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ABSTRACT

A TWO WEIGHT LOCAL TB THEOREM FOR FRACTIONAL SINGULAR INTEGRALS
AND REFINED CONSTANTS FOR THE AVERAGING HARDY OPERATOR

By

Michail Paparizos

We obtain a local two weight T theorem with an energy side condition for higher dimen-
sional fractional Calderén-Zygmund operators. Our proof follows the proof for the corre-
sponding one-dimensional Th theorem in [54], but facing a number of new difficulties, most
of which arise from the failure of Hytonen’s one-dimensional two weight As inequality in
higher dimensions. We provide a counterexample in two dimensions that shows why the
analogue of Hytonen’s one-dimensional result does not extend to higher dimensions. Thus,
in order to obtain a local T}, theorem in higher dimensions, we use new arguments to control
the difficult nearby form.

We also provide refined constants for strong (p,p) inequality of the averaging Hardy
operator with respect to a probability measure as well as when two measures that satisfy a
special weak type inequality are involved. We obtain these results as corollaries of a more

general theorem for operators with the property

re X :|Tf(z A ¢ x)|dp(x
e e X TI@I >N <5 S ldne)

on a probability space (X, u).
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Chapter 1

Introduction

1.1 71D theory

Boundedness properties of Calderén-Zygmund singular integrals arise in the most critical
cases of the study of virtually all partial differential equations, from Schrédinger operators
in quantum mechanics to Navier-Stokes equations in fluid flow, as well as in the investigation
of a number of topics in geometry and analysis. In particular, the study of boundedness of
these operators from one weighted space L? (R™; o) to another L? (R";w), not only extends
the scope of application in many cases, but reveals the important properties of the kernels
associated with the individual operators under consideration, often hidden without such
investigation into two weight norm inequalities. The purpose of this monograph is to prove
a general characterization regarding boundedness of Calderén-Zygmund singular integrals
from L? (R™; o) to L? (R™;w), for locally finite positive Borel measures o and w, subject to
some natural buffer conditions. This result, a so-called local two weight T theorem in R",
includes much, if not most, of the known theory on two weight L2-boundedness of singular
integrals. We now digress to a brief history of that part of this theory that is relevant to our
purpose here.

Given a Calderén-Zygmund kernel K (z,y) in Euclidean space R™, a classical problem

for some time was to identify optimal cancellation conditions on K so that there would exist



an associated singular integral operator Tf (z) ~ [ K (x,y) f (y) dy bounded on L? (R™).
After a long history, involving contributions by many authorﬂ this effort culminated in the
decisive T'1 theorem of David and Journé [10], in which boundedness of an operator 7" on

L% (R™) associated to K, was characterized by

T1,T*1 € BMO,

together with a weak boundedness property for some 1 > 0,

141 141
S \/||<P||OO|Q|+ ol Lipy 1€ +”\/||¢||oo|Q| + 19 iy 1QI 7,

\/Qw(@ b () da

for all ¢, € Lipn with suppyp, suppy C @, and all cubes @Q C R";
equivalently by two testing conditions taken uniformly over indicators of cubes,
/ T1g ()|* dz < |Q| and / T"1¢ (2) de S |Q|,  all cubes @ C R™.
Q Q

The optimal cancellation conditions, which in the words of Stein were ‘a rather direct con-
sequence of’ the T'1 theorem, were given in [55, Theorem 4, page 306], involving integrals of

the kernel over shells:

/x—x0<N

2

dr < Ao / dy,
lzg—y|<N

/ K (z,y) dy
e<|z—y|<N

for all 0 < e < N and z( € R"”,

together with a dual inequality.

Lsee e.g. [65, page 53] for references to the earlier work in this direction



cancellation
1950's
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one weight
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b testing
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Figure 1.1.1: History

We now come to a point of departure for two separate threads of further research on
cancellation conditions. The first thread treats extensions of these testing conditions to the
boundedness of Calderén-Zygmund operators on more general weighted spaces L2 (w) —
L? (w), and even from one weighted space to another, L? (¢) — L? (w). The second thread
replaces the family of testing functions {1@} QeD with families {bQ} Qep Mmore amenable to
the boundedness of the operator at hand, subject of course to some sort of nondegeneracy
conditions. Finally the two threads recombine in the theorem of this paper. See diagram

above.

1.1.1 Weighted spaces

An obvious next step was to replace Lebesgue measure with a fixed A9 weight w,

1 1 1
. _ <
R - (\@r /Q“’“”) d"””) (|c2\ /Q v <:c>d”’) <




and ask when T is bounded on L2 (w), i.e. satisfies the one weight norm inequality. For
elliptic Calderén-Zygmund operators T, this question is reduced to the David Journé theorem
using two results from decades ago, namely the 1956 Stein-Weiss interpolation with change
of measures theorem [56], and the 1974 Coifman and Fefferman extension [7] of the one
weight Hilbert transform inequality of Hunt, Muckenhoupt and Wheeden [20], to a large
class of general Calderén-Zygmund operators Tﬂ A motivating example, for the case of the
conjugate function H on the unit circle, arose in the Helson-Szeg6 theorem that characterized
the boundedness of H on L? (w) by the existence of bounded functions u and v on the circle
with [[v]| < 5§ and w = e"tHY The equivalence with the Ay condition on w follows from
the results just mentioned, and the question of a direct argument linking the Helson-Szego
condition to the Ay condition has remained a tantalizing puzzle for decades since. See [55],
pages 222-227| for this and other applications of one weight theory, such as to the Dirichlet
problem for elliptic divergence form operators with bounded measurable coefficients.
However, for a pair of different measures (o,w), the question is wide open in general,
and we now focus our discussion on the main problem considered in this monograph, that
of characterizing boundedness of a general Calderéon-Zygmund operator T from one L2 (o)
space to another L? (w) space, subject to natural buffer conditions on the weight pair (o, w).
First we note that for the primordial singular integral, namely the Hilbert transform H in
dimension one, the two weight inequality was completely solved by establishing the NTV

conjecture (of Nazarov-Treil-Volberg) in the two part paper [29];[26], see also [2I] for the

general case permitting common point masses, where it was shown that H is bounded from

QIndeed, if T is bounded on L2 (w), then by duality it is also bounded on r? (%), and the Stein-Weiss

interpolation theorem with change of measure shows that T is bounded on unweighted r? (R™). Conversely,
if T is bounded on unweighted L2 (R™), the proof in 7] shows that 7" is bounded on L? (w) using w € Ag.



L? (0) to L? (w) if and only if the testing and one-tailed Muckenhoupt conditions hold, i.e.

/|H(1]a)|2dw§/da and /|H(1Iw)|2d05/dw,
1 1 1 1

I 1
/ 5 7] 5do (2) <—/dw> < 1, and its dual,
R |I]* 4 |z — ¢f] 1] J1

uniformly over all intervals I C R". For a-fractional Riesz transforms in higher dimensions

n > 2, it is known (except when o = n — 1) that the two weight norm inequality with
doubling measures is equivalent to the fractional one-tailed Muckenhoupt and T'1 cube testing
conditions, see [30, Theorem 1.4] and [5I, Theorem 2.11|. Here a positive measure p is
doubling if

/ du < / dp,  all cubes Q C R™.
2Q Q

However, these results rely on certain ‘positivity’ properties of the gradient of the kernel

da_1
dr y—=x

(which for the Hilbert transform kernel gﬁ is simply > ( for x # y), something that
is not available for general elliptic, or even strongly elliptic, fractional Calderén-Zygmund
operators.

Then in [Saw| this T'1 theorem was extended to arbitrary smooth Calderén-Zygmund
operators and Ay measure pairs (o, w) with doubling comparable measures, where a pair of
doubling measures o and w are comparable in the sense of Coifman and Fefferman [7], if

the measures are mutually absolutely continuous, uniformly at all scales - i.e. there exist

0 < B, < 1 such that

E E
El <p= @ < v for all Borel subsets E of a cube Q.

Qly Q.




1.1.2 7Tb theorems

The T'1 theorem of David and Journé [I0], which characterized boundedness of a singular
integral operator by testing over indicators 1¢) of cubes (), was extended to a T'b theorem
by David, Journé and Semmes [I1], in which the indicators 1 were replaced by testing
functions le for an accretive function b, i.e. 0 < ¢ < Reb < |b] < C' < 0o, which could be
chosen in a way that the verification of the b-testing conditions is easy, while verifying the
1-testing conditions could be more difficult.

Then, M. Christ [6] obtained a local Tbh theorem for homogeneous spaces, in which the
testing functions are bglg , where the accretive functions by can be chosen to differ for
each cube . Many authors, including G. David [§]; Nazarov, Treil and Volberg [3§], [37];
Auscher, Hofmann, Muscalu, Tao and Thiele [3|, Hytonen and Martikainen [24], and more
recently Lacey and Martikainen [27], set about proving extensions of the local Th theorem,
for example to include a single upper doubling weight together with weaker upper bounds
on the function b. But these extensions were modelled on the ‘nondoubling’” methods that
arose in connection with upper doubling measures in the analytic capacity problem and
were thus constrained to a single weight - a setting in which both the Muckenhoupt and
energy conditions follow from the upper doubling condition. Good references for that are
Mattila, Melnikov and Verdera [34], G. David [§], [9], X. Tolsa [57], and also Volberg [58].
Applications of the local Tb theorem included boundedness of layer potentials, see e.g. [I]
and references there; and the Kato problem, see [19], [I8] and [2].

More recently, E. Sawyer, C.Y. Shen and I. Uriarte-Tuero [54] obtained a general two
weight T'b theorem for the Hilbert transform on the real line. In this dissertation, we extend

[54] to higher dimensions.



The main two weight local Tb theorem:

Theorem 1.1.1 (local Th in higher dimensions). Let T% denote a Calderdon-Zygmund op-
erator on R", and let o and w be locally finite positive Borel measures on R"™ that satisfy
the energy and Muckenhoupt buffer conditions. Then T, where T f =T (fo), is bounded

from L? () to L? (w) if and only if the b-testing and b*-testing conditions

2 * 2
/I|T§‘b1|2dw§ (&i}a) 1], and /J|T£"* “ 1% do < (z:t;d*) Tl (1.1.1)

taken over two families of test functions {br};cp and {b?}}JeP’ where by and b are only
required to be nondegenerate in an average sense, and to be just slightly better than L2

functions themselves, namely LP for some p > 2.

The families of test functions {br};cp and {b%} Jep in the Tb theorem above are nonde-
generate and slightly better than L? functions, but otherwise remain at the disposal of the
reader. It is this flexibility in choosing families of test functions that distinguishes this char-
acterization as compared to the corresponding 7’1 theorem. The T'b theorem here generalizes
many of the one-weight T'b theorems, since in the upper doubling case, the Muckenhoupt 2
condition and the energy condition easily follow from the upper doubling condition. Recall
that in the one-weight case with doubling and upper doubling measures u, there has been a
long and sustained effort to relax the integrability conditions of the testing functions: see e.g.
S. Hofmann [I6] and Alfonseca, Auscher, Axelsson, Hofmann and Kim [I]. Subsequently,
Hytonen- Martikainen [24] assumed 70 in L® (u) for some s > 2, and the one weight the-
orem with testing functions b in L? (1) was attained by Lacey-Martikainen [27], but their

argument strongly uses methods not immediately available in the two weight setting.



Boundedness in L? of Calderon-Zygmund operators.

One weight theorems
J

Two weight theorems
J

R r Rl
1928 Riesz
op : Hilbert
Measure: Lebesgue
1973 Muckenhoupt, Hunt, 1956 Calderon, Zygmund
Wheeden Operator: Convolution Singular-
Operator: Hilbert integrals
Measure: p € A,, Measure: Lebesgue )

e

1974 Coifman, Fefferman
Operator: Convolution Singular
integrals
Measure: 1 € A,

1960 Hormander
Operator: General singular integrals
Measure: Lebesgue
A ion: L? boundedness

1990 Christ
Operator: General singular integrals
Measure: 1 doubling
Assumption: Local pseudo-accretive
L>°-Tb testing

Local T}
testing

2002 Nazarov. Treil, Volberg
Operator: General singular integrals
Measure: p upper doubling
Assumption: Local pseudo-accretive
L2-Tb testing, antisymmetric kernel

1984 David, Journé
Operator: General singular integrals
Measure: Lebesgue
Assumption: T'1 testing

1985 David, Journé, Semmes

Measure: Lebesgue
A i Global T'b testing

2003 Nazarov. Treil, Volberg
Operator: Calderon-Zygmund
Measure: 1 upper doubling
Assumption: Weakly
accretive T'b testing

................ v

1982 Sawyer
Operator: Maximal
Measures: u, v weights
Assumption: Cube testing

[Operator: General singular integrals :

1988 Sawyer
Operator: Poisson
Measures: u, v weights
Assumption: Cube testing

1997 Nazarov. Treil, Volberg
Operator: Haar multipliers
Measures: u, v weights
Assumption: Cube testing

Operator: Hilbert
Measures: o, w Radon

‘ 2010 Nazarov, Treil, Volberg
T'1 testing, A, Pivotal

2010 Hytonen, Martikainen
Operator: General singular integrals
Measure: 1 upper doubling
Assumption: Local L™ -accretive,

Operator: Hilbert
Measures: o, w Radon
T'1 testing, Ay, Hybrid

[ 2012 Lacey, Sawyer, Uriarte-Tuero

L>-T,, testing : :
H 2013 Lacey, Sawyer, Shen, Uriarte-Tuero .
: Operator: Hilbert :
E Measures: o, w Radon, no common masses
. A i T'1 testing, As
A
2013 Lacey, Martikainen

Operator: General singular integral

;1 upper doubling

T}, testing

IAssumption: Local L?-accretive, L?-

2013 Hytonen
Operator: Hilbert
Measures: o, w Radon

Assumption: T'1 testing, A

2016, 2020 Sawyer, Shen, Uriarte-Tuero,
Grigoriadis, Paparizos
Operator: a-fractional singular integrals
Measures: o, w Radon
Assumption: Local L**¢-accretive L*-
Tb testing, As, Energy

Figure 1.1.2: Theory development

The previous diagram details the relevant history of two weight theory. Many important
contributions are omitted, such as those dealing with LP, LY assumptions in the case of
Lebesgue measure, see for example [17] and references there, and results for dyadic operators,
see for example [3] and references there. As is evident from the diagram, Theorem [1.1.1] (and
its precursor for n = 1) is the first local Th theorem for two weights.

The next two chapters are also part of the dissertation of Christos Grigoriadis as they

constitute joint work with him [I3], [14].



Chapter 2

Hytonen’s off-testing constant in higher

dimensions 1s unbounded

A number of difficulties arise in generalizing to higher dimensions the work that was done
in [54] for dimension n = 1. The main difficulty lies in the strictly-one dimensional nature
of a fundamental inequality of Hytonen, namely that local testing, i.e. testing the integral
of |T01Q‘2 over the cube @), together with the Ao condition, imply full testing, meaning
that }Tnglz is integrated over the entire space R™. For the proof of full testing, Hytonen
uses an inequality for the Hardy operator that is true only in dimension n = 1 - in fact we
prove that this property of the Hardy operator is not available in higher dimensions. Before

stating the theorem we need to define the fractional energy and the off testing conditions.

Definition 2.0.1. We say that the pair (o,w) satisfies the energy (resp. dual energy) con-

dition if
1 < [ PY(Qr,1¢0) i 2
(85‘)25 sup —Z # Hx—m‘éT 5 < oo
Q=0Q, °(@) = Q,|7 12(1g,)
1 o [P (Qr, 1gw) i 2
(Sg’*) = sup —Z ;1@ Hm—mgzr 5 < 00
Q=UQr w( )rzl |Qr|ﬁ . (1QTU)

where the supremum is taken over arbitrary decompositions of a cube @ using a pairwise



disjoint union of subcubes @y, where P*(Q, ) is the standard Poisson integral and

ml ﬁ/xdu(m) = <ﬁ/wld,u(x),...,ﬁ/mnd,u(x)>.

Definition 2.0.2. The off-testing constants T and R ofa in R? by

2 —gsu L ;dw >2dax
Tofia Qpcu(@)/Rz\Q(/Qu—yP—a W) dot)

1 ty, — 2
R2 =su —/ </udwt)dax, 1<m<2

for all cubes Q) C R2 whose sides are parallel to the azes.

Theorem 2.0.3. For 0 < « < 2, there exists a pair of locally finite Borel measures o,w in
R? such that the fractional Muckenhoupt AO‘,AS’* and the energy E5', S;’* constants are

finite but the off-testing constant Tg o 1s not.

Theorem 2.0.4. For 0 < a < 2, there exists a pair of locally finite Borel measures o,w in
R? such that the fractional Muckenhoupt AO‘,AS’* and the energy £, 5;’* constants are

finite but the off-testing constants Ry, of.o are not.

We begin with the proof of Theorem [2.0.3] The proof of Theorem [2.0.4] will be very
similar and we will only have to deal with the cancellation occurring in the kernel with

Lemma [2.3.1] being useful.

Proof of Theorem [2.0.5. First we build two measures in R, generalizing the work done in

[28], and then they will be used for our two dimensional construction.

10



2.1 The One-Dimensional Construction

Given 0 < a < 2, choose } < b < 1 such that } < (152)" " < 1. Let 571 = (152)°°
1ven S a< 7COOSeg_ < suc a 9>\ > 3. € SO =\ .
Recall the middle-b Cantor set E;, and the Cantor measure ¢ on the closed interval 1 ? = [0, 1].
k
At the kth generation in the construction, there is a collection {/ ]k: }?:1 of 2% pairwise disjoint
losed intervals of length [75] = (152)". The Cantor sct is defined by Ey = (32 U2 1#
closed intervals of leng |j|_ =5~ ) . The Cantor set is defined by E; = (152, Uj— j
and the Cantor measure & is the unique probability measure supported in E with the property

that is equidistributed among the intervals {[ k} _, at each scale k, i.e

We denote the removed open middle bth of 1 Jk by Géﬁf and by z;‘: its center. Following closely

[28], we define

&—ZS (5k
k.j ]

k Sy (1})
where the sequence of positive numbers s i is chosen to satisfy m =1, ie.
J

k
2
s’?:<—> k>0, 1<j<2F
J 52

2.1.1 The Testing Constant is Unbounded

. Consider the following operator

O =

11



Note that

ok dis(y) dix(y) o(I7) S0\ *
Fa)= o e [ e L =(3)
Il |Z1 _y‘ Il ‘21 _y‘ (

2—«
1 (1-b\"
2\ 2
1

since |z]f —y| < |zf| for y € ]f and zf = Q(L_Tb)k Similar inequalities hold for the rest of

zf This implies that the following testing condition fails:

oz . s o 1
/19 <T(1I?w)(x> Zkzlyzls (—) :g;Q—k:oo (2.1.1)

2.1.2 The A, Condition

2—«
P = |, <<|f| o xm?) )

and the following variant of the A§ condition:

. Let us now define

AS(6,0) =supP(1,5) - P(I,&)
I

where the supremum is taken over all intervals in R. We verify that AS‘ is finite for the pair

(6,&). The starting point is the estimate
o7l k k— E k —/

- X Yk thea 3 (4)

k= 0

(gkerf < !

2
VR
<:C>DL\')| Do
~_

~

Il

»

<~
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and from this, it immediately follows,

(fg) (fg) Sgw(ff)
(d—20  ~ [7014—2
P |15 [* ==

=1, for >0, 1<j<2".

Now from the definition of & we get,

2—a
. o Iﬁ Iﬁ
Bl s < U i dé5 ()
r |]7€|2—a IO\Ig / 2
N (12 + | — )
g &(]g) { o0 Qk—mS? |I£|2_O‘
- ’[€|2704 1—p\™ 42«
r m=0 k=m <|I£|+b<——7) >
4 m
L 2R (4)
< o) n Z °0
<P oy )
0 (o (12)" 1)
t oy
sl et 1 -
o ’[€|2—a T ‘ﬂ’?—a 2 Z 2
r r 0 m=0
G st s
e e R

and using the uniformity of @,

2—«
. (1L 1t
Pt < ;‘2(27“_)a+/0 , 1] dio ()
A (|ﬂ|+|a:—w|)
l12—a -
(1Y) |17 ( )
< |I€|2—0¢+Z
g k=1 (uﬂy+b 1 b )
. Y 12— - Th
< w([f) 17 (I

|[g|2—a+kzl (b( k 1- e )

13
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oy 2t el

S e P e

where I]kk C If_l, ]f - If_l and IJkk N If = (), and where all the implied constants in the

above calculations depend only on a. From (2.1.3)), (2.1.4) and (2.1.2)), we see that

P(IL,6)P(I @) S 1.
Let us now consider an interval I C [ ? and let A > 1 be fixed. Then, let & be the smallest
integer such that zf € AI; if there is no such k, then Al ; Gﬁ, for some ¢. We have the

following cases:

Case 1. Assume that I C AT & Gé‘} C If. If |zf — zf| < dist(:zrj,@G?) then,

Lo _ dé (z) dis(z)
B, 5YP(ILG) = |1 2@/ _ / __(2.1.5)
190 (] + |z — )42 S0 (1) + o — 2q])3-200
k k12—a j: D1k -
< |]|4—2a ij . 1 / |Ij‘ dé(x) P([j>w)
[T | IF |2 e (11F] + !:v—x]]zgl)‘”“ |IF[2=e
_ e s F(I5) \ @) - F(IF)a(1F) N
~ |]J/_€|2—a |]|4—2a |]J15:|4—2a |IJI§|2—a ~ |]Jl€|4—2o¢

where in the first inequality we used the fact that |z — x| =~ |z — zf] 2 |[]k| when z ¢ GF,
since xy is “close" to the center of G? , and for the second inequality we used (2.1.3)) and
©1.4).
If k| > dist(a, 0GE ()" <1 < b (12)"

lzp — zj| > dist(zp, j), we can assume b ( =5~ < | <b (57 or some

m > k, since for m = k we have || ~ |]j]-€|7 |z —xp| 2 |x—:1cIk| for z ¢ Gg? and we can repeat
J

the proof of (2.1.5). Now let I;™ be the m-th generation interval that is closer to I that

touches the boundary of G;?. We have, using |$Ign — zf] < xy —2§|, forall ¢ >1,1<j <2t

14



P(1,6) S P, &) and P(I,&) < P(I", &), which imply

P(I,6)P(I,&) S 1.

[

Case 2. Now assume Gg? Cc Al If Ij]-C N1 =0, then, using the minimality of k, I C G}
for some m < k and we can repeat the proof of (2.1.5). If If NI # 0 then |I] < \Ijk\ since
k-1

otherwise AI would contain ;™ ", contradicting the minimality of k if we fix A big enough

depending only on a. Hence we have:
. . A
GH -+l = 1 < IGH 4 log = 4 o — ] < (A4 5 ) U1+l =2

which implies that

’[|2—oz

5(1.6)< (1)< 7|2~ ‘[;?P—oz

P(I,c / o(x /

o~ o o\ 42« ~ | r1k|2— 0 2\ 4—2a
n <|G§|+\x—z§€!> |I]| “n <|I]]?|+|x—zf\>

dé(x)

and similarly

27 e o sk
Bk, @) < B(E,@).

P(I,0) < :

~ i

which implies

P, 5)P(1o) < 1

~Y

Case 3. If neither Gé? NAI # Gé‘? nor Gé‘} N Al # AI, note that Gf C 3AI and we repeat

again the proof of Case 2.

Thus, for any interval I C I ? , we have shown that P(I,5)P(I,&) < 1, which implies

Ag(6,0) < oo. (2.1.6)

15



2.1.3 The Energy Constants £ and &*

Now define the following variant of the energy constants

£ = sup ﬁZw([r)E(Ir,wFP(I,«,lIJ)Q
I UIr 7"21
& = sup ?ZU(IT)E(IWU)2P([T71[W)2

=0 “0 75

where the supremum is taken over the different intervals I and all the different decompositions

of I = Urzljrv and

P(I,p) = / ( / —dp(z),

3
R (] + |z —/l)

o 11 (¢ —a')? _ 1 e:
B = g J, |5 e = = <1

We first show that & is bounded. We have

b(1 &):/ 1] <§:0 (2" +1)1)
’ (] + |& — 2f])>™ = (2N )2 2=
0
< fMa 2 ”< f M%5
2 i S inf M6 (x)

1
where M%u(x) = sup 55—
I3z ’[‘

an interval I = U,>11;, we have:

/ dp and the implied constants depend only on . Thus, given
I

O )P=(Iy,176) < ]TlnfMlla x) < M™170)” (z)dw(x
> @b > (a)()/l(a)z()d()

r>1 r>1

16



and so we are left with estimating the right hand term of the above inequality. We will prove

the inequality

/Ie (e alz;ﬁ)Q (2)dis(z) < O (Iy). (2.1.7)

where the constant C' depends only on a. This will be enough, since for an interval [

containing a point mass zfi but no masses zf for k < £, we have

/1 (MO5)2 (2)did () = /1 . <Mo‘lmlg&>2(x)d&;(x) < /L€ (M%I?é&)Z(x)dw(x)
< (15 ~s(I)

Since the measure & is supported in the Cantor set E;, we can use the fact that for z € If NE,

SARVO ke g ,

1 S 2 I 9
Ma(l[eo-)<x) SJ P /k CéO' ~ sup : —k ~ O-f(QT—)a ~ ( )
' (k,j):erJ]? ‘Ijk‘ I NIy (k:,j).xEIJI? 50 17| S0

Fix m and let the approximations (M) and (™) to the measures w and & given by

Zlem‘llm()dx and 0" szék

k<m j=1

m
For these approximations we have in the same way the estimate for = € Ule I,

S0

<1>k\/€<2>k\/€ ’

50 50 2

M (1145(7”)) (z) < sup /k lgi& ~ sup 0 ZO <C ( )
" (k.j) xelk ‘I’”v‘ Ity (k,j):wdf <%)
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Thus for each m > n > ¢ we have

e (1,60 gt < o 2 22(2—’” com—{( 2 25—7” Cst~cC | ds
(g . (2)eoco (2 cimc o

Now since &' converges weakly to @ and using the fact that M® is lower semi-continuous
we get:

lg\/_/a (11746(”)) deo < hmlnf/MO‘ Igcr( )) deo(™m) < Co(10)

Now, taking n — oo, by monotone convergence we get ([2.1.7]). This proves
> w(I)P*(I,116) < Co(I) (2.1.8)

which in turn implies £ < oo as E(I,&) < 1.

Finally, we show that the dual energy constant E* is finite. Let us show that for I C I?
G(IE(I,5)*P(1,0)% < o). (2.1.9)
as if we let {I, : r > 1} be any partition of I, (2.1.9) gives

> (1) E(Ir,6)°P(1,6)* £ w(Ir) =i

r>1 r>1

Now let us establish (2.1.9). We can assume that E(I,5) # 0. Let k be the smallest

integer for which there is a r with zf € I. And let n be the smallest integer so that for some

18



s we have 317 € [ and 3547 = ¥ We have that

o 11 lz—2/)? . .,
E(I,6) = 56(1)2/1/1 P dé(x)ds (z")
1

= 55k —| k|2 o(x —|x_$/|2 G (x)do (2!
0L [”(Z” ]y )

SENBUNEY | SUED (2 )

AN

2

5(1)? (1) s

k . k
Finally, (1) ~ (%) (1) =27k and P(I,0) ~ (i}) , which proves (2.1.9).
S
0

2.2 The Two Dimensional Construction

It is time now to define the two dimensional measures that prove the statement of Theorem

2.0.3] For any set E C R? let
(0]
w(E) = Z wn(E)
n=0

where &g(E) = &(Ey N 1Y), E; the projection of E on the x-axis, and &y, are copies of &y
at the intervals [ay, an + 1] x {0} with ky = ap+1 — (an + 1) to be determined later. In the

same way, let

o(E) =) 6n(E)
n=0

where 6¢(E) = 5([Eﬂ(]? x{70})]z), and &, are copies of G at the intervals [ap, an+1]x{vn},
where the height ~, will be determined later. Check Figure [2.2.1]

o

n o

w T W W W
n

Figure 2.2.1: The two measures
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2.2.1 The A, conditions.

We will now prove that both A§ and Ag’* constants are bounded. Let @ be a cube in R2,
Ji = lan,an + 1] x {0} and J3 = [an, an + 1] x {7n}. We take cases for Q. If @ intersects
only one of the intervals Jjy, say J(()) for convenience, and (Q N Jg)x =: Jp we have:

o(17)
Q"2

« W(Q) D . W(J()) o
P (Qv 1QCU) |Q|17% S P(J()v 0) |JO|2_a +P (Q> 1(!]%1)00)

< A3(5,0)+C < o0

using ([2.1.6)) and taking k, large enough so that the second summand is bounded indepen-
-1

dently of the interval (k, = g2nmax{(2—a)" "1} would do here). If ) intersects more than

one of the intervals J, it is easy to see, using that ) is very big (since it intersects more

than one of the intervals) and that ky, is also large, that:

w(Q)

PQ(Q7 1QCU)@T% S_, 1

which of course shows that A is bounded. Essentially using the same calculations we see

that Ag’* is bounded as well.

20



2.2.2 Off-Testing Constant

Let us now check that the off-testing constant is not bounded. Choose the cube @, =

lan, an + 1] x [0, —1]. Then,

W(Clgn)/Q% {/Qn%} ila(x) - %110)/19 U]g N _dzi(;ll 27 p (1)

for x = (21,29) and y = (y1,y2). Taking v, such that the last expression on the display

above equals n (note that this is feasible, since for v, = 0, (2.1.1)) gives infinity in the latter

expression above) we have

and by letting n — oo we obtain that the off-testing constant is not bounded.

2.2.3 The Energy Conditions

. For the energy condition &' first, let @ be a cube and @ = UQ;, where {Q,}>2, is a

decomposition of ). Then we have

2
i <23 W@ (P (@ 1g0) )]

1 o [ PY(@r,1q0)
12(1g,«) 0(Q) &=

@S\ Qe

o= ms,

Assume that @ intersects m intervals of the form Jj. Then we have m —2 < 0(Q) < m.

The case m = 1 is exactly the same as the one dimensional analog for £. Assume m = 2.
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Now we need to take cases for ),:

(i) Let Q' be the set of cubes @, that intersect only one of the intervals Ji'. Then we

have, following the proof of (2.1.8)), that

S w(@r) (P (Qr1g0))” < Co(Q)
Qreq!

(ii) If @y intersects both of the intervals J{' then this ¢y is unique since the family {Q},en

forms a decomposition of ). Therefore we have:

2 _ w(Qr)o(Q)

w(@r) (P (Qr,1g0))" < o (@ 50@Q)

using the fact that |Q,| > 4% since it intersect two of the intervals Jy and w(Qr) S

~

2,0(Q) 32
For m > 3, again we take cases for Q)
(i) If Qr intersects only one .J§ we again have, following the proof of (2.1.8)), that

3 w(@) (P (Qr.1g0))” < Co(Q)
Qreql

(ii) If @, intersects more than one of the intervals Jj, the last one being Jg 0 we have

m

r)o(Qr)? 1
(@) (P (Qr,199))" % +w(@) ) 2, ~
T k=1 r

where @, contains all the intervals Jj such that n < ng. Again in the last inequality

we use the fact that @ is very big since it intersects at least two intervals Jy'. Now
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since (), form a decomposition of () we can have at most m — 1 of these.

Combining the above cases, we obtain

3 w(@) (P (Qr,190) )* < Co(Q) + 2m — 2 < 200(Q)
r=1

and that proves the energy condition is bounded.
The dual energy 53 " can also be proved bounded with the same calculations as in the
energy condition following the proof of ([2.1.9) instead of (2.1.8) as in the first case above.

This completes the proof of the Theorem [2.0.3] O

2.3 The Riesz transform lemma

To obtain the same result for the Riesz transforms, we need to deal with the fact that the

kernel is not positive. This prevents us from placing the masses for ¢ at the center of the

intervals Gf , as we did in the proof of Theorem [2.0.3] Since otherwise, if the point-mass ¢

is located at the center of G/; , it would result in the cancellation of much of the mass not
letting us deduce that the off testing condition for the Riesz transform is unbounded. The
following lemma, whose proof follows closely the work in [28] but with a two dimensional
twist, helps us overcome this problem, showing that, while not being able to place the point
masses in the middle of Gf , we can place them far from the boundary. This enables us to

show that the As condition is bounded, like in the proof of Theorem [2.0.3| First we need to

define the operator

fif(x) = / (z — y)f(y)dy

R |z -y~
Lemma 2.3.1. Fork > 1, 1 < j < 2%, write G? = (a?,bk.). Then there exists 0 < ¢ < 1

23



that depends only on a such that

R (a§+c (1 ; b)kb) = (S?())k

where & is the measure defined above.

Proof. Fix k. We have

— k .. _— k .. —_— k
R (a’f+c (1 5 b) b) <R (a§+c (1 5 b) b) <R (a’;k+c (1 5 b) b)

from monotonicity. So it is enough to prove the following:

k k
(—2 ) S R <a1 +c ( 5 b| < Rw Qop +C 5 bl S <—2 )

We start with right hand inequality. Following the definitions of R, we get

k .
Ro(a¥, +c (1_b) b g/ dio(y) _
2 yop, ) b—y

27]{ k-1 275
~ +
2-agk k—0+1 2-a
C S _ _
o it () o
9—Fk ’“Zl 9—¢
+
— 2—a.—k _ 2—a
A0 T e[ 1 (1mp\EOH
> (7

k
since agk =1- (1744)) (L_Tb> . The square bracket inside the last fraction is minimized for
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¢ =k — 1 and we get the inequality

k -k k-l ¢ k
ke (500 22 5 () 2 2
Rw(an-l—c( 5 ) b) S 02_a36k+2_: 5) ~2=a\9

where the implied constants depend again only on . We should note here that the summand

with ¢ = k is the dominant one in the above inequality.

. k
Now we consider the left hand inequality. We have that R (a]f—i-c(%—b) b) equals

. i 1_b/€ k-i-l” By 1—bk
RmI{€+1 <a1+c( 5 ) b) +;Rw115 (al—i-c( 5 ) b) (2.3.1)

and following the argument for the previous inequality we see that

k+1 k
.. 1-0b sp\ k
. k 0
< _
;_1 RW1]£ (al —|—c< 5 > b) A ( 5 )

where A depends only on o but not on ¢. The first summand of ({2.3.1]) gives

dio(y) i 21

/I{CH <a’f+c (I—_Tb>kb—y>2_a et ((L}b)g . (L}b>kb>2_a

Vv

2
"2
[z

Choosing ¢ small enough not depending on £ (since the last sum does not depend on k), we
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obtain

dio(y) S0 <s_o>k
Tkt Lk 2—a = 71\
1 (a]f—l—c (%) b—y)
with C7 > 2A and we conclude our lemma. n

k
ek 1-b . k
Proof of Theorem [2.0.]} Set Zj = aj+cb ( 5 ) and define the measure ¢ = E s (521?, where
k.j

k
sY = <%) as before. Following verbatim the calculations of Theorem [2.0.3] one can show
S
0
that Ag(d,d&) < 00. Now define the measures w and o, as before, for any measurable set

E C R? by

W(E) =Y @n(E) and o(E) = on(E)
n=0 n=0

where 6o (F) = d([Eﬂ(I? x{70})]z), and &, are copies of ¢ at the intervals [ap, an+1]x{vn},
and where the height ~,, will be determined later. Again, as before, it is easy to see that both
A5 and Ag’* and both & and €2a " are bounded. Let us now finish the proof by showing
that the off-testing constant for the Riesz transforms are unbounded. From Lemma[2.3.1] we

have Rw(zj) 2 (g) which implies

) 2 oo 2K By 50 ok oo 2k 1
/19 <R(1I?C£))(:ﬁ)) do(y) 2 kz_:l 2—21 si - (5> - kz_: Z oF = o (2.3.2)
=1y= =1j=1

Now choose the cube Q, = [ap, an + 1] x [0, —1]. Then,

R o = @ /Q . [ / n(xfx__y;ffify%a(x)

1 (21 —y1)dio(y1) 12, _n
w(@n) /I? [/I? Vi — )% + %213_62} dolo1) = w(@n)

v
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by choosing the height 7, so that f[? [f[O ((zl—yl))zddo(zlg)_a
T1-Y1)*+rn

n — 0o, we see that the off-testing constant is unbounded.
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Chapter 3

A two weight local 16 theorem for

n-dimensional Fractional Integrals

3.0.1 Introduction

With full testing in hand, we obtain a number of properties that greatly simplify matters
but we do not have this tool as we have shown in the previous chapter. Here are the main
challenges encountered in passing from the one-dimensional setting to the higher dimensional

analog.

1. The nearby form. The main difficulty in proving the Tb theorem in dimensions
n > 1 arises in treating the nearby form in this chapter. Full testing is used repeatedly
everywhere in this chapter, and a demanding technical approach involving random
surgery and averaging, is needed throughout this chapter. In particular, to obtain
estimates over adjacent cubes, we decomposed one of the cubes into a smaller rectangle
that is separated from the other cube by a halo. The separated part is estimated by
the Muckenhoupt’s Ay condition, while the halo is estimated by applying probability
over grids. A typical example is the following: Let I be a cube in the grid associated
to the function f and J a cube in the grid associated to the function g. Let also by, b

be the testing functions used in the theorem for these cubes.
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We would like to estimate [ T2 (b j25%\ J> b1 jdw. The domains of integration inside
the operator and inside the integral are adjacent. In dimension n = 1 we could use

Hytonen’s result. Now we instead argue by splitting the integral as follows:

_|_

< ‘/Taa <b11]\(1+5)J) b?}ljdw

‘/Tg (bll(I\J)ﬂ(Hé)J) b1 jdw

‘/Tg (br1ps) byt de

The first term on the right hand side, where the domains inside the operator and
the integral are disjoint with positive distance, is bounded by a constant multiple,
depending on ¢ and n, times the Ag constant. Using averaging over grids, the second
term on the right hand side is bounded by 091pa where the small § gain comes from
the fact that |(I\J)N(1+ 5)J|% ~ §|I| where |- | denotes the Lebesque measure of the

cube.

. Splitting forms. Here we begin with a pair of smooth compactly supported func-
tions (f, g) and we would like to decompose the functions into their Haar expansions.
However, when we select a grid G for f, the support of f may not be contained in any
of the dyadic cubes in the grid G, with a similar problem when selecting a grid H for
g. To deal with this, we follow NTV by adding and subtracting certain averages for
these terms, resulting in four integrals to be controlled by our hypotheses. In the one
dimensional setting, full testing was used to eliminate three out of the four such inte-
grals that appear after decomposing the functions in sums of martingale differences.
Here in this paper, the argument was adjusted to avoid using full testing by averaging

over the two grids G and H associated with f and g.
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3. Pointwise Lower Bound Property (PLBP). In [54] for n = 1, the PLBP was
used to control terms involving certain ‘modified dual martingale differences’ in which
a factor by had been removed. Moreover, it was proved there that, without loss of
generality, the p-weakly accretive families of testing functions by and ba for @ € P

could be assumed to satisfy the pointwise lower bound property, written PLBP:

’bQ (z)] > ¢ >0 for Q € Pand o-ae. z€R,

for some positive constant ¢;. However, this reduction to assuming PLBP depended
heavily on Hytonen’s Ao characterization for supports on disjoint intervals, something

that is unavailable in higher dimensions as the following theorem shows:

To circumvent this difficulty we used an observation (that goes back to Hytonen and
Martikainen) that under the additional assumption that the breaking cubes @, those
for which there is a dyadic child @’ of @ with bQ/ #+ 1Q/bQ, satisfy an appropriate

Carleson measure condition.

4. Indented corona. In Section 3.6 (dealing with the stopping form) we construct an
‘indented corona’. In dimension n = 1 this construction simply reduces to consideration
of the ‘left and right ends’ of the intervals. In the absence of ‘right and left ends’ in
higher dimensions, this simple construction is replaced by a more intricate tower of

Carleson cubes.
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3.1 The local Th theorem and proof preliminaries

3.1.1 Standard fractional singular integrals

Let 0 < a < n. We define a standard a-fractional CZ kernel K“(x,y) to be a real-valued
function defined on R" x R" satisfying the following fractional size and smoothness conditions

of order 1+ ¢ for some 6 > 0: For = # y,

K (z,y)] < Cozle—y/*™" (3.1.1)

VK (z,y)| < Cogle—y|* !

_ J o
VK (2,y) = VK («',y)| < C'CZ<|x _x‘) o —y|* ’Ej_;‘ S%,

and the last inequality also holds for the adjoint kernel in which x and y are interchanged.
We note that a more general definition of kernel has only order of smoothness ¢ > 0, rather
than 1+, but the use of the Monotonicity and Energy Lemmas in arguments below involves

first order Taylor approximations to the kernel functions K (-, y).

3.1.1.1 Defining the norm inequality

We now turn to a precise definition of the weighted norm inequality

T8 7 20y < P 1720y /€12 (0). (312)

«a

For this we introduce a family {775 R of nonnegative functions on [0, 00) so that

}0<5<R<oo
the truncated kernels ngR (x,y) = nng (|lx —y|) K (x,y) are bounded with compact sup-
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port for fixed x or y. Then the truncated operators

T35S (2) = /Rn K§p(ry) f(y)do(y), =€eR, (3.1.3)

are pointwise well-defined, and we will refer to the pair (K @ {ng‘ R} as an a-

O<6<R<oo>

fractional singular integral operator, which we typically denote by T“, suppressing the de-

pendence on the truncations.

Definition 3.1.1. We say that an a-fractional singular integral operator T satisfies the

norm inequality provided

It turns out that, in the presence of the Muckenhoupt conditions (3.1.7) below, the

Téfa,RfHLg(w) <N lfli2p).  f€ L?(0),0 <8 < R < oo,

norm inequality (3.1.2)) is essentially independent of the choice of truncations used, and this
is explained in some detail in [52]. Thus, as in [52], we are free to use the tangent line

truncations described there throughout the proofs of our results.

3.1.2 Weakly accretive functions

Denote by P the collection of cubes in R™. Note that we include an LP upper bound in our

definition of ‘p-weakly accretive family’ of functions.

Definition 3.1.2. Let p > 2 and let u be a locally finite positive Borel measure on R"™. We

say that a family b = {bQ} 0cP of functions indexed by P is a p-weakly p-accretive family
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of functions on R™ if for Q € P,

=

3.1.3 b-testing conditions

Suppose o and w are locally finite positive Borel measures on R™. The b-testing conditions

for T% and b*-testing conditions for the dual T'®* are given by

2
/Q\TngPdw < (zga) Ql, . for all cubes Q, (3.1.5)

]

2
do < (‘Z?Z,*> 1Ql, for all cubes Q.

3.1.4 Poisson integrals and the Muckenhoupt conditions

Let 1 be a locally finite positive Borel measure on R", and suppose @ is a cube in R™. Recall
1
that [Q|n = £(Q) for a cube Q. The two a-fractional Poisson integrals of y on a cube @ are

given by the following expressions:

1

/Rn ( o nri=a i (@),

PY(Q, ) .
QIF + ]z~ g

n—o
1

PYQ, 1)

(12f# + Jo - w0
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where ‘:p — xQ‘ denotes distance between x and the center zg of @ and |Q| denotes the
Lebesgue measure of the cube Q. We refer to P% as the standard Poisson integral and to
P as the reproducing Poisson integral. Note that these two kernels satisfy for all cubes )

and positive measures p,

0 < P*(Q,p) <CP(Q,p), n—-1<a<mn,

0 < PYQ,u) <CP*(Q,n), 0<a<n-—1.

We now define the one-tailed constant with holes A5 using the reproducing Poisson kernel
P*. On the other hand, the standard Poisson integral P® arises naturally throughout the
proof of the T'b theorem in estimating oscillation of the fractional singular integral 7%, and

in the definition of the energy conditions below.

Definition 3.1.3. Suppose o and w are locally finite positive Borel measures on R™. The

Q%

one-tailed constants A and Ay, with holes for the weight pair (o,w) are given by

Q
A = 516117)?73@ (Q, 1Qca> \6’2]1“% < 00,
A5 = sup PO (Q, 1pcw @l < 00.
2 QeP ( Q ) |Q|1—%

Note that these definitions are the conditions with ‘holes’ introduced by Hyténen [22] -
the supports of the measures 1pco and 1gew in the definition of A§ are disjoint, and so
any common point masses of ¢ and w do not appear simultaneously in the factors of any

of the products P% (Q, cha> %. Recall, the definition of the classical Muckenhoupt
QI n
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condition

Q Q
A% = sup ‘ 1|o.1a ‘ 1’004
QeP QI n Q7

but it will find no use in the two weight setting with common point masses permitted.
Initially, these definitions of Muckenhoupt type were given in the following ‘one weight’
case, dw () = w (x)dzr and do (x) = @dm, where AS <)\w, ()\w)_1> = AY (w,w_l) is
homogeneous of degree 0. Of course the two weight version is homogeneous of degree 2 in
the weight pair, AS (Ao, \w) = )\2,48‘ (o,w), while all of the other conditions we consider
in connection with two weight norm inequalities, including the operator norm Npa (o, w)
itself, are homogeneous of degree 1 in the weight pair. This awkwardness regarding the
homogeneity of Muckenhoupt conditions could be rectified by simply taking the square root

of AY and renaming it, but the current definition is so entrenched in the literature, in

particular in connection with the A9 conjecture, that we will leave it as is.

3.1.4.1 Punctured AS‘ conditions

The classical A characteristic fails to be finite when the measures o and w have a common
point mass - simply let @) in the sup above shrink to a common mass point. But there is a
substitute that is quite similar in character that is motivated by the fact that for large cubes
@, the sup above is problematic only if just one of the measures is mostly a point mass when
restricted to Q.

Given an at most countable set P = {pg}r—; in R, a cube @ € P, and a positive locally

finite Borel measure p, define

1(Q,B) =1Q|, —sup{n(pk) : px € @ NP}, (3.1.6)
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where the supremum is actually achieved since ZpkeQﬂ% p(pr) < oo as p is locally finite.
The quantity p(Q,B) is simply the g measure of @) where g is the measure p with its
largest point mass from P in Q) removed. Given a locally finite positive measure pair (o,w),
let %(U’w) = {p1} 1= be the at most countable set of common point masses of o and w. Then
the weighted norm inequality typically implies finiteness of the following punctured

Muckenhoupt conditions:

sup“(@%m) (o]
Qe QI Q'R

o (Q,Brw
Ag,*,punct (a,w) = sup |Ql|w04 ( 1(02 )>
QeP Q"™ |Q]

Ag,punct (U, w)

In particular, all of the above Muckenhoupt conditions AS, Ag’*, Ag’p unet and Ag’*’p unct
are necessary for boundedness of an elliptic a-fractional singular integral 7% from L2 (o) to

L? (w). Tt is convenient to define

35 %+Ag7*+Ag,punct+Ag,*,punct. (3_1.7)

3.1.5 Energy Conditions

Here is the definition of the strong energy conditions, which we sometimes refer to simply as

the energy conditions. Let
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be the average of x with respect to the measure p, which we often abbreviate to m; when

the measure 4 is understood.

Definition 3.1.4. Let 0 < a < n. Suppose o and w are locally finite positive Borel measures

on R"™. Then the strong energy constant £5' is defined by

2

(53)2 = sup —1 —PO‘ (r, 1s0) Hx — m‘f
- . 1

I=01, |I|0’ r—=1 |]7,|ﬁ '

s 2

2 (1[rw) ’

(3.1.8)

where the supremum is taken over arbitrary decompositions of a cube I using a pairwise
disjoint union of subcubes I,. Similarly, we define the dual strong energy constant Eg’* by

switching the roles of o and w:

s 2

L2<1ITU) ’

a

2 1 P (I, 1w
(52047*) = sup M Hx — mIT

I:UIT |]|W r=1 |-[7‘|%

(3.1.9)

These energy conditions are necessary for boundedness of elliptic and gradient elliptic
operators, including the Hilbert transform (but not for for certain elliptic singular operators

that fail to be gradient elliptic) - see [63] and [54]. It is convenient to define
Y =&+ &7

as well as

NT Vo =T2a + T+ /AY + €5 . (3.1.10)

37



3.1.6 The two weight local Tb Theorem

Here we derive a local T'b theorem based in part on the proof of the T'1 theorem in [48], and
in part on the proof of a one weight T theorem in Hytonen and Martikainen [24]. Recall
from [53] that an a-fractional singular integral 7% with kernel K is said to be elliptic if

K (z,y)| > c|z — y|* ! and gradient elliptic if the kernel K (z,y) satisfies

VK (z,y)| > clz —y|* L, (3.1.11)

The Hilbert transform kernel K (z,y) = y_% satisfies (3.1.11) with @« = 0, n = 1. In

dimension n = 1 the Muckenhoupt conditions are necessary for norm boundedness of elliptic
operators by results in [28], [22] and [51], and the energy conditions are necessary for norm
boundedness of gradient elliptic operators by results in [53]. Moreover, in dimension n =
1, Hytonen [22] Corollary 3.10] proves that full testing is controlled by testing and the

Muckenhoupt conditions for the Hilbert transform, and this is easily extended to 0 < o < 1:

* *
320 S Tha + 1/ AG + 1/ AS" and FT00,« S T + (JAG + 1/ AT".

Theorem 3.1.5. Suppose that o and w are locally finite positive Borel measures on Fu-

clidean space R™. Suppose that T is a standard o-fractional singular integral operator

on R", and set T f = T (fo) for any smooth truncation of TS, so that TS is apriori

bounded from L? (o) to L?(w). Assume the Muckenhoupt and energy conditions hold, i.e.

S‘,Ag’*,Ag’pund,Ag’*’pumt,c‘,’g‘,é’g’* < o0o. Finally, let p > 2 and let b = {bQ}er be
*

a p-weakly o-accretive family of functions on R™, and let b* = { Q}Q P be a p-weakly
€

w-accretive family of functions on R™. Then for 0 < a < n, the operator T is bounded from

38



L2 (o) to L? (w) with operator norm Nra, ie

”TngLQ(w) < Npa ||f||L2(a) ; ferL*)),

uniformly in smooth truncations of T® if and only if the b-testing conditions for T and

the b*-testing conditions for the dual T™* both hold. Moreover, we have
*
Nra < Ta + Tha + /A + €5 .

Remark 3.1.6. In the special case that o = w = p, the classical Muckenhoupt AS condition

18
Ql, 1Ql,
sup T a T a
QEP QI n |Q|n

Y

which 1s the upper doubling measure condition with exponent n — «, 1i.e.

|Q\M <L), for all cubes Q,

which of course prohibits point masses in p. Both Poisson integrals are then bounded,

% 1 - 1 »
PUQUISY. A 240, £ 3 e (@)
=0 (2 =0 (2 ja)
= | _lerm o = (el oy
PUQMEY || [P S X | | (@) =

12 1) 2
=0\ (21t =0 (241ar)

and it follows easily that the equal weight pair (u, jt) satisfies not only the Muckenhoupt A5
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condition, but also the strong energy condition €% :

00 2 00 w |2
P (1,1 2 T —m

E ( ;’ IU)) Ha:—m‘fr 5 < C E 7 Ir

r=1 | T. L ( ) r=1 | T" Lz(w)

o0
< CY L, <cl,=Cl, ,
r=1

since w = o. Thus Theorem when restricted to a single weight 0 = w, recovers a
slightly weaker, due to our assumption that p > 2, version of the one weight theorem of
Lacey and Martikainen [27, Theorem 1.1] for dimension n = 1. On the other hand, the
possibility of a two weight theorem for a 2-weakly p-accretive famaily is highly problematic, as
one of the key proof strategies used in [27] in the one weight case is a reduction to testing
over f and g with controlled L*° norm, a strateqy that appears to be unavailable in the two

weight setting.

In order to prove Theorem it is convenient to establish some improved properties
for our p-weakly p-accretive family, and also necessary to establish some improved energy
conditions related to the families of testing functions b and b*. We turn to these matters in

the next two subsections.

3.1.7 Reduction to real bounded accretive families

We begin by noting that if b satisfies (3.1.4) with ;4 = o, and satisfies a given b-testing

condition for a weight pair (o,w), then Rebg) satisfies

p
<ﬁ/@}RebQ|pdu> < Cp (p)
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and the given b-testing condition for (o, w) with Rebg in place of bg.
Thus we may assume throughout the proof of Theorem that our p-weakly p-accretive
- _ v — [1x . .
families b = {bQ} QeD and b* = {bQ}Qeg consist of real-valued functions.
Next we show that the assumption of testing conditions for a fractional integral T% and
. ) . - S .
p-weakly p-accretive testing functions b = {bQ} QP and b* = {bQ}er with p > 2 can

always be replaced with real-valued oo-weakly p-accretive testing functions, thus reducing

the T'b theorem for the case p > 2 to the case when p = oco. We now proceed to develop a

precise statement. We extend (3.1.4]) to 2 < p < oo by

suppbg C @, QeP, (3.1.12)
1
1 p p
A bol” d < < oo for2<p< oo
1 < L/deug <|Q|qu‘Q‘ M) =) g
@1, Jq

HbQHLOO(M) < Cp (00) < 00 for p = oo

Proposition 3.1.7. Let 0 < a < 1, and let o and w be locally finite positive Borel measures
on R™, and let T® be a standard a-fractional elliptic and gradient elliptic singular integral
operator on R". Set TS f =T (fo) for any smooth truncation of TS, so that TS is apriori

bounded from L? (o) to L? (w). Finally, define the sequence of positive extended real numbers

oo

2 18 162
{pm}%:oz w = {OO,G,g,E,...}.
3 m=0

Suppose that the following statement s true:

(Sxo) If b = {bQ}er is an oco-weakly o-accretive family of functions on R™ and if b* =

{b*Q}Q » is an oo-weakly w-accretive family of functions on R"™, then the operator
S
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norm Nya of TS from L? (o) to L? (w), i.e. the best constant in
I3 fl 2 < Nz Ml 2y, fELP(0),
uniformly in smooth truncations of T, satisfies
Nya S (Cp (50) + Cpe (0)) (Tha + Tha + /25 + €5 )

where Cy, (00) , Cpx (00) are the accretivity constants in , and the constants
implied by < depend on a and the constant Cy in .

Then for each m > 0, the following statements hold:

(Sm) Letp € (pmat,pm)- If b= {bQ}QeP is a p-weakly o-accretive family of functions on
R™, and if b* = {bZQ}Q 73 is a p-weakly w-accretive family of functions on R, then

€
the operator norm ‘JITg of T from L2 (0) to L? (w), uniformly in smooth truncations

of T®, satisfies
+1 *
Nya S (Cp (0) + Cor ()" (Tha + Tha + /23 + €5)

where Cy, (p) , Cpx (p) are the accretivity constants in , and the constants implied

by < depend on p, a, and the constant Cry in .

Proof of Proposition[3.1.7. We will prove it by induction. We first prove (Sp). So fix p €
(p1,p0) = (6,00), and let b = {bQ} Qep be a p-weakly o-accretive family of functions on R",

and let b* = {ba}Q 7) be a p-weakly w-accretive family of functions on R". Let 0 < e < 1
€
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(to be chosen differently at various points in the argument below) and define

1
A=A(e) = (Z%Cb (p)? g) g (3.1.13)
and a new collection of test functions,
bo=2bp | 1 LA QeP (3.1.14)
0220 (Ygjor) * el b)) 95T O

We compute

bo|? do= ‘bQ’Qtdt do
i o [
:/ /{(m,t)eRnx(O,oo):max{t )\}<‘bQ © ’}

A
- / / ) 2tdt + / / x) 2tdt
0 {xeR”:)\<‘bQ i xeR”t<‘bQ Cﬁ

=2 (gl > M}, + [ [{lbol > 1}, 20t

2tdtdo (x)

and hence

lbg|” do

IN

)\2 ! </|bQ\pda) /Ootip (/{bQ\pda) 2tdt (3.1.15)
Pees [atovad oy orial,

— mﬂ PCy ()P 1Ql, =<|Ql, |

/{\bQ)“}

IN
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by (3.1.13). Thus we have the lower bound,

(3.1.16)

EQ do

1 A

1
| |0’

1<50/ ol {\w\»}df’)?

>2_2(|Q\ |Q|0) =2-2/e>1>0, QeP.

‘L
Ql, Jo

Vv
)

For an upper bound we have

which altogether shows that

1 1
1\p—2 P p—2 p_ __1
~ < 2(—— =2(—— p— p= d.1
Cyoo) < 2(S oo t) T =2 (L 25) " G TR
if we choose 0 < ¢ < le Similarly we have

1 = = P 1
O < o L= )" =2 (L) O ()2 (%) P2

s 0 < 2( g or )" =2 (S25) G P2
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for 0 < e* < zli Moreover, we also have, using (|3.1.15]),

2

—~ |2 ) A

T | dw < 2 /Tab dw + 2 /To‘l — —1]bp| dw
WA AT J 51 oy ()
< 23R, \Q!a+2€nTa\// lbo|* do
{ba>>}
< 9 {z%a + \/EfﬁTa} JIQl, . for all cubes Q,
which shows that
70, <25, 1 2v/ENa . (3.1.18)

Now we apply the fact that (Sx) holds to obtain
Nra S (Cg (00) + Gy (00)) {Tha + Ta + /25 + €5}
and take ¢ = £* to conclude, using (3.1.17)) and (3.1.18)), that

p __1
Nya S Cimplicd (Co (b) + Coe ()P 22 P2 {The + 3, 4 /U5 + €5 }(3.1.19)

b1 1
+Cimplied (Cyp (p) + Cpx (p))p_2 g2 p_QU"(Ta

Now we choose

(Ch (p) + Cp (p) 2

b

1 _
— — p_?
T

with I' = (QCimplied)4v which satisfies I' > 1, so that the final term on the right satisfies

=

_p_
Cimplied (Cp (p) + C (p))p*Q €

1
2

D=

_1_ 1
P=2 Npa < Cimplied (f) Nra = ;Nra



where we have used % — p—iz > zle for p > 6. This term can then be absorbed into the left

hand side of (3.1.19) to obtain

Since
1

g 2 2
A=) p= P

i
.‘%
[\
——
—_
+
=

we get

Nya S (Cp (p) + Ce (1)) {Tha + Thae + /25 + €5}

which completes the proof of (Sp).
We now show that (Sp) holds for all p € (py41,pm). So fix m > 1, p€ (Ppt1,pm], and
suppose that b = {bQ} QcP is a p-weakly o-accretive family of functions on R™ and that

b* = {b*Q}Q P is a p-weakly w-accretive family of functions on R". Note that the sequence
€

wibo [N

(0.¢]
{pmto_og = {W} satisfies the recursion relation
1—

m=0

6 . 1
Pm+1 = —, equivalently, pp, = ———, m > 0.
1+ = —1
pm Pm+1
Choose q € (pm, pm—1] so that
6 6 4 4
p>——g= e q< g = (3.1.20)
142 +4 6_1 6-0p
q p
which can be done since p > py,41 = % is equivalent to p;, = . 22 m < ﬁil’
-(3) -(3)"

s

which leaves room to choose ¢ satisfying p,, < ¢ < T

hsiloy
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Now let 0 < ¢ < 1 (to be fixed later), define A = A (¢) as in (3.1.13]), and define /I;Q as in

(3.1.14). Recall from (3.1.15)) and (3.1.16) that we then have

2]‘7 Q€P7

|bQ|2da§€\Qla and “Ql’ /Q/b\Qda
g

/{\b@!”}
if we choose 0 < ¢ < % We of course have the previous upper bound

1
P 1\p-2

[ ey, =20 =200 =2 (2500 02 )

and while this turned out to be sufficient in the case m = 0, we must do better than

1
O <l> P=2 ip the case m > 1. In fact we compute the LY norm instead, recalling that ¢ > p

3
N
d,u)

and using Chebysev’s inequality,

(') 2 (i,

A
b _
Q (1 ol |bQ!1{!bQ\>A})

—

~ 1
(1 bo| M {[bol > A}, \*
=2 m/{‘l)@‘g)\} _/0 gt dt| do + Ql,
1 %
<2

A
. -1 P I~
\Qlﬂ/o /{t<‘bQ‘§>\} do| qt? " dt + Cy, (p)P NP

1

<2 —— — [ bo|" do| gt dt + Cy, (p)P XI7P
Ql, Jo LtP ol b (7)

p A q
<20}, (p)1 / gt P~ dt + \I7P
0

1

P (9 — ]

IQCb(p)q( d p/\qp)q
q—p
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which shows that C; (¢) satisfies the estimate

b 72 q 1 12 1_%
L q—7p q P pP—
Cx < 2C q —C P_>
5 (@) b (p) (q_p) (p_2 b (P) g
%wﬂ)_lg ;_Eﬁ
S Cp(p)i\r-2e P2 SOy (p)2e P2,

__1_
a significant improvement over the bound O (8 p—2). Here we have used that if p > %I,

then

6g
p(q—2 —1 q—2 3
A\ T2 < T <3
q \p -2 4

as the function z +— —%5 is decreasing when x > 2. Moreover, from (3.1.18) we also have

We can do the same for the dual testing functions b* = {ba}Q P and then altogether,
€

provided 0 < ¢ < zlp we have both

1_D
1 < —/bdagHb H <Cy(p)2e P2, QeP,
’|@|a 0 ¢ Aoy = @)
TPo <2320 4+ 2v/ENpa
as well as
D
17g

<

~ 3 —
* " 9 =2
b QHLq(w) S C1b (p) e p ) Q eP y

1 ~
1 < |— b* Hdw
= ‘|Q|w/Q @

TP < 270 + 2v/ENa
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We now use these estimates, together with the fact that (S,,_1) holds, to obtain

A P . o
N7a$ (G5 @)+ (@) {Tha + Thas + /25 + €5}
1P
3an —— 4
<(Cy () +Cpr () 2% P2 {[zga+ﬁmTa]+[ng,*+ﬁmTa} + mg+eg}
p 1-P

3 __ 9 * __9q
$(C () + o )2 (& 772 { T2+ 320t A5 +€5 b/ P2

1P

3 __ 49
We can absorb the term (Cy (p) + Cp* (p))??’n Ve P=Z29%pa into the left hand side as

before, by choosing

NoICo
w
S

—_
|
‘»Q hS'
|

)
D=

e = £ (Cu(p) + G (p) \ 7

. . . . . . . p
with I' sufficiently large, depending only on the implied constant, since (3.1.20]) gives ~5— <

2 and hence

q?

6_1
P _
; : (3.1.21)

Thus,

Here we have used that (3.1.21)) implies




which completes the proof of Proposition [3.1.7 O

Thus we may assume for the proof of Theorem given below that p = oo and that

the testing functions are real-valued and satisfy

suppbg C @ , QeP, (3.1.22)

1
< m/@deugHbQHLOO(M)SCb(oo)<oo, QeP.

3.1.8 Reverse Holder control of children

Here we begin to further reduce the proof of Theorem to the case of bounded real

testing functions b = {bQ} QP having reverse Holder control

'ﬁ/@/ bodo| > cHlQ/bQHLOO(J) >0, (3.1.23)

for all children Q' € € (Q) with || >0 and Q € P.

3.1.8.1 Control of averages over children

Lemma 3.1.8. Suppose that o and w are locally finite positive Borel measures on R™. As-
sume that T is a standard a-fractional elliptic and gradient elliptic singular integral oper-
ator on R", and set TS f =T (fo) for any smooth truncation of TS, so that TS is apriori

bounded from L? (o) to L? (w). Let Q € P and let Wpa (Q) be the best constant in the local

\///‘Tg (le)‘dengoz (Q)U/élfﬁda, f€L2 (1@0’).
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Suppose that bg is a real-valued function supported in Q such that

1
< g [, oo < [10ballsocqp) < o

el <28 @ ol

there exists a real-valued function EQ supported in () such

1
Then for every 0 < < m;

that

(1) 1< — |Q|a / deU < “1QZQ“Lm(G) <2 <1 + \/C_b> Cp

(2). \//Q‘Tg?;@]?dwg

(3). 0< HlQiZQHLOO(o) =75

3
st% (Q) + 205{6211%04 (Q)] VaLo

/ ~

Proof. Let 0 < 6 < 1 and fix @) € P. By assumption we have

, Qied(Q).

1
/dea < [1Qbel oo o) < Cb.
=1al,

Let @; be the children of (). We now define EQ. First we note that the inequality

/Qi boda| < Cib HlQibQHLOO(J) (3.1.24)

1
|Qil

cannot hold for all @);, since otherwise we obtain the contradiction
2’/1
< >

bodo /bda<— Qi
‘/QQ ZIQQ Zz

< C_b 1Rl [[1@bell oo (o) < 5‘/62562%

leQHLoo

</bda.
e
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If

3.1.24

holds for none of the );, then we simply define EQ = bg, and trivially all the

conclusions of the Lemma hold. If (3.1.24]) holds for at least one of the children, say QiO’

then we define ZQ differently according to how large the L! (¢)-average — fQ' }bQ| do
Qig|, 0

is. In this case, define G to be the set of indices for which (3.1.24) holds and G the set of

indices for which ((3.1.24) fails. We define

where

~ 1
bg = D bolo+ Y g+ D, (m/%@\fw) Lg;
e i€G eG4 7V
+ 3 (pi—mi (14 VG0) ) 19, + D0 (14 V/Co) pi— i) 1
1€EB_ 1€B +
Gy = {ZEG|Q1’ / ’bQ‘dazO}
o 7
Gy = {iEG:O 1o / ]bQ‘da<\/C’b}
1o 7
B. = {ied: ! / ’bQ‘dJ>\/Cb(5and/ nzda>/ pido
|Qi|0 i Qz
By = ieG: ! / ‘bQ‘da>\/Cb(5and/ pido /nlda
|Qil Q; Qi

and p;, n; are the positive and negative parts of by respectively on @, i.e.

1, ()b (x) = pi(x) —n;(z),

z) |bg (x)| = pi(2)+n;(2),
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Now let us check the conclusions of the Lemma [3.1.8] For (1) we have

1
I < |Q| /deO‘
1
< ’Q|U/Qdea+|Q‘0i§_/%nm/0b da—W Z /Q.pi [Crido
\ 2
= ’Q|O—/dea+ Cho Cb|Q|U EXB:_ Qile < o1, /deJ—l-C Ve

and choosing § small enough we get

1

=100, /QdeO = HlQEQHLOO(J)

1
2

which in turn is bounded by

sup HlQZ Q; 150 )§2<1+ Cb>Cb

Q;eC¢(Q
by taking the different cases on @);:

(a) For i € Gy,

il
(b) For i€ Gy, HlQngiHLoo < Gy,

(c) Forie B_U By,

leEQZ HLOO < 2(1 + 4/ Cb)Cb

This completes the proof for (1).
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For (2), we have from Minkowski’s inequality

\/|Q| ‘T%Q’ dw<\/|Q| /|T%Qy dw+\/|Q| —bQ)‘
< T2(Q) + N (Q) \/‘ng/ )bQ—bQ‘ do

b ~ 2
- zT% (Q) + Npa (Q) | Q‘ > / bo — bQ‘ do
7 Q;ee(Q) " i

and this last term is bounded by:

1€G ieG eG4 1€B_

POED R SR R S AR

and since we have:
(a) forie G,

I@!a/ ‘bQ—bQ‘ do =0

(b) for i € Gy,

|@u/‘%‘“ﬂm’§

; |

62d0—|—/ b |2da>
o </z Qj ¢

1 ‘Qi|0
8?|Qile + C bold 52
@b('Q“+béwm”> Qs

7

IN

by the accretivity of b and the definition of Gy.
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(c) forie Gy,

2
do

IN

L/ b —bo| @ = / ! / lbg| dor | — b
|Q|U QZ | |0 Q’L |Qi|0 QZ
2
1 2
— bo|do| d —1—/ bol|™ d
[ (/Q |QZ-|U/QZ-‘Q‘ 7117 Jo, ! ”)
1
Cpod —|—C/ bold

al, </ P Qi“?‘ U)

IN

Qo IQla
(d) fori e B_,
Ty, el 4= g [, Gt T o, i
— bo —b do = —— Cywon;|“do = Cy,0 —— n;|° do
|QZ|U
Cc36
PQls

(e) and for i € B, the same estimate as in the previous case,

\/ r@1|g/Q

where the dimensional constant comes from

we obtain

~ 2 bo 3 1
TgébQ‘ dw < T2 (Q) +2-2"CE5TNMa (Q) .

MZ\/@AU

Now we are left with verifying (3). Note that

(a) for i € G, the inequality (3.1.24) does not hold and as EQ = bg there, immediately we
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obtain

HlQiZQHLOO(U) = %/Qi bodo

(b) for i € Gy UGy,

HlQibQHLOO(U) . %

—
‘—r@ira Jo;bade

(c) forie B_,

Hle‘gQHLOO(U) (1+/Cpo) Cy,

—
'—ma Ja;bade

< (1 + Cbé) Cp
B A 1

< 2(1 4+ /Cpo)Ch,
— / 1
AC 4

Cpd 0

: 1
as, by taking 0 < 6 < @, we have 1+ 1/Cpo < 2.
(d) and for i € By similarly as in the previous case.

In order to obtain the inequalities for ZQ in the conclusion of Lemma

multiply the above function ZQ by a factor of 2.

o Jo i =i (1+v/God)] do

3.1.8

. we simply

Finally, if |bQ| > c1 > 0, we easily see that ‘ZQ’ > ’bQ‘ > c1 > 0 as well. This completes

the proof of Lemma [3.1.§

56

]



3.1.8.2 Control of averages in coronas

Let D¢ be the grid of dyadic subcubes of Q). In the construction of the triple corona below,
we will need to repeat the construction in the previous subsubsection for a subdecomposition
{Q;}:2, of dyadic subcubes Q; € D¢ of a cube Q. Define the corona corresponding to the

subdecomposition {Q;}:2 by

0.9]
Co=Do\ | J Dy, -
1=1

Lemma 3.1.9. Suppose that o and w are locally finite positive Borel measures on R™. As-
sume that T is a standard a-fractional elliptic and gradient elliptic singular integral oper-
ator on R", and set TS f =T (fo) for any smooth truncation of T, so that TS is apriori

bounded from L? (o) to L? (w). Let Q € P and let Mypa (Q) be the best constant in the local

\//Q\Tg‘(le)Fdwg‘)TTa(Q)1//Q|f|2da, felL*(1g0).

Let {Q;}52, C Dg be a collection of pairwise disjoint dyadic subcubes of (). Suppose that

inequality

bq s a real-valued function supported in () such that

1< ﬁ/leda < HlQ’bQHLOO(U) <Cy, Qecy.

b
\//Q Tobg|* dw < T2 (Q) /10, -
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Then for every 0 < § < ﬁ, there exists a real-valued function EQ supported in () such that
b

1< ﬁ/ngdU < HlQ/gQHLOO(U) <2 (1 + Cb) Cp » Q, IS CQ ,

Viel,

, 1 <4 < o0.

bQ % 1
272 (Q) + 40251 N0 (Q)

/

~ |2
, Tehg| dw <

0< HlQiEQHLOO(U) = %

Moreover, if ‘bQ‘ > c1 > 0, then we may take ‘ZQ‘ > c1 as well.

The additional gain in the lemma is in the final line that controls the degeneracy of EQ
at the ‘bottom’ of the corona Cg by establishing a reverse Hélder control. Note that if we

combine this control with the accretivity control in the corona Cg, namely

HlQ,EQHLOO( <1+\/C_b> Ch <2<1—|—\/C—b> Cb|Q/ / deU,

we obtain reverse Holder control throughout the entire collection Co U {Qi}2y:

1 ~
— [ b~/d
|I|U/IQ’“’

This has the crucial consequence that the martingale and dual martingale differences AJ’P

< Cé,b

(o) Iee(Q).Q ecy.

1:b
HIQ'L

and DG’}O associated with these functions as defined in (3.1.38)), satisfy

Q

b b 1
‘Agl h‘,)D"Q’, h’ <Csp Y, (\II /|h\da+ R / \h\da) 17 . (3.1.25)
ree(@) 7

However, the defect in this lemma is that we lose the weak testing condition for g@ in the

corona even if we had assumed it at the outset for bQ.
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Proof. The proof of Lemma [3.1.9|is similar to that of the Lemma [3.1.8] Indeed, we define

= > olg,+ Y, (IQZ /Q‘|bQ|da> 1o,

ZGGO ZEG

> (m/ i <”@>]dg> @

)

5 (Lo -nl )

1€B {

+bQ1Q\UZQil QZ ’

where

1

Gy = j / boldo =0,

! { Qils Qi“ﬂ ’ }

Gy = {Z ‘Q / ‘bQ|d0'< vV Cpo }

(3

B_ = <i: ! / ‘bQ|da>\/C’b5and/ nida>/ pido
‘Qi‘a i Q; Qi

By = (i ! / ‘bQ|da>\/C’b5and/ pidaz/ n;do p .
‘Qi‘a i Q; Qj

and p;, n; the positive and negative parts of by on each @Q;. The proof of Lemma can be
applied verbatim. We emphasise only that when estimating the testing condition, we need

the bound

~ 2 1 1
[ lro=taf ar < cemat Yo e, < cenotial,
1=1
[
~ 2 1
Remark 3.1.10. The estimate fQ ‘bQ — bQ‘ do < C(Cy) 0432, 1Q;

|, in the last line of

the above proof is of course too large in general to be dominated by a fixed multiple of |Q’|U
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for Q' € Cq, and this is the reason we have no control of weak testing for EQ in the rest of
the corona even if we assume weak testing for by in the corona Cq. This defect is addressed

in the next subsection below.

3.1.9 Three corona decompositions

We will use multiple corona constructions, namely a Calderéon-Zygmund decomposition, an
accretive/testing decomposition, and an energy decomposition, in order to reduce matters
to the stopping form, which is treated in Section by adapting the bottom/up stopping
time and recursion of M. Lacey in [26]. We will then iterate these corona decompositions
into a single corona decomposition, which we refer to as the triple corona. More precisely, we
iterate the first generation of common stopping times with an infusion of the reverse Holder
condition on children, followed by another iteration of the first generation of weak testing

stopping times. Recall that we must show the bilinear inequality

[ @20 00| <O U2 ol 2y FE L) and g € 22 o)

3.1.9.1 The Calderéon-Zygmund corona decomposition

In this section, we introduce the Calderén-Zygmund stopping times F for a function ¢ €
L2 (1) relative to a cube Sy and a positive constant Cy > 4. Let F = {F} per be the

collection of Calderén-Zygmund stopping cubes for ¢ defined so that F' C Sy, Sg € F, and
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for all F € F with F*'G Sy we have

1 1
—/ ldu > Co /|¢|du;
|F|M F |7T]:F|u F
1 1
< for F C F’ F.
’F,,u/F,WIdu < OOWF,M/FW;L ot FCF Cnp

We denote by 77 F" be the smallest member of F that strictly contains F'. For a cube I € D
let mpl be the D-parent of I in the grid D. For F, F' € F, we say that F’ is an F-child of F
if 7z (F') = F (it could be that F' = 7pF’), and we denote by €x (F) the set of F-children
of F. We call 7z (F') the F-parent of F’ € F.

To achieve the construction above we use the following definition.

Definition 3.1.11. Let Cy > 4. Given a dyadic grid D and a cube Sy € D, define S (Sp)

to be the maximal D-subcubes I C Sy such that

1 1
i felau> Core [ ol
w1 ol Jsg

and then define the Calderon-Zygmund stopping cubes of Sy to be the collection

]::{SO}U E_jsm

m=0

where Sy = S (Sp) and Spp1 = U S(S) form > 0.
SeSm

Define the corona of F' by

Cp={F €D:F>F 2 H forsome H € €z (F)}.
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The stopping cubes F above satisfy a Carleson condition:

Z [P, <CQ, , forall open sets €.
FeF: FCQ

Indeed,

d 1
F| < Jpr 9] dp < —|F|,
Z ’ |u Z Coﬁ fF|¢|dM Co

FleCr(F) Fle€ p(F)
and standard arguments now complete the proof of the Carleson condition.
We emphasize that accretive functions b play no role in the Calderén-Zygmund corona

decomposition.

3.1.9.2 The accretive/testing corona decomposition

We use a corona construction modelled after that of Hyténen and Martikainen [24], that
delivers a weak corona testing condition that coincides with the testing condition itself only
at the tops of the coronas. This corona decomposition is developed to optimize the choice of
a new family of real valued testing functions {bQ}er taken from the vector b = {bQ} QeD

so that we have

1. the telescoping property at our disposal in each accretive corona,

2. a weak corona testing condition remains in force for the new testing functions BQ that

coincides with the testing condition at the tops of the coronas,

3. the tops of the coronas, i.e. the stopping cubes, enjoy a Carleson condition.

We will henceforth refer to the old family as the original family, and denote it by {bgig }Q .
€

The original family will reappear later in helping to estimate the nearby form.
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Let o and w be locally finite Borel measures on R . We assume that the vector of

‘testing functions’ b = {bQ} QeD is a oco-weakly o-accretive family, i.e. for Q € D

suppbg C @,
1
O<c§—/bda§b <(Cy < o0
b ‘Q’/J, 0 Q H QHLOO(U) b

and also that b* = {bQ} QeD is a oo-weakly w-accretive family, and we assume in addition

the testing conditions

IA

/ |T§‘ (1@1)@) ‘2 dw (T?Q)Q |Q|, .,  for all cubes @,
Q

/Q 0" (1080 ‘2 do

Definition 3.1.12. Given a cube Sy, define S (Sy) to be the maximal subcubes I C Sy such

IN

b* |2
(TTa,*) Qly > for all cubes Q.

that satisfy one of the following

-
—— [ beo. do
1], J; 50

w. |

where the positive constants v,1 satisfy 0 < v < 1 < T < co. Then define the b-accretive

(a).

<7, or

72 (bsy) ‘de ST (‘z‘;af 1,

stopping cubes of Sy to be the collection
o0
F = {SO}U U Sm
m=0

where Sy = S (Sp) and Spp1 = U S(S) form > 0.
SeSm

For € > 0 chosen small enough depending on p > 2, the b-accretive stopping cubes satisfy

63



a o-Carleson condition relative to the measure o, and the new testing functions {EQ}Q D
€
defined by I;E = 1gbg, for S € Cg, satisfy weak testing inequalities. The following lemma

is essentially in [24], but we include a proof for completeness.

Lemma 3.1.13. For v small enough and I' large enough, we have the following:

(1). For every open set Q) we have we have the inequality,

> sl <9, (3.1.26)
SeF: SC

(2). For every cube S € CSO we have the weak corona testing inequality,
Q 2 b 2
/S )Ta bgo‘ dw < C (zTa) 1S, . (3.1.27)

Proof. Inequality is immediate from the definition of F in the definition . We
now address the Carleson condition . A standard argument reduces matters to the
case where (2 is a cube ) € F with |@Q|, > 0. It suffices to consider each of the two stopping
criteria separately. We first address the stopping condition ’ﬁ 1) Jal Soda‘ < 7. Throughout
this proof we will denote the union of these children S (Q) of @ by E(Q) = (J S. Then

SesS(Q)
we have
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which together with our hypotheses on bg gives

bodo / bndo / bodo
VQ < BQ) Q\EQ)

2
V1Rl + \//Q\E(Q) bo|” doy/IQ\E (Q)],

1@l + Co/1Qlo/IVE (@)1,

Qs < +

IN

IN

IN

Rearranging the inequality yields

L-11Ql < Co/IQ,/IQ\E @),

or

(1—7)?
Cp

Qly < IQ\E(Q)],

which in turn gives

Y. I8l = BEQI=1Ql, — IQ\E(Q),
Ses(@)

1 — )2 12
< 1, - S5 e, = (1- Y5 el =sial,
b b
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where 0 < < 1 since 1 < (Y. If we now iterate this inequality, we obtain for each k£ > 1,

ool = Y > s, Y BIsk

SeF: ScQ SEF: SCQ §'eS(S) SeF: ScQ
) (9)=0 A Vis)=q A Vis)=q

IN

> s, < 86l
SeF:. ScqQ

~(s)=q

Finally then

2

oSl <>y Y !S\g<25k|Q|a——|Q|a— —>b Q.

SeF: ScQ k=0 SeF: ScQ (1=7)

2 2
Now we turn to the second stopping criterion [; ‘Tg‘ <b50> ‘ dw >T (T:l;a> 1], . We have

IN

Z |S|0 ;2 Z / ‘Ta bSO dw

SeC£(Sp) r (i'%a) SeC£(Sp)

W/SO T3 <bSO>‘ dw < f|50|0‘
TO[

IN

[terating this inequality gives

Z ’S‘o' < Z k |S()’a' - ‘SO|O'7

SeF
SCSb
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and then

S Y Y s Y (Sl =,
I'—1 I'—1

SeF maximal SpeF SeF maximal SpeF
S Sgc  SCSo Spc
This completes the proof of Lemma [3.1.13 m

3.1.9.3 The energy corona decompositions

Given a weight pair (o, w), we construct an energy corona decomposition for o and an energy
corona decomposition for w, that uniformize estimates (c.f. [38], [28], [48] and [49]). In order

to define these constructions, we recall that the energy condition constant £ is given by

2
1 o= [ P*(Jr,100) 9
ga 2 = NS _ ’
( 2) QS%% ’Q‘g; |Jr % ||$ mJTHL?(ler)
=Udr

where UJ, is an arbitrary subdecomposition of Q into cubes .J, € P and interchanging the
roles of o and w we have the constant Egé’*. Also recall that ¢% = 520‘ + 5;’*. In the next

definition we restrict the cubes @) to a dyadic grid D, but keep the subcubes J, unrestricted.

Definition 3.1.14. Given a dyadic grid D and a cube Sy € D, define S (Sy) to be the

maximal D-subcubes I C Sy such that

2
[ P (J., 170) 2 2
sup —_— r—m > C, [((’30‘) + Qla} lIl,, (3.1.28)
IDL'JJ”; |Jr|% H JrHL2 (1er) en | (€2 2 o

where the cubes Jr € P are pairwise disjoint in I, €5 is the energy condition constant, and

Cen 18 a sufficiently large positive constant depending only on «. Then define the o-energy
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stopping cubes of Sg to be the collection

F:{SO}U Ejsm

m=0
where Sy = S (Sp) and Sppr1 = U S(S) form > 0.
SeSm

We now claim that from the energy condition €5 < oo, we obtain the o-Carleson estimate,

> I8, <2/, IeD. (3.1.29)
SeS: Scl

Indeed, for any S; € F we have

2
1 2 [ P(J;, 150) 9
Z |S|aS 2 Sup Z —71 H‘T—erHLQ(l )
SeC () Cen@‘%ﬁgél))Se@;(sl)SDUJr —1 | Jp |7 o
1 9 1
<—— (EH7 151, = =— |51,
o (gg)g( )" 51, en\ 1y

upon noting that the union of the subdecompositions UJ, C S over S € €£(S57) is a
subdecomposition of 57, and the proof of the Carleson estimate is now finished by iteration

in the standard way.

Finally, we record the reason for introducing energy stopping times. If

2
1 = [ PY(Jr,150)
2 _ y L1 2
Xa (Cg)” = sup T Sup Z T—l Hx_mJTHL2<1 w) (3.1.30)
IeCq | |0’ IDUJr p—1 |Jr|ﬁ JIr

is (the square of) the a-stopping energy of the weight pair (o, w) with respect to the corona
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Cg , then we have the stopping energy bounds
Xo (Cs) < vV Cen\/ (€9)> +25,  SeF, (3.1.31)
where 205 and the energy constant €5 are controlled by the assumptions in Theorem m

3.1.10 Iterated coronas and general stopping data

We will use a construction that permits iteration of the above three corona decompositions

by combining Definitions [3.1.11] [3.1.12| and [3.1.14] into a single stopping condition. However,

there is one remaining difficulty with the triple corona constructed in this way, namely if a
stopping cube I € A is a child of a cube @ in the corona C 4, then the modulus of the average
’ﬁ i} 7 dea‘ of bg on I may be far smaller than the sup norm of ‘bQ‘ on the child 7, indeed
it may be that ﬁ 1) 1bgdo = 0. This of course destroys any reasonable estimation of the
martingale and dual martingale differences AUQ’b f and D(gjb f used in the proof of Theorem
, and so we will use Lemma on the function b4 to obtain a new function ZA for
which this problem is circumvented at the ‘bottom’ of the corona, i.e. for those A" € € 4 (A).
We then refer to the stopping times A’ € € 4 (A) as ‘shadow’ stopping times since we have
lost control of the weak testing condition relative to the new function ZA. Thus we must
redo the weak testing stopping times for the new function EA, but also stopping if we hit

one of the shadow stopping times. Here are the details.

Definition 3.1.15. Let Cyp > 4,0 < v <1 and 1 <T < oco. Suppose that b = {bQ}er
is an oo-weakly o-accretive family on R™. Given a dyadic grid D and a cube Q € D, define
the collection of ‘shadow’ stopping times Sghadow (@) to be the maximal D-subcubes I C Q

such that one of the following holds:
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1/ 1
— fd0>0—/fda,
11, J, Ve > Corgr J, !

(b).
ﬁ/ijda <7 or /I|Tg (bQ)\2dw>r<zga>2|f|a ,
(c). )
LD D) il 2 Con (€815 28] 10

Now we apply Lemma m to the function by with Sgpad0 (Q) = {Q;};21 to obtain a

new function ZQ satisfying the properties

supng CcQ, (3.1.32)

1< ﬁ/@/%dg < "IQ/ZQ“LOO(G) <2 (1 + \/C'_b> Cy Q' e Co

3 1
\//Q|Tg‘bQ‘2dw§ Q‘IlT)a (Q)+4C§51‘JtTa (Q)] /1@l

HlQiEQHLOO(U) = % ﬁ/@?}@da

, 1 <9< oo0.

Note that each of the functions EQ/ = 1Q/ZQ, for Q' € Cq, now satisfies the crucial reverse

Holder property

H1I'5Q,‘ . forallTee(Q), @ €Co.

1 ~
— [ bd
|mﬁQ”

Indeed, if I equals one of the @); then the reverse Holder condition in the last line of (3.1.32))

<
10o() = Cob

applies, while if I € C¢ then the accretivity in the second line of (3.1.32) applies.
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Since we have lost the weak testing condition in the corona for this new function EQ,
the next step is to run again the weak testing construction of stopping times, but this time
starting with the new function ZQ, and also stopping if we hit one of the ‘shadow’ stopping

times ();. Here is the new stopping criterion.

Definition 3.1.16. Let Cyp > 4 and 1 < I' < oco. Let Sgpadow (Q) = {Qi}isy be as in

Definition |3.1.15. Define Sitorated (@) to be the maximal D-subcubes I C @ such that either

/I T2 (bg) ‘2 dw > T (z§a>2 1, .

or

I =Q; for some 1 < i < 0.

Thus for each cube @ we have now constructed iterated stopping children Siorated (@)
by first constructing shadow stopping times Sgpqd0w (@) using one step of the triple corona
construction, then modifying the testing function to have reverse Holder controlled children,
and finally running again the weak testing stopping time construction to get Sjerqted (@)-
These iterated stopping times Sjjerateq (@) have control of CZ averages of f and energy
control of o and w, simply because these controls were achieved in the shadow construction,
and were unaffected by either the application of Lemma [3.1.9] or the rerunning of the weak
testing stopping criterion for ZQ, And of course we now have weak testing within the corona
determined by @ and S;jippqted (@), and we also have the crucial reverse Holder condition on
all the children of cubes in the corona. With all of this in hand, here then is the definition

of the construction of iterated coronas.

Definition 3.1.17. Let Cp >4, 0 <y <1 and 1 <T < oco. Suppose that b = {bQ}er 18
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an oo-weakly o-accretive family on R™. Given a dyadic grid D and a cube Sy in D, define

the iterated stopping cubes of Sy to be the collection

F={S}tu Gsm

m=0

where Sy = Siterated (SO) and Sm+1 = g % Siterated (S) form >0, and where Siperqted (Q)
c€om

is defined in Definition [3.1.16

It is useful to append to the notion of stopping times S in the above o-iterated corona
decomposition a positive constant Ay and an additional structure ag called stopping bounds
for a function f. We will refer to the resulting triple (Ag, F,ar) as constituting stopping
data for f. If F is a grid, we define F' < F'if F/ G F and F', F € F. Recall that 7z F" is
the smallest F' € F such that F/ < F.

Suppose we are given a positive constant Ag > 4, a subset F of the dyadic grid D (called
the stopping times), and a corresponding sequence ar = {ar (F)}pcr of nonnegative
numbers ar (F) > 0 (called the stopping bounds). Let (F, <, 7 ) be the tree structure on
F inherited from D, and for each F' € F denote by Cp = {I € D : mxl = F'} the corona

associated with F"
Cp={l€D:ICFandI¢ F forany F' < F}.

Definition 3.1.18. We say the triple (Ag, F,ar) constitutes stopping data for a function

f € Lige (o) if
(1). E7|f| <aF(F) forallI €Cp and F € F,

(2). Ypr<p |F'|, < Ao |F|, for all F € F,
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(3). Lperar (F)*|F|, <A3 ||f||%2(0);

(4). ar (F) < ar (F') whenever F',F € F with F' C F.

Property (1) says that az (F') bounds the averages of f in the corona Cp, and property
(2) says that the cubes at the tops of the coronas satisfy a Carleson condition relative to the
weight 0. Note that a standard ‘maximal cube’ argument extends the Carleson condition in

property (2) to the inequality

Z ‘F’!J < Ap|A|, for all open sets A C R™. (3.1.33)
FleF: FIcA

Property (3) is the quasi-orthogonality condition that says the sequence of functions
{ar (F)1p} per is in the vector-valued space L? (62; o) with control and is often referred
to as a Carleson embedding theorem, and property (4) says that the control on stopping
data is nondecreasing on the stopping tree /. We emphasize that we are not assuming in
this definition the stronger property that there is C' > 1 such that ar (F ! ) > Car (F)
whenever F/, F € F with F/ & F. Instead, the properties (2) and (3) substitute for this
lack. Of course the stronger property does hold for the familiar Calderon-Zygmund stopping

data determined by the following requirements for C' > 1,
ES,|f| > CEZ |f| whenever F', F € F with F' G F,

E7 |f| < CE%|f| for I € Cp,

which are themselves sufficiently strong to automatically force properties (2) and (8) with

oy (F) =EG|f].
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We have the following useful consequence of (2) and (3) that says the sequence
{ar (F)1p} pe 7 has a quasi-orthogonal property relative to f with a constant C(') depending

only on Cj:
2

Z ar (F)1p < C(/) ”f“i2(a) : (3.1.34)
FeF L2(0)

Proposition 3.1.19. Let f € L? (o), let F be as in Definition and define stopping

data ar by ap = ﬁfF |f|do. Then there is Ag > 4, depending only on the constant
g

Co in Definition [3.1.11), such that the triple (Ao, F,aF) constitutes stopping data for the

function f.

Proof. This is an easy exercise using (13.1.26)) and (3.1.29)), and is left for the reader. O

3.1.11 Reduction to good functions

We begin with a specification of the various parameters that will arise during the proof, as

well as the extension of goodness introduced in [24].

Definition 3.1.20. The parameters r, T and p will be fixed below to satisfy

T>randp>r+T,

where r is the goodness parameter fixed in .

Let 0 < € < 1 to be chosen later. Define J to be € — good in a cube K if

d(J,skelK) > 2|J5 | K|'7¢,
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where the skeleton skelK = |J 0K’ of a cube K consists of the boundaries of all the
K'e¢(K)

children K’ of K. Define Q@ £)—good to consist of those J € G such that J is good in every

supercube K € D that lies at least k levels above J. We also define J to be € — good in a cube
K and beyond if J € Q@:’E)_good where k& = logo % We can now say that J € g@ﬁ)_good
if and only if J is € — good in 7 J and beyond. As the goodness parameter ¢ will eventually
be fixed throughout the proof, we sometimes suppress it, and simply say ".J is good in a cube
K and beyond" instead of "J is € — good in a cube K and beyond".

As pointed out on page 14 of [24] by Hytonen and Martikainen, there are subtle difficulties
associated in using dual martingale decompositions of functions which depend on the entire
dyadic grid, rather than on just the local cube in the grid. We will proceed at first in the
spirit of [24]. The goodness that we will infuse below into the main ‘below’ form Be 0 (f,9)
will be the Hytonen-Martikainen ‘weak’ goodness: every pair (I,.J) € D x G that arises in
the form Be,, (f, g) will satisfy J € g@g)_good where £ (I) = 252 (.J).

It is important to use two independent random grids, one for each function f and ¢
simultaneously, as this is necessary in order to apply probabilistic methods to the dual
martingale averages D/;’b that depend, not only on I, but also on the underlying grid in

which [ lives. The proof methods for functional energy from [49] and [48] relied heavily on

the use of a single grid, and this must now be modified to accomodate two independent grids.

3.1.11.1 Parameterizations of dyadic grids

It is important to use two independent grids, one for each function f and ¢ simultaneously,
as it is necessary in order to apply probabilistic methods to the dual martingale averages
Dﬁf’b that depend not only on I but also on the underlying grid in which [ lives.

Now we recall the construction from the paper [52]. We momentarily fix a large positive
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integer M € N, and consider the tiling of R" by the family of cubes D, = {[ é\i } . having
ae
side length 2~ M and given by ](JX\/[ = I(J)W +a-27M where Ié\/‘[ = [0, 2_M). A dyadic grid

D built on Dy, is defined to be a family of cubes D satisfying:

1. Each I € D has side length 2~ for some ¢ € 7 with ¢ < M, and I is a union of

2M—0) cubes from the tiling Dy,

2. For ¢ < M, the collection Dy of cubes in D having side length 2~ forms a pairwise

disjoint decomposition of the space R,
3. Given I € D; and J € Dj with j <i < M, it is the case that either INJ =0 or I C J.

We now momentarily fix a negative integer N € —N, and restrict the above grids to cubes

of side length at most 2N
DN = {I € D : side length of I is at most Q_N} .

We refer to such grids DN asa (truncated) dyadic grid D built on D of size 2~N . There are
now two traditional means of constructing probability measures on collections of such dyadic
grids, namely parameterization by choice of parent, and parameterization by translation.

Construction #1: Consider first the special case of dimension n = 1. For any

N
B = {Biliegy €wm = (0,110,

where Zé\\g ={(€Z:N <{< M}, define the dyadic grid Dg built on Dy, of size 2~ N by

i 0<i<M N<(<M, keZ
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Place the uniform probability measure p]]\\g on the finite index space w]\]\g =0, 1}ZJ\N/I, namely
that which charges each € w]]\\; equally. This construction is then extended to Euclidean
space R"™ by taking products in the usual way and using the product index space ON =
(wﬁ)” and the uniform product probability measure ,ué\\; = pAN4 X ... X p]\N/[.

Construction #2: Momentarily fix a (truncated) dyadic grid D built on Dy, of size

2~N . For any

N _ -M —-N
7€FM:{2 ZL |y <2 },

where Z"! = (NU {0})", define the dyadic grid D7 built on Dy, of size 2N by

D7 =D ++.

Place the uniform probability measure V]]\\/‘[[ on the finite index set T'Y,, namely that which

charges each multiindex ~ in F]\N4 equally.

The two probability spaces ({Dﬂ} 5eq ]]\\/f[ , u%) and ({DV}HeF ]]\\2 ,Vﬂ) are isomorphic
since both collections {Ds} 5e0 ]\N/[ and {DV}WEF ]\NJ describe the set Aﬁ of all (truncated)
dyadic grids D7 built on Dy, of size 27, and since both measures ,u% and 1/]\]\} are the
uniform measure on this space. The first construction may be thought of as being parame-
terized by scales - each component 3; in = {Bi}iGZ% € wJ\J\/[[ amounting to a choice of the
two possible tilings at level ¢ that respect the choice of tiling at the level below - and since
any grid in AJZ\V/_, is determined by a choice of scales , we see that {Dﬁ} e ]\N/[ = AJJ&. The
second construction may be thought of as being parameterized by translation - each v € F]\N4
amounting to a choice of translation of the grid D fixed in construction #2 - and since any

grid in AJ\N4 is determined by any of the cubes at the top level, i.e. with side length 2=V, we
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see that {DV}WEF ]\N4 = A]]\\g as well, since every cube at the top level in A]]\\g has the form
@+ for some v € F]\N/[ and @) € D at the top level in A]\N/[ (i.e. every cube at the top level in
AJZ& is a union of small cubes in Dy, and so must be a translate of some ) € D by an amount
2~M times an element of Z4). Note also that in all dimensions, #Qf\\} = #Fé\\g = on(M=N)

We will use EQ N to denote expectation with respect to this common probability measure
M

N
on AM.

Notation 3.1.21. For purposes of notation and clarity, we now suppress all reference to M
and N in our families of grids, and in the notations  and I for the parameter sets, and
we use P and Eq to denote probability and expectation with respect to families of grids,
and instead proceed as if all grids considered are unrestricted. The careful reader can supply
the modifications necessary to handle the assumptions made above on the grids D and the

functions f and g regarding M and N.

3.1.12 Formulas

We need the following formulas defined on Appendix A of [54].

pb ey = 1
EG f () = 1g(v) beQdu/beQdu, QeP, (3.1.36)
b r) = T x—l
Ff (o) = 1Q()bQ()beQdu/QfdM, QeP.
FiP T) = T —1
FiP 1 () = 1¢ ( )beQdu/Qfdu, QeP. (3.1.37)
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and

M’ ( 3 ]E ) ]E“b
Q'ee(Q)

ngﬂx)—( > Fg,bfu) i f
Q'ee(Q)

We also need

= Y1) (E“’ )—Egbf(x)) (3.1.38)
Q'ee(Q)

ZlQ/ o) (P f (2) = FiP f ()
Qe (Q

1
Qleebrok‘(Q) kIQ
~ 1 1
Vggf = Z (m//|f|dﬂ+@/ |f|dM> Lo
Qleebrok(Q) niQ pIe
2 WfHZ S I, - (3.1.40)
QeD ¢ L) ™ e
and
E];énr,bf _ { 3 wa]w > F”’Qf F“’Qf (3.1.41)
Q'ee: Q'ee(Q)
plTh / 7 3.1.42
G fQ > du fdu (3.1.42)
b b b b ,b
T = DO A DAY~ DAL OBTE,  (143)
Mb /
D'gjbrokf - Z Qf F Qf’
Qleebmk(Q)
\D‘é’,@;'ikf) < ’%’ng, (3.1.44)

with similar equalities and inequalities for A and E. Here €., () denotes the set of broken

children, i.e. those Q' € €(Q) for which bQ/ #+ 1Q/bQ, and more generally and typically,
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Chror (Q) = €(Q) N A where A is a collection of stopping cubes that includes the broken
children and satisfies a o-Carleson condition and 7w () is the dyadic father of Q).

Define another modified dual martingale difference by

ST AT DI /. I S . I (3.1.45)

I'eey, i1.(I) I'e€yq ()

where we have removed the averages over broken children from D;’b f, but left the average
over I intact. On any child I’ of I, the function D?’b’b f is thus a constant multiple of by,

and so we have

by~ Y 11/ ( a,b,b) T 11/ ( a,b,bf)’ (3.1.46)

I'ee(1 I'ee(1
I/jgvb,bf = Z 1[/ E (_Daababf) ,
I'ee(1
1
- z b fan| = Y 1, [

I mz// bd/‘ ] f bd

Ileenat(l) fI/ e fI I'e Q:brok fl 1o

Thus for I € C4 we have

07" =ba S 14ES ( U”bf>._b cooby, (3.1.47)

I'ee()

where the averages E}’, (ﬁ?b’b f> satisfy the following telescoping property for all K €

QM\LMNJQM%QNMN>mﬂLECAWMM(CL

N —E9F9 f if KeCy(A)
Z E?K (D?b,bf) _ L™ L A 7 (3.1.48)
I: tKCICL EU]F%f EJIF 7f i KelCy
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where ﬁ% is defined in (3.1.37)) above.

Finally, in analogy with the broken differences Ag’ b, o and Dg’ b, o introduced above,

we define
/’[/7b7b — Uab /'(‘ab7b — Uab
ay brokf - Z E[/ [ and O} brokf = Z F[’ I (3.1.49)
I'e€yop (1) I'e€yop (1)
so that
b A pbb f,b,b bbb p:b,b
AP = AP+ Ao and O™ =077 + U (3.1.50)

These modified differences and the identities (3.1.47) and (3.1.48|) play a useful role in the

analysis of the nearby and paraproduct forms.

Lemma 3.1.22. For dyadic cubes R and ) we have

b _
amb b _ ) Be i R=0
p _

0 .
0 if R#Q
For the reader’s convenience we now collect the various martingale and probability es-
timates that will be used in the proof that follows. First we summarize the martingale
identities and estimates that we will use in our proof. Suppose u is a positive locally finite
Borel measure, and that b is a oco-weakly p-controlled accretive family. Then,

Martingale identities: Both of the following identities hold pointwise p-almost every-
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where, as well as in the sense of strong convergence in L? (u):

b b
/o= >, OPrHELS
I€D: IClxo, ((I)>2—N
b b
f o= >, APTHERS

I€D: ICIso, £(I)>2~N

Frame estimates: Both of the following frame estimates hold:

1£172, = Q;) { H%’be;(u) + Hv’éjbe;(u)} (3.1.51)

~ C;){Hﬁgjbf";(u) * vabe;(u)} '

Weak upper Riesz estimates: Define the pseudoprojections,

wePro= S opPy, (3.1.52)
IeB
(v5”) s = X (b)) r=Y arty
IeB IeB

*
We have the ‘upper Riesz’ inequalities for pseudoprojections \D%’b and (\Dg’b) :

SO > S »{ AR
* o~ * 2
(A o 0 S > (C Y

for all f € L? (1) and all subsets B of the grid D. Here the positive constant C' and depends
only on the accretivity constants, and is independent of the subset B and the testing family

b. The Haar martingale differences A’Zjb are independent of both the testing families and

82



the grid, while the Carleson averaging operators V’é depend on the grid only through the

choice of broken children of Q.

3.1.13 Monotonicity Lemma

As in virtually all proofs of a two weight 7'1 theorem (see e.g. [26], [29] , [49] and/or [4]]),
the key to starting an estimate for any of the forms we consider below, is the Monotonicity
Lemma and the Energy Lemma, to which we now turn. In dimension n = 1 (|29], [26])
the Haar functions have opposite sign on their children, and this was exploited in a simple
but powerful monotonicity argument. In higher dimensions, this simple argument no longer
holds and that Monotonicity Lemma is replaced with the Lacey-Wick formulation of the
Monotonicity Lemma (see [30], and also [48]) involving the smaller Poisson operator. As the
martingale differences with test functions b here are no longer of one sign on children, we
will adapt the Lacey-Wick formulation of the Monotonicity Lemma to the operator T and

* *
the dual martingale differences {Dt;’b }J g bearing in mind that the operators Dtj’b a
€

re
no longer projections, which results in only a one-sided estimate with additional terms on
*
the right hand side. It is here that we need the crucial property that the Range of Df;’b is
orthogonal to constants, [ (0P W) do = [ (A% 1) Wdw = [ (0) Wdw = 0
rthogonal to constants, 7 o= 7 w = w = 0.
We will also need the smaller Poisson integral used in the Lacey-Wick formulation of the
Monotonicity Lemma,

146
o () = i du (y)
= T+ Jy — ey

which is discussed in more detail below.

Lemma 3.1.23 (Monotonicity Lemma). Suppose that I and J are cubes in R™ such that
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J C ~vJ C I for some~y > 1, and that p is a signed measure on R™ supported outside I.
Let 0 <6 <1 and let U € L2 (w). Finally suppose that T® is a standard fractional singular
integral on R™ with 0 < a < 1, and suppose that b* is an oo-weakly p-controlled accretive

family on R™. Then we have the estimate

*
T, 0P ‘< oo HD“”b*\IJH 1.54
(w05 w) | S OpCoz @ (b 0570|3150
where
PY(, 1)) || xwb* ||® Py 5 (1 lul)
i - P gt T
( |M|> ‘J| J Z L2(w) |J| ||.I’ mJ||L2(1JW>
OJ,b* ‘2 . w,b* 2 . / 2
HAJ x(Lz(w) = HAJ Z‘HL2(M)+ZIQ&I S [ (Bl —21)
Je@brok(‘])
%2 w112 2
[/ (=vidh ] D DIt L
JlE@brok(J)

All of the implied constants above depend only onv>1,0<d <1 and 0 < a < 1.

Using /%h = Z (E{‘“;, \h\) 1 5/ defined in (3.1.39), we can rewrite the expressions
a2 Jleebrok(‘]) *2
w,b* w,b*
HAJ v )L2(w) and HDJ \IJHL%) o
w,b* L2 _ w,b*
[25% ] 2y = 125" 4] 2, + L 195 @ = D2
* *2
0P \IJH - HD“’b \IJH w2
H J L2(M) J L2(,u)+HvJ HL2(w)
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* * * *
Proof. Using Doj’b = D?’W’b Dtj’ﬂ’b + Dbj’;’:k , We write

*
(12, 057" | = (7o (057 05 ot w) |
w w

J,brok

IN

o w,m,b* —w,m,b* o w,m,b*
(ronc o) [+ (i)

I+1L

* 1
Since <1, D?’ﬂ’b h> =0, we use mjy = ——
w ’J|w

/ xdw (x) to obtain
J

T (x) =T%%(my) = /[(KO‘)(%y)—(Ko‘)(mj7y)]du(y)

_ /[V(KQ)T(H(x,mJ),y)'(Sﬁ'—mJ) due (y)

for some 6 (x,mj) € J to obtain

= | [0 = T (m) 57 050 @) do (a)

_ / { / V(KT (0 (2,my)) du <y>} (e —my) D9 () do ()
< [[{/vu T s} @m0 o @ b @)

+

/ {/ VKT O @ my) )V (my.y)| du <y>}

* *
(x—my) O9TP 09T () dw ()

L+
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Now we estimate

T
b* b*
I = H/V(KO‘) (mJ,y)du(y)} -/(w—mJ) O™ O™ U () dw (2)
a w,m,b* w,m,b*
< n IV(KEY) (mgy)ldlpl(y) A7z |O777 ()] dw(x)
o
< n-Cogt (, Iul HAwﬂb*m’ ; HDLj,ﬁ,b*\pH ;
and
P (J,
RIS Ocz%m'/u— ﬂ‘m“b melld \If(x)‘dw(x)
J
(J,
< Cpoy 1—|—(5|J| |:u’ \//‘ r—m |2dw Hmumrb w7rb \DH
P s (k) b*
S oDy [
~ czZ |J| H:C mJHL2(1Jw) J LQ( )

For term II we fix z € J for the moment. Then since

(.db* w7b* w,ﬂ',b* —
(LOp k) = (L5 R =05 ) =0

w

we have

w,b*
= (7 Oia?), |

_ \ / {9 020 a0 - 2) O35 @ do o

Pa J, | b*
< Cor B o) [oytie @) (o)
IJI
< cp Pt D “" /yx 1B | dw(x)
"]| JE@bmk
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having used the reverse Holder control of children ([3.1.23]) to obtain

Wab* WabJ/ w,bJ
‘Djbmkq]‘ = > (FJ/ -F, ) vl Y, lpEgY
J/EQ:brok(JQ) Jlecbrok(‘])

and since

|z — 2] -1y E% |V dw(x) = dw ()
/J’ J =g 7! /‘J/|w /‘J/|w
we get
P (J, |ul) 2 2
N<Cop—"32 | > W (Bsle—4) | > 170 [B4lw)
[\ sy, o (D) T ey, o ()
Combining the estimates for terms I and II, we obtain
7o, 0P p
,LL, J w
P (J, |pl) w,m,b* w,m,b*
S Cor—q= 57 al| P57 9]
C |J|% J L2(w) J Lz(w)
Py s (1 |ul) b*
AT =
cZz ‘J’% ||:C mJHL2(1Jw) J LQ(w)
P (T, |ul]) 2 2
+ Coz——qe il | 3T W (Bple-al)” |3 B ]
[l 2€IN ey, () J'e€y, ()

and then noting that the infimum over z € R is achieved for z € J, and using the triangle

* * *
w,T,b Dwﬂr,b

inequality on L7 = Dt‘;’b Throk e get (3.1.54). O]

The right hand side of (3.1.54) in the Monotonicity Lemma will be typically estimated
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in what follows using the frame inequalities for any cube K,

> ((D“j’b*@)]:;w) ST
Z H wb* ’QQ

JCK

AN

[ o= micPdo @)
K

together with these inequalities for the square function expressions. To see the last one,

write x = (x1,..., o) and note that for J C K,

dw

2
/‘Awb ‘dw /Z‘Awb*,
<Z/ 7 = micil? do=o = mil 25,

using the one-variable result from [54].

Lemma 3.1.24. For any cube K we have

> | 3’,|\If|(:c>]2 < /K|\I/(x)|2dw(x), (3.1.55)

JCK ‘]Iegbrok(‘])

and Z mf Z PAN (E§,|x—z|>2 < /\x—mKIde(:c).
K

JCK” J €0k (J)

Proof. The first inequality in (3.1.55)) is just the Carleson embedding theorem since the cubes
{J’ € Crop (J): JC K } satisfy an w-Carleson condition, and the second inequality in

(3.1.55)) follows by choosing z = my to obtain

me S L (Ele-a) S (B - mid)

T €€ () T €€, o ()

88



and then applying the Carleson embedding theorem again:

> > M, (Eff/ |1’—mK|>25/K|x—mKl2dw(:p).

JCK JIEQbrok(J)

3.1.13.1 The smaller Poisson integral

The expressions

P s () b* (1K
g B e
2eR 7| l= ZHLQ(lJW) J L2(w)

are typically easier to sum due to the small Poisson operator P{, 5 (J,[u]). To illlustrate, we
show here one way in which we can exploit the additional decay in the Poisson integral P{" s
Suppose that J is good in [ with ¢ (J) = 275¢ (I) (see Definition below for ‘goodness’).

We then compute

5
Pis (J’ 1A\10> N / Fiiz .
|J|% AT |y . CJ|n+1+(5—a
. 5
| J|n 1
< . do (y
o\ @) gopeetr
ot P ()
~ \ dist (¢, I9) |J|% ’

and use the goodness inequality,

dist (cy, I¢) > 20 (1) 2 ¢ (J)F > 2-250=9)¢ (),
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to conclude that

P, (4 1a0) P (4 109)

- <970 - (3.1.56)
|J|m |J[7
Now we can estimate
PS¢, < (J, 1xc x 1k
Z inf 1+5( ke ) |z — 2] ;2 HD‘;’b \IJH
__z€R 1 L2(1 yw) L2(w)
JCK: J good in K ||
2
P (J, 1ge | *2
| E(FE) e | B IR
JCK |J|n i JCK
J good in J good in K
where
Py s (1 1gce ) )
2 ] inf I = =lz2(1 1)
JCK: J good in K i
2
= Pl s (L ge|ul) )™ . 5
= > > 1] 12]%"3” - Z”L2(1Jw)
s=0JCK: J good in K :
0(J)=2"50(1)
o 2
(6%
—s6(1—e) P (S, 1geo) | . 2
SO DD D CE e el I A L Y0
s=0JCK: J good in K |(]‘n
0(J)=275¢4(T)
2 o0
PY (K, 1
< (K, 1I(CO') Z 2—28(5(1—6) inf Hx_ZHiZ(l 2)
|K|ﬁ s=0JCK: J good in K ZeR K
0(J)y=2"5¢(1)
2
P (K, 1gco) _ 9
s | TEEE) g e sl
|K|ﬁ z€R KY

and where we have used (3.5.10]), which gives in particular

l—e(n+1—c)
K(J)) Pa(],p,l_fc).

P(J pulpe) S (m
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for J C I and d(J,0I) > 20(J)¢(I)}¢. We will use such arguments repeatedly in the
sequel.

Armed with the Monotonicity Lemma and the lower frame inequality

b* *2 2
Hpd gH < lg :
I;H e T

we can obtain a b*-analogue of the Energy Lemma as in [49] and/or [48].

3.1.13.2 The Energy Lemma

Suppose now we are given a subset H of the dyadic grid G. Due to the failure of both mar-
* *
tingale and dual martingale pseudoprojections Q;‘fl’b x and Pff{’b g (see below for definition)

*
to satisfy inequalities of the form HP;‘fib gHLQ(w) < ||9”L2(w) when the children ‘break’, it is

X *
convenient to define the ‘square function norms’ w,b ’L2( and HPW b ’ ) of the
w
pseudoprojections
*
Q;flbx—ZA’ J:andPH g—ZDijg,
JeH JeH
by
w,b* ‘2 _ w,b* ‘2
HQH x‘LZ - Z AJ x‘LQ
@ & @)
b* 2 /
= AP ‘ + inf J ( xr—z )
DLV WD R TR DRI AL
JeH JEH ™ J ey, o ()
b* || *2 wh* ||*2
ps g‘ = 07" g
H H L2(w) J%:{ J L2(w)
_ wvb* !/ w 2
- Y et X X L [E
JeH

JEH ! ok ()

91



for any subset H C G. The average EY |r — z| above is taken with respect to the variable =,
ile. BY | —z| = JL [ |z — z| dw (x), and it is important that the infimum inf,cp is taken
inside the sum ) yoqy.
Note that we are defining here square function expressions related to pseudoprojections,
. . w,b* w,b* .
which depend not only on the functions Q?—L r and P?—L g, but also on the particular
* *
representations ) | ;o4 A?’b zand ) joqy Df;’b g. This slight abuse of notation should not
cause confusion, and it provides a useful way of bookkeeping the sums of squares of norms of
2
’L2(w)’

w,b*

and H (s along with

*
martingale and dual martingale differences HA?’b 33HL2(

the norms of the associated Carleson square function expressions

2
Z inf HVJ T —z Hig(w) = Z 21?]% Z }J”w (E;’, |x—z|>

Jen *<E JEH" ey, ()
9 2
S v = X X 1 [E]
JeH JEH Jeey, o (J)

Note also that the upper weak Riesz inequalities yield the inequalities

w,b* 2 w,b* 2 w,b* a2
95" el = 21257 el oy <19 el o,
ol = 2 e < P
HP’H Nr2w) ~ Z 5 N2 = Ho9 L2(w)

x |2
We will exclusively use HQ%’b xHLQ( ) in connection with energy terms, and use
w
* x| k2
’ PP fH and HP;)_Lb g ‘LQ( ) in connection with functions f € L? (¢) and g € L? (w).

Finally, note that QH’ Ty = QH’ (93 —m) for any constant m.
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Recall that

T = my e

Lemma 3.1.25 (Energy Lemma). Let J be a cube in G. Let W be an L? (w) function
supported in J with vanishing w-mean, and let H C G be such that J' C J for every J' € H.
Let v be a positive measure supported in R\yJ with v > 1, and for each J' € H, let
dvy = ¢ pdv with |g0J/| < 1. Suppose that b* is an co-weakly p-controlled accretive family

on R™. Let T® be a standard a-fractional singular integral operator with 0 < o < 1. Then

we have
o Dw7b* < ol Dw7b* *

S (1) ) 500 X v o,

JeH JeH
< C o (J',v)? 0% w 2
<o [Y R | Y [ttt

JeH JeH

P (J, 1) b* [ P < (J,v) b* *
< e L [P s
~ |J| HQ 2w * |J|% I m‘]HLQ(ljw) Ho S 2

and in particular the ‘energy’ estimate

(T, )|
*
pe b & PYs(v)
<c, —* Mt o pat e = mll g || 205
|’ |J|n J'cJ LQ(M)
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*
*
where 0P < |[¥sll;9, .\, and the ‘pivotal’ bound
J! J ~ JIr, (1)
J'cJ L2(p)

(T (v), W)yl S CyPE (WD) A/ 119l 2y
for any function ¢ with |¢| < 1.
Proof. Using the Monotonicity Lemma|3.1.23| followed by ‘V J/| < v, the Poisson equivalence

pe (J, po
(J".v) ~ (: V>, J cJc~Jd, supprnyJ =0, (3.1.57)

i 1
PAK S|

and the weak frame inequalities for dual martingale differences, we have

w,b* ! wb *
> <Ta (vyr) B \I’J>w SDBRCAT) HDJ’ ‘IJJHLQ(M)

JeH JeH
1
« (1) 2 . 2 N 3
Pe(J v b* 2 b* 2
< ’ w, W,
S X it HAJ’ x‘L%;) 2 HDJ’ \DJHL%J)
Jen \ | J'en
1
PY < (1)) ’ : * :
1+6 ) [ 2 w,b* 2
S DI B el I ESLVL YSIRY B DY a2l 9
JeH Pk J'eH
P (J V)H wb 1 Py (DY)
|95 | oy 1 2+ e =l a1l 2,
‘J’% H 2(w) L4(w) 75/ s L4(1 w) L4 (w)
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The last inequality follows from the following calculation using Haar projections A%

2

P& (J’ 1/)
146 (5
o= e mJ/!!L2(1 ) (3.1.58)
Jen BAKC J!
9
P¢ o (J v 2
-y (B ) S sl
J'eM PAKC J"cg! «)
2
oy 3 PHa_(J’) |
gy | 7 Jeatcy |J’|ﬁ T2 )
9
P (J” 1/) 2
< 146/ ) HA ’
~ 25 J;C:J ’J,,|l e L2(w)
1 P 5/(‘]’/)
< o (] X |85 e
v IJI” J"cg

1 1
which in turn follows from (recalling § = 26" and |J'|" + |y — c | &~ [J|7 + |y — ¢;| and

/]

—_— f R™\~J
|J|+|y CJ| OI"yG \'7 )

g gl cglcg PAKC

2
AR 1 v
> 1] ( /RW (i T <y>)

JJcglcg

20 2
1 <J’} " J|m
S Z (/Rn\%] 1 )n+1+5/—a dv (y) )

1. gl gl 7 J 1
120 a 2 2
28 20 1 ~ 24 L
TN\ ety | U|” v | J|m
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Finally we obtain the ‘energy’ estimate from the equality

*
U= Z Dw ;b U7,  (since ¥; has vanishing w-mean),
J'cJ

and we obtain the ‘pivotal’ bound from the inequality

b* 2 2
> [lase) oy SN =)oy S WP
J'cg /

3.1.14 Organization of the proof

We adapt the proof of the main theorem in [51], but beginning instead with the decomposition

of Hytonen and Martikainen [24], to obtain the norm inequality
Nra S STa + fZTa + Q(% + Qf%

under the apriori assumption Mpa < oo, which is achieved by considering one of the trun-
cations T gf SR defined in above. This will be carried out in the next four sections of
this paper. In the next section we consider the various form splittings and reduce matters to
the disjoint form, the nearby form and the main below form. Then these latter three forms
are taken up in the subsequent three sections, using material from the appendices.

A major source of difficulty will arise in the infusion of goodness for the cubes J into
the below form where the sum is taken over all pairs (I,J) such that ¢(J) < ¢(I). We
will infuse goodness in a weak way pioneered by Hytonen and Martikainen in a one weight

setting. This weak form of goodness is then exploited in all subsequent constructions by
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typically replacing J by J " in defining relations, where J " is the smallest cube K for which
J is good w.r.t. K and beyond.

Another source of difficulty arises in the treatment of the nearby form in the setting of
two weights. The one weight proofs in [24] and [27] relied strongly on a property peculiar
to the one weight setting - namely the fact already pointed out in Remark above
that both of the Poisson integrals are bounded, namely P* (Q, ) < 1 and P (Q,pn) < 1.
We will circumvent this difficulty by combining a recursive energy argument with the full
testing conditions assumed for the original testing functions bgig , before these conditions
were suppressed by corona constructions that delivered only weak testing conditions for the
new testing functions bg).

Of particular importance will be a result proved in Appendice A of [I4] that follows from
known work with some new twists. We show that the functional energy for an arbitrary
pair of grids is controlled by the Muckenhoupt and energy side conditions. The somewhat
lengthy proof of this latter assertion is similar to the corresponding proof in the T'1 setting

- see e.g. [51] - but requires a different decomposition of the stopping cubes into ‘Whitney

cubes’ in order to accomodate the weaker notion of goodness used here.

3.2 Form splittings

Notation 3.2.1. Fix grids D and G. We will use D to denote the grid associated with

f e L?(0), and we will use G to denote the grid associated with g € L (w).

Now we turn to the probability estimates for martingale differences and halos that we

%
will use. Recall that given A = (A,...,\p), 0 < \; < % for all 1 < i < n, the A-halo of J is
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defined to be

ayjz<y+Y)J\@—?Y)J

Suppose p is a positive locally finite Borel measure, and that b is a p-weakly p-controlled

accretive family for some p > 2. Then the following probability estimate holds.

Bad cube probability estimates. Suppose that D and G are independent random dyadic

* *
grids. With ¥* ’1]; D‘j’b g equal to the pseudoprojection of ¢ onto k-bad
k—bad

G-cubes, we have

9= Z‘Jegl?fbad

A
&
S

b*
\I!uD g

D
Eg p
k—bad

ol 2 [HD?’E*Q

L2 TEGE aa

—ke 2
Ce HgHLQ(M) ) (321)

2
P e P

IN

where the first inequality is the ‘weak upper half Riesz’ inequality from Appendix A of
[54] for the pseudoprojection \Ifg ’B* , and the second inequality is proved using the frame
inequality in below. o

Halo probability estimates. Suppose that D and G are independent random grids.

Using the parameterization by translations of grids and taking the average over certain

translates 7 + D of the grid D we have

ED / w < g/d% Jee()),Jeg, (3.2.2)
I'eD: ¢ 1/ Jmaﬂl J!

EY / o < Q/dm I'ee(),IeD,
J/GQ ¢ J/ Iﬂa(gjl I’

98



and where the expectations Eg and Eg are taken over grids D and G respectively. Indeed,
it is geometrically evident that for any fixed pair of side lengths ¢1 ~ (9, the average of the
measure ‘J' ﬂ@gl’!w of the set J' N 9sI’, as a cube I’ € D with side length ¢ (I') = {7 is
translated across a cube J' € G of side length ¢ (J’) = {9, is at most C }J"w. Using this
observation it is now easy to see that holds.

In the o-iterated corona construction we redefined the family b = {bQ}Q ep SO that the
new functions bgfw are given in terms of the original functions bgig by bgfw = lQb%ig for
Q € C%, and of course we then dropped the superscript new. We continue to refer to the
triple stopping cubes A as ‘breaking’ cubes even if b4 happens to equal 1 4b, 4. The results
of Appendix A of [54] apply with this more inclusive definition of ‘breaking’ cubes, and
the associated definition of ‘broken’ children, since only the Carleson condition on stopping

cubes is relevant here.

This and Proposition [3.1.19| give us the triple corona decomposition of f= > PgAf,
AeA

where the pseudoprojection PgA is defined as:

b
0= X O

IeCy
We now record the main facts proved above for the triple corona.

Lemma 3.2.2. Let f € L*(0). We have

F= P&,Jf
AcA

both in the sense of norm convergence in L2 (o) and pointwise o-a.e. The corona tops A and

stopping bounds {og (A)} gc 4 satisfy properties (1), (2), (3) and (4) in Definition

99



hence constitute stopping data for f. Moreover, b = {br}cp is a co-weakly o-controlled
accretive family on D with corona tops A C D, where by = 15by for all I € Cy, and the

weak corona forward testing condition holds uniformly in coronas, i.e.

1

2

Similar statements hold for g € L?(w).

We have defined corona decompositions of f and g in the o-iterated triple corona con-
struction above, but in order to start these corona decompositions for f and g respectively
within the dyadic grids D and G, we need to first restrict f and g to be supported in a
large common cube Q). Then we cover Qoo with 2" pairwise disjoint cubes Ioo € D with
((Ix) = ¢ (@), and similarly cover Qo with 2" pairwise disjoint cubes Jo € G with
l(Jxo) = £(Qx). We can now use the broken martingale decompositions, together with

random surgery, to reduce matters to consideration of the four forms
*
DD DR Ay [erd
IeD: IClx JeG: JCJxo

with I and J as above, and where we can then use the cubes I and J as the starting

cubes in our corona constructions below. Indeed, the identities in |24, Lemma 3.5|), give

o,b o,b
fo= > U f+FF
I€D: IClxo, ((I)>2~N
b* b*
g = Y. O g+FR g,

JEG: JCJoo, £(J)>2—N

100



which can then be used to write the bilinear form [ (75, f) gdw as a sum of the forms

b b* b b*
S Y Y (oo X [ (mopt) el g
+1..s IeD Je 1eD
2(7;00 3255 ICTao JchQ [Clso

+ Y / (Tg‘Fi’;’ f) 09" g + / (T3F§£ f) Fo gdw b (3.2.3)
JeG: JCJxo

taken over the 2"t pairs of cubes (Iso, Joo) above. The second, third and fourth sums in
(3.2.3) can be controlled using testing and random surgery. For example, for the second sum

we have

S ooy | o (F§£*9> do

3 /(Tg‘lj?’bf> PP gdu| < /

1€D: ICIng IooNJoo \ 1ep. Tc 1o
k
+ / S ofhr| o (F°j£ g) do
TooN((1+0)Joo\Joo) \ rep. Tc 1o
*
+f > ot | ze (R4 ) do
Ioo\(140)Joo \ 1eD: Tc Iy
= A1 +Ary+ A3

So we are left with bounding Aq, A9, A3. We have

1
2 2

2
< o,b ’ a,x (mw,b* ‘
A < /I Z Uy f| do (/Joo T, (FJoo g> do

0\ IeD: ICIx

D=
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EY g
and since IF b g = b¥ Tno w‘]—* is b?‘] times an ‘accretive’ average of g on Joo, we get
EJ bJ 00

DOl

b 1
A < Z D?’ f (/ ‘Tg’*(ljoobﬁoo)‘ ) |E'Joog|

Cp* | J.
€D Icls |[2(g) 7 bl Joolu

< b 11125y 91l L2

where in the last inequality we used the frame estimates (3.1.51)) and the dual testing con-
o X
dition on b Tno

For Ay we use expectation on the grid G.

EgAggEg/ S o7y ‘Tﬁ’*( il g)‘d

IooN[(146) Joo\Joo] | ep: TeTog
1

1
a, (e8] w * 2 2
/Iooﬂ[(1+6)Joo\Joo] 2 O bf o (/’T . )‘ d0>2

IeD: ICIxo

<EY

1
2 2

Eg/ 0ob ¢l 4 (*ﬁa/ 2d)
TooN[(146) Joo\ Joo] 2 1 f| do Ta [ |9 dw

1€D: IClx

D=

1
2 2

<|co S o7y do (fﬁTa/ygy?dw)

Io | 1ep: Tc I

< VONga [ fll p2(4) 190l 2

D=

Finally for A3 we use lemma since dist(Zoo\(1 4 0)Joo, Joo) = 0€(Jxo) to get

A3 S /2307 1l 2oy 191l 220
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Altogether we get

b b* _
B S [ (12077 0) B gl (5o + 2500 00) 112, Il 2

1D
IClxo

Similarly we deal with the third and fourth sum of (3.2.3). We are left to deal with the first

sum in ((3.2.3)).

3.2.1 The Hytonen-Martikainen decomposition and weak goodness

Now we turn to the various splittings of forms, beginning with the two weight analogue
of the decomposition of Hytonen and Martikainen [24]. Let b (respectively b*) be a oo-
weakly o-controlled (respectively w-controlled) accretive family. Fix the stopping data A
and {a g (A)} g4e4 and dual martingale differences D?’b constructed above with the triple
iterated coronas, as well as the corresponding data for g. We are left with the estimation of

the bilinear form [ (7}, f) gdw to that of the sum
S>3 [ (10 o o
IeD Jeg

We split the form (T} f, g),, into the sum of two essentially symmetric forms by cube size,

/ (Tof) gdw = DY / (Tg‘D?bf> 09 gdw,  (3.2.4)

IeD: jeG IeD: Jeg
L)L) L(J)>L(I)

= O(f,9) +0*(f,9)
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and focus on the first sum,

ot~ Y (mortnos)

I€D and JeG: £(J)<((I)

since the second sum is handled dually, but is easier due to the missing diagonal. Before

introducing goodness into the sum, we follow [24] and split the form © (f, g) into 3 pieces:

S " ¥ > (reoptr o)
IeD | JeG: UN)<UI)  JeG: 0(J)<27TUI) JeG: 27 0(I)<t(J)<l(I)
[ATD>20(D U E d(rn<26(D)E0n)I = d(gny<2e() 1)t
(f

= O1(f,9)+0O2(f,9)+03(f.9) ,

7

where € > 0 will be chosen to satisfy 0 < € < W%—_a later. Now the disjoint form ©1 (f, g)
can be handled by ‘long-range’ and ‘short-range’ arguments which we give in a section below,
and the nearby form O3 (f, g) will be handled using surgery methods and a new recursive
argument involving energy conditions and the ‘original’ testing functions discarded in the
corona construction. The remaining form O9( f, g) will be treated further in this section after

introducing weak goodness.

3.2.1.1 Good cubes with ‘body’

. We begin with the weaker extension of goodness introduced in [24], except that we will
make it a bit stronger by replacing the skeleton ‘skel K’ of a cube K, as used in [24], by a
larger collection of points ‘bodyK’, which we call the dyadic body of K. This modification
will prove useful in establishing the Straddling Lemma in the treatment of the stopping form

in Section [3.6 below. Let P denote the collection of all cubes in R™. The content of the
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next four definitions is inspired by, or sometimes identical with, that already appearing in

the work of Nazarov, Treil and Volberg in [36] and [3§].

Definition 3.2.3. Given a dyadic cube K € R", we define W (K) to be the Whitney cubes

in K. Namely, S € W(K) if:
e 35 C K.
e NS #0 and 35" C K imply S’ C S.

Definition 3.2.4. We define the dyadic body ‘bodyK ’ of a dyadic cube K € R™ by

bodyK = | J 08
SeW(K)

where 0S is the boundary of S.

Definition 3.2.5. Let 0 < € < 1. For dyadic cubes J, K € R™ with ((J) < ((K) we define
J to be e—good in K if

dist(J, body K) > 20(J)0(K)' (3.2.5)

and we say it is e—bad in K if (3.2.5)) fails.

Definition 3.2.6. Let D and G be two dyadic grids in R™. Define g@ to consist

,€)—good
of those cubes J € G such that J is e—good inside every cube K € D with K NJ # 0 and

UK) > 2ke(T).

3.2.1.2 Grid probability

As pointed out on page 14 of [24] by Hytonen and Martikainen, there are subtle difficulties

associated in using dual martingale decompositions of functions which depend on the entire
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dyadic grid, rather than on just the local cube in the grid. We will proceed at first in
the spirit of [24], and the goodness that we will infuse below into the main ‘below’ form
Be, (f,g) will be the Hytonen-Martikainen ‘weak’ version of NTV goodness, but using the
body ‘bodyl’ of a cube rather than its skeleton ‘skell’: every pair (I,J) € D x G that arises
in the form Be, (f,g) will satisfy J € g@)g)_good where ¢ (I) = 2k¢ ().

Now we return to the martingale differences D?’b and D?’b* with controlled families b

and b* in R”. When we want to emphasize that the grid in use is D or G, we will denote

*
the martingale difference by D?’Zb), and similarly for D?’g . Recall Definition |3.2.5| for the

meaning of when an cube J is e-bad with respect to another cube K.

Definition 3.2.7. We say that J € P is k-bad in a grid D if there is a cube K € D
with 0 (K) = 280 (J) such that J is e-bad with respect to K (context should eliminate any

ambiguity between the different use of k-bad when k € N and e-bad when 0 < € < %)

Following [54] we know that in one dimension for an interval J and grids Dy
PO (Dy : J is k-bad in Dy) = /Q Lpy: 7 is k-bad in Dy} e (Do) < Cek2™ . (3.2.6)
Thus we conclude:
PSO (Dy : J is k-good in Dy) > 1 — Cek2 ™k, (3.2.7)

Now for a cube J to be good in our n-dimensional setting, it needs to be good in each side.

So, we conclude that

PD (D : Jis k-good in D) > (1 — Cek2~k)". (3.2.8)
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and therefore a cube is bad with probability bounded by:

P (D : Jis k-bad in D) < 1 — (1 — Cek2~k)". (3.2.9)

Then we obtain from (3.2.9)), using the lower frame inequality, the expectation estimate

TR (=2 FOIRE %  es
TETE b
2
- > U‘D?g*g‘@ +HVJQQH ]/1{D:Jis k-bad in D}AHQ (D)
Jeg Q

< (1—(1-Cek2—shym) 37 Mmyg g‘LQ +ijggH }
Jeg

—eky\n 2
< (1= (= ek g2y,
where vi*]’,g denotes the ‘broken’ Carleson averaging operator in (3.1.39) that depends on
the broken children in the grid G. Altogether then it follows easily that
‘2

D w,b*
Bl T |l

00 D
U2k 90 bad

sl | | 0= corr iz,

(3.2.10)
for some large positive constant C'.
From such inequalities summed for k£ > r, it can be concluded as in 38| that there is an
absolute choice of r depending on 0 < ¢ < 35 so that the following holds. Let T' : L*(0) —

L2(w) be a bounded linear operator. We then have the following traditional inequality for
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two random grids in the case that b is an co-weakly p-controlled accretive family:

*k
1T < 2|\f|| sup ol sup  EqEq < Z T <D?’gf) 1, Di’g g> . (3.2.11)
2 =119l 120 =L G
L#(o) L#(w) LIEDY oo y

However, this traditional method of introducing goodness is flawed here in the general
setting of dual martingale differences, since these differences are no longer orthogonal pro-
jections, and as emphasized in [24], we cannot simply add back in bad cubes whenever we
want telescoping identities to hold - but these are needed in order to control the right hand
side of . In fact, in the analysis of the form © (f,g) above, it is necessary to have
goodness for the cubes J and telescoping for the cubes I. On the other hand, in the analysis
of the form ©* (f, g) above, it is necessary to have just the opposite - namely goodness for
the cubes I and telescoping for the cubes J.

Thus, because in this unfortunate set of circumstances we can no longer ‘add back in’
bad cubes to achieve telescoping, we are prevented from introducing goodness in the full
sum (|3.2.4)) over all I and J, prior to splitting according to side lengths of I and J. Thus
the infusion of goodness must come after the splitting by side length, but one must work
much harder to introduce goodness directly into the form © (f,g) after we have restricted
the sum to cubes J that have smaller side length than /. This is accomplished in the
next subsubsection using the weaker form of NTV goodness introduced by Hytonen and
Martikainen in [24] (that permits certain additional pairs (I, J) in the good forms where
0(J) < 277 (I) and yet J is bad in the traditional sense), and that will prevail later in
the treatment of the far below forms T}farbelow (f,9), and of the local forms Bér (f,9) (see

Subsection where the need for using the ‘body’ of a cube will become apparent in dealing
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with the stopping form, and also in the treatment of the functional energy in Appendix B

of [54].

3.2.1.3 Weak goodness

Let D and G be dyadic grids. It remains to estimate the form O9 (f, g) which, following [24],
we will split into a ‘bad’ part and a ‘good’ part. For this we introduce our main definition
associated with the above modification of the weak goodness of Hytonen and Martikainen,

namely the definition of the cube R*¥ina grid D, given an arbitrary cube R € P.

Definition 3.2.8. Let D be a dyadic grid. Given R € P, let R* be the smallest (if any
such exist) D-dyadic supercube Q) of R such that R is good inside all D-dyadic supercubes
K of Q. Of course R™ will not exist if there is no D-dyadic cube QQ containing R in which
R is good. For cubes R,Q € P let k(Q, R) = logy EE—% For R € P for which R¥ exists, let
k(R) = K (R*I‘,R).

Note that we typically suppress the dependence of R¥ on the grid D, since the grid
is usually understood from context. If R™ exists, we thus have that R is good inside all
D-dyadic supercubes K of R with ¢(K) > /¢ (R’F> Note in particular the monotonicity
property for J', J € P:

J = (J)*c ¥
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Here now is the decomposition:

O2(f9) = Y 2. / <Tgm?bf> % o
I€D jeg: pRgr1, 0()<27TU(1)
d(J,1)<20(J)E0(I) 1€

b b*
> > [ (z505°r) 5™ ga
I€D jeg: JRCI, 0()<27T4(I)
d(J.I)<20(J)Ee(1) ¢

= O (f,g)+ 0" (f,9) .

and where if J% fails to exist, we assume by convention that .J " g I, ie. J " is not strictly
contained in I, so that the pair (I, J) is then included in the bad form @gad (f,9). We will

in fact estimate a larger quantity corresponding to the bad form, namely

T R N (= e R
I€D jeg: 7Rgr1, 0()<27TU(1)
d(J,1)<20(J)ser)l—=

with absolute value signs inside the sum.

Remark 3.2.9. We now make some general comments on where we now stand and where

we are going.

1. In the first sum @gad (f,q) above, we are roughly keeping the pairs of cubes (I,J) such
that J is bad with respect to some ‘nearby’ cube having side length larger than that of

I.

2. We have defined energy and dual energy conditions that are independent of the test-

.13—.13/

/
ing families (because the definition of E (J,w) = ]on’xon’x ( i)

) does not involve
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*
pseudoprojections Dbj’g ), but the functional energy condition defined below does in-

. L w,b*
volve the dual martingale pseudoprojections DJ,D )

3. Using the notion of weak goodness above, we will be able to eliminate all pairs of cubes
with J bad in I, which then permits control of the short range form in Section and
the neighbour form in Sectionprovided 0<e< W%f_a' Defining shifted coronas in
terms of JX will then allow existing arguments to prove the Intertwining Proposition
and obtain control of the functional energy in Appendix B of [54], as well as permitting
control of the stopping form in Section [3.6, but all of this with some new twists, for
example the introduction of a top/down ‘indented corona’in the analysis of the stopping

form.

4. The nearby form ©z (f, g) is handled in Section using the energy condition assump-
tion along with the original testing functions bgig discarded during the construction of

the testing/accretive corona.

These remarks will become clear in this and the following sections. Recall that we earlier

defined in Definition |3.2.6| the set g,?_ good = Q(ZZ £)—good to consist of those J € G such that

J is € — good inside every cube K € D with K N J # () that lies at least k levels ‘above’ J,

ie. 0(K)>2F¢(J). We now define an analogous notion of g/?—bad'

Definition 3.2.10. Let ¢ > 0. Define the set gl?—bad = g@ e)—bad to consist of all J € G

such that there is a D-cube K with sidelength ¢ (K) = 25¢(J) for which J is € — bad with

respect to K.

Note that for grids D and G, the complement of g,?_ good is the union of ggb ad for ¢ > k,
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1.e.

g\ g?—good = U gﬁbad :
>k

Now assume € > 0. We then have the following important property, namely for all cubes R,

and all £ > r (where the goodness parameter r will be fixed given £ > 0 in below):
4 {Q .k (Q,R) =k and d (R, Q) < 26(3)%(@)1*6} <1 (3.2.13)
As in [24], set
led’n ={J € G:Jise— bad with respect to some K € D with ¢ (K) > n}.
We will now use the set equality

{J eG: JEq I, o) <27, d(J,]) < 2€(J)5€(I)1*5} (3.2.14)

= {ReGh 0 T<RQR) <k(R), d(RQ) < 2A(RF Q).

which the careful reader can prove by painstakingly verifying both containments.
Assuming only that b is 2-weakly p-controlled accretive, and following the proof in [24],
we use ([3.2.14)) to show that for any fixed grids D and G, and any bounded linear operator

TS we have the following inequality for the form @gadh’smd (f,9), defined to be @gadh (f,9)

112



as in (3.2.12)) with the pairs (, J) removed when JE = 1. We use £Q,R = %1 to obtain

@gadh,smct (f.o)= % > ‘<T°‘ < QDf) O}ngg 9>‘

Q€D RegP L0(Q) TSRQR) <Kk (R)
d(R.Q)<2U(R)*U(Q)' ¢
w ,b
_ Z Z €QR<T ( pr) Rgg>
QeD Reglﬁ 20(0) r<r(Q,R)<x(R)
d(R,Q)<20(R)*1(Q)' ¢

< Z <T§‘ (Dg%f), Z 5QRDRg 9>
QeD Regﬁdﬂ@: r<r(Q,R)<k(R)
d(R,Q)<20(R)*U(Q)1 ¢
< Npa Z HD fH > 5QRDRQ Y
Regﬁdj@): r<s(Q,R)<#(R)
d(R,Q)<2(R)%¢(Q)1—¢ L2(w)
OO w,b*
< mTOz fH Z EQ,RDR)Q g )
k—r ReGP 2.6(0)F=H@, R)<m(R)
(RQ)<2U(R)FU(Q)'~
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by Minkowski’s inequality, and we continue with

00 b 2
< 2mTO‘Z Z HDanHL2(U)
k=r \Q€D

1
3
w,b* 2 w 2
> > (HDRQ 3 ’LQ(w) i HVR’QQHL%))
QeD Reglﬁd,f(@): k=k(Q,R)<k(R)
d(R,Q)<20(R)FL(Q)1 ¢
%
> w,b* 2 w 2
S relilzg 3| 3 (o3 o] 00, + 002, ) |
REG, doki(R)

where /% - denotes the ‘broken’ Carleson averaging operator in (3.1.39) that depends on
VRG

the grid G, and

1. the penultimate inequality uses Cauchy-Schwarz in ) and the weak upper Riesz in-

*
equalities (3.1.53) for Z £Q, RDLJ?E , once for the sum when
regP 2.6(Q) F=R@R)<H(R)

d(RQ)<20(R)*H(Q)'
eQ,rR = 1, and again for the sum when g p = —1. However, we note that since

the sum in R is pigeonholed by k = k (Q, R), the R’s are pairwise disjoint cubes and
*

the pseudoprojections D(’é’z g are pairwise orthogonal. Thus we could instead apply

Cauchy-Schwarz first in R, and then in @) as was done in [24], but we must still apply

weak upper Riesz inequalities as above.

2. and the final inequality uses the frame inequality (3.1.51)) together with (3.2.13)), namely

the fact that there are at most C' cubes ) such that x (Q, R) > ris fixed and d (R, Q) <

20 (R)* € (Q)' .
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Now it is easy to verify that we have the same inequality for the pairs (J *I‘, J ) that were
removed, and then we take grid expectations and use the probability estimate (3.2.10|) to

obtain for ¢/ = %5 that Eg < ebad (f, g)) is bounded by

(3.2.15)
1
2
< Bl X | X ([ ol [Thee)
k=r R D
O 2k i(R)
1
2
<o SR T (el kel
k=r R D
egbad,Qké(R)
1./ sl 1
-5 —ck 2 2
S 220N £z, D (M= (@27 gl2y,)
k=r
< Ogood2 ?ErmTa Hf”LZ ||g||L2 (W)
Clearly we can now fix r sufficiently large depending on € > 0 so that
_ 1
Ogood2 T« — (3.2.16)

100’

1
and then the final term above, namely Cgoon_QErmTa ||fHL2(a) ||g||L2(w), can be absorbed
at the end of the proof in Subsection . Note that (3.2.16|) fixes our choice of the parameter
r for any given ¢ > 0. Later we will choose 0 < ¢ < % < —L It is this type of weak

n+l—«

goodness that we will exploit in the local forms Bér (f, g) treated below in Section
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We are now left with the following ‘good’ form to control:

o (1) = 3 3 / (o7 f) 5™ gdo.
I€D PRCT: o(1)<27TU(I)
d(JI)<20(J)Ee(1)1—¢

The first thing we observe regarding this form is that the cubes J which arise in the sum
for @gOOd (f,g) must lie entirely inside I since J C J e ; I. Then in the remainder of the

paper, we proceed to analyze

o3 (f,9)= " / (Tgm?b f) 0P g, (3.2.17)
I€D PRCI: ¢(J)<27TU(I)

in the same way we analyzed the below term Be, (f, g) in [48]; namely, by implementing the
canonical corona splitting and the decomposition into paraproduct, neighbour and stopping
forms, but now with an additional broken form. We have (k,e)-goodness available for all
the cubes J € G arising in the form @gOOd (f,9), and moreover, the cubes I € D arising in
the form @gOOd (f,g) for a fixed J are tree-connected, so that telescoping identities hold for
these cubes I. This will prove decisive in the following three sections of the paper.

The forms 1 (f, g) and O3 (f, g) are analogous to the disjoint and nearby forms Bn (f, g)
and B / (f,g) in [48] respectively. In the next two sections, we control the disjoint form
©1 (f, g) in essentially the same way that the disjoint form Bn (f, g) was treated in [48] and
in earlier papers of many authors beginning with Nazarov, Treil and Volberg (see e.g. [58]),
and we control the nearby form O3 (f,g) using the probabilistic surgery of Hyténen and
Martikainen building on that of NTV, together with a new deterministic surgery involving
the energy condition and the original testing functions. But first we recall, in the follow-

ing subsection, the characterization of boundedness of one-dimensional forms supported on
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disjoint cubes [22].

3.3 Disjoint form

Here we control the disjoint form ©1 (f, g) by further decomposing it as follows:

or(fg) = 3 [ (0r) 5 g
IeD  Jeg: ¢(J)<L(I)
d(J.I)>20( 1)1yl —¢

which can be rewritten as

3y 3 n / <T0D?’b f) 042" g
IeD Jeg: 1)<l Jeg: 17)<u(l)
(1) >max(0(1). 20D (DI =) 61> d(J,1)>20(E6(I)}

= 0\ (f.9)+ 05" (f,g),

where @llong (f,g) is a ‘long range’ form in which J is far from 7, and where @‘fhort (f,g9)isa
short range form. It should be noted that the goodness plays no role in treating the disjoint

form.

3.3.1 Long range form

Lemma 3.3.1. We have

ZZ

[€D Jeg: ((J)<i(I)
(JI)>€( )

[ (05r) 05 gda| S A5 151240 ol 2
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Proof. Since J and [ are separated by at least max {¢(.J), ¢ (I)}, we have the inequality

po (J, 0)

o,b

Q

e(J) o.b
/I MRS ‘DI f(y)‘ do (y)
A e
[ J)n+1 o’
since /I ‘D?’bf (y)‘ do (y) < HD;’beﬁ(a) \/|5- Thusif A(f, g) denotes the left hand side

of the conclusion of Lemma [3.3.1] we have using first the Energy Lemma,

I;)J EZ [SHAE1 (PO (= ] (Li()ﬁla\/ﬁm
d(I, J)>€( )
o 152 [5° o2y 4 0

with A(I,J) = W\/ A/ 1]

and P = {(I,J)EDxG:L(J)<((I) and d(I,.J) > ¢(I)}.

Now let Dy = {KGD:E(K) :QN} for each N € Z. For N € Z and s € Z, we further

decompose A (f, g) by pigeonholing the sidelengths of I and .J by 2N and 2V =5 respectively:
o0
Alf.g) = D2 Ay (f.9):
s=0 NeZ
b b*
AV = X |0, 1T ] o, A G
J)GPN
where Py = {([,J) e Dy xGn_s:d(I,J) > L(I)}.
Now let P, = > Dg{’b denote the dual martingale pseudoprojection onto

KEDM
Span{D%’b}K _ Since the cubes K in D), are pairwise disjoint, the pseudoprojections
cPMm
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2
DU’ are mutually orthogonal, which means that HP f H 12(o > HD%’b f H 9, \- We
- KED L#(o)

claim that
|A% (f.9)] < 0275 /245 ||P% f|| \PW Sg” fors>0and N € Z. (3.3.1)

With this proved, we can then obtain

Alfg) = D D Av(Lo=2> AV (f.9)

s=0 NeZ s=0NeZ
*
. C,Fmazz PR, IPS -l
NeZ
1
p) *2 2
< 0,/%@22 PR | 2 IPs-
NEeZ NeZ
<

DR 171 220y 191 20 = C/ M 11l 2 Il 2
5=0

To prove ({3.3.1), we pigeonhole the distance between I and J:

Ay (f.9) = ZA?W (f.9):
/=

b
Nilfg) = o772
IJ) PNE
where P§, = {(1, J) €Dy x Gy_s:d(I,J) ~ 2N+€} .

‘ J 9HL2(w)A([’ J)

If we define H <A?V,€) to be the bilinear form on ¢? x ¢? with matrix [A (I, J)](I DEPY
then it remains to show that the norm HH (A§V7£> H€2—>€2 of H (AN f) on the sequence
space (2 is bounded by c2—s5 L, /RS, In turn, this is equivalent to showing that the norm

H?—[ (Bf\ff) H€2~)€2 of the bilinear form H (Bf\ff) =H <A?V,€> " H (Aij) on the sequence
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space (2 is bounded by 022_25_%91‘2)‘. Here H (va E) is the quadratic form with matrix

kernel | B, , (7,.')]

, having entries:
J,J EDN—S

By (J,J) = > AL D)A(1,J),  for J.J € Gyn_s.
1eDy: d(I,J)~d(1,J)~2N+E

We are reduced to showing the bilinear form inequality,

—25—20
HH (BM) H£2—>£2 <025 2UYY  fors>0,0>0and N € Z.

We begin by computing By, (J, J’):

/ ey
Bolnd) = ¥ il i

IeDy;
d(I,J)%d(IJ’) ~oN+L

_ 11 el ,
P e S COMTV(TR

1€Dy
a1, J)md (1,072 He

Now we show that

—25—2¢
HB]S\,,KHEQ%2 < g2 2Ugy (3.3.2)

by applying the proof of Schur’s lemma. Fix ¢ > 0 and s > 0. Choose the Schur function

K)=—L_. Fix J € Dy_,. We now group those I € Dy with d(I,J) ~ 2NV into
B(K) VEL N-—s group N ( )
finitely many groups G1,...G¢ for which the union of the [ in each group is contained in a

cube of side length roughly 1—(1)02N+€ ,and we set I = |J [ for 1 <k < C (note that I}
IEGk
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is not a cube). We then have

Z g((J))BNE(J J/)

J/EgN s
B(J) 50
= Z B(J B}SV,E (J, J’) + Z 3 ((J/)>B}9V,£ (J7 J/)
J/EQN_S J/EQN_S
d(J/,J> §1—(1)02N+€+2 d(J”J)>ﬁ2N+£+2
= A+ B,
where
S 92(N —s) p
e 2 2. I, 92((+N)(n+1-a) ’ .
J’EgN_S IEDN
d(J,J’)gﬁgJ\H—@-Q d([)J)QJJQ]\H—é
- 92(N—s) y
) Z Z ]k| 922({+N)(n+1-a) | ‘
J'eGn_g k=1
d(J,J’)§%2N+Z+2
22(N s) * ,
= RN (o) Z > |7
k=1 JeGn_s
(JJ’)< 1 oN-40+2
) ’ 102N+£+2J‘

A

w 5 2—28—%2[%’

—25—2¢
2 Z 9(l+N)(n—a) 9U+N)(n—a)

since [} is contained in a cube I ;. such that [I;| ~ I i|, with an implied constant depending

only on dimension, and I - ﬂlﬁjQN T2 7 are well separated. If we let () be the smallest
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cube containing the set

J'eDyn_g d
d(JJ/) g2V rer?

/\

* 71\ oN-+/{
IkJ>~2

O

we then have

- 22(N—S) ,
B 3 >, > s 22((+N)(n+1—a) 7],
J'eDy_g I€Dy
d(J J/) o+ d(I,J’)zd(I,J)~2N+€
W
)
< . 22(N7$) /
~ Z Z |Ik‘0 22(K+N)(n+1—oz) |J ‘W
J'eDy_g | = (17 )2+
d( J J/)> 2N+
92(N—s) c .
S 92((+N)(n+1-a) Z_: |25l 1Bl
< 92— %Z @kl 52520000
~ €—|—N a) 9(t+N)(n—a) ~ 2

since I}/ is contained in a cube I ;- such that [I;| ~ I i, with an implied constant depending

only on dimension, and I 5> T00 L oN++2 1 are well separated. Thus we can now apply Schur’s
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argument with Z (ay)? = Z (bJ/)2 = 1 to obtain
J J!

. , o B (1)
oo agbyBy, (L) = aﬂ(ﬂ@yﬁ(ﬂ%

J,J/GQN s JJIEQN s
Biyy (1. 7)

JJ’
<Z (ayB(J 25 B0 +Z bJ/B J/ ZBNE J/)

S {zﬁjmm}@ w{s o

By JJ/)}
7

J

,S 2_28_2£A% (Z (CLJ)2 + Z (bJ/)Q) _ 21_28_2£Q[%_
J’

This completes the proof of (3.3.2). We can now sum in ¢ to get (3.3.1) and we are done.

This completes our proof of the long range estimate

9) S 1/Ag 1AW 200y N9l £2(

3.3.2 Short range form

The form @‘ihort (f,g) is handled by the following lemma.

Lemma 3.3.2. We have

> T ‘ [ (0or) 05 gde| S A5 18112, ol 2

I€D  Jeg: o(J)<2~PuI)
o(I)>d(J,I)>26(J)Ee(I)1—¢
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Proof. The pairs (I, J) that occur in the sum above satisfy J C 4I\1, so we consider
P = {(1, J)EDXG:(J)<27PL(I),0(I)>d(J,I)>20(J)F L (I)}¢, Jc4]\1}
For (I,J) € P, the ‘pivotal’ estimate from the Energy Lemma [3.1.25| gives

(7 (07°0).05%" ) | = |05 71) v/l

Now we pigeonhole the lengths of I and J and the distance between them by defining

Pia= {(I, NeP . e@)y=2N ¢ =2V 2 <qr, 1) <2 Jc 4]\1}.
Note that the closest a cube J can come to [ is determined by:

which implies N —es+ 1 <d < N.

Thus we have
> [ (7). 55" ),
(IJ)EP
HDWb* ‘ 2(w)Pa (J’ a)M
0 N
SO0 SRR SR =LY

(I,J)eP
s=0 Ne€Z d=N-—es+1 (I,J)GPde

AN

o,b
I

o,b
I

A

’L2(w) pe (‘]’
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Now we use

po (J,

o,b

) = e e P 0]
9N—s

S Sdria) HD?beLQ(U) \/E

and apply Cauchy-Schwarz in J and use J C 4/\I to get

b b*
REE Tl

(I,J)eP

I I T

9N (n—a)

AN

s=0 N€Z d=N—es—1 I€Dy

L2(w)
JeGN ¢
JCAI\T and d(I,J)~24

2N 52Nn a)

00

< le% Ub

~ 1+68222N es)(n+1— oz\,/gl ZHD fHL2
s=0NeZ

wb*

JC4I\I

< +es)szp2‘5“_5("“_“)]\/91§” 1A 200y 91 p200) S /25 W F Il 20 9l 2

N
where in the third line above we have used Z 1 £ 1+ es, and in the last line

d=N-—es—1
oN—sgN(n—0) = o—s[l—e(n+1-a)]
9(N—es)(n+1-a)

followed by Cauchy-Schwarz in I and N, using that
we have bounded overlap, depending only on dimension and the goodness constant in the

quadruples of I for I € Dy. More precisely, if we define f,. = \If%’: f= > D?b f and
IEDk
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* *
g = \Ifg’]:) g= Zg ch’b g, then we have the quasi-orthogonality inequality
Je k

VAN
D=
D=

> 1wl 2 llon—sli 2 DN IT2g | | 2 lov=sliz,

NezZ NeZ NEeZ

S Hf||L2(g') Hg“LQ(w) '

We have assumed that

0<e< ! (3.3.3)
e —— 3.
n+1—a
in the calculations above, and this completes the proof of Lemma [3.3.2] O

3.4 Nearby form

We dominate the nearby form O3(f,g) by

O3 (f,9) < ) >

I€D jeg: 27T 1|<|J|<|T|
d(J.1)<20(J)ce(1)l—¢

*
(Tg‘D?’bf) D?’b gdw

)

and prove the following proposition that controls the expectation, over two independent
grids, of the nearby form O3 (f,g). It should be noted that weak goodness plays no role in
treating the nearby form. Note also that in various steps we will use a small § > 0. In all

those different instances ¢ is free of any dependence. Our goal is the following proposition.

Proposition 3.4.1. Suppose T is a standard fractional singular integral with 0 < a < n.
Let 0 € (0,1) be sufficiently small depending only on a,n. Then there is a constant Cy such

*
that for f € L? (o) and g € L?(w), and dual martingale differences chx,b and ch’b with
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oo-weakly accretive families of test functions b and b*, we have

b b*

ERES S > [(m(ortn) .ot |
1€D jeg: 27171 |<|J|<|I]
d(J1)<20(J)E0(I)1 =€

S (CoNTVa+VENza) £l loll 2

The following diagram is a sketch of the proof of proposition (3.4.1)).
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Nearby form diagram

NN W@ oy gl

£ IeD Jen(n) l

o (FosP \b* o ([0,P ,b*
Z (T (@7 O 9kl Z Z (T (O £), 077 ghol
1D JeN() D N
(1+6)INJ=0 £ (1+0)INJ 40
> (TR, 05 gl +
8 U1l 20y 191 2 e (dgj}{fﬂ;@
(T2 7 1), 05300l + ppTyo—
_ ’ KT (O ,057 g)ul
Chrn VN + (82 + YNTV, o (ohb wh b
VT ¢ KT (O ot ) O o) \) D JEN()
£ 1201911 22 ’ ' (1L4)InJ#0
v( DESIEDY
1D JeN(n)
— - (1+8)InJ#0
o 05D, wsPy
> (KT @5 f100), 057 gkl + v

(8% + Nga CppV/3)
1l 21911 2

b.b*
)s D‘; 9lrag el

* b,b
(T2 @5 flyeg) B gt hal) | RO O Frey

rnJ = [(I’\Bﬁl’) n J/} U [(%I’ m’) n J’} =MUL

7
> (I @5 f1a0), 0™ g1l +
(67" + Npa Cp oo V) o —obb b b
Il ol T 0 b ¢ .
7 . b whb* .
(Te (07" f1,),0% gle) 3T O 1), 097 gl
Sep:=K,N3K, =10 M= U K,
Adj:=K,NK} #0,K, # K} v los<B

5" B 911234 +22n\/§mT"\/§ ( + ) T (brlg. ), b% 1 B

V KZ; KZ; (T¢ (br1x, ), by 1k, ) ST (bl ) b L)

11l g2 ll9l] 2y s i po

{E,F} = (T¢ (balg),b41r), | K:=K,

v v v v

* Through the original ‘ {4, Kin} ‘ ‘ {A\K, Kin} ‘* |{Kout7Kout} ‘ ‘ {Kout, Kin} ‘
accretive functions b;”g L ‘ ‘
** A finite iteration
for {KoutyKout};{KinaKm} /\
N, 0( S [@45(M,,)] + A(M) + E(M) +F(M))
MeM, MeM!

(vVERze)l fll (o) 1ol 20 (Vo) 11l 2(c) 191l 20

Figure 3.4.1: Nearby form
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Before we proceed any further let us mention that we will repeatedly use the inequality
~op.b ob .|| X

AR Py (i 3.4.2

H I L2(0) ~ 1171 / L2(0) (34.2)

~ b b || *
Lemma 3.4.2. For f€ L?(0) and I €C4(A) we have HD?’ ’ fHL2(0> S HD? fHL%)'

Proof. Let I' € €p (I)NC 4 (A). Since I’ € C4(A), from the corona construction we have
D A A

bpdo

1
‘ > 7. (3.4.3)

7y

Now let {I J' }jen be the collection of maximal subcubes S of I’ such that

1 / 9
— bpdo| < ~~.
)|S|a' S

Let £ = U[; We then have
J

‘/ bado <Z|//bAda <Y [;-Ugfy?}["g
E i 70 J
which together with (3.4.3)) gives
7, < /bAda :‘/ bydo +/ bydo
I E I'\E
<

2 [ el E

< |, +Cu [\ B,

where in the last inequality we used the oc-accretivity of b4. Rearranging the inequality
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yields successively

7(1=7) ‘]/la < Gy ‘], \ Ela

< [I"\E|,

g

which in turn gives

/
I

- |7, - |\8, (344

, 1-— , - / /
71, - 2, = (1- 22 11, = 61,

¥

IA

where 0 < 8 < 1 since 1 < Cy,. This implies

|7 11\ El,

< —
o= 1-

Having that in hand and the fact that [ﬁ?’b’bf is constant on I’, say 1I,ﬁg’b’bf = ¢y we can

now calculate:

~ 2
PP [ do = |1, Jepl?

~sbb 2
10770 - /
H [/ I f L2(0') I’

1 / 9
- b do
TV

/
- i4|1r‘f|<“f§'7| gl
L\,
ST
g
g

2
|7l ler|

IN

~ 2
O‘,b,bf‘ d

IN

O’bbf‘ do,
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and thus for I’ € C4 we obtain

Js

which in turn gives, after summing over all I’ € €p (I) N C 4 (A),

~ 2 ~ 2
e dag/ﬂ‘bAD?b’bf‘ do,

2

~ob.b |2 ~obb
107y 12040701
Z H rHr 12(o) ~ IIT1ATT / L2(o

< o051,
I'eep(INC 4(A) ) (o)

Now if I € €p (I) N A, from the definition of %éf in (3.1.39),

DN [Veriad I 7] P
Ieep(HNA ©) (@)

Now we are ready to prove (3.4.2). As bq = by and

~ah.b |2 =apb |2 ~ahb |2

P 2y = 1071 |17

H I f LQ(U) Z I'—r f LQ(U)_I— Z =T f LQ(U)
I/EQD(I)QCA(A) I’GC'D(I)OA

S b |2 .
S DISHEE] P

2
‘L%)

we obtain

Hﬁ?b7beL2(o) s Hblﬁ?b’beLQ(a) + Hﬁ(lijLQ(a) - "D?’b7bf”L2(U) * H@?f ‘L%)

oh.b f ‘LQ(U) S HD?be;(U) .

o,b
< HDI fHL2(O') + HDI,broken

‘L%) * H@?f
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Now from quasiorthogonality and (3.4.2) we get,

‘ 2

bb* \|2 =~ b b* b b*
SED BTN A Cria)| IED B Erigall F-D Bl (ansll’
Jeg Jeg

‘2
Jeg Jee(J)
x |2
S Y (557 o0, + I956l320 ) S o2,
Jeg

L2(w)

We also need the following lemma, that controls the above inner product for cubes of

positive distance.

Lemma 3.4.3. Given the oco-weakly accretive families of test functions b and b* and cubes

Q,R C R", we have

(T (bg10): bRl r\(1+5)Q)e] < 0%\ /28 VIRl VIRl (3.4.5)

where the implied constant depends on the accretivity constants of the families b, b* and the

dimension n.

Proof. We have that ‘<T§é (bolg) ,bﬁlR\(1+5)Q>w‘

< ot | (10| Pl
a 2 % * |2 2
< (/R\(H(S)Q\Ta (bo10)| dW) </R\(1+5 I dW)
1
S (Lonprng (Lo ol ast) ) ([ pifa)’
R\ (146)Q
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1
2 2
< 5la — a=n, d d I
~ (/Rn\(1+5)Q (/Q( [ = o)™ " [bq )| U(y)) w(ss)) V1Bl
< gja—n B (a—n) d b d
~ (/Rn\(l-i-é)Q‘x CQ‘ w ( ) </|Q | o( >,/ |w
< fa—n _ Q(a—n)d /R
N (/Rn\um@‘x « w<x>> Ao VI
< 07 [231/1Q1, /IR,
since
(a-n) Qr \ Q
. 2(a—n d _ —n p Ua
</R”i?1+5§8} Mm)) o /R”\<1+6>@ \m—cQ\2 < Q' n
S P Q) Do, < 4y
QI n

]

As usual, we continue to write the independent grids for f and g as D and G respectively.

*
Write the dual martingale averages D?’b f and Df;’b g as linear combinations

A b ~0.b
O r=br Y 1 B (OF )+ X b 1 E - Y 1,ET,

Ileeznat(l) Ilee:brok( ) Ileebrok(l)
w,b* Wb J! * ’\Wb
P g=ty S 1 B (D5 )+ X b 1 Mgy ST 1,
J'e€pqi(J) J! €0k (J) Jleebrok(‘])

of the appropriate function b times the indicators of their children, denoted I’ and J’ respec-
tively. We will regroup the terms as needed below.
On the natural child I’, the expression ﬁ?’b f= %D;’b f simply denotes the dual mar-

tingale average with by removed, so that we need not assume |by| is bounded below in order
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to make sense of ¢ 1 D f Similar comments apply to the expressions

~0,b

F[/ Ilf —F I/f nd FO be Ub[f Now if we set

N ={JeG: 27| < |J| < |I|,d(J,I) < 20(J)Fe(1)' ¢}

for the cubes or similar size to I, the left hand side of (3.4.1]) is bounded by

remo= Y > (19 (070r).05 ) |

IeD JeN(I)
(1+8)INJ=0

0 X [ et et |
IeD JeN(I)
(14+8)INJ#0D

(3.4.6)

When working in higher dimensions, run the proof pretending you have Hytonen’s es-

timate (which is of course not true due to the result in chapter [2). Then wherever we

were supposed to use Hytonen, we use the delta separation trick. The d-separated part is

easily seen to be bounded by the Muckenhoupt conditions, and the d-close part will get a

V0 estimate. But § can be chosen at the end, is independent of everything else (it is the

Hytonen-delta, not related to anything else in the proof). So, provided the proof only deals

with finite estimates and finitely many constructions (like the Cantor set construction, that

only does finitely many iterations), those /6 terms will be absorbable at the end. Here are

the details:

3.4.1 The case of /-separated cubes.

In this subsection we are estimating I in (3.4.6) by using Lemma [3.4.3]

Definition 3.4.4. We say that the cubes J and I are §-separated, where § > 0, if J N (1 +
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5T = 0.

For the first sum in we have, following the proof of Lemma “ 3}, the satisfactory

estimate

(72 (O7"1) 55" a) | s 0 /o [0 o, 5™

o2

Indeed,

(75 (O7"r).37%s) |
Juns | (@55 [5° g\ &

1
(ol @) ([ )
< o </Rn\(1+’53§1_ cr 2@ dy ($)> 2 (/1 ‘D?bf’ do <y)> Hm?b*gHL? w

1

(/Rn\<1+5aw—0f'““WY
< B 5

IN

IN

w,b*

o,b
2 o) DJ g

AN

up

’ L2(w)

‘ L2(w)
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So combining all the above we get for the d-separated cubes that

(3.4.7)
< > Z 5a_nvmgHD?beL2(a) o5 g‘L%)
IeD  JeN(
(1+5)mJ 0
! 3
<armAg | Y Z HD?’beiz(w 2 2 Hmof’b*g‘;(w
(1+5)mJ 0 (1+3)InJ=0

<0 S 2 ol 2

where the implied constant in the last line depends only on the goodness parameter r and

the finite repetition of I and J in each sum respectively.

3.4.2 The case of )-close cubes.

Now we turn to the second sum in (3.4.6)) which we will bound by using random surgery and

expectation.
Definition 3.4.5. We say that the cubes J and I are 0-close, if J N (14 0)I # 0.

We have

(13 (D?’bf>,D°}’b*g>w — (13 (7" ),D?b’b*g>w (3.4.8)

a,b,b w,h,b*
5 ( I,brok )7Dmek9>w

<
H(T (OF 1) Osrs),
<

O‘,b,b w,h,b*
(T ( Tbrok )’DJ 9>w-
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The estimation of the latter three inner products, i.e. those in which a broken operator

ES

Da’b’b r [ Jg bk arises, is simpler, but still requires the use of random surgery in order to

I, brok ©

avoid the full testing condition that was available in one dimension. Indeed, recall that

Uab7b _ 0-7b . AU,b
Tl = X EPI= 3 (BIET)b
I/EQbmk(I) Ileebrok(l)
wh,b* wb* w 7w, b* *
DJ brokd = Z IE1‘J/ 9= Z (EJ/IFJ/ g) 7!
JlGQbrok(J) Jleetbrok‘(‘])

so that if at least one broken difference appears in the inner product, as is the case for the
latter three inner products in (3.4.8]), we need to use random surgery to get the necessary

bound. For example, the fourth term satisfies

’b’b 7b’b -~ ’b 7b7b*
(75 (oot ) 05" 0) = | X0 (BREERr) (50057 0)
I'ey, 1.(I)
and since
w,h,b* . w,h,b* w b,b*

w7b7b

A(f,9) +B(f,9) +C(f,9)

W
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we have

> (EFPr) A

Ileezbrok([)

< Cope > [ERETP A Tha /I,
Ifeebrok()

b*
< il X (Je
N e€y,. (1)

’ *

w,b,b*gH
J L2(w)

w,h,b*

2
’ 2(w) + HDJ,brok‘

b o,b *
S ST“HDI fHL2(a)

b*
=it

L2(w)

Next by Lemma [3.4.3]

S (BREP) B < S [EGEGR |00 Jag 1T, |5
I'e€y,. i1.(1) I'e€y, . (1)
< g |opt,, 5™ ol
L2(c L2(w)
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Finally, using Cauchy-Schwarz, the norm inequality and accretivity we get

DS 3 (Ej‘,,@;}bf) C(f.9)
I€D JeN(I) |I'eey, (1)
INJ#0

< CpNpa E E : Z ‘E;’,F f‘\/m
Teb JeN (D) Ilecbrok( )
INJ#D
1
( Z [ 5/ (ﬁ?»b,b*g)r ‘ <(J\]/) A (1 n 5)]/> o w) 5
J'ee()

< Cb,r,anaHfHLZ(J)

(Z = = s[eE )|

IeD jeN(I) 'ee Jee(J
INJ#0D prok ! )

1

)

Now, it is geometrically evident that for the Lebesque measure we have

‘ <(J\I’) N1+ 5)1’) nJ| <ar).

Taking averages over the grid D we get the same inequality for the w measure:

Eg\ ((J\J’) N1+ 5)1’) nJ|

S8,

Thus, if we fix J’, there are only finitely many I’ involved that contribute (are non-zero),

and then the expectation in D can "go through" the sum in I’ to get the estimate

ERY. Y | Y (BIEPF) CUg)| £ CownVoNgal fll o loll 200,

IeD JeN(I) |I'egy,. ;.(I)
InJ A0 brok
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The constant CY, ;. , depends on the accretivity constant of the family b, the dimension n

and the finite repetition of the intervals J’ appearing in the sum.

The third term in (3.4.8]) is handled similarly if we change to <D?’b’b £, 15" (Dbj’g;ﬂgz g) > ,
) g

the dual operator. For the second term in (3.4.8)) the proof is somewhat different: it does
not use probability, it is easier because the terms involving g can be estimated as the terms
involving f in the proof just done for the fourth term, and then using Carleson estimates.

So combining the above we get the following

ERY. > [ (o7hr).o5™y) | (3.4.9)
IeD JeN(I)
(1+8)INJ#0

<z T (7 (O7"r) 5579
IeD JeN(I “
(1+5)IDJ7E(Z)

+ (CoxnVONga + (07" + DNTVa ) [1fl1 29l 12,0,

*
Thus it remains to consider the first inner product <T°‘ <Da’b’b f) ,Df;’b’b g> on the
w

right hand side of (3.4.9), which we call the problematic term, and write it as

P(,J) = <T0‘ (Da,b,bf> ’D?b’b*g>w

=Y (1 (0P 1,m )
w

r'ee(),J'ee(J)
= ~ *
= ). B (D?’b’bﬂ (T8 (1pbr) 1 pb%),, B (D(j’b’b g) (3.4.10)
'ee(), ' ee(J)

It now remains to show that

EQES Y Z | < (CoNTVa + VIR ) 7] 20 loll 2y (BA11)
IeD jeN(I
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Suppose now that I € C4 for A € A, and that J € Cp for B € B. Then the inner

product in the third line of (3.4.10)) becomes

<T<(fl (bllﬂ) 7b*JlJ’>w - <T<? (bAlﬂ) ’bglj’% )

and we will write this inner product in either form, depending on context. We also introduce

the following notation:
Py (E,F)=(Ts (bj1p) ,bj}lp>w, for any sets E and F),

so that

- ~ *
PU= S B (PN R () £ (55°),
I'ee(I) and J'e€(J)

The first thing we do is reduce matters to showing inequality (3.4.11)) in the case that
P,y (1, J') is replaced by

P(I,J) (I/ﬂ J’,I’ﬁ J/)

in the terms P (I, J) appearing in (3.4.11)). To see this, write <T00‘ (b[ljl) ,bf}ljl>w as

<T§‘ (bllff\J'> ’b*JlJ’>w + <T§‘ (bl 1) ’b?}l,]’\l’>w +(T5 (1l pngr) Vil pn ).,

Set
[ = <T§‘ (bflll\J/> ,bj‘,1J/>w

1= (T3 (brL 1) ,b§1J,\I,>w and 111 = (T (brLpr ) 050,
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For the first one, we have

1< (73 (ortananyr) 230 ) |+ (T8 (brtn o) 050) [ =T+ 2

Using Lemma , I S 07"\ /AT |I'|o+/]J'|w and for Iy we need to use random surgery.

Summing all the terms for Iy and using Lemma [3.4.2] we have

1
59 " ‘ a,b,b ‘ / b ’2d 2,
Qz%:ugf: )ﬂe%:(mg@: LA C A i)
1
‘ E%) wvb’b / \bJ|2dw 2
<mTaEgz > Y X |m e
IeD JeN (I )I’e@()J’eQﬁ(
[y na e f’ E% (@aj,b,b*g)“,ﬂ\g
1 |
2 2

<Ny EY (Z[ “ (D"’b’b )] )(I’\J’) N(1+0)J

)

<raCunlallz ( X B (B2 BE T S [ n o)

I J J/

5 [ (B0

1

)

D=

<o Curlolyzg) (323 [5 (B7°21)] ' )

r r
<mTaCnr\/_HfHL2 ||gHL2 (w)

Similarly, we get the bound for II.

(3.4.12)

We are left then with III where we are integrating over I’ N.J’. We have to overcome two

difficulties at this step. First, I’ N J’ is not necessarily a cube, so we cannot apply any of

the testing conditions available. Second, I’ N J’, even if it is a cube, does not need to belong

in either of the grids D or G. We would like to split I/ N J’ in smaller cubes of the grid G.
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The problem is that the boundary of I’ N J’ does not necessarily align with the grid G. To
deal with this, we cut a slice around I’ N J’ so that what is left inside can be split in cubes
of the grid G. This small slice will be bounded using once again random surgery. While for
the remaining cubes, we will use a more involved random surgery technique along with the
Ay and testing condition.

Here are the details: Let ng = 27" for m large enough. For any cube L we define the
171 -halo for 7 = (n%, ~..,n7) by

oL = (L+ni)L—(1—-7)L

where (1 4 H)L means a dilation of each coordinate of L according to the corresponding

coordinates of 1+ 77_{ Choose the coordinates of ﬁ such that %1 < ni <mgforalll1<i<n

and such that if
! ! ! ! A / ! 1| '
]ﬂJ-{(I\&ﬁ])ﬂJ}U[(E)ﬁI ﬂI)ﬂJ]:MUL (3.4.13)

then M consists of B < 27" cubes K € G with £(Ks) > 27~ 1¢(J"). Note that either M

or L might be empty depending on where J’ is located, but this is not a problem. Thus

(T3 (brlpg) VL), =(T5 (brlar) 0%1L), + (T3 (brlp) . by1ar),,

(TS (by1p)  b51) + (T (brlag) b)),

The first two can be estimated using Lemma and a random surgery. It is important to

mention here that the averages will be taken on the grid D, so that we do not have common
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intersection among the different translations of the halo. Indeed,

(T (brlpr),b51g)

A+ Ao

and

(Tg' (br1r), b51ns),

As+ Ay

<T§‘ (brin), b*JlL\(1+5)M>w + <T§‘ (brin) »b*Jle(1+5)M>

w

<T5¥ (brlr), b§1M\(1+6)L>w + <T§‘ (brir) 7531M0(1+5)L>w

The first terms on the right hand side of both displays, A; and As, are bounded, by applying

the proof of Lemma for M and L and using the fact that M consists of B < 2" cubes.

The bound is a constant multiple of 25", /AS'\/|I'|+/|J'|w, which when plugged into

the left hand side of (3.4.11]) we get by using Cauchy-Schwarz that

> 5% |m(E)
I€D JeN(I) ['ee(I)
Jee())
ST Y3 |m ()
I€D JeN(I) ['ce(I)
J'ee(])
< 50“”\/%7%|!f||L2(0>||9||L2(w)

w

(Al + A3> J/

(
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Dw,b,b*

y (3.4.14)

)

~ ,b,b*
5 (05 9)'




For As (and similarly for Ay), we have

BY S Y |mErt)

w —~w b t)>I<
J/ <|:|J7 9 g) ‘

~ ,b,b*
5 (05 9)‘

T (brlyy)

3.4.15
20 (3.4.15)

%1
J Lﬂ(1+5)M)‘ L%)‘

D=

< s 3 (66

I'ee(D&J ee(J
JGN( )

(1 +6)M‘w

2
~ohb
< sﬁTO‘Cb,b*,r,n Z ‘ ?’ <D? f)‘ [Mlo
I'ee(&J' ee(J)
JeEN(I)

) (Eg Z
I'ee(&J' ee(J)
JeN(I)

< NaChpr Vol N2 ol 2

NE: 3
5 (B7°%0)| 1L+ o)

by noting that (1 4+ d)M N L is a halo of width §, much smaller than 7y (so as to get the
estimate by v/9, not v/10)- Although an estimate of /7 is easy to obtain (as L already has
width 7) and is sufficient for the purposes of this term, the estimate of v/§ will be crucially
used later in to kill the B term. Note also that we can take the averages over all
directions, so that we avoid common intersection along the different translations. Notice that
L, M are "moving" together. This is not a problem since by "moving" they cover different
parts of the cube J'.

Thus we only need to estimate (T (by1p), b§1L>w + (T& (brlyy), b’31M>w. Applying
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one more time random surgery to the first term we get that

BRELY S [ (B (1 o) a5 (55|

1€D JeN(I) I'ee(T)

J'ee())
2
< E¢Mpa ||f||L2(U)Eg Y (/a o Jb*\ dw>‘E ( Uj,b,b g)\
IeD JeN(I) I'ee(1) m

Jee()

using (3.4.2) and the frame inequalities again. Then using Cauchy-Schwarz on the expecta-

tion Eg, this is dominated by

SASANE
Biralfla| > X | ER X fogrn| [[Bs (B85 )
JeG Jlee(J) | 1eD: 27T 1|<|J|< ||
d(J,D)<20(J)F (1)1~

\ I'ee(n)

2
SEMallfleg, | > D 2B Y |opI'n T, ’E ( o g)\

JEG Jlee()) ’eD|J/|<|I/|<2r|J’|
S VioNre (£l g2y 190l 2 < VMra 1A 20y 91l L2y

where in the last line we have used 77% < 1np, and then

EQ > (O I 0T, S0 |,
I'eD:|J|<| | <28 ||

146



as long as we choose 1y < 27",
This leaves us to estimate the term (T (by1yy) ,b§1M>w. It is at this point that we will

use the decomposition M = U K constructed above. We have

1<s<B
B
(T3 (br1p) Vi), = Y. <Tc‘3 (brig,) ab?}le/>w
s,s’:l
which can be rewritten as

B

> AT (by1g,) bilg,), + (Z >4y ) <T§‘ (brig,) ,b§1KS,> (3.4.16)
s=1 Kg ~ K Ks ~ K ?

Sep Adj S

where we call K & K the separated cubes, i.e. 3Ks N Ky = (), while by K o K are
ep )

the adjacent cubes, i.e. KsN Ky = () and KsnN K_S/ # (). The separated terms sum can be

estimated directly by |/%l§. Indeed, as in the proof of Lemma m

1
(12 <b11K5>,b31K8,>w5< [ |a:—y|a—"|bf<y>|da<y>)2dw<x>)? 7l

1
< 2a—2n 2
S Lo 7 ) ) 0l I

S\ 2Vl /1K g

thus,

>0, <T3 (brlk,) 7b?<]1Ks/>w <CpY Y @\/\Kslg\/lellw (3.4.17)

B g g
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which plugged into (3.4.10) appropriately, we get the bound B /2 \/[I'|5+/|J|w-

To deal with the adjacent cubes term in (3.4.16)), we write

) SRCTRPRRTIS IS 3 SN (PR A1)}

Ks ~ K Ks ~ K
Sadi s Sadi s
= 2.2 <b11Ksﬂ(1+6)szT3’* (531K5/>>0
Kg ~ K
Adj S
Sk
£ 30 (g aiak, T8 (k)
Ks ~ K
Adj S
= T—&-INI
For II we use Lemma [3.4.3| to get
1 1
. 5 /5 1\ 2\ 2
_ 2
m s oy [ SIEd| [ Z(KS,W (3.4.18)
s=1 s=1 \s/>s

S 0B ASN | o/ 1 |w

~

while summing [ over

T={1eD.JeNI)I € Cu(I),J € Cpus(J)}
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and using Cauchy-Schwarz, accretivity, taking averages and using Jensen, we get

(3.4.19)
b )
Ef Z‘ 7 (D? ’bf> < nldd 'Z > <bIlem (140K T ( §1KS,>>U
T KS ~ K/
Adj
5@%2‘ 7, (B0°05) B2, (B0 ‘ZZ mTa\/|K5 (14 0) K glo /[ gl
T Kg ~
Ayt
~obb ~ b b & ;
s BG Y |5 (B70) 25 (55°0)| (X 1)
T s=1
2\ 3
(Z ( > \/me (1+5)K8/|g) )
s=1 g<gf
<) |57 (8571) £ (85" ) VI
T
( <Z|Ksﬂ(1+5)KS/|g-Zl)>
s=1 SSS/ SSS,
1
2

SmTO‘\/E ||g||L2(w)

(D”’b’b )’ B Y ZZ |KsN(146) K /o
IeD JeN(I) s=1g<s/
I'e€yq1 (1) J'e€qt(J)

g b
g
<NraVBllgl2 (Z 5 (07" f)‘ 2"5|I’10>
T
S Npa2VBVE |1l 2 9l 2,

because there are up to 2" adjacent cubes K for a given K. The implied constant depends
on r of the nearby form. Note that ¢ is independent of B or r and will later be chosen small

enough so that the terms containing the norm inequality constant will be absorbed.
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Thus now we are left only with the first term of (3.4.16), i.e. we need to estimate

B

> AT (brig,)  bilk,),
s=1

Before proceeding further it will prove convenient to introduce some additional notation,

namely we will write the energy estimate in the second display of the Energy Lemma as
(T, V), | S Cys PSQY (J,0) H\IJJHLQ(M if /\Ifjdw =0 and yJNsuppr = 0 (3.4.20)

where

P (J,v)

P(%Qw <J7U> ‘J’

wb*
HQ N2 w) || le=millz2 ) -

The use of the compact notation P§Q¥ (J,v) to denote the complicated expression on the
right hand side will considerably reduce the size of many subsequent displays.

We now consider the inner product (T (bg1g), b1 K>w and estimate the case when

Keg KcI'nJ, I'ee(), Jee(), IeCy, JeCB ((K)=2"""l¢J).

For subsets E, F C AN B and cubes K C AN B we define

{E,F}=(Ty (balg) . bplp),, , (3.4.21)

and K, the 2" grandchildren of K that do not intersect the boundary of K while K,,; the
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rest 4" — 2™ grandchildren of K that intersect its boundary i.e.
Kiy = {K” e ¢@ (K): 9K NOK = (z)}

Kout = {K” e ¢@ (K):0K" NOK + @}

We can write
{K7 K} = {A7 Km} - {A\K7 Km} + {Kout7 Kout} + {Kina Kout} . (3422)

Note that the first two terms on the right hand side of decompose the inner product
{K, K;,}, which ‘includes’ one of the difficult symmetric inner product {Kj;,, K;,}, and
where the other difficult symmetric inner products are contained in {Kyyt, Koyt }, which can
be handled recursively. Thus the difficult symmetric inner products are ultimately controlled
by testing on the cube A to handle the ‘paraproduct’ term {A, K;,}, and by using the
energy condition and a trick that resurrects the original testing functions {b*jorig }

Jeg’

discarded in the corona constructions above, to handle the ‘stopping’ term {A\K, K, }.

orig

More precisely, these original testing functions b*; are the testing functions obtained
P Y g g J g

after reducing matters to the case of bounded testing functions.

The first term on the right side of ([3.4.22)) satisfies

3.4.23)

. — Y * 6] *
A K} = ‘/Km (T2 4) ipdeo| < HleTgbAHLQ(w) HlebB

< Hb*BHoo HleTgbAHLQ(w) \/ | Kinly, -

L2(w) (
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We now turn to the term {A\ K, Kj;,}. Decompose 1k, bp as

2n on
1 1
g, bp=> 1,4 bj‘B——/ bpdw | +> 1 g—/ b duw,
K ’K,é K’ Kin ‘K.f ‘ K!
/=1 m 1 /=1 m m
w w
and then apply the Energy Lemma to the function
Qn 1 2’fl
* _ * * _ *,7
Kie, =D 1,0 bB—T/Ke b | = k5
(=1 ‘Km T Hin j=1
which does indeed satisfy Dw b k:* = O unless K’ is a dyadic subcube of K that is contained

in Kj,. (Furthermore, we could even replace grandchildren by m-grandchildren in this

argument in order that Dw b k% = 0 unless K "is a dyadic m-grandchild of K that is

ZTL

contained in Kj,,, but we will not need this.) We obtain

<T3 (bAlA\K) Ak, b*B> = <T§‘ (bAlA\K> v’f?(m>w

+<T (batark). Zle ’ / by dw > (3.4.24)

w
and
(75 (batae) K, ), | < ZK (bata) i, )|
QTL
< Copn | oP8Q° (KD 1ako) | i, ]L%)
(=1

where the constant Cy, depends on the constant Cy in the statement of the Monotonicity

2
Lemma with v = ﬁ since ﬁKm N(A\K) =0 , and where we have written {Kfn}gzl
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with K fn denoting the innner grandchildren of K.
w,b* w,b* .
Thus we see that P/~ and Q’l—[ in the Energy Lemma can be taken to be pseudo-

.. . wb* w,b* w,b* w,b* .
projection onto Kj,, i.e. PKm = Z 05" and QKm = Z AT, and we will
Jeg: JCK;, JeG: JCKy,
see below that the cubes Kj,, that arise in subsequent arguments will be pairwise disjoint.
w,b*

m

Furthermore, the energy condition will be used to control these full pseudoprojections P
when taken over pairwise disjoint decompositions of cubes by subcubes of the form Kj,.
However, the second line of (3.4.24)) remains problematic because we cannot use any type

of testing in K fn with b% since K fn does not necessarily belong to Cp, and this is our point

in which we exploit the original testing functions b ’Omg

in
3.4.2.1 Return to the original testing functions

From the discussion above, we recall the identity (3.4.24]) and the estimate (3.4.25]). We also

*707" g

have the analogous identity and estimate with b in place of 1 Ky %

m

(o))
w

m

‘ 1
o *,071g *,071g
_ < (bA1A\K> v _‘Kf /g o dw > (3.4.25)
1
w

ZTL

1 *,071g
+ <bA1 )1 —/ TG g
< AT ‘K.g‘ Kl KL,
an

w

w
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and

- 1
Q *,0r1g *,00r1g
<Tg (bAlA\K)’len b —/K£ ng dw > (3.4.26)
m n mn
w
1 .
< anw *,O?”Zg - *,07r1g
S PEQ? (Kfy Laygo) R L /Kf b da
0 P L2(w)

for 1 < ¢ < 2", where the implied constants depend on L°° norms of testing functions and

the constant in the Energy Lemma. Using the notation

orig
{Kout- Kb} = <T36A1Kout,b*’0”9> for 1< ¢ < 2"
w

m

note that
2 g \wf ¢ Upde ¢ 09
{ANK, Kin} + Z ( [ b*,origdw) {Kout7 Km}
=1 |Kf | Kf,
— b, dw
A ng b

on
= {A\K, Kin} =) <

/=1

mn *,071
. Te (balag) b0 9>
b*°0”9dw>< i V)KL

7 f 4 in
Kyl K P

on |K€ - ng b dw | |
*,071g Q% %,0T1g
+ Z ( 1 b*,O”f‘ng ) |:<Tg (bAlA) ’ be > _<bA1Kzna Ty ng >0_:|
B w w

f 4 in n
KL o YK,

Il
o)
_|_
Q

Now for B, using Energy Lemma to the function

¢ bpdw
‘ |K€ |w fK *,071g 1 *
] Ikt b*’(’”gd K ‘Kf K! K

m
KL |
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for 1 < ¢ < 2™ we have

/Kg 75 (bata) 1 ),

m

|B|='<T§‘ (bAlA\K> 1k, bB> 2 ‘

PO(Kf, 14 0) o b
+0 ; ( K| HQ

o s

L2(w)

off (st

- =1 | m|
27’L

S ZP(O;‘Q“) (KfnulA\KU> 1 EKinly
/=1

having used the triangle inequality to get

g bpdw
|‘\II§HL2(W) S f b*,omgd \/ Zn|w V |Kfn’(~v’ ~ 'V ‘Kln’wa 1<e<2”
K
and
2n 1
(0 ) =5 (i o) 5 o) 1),
(=1 Kzn w Kin
- on 1
. ZPQQ‘” (e |y 25 (1~ e [ )
i (=1 ! 14 L2(w)
< ZPE‘Q“’ (Kh tasco ) | /1 Kinle
| (=1 i
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where in the last inequality we used accretivity and triangle inequality. We turn our attention

in term C. We have that

b dw
2 Kg |w fo B a *,001g
Z *,07r1g 15 (bAlA) ) ng
—1 b ) dw w

|K€\ fK in

on 2
<> / 1T2b 4% dw / b
~ ¢ K//

£=1\/ Ky Ko 1 7t
S \// \T(?bAPdw\/!Kmlw

Kin

Also,
E:( in n ><bA1K TO"*b*’O”g> =+ 11+ 1II
1 b*,orzgd K o
=1 7 ng B mn
|Km| m
where

g

1 *
on — Y brdw
[— Z \Kfn\w me B bal 1 Ta,*b*,omg
B 1 ‘ W ALKy Kg K

m

m

in in__ <b 1 Ta,*b*,orig>
;fﬂ b*’mgdw> AR\ KL Y TR /g

1

111 = . <b 1 To"*b*"’”9>
Z b*,orzgdw> A (Km\Kfn)ﬂ(l—i—(S)Kfn’ K€ o

/=1 |K£| fK

The first term I is bounded using the dual testing condition. Indeed,

277,
F<[oaln, || 120) D0 T Cor /1K < 2T Coe[bals, | 12y VI Kinlo
=1
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The second term II is bounded using Lemma Indeed,

2n
o< 30 a1\ 1+ 9K o/IK,
/=1

< 2"5a_n\/ Q‘%\/’Kin‘w VIEKinlo

Finally,

271
*,071g

I < ol
in

’L%)
1

2
) VIR

] g(bAl(Km\Kfn)m(Ha)Kfn) ) ’Lz(w))

271
< e Oyl ( X[ (Kin\KE) N (1 4+ ),
/=1

Vi - A(K)

where we have defined

A (K mTa(Z‘ Ki\KL )0 (1+6)K! )%\/m

This last term will be iterated and a final random surgery will give us the desired bound.

3.4.2.2 A finite iteration and a final random surgery.

Letting

PP (Kn) = [, T8 04)|| o, v Kol (3.4.27)
27’1
+> PFQY <Kfn, 1A\K0> \/ 1 Kinly,
/=1
+<i§a + IO 4 5“”\/97%) VI Einlo\/ Kl
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and simplifying more our notation

1 *
orig = |Kfn|w fon dew ¢\
{KOUt’ Km} = Z 1 f b*,origdw {KOW’ Km}
p— /A ’g
=LMKE TG, B

we have so far that (3.4.22)) is written as
{Ka K} = {Kouta Km}om'g + {Kout> Kout} + {Kim Kout} + O((DA’B(Kin) + A<K))

Now

1 1 1 1
{Kout, Kout} = Z{Kout?Kout} + Z {Kout’Kth} + Z {Kout’Kth}
1

m#Ll m#£L
{ _ 4
K(T)rtLLthout_@ Kg&thaut#m
where K gut? 1 <0< 4™ — 2™ are the outer grandchildren of K. For the second sum above,
we get

ID SRS

S VA VIl D KDl
14

m#£L m#£L
{ _ { _
KgZLthout_q) K%thout_w

5 \/ ng\/‘Kouﬂa\/lKout’w

where the implied constant depends on dimension and the accretivity of functions involved

) > UK,

out

and since dist(KZ . K™

outr Kot ) there is no §. For the third sum, we need to use random
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surgery again. Using Lemma |3.4.3]

0 K5 = | (72 (b1, ) e )

< * «
<75 (bt sany, ) B )|+ KT (ot o) s

§§ain\/mg ‘Koutld | out’w+mTO‘ | out'w\/| utﬂ 1+6Kut|0

Thus, summing

94
S WKL Ko (3.4.28)
14 m#£L
KT NKS, #0
< 6% SV K putlo v [Koutlo + Mad 0 S A/IKE o/ 1Ky O (14 8K |
¢ mAl
K NKS 40
1
2
05 el TRl + 9 (35 1k 114 0) Kl |\ Tl
14 m=£L

Let

1
2
mTO‘ § :< E ,| utﬂ 1+5>K ut|0) V |K0Ut|w

¢ Nml
We will iterate this term below and we will the necessary bound. We now turn to { K;;,, Kout }

and we have

‘ {Kina Kout} ’
’ (78 (batic o008 )  LRinbB), | + ’ (75 (batic,niro k) ’1Kmb*3>w‘

5 5a_n\/m(2)é\/|Kout‘o\/|Kin|w + s),tTO‘\/‘[(inhﬂ\/|K—0Ut a (1 + 5)Km‘a

IA
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and similarly | {Kout, Kin }°"9 | is bounded by

S (5a—n\/2[%\/|Kout|a\/|Kin|w + Nra \/|Km|w \/|K0ut N (14 0)Kinlo

Let

F(K) = s)/ITO‘\/‘KVwa N (1 + 5)Kin’0\/’Kin‘w
Using the bounds we found above we have from (3.4.22)),
4”_271

KK} S HESuw KSudl + 0048 (Kyy,))
/=1

+A(K) + E(K) + F(K) + C5 0 b b* /A5 VKo VK |w

Iterating the first term above a finite number of times, using again the norm inequality and

a final random surgery we get the bound we need. Indeed, for v € N

(KK} <Y MMy +0 (> [04F (Mg,)] + A(M) + (M) + F(M)

MeMy MeM;,
+Csmpbbt (A5 D A/ IMIo /1M,
MeM,

=AK)+B(K)+C(K)= A(I’,J’) (K) +B(I’,J’) (K) +C(I’,J’) (K)(3.4.29)
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where the collections of cubes M, = M, (K) and M, = M} (K) are defined recursively

by

My = {K},
Mk-H = U {Mgut}’ k>0,
MGMk
M = UMk
k=0

We will include the subscript (I r ) in the notation when we want to indicate the pair

(I, J') that are defined after (3.4.13). Now the term C' (K) can be estimated by

C(K) = 05,7,0,10,10*\/QTEt > VIMI/IM|, < vCs 110.b,b* \/ngm (3.4.30)

MeMj,

where v is chosen below depending on 7. For the first term A (K'), we will apply the norm

inequality and use probability, namely

A(K)| < V CpCpx Npa Z \/|M|a\/ |M|w

MeMy
< VO CpNpa | > M|, | > M,
MeMy MeMy

IA

VOrCreNra | Y M|, \/IK|,,
MeMy

where |/CpCp+ is an upper bound for the testing functions involved, followed by

E{ oM, | <elr, .
MeMy
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for a sufficiently small € > 0, where roughly speaking, we use the fact that the cubes M € M,
depend on the grid G and form a relatively small proportion of I/, which captures only a
small amount of the total mass ‘I ! }U as the grid is translated relative to the grid D that
contains I’.

Here are the details. Recall that the cubes K are taken from the set of consecutive cubes
{Ki}fil that lie in I’ N J', that the cubes M € M, (K;) have length 4%K(Ki), and that

there are (4" — 2™)¥ such cubes in M, (Kj;) for each i. Thus we have

1 1
YooM= Y 4W|K|:(4n—2n)y4m|f(|
MeMy(K) MeMy(K)

47l

qn _ on v
and ( ) — 0 as ¥ — 0o, which implies

g o 4m —2m\Y / /
Bl X | <n(55E) i, <,

=1 MeMy(K;)

where we have used that the variable B is at most 2" and where the final inequality holds

v
if v is chosen large enough such that B (471@2”) < e. Then we have by Cauchy-Schwarz

B
applied first to Z Z and then to E%,
i=1 MeMy(K;)

B B
EG (Y 1A | < EBGVCoCpMpa [Y. Y Mg/ 1], (3.4.31)
=1

i=1 MeMy(K;)

B
V CpCpxNya Egz Z |M|0 |Jl‘w

<
=1 MeMy(K;)
< VO, CpsxNpan/e |0/, = VO CpxVeNTay/ [ o/ 1] s
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as required.
Now we turn to summing up the remaining terms

B(K)y=C Y @8 (M) + A(M)+E(M)+F(M) above. In the case when the cube
I’ is a natural child of I, i.e. I' € €4t (I) so that I’ € Cj;‘7 we have
1y 7000 = > T2 dw < | T4 dw < (TP 2\1’]

Min o Al 1210y A o PAD = e PAT S A 2T o
MeM(K) MeM (k) Min
by the weak testing condition for I’ in the corona C4. Also,

> Ml < IK|, < |7,
MeM;}(K)

because of the crucial fact that the cubes { My}, ME(K) form a pairwise disjoint subde-

composition of K C I'NJ’" (for any v > 1). Of course, this implies

2 2
2
> Gros + 22 Minly || X Ml | S(Troe +28)3/10, 1L,

MeM(K) MeM3(K)

and using the definition of P{Q (J,v) in (3.4.2),

Z Z PaQw ( mn 114\[(‘7)2

MeM} (K
2
(an,1A0> 2
S ) Z T—my
Mt inllL2|1 w
MeM;}(K) in fn

< (&5 +9) |I’\U

upon using the stopping energy condition for I’ in the corona C4, i.e. the failure of (3.1.28)),
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in the corona C4 with the subdecomposition

. on
' U u M

MeM}(K) =1

Combining these four bounds together with the definition of dA.B in (3.4.27)), after applying

Cauchy-Schwarz, gives

S B (M) S8 NTVay /I
MeM}(K)

lo 171

In particular then, if we now sum over natural children I’ of I € C4 and the associated

children J' of J € N(I), where
N(I) = {J €G:27T(I) < (J)< () and d(J,]) < 2€(J)5€(I)1_5} .

we obtain the following corona estimate, using the collection of K that is defined after
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B-4.13),

(3.4.32)

Y X @) e wlle (557

I€Cy e, (D& ce(J
TeND) Keic(l’,J’)

< OB NTV. Y. Z‘ (07'77'0 )‘ M‘E <w,b,b >‘

IeCy rec t(I)
JeN(I) J’erf’:czj)

D=

< M BNTV, Z Z 17|,
IeCy I'e€y g1 (1)

o ( U,b,bf>’

%
> OY Y W fE (5]
IeCq JeN(I) J'ee(J)
* *
S T BNTVa [P, ]|, [P 9
~ 2 G, nearby
L (O’) CA L2(0')
where Ci’mwby = |J N(I), and the final line uses (3.4.2)) to obtain
]GCA
/ U,b,b _ aph.b
> O W|m @) = 3 ],
ITeCy I'ee,, (1) IeCy
2 *2
s 2 ot 2|
~ 1 2 2
= L4(o) L4(o

and similarly for the sum in J and J’, once we note that given .J € Ci’neaTby, there are only
boundedly many I € Cy4 for which J € N(I).

In order to deal with this sum in the case when the child I’ is broken, we must take
the estimate one step further and sum over those broken cubes I’ whose parents belong to

the corona Cy, i.e. {I’ €D:I' € €, (I) for some I € CA}. Of course this collection is
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precisely the set of A -children of A, i.e.
{I'eD:I' € €y (I) for some I € Cx} = €4 (A). (3.4.33)

To obtain the same corona estimate when summing over broken I’, we will exploit the
fact that the cubes A" € € 4 (A) are pairwise disjoint. But first we note that when I’ is a
broken child, neither weak testing nor stopping energy is available. But if we sum over such
broken I’, and use to see that the broken children are pairwise disjoint, we obtain

the following estimate where for convenience we use the notation M, = U M;, (K):
KeKk(I',J)

Y X (G e @l (3 )

IeCy ey (D& ee(J
brok
JeN(D) KEIC(I’ J’)

SEOTBNTVE Y. Y ‘ ( a7b )‘m )E ( Ered >)

1/2

2 2
3N RS S S (RIS S ST

MeMy MEMy MeMy

gBaa—"NTva( > > Z{Hl gbA”;@ﬁ

IECA JEN )
Me
I'eqy, o1 (1)J'€€(J) My

ZPO‘Q“( boao) Ml })

D=

D=

(|A| /'f'd”) > 17| (B )]

J€CQ7MWTM/I€QA JeN(I)
J/EQ( ) r EQ:brok( )
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which gives that

XX @) B ) |25 (577)

IeCy T'ee; . (D& J'€e())
brok
JEN() KelC(I’ J’)

1 2
< NTVQ\/\AIU (W/A]f]da>

because

*

w
P Cg nearbyd
A

L2(o)

gbb 1 / 1 1
75 (57 T ordo i o, S g

if I' € €05 (I) and I € Cy4, and because

(3.4.35)

o 2 - anw 14 2

ZC % Z HlMinTJ bAHLQ(w) + ZP Q (va 1A‘7> + ‘Min’a
IeCy  JeN() ~ =

reey (D) Jee) MY

< (Thateg 1) i,

Indeed, in this last inequality (3.4.35)), we have used first the testing condition,

)DEED OB P E| YR D DD DR X
IIECA J,e/\/( MM;/ /IECA JleJ\/(I)
I eeibmk( )J EQ:(J) I GQ:bTOk(I)J EQ:(J)
S o > e £ TRaldls
IGCA
Ileabrok(l)
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where in the first inequality we used the fact that the M;,, that appear are all disjoint and
form a subdecomposition of I’ C I and then used testing. On the second inequality we used
the bounded overlap of J for any given I, since we are in the case of nearby cubes, and we
get the last inequality because the I € Cy4, which have a broken child I’, are disjoint and
form a subdecomposition of A. The same argument can be applied for the second sum of
(3.4.35)) upon using the energy condition for all I € C'4 which have a broken child I’ and
using the finite repetition again since we are in the nearby form.

The inequality (3.4.34]) is a suitable estimate since

;4\/ Al (), i)

by quasiorthogonality and the frame inequalities (3.1.40) and (3.1.51)), together with the
g, nearby}

*

S HfHLQ(U) HgHL2(O')
L*(0)

w
chmearbyg
A

We are left with estimating

bounded overlap of the ‘nearby’ coronas {C
AcA

A, E, F that we get after the iteration.
Let us first deal with A. By K Zj ¢, we mean a grandchild of a cube K Zj and K g comes

from K; after having iterated j times, so Kz.jg is a (27 + 2)-child of K;. We have

v 4n_on

B
Z Z A(K?
i=1j=1 (=1

v 4nh_on 1
2
7,4 J»q
SRIENS 5 S5 3 03| AR RBTERTT M N rpy
1=17=1 /=1 q=1
B vy 4"—2n on %
7,4 /
< mTaCbb* (Z Z Z’ Zﬂzn zﬂm) (1+5>Kz€zn 0) ‘J/‘w
/=1

1=17=1 q=1

where Kg lf]zn is one of the inner grandchildren of K/

Now fixing ¢ = ¢p and taking

i,0,in’
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averages over the grid G we get

v 4n_on

g J:q J:q
EQZZ Z ‘ me Kzém) (1+5)K2£m < Cn5|]|0
i=1j5=1 /(=1

the constant depends on dimension since for the same 4,5 we can have intersection as ¢

moves. Adding the different g we get finally

B v 4"-2on
EGY Y A(K] ) < NpaCy s 0 VI lo /17 Lo (3.4.36)
i=1j=1 (=1
For F we get,
v 4n-2n B v 4n-on 3
)3) D SIICRIEE NN 5.3 Db ST AIIRRITEIN I Ven
i=1j=1 ¢=1 i=1j=1 ¢=1

B v 42"
BGY Y D> F(K]) < NpaChpe VoV To /17 (3.4.37)
i=1j=1 (=1

Note here that upon choosing ¢ small enough there is no repetition in the different terms

169



that arise. Finally, for E, we have

v 4n_on

ZZ > E (3.4.38)

zljlél

v 41 -2nyn_on 3 :
‘ﬁTaZZ Z Z (Z ‘szgout 1 +5)Kggout > ’Ki],ﬁ,out W

i=1j5=1 (=1 gq=1 r>q

IN

v 4N _gngn_on )%

B
U595 B D B S NLIE T

i=1j=1 (=1 q=1 71>¢q

IN

o=

(525 Y Shl)

i=1j=1 (=1 =1 1>¢q

B
Nra - CT%V(Z . Z Z Z ’szlgout (1 +5)KZZOW

IA

%
)V
Taking averages,

> E(K],) < Npa - CopVo/ 1|0/ T

The constant Cy ,, comes from the intersection of the sets K Z 0 out"
Recall that after splitting in the cases of d-seperated and d-close cubes, we got the bound

(3.4.7) in the separated case and after an initial application of random surgery, we reduced

the proof of Proposition to establishing inequality (3.4.11]). Then using the bounds in

(3.4.12)), (3.4.14), (3.4.15)), (3.4.16)), (3.4.17)), (3.4.18) we reduced P (I, J) to getting a bound

for { K, K} in the notation used in (3.4.21). Then using the estimates in (3.4.30)), (3.4.31)),

(3.4.32) and ([3.4.34)) together with (3.4.29)), (3.4.36)), (3.4.37) and (3.4.38]) establishes prob-

abilistic control of the sum of all the inner products {K, K} taken over appropriate cubes

K, yielding (3.4.11)) as required if we choose ¢, A, ng and § sufficiently small. And combining
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all the above bounds we proved proposition [3.4.1] namely we got the bound

b b*
ERES Y > [(m(Ertn) ety | s
I€D jeg: 27| 1|<|J|<|I|
d(J1)<20(J)E0(I1)1 €

<CgNTVa + \/ngOé) HfHL2(a) HQHLQ(W)

3.5 Main below form

Now we turn to controlling the main below form (3.2.17)),

o= X [(%ofhr)oy e

I€D PRCI: o(J)<2—Pe(])

To control @gOOd (f,9) = Be P (f,g) we first perform the canonical corona splitting of
Be, (/. g) into a diagonal form and a far below form, namely Tgjqg0nal (f, 9) and
T farbelow (f 9) as in [48]. This canonical splitting of the form Be,, (f, g) involves the corona

*
pseudoprojections Pg’ll)) acting on f and the shifted corona pseudoprojections pwib ni fe acting
C Cg ,shift

A
on g, where B is a stopping cube in A. The stopping cubes B constructed relative to
ge L? (w) play no role in the analysis here, except to guarantee that the frame and weak

* .
Riesz inequalities hold for g and {Dt}”b g} . Here the shifted corona C%Shlf " is defined

Jeg
to include those cubes J € G such J e Cg. Recall that the parameters 7 and p are fixed
to satisfy

T>rand p>r—+T,

where r is the goodness parameter already fixed in (3.2.16)).
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Definition 3.5.1. For B € A we define the shifted G-corona by
et ={seg: ¥ ech}.

are pairwise disjoint in

We will use repeatedly the fact that the shifted coronas C%Shif t

> 1 gsnift (/) <1, JED. (3.5.1)
BeA B

The forms Be, . (f,g) are no longer linear in f and g as the ‘cut’ is determined by the
D Gshift .

coronas C4 and Cp , which depend on f as well as the measures ¢ and w. However,

if the coronas are held fixed, then the forms can be considered bilinear in f and ¢g. It is

convenient at this point to introduce the following shorthand notation:

€p,e
o o,b w,b* _ a (—o,b w,b*
<To (chf) ’P0975hiftg> = Z <Ta (D] f) 7|:|J g>w :
B “ IECE and Jecg’smﬁ: J’E;I
0(J)<27PU(I)
(3.5.2)
Caution One must not assume, from the notation on the left hand side above, that the
function T (PgA f ) is simply integrated against the function PZ(L shi ft9- Indeed, the
B

sum on the right hand side is taken over pairs (I, J) such that J e Cg and J& ; I

and ¢ (J) <27P0(I).

3.5.1 The canonical splitting and local below forms

We then have the canonical splitting determined by the coronas CE for A € A (the stopping

times B play no explicit role in the canonical splitting of the below form, other than to
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*
guarantee the weak Riesz inequalities for the dual martingale pseudoprojections D w,b )

Beye (f.9) (3.5.3)
b Epe
o,
- Z <Ta <P f) g shzftg>
A,BeA w
b b €pe b b €pe
g, w a, LL}
= D, <Tg (PcAf>7 gshzftg> + ) <Tc? (PcAf)7 Qshzftg>
AeA w A,BeA w
BGA
b e b b e
o, o, w
+ Z < (P f) gshzftg> + Z <Ta <P )’P gshzftg>
A,BeA w A,BeA w
B2A ANB=(

= Tdiagonal (f,9) + Tfarbelow (fi9) + Tfarabove (f,9) + sz’sjoint (f,9)-

Now the final two terms T ¢4rqpove (f;9) and Tgigioint (f; g) each vanish since there are no

pairs (I, J) € C% x 5" with both (i) J* G I and (ii) either BG A or BN A = . The

far below form T f4,pe100 (f, g) Tequires functional energy, which we discuss in a moment.
Next we follow this splitting by a further decomposition of the diagonal form into local

below forms Bép (f,9) given by the individual corona pieces

Cp.e
Cpg <f7 ) — < ( f) g shzftg> (354)
w
and prove the following estimate:
— *
< W, b
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This reduces matters to the local forms since we then have from Cauchy-Schwarz that

1
*2 2
b
Z ’BCpg(f 9)’ S NTVa ZO‘A 24|, + Pg’Df
AcA AcA A L2(O')
1
. *2 2
w,b
Z P gshzftg
AeA L2(w)
S NTVa ||f||L2(U) 91l 12
by the lower frame inequalities
*2
ob .|| *2 2 9
I < <
CAfHLQ(a) ~ ||f||L2( g shzftg 2w ~S HQHLQ(w)

using also quasi-orthogonality > a4 (f)? Al, S ||f||22(0) in the stopping cubes A, and
AeA

the pairwise disjointedness of the shifted coronas Ci"ghi‘f £

Z 1 gshzft < 1p.
dea CA

From now on we will often write C4 in place of CE when no confusion is possible.

Finally, the local forms B4

Cpe (f,g) are decomposed into stopping B4 stop (f+9), paraprod-

uct BA

paraproduct

(f,g) and neighbour Bnezghbour (f,g) forms. The paraproduct and neighbour
terms are handled as in [48], which in turn follows the treatment originating in [38], and this
leaves only the stopping form B4 stop (f,g) to be bounded, which we treat last by adapting
the bottom /up stopping time and recursion of M. Lacey in [26].

However, in order to obtain the required bounds of the above forms into which the below

form Be 0 (f,g) was decomposed, we need functional energy. Recall that the vector-valued
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function b in the accretive coronas ‘breaks’ only at a collection of cubes satisfying a Carleson

condition. We define M (r,¢) (F) to consist of the mazimal r-deeply embedded dyadic

—deep

G-subcubes of a D-cube F - see (77) in Appendix B of [54] for more detail.

Definition 3.5.2. Let o = Fa (D, G) be the smallest constant in the ‘functional energy’
inequality below, holding for all h € L? (o) and all o-Carleson collections F C D with

Carleson norm Cx bounded by a fized constant C':

2 a2

w,b v
G,shift.

CF M

Z Z PY (M, ho)

1
FEF MEM(y 1)_geepp(F) \ M7

< Sal|hl|L2(a) , (35.5)
L2(w)

The main ingredient used in reducing control of the below form Be 0 (f,g) to control of

A

siop (f,9), is the Intertwining

the functional energy §, constant and the stopping form B
Proposition from [48]. The control of the functional energy condition by the energy and
Muckenhoupt conditions must also be adapted in light of the p-weakly accretive function b
that only ‘breaks’ at a collection of cubes satisfying a Carleson condition, but this poses no
real difficulties. The fact that the usual Haar bases are orthonormal is here replaced by the
weaker condition that the corresponding broken Haar ‘bases’ are merely frames satisfying
certain lower and weak upper Riesz inequalities, but again this poses no real difference in
the arguments. Finally, the fact that goodness for J has been replaced with weak goodness,

namely J "X ; I, again forces no real change in the arguments.

We then use the paraproduct / neighbour / stopping splitting mentioned above to reduce
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boundedness of BA

€pe (f,g) to boundedness of the associated stopping form

A _ b ,b*
Bstop (fa g) = Z Z (E?JD? f> <Tg1A\IJbA> D(u]) g>w (3-5~6)
IeC G,shift
A gecshift, PRy
o(J)<2~Pe(I)
where f is supported in the cube A and its expectations EY |f| are bounded by a4 (A)
for I € C9, the dual martingale support of f is contained in the corona C9, and the dual

martingale support of ¢ is contained in Ci,shif t, and where [; is the D-child of [ that

contains J.

3.5.2 Diagonal and far below forms

Now we turn to the diagonal and the far below terms Tgiqgonar (f;9) and T tarberow (f,9),
where in [48] the far below terms were bounded using the Intertwining Proposition and the
control of functional energy condition by the energy conditions, but of course under the

restriction there that the cubes J were good. Here we write

(3.5.7)

b b*
T farbelow (f,9) = Z Z <T3 (D(} f) , <D§ g) >w
A,BeA ,shift
Boa [€Cq and Jecdshi
JECT and £(J)<27T4(I)

b b*
- T (mEt). T m)
BeAIeD: BGI Jecjgg,shift y

,b Jb*
D N CICAS RS A
BeA[eD: BSI JecGhift
0(J)>27T4(T)
1 2
= Tfarbelow (f’ g) - Tfarbelow (fv g) .
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since if I € C4 and J € Cg Shzft, with J% G Iand B G A, then we must have B G I

First, we note that expectation of the second sum T?carbelow (f,g) is controlled by (3.4.1) in

Proposition [3.4.1], i.e.

ERES| S <T 3 D“j’b*g>
BeAIeD BGI Jecgshift
0(J)>27T(I) w
,b b*
< ERESY (7 (07°r). 05" 9),|

1€D jeg: 27Tu(I)<t(J)<l(I)
d(J,1)<26(J)F0(I) €

S (CoNTVa +VINze) £l 20 ol 20,

The form T} (f,g) can be written as

farbelow

T}"arbelow (f,g9) = Z Z <Taa (chrjbf> 7gB>w ;

BeATIeD: BGI

,b
where gg = Z D? g =P gshzftg
G.shift Cr
JGCB’

and the Intertwining Proposition [3.5.7 can now be applied to this latter form to show that it

is bounded by N'TVqa+Fa. Then Proposition ?? can be applied to show that §o S A5 +ES,
which completes the proof that
‘Tfarbelow (f, 9)’ SNTVa HfHL?(J) HQHLQ(Q}) . (3.5.8)

3.5.3 Intertwining Proposition

First we adapt the relevant definitions and theorems from [48].
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Definition 3.5.3. A collection F of dyadic cubes is o-Carleson if

S P, <CFlSl,. SeF.
FeF:. FcS

The constant C'r is referred to as the Carleson norm of F.

Definition 3.5.4. Let F be a collection of dyadic cubes in a grid D. Then for F' € F, we

define the shifted corona C}gp’smﬁ i analogy with Definition |3.5. 1| by

gt —{reg: Mecp}.

Note that the collections Cg,shif " are pairwise disjoint in F'. Let € (F') denote the set of

F-children of F'. Given any collection H C G of cubes, a family b* of dual testing functions,

w,b*

and an arbitrary cube K € P, we define the corresponding dual pseudoprojection PH’ and
*
its localization P%,“_)[t;( to K by
w,b* w,b* w,b* w,b*
QG =) Ay ad Q= > Ay . (3.5.9)

HeH HeH: HCK

Recall from Definition that §o = §a (D,G) = 8’3* (D, G) is the best constant in (3.5.5)),

i.e.

2 a2

w,b T
G,shift.

CF M

Z Z PY (M, ho)

1 §3a||h\|L2(a)~
Fe]:MEM(I',l)—deep,D(F) ’M|n

L2(w)

Remark 3.5.5. If in (3.5.5), we take h = 17 and F to be the trivial Carleson collec-

tion {I,}721 where the cubes I, are pairwise disjoint in I, then we obtain the deep energy
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w,b* weakgood,w

condition in Definition 77, but with P G.shift in place of P . However, the pseu-
CF’S if M
*
doprojection Pljeakgwd’w 1s larger than Pw’gbshi o and so we just miss obtaining the deep
i ;J

C
F
energy condition as a consequence of the functional energy condition. Nevertheless, this near

maiss with h = 1 explains the terminology ‘functional’ energy.

We will need the following ‘indicator’ version of the estimates proved above for the disjoint

form.

Lemma 3.5.6. Suppose T is a standard fractional singular integral with 0 < « < 1, that
p >r, that f € L?(0) and g € L?(w), that F C D° and G C D¥ are o-Carleson and

w-Carleson collections respectively, i.e.,

> |F,S$IFly,, FeF and > |¢,5IGl,. Geg,
FleF: FIcF G'eG: G'cG

that there are numerical sequences {ax (F)}per and {Bg (G>}Geg such that

S ar () 1Fly < W22, and 3 56 (@1 1Gl, < ol . (3510)
FeF Geg
Then
> ‘<T3 (Ipar (F)),Dﬁ’b*g>w’ (3.5.11)

FeF  JeG: L(J)<LU(F)
d(J,F)>20(J)Ee(F)1—¢

2 (75 (070 ) 106 (@) |
Geg  IeD:U(I)<l(G)
d(1,G)>20(I)E0(G)L ¢

< V1 l200) 9l 2 -
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The proof of this lemma is similar to those of Lemmas [3.3.1] and [3.3.2] in Section

above, using the square function inequalities for D?b, V¢ 7 and D?’b ) G

Proposition 3.5.7 (The Intertwining Proposition). Let D and G be grids, and suppose that

b and b* are co-weakly o-accretive families of cubes in D and G respectively. Suppose that

F C D is o-Carleson and that the F-coronas
Cpr={IeD:ICFbutlgF for F'eCxr(F)}

satisfy

E7 |fI S ER|f| and by = 17bp, foralll €Cp , F € F.

Then

Eg Z Z <TaDUbf P gshzftg> S

FeF I I;F w

(SatThat+ 23027169 ) /112 90 2,0,

where the implied constant depends on the o-Carleson norm Cr of the family F.

Proof. We write the sum on the left hand side of the display above as

b )b
DY <Tgm; f, ng,sh,.ftg> =D <T3 > ot ,ng,smftg>
rF F
w

FEF I I2F w Fer L I2F
= > (T () 9p),,
FeF

where fF— Z D fand gF—PCgshzftg
I IDF

Note that gp is supported in F'. By the telescoping identity for D?’b, the function f7,
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satisfies

* o,b o,b o,b E%f E?OOf
lpff= Y, O7°f=Fp’f- 1pl, f= bFE%bF - 1FbIooE?—bI :
00 0

I: IsoDI2F

where I is the starting cube for corona constructions in D. However, we cannot apply the
testing condition to the function 1pby_, and since Ej‘oo f does not vanish in general, we will

instead add and subtract the term TP f to get
Io

(3.5.12)
o,b
SRCTIERE NS S C:1 (D o) -y
FeF FeF I: IoDI2F F w
= N (1o (FPPr+ S O7Pr ] P
o | FIso I ' oG shiftd
FeF I: IogDI2F F w
- 72 (F7Pf) P
Z o Ioof ’ Cg,shiftg g
FeF F w

where the second sum on the right hand side of the identity satisfies

,b _
E§ Z<T§‘ (F?oof),ng,swtg> <(Tha+ 2550+ %) 112 9 200
FeF F w

Indeed, as

Z<T§‘ <F?£f ) : ng,shi ftg>

FeF w
b
/IooﬂJoo JooN((148) Ioo\ o) Joo\(1+5)foo] }%}‘ C%,Shlft o Ioo
= Al + A2 + A3
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by Cauchy-Schwarz and Riesz inequalities, the term A is controlled by testing, the term Asg

by Muckenhoupt’s condition using lemma and finally

1
2 2

1
2
EbAy < oa/I Zpgg,shiﬁg dw (mTa/|f|2da>
0

FerF F

< VO [ fll 20 l9ll 2, -

The advantage now is that with

;b ;b ;b
PR f+ fp=Fp2f+ Y O7°f
I: IoDI2F

then in the first term on the right hand side of (3.5.12)), the telescoping identity gives

E%f

b b b

Lpfp=1p (FI 0+ > D7 | =Fpf =bpgyr—,
I: IooDI2F FoF

which shows that fr is a controlled constant times by on F'.
The cubes I occurring in this sum are linearly and consecutively ordered by inclusion,

along with the cubes I’ € F that contain F. More precisely we can write
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where [}, = W%F for all £ > 1. There is a (unique) subsequence {km}%:1 such that

Then we have

w,b*

K
b b
fF(x)EF;éof(x)+ZD?é f(x) and gp= Z 05" g.
(=1 Jécg’Shift

Assume now that k,, < k < kp,41. We denote by 6 (1) the 2" — 1 siblings of I,

i.e. I €6 (I)implies I € ¢p (mpl)\ {I}. There are two cases to consider here:
I ¢ Fand I}, € F.

We first note that in either case, using a telescoping sum, we compute that for
z €I, C Fpii\Fn,

we have the formula

K
fr) = FPr@+ > 07 r @)
(=k+1
1
_ F?bf()-— Zﬁlf(x)+?£§;1<yabf()__ ﬁzlfﬁw>—%F22f(x)
o,b
= F&:f($)
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Now fix z € I};,. If I}, ¢ F, then kaCFm and we have

+17
EZ |
Ip @] = [F2°f @)] $ [bp, @) —5— S B, 1] (35.13)
’ E7 b
I, 0(1y)

since the testing functions bik are bounded and accretive, and E;k Ifl < E%m+1 |f| by

hypothesis. On the other hand, if fk € F, then I, € CFm+1 and we have

fr ()] = SELIf -

o,b

Note that F¢ = U 0 (I,). Now we write
k>0

fr = vr+vYF,

br=d. > F%;bf and  Yp = fr—op;

kZOINkEH(Ik)

jkE]:
Z <T(?fF>gF>w = Z <Tg90F7gF>w+Z (TngﬂF)w,
FeF FeF FeF

a

E
and note that pp =0on F, and Yp = bF% on F. We can apply the first line in (3.5.11
F

using Ij, € F to the first sum above since J € C}g,’smf t implies J ¢ J® ¢ F C I};, which
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1mplies that [) > [ )¢, us we obtain after substitutin or I;. below
implies that d(J, [,) > 2¢(J)° ¢(I;)'~¢. Th b f b g F' for I, below,

Y (Tfergr),] = | D, <T°‘ > > FY f 0% >

FeF FeF Jecg,shift k>0 _rkeg([k)
Ik,E]:
w
o,b w,b*
<Y X Y% [m (et
FeF ;o CQ shi ft k>OIk€0( 1) w
IkE.F
Jb*
> 2 (72 (F51) 55" ),

FIeF  jeg: z(J)ge(F’)

a(2F")>20(0)5¢(F) I-e

< 28171200 ol 2

Turning to the second sum, we note that for k;;, < k < k41 and = € I, with I, ¢ F,

we have

v @) 5 b, | EF 171 15, (@) S 0 (Fg) 17, (@)

Note that for o-almost all © € I, there exists a unique F' € F such that x € F'\ U F'
Fle€ p(F)
since the family F is a Carleson family. Also from the stopping criteria we have ar(F) <

ar(F') for F' C F. Hence we get the following inequality for = ¢ F,

[WE (2)] S @ (2) 1pc(z) , (3.5.14)

where we have defined
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Now we write

S (Tebp.gr), = Y (T8 Aptp),gr),+ Y. (T8 (Lpetp) . gp), =1+1L

FeF FeF FeF

Then by cube testing,

(15 (0r1F) . 97)u| = [LRTE (bp1R), gp)ul S Troy/|Fl, ||9F||Zz<w) ,

EO’
and so quasi-orthogonality, together with the fact that on F, vp = b F% is a constant
F

o
EFf

C =
ESbp

times b, where |c| is bounded by ar (F), give

1=| Y (T8 pebr) gp)s| S 0 ar(F) |(T8br.gp).,

FeF FeF
< Y ar (B Tpey/IF lorl Ty,
FeF
1
2
2
S Tra 2y | 2 Norlls,

FeF

Now 1 pcyr is supported outside F', and each J in the dual martingale support Cg’smf t

of gp = ng shiftd is in particular good in the cube F', and as a consequence, each such cube
C )
F

J as above is contained in some cube M for M € W (F'). This containment will be used in

the analysis of the term IIg below.

In addition, each J in the dual martingale support C%Shif b ot Jr = ng shiftd is
C Y
F

<[3} ,&?) -deeply embedded in F',i.e. J € P} F the definition of C%Shift. As a consequence,

€
€

each such cube J as above is contained in some cube M for M € M ( {3} ) (F). This
Gk

—deep,D

containment will be used in the analysis of the term IIg below.
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3

Notation 3.5.8. Define p = [Q}, so that for every J € C%Shift, there is

M € M, o) —deep,g (F) such that J C M.

The collections W (F') and M, -y_jeepg (F) used here, and in the display below, are

defined in (??) in Appendix B of [54]. Finally, since the cubes M € W (F), as well as the

_deenC (F), satisfy 3M C F, we can apply (3.1.54)) in the Monotonicity
eep,

Lemma 3.1.23| using (3.5.14)) with x4 = 1pctpp and J' in place of J there, to obtain

cubesMEM({ } )

b*
= | D08 (pevr) gpdol = | D0 2 (T8 (Lpewr) 0% g)
FeF FeF 51 Cg shift
« /!
< ¥ P (J', 1pc|iplo) HAwb* ‘* HDw;b*g’*
FeF ,_.Gshift PAK SOLIEE A
Jec™
Pis (/' 1pelvplo)
DD L o= m il 2[5 0
Fefj,ec%smft |J'|
“( ) ‘
P M,ch(I)O' w,b* *
S Z Z 1 Qgshzft ||9F;M||L2(w)
FeF MeW(F) |M|n Crim 12(w)
P¢ o (J, 1pclvp|o) %
140 \7 > TFCIVE w,b* %
- Z Z Z ’Jl’l ||x_m‘]1HL2(1J/w>HDJ/ g L2(w)
FeF deep I G,shift n
JEM 0.6 T'ECE
= Ilg +1Ig .
*
where gp. )y denotes the pseudoprojection gp.pr = Z D"j}b qg.

Jecgshitt iy
Note: We could also bound Il by using the decomposition M(p,s)fdeep,g (F) of F into

certain maximal G-cubes, but the ‘smaller’ choice W (F') of D-cubes is needed for Ilg in
order to bound it by the corresponding functional energy constant §,, which can then be

controlled by the energy and Muckenhoupt constants in Appendix B of [54] .
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Then from Cauchy-Schwarz, the functional energy condition, and

I@II )< > ap(F)?|F|, S ||f|| ,
FeF
we obtain
a2 \2
| 323 (S ) G| (I, T lorwl
FGJ:MEW L2(w FE}—MEW
1
2
Sall®l 2 | 32 NorlE | S alfll 2 ol
FeF

by the pairwise disjointedness of the coronas Cg’fj\zﬁ t jointly in F' and M, which in turn

Cg shift .

follows from the pairwise disjointedness (3.5.1|) of the shifted coronas in F', together

with the pairwise disjointedness of the cubes M. Thus we obtain the pairwise disjointedness

7

of both of the pseudoprojections P¥ 0 shzft and Q%2 g shzft jointly in F and M.
Crm M
In term IIg the quantities Hx m J/HL2 (1 ) are no longer additive except when the
J 1%

cubes J' are pairwise disjoint. As a result we will use (3.1.58)) in the form,

(3.5.15)
2
pP{ (J/ V) 1 P o (Jv) 2
146\ 2 140
Z 1 ”3j mJ’HL2<1 /> S 257 1 Z HA?;//-CEHL2
J'cJ |J/ |7 v | J|7 J"c
«
Py ) 2
~ |J|% L2(1J> ’

and exploit the decay in the Poisson integral Pcler 5 along with weak goodness of the cubes

J. As a consequence we will be able to bound Ilg directly by the strong energy condition
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(3.1.8), without having to invoke the more difficult functional energy condition. For the

decay we compute that for J € M, o) _geep.g (F)

5/
P o (1 1pe[vp|o) / |J|m el () d
~ F Yy g
|7 Fe Jy — ¢ 10—

o 1 J

< Z/ | J|7 [VE| (y) .

— . C —_
= St patr \ dist (e, (75 F)°) |y — ¢y

§ pa

~ . t C 1 Y

=0 dist (CJ, (71']_—F) ) Kz

and then use the weak goodness inequality and the fact that J C F

—&

dist (cJ, (W}F) C) > 9/ (@F)l 0 > 22108 (P)L=e ¢ (J)F > 2t0=e)+1p (7).,

to conclude that

2
P?Jr(;/ (/. 1pe|p|o) ’ s 5! (1 pe ( Tr F\7r]_- )

T <| S o) (3.5.16)

|J| 7 =0 | J|m

where in the last inequality we used the Cauchy-Schwarz inequality. Now we again apply
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Cauchy-Schwarz and (3.5.16]) to obtain

P, o (J, 1pcldp|o) x Kk
1+6 \Y » LFCIVFE b
HB:Z Z Z - |J/|% ||‘”_mJ/HL2(1J/w)HDoj/ g‘LQ(w)
FeF d G,shift
T remlet o) srecg
0 2
PS5 (7' 1peliplo) 2
S DD > = o Hg”_mJ’HLz(lj,w)
FeF d g shift "
T remiet (p) srec
1
2
*2
Z ||gF||L2(w)
FeF
2
P, o (J 1pelpplo)
<| X > e le =miliag | 1902

1
FG}—JEM(p,E)—deep,Q(F) |J‘n

= Meneray ]2,

and it remains to estimate Ilepergy. From (3.5.16) and the strong energy condition (3.1.8)),
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we have

2
Pt o (J, 1pclyp|o)
IIenergy = Z Z L0 1 ||ZL’ -
FeF JeM () o) —deep,g(F) |71

2
PO (1 41, 4 WF!U)
16 (1—¢) ( ny F\tpE
<> > 22

FeF deep t=0 |J|ﬁ
TEM(pe) g F)

!/
_ F
ZQ DYDY ) ; e = myl3
I pec™ia )JGM?SW; o(F

2
00 , Po <J, 1G\7r§_-FU)
SN a2 (G2 3 T o =msl7a

t=0 GeF FE(’:(t+1)(G) JEM?;Z}; (F

J—.'
/
27009 3™ ap (G (E5)2 Gl < ()7 1£122,,
t:0 GeF

Mg

This completes the proof of the Intertwining Proposition [3.5.7] ]

The task of controlling functional energy is taken up in Appendix B of [54] below.

3.5.4 Paraproduct, neighbour and broken forms

In this subsection we reduce boundedness of the local below form Bér - (f,g) defined in

(3.5.4) to boundedness of the associated stopping form

7bab 7b*
stop (f,9) = Z (EI DU f> <Tg‘ (1A\IJbA> ,D? g>w , (3.5.17)
1ec® and sec§ Mt
JECT and (J)<27T4(I)
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where the modified difference ﬁg’b’b must be carefully chosen in order to control the corre-

sponding paraproduct form below. Indeed, below we will decompose

A A A
Cr \E (f g) paraproduct <f g> StOp (f’ g) + Bneighbour (f7 g) + Bbrok (f7 g) )

and we will show that

S (B, (£.9)+ Bkoy (£.0)] S (Toa+/28) 11 20 Il 2,
AecA

and the bound of B4

stop (f,g) will be the main subject of the next section.

Note that the modified dual martingale differences D?’b’b and ﬁ?b’b,

U,b,bf D f _ Z ]F;,’bf — by Z 1]/ < a,b,bf> _ bAﬁ?b’bf,

r ngrok‘(j) I/€€
satisfy the following telescoping property for all K € (C A\ {A}) U U A and
A/EQ:A(A)
L € Cy with K C L:
=o,b .
>, Ef(O77f) = . . -
I: tKCICL EFCf—EJFTPf if K eCy

Fix I € C4 for the moment. We will use

b = 1IJ+~Z ;.
Ief(Iy)
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where 6 (I 5) denotes the 2" — 1 D-children of I other than the child /; that contains J. We

begin with the splitting

<T§D§’b f,09%" g>w
(75 (1, 0707) “b9>w+~Z<T (1707°5) 059,

b.b b b*
_ <T§< (1[JD§ f) +<T 17, el Wuy g>
I G@brok(f)

- AT () 555,

169( J

W

= [+ II+1III.

From ((3.1.47)) we have

U= (19 (1,077°1) .05 g) = (12 [ba (1,007"r)] .05 g)
o ) o) 7).

=~abh.b Jb* =~ab.b pb*
= £7, (O77"r) (104,05 9) - 7, (5770 1) (75 (tavr,ba) 550,
1 Fa’bf

. . ob .. . ~ob
Since the function F I, f is a constant multiple of by ;on Iy, we can define F I; f= E I;

and then

o,b w,b* . =o,b w,b*
H=<T§‘ 1, Y FOf0Y 9>—1¢A(A)(IJ)E?J (FIJ f) <T§‘51J7DJ g>w

I'e&y, i.(I) "

where the presence of the indicator function 1y A(4) (1 y) simply means that term II vanishes
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unless [ is an A-child of A. We now write these terms as

b b* =~0.b,b b*
(), = o (B°0) (7305,
- 7b7b 7b*
=57, (B7"07) (75 (L, 0a) 07 9)

+ > (T (1o7hr) o)

Ted(I1y)

o (To,b Q w,b*

w

where the four lines are respectively a paraproduct, stopping, neighbour and broken term.

4 (f,g) using (3.5.4) and (3.5.2) becomes

Cre

The corresponding NTV splitting of B

Cr,e

)

A
B@r,s (f’ g) = <Taa <PgAf> ) PZG,shiftg>
A w

*
- (mE) o)
recy and Jec it
TRCT and £(1)<27TU(I)

A A A A
= Bparaproduct (f7 g) - Bstop (f? g) + Bneighbour (f7 g) + Bbrok (fv g) ’

W

where

A — =~0o,b,b w,b*
Bparaproduct (f.9) = Z E([TJ <D] f) <TgbA; 05 g>w
IeC g and JeCi’Shlﬁ
JECT and ¢(J)<27T4(I)

A _ =~ob.b ,b*
Blhop (£.9) = S B (B70) (18 (L, ba) .55 g)
IeC g and JGCi’ShZﬁ
TRCT and £(1)<27TU(1)

b b*
> > (79 (107%r) .05 )
IeCy and JECi’Shiﬁ IEHUJ)
JECT and ¢(J)<27TU(I)

A
Bnez’ghbour <f’ g)

194



correspond to the three original NTV forms associated with 1-testing, and where

Biror (/) 3 Lree )y B <]1AT;’]bf> <T§‘bIJ,D°j7b*g>w (3.5.18)

IeC 4 and Jecd M

JECT and £(1)<27TU(1)

"vanishes" since J% G Iand Ij € €4 (A) imply that JE ¢ CA, contradicting J € Cg shift

Remark 3.5.9. The inquisitive reader will note that the pairs (I,J) arising in the above

sum with J* ; I replaced by JX = I are handled in the probabilistic estimate for

the bad form @gadb defined in (3.2.12).

3.5.4.1 The paraproduct form

The paraproduct form BA (f,9g) is easily controlled by the testing condition for

paraproduct

T together with weak Riesz inequalities for dual martingale differences. Indeed, recalling

the telescoping identity (3.1.48), and that the collection {I € Cy: €(J) <27 ¢ (I)} is tree

G,shift
Ca

connected for all J € , we have

~ob,b b*
0= 5, () (o),

IeCy and JeCi’Shiﬁ

JECT and (J)<27T4(I)

_ Z <TabA, wb g>w Z EI (Do,b,bf>

Jec%shz’ft 1€C 42 JRCT and ((J)<27TU(1)
_ o w,b o ~o,b
B Z <T ba iy g>w{1{J:1h(J)JecA}EIh( "y Ih f E4Fy f}

secGhift

7b*
- <T§‘bA, 2 {I{J:IH(J)JGCA}E%( 1) Ih f EAF f} 0 g>
JecGshift
A

w
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where 17 (J) denotes the smallest cube I € C4 such that J% G Tand((J)<27%(I), and
of course I” (J) s denotes its child containing J. Note that by construction of the modified

difference operator D?’b’b, the only time the average o ! f appears in the above sum is

I5(J) g
when I° (J) j € C4, since the case I (J); € A has been removed to the broken term. This is

reflected above with the inclusion of the indicator 1 { It follows that we have

J:Jh(J)JecA}'
the bound

lod @U,b

o0,b o
l{J;Jh(J)JecA}th(J)J r | T ‘EAFA f’ SEQfI < aa(4)

Thus from Cauchy-Schwarz, the upper weak Riesz inequalities for the pseudoprojections

DCj,b*g and the bound on the coefficients A j = <1{J:IH(J)J€CA}E(17H( oy In f EAIE‘A f)

given by |Aj| < ay (A), we have

’Bparapmduct (fv g)‘ = (3.5.19)
« o oo =o,b v b
<Tg ba, > | { (1{J:IH(J)JGCA}EIH(J)J 15 f EQF f> } g>
JecOnshift
A

b*
LAT5 b Al 2, Z AO57 g
Jeci,shzft

w

IA

L2(w)
,b*
S aald) aTfhalzg, Y |55 0,
JGCi’ShZﬂ

*
wb

Cg shzftg

IN

o aq (A) /]AlL

L2(w)

196



3.5.4.2 The neighbour form

Next, the neighbour form Bﬁeighbour (f,g) is easily controlled by the 2§ condition using the

pivotal estimate in Energy Lemma|3.1.25/and the fact that the cubes J € Ci’smﬁ are good in

I and beyond when the pair (I, J) occurs in the sum. In particular, the information encoded
in the stopping tree A plays no role here, apart from appearing in the corona projections on

the right hand side of (3.5.25)) below. We have

A ;b b*
Bneighbour (fi9) = Z Z <T§‘ (1j|:]? f) ,D‘j g>w (3.5.20)
IeC 4 and Jec st 1€6(1 )
TRCT and £(1)<27T (1)

where we keep in mind that the pairs (I, J) € D x G that arise in the sum for Bﬁeighbour (f,9)

satisfy the property that J " ; I, so that J is good with respect to all cubes K of size at

least that of J ’E, which includes I. Recall that I; is the child of I that contains J, and that

6 (1y) denotes its 2" — 1 siblings in I, i.e. 0 (I5) = €p (I)\{ls}. Fix (I,J) momentarily,
. . ob _ —obb ob.b obb, .

and an integer s > r. Using U, =077 + U and the fact that L™ f is a constant

multiple of by on the cube I, we have the estimates

ob,b . =~o.b.b =~o.b.b
‘1I~DI f‘ _ ‘(E?DI f>bj~‘§0b‘E}’DI f’,

ob,b z
llfDI,brokf‘ < g, ) EZ IS,

and hence

1; ‘D?bf’ <C1; (’E;ﬁ?b’bf( +1g ,(a)(D) B2 \f]) , (3.5.21)
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which will be used below after an application of the Energy Lemma. We can write

A
Bneighbour (f’ g) as

)3 > (1 (1) ),

D Gshifte pucyled(1
TECASTEGD (1 1y o\ goud A" TG (17)

d(Jj)>2£(J)ffz(i)1_€ and £(J) <2~ T(I)

where we have included the conditions
T € G0 1;0)e)—goo L AT D) > 20 (1) (1)1

in the summation since they are already implied the remaining four conditions, and will be
used in estimates below.

We will also use the following fractional analogue of the Poisson inequality in [58].

Lemma 3.5.10. Suppose 0 < o < 1 and JCICK and that d (J,01)>20(J)0 (1)}~ for

some 0 < ¢ < Wif_a' Then for a positive Borel measure i we have

1—e(n+l—a)
<) )> POL, il ). (3.5.22)

P plp ) S (ﬁ

Proof. We have

e.¢]

@ ~ —k 1 /
: (J’MIK\I> 2.2 (2kJ)ﬁ(K\I)dM’

= [2rg]n

and <2kJ> N (K\I) # 0 requires

d(J, K\I) < 2¥0 (),
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for some dimensional constant ¢ > 0. Let kg be the smallest such k. By our distance

assumption we must then have
20 () (D) < d(J,0I) < 2F00 (),

or

2 kot < ¢ (%) 1_6.

Now let k1 be defined by ok1 = % Then assuming k1 > kg (the case k1 < kg is similar)
we have
P (J M1K\I) ZOIEDY 2"“—/ dp
9 1@
i |2k g |1 (2k7) N\
'
< 97k ap | +27MP (L)

‘QkOJ‘l_% 7|t /(2k1J)ﬂ(K\I)

(1—e)(n+1—a) n—o
< (i) (fy) P () + Gy ().

which is the inequality (3.5.22)). O]
Now fix In = 17,19 € 0 (1;) and assume that J Ep¢ Iy. Let % = 277 in the pivotal

estimate from Energy Lemma |3.1.25| with J C Iy C [ to obtain

b b* b*
@2 (12,07°1) .05 gk |05

,b* —(1— 1— b
’D“j gHLQ(w) 7], - 2~ (1=elnt “))SPO‘(IOJIQ\D? f“’)

o O',b
)Lz(w) /1P (J’lff)‘mf f‘0>

N

AN

b* —(l—e(nt+1—
’[}“j gHLQ(w) 7], -2 (1-e(nt+1l-a))spa (107 119E?9f : 0)
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Here we are using ((3.5.22)) in the third line, which applies since J C I, and we have used

(3.5.21)) in the fourth line and the shorthand notation
_ ~o,b,b
70 = [BLOT P ]+ 1e ) (o) EF LS

where the cube I on the right hand side is determined uniquely by the cube Iy € 6 (I ;).
In the sum below, we keep the side lengths of the cubes J fixed at 27% times that of I,
and of course take J C Iy. We also keep the underlying assumptions that J € Ci’smf and

that J € Q(H( 1;.7)€)—good in mind without necessarily pointing to them in the notation.

Matters will shortly be reduced to estimating the following term:

b b*
AL T, I, s) = S ’(Tg (1195? f),[]‘j’ g>w‘
J 25t ly(n=u(1):JCI

2—(1—5(n+1—a))8< ?9f> Pa([071[90) Z HD?b*ngﬁ(w)m

J:JCIO
25t1o(n)=0(1)

IN

< 2—(1—5(n+17a))5 (Eggf) P (I, 1160) |IO|wA(I’ Ip, Iy, s)

where A(I, Io, Iy, s)2 = 3 Hm‘j’b* g

Jec It 9514 y=e(1): Jc1
The last line follows upon using the Cauchy-Schwarz inequality and the fact that J €

C/gl’smft. We also note that since 2571 (J) = £ (),

S ALy Ips)? = S Hch’b*gEQ( (3523
Ipeep(I) Jecfl’smf b oostlo(n=e(1): JcI )
. *2
> Y AU Ips)? < ‘P;’gk:smftg
IeCy Ipeep(I) A LA (w)
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Using (3.4.2) we obtain

~o.b.b =~0,b,b 2 b * _1
‘E?Q <D? f>‘ = \/E?G ‘D? f‘ S HD? fHLZ(g) [Tl * (3.5.24)

and hence

~ob.b
70 = B (DTN 4 te ) ) EF, 1)

ob || X % o %
HDI’ fHLQ(U) +1¢,(a)Uo) [ols ET) 111 ] Hglo

N

and thus A(7, Iy, Iy, s) is bounded by

1 1 Ub * l
o—(1—¢(n+1-a))s <HDI’ fHL%) +1e,4(4) (Ig) Hgls BT, |f|> '

_1
A(Ia ]Oa ]6‘73) |19|J 2 Pa(l()v 1[90-> \/ |Io|w

o * .
<\ Jago(—e(nti=as (HDI"’fHLQ(J) + 1 ,(a) (Io) 11913 EY, \f\) AT To. Ty, s)

since P4 (1, 1]90) < |191|fg shows that

]9 n

1 1, Iy
52 P2 (10, 11,0) o], < YoVl < g

—a o~
[lp| 7

where the implied constant depends on a and the dimension. An application of Cauchy-
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Schwarz to the sum over I using ([3.5.23) then shows that

oY A(LIy Iy s)

IeCy I(),IHEQD(I)
Io#1g

AG2~ (1—e(n+1—a) J Z HDabeL2 n Z ’[‘9’0( ?0 |f’>2

IEA HeA

> > AL Iy Iy, )

IeCy Io,IQGQD(I)
Io#1g

fH T |A'|0 (29, 111)

9[842 (1—e(n+l—a))s J

Al E(’:A
2
ol DD AU oIy
IECA 10€Q:D(I)
\ Io#1p
5 *
—(1— — * b*
< /Q[gég (1—e(n+1—a))s HPgAfHLQ(O-)—'_ Z A, (EZ, |f\> P:;g shiftd
Alee 4(A) L2(w)
This estimate is summable in s > r since € < W%—_av and so the proof of
A
Bt ignvonr (F:9) < 3 S ZA 1,1y, Iy, 5) (3.5.25)
IGCA Iy and IQECD(
Io#1g
* * o
2 w,b
SR Lt D DR | e
Alee 4(A) L?(w)
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is complete since £, [l S aq(4).

Now if we sum in A € A the inequalities (3.5.19)), (3.5.25) and (3.5.18)) we get

A
‘BCrg f7g) + BStOp <f7g>‘

AcA
*2
< (Tha %) | D (PG
Aeall €4 (W)
2 o *2 N2 ar
>0 a4l + [Pe £y + Z oA (A |4,
AcA AG@A

S <$Ta + ng‘) HfHLQ(U) HQHLQ(Q})

The stopping form is the subject of the following section.

3.6 The stopping form

Here we deal with the stopping form. We modify the adaptation of the argument of M. Lacey
in to apply in the setting of a T'b theorem for an a-fractional Calderén-Zygmund operator T
in R" using the Monotonicity Lemma, the energy condition, and the weak goodness
of Hyténen and Martikainen [24]. We directly control the pairs (7, .J) in the stopping form
according to the £ -coronas (constructed from the ‘bottom up’ with stopping times involving

the energies HD? ) to which I and J " are associated. However, due to the fact that

HL2 (w)
the cubes I need no longer be good in any sense, we must introduce an additional top/down
‘indented’ corona construction on top of the bottom/up construction of M. Lacey, and in

connection with this we introduce a Substraddling Lemma. We then control the stopping

form by absorbing the case when both I and JE belong to the same L-corona, and by
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using the Straddling and Substraddling Lemmas, together with the Orthogonality Lemma,
to control the case when I and J'¥ lie in different coronas, with a geometric gain coming
from the separation of the coronas. This geometric gain is where the new ‘indented’ corona
is required.

Apart from this change, the remaining modifications are more cosmetic, such as

e the use of the weak goodness of Hyténen and Martikainen [24] for pairs (1, J) arising in
the stopping form, rather than goodness for all cubes J that was available in [26], [49],
[51] and [52]. For the most part definitions such as admissible collections are modified

to require JE I,
w,b*

e the pseudoprojections D?’b, 07" are used in place of the orthogonal Haar projections,

and the frame and weak Riesz inequalities compensate for the lack of orthogonality.

Fix grids D and G. We will prove the bound

* *
A ,b b
Bstop (fa g)’ 5 NTV@ PZ'Df Zg7shiftg ; (361)
A 2@y Il €4 L2(w)
where we recall that the nonstandard ‘norms’ are given by,
*2 )
Uab — O',b
Pen/ = 2 HDI fHL2(a)’
A L2(0) 1ecD
A
*2 )
U7b J— W,b*
‘ ch,shiftg 200 = Z HDJ g ‘LQ(w) ’
L2(w G,shi ft
JeCy
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and that the stopping form is given by

A _ b.b Jb*
Bstop (f.9) = Z (EIJDU f> <Tg (bAlA\IJ> 7D(j g>w
1ec® and Jec§ Mt
TECT and (] )§2 Pu(I)

b.b b*
ST () () ),
I WIECE and JECi’Shiﬁ

JECT and o()<2~ (P= V(1)

where we have made the ‘change of dummy variable’ I; — [ for convenience in notation

(recall that the child of I that contains J is denoted /). Changing p — 1 to p we have:

stop (f.9)= Z ( a7b’bf> < <bA1A\I> DW7b*g>w )

I: WIECE and JECi’Shiﬁ
JECT and ¢(J)<2~PL(T)

For A € A recall that we have defined the shifted G-corona by
et ={reg:* ek},
and also defined the restricted D-corona by
C}z,restm’ct — e\ {A =0,

Definition 3.6.1. Suppose that A € A and that P C CE’TeSMCt X Ci"ghift. We say that the

collection of pairs P is A -admissible if
e (good and (p, £)-deeply embedded) For every (I,.J) € P, and J* C I G A

e (tree-connected in the first component) if Iy C Is and both (11, J) € P and (I3, J) € P,
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then (I,J) € P for every I in the geodesic [I1,Is] ={I € D: I C I C I5}.

D,restrict

From now on we often write C4 and C’ "4 in place of cP 4 and Cy respectively when

there is no confusion. The basic example of an admissible collection of pairs is obtained from

the pairs of cubes summed in the stopping form B4 stop (f,9),
pA = {(], J): 1€ C;l and J € g( o)~ good ﬂCg Shift Where J Cp,e I}, (3.6.2)

Definition 3.6.2. Suppose that A € A and that P is an A -admissible collection of pairs.

Define the associated stopping form B4 by

stop

_ 7b,b Jb*
Bstop = Z (E?DG > <T0a (bAlA\I)amc:]] g>w .

(I,J)eP

Proposition 3.6.3. Suppose that A € A and that P is an A-admissible collection of pairs.

Then the stopping form B4 satisfies the bound

stop

wb

3.6.3
CQ shzftg 12 ( )

stop (f9 }N <52 + Q[O‘> HP fHZQ(U)

w

With the above proposition in hand, we can complete the proof of (3.6.1)) by summing
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over the stopping cubes A € A with the choice PA of A-admissible pairs for each A:

D

AeA

ApA
Bstop (fa g)‘

SC RN Lo o [Pedmins
AcA 2w
2 Q i *2 %
< ereyam) (S el ) (5 e
AeA L2(w)

S (&8 +/28) 11200 ol 2

. . . ob || %2 2 . .
by the lower Riesz inequality E HPC;l f HLQ( ) < |Ifll L2(0)’ quasi-orthogonality
g
AcA

Z aq(f)?A] e SIf 12 12( 1n the stopping cubes A, and by the pairwise disjointedness of
AeA
the shifted coronas Cg shift, Z 1 cG-shift <1p.

dea CA
To prove Proposition we begin by letting

ILWP = {I € C?j srestrict :(1,J) € P for some J € ¢ Shzft},

IIsP

{Jecgs’”ﬁ (I,J) € P for some[ECA}

consist of the first and second components respectively of the pairs in P, and writing

stop (f 9) = Z <Ta90JaDWb g>w;

JEHQP
where gp?]D = Z baET ( fio2:b f) Lag (since by = by for I € Cy).
1eC’y: (1,J)eP

By the tree-connected property of P, and the telescoping property of dual martingale differ-
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ences, together with the bound a 4 (A) on the averages of f in the corona C4, we have

AR (3.6.4)

where I'p (J) = ({I : (I,J) € P} is the smallest cube I for which (7, J) € P. It is important
to note that J is good with respect to Ip (J) by our infusion of weak goodness above. Another

important property of these functions is the sublinearity:

‘90,]‘ = ‘SOJ ‘+ ‘so . P=PUP;. (3.6.5)

Now apply the Monotonicity Lemma [3.1.23| to the inner product < ©J, D‘jg> to obtain

(J lpsl Tanr > . *
(T2es05"0), | % S A N e
w |J|ﬁ L4(w) L2 (w)
Pis (J 271 La\1p () ) H ol b* 1%
1 Tmlir2a H J Hz
Thus we have
(3.6.6)
pe (J lpsl1y o 'S
AP ’ \Ip(J) w,b* wb* %
BLln (.9)| < 257 2] o |25
stop 1 J 2 J 2
JEM,P | J|7 L2 (w) L (w)
Pls (J [Pl Lavip () ) w.b*
™ 1 | _mJHL2 (15w) HDJ gHLz
JEllyP | J| 7

AP
|B|stop,1,AW (f.9)+ |B|stop 14-6,Pw (f,9),

where we have dominated the stopping form by two sublinear stopping forms that involve the
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Poisson integrals of order 1 and 1 + ¢ respectively, and where the smaller Poisson integral
P s is multiplied by the larger quantity Ha: — mﬁH 72 (1yw). This splitting turns out to

be successful in separating the two energy terms from the right hand side of the Energy

Lemma, because of the two properties (3.6.4) and (3.6.5]) above. It remains to show the two

inequalities:

b* *
‘ PiPno } (3.6.7)

L2(w)’

Bl o (£.0) S (€5 + /23) |PTR

H17’ fH

for f € L? (o) satisfying where E7[f] < ayg(A) for all I € Cy; and where 7 (ILP) =

{mpl : I € II1P}; and

wa

CQ shift9 (3.6.8)

Df

AP
|B|st0p 14-6,Pw (f,9) < (52 + )

L2(o) L2(w)

where we only need the case P = PA in this latter inequality as there is no recursion involved
in treating this second sublinear form. We consider first the easier inequality (3.6.8]) that

does not require recursion.

3.6.1 The bound for the second sublinear inequality

Now we turn to proving (3.6.8)), i.e.

w,b*

Df Q shzftg

BILD s (£0) S (88 +/28) |IP

L2(o) L2(w)
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where since

b b.b
ol = >, K] (DUI f) balag| < > ’E}'( i f) ba a1,
1eC!y: (1,J)eP 1eC’y: (1,J)eP

the sublinear form |B|St0p 140 pw Can be dominated and then decomposed by pigeonholing

the ratio of side lengths of J and [:

p J|S0J|1A\ (J) whb* 1%
— JG%P H‘S( |J|ﬁ s >Hx mJHLQ(le) HDJb g‘ L2(w)
fos (427 (5229 L)

e =mall 2y o [|25°"
L2(1w) || 7 L2(w)

IN

>

(1 J)EP IJIW

_ A’Ps .
= Z| stopl-i-é fr9);

We will now adapt the argument for the stopping term starting on page 42 of [28], where the
geometric gain from the assumed ‘Energy Hypothesis’ there will be replaced by a geometric
gain from the smaller Poisson integral P 5 used here.

First, we exploit the additional decay in the Poisson integral P{ L5 s follows. Suppose
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that (I, J) € P with ¢(J) =27%¢(I). We then compute

5
Pl s (Ja|bA|1A\I‘7> N / | J|n
AN [y

|J|l c |n+1+5—a ’bA (y)‘ do (y)
n
5
|J] 1
= i ba (y)| do (y
/A\[ dist (CJ,[C) |y_cj|n+l—a | ( )| ( )
5
B J|® P (,[bal 1a70)

dlSt (CJ,]C) |J|%

and using the goodness of J in I,
d(cy, 19 > 20(D) 0 (0)F > 22502 (),

to conclude, using accretivity, that

Py s (J, |bA|1A\IU) < 9—sd(1—¢) P <J’ 1A\IU) .

~Y

1 i
S| /|

We next claim that for s > 0 an integer,

A,P; s
|B’stop,i+57pw (f,9) S 2 s0(1—¢) (g§4+ m%)

p/f
Ca L2(0)

from which (3.6.8)) follows upon summing in s > 0. Now using both

7 (57| gy, 10510 < |05,

w,b*
g shiftd

\/_I ’

(3.6.9)

L2(w)

bb [ b2 -
3 |l fHLa(U)S;)(HDLfHLQ +IV2 ) ) ~ 1122,
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we apply Cauchy-Schwarz in the I variable above to see that

AP;s 2
[l B|st0p,1+57PW (f, gﬂ

i 1
212
Pa’bf 1 P?—Hi <J, 1A\Ig>|’m mJH ) HDw7b*gH*
D E: M. 1 = L2(1 w)|[—J 2(w
‘A" N2 rec\ Vo g (17)eP [T () )
o« ) (1)

*
Using the frame inequality for ch’b we can then estimate the sum inside the square brackets

by
. 2
b 1% 1 P (‘]’ 1A\10> 2
2 2 H J 9‘L2<w 2 7] 1 Il =mla o)
rec| J: (1))ep J: (I)ep '@ | J|7
o(J)=2-54(I) U(J)=2"5¢(1)
*2
~ HPHQPQ L2(w )A<S ’
where
pP¢ J, 1 ?
1 1+6( ) A\IU)
2 _
A(s)” = sup 7] T Hx—mJHLz(ljw)
IeCly g (1)ep 0 /|7

o(J)=2"54(I)

Finally then we turn to the analysis of the supremum in last display. From the Poisson decay

(13.6.9) we have
2
PY(J,1 470
1 » LA\T
A(S)2 < sup - 2—285(1 €) Z < 1\ ) ’|x_mJ|’%Q<1 w)
rec!, 1o J: (I,))eP || /
o()=2"5¢(I)
—256(1— 2
S 272009 (e9)? + 5]
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Indeed, from Definition |3.1.14} as (I, J) € P , we have that I is not a stopping cube in A,

and hence that (3.1.28)) fails to hold, delivering the estimate above since J €, ¢ I good must
Pe(fbrliggo)  PY(Kfbrl1 go)
1 ~ 1 :
|J|n |K|n
The terms HP IHLQ are additive since the J's are pigeonholed by ¢ (.J) = 275¢ (I).

be contained in some K € M, . I), and since

—deep (

3.6.2 The bound for the first sublinear inequality

Now we turn to proving the more difficult inequality (3.6.7] - Denote by 9T/ P AW the best

constant in

*
‘ (3.6.10)

L2(w)’

pw ,b*
HQ'Pg

|B|st0p AW (f9) < snstop AW H (111 P) fH

where f € L?(0) satisfies E7|f| < ay(A) forall I € Cyq, and g € L? (w) and #(II;P) =

{nI : I € I} P}. We refer to md top Aw as the restricted norm relative to the collection P.

Inequality (3.6.7]) follows once we have shown that m

o «

The following general result on mutually orthogonal admissible collections will prove very
useful in establishing (3.6.7). Given a set {Qy, }oo_ of admissible collections for A, we say

that the collections Q,, are mutually orthogonal, if each collection O, satisfies

o0
Om € |J {Amj % Bun,j}
=0
where the sets {Am j} -and {Bm ]} . are each pairwise disjoint in their respective dyadic

grids D and G:

ZlA < 1p and 215 < 1g.
m,j=0 m,j=0

Lemma 3.6.4. Suppose that {Qm}oo_q is a set of admissible collections for A that are
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o0
mutually orthogonal. Then Q = |J Qu, is admissible, and the sublinear stopping form

m=0
|B|3At,on,Aw (f,g) has its restricted norm msAtL)Qp,Aw controlled by the supremum of the restricted
norms M t’O%ZW :
AQ A.Qm
9 < 7 A
S)’tstop,AW = Sluz% S)’tstop,AW

Proof. If J € lI3Qy, then gp? = @3™ and Ig (J) = Ig,, (J), since the collection {Qy }m—g

is mutually orthogonal. Thus we have

| J, Q 1 \Io( )0‘ 'Y *
Bl iy, 0 () = J;H:QQ ( ()]}LA o) A?b*“”)ﬂ(w)Hm?b*g‘ﬁ(m
_ P ( ‘114\1@ > b ||® b* ||*
- 5,5 e ), o,
= > Bl (f.9).
m>0

and we can continue with the definition of ‘ﬁs t’()%fzw and Cauchy-Schwarz to obtain
4,0 54.9m ||pob pub® ¥
B ’stop AW (f,9)< Z mswp?zw H (111 Qm) fH H H2ngHL2(w)
g (sup e ) | S [Paon goupa;;mgu:;
< (mnin ) ol S lezel
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Now we turn to proving inequality (3.6.7)) for the sublinear form |B|?t£ Aw (£ 9), e

B - pe <J> 0] 1A\I7;(J)U> w,b* L) Dw’b* *
| ‘Stop po (fr9) = ]| H J ‘L%) H 79 ‘L%)
JEHQP
S (82&+ Q[%) ‘ x(IT, P) f” ‘ myPY ‘LQ( )’
where p; = Z (E?Dg’b’bf> ba 1\7 is supported in A\Ip (J)
recly: (1.)eP

and Ip (J) denotes the smallest cube I € D for which (I,J) € P. We recall the stopping

energy from (3.1.30)),

Xo(Ca)® = sup
IGCA‘ |O'

JT71AU) 2 2
sup Z |J| Hx—erHLQ(ler) )

I>UJ, =1

where the cubes J; € G are pairwise disjoint in [I.

What now follows is an adaptation to our sublinear form |B\ o of the arguments of

stop A

M. Lacey in [26], together with an additional ‘indented’ corona construction. We have the

following Poisson inequality for cubes B C A C I:

P (A 15 40
( f\A ) ~ / ! = do () (3.6.11)
Aln NA (ly —ea)" e

1 P« (B, 1I\AO'>
/ e ()%~
na (Jy - egl) Bl

AN

where the implied constants depend on n, a.

Fix A € A. Following [26] we will use a ‘decoupled’ modification of the stopping energy
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Xa (C4) to define a ‘size functional’ of an A-admissible collection P. So suppose that P is
an A-admissible collection of pairs of cubes, and recall that I1;P and IIoP denote the cubes

in the first and second components of the pairs in P respectively.

Definition 3.6.5. For an A-admissible collection of pairs of cubes P, and a cube K € II1P,

define the projection of P ‘relative to K’ by
Hg(PE{JeHQP: J’BCK},

where we have suppressed dependence on A.

Definition 3.6.6. We will use as the ‘size testing collection’ of cubes for P the collection
H?elowP ={KeD:KcClI for some I € II1P},

which consists of all cubes contained in a cube from 11;P.

Continuing to follow Lacey [26], we define two ‘size functionals’ of P as follows. Recall

that for a pseudoprojection Q3 on = we have

o = VANSSR
HQ’H L2(w) 2|47 L2(w)
JeH
o w,b* 2 . / w 2
- Z HAJ xHLQ(w) . Zlerllgn Z ‘J ’w ( J! @ — Z’)
JeH Jlegbrok(‘])

Definition 3.6.7. If P is A-admissible, define an initial size condition s (P) by

initsize

A #2
S (73)2 = sup

initsize (3.6. 12)
Kelbelowp

K|, L2(w)



The following key fact is essential.
Key Fact #1:

If K C Aand K ¢ Cy, then IEXP =0 . (3.6.13)

To see this, suppose that K C A and K ¢ C4. Then K C A’ for some A’ € € 4(A), and

so if there is J' € H?P, then (J’)% C K c A’ | which implies that J' ¢ Ci’smﬁ, which

contradicts Hé{P C Ci’smﬁ. We now observe from (3.6.13) that we may also write the

initial size functional as

A 2 A2

a, _

Sinitsize (P) = Sup
Kelgelowpne

2
pa (K 1 0>
1 s YA\K *
\ H wb (3.6.14)

/ |K|0' Hé(P
A

1
|K|n L2(w)

However, we will also need to control certain pairs (I,J) € P using testing cubes K

(2)K. For

which are strictly smaller than J’P, namely those K € C4 such that K C J T ™

this, we need a second key fact regarding the cubes J ’P, that will also play a crucial role in
controlling pairs in the indented corona below, and which is that J is always contained in
one of the inner 2" grandchildren of JX. For M € D, denote by M\ and M » any of the
inner and outer respectively grandchildren of M and by M j and M > the child and grandchild
respectively of M that contains J, provided they exist.

Key Fact #2:
3J C J” and J” is an inner grandchild of J& (3.6.15)

To see this, suppose that the child J? of J¥ contains J (J{']14 exists because J is good in
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J'E). Then observe that J is by definition € — bad in JH e

1—¢

dist (J, bodyJ}P> <2|J|n ’J}P) n

and so cannot lie in any of the 4™ — 2" outermost grandchildren J?. Indeed, if J C J ’B,

then

1l—e¢
dist (J,bodyﬁ) — dist (J,bodyJ?> <2|J|n Jj}" n

1—e¢ c 1—e¢
" 9)g|n J’I*‘ n

— of|J|n ‘J’E

contradicting the fact that J is € — good in J "M, Thus we must have J C J b, and of course
we get that J > is an inner grandchild of J %, (where the body of J "M does not intersect the
interior of J b, thus permitting J to be € — good in J >I<) Finally, the fact that J is ¢ — good
in J¥ implies that 3J C J.

This second key fact is what underlies the construction of the indented corona below, and
motivates the next definition of augmented projection, in which we allow cubes K satisfying
JCK ; JE Wg)K, as well as K € Uy, to be tested over in the augmented size condition

below.

Definition 3.6.8. Suppose P is an A-admissible collection.

(1). For K € 111 P, define the augmented projection of P relative to K by

nkaup = {J EToP:JC K and J¥ C Wgh(} .
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(2). Define the corresponding augmented size functional s (P) by

augsize

(P (K ko) ’ #2

K|, K]

su4 (P)?>=  sup

w,b*
augsize HQ
Kembelowpne!,

x
Hf Y p

L2(w)

We note that the augmented projection H?’auy P includes cubes J for which J C K g

JE Wg)K, and hence J need not be e—good inside K. Then by the second key fact (3.6.15)),

and using that the boundaries of f\B‘ lie in the body of J %, we have two consequences,
Ke {78} andssc s 30 o™ for J € P,

which will play an important role below.

The augmented size functional soA (P) is a ‘decoupled’ form of the stopping energy

augsize
X (C4) restricted to P, in which the cubes J appearing in X, (C4) no longer appear in the

Sa,A

augsize (P), and it plays a crucial role in Lacey’s argument in [26]. We

Poisson integral in

note two essential properties of this definition of size functional:

1. Monotonicity of size: S“4 . (P) < S% . (Q)if P c Q,

augsize — “Yaugsize

2. Control by energy and Muckenhoupt conditions: s (P) S &+ /UG,

augsize

The monotonicity property follows from Hll"flowP C H?elowQ and Hg( P C Hg( Q. The
control property is contained in the next lemma, which uses the stopping energy control for

the form Béop (f, g) associated with A.

Lemma 3.6.9. If P4 is as in and P C PA, then

A
Sc?iogsize (P) <Xa(Ca) S 53 + \/mg-
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Proof. We have

@ 2 a2
S P2 s 1 (P (K, 1A\KU) ‘ wb* )
augsize - 1 K K,aug
KGHZ{EZOU’PQCA ’K’a |K| n Iy PUIL, P L2(w)
2
1 [ PY(K,140) 2 2
~ sup ‘K‘ 1 Hx_mKHLQ(l w) < Xa (CA) )
Kec!, Mo |K | K

which is the first inequality in the statement of the lemma. The second inequality follows

from (3.1.31)). O]

There is an important special circumstance, introduced by M. Lacey in [26], in which we
can bound our forms by the size functional, namely when the pairs all straddle a subpartition
of A, and we present this in the next subsection. In order to handle the fact that the cubes in
Hl{elowP NC’y need no longer enjoy any goodness, we will need to formulate a Substraddling
Lemma to deal with this situation as well. See Remark on lack of usual goodness after
(3-6.41)), where it is explained how this applies to the proof of (3.6.40). Then in the following
subsection, we use the bottom/up stopping time construction of M. Lacey, together with

an additional ‘indented’ top/down corona construction, to reduce control of the sublinear

stopping form |B\i’07; aw (f59) in inequality (3.6.7) to the three special cases addressed by

the Orthogonality Lemma, the Straddling Lemma and the Substraddling Lemma.

3.6.3 bStraddling, Substraddling, Corona-Straddling Lemmas

We begin with the Corona-straddling Lemma in which the straddling collection is the set of

A-children of A, and applies to the ‘corona straddling’ subcollection of the initial admissible
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collection P4 - see (13.6.2]). Define the ‘corona straddling’ collection P(%r by

Ph= U {unertiscagrtaaday. (3.6.16)
Ae€ 4(A)

Note that PC%T is an A-admissible collection that consists of just those pairs (I, J) for which
J% is either the D-parent or the D -grandparent of a stopping cube A’ € € 4 (A). The bound

for the norm of the corresponding form is controlled by the energy condition.

Lemma 3.6.10. We have the sublinear form bound

APA.

mstop,Aw

< ceg.

Proof. The key point here is our assumption that J C A’ & J T Wg ) A for (I,]) € P4,
which implies that in fact 3J C A’ since J N body (71'7()2)14/) = () because J is € — good in

7T(D2 )A' . We start with

A
P
P& (J ngCOT 1A\I A (J)O') . . R
BT (f.0) = S CAR YN
stop, AW g |J‘ L2(w) J g (w)
JETyPL,
po (7 | Pér| 1
[P A\IPA (J)U BEP'S %
=X X el ISV I el
, 7| T2 7 72 (w)
3Jc Al
where
PéABT — g U7b7
P = > bAEI< f) Lar -

I€ PA . (I0)eP,
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If J € IyPA, and J € A’ € €4 (A), then either A’ = J” or A = J>I< and we have

(

pa (71 Péor /. A Y

AL, ()7 |A’|n AT

cor ~
i
| J|n (AJ’lA\I U) PA( A1 40

77)007“ < ( /’1’4 ) if A = J;I*

\ ‘A ‘ A7

. 'Pg(l)r A’Pg(l)r
Since || S aq(A)14 by (3.6.4), we can then bound ]B\Stovaw (f,9) b
P (4, 1A<7 Q=P " wb* o
a4 (4) Uy, pa 2 myPA,A4Y || 2
A’EQZA(A) |A/|n 2 cora L (w) 27 cor> L (w)
1
/ 2 2
P (A", 140 2
<o | (T g
A/ = L2 (lA/U)
Alee 4(A) |Al|m
%
> ' peb” *
A
aregy (a2 A w)
< gast) i, [por, o
>~ 2 o HQP{;}W LQ(w)
*
b*
< &ag(A) \/ Al Pwshlﬁg
Ca L2(w)
where in the last line we have used the strong energy constant £5' in (3.1.8)). O]

Definition 3.6.11. We say that an admissible collection of pairs P s reduced if it contains
. A
no pairs from P, i.e.

PNPA. =0.
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Recall that in terms of J” we rewrite

niap {J eTyP:JC K and JE C ng}

_ {JGHQP:JCKandeCK}

Definition 3.6.12. Given a reduced admissible collection of pairs Q for A, and a subpar-
tition S C Hll’elowQ N Cf4 of pairwise disjoint cubes in A, we say that Q b straddles S if
for every pair (I,J) € Q there is S € SN [J,I] with J* c S. To avoid trivialities, we
further assume that for every S € S, there is at least one pair (I,J) € Q with J>cScl.
Here [J, I] denotes the geodesic in the dyadic tree D that connects JP to I, where JP is the

mainimal cube in D that contains J.

Definition 3.6.13. For any dyadic cube S € D, define the Whitney collection W (S) to
consist of the maximal subcubes K of S whose triples 3K are contained in S. Then set

W*(S) = W (S) U {S}.

The following geometric proposition will prove useful in proving the b Straddling Lemma

3.6.15 below. For S € S, let Q5 = {(1, NeQg:lcsSc 1}.

Proposition 3.6.14. Suppose Q is reduced admissible and b straddles a subpartition S of

A. Fix S € S. Define

w?s (1] > baE7 (ﬁfj’b@ VIV

11, Q5: (I,7)eQS

assume that h € L? (o) is supported in the cube A, and that there is a cube H € Cy with
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H D S such that

EJ|h| < CEG|h|,  forall I € TIE"QNCy with I > S,

Then

S p (J, 03 [Ti‘| 1A\IQ(J)U> H N
JEMYQ: JPcS
pa (S, La\so >
N

‘Q
L2(w)

)

w,b*

w,b*
HQSaaug Qg

X
Hgvaug Q

S ay (H)

L2(w)

pe (K, 1 K0> .

toy (H) ) 7

Kew(S)

w,b* "
Hg(,augg

L2(w)

b*
|o5*

*

L2(w)

w,b* g
Hé(aaugg

*
2

*

L2(w)

The sum over Whitney cubes K € W (S) is only required to bound the sum of those terms

on the left for which Jc s for some S" € Qg) (S).

Proof. Suppose first that J* = § € C'y. Then 35S = 30 c J¥ ¢ Io (J) and using

with agy (H) in place of ay (A), we have

Q
5 \ 1A\IQ<J>U>
1
|J| 7 |J| 7

po <J,

2
Q
g
=

A
Q
=
|
Q
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Suppose next that .J> = 8" € €p (S). Then 35" = 3.J" ¢ J¥ Io (J) and 1) give

po (J,

po <J, 1A\ﬂa)
Nk

po (S', Ly, ﬁa>
Kl

P (S, 10,50)
ik

90?) 1A\IQ(J)0>
ik

S ooy (H)

N

ay (H)

pe (S, 1A\SU>
s

IN

ay (H) ~ ay (H)

Thus in these two cases, by Cauchy-Schwarz, the left hand side of our conclusion is bounded

by a multiple of

1 1
2 2
’ w,b w,b
o (H) 1 2 HAJ v ‘L%) 2 HDJ g ‘LZ(w)
|S|n JElHQ JET5Q
J’cs J’cs
o ') *
o (B P (S, 1A\50> H wbt w.b* ,
N 1 S,aug S,aug
5|7 Mo {2y Il T2™ 79 12w

Finally, suppose that J° C S” for some S” € (’:g) (S). Then J¥ c S, and Key Fact

492 in (3.6.15) shows that 3J° C J% so that 3J” ¢ J¥ c § C Ig (J). Thus we have

J’ € K = K[J] for some K € W (S) and so by (3.6.4) again,

Pa (7 ‘gp?‘ Lavig (1)) P (U 1450)

N

ay (H)

1 1
| J[7 | J[7
p (K, 14 50) po (K, 14 Ka>
S ay (H) 1 < oy (H) 1 :
[K|n [K|n

Now we apply Cauchy-Schwarz again, but noting that J > ¢ K this time, to obtain that the
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left hand side of our conclusion is bounded by a multiple of

1
2 2
p (K, 1, Ka) . a2 k2
I S el ID DI VA (W B D i v oo
Kew(s)  |K|n JElHQ JEIHQ
JCK JCK
- P (K’ 1A\KU) w,b* 4 w,b* *
= ay (H) 1 HK,omgQ‘flj HK,aug Qg :
Kew(s) — |K[m 2 L2(w) Il 72 12(w)
This completes the proof of Proposition [3.6.14] ]

o,m,b

Recall the family of operators {D 7 }I oA where for I € le, the dual martingale
€
A

difference D;’W’b is defined in (3.1.41]), and satisfies

omb, O’ﬂ'b ob, o,b A o.bg
gy | 3w Ehr - Y Ay Ey

I'ee(I) I'ee(I)

Since D?’ﬁ’b is the transpose of A;’ﬂ’b for I € C4, the first line of Lemma [3.1.22] (where

the superscript 7 is suppressed for convenience) shows that {D?’ﬂ’b}l oA is a family of
€
A

projections, and the second line of Lemma [3.1.22] shows it is an orthogonal family, i.e.

AL T

ogmbgemb - . ILKech.
0 if I#K
The orthogonal projections
o,m,b _ omb _ o, 7r ,b
Pl = 2 Of > o
Ier(I1; Q) Iell Q

/
where 7 (11,Q) = {mpl:1€T,Q} and I1QCCY
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thus satisfy the equalities

ZIW bf |:|O'7T bPaﬂb f nd I:’O'I’IT bf DaWbPUvéT_ill)Q)f (3.6.17)

for I € TI1Q C Cﬁlms”m, which will permit us to apply certain projection tricks used for
Haar projections in the proof of 71 theorems.
However, in our sublinear stopping form |B|i’0Qp Aw> the dual martingale projections in

use in the function

S =~c.b,b
09 = 3 bAET (D;'T’I’ f) a7 - (3.6.18)
I€M; Q5 (1,7)eQS

given in Proposition|3.6.14/above, are the modified pseudoprojections {ﬁ;}b’b }I o where
cllp

D;?’b differs from the orthogonal projection D;f’b for I € 111 Q by

J,b,b o,m,b
f=ur"r

_ Z O'bAf _]FabAf B Z FUbA —FUbAf
I’ECnat(WI) I/EQ:(TFI)

= - X FA
I/EQ:b,rOk(ﬂ'I)

. . ,b .
But the "box support" Suppy,, of this last expression Z F?, A f consists of the

IIEQ:bTOk(ﬂ'I)
broken children of w1, €, (7]), and is contained in the set

U U {1

Iec’A I'e€ g(A)Nep(rI)
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1.e.

SUPPpoy Z FJ’bAf c{l'e € (A):I' € €y (n) for some I € Cly}

U U

[/EQbTOk(TK'I)
IeC’A I'e€ g(Anep(rl)

But I € 11} 05 c C;l is a natural child of 71, and so

o,b
In Suppbox Z FI/ Af =
I,GCbrOk(ﬂ'I)

It now follows that we have
[ Agabab _ g A077T7b !
7 (O7°r) = B7 (B77Pr),  for1ed) (3.6.19)

Returning to (3.6.18]), we have from (3.6.17) and (3.6.19|) the identity

S =~ b
09 = 3 bAET (D;‘T’f’ f) 14 (3.6.20)
1€, 05: (1,7)eQS
- b ’b bl 7b
_ S byES (D;‘T}T (P;(%lg)f» 14

1€, Q5: (I1,7)eQS

which will play a critical role in proving the following bStraddling and Substraddling lemmas.

The bStraddling Lemma is an adaptation of Lemmas 3.19 and 3.16 in [26].

Lemma 3.6.15. Let Q be a reduced admissible collection of pairs for A, and suppose that

S C H?elowQ NCly is a subpartition of A such that Q bstraddles S. Then we have the
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restricted sublinear norm bound

mStOZ%Aw < Cr S}EII?S' Slocswe (Q> CrSauggggg (Q) ) (3621)

o, A8

where Slo;s;ze 1s an S-localized size condition with an S-hole given by

2
1 Pa <K,1A\SO'>

OL,A;S 2 w,b* N2
Slocsize (Q)7 = X Ws*ug o! |K| K 1 Z HAJ . ’LQ(w)
g
= ( )ﬂ A | |n JEH?’GMQQ
(3.6.22)
Proof. We begin by using that the reduced collection Q bstraddles S to write
pe ( ) . *
,b* w,b*
Bl aw (F9) = > (ESroae P 1 vl o
YA 1 2 J
JEIL,Q |J|n L4 (w) (W)
S
oY Q
P (l £ 1A\IQ<J>U) b (A bt |[X
> Y X N =l
SeS S,aug ’J|% / L2w) 7 L2(w)
JEIl;, ™0
S .
where gp? = Z baET <D;¥’bf> VS
1€, Q5: (1,7)eQS
At this point we invoke the identity (3.6.20)),
S b 7.b
90? = Z bAEI (DUW (Pg&lg)f)> ]‘A\Ia

1€, Q5: (1,7)eQS
so that
o,m,b
|B|5t0p AW (f,9)= |B|5t0p AW (h,g), where h = P (ng)f
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We will treat the sublinear form ]B@’(}Qp Aw (R, g) with h = P;‘T’&’? 0) f using a small variation

on the corresponding argument in Lacey [26]. Namely, we will apply a Calderén-Zygmund

o,m,b

m(II1 Q

SU€y (A), to obtain stopping times H C C4 with the property that for all H € H\ {A}

stopping time decomposition to the function h = P ) f on the cube A with ‘obstacle’

we have

H € C, is not strictly contained in any cube from S,
E% |h| > FE;’HH |hl,

Efy |kl <TEZ, p|h] for all H & H' C myH with H' € Cy.

More precisely, define generation 0 of H to consist of the single cube A. Having defined
generation n, let generation n + 1 consist of the union over all cubes M in generation n of
the maximal cubes M’ in C4 that are contained in M with ET, |h| > TES, |h|, but are not
strictly contained in any cube S from S or contained in any cube A’ from €4 (A) - thus the
construction stops at the obstacle SU€ 4(A). Then # is the union of all generations n > 0.

Denote by
C}’;é = {Hl €Cy:H c Hbut H ¢ H" for any H" € ¢y (H)}

the usual H-corona associated with the stopping cube H, but restricted to C4, and let
ay (H) = EF | f| as is customary for a Calderén-Zygmund corona. Since these coronas Cg

are all contained in Cy4, we have the stopping energy from the A-corona C4 at our disposal,
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which is crucial for the argument. Furthermore, we denote by
Oy = {(1, NeQ:Je cﬁ’bsmﬂ} . with ¢HOshiTt — {J €TL,Q: J’ € cﬁ} (3.6.23)

the restriction of the pairs (I, .J) in Q to those for which J lies in the flat shifted H-corona
H.bshift . . . ...
Cy . Since the H-stopping cubes satisfy a o-Carleson condition for I' chosen large

enough, we have the quasiorthogonal inequality

D g (H?H|y S 172, (3.6.24)
HeH

which below we will see reduces matters to proving inequality (3.6.21]) for the family of
reduced admissible collections {Qp } 73, With constants independent of H:

AA?QH

a,A;S
‘ﬁstovaw < Cpsup S

A
SeS locsize (QH) < CrSOé’ (QH)7 HeH.
S

augsize

Given S € §, define Hg € H to be the minimal cube in ‘H that contains S, and then
define

Hs={HgeH:5Se€S}.

Note that a given H € Hg may have many cubes S € § such that H = Hg, and we denote
the collection of these cubes by Sy ={S € S: Hg = H }. We will organize the straddling

cubes S as

s=1 U s

HEHS SESH

where each S € S occurs exactly once in the union on the right hand side, i.e. the collections

{SH}HGHS are pairwise disjoint.
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We now momentarily fix H € Hg, and consider the reduced admissible collection Qpy,
so that its projection onto the second component IlsQ of O is contained in the corona
C;}’b‘ghiﬁ. Then the collection Qpy bstraddles the set S = {S € S: Hg = H }. Moreover,

Op= U Q% and 0% = 190y
SeS: SCH

Recall that a Whitney cube K was required in the right hand side of the conclusion of

Proposition [3.6.14| only in the case that J> € S” for some S” € (’:g) (S), which of course

implies 3.J b« ¥ c S. In this case we claim that K € C 4. Indeed, suppose in order to
derive a contradiction, that K ¢ C4. Then JE ¢ K, and hence 3% ¢ S. Since JE S, it
follows that J"¥ shares a common part of the boundary with S (since if not, then 3.J s ,
a contradiction). Now Key Fact #2 in implies that the inner grandchild containing
J, Jb, is contained in K where K ¢ C4. This then implies that the pair (I, .J) belongs to
the corona straddling subcollection P(%r, contradicting the assumption that Q is reduced.
Thus we have S € Hll’elowQﬂC;l and K € W (S)NC/; and we can use Proposition (3.6.14)
with H = Hg to bound |B|i’0Qp7Aw (f,g) by first summing over H € Hg and then over S €
Sy. Indeed, Qp bstraddles Sy ={S € S: Hg = H }, so that ‘gp?H’ Say (H) 1A\IQH(J)

by (3.6.4)), and so the sum over S € Sg of the first term on the right side of the conclusion
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of Proposition (3.6.14)) is bounded by

Zr SlA\SO H wb* 4 w,b* *
Saug SCWQ g
SeSH V15ls \5| o L?(w) R ®
A
< ap(m){ sp — SlA\SU H T
= sesy V151, Bk "0y |20
*
Z \ |S|a Saqu
SeSy L2(w)
A;S /

< ay (H) {Ssélclsp Sfécszze(QH)} |H|‘7 HZQHgH

where Hf’aug Qp is as in Definition [3.6.8, and the corresponding sum over S € Sg of the

second term is bounded by

a [ ) *
O[’H (H) Z \/ |K|O'P (K7 1A\50>Qw,b* w,b* g
./ 1 K,aug 8 K.aug ~S
SESH KeW(s)nC!, Kl [ K|n | ey 2wl M2 L2y
~ Oy ( ) sup lOCSZZG Z Z | |U HQQHg L2(w)
SESY SES KeW(S
A;S
< 2 )1l [Py, o]
- {SSEH‘SPH Slocszze ( } |H|a 1‘[2 QHQ I2(w

Using the definition of |B|i’0Qp Aw (f9), we now sum the previous inequalities over the

cubes H € Hg to obtain the following string of inequalities (explained in detail after the
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display)

JAS /
| |stopAw (f g) {E}elpsl?)cszze (Q)} Z aH( ) |H|U HQQHQH
HeHg

aAS w,b* *2

= {;up locsize } > an(H)[Hlp | > HPHZQHQHL%
HeHg HeMg

a,A;S w,b* *2

5 {sup Slocszze }HhHLQ ;{ HPHQQHQHL2(W)
S

a,A;S a7rb Wb* *
< {glelg,slocszze } ’ (111 Q) fH ’ HQQQ ‘LQ( )

a,A:9 pw.b® II*
S {sup Slocszze } ’ HlQ fH ‘ HQQg ‘LQ( )

where in the first line we have used @ = |J Qp, which follows from the fact that each J b

HeHg

is contained in a unique S € §; in the third line we have used the quasiorthogonal inequality

3.6.24

H bshift
Crr

; in the fourth line we have used that the sets [Io Qg C are pairwise disjoint

in H and have union I, Q = U [I5Qf. In the final line, we have used first the equality

3.1.43

HeHg
, second the fact that the functions D?’;j?k f have pairwise disjoint supports, third

the upper weak Riesz inequality and fourth the estimate ((3.1.44]) - which relies on the reverse
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Holder property for children in Lemma - to obtain

2
poT ,b o,b o,m,b
H HlQ f” - Z 0y f - Z DI brok!
IGW(Hl Q) IEW(Hl Q) L2(U)
2 2
< Z Da,bf 4 Z o7 ,b f
~ I 1,brok
Ten(I11 Q) L2(0) Ter(11; Q) L2(0)
o,m,b 2
N HlQ fH Z HDI,brokaLQ(g)
Ierw Hl
,b 2
s > e fH Z 197732y (3629
IETF(Hl Q) Ten (111 Q)
3 L o
We now use the fact that the supremum in the definition of SIO; Célfe (Q) is taken over
K € W*(S)nC/; to conclude that
sup Slocszze (Q) = Sc?llAsize <Q> )
Ses g
and this completes the proof of Lemma |3.6.15] O

In a similar fashion we can obtain the following Substraddling Lemma.

Definition 3.6.16. Given a reduced admissible collection of pairs Q for A, and a D-cube
L contained in A, we say that Q substraddles L if for every pair (I,J) € Q there is

KEW(L)HCQwithJCKC?)KCICL.

Lemma 3.6.17. Let L be a D-cube contained in A, and suppose that Q is an admissible
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collection of pairs that substraddles L. Then we have the sublinear form bound

e <os*A ().

stop,A\W — augsize

Proof. We will show that Q bstraddles the subset Wy of Whitney cubes for L given by
WQ(L)E{KEW(L)F‘ICQ:JCKCZ’)KC]CLforsome (I,J) € Q}.

It is clear that W< (L) C H?elowQ NCy is a subpartition of A. It remains to show that for
every pair (I,.J) € Q there is K € W2 (L) N [J, 1] such that J> C K. But our hypothesis
implies that there is K € W2 (L) with J ¢ K € 3K € I € L. We now consider two cases.

Case 1: [If Wg )K C L, then since K is maximal Whitney cube, it is contained in an
outer grandchild of 7T1(§) )K and 7T2()1 )K has to share an endpoint with L. Then so does Wg) )K .
Recall, from Key Fact #2 in (3.6.15)), 3J C Jb, an tnner grandchild of J¥. We thus have
J¥ Wg)K (If not; Wg)K C J¥ which implies that J? has the same endpoint as L, a

contradiction). This implies that J PCK .

Case 2: If ﬂg’)K £ L, then K C 3K C I C L implies that [ = L = W(DQ)K. Thus we

have JX c I = Wg)K, which again gives J C K.

Now that we know Q bstraddles the subset W< (L), we can apply Lemma [3.6.15/to obtain

the required bound ‘fift’g Aw < o84 (Q). O

op, augsize

3.6.4 The bottom/up stopping time argument of M. Lacey

Before introducing Lacey’s stopping times, we note that the Corona-straddling Lemma|3.6.10

allows us to remove the ‘corona straddling’ collection PC%T of pairs of cubes in (3.6.16]) from
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the collection P4 in (3.6.2 ) used to define the stopping form Béop (f,g9). The collection

PA\”PC‘%T is of course also A-admissible.
We assume for the remainder of the proof that all admissible collections P are reduced,
ie.

PAN Pg‘ér =0, as well as PN Pc/ér = () for all A-admissible P. (3.6.26)

For a cube K € D, we define

GIK|={JegG:JCK}

to consist of all cubes J in the other grid G that are contained in K. For an A-admissible

collection P of pairs, define two atomic measures wp and w,p in the upper half space bejl

by
B b* N2
wWp = JG%P HA? T ‘L2(w) 5<CJ%,€(J%>) (3.6.27)
and
_ b a2
wyp = JG%P HA‘j z ‘LQ(W) 5(%76@)), (3.6.28)

where J” is the inner grandchild of J "M that contains J

a2
L2(w)
to exactly one of the 2" points (c b %E <J’E)) in the upper half plane RTq since J is

*
Note that each cube J € IIoP has its ‘energy’ Hch’b :1:‘ in the measure wyp assigned

contained in one of Ji, namely in J b, by Key Fact #2 in (3.6.15]). Note also that the atomic

measure wy,p differs from the measure p in (7?) in Appendix B of [54] - which is used there to
control the functional energy condition - in that here we bundle together all the .J's having

a common .J>. This is in order to rewrite the augmented size functional in terms of the
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measure w,p. We can get away with this here, as opposed to in Appendix B of [54], due to
the ‘smaller and decoupled’ nature of the augmented size functional to which we will relate
Whp-

Define the tent T (L) over a cube L to be the convex hull of the cube Lx {0} and the point
(c, £ (L)) € R™1. Then for .J € TlyP we have J € I ““IP iff {J C K and J¥ C wg)f(}
iff JC K iff (ch,é (Jb>) € T (K). We can now rewrite the augmented size functional

of P in Definition 3.6.8] as

2
po (K 1 a>
1 y LA\K
Kembelowpne!, 1o |K |7
It will be convenient to write
2
9 P <K, 1A\KO')
V(K P) = | |1 wyp (T (K)),
Kln
so that we have simply
Ve (K, P 2
Sc??fgélsize (P)Q = sup #
Kembelowpne!, K

Remark 3.6.18. The functional wyp (T (K)) is increasing in K, while the functional
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PO (K14 )

[K|n

is ‘almost decreasing’ in K: if Ky C K then

pe (K, 14 Ka>

|K|% /A\K (

n+l—«
K%+ |y—cK|)

< / (vn)" Mo (y
~ A\K 1 n+1 «Q
' (|K0|” + ‘?J_CKOD
Ca,n do (y) B p« <K071A\KOO'>
= A\K 1 ntl-—a Can 1
0 (|K0|n+‘y—cKOD | Ko|™

since |Kq| + ’y—cKO‘ <|K|+ |y —cgxl|+ %diam(K) fory e A\K.

Recall that if P is an admissible collection for a dyadic cube A, the corresponding sub-

linear form in (3.6.7)) is given by

‘1A\f7> ) | b*
JEMyP |J |ﬁ

> 0aB7 (O°F) 1ayr

/
IeCy: (1,J)eP

P&
BIAP w(fg) = Y G

o w,b*
stop, AW

s *
L2(w) g 9 ‘

12(w)’

where <p7j

In the notation for |B| we are omitting dependence on the parameter «, and to avoid

stop AW
clutter, we will often do so from now on when the dependence on « is inconsequential.
Recall further that the ‘size testing collection’ of cubes H[{elow”P for the initial size testing

functional S; P) is the collection of all subcubes of cubes in I1;P, and moreover, by

mztszze (

Key Fact #1 in (3.6.13]), that we can restrict the collection to Hll’elowP NC'y. This latter set

is used for the augmented size functional.
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Assumption
We may assume that the corona C4 is finite, and that each A-admissible collection P
is a finite collection, and hence so are II;P, H[{elowp N C;l and IIoP, provided all of

the bounds we obtain are independent of the cardinality of these latter collections.

Consider 0 < ¢ < 1, where p = 1 + ¢ will be chosen later in (3.6.37)). Begin by defining

the collection L to consist of the minimal dyadic cubes K in H?elowP NC/y such that

U (K; 73)2 a,A 9
|K| = gsaugsize (7)) )
ag
where we recall that
2
9 Pa (K, 1A\KO'>
U (K;P)” = ’ ’1 wyp (T (K)).
Kln

Note that such minimal cubes exist when 0 < & < 1 because S (77)2 is the supremum

augstze

(K P)?

over K € H?elowP N Cf4 of ¥ K] . A key property of the minimality requirement is that
g

ye (K’;P)Q Sa’A

‘K’ augsize

(P)?, (3.6.30)

o

whenever there is K’ € H?EZOU’P NC/y with K’ & K and K € L.

We now perform a stopping time argument ‘from the bottom up’ with respect to the
atomic measure wp in the upper half space. This construction of a stopping time ‘from the
bottom up’, together with the subsequent applications of the Orthogonality Lemma and the
Straddling Lemma, comprise the key innovations in Lacey’s argument [26]. However, in our

situation the cubes I belonging to Hl{elowP are no longer ‘good’ in any sense, and we must
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include an additional top/down stopping criterion in the next subsection to accommodate
this lack of ‘goodness’. The argument in [26] will apply to these special stopping cubes,
called ‘indented’ cubes, and the remaining cubes form towers with a common endpoint, that
are controlled using all three straddling lemmas.

We refer to L as the initial or level 0 generation of stopping cubes. Set
p=1+e. (3.6.31)

As in [49], [51] and [52], we follow Lacey [26] by recursively defining a finite sequence of
generations {Lm },,>o by letting Ly, consist of the minimal dyadic cubes L in Hl{elowP nc’

that contain a cube from some previous level £y, ¢ < m, such that

wyp (T (L)) 2 pyp U T (3.6.:32)
m—1
L'e U Ly L'cL
=0

Since P is finite this recursion stops at some level M. We then let £, consist of all the
maximal cubes in Hll’elowP ﬂC;l that are not already in some Ly, with m < M. Thus Lj711
will contain either none, some, or all of the maximal cubes in H?elowP We do not of course
have for A" € L7, in this case, but we do have that (3.6.32)) fails for subcubes
K of A" € L), that are not contained in any other L € Ly, with m < M, and this is
sufficient for the arguments below.

We now decompose the collection of pairs (I,.J) in P into collections P?s™all and prbig
according to the location of I and J b, but only after introducing below the indented corona

H. The collection P’ will then essentially consist of those pairs (I, .J) € P for which there
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are L', L € H with L’ & L and such that J > e CZ{, and I € Cz'l. The collection PPs™mall will
consist of the remaining pairs (I, .J) € P for which there is L € H such that J° I ecH,
along with the pairs (I, .J) € P such that I C I for some Iy € Ly. This will cover all pairs
(I,J)in P C Py, since for such pairs, I € C;l and J € CZshift’ which in turn implies I € C}JL[
and J’ € C™ for some L, L' € H. But a considerable amount of further analysis is required

L

to prove ((3.6.7)).

M+1
First recall that L= [J Ly, is the tree of stopping wp-energy cubes defined above. By

m=0

the construction above, the maximal elements in £ are the maximal cubes in H?elowP N C’A.

For L € L, denote by Cf the corona associated with L in the tree L,
CfE{KGD:KCLandthereisnoL'EEWithKCL’;L},
and define the b shifted L-corona by
et = {yegireck |

Now the parameter m in L, refers to the level at which the stopping construction was
performed, but for L € L, the corona children L’ of L are not all necessarily in £,,_1, but

may be in £, for ¢ large.
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At this point we introduce the notion of geometric depth d in the tree £ by defining

Go = {L € L:Lismaximal}, (3.6.33)
Gi = {Le€L:Lismaximal wrt L G Lo for some Ly € Gy},
Gar1 = {L€L:Lismaximal wit L G Ly for some Ly € Gy},

We refer to G; as the dqth generation of cubes in the tree £, and say that the cubes in G; are
at depth d in the tree £ (the generations G, here are not related to the grid G), and we write
dgeom (L) for the geometric depth of L. Thus the cubes in G; are the stopping cubes in £
that are d levels in the geometric sense below the top level. While the geometric depth dgeom
is about to be superceded by the ‘indented’ depth d;;,jens defined in the next subsection, we

will return to the geometric depth in order to iterate Lacey’s bottom/up stopping criterion

when proving the second line in (3.6.36)) in Proposition |3.6.19| below.

3.6.5 The indented corona construction

Now we address the lack of goodness in Hl{elowP N Cf4. For this we introduce an additional

top/down stopping time H over the collection £. Given the initial generation

Ho = {maximal L € L} = {maxirnal Ie H?elowP} ,
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define subsequent generations Hj, as follows. For £ > 1 and each H € H_{, let
Hj. (H) = {maximal L € L:3L C H}

consist of the next H-generation of £-cubes below H, andset H = |J  Hj (H). Finally
HeHp 4

set H = :Lj H;.. We refer to the stopping cubes H € H as indented stopping cubes since
—0
3H C myH for all H € H at indented generation one or more, i.e. each successive such A
is ‘indented’ in its H-parent. This property of indentation is precisely what is required in
order to generate geometric decay in indented generations at the end of the proof. We refer
to k as the indented depth of the stopping cube H € Hy,, written k = d;qens (H), which is a
refinement of the geometric depth dgeon, introduced above. We will often revert to writing
the dummy variable for cubes in ‘H as L instead of H. For L € H define the H-corona Cz[

and H-bshifted corona Cz[’bsmf t by

Cjzf = {IED:ICLand]gZL/foranyLIEQH(L)},

et = {yeg:rech].
We will also need recourse to the coronas C%{ restricted to cubes in L, i.e.
clHoy=Ccitne={Trec:TcLandT ¢ L forany L' € H with L' G L}.
and

T(L) = cbrestrict oy — e L)\ (L}
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We emphasize the distinction ‘indented generation’ as this refers to the indented depth rather
than either the level of initial stopping construction of £, or the geometric depth. The point
of introducing the tree H of indented stopping cubes, is that the inclusion 3L C my L for
all L € H with d;pgent (L) > 1 turns out to be an adequate substitute for the standard

‘goodness’ lost in the process of infusing the weak goodness of Hytonen and Martikainen in

Subsection [3.2.1] above.

3.6.5.1 Flat shifted coronas

We now define the bshifted admissible collections of pairs 77%7% using the coronas
et = {y ey ect) and cp = {semyp . r et}

In these flat shifted H and £ coronas, we have effectively shift the cubes J two levels ‘up’ by

requiring J b e Cf, but because P is admissible, we always have J e Cﬁ’resmCt. We define

bPH H bshift /
Pt = {(1 NeP:Irect  ech for some L' € Hy. 1)L cL},

77%},([) = {(I, JyeP:1I¢€ C%'L and J € Cz{abé’hz‘ft}
and

7)%7,'6 _ Pb"H smallU,Pb’H bzg7

pftsmall = {(1,.7) € P : there is o L' € T (L) with J < I/ < I}

I
—
—
~
b

PM'(L) : ]GC A{L'}, JGCLbShZﬁ for some L' ET(L)},

73?,-(l)_bm = {(]» J) EP%%:there is L' € T (L) with P clc ]}7
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pb’H small _ 73%’}-[

with one exception: if L € Hy we set o and Pz}é_big = () since in this case

L fails to satisfy (3.6.32)) as pointed out above. Finally, for L € H we further decompose

Pb?—l small
pr small — _ U Pbﬁ small
L'eT(L)
Where Pbﬁ small = {(I,J)GPIEC \{L/} andJecﬁbShlft}

Then we set

Py = { | pr AU U U P (3.6.34)

LeH t>1LeH

Pbsmall U Pbﬁ small
Lel

We observed above that every pair (I,.J) € P is included in either P57 or PYig and it
follows that every pair (I, .J) € P is thus included in either prsmall o pobig, simply because
the pairs (I, J) have been shifted up by two dyadic levels in the cube J. Thus the coronas

, which permits the

P%ﬁo_sma” are now even smaller than the regular coronas

Pf’gsmall
estimate below to hold for the larger augmented size functional. On the other hand,
the coronas 73 H %9 and 79%77'% are now bigger than before, requiring the stronger straddling
lemmas above in order to obtain the estimates below. More specifically, we will
see that stopping forms with pairs in P9 will be estimated using the b Straddling and

b?—[ big

Substraddling Lemmas (Substraddling applies to part of 77 and bStraddling applies to

7—[ big

the remaining part of 73 and to 73%7'%), and it is here that the removal of the corona-

straddling collection PC‘%T is essential, while forms with pairs in P”*™@! will be absorbed.
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3.6.6 Size estimates

Now we turn to proving the size estimates we need for these collections. Recall that the
. SAP . . . .

restricted norm ‘ﬁs top, AW 13 the best constant in the inequality

‘*

AP AP
|B|st0p,Aw (f’ g) < sﬁStOpyAw H Hlpr L2( )

pw ,b*
HQPg

where f € L? (0) satisfies E7[f| <ap(A)forall I € Cy,and g€ L2 (w).

Proposition 3.6.19. Suppose p in (3.6.31) is greater than 1, and P is a reduced admissible
collection of pairs for a dyadic cube A. Let P = Pobig yphsmall pe ype decomposition satisfying

above, i.e.

P U™ U U Py U (U P

LeH t>1 LeH Lel

Then all of these collections ,PLLZO small PbH %9 and ij.% are reduced admissible, and we

have the estimate

Sa,A _ (Pbﬁ Small> <(p—1) SO"A ) (’P)Q, Lel (3.6.35)

augsize augsize

and the localized norm bounds,

Ay P

M Ler < csvh Py, (3.6.36)

stop, AW augsize

A, U 73“ ,
o Len < cp 28t Py, >

stop,A¥ = augsize

Using this proposition on size estimates, we can finish the proof of (3.6.7)), and hence the
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proof of (3.6.1)).

Corollary 3.6.20. The sublinear stopping form inequality holds.

Proof. Recall that 9’( Aw is the best constant in the inequality (3.6.10)). Since
bL— l
{/PL7O sma }

Lemma [3.6.4] implies that

Ler is a mutually orthogonal family of A-admissible pairs, the Orthogonality
€

A U Pbﬁ small beE small
sto Aw < sup S)’tsto AOW
p’ LEE p7

Using this, together with the decomposition of P and (3.6.36)) above, we obtain

up A LUH PE'([)—ng M+1 AA,LUH 7?%7'% A LUE Pbﬁo small
N L < sup M € + sup M, ZET +MN
stop,/\ Len stop,/\ — Lew stop,/\ stop,/\
A M+1 A P%C—small
Q, 5 L0
S Saugsize <P) + Z P augszze (P) + zlélz sﬁstop,AW

Since the admissible collection P4 in 1’ that arises in the stopping form is finite, we

can define £ to be the best constant in the inequality

‘ﬁi(z; Aw < < gs594 (P) for all A-admissible collections P.

augszze

Now choose P so that

S AP 54,0

mstop,Aw > lg B 1 sup mstop,Aw

o, A D) , )
Saugsize (P) 2 2 0 is A-admissible Saugszze (Q)
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M+1 " 1

Then using p 2 < we have
2= e
bL—small
AP
R 1 a,A L0
o m?tgf) AW O\/[)—lsaugsize <P> +C zlélz sﬁstop,Aw
< )
a,A - a,A
Saugsize (P) Saugsize UD)
(Pbﬁ small) 1
augszze
< C +Csup £ <C +CL\/p—1
- -1 oA - -1
\/ﬁ LeL Saugsize <P> \/ﬁ

where we have used (3.6.35)) in the last line. If we choose p > 1 so that

1
CVp—1<3. (3.6.37)

then we obtain £ < 2C'——. Together with Lemma [3.6.9, this yields

f
S AP 1
mstOp,AW = 2‘S‘augszz:e (P) < 20\/ﬁ —1 (520[ * Ql%)

as desired, and completes the proof of inequality (3.6.7)). ]

Thus, in view of Conclusion [3.6.4], it remains only to prove Proposition [3.6.19] using the
Orthogonality and Straddling and Substraddling Lemmas above, and we now turn to this

task.

Proof of Proposition|3.6.19. We split the proof into three parts.
Proof of ([3.6.35)): To prove the inequality (3.6.35)), suppose first that L ¢ Ly;,q1. In

the case that L € L is an initial generation cube, then from (3.6.30]) and the fact that every
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Ie Pbﬁ small gatisfies [ G L, we obtain that

‘11 (K/ PbL small)

a,A bL—small -
Saugsize (P > - sup |K/|
K/enlielow7)]%[’:0—snmllﬂcj4 o
e <K/ Pbﬁ small>
< sup
KIEHbelow'PﬁCZ: K,gL |K/|U
2
8‘S’augszze (P)

Now suppose that L ¢ Ly in addition to L ¢ Lys.1. Pick a pair (I,J) € PM small - Thep

L bshzft ,Pbﬁ small

l
[ is in the restricted corona C~ 7’ and J is in the bshifted corona C;” Since

augszze

is a finite collection, the definition of S (Pb‘c small) shows that there is an cube

K e njelowprbsmall ¢l g6 that

2

wyp (T (K)) .

S

o
<73b£ small) 1 P ([(7 1A\KU)
augszze

K], |K|%

Note that K G L by definition of Pbﬁ small Now let ¢ be such that L € £y, and define
' =t (K) = max {s : there is L' € L5 with L' C K},

and note that 0 < ¢’ < ¢. First, suppose that ¢ = 0 so that K does not contain any L' € L.

Then it follows from the construction at level ¢ = 0 that

(P (K ko) ’
K], K]

wyp (T (K)) < Spriize (P2

augszze
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and hence from p = 1 + ¢ we obtain

A - 2 A A
oo (PETM) < Sl (P2 = (p = 1) Setiiee (P

augsize augsize augsize

Now suppose that ¢ > 1. Then K fails the stopping condition ( [3.6.32)) with m =t/ + 1,

since otherwise it would contain a cube L” € Ly 11 contradicting our definition of ¢/, and so

wyp (T (K)) < pwyp (V (K)) where V(K)= | T (L).

t/
L'e Y Ly L'cK
=0

Now we use the crucial fact that the positive measure wy,p is additive and finite to obtain

from this that
wyp (T (K)\V (K)) = wyp (T (K)) —wyp (V(K)) < (p— Dwyp (V(K)).  (3.6.38)

Now recall that

«@ 2 a2
Sa’A 2 = 1 P <K’ 1A\K0> w,b*
augsize (Q)7 = sup /K| 1 aug Qx '
Kenbelowgnc’, 10 K7 2 L2(w)

We claim it follows that for each J € Hé{’aug P%L’:O_sma” the support (c Jb,f (Jb>> of the

atom ¢ o is contained in the set T (K'), but not in the set
(7))
J
VE) = KT(): el L 'K
=0
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Indeed, suppose in order to derive a contradiction, that (c Jb,ﬁ <Jb>> eT (L’ ) for some
I € £y with0 < ¢ < ¢'. Recall that L € £; with ¢/ < tso that L' S L. Thus (ch,E (J")) e

T (L’) implies J b , which contradicts the fact that
Jemg piremell c mypimelt — {(1,7) e P 1 e Cf\{L} and J € [

implies J* € Cf - because L ¢ Cf.

' Y
18
L2(w)

Thus from the definition of wyp in (3.6.28), the ‘energy’

Qw,b* T
H‘g ,augpzﬁo— small

at most the wyp-measure of T (K)\V (K). Using now

K)) (T (K)\V (K)) < wyp (T (K)\V (K))

W hL—small (T( =W _bL—small
bPL,O bPL,O

and (3.6.38)), we then have

SOQA < bE—small) 2

augsize L0

IN

sup = L) (1 (Y ()
KeHi{elowP%L’:O—smallmC;l o ‘K| n
2
p <K 1 cr)
1 » LA\K
Kel-[?elowpiﬁo—smallﬁcf4 o ’Klﬁ

and we can continue with

a,A bL—small) 2 1
Saugsize (PL,O e ) < (p—1) sup K] T wyp (T (K))
Kenbelowpne!, 1o

< (p-1)8%4  (P).

augsize

252



In the remaining case where L € Lj;,1 we can include L as a testing cube K and the

same reasoning applies. This completes the proof of ([3.6.35)).

To prove the other inequality (3.6.36]) in Proposition [3.6.19, we will use the b Straddling
and Substraddling Lemmas to bound the norm of certain ‘straddled’ stopping forms by
the augmented size functional S¢ A and the Orthogonality Lemma to bound sums of

augsize’

‘mutually orthogonal’ stopping forms. Recall that

bbig __ b?—l big b”H big bH— bzg
o= e UPl ™ UTU Ui Ja
LeH t>1LeH
Qb?—[ big = U PbH big 7 Qb’H big _ U Pb?—[ bzg b’H bzg %’,’-7[j
Lel t>1 LeH

Proof of the second line in ([3.6.36)): We first turn to the collection

bH—big bH—big .
o = P YR
t>1 LeH t>1
P = P iz
Lel

where

Pl ={w.nep:rech sec)? forsome ' e My, (1)ur I C LY.
We now claim that the second line in (3.6.36]) holds, i.e.
bH—big
AP A
3750]? I S((llugszze (P), t=>1, (3.6.39)

which recovers the key geometric gain obtained by Lacey in [20], except that here we are
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only gaining this decay relative to the indented subtree H of the tree L.
The case t = 1 can be handled with relative ease since decay is not relevant here. Indeed,
73%7'% straddles the collection € (L) of H -children of L, and so the localized bStraddling

Lemma [3.6.15| applies to give

A P%,Hl a,A bH oA
N <CSpte (PP) < St (P,

stop, AW = augsize augsize

and then the Orthogonality Lemma applies to give

~A PbH big A’P%}ﬁ «a,A
stop,AW < LSIEI% mstop,AW = CSaugszze (P),

since {P?j}Leﬁ is mutually orthogonal as PL 1 C C%[ X C?,’bsmft with L € H; and
L' € Hj.4 4 for indented depth k = k (L). The case ¢t = 2 is equally easy.

Now we consider the case t > 2, where it is essential to obtain geometric decay in ¢t. We

remind the reader that all of our admissible collections 73%7‘2 are reduced by Conclusion (3.6.4}

We again apply Lemma [3.6.15 to 73%7'1{ with § = €4 (L), so that for any (I, J) € PL i there

is H' € ¢y (L) with J* ¢ H’ GCIle Cz{. But this time we must use the stronger localized

bounds SZO(‘) é;lzfe with an S-hole, that give
~A PbH /
oA H (phH :
stop,Aw < C sup Slocsize <PL,75> ’ t=>0;
H'eey/ (L)
2
ot ()2 _ L (P (K Laro) o W2
] : = sup Z NTT x
locsize et | K| 1 J L2(w)
Kew(H')ncy 1™ 1o [K|m Jenkavgp

254



It remains to show that

2

120) = p~ " Puyp (T (K)), (3.6.40)

i I

K,aug 5hH
JeH2 PL,t

fort >2, K e W*(H')nCy, H € ¢y (L)

so that we then have

2
(P (K 1y 00)

x |2
AYP ‘
1Ko K| K%g i |57 iz
JelL, PL,t
PY (K, 1 ’
o 1 ( ; A\KU) —(t— A
< p (t-2) 1 Wyp (T (K>> <p (t 2)8512 size (P>2
|K|U |K|ﬁ !
AP
by (3.6.29), and hence conclude the required bound for RIS top, Atw, namely that
AP
Lt
mstop,Aw (3.6.41)
Pe(K,1 ?
1 ( 1 H’U) 2
< C sup sup "] 1\ Z HALj’b*x‘LQ( )
= w
H'ey (L) Kew*(H')ne)y, | 1o Kl jenfaug pi

[ _(t—2) e, A b caA
¢ p ¢ Q)Sgugsize ('P):Clp ?Sc?ugsize (P)

IN

Remark on lack of usual goodness: To prove (3.6.40)), it is essential that the cubes
H¥2 € H;.,5 at the next indented level down from H¥T1 € € (L) are each contained
in one of the Whitney cubes K € W (Hk+1> N ¢!y for some H"1 e ¢y (L). And this is

the reason we introduced the indented corona - namely so that 3H k42  gHEH for some
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H*1 ¢ @4 (L), and hence H**2 ¢ K for some K € W (Hk+1>. In the argument of
Lacey in [20], the corresponding cubes were good in the usual sense, and so the above triple

property was automatic.

So we begin by fixing K € W* (Hk""l) N C;l with HF+1 ¢y (L), and noting from the

above that each J € Hf’aug 73%7'1[5 satisfies
Jc gt o ghtt-l o gkt o K

for H*+J ¢ Hp4j uniquely determined by J > Thus for ¢ > 2 we have

x |02 x| 02
Z HA?b * ‘LQ(w) - Z Z HA?b . ’Lz(w)
Jermy I phH HE e,y jentl a9 phH
’ HR R gkt
< X ep(T(et))
Hk‘—l—tefHkth
Hki-‘rtCK

In the case t = 2 we are done since the final sum above is at most w,p (T (K)).
Now suppose t > 3. In order to obtain geometric gain in ¢, we will apply the stopping

criterion (3.6.32)) in the following form,

D> wp (T(L)) =wyp U TI)]< s (T (Lg)), forall L€ L
e (L) e, (L) |
(3.6.42

where we have used the fact that the mazimal cubes L’ in the collection
m—1
U {L'ec: I Lo}

=0
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for Lo € Ly, (that appears in (3.6.32))) are precisely the L-children of L in the tree £ (the

cubes L' above are strictly contained in L since p > 1 in (3.6.32)), so that

m—1
U= |y wheel'=|]J{L/eL,: L'cLy}.
L'er L'e€p(Lg) (=0

In order to apply (3.6.42)), we collect the pairwise disjoint cubes H ktt ¢ H}j.++ such

/
that H*tt ¢ HF?2 ¢ K, into groups according to which cube LHt=2 ¢ Gp/ 4o they
are contained in, where k' = dgeom (H k+2) is the geometric depth of H k+2 i the tree £

introduced in (3.6.33)). It follows that each cube HF Tt ¢ H}.+ is contained in a unique cube
dgeom (Hk+2) -2

L € . Thus we obtain from the previous inequalit
gdgeom (£ +2) 412 W prey qUatity
that
wb* || #2 k+t
2 HAJ mHL%J) = > ww (T (H ))
Jerry I phH HMH e 4y

HEHt K
S % (e
bP
/
HF2eHy 0 Lk 266,
k+2 /
HY™“CK LK +t—2 pk+2
Where k’/:dgeom (Hk+2)

IA
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and this last expression is equal to

/
D 2. 2. wp (T (£1172))
/ /
HM2eHy M Segy L7260y, 4y
k+2 / / /
HY"eCK K +t—3 - prk+2 K +t=2 K +t-3
where k‘/:dgeom (Hk+2) kwhere k/:dgeom (Hk+2)

1 Y
1 +t-3
D> > {a (7 (1)) }
k+2 Iy
R +2cK LK =3 prk+2
/_ k+2
where k 7dgeom (H

where in the last line we have used (3.6.42) with Ly = Lk,+t_3 on the sum in braces. We

then continue (if necessary) with

w,b* |2 1 K +t—3
SR L\ S SEAC T )
K k+2 Iy
Jell, ’aungLr":é HYT2eHy o LK Sedry s
HAY2CK 3 gkt
_ k+2
where k —dgeom (H

1 2%
+t—4
<z X > wp (T ()
k+2 Iy
! Z Mo LEHeGy
R 2K LK +t—4 prk+2
where k/:dgeom (Hk+2>

1 k/
< e 2 > e (T (1Y)
/ /
sz2€7ik+2 Lk €Gy: LK cpkt2
2
H + cK where kl:d960m<Hk+2)
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/ /
Since LF ¢ HF+2 implies L = Hk+2, we now obtain

S et < o > op (T (1442))

p
Jené(,augp%’;-é HE+2eh) o HE2cK

IN

p%_?wbp (T (K))

IN

which completes the proof of (3.6.40)), and hence that of (3.6.41)). Finally, an application of

the Orthogonality Lemma proves ((3.6.39)).

Proof of the first line in (3.6.36)): At last we turn to proving the first line in (3.6.36)).

Recalling that 7 (L) = C%‘(E)\{L}, we consider the collection

b?—[ big _ U bH big
LeH
where PbH ng—{([,J)EP% s thereis L' € T(L),J CL’C[},LEH

and  PPE={(1.neP:1ecisect” ! forsome Len}, L e

and begin by claiming that

APb’Hfbig
L0 < CS% <,P|7'H bzg) < oS

stop, AW augszze augszze

(P), Le (3.6.43)

To see this, we fix L € H and order the cubes of T (L) = {Lk’i}k , where 1 < 1 < ny,
1

)

where LY = L and L are the maximal cubes in L? and then LFT1 are the maximal cubes

inside a cube LF+J of some previous generation. Then P;%_blg can be decomposed as follows,
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remembering that J> € I C L for (I,.J) € Pi}é_big C 73%7'6

VH—big _ | |) bl (oL bl
Pro ¢ = U{RLM U R U RLM}
ki out,out out,in m

bl N Y, e )
= URLk,Z U URLk,z U URLkn’ ]
ki out,out ki out,in ki mn
R = {a, )Pl rech_ and s c Ly b
out,in
_ bH—bi
RS = {0 ePITM 1ech | and P C L}
out,out
bL _ bH—big . b ki _
R4 = {LnePl rech ;md S ech ;a2 0Lt =0}
'Ln
= {wner i =N and e ek ana Ll =0,

where by L " we denote the union of the children of L¥ that do not touch the boundary of

L, by Lk the union of the grandchildren of L¥ that do not touch the boundary of L while

out in

their father does, and by rk ; the grandchildren of L* that touch the boundary of L and

out ou

where in the last line we have used the fact that if I, J” € ka_” and there is L' € T (L)
with J? C L' C I, then we must have I = LEF=17 All of the pairs (I1,J) € PbH %9 are

included in either Rb/j; P Rbﬁk ; or Rbﬁk ; for some k, since if J b~ ki , then J > shares
K ) L bl

out,in out,out mn

boundary with L, which contradicts the fact that 3.J e HcrcL.

We can easily deal with the ‘in’ collection Q" = Uk 17€b . by applying a trivial case

Zﬂ
of the hStraddling Lemma to RIL 7. ; With a single straddling cube, followed by an application
L A i
m
of the Orthogonality Lemma to Q"". More precisely, every pair (I,J) € Rbck ; satisfies
LY
m
J* c [kli = , so that the reduced admissible collection Rbﬁk ; pstraddles the trivial

L,?
m
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choice § = {Lk_l’i}, the singleton consisting of just the cube L*=17 Then the inequality

AR
o Ly a,A hL
mstop,Aw —CSaugszze Rdm )
in

follows from bStraddling Lemma [3.6.15. The collection {Rbﬁk Z} is mutually orthogonal
L.
m ) ka

since

Lbshift

X CLk:—Li

bL
Rk;z - CLk 1,0

o0 0
22165 <1 and 221w8mﬁ<1
k=1

i=1 Lk—Li k=1i=1 Lklz

Since UR Jei is reduced and admissible (each J € Il U RE ki is paired with a single
ki zn ki m

I, namely the top of the L-corona to which J b belongs), the Orthogonality Lemma m

applies to obtain the estimate

AUkZRbE

ks ok

L ~ il

in mn bL a,A bH—big

stop, AW < sup N <C ?32 Saugszze <,R’L/'£,i> < OSaugszze (P
1<i<ny, 1<i<ny, "

(3.6.44)

Now we turn to estimating the norm of the ‘out-in’ collection Qoutin — URM]” . First

ki out,in

out in € CA restrict ;¢ (I1,J) € Rbf since RbLEk,z is reduced, i.e. doesn’t

out,in out,in

contain any pairs (I, J) with J> c A’ for some A’ € ¢ 4 (A). Next we note that Qouhin

we note that L

is admissible since if J € 15 QU then J € HQRM]“- for a unique index (k, %), and of

out,in
course ’Rb% ; 1s admissible, so that the cubes I that are paired with J are tree-connected.
out,in

Thus we can apply the Straddling Lemma [3.6.15|to the reduced admissible collection QOUbin
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with the ‘straddling’ set S = (Uk,z UL’eLkvi L’) N Cﬁ’msmat to obtain the estimate

A7uzO:1 Rbﬁ

ki
~ L, . . ti . .
Out,ln o A)QOU Ll Oé,A OUt,ZTL ()(7A bH—b’Lg
mStOP,AW - mstop,Aw < CSaugsize <Q ) < C'Saugsize (IPLO > (3.6.45)
L
AUk R %

As for the remaining ‘out-out’ form ‘B’stop AW out,out (f,g), if the cube pair (I,J) €

ki
out,out"

ki CpRor Mol el

out,out #

R4 ., then either J* C L' € L But J> ¢ L' & J*

out,out
implies that either J =1 ; J¥c I L, which is impossible since J? cannot share
an endpoint with L, or that J = 1" ¢ L;n and JX = LM So we conclude that if

(I,J) e R"S, . then

L O{Lt,out

cither J* ¢ LM ; or {J* = [Fand J c LY (3.6.46)

out,ou out,out’S "

In either case in (3.6.4G), there is a unique cube K [J] € W (L) that contains J. It follows
that there are now two remaining cases:

Case 1: K [J] €(C/y,

Case 2: K [J] C A" G I for some A" € € 4 (A).

However, since J” C K[J], as K[J] is the maximal cube whose triple is contained in

L, and since Rbﬁki is reduced, the pairs (/,.J) in Case 2 lie in the ‘corona straddling’
L bl
out,out

collection ngr that was removed from all A-admissible collections in ([3.6.26)) of Conclusion

3.6.4]above, and thus there are no pairs in Case 2 here. Thus we conclude that K [J] € C/y.

We now claim that 3K [J] C I for all pairs (1, J) € Uy Rbﬁk o To see this, suppose
out,ou
that (I,J) € Rbl;’“. for some £ > 1, 1 < i < ny. Then by (3.6.46) we have both that
L 9
out,out

K[ C L](fl’fwut and L% G I. But then K [J] C Lff{ft,out implies that 3K [J] C L% C T as
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claimed.

Now the ‘out-out’ collection Q240U = U Rbﬁk ; is admissible, since if J € [Ty Qou0ut
ki out,out

and [; € Ty Qout,0ut ith (Ij, J) e Qout:out for i — 1.2 then I; € ct = . for some k; and

7

i and all of the cubes I € [I1, I5] lie in one of the coronas CLk—li for k between kj and ksg.

And of course for those coronas we have J € L out out:

Thus (I, J) € R4 C Qout.out

out,out

and we have proved the required connectedness. From the containment 3K [J] C I C L

for all (1,J) € Uk:,z' Rl’ﬁki , we now see that the reduced admissible collection QOut-out

L 0171t70ut

substraddles the cube L. Hence the Substraddling Lemma yields the bound

AU Rbﬁ
out out OSa VA (Qout 0ut> < Rt A <73b7'[ bzg) )

stop, AW — “lstop, AW augsize augsize

~

~A Qout,out

(3.6.47)

Combining the bounds (3.6.44)), (3.6.45) and (3.6.47)), we obtain (3.6.43)).

Finally, we observe that the collections PbH %9 themselves are mutually orthogonal,

namely

bH—big 2 Hbshift
PL,O C Cp xCp , LeH,
Z 1c"H < 1and Z 1 Hpshift <1.
LeH LeH )

Thus an application of the Orthogonality Lemma shows that

bH—big A, pr—biQ

L0
< sup msto JAW = OSaugszze (P) :
Lel

~AQ,

sﬁstop,AW

Altogether, the proof of Proposition [3.6.19| is now complete. ]
This finishes the proofs of the inequalities (3.6.7)) and -
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3.7 Finishing the proof

At this point we have controlled, either directly or probabilistically, the norms of all of the
forms in our decompositions - namely the disjoint, nearby, far below, paraproduct, neighbour,
broken and stopping forms - in terms of the Muckenhoupt, energy and functional energy con-
ditions, along with an arbitrarily small multiple of the operator norm. Thus it only remains
to control the functional energy condition by the Muckenhoupt and energy conditions, since
then, using [ (T$f) gdw = O (f,g) + ©*(f,g) with the further decompositions above, we

will have shown that for any fixed tangent line truncation of the operator 7' we have

3
<E{E(> (16 (£,9) + 16} (f.9))
1=1
<(CoNTVa +107a) 1 215 91l 2

‘ / (T ) gdo| = ERES, / (T f) g

for f € L?(0) and g € L?(w), for an arbitarily small positive constant > 0, and a
correspondingly large finite constant (). Note that the testing constants Tpa and Tpa,x
in N'TV, already include the supremum over all tangent line truncations of 7%, while the

operator norm pa on the left refers to a fized tangent line truncation of 7“. This gives

Nra = sup sup < CpNTVa +1MNpa,

17120 =1 ol 2,

/ (15 f) gdw

=1

and since the truncated operators have finite operator norm 91pa, we can absorb the term
nNpa into the left hand side for n < 1 and obtain Mpa < C’,’7N TV for each tangent line
truncation of T%. Taking the supremum over all such truncations of T finishes the proof
of Theorem [B.1.5]

The task of controlling functional energy is taken up in Appendix B of [54], after first
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establishing weak frame and weak Riesz inequalities for martingale and dual martingale

differences (except for the lower weak Riesz inequality for the martingale difference A’é’b).
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Chapter 4

Refined constants for the averaging

Hardy operator

4.1 Introduction

Let p be a non-atomic measure on (0,00). We define the p-averaging Hardy operator as

1

AI@ =8 Jow

FHdu(t), € (0,00) (LL1)
)
for any non-negative function f. If £ is the Lebesgue measure, (4.1.1)) becomes
1 X
Acf@) = [ o
T Jo

and the classical Hardy inequality holds:

P
Az flly < p—1 1Al - (4.1.2)

for all non-negative f € Lp((O7 oo)) and the constant p%f is sharp. This result is due to
Hardy [15] in the course of attempts to simplify the proof of Hilbert’s double series theorem.

This inequality has been studied a lot and a complete discussion is included in [25] and [42].
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More recently, Nikolidakis [40] improved inequality (4.1.2)) by proving a sharp integral

inequality valid for non-negative functions defined [0, 1] with given L' norm:

Theorem A. Let f :[0,1] — R be in LP([0,1]), p > 1 with fol fdt = ¢. Then for any

1<qg<p,

[ LY oe Gl [ () oy oo

Moreover, inequality (4.1.3) is sharp in the sense that, the constant (p%l)q cannot be de-

creased, while the constant p—EI cannot be increased for any fixed ¢.

Meanwhile, Melas [31] calculated the Bellman function

Dy(o, ®) ::sup{/X(MTf)pd,u:fGLp(X,,u), /de,u:gb, /Xfpd,uZCID}

where (X, p1) is a non-atomic probability space, 0 < ¢ < ® and My a tree like maximal

operator, and showed that

Dp(¢, ®) =1, ! <§) P,

where p(2) = pzP~1 — (p — 1)zP. Melas [32] also showed that

1 1 x p 1 1
Dy, D) = S rdt) de: | fde=¢. | fPdr =
ponw= Uy Gy o) e [ [l o)

decreasing
continuous

via a symmetrization principle of dyadic maximal operator with respect to the averaging
Hardy operator. Finally, Nikolidakis [41] characterized the extremal sequences of functions

for the latter expression of D), related to the averaging Hardy operator.

267



In this note, we calculate

By (i, ¢, @) = A Pdy - dp = ¢, Py =@
o (1, 0, @) ?‘gl()){/((),oo)| uf () Pdp /(O,oo)f'u ¢/(0700)f pu }

where ((O, 00), u) is a non-atomic probability space.

Definition 4.1.1. Let 1 < p < oo. A pair of two positive numbers (¢, ®) is called p-

admissible if o < P.

Let (X, p) be a probability space and (¢, ®) a p-admissible pair. We may write

rxm = J st exw
(6,®)

p—admissible

where

5% =50 0 = {re s [1fldn=sand [IfPan=o}

In these smaller classes of functions we have refined bounds:

Theorem 4.1.2. Let p be a non-atomic probability Radon measure on (0,00). For any

non-negative f € Sp’q)(((), oo),u),

1 (¢P
A1l Lo ((0.00) ) < ¥ ! (5) 11 2P ((0,00),10)

where Yp(2) = pPl = (p — 1)2P. Moreover, the inequality is sharp.
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Corollary 4.1.3. ([32]) For non-negative f € Sp’q)((O, 1), E), we have the sharp inequality:

1ALl zp(0.1)) < ¥p (%) 1l zp((0,1)) -

On the other hand, it is known that the dyadic maximal function M satisfies the following
sharp special weak type (1,1) inequality

Ll € R [Myf(z)] >\ <

d
N /{ N

for every f e L1 (R™) and every A > 0, from which is easy to get the inequality

p
IMafllppwny < P 11l Lo @wn) »

for every p > 1 and f € LP(R"). The constant ]% is the best possible [4, Bl [59]. Melas’
result [31] refines this inequality when restricted to functions on [0, 1]™.
Being inspired from that, let 7" be an operator defined on a space (X, i) that satisfies

the special weak type inequality

ur e X i@l > < B[ @i (4.1.4
{ITfI>A}
for any A > 0 and f € L1 (X, y1). By [1] denote the best possible constant in (4.1.4). Then,

we easily conclude,

1T zpx ) < % Iz (x ) (4.1.5)

for every 1 < p < oo and every f € LP(X, u) provided that [ |Tf[Pdu < oo. Inequality

(4.1.5) can be refined as the following theorem shows. To state it we need to define a

269



function on (0, co):

AP foir 1oy | fldp — (p — 1) AP

Ak fT(A) f]f|pd,u

Theorem 4.1.4. Let (X, ) be a non-atomic probability space and T' be an operator satisfying

4.1.4). Then for f € Sp’q)(X,,u),

IT Ao < G5 (maxkp £o(A >) o (4.16)

provided that [ |Tf|Pdy < 0. Here §ip(z) = [ulp=?~" — (p — 1)22 defined on [[u), 5], In

the special case that |T f(x)| > [p]¢ for all x € X, then

~ p
Iy < 350 (P50 ) W lzpis

Moreover,

<35 (V55) < 05 (k) < 2

Theorem and Corollary easily follow now from Theorem [{.1.4]

We also have a result for the two-weight setting, which is an application of Theorem [4.1.4

but it is not anywhere near as developed as the one-weight case. In particular,

Theorem 4.1.5. Suppose two non-atomic Radon measures w, i satisfy the special weak type

inequality

K
ofo € (0,00 Auf@) > <7 | F(®)du(e),
{xe(0,00): Apf(x)>A}

with p being a probability measure. If L = w(0,00), then for every non-negative f €

270



gp’@«& 00), ,U);

/(O’OO) Apf@)Pde < (K {wp—l (%)]p - L)%) /(0700) o

4.2 Proof Of Theorem 4.1.4]

The idea of the proof has been used in [33], [12] and [41].

Proof. Let 0 < [|f|Pdu < oo. For A to be determined later, using we have,

/ TPy = /O PN T > AJdA

Ap+/oop)\p_1u{|Tf| > A}dA
A
el [T [ fldudy
A UTfI>A}
o
= iy [ U e
{ITf|>A} A
- ALL@/ \f|(}Tf|p1—Ap_1)du
p—1J{rs>4}

— vy / TPy — 22 g / fldu
p=1J{rr>a) p—1 (ITfI>A}

Set E4 = {|Tf| > A}. Using Holder’s inequality with exponents p and —L. we obtain

1
P wp 1
p AP p P _ PP ap
/ITf| du < o1 (/If\ du) </|Tf| du) — /EA | fldp

Dividing both sides by [|f|Pdu and rearranging we obtain,

IN

IN

=

Wl gy a1 ar (frTchzu)l—%_ﬂTdeu

p—1 [1flPdp— [1flPdu = p—1\ [[f[Pdp J1f[Pdp
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or equivalently,

< —_ —(p—1)4—r— 2.
J1fPdy J1fPdp J1fPdu
Consider for any p > 1 the function
Up(2) = [plp ™ = (p—1)2F, = >0,
Notice that @Z]’,(z) = p(p — 1)2P72([1] — 2). Thus, ¥p(2) < [P for all z > 0. Set
AP—1 dp— (p—1)AP
. fT(A):[M]p Jg | fldu—(p—1)
Pl J 1 fIPdp
Rewriting inequality (4.2.1)), we have, for all A > 0,
- (Tl e
ky pp(A) < iy | ——EL ) 4.2.2
pfr(A) < W ( 11122 () (422)
ITFll e (0 Wpl . : :
By (4.1.5), we may assume that T € [[,u], pTIi| since otherwise we have nothing
LP(p)

to prove. Here is the place where [ |T'f|Pdu has to be finite, because the proof of ([4.1.5)

requires it. Note that

- A (fEA |f|d,u>p (fEA Ifldu)p
kp’f’T(m_wp(fEAU\du) firan =T

< [P

and that the restriction ), : [[u], Z[)L_hﬂ — [0, [p]P] is strictly decreasing and onto. Since the
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inverse of ¢y, @p_ L0, [u]P] — [[u], %], is also strictly decreasing,

1T Flizp () < Gt (kp, g (A0)) 11 £l 2o 0

where Ay is chosen so that 0 < k, ¢ 7(Ag) < [u]? and &, r 7(Ap) is maximum.

It is easy to see that

[lpAP~L [ | fldp — (p — 1) AP
[ 1Py !

pr( ) < Lp,f(A) =

and the function A ~ L,, ;(A) is increasing on [O, il [1f |d,u] with

< /|f|d) I{JJ(;LZ“) and Ly, ¢(0) = 0.

In the special case that £4, = X, for some A1 > 0,let Ag = sup{A : |Tf(x)| > A, for all x €

X}, thus &, p7(Ag) = Ly ¢(Ag). If Ag < [u] [ |fldp, since ¢~1 is decreasing and 0 <

Ly, ¢(A) < [u]?, inequality (4.2.2) implies

1T fllzpg < ¥p " (Lp.r(A0)) 11l Lo

while if Ag > [1] [ | f|du, we have {|Tf| > [u] [ |f|du} = X and inequality (4.2.2) implies

= ([P CS | fldp)P
1Tl o < 35 (W) 112
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Remark 4.2.1. Inequality (4.1.4) together with Hélder’s inequality imply that

e e XATI@I =N <3G @l

for 1 < q < p. Using this in the proof of Theorem[{.1.4), one can show that for 1 < q < p,

we have
e 1 1/p
</ ‘Tf|pd,u> < w; (kp,q,f,T<AO)) (/ ‘f’pdﬁb)

for some Ag > 0 and a function k that depends on k,p,q, f and T. Moreover,
p.a.f, T

) < Uyt (kpg,f7(A0)) < %

(P ([ 1 19du)P
"= ”1< J1Pdp

Remark 4.2.2. If we assume the special weak type (r,q) inequality

1] afr
plo € X2 Tf()| > A} < 7 ( / |f<x>|7°du<x>)
{UTFI>A}

for1 <r <q < p, then again we have

([1zswan) U by 2 A0) (f157a) .

or some Ag > 0 and a function k that depends on k,p,q, f and T. Moreover,
0 ¢, [T

) < @/;51 (kpg,f,T(AO)) < ﬂ

p—1

o (alPle () | 12dp)P
i < vy ( J1fPdu
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4.3 Applications

Lemma 4.3.1. For any Radon measure p on (0,00), 1 < p < oo and f > 0, we have

| s rinte) < .
(0,00)

Proof. First of all note that inequality (4.1.4) is satisfied. Indeed, the set Ey = {z € (0, 0) :
Ay f(x) > A} is open for any A > 0, because of the regularity of 4. This implies that E) can
be written as Ey = (J/ j» where I; are maximal pairwise disjoint open intervals. Tt follows

that
1 1 1

Let N > 0 and fy = min(f, N). Then, by (4.1.4)

| Gutwrds = [T fv dd>

p 1
= — A P=+d\d
— (O,oo)fN( wIN) i

1
P p
pTl (/(0700)(fN)pd,u> (/(07OO><Aqu)pd,U>

With the left-hand side being positive and finite, this inequality gives

_1
1=p

IA

p _p g P
/( A < (p_ 1) /( . U

Letting N — oo, the conclusion follows by the monotone convergence theorem. O]

Now, recall the distribution function of f with respect to p is the function pu f(A) :
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[0, 00) — (0, 00] defined by
iy = € X ¢ ()] > A}
and the decreasing rearrangement of f is the function f* : [0, 00) — (0, o0] defined by
P = infA > 0y (0) < 1)
The functions f and f* are equimeasurable, that is,
p{r € X |f(2)] > A} = L{t > 0: f7(t) > A}

for any A > 0.

For a probability space (X, i) define the quantities

B(u,35") = sup {/X A f(@)Pdp -0 < fego®(X, u)} .

and

B(u,sfj"b) = sup {/X |Ayf(2)Pdp -0 < f € 3],’(1) (X, ,u), decreasing} .

Lemma 4.3.2. For any non-negative decreasing f € Sp’q)((O, 1), £),

1AL Fllzp(0.1)) < ¥p <%) 1 zp(0,1) -
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where p(2) = p2P~1 — (p — 1)2P. Moreover, if Ep(f) = 1 — ¢P/®,

[%_1 (1- Ep(f))]f? - (pf 1>p - p? - (1= Ep(f)- (4.3.1)

Proof. 1t is easy to see that

L{x e (0,1): Apf(z) > \} = i/{A o f(z)dp(z).
L

Let f be a decreasing function. Then, Ay f(z) > fol f(t)dt for all x € (0,1) and Theorem

and Lemma 4.3.1] imply

1AL f Il ooy < ¥p " (L =Ep(H) I1fllp(0,1))

1
Now, consider the decreasing function f,(z) = gx_pr@. For a = ¢, 1 (%), it is easy to
see that
Pr

1 1 »
ad — d ad = — =
/0 fadr =¢ an /0 fadx @Dp(a) d

An easy calculation shows that

[ ) w5 (2)) [ s

Thus we have shown that B(£|(071), Sg’q)) = [2/}51 <%>}p o.

To obtain (4.3.1)), consider the function

o) = [t a-w] - (G25) + L),
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for 0 <y < 1. Then

a1 _
J(y) = L7 St B

-1 (1-v'a-y) P71

which implies that ¢ is strictly increasing on (0,1). Since lim g(y) = 0 and ¢ is continuous
y—17

at 0, we proved (4.3.1]) for 0 < E,(f) < 1. O

Proof of Corollary[{.1.3 Due to Lemma and the inequality

t t
Afmmséf@m te (0,1),

we obtain

1 00
/O(Acf)dt /0 pAP™ £{te(01 /fdx>)\}d)\
/OOpAP 1£{te(01 /fdx>>\}d)\
0

1
= / (A f) pdt
0

which implies that B(£|(0’1),Sp’q)) = B(£|(0’1),Sp’®) = [1/)];1 <%>}p ®, and we have calcu-

v

lated the sharp constant of Corollary [4.1.3] m

To the best of our knowledge, the proof of Corollary as a consequence of Theorem

[4.1.4)is the simplest.

If we restrict Theorem |A| to Sp’q)(((), 1),5) and let ¢ = p, Corollary 4.1.3| provides a

better bound. Indeed, set

= 1-B,()
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where 0 < E,(f) < 1 (by Holder’s inequality). Then, inequality (4.1.3) can be rewritten as

[CL o) - 2o-wn] [

and inequality (4.3.1]) provides an improvement to (4.1.3)).

Lemma 4.3.3. Let u be a non-atomic probability Radon measure on (0,00). Then

408 0000 = %5 (5 ) Wi

for decreasing f € Sp7(1)((0, 00), 1).

Proof. Let f be a decreasing function. Then A, f(x) > f() 50) f(t)du(t) for all z € (0, 00).

Theorem and Lemma give

¢P
HAMfHLp O oo ¢p (5) ||f||Lp((0,00),,U,) )
which implies that

~ p
Bl 5" 0.00) < | (5) ]| @ = BLlon. 57

O

Proof of Theorem[{.1.3 Now consider a decreasing function f € s;f’q)((o, 1),L). For every
€ (0,1), let

St :={x € (0,00) : u(0,2) =t}.

For A > 0 and for all t € (0,1) and x € S¢, define a non-negative function g on (0, 00) with
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the property

pg(A) == p{y € (0,2) : g(y) > A} = L{y € (0,) : f(y) > A}

Then, for every z € Sy,

o0 00 +
/«m o= [ = [ Lle 0.0 56) > Nar= [ s

and

(0, )

Notice that for any A > 0,

1 t
/ g(u)du(u) = —/ f(u)du, for f >0,
(0,2) tJo

E{t € (0,1) : %/Otf(u)du > )\} = L£(0,t)) = t)

for some ¢y € (0,1). From the discussion above we obtain that for all = € Sty

p{x € St)\

This implies that

AglPdy =
/(OOO)I pglPdp

)

(0, z)

1

/ gdp > A} = 11(0,sup Sy, ) =ty
(0,x)




Additionally, g € Sp’q)(,u) as f(o’oo) gdp = fol fdy = ¢ and f(O,oo) gPdu = fol fPdy = ®. This
shows that B, §5'* (0. 00)) = B(L](g.1). 55 ").

For every z € (0, 00), there exists t € (0,1) such that 1(0,2) = t. Notice that there could
exist y # x, such that (0,y) = t (which means that u(x,y) = 0 in the case that z < y).

Let f € Sp’q) ((0,00), 1). Then from the well-known inequality

1 1 [t i}
(0. 7) (ij)f(t)du(t) < ;/0 f*(u)du, for f>0 (4.3.2)
we get
M {x € (0,00) : 1(0,) 00) fdu > )\} < u(0,2y) <ty

where z) = sup{z : m f(O ) fdp > Aand ty =L {t €(0,1): %fé f*(u)du > /\}. This
implies that B(u,gp’q)((), 00)) < B(L’](O’l),gp’@).
On the other hand, trivially B(u,%ﬁ’q)(o, oo)) < B(u,%ﬁ’q)(o, oo)) Now take a function

h € 3p"1’((0, 00), 1) and let G(z) = f(O,ac) du, Then the pushforward measure

Gyp(E) = p(GH(E))

for any £ C (0,1) is equal to Lebesgue measure of E. Indeed, let (¢,d) C (0,1). Since
1(0,00) = 1, there exist a, 8 € (0,00) such that 1(0,a) = ¢ and u(0, ) = d. In other words,

G(a) = c and G(B) = d. Then G~1((c,d)) = (a, ) and

M(G_l((c’ d))> = /L(Oé, 6) = N(O’ﬁ) - /J“<07 Oé) =d—c= L(C, d)
Since (¢, d) is an arbitrary interval, the pushforward measure G p is the Lebesgue measure
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on (0,1).

Notice that G is increasing and onto (0, 1), but it may not be invertible. However, G has
an inverse, G~ 1, when restricted on supp . Since G ((0, 00)\ supp ,u) is an at most countable
set, say {21, 29, ...}, the function ho G~ is defined on (0,1)\{z1, 29, ...} and by changing

variables

/ hdu:/ (hoG_l)oGdu:/ hoG tdx
Supp /4 Supp p4 (0,)\{z1,29,... }

Let (h o G~1)* be the decreasing rearrangement of h o G~1. Notice that
w{h > Ay =[{ho G > A} = [{(ho GTH* > A} = p{(ho G™1)" 0 G > A},

thus, (h o G_l)* o (G is decreasing and equimeasurable to h with respect to pu. Notice also

that for every = € S,

/ hdp = / hoG ldx < / (ho G~ N da
(0.z) 0)\{z1,29,... } (0,)\{zq,29,-. }

= / (ho G™1)* o Gdp
(0,7)

Therefore, we obtain B(,u,gp’q)) < B(M,ng’q)).

These imply B(M,Sp’q)) = B(L|(O,1)’SP7(I)) - [%71 <%>]p P .

Remark 4.3.4. (i) Let us point out that the supremum with respect to any probability

measure is attained and is equal to
D K
sup B(p, §p" ) = B(L(0,1),8p")
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where the supremum is taken over all probability measures .

(11) If u(0,00) = L < oo, then the measure o = p/L is a probability measure. By Theorem

4. 1.4
(f(O,oo) fda)p
146 fll Lo ((0.00).0) < ¥p (W 1l zp((0,00),0) »

which implies that for f € sf,”q’((o, 00), 1),

¢P
|4t 000100 < 45" (Tt ) M0 0n

Lo,n)

11 MU, 00) = OO Jor a o-inite measure [, we COnNStaer the measure M, ana tetring
i) If 1u(0 it ider th i d letti

N — o0, we get

p
A | 2o ((0,00) 1) < b1 £ zp ((0,00))

Here we point out that

Apf A
s [Au | 2o ((0.00) 1) P g AL p(0,00)

FerP((0.00)) llzp(0o0) ) — P11  perro00) IflLp(0,00)

Corollary 4.3.5 ([31]). Let (X, pn) be a non-atomic probability space and f € %'p’q)(X, ).

Then

M7l < 0 (5 ) I1oix

where My is the dyadic-like maximal function defined by

MT(b(x):rglllgTﬂ /|¢>! I

for every ¢ € L (X, 1) where T is a family of measurable subsets of X such that
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(a) X € T and for every I € T we have u(I) > 0.

(b) For every I € T there corresponds an at most countable subset C(I) C T containing at
least two elements such that the elements of C(I) are pairwise disjoint subsets of I and

I=uc(l).

() T = Upiz0 Tom) where Ty = (X} and Tpy1) = Urery,,, €D

(d) limy,—o00 supjeT(m) wu(l) =0.

The operator My satisfies (.1.4) with [u] = 1 and the result follows from Theorem [.1.4]
The sharpness of the constant has been proven by Melas [31], by calculating a Bellman

function.

4.4 Two Weights

Now we turn our attention to inequalities of two measures. We will need the following

lemmas whose proofs are provided in [23].
Lemma 4.4.1. For any t € R, any measure w on [t,00) and a € (0, 1), we have

wlt, 00) 1=

/[t,oo) wlz,00)” Ydw(r) < a

Lemma 4.4.2. For any t € R, any measure o on (0,t] and o € (0,1), we have

o (0,1~
1—a

/ o(0,2] “do(x) <
(0.2]
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Definition 4.4.3. Let o be a measure. We define the p-Hardy operator as

@) = Hel) = [ S0 120

Theorem 4.4.4. The two-measure (G,w) Hardy inequality, for 1 < p < oo,

1/p 1/p
( / \H(69>Ipdw> < Np(6.w) ( / |g|pd&) 920 (44.1)
(0,00) (0,00)

holds if and only if

Gp(F,w) = sup (w[r, 00) /P 6(0,7"]1/7’,) < 00
r>0

Moreover, Gp(o,w) < Np(d,w) < pl/p(p')l/p/Gp(&,w), for 1 < p < oo while G1(6,w) =

Ni(o,w).

The proof is essentially due to [35], while the proof for p = 2 is written in [23]. We write

it here for general p for completeness.

1
Proof. For 1 < p < oo and h(t) = (f(07t](f(0’z] d&)d&(m)) 7P’ we have,

p
) Pdw = G w(z
/@,oo)'H(g )P /(O’OO) /@,ﬂg“)d <t>) duo(z)
p
= / / g(t)h(t)h(t)—1d5(t)> dw ()
(0,00) (0,z]
/ p/v’
p Pd& P ds wl(z
< /m,oo) /@,x]g“) h(t)d <t>> ( /(M n(t) ' d <t>) duo(z)
p—1
_ P ()P 7' ol w(x o
/(O’m)g<t> () { /[t . ( /M () d) duo( >] 06 (1)
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By Lemma and definition of G,

) |Pdw D D / 5 ol 5
Jomg oot = [, stormer | | (p {/«md } ) o

S/(O,oo) g(&)Ph(t)P _/[t,oo) (p/Gp : w[x,oo)_l/p>p1 dw(:v)] do(t)

ot |

(0,00)

By Lemma and definition of G,

/(o )|H(g5)!pdw SGgl(p')p_lp/(o )g(t)ph(t)pw[t’OO)_I/pdff(t)

—1/p
Np—1 ~ -
<Gh(pP1p /( Opo)g(t)ph(t)p ( /( o d0> d&(t)

— R /( o SRR P50

— G2 /( o AP0

Thus, Np(F,w) < pl/p(p’)l/p/Gp((},w). For p = 1, by changing the order of integration,

/ H(g6)dw < supwlr, 00) / o(B)d5 (1)
(0,00) (0,00)

r>0
So, N1 < G1.

Conversely, for 1 < p < oo, letting g(t) = 1(g,(t) and since for x > r, H(go)(z) >
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p—1
(/ d&) / dw/ do ( ) dw §/ |H (g5)Pdw
(0,r] [r,00) (0,7] 0,7] [r,00) (0,00)

<Np(G,w / g|Pde = N§ (5, w)/ lg|Pdo
(0,00) (0,7]

p—1
which implies that (f(o . d&) f[r 50) dw < Np(a w). Taking supremum over all r > 0,

Gp(5.w) < Ny, w).

4.4.1 A three-weight norm inequality

Now consider the inequality

1/p l/p
(/(0700) !Huf(x))\pdw(x)> < Kp(p,o,w) </(0,oo) yf(gc),pda(x)) | (1.4.2)

for f > 0 and the three measures u, o, w.

It is easy to check that (4.4.2) holds only if du(t) = m(t)do(t) and so it implies that

Jow

Setting f(t)m(t)do(t) = g(t)dé and f(z)Pdo = g(x)Pds, which imply that

p

dule) < Kf(w o) [ |f@)Pdoa).

(0,00)

fBm(t)do(t)

(0,7]

!
gyl
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we have that (4.4.2)) is equivalent to the two measure (¢,w) Hardy inequality (4.4.1). More-
over,

Gpl6,w) < Ky, o) < PPV Gy(5,w).

r>0 r>0

1/
where Gp(6,w) = sup (w[r, oo)l/p(}(o,r]l/p/) = sup [w[r, oo)l/p (/ mp/da> ] :
(0,7]

Corollary 4.4.5. ([35]) If w and o are Borel measures and 1 < p < oo, then

T p 1/p 1/p
(/(0700) /O f@))dt dw(rv)) §C< /(07oo)|f(x)|7?da(x)) >0

if and only if
N
B =sup |wlr, oo)l/p m? do < 00,
r>0 (0,7]

where dx = m(x)do(z). Moreover, B < C < pl/p(p')l/p/B, for 1 < p < oo while B=C"for

p=1.

Corollary 4.4.6. The inequality

1/p 1/p
( / IAuf(x))lde(x)) < My(p,0,w) (/ |f<:c>|pda<x>> L f>0 (44.3)
(0,00) (0,00)

holds if and only if

dio(2) 1/p / 1/p/
G, = / P d
b ;Q’"I;Ié [ [r,00) (f(()@} m(t)da(t))p] < (0,7] " U) =

where du(t) = m(t)do(t). Moreover, Gp < Mp(p,0,w) < pl/p(p’)l/p/Gp.

Proof. The inequality (4.4.3)) is equivalent to the two-measure (7, ) Hardy inequality (4.4.1))

for dr = m? do and dv = dw / ( / (0,2] mda)p . The result then follows from Theorem4.4.4f [
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In the special case that w = o = p with du(z) = m(z)dx for m € Llloc(,u),

[ g@ g (0
/[r,oo) (0, 2 Fdu(w) = /[r,oo) g(x)pd - p—1  p-1

where g(z) = [ m(t)dt, we have that G}, = W and the (4.4.3)) becomes
p—

(/OOO |Auf(rc))lpdu(rc))l/p < (/OOO |f(x)|pdﬂ(x))l/p, F>0

p—1
Thus, the inequality of Corollary is a refinement of this.

Theorem 4.4.7. Let w, u be two Radon measures on (0,00) and define
s :=inf{x € (0,00) : u charges the interval (0,x)}.

The following are equivalent:

(i) For A >0 and f > 0, the special weak type (1,1)

ol € (0,00) : Auf(z) > A} < / FOdu)  (444)
A J{2e(0,00): Apf(x)>A}

(i) For any collection of open intervals {(a;,b;)}jen in (s, 00),

Zw(aj,bj) < Kz,u(aj,bj). (4.4.5)
J J
(11i) The restriction w‘(s 50) of w at (s,00) is absolutely continuous with respect to u and
w dw
the density |(S’OO) € L™ with M <K.
dn | poog)
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Remark: The definition of s is not needed to show the equivalence of the conditions (ii)
and (iii) but it is important to circumvent the cases where the measures are not absolutely

continuous and satisfy (4.4.4) trivially. For example, dw =1 (071)dx and du =1 (2,oo)dx.

Proof. Without loss of generality, assume that s = 0, that is, u charges every open interval
of the form (0,d). Let us show first that (ii) implies (iii). Let A be a Borel set such
that u(A) = 0. As p is regular, for any € > 0, there exists an open set £ O A such that
1(E) < e. Since E is open, it can be written as a union of open intervals, i.e. E = J;(aj, ;).
Thus, ZJ p(aj,bj) < e. The hypothesis implies that Zj w(aj,bj) < Ke, or equivalently,
w(F) < Ke. Since € is arbitrary, w(A) = 0. Thus, w < p and w(A) = [, m(t)du(t) for some
non negative function m and any Borel set A. If we assume that there exists a Borel set A
such that p(A) > 0 and m(t) > K, for all t € A, then using Borel regularity, we cover A by

open intervals (aj, b;) such that > 5 u(aj, bj) = p(A) + € and we obtain
S wlag by) > w(A) /m Jpu(t) > Kp(A Zua], e
J
As € is arbitrary, we have a contradiction.
Now we show that (iii) implies (ii). By the hypothesis, there exists a non negative function

m such that for any measurable set A, w(A) = [, m(t)du(t) with Im|| 00,y < K. Consider

any collection of open intervals {(a;,b;)}en. Then

S wlaby) =3 / m®)du(t) < K'Y ulaz, bj)
j i 7 ajb) j

To prove that (ii) implies (i), notice that the set Ey\ = {x € (0,00) : A, f(x) > A} is

open for any A > 0. Thus, E) = UI; where I; are maximal pairwise disjoint open intervals
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and

oA > N = Swl) <K utty) = 3 [ st
‘ J

J J I
- Hdu(t)
A J{ALf>AY

Finally, we prove that (i) implies (ii). It is enough to show (4.4.4) implies (4.4.5)) for an

interval (a,b). Because then, for any N € N,

N N
Zw CL], Z CLJ, Z a],
J=1 =

and letting N — oo, we obtain (4.4.5)).

Fix A > 0. Given an interval (a,b) with u(a,b) # 0, we find a function f and an interval
J D (a,b) such that J = {A,f > A} and u(J) = p(a,b) + 9, for 6 > 0. As a first case,
suppose that p charges the subintervals (a,a + ¢) and (b — ¢, b) for some 0 < ¢ < b — a.

Consider the function

F=Aa+ A+ +A=2m1G ) +Algy

where a <t <k <b,0<2n < X and f(a ) dp = 2f(t k) du. Then, f satisfies the conditions

a a b b x T
/ fdp = )\/ du, / fdu = )\/ dp, and / fdp > )\/ dp
0 0 0 0 0 0

for all € (a,b) with the reverse inequality holding otherwise. Thus, {A,f > A} = (a,b)
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and

K K
b)) =wlA A< — dy = — du = Kpu(a,b).
w(a,b) = w{Apuf > A} )\/{Auf>/\}f I A/(a,b)fﬂ 1(a, b)

On the other hand, suppose that u(a, a+c) = 0 while u(b—c, b) # 0, for some 0 < ¢ < b—a.
By definition of p, there is a point a; < a such that p(ay, a) = €. Then, following the previous

case, we construct a function f such that {A,f > A} = (a1,b) and
w(a,b) < wlay,b) < Kp(ar,b) = K (p(a,b) +¢)

As € is arbitrary, we obtain (4.4.5)).

In the case that u(a,a + ¢) # 0 while pu(b — ¢,b) = 0, for some 0 < ¢ < b — a, either
there is f such that {A,f > A} = (a,00), when pu(b,00) = 0, or there is f such that
{Auf > A} = (a,b1), where by > b with p(b,b1) = €. Thus, w(a,b) < Kpu(a,b).

Finally, if u(a, b) = 0, as above, we find an open interval J O (a,b) and a function f such

that {A,f > A} = J and pu(J) = €. This implies that w(a,b) = 0.

For measures w, i that satisfy , define
B 55 ) = s { [ 1400 < 1 € 552(0.000.) )
and
Bp(u,w,gp’q)) = sup {/ |Apf(x)Pdw:0 < fe S’p’q)(((), 00), ) decreasing}

Theorem 4.4.8. Suppose two non-atomic Radon measures w, p on (0,00) satisfy the special
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weak type inequality (4.4.4]), where p is a probability measure and L = w(0,00). Then for

every non-negative f € Sp’q)((O, oo),u),

/(O,oo) |Apf(z)[Pdw < <K {wp—l (%)]p (K — L)%) /(0700) Pdp. (4.4.6)

There is a decreasing function g € S"p’(b ((O, 00), u) such that the equality in (4.4.6)) is attained

if and only if w = Kp.

Proof. First, let f be a decreasing function. Notice that if L = K, by (4.4.5), w = Kpu. Let

us assume that w(0,00) = L < K. For A, such that {A,f > A} = (0,00) to be determined

later and using (4.4.4)), we have

(0.0]
J1auswas = [ pwtogau > Ay

(0.¢]
LAp+/ PN TIO{|A L f] > Ay
A

(0.9]
LAP + K / pAP—2 / FdudA
A {[ApfI>A}
| A fl 5
= LAp—I—Kp/f/ NP2 d)N\dp
A
= LAp‘f‘K—]?l/f(}Auf‘p_l—Apl)du
p—
- LAp—i—ﬂ/ﬂAﬂf}p1du—£Ap_1/fdu
p—1 p—1

IN

VAN

Using Hoélder’s inequality with exponents p and p’ = 1%, we obtain

1
K -7 K
/ A fPdw < LAP + prl ( / fpdu> ( / IAuflpdu) " . ! / fdu

hSilg
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Dividing both sides by [ fPdu and rearranging we obtain,

(4.4.7)

J fPdp S fPdp J [Py

Now, by Corollary the right hand side is bounded by

sl ()]

KpApP—1 [ fdu— L(p —1)AP

and as A — TP is increasing on [0, % i fdu}, inequality (4.4.7)
m
gives
Ay flPdw  (Kp— Lp+ L)([ fdu)? p/v/
(p—l)fl /Lf‘ w+( p P+ )(ff,u) < Kp w;;l ﬁ
[ fPdy [ fPdy )

for A = [ fdu (we choose this A, as {A,f(z) > A} = (0,00) since f decreasing). This

implies

/ p
Kp { . ((pp)]p/p Kp—Lp+ L /
ApfPdw < —— z Py ————— ~ ~ d
A&m|uﬂ o< (F)) o
1

T (NP Kp—Lp+ Lo
(ol (BB [ s

We claim that

it (D)) - ()

Indeed, consider the function

MFﬂWmﬂﬁﬂjgﬂw%MNwM?og<l
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Then, for 0 <y < 1,

_ 1(1_ NP2 1/
)= p Yy (; 2@/)] . 11+ Py (1 _?i)
po-1) [ -] (1-vpla-y) P emD (1)
1 1
:_EjL]::O

which implies that ¢ is constant and as g is continuous at 0, we obtain that g = 0 on [0, 1).

Thus, inequality (4.4.8]) gives

frmrss (s (2 -x03) [,

Thus, By(n,w, 55 ") < (K [u;! (%)}p —(K-L)%) @,

To obtain equality in (4.4.6]), notice that w = Ky if and only if there is a decreasing

function g such that w{A,g > A\} = % f{Au9>/\} gdp. Choose g to be the extremizer of

Theorem [4.1.2

Finally, if h € Sg’@((o,oo),u) is such that Bp(u,w,gp’q)) is attained, following the

proof of Theorem

4.1.2

. we obtain a decreasing function g € Sp’q)((O,oo),,u) such that

f(O 2) hdu < f(O 2) gdp. This implies that f(O 50) |AuglPdw > f(O o) | Ay h|Pdw which in turn

gives l’;’p(u,w,ggf’q’) = Bp(ﬂawagp’@)' -

Conjecture 4.4.9. Suppose two non-atomic Radon measures (w, v) satisfy the special weak

type inequality (4.4.4]), p is a probability measure and w(0,00) = L < K. For the p-admissible

pair (¢, ®),

(Kwp ! (%)p—w ~L)

sl
=

|

1
p/
(o)
(0,7]

< UpN1/0 / _ dw(z)
)= i%[v@>umﬂwf
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If w = Kpu is absolutely continuous, the conjecture is true.
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