metal (MIM) tunneling type 

contacts, it is calculated from the one-dimensional MIM quantum tunneling model including space 

charge effects (Chapter 2) [18], [29]. 𝜌𝑐(𝑥) and 𝜌𝑐(𝑟) are then determined from these contact 

current densities by 𝜌𝑐 =  𝑉𝑔/𝐽𝑐. The coupled equations are solved self-consistently, with more 

detailed descriptions in Chapters 3 and 4 [12] [13]. 

We first characterize both Cartesian and circular ohmic contacts with varying 𝜌𝑐 along contact 

length or radius, respectively. We find varying 𝜌𝑐(𝑥) parabolically and 𝜌𝑐(𝑟) linearly can 

effectively reduce the current crowding effects in planar and circular ohmic contacts, respectively. 

Next, we analyze the 2D-semiconductor/3D-metal contacts to increase the current transfer length 

by varying the Schottky barrier height (SBH) along the contact length 𝐿. Finally, we introduce a 

thin (in sub-nanometer or nanometer) tunneling layer between the highly conductive contact 

members to reduce current crowding, without increasing the total contact resistance significantly. 

6.3 Results and Discussion 

We analyze Cartesian ohmic contacts in Fig. 6.3 and circular ohmic contacts in Fig. 6.4. The 

input voltage 𝑉𝑜 = 0.6 V is the required industry standards according to the International Roadmap 

of Devices and Systems (IRDS) [30] for year 2030, which is given to contact member 1, at 𝑥 = 0 

for the planar structure and at 𝑟 = 𝑟𝑜 for the circular structure. Upper contact members at 𝑥 = 𝐿 

(Fig. 6.2a, 6.2c) and 𝑟 = 𝑟𝑖 (Fig. 6.2b, 6.2d) are grounded for the two structures under study. 

Thickness of both the contact members are assumed to be same, 𝑡1 = 𝑡2 = 10 nm. The spatial or 

radial variation of 𝜌𝑐 can be realized by varying the doping or thickness or geometry of the contact 

layer, or by introducing impurities, such as, resistive contaminants, oxides, or foreign objects along 

the interface [12], [31]–[35]. In Figure 6.3, we explore the reduction of the severe current crowding 
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(c.f. Fig. 6.3a, black dotted line) at the highly conductive planar (or Cartesian) Cu-Cu ohmic 

contacts by varying the interfacial layer resistivity parabolically along the contact length. For our 

calculations, we assume 𝜌𝑐(𝑥) = 18 × 10−10 (B (
2𝑥

𝐿
− 1)

2

+ 0.01)  Ω cm2 with the minimum at 

half of the contact length, where B is a constant. The sheet resistance of copper (Cu) is 𝑅𝑠ℎ =

18 Ω/□  [13], [36], where the unit of the sheet resistance Ω/□ means “ohm per square” [11], [20], 

[21]. Contact length 𝐿 = 100 nm, and the width (transverse dimension) of the contact members 

𝑤 = 10 nm. Figure 6.3a shows that the profile of contact current density 𝐽𝑐(𝑥) strongly depends 

on B. The profiles of 𝐽𝑐(𝑥) can be explained by simple current transport theory in a circuit, where 

electric current flows through the least resistive path. When B is increased, the inhomogeneity of 

the contact current distribution decreases. At around B = 0.2, the interfacial current becomes 

almost uniform along the contact length. The total contact resistance 𝑅𝑐 as a function of B is plotted 

in Fig. 6.3b for different contact lengths. For all the contact lengths plotted here, 𝑅𝑐 increases only 

slightly with B, e.g. for 𝐿 = 100 nm, 𝑅𝑐 is increased at most by 50% within the range of B. Hence, 

evidently, it is possible to eliminate current crowding effects and achieve uniform contact current 

distribution without sacrificing the total current in the circuit. In practical circuit design and 

fabrication where it might be difficult to control the shape of a parabola, one can use a step 

variation by just making the edges of a contact interface (of planar, similar contact members) more 

resistive than the rest of the contact area. The approach used here to minimize the current crowding 

effects can be extended to contacts with different electrode thickness, material, and geometry.  
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 Figure 6.3 Engineered ohmic contact in Cartesian geometry (Fig. 6.2a) with specific 

contact resistivity 𝝆𝒄(𝒙) = 𝟏𝟖 × 𝟏𝟎−𝟏𝟎 (𝑩 (
𝟐𝒙

𝑳
− 𝟏)

𝟐

+ 𝟎. 𝟎𝟏)  𝛀 𝐜𝐦𝟐. (a) Contact current 

density 𝑱𝒄(𝒙) along the contact length for different values of 𝑩; (b) contact resistance as a 

function of 𝑩 for different contact length 𝑳. The input voltages 𝑽𝟎 = 𝟎. 𝟔 𝐕 is the required 

industry standards according to the International Roadmap of Devices and Systems 

(IRDS)[30] for year 2030. The thickness of both Cu contact members are 𝟏𝟎 𝒏𝒎, with a 

resistivity of 𝟏𝟖 𝛍𝛀 𝐜𝐦  [36], which gives sheet resistance 𝑹𝒔𝒉𝟏 = 𝑹𝒔𝒉𝟐 = 𝟏𝟖 𝛀/□. Contact 

length 𝑳 = 𝟏𝟎𝟎 𝐧𝐦, and the width (transverse dimension) of the contact members 𝒘 =
𝟏𝟎 𝐧𝐦. 

In Fig. 6.4, we investigate the current transport for circular ohmic contacts with linearly 

varying specific contact resistivity along the contact radius. Note that linearly varying specific 

contact resistivity is found to strongly modify the current density profile for planar contacts [12]. 

Here, we assume radially varying 𝜌𝑐(𝑟) = 18 × 10−10(1 + A𝑟/𝑟𝑜) Ω cm2, outer radius of the 

upper contact member (Fig. 6.2b) 𝑟𝑜 = 100 nm, and the inner radius of both the contact members 

𝑟𝑖 = 1 nm. A is a linearization constant. The contact member 1 is assumed to be copper (Cu) with 

sheet resistance 𝑅𝑠ℎ1 = 18 Ω/□  [13], [36].  
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Figure 6.4 Ohmic contacts in circular geometry (Fig. 6.2b) with linearly varying specific 

contact resistivity. (a) Contact current density 𝑱𝒄 along the contact length for different 

values of linear constant 𝑨. (b) Contact resistance as a function of 𝑨 for different sheet 

resistance ratio 𝑹𝒔𝒉𝟐
̅̅ ̅̅ ̅̅ . Here, we use 𝝆𝒄(𝒓) = 𝟏𝟖 × 𝟏𝟎−𝟏𝟎(𝟏 + 𝑨𝒓/𝒓𝒐) 𝛀 𝐜𝐦𝟐. In (a) 𝑹𝒔𝒉𝟐

̅̅ ̅̅ ̅̅ =
𝑹𝒔𝒉𝟐/𝑹𝒔𝒉𝟏 = 𝟏. The input voltage 𝑽𝟎 = 𝟎. 𝟔𝐕 is the required industry standards according 

to the International Roadmap of Devices and Systems (IRDS)[30] for year 2030. The 

contact member 1 is assumed to be copper (Cu) with sheet resistance 𝑹𝒔𝒉𝟏 = 𝟏𝟖 𝛀/□  [13], 

[36], outer radius of the upper contact member 𝒓𝒐 = 𝟏𝟎𝟎 𝐧𝐦, and the inner radius of both 

the contact members 𝒓𝒊 = 𝟏 𝐧𝐦. 

As shown in Fig. 6.4a, linear variation of 𝜌𝑐(𝑟) can reduce the current crowding effects for 

circular contacts. In particular, current crowding at the inner edge reduces significantly when A is 

positive. Figure 6.4b shows that for circular contacts 𝑅𝑐 increases with A rapidly for 𝑅𝑠ℎ2
̅̅ ̅̅ ̅̅ < 1 and 

remains almost constant when 𝑅𝑠ℎ2 ≫ 𝑅𝑠ℎ1. Therefore, one can get a desired interfacial current 

distribution profile without altering the overall contact resistance considerably. Hence, engineering 

the spatially varying interfacial contact resistivity can provide strategic thermal management of 

the integrated circuits and systems.  
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Figure 6.5 Engineered Schottky contacts in Cartesian geometry. (a) Schottky barrier height 

𝝓𝑩(𝒙), (b) the corresponding contact current density 𝑱𝒄(𝒙) along the contact length for 

𝑴𝒐𝑺𝟐 − 𝑨𝒖 contacts for different values of 𝒃, and (c) contact resistance as a function of 𝒃 

for different input voltage 𝑽𝟎. Dashed lines are for 𝑴𝒐𝑺𝟐 − 𝑨𝒖 contacts with uniform 𝝓𝑩 =
𝟎. 𝟕𝟔𝟑 𝐞𝐕 [37]. The Fermi level 𝜺𝑭 = 𝟎. 𝟎𝟕𝟕 𝐞𝐕 [37], and carrier injection time 𝝉 = 𝟎. 𝟏 𝐩𝐬. 

The bias voltage 𝑽𝟎 = 𝟎. 𝟔𝟓  in (b) is the required industry standards according to the 

International Roadmap of Devices and Systems (IRDS)[30] for year 2021. Here, 

𝑹𝒔𝒉𝟏(𝑴𝒐𝑺𝟐) = 𝟓𝟗𝟏𝟕𝟏. 𝟔 𝛀/□, 𝑹𝒔𝒉𝟐(𝑨𝒖) = 𝟐. 𝟐 𝛀/□, 𝑳 = 𝟓𝟎𝟎 𝐧𝐦 and  𝑻 = 𝟑𝟎𝟎 𝐊. 

Current crowding is an unavoidable consequence of geometrical confinement and resistivity 

mismatch at the 2D-semiconductor/3D-metal Schottky junctions, where the current transport 

between the semiconductor and the metal contact is concentrated at the front edge of the contact 

[38] [9], [14], [26], [39]–[41]. In Fig. 6.5, we study the engineering of such contacts by spatially 

varying the Schottky barrier height (SBH). We use the one-dimensional (1D) thermionic emission 

equation for 2D materials Eq. (5.2) [14], [15], coupled with the TLM equations, Eqs. (3.5) and (3.6) 

[12] to analyze such 2D/3D contacts. For 2D transition metal dichalcogenide (TMDC), such as 

atomically-thin MoS2, the thermionic emission is governed by 𝐽𝑡ℎ(𝑉𝑔, 𝑇) =
2𝑒Φ𝐵0𝑘𝐵𝑇

𝜋𝜏ℏ2𝑣𝐹
2 (1 +

𝑘𝐵𝑇

Φ𝐵0
) exp (−

Φ𝐵0−𝜀𝐹

𝑘𝐵𝑇
), where Φ𝐵0 = 𝜙𝐵 + 𝜀𝐹 is the intrinsic Schottky barrier height (SBH), 𝜀𝐹 is 

the Fermi level, 𝜙𝐵 is the SBH, the Fermi velocity 𝑣𝐹 = 1.1 × 106 m/s for MoS2, and 𝜏 ≈



135 
 

(0.1 ∼ 10) ps is the carrier injection time determined experimentally [42]. The local contact current 

density at any position 𝑥 along the contact length is, 𝐽𝑐(𝑉𝑔, 𝑇) = 𝐽𝑡ℎ(𝑉𝑔, 𝑇) [exp (
𝑒𝑉𝑔

𝑘𝐵𝑇
) − 1]. 

We assume that the SBH is a function of 𝑥, 𝜙𝐵 (𝑥) = 0.4(𝑥/𝐿)2 − 𝑏(𝑥/𝐿) + 0.8 eV, where 

𝑏 is a constant, as shown in Fig. 6.5a. The injection current density at the contact interface for 

different values of 𝑏 is shown in Fig. 6.5b. It is found that the current crowding for uniform SBH 

(c. f. black dashed line in Fig. 6.5) can be reduced considerably by choosing the value of 𝑏 (e.g. 

Fig. 6.5b, 𝑏 = 0.8). The bias voltage 𝑉0 = 0.65 V is the required industry standards according to 

the International Roadmap of Devices and Systems (IRDS)[30] for year 2021. Figure 6.5c shows 

the contact resistance as a function of 𝑏 for different input voltage 𝑉0. Dashed lines are for MoS2 −

Au contacts with uniform 𝜙𝐵 = 0.763 eV along the contact[37]. We see that the total contact 

resistance depends strongly on the parameter 𝑏 and the input voltage 𝑉0. The difference in contact 

resistance for engineered and uniform SBH is large for low bias voltages but becomes smaller for 

high bias voltages, for the chosen specific case here. Since the thermionic charge injection current 

for 2D materials sensitively depends on both the bias voltage and temperature [14], [15], [43], the 

engineered SBH profile requires a more detailed characterization for practical implementation. 
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 Figure 6.6 Tunneling type electrical contacts. (a) Contact current density 𝑱𝒄(𝒙), and (b) 

specific contact resistivity 𝝆𝒄(𝒙) along the contact length for Cartesian tunneling contacts. 

Solid lines are for self-consistent numerical calculations using Eqs. (3.5) and (3.6), and 

MIM quantum tunneling formulations (Chapter 2) [18], [29], for different values of gap 

distance D and work function of contact members 𝑾. Sheet resistance of both the contact 

members is assumed to be 𝑹𝒔𝒉𝟏 =  𝑹𝒔𝒉𝟐 = 𝟏𝟖 𝛀/□. Dashed lines are calculated analytically 

with constant 𝝆𝒄 calculated using 𝑽𝒈 = 𝑽𝟎 in the 1D MIM tunneling model. Black dotted 

lines are for an ohmic contact with 𝝆𝒄 = 𝟏. 𝟖 × 𝟏𝟎−𝟏𝟏𝛀 𝐜𝐦𝟐,  analytically calculated from 

the TLM equations. 𝑹𝒄 is the total contact resistance. 

Next, we investigate the reduction of current crowding for a highly conductive 

(𝜌𝑐~10−11Ω 𝑐𝑚2) ohmic contacts by tunneling engineering. We introduce a thin insulating layer 

of uniform thickness along the contact length between the contact members. Current transport in 

the contact region is no longer ohmic and is governed by the quantum tunneling phenomenon [16]–

[18], [29]. We solve Eqs. (3.5) and (3.6) along with the metal-insulator-metal tunneling junction 

equation (Chapter 2) [18], [29]. The local contact current density 𝐽𝑐(𝑥) at any location 𝑥 from 

contact member 1 to contact member 2 is calculated based on the coupled 1D Schrödinger-Poisson 

solutions in the MIM junction [18], [29]. Our quantum model of the junction (Chapter 2) includes 

emissions from both cathode (contacting member 2) and anode (contacting member 1), the effects 
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of image charge potential [18], space charge, and exchange correlation potentials [44]. For given 

values of the work function of the two contact members 𝑊1,2, electron affinity 𝑋, thickness 𝐷, and 

relative permittivity 𝜖𝑟 of the insulator layer, the local contact current density 𝐽𝑐(𝑥) can be 

calculated from this 1D quantum model for an input of the contact voltage drop 𝑉𝑔(𝑥) at any 

location 𝑥 [18], [29]. The calculation of this 𝐽𝑐(𝑥)- 𝑉𝑔(𝑥) relation is coupled with TLM, Eqs. (3.5), 

(3.6), and is solved self-consistently.   

We consider nanometer and sub-nanometer scale tunneling layers in Fig. 6.6 and Fig. 6.7, 

respectively. The current fabrication technology can manufacture nodes as small as 3 nm [45], 

[46]. The International Roadmap of Devices and Systems (IRDS) [30] predicts that 1.0 nm nodes 

may be implemented tentatively within few years, and the scale is expected to go down even 

further, in sub-nanometers. Figure 6.6 shows the contact current density 𝐽𝑐(𝑥), and the specific 

contact resistivity 𝜌𝑐(𝑥) along the contact length for Cartesian contacts. For these calculations, the 

contact length is assumed to be 100 nm. Width and thickness of both the contact members are 10 

nm. Solid lines are for self-consistent numerical calculations for the tunneling type contacts, using 

Eqs. (3.5), (3.6), and MIM quantum tunneling formulations (Chapter 2) [18], [29], for different 

values of gap distance (insulator layer thickness) D and work function of contact members 𝑊. 

Dashed lines are for analytical calculations (See Eq. (3.8) of Chapter 3) of tunneling contacts with 

constant 𝜌𝑐 obtained using 𝑉𝑔 = 𝑉0 in the 1D MIM tunneling model. Sheet resistance of both the 

contact members is assumed to be 𝑅𝑠ℎ1 =  𝑅𝑠ℎ2 = 18 Ω/□. We solved two cases, i) for 𝐷 = 1 nm 

and 𝑊1 = 𝑊2 = 2 eV, and ii) for 𝐷 = 3 nm and 𝑊1 = 𝑊2 = 0.6 eV. The interfacial layer is 

assumed to be vacuum (relative permittivity 𝜖𝑟 = 1.0 and electron affinity 𝑋 = 0 eV). Black dotted 

lines are for an ohmic contact, calculated from Eq. (3.8) with specific contact resistivity 𝜌𝑐 =

1.8 ×  10−11Ω 𝑐𝑚2, and sheet resistance ratio 𝑅𝑠ℎ1/𝑅𝑠ℎ2 = 1. We used 0.6 V as the input voltage, 
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which is the required industry standards according to the International Roadmap of Devices and 

Systems (IRDS)[30] for year 2030.  

It is clear that the interfacial current is much more evenly distributed for the contacts with a 

tunneling layer. The current crowding decreases significantly when the gap distance between two 

contact members is increased. The specific contact resistivity 𝜌𝑐(𝑥) along the contact length, 

plotted in Figs. 6.6b, is about 2 orders of magnitude higher for tunneling contacts for the two cases 

considered. However, the total contact resistance, shown in the table in Fig. 6.6a, is still within the 

same order of the ohmic contact. This is because the total current in the circuit (i.e. area under the 

curves in Fig. 6.6a) does not decrease significantly. 

Similar calculations are done for Cu-vacuum-Cu contacts in Fig. 6.7 with a smaller gap 

distance (in sub-nanometer). The work function of Cu thin films is 𝑊1 = 𝑊2 = 4.56 eV [36]. For 

these calculations, the thickness of both Cu contact members are 10 nm, with a resistivity of 

18 μΩ cm [36], which gives sheet resistance Rsh1 = Rsh2 = 18 Ω/□. Contact length 𝐿 = 100 nm, 

and width 𝑤 = 10 nm, The interfacial layer is assumed to be vacuum (relative permittivity 𝜖𝑟 = 

1.0 and electron affinity 𝑋 = 0 eV). 
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Figure 6.7 Tunneling type electrical contacts. (a) Contact current density 𝑱𝒄(𝒙), and (b) 

specific contact resistivity 𝝆𝒄(𝒙) along the contact length for Cartesian Cu-vacuum-Cu 

tunneling contacts. Solid lines are for self-consistent numerical calculations using Eqs. (3.5) 

and (3.6), and MIM quantum tunneling formulations (Chapter 2) [18], [29], for different 

values of gap distance D. Dashed lines are calculated analytically with constant 𝝆𝒄 

calculated using 𝑽𝒈 = 𝑽𝟎 in the 1D MIM tunneling model. Black dotted lines are for an 

ohmic contact with 𝝆𝒄 = 𝟏. 𝟖 ×  𝟏𝟎−𝟏𝟏𝜴 𝒄𝒎𝟐,  analytically calculated from the TLM 

equations. 

Figure 6.7 shows similar trends to those in Fig. 6.6. The current crowding decreases 

significantly when D increases. Although, 𝜌𝑐(𝑥) (Fig. 6.7b) is orders of magnitude higher for 

tunneling contacts, the total contact resistance, plotted in Fig. 6.8a (crossed symbols) is still within 

the same order of the ohmic contact. Therefore, compared to a perfect ohmic contact with very 

small  𝜌𝑐(𝑥), tunneling type contacts with ultrathin insulator layer may help to achieve better 

contact current distribution and thermal management. Note that if the gap distance is increased for 

contacting members with high work function, then the junction will become highly resistive and 

the total current transport will be reduced severely.  



140 
 

 

Figure 6.8 Contact resistance as a function of (a) input voltage 𝑽𝟎, and (b) contact length 𝑳 

for Cartesian Cu-vacuum-Cu tunneling contacts. Solid lines are self-consistent numerical 

calculations using Eqs. (3.5), (3.6), and MIM quantum tunneling formulations (Chapter 2) 

[18], [29], for different values of gap distance D. Dashed lines are calculated analytically 

with constant 𝝆𝒄 calculated using 𝑽𝒈 = 𝑽𝟎 in the 1D MIM tunneling model. Black dotted 

lines are for an ohmic contact with 𝝆𝒄 = 𝟏. 𝟖 × 𝟏𝟎−𝟏𝟏𝜴 𝒄𝒎𝟐,  analytically calculated the 

TLM equations. Crossed points in (a) are for the four cases shown in Fig. 6.7. 

Figure 6.8 shows the tunneling contact resistance as functions of input voltage 𝑉0 and contact 

length 𝐿. For low voltages, the difference between the contact resistance for the ohmic contact and 

the corresponding tunneling contact is prominent. However, as voltage increases, the difference 

becomes smaller, which is caused by the saturation of the tunneling current in metal-insulator-

metal due to space-charge effects [18], [29]. As shown in Fig. 6.8b, as contact length increases, 

the increase of total contact resistance due to the tunneling layer becomes smaller. Thus, our 

proposed method reducing current crowding with a tunneling layer would become more effective 

for longer electrical contacts. 
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6.4 Concluding Remarks 

In summary, we have proposed methods to effectively control current distribution and contact 

resistance in nanoscale electrical contacts. We have used the two dimensional TLM [12], [13] for 

ohmic contacts, and TLM coupled with the thermionic injection model [14], [15] for Schottky 

contacts and the quantum self-consistent model [18], [29] for tunneling type contacts. Our study 

shows that severe current crowding in highly conductive electrical contacts can be effectively 

reduced by spatially varying the contact layer properties and geometry, or by introducing a thin 

nanometer or sub-nanometer scale insulator layer between the contacting members. This 

theoretical study also provides insights for strategic current steering and redistribution at the 

contact interface, which can aid in better thermal management of the overall circuit. The local 

heating induced effects, such as thermal hotspots [47] and aggravation of electromigration [48], 

can be mitigated by manipulating the specific contact resistivity along the contact length.  

It is worthwhile to note that the effects of the transverse dimension, possible charge trapping 

inside the contact layer, reactive elements and their effects on the time-dependent dynamics are 

ignored in the present study. Moreover, the transmission line model [12] cannot fully capture the 

current crowding and the fringing fields near the contact corners [9], [11], [21]. In future, field 

solution methods [11], [21], [49] may be used to have more accurate evaluation of these effects as 

well as the impact of finite thickness of the contact members and the interfacial layer. 
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CHAPTER 7 

CONCLUSION AND SUGGESTED FUTURE WORK 

 

This thesis studies the current transport in nano-scale electrical junctions, characterizes the 

scaling of contact resistance, and provides better understanding of the underlying physics in 

nanoscale electrical contacts. This theoretical work also offers insights on the design and 

engineering of nanocontacts to reduce contact resistance and improve current transport. 

7.1 On Metal-Insulator-Metal Tunneling Junctions 

A self-consistent model has been developed to calculate tunneling current density in nano- 

and subnano-meter metal-insulator-metal (MIM) junctions with dissimilar metal electrodes [1]. 

The model is an extension of Zhang’s work [2] on similar MIM junction. Quantum mechanical 

analysis has been done to include the effects of exchange correlation potential and space charge 

potential, by solving the coupled Schrodinger equation and Poisson equation self consistently. The 

current in dissimilar MIM is found to be polarity dependent. The forward (lower work function 

metal is positively biased) and reverse (lower work function metal is negatively biased) 

characteristics cross over at higher voltages. The influence of the work function of the two metal 

electrodes, thickness and relative permittivity of the insulator layer on the reverse and forward bias 

J-V curves, have been examined in detail in various regimes from direct tunneling, field emission, 

to space charge limited regime. It is found that the work function difference between the two 

electrodes influences the asymmetry of J-V characteristics more profoundly than their individual 

work functions. The asymmetry increases with increasing insulator layer thickness and relative 

permittivity.  
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Future works on the metal-insulator-metal tunneling junctions may include effects of 

electrode geometry. The present model is developed for Cartesian structure. In future, similar 

formulation may be done for the cylindrical structure as well. Our model is based on the 

assumption that the insulator layer is ideal, uniform and pristine. However, in real devices that 

may not be the case. There may be possible charge trapping inside the insulator film. In order to 

have a more accurate prediction of tunneling current density, the insulator layer imperfections need 

to be taken into account. In the future, frequency dependence of the tunneling junction may also 

be studied. Comparison of the theory and modelling with experiments may also be done. The 

application of the proposed model is widespread. Although developed for DC condition, it is 

applicable to nanojunctions operating up to Near Infrared frequency, since the transit time for 

electron tunneling through a barrier of nm-scale thickness is typically less than 1 fs [3]–[6]. 

Therefore, our model may be used to study the effects of tunneling resistance in several nanoscale 

electrical structures with time-varying excitations. For example, in split-ring resonator arrays, one 

may include tunneling conductivity in the nanogap to investigate the tunneling induced changes in 

the frequency response and absorption behavior. Our quantum self-consistent model can also be 

applied to characterize the rectification behavior of THz induced scanning tunneling microscopes 

(THz-STMs). The current profiles at STM tip-vacuum-sample junction can be studied for different 

THz peak fields, metal tips, sample metals and tip heights, and the basic scaling of the time 

dependent electron dynamics can be obtained. 

7.2 On Current Distribution and Contact Resistance 

The standard transmission line model (TLM) has been modified to include the effects of 

spatially varying specific contact resistivity 𝜌𝑐 along the contact length. The current distribution 
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and contact resistance in ohmic, tunneling and two-dimensional (2D) material-based Schottky 

contacts have been studied for a large parameter space. Self-consistent solutions have been 

obtained from the two dimensional TLM [7], [8] for ohmic contacts, and TLM coupled with the 

thermionic injection model [9], [10] for Schottky contacts and with the quantum self-consistent 

model [1], [2] for tunneling type contacts. Simple analytical solutions have been derived for the 

special case of uniform specific contact resistivity. Both Cartesian [7] and circular (or annular) [8] 

contacts are analyzed. It is found that the current and voltage distribution along the contacts and 

their overall contact resistance depend greatly on the input voltage, contact geometry, and material 

properties. For highly conductive ohmic contacts, the current distribution along the contact length 

is strongly nonhomogeneous [7], [8]. For tunneling contacts, the existing one-dimensional (1D) 

tunneling junction models become less reliable when the tunneling layer thickness becomes 

smaller or the applied voltage becomes larger. In these regimes, the proposed self-consistent model 

may provide a more accurate evaluation of the parallel tunneling contacts. On the other hand, a 

thorough study on the contact resistance of the novel 2D-material-based Schottky contacts showed 

that the junction characteristics transition from Schottky to ohmic regime when the input voltage 

(potential) is around the Schottky barrier height. We have also found that interface roughness can 

significantly reduce the electrical contact resistance for 2D material based contacts [9]. The results 

for ohmic contact are verified with finite element method (FEM) based simulations, and the 2D-

material based calculations have been validated with existing theory and experiments. 

Next, we have proposed methods to effectively control current distribution and contact 

resistance in nanoscale electrical contacts by strategically designing the specific contact resistivity 

along the contact length [11], [12]. Our study shows that severe current crowding in highly 

conductive electrical contacts can be effectively reduced by spatially varying the contact layer 
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properties and geometry, or by introducing a thin nanometer or sub-nanometer scale insulator layer 

between the contacting members. Most importantly, we demonstrate that the current crowding 

effects in nanoscale electrical contacts can be mitigated while maintaining similar total contact 

resistance [11]. 

Future work on the current distribution and contact resistance may include the effects of 

various contact geometry, insulator layer non-uniformities and AC response. One may also 

investigate the role of capacitance and inductance in nano-scale contact structures. It would be 

interesting to study the time-dependent dynamics of such junctions, especially when a large contact 

resistance is coupled with the reactive elements. Our transmission line model is assumed to be 

two-dimensional, where the effects of transverse dimension are neglected. This issue might be 

included in future studies. Although widely used, TLM is only a simplified approximation of the 

practical electrical contacts, where the current crowding and fringing fields near the contact 

corners cannot be fully accounted for. The impacts of the finite interfacial layer thickness and the 

possible parallel current components in the interface layer, are also ignored. To accurately quantify 

these effects, field solution methods need to be incorporated. In the future, one may also extend 

this work to a contact structure with multiple interfacial layers with anisotropic material properties. 

Coupled electrical-thermal transport across nanoscale electrical contacts may also be analyzed 

with the effects of temperature-dependent electrical and/or thermal conductivities.  
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