
EVOLVING PHENOTYPICALLY PLASTIC DIGITAL ORGANISMS

By

Alexander Lalejini

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy
Ecology, Evolutionary Biology, and Behavior - Dual Major

2021

ABSTRACT

EVOLVING PHENOTYPICALLY PLASTIC DIGITAL ORGANISMS

By

Alexander Lalejini

The ability to dynamically respond to cues from the environment is a fundamental fea-

ture of most adaptive systems. In biological systems, changes to an organism based on

environmental cues is called phenotypic plasticity. Indeed, phenotypic plasticity underlies

many of the adaptive traits and developmental patterns found in nature and serves as a key

mechanism for responding to spatially or temporally variable environments. Most computer

programs require phenotypic plasticity, as they must respond dynamically to stimuli such

as user input, sensor data, et cetera. As such, phenotypic plasticity also has practical ap-

plications in genetic programming, wherein we apply the natural principles of evolution to

automatically synthesize computer programs rather than writing them by hand.

In this dissertation, I achieve two synergistic aims: (1) I use populations of self-replicating

computer programs (digital organisms) to empirically study the conditions under which

adaptive phenotypic plasticity evolves and how its evolution shapes subsequent evolutionary

outcomes; and (2) I transfer insights from biology to develop novel genetic programming tech-

niques in order to evolve more responsive (i.e., phenotypically plastic) computer programs.

First, I illustrate the importance of mutation rate, environmental change, and partially-

plastic building blocks for the evolution of adaptive plasticity. Next, I show that adaptive

phenotypic plasticity stabilizes populations against environmental change, allowing them to

more easily retain novel adaptive traits. Finally, I improve our ability to evolve pheno-

typically plastic computer programs with three novel genetic programming techniques: (1)

SignalGP, which provides mechanisms to control code expression based on environmental

cues, (2) tag-based genetic regulation to adjust code expression based on current context,

and (3) tag-accessed memory to provide more dynamic mechanisms for storing data.

Copyright by
ALEXANDER LALEJINI

2021

For Alexa.

iv

ACKNOWLEDGEMENTS

As I complete this dissertation, I stand on the shoulders of many people who have inspired

and supported me over the course of my Ph.D. First and foremost, I thank Alexa Lalejini,

who (by request) gets their very own paragraph, and without whom, this dissertation would

not have been possible. Thank you for moving to Michigan with me and making sure

that I eat and sleep. Thank you for putting up with an apartment where the brick walls

are absurdly cold in the winter and leak during rain storms because I thought it was an

“interesting” place to live. Thank you for helping me to take breaks by whisking me away

on adventures. Thank you for making sure that I eat and sleep. Most of all, thank you for

keeping me company.

Next, I thank my friends and family for their support over the years. I thank my parents,

David and Penny Lalejini, for fostering my academic interests. I especially want to acknowl-

edge my dad who I could always count on for help with math homework or for someone to

babble to about research projects. I thank Brandon Odom for always being there for Alexa

and me. I also thank Josh Nahum for being my dependable exercise partner for the entire

duration of my Ph.D. and for all of his friendship, kindness, and generosity.

I have also had wonderful mentors, without whom I could not have bumbled my way

through graduate school. As an undergraduate, I would not have been aware of graduate

school as a realistic path for myself if not for Dr. Cindy Bethel at Mississippi State University

who trusted me with research projects, funded trips to conferences, let me use her lab space

after hours as a safe space to study for exams and do homework, and continues to be a font

of advice and encouragement.

It has been a great privilege to have had Dr. Charles Ofria as my Ph.D. advisor and

mentor. Charles’ immense excitement for research, teaching, and mentoring is infectious.

Charles is one of my most valued role models in science, academia, and life. I am also

deeply appreciative of the supportive culture that Charles actively cultivates in the Digital

v

Evolution Lab. I want to specifically thank Dr. Anya Vostinar and Dr. Emily Dolson, from

each of whom I have learned so much about being a good researcher, academic, and person.

I also want to thank my committee—Dr. Christoph Adami, Dr. Wolfgang Banzhaf, and Dr.

Richard Lenski—for their guidance and insightful feedback on my work.

Finally, I want to acknowledge all of the members of the Digital Evolution Lab, past and

present. Our constructive discussions, collaborations, and social gatherings have enriched my

work. I especially want to thank Dr. Mike Wiser, Dr. Anya Vostinar, Dr. Rosangela Canino-

Koning, Dr. Emily Dolson, Anselmo Pontes, Matthew Andres Moreno, Jose Guadalupe

Hernandez, Austin J. Ferguson, Acacia Ackles, Kate Skocelas, and Clifford Bohm.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

Chapter 1 Introduction . 1
1.1 Digital Evolution . 4

1.1.1 Historical context . 6
1.1.2 The Benefits of Digital Evolution . 8
1.1.3 Phenotypically plastic digital organisms 13

1.2 Genetic programming . 16
1.3 Thesis Statement . 18
1.4 Contributions . 19

1.4.1 Part 1. Understanding the evolutionary origins and consequences of
adaptive phenotypic plasticity in fluctuating environments 19

1.4.2 Part 2. Building more responsive program representations 20

Chapter 2 The evolutionary origins of phenotypic plasticity 23
2.1 Introduction . 23
2.2 Methods . 25

2.2.1 The Avida Digital Evolution Platform 25
2.2.2 Experimental Design . 28

2.3 Results and Discussion . 31
2.3.1 What conditions promote the evolution of phenotypic plasticity? . . . 31
2.3.2 How do environmental factors impact the evolution of phenotypic plas-

ticity? . 33
2.3.3 What are the evolutionary stepping stones for phenotypic plasticity? 36
2.3.4 Does plasticity still evolve when evolutionary stepping stones are dis-

allowed? . 38
2.3.5 Are stochastic strategies evolving as an alternative to phenotypic plas-

ticity? . 40
2.4 Conclusion . 43

Chapter 3 The Evolutionary Consequences of Adaptive Phenotypic Plas-
ticity . 44

3.1 Introduction . 44
3.2 Materials and Methods . 49

3.2.1 The Avida Digital Evolution Platform 49
3.2.2 Experimental design . 51
3.2.3 Experimental analyses . 55
3.2.4 Statistical analyses . 57
3.2.5 Software availability . 58

3.3 Results . 58

vii

3.3.1 The evolution of adaptive phenotypic plasticity slows evolutionary
change in fluctuating environments 58

3.3.2 Adaptively plastic populations retain more novel tasks than non-
plastic populations in fluctuating environments 63

3.3.3 Lineages without plasticity that evolve in fluctuating environments
express more deleterious tasks . 66

3.4 Discussion . 67
3.4.1 The speed of evolutionary change . 68
3.4.2 The evolution and maintenance of novel tasks 70
3.4.3 The accumulation of deleterious instructions 71
3.4.4 Limitations and future directions . 73

Chapter 4 Evolving Event-driven Programs with SignalGP 75
4.1 Introduction . 75
4.2 The event-driven paradigm . 76
4.3 SignalGP . 79

4.3.1 Tag-based Referencing . 80
4.3.2 Virtual Hardware . 81
4.3.3 Program Evaluation . 82
4.3.4 Evolution . 84

4.4 Test Problems . 85
4.4.1 Changing Environment Problem . 85
4.4.2 Distributed Leader Election Problem 88

4.5 Results and Discussion . 90
4.5.1 Changing Environment Problem . 90
4.5.2 Distributed Leader Election Problem 93

4.6 Conclusion . 94
4.6.1 Beyond Linear GP . 94

4.7 Software and Data Availability . 95

Chapter 5 Tag-based regulation of modules in genetic programming im-
proves context-dependent problem solving 96

5.1 Introduction . 96
5.2 Specifying Modules with Tag-based Referencing 99
5.3 Tag-based Genetic Regulation . 101
5.4 Methods . 106

5.4.1 SignalGP . 107
5.4.2 Signal-counting Problem . 110
5.4.3 Contextual-signal Problem . 112
5.4.4 Boolean-logic Calculator Problem . 113
5.4.5 Independent-signal Problem . 115
5.4.6 Data Analysis and Reproducibility 117

5.5 Results and Discussion . 118
5.5.1 Tag-based regulation improves problem-solving performance on

context-dependent tasks . 118

viii

5.5.2 Erroneous regulation can hinder task generalization 126
5.5.3 Reducing the context required for the Boolean-logic calculator problem

eliminates the benefit of regulation 128
5.6 Conclusion . 130

Chapter 6 Tag-accessed Memory for Genetic Programming 133
6.1 Introduction . 133
6.2 Experimental Results . 135
6.3 Conclusion . 137

Chapter 7 Conclusions . 139
7.1 Contributions . 139
7.2 Future Directions . 140

7.2.1 Broadened applications of SignalGP 141
7.2.2 Transferring algorithms from evolutionary computing to laboratory-

based experimental evolution . 144

BIBLIOGRAPHY . 146

ix

LIST OF TABLES

Table 2.1: Differences among the five experimental treatments. Point-

mutation rate is given as mutations per instruction copied. Environment

cycle length describes the length of time (in updates) an environment is

active before toggling to the alternative environment. 30

Table 2.2: A summary of evolutionary outcomes across all five experimental

treatments and control. “Plastic Replicates” indicates the number of

replicates (out of 50 per treatment) in which the final dominant genotype was

plastic at all (“Total”) and perfectly plastic (“Optimal”). “Unconditional

Precedes Conditional” indicates the number of times the NAND task and

NOT task were expressed unconditionally before eventually evolving to be

express conditionally (out of total plastic). Finally, “Sub-optimal Precedes

Optimal” indicates how many runs had an imperfect form of plasticity before

eventually evolving to be optimally plastic (out of total optimally plastic). 32

Table 3.1: Metric descriptions. 56

Table 5.1: Regulatory instructions used in this work. We include (+) and (-)

instruction variants to ensure that positive and negative regulation values

are equally probable. 109

Table 5.2: Input signal sequences for the contextual-signal problem. 112

Table 5.3: Bitwise Boolean logic operations used in the Boolean-logic calcu-

lator problem. Programs are given a nand instruction and must construct

each of the other operations (aside from ECHO) out of nand operations. As

such, we measure the difficulty of each operation as the minimum number

of NAND gates required to construct the given operation. 114

Table 5.4: Signal-counting problem-solving success. This table gives the num-

ber of successful replicates (i.e., in which a perfect solution evolved) out of

200 on the signal-counting problem across four problem difficulties and two

experimental conditions. For each problem difficulty, the regulation-off con-

dition was less successful than the regulation-on condition (Fisher’s exact

test; all difficulties: p < 10−15). 119

x

Table 5.5: Mechanisms underlying solutions from the regulation-on condition

for the signal-counting problem. To determine a successful program’s

underlying strategy, we re-evaluated the program with global memory access

instructions knocked out (i.e., replaced with no-operation instructions) and

with regulation instructions knocked out. This table shows the number of

regulation-on solutions that actually rely on regulation to solve the signal-

counting problem. 120

xi

LIST OF FIGURES

Figure 2.1: A visual representation of the default virtual hardware used by

organisms in Avida. Original figure from (Ofria et al., 2009). 26

Figure 2.2: Enumeration of all possible complete phenotypes. Each row rep-

resents a distinct phenotype. An ‘X’ indicates that the associated task is

performed in the specified environment, while a ‘–’ indicates that the task

is not performed. For each environment, the column of the rewarded task

is highlighted in light purple, and the column of the punished task is high-

lighted in light orange. An ‘X’ in a reward column or a ‘–’ in the punished

column is optimal. Each phenotype has a color code, which is used in our

lineage visualizations. Note that the first four rows are non-plastic pheno-

types, rows 5–8 exhibit partially beneficial plasticity, and row 9 is optimally

beneficial. Rows 10–11 are neutral non-adaptive plasticity, while rows 12–16

are detrimental forms of plasticity. 29

Figure 2.3: Time-sliced visualization of lineages for non-plastic, dominant

genotypes from the high-mutation-rate treatment. Abbreviated

color reference: cyan represents unconditional NOT task performance, dark

blue represents unconditional NAND task performance, and light purple

represents sub-optimal forms of plasticity. Refer to Figure 2.2 for a full

legend of phenotype colors. 34

Figure 2.4: Time-sliced lineage visualization of dominant, plastic genotypes

from the baseline treatment. Abbreviated color reference: cyan repre-

sents unconditional NOT task performance, dark blue represents uncondi-

tional NAND task performance, light purple represents sub-optimal forms

of plasticity, and dark purple represents optimal plasticity. Refer to Figure

2.2 for a full legend of phenotype colors. 35

Figure 2.5: Blocked stepping stone evolutionary outcomes. For each condition,

the bar plot indicates the number of replicates (out of 200 per condition)

where the final dominant genotype was plastic. 39

Figure 2.6: Time-sliced lineage visualization of non-plastic, dominant geno-

types from the long environment cycle treatment. Abbreviated color

reference: cyan represents unconditional NOT task performance, dark blue

represents unconditional NAND task performance, light purple represents

sub-optimal forms of plasticity, and dark purple represents optimal plastic-

ity. Refer to Figure 2.2 for a full legend of phenotype colors. 41

xii

Figure 3.1: Hypothetical reaction norms for genotypes that exhibit pheno-

typic variation. (a) through (d) show four hypothetical reaction norm

scenarios for the environmental change described in (e). In (e), the environ-

ment changes from E1 (in red) to E2 (in blue), and the optimal phenotypes

for environments E1 and E2 are different (OE1 and OE2, respectively). In

each of the four reaction norm scenarios, populations are well-adapted to

E1. In (a), genotypes in the population are non-plastic, and as such, we

would expect strong directional selection on mutations that move pheno-

types toward OE2 after the environment changes. In (b), genotypes in the

population are adaptively plastic. That is, phenotypic changes induced by

the environment change to E2 are already near the optimum, and as such,

we would expect this population to remain relatively stable after the en-

vironment changes. In (c), the population exhibits non-adaptive plasticity

with substantial variation in how individuals respond to the environmental

change. In this case, we expect plasticity to result in a rapid evolutionary

response to the change in environment. In (d), the population exhibits mal-

adaptive plasticity relative to the given environmental change. When the

environment changes, there is little variation for selection to act on, and

without beneficial mutations, this population may be at risk of extinction

due to their maladaptive plastic response. 46

Figure 3.2: Overview of experimental design. The first three plots in panel (a)

show the environments used in every experiment and whether they reward

or punish each base task. Additionally, the last two subplots in (a) show

the additional tasks added in phases 2B and 2C. All novel tasks confer a

10% metabolic reward, while executing the poisonous task causes a 10%

metabolic punishment (bars not drawn to size). Panel (b) shows treatment

differences and experiment phases. Treatments are listed on the left, with

each treatment consisting of an environment timeline and whether sensors

are functional. We conducted three independent two-phase experiments,

each described on the right. Phases 2B and 2C are textured to match their

task definitions in panel (a). Phase one is repeated for each experiment

with 100 replicate populations per treatment per experiment. For each

replicate at the end of phase one, we used an organism of the abundant

genotype to found the second phase population. All STATIC and NON-

PLASTIC populations move on to phase two, but PLASTIC populations

only continue to the second phase if their most abundant genotype exhibits

optimal plasticity. Metrics are recorded only in phase two. 52

xiii

Figure 3.3: Magnitude of evolutionary change. Raincloud plots (Allen et al.,

2019) of (a) coalescence event count, (b) mutation count, and (c) pheno-

typic volatility. See Table 3.1 for descriptions of each metric. Each plot

is annotated with statistically significant comparisons (Bonferroni-corrected

pairwise Wilcoxon rank-sum tests). Note that adaptive phenotypic plas-

ticity evolved in 42 of 100 replicates from the PLASTIC treatment during

phase one of this experiment; we used this more limited group to found 42

phase-two PLASTIC replicates from which we report these PLASTIC data. 59

Figure 3.4: Pace of evolutionary change. Raincloud plots of (a) average number of

generations between coalescence events, and (b) mutational stability (Ta-

ble 3.1). Each plot is annotated with statistically significant comparisons

(Bonferroni-corrected pairwise Wilcoxon rank-sum tests). 60

Figure 3.5: Representative genetic architectures from each treatment. Each

box shows a representative genome from each condition at the end of Phase

2A. The y-axis indicates each site in each genome, and colors indicate the

function of each locus with respect to a particular task (given by the x-axis).

The vertical black line splits tasks rewarded in ENV-A (left of the line) from

those rewarded in ENV-B. Loci colored as “Task Machinery” are actively

involved in the performance of that task, while “Vestigial Task Machinery”

represents loci that have not mutated, but no longer code for the task (i.e.,

a change elsewhere in the genome has disabled or modified the task). “Plas-

ticity Machinery” refers to loci that regulate the given task. Knocking out

a “Replication Machinery” locus negatively affects replication time, while

knocking out a “Required” locus results in a non-viable organism. 61

Figure 3.6: Architectural volatility. Raincloud plot of architecture stability (Ta-

ble 3.1). The plot is annotated with statistically significant comparisons

(Bonferroni-corrected pairwise Wilcoxon rank-sum tests). 62

Figure 3.7: Novel task evolution. Raincloud plots of (a) final novel task count, (b)

novel task discovery, and (c) novel task loss. See Table 3.1 for descriptions of

each metric. Each plot is annotated with statistically significant comparisons

(Bonferroni-corrected pairwise Wilcoxon rank-sum tests). Note that adap-

tive phenotypic plasticity evolved in 42 of 100 replicates from the PLASTIC

treatment during phase one of this experiment; we used this more limited

group to found 42 phase-two PLASTIC replicates from which we report

these PLASTIC data. 64

Figure 3.8: Rates of novel task evolution. Raincloud plots of (a) novel task discovery

frequency and (b) novel task loss frequency. Each plot is annotated with sta-

tistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon

rank-sum tests). 65

xiv

Figure 3.9: Deleterious instruction accumulation. Raincloud plots of (a) poisonous

task acquisition, (b) poisonous task acquisition frequency, and (c) the pro-

portion of mutations that increase poisonous task performance along a lin-

eage that co-occur with a change in phenotypic profile. Each plot is anno-

tated with statistically significant comparisons (Bonferroni-corrected pair-

wise Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity

evolved in 43 of 100 replicates from the PLASTIC treatment during phase

one of this experiment; we used this more limited group to found 43 phase-

two PLASTIC replicates from which we report these PLASTIC data. . . 66

Figure 4.1: A high-level overview of SignalGP. SignalGP programs are defined by

a set of functions. Events trigger functions with the closest matching tag,

allowing SignalGP agents to respond to signals. SignalGP agents handle

many events simultaneously by processing them in parallel. 79

Figure 4.2: Changing environment problem results across all environments:

two-state environment, four-state environment, eight-state environment,

and sixteen-state environment. The raincloud plots (Allen et al., 2019)

indicate the fitnesses (each an average over 100 trials) of best performing

programs from each replicate. 91

Figure 4.3: Re-evaluation results for combined condition in the changing en-

vironment problem across all environments: two-state environment,

four-state environment, eight-state environment, and sixteen-state environ-

ment. The raincloud plots indicate the fitnesses (each an average over 100

trials) of best performing programs from each re-evaluation. 92

Figure 4.4: Distributed leader election problem results. The raincloud plots indi-

cate the fitnesses of best performing distributed systems from each replicate.

The time series gives average fitness over time during evolution. The colors

in the time series correspond to the colors in the raincloud plots. The shad-

ing on fitness trajectories in the time series indicates a bootstrapped 95%

confidence interval. 93

xv

Figure 5.1: Tag-based genetic regulation example. This example depicts a simple

oscillating regulatory network instantiated using tag-based regulation. In

this example, tags are length-4 bit strings. The “raw” match score between

two tags equals the number of matching bits between them. Regulation

(reg.) modifies match scores for “call” instructions according to Equation

5.1. First (A), the call 1001 in Module 1 executes, triggering Module

3. Next (B), Module 3 is executed, promoting Module 2. After Module 3

returns, the call 1001 in Module 1 executes again (C); however, Module

2’s promotion causes it to be triggered instead of Module 3. Finally (D),

Module 2 executes and represses itself, resetting its regulatory modifier to 0. 103

Figure 5.2: Regulated tag-match score as a function of raw tag-match score

and regulatory modifier values according to Equation 5.1. The

horizontal black line indicates a neutral regulatory state; repressed states

are below the line, and promoted states are above the line. We expect the

raw tag-match score (calculated using the Streak similarity metric, which

is described later in Section 5.4.1) of 90% of random pairs of tags to fall

between the two dashed vertical lines; to compute the location of these lines,

we generated 105 pairs of random tags and found the region that contained

the middle 90% of raw tag-matching scores. 105

Figure 5.3: Generation at which first solution evolved (log scale) in each suc-

cessful replicate for the signal-counting problem (raincloud plot

(Allen et al., 2019)). We show data from only those problem difficulties

in which solutions evolved (two- and four-signal problems). Gray points

indicate the number of unsuccessful replicates for each condition. For both

problem difficulties, regulation-on solutions typically required fewer gener-

ations than regulation-off solutions to arise (Wilcoxon rank sum test; two-

signal: p < 10−15, four-signal: p < 9 × 10−05). 120

Figure 5.4: Execution trace of a SignalGP program solving the four-signal

version of the signal-counting task. Color denotes each function’s reg-

ulatory state (yellow: promoted, purple: repressed) during evaluation; func-

tions not regulated or executed are omitted. Functions that are actively

executing are annotated with a black outline. Black vertical lines denote

input signals, and a diamond (white with black outline) indicates which

function was triggered by the input signal. A circle (white with black out-

line) indicates which function executed a response. (b) shows the directed

graph representing the regulatory network associated with trace (a). Ver-

tices depict functions that either ran during evaluation or were regulated.

Each directed edge shows a regulatory relationship between two functions

where the edge’s source acted on (promoted in yellow or repressed in purple)

the edge’s destination. Note that in the case presented here all repressing

relationships are self-referential. 121

xvi

Figure 5.5: Contextual-signal problem-solving performance. (a) shows the num-

ber of successful replicates for the regulation-off and regulation-on conditions

on the contextual-signal problem. The regulation-off condition was less suc-

cessful than the regulation-on condition (Fisher’s exact test: p < 6× 10−9).

(b) is a raincloud plot showing the generation at which the first solution

evolved in each successful replicate. Gray points indicate the number of

unsuccessful replicates for each condition. Regulation-on solutions typically

required fewer generations than regulation-off solutions to arise (Wilcoxon

rank sum test: p < 10−15). 123

Figure 5.6: Boolean-logic calculator problem-solving performance. (a) shows

the number of successful replicates for the regulation-off and regulation-

on conditions on the Boolean-logic calculator problem. The regulation-off

condition was less successful than the regulation-on condition (Fisher’s exact

test: p < 4×10−05). (b) is a raincloud plot showing the generation at which

the first solution evolved in each successful replicate. Gray points indicate

the number of unsuccessful replicates for each condition. Regulation-on

solutions typically required fewer generations than regulation-off solutions

to arise (Wilcoxon rank sum test: p < 0.042). 124

Figure 5.7: Execution traces of a successful SignalGP program computing a

NAND operation (a) and a NOR operation (d). (b) and (c) show the

directed graphs representing the regulatory networks associated with traces

(a) and (d), respectively. These visualizations are in the same format as

those in Figure 5.4. 125

Figure 5.8: The number of evolved solutions that generalize on the

independent-signal problem. The difference in number of solutions that

generalize between the regulation-on and regulation-off conditions is statis-

tically significant (Fisher’s exact test: p < 6× 10−06). The “Regulation-ON

(reg. KO)” condition comprises the solutions from the Regulation-on con-

dition, except with regulatory instructions knocked out (i.e., replaced with

no-operation instructions). 128

Figure 5.9: Boolean-logic calculator (postfix notation) problem-solving per-

formance. (a) shows the number of successful replicates for the regulation-

off and regulation-on conditions on the postfix Boolean-logic calculator prob-

lem. The regulation-on condition was less successful than the regulation-off

condition (Fisher’s exact test: p < 0.002). (b) is a Raincloud plot show-

ing the generation at which the first solution evolved in each successful

replicate. Gray points indicate the unsuccessful replicates for each con-

dition. Regulation-off solutions typically required fewer generations than

regulation-on solutions to arise (Wilcoxon rank sum test: p < 0.004). . . . 129

xvii

Figure 6.1: Examples of (A) direct-indexed memory and (B) tag-accessed

memory. The programs in (A) and (B) behave identically: both re-

quest input to the first memory register, set the second memory register to

the terminal value “2”, place the result of multiplying the contents of the

first two memory registers into the fourth memory register, and output the

contents of the fourth register. Here, we show the state of memory after the

Mult instruction has been executed. Note that not all instructions use all

three arguments. 134

Figure 6.2: Number of successful runs when using tag-accessed memory (right col-

umn) versus using traditional direct-indexed memory (left column) across

five problems and ten instruction argument mutation rates (after 100 gen-

erations for number IO and 500 generations for all other problems). . . . 136

xviii

Chapter 1

Introduction

This dissertation straddles basic research using computational systems for experimental

evolution and more applied research for evolutionary computation. These two disciplines

have divergent goals, but are unified by our ability to implement, observe, and exploit the

constructive process of evolution in silico. Experimental evolution allows us to test general

hypotheses about evolutionary processes by studying real-time evolutionary changes occur-

ring in experimental populations in response to conditions imposed by the experimenter

(Kawecki et al., 2012). Conventionally, evolution experiments are performed under labora-

tory conditions using populations of biological organisms that are tractable to observe and

experimentally manipulate (e.g., Escherichia coli, Pseudomonas, Saccharomyces cerevisiae,

Drosophila melanogaster, and a variety of phage-bacteria systems). For example, over 70,000

generations of evolution have elapsed the ongoing long-term evolution experiment with E. coli

(Barrick et al., 2020), which has yielded analyses on a wide range of topics, including long-

term evolutionary dynamics (Wiser et al., 2013; Good et al., 2017), historical contingency

(Travisano et al., 1995; Card et al., 2019), the evolution of mutation rates (Sniegowski et al.,

1997), the origins of novel traits (Blount et al., 2008), and the maintenance of phenotypic

plasticity under relaxed selection (Grant et al., 2020). In my work, I conduct experimental

evolution studies using populations of digital organisms, which are self-replicating computer

programs that compete, mutate, and evolve in computational environments.

Insights gained from experimental evolution studies can also be useful for more applied

1

goals. Evolutionary computation exploits the natural principles of evolution as a general

purpose search algorithm in order to solve challenging computational problems. These evo-

lutionary algorithms begin with an initial population of individuals, be they computer pro-

grams, neural networks, robot body plans, or potential solutions to some other kind of a

well-defined problem. Each generation, candidate solutions are evaluated on one or more

criteria to determine their quality. After evaluating the population, promising individuals

are selected as parents to contribute genetic material to produce the next generation of in-

dividuals. Evolutionary algorithms direct populations through a problem’s search space via

repeated evaluation, selection, and variation (i.e., replicating promising individuals with ran-

dom mutations) until a sufficiently good solution is found. In my dissertation work, I focus

on genetic programming (GP) wherein we apply evolutionary algorithms to automatically

synthesize computer programs rather than writing them by hand.

Advances in genetic programming and digital evolution research are synergistic. Both

genetic programming and digital evolution systems evolve computer programs albeit with

different goals in mind; as such, similar methods for representing and interpreting computer

programs can be shared across disciplines. Further, digital evolution studies contribute to

a deeper understanding of the open-ended evolutionary processes that continue to generate

adaptive biological complexity. We can exploit this understanding to improve existing evo-

lutionary computing techniques or to inspire new evolutionary algorithms altogether (e.g.,

Goldberg and Richardson 1987; Spector 2011; Goings et al. 2012). Likewise, advances in

evolutionary computing can improve our ability to model evolutionary processes in silico by

providing new ways of representing digital organisms, data analysis techniques, and visual-

izations.

In my first two research chapters (Chapters 2 and 3), I focus on phenotypic plasticity,

which is the capacity for a single genotype to express different phenotypes in response to

a change in its environment (West-Eberhard, 2003). Phenotypic plasticity underlies many

complex traits and developmental patterns found in nature and serves as a key mechanism for

2

responding to spatially and temporally variable environments (Bradshaw, 1965). For exam-

ple, genetically homogeneous cells in a developing multicellular organism require phenotypic

plasticity to coordinate their expression patterns through environmental signals (Schlichting,

2003). Indeed, biologists have long been interested in understanding how adaptive pheno-

typic plasticity evolves, the mechanisms underpinning plasticity in natural organisms, and

how the evolution of plasticity influences subsequent evolutionary outcomes (Gibert et al.,

2019). In Chapter 2, I investigate how mutation rate and environmental change rate af-

fect the evolution of adaptive phenotypic plasticity, and I additionally identify intermediate

evolutionary stepping stones along the lineages of adaptively plastic digital organisms. In

Chapter 3, I shift my focus from the evolutionary origins of adaptive plasticity to its evolu-

tionary consequences. Specifically, I explore how the evolution of plasticity affects the rate of

subsequent evolutionary change and the evolution and maintenance of novel adaptive traits.

Phenotypic plasticity also has practical applications in evolutionary computing, which

I explore in Chapters 4, 5, and 6. In many realistic problem domains, conditions are noisy

or cyclically change. As in biological organisms, phenotypic plasticity can allow generated

solutions to be robust to noise and capable of dynamically responding to changing problem

conditions (e.g., Soltoggio et al. 2018).

Synthesizing computer programs capable of complex forms of adaptive plasticity is espe-

cially relevant to genetic programming. Automating software development is a long-standing

goal in the genetic programming community (Koza, 1989; O’Neill and Spector, 2019). All

useful software applications require some degree of phenotypic plasticity in order to condi-

tionally respond to inputs. Indeed, most software applications require even more advanced

forms of phenotypic plasticity, as they must regulate responses to inputs based on prior

context. For example, the computations that must occur on a calculator after pressing the

“equals” button depend on the set of inputs previously provided. I argue that we can draw

on our understanding of biological mechanisms of adaptive plasticity and their evolution to

evolve more dynamically responsive computer programs.

3

If conventionally written software commonly contains complex forms of adaptive plas-

ticity, why not evolve programs constructed from conventional programming languages? The

programming languages used by human software developers are not easily evolvable (Ras-

mussen et al., 1990). Software written with a conventional programming language is not

robust to minor perturbations (e.g., mutations). Yet, many of the mechanisms required for

adaptive plasticity in existing genetic programming representations (e.g., conditional logic

and jump-based flow control) are the same mechanisms used by traditional programming

languages. Can genetic programming do better than using such conventional mechanisms?

In my work, I look to the evolved mechanisms of plasticity in biological organisms to improve

the way in which we represent computer programs for evolution. In Chapter 4, I introduce

SignalGP, a novel genetic programming technique for evolving event-driven programs that

handle signals from the environment or from other agents in a more biologically inspired

way than traditional GP approaches. Next in Chapter 5, I introduce tag-based module reg-

ulation for genetic programming, which allows us to more easily evolve programs capable

of dynamically regulating responses to inputs over time. Finally, in Chapter 6, I briefly

introduce tag-accessed memory, a more flexible approach to labeling and accessing memory

than traditional direct-addressed memory schemes.

1.1 Digital Evolution

Digital evolution experiments have emerged as a powerful research framework from

which evolution can be studied. In digital evolution, self-replicating computer programs

(digital organisms) compete for resources, mutate, and evolve in a computational environ-

ment (Wilke and Adami, 2002). In my work, a digital organism comprises a linear sequence of

program instructions (a genome) and a set of virtual hardware components used to interpret

and express those instructions. To reproduce, a digital organism must execute instructions

that allow it to copy its genome instruction-by-instruction and then divide (producing an

offspring). However, self-replication is imperfect and can result in mutated offspring. The

4

combination of heritable variation due to imperfect self-replication and competition for lim-

ited resources (e.g., space, CPU time, etc.) results in evolution by natural selection.

Digital organisms live, interact, and evolve in entirely artificial environments constructed

by the experimenters. One potential drawback to digital evolution is that the conclusions

drawn from an experiment have the potential to be artifacts of the constructed artificial

environment (Wilke and Adami, 2002). This drawback, however, can also be applied to

most microbial experimental evolution where organisms are extracted from their natural

environment and placed in an artificial environment constructed in a laboratory.

Microbial model organisms at least have natural ancestry and can often be used to infer

historic evolutionary events. Digital evolution studies, however, are not grounded in the

same evolutionary history and biochemical compounds as carbon-based life on Earth. This

limitation makes it more challenging to use digital evolution studies to illuminate idiosyn-

crasies and contingencies associated with the history of life on our planet. However, these

drawbacks are also digital evolution’s strength as a research framework, since we are not

limited to studying only one particular instance of evolution or locked in to using nucleic-

acid, amino acid, and protein based representations. Furthermore, we can fully observe and

control digital environments at rapid speeds, allowing us to perform experiments and analy-

ses that would otherwise be challenging or even impossible to perform in biological systems.

Additionally, by reproducing results across biological and digital systems, we can disentan-

gle general principles from effects specific to a particular model organism or planetary body

(Wilke and Adami, 2002).

In the remainder of this section, I provide historical context for digital evolution research,

discuss the benefits of experimental digital evolution, and highlight prior digital evolution

research related to phenotypic plasticity.

5

1.1.1 Historical context

Two computer programs in their native habitat—the memory chips of a digital

computer—stalk each other from address to address. (Dewdney, 1984)

Modern digital evolution systems can be traced back to the 1984 computer game “Core

War” (Dewdney, 1984). In Core War, human competitors use a simplified assembly lan-

guage (called Redcode) to write “gladiatorial” computer programs that compete for space

in the simulated core memory of a computer. To win a bout of Core War, a program must

shut down all of the processes associated with its competitor programs. The most successful

programs all engaged in self-replication. Such replicator programs repeatedly created copies

of themselves, each of which repeatedly copied themselves ad infinitum. Thus, if one copy

were to be destroyed by an adversary, other copies would still persist to continue replicat-

ing. Replicators could grow exponentially in memory, rapidly outcompeting other programs

and taking over core memory. Despite having populations of self-replicating programs and

competition, evolution did not occur in Core War because replicators always created perfect

copies of themselves.

Inspired by Core War, Rasmussen et al. created Core World (Rasmussen et al., 1989).

Core World used the same Redcode language to represent programs, and programs competed

in the same computational environment as in Core War. However, Core World introduced

the possibility for random mutations when a program copied itself (Rasmussen et al., 1989,

1990). That is, the command used by replicator programs to copy themselves was imperfect,

sometimes writing a random instruction instead of copying the intended instruction. Indeed,

Core World succeeded in facilitating the evolution of populations of computer programs.

However, the Core World system proved to be ill-suited for studying evolution. Programs

written in Redcode were not designed to survive mutations, and as such, accumulated dele-

terious mutations often drove the populations to extinction.

Thomas Ray’s Tierra system (Ray, 1991) innovated on the design of Core World and

facilitated some of the first successful evolution experiments with self-replicating computer

6

programs. The programming language used to construct the genomes of evolving programs in

Tierra was more syntactically robust than Redcode. As such, genomes in Tierra were more

evolvable than those in Core World because mutated daughter programs were less often

broken. Furthermore, in contrast to Core World, Tierra protected “living” programs from

being overwritten by their competitors, requiring programs to explicitly request a protected

block of memory into which they could copy themselves. When the population grew to the

environment’s carrying capacity, Tierra removed the oldest programs from the population

to make room for new programs to be born.

In initial experiments using Tierra, Ray founded populations with an ancestral program

capable only of self-replication (Ray, 1991). Competition for space dominated these early

studies, resulting in a strong selection pressure for organisms to increase their replication rate.

Indeed, Ray observed organisms with shorter genomes evolve and outcompete organisms

with longer genomes, as shorter genomes could be copied faster because they contained

fewer instructions that needed to be copied to produce an offspring. Ray unexpectedly

observed the evolution of obligate parasites—programs that co-opted the copy machinery

of their competitors to copy themselves1. An evolutionary arms race ensued. Would-be

“host” programs evolved mechanisms for resisting parasites, and in turn, parasites evolved

to penetrate those defensive mechanisms. The richness of observed evolutionary dynamics

in Tierra was initially surprising given the simplicity of Tierra’s environment. These initial

experiments positioned digital evolution as a promising endeavor for studying evolutionary

processes.

The Avida Digital Evolution Platform expanded on the design of Tierra but added

the ability to configure complex environments and sophisticated data tracking tools (Adami

and Brown, 1994; Ofria and Wilke, 2004; Ofria et al., 2009). In Avida, digital organisms

compete for space on a lattice of cells (Ofria et al., 2009). When an organism reproduces,

its offspring is placed in a nearby cell (or in a random cell if the population is well-mixed),

1Ray labeled these programs as parasites, but they are more accurately described as cheaters because
they did not directly harm the programs whose replication machinery they co-opted.

7

replacing any previous occupant of that cell. As in Tierra, improvements to the speed of self-

replication are advantageous in the competition for space in the environment, and organisms

in Avida can improve their replication rates by improving genome efficiency (e.g., using a

more compact encoding). Avida, however, introduced the concept of resources that can be

“metabolized” by a digital organism to accelerate the rate at which it expresses its genome

(i.e., its “metabolic rate”). Resources in Avida are associated with completing designated

tasks, such as computing Boolean logic functions on inputs from the environment. Avida

gives experimenters fine-grained control over how resources are configured, including their

abundance (Cooper and Ofria, 2002), spatial distribution (Dolson et al., 2017), and their

metabolic effects (Canino-Koning et al., 2016, 2019).

The Avida system is perhaps the most widely used digital evolution system to date

and is often credited with advancing digital evolution as a model system for conducting

scientifically rigorous evolution experiments. Experimental evolution studies using Avida

have been well received, and topics such as the evolution of complexity (Adami et al., 2000;

Lenski et al., 2003), sexual recombination (Misevic et al., 2010), modularity (Misevic et al.,

2006), robustness (Lenski et al., 1999; Elena et al., 2007), and division of labor (Goldsby

et al., 2012a, 2014) have been published in top evolutionary biology venues. Given Avida’s

track record, I used it to conduct the studies presented in my first two research chapters

(Chapters 2 and 3).

1.1.2 The Benefits of Digital Evolution

Evolution experiments using digital organisms balance the speed and transparency of

mathematical and computational simulations with the open-ended realism of laboratory

experiments. Here, I overview four properties of digital evolution systems that make them

valuable complements to traditional carbon-based model organisms for studying evolutionary

processes, providing exemplars of each:

8

Generality

Digital evolution systems offer researchers the unique opportunity to study evolution

in organisms that share no ancestry with carbon-based life (Wilke and Adami, 2002). As

biologist John Maynard Smith made the case, “So far, we have been able to study only one

evolving system and we cannot wait for interstellar flight to provide us with a second. If

we want to discover generalizations about evolving systems, we will have to look to artificial

ones” (Maynard Smith, 1992). Indeed, studies of carbon-based lifeforms that all share com-

mon ancestry dominate evolutionary biology. On their own, these studies can provide deeper

insights into life on Earth. However, such studies provide a limited lens with which to make

generalizations about evolutionary processes, as they are biased by the particular history of

life on our planet. By testing hypotheses across biological and digital model systems, we can

disentangle general principles from the effects of specific model organisms.

For example, what is the relative importance of adaptation, chance, and history in ex-

plaining diversity in evolved populations? Using experimental populations of Escherichia

coli, Travisano et al. disentangled the relative contributions of adaptation, chance, and his-

tory in the evolution of fitness and cell size (a trait weakly correlated with fitness) (Travisano

et al., 1995). Travisano et al. found that fitness gains were most strongly influenced by adap-

tive processes, and variance in cell size were most explained by chance and history. Wagenaar

and Adami replicated this study with Avida (Wagenaar and Adami, 2004), finding that the

overall patterns observed in E. coli and in digital organisms were broadly similar. Ongoing

studies in digital organisms are extending these concepts further, using more restarts at

different time points and across different environments, allowing us to explore more of the

nuances at play.

Transparency

Digital evolution systems allow for perfect, non-invasive data tracking. Experimenters

can save the complete details of evolving populations for further analysis, including every

9

mutation that occurs, every genotype that exists, every phenotype that is expressed, every

environmental state that occurs, every time an organism interacts with another organism

or with the environment, et cetera. By tracking parent-offspring relationships, we can ana-

lyze complete evolutionary histories within an experiment, which circumvents the historical

problem of drawing evolutionary inferences using incomplete records (from frozen samples

or fossils) and extant genetic sequences.

Many digital evolution studies inspect the complete lineages of evolved digital organisms

to tease apart the mutation-by-mutation evolution of novel traits (Lenski et al., 2003; Dolson

et al., 2017; Grabowski et al., 2013; Goldsby et al., 2014; Pontes et al., 2020). In an exem-

plary analytical undertaking, Dolson and Ofria identified spatial hotspots of evolutionary

potential in heterogeneous environments (i.e., positions where novel traits disproportion-

ately evolved). They found evidence that the particular paths traversed by lineages through

space might explain the locations of these evolutionary hotspots (Dolson and Ofria, 2017).

Recently, Dolson et al. reviewed a breadth of ancestry-based metrics and analyses that oper-

ate on lineages and phylogenies in an effort to improve our capacity to quantitatively explore

evolutionary histories in digital evolution experiments (Dolson et al., 2020).

Recording organism relationships and interactions can be valuable for many other goals

as well. For example, by tracking phenotypes over time, Cooper and Ofria were able to ob-

serve the real-time evolution of stable ecosystems under resource-limited conditions (Cooper

and Ofria, 2002). In a similar vein, Fortuna et al. tracked host-parasite interactions to

investigate how the structure of infection networks is shaped by antagonistic coevolution

(Fortuna et al., 2019).

Control

Digital evolution systems facilitate experimental manipulations that go beyond what is

possible in laboratory or field experiments. These capabilities allow researchers to empirically

test hypotheses that would otherwise be relegated to theoretical analyses. For example,

10

digital evolution systems allow experimenters to precisely control basic parameters such

as population size and mutation rate. By comparing populations evolving under different

mutation rates, Wilke et al. discovered the “survival of the flattest” effect where high

mutation rate environments selected for genomes with slower replication rates but that were

more robust to mutations (Wilke et al., 2001).

Digital evolution experiments also allow for fine-grained control over other aspects of

an environment. For example, Dolson et al. used Avida to experimentally manipulate the

spatial distribution of resource availability, finding that phenotypic diversity was positively

correlated with spatial entropy and that spatially heterogeneous environments exhibited

increased evolutionary potential relative to more homogeneous environments (Dolson et al.,

2017). By experimentally controlling how environments changed temporally, Nahum et al.

demonstrated that a single temporary environmental change can improve fitness landscape

exploration and exploitation in evolving populations of digital organisms (Nahum et al.,

2017).

Digital evolution systems also allow experimenters to monitor and manipulate muta-

tional effects in real-time. Covert et al. performed real-time reversions of all deleterious mu-

tations as they occurred to isolate their long-term effects on evolutionary outcomes (Covert

et al., 2013). Lalejini et al. implemented a range of slip duplication mutation operators

(each designed to isolate a single effect of duplication mutations) in order to tease apart why

such mutations can promote the evolution of complex traits (Lalejini et al., 2017).

For an individual digital organism, we can perform systematic knockout analyses to iden-

tify which instructions are responsible for producing a given phenotypic outcome. This sort

of analysis has been applied along lineages to identify how information accumulates (Ofria

et al., 2008) or to investigate how environmental change shapes the evolution of genetic archi-

tectures in digital organisms (Canino-Koning et al., 2016). Mutational landscaping analyses

go a step further than knockout analyses, allowing experimenters to fully characterize a local

mutational landscape by evaluating all possible one- and two-step mutants. Such analyses

11

have been used to quantify epistasis (Lenski et al., 1999) and mutational robustness (Elena

et al., 2007) and to investigate the evolution of evolvability (Canino-Koning et al., 2019).

Scale

Modern computers allow us to observe many generations of digital evolution at tractable

time scales; thousands of generations can take mere minutes as opposed to months, years, or

centuries. For example, populations of digital organisms have been used to test theoretical

predictions about the expected rate of adaptation over hundreds of thousands of generations

(Wiser, 2015; Wiser et al., 2018).

Additionally, digital evolution experiments allow researchers to enact complex experi-

mental protocols with minimal extra effort. That is, unlike in wet-lab experiments, compu-

tational experiment protocols can easily be automated using modern scripting tools.

With the increasing accessibility of high performance computing systems, it can be triv-

ial to evolve hundreds of replicate populations for a given experimental treatment. Evolution

is an inherently stochastic process, so increased replication provides a clearer picture of the

distribution of possible treatment effects. Further, a high degree of replication increases the

odds that experimenters will be able to observe and study rare events. For example, Pontes

et al. (2020) evolved 900 replicate populations of digital organisms in order to observe 10

examples of reversal learning behavior (i.e., the ability to relearn associations between cues

and responses when cues are swapped) to further analyze.

Even the fastest computing systems, however, lack the parallelism of the real world.

That is, digital evolution systems cannot yet rival bacterial systems in their ability to scale

to large population sizes. A typical population of digital organisms contains thousands to tens

of thousands of organisms; however, microbial populations used in laboratory experiments

often contain several orders of magnitude more individuals.

12

1.1.3 Phenotypically plastic digital organisms

Phenotypic plasticity has been the subject of many computational evolution studies.

Here, I focus on previous work using self-replicating computer programs. Clune et al.

demonstrated that adaptively plastic digital organisms can evolve in Avida under the fol-

lowing conditions: a fluctuating environment where conditions are differentiable by reliable

cues (sensory instructions), and each condition favors different phenotypic traits (perform-

ing different computational tasks) such that no single phenotype exhibits high fitness across

all conditions. Clune et al. also characterized two mechanisms by which digital organ-

isms tended to achieve phenotypic plasticity. First, dynamic-execution-flow plasticity uses

conditional logic statements (e.g., if statements) to modify which instructions are executed

based on environmental conditions. Second, static-execution-flow plasticity integrates sen-

sory information into internal “metabolic” pathways such that the same sequence of program

instructions is always executed, but produces different behaviors in different environmental

conditions.

Genetically homogeneous groups of individuals (e.g., cells in a multicellular organism

or members of a eusocial insect colony) require phenotypic plasticity to differentiate and

coordinate their behavior (Schlichting, 2003). Indeed, digital evolution studies have demon-

strated the de novo evolution of adaptive phenotypic plasticity that allows “multicellular”

collectives of digital organisms to coordinate their behavior. Goldsby et al. showed that

direct selection for task specialization in clonal groups of digital organisms promotes the

evolution of differentiation and division of labor (Goldsby et al., 2010). In addition, Goldsby

et al. demonstrated that task-switching costs can promote the evolution of division of labor

(Goldsby et al., 2010, 2012a). Digital organisms have also been used to study the evolution

of synchronization and desynchronization (Knoester and McKinley, 2011) and the evolution

of consensus (Knoester et al., 2013) in groups of genetically homogeneous individuals.

Digital organisms have also been used to study the evolutionary conditions that give rise

to temporal polyethism, a form of behavioral plasticity exhibited by many eusocial insect

13

species whereby the tasks that an individual attempts to perform are correlated with the

individual’s age. Goldsby et al. demonstrated that differential task-riskiness is sufficient to

promote the evolution of temporal polyethism in genetically homogeneous groups (Goldsby

et al., 2012b). Individuals within a group used control-flow instructions to regulate task

performance, performing low or no risk tasks early in life and then switching to performing

higher risk tasks later in life.

The dirty work hypothesis predicts that the mutagenic effects associated with

metabolism can promote the evolution of plasticity in the form of germ–soma differenti-

ation in multicellular organisms (Goldsby et al., 2014). Goldsby et al. tested the dirty work

hypothesis using digital organisms, finding that individuals within a multicellular group used

phenotypic plasticity both to differentiate between germ and soma and to efficiently divide

mutagenic tasks amongst somatic cells.

Quorum sensing is a form of communication used for plasticity in many species of bacte-

ria, allowing individuals to regulate their actions depending on the density of the surrounding

population (Miller and Bassler, 2001). Beckmann et al. demonstrated the evolution of quo-

rum sensing in digital organisms whereby individuals adaptively suppress self-replication

based on their local population density (Beckmann and McKinley, 2009; Beckmann et al.,

2012). Johnson et al. expanded this work, showing that the evolution of quorum sensing can

improve the efficacy of adaptive suicidal altruism—a strategy where an altruistic organism

dies to increase the fitness of kin—by helping altruistic individuals regulate when to die

(Johnson et al., 2014).

Using digital organisms, Wagner et al. investigated how predator-prey coevolution influ-

ences the subsequent evolution of behavioral plasticity in predator and prey species (Wagner

et al., 2014, 2020). Wagner et al. found increased sensor reliance and behavioral plasticity

in prey that coevolved with predators than in prey that evolved without predators. In-

deed, prey seemed to exapt genetic components of evolved sense-and-flee predator avoidance

strategies for sense-and-retrieve foraging strategies.

14

Grabowski et al. tested whether digital organisms could evolve to plastically use in-

formation about past experiences for optimal decision making (Grabowski et al., 2010).

Specifically, an organism’s reproductive success was tied to its ability to traverse a nutrient

trail. To follow a trail, organisms needed to sense and react appropriately to environmental

cues that indicated how to remain on the trail. Grabowski et al. found that memory usage

evolved only when it provided a substantial advantage; otherwise, organisms tended to adopt

reflexive strategies that did not require memory. Some memory-based strategies relied on

an evolved odometry sensor wherein organisms tracked the number of steps taken and their

orientation. Expanding on this work, Grabowski et al. used lineage analyses to disentangle

the step-by-step evolution of such odometry-based strategies (Grabowski et al., 2013).

Building on Grabowski et al.’s work, Pontes et al. used digital organisms to investigate

the selective pressures that promote more complex forms of plasticity such as the evolution

of associative learning (Pontes et al., 2017, 2020). Pontes et al. evolved organisms capable of

associating novel environmental cues with their meaning in different contexts. Environments

that were stable across generations promoted the evolution of purely reflexive behavior,

and environments that varied across generations (but remained stable during an organism’s

lifetime) promoted the evolution of learning. Pontes et al. found evidence that reflexive

behaviors were a necessary building block for the evolution of learning, indicating that both

types of environments were important.

As reviewed above, the majority of prior work investigates diverse forms of phenotyp-

ically plastic behaviors in digital organisms, with a focus on the selective pressures that

promote their evolution. A smaller subset of prior work used lineage analyses to illuminate

the step-by-step process by which phenotypic plasticity tended to evolve (e.g., Grabowski

et al. 2013; Goldsby et al. 2014; Pontes et al. 2020). Each of these prior studies have focused

on the evolution of adaptive plasticity, but have not emphasized its influence on subsequent

evolutionary outcomes. In the chapters below, I further examine the origins of phenotypic

plasticity, extend these analyses to explore the consequences of plasticity of future evolution,

15

and further investigate how to harness plasticity for more applied goals.

1.2 Genetic programming

Both digital evolution and genetic programming (GP) systems evolve populations of

computer programs, but each does so with a different objective. Digital evolution aims to

use computer programs as model organisms for evolution experiments, whereas GP aims to

synthesize computer programs to solve computational problems. As such, GP systems often

ignore much of the biological realism that is present in digital evolution systems in order to

increase problem-solving efficiency by actively steering populations toward promising regions

of the search space.

Most GP systems follow the same overarching recipe for synthesizing computer programs

(Ofria et al., 2009):

1. Initialize a population of programs (usually with randomly generated pro-

grams or hand-designed programs).

2. Evaluate each program’s quality relative to one or more criteria.

3. Select promising programs to contribute genetic material to the next gen-

eration based on their quality.

4. Vary selected programs by mutating or recombining them to produce the

next generation of programs.

5. Repeat this process from step two until a sufficiently good program is

generated.

Of course, the details of each of these components—initialization, evaluation, selec-

tion, and variation—vary dramatically across GP systems (Poli et al., 2008), as different

techniques are more or less effective depending on the problem domain. In my final three

research chapters (Chapters 4, 5, and 6), I focus on another fundamental aspect of genetic

16

programming: the substrate being evolved. A major challenge with any problem being

solved with GP is determining how to represent and interpret the computer programs that

we evolve. More specifically, I ask how we can better represent computer programs such that

we can more easily evolve programs capable of complex forms of adaptive phenotypic plas-

ticity. I want GP to be able to produce programs that can dynamically respond to external

conditions (including user input) while modifying their behavior based on prior events.

Given that software developers commonly write highly responsive, “phenotypically plas-

tic” programs, perhaps the obvious choice would be to evolve programs with one of the many

modern programming languages used by professional software developers. However, as early

digital evolution studies revealed, conventional programming languages are ill-suited for

evolving computer programs (Rasmussen et al., 1989). For example, any professional soft-

ware developer will attest that random perturbations (mutations) to a conventionally written

program is likely to fatally break its functionality. Even experiments that preserve syntax,

however, still find it challenging to cope with the complexity and brittleness of human pro-

gramming languages, though progress has been made in automatically repairing bugs in

human-written code (Le Goues et al., 2012b,a; Yuan and Banzhaf, 2020). As a result, a sub-

stantial amount of research in the GP community revolves around developing and analyzing

new languages and techniques for representing evolvable computer programs.

Just as human software developers have access to an enormous variety of specialized

programming languages, GP features many ways to represent evolvable programs. Each rep-

resentation features different programmatic elements that vary in their syntax, organization,

interpretation, and evolution. These differences can dramatically influence the types of com-

puter programs that can be evolved, and as such, influence a representation’s problem-solving

range (Hintze et al., 2019; Wilson and Banzhaf, 2008).

The earliest examples of successfully evolving computer programs used tree-based repre-

sentations (Forsyth, 1981; Koza, 1989). In tree-based GP, programs are organized as abstract

syntax trees (Poli et al., 2008). The leaves of a tree are variable inputs or constants (i.e.,

17

terminals) and the internal nodes are typically arithmetic operations (e.g., addition, mul-

tiplication, etc.). Trees are conventionally executed using preorder traversal. That is, tree

execution begins at the root, which immediately request the return value of its first sub-tree,

triggering a recursive execution pattern. In practice, results from a tree are produced in a

bottom-up fashion; that is, the bottom-most operations are resolved first, and the results

of lower operations are propagated up the tree (as inputs to operations higher in the tree)

until the root can finish being executed to produce the program’s final output. Tree-based

programs typically describe multivariate mathematical functions. As such, tree-based GP is

often applied to symbolic regression problems (Orzechowski et al., 2018).

Since the early success of tree-based GP, a wide range of other GP representations

have been developed, including graph-based GP (Miller, 1999; Kelly and Heywood, 2017),

stack-based GP (Perkis, 1994; Spector, 2001), and linear GP (Brameier and Banzhaf, 2007).

In particular, linear GP represents programs as linear sequences of instructions and is the

technique used for most conventional digital organism research. Linear genetic programs

follow an imperative paradigm where computation is procedural: execution often starts at

the top of the program and proceeds instruction-by-instruction, jumping or branching as

dictated by executed instructions. Indeed, due to linear GP’s similarity with conventional

digital organism genetic representations, the techniques that I propose in Chapters 4, 5, and

6 are in the context of linear GP, facilitating more direct knowledge transfer between my

digital evolution and GP research. Within each of these chapters, I provide a more targeted

literature review of the specific types of GP techniques that I am examining.

1.3 Thesis Statement

Adaptive systems require phenotypic plasticity to dynamically respond to complex and

ever-changing environments. We must study digital evolution and genetic programming

systems if we are to understand how plasticity evolves, how it shapes subsequent evolutionary

outcomes, and how to harness it to synthesize adaptive computer programs.

18

1.4 Contributions

This dissertation can be divided into two parts. In part one (Chapters 2 and 3), I

conducted digital evolution studies to investigate the evolutionary origins and consequences

of adaptive phenotypic plasticity in cyclic environments. In part two (Chapters 4, 5, and 6),

I introduce and experimentally demonstrate three novel genetic programming techniques for

representing and evolving more responsive and adaptive (i.e., plastic) computer programs:

signal-driven genetic programs (SignalGP), tag-based genetic regulation, and tag-accessed

memory.

1.4.1 Part 1. Understanding the evolutionary origins and con-

sequences of adaptive phenotypic plasticity in fluctuating

environments

Chapter 2 focuses on the step-by-step process by which adaptive phenotypic plasticity

evolves in a fluctuating environment. Many effective and innovative survival mechanisms

used by natural organisms rely on the capacity for phenotypic plasticity. Understanding

the evolution of phenotypic plasticity is an important step toward understanding the ori-

gins of many types of biological complexity, as well as to meeting challenges in evolutionary

computation where dynamic solutions are required. In Chapter 2, I used the Avida Digital

Evolution Platform to experimentally explore the selective pressures and evolutionary path-

ways that lead to phenotypic plasticity. I present evolved lineages wherein unconditionally

expressed (non-plastic) traits tend to evolve first. Next, imprecise forms of phenotypic plas-

ticity often appear before optimal forms finally evolve. I experimentally disallowed each of

these intermediate phenotypes to test their importance. I found that phenotypic plasticity

is most likely to evolve when both unconditional trait expression and sub-optimal forms of

plasticity are allowed to evolve first. I also show that both mutation rate and environmental

change rate influence the evolution and maintenance of adaptive phenotypic plasticity.

In Chapter 3, I used Avida to investigate how the evolution of adaptive phenotypic

19

plasticity alters evolutionary dynamics and influences evolutionary outcomes in cyclically

changing environments. Specifically, I (1) examined the evolutionary histories of plastic

and non-plastic populations to test whether the evolution of adaptive plasticity promotes or

constrains subsequent evolutionary change; (2) evaluated how adaptive plasticity influences

fitness landscape exploration and exploitation by testing whether plastic populations are

better able to evolve and then maintain novel traits; and (3) tested if the evolution of adap-

tive plasticity increases the potential for deleterious mutations to accumulate in evolving

genomes. I found that populations with adaptive phenotypic plasticity evolve more slowly

than non-plastic populations, which rely on genetic variation from de novo mutations to

continuously re-adapt to the environment. The non-plastic populations undergo more fre-

quent selective sweeps and accumulate many more genetic changes. I find that phenotypic

plasticity stabilizes populations against environmental fluctuations; whereas the repeated

selective sweeps in non-plastic populations drive the loss of beneficial traits and accumula-

tion of deleterious mutations via genetic hitchhiking. As such, plastic populations are more

likely to retain novel adaptive traits than their non-plastic counterparts. My findings suggest

that the stabilizing effect of adaptive phenotypic plasticity plays an important role in subse-

quent adaptive evolution. Indeed, evolutionary dynamics in adaptively plastic populations

was more similar to that of populations evolving in a static environment than to that of

non-plastic populations evolving in an identical fluctuating environment.

1.4.2 Part 2. Building more responsive program representations

In traditional digital evolution systems (e.g., Tierra and Avida), genetic programs—

linear sequences of program instructions—are expressed procedurally: actions are performed

sequentially, and programs must explicitly check for new sensory information before they

can react. These linear program representations are convenient for their simplicity to an-

alyze, but do not easily support the evolution of modularized responses to environmental

signals that can be dynamically regulated over the organism’s lifetime. This shortcoming

20

holds conventional digital organisms back as model systems for studying the evolution of

complex forms of phenotypic plasticity. Likewise, it also limits conventional linear genetic

programming systems from evolving modular programs capable of dynamically regulating

responses to inputs over time.

In Chapters 4, 5, and 6, we introduce novel genetic programming techniques that both

improve the problem-solving potential of genetic programming systems and provide new

forms of model digital organisms for in silico experimental evolution. This work helps both

digital evolution and genetic programming systems realize a richer spectrum of evolutionary

outcomes that more closely rivals that of biological evolution.

In Chapter 4, I present SignalGP, a new genetic programming technique designed to

incorporate the event-driven programming paradigm into computational evolution’s toolbox.

Event-driven programming is a software design philosophy that simplifies the development of

reactive programs by automatically triggering program modules (event-handlers) in response

to external events, such as signals from the environment or messages from other programs.

I demonstrate the value of the event-driven paradigm using two distinct test problems (an

environment coordination problem and a distributed leader election problem) by comparing

SignalGP to variants that are otherwise identical, but must actively query sensors to process

events or messages. In each of these problems, responsiveness to the environment or other

agents is critical for maximizing fitness. I also discuss ways in which SignalGP can be

generalized beyond a linear GP context.

In Chapter 5, I introduce and experimentally demonstrate tag-based genetic regu-

lation, a new genetic programming technique that allows programs to dynamically adjust

which code modules to express. This extension allows evolution to structure a program

as a gene regulatory network where modules can be made more or less accessible based

on instruction executions. I find that tag-based regulation improves problem-solving per-

formance on context-dependent problems; that is, problems where programs must adjust

how they respond to current inputs based on prior inputs (i.e., current context). Indeed,

21

some context-dependent problems were unable to be solved by the system until regulation

was added. I also identify scenarios where the correct response to a particular input never

changes, rendering tag-based regulation an unneeded functionality that can impede adaptive

evolution. Tag-based genetic regulation broadens our repertoire of techniques for evolving

more dynamic genetic programs and can easily be incorporated into existing tag-enabled GP

systems.

Finally, in Chapter 6, I briefly demonstrate the use of tags to label memory positions

in GP, enabling programs to define and use evolvable variable names (Lalejini and Ofria,

2019a). My tag-based memory implementation did not substantively affect problem-solving

performance across several program synthesis benchmark problems. However, tag-based

addressing features a larger addressable memory space than more traditional register-based

memory approaches in GP. Further, in combination with tag-based regulation, tag-accessed

memory has the potential to enable more dynamic, context-dependent memory storage in

GP.

22

Chapter 2

The evolutionary origins of

phenotypic plasticity

Authors: Alexander Lalejini and Charles Ofria

This chapter is adapted from (Lalejini and Ofria, 2016), which underwent peer review and

appeared in the proceedings of the 2016 Artificial Life Conference.

2.1 Introduction

Phenotypic plasticity is the capacity for a genotype to express different phenotypes in

response to different environmental conditions (Ghalambor et al., 2010) and is ubiquitous

throughout nature. Phenotypic plasticity is central to many complex traits and developmen-

tal patterns found in nature and often serves as a key strategy employed by organisms to

respond to spatially and temporally variable environments (Bradshaw, 1965; Murren et al.,

2015). For example, Daphnia pulex use plasticity to differentially invest in morphological

defenses during development depending on the presence of predators in their local environ-

ment (Black and Dodson, 1990). Genetically homogeneous cells in a developing multicellular

organism rely on phenotypic plasticity to coordinate their expression patterns through en-

vironmental signals (Schlichting, 2003). Indeed, understanding the evolution of plasticity is

an important step toward a deeper understanding of biological complexity.

Phenotypic plasticity also has practical applications in the field of evolutionary computa-

23

tion where evolution by natural selection is harnessed to solve challenging computational and

engineering problems. In many realistic problem domains, conditions are noisy or cyclically

change. Plasticity enables solutions to dynamically respond to changing problem conditions

and be robust to noise. Both the biological and evolutionary computation domains motivate

the following questions: (1) Under what conditions does phenotypic plasticity evolve? And

(2), what are the evolutionary stepping stones for phenotypic plasticity?

Ghalambor et al. identify four conditions that are necessary for phenotypic plasticity to

evolve: (1) populations are exposed to temporally or spatially varying environments, (2) the

environments are differentiable by reliable signals, (3) different environments favor different

phenotypes, and (4) no single phenotype can exhibit high fitness across all environments

(Ghalambor et al., 2010). Theoretical and empirical findings support that phenotypic plas-

ticity can evolve under these conditions in both natural and artificial systems (Clune et al.,

2007; Goldsby et al., 2010, 2014; Hallsson and Björklund, 2012; Nolfi et al., 1994).

In addition to exploring the conditions that facilitate the evolutionary origin of pheno-

typic plasticity, it is also important to explore the step-by-step process by which plasticity

actually evolves. What are the reoccurring themes as evolution progresses toward more

plastic strategies? Are there genotypic or phenotypic patterns present in lineages leading to

phenotypically plastic organisms? These types of questions are especially difficult to address

in laboratory systems due to the slow pace of natural evolution, imperfections in lineage

tracking, and the difficulty of acquiring high-resolution data on genotypes and phenotypes.

Artificial life systems, however, are well-suited for observing and analyzing the process by

which phenotypic plasticity evolves.

Here, we use the Avida Digital Evolution Platform (Ofria et al., 2009) to explore the

process by which phenotypic plasticity evolves in a fluctuating environment. First, we inves-

tigate how environmental factors impact the evolution of phenotypic plasticity. Specifically,

we evaluate how mutation rate and environment fluctuation rate affect the evolution of

adaptive plasticity. Next, we identify the evolutionary stepping stones in the evolution of

24

adaptive phenotypic plasticity: do digital organisms evolve to express traits unconditionally

before evolving to conditionally express them as a function of their environment, and do sub-

optimal forms of plasticity evolve before more optimal forms of plasticity? We empirically

test whether such intermediate evolutionary stepping stones are important to the evolution

of adaptive plasticity by experimentally disallowing each stepping stone from evolving. Fi-

nally, we examine alternative evolutionary strategies to phenotypic plasticity in fluctuating

environments, and we find evidence for bet-hedging strategies that use mutationally induced

phenotype switching as a substitute for sensory-dependent plasticity.

2.2 Methods

2.2.1 The Avida Digital Evolution Platform

The Avida software platform provides a computational instance of evolution and en-

ables researchers to experimentally test hypotheses about evolution that would otherwise be

difficult or impossible to test in natural systems (Ofria et al., 2009). Here, we provide a brief

overview of Avida as it is relevant to this work. For a more detailed description of the Avida

software platform, see (Ofria et al., 2009).

Digital Organisms

Populations in Avida are made up of self-replicating computer programs (digital organ-

isms) that compete for space in a finite toroidal grid. Each digital organism is defined by

a sequence of instructions (i.e., its genotype), virtual hardware to execute the instructions,

and a position on the grid. The instruction set of Avida is Turing-Complete and enables or-

ganisms to perform basic computations, control their own execution flow, and replicate. An

organism’s virtual hardware (Figure 2.1) includes components such as a central processing

unit (CPU), registers used for computation, input and output buffers, and memory stacks.

Organisms replicate asexually by copying themselves line-by-line and dividing; however, an

organism’s copy instruction is imperfect, which can result in mutated offspring.

25

Figure 2.1: A visual representation of the default virtual hardware used by organisms
in Avida. Original figure from (Ofria et al., 2009).

Organisms can gain additional CPU cycles by performing tasks—such as mathematical

computations—to improve their metabolic rate. An organism’s metabolic rate determines

how rapidly it can execute its genome; a higher metabolic rate allows an organism to replicate

faster. Initially, an organism’s metabolic rate is roughly proportional to its genome length;

however, when an organism completes designated tasks, the organism’s metabolic rate can

be adjusted. In this way, we can differentially reward or punish the performance of different

tasks.

When an organism successfully replicates, its offspring is placed in a random location in

the world, replacing the organism formerly occupying that location. In this way, becoming

a more efficient replicator in Avida is advantageous in the competition for space. The

combination of competition for replication efficiency and heritable variation due to imperfect

copying during the replication process results in evolution by natural selection.

26

Sensing in Avida

In a typical Avida run, organisms must execute an instruction called IO to output

the result of a computation. That output is analyzed to determine if any tasks have been

performed, and if so, the organism is appropriately rewarded or punished. However, in this

default scenario, organisms cannot sense the result, even after the task has been performed.

To provide organisms with a mechanism to sense their environment, we added an IO-Sense

instruction to the set of available instructions1.

The IO-Sense instruction simulates IO and provides the organism with feedback on

what would have happened if the organism had executed an IO instruction instead. This

separation of IO performance and sensing allows organisms to determine whether or not a

particular task is being punished without the risk of punishment, lowering the potential cost

of sensing. If an IO operation would have resulted in a punishment, a -1 is added to the top

of the organism’s stack memory; if it would have resulted in a reward, a 1 is placed there. If

an IO operation would have resulted in neither a reward nor a punishment, a 0 is placed on

the organism’s stack memory. In this way, organisms can sense whether or not a particular

task is being rewarded or punished in their current environment and then react accordingly.

Identifying Phenotypic Plasticity in Avida

We define a phenotypically plastic organism in Avida as an organism that leverages

sensory information to alter their phenotype based on the environment. We restrict the

definition of an organism’s phenotype to the set of unique tasks it performs in the given

environment. We do not consider how many times an organism performs a particular task

in a given environment, but only whether the organism does the task at all. Thus, to

be phenotypically plastic, an organism must express a different task profile (i.e., perform

different tasks) in different environments.

1IO-Sense is based on the IO-Feedback instruction implemented in (Clune et al., 2007), which worked
exactly as the default IO instruction, but provided the organism with feedback on the result. As such, an
organism must first do a particular task once—and potentially get punished—to sense whether or not the
task is beneficial with the IO-Feedback instruction.

27

2.2.2 Experimental Design

To explore the evolutionary history of phenotypically plastic organisms, we used an

experimental design based on (Clune et al., 2007).

Environments

We constructed two experimental environments named ENV-NAND and ENV-NOT.

In ENV-NAND, organisms were rewarded for performing the NAND logical task but were

punished for performing the NOT logical task. Conversely, in ENV-NOT, organisms were

rewarded for performing the NOT logical task but were punished for performing the NAND

logical task. In each of our experimental treatments, we cycled between these two environ-

mental conditions. In this way, genotypes with the capacity to sense the current environment

and express the appropriate task had a competitive advantage over non-plastic organisms.

Phenotypes

Given our simple definition of a phenotype, there are only four possible phenotypes in

each of the two previously described environments: (1) perform only NAND, (2) perform

only NOT, (3) perform both NAND and NOT, and (4) perform neither NAND nor NOT.

When considering an organism’s phenotype across both ENV-NAND and ENV-NOT, there

are sixteen possible combinations. We enumerate these phenotypes in Figure 2.2. Of these

sixteen possible phenotypes, only four express the identical task profile in both environments;

the other twelve profiles all exhibit some form of plasticity. The optimal form of plasticity

is to perform only the NAND task in ENV-NAND and to perform only the NOT task in

ENV-NOT; any other form of plasticity is sub-optimal. There are five possible phenotypes

that leverage plasticity to perform punished tasks instead of rewarded tasks in a given

environment; we did not expect these maladaptive forms of phenotypic plasticity to be

successful.

28

Task Profile
Type of

Plasticity
Color
CodeENV-NAND ENV-NOT

NAND NOT NAND NOT

– – – –
X – X –
– X – X
X X X X
– – – X
X – – –
X X – X
X – X X
X – – X
X X – –
– – X X
– X – –
– – X –
– X X X
X X X –
– X X –

1

#

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Non-plastic

Actively
Beneficial

Optimal

Neutral

Actively
Harmful

Figure 2.2: Enumeration of all possible complete phenotypes. Each row represents a
distinct phenotype. An ‘X’ indicates that the associated task is performed in the specified environ-
ment, while a ‘–’ indicates that the task is not performed. For each environment, the column of
the rewarded task is highlighted in light purple, and the column of the punished task is highlighted
in light orange. An ‘X’ in a reward column or a ‘–’ in the punished column is optimal. Each phe-
notype has a color code, which is used in our lineage visualizations. Note that the first four rows
are non-plastic phenotypes, rows 5–8 exhibit partially beneficial plasticity, and row 9 is optimally
beneficial. Rows 10–11 are neutral non-adaptive plasticity, while rows 12–16 are detrimental forms
of plasticity.

Treatments

Our experimental design consisted of five treatments and a control: (1) a baseline

treatment with a moderate point-mutation rate and environmental-cycle length, (2) a low-

mutation-rate treatment, (3) a high-mutation-rate treatment, (4) a short-environment-cycle-

length treatment, (5) a long-environment-cycle-length treatment, and (6) a control where

both NAND and NOT were rewarded and the environment did not fluctuate. See Table 2.1

for treatment details.

29

Treatment Point-mutation Rate Environment Cycle
Length

Baseline 0.0075 100 updates

Low Mutation Rate 0.0025 100 updates

High Mutation Rate 0.0125 100 updates

Short Environment Cycle
Length

0.0075 50 updates

Long Environment Cycle
Length

0.0075 200 updates

Table 2.1: Differences among the five experimental treatments. Point-mutation rate is
given as mutations per instruction copied. Environment cycle length describes the length of time
(in updates) an environment is active before toggling to the alternative environment.

We created the baseline treatment to produce phenotypically plastic organisms for lin-

eage analysis. We limited the population size to 3600 organisms and seeded the world with

an ancestral genotype capable only of self-replication. We then evolved populations for

100,000 updates2 in Avida. We imposed a 0.0075 probability of point-mutation per instruc-

tion copied, as well as a 0.05 probability for each of single-instruction insertion and deletion

per genome copied. We fluctuated the current environment between ENV-NAND and ENV-

NOT every 100 updates in the baseline treatment. We ran 50 replicates of each treatment,

including the control.

Lineage Visualization

To explore evolutionary strategies evolved in fluctuating environments, we visualized

the lineages of evolved genotypes as vertical bars where time (in updates) proceeds from top

to bottom beginning with the lineage’s original ancestor genotype. Any given genotype on

the lineage must express one of the sixteen possible phenotypes enumerated in Figure 2.2. At

each point in time, the color of the visualized lineage corresponds to the color representing

the phenotype expressed by the lineage at that point in time. For example, because the

2An update in Avida is an experimental length of time. One update is defined as the amount of time it
takes for the average organism to execute 30 instructions (see (Ofria et al., 2009) for more details).

30

ancestral organism is capable only of self-replication, all visualized lineages should show

that the original ancestor’s phenotype performed neither the NAND task nor the NOT

task. In addition to the visualized lineages, we indicate the actual environmental conditions

experienced by the evolving populations at each point in time by the color of the vertical

axis. This type of visualization allows us to display the phenotypic states traversed by any

given lineage.

2.3 Results and Discussion

2.3.1 What conditions promote the evolution of phenotypic

plasticity?

Ghalambor et al. identified four environmentally-dependent requirements for the evolu-

tion of phenotypic plasticity (Ghalambor et al., 2010). Our experimental design conforms to

these conditions, enabling us to test their validity and relative importance. The oscillation

between ENV-NAND and ENV-NOT provides temporal variation. The IO-Sense instruction

reliably indicates the current environment. The two environments favor opposing phenotypic

traits, and the only way for an individual organism to achieve a high fitness in both envi-

ronments is to alter its phenotypic expression. Given the existing theoretical and empirical

support for these conditions, we expected to see the evolution of phenotypic plasticity in

each of our experimental treatments. However, we were unsure of the impact of altering

environmental factors such as mutation rate and environment fluctuation rate.

At the end of the experiment, we extracted the dominant (most abundant) genotype

from the population of each replicate. We tested these genotypes in both ENV-NAND and

ENV-NOT and recorded each genotype’s expressed phenotype across both environments. In

Table 2.2, we report the number of replicates in which the dominant genotype at the end of

the experiment was plastic and the number of replicates in which the dominant genotype was

optimally plastic. Note that for these results we only evaluated the most abundant genotype

at the end of the experiment. An ancestor of the evaluated genotype may have been plastic,

31

Treatment Plastic Replicates Unconditional
Precedes Conditional

Sub-optimal
Precedes
Optimal

Total Optimal∗ NAND
Task

NOT
Task

Baseline 31 (62%) 17 (34%) 31 (100%) 28 (90.3%) 16 (94.1%)

Low Mutation Rate 38 (76%) 30 (60%) 34 (89.5%) 35 (92.1%) 30 (100%)

High Mutation Rate 25 (50%) 11 (22%) 25 (100%) 24 (96%) 10 (90.9%)

Short Environment
Cycle Length

36 (72%) 18 (36%) 33 (91.7%) 28 (77.8%) 18 (100%)

Long Environment
Cycle Length

16 (32%) 10 (20%) 14 (87.5%) 16 (100%) 9 (90%)

Control 0 (0%) 0 (0%) – – –

∗Optimal is defined as the complete phenotype that only performs the rewarded task in each
environment.

Table 2.2: A summary of evolutionary outcomes across all five experimental treatments
and control. “Plastic Replicates” indicates the number of replicates (out of 50 per treatment) in
which the final dominant genotype was plastic at all (“Total”) and perfectly plastic (“Optimal”).
“Unconditional Precedes Conditional” indicates the number of times the NAND task and NOT
task were expressed unconditionally before eventually evolving to be express conditionally (out of
total plastic). Finally, “Sub-optimal Precedes Optimal” indicates how many runs had an imperfect
form of plasticity before eventually evolving to be optimally plastic (out of total optimally plastic).

but if that plasticity was not maintained in the lineage, we did not count it in Table 2.2.

As expected, the capacity for phenotypic plasticity evolved in each experimental treat-

ment; in 31 of the 50 baseline treatment replicates, phenotypic plasticity was present in the

final dominant organism. None of the final dominant genotypes from the control replicates

were phenotypically plastic. In all control replicates, the dominant genotype performed both

the NAND and NOT tasks unconditionally. Our results are consistent with existing theo-

retical and empirical work, supporting the validity of the conditions likely to facilitate the

evolution of phenotypic plasticity (Clune et al., 2007; Ghalambor et al., 2010; Hallsson and

Björklund, 2012; Nolfi et al., 1994).

32

2.3.2 How do environmental factors impact the evolution of

phenotypic plasticity?

While our results show phenotypic plasticity can evolve under the conditions identified

in (Ghalambor et al., 2010), how do mutation rate and fluctuation rate affect the evolution of

phenotypic plasticity under these conditions? We found compelling results for both mutation

rate and environmental cycle length.

Mutation Rate

While only of borderline statistical significance (p = 0.058 using Fisher’s Exact Test

with Bonferroni corrections for multiple comparisons; all statistics were done in R version

3.2.2 (R Core Team, 2016)), our results trend such that populations at lower mutation rates

appear more likely to evolve phenotypic plasticity than do populations at higher mutation

rates. The most abundant genotypes exhibited some plasticity in 38/50 runs at a low muta-

tion rate, 31/50 at the baseline mutation rate, and 25/50 and the high mutation rate. While

higher mutation rates increase genetic variation from one generation to the next, most muta-

tions that have phenotypic effects are deleterious (Sniegowski et al., 2000). Thus, at higher

mutation rates, the elevated influx of deleterious mutations could increase the difficulty of

maintaining the necessary genetic machinery for phenotypic plasticity. Qualitative evidence

for this effect can be seen in the time-sliced visualized lineages of final dominant, non-plastic

genotypes from the high-mutation-rate treatment (Figure 2.3) where lineages traverse states

of plasticity for some time before reverting back to states of non-plasticity3. Furthermore,

more phenotypic shifts in general increase the probability of quickly finding an appropriate

non-plastic phenotype after each environmental change.

Environment Fluctuation Rate

We found a significant difference (p = 0.00028 using Fisher’s Exact Test with Bonfer-

roni corrections for multiple comparisons) as we varied the cycle length for environmental

3For fully interactive visualizations of evolved lineages from all treatments, see https://lalejini.com/

evo-origins-of-phenotypic-plasticity-web/

33

https://lalejini.com/evo-origins-of-phenotypic-plasticity-web/
https://lalejini.com/evo-origins-of-phenotypic-plasticity-web/

U
pd

at
e

High mutation rate treatment
Non-plastic lineages

Environment indicator: ENV-NANDENV-NOT

Figure 2.3: Time-sliced visualization of lineages for non-plastic, dominant genotypes
from the high-mutation-rate treatment. Abbreviated color reference: cyan represents un-
conditional NOT task performance, dark blue represents unconditional NAND task performance,
and light purple represents sub-optimal forms of plasticity. Refer to Figure 2.2 for a full legend of
phenotype colors.

switching. Specifically, in the long-environment-cycle-length, only 16/50 runs ended with

a final dominant genotype that was phenotypically plastic, while the baseline and short-

environment-cycle-length produced 31 and 36 plastic outcomes, respectively.

We expect that the short-environment-cycle-length treatment is biased toward the evo-

lution of phenotypic plasticity because of the rapid environment fluctuations relative to

34

Baseline treatment
Plastic lineages

Environment indicator: ENV-NANDENV-NOT

U
pd

at
e

Figure 2.4: Time-sliced lineage visualization of dominant, plastic genotypes from the
baseline treatment. Abbreviated color reference: cyan represents unconditional NOT task per-
formance, dark blue represents unconditional NAND task performance, light purple represents
sub-optimal forms of plasticity, and dark purple represents optimal plasticity. Refer to Figure 2.2
for a full legend of phenotype colors.

other experimental treatments. Rapid fluctuations cause lineages to be less able to rely on

mutational input for adaptation. In the long-environment-cycle-length treatment, environ-

mental fluctuations may not occur rapidly enough to produce a sufficient selective pressure

for phenotypic plasticity, allowing alternative adaptive strategies to evolve instead.

35

2.3.3 What are the evolutionary stepping stones for phenotypic

plasticity?

In an attempt to identify patterns frequently encountered during the evolution of pheno-

typically plastic organisms, we extracted and analyzed the full lineages from our experiments.

We tested each ancestor genotype in both ENV-NAND and ENV-NOT and classified their

phenotype across both environments. In addition to a quantitative analysis, we also visual-

ized the lineages of the dominant, plastic genotypes; see Figure 2.4 for the visualization of the

baseline treatment. Using our visualizations and ancestor phenotype classifications, we ad-

dressed the following two questions: (1) Do the lineages of phenotypically plastic organisms

first evolve to perform tasks unconditionally before evolving to perform them conditionally

as a function of their current environment? And (2), do imperfect forms of phenotypic

plasticity tend to precede optimal forms?

Unconditional task performance precedes plasticity

To explore whether or not unconditional task performance was an evolutionary stepping

stone for conditional task performance (i.e., phenotypic plasticity), we determined whether a

task was performed unconditionally prior to being performed conditionally by the ancestors

of plastic genotypes. We analyzed both tasks (NAND and NOT) separately. These results

are reported in Table 2.2. Across all experimental treatments, non-plastic ancestors generally

preceded plastic ancestors. In other words, unconditional task performance of the NAND

and NOT tasks generally preceded the conditional performance of either task. Examples of

this can be seen in time-sliced plastic lineages from the baseline treatment (Figure 2.4) where

many lineages maintain states of unconditional task expression prior to entering states of

conditional task expression. These results suggest that, in fluctuating environments similar

to those in our experiment, the evolutionary path to phenotypic plasticity usually traverses

states of unconditional trait expression prior to entering states of conditional trait expression.

This result should be unsurprising. In order to evolve a regulated function, the capacity for

36

both the regulation and the function must exist. In our experiment, the function can be

selected for without regulation; however, regulation of the function is unlikely to be selected

for without the prior capacity for the function.

Sub-optimal plasticity precedes optimal plasticity

To investigate sub-optimal phenotypic plasticity as an evolutionary stepping stone for

optimal phenotypic plasticity in our experiment, we analyzed lineages of optimally plas-

tic genotypes. Again, we consider only complete phenotypes that exclusively perform the

rewarded task in each environment to be optimal. For each optimally plastic genotype’s

lineage, we determined whether or not the evolution of optimal plasticity was preceded by

the evolution of sub-optimal phenotypic plasticity. The results of this analysis are reported

in Table 2.2.

Across all experimental treatments, the evolution of sub-optimal plasticity did, indeed,

generally precede the evolution of optimal phenotypic plasticity. Examples of sub-optimal

plasticity preceding more optimal forms of plasticity can be seen in some of the time-sliced

lineages from the baseline treatment visualized in Figure 2.4. These results suggest that, in

fluctuating environments similar to those in our experiment, sub-optimal forms of phenotypic

plasticity tend to arise before the evolution of optimal forms of phenotypic plasticity.

Unconditional trait expression tends to evolve first; then, sub-optimal forms of plas-

ticity appear before optimal forms finally evolve. While challenging to verify, we expect

our results to be applicable to biological systems. The evolution of complex functions (e.g.,

optimal phenotypic plasticity) build on simpler, previously evolved functions (e.g., unreg-

ulated or sub-optimally regulated functions) (Lenski et al., 2003). These results, however,

are particularly useful for applied evolutionary computation. If an evolved problem solution

must respond dynamically to environmental variables, it is likely that the solution will need

to be able to traverse through states of rigidity and sub-optimal plasticity prior to reaching

a state of optimal plasticity. Thus, first evolving rigid solutions in fixed environments and

37

then gradually starting to fluctuate more aspects of the environment over time could provide

a scaffolding for the evolution of optimally plastic solutions.

2.3.4 Does plasticity still evolve when evolutionary stepping

stones are disallowed?

We conducted a series of followup experiments to investigate the importance of un-

conditional trait expression and sub-optimal plasticity as evolutionary stepping stones. We

evolved 200 replicate populations under baseline treatment conditions (described in Sec-

tion 2.2.2) and 200 replicate populations in each of three experimental conditions where we

disallowed particular phenotypic profiles from evolving: (1) we disallowed phenotypes that

expressed NAND and/or NOT unconditionally (i.e., task profiles 2, 3, and 4 from Figure

2.2); (2) we disallowed sub-optimally plastic phenotypes (i.e., task profiles 5 through 8 and

10 through 16 from Figure 2.2); and, (3) we disallowed phenotypes that exhibited uncondi-

tional trait expression or phenotypes that were sub-optimally plastic (i.e., all task profiles

except 1 and 9 from Figure 2.2). Note that in each of these experimental treatments, we

always allowed phenotypes that expressed no tasks or were optimally plastic across both

environments. In treatments where particular phenotypes were disallowed, we tested all off-

spring in both ENV-NAND and ENV-NOT; if the phenotype of an organism’s offspring was

among the disallowed phenotypes, we prevented its birth. As in our previous experiments,

we counted the number of replicates of each treatment where the dominant genotype at the

end of the experiment exhibited a plastic phenotype.

Figure 2.5 gives the number of plastic replicates that evolved in each experimental con-

dition. We compared each of the three treatments that disallowed stepping stone phenotypes

to our unmodified baseline treatment (Fisher’s exact test with a significance level of 0.05

and a Bonferonni correction for multiple comparisons). Each of the three treatments where

we disallowed offspring with particular phenotypes had significantly fewer replicates with

a plastic dominant genotype at the end of the experiment (unconditional trait expression

38

04

63

109

0

50

100

150

200

No restrictions Unconditional task expression Sub−optimal plasticity Unconditional task expression
and

sub−optimal plasticity
Disallowed stepping stone

P
la

st
ic

 r
ep

lic
at

es
(o

ut
 o

f 2
00

)

Figure 2.5: Blocked stepping stone evolutionary outcomes. For each condition, the bar plot
indicates the number of replicates (out of 200 per condition) where the final dominant genotype
was plastic.

disallowed: p < 10−4; sub-optimal plasticity disallowed: p < 10−4; both unconditional trait

expression and sub-optimal plasticity disallowed: p < 10−4).

No phenotypically plastic genotypes evolved when we disallowed all intermediate pheno-

types; when all intermediate phenotypes were disallowed, only two phenotypes were possible:

(1) performing neither the NOT nor NAND tasks across environments and (2) optimally reg-

ulating between the NOT and NAND tasks across environments. For plasticity to evolve

without allowing evolution to traverse intermediate stepping stones, optimal plasticity would

need arise in a single mutational step from a genotype that performed neither the NAND

nor NOT tasks. This result demonstrates that, together, these intermediate phenotypes

represent crucial building blocks for the evolution of phenotypic plasticity.

When we prevented genotypes that perform tasks unconditionally across environments,

plasticity evolved less frequently than in treatments where we placed no restrictions on

phenotypes; this supports our previous observation that unconditional task expression is a

stepping stone toward plastic task expression. However, many replicates (63 out of 200)

where unconditional task expression was disallowed still yielded plastic organisms. Thus,

while unconditional trait expression is likely a valuable building block in the evolution of

39

phenotypic plasticity, it is not necessary. Our results indicate that sub-optimal plasticity is

a more important building block for optimal plasticity than unconditional trait expression.

Only 4 out of 200 replicates where we disallowed sub-optimally plastic phenotypes yielded

optimal plasticity. This is not unsurprising, as a lineage would need to move from a state of

unconditional task expression to perfect task regulation in a single mutational step.

2.3.5 Are stochastic strategies evolving as an alternative to

phenotypic plasticity?

Stochastic phenotype switching, a form of bet hedging (Seger and Brockmann, 1987), is

a common strategy leveraged by bacteria in fluctuating environments (Rainey et al., 2011).

Some forms of stochastic phenotype switching rely on mutational input to induce phenotypic

changes. This strategy is thought to be a viable alternative to phenotypic plasticity in the

absence of reliable environmental signals or when the processing of sensory information

is costly (Rainey et al., 2011). Strategic stochastic phenotype switching often relies on

contingency loci, which are hypermutable regions of the genome that can induce phenotype

switching via mutational input (Moxon et al., 2006).

We hypothesized that stochastic phenotype switching was an alternative evolutionary

strategy to phenotypic plasticity because of its commonality in bacteria. We most expected to

see stochastic phenotype switching in our experimental treatments where the fewest number

of replicates produced phenotypically plastic final dominant genotypes.

Lineage Visualization

It can be difficult to intuitively understand evolutionary strategies leveraged by a lineage

without a visual aid. To explore evolutionary strategies alternative to phenotypic plasticity

in fluctuating environments, we visualized the lineages of dominant, non-plastic genotypes

from our experimental treatments.

If a lineage relied on stochastic phenotype switching, we would expect it to switch be-

tween phenotypic states of unconditional NAND task performance and unconditional NOT

40

Long environment cycle treatment
Non-plastic lineages

Environment indicator: ENV-NANDENV-NOT

U
pd

at
e

Figure 2.6: Time-sliced lineage visualization of non-plastic, dominant genotypes from
the long environment cycle treatment. Abbreviated color reference: cyan represents uncon-
ditional NOT task performance, dark blue represents unconditional NAND task performance, light
purple represents sub-optimal forms of plasticity, and dark purple represents optimal plasticity.
Refer to Figure 2.2 for a full legend of phenotype colors.

task performance in approximate synchronization with the changing environment. Specifi-

cally, we should see ancestors along a lineage perform NAND unconditionally during periods

of ENV-NAND and see ancestors performing NOT unconditionally during periods of ENV-

NOT. We show a time-sliced lineage visualization of dominant, non-plastic genotypes at the

end of our experiment for the long-environment-cycle-length treatment (Figure 2.6).

41

From Figure 2.6, we see what appear to be cases of stochastic phenotype switching.

That is, we observe lineages switching between phenotypic states of unconditional NAND

task performance and unconditional NOT task performance in approximate synchronization

with the environment. Many of the lineages in the long-environment-cycle treatment seem

to be undergoing stochastic phenotype switching. A few examples of what appear to be

stochastic phenotype switching can even be seen in Figure 2.4 (the plastic lineages from our

baseline treatment) between updates 47,500 and 52,500 (the middle time-slice), prompting

the following open question: in addition to being an alternative strategy to plasticity in

fluctuating environments, could stochastic phenotype switching also act as a precursor or

building block toward plasticity?

Our visualizations only provide an exploratory method for understanding evolutionary

strategies employed by a lineage. Further analysis would be required to confirm or reject

our hypothesis that stochastic phenotype switching is evolving as an alternative strategy

to phenotypic plasticity in our system. This hypothesis is particularly worthwhile to ex-

plore because our mutation rate was fixed across the genome, preventing the evolution of

contingency loci. Furthermore, because sensing mechanisms were perfectly accurate, phe-

notypic plasticity was a reliable strategy. We hypothesize that genotypes are moving to

a region of the mutational landscape that straddles the boundary between expressing un-

conditional NAND task performance and unconditional NOT task performance such that

minimal mutational input is required to switch phenotypes. This type of evolutionary tra-

jectory has been demonstrated by Crombach and Hogeweg in evolutionary simulations of

simple, genome-encoded gene regulatory network models (Crombach and Hogeweg, 2008).

In their simulations, Crombach and Hogeweg found that networks evolved in an oscillat-

ing environment possessed genotype to phenotype mappings that were mutationally more

efficient at generating adaptive phenotypes in alternative environments.

42

2.4 Conclusion

In this work, we evolved populations of phenotypically plastic organisms at varied rates

of environmental fluctuation and mutation using the Avida Digital Evolution Platform. We

analyzed the lineages of evolved genotypes for clues about the evolutionary stepping stones

toward phenotypic plasticity. We found that the capacity for phenotypic plasticity evolved

under conditions identified by previous research (Clune et al., 2007; Ghalambor et al., 2010).

We found evidence that traits are generally expressed unconditionally prior to the evolution

of conditional trait expression and that sub-optimal forms of phenotypic plasticity generally

evolve before optimal forms of phenotypic plasticity. Both of these results are examples of

evolution’s use of simpler functions as building blocks for more complex functions as in Lenski

et al. (2003).

Visual inspection of the evolutionary histories leading to phenotypically plastic organ-

isms suggests that under certain conditions stochastic phenotype switching evolves as an

alternative strategy to phenotypic plasticity, just as it does in many bacteria (Moxon et al.,

2006; Rainey et al., 2011). Of course, in these bacterial cases, hypermutable sites tend to

appear in the genomes (called “contingency loci”) that facilitate such task switching.

Given these promising results, we plan to explore whether stochastic phenotype switch-

ing can be a viable evolutionary strategy in the absence of the ability to evolve hypermutable

regions of the genome. Given the potential difficulty in maintaining the necessary genetic

machinery associated with phenotypic plasticity, are there cases in which stochastic pheno-

type switching is more robust than phenotypic plasticity? And, does this contribute to the

evolution of stochastic phenotype switching as an evolutionary strategy? Metrics are clearly

needed for quantifying stochastic phenotype switching in digital systems and for evaluating

the mutational landscapes of genotypes along a lineage.

43

Chapter 3

The Evolutionary Consequences of

Adaptive Phenotypic Plasticity

Authors: Alexander Lalejini, Austin J. Ferguson, Nkrumah A. Grant, and Charles Ofria

This chapter is adapted from a manuscript to be submitted for peer review to Frontiers

Ecology and Evolution.

3.1 Introduction

Fluctuating environmental conditions are ubiquitous in natural systems. Organisms

have evolved a wide range of evolved strategies for coping with environmental change, such

as phenotypic plasticity (Ghalambor et al., 2007), bet hedging (Beaumont et al., 2009), pe-

riodic migration (Winger et al., 2019), and adaptive tracking (Barrett and Schluter, 2008).

The particular coping mechanisms that evolve in fluctuating environments shift the course of

subsequent evolution (Wennersten and Forsman, 2012; Schaum and Collins, 2014). Identi-

fying the mechanisms most likely to evolve and examining both the evolutionary constraints

and opportunities associated with each is critical for us to understand and predict evolution-

ary outcomes in changing environments.

In this work, we focus on phenotypic plasticity, which can be defined as the capacity

for a single genotype to alter phenotypic expression in response to a change in its environ-

ment (West-Eberhard, 2003). Phenotypic plasticity is controlled by genes whose expression

44

is coupled to one or more abiotic or biotic environmental signals. For example, the sex

ratio of the crustacean Gammarus duebeni is modulated by changes in photoperiod and

temperature (Dunn et al., 2005), and the reproductive output of some invertebrate species

is heightened when infected with parasites to compensate for offspring loss (Chadwick and

Little, 2005). In this study, we conducted digital evolution experiments to investigate how

the evolution of adaptive phenotypic plasticity shifts the course of evolution in a cyclically

changing environment. Specifically, we examined the effects of adaptive plasticity on subse-

quent genomic and phenotypic change, the capacity to evolve and then maintain novel traits,

and the accumulation of deleterious alleles.

Evolutionary biologists have long been interested in how evolutionary change across gen-

erations is influenced by phenotypic plasticity because of its role in generating phenotypic

variance (Gibert et al., 2019). The effects of phenotypic plasticity on adaptive evolution

have been disputed, as few studies have been able to observe both the initial patterns of

plasticity and the subsequent divergence of traits in natural populations (Ghalambor et al.,

2007; Wund, 2012; Forsman, 2015; Ghalambor et al., 2015; Hendry, 2016). In a changing

environment, adaptive phenotypic plasticity provides a mechanism for organisms to regu-

late trait expression within their lifetime, which can stabilize populations through changes

(Gibert et al., 2019). In this context, the stabilizing effect of adaptive plasticity has been

hypothesized to constrain the rate of adaptive evolution (Gupta and Lewontin, 1982; Ancel,

2000; Huey et al., 2003; Price et al., 2003; Paenke et al., 2007). That is, directional selec-

tion may be weak if environmentally-induced phenotypes are close to the optimum; as such,

adaptively plastic populations may evolve slowly (relative to non-plastic populations) unless

there is a substantial fitness cost to plasticity.

Phenotypic plasticity allows for the accumulation of genetic variation in genomic regions

that are unexpressed under current environmental conditions. Such cryptic (“hidden”) ge-

netic variation can serve as a source of diversity in the population, upon which selection can

act when the environment changes (Schlichting, 2008; Levis and Pfennig, 2016). It remains

45

P
he

no
ty

pe E1 E2 E1 E2

E1 E2E1 E2

Environment

(a) (b)

(c) (d)

(e)

Time

O
pt

im
al

ph

en
ot

yp
e E1 E2

Adaptive
plasticityNon-plastic

Maladaptive
plasticity

Non-adaptive
plasticity

OE1

OE2

OE1

OE2

Environmental
change

Figure 3.1: Hypothetical reaction norms for genotypes that exhibit phenotypic varia-
tion. (a) through (d) show four hypothetical reaction norm scenarios for the environmental change
described in (e). In (e), the environment changes from E1 (in red) to E2 (in blue), and the op-
timal phenotypes for environments E1 and E2 are different (OE1 and OE2, respectively). In each
of the four reaction norm scenarios, populations are well-adapted to E1. In (a), genotypes in the
population are non-plastic, and as such, we would expect strong directional selection on mutations
that move phenotypes toward OE2 after the environment changes. In (b), genotypes in the popula-
tion are adaptively plastic. That is, phenotypic changes induced by the environment change to E2

are already near the optimum, and as such, we would expect this population to remain relatively
stable after the environment changes. In (c), the population exhibits non-adaptive plasticity with
substantial variation in how individuals respond to the environmental change. In this case, we
expect plasticity to result in a rapid evolutionary response to the change in environment. In (d),
the population exhibits maladaptive plasticity relative to the given environmental change. When
the environment changes, there is little variation for selection to act on, and without beneficial
mutations, this population may be at risk of extinction due to their maladaptive plastic response.

unclear to what extent and under what circumstances this cryptic variation caches adaptive

potential or merely accumulates deleterious alleles (Gibson and Dworkin, 2004; Paaby and

Rockman, 2014; Zheng et al., 2019).

46

The “genes as followers” hypothesis (also known as the “plasticity first” hypothesis) pre-

dicts that phenotypic plasticity may facilitate adaptive evolutionary change by producing

variants with enhanced fitness under stressful or novel conditions (West-Eberhard, 2003;

Schwander and Leimar, 2011; Levis and Pfennig, 2016). Environmentally-induced trait

changes can be refined through selection over time (i.e., genetic accommodation). Further,

selection may drive plastic phenotypes to lose their environmental dependence over time in

a process known as genetic assimilation (West-Eberhard, 2005; Pigliucci, 2006; Crispo, 2007;

Schlichting and Wund, 2014; Levis and Pfennig, 2016). In this way, environmentally-induced

phenotypic changes can precede an evolutionary response.

Phenotypic plasticity may also “rescue” populations from extinction under changing

environmental conditions by buffering populations against novel stressors. This buffer pro-

motes stability and persistence and grants populations time to further adapt to rapidly

changing environmental conditions (West-Eberhard, 2003; Chevin and Lande, 2010).

Disparate predictions about how phenotypic plasticity may shift the course of subse-

quent evolution are not necessarily mutually exclusive. Genetic and environmental contexts

determine if and to what extent phenotypic plasticity promotes or constrains subsequent

evolution. Figure 3.1 overviews how we might expect different forms of phenotypic plasticity

to result in different evolutionary responses after an environmental change.

Experimental studies investigating the relationship between phenotypic plasticity and

evolutionary outcomes can be challenging to conduct in natural systems. Such experiments

would require the ability to irreversibly toggle plasticity followed by long periods of evolution

during which detailed phenotypic data would need to be collected. Digital evolution experi-

ments have emerged as a powerful research framework from which evolution can be studied.

In digital evolution, self-replicating computer programs (digital organisms) compete for re-

sources, mutate, and evolve following Darwinian dynamics (Wilke and Adami, 2002). Digital

evolution studies balance the speed and transparency of mathematical and computational

simulations with the open-ended realism of laboratory experiments. Modern computers al-

47

low us to observe many generations of digital evolution at tractable time scales; thousands

of generations can take mere minutes as opposed to months, years, or centuries. Digital evo-

lution systems also allow for perfect, non-invasive data tracking. Such transparency permits

the tracking of complete evolutionary histories within an experiment, which circumvents the

historical problem of drawing evolutionary inferences using incomplete records (from frozen

samples or fossils) and extant genetic sequences. Additionally, digital evolution systems al-

low for experimental manipulations and analyses that go beyond what is possible in wet-lab

experiments. Such analyses have included exhaustive knockouts of every site in a genome

to identify the functionality of each (Lenski et al., 2003), comprehensive characterization of

local mutational landscapes (Lenski et al., 1999; Canino-Koning et al., 2019), and the real-

time reversion of all deleterious mutations as they occur to isolate their long-term effects on

evolutionary outcomes (Covert et al., 2013). Digital evolution studies allow us to directly

toggle the possibility for adaptive plastic responses to evolve, which enables us to empirically

test hypotheses that were previously relegated to theoretical analyses.

In this work, we use the Avida Digital Evolution Platform (Ofria et al., 2009). Avida is

an open-source system that has been used to conduct a wide range of well-regarded studies

on evolutionary dynamics, including the origins of complex features (Lenski et al., 2003),

the survival of the flattest effect (Wilke et al., 2001), and the origins of reproductive division

of labor (Goldsby et al., 2014). Our experiments build directly on previous studies in Avida

that characterized the de novo evolution of adaptive phenotypic plasticity (Clune et al.,

2007; Lalejini and Ofria, 2016) as well as previous work investigating the evolutionary conse-

quences of fluctuating environments for populations of non-plastic digital organisms (Li and

Wilke, 2004; Canino-Koning et al., 2019). Of particular relevance, Clune et al. (2007) and

Lalejini and Ofria (2016) experimentally demonstrated that adaptive phenotypic plasticity

can evolve given the following four conditions (as identified by Ghalambor et al. 2010): (1)

populations experience temporal environmental variation, (2) these environments are differ-

entiable by reliable cues, (3) each environment favors different phenotypic traits, and (4) no

48

single phenotype exhibits high fitness across all environments. We build on this previous

work, but we shift our focus from the evolutionary causes of adaptive phenotypic plasticity

to investigate its evolutionary consequences in a fluctuating environment.

Each of our experiments are divided into two phases: in phase one, we precondition

sets of founder organisms with differing plastic or non-plastic adaptations; in phase two,

we examine the subsequent evolution of populations founded with organisms from phase

one under specific environmental conditions. First, we examine the evolutionary histories of

phase two populations to test whether adaptive plasticity constrained subsequent genomic

and phenotypic changes. Next, we evaluate how adaptive plasticity influences exploration

and exploitation by identifying how well populations produced by each type of founder are

able to evolve and retain novel adaptive traits. Finally, we examine lineages to determine

whether adaptive plasticity facilitated the accumulation of cryptic genetic variation that

would prove deleterious when the environment changed.

We found that the evolution of adaptive plasticity reduced subsequent rates of evolu-

tionary change in a cyclic environment. The non-plastic populations underwent more fre-

quent selective sweeps and accumulated many more genetic changes over time, as non-plastic

populations relied on genetic variation from de novo mutations to continuously readapt to

environmental changes. We found that the evolution of adaptive phenotypic plasticity buffers

populations against environmental fluctuations, whereas repeated selective sweeps in non-

plastic populations drive the accumulation of deleterious mutations and the loss of secondary

beneficial traits via deleterious hitchhiking. As such, adaptively plastic populations were bet-

ter able to retain novel traits than their non-plastic counterparts.

3.2 Materials and Methods

3.2.1 The Avida Digital Evolution Platform

Avida is a study system wherein self-replicating computer programs (digital organisms)

compete for space on a finite toroidal grid (Ofria et al., 2009). Each digital organism is

49

defined by a linear sequence of program instructions (its genome) and a set of virtual hard-

ware components used to interpret and express those instructions. Genomes are expressed

sequentially except when the execution of one instruction deterministically changes which

instruction should be executed next (e.g., a “jump” instruction). Genomes are built using

an instruction set that is both robust (i.e., any ordering of instructions is syntactically valid,

though not necessarily meaningful) and Turing Complete (i.e., able to represent any com-

putable function, though not necessarily in an efficient manner). The instruction set includes

operations for basic computations, flow control (e.g., conditional logic and looping), input,

output, and self-replication.

Organisms in Avida reproduce asexually by copying their genome instruction-by-

instruction and then dividing. However, copy operations are imperfect and can result in

single-instruction substitution mutations in an offspring’s genome. For this work, we con-

figured copy operations to err at a rate of one expected mutation for every 400 instructions

copied (i.e., a per-instruction error rate of 0.0025). We held individual genomes at a fixed

length of 100 instructions; that is, we did not include insertion and deletion mutations. We

used fixed-length genomes to control for treatment-specific conditions resulting in the evolu-

tion of substantially different genome sizes (Lalejini and Ferguson, 2021a)1, which could, on

its own, drive differences in evolutionary outcomes among experimental treatments. When

an organism divides in Avida, its offspring is placed in a random location on the toroidal

grid, replacing any previous occupant. For this work, we used the default 60 by 60 grid size,

which limits the maximum population size to 3600 organisms. As such, improvements to the

speed of self-replication are advantageous in the competition for space.

During evolution, organism replication rates improve in two ways: by improving genome

efficiency (e.g., using a more compact encoding) or by accelerating the rate at which the

genome is expressed (their “metabolic rate”). An organism’s metabolic rate determines the

speed at which it executes instructions in its genome. Initially, an organism’s metabolic

1We repeated our experiments without genome size restrictions and observed qualitatively similar results
(see supplemental material, Lalejini and Ferguson 2021a).

50

rate is proportional to the length of its genome, but that rate is adjusted as it completes

designated tasks, such as performing Boolean logic computations (Ofria et al., 2009). In this

way, we can reward or punish particular phenotypic traits.

Phenotypic plasticity in Avida

In this work, we measure a digital organism’s phenotype as the set of Boolean logic func-

tions that it performs in a given environment. Sensory instructions in the Avida instruction

set allow organisms to detect how performing a particular logic function would affect their

metabolic rate (see supplemental material for more details, Lalejini and Ferguson 2021a).

We define a phenotypically plastic organism as one that uses sensory information to alter

which logic functions it performs based on the environment.

Phenotypic plasticity in Avida can be adaptive or non-adaptive for a given set of envi-

ronments. Adaptive plasticity shifts net task expression closer to the optimum for the given

environments. Non-adaptive plasticity changes task expression in either a neutral or dele-

terious way. Optimal plasticity toggles tasks to always perfectly match the set of rewarded

tasks for the given set of environments.

3.2.2 Experimental design

We conducted three independent experiments using Avida to investigate how the evolu-

tion of adaptive plasticity influences evolutionary outcomes in fluctuating environments. For

each experiment, we compared the evolutionary outcomes of populations evolved under three

treatments (Figure 3.2): (1) a PLASTIC treatment where the environment fluctuates, and

digital organisms can use sensory instructions to differentiate between environmental states;

(2) a NON-PLASTIC treatment with identical environment fluctuations, but where sen-

sory instructions are disabled; and (3) a STATIC control where organisms evolve in a

constant environment.

Each experiment was divided into two phases that each lasted for 200,000 updates2 of

2One update in Avida is the amount of time required for the average organism to execute 30 instructions.

51

NOT
AND OR

NAND

AND-N
OT

OR-N
OT

ENV-A ENV-B ENV-ALL
M

et
ab

ol
ic

 e
ffe

ct

x1

x2

x1/2

NOT
AND OR

NAND

AND-N
OT

OR-N
OT

Logic task

NOT
AND OR

NAND

AND-N
OT

OR-N
OT

a.

b.
Phase 2A:

Reward

Punishment

A

STATIC ALL

PLASTIC

NON-PLASTIC

Phase 1:
Preconditioning

Treatment Sensors?

B A A B

... ALL

A B A A B

Transfer

Phase 2B

71 novel tasks

Phase 2C

Poison task

Environments are identical to
Phase 1, but additional
evolutionary history information
is recorded

Phase 2B:
71 additional tasks are all
rewarded constantly. The
evolution of these novel tasks
is recorded.

Phase 2C:
An explicitly deleterious
“poison” task is added. All
executions of this task are
recorded.

19
9,9

00

20
0,0

0010
00

20
0

Updates

Yes

No

No

30
0

A

ALL

B A A B

... ALL

A B A A B

19
9,9

00

20
0,0

0010
00

20
0

Updates

30
0

A

ALL

B A A B

... ALL

A B A A B

A

ALL

B A A B

... ALL

A B A A B

...

Figure 3.2: Overview of experimental design. The first three plots in panel (a) show the
environments used in every experiment and whether they reward or punish each base task. Addi-
tionally, the last two subplots in (a) show the additional tasks added in phases 2B and 2C. All novel
tasks confer a 10% metabolic reward, while executing the poisonous task causes a 10% metabolic
punishment (bars not drawn to size). Panel (b) shows treatment differences and experiment phases.
Treatments are listed on the left, with each treatment consisting of an environment timeline and
whether sensors are functional. We conducted three independent two-phase experiments, each de-
scribed on the right. Phases 2B and 2C are textured to match their task definitions in panel (a).
Phase one is repeated for each experiment with 100 replicate populations per treatment per exper-
iment. For each replicate at the end of phase one, we used an organism of the abundant genotype
to found the second phase population. All STATIC and NON-PLASTIC populations move on to
phase two, but PLASTIC populations only continue to the second phase if their most abundant
genotype exhibits optimal plasticity. Metrics are recorded only in phase two.

evolution (Figure 3.2), which is approximately 30,000 to 40,000 generations. In phase one

of each experiment, we preconditioned populations to their treatment-specific conditions. In

phase two, we founded new populations with the evolved organisms from phase one and ex-

amined their subsequent evolution under given combinations of treatment and experimental

conditions. During phase two, we tracked each population’s evolutionary history as well as

See (Ofria et al., 2009) for more details.

52

saving the full final population. Phase one was for pre-conditioning only; all comparisons

between treatments were performed on phase two data.

Environments

We constructed three experimental environments, abbreviated hereafter as “ENV-A”,

“ENV-B”, and “ENV-ALL”. Figure 3.2 describes these environments based on whether each

of six Boolean logic tasks (NOT, NAND, AND, OR-NOT, OR, and AND-NOT) is rewarded

or punished. A rewarded task performed by an organism doubles their metabolic rate,

allowing them to execute twice as many instructions in the same amount of time. A punished

task halves an organism’s metabolic rate.

In both the PLASTIC and NON-PLASTIC conditions, the environment cycles between

equal-length periods of ENV-A and ENV-B. Each of these periods persist for 100 updates

(approximately 15 to 20 generations). Thus, populations experience a total of 1,000 full

periods of ENV-A interlaced with 1,000 full periods of ENV-B during each experimental

phase.

Organisms in the PLASTIC treatments differentiate between ENV-A and ENV-B by

executing one of six sensory instructions, each associated with a particular logical task; these

sensory instructions detect whether their associated task is currently rewarded or punished.

By using sensory information in combination with execution flow-control instructions, organ-

isms can conditionally perform different logic tasks depending on the current environmental

conditions.

Experiment Phase 1 – Environment preconditioning

For each treatment, we founded 100 independent populations from a common ancestral

strain capable only of self-replication. At the end of phase one, we identified the most

abundant (i.e., dominant) genotype and extracted an organism with that genotype from

each replicate population to found a new population for phase two.

For the PLASTIC treatment, we measure plasticity by independently testing a given

53

genotype in each of ENV-A and ENV-B. We discard phase one populations if the dominant

genotype does not exhibit optimal plasticity. This approach ensures that measurements taken

on PLASTIC-treatment populations during the second phase of each experiment reflect the

evolutionary consequences of adaptive plasticity.

Experiment Phase 2A – Evolutionary change rate

Phase 2A continued exactly as phase one, except we tracked the rates of evolutionary

change in each of the PLASTIC-, NON-PLASTIC-, and STATIC-treatment populations.

Specifically, we quantified evolutionary change rates using four metrics (each described in

Table 3.1): (1) coalescence event count, (2) mutation count, (3) phenotypic volatility, and

(4) mutational stability. We additionally used knockout experiments to examine how the

genetic architectures of organisms and their ancestors changed over time, measuring the

architectural volatility (Table 3.1) of evolved lineages.

Experiment Phase 2B – Novel task evolution

Phase 2B extended the conditions of phase one by adding 71 novel Boolean logic tasks,

which were always rewarded in all treatments (Ofria et al., 2009). The original six phase one

tasks (NOT, NAND, AND, OR-NOT, OR, and AND-NOT; hereafter called “base” tasks)

continued to be rewarded or punished according to the particular treatment conditions. An

organism’s metabolic rate was increased by 10% for each novel task that it performed (limited

to one reward per task). This reward provided a selective pressure to evolve these tasks, but

their benefits did not overwhelm the 100% metabolic rate increase conferred by rewarded

base tasks. As such, populations in the PLASTIC and NON-PLASTIC treatments could

not easily escape environmental fluctuations by abandoning the fluctuating base tasks.

During this experiment, we tracked the extent to which populations evolving under each

treatment were capable of acquiring and retaining novel tasks. Specifically, we used three

metrics (each described in Table 3.1): (1) final novel task count, (2) novel task discovery,

and (3) novel task loss.

54

Experiment Phase 2C – Deleterious instruction accumulation

Phase 2C extended the instruction set of phase one with a poison instruction. When

an organism executes a poison instruction, it performs a “poisonous” task, which reduces

the organism’s metabolic rate (and thus reproductive success) but does not otherwise alter

the organism’s function. We imposed a 10% penalty each time an organism performed the

poisonous task, making the poison instruction explicitly deleterious to execute. We did not

limit the number of times that an organism could perform the poisonous task, and as such,

organisms could perform the poisonous task as many times as they executed the poison

instruction.

We tracked the number of times each organism along the dominant lineage performed

the poisonous task. Specifically, we used two metrics (each described in Table 3.1): (1) final

poisonous task count, and (2) poisonous task acquisition.

3.2.3 Experimental analyses

For each of our experiments, we tracked and analyzed the phylogenetic histories of evolv-

ing populations during phase two. For each replicate, we identified an organism with the

most abundant genotype in the final evolved population, and we used it as a representative

organism for further analysis. We then isolated the lineage from the founding organism to

the representative organism, which we used as the representative lineage for further analysis.

We manually inspected evolved phylogenies and found no evidence that any of our exper-

imental treatments supported long-term coexistence. As such, each of the representative

lineages reflect the majority of evolutionary history from a given population at the end of

our experiment.

Some of our metrics required us to measure genotype-by-environment interactions. Im-

portantly, in the fluctuating environments, we needed to differentiate phenotypic changes

that were caused by mutations from those that were caused by environmental changes. To

accomplish this, we produced organisms with the focal genotype, measured their phenotype

55

Metric Description

Coalescence event count Number of coalescence events that have occurred,
which indicates the frequency of selective sweeps
in the population.

Mutation count Sum of all mutations that have occurred along a
lineage.

Phenotypic volatility Number of instances where parent and offspring
phenotypic profiles do not match along a lineage.
Phenotypic volatility as defined here indicates the
rate at which accumulated genetic changes actu-
ally change the phenotype along a lineage.

Mutational stability Proportion of mutated offspring along a lineage
whose phenotypic profile matches that of their
parent.

Architectural volatility The average number of loci in the genome that
change function per mutation along a lineage.

Final novel task count Count of unique novel tasks performed by the rep-
resentative organism in a final population from ex-
periment phase 2B. This metric can range from 0
to 71 and measures the level of exploitation of the
fitness landscape (i.e., the mapping between ge-
netic space and phenotype space) at a given point
in time.

Novel task discovery Number of unique novel tasks ever performed
along a given lineage in experimental phase 2B,
even if a task is later lost. This metric can range
from 0 to 71 and measures a given lineage’s level
of exploration of the fitness landscape.

Novel task loss Number of instances along a given lineage from
experimental phase 2B where a novel task is per-
formed by a parent but not its offspring. This
metric measures how often a given lineage fails to
retain evolved traits over time.

Final poisonous task count Number of times the poisonous task is performed
by the representative organism from a final popu-
lation from experiment phase 2C.

Poisonous task acquisition count Number of instances along a given lineage where
a mutation causes an offspring perform the poi-
sonous task more times than its parent.

Table 3.1: Metric descriptions.

56

in each environment, and aggregated the resulting phenotypes to create a phenotypic pro-

file. Although organisms with different genotypes may express the same set of tasks across

environments, their phenotypic profiles may not necessarily be the same. For example, an

organism that expresses NOT in ENV-A and NAND in ENV-B has a distinct phenotypic

profile from one that expresses NAND in ENV-A and NOT in ENV-B.

For an individual organism, we can perform knockout experiments to identify which

instructions are responsible for producing a given phenotypic outcome. To perform a knock-

out, we duplicate the organism, replacing a single instruction with an inert “no-operation”

instruction. We then identify any phenotypic changes by contrasting the execution results

of the “knockout” organism and the original. Such changes provide evidence of the role that

the original instruction must have played in the genome. For example, when an organism

performs the NAND task but loses it when an instruction is knocked out, we categorize that

instruction as part of the NAND task machinery. We use knockout experiments to charac-

terize the role of each instruction in the genomes of every organism along all study lineages,

revealing how genetic architectures change over time.

3.2.4 Statistical analyses

Across all of our experiments, we differentiated between sample distributions using non-

parametric statistical tests. For each major analysis, we first performed a Kruskal-Wallis

test (Kruskal and Wallis, 1952) to determine if there were significant differences in results

from the PLASTIC, NON-PLASTIC, and STATIC treatments (significance level α = 0.05).

If so, we applied a Wilcoxon rank-sum test (Wilcoxon, 1992) to distinguish between pairs of

treatments. We applied Bonferroni corrections for multiple comparisons (Rice, 1989) where

appropriate.

57

3.2.5 Software availability

We conducted our experiments using a modified version of the Avida software, which

is open source and freely available on GitHub (Lalejini and Ferguson, 2021a). We used

Python for data processing, and we conducted all statistical analyses using R version 4 (R

Core Team, 2021). We used the tidyverse collection of R packages (Wickham et al., 2019)

to wrangle data, and we used the following R packages for analysis, graphing, and visual-

ization: ggplot2 (Wickham et al., 2020), cowplot (Wilke, 2020), Color Brewer (Harrower

and Brewer, 2003; Neuwirth, 2014), rstatix (Kassambara, 2021), ggsignif (Ahlmann-Eltze

and Patil, 2021), scales (Wickham and Seidel, 2020), Hmisc (Harrell Jr et al., 2020), fmsb

(Nakazawa, 2019), and boot (Canty and Ripley, 2019). We used R markdown (Allaire et al.,

2020) and bookdown (Xie, 2020) to generate web-enabled supplemental material. All of the

source code for our experiments and analyses, including guides for replication and configu-

ration files, can be found in our supplemental material, which is hosted on GitHub (Lalejini

and Ferguson, 2021a). Additionally, our experimental data is available on the Open Science

Framework at https://osf.io/sav2c/ (Lalejini and Ferguson, 2021b).

3.3 Results

3.3.1 The evolution of adaptive phenotypic plasticity slows

evolutionary change in fluctuating environments

In experimental phase 2A, we tested whether the evolution of adaptive phenotypic plas-

ticity constrained or promoted subsequent evolutionary change in a fluctuating environment.

First, we compared the total amount of evolutionary change in populations evolved under

the PLASTIC, NON-PLASTIC, and STATIC treatments as measured by coalescence event

count, mutation count, and phenotypic volatility (Figure 3.3). According to each of these

metrics, NON-PLASTIC populations experienced a larger magnitude of evolutionary change

than either PLASTIC or STATIC populations. We observed significantly higher coalescence

58

https://github.com/amlalejini/evolutionary-consequences-of-plasticity
https://github.com/amlalejini/evolutionary-consequences-of-plasticity
https://osf.io/sav2c/

p < 1e−04

p < 1e−04

0

10

100

1000

10000

STATIC NON−PLASTIC PLASTIC

C
oa

le
sc

en
ce

 e
ve

nt
 c

ou
nt

 (
lo

g
sc

al
e)

Kruskal−Wallis, p < 1e−04

Coalescence events counta

p < 1e−04
p < 1e−04

p = 0.001944

0

10

100

1000

10000

STATIC NON−PLASTIC PLASTIC

M
ut

at
io

n
co

un
t (

lo
g

sc
al

e)

Kruskal−Wallis, p < 1e−04

Mutation countb

p < 1e−04

p < 1e−04

p < 1e−04

0

10

100

1000

10000

STATIC NON−PLASTIC PLASTIC

P
he

no
ty

pi
c

vo
la

til
ity

 (
lo

g
sc

al
e)

Kruskal−Wallis, p < 1e−04

Phenotypic volatilityc

Figure 3.3: Magnitude of evolutionary change. Raincloud plots (Allen et al., 2019) of (a)
coalescence event count, (b) mutation count, and (c) phenotypic volatility. See Table 3.1 for descrip-
tions of each metric. Each plot is annotated with statistically significant comparisons (Bonferroni-
corrected pairwise Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in
42 of 100 replicates from the PLASTIC treatment during phase one of this experiment; we used
this more limited group to found 42 phase-two PLASTIC replicates from which we report these
PLASTIC data.

event counts in NON-PLASTIC populations than in PLASTIC or STATIC populations (Fig-

ure 3.3a). NON-PLASTIC lineages had significantly higher mutation counts (Figure 3.3b)

and phenotypic volatility than PLASTIC or STATIC lineages (Figure 3.3c).

Changing environments have been shown to increase generational turnover in Avida

populations (Canino-Koning et al., 2016), which could explain why we observe a larger mag-

nitude of evolutionary change at the end of 200,000 updates of evolution in NON-PLASTIC

populations. Indeed, we found that significantly more generations of evolution elapsed in

NON-PLASTIC populations (mean of 41090 ± 2702 std. dev.) than in PLASTIC (mean of

31016 ± 2615 std. dev.) or STATIC (mean of 30002 ± 3011 std. dev.) populations during

phase 2A (corrected Wilcoxon rank-sum tests, p < 10−4).

To evaluate whether increased generational turnover explains the greater magnitude of

evolutionary change in NON-PLASTIC populations, we examined the average number of

generations between coalescence events and the mutational stability of lineages (Table 3.1).

A coalescence event indicates a selective sweep, which is a hallmark of adaptive evolution-

ary change. Mutational stability measures the frequency that mutations cause phenotypic

59

changes along a lineage (Table 3.1). We expect that static conditions should favor fit lineages

with high mutational stability that no longer undergo rapid adaptive change and hence do

not trigger frequent coalescence events. Under fluctuating conditions, however, lineages must

be composed of plastic organisms if they are to maintain high fitness and mutational sta-

bility. Without plasticity, we expect these conditions to produce lineages with low stability

and frequent coalescence events as populations must continually readapt.

p < 1e−04

p < 1e−04

0

500

1000

1500

2000

STATIC NON−PLASTIC PLASTIC

A
vg

. g
en

er
at

io
ns

 b
et

w
ee

n
co

al
es

ce
nc

e
ev

en
ts

Kruskal−Wallis, p < 1e−04

Generations between coalescence eventsa

p < 1e−04

p < 1e−04

p < 1e−04

0.50

0.75

1.00

STATIC NON−PLASTIC PLASTIC

M
ut

at
io

na
l s

ta
bi

lit
y

Kruskal−Wallis, p < 1e−04

Mutational stabilityb

Figure 3.4: Pace of evolutionary change. Raincloud plots of (a) average number of generations
between coalescence events, and (b) mutational stability (Table 3.1). Each plot is annotated with
statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

On average, significantly fewer generations elapsed between coalescence events in NON-

PLASTIC populations than in either PLASTIC or STATIC populations (Figure 3.4a). We

also found that both STATIC and PLASTIC lineages exhibited higher mutational stability

relative to that of NON-PLASTIC lineages (Figure 3.4b); that is, mutations more often

caused phenotypic changes along NON-PLASTIC lineages. Overall, our results indicate

that NON-PLASTIC populations underwent more rapid (and thus a greater amount of)

evolutionary change than either PLASTIC or STATIC populations.

While both STATIC and PLASTIC lineages exhibited high mutational stability, we

found that STATIC lineages exhibited higher mutational stability than PLASTIC lineages

(Figure 3.4b). Overall, there were rare instances of mutations that caused a change in

phenotypic profile across all PLASTIC lineages. Of these mutations, we found that over

80% (83 out of 102) of changes to phenotypic profiles were cryptic. That is, the mutations

60

affected traits that would not have been expressed in the environment that the organism was

born into, but would have been expressed had the environment changed.

STATIC NON−PLASTIC PLASTIC

not and or nand andnot ornot not and or nand andnot ornot not and or nand andnot ornot

25

50

75

100

Task

Lo
cu

s
po

si
tio

n

Locus functionality

None

Task Machinery

Vestigial Task Machinery

Plasticity Machinery

Required

Replication Machinery

Figure 3.5: Representative genetic architectures from each treatment. Each box shows
a representative genome from each condition at the end of Phase 2A. The y-axis indicates each
site in each genome, and colors indicate the function of each locus with respect to a particular
task (given by the x-axis). The vertical black line splits tasks rewarded in ENV-A (left of the
line) from those rewarded in ENV-B. Loci colored as “Task Machinery” are actively involved in the
performance of that task, while “Vestigial Task Machinery” represents loci that have not mutated,
but no longer code for the task (i.e., a change elsewhere in the genome has disabled or modified
the task). “Plasticity Machinery” refers to loci that regulate the given task. Knocking out a
“Replication Machinery” locus negatively affects replication time, while knocking out a “Required”
locus results in a non-viable organism.

Next, we performed knockout experiments to investigate how genetic architectures

evolved under the three treatment regimes. Thus far, we have shown that adaptive plastic-

ity slows evolutionary change in fluctuating environments, but we have not determined if

61

p < 1e−04

p < 1e−04

p < 1e−04

0

5

10

STATIC NON−PLASTIC PLASTIC
Condition

A
rc

hi
te

ct
ur

al
 v

ol
at

ili
ty

Kruskal−Wallis, p < 1e−04

Figure 3.6: Architectural volatility. Raincloud plot of architecture stability (Table 3.1). The
plot is annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon
rank-sum tests).

adaptive plasticity also alters how genetic architectures (i.e., how functions are arranged on

genomes) change over time. Figure 3.5 shows the function of each locus in a representative

genome from each treatment at the end of the experiment, which is also 100 updates af-

ter the environment changed from ENV-A to ENV-B in the PLASTIC and NON-PLASTIC

treatments. The PLASTIC and STATIC genomes are capable of performing tasks from both

environments, while the NON-PLASTIC genome only performs tasks rewarded in ENV-B.

We expect instructions associated with ENV-A tasks to be lost in NON-PLASTIC popula-

tions during evolution in ENV-B. Indeed, we assign a metabolic cost for performing ENV-A

tasks in ENV-B, resulting in negative selection on performing ENV-A tasks. Unused ENV-A

tasks should also decay with evolution in ENV-B even without the metabolic cost we impose,

as the associated instructions are more likely to accumulate mutations under relaxed selection

(Lahti et al., 2009). Alternatively, previous work in Avida has shown that tasks punished in

one environment can be maintained in the genome as vestigial loci (Canino-Koning et al.,

2016, 2019) where their function is retained and co-opted for use in an alternate environment.

Under this scenario we might expect the NON-PLASTIC genomes to retain the instructions

needed for ENV-A tasks during their evolution in ENV-B. Consistent with Canino-Koning

et al. (2016, 2019)’s work, the NON-PLASTIC genome that we analyzed from ENV-B (Figure

62

3.5) contains substantial vestigial loci for ENV-A’s NOT task; we also found that these ves-

tigial sites were exapted for ENV-B’s NAND and OR-NOT tasks. Indeed, visual inspection

of locus functions over entire lineages shows that NON-PLASTIC lineages often contain loci

that are continuously cycling between coding for ENV-A tasks and ENV-B tasks. Further,

NON-PLASTIC lineages exhibited significantly higher architectural volatility than STATIC

or PLASTIC lineages (Figure 3.6).

In general, the evolution of adaptive plasticity stabilized PLASTIC treatment popu-

lations against environmental fluctuations, and their evolutionary dynamics more closely

resembled those of populations evolving in a static environment. We observed no significant

difference in the number and frequency of coalescence events in PLASTIC and STATIC pop-

ulations. We did, however, observe small, but statistically significant, differences in each of

the following metrics: elapsed generations, mutation counts, mutational stability, and archi-

tectural volatility between PLASTIC and STATIC populations (see supplemental material

Lalejini and Ferguson 2021a).

3.3.2 Adaptively plastic populations retain more novel tasks than

non-plastic populations in fluctuating environments

We have so far shown that adaptive plasticity constrains the rate of evolutionary change

in fluctuating environments. However, it is unclear how this dynamic influences the evolu-

tion of novel tasks. Based on their relative rates of evolutionary change, we might expect

NON-PLASTIC-treatment populations to evolve more novel tasks than PLASTIC-treatment

populations. But, how much of the evolutionary change in NON-PLASTIC populations is

useful for exploring novel regions of the fitness landscape versus continually rediscovering

the same regions?

To answer this question, we quantified the number of novel tasks performed by a repre-

sentative organism in the final population of each replicate. We found that both PLASTIC

and STATIC populations had significantly higher final task counts than NON-PLASTIC pop-

63

p < 1e−04

p < 1e−04

0

5

10

15

STATIC NON−PLASTIC PLASTIC

F
in

al
 n

ov
el

 ta
sk

 c
ou

nt

Kruskal−Wallis, p < 1e−04

Final novel task counta

p < 1e−04
p = 0.003

0

5

10

15

STATIC NON−PLASTIC PLASTIC

N
ov

el
 ta

sk
 d

is
co

ve
ry

Kruskal−Wallis, p < 1e−04

Novel task discoveryb

p < 1e−04

p < 1e−04

p = 0.002358

0

10

100

1000

STATIC NON−PLASTIC PLASTIC

N
ov

el
 ta

sk
 lo

ss
 (

lo
g

sc
al

e)

Kruskal−Wallis, p < 1e−04

Novel task lossc

Figure 3.7: Novel task evolution. Raincloud plots of (a) final novel task count, (b) novel task
discovery, and (c) novel task loss. See Table 3.1 for descriptions of each metric. Each plot is
annotated with statistically significant comparisons (Bonferroni-corrected pairwise Wilcoxon rank-
sum tests). Note that adaptive phenotypic plasticity evolved in 42 of 100 replicates from the
PLASTIC treatment during phase one of this experiment; we used this more limited group to
found 42 phase-two PLASTIC replicates from which we report these PLASTIC data.

ulations at the end of the experiment (Figure 3.7a). The final novel task count in PLASTIC

and STATIC lineages could be higher than that of the NON-PLASTIC lineages for several

non-mutually exclusive reasons. One possibility is that PLASTIC and STATIC lineages

could be exploring a larger area of the fitness landscape when compared to NON-PLASTIC

lineages. Another possibility is that the propensity of the NON-PLASTIC lineages to main-

tain novel traits could be significantly lower than PLASTIC and STATIC lineages. When

we looked at the total sum of novel tasks discovered by each of the PLASTIC, STATIC, and

NON-PLASTIC lineages, we found that the NON-PLASTIC lineages explored a significantly

larger area of the fitness landscape (Figure 3.7b). Although the NON-PLASTIC lineages

discovered more novel tasks, those lineages also exhibited significantly higher novel task loss

when compared to PLASTIC and STATIC lineages (Figure 3.7c).

A larger number of generations elapsed in NON-PLASTIC populations than in PLAS-

TIC or STATIC populations during our experiment (Lalejini and Ferguson, 2021a). Are

NON-PLASTIC lineages discovering and losing novel tasks more frequently than PLASTIC

or STATIC lineages, or are our observations a result of differences in generational turnover?

To answer this question, we converted the metrics of novel task discovery and novel task loss

64

p = 0.024

0.00000

0.00025

0.00050

0.00075

0.00100

STATIC NON−PLASTIC PLASTIC

N
ov

el
 ta

sk
 d

is
co

ve
ry

 fr
eq

ue
nc

y

Kruskal−Wallis, p = 0.02806

Novel task discovery frequencya

p < 1e−04

p < 1e−04

p = 0.001194

0.000

0.005

0.010

0.015

0.020

STATIC NON−PLASTIC PLASTIC

N
ov

el
 ta

sk
 lo

ss
 fr

eq
ue

nc
y

Kruskal−Wallis, p < 1e−04

Novel task loss frequencyb

Figure 3.8: Rates of novel task evolution. Raincloud plots of (a) novel task discovery frequency
and (b) novel task loss frequency. Each plot is annotated with statistically significant comparisons
(Bonferroni-corrected pairwise Wilcoxon rank-sum tests).

to rates by dividing each metric by the number of elapsed generations along the associated

representative lineages. We found no significant difference in the frequency of novel task dis-

covery between NON-PLASTIC and STATIC lineages, and we found that PLASTIC lineages

had a lower frequency of novel task discovery than STATIC lineages (Figure 3.8a). There-

fore, we cannot reject the possibility that the larger magnitude of task discovery in NON-

PLASTIC lineages was driven by a larger number of elapsed generations. NON-PLASTIC

lineages had a higher frequency of task loss than either PLASTIC or STATIC lineages, and

PLASTIC lineages tended to have a lower frequency of novel task loss than STATIC lineages

(Figure 3.8b).

Next, we examined the frequency at which novel task loss along lineages co-occurred

with the loss or gain of any of the six base tasks. Across all NON-PLASTIC representative

lineages, over 97% (10998 out of 11229) of instances of novel task loss co-occurred with a

simultaneous change in base task profile. In contrast, across all PLASTIC and STATIC

dominant lineages, we observed that approximately 20% (29 out of 142) and 2% (13 out of

631), respectively, of instances of novel task loss co-occurred with a simultaneous change in

base task profile. As such, the losses of novel tasks in NON-PLASTIC lineages appear to be

primarily due to hitchhiking.

65

3.3.3 Lineages without plasticity that evolve in fluctuating

environments express more deleterious tasks

Phenotypic plasticity allows for genetic variation to accumulate in genomic regions that

are unexpressed, which could lead to the fixation of deleterious instructions in PLASTIC

populations. However, in NON-PLASTIC lineages we observe a higher rate of novel task

loss, indicating that they may be more susceptible to deleterious mutations (Figure 3.8).

Therefore, in experiment phase 2C, we tested whether adaptive phenotypic plasticity can

increase the incidence of deleterious task performance. Specifically, we added an instruction

that triggered a “poisonous” task and measured the number of times it was executed. Each

execution of the poison instruction reduces an organism’s fitness by 10%. At the beginning

of phase 2C, the poison instruction is not present in the population, as it was not part of

the instruction set during phase one of evolution. Accordingly, if a poison instruction fixes

in a population, it must be the result of evolutionary dynamics during phase 2C, including

cryptic variation or hitchhiking.

p < 1e−04

p < 1e−04

0

20

40

60

STATIC NON−PLASTIC PLASTIC

P
oi

so
no

us
 ta

sk
 a

cq
ui

si
tio

n
co

un
t

Kruskal−Wallis, p < 1e−04

Poisonous task acquisition counta

p < 1e−04

p < 1e−04

0.0000

0.0005

0.0010

0.0015

STATIC NON−PLASTIC PLASTIC

P
oi

so
no

us
 ta

sk
 a

cq
ui

si
tio

n
fr

eq
ue

nc
y

Kruskal−Wallis, p < 1e−04

Poisonous task acquisition frequencyb

p < 1e−04

p < 1e−04

0.00

0.25

0.50

0.75

1.00

STATIC NON−PLASTIC PLASTIC

F
ra

ct
io

n
of

 li
nk

ed
 p

oi
so

no
us

 ta
sk

 a
cq

ui
si

tio
n

Kruskal−Wallis, p < 1e−04

Linked poisonous task acquisitionc

Figure 3.9: Deleterious instruction accumulation. Raincloud plots of (a) poisonous task
acquisition, (b) poisonous task acquisition frequency, and (c) the proportion of mutations that
increase poisonous task performance along a lineage that co-occur with a change in phenotypic
profile. Each plot is annotated with statistically significant comparisons (Bonferroni-corrected
pairwise Wilcoxon rank-sum tests). Note that adaptive phenotypic plasticity evolved in 43 of 100
replicates from the PLASTIC treatment during phase one of this experiment; we used this more
limited group to found 43 phase-two PLASTIC replicates from which we report these PLASTIC
data.

66

At the end of our experiment, no representative organisms from the PLASTIC or

STATIC treatments performed the poisonous task under any environmental condition; how-

ever, representative organisms in 14% of replicates of the NON-PLASTIC treatment per-

formed the poisonous task at least once. NON-PLASTIC lineages contained significantly

more mutations that conferred the poisonous task as compared to PLASTIC or STATIC

lineages (Figure 3.9a). This result does not change when we normalize by the number of

generations represented in the given lineage (Figure 3.9b).

Next, we measured how often mutations that increased poisonous task performance co-

occurred with changes to the base task profile within representative lineages. A poisonous

instruction can fix in a lineage by having a beneficial effect that outweighs its inherent

cost (e.g., knocking out a punished task) or through linkage with a secondary beneficial

mutation at another site within in the genome. Across all NON-PLASTIC representative

lineages, we found that approximately 49% (956 out of 1916) of mutations that increased

poisonous task expression co-occurred with a change in the base task profile (Figure 3.9c).

In all representative lineages from the PLASTIC treatment, only 18 mutations increased

poisonous task expression, and none co-occurred with a change in base task profile (Figure

3.9c). Likewise, only 58 mutations increased poisonous task performance in all representative

lineages from the STATIC treatment, and none co-occurred with a change in base task profile

(Figure 3.9c). We did not find compelling evidence that the few mutations that conferred

poisonous task expression in PLASTIC lineages occurred as cryptic variation.

We repeated this experiment with 3% and 30% metabolic rate penalties associated with

the poisonous task, which produced results that were consistent with those reported here

(Lalejini and Ferguson, 2021a).

3.4 Discussion

In this work, we used evolving populations of digital organisms to determine how adap-

tive phenotypic plasticity alters subsequent evolutionary dynamics and influences evolution-

67

ary outcomes in fluctuating environments. First, we examined the evolutionary histories

of plastic and non-plastic populations to test whether the evolution of adaptive plasticity

promotes or constrains subsequent evolutionary change. Next, we evaluated how adaptive

plasticity influences fitness landscape exploration and exploitation by testing whether plas-

tic populations are better able to evolve and then maintain novel traits. Finally, we tested

if the evolution of adaptive plasticity increases the potential for deleterious instructions to

accumulate in evolving genomes.

Overall, our results indicate that adaptive plasticity can improve evolution’s ability to

maintain and refine novel traits, though with the tradeoff of reducing evolutionary explo-

ration of the fitness landscape. Additionally, we found no evidence that adaptive plasticity

increased the potential for deleterious instructions to accumulate in genomes. Instead, the

genomes of non-plastic organisms that evolved in an identical fluctuating environment ac-

cumulated more deleterious instructions than that of adaptively plastic genomes. These

dynamics appear to be driven by the stabilizing effect that adaptive plasticity had on pop-

ulation dynamics rather than plasticity’s effect on genetic architecture or regulation.

3.4.1 The speed of evolutionary change

Adaptively plastic populations experienced fewer selective sweeps and fewer total genetic

changes relative to non-plastic populations evolving under the same environmental condi-

tions (Figure 3.3). Plastic populations adapted to the fluctuating environmental regime by

evolving to sense environmental changes and regulate their metabolism (task performance)

in response to such changes, which also stabilized these populations against fluctuations.

Indeed, across all three of our experiments, the evolutionary dynamics of plastic populations

were more similar to that of populations evolving in a static environment than to that of

non-plastic populations evolving in an identical fluctuating environment.

Adaptive phenotypes in ENV-A were maladaptive in ENV-B and vice versa. As such,

non-plastic generalists that performed all tasks or performed no tasks at all did not evolve

68

in any of the fluctuating environmental regimes. Selection against non-plastic generalists

may be attributed to competition with phenotypic specialists that have a much larger fit-

ness advantage for performing environment-specific tasks. In non-plastic populations where

plasticity was disallowed, we hypothesize that strong selection on task specialization after

each environmental change drove the repeated fixation of beneficial mutations (that alter an

organism’s phenotypic profile). This hypothesis is supported by the increased frequency of

coalescence events in these populations (Figure 3.4) as well as increased rates of genetic and

phenotypic changes observed along the lineages of non-plastic organisms.

Analysis of the evolved genetic architectures further supports our hypothesis that the

non-plastic populations relied on mutations to continuously readapt to the fluctuating envi-

ronment. This aligns with previous work, which has shown that, in the absence of plasticity,

fluctuating environments steer populations toward genotypes that readily mutate to alter-

native phenotypes (Lalejini and Ofria, 2016; Canino-Koning et al., 2016). Indeed, (Canino-

Koning et al., 2016) also observed that genomes evolved in cyclic environments often con-

tained vestigial fragments of genetic material adapted to prior environments, which we see

in the non-plastic populations.

This study is the first in-depth empirical investigation into how the de novo evolution

of adaptive plasticity shifts the course of subsequent evolution in a cyclic environment. The

evolutionary dynamics that we observed in non-plastic populations, however, are consistent

with results from previous digital evolution studies. Consistent with our findings, Dolson

et al. (2020) showed that non-plastic populations that were evolved in cyclically changing

environments exhibited higher phenotypic volatility and accumulated more mutations than

that of populations evolved in static conditions.

Our results are also consistent with conventional evolutionary theory. A trait’s evo-

lutionary response to selection depends on the strength of directional selection and on the

amount of genetic variation for selection to act upon (Lande and Arnold, 1983; Zimmer and

Emlen, 2013). In our experiments, non-plastic populations repeatedly experienced strong

69

directional selection to toggle which tasks were expressed after each environmental change.

As such, retrospective analyses of successful lineages revealed rapid evolutionary responses

(that is, high rates of genetic and phenotypic changes). Evolved adaptive plasticity shielded

populations from strong directional selection when the environment changed by eliminating

the need for a rapid evolutionary response to toggle task expression. Indeed, both theoretical

and empirical studies have shown that adaptive plasticity can constrain evolutionary change

by weakening directional selection on evolving populations (Price et al., 2003; Paenke et al.,

2007; Ghalambor et al., 2015).

3.4.2 The evolution and maintenance of novel tasks

In fluctuating environments, non-plastic populations explored a larger area of the fitness

landscape than adaptively plastic populations, as measured by novel task discovery (Figure

3.7b). Despite lower overall novel task discovery in adaptively plastic populations, they better

exploited the fitness landscape, retaining a greater number of novel tasks than non-plastic

populations evolving under identical environmental conditions (Figure 3.7a). Evolution in

non-plastic populations was dominated by numerous bouts of strong directional selection

driven by repeated environmental change. After each change, the performance of the six base

tasks needed to be realigned to the environment. In our experiment, novel tasks were less

important to survival than the fluctuating base tasks. In non-plastic populations, mutations

that improve an offspring’s fitness after an environmental change are extremely beneficial,

and as such beneficial mutations fix, they can carry with them co-occurring deleterious

mutations that knock out novel tasks. Indeed, we found that mutations associated with

novel task loss along representative lineages from non-plastic populations co-occurred with

mutations that helped offspring adapt to environmental changes 97% of the time.

Temporary environmental changes can improve fitness landscape exploration and ex-

ploitation in evolving populations of non-plastic digital organisms (Nahum et al., 2017). In

our system, however, we found that repeated fluctuations reduced the ability of non-plastic

70

populations to maintain and exploit tasks; that said, we did find that repeated fluctuations

may improve overall task discovery by increasing generational turnover. Consistent with our

findings, Canino-Koning et al. (2019) found that non-plastic populations of digital organ-

isms evolving in a harsh cyclic environment maintained fewer novel traits than populations

evolving in static environments.

Our results suggest that adaptive phenotypic plasticity can improve the potential for

populations to exploit novel resources by stabilizing them against stressful environmental

changes. The stability that we observe may also lend some support to the hypothesis that

phenotypic plasticity can rescue populations from extinction under changing environmental

conditions (Chevin et al., 2010).

Our data do not necessarily provide evidence for or against the genes as followers hy-

pothesis. The genes as followers hypothesis focuses on contexts where plastic populations

experience novel or abnormally stressful environmental change. However, in our system, en-

vironmental changes were cyclic (not novel), and the magnitude of changes were consistent

for the entirety of the experiment (so none were abnormally stressful). Further, the intro-

duction of novel tasks during the second phase of the experiment merely added additional

static opportunities for fitness improvement and did not change the meaning of existing

environmental cues.

3.4.3 The accumulation of deleterious instructions

We found that non-plastic lineages that evolved in a fluctuating environment exhibited

both larger totals and higher rates of deleterious instruction (poison) accumulation than

that of adaptively plastic lineages (Figure 3.9). We did not find evidence of poison instruc-

tions accumulating as cryptic variation in adaptively plastic lineages. We hypothesize that

deleterious genetic hitchhiking drove poison instruction accumulation along non-plastic lin-

eages in changing environments. In asexual populations without horizontal gene transfer,

all co-occurring mutations are linked. As such, deleterious mutations linked with a stronger

71

beneficial mutation (i.e., a driver) can sometimes “hitchhike” to fixation (Smith and Haigh,

1974; Van den Bergh et al., 2018; Buskirk et al., 2017). Natural selection normally prevents

deleterious mutations from reaching high frequencies, as such mutants would be outcom-

peted. However, when a beneficial mutation sweeps to fixation in a clonal population, it

carries along any linked genetic material, including other beneficial, neutral, or deleterious

mutations Barton (2000); Smith and Haigh (1974).

Across our experiments, the frequency of selective sweeps in non-plastic populations

provided additional opportunities for genetic hitchhiking with each environmental change.

Indeed, representative lineages from non-plastic populations in the cyclic environment exhib-

ited higher mutation accumulation (Figure 3.3b), novel trait loss (Figure 3.7c), and deleteri-

ous instruction accumulation (Figure 3.9) than their plastic counterparts. In aggregate, we

found that many (∼49%; 956 / 1916) mutations that increased poison instruction execution

in offspring co-occurred with mutations that provided an even stronger benefit by adapting

the offspring to an environmental change. This rate of co-occurrence is conservative because

we did not analyze mutations that became linked in different generations.

We found that adaptive phenotypic plasticity reduced poison instruction accumulation

by reducing the rate of evolutionary change, which in turn reduced opportunities for poison

instructions to fix. We did not find compelling evidence of cryptic variation harboring

poison instructions in adaptively plastic lineages. We have two hypotheses for why we

did not observe the accumulation of poison instructions in unexpressed plastic responses.

First, the period of time between environmental changes was too fast for variants carrying

unexpressed poison instructions to reach high frequencies before the environment changed,

after which such variants would have been outcompeted. Indeed, we tuned the frequency

of environmental fluctuations so that genes that needed to function appropriately in the

off environment were able to remain in the population despite relaxed selection. Second,

the genetic mechanisms of plasticity that evolve in Avida are typically well-integrated and

highly specific; that is, plastic genomes usually adjust their phenotypic expression by toggling

72

a minimal number of key instructions. As such, there is little genomic space for variation to

accumulate in preexisting (but unexpressed) regulated regions.

3.4.4 Limitations and future directions

Our conclusions are limited to adaptively plastic populations. We did not explore the

effects of non-adaptive plasticity where environmental changes induce phenotypes that are

further away from the local optimum (e.g., Leroi et al. 1994). Non-adaptive plasticity can in-

crease a population’s extinction risk, especially if the misaligned plastic response is strongly

tied to survival or the population is not sufficiently large (Gomulkiewicz and Holt, 1995;

Chevin et al., 2010). If the population persists, however, non-adaptive plasticity has been

shown to be capable of accelerating evolutionary change by increasing the strength of direc-

tional selection. (Ghalambor et al., 2015).

Environmental cues in our experiments were reliable, and environmental changes were

consistent over time. That is, sensory instructions perfectly differentiated between ENV-A

and ENV-B, and environmental fluctuations never exposed populations to entirely new con-

ditions. Both the reliability of cues and the timescales of environment switching are known

to influence evolutionary outcomes (Li and Wilke, 2004; Boyer et al., 2021). For example,

Boyer et al. (2021) evolved populations of Saccharomyces cerevisiae in an environment that

fluctuated between two growth conditions, observing that both environmental predictability

and switching rate influenced the rates of evolutionary responses as well as adaptive out-

comes. In adaptively plastic populations, environmental switching rate can influence how

plastic responses are maintained, including their genetic architecture as well as their likeli-

hood of maintenance. Our work lays the groundwork for using digital evolution experiments

to investigate the evolutionary consequences of phenotypic plasticity in a range of contexts,

including different forms of plasticity (e.g., adaptive versus non-adaptive), more complex

environments with more than two possible states, stochastic environmental changes, and

different environment switching rates.

73

We focused our analyses on the lineages of organisms with the most abundant genotype

in the final population. These successful lineages represented the majority of the evolutionary

histories of populations at the end of our experiment, as populations did not exhibit long-

term coexistence of different clades. Our analyses, therefore, gave us an accurate picture of

what fixed in the population. We did not, however, examine the lineages of extinct clades.

Future work will extend our analyses to include extinct lineages, giving us a more complete

view of evolutionary history, which may allow us to better distinguish adaptively plastic

populations from populations evolving in a static environment.

As with any wet-lab experiment, our results are in the context of a particular model or-

ganism: “Avidian” self-replicating computer programs. Digital organisms in Avida regulate

responses to environmental cues using a combination of sensory instructions and conditional

logic instructions (if statements). The if instructions conditionally execute a single in-

struction depending on previous computations and the state of memory. As such, plastic

genomes typically regulate a small number of key instructions that, when executed, change

the expressed phenotype as opposed to large, sequences of co-regulated instructions (Lalejini

and Ferguson, 2021a). This bias may limit the accumulation of hidden genetic variation in

Avida genomes. However, as there are many model biological organisms, there are many

model digital organisms that have different regulatory mechanisms that should be used to

test the generality of our results.

74

Chapter 4

Evolving Event-driven Programs with

SignalGP

Authors: Alexander Lalejini and Charles Ofria

This chapter is adapted from (Lalejini and Ofria, 2018), which underwent peer review and

appeared in the proceedings of the 2018 Genetic and Evolutionary Computation Conference.

4.1 Introduction

Here, we introduce SignalGP, a new genetic programming (GP) technique designed to

provide evolution direct access to the event-driven programming paradigm, allowing evolved

programs to handle signals from the environment or from other agents in a more biolog-

ically inspired way than traditional GP approaches. In SignalGP, signals (e.g., from the

environment or from other agents) direct computation by triggering the execution of pro-

gram modules (i.e., functions). SignalGP augments the tag-based referencing techniques

demonstrated by Spector et al. (Spector et al., 2011b,a, 2012) to specify which function

is triggered by a signal, allowing the relationships between signals and functions to evolve

over time. The SignalGP implementation presented here is demonstrated in the context of

linear GP, wherein programs are represented as linear sequences of instructions; however,

the ideas underpinning SignalGP are generalizable across a variety of genetic programming

representations.

75

Linear genetic programs generally follow an imperative programming paradigm where

computation is driven procedurally. Execution often starts at the top of a program and pro-

ceeds in sequence, instruction-by-instruction, jumping or branching as dictated by executed

instructions (Brameier and Banzhaf, 2007; McDermott and O’Reilly, 2015). In contrast to

the imperative programming paradigm, program execution in event-driven computing is di-

rected primarily by signals (i.e., events), easing the design and development of programs

that, much like biological organisms, must react on-the-fly to signals in the environment

or from other agents. Is it possible to provide similarly useful abstractions to evolution in

genetic programming?

Different types of programs are more or less challenging to evolve depending on how

they are represented and interpreted. By capturing the event-driven programming paradigm,

SignalGP targets problem domains where agent-agent and agent-environment interactions

are crucial, such as in robotics or distributed systems.

In the following sections, we provide a broad overview of the event-driven paradigm,

discussing it in the context of an existing event-driven software framework, cell signal trans-

duction, and an evolutionary computation system for evolving robot controllers. Next, we

discuss our implementation of SignalGP in detail. Then, we use SignalGP to demonstrate

the value of capturing event-driven programming in GP with two test problems: an environ-

ment coordination problem and a distributed leader election problem. Finally, we conclude

with planned extensions, including how SignalGP can be generalized beyond our linear GP

implementation to other forms of GP.

4.2 The event-driven paradigm

The event-driven programming paradigm is a software design philosophy where the cen-

tral focus of development is the processing of events (Etzion and Niblett, 2010; Heemels et al.,

2012; Cassandras, 2014). Events often represent messages from other agents or processes,

sensor readings, or user actions in the context of interactive software applications. Events are

76

processed by callback functions (i.e., event-handlers) where the appropriate event-handler

is determined by an identifying characteristic associated with the event, often the event’s

name or type. In this way, events can act as remote function calls, allowing external signals

to direct computation.

Software development environments that support the event-driven paradigm often ab-

stract away the logistics of monitoring for events and triggering event-handlers, simplifying

the code that must be designed and implemented by the programmer and easing the de-

velopment of reactive programs. Thus, the event-driven paradigm is especially useful when

developing software where computation is most appropriately directed by external stimuli,

which is often the case in domains such as robotics, embedded systems, distributed systems,

and web applications.

For any event-driven system, we can address the following three questions: What are

events? How are event-handlers represented? And, how does the system determine the most

appropriate event-handler to trigger in response to an event? Crosbie and Spafford (Crosbie

and Spafford, 1996) have addressed why answering such questions can be challenging in

genetic programming; thus, it is useful to look to how existing event-driven systems address

them. While many systems that exhibit event-driven characteristics exist, we restrict our

attention to three: the Robot Operating System (ROS) (Quigley et al., 2009), the biological

process of signal transduction, and Byers et al.’s digital enzymes robot controller (Byers

et al., 2011, 2012).

ROS is a popular robotics software development framework that provides standardized

communication protocols to independently running programs, which are referred to as nodes.

While the ROS framework provides a variety of tools and other conveniences to robotics

software developers, we focus on ROS’s publish-subscribe communication protocol, framing

it under the event-driven paradigm. ROS nodes can communicate by passing strictly typed

messages over named channels (topics). Nodes send messages by publishing them over topics,

and nodes receive messages from a particular topic by subscribing to that topic. A node

77

subscribes to a topic by registering a callback function that takes the appropriate message

type as an argument. Anytime a message is sent over a topic, all callback functions registered

with the topic are triggered, allowing subscribed nodes to react to published messages. Topics

can have any number of publishers and subscribers, all agnostic to one another (Quigley

et al., 2009). In ROS’s publish-subscribe system, events are represented as strictly typed

messages, event-handlers are callback functions that take event information as input, and

named channels (topics) determine which event-handlers an event triggers.

The behavior of many natural systems can be interpreted as using the event-driven

paradigm. In cell biology, signal transduction is the process by which a cell transforms an

extracellular signal into a response, often in the form of cascading biochemical reactions

that alter the cell’s behavior. Cells respond to signaling molecules via receptors, which bind

specifically to nearby signaling molecules and initiate the cell’s response (Alberts et al.,

2002). The process of cell signal transduction can be viewed as a form of event-driven com-

putation: signaling molecules are like events, receptors are event-handlers, and the chemical

and physical properties of signaling molecules determine with which receptors they are able

to bind.

Evolutionary computation researchers have also made use of the event-driven paradigm.

For example, Byers et al. (Byers et al., 2011, 2012) demonstrated virtual robot controllers

that operate using a digital model of signal transduction, and like biological signal transduc-

tion, these controllers follow an event-driven paradigm. Byers et al.’s virtual robot controllers

have digital stimuli receptors, which bind to nearby “signaling molecules” represented as bit

strings. Different bit strings represent different signals in the environment (e.g., the pres-

ence of nearby obstacles). Once a signaling molecule binds to a digital receptor, a digital

enzyme (program) processes the signaling molecule and influences the controller’s behavior.

In a single controller, there are many digital enzymes (not all of the same type) processing

signaling molecules in parallel, all vying to influence the controller’s actions; in this way, vir-

tual robot behavior emerges. As in cell signal transduction, signaling molecules are events,

78

digital stimuli receptors and digital enzymes act as event-handlers, and events are paired

with handlers based on signal type and signal location.

4.3 SignalGP

As with other tag-based systems, SignalGP agents (programs) are defined by a set of

functions (modules) where each function is referred to using a tag and contains a linear

sequence of instructions. To augment this framework, SignalGP also makes explicit the

concept of events where event-specific data is associated with a tag that agents can use to

specify how that event should be handled. In this work, we arbitrarily chose to represent

tags as fixed-length bit strings. Agents may both generate internal events and be subjected

to events generated by the environment or by other agents. Events trigger functions based

on the similarity of their tags. When an event triggers a function, the function is run with

the event’s associated data as input. SignalGP agents handle many events simultaneously

by processing them in parallel. Figure 4.1 shows a high-level overview of SignalGP.

Functions have two components:

 1) a tag (bit string)

 2) a linear sequence of instructions

Signals have two components:

 2) data

 1) a tag (bit string) [tag]
[data]

Where do signals come from?

 3) internally-generated

 1) other agents

 2) the environment

111
1

Broadcast 0111

[tag]
[instruction]

Signal 0100

[instruction] 0111

[instruction]

[instruction]

Signal 0011

01
00

[in
st

ru
ct

io
n]

[in
st

ru
ct

io
n]

[in
st

ru
ct

io
n]

1111

[instruction]

[instruction]

[instruction]

0000

[instru
ctio

n]
[instru

ctio
n]

[instru
ctio

n]

10
10

SignalGP
Program

0100

0011

0111

Environment
0001

Figure 4.1: A high-level overview of SignalGP. SignalGP programs are defined by a set of
functions. Events trigger functions with the closest matching tag, allowing SignalGP agents to
respond to signals. SignalGP agents handle many events simultaneously by processing them in
parallel.

79

4.3.1 Tag-based Referencing

Incorporating modules (e.g., functions, subroutines, macros, etc.) into genetic pro-

gramming has been extensively explored, and the benefits of modules in GP have been well

documented (e.g., Koza (1992, 1994); Angeline and Pollack (1992); Keijzer et al. (2005);

Walker and Miller (2008); Roberts et al. (2001); Spector (1996)). The main purpose of

SignalGP functions are to act as event-handlers—computations triggered in response to sig-

nals. However, they have the additional benefit of providing explicit architectural support

for program modularity, bestowing the boon of reusable code. As with any reusable code

block in GP, the question remains: how should the code be referenced? The answer to this

question can be reused to answer the following question: how should we determine which

event-handlers are triggered by events?

Inspired by John Holland’s concept of a “tag” (Holland, 1993, 1987, 1990, 2006) as a

mechanism for matching, binding, and aggregation, Spector et al. introduced and demon-

strated the value of tag-based referencing in the context of GP (Spector et al., 2011b,a, 2012).

In this context, a tag-based reference always links to a tagged entity with its closest match.

These tagged entities include instructions and sequences of code (i.e., modules), providing

an evolvable mechanism for code referencing.

SignalGP shifts these ideas into a more fully event-driven context. In SignalGP, sets

of instructions are modularized into functions that are labeled with tags. Events are made

explicit and trigger those functions with whose tags have the closest match. The underlying

instruction set is crafted to easily trigger internal events, broadcast external events, and to

otherwise work in a tag-based context. Finally, SignalGP can be configured to only match

tags that are relatively close (within a threshold) allowing agents to ignore events entirely

by avoiding the use of similar tags.

80

4.3.2 Virtual Hardware

As in many GP representations, linear GP programs are often interpreted in the context

of virtual hardware, which typically comprises memory—usually in the form of registers or

stacks—and other problem-specific virtual hardware elements, allowing programs to achieve

complex functionality (McDermott and O’Reilly, 2015; Poli et al., 2008; Ofria et al., 2009).

SignalGP programs are interpreted by virtual hardware consisting of the following four major

components: program memory, an event queue, a set of execution threads, and shared

memory.

Program memory stores the SignalGP program currently executing on the virtual

hardware.

The event queue manages recently received events waiting to be dispatched and pro-

cessed by functions. The event queue dispatches events in the order they are received.

The SignalGP virtual hardware supports an arbitrary number of execution threads

that run concurrently. Each thread processes a single instruction every time step. Just

as Byers et al.’s parallel-executing digital enzymes allow robot controllers to process many

external stimuli simultaneously (Byers et al., 2011), parallel execution allows SignalGP agents

to handle many events at once.

Each thread maintains a call stack that stores state information about the thread’s

active function calls. The current state for any given thread resides at the top of the thread’s

call stack. Call states maintain local state information for the function call they represent:

a function pointer, an instruction pointer, input memory, working memory, and output

memory. The function pointer indicates the current function being run. The instruction

pointer indicates the current instruction within that function. Input, working, and output

memory serve as local memory.

Working memory is used for performing local operations (e.g., addition, subtraction,

multiplication, etc.). Input memory is analogous to function arguments (i.e., function input),

and output memory is analogous to function return memory (i.e., what is returned when

81

a function call concludes). By convention, instructions can both read from and write to

working memory, input memory is read-only, and output memory is write-only. To use an

analogy, working memory, input memory, and output memory are to SignalGP functions as

hidden nodes, input nodes, and output nodes are to conventional artificial neural networks.

Shared memory serves as global memory. Shared memory is accessible (i.e., readable and

writable) by all threads, allowing them to store and share information.

4.3.3 Program Evaluation

SignalGP programs are sets of functions where each function associates an evolvable tag

with a linear sequence of instructions. In our implementation of SignalGP, instructions are

argument-based, and in addition to evolvable arguments, each instruction has an evolvable

tag. Arguments modify the effect of the instruction, often specifying memory locations or

fixed values. Instruction tags may also modify the effect of an instruction. For example,

instructions that refer to functions do so using tag-based referencing. Further, instructions

use their tag when generating events, either to be broadcast to other SignalGP agents or to

be handled internally for their own use.

Program evaluation can be initialized either actively or passively. During active ini-

tialization, the program will begin evaluation by automatically calling a designated main

function on a new thread. In passive initialization, computation takes place only in response

to external events. In the work presented here, we use active initialization and automatically

reset the main thread if it would have otherwise terminated.

While executing, the SignalGP virtual hardware advances on each time step in three

phases: (1) All events in the event queue are dispatched, with each triggering a function via

tag-based referencing. (2) Each thread processes a single instruction. (3) Any threads done

processing are removed. Phases occur serially and in order.

Executed instructions may call functions, manipulate local and shared memory, generate

events, perform basic computations, control execution flow, et cetera (see supplementary

82

material (Lalejini, 2018) for details on all instructions used in this work). Instructions in

SignalGP are guaranteed to always be syntactically valid, but may be functionally useless.

Every instruction has three associated arguments and an associated tag. Not all instructions

make use of their three arguments or their tag; unused arguments and tags are not under

direct selection and may drift until a mutation to the operator reveals them.

Instruction-triggered Function Calls

Functions in SignalGP may be triggered by either instruction calls or events. When a

Call is executed, the function in program memory with the most similar tag to the Call

instruction’s tag (above a similarity threshold) is triggered; in this work, ties are broken by a

random draw (though any tie-breaking procedure could be used). Tag similarity is calculated

as the proportion of matching bits between two bit strings (simple matching coefficient).

When a function is triggered by a Call instruction, a new call state is created and

pushed onto that thread’s call stack. The working memory of the caller state is copied as

the input memory of the new call state (i.e., the arguments to the called function are the full

contents of the previous working memory). The working memory and the output memory

of the new call state are initially empty. To prevent unbounded recursion, we place limits

on call stack depth; if a function call would cause the call stack to exceed its depth limit,

the call instead behaves like a no-operation.

Instruction-triggered functions may return by either executing a Return instruction or

by reaching the end of the function’s instruction sequence. When an instruction-triggered

function returns, its call state is popped from its call stack, and anything stored in the

output memory of the returning call state is copied to the working memory of the caller state

(otherwise leaving the caller state’s working memory unchanged). In this way, instruction-

triggered function calls can be thought of as operations over the caller’s working memory.

83

Event-triggered Function Calls

Events in SignalGP are analogous to external function calls. When an event is dis-

patched from the event queue, the virtual hardware chooses the function with the highest

tag similarity score (above a similarity threshold) to handle the event. In this work, ties are

broken by a random draw (though any tie-breaking procedure could be used).

Once a function is selected to handle an event, it is called on a newly-created execution

thread, initializing the thread’s call stack with a new call state. The input memory of the

new call state is populated with the event’s data. In this way, events can pass information

to the function that handles them. When the function has been processed (i.e., all of the

active calls on the thread’s call stack have returned), the thread is removed. To prevent

unbounded parallelism, we place a limit on the allowed number of concurrently executing

threads; if the creation of a new thread would cause the number of threads to exceed this

limit, thread creation is prevented.

4.3.4 Evolution

Evolution in SignalGP proceeds similarly to that of typical linear GP systems. Be-

cause function referencing is done via tags, changes can be made to program architecture

(e.g., inserting new or removing existing functions) while still guaranteeing syntactic correct-

ness. Thus, modular program architectures can evolve dynamically through whole-function

duplication and deletion operators or through function-level crossover techniques.

In the studies presented in this paper, we evolve SignalGP programs directly (as opposed

to using indirect program encodings), which requires SignalGP-aware mutation operators.

We propagated SignalGP programs asexually and applied mutations to offspring. We used

whole-function duplication and deletion operators (applied at a per-function rate of 0.05)

to allow evolution to tune the number or functions in programs. We mutated tags for

instructions and functions at a per-bit mutation rate (0.05). We applied instruction and

argument substitutions at a per-instruction rate (0.005). Instruction sequences could be

84

inserted or deleted via slip-mutation operators (Lalejini et al., 2017), which facilitate the

duplication or deletion of sequences of instructions; we applied slip-mutations at a per-

function rate (0.05).

4.4 Test Problems

We demonstrate the value of incorporating the event-driven programming paradigm

in GP using two distinct test problems: a changing environment problem and a distributed

leader-election problem. For both problems, we compared SignalGP performance to variants

that are otherwise identical, except for how they handle sensor information. For example,

our primary variant GP must actively monitor sensors to process external signals (using the

imperative paradigm). For both test problems, a program’s capacity to react efficiently to

external events is crucial; thus, we hypothesized that SignalGP should perform better than

our imperative alternatives.

4.4.1 Changing Environment Problem

This first problem requires agents to coordinate their behavior with a randomly changing

environment. The environment can be in one of K possible states; to maximize fitness, agents

must match their internal state to the current state of their environment. The environment

is initialized to a random state and has a 12.5% chance of changing to a random state at

every subsequent time step. Successful agents must adjust their internal state whenever an

environmental change occurs.

We evolved agents to solve this problem at K equal to 2, 4, 8, and 16 environmen-

tal states. The problem scales in difficulty as the number of possible states that must be

monitored increases. Agents adjust their internal state by executing one of K state-altering

instructions. For each possible environmental state, there is an associated SetState instruc-

tion (i.e., for K = 4, there are four instructions: SetState0, SetState1, SetState2, and

SetState3). Being required to execute a distinct instruction for each environment represents

85

performing a behavior unique to that environment.

We compared the performance of programs with three different mechanisms to sense

the environment: (1) an event-driven treatment where environmental changes produce sig-

nals that have environment-specific tags and can trigger functions; (2) an imperative control

treatment where programs needed to actively poll the environment to determine its cur-

rent state; and (3) a combined treatment where agents are capable of using either option.

Note that in the imperative and combined treatments we added new instructions to test

each environmental state (i.e., for K = 4, there are four instructions: SenseEnvState0,

SenseEnvState1, SenseEnvState2, and SenseEnvState3). In preliminary experiments we

had provided agents with a single instruction that returned the current environmental state,

but this mechanism proved more challenging for them to use effectively when there were too

many states (the environment ID returned by the single instruction needed to be thresholded

into a true/false value, whereas the individual environment state tests directly returned a

true/false value).

Across all treatments, we added a Fork instruction to the available instruction set. The

Fork instruction generates an internally-handled signal when executed, which provides an

independent mechanism to spawn parallel-executing threads. The Fork instruction ensures

that programs in all treatments had trivial access to parallelism. Because the SenseEnvState

instructions in both the imperative and combined treatments bloated the instruction set

relative to the event-driven treatment, we also added an equivalent number of no-operation

instructions in the event-driven treatment.

Hypotheses

For low values of K, we expected evolved programs from all treatments to perform sim-

ilarly. However, as continuously polling the environment is cumbersome at higher values of

K, we expected fully event-driven SignalGP programs to drastically outperform programs

evolved in the imperative treatment; further, we expected successful programs in the com-

86

bined treatment to favor the event-driven strategy.

Experimental Parameters

We ran 100 replicates of each condition atK = 2, 4, 8, and 16. In all replicates and across

all treatments, we evolved populations of 1000 agents for 10,000 generations, starting from a

simple ancestor program consisting of a single function with eight no-operation instructions.

Each generation, we evaluated all agents in the population individually three times (three

trials) where each trial comprised 256 time steps. For a single trial, an agent’s fitness was

equal to the number of time steps in which its internal state matched the environment state

during evaluation. After three trials, an agent’s fitness was equal to the minimum fitness

value obtained across its three trials. We used a combination of elite and tournament (size

four) selection to select which individuals reproduced asexually each generation. We applied

mutations to offspring as described in Section 4.3.4. Agents were limited to a maximum of

32 parallel executing threads and a maximum of 32 functions. Functions were limited to a

maximum length of 128 instructions. Agents were limited to 128 call states per call stack.

The minimum tag reference threshold was 50% (i.e., tags must have at least 50% similarity

to successfully reference). All tags were represented as length 16 bit strings.

Statistical Methods

For every run, we extracted the program with the highest fitness after 10,000 genera-

tions of evolution. Because the sequence of environmental states experienced by an agent

during evaluation are highly variant, we tested each extracted program in 100 trials, using

a program’s average performance as its fitness in our analyses. For each environment size,

we compared the performances of evolved programs across treatments. To determine if any

of the treatments were significant (p < 0.05) within a set, we performed a Kruskal-Wallis

test. For an environment size in which the Kruskal-Wallis test was significant, we performed

a post-hoc Dunn’s test, applying a Bonferroni correction for multiple comparisons. All sta-

tistical analyses were conducted in R 3.3.2 (R Core Team, 2016), and each Dunn’s test was

87

conducted using the FSA package (Ogle, 2017).

4.4.2 Distributed Leader Election Problem

In the distributed leader election problem, a network of agents must unanimously des-

ignate a single agent as leader. Agents are each given a unique identifier (UID). Initially,

agents are only aware of their own UID and must communicate to resolve the UIDs of other

agents. During an election, each agent may vote, and an election is successful if all votes

converge to a single, consensus UID. This problem has been used to study the evolution of

cooperation in digital systems (Knoester et al., 2007, 2013) and as a benchmark problem to

compare the performance of different GP representations in evolving distributed algorithms

(Weise and Tang, 2012). A common strategy for successfully electing a leader begins with

all agents voting for themselves. Then, agents continuously broadcast their vote, changing

it only when they receive a message containing a UID greater than their current vote. This

process results in the largest UID propagating through the distributed system as the consen-

sus leader. Alternatively, a similar strategy works for electing the agent with the smallest

UID.

We evolved populations of homogeneous distributed systems of SignalGP agents where

networks were configured as 5x5 toroidal grids, and agents could only interact with their

four neighbors. When evaluating a network, we initialized each agent in the network with

a random UID (a number between 1 and 1,000,000). We evaluated distributed systems for

256 time steps. During an evaluation, agents retrieve their UID by executing a GetUID

instruction. Agents vote with a SetOpinion instruction, which sets their opinion (vote)

to a value stored in memory, and agents may retrieve their current vote by executing a

GetOpinion instruction. Agents communicate by exchanging messages, either by sending a

message to a single neighbor or by broadcasting a message to all neighboring agents.

After an evaluation, we assigned fitness, F according to Equation 4.1 where V gives the

number of valid votes at the end of evaluation, Cmax gives the maximum consensus size at

88

the end of evaluation, Tconsensus gives the total number of time steps at full consensus, and

S gives the size of the distributed system.

F = V + Cmax + (Tconsensus × S) (4.1)

Distributed systems maximize their fitness by achieving consensus as quickly as possible

and maintaining consensus for the duration of their evaluation. Our fitness function rewards

partial solutions by taking into account valid votes (i.e., votes that correspond to a UID

present in the network) and partial consensus at the end of an evaluation.

We evolved distributed systems in three treatments: one with event-driven messaging

and two different imperative messaging treatments. In the event-driven treatment, messages

were events that, when received, could trigger a function. In both imperative treatments,

messages did not automatically trigger functions; instead, messages were sent to an inbox

and needed to be retrieved via a RetrieveMessage instruction. The difference between the

two imperative treatments was in how messages were handled once retrieved. In the fork-on-

retrieve imperative treatment, messages act like an internally-generated event when retrieved

from an inbox, triggering the function with the closest (above a threshold) matching tag on

a new thread. In the copy-on-retrieve imperative treatment, messages are not treated as

internal events when retrieved; instead, message contents are loaded into the input memory

of the thread that retrieved the message. In the copy-on-retrieve imperative treatment, we

augmented the available instruction set with the Fork instruction, allowing programs to

trivially spawn parallel-executing threads.

Hypothesis

Event-driven SignalGP agents do not need to continuously poll a message inbox to

receive messages from neighboring agents, allowing event-driven programs to more efficiently

coordinate. Thus, we expected distributed systems evolved in the event-driven treatment to

outperform those evolved in the two imperative treatments.

89

Experimental Parameters

We ran 100 replicates of each treatment. In all replicates of all treatments, we evolved

populations of 400 homogeneous distributed systems for 50,000 generations. We initialized

populations with a simple ancestor program consisting of a single function with eight no-

operation instructions. Selection and reproduction were identical to that of the changing

environment problem. Agents were limited to a maximum of 8 parallel executing threads.

Agents were limited to a maximum of 4 functions, and function length was limited to a

maximum 32 instructions. Agents were limited to 128 call states per call stack. The minimum

tag reference threshold was 50%. All tags were represented as length 16 bit strings. The

maximum inbox capacity was 8. If a message was received and the inbox was full, the oldest

message in the inbox was deleted to make room for the new message.

Statistical Methods

For every replicate across all treatments, we extracted the program that produces the

most fit distributed system after 50,000 generations of evolution. As in the changing en-

vironment problem, we compared treatments using a Kruskal-Wallis test, and if significant

(p < 0.05), we performed a post-hoc Dunn’s test, applying a Bonferroni correction for mul-

tiple comparisons.

4.5 Results and Discussion

4.5.1 Changing Environment Problem

Event-driven strategies outperform imperative strategies

Figure 4.2 shows results for all environment sizes (K = 2, 4, 8, and 16). Programs

evolved in treatments with fully event-driven SignalGP significantly outperformed those

evolved in the imperative treatment across all environments (p < 10−4 for all conditions).

Across all environments, there was no significant difference in final program performance

90

Two−state Environment Four−state Environment Eight−state Environment Sixteen−state Environment

Imperative Event−driven Combined Imperative Event−driven Combined Imperative Event−driven Combined Imperative Event−driven Combined

0

50

100

150

200

250

Condition

F
itn

es
s

Figure 4.2: Changing environment problem results across all environments: two-state
environment, four-state environment, eight-state environment, and sixteen-state environment. The
raincloud plots (Allen et al., 2019) indicate the fitnesses (each an average over 100 trials) of best
performing programs from each replicate.

between the event-driven and combined treatment. See supplementary material for full

details on statistical test results (Lalejini, 2018).

Further, only treatments with fully event-driven SignalGP produced programs capable

of achieving a perfect fitness of 256. This result is not surprising, as only programs that

employ an entirely event-driven strategy can achieve a perfect score in multi-state environ-

ments. This is because imperative strategies must continuously poll the environment for

changes, which decreases the efficiency of their response to an environmental change. This

strategy becomes increasingly cumbersome and inefficient as the complexity of the envi-

ronment increases. In contrast, event-driven responses are triggered automatically via the

SignalGP virtual hardware, facilitating immediate reactions to environmental changes. This

allows event-driven strategies to more effectively scale with environment size than imperative

strategies.

91

Evolution favors event-driven strategies

In the combined treatment, evolution had access to both the event-driven (signal-based)

strategy and the imperative (sensor-polling) strategy. As shown in Figure 4.2, performance

in the combined treatment did not significantly differ from the event-driven treatment, but

significantly exceeded performance in the imperative treatment. However, this result alone

does not reveal what strategies were favored in the combined treatment.

To tease this apart, we re-evaluated programs evolved under the combined treatment in

two distinct conditions: one in which we deactivated sensors and one in which we deactivated

external events. In the deactivated sensors condition, SenseEnvState instructions behaved

as no-operations, which eliminated the viability of a sensor-based polling strategy. Likewise,

the deactivated events re-evaluation condition eliminated the viability of event-driven strate-

gies. Any loss of functionality by programs in these new environments will tease apart the

strategies that those programs must have employed.

Two−state Environment Four−state Environment Eight−state Environment Sixteen−state Environment

Base No Sensors No Events Base No Sensors No Events Base No Sensors No Events Base No Sensors No Events

0

50

100

150

200

250

Analysis

F
itn

es
s

Figure 4.3: Re-evaluation results for combined condition in the changing environment
problem across all environments: two-state environment, four-state environment, eight-state
environment, and sixteen-state environment. The raincloud plots indicate the fitnesses (each an
average over 100 trials) of best performing programs from each re-evaluation.

92

Figure 4.3 shows the results of our re-evaluations. Across all environment sizes, there was

no significant difference between program performance in their original combined condition

and the deactivated sensors conditions. In contrast, program performances were significantly

worse in the deactivated events condition than in the combined condition (all conditions,

p < 10−4). These data indicate that programs evolved in the combined condition primarily

rely on event-driven strategies for the changing environment problem.

4.5.2 Distributed Leader Election Problem

0

1000

2000

3000

4000

5000

6000

7000

Imperative
(fork−on−retrieve)

Imperative
(copy−on−retrieve)

Event−driven

Condition

F
itn

es
s

0 10000 20000 30000 40000 50000

Time (generations)

Condition

I (F)
I (C)
ED

Figure 4.4: Distributed leader election problem results. The raincloud plots indicate the
fitnesses of best performing distributed systems from each replicate. The time series gives average
fitness over time during evolution. The colors in the time series correspond to the colors in the
raincloud plots. The shading on fitness trajectories in the time series indicates a bootstrapped 95%
confidence interval.

Event-driven networks outperform imperative networks

Figure 4.4 shows the results for the distributed leader election problem. Distributed

systems evolved in the event-driven treatment significantly outperformed those evolved in

both imperative treatments (fork-on-retrieval and copy-on-retrieval, p < 10−4). See supple-

mentary material for full details on statistical test results (Lalejini, 2018).

All three conditions produced distributed systems capable of achieving election consen-

sus. The difference in performances across treatments primarily reflect how quickly consensus

is able to be reached within a distributed system. The event-driven programming paradigm

93

is able to more efficiently encode communication between agents, as it does not require

programs to continuously poll for new messages from other agents. Thus, the event-driven

paradigm allows signals to propagate more quickly through a distributed system than the

imperative paradigm. The time series shown in Figure 4.4 hints that the event-driven Sig-

nalGP representation evolves more rapidly for the distributed leader election problem than

the imperative variants; however, deeper analyses are required for confirmation.

4.6 Conclusion

We introduced SignalGP, a new type of GP technique designed to provide evolution

direct access to the event-driven programming paradigm by augmenting Spector et al.’s

(Spector et al., 2011b) tag-based modular program framework. We have described and

demonstrated SignalGP within the context of linear GP. Additionally, we used SignalGP

to explore the value of capturing the event-driven paradigm on two problems where the

capacity to react to external signals is critical: the changing environment problem, and the

distributed leader election problem. At a minimum, our results show that access to the

event-driven programming paradigm allows programs to more efficiently encode agent-agent

and agent-environment interactions, resulting in higher performance on both the changing

environment and distributed leader election problems. Deeper analyses are needed to tease

apart the effects of the event-driven programming paradigm on the evolvability of solutions.

4.6.1 Beyond Linear GP

While this work presents SignalGP in the context of linear GP, the ideas underpinning

SignalGP are generalizable across a variety of evolutionary computation systems.

We can imagine SignalGP functions to be black-box input-output machines. Here, we

have exclusively put linear sequences of instructions inside these black-boxes, but could

have easily put other representations capable of processing inputs (e.g., other forms of GP,

Markov brains (Hintze et al., 2017), artificial neural networks, etc.). We could even employ

94

black-boxes with a variety of different contents within the same agent. Encasing a vari-

ety of representations within a single agent may complicate the virtual hardware, program

evaluation, and mutation operators, but also provides evolution with a toolbox of diverse

representations.

As we continue to explore the capabilities of SignalGP, we plan to explore the evolv-

ability of event-driven programs versus imperative programs across a wider set of problems

and incorporate comparisons to other GP representations. Further, we plan to extend Sig-

nalGP to other representations beyond linear GP and compare their relative capabilities and

interactions.

4.7 Software and Data Availability

We implemented SignalGP, the changing environment problem, and the distributed

leader election problem using the Empirical scientific software library (Ofria et al., 2020).

We conducted all statistical analyses for this work using R version 3.3.2 (R Core Team,

2016). Our source code for test problems, experiment data, and analyses can be found in

supplemental material (Lalejini, 2018), which is hosted on GitHub1.

1https://github.com/amlalejini/GECCO-2018-Evolving-Event-driven-Programs-with-SignalGP/

95

Chapter 5

Tag-based regulation of modules in

genetic programming improves

context-dependent problem solving

Authors: Alexander Lalejini, Matthew Andres Moreno, and Charles Ofria

This chapter is adapted from (Lalejini et al., 2020b), which has passed peer review and is

to appear in Genetic Programming and Evolvable Machines.

5.1 Introduction

Genetic programming (GP) applies the natural principles of evolution to automatically

synthesize programs rather than writing them by hand. Indeed, the promise of automating

computer programming has motivated advances in GP since its early successes in the 1980s

(Cramer, 1985; Forsyth, 1981; Koza, 1989). Just as human software developers have access

to a dazzling array of programming languages, each specialized for solving different types

of problems, GP features many ways to represent evolvable programs. Each representation

features different programmatic elements that vary in their syntax, organization, interpre-

tation, and evolution. These differences can dramatically influence the types of computer

programs that can be evolved, and as such, influence a representation’s problem-solving

range (Hintze et al., 2019; Wilson and Banzhaf, 2008). Here, we introduce and experimen-

96

tally demonstrate tag-based module regulation for genetic programming, allowing us to more

easily evolve programs capable of dynamically regulating responses to inputs over time.

Nearly all software applications are capable of conditionally responding to inputs. For

example, each input button on a calculator triggers a different software response; or, in

the Small or Large problem from the Helmuth and Spector’s automatic program synthesis

benchmark suite (Helmuth and Spector, 2015), programs must output different classifica-

tions (“small”, “large”, or “neither”) depending on a numeric input value. Just like such

conditional logic is inherent in any non-trivial software, so to is it ubiquitous in biological

organisms where it is referred to as “plastic” behavior or “phenotypic plasticity.”

Modular software design—that is, designs that promote the partitioning and reusability

of functional units—is fundamental to good software development practices; this principle is

all the more true in producing programs capable of complex “plasticity.” By modularizing

code (e.g., into functions, classes, libraries, etc.), software developers can craft customized

responses to inputs by composing relevant modules. These modules can each contain seg-

ments of code whose functionality would otherwise need to be reinvented for each response.

Likewise, modularity appears to be critical in natural genomes (Wagner et al., 2007) as well

as artificial evolving systems (Huizinga et al., 2016). Moreover, evidence in these evolving

systems suggests that modularity can improve the capacity for effective plasticity to arise

(Ellefsen et al., 2015; Londe et al., 2015).

Developing GP systems that facilitate the evolution of modular program architectures

has long captured the attention of the genetic programming community. Koza introduced

Automatically Defined Functions (ADFs) where callable functions can evolve as separate

branches of GP syntax trees (Koza, 1992, 1994). Angeline and Pollack developed com-

pression and expansion genetic operators to automatically modularize existing code into li-

braries of parameterized subroutines (Angeline and Pollack, 1992). Since these foundational

advances, significant efforts have been made to allow GP representations to incorporate in-

ternal modules (e.g., (Spector, 1996; O’Neill and Ryan, 2000; Binard and Felty, 2007; Walker

97

and Miller, 2008; Spector et al., 2011b, 2012; Lalejini and Ofria, 2018)), to measure (and

select for) modularity in evolving programs (e.g., (Krawiec and Wieloch, 2009; Saini and

Spector, 2019, 2020)), and to build “libraries” of reusable code modules accessible to evolv-

ing populations of programs (e.g., (Banscherus et al., 2001; Keijzer et al., 2004, 2005; Rosca

and Ballard, 1994)).

These innovations have improved the ability of GP systems to link modules together

to solve problems, thus improving their prospects as general-purpose tools for automatic

program synthesis. In existing GP work, links between modules, however, are typically hard

coded and static during program execution. Less is known for how to evolve programs that

can adjust module associations on the fly. For many types of problems, the appropriate set

of modules to execute in response to a particular input changes over time. This requires

programs to continuously adjust associations between inputs and modular responses based

on context. For example, the computations that occur on a calculator after pressing the

“equals” button are context-dependent ; that is, they depend on the set of operators and

operands (i.e., inputs) previously provided. To achieve this design pattern, programs must

internally track contextual information and typically regulate responses using explicit flow

control directives (such as if-statements). Our goal is to evolve programs that dynamically

regulate modules during execution to more effectively solve context-dependent problems.

To reach this goal, we draw inspiration from gene regulatory networks (both natural and

artificial) to augment how program modules are called in GP.

Here, we propose to facilitate dynamic module composition by introducing tag-based

module regulation for genetic programming. We extend existing tag-based naming schemes

to allow programs to dynamically adjust associations between references and code modules.

We experimentally demonstrate our implementation of tag-based genetic regulation in the

context of SignalGP (Lalejini and Ofria, 2018); however, our approach is immediately ap-

plicable to any existing tag-enabled GP system, such as tag-addressed Run Transferable

Libraries (Keijzer et al., 2004) or PushGP (Spector et al., 2011b). We add “regulation”

98

instructions to SignalGP that can adjust (i.e., promote or repress) which code modules re-

spond to input signals and internal calls. This extension allows evolution to structure a

program as a gene regulatory network where genes are program modules and program in-

structions mediate regulation. We show that module regulation improves problem-solving

performance on problems where responses to particular inputs change depending on prior

context (e.g., prior inputs). We also observe that our implementation of tag-based regulation

can sometimes impede adaptive evolution when outputs are not context-dependent.

5.2 Specifying Modules with Tag-based Referencing

All programming representations that support modularizing code into functions or li-

braries define mechanisms for labeling and subsequently referencing modules. In traditional

software development, programmers hand label modules and reference a particular module

using its assigned label. Programmers must precisely name the module they intend to ref-

erence; imprecision typically results in incorrect outputs or a syntax error. This mechanism

for referencing modules allows for an arbitrarily large space of possible module names and

is intentionally brittle, ensuring programs are either interpreted by a computer exactly as

written or not interpreted at all. Requiring genetic programming systems to adhere to these

traditional approaches to module referencing is not ideal. Mutation operators must either

ensure that mutated labels are syntactically valid, or else cope with an abundance of broken

code. These choices result in either a search space that is overly constrained or one that is

rugged and difficult to navigate (Rasmussen et al., 1990).

Inspired by Holland’s use of “tags” to facilitate binding and aggregation in complex

adaptive systems (Holland, 1990, 1993), Spector et al. generalized the use of tags to label

and refer to program modules in GP (Spector et al., 2011a,b). Tags are evolvable labels

that can be mutated, and the similarity (or dissimilarity) between any two tags can be

quantified. Tags are most commonly represented as floating point or integer numeric values

(Keijzer et al., 2004; Spector et al., 2011b) or as bit strings (Lalejini and Ofria, 2018). Like

99

traditional naming schemes, tags can provide an arbitrarily large address space. Unlike

traditional naming schemes, however, tags allow for inexact addressing. A referring tag

targets the tagged entity (e.g., a module) with the closest matching tag; this ensures that all

possible tags are valid references. Further, mutations to tags do not necessarily invalidate

existing references. For example, mutating a referring tag will have no phenotypic effect if

those mutations do not change which target tag is matched. As such, mutating tag-based

names is not necessarily catastrophic to program functionality, allowing the labeling and use

of modularized code fragments to incrementally co-evolve (Spector et al., 2011b).

Tag-based referencing has long been used to expand the capabilities of genetic program-

ming systems. Keijzer et al. created run transferable libraries of tag-addressable functions

using successful code segments evolved in previous GP runs (Keijzer et al., 2004, 2005).

Evolving programs (represented as program trees) contained dynamically-linked nodes that

used tag-based referencing to call library functions. These tag-addressed libraries were up-

dated between runs and did not co-evolve with programs.

Spector et al. augmented PushGP with tag-based referencing, allowing tag-addressable

code modules to evolve within a program (Spector et al., 2011b). Spector et al. found that

tags provided a flexible mechanism for modularization that allowed tag-enabled programs

to better scale with problem size. Additionally, Spector et al. expanded tag-based modules

beyond PushGP, successfully applying the technique to tree-based GP (Spector et al., 2012).

Lalejini and Ofria further extended tag-based naming to linear GP. Their SignalGP

system broadens the application of tags to facilitate the evolution of event-driven programs

(Lalejini and Ofria, 2018, 2019b). In SignalGP, tagged modules are called internally or

triggered in response to tagged events (e.g., events generated by other agents or the envi-

ronment). More recently, Lalejini and Ofria demonstrated the use of tags to label memory

positions in GP, enabling programs to define and use evolvable variable names (Lalejini and

Ofria, 2019a). This tag-based memory implementation did not substantively affect problem-

solving performance; however, tag-based addressing features a larger addressable memory

100

space than more traditional register-based memory approaches in GP.

5.3 Tag-based Genetic Regulation

Here, we allow programs to use tag-based referencing to dynamically regulate module

execution. To achieve this, we draw inspiration from both natural and artificial gene regu-

latory networks. We demonstrate that this approach promotes more effective solutions for

context-dependent problems.

Gene regulatory networks represent the complex interactions among genes, transcription

factors, and signals from the environment that, together, control gene expression (Banzhaf

and Yamamoto, 2015). Gene regulation allows for feedback loops so that prior events can

continue to influence future expression in flexible and nuanced ways. Gene regulation under-

lies most important biological processes, including cell differentiation, metabolism, the cell

cycle, and signal transduction (Karlebach and Shamir, 2008). The role of gene regulatory

networks in sustaining complex life has inspired varied and abundant computational models

of these networks (Cussat-Blanc et al., 2019; Karlebach and Shamir, 2008).

Artificial gene regulatory networks have been used to study how natural gene regulation

evolves (Aldana et al., 2007; Crombach and Hogeweg, 2008; Draghi and Wagner, 2009) and

as a tool in evolutionary computation to solve challenging control problems (as reviewed by

(Cussat-Blanc et al., 2019)). Evolved artificial gene regulatory networks have even been used

as indirect encoders, providing a developmental phase to translate genomes into programs

(Banzhaf, 2003; Lopes and Costa, 2012) or neural networks (Wróbel and Joachimczak, 2014).

La Cava et al. demonstrated a form of epigenetic regulation for genetic programming where

“gene” activation and silencing is learned each generation (La Cava et al., 2015; La Cava

and Spector, 2015); however, the programs themselves did not have direct control over

these regulatory elements. Inspired by chromatin remodeling in biological cells, Turner et

al. introduced artificial epigenetic networks that allow for the regulation (i.e., the addition

or removal) of internal network components (Turner et al., 2017); such topological self-

101

modification improved problem-solving success for dynamical control problems.

We aim to incorporate gene regulatory network-inspired methodology to allow programs

to dynamically adjust which module is triggered by a particular call based on not just current

inputs, but also prior inputs. We achieved this goal by instantiating gene regulatory networks

using tag-based referencing. Specifically, we implemented tag-based genetic regulation in the

context of the linear GP system SignalGP (Lalejini and Ofria, 2018), which is described in

further detail in Section 5.4.1. Here, we describe tag-based genetic regulation in terms of our

SignalGP-based implementation; however, our overall approach is immediately applicable to

each of the tag-enabled systems described in Section 5.2 and can be easily incorporated into

any genetic programming representation.

Briefly, programs in SignalGP are composed of tag-addressed modules (i.e., functions),

each of which contain a linear sequence of instructions. Each instruction has arguments,

including an evolvable tag that can be used to identify and call a tag-addressed module.

When a referring tag (e.g., from an instruction) is used to look up a tag-addressed module,

all modules in that program are ranked according to a tag-matching score. A tag-matching

score quantifies the quality of the reference between a referring tag and a module’s tag; we

always select the module with best reference quality (i.e., the highest tag-match score with

the referring tag). When a module is called, it is executed procedurally, instruction-by-

instruction, in the same way as in a conventional linear GP system.

We modified SignalGP in two ways to implement tag-based genetic regulation:

1. We added a “regulatory modifier” value (represented as a floating point value) to all

tag-addressed modules. A module’s regulatory modifier adjusts how well that module

matches to referring tags, and thus, modifies the likelihood it will be referenced.

2. We supplemented the instruction set with promoter and repressor instructions that,

when executed, adjust a target module’s regulatory modifier.

When a program begins execution, each internal module initially has no regulatory mod-

102

0 ⇒ 10 10 ⇒ 0

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.50

0.50

0.75

1111
tag reg.

(A) (B)

Module 3

Module 1

Module 2

1111
tag

0
reg.

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.50

0.25

0.75

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

1.29

0.75

0.25

1111
tag

10
reg.

(C)

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.0

0.50

0.751111
tag reg.

(D)

Figure 5.1: Tag-based genetic regulation example. This example depicts a simple oscillating
regulatory network instantiated using tag-based regulation. In this example, tags are length-4 bit
strings. The “raw” match score between two tags equals the number of matching bits between them.
Regulation (reg.) modifies match scores for “call” instructions according to Equation 5.1. First
(A), the call 1001 in Module 1 executes, triggering Module 3. Next (B), Module 3 is executed,
promoting Module 2. After Module 3 returns, the call 1001 in Module 1 executes again (C);
however, Module 2’s promotion causes it to be triggered instead of Module 3. Finally (D), Module
2 executes and represses itself, resetting its regulatory modifier to 0.

ification.1 When a promoter or repressor instruction is executed, its associated tag identifies

which module should be regulated using tag-based referencing. Promoter instructions in-

crease a target module’s regulatory modifier, which increases the module’s tag-match score

with subsequent references (according to equation 5.1 below) and thus increases the mod-

ule’s chances of being referenced. Repressor instructions have the opposite effect. Regulatory

modifiers can be configured to persist over a program’s entire execution or passively decay

over time.

When determining which module to call at runtime, each module’s tag-match score is a

function of how well the module’s tag matches the call instruction’s tag as modified by the

module’s regulatory value. If a module’s regulatory modifier has been sufficiently decreased

by repressor instructions, it is possible that the module will no longer be able to be referenced,

1Alternatively, allowing programs to inherit their parent’s regulatory modifiers can provide a simple model
of epigenetics.

103

as its regulated tag-match score will always be lower than at least one other program module.

We must ensure that this situation does not create an unrecoverable regulatory state and

that such a fully repressed module can always be restored. As such, promoter and repressor

instructions use unregulated tag-based referencing to identify which modules they regulate;

that is, we do not apply regulatory modifiers to tag-based references made by promoter and

repressor instructions. This ensures that no matter how much a particular module has been

repressed, subsequent promoter instructions can increase its regulatory modifier. Figure 5.1

gives a simplified example of how promoter and repressor instructions can dynamically adjust

module execution over time.

We have implemented a toolbox of interchangeable methods for applying regulation to

tag-matching scores in the Empirical library (Ofria et al., 2020). Here, we use a simple expo-

nential function to apply a module’s regulation modifier to its tag-match score calculations:

Mr(tq, tm, Rm) = M(tq, tm) × bRm (5.1)

Rm specifies the module’s regulation modifier, which is under the direct control of the evolv-

ing programs. Mr is the regulation-adjusted match score between a querying tag (tq) and the

module’s tag (tm). M is a function that gives the baseline, unadjusted match score between

the querying tag and module tag. If tags are represented as floating point values, M can

be as simple as the absolute difference between the two tags. The strength of regulation is

determined by the constant, b (set to 1.1 in this work).

When determining which module to reference, each candidate module’s Mr is computed,

and the module with the highest Mr value is chosen. Intuitively, modules with Rm < 0 are

down-regulated (i.e., in a repressed state), modules with Rm > 0 are up-regulated (i.e.,

in a promoted state), and modules with Rm = 0 are unmodified by regulation. That is,

down-regulated modules have lower tag-match scores than they otherwise would without

regulation, and up-regulated modules have higher tag-match scores than they otherwise

would without regulation. Figure 5.2 gives a visual representation of Equation 5.1.

104

Figure 5.2: Regulated tag-match score as a function of raw tag-match score and regula-
tory modifier values according to Equation 5.1. The horizontal black line indicates a neutral
regulatory state; repressed states are below the line, and promoted states are above the line. We
expect the raw tag-match score (calculated using the Streak similarity metric, which is described
later in Section 5.4.1) of 90% of random pairs of tags to fall between the two dashed vertical lines;
to compute the location of these lines, we generated 105 pairs of random tags and found the region
that contained the middle 90% of raw tag-matching scores.

105

In preliminary experiments, we tested several different methods of implementing regula-

tion (including additive, multiplicative, and the current exponential techniques). We found

no evidence for any one method performing substantially better than the others. Future

work will more thoroughly explore the potential effects of different regulation mechanisms.

5.4 Methods

We evaluated how tag-based genetic regulation faculties contribute to, and potentially

detract from, the functionality of evolved genetic programs in the context of SignalGP.

First, we assessed the evolvability of our implementation of tag-based genetic regulation:

can we evolve programs that rely on regulation to dynamically adjust their response to

environmental conditions over time? Additionally, can tag-based genetic regulation improve

problem-solving success on context-dependent problems? We addressed these questions using

the signal-counting and contextual-signal problems, diagnostic tasks that require context-

dependent responses to an input signal.

Next, we assessed tag-based genetic regulation on the Boolean-logic calculator problem,

a more challenging program synthesis problem that requires programs to perform Boolean

logic computations in response to a sequence of input events that represent button presses

on a simple calculator.

Finally, we used the independent-signal problem to investigate the potential for ge-

netic regulation to impede adaptive evolution by producing maladaptive plasticity. The

independent-signal problem is a diagnostic that requires programs to associate distinct re-

sponses with each type of input; as such, programs do not need to change their response

to particular input signals based on prior context. Additionally, fitness evaluation in the

independent-signal problem is imperfect: programs receive input signals in a random order,

providing ample opportunity for erroneous regulation to impede adaptive evolution.

106

5.4.1 SignalGP

Here, we provide a general overview of SignalGP; see (Lalejini and Ofria, 2018) for a

more in-depth description. SignalGP defines a scheme for organizing and interpreting ge-

netic programs to afford computational evolution access to the event-driven programming

paradigm (Cassandras, 2014). In event-driven programs, software execution focuses on pro-

cessing events (often in the form of messages from other processes, sensor alerts, or user

actions). In SignalGP, events (signals) trigger the execution of program modules (func-

tions), facilitating efficient reactions to exogeneously- or endogeneously-generated signals.

For this work, program modules are represented as sequences of instructions; however, the

SignalGP framework generalizes across a variety of program representations (Lalejini and

Ofria, 2019b).

Programs in SignalGP are explicitly modular, comprising a set of functions, each asso-

ciating a tag with an instruction sequence. SignalGP makes explicit the concept of events or

signals. All signals contain a tag and any associated signal-specific data (e.g., numeric input

values). Because both signals and program functions are tagged, SignalGP determines the

most appropriate function to process a signal using tag-based referencing: signals trigger the

function with the closest matching tag.

In this work, we represent tags as 256-bit strings, and we quantify the similarity be-

tween any two tags using the Streak metric. The Streak metric was originally proposed

by Downing (Downing, 2015) and measures similarity between two bit strings in terms

of the relationship between the lengths of the longest contiguously-matching and longest

contiguously-mismatching substrings.2 Specifically, we XOR the two bit strings and count

the longest substring of all 0’s in the first case or of all 1’s in the second. The equation below

overviews how the Streak metric computes the similarity (S) between two tags (tq and tm):

2We make a slight modification to Downing’s matching procedure due to an error in its mathematical
derivation, as detailed in the supplement (Lalejini et al., 2021).

107

S(tq, tm) =
pmismatch(tq, tm)

pmismatch(tq, tm) + pmatch(tq, tm)

where pmatch returns the probability of observing the measured length of the longest

contiguously-matching substring between tq and tm by chance, and pmismatch returns the prob-

ability of observing the measured length of the longest contiguously-mismatching substring

between tq and tm by chance. Both our implementation and the mathematical equations

for computing the Streak similarity between two bit strings can be found in supplemental

material Section 5 (Lalejini et al., 2021).

When a signal triggers a function, the function executes with the signal’s associated

data as input. SignalGP programs can handle many signals simultaneously by processing

and responding to each in parallel threads of execution. Threads each contain local memory

registers for performing computations. Additionally, concurrently executing threads may

interact by writing to and reading from a shared global memory buffer. For this work, we

guaranteed deterministic thread execution using a round robin scheduler to step each thread

forward one step (i.e., one instruction) synchronously.

The SignalGP instruction set allows programs to generate internal signals, broadcast

external signals, and otherwise work in a tag-based context. In this work, each instruction

contains one tag and three integer arguments. Arguments may modify the effect of an

instruction, often specifying memory locations or fixed values. For example, instructions may

refer to and call internal program modules using tag-based referencing; when an instruction

generates a signal (e.g., to be used internally or broadcast), the instruction’s tag is used as

the signal’s tag.

Previous work has demonstrated that SignalGP facilitates the evolution of event-driven

programs capable of identifying and responding to many distinct signals (Lalejini and Ofria,

2019b). However, without access to regulation, SignalGP requires programs to track context

in memory and use procedural mechanisms (e.g., if statements) to adjust how they respond

to a particular signal over time based on stored context. Here, we apply tag-based genetic

108

Instruction Description

SetRegulator+ Set the regulatory modifier of a target module to the value
stored in an argument-specified memory register.

SetRegulator- Set the regulatory modifier of a target module to the nega-
tion of the value stored in an argument-specified memory
register.

SetOwnRegulator+ Set the regulatory modifier of the currently executing mod-
ule to the value stored in an argument-specified memory
register.

SetOwnRegulator- Set the regulatory modifier of the currently executing mod-
ule to the negation of the value stored in an argument-
specified memory register.

AdjRegulator+ Add the value stored in an argument-specified memory reg-
ister to the regulatory modifier of a target module.

AdjRegulator- Subtract the value stored in an argument-specified memory
register to the regulatory modifier of a target module.

AdjOwnRegulator+ Add the value stored in an argument-specified memory reg-
ister to the regulatory modifier of the currently executing
module.

AdjOwnRegulator- Subtract the value stored in an argument-specified memory-
register to the regulatory modifier of the currently executing
module.

ClearRegulator Reset the regulatory modifier of a target module.

ClearOwnRegulator Reset the regulatory modifier of the currently executing
module.

SenseRegulator Load the value of a target module’s regulatory modifier into
an argument-specified memory register.

SenseOwnRegulator Load the value of the currently executing module’s regula-
tory modifier into an argument-specified memory register.

IncRegulator Add one to the regulatory modifier of a target module.

IncOwnRegulator Add one to the regulatory modifier of the currently execut-
ing module.

DecRegulator Subtract one from the regulatory modifier of a target mod-
ule.

DecOwnRegulator Subtract one from the regulatory modifier of the currently
executing module.

Table 5.1: Regulatory instructions used in this work. We include (+) and (-) instruction
variants to ensure that positive and negative regulation values are equally probable.

109

regulation to SignalGP (as described in Section 5.3). We supplemented the instruction set

with regulatory instructions (Table 5.1) that use tag-based referencing to target internal

functions. In this work, we apply regulation to function references using Equation 5.1.

Our full instruction set, including descriptions of each instruction, can be found in our

supplemental material (Lalejini et al., 2021).

Evolution

In this work, we propagated programs asexually, and we applied mutations to offspring.

The parent-selection method varied across experiments. Programs were variable-length: each

program contained up to 256 modules, and each module contained up to 128 instructions.

We applied single-instruction substitution, insertion, and deletion mutations each at a

per-instruction rate of 0.001. Additionally, we applied a ‘slip’ mutation operator (Lalejini

et al., 2017) that could duplicate or delete entire sequences of instructions at a per-module

rate of 0.05. We mutated numeric instruction arguments at a per-argument rate of 0.001,

and we limited numeric arguments to values between -4 and 4. When a numeric argument

mutated, we randomized the argument’s value to a valid integer between -4 and 4. We

mutated instruction- and module-tags at a per-bit rate of 0.0001. We applied whole-module

duplication and deletion operators at a per-module rate of 0.05, allowing the number of

modules in a program to evolve.

5.4.2 Signal-counting Problem

The signal-counting problem requires programs to continually change their response to

an environmental signal, producing the appropriate output each of the K times that signal

is repeated. Programs output responses by executing one of K response instructions. For

example, if a program receives two signals from the environment during evaluation (i.e.,

K = 2), the program should execute Response-1 after the first signal and Response-2 after

the second signal; aside from executing the correct response instruction, no other output is

necessary after receiving an environmental signal.

110

We provide programs 128 time steps to respond to each environmental signal. During

each time step, each of a program’s active threads execute a single instruction. Once the

allotted time expires or the program outputs a response, the program’s threads of execution

reset, resulting in a loss of all thread-local memory; only the contents of the global memory

buffer and each program module’s regulatory state persist. The environment then produces

the next signal (identical to each previous environmental signal) to which the program may

respond. A program must use the global memory buffer or genetic regulation to correctly

shift its response to each subsequent environmental signal. Evaluation continues in this

way until the program correctly responds to each of the K environmental signals or until

the program executes an incorrect response. A program’s fitness equals the number of

consecutive correct responses given during evaluation, and a program is considered a solution

if it correctly responds to all K environmental signals.

Experimental Design

The signal-counting problem is explicitly designed to (1) evaluate if tag-based genetic

regulation can be evolved to dynamically adjust which modules execute in response to a

repeated input type and (2) assess the problem-solving success of a regulation-enabled GP

system relative to an otherwise identical GP system with regulation disabled. We compared

programs evolved in a regulation-on treatment to those evolved in a regulation-off control.

In the control treatment, we used an identical instruction set where regulation instructions

were altered to behave as no-operation instructions. As such, programs must use global

memory (in combination with procedural flow-control mechanisms) to correctly respond to

environmental signals.

For each experimental condition, we evolved 200 replicate populations of 1000 programs

for 10,000 generations at four levels of problem difficulty: K = 2, 4, 8, and 16. For each repli-

cate, we randomly generated a unique tag for each environmental signal, and we initialized

populations with randomly generated programs. Each generation, we evaluated programs

111

independently, and we selected programs using size-eight tournament selection.

5.4.3 Contextual-signal Problem

The contextual-signal problem is inspired by Skocelas and DeVries’ method for verifying

the functionality of recurrent neural network implementations (Skocelas and DeVries, 2020).

In the contextual-signal problem, programs must respond appropriately to a pair of input

signals. The order of these signals does not matter, but the first signal must be remembered

(as “context”) in order to produce the correct response to the second signal. In this work,

there are a total of four possible input signals and four possible outputs. Programs output

a particular response by executing one of four response instructions. Table 5.2 gives the

correct output type for each pairing of input signals.

Test case ID Input Sequence Correct Response

0 S-0, S-0 Response-A
1 S-0, S-1 Response-B
2 S-0, S-2 Response-C
3 S-0, S-3 Response-D
4 S-1, S-0 Response-B
5 S-1, S-1 Response-C
6 S-1, S-2 Response-D
7 S-1, S-3 Response-A
8 S-2, S-0 Response-C
9 S-2, S-1 Response-D
10 S-2, S-2 Response-A
11 S-2, S-3 Response-B
12 S-3, S-0 Response-D
13 S-3, S-1 Response-A
14 S-3, S-2 Response-B
15 S-3, S-3 Response-C

Table 5.2: Input signal sequences for the contextual-signal problem.

We evaluate programs on each of the 16 possible sequences of input signals (Table 5.2);

we consider each of these input sequences as a single test case. For each test case evaluation,

we give programs 128 time steps to process each signal. After the first input signal, a program

must update internal state information to ensure that the second input signal induces the

112

correct response. Once the allotted time expires after the first input signal, the program’s

threads of execution are reset, resulting in a loss of all thread-local memory; only the contents

of global memory and each function’s regulatory state persist. The program then receives the

second input signal and must execute the correct response instruction within 128 time steps.

A program is considered a solution if it produces the correct response for all 16 possible

sequences of input signals.

Experimental Design

We use the contextual-signal problem to (1) assess the capacity of tag-based genetic

regulation to perform context-dependent module execution based on distinct input types

and (2) evaluate the problem-solving success of a regulation-enabled GP system relative

to an otherwise identical GP system with regulation disabled. As in the signal-counting

problem, we compared the problem-solving success of regulation-on and regulation-off GP

systems.

For each experimental condition, we evolved 200 replicate populations of 1000 programs

for 10,000 generations. For each replicate, we randomly generated the tags associated with

each type of input signal, and we initialized populations with randomly generated programs.

Instead of selecting programs to propagate based on an aggregate fitness measure, we used

the lexicase parent selection algorithm (Helmuth et al., 2015) in which each combination of

input signals (i.e., row in Table 5.2) constituted a single test case.

5.4.4 Boolean-logic Calculator Problem

Inspired by Yeboah-Antwi’s PushCalc system (Yeboah-Antwi, 2012), the Boolean-logic

calculator problem requires programs to implement a push-button calculator capable of

performing each of the following 10 bitwise logic operations: ECHO, NOT, NAND, AND,

OR-NOT, OR, AND-NOT, NOR, XOR, and EQUALS. Table 5.3 gives a brief overview

of each of these operations. In this problem, there are 11 distinct types of input signals:

one for each of the 10 possible operators and one for numeric inputs. Each distinct signal

113

type is associated with a unique tag (randomly generated per-replicate) and is meant to

recreate the context that must be maintained on a physical calculator. Programs receive a

sequence of input signals in prefix notation, starting with an operator signal and followed

by the appropriate number of numeric input signals (that each contain an operand to use in

the computation). After receiving the appropriate input signals, programs must output the

correct result of the requested computation.

Operation # Inputs NAND gates

ECHO 1 0
NOT 1 1

NAND 2 1
AND 2 2

OR-NOT 2 2
OR 2 3

AND-NOT 2 3
NOR 2 4
XOR 2 4

EQUALS 2 5

Table 5.3: Bitwise Boolean logic operations used in the Boolean-logic calculator prob-
lem. Programs are given a nand instruction and must construct each of the other operations (aside
from ECHO) out of nand operations. As such, we measure the difficulty of each operation as the
minimum number of NAND gates required to construct the given operation.

Programs are evaluated on a set of test cases (i.e., input/output examples) where each

test case comprises a particular operator, the requisite number of operands, and the expected

numeric output. Test cases are evaluated on a pass/fail basis, and a program is classified as

a solution if it passes all test cases in a training and testing set3. The training and testing

sets used in this work are included in our supplemental material (Lalejini et al., 2021) and

contained 442 and 5810 test cases, respectively. Each generation, we sample 20 test cases

from the training set, and we independently evaluate each program in the population on the

sampled test cases.

When evaluating a program on a test case, we provide 128 time steps to process each

input signal. After time expires, the program’s threads of execution are reset, resulting in

3We use the testing set only to determine if a program can be categorized as a solution. The testing set
is never used by the parent-selection algorithm to determine reproductive success.

114

a loss of all thread-local memory; only the contents of global memory and each function’s

regulatory state persist. Because input signals are given in prefix notation, programs must

adjust their internal state to ensure that the program performs and outputs the result of the

appropriate computation after receiving the requisite number of operand input signals.

Experimental Design

We use the Boolean-logic calculator problem to assess the utility of tag-based regulation

on a challenging program synthesis problem. The signal-counting and contextual-signal

problems each require programs to perform different computations in response to input

signals, but those computations are abstracted as ‘response’ instructions. The Boolean-logic

calculator problem requires programs to both dynamically adjust which modules are executed

in response to input signals and perform non-trivial computations on numeric inputs.

We compared the problem-solving success of programs evolved in regulation-on and

regulation-off conditions. For each condition, we evolved 200 replicate populations of 1000

programs for 10,000 generations. For each replicate, we randomly generated the tags associ-

ated with each type of input signal, and we initialized populations with randomly generated

programs. We selected parents using a variant of the down-sampled lexicase algorithm (Her-

nandez et al., 2019), guaranteeing that at least one of each type of test case (i.e., at least

one of each type of operator) was used during evaluation.

5.4.5 Independent-signal Problem

The independent-signal problem requires programs to execute a unique response for

each of 16 distinct input signals. Because signals are distinct, programs need not alter their

response to any particular signal over time. Instead, programs may “hardwire” each of the

16 possible responses to the appropriate input signal. However, input signals are presented

in a random order; thus, the correct order of responses cannot be hardcoded. Otherwise,

evaluation (and fitness assignment) on the independent-signal task mirrors that of the signal-

counting task (Section 5.4.2). A program is considered a solution if it responds correctly to

115

all 16 input signals during evaluation.

Experimental Design

We deliberately configured fitness evaluation and solution identification in the

independent-signal problem to be noisy and thus unreliable: each program is evaluated

once on a single random ordering of input signals, and we label a program as a solution if it

performs optimally during a single evaluation. Because programs receive input signals in a

random order, erroneous genetic regulation can manifest as cryptic variation (i.e., behavioral

variation that is not expressed and selected on). For example, non-adaptive down-regulation

of a particular response function may be neutral given one sequence of input signals, but

may be deleterious in another. Indeed, this form of non-adaptive cryptic variation can also

result from erroneous flow control structures.

The independent-signal problem allows us to test whether genetic regulation can im-

pede adaptive evolution in scenarios where outputs are not context-dependent and where

fitness evaluation does not reliably differentiate between generalizing and non-generalizing

candidate solutions. Fitness evaluation for the independent-signal problem is computation-

ally inexpensive, so we could easily increase the reliability of evaluation by testing programs

on multiple orderings of input sequences. However, our goal is not to demonstrate that we

can solve this diagnostic problem. Rather, we aim to determine if this diagnostic represents

a general scenario where unnecessary tag-based regulation can impede adaptive evolution

relative to not having regulation.

As in each of the previous experiments, we compared programs evolved in regulation-on

and regulation-off conditions. Specifically, we compared initial problem-solving success and

how well solutions generalized to a sample of 5000 input sequences (of ∼2.1 × 1013 possible

sequences). We deemed programs as having generalized only if they responded correctly in

all 5000 tests.

We evolved 200 replicate populations of 1000 programs for 10,000 generations under

116

each condition. For each replicate, we randomly generated 16 unique input signal tags. All

other experimental procedures were identical to that of the signal-counting task.

5.4.6 Data Analysis and Reproducibility

For each replicate in a given experiment, we extracted and analyzed the first evolved

program that was classified as a solution. We compared the number of successful replicates

(i.e., replicates that yielded a solution) across experimental conditions using Fisher’s exact

test. We conducted knockout experiments on successful programs to identify the mechanisms

underlying their behavior. In all knockout experiments, we re-evaluated programs with a

target functionality (e.g., regulation instructions) replaced with no-operation instructions.

Specifically, we independently knocked out (1) all regulatory instructions, (2) all instructions

that access a program’s global memory buffer, and (3) both regulatory instructions and global

memory access instructions. We classify a program as reliant on a particular functionality

if, when knocked out, fitness decreases. In addition to knockout experiments, we tracked the

distribution of instruction types (e.g., flow control, mathematical operations, etc.) executed

by successful programs. For each successful replicate, we extracted the proportion of flow

control instructions (i.e., conditional logic instructions such as “if” or “while” statements)

executed by the evolved solution. We compared the proportions of flow control instructions

executed by regulation-on solutions and regulation-off solutions, allowing us to assess the

relative importance of conditional logic across experimental treatments.

For programs reliant on genetic regulation, we abstracted regulatory networks as di-

rected graphs by monitoring program execution. Vertices represent program functions, and

directed edges (each categorized as promoting or repressing) show the regulatory interac-

tions between two functions. For example, a repressing edge from function A to function B

indicates that B was repressed when A was executing.

We implemented our experiments using the Empirical scientific software library (Ofria

et al., 2020), and we conducted all statistical analyses using R version 4.0.2 (R Core Team,

117

2020). We used the reshape2 Wickham (2020) R package and the tidyverse (Wickham

et al., 2019) collection of R packages to wrangle data. We used the following R packages for

graphing and visualization: ggplot2 (Wickham et al., 2020), cowplot (Wilke, 2020), viridis

(Garnier, 2018), Color Brewer (Harrower and Brewer, 2003; Neuwirth, 2014), and igraph

(Csardi and Nepusz, 2006). We used R markdown (Allaire et al., 2020) and bookdown (Xie,

2020) to generate web-enabled supplemental material. Our source code for experiments and

analyses, along with guides for replication, can be found in supplemental material (Lalejini

et al., 2021), which is hosted on GitHub. Additionally, we have made all of our experimental

data available on the Open Science Framework (see Section 2 in supplement (Lalejini et al.,

2021)).

5.5 Results and Discussion

5.5.1 Tag-based regulation improves problem-solving

performance on context-dependent tasks

We found that tag-based regulation improves performance on each of the three prob-

lems that require context-dependent behavior: the signal-counting problem (Section 5.5),

contextual-signal problem (Section 5.5), and Boolean-logic calculator problem (Section 5.5).

Additionally, we conducted knockout experiments that confirmed that evolved tag-based reg-

ulation allows solutions to dynamically adjust module execution over time. We also found

that, across all three context-dependent problems, regulation-off solutions (i.e., solutions

evolved using regulation-disabled SignalGP) executed a larger proportion of conditional logic

instructions than regulation-on solutions (i.e., solutions evolved using regulation-enabled

SignalGP). This result suggests that without regulation, programs must evolve larger, more

complex conditional logic structures.

118

https://github.com/amlalejini/Tag-based-Genetic-Regulation-for-LinearGP/
https://osf.io/928fx/

Regulation-off condition Regulation-on condition

Two-signal 137 200
Four-signal 8 200
Eight-signal 0 198

Sixteen-signal 0 74

Table 5.4: Signal-counting problem-solving success. This table gives the number of successful
replicates (i.e., in which a perfect solution evolved) out of 200 on the signal-counting problem
across four problem difficulties and two experimental conditions. For each problem difficulty, the
regulation-off condition was less successful than the regulation-on condition (Fisher’s exact test; all
difficulties: p < 10−15).

Signal-counting Problem

Table 5.4 shows the results from the signal-counting problem for each experimental

condition across all four levels of problem difficulty. Regulation-on conditions consistently

yielded a larger number of successful replicates than regulation-off conditions where programs

relied on their global memory buffer in combination with procedural flow control for success.

Although global memory is technically sufficient to solve each version of the signal-counting

problem4, in practice such solutions evolved in only the two- and four-signal variants. Tag-

based regulation, in contrast, appears more readily adaptive, as regulation-based solutions

arose across all problem difficulties, implying that access to tag-based regulation can drive

increased problem-solving success. Further, we found that, in the two- and four-signal tasks,

solutions arose after significantly fewer generations in the regulation-on conditions than in

the regulation-off controls (Figure 5.3).

Tag-based regulation renders the two-signal task trivial: all solutions evolved in under

10 generations. In fact, the majority of regulation-on solutions (178 out of 200) were found

in the initial randomly generated population. However, not all replicates without access to

tag-based regulation even found a solution to the two-signal task.

We conducted knockout experiments to investigate the mechanisms underlying success-

ful programs. Indeed, all solutions evolved without access to tag-based regulation relied

4We verified this claim by hand-coding solutions that rely on global memory and flow-control instructions
(supplemental Section 12 (Lalejini et al., 2021)).

119

Two−signal task Four−signal task

OFF ON OFF ON

0

10

100

1000

10000

Unsolved

Regulation

G
en

er
at

io
n

fir
st

 s
ol

ut
io

n
ev

ol
ve

d
(lo

g
sc

al
e)

Figure 5.3: Generation at which first solution evolved (log scale) in each successful
replicate for the signal-counting problem (raincloud plot (Allen et al., 2019)). We show
data from only those problem difficulties in which solutions evolved (two- and four-signal problems).
Gray points indicate the number of unsuccessful replicates for each condition. For both problem
difficulties, regulation-on solutions typically required fewer generations than regulation-off solutions
to arise (Wilcoxon rank sum test; two-signal: p < 10−15, four-signal: p < 9 × 10−05).

No regulation
required

Regulation required Unsolved

Two-signal 11 189 0
Four-signal 0 200 0
Eight-signal 0 198 2

Sixteen-signal 0 74 126

Table 5.5: Mechanisms underlying solutions from the regulation-on condition for the
signal-counting problem. To determine a successful program’s underlying strategy, we re-
evaluated the program with global memory access instructions knocked out (i.e., replaced with
no-operation instructions) and with regulation instructions knocked out. This table shows the
number of regulation-on solutions that actually rely on regulation to solve the signal-counting
problem.

120

exclusively on their global memory buffer to differentiate their behavior (see supplemental

Section 7 (Lalejini et al., 2021)). Table 5.5 shows the strategies used by programs evolved

with regulation-enabled SignalGP. Our knockout experiments confirm that the majority of

solutions evolved with access to tag-based regulation do indeed rely on regulation to dynam-

ically adjust their responses to signals over time.

3

10

14

23

 0 5 10 15 20 25 30
Time Step

F
un

ct
io

n
ID

Regulation: Promoted Neutral Repressed

(a) Module regulation over time. (b) Regulatory network.

Figure 5.4: Execution trace of a SignalGP program solving the four-signal version of
the signal-counting task. Color denotes each function’s regulatory state (yellow: promoted,
purple: repressed) during evaluation; functions not regulated or executed are omitted. Functions
that are actively executing are annotated with a black outline. Black vertical lines denote input
signals, and a diamond (white with black outline) indicates which function was triggered by the
input signal. A circle (white with black outline) indicates which function executed a response. (b)
shows the directed graph representing the regulatory network associated with trace (a). Vertices
depict functions that either ran during evaluation or were regulated. Each directed edge shows a
regulatory relationship between two functions where the edge’s source acted on (promoted in yellow
or repressed in purple) the edge’s destination. Note that in the case presented here all repressing
relationships are self-referential.

We further assessed the functionality of tag-based regulation by analyzing the execu-

tion traces of evolved solutions. We visualized the gene regulatory networks that manifest

as a result of programs executing promoter and repressor instructions. Figure 5.4 overviews

the execution of a representative evolved program on the four-signal instance of the signal-

counting problem. We found that successful programs tend to operate via a succession of self-

repressing events where modules express the appropriate response then disable themselves

so that the next best-matching function—expressing the appropriate next response—will ac-

tivate instead. This behavioral pattern continues for each subsequent environmental signal.

121

Indeed, across all problem difficulties, we observed that successful regulatory networks gener-

ally contained more repression relationships than promotion relationships between functions

(supplemental Section 7 (Lalejini et al., 2021)). Independent knockouts of up-regulation and

down-regulation confirm that the majority of successful regulatory networks rely on down-

regulation: of the 661 successful regulatory networks evolved across all problem difficulties,

392 rely exclusively on down-regulation, 7 rely exclusively on up-regulation, 259 rely on both

up- and down-regulation, and 3 rely on either up- or down-regulation (i.e., they required

regulation but were robust to independent knockouts of up- and down-regulation).

Our experimental data highlights the benefit of tag-based genetic regulation in addition

to traditional, register-based means of dynamically adjusting responses to a repeated input

signal over time. However, our data may also indicate a deficiency in the design of SignalGP’s

current global memory model. An improved memory model may also enhance the capac-

ity for programs to dynamically adjust their responses to inputs over time; however, any

memory-based solution will still suffer from the need to incorporate flow-control structures

to implement this functionality, inherently creating a larger evolutionary hurdle to overcome.

Indeed, we found that the memory-based solutions that evolved in our experiments executed

a larger proportion of flow-control instructions than regulation-based solutions (Wilcoxon

rank sum test; two-signal: p < 10−10, four-signal: p = 0.004; supplemental Section 7 (Lale-

jini et al., 2021)).

Contextual-signal Problem

Figure 5.5a shows the number of successful replicates on the contextual-signal problem

for both the regulation-on and regulation-off conditions. While both conditions were often

successful, we found that access to tag-based regulation significantly improved problem-

solving success. Further, regulation-on solutions typically required fewer generations to

evolve than regulation-off solutions (Figure 5.5b).

We used knockout experiments to identify the mechanisms underlying each solution’s

122

173

200

0

50

100

150

200

OFF ON
Regulation

S
uc

ce
ss

fu
l r

ep
lc

ia
te

s

(a) Successful replicates.

0

2500

5000

7500

10000

Unsolved

OFF ON
Regulation

G
en

er
at

io
n

fir
st

 s
ol

ut
io

n
ev

ol
ve

d

(b) Generations elapsed before solution.

Figure 5.5: Contextual-signal problem-solving performance. (a) shows the number of suc-
cessful replicates for the regulation-off and regulation-on conditions on the contextual-signal prob-
lem. The regulation-off condition was less successful than the regulation-on condition (Fisher’s
exact test: p < 6× 10−9). (b) is a raincloud plot showing the generation at which the first solution
evolved in each successful replicate. Gray points indicate the number of unsuccessful replicates
for each condition. Regulation-on solutions typically required fewer generations than regulation-off
solutions to arise (Wilcoxon rank sum test: p < 10−15).

strategy. As expected, all 173 solutions evolved without access to tag-based regulation re-

lied on their global memory buffer to track contextual information and used control flow

mechanisms to differentiate their responses based on stored context. Indeed, we found

that regulation-off solutions executed a larger proportion of flow-control instructions than

regulation-on solutions (Wilcoxon rank sum test: p < 10−15; supplement Section 8 (Lalejini

et al., 2021)). We also found that all 200 regulation-on solutions relied on tag-based regula-

tion for response differentiation: 105 relied only on tag-based regulation and 95 relied on a

combination of both tag-based regulation and global memory.

In contrast to the signal-counting problem, we did not find that successful regulatory

networks used primarily self-repressing modules. Instead, we found that networks were more

balanced between repressing and promoting edges; indeed, we found that successful networks

generally contained more promoting edges than repressing edges (supplement Section 8 (Lale-

123

jini et al., 2021)). This result suggests that we should expect different problems to select for

different forms of gene regulatory networks.

Boolean-logic Calculator Problem

30

66

0

50

100

150

200

OFF ON
Regulation

S
uc

ce
ss

fu
l r

ep
lc

ia
te

s

(a) Successful replicates.

0

2500

5000

7500

10000

Unsolved

OFF ON
Regulation

G
en

er
at

io
n

fir
st

 s
ol

ut
io

n
ev

ol
ve

d

(b) Generations elapsed before solution.

Figure 5.6: Boolean-logic calculator problem-solving performance. (a) shows the number
of successful replicates for the regulation-off and regulation-on conditions on the Boolean-logic
calculator problem. The regulation-off condition was less successful than the regulation-on condition
(Fisher’s exact test: p < 4 × 10−05). (b) is a raincloud plot showing the generation at which the
first solution evolved in each successful replicate. Gray points indicate the number of unsuccessful
replicates for each condition. Regulation-on solutions typically required fewer generations than
regulation-off solutions to arise (Wilcoxon rank sum test: p < 0.042).

Figure 5.6a shows the number of successful replicates on the Boolean-logic calculator

problem for both the regulation-on and regulation-off conditions. While both regulation-on

and regulation-off solutions evolved, we again found that access to genetic regulation signifi-

cantly improved problem-solving success. Further, as in the signal-counting and contextual-

signal problems, regulation-on solutions typically required fewer generations to evolve than

regulation-off solutions (Figure 5.6b).

As in previous experiments, we conducted knockout experiments to identify the mecha-

nisms underlying each solution’s strategy. To compute any of the Boolean logic operations,

programs must make use of the global memory buffer to store numeric inputs (operands)

124

14

60

69

71

78

83

110

136

143

0 50 100
Time Step

F
un

ct
io

n
ID

Regulation: Promoted Neutral Repressed

(a) Module regulation over time for a NAND operation.

(b) NAND regulatory network. (c) NOR regulatory network.

28

48

49

60

69

71

78

83

143

152

157

184

197

235

0 25 50 75 100 125
Time Step

F
un

ct
io

n
ID

(d) Module regulation over time for a NOR operation.

Figure 5.7: Execution traces of a successful SignalGP program computing a NAND
operation (a) and a NOR operation (d). (b) and (c) show the directed graphs representing
the regulatory networks associated with traces (a) and (d), respectively. These visualizations are
in the same format as those in Figure 5.4.

125

to be used when performing the computation specified by the final operator signal. Indeed,

all solutions evolved across all conditions relied on their global memory buffer to solve this

problem. All 66 regulation-on solutions, however, also relied on tag-based regulation to

perform the appropriate computation for each test case. Consistent with results from each

other context-dependent problem, we found that regulation-off solutions executed a larger

proportion of flow-control instructions than regulation-on solutions (Wilcoxon rank sum test:

p < 2 × 10−05; supplement Section 9 (Lalejini et al., 2021)).

As in the signal-counting problem, we visualized the gene regulatory networks that

manifest as a result of programs executing promoting and repressing instructions. Figure

5.7 overviews the execution of a representative program evolved to solve the Boolean-logic

calculator problem. Specifically, Figure 5.7 shows a program computing NAND and the

same program computing NOR. The networks expressed on each of these operations are

distinct despite originating from the same code. These visualizations confirm that tag-based

regulation allows programs to dynamically adjust their responses based on context (in this

case, an initial operator signal).

5.5.2 Erroneous regulation can hinder task generalization

In the signal-counting, contextual-signal, and Boolean-logic calculator problems, pro-

grams must adjust their behavior depending on the particular sequence of received signals.

The independent-signal problem, however, requires no signal-response plasticity; programs

maximize fitness by statically associating K distinct responses each with one of K distinct

input signals. For this task, re-wiring signal-response associations within-lifetime is maladap-

tive. As such, does the capacity for regulation impede adaptation to the independent-signal

task?

We compared 200 replicate populations evolved with regulation-enabled Sig-

nalGP (“regulation-on”) and 200 populations evolved with regulation-disabled SignalGP

(“regulation-off”). All replicates produced a SignalGP program capable of achieving a per-

126

fect score during evaluation. We found no evidence that the availability of regulation affected

the number of generations required to produce these solutions.

Next, we investigated how well evolved solutions generalized across random permuta-

tions of input sequences. Selection was deliberately based on a single stochastic ordering of

environmental signals, so a “perfect” score may not generalize across all signal orderings. We

expect that programs evolved with access to regulation will more often exhibit non-adaptive

plasticity that hinders generalization.

Figure 5.8 shows the number of evolved solutions from each condition that successfully

generalized. All programs that evolved without access to regulation successfully generalized;

however, evolved programs from 18 out of 200 successful regulation-on replicates failed to

generalize beyond the test cases they experienced during evolution (Fisher’s exact test: p <

6×10−6). Moreover, 5 of 18 non-generalizing programs generalized when we knocked out tag-

based regulation. Upon closer inspection, the other non-general programs relied on tag-based

regulation for initial success but failed to generalize to arbitrary environment sequences.

Unexpressed traits that vary in a population (but do not affect fitness) are collectively

known as cryptic variation. Cryptic variation is pervasive in nature and thought to play

an important role in evolution, potentially acting as a cache of diverse phenotypic effects in

novel environments (Gibson and Dworkin, 2004; Paaby and Rockman, 2014). Such cryptic

variation has been shown to help GP systems escape local optima, improving overall problem-

solving performance (Turner and Miller, 2015). Cryptic variation arises when environmental

conditions that would reveal the variation are not experienced. Access to tag-based regu-

lation appears to make such cryptic variation in evolving programs a stronger possibility

than previously. This dynamic can be valuable for performing more realistic studies of evo-

lutionary dynamics with digital organisms (i.e., self-replicating computer programs (Wilke

and Adami, 2002)). However, when using regulation-enabled SignalGP in problem-solving

domains, such as automatic program synthesis, non-adaptive plasticity should be accounted

for in fitness objectives. In the independent-signal problem, for example, we could have per-

127

Figure 5.8: The number of evolved solutions that generalize on the independent-signal
problem. The difference in number of solutions that generalize between the regulation-on and
regulation-off conditions is statistically significant (Fisher’s exact test: p < 6 × 10−06). The
“Regulation-ON (reg. KO)” condition comprises the solutions from the Regulation-on condition,
except with regulatory instructions knocked out (i.e., replaced with no-operation instructions).

formed more thorough evaluations of programs using multiple random permutations of input

sequences instead of one. In more challenging problems, however, more thorough evaluations

can come at the cost of substantial computational effort.

5.5.3 Reducing the context required for the Boolean-logic

calculator problem eliminates the benefit of regulation

Experimental results on the independent-signal problem suggest that enabling tag-based

regulation is not necessarily beneficial for solving problems that do not require context-

dependent responses to input. We use a modified version of the Boolean-logic calculator

problem to further investigate the potential for tag-based regulation to impede adaptive

evolution. The Boolean-logic calculator problem as described in Section 5.4.4 provides inputs

in prefix notation: the operator (e.g., AND, OR, XOR, etc.) is specified first, followed by the

requisite number of numeric operands. As such, the final input signal does not differentiate

128

which type of computation a program is expected to perform. Programs must adjust their

response based on the context provided by previous signals, thereby increasing the utility of

regulation.

Here, we explore whether the calculator problem’s context-dependence is driving the

benefit of tag-based regulation that we identified in Section 5.5. We can reduce context-

dependence of the calculator problem by presenting input sequences in postfix notation.

In postfix notation, programs receive the requisite numeric operand inputs first and the

operator input last. As such, the final signal in an input sequence will always differentiate

which bitwise operation should be performed. Successful programs must store the numeric

inputs embedded in operand signals, and then, as in the independent-signal problem, a

distinct signal will differentiate which of the response types a program should execute.

151

120

0

50

100

150

200

OFF ON
Regulation

S
uc

ce
ss

fu
l r

ep
lc

ia
te

s

(a) Successful replicates.

0

2500

5000

7500

10000

Unsolved

OFF ON
Regulation

G
en

er
at

io
n

fir
st

 s
ol

ut
io

n
ev

ol
ve

d

(b) Generations elapsed before solution.

Figure 5.9: Boolean-logic calculator (postfix notation) problem-solving performance.
(a) shows the number of successful replicates for the regulation-off and regulation-on conditions
on the postfix Boolean-logic calculator problem. The regulation-on condition was less successful
than the regulation-off condition (Fisher’s exact test: p < 0.002). (b) is a Raincloud plot showing
the generation at which the first solution evolved in each successful replicate. Gray points indicate
the unsuccessful replicates for each condition. Regulation-off solutions typically required fewer
generations than regulation-on solutions to arise (Wilcoxon rank sum test: p < 0.004).

We repeated the Boolean-logic calculator experiment (as described in Section 5.4.4),

129

except we presented inputs in postfix notation instead of prefix notation. Figure 5.9a shows

the number of successful replicates evolved in regulation-on and regulation-off conditions.

Postfix notation decreases the overall difficulty of the Boolean-logic calculator problem; more

solutions evolved in each condition than evolved with prefix notation (Section 5.5). We

found that the regulation-on condition resulted in lower problem-solving success than the

regulation-off condition. We also found that regulation-off solutions typically required fewer

generations than regulation-on solutions to arise (Figure 5.9b). Additionally, we did not

observe a significant difference in the proportion of flow-control instructions represented in

execution traces of regulation-on and regulation-off solutions (supplement Section 11 (Lalejini

et al., 2021)).

These results, in combination with our previous experimental results, suggest that tag-

based regulation is beneficial when prior context dictates behavioral responses to input. On

such context-dependent problems, representations without explicit regulation must compen-

sate with additional conditional logic structures.

5.6 Conclusion

We demonstrated that tag-based genetic regulation allows GP systems to evolve pro-

grams with more dynamic plasticity. These evolved programs are better able to solve context-

dependent problems where the appropriate software modules to execute in response to a par-

ticular input changes over time. Genetic regulation broadens the applicability of SignalGP,

both as a representation for problem-solving and as a type of digital organism for studying

evolutionary dynamics (Lalejini et al., 2020a). Further, this work illustrates an approach for

easily incorporating tag-based models of gene regulation into existing GP systems.

Our results also reveal that tag-based regulation is not necessarily beneficial across

all problem domains. We observed that the addition of tag-based regulation can impede

adaptive evolution on problems where responses to inputs are not context-dependent (e.g.,

the independent-signal task and postfix version of the Boolean-logic calculator problem). A

130

more thorough examination of what types of context-free problems are most sensitive to

tag-based regulation—and how to mitigate any harm—would be potentially fruitful.

Across all problems used in this work, the tag representation and matching scheme that

we used was clearly sufficient for success. However, existing tag systems are limited in their

capacity to scale up to substantially larger gene regulatory networks. As these networks grow,

the specificity required for references to differentiate between modules increases. At some

point references become brittle, as any mutation will switch the module that a call triggers.

In ongoing work, we are investigating the wide variations in scalability of different metrics for

measuring the similarity between tags. Substantial work will also need to be conducted by

the community in order to develop more scalable representations for tag-based naming. For

example, insights from the indirect referencing mechanisms of artificial biochemical networks

and enzyme genetic programming systems may prove to be informative in developing new

tag representations (Lones et al., 2014, 2013; Lones and Tyrrell, 2004).

Evolved programs are often more challenging to read and understand than programs

written by human developers. In our experience, evolved programs that make use of tag-

based regulation were substantially more difficult to read and interpret by hand than evolved

programs that do not use tag-based regulation. We found that visualizations of tag-based

regulatory networks and program execution traces (e.g., Figures 5.4 and 5.7) greatly im-

proved our ability to understand how a given evolved program worked. As we scale up

tag-based regulation, the development of interactive visualizations will become increasingly

important for understanding evolved programs that use tag-based regulation.

The current investigations have focused on regulation as a problem-solving tool, but

with a few extensions these sorts of systems can also help us answer open questions about

biological evolution. Our current implementation of tag-based regulation facilitates plasticity

only within a program’s lifetime; if we extend this capacity across multiple generations, we

can study the effects of epigenetic inheritance on evolutionary dynamics. Epigenetic inheri-

tance refers to heritable phenotypic changes that are not directly encoded by the underlying

131

genetic sequence (Bender, 2002; Jablonka and Raz, 2009). For example, epigenetics is used

in combination with gene regulation for cell-type differentiation in multicellular organisms

(Mohn and Schübeler, 2009; Smith and Meissner, 2013) and caste determination in some

species of eusocial insects (Weiner and Toth, 2012). SignalGP supports epigenetics with the

addition of instructions that mark existing function regulation as heritable. For our next

steps, we will apply epigenetics-enabled SignalGP to study fraternal transitions in individu-

ality and the evolution of differentiation before, during, and after a transition occurs (Lalejini

et al., 2020a). Open-ended experiments with epigenetics and gene regulation will help illumi-

nate the relationship between within-lifetime plastic adaptation and evolutionary adaptation

over generational time scales. Additionally, mechanisms for epigenetic inheritance have been

shown to potentially improve GP performance (La Cava et al., 2015; La Cava and Spector,

2015; Ricalde and Banzhaf, 2017); as such, we plan to apply our insights back to automatic

program synthesis.

132

Chapter 6

Tag-accessed Memory for Genetic

Programming

Authors: Alexander Lalejini and Charles Ofria

This chapter is adapted from (Lalejini and Ofria, 2019a), which appeared in the companion

proceedings of the 2019 Genetic and Evolutionary Computation Conference.

6.1 Introduction

Here, we demonstrate the use of tags (evolvable labels that can be specified with imper-

fect matching) to identify memory positions in genetic programming (GP). Specifically, we

conducted a series of experiments using simple linear GP representations on five problems

from the general program synthesis benchmark suite (Helmuth and Spector, 2015). We show

that tag-indexed memory does not substantively affect problem solving success relative to

more traditional, direct-indexed memory.

In traditional software engineering, human programmers create variables with unique

names to specify data that they are working with. These variables are inherently associated

with locations in memory that are accessed by using the variable’s name. This technique for

referencing values in memory is intentionally rigid, requiring programmers to precisely name

the data they want to reference, and imprecision results in syntactic errors. Many traditional

GP systems that give genetic programs access to memory (e.g., indexable memory registers)

133

(B) Tag-accessed Memory

Input(1000,0111,0010)

Set-2(0101,0110,1111)

Output(0110,1110,1001)

Mult (0000,1101,1110)

16

2

0

32

[0000]:

[0101]:

[0011]:

[0110]:

Memory

Program Virtual Hardware

(A) Direct-addressed Memory

Input(0,2,0)

Set-2(1,3,2)

Output(3,3,0)

Mult (0,1,3)

16

2

0

32

[0]:

[1]:

[2]:

[3]:

Memory

Program Virtual Hardware

Figure 6.1: Examples of (A) direct-indexed memory and (B) tag-accessed memory.
The programs in (A) and (B) behave identically: both request input to the first memory register,
set the second memory register to the terminal value “2”, place the result of multiplying the contents
of the first two memory registers into the fourth memory register, and output the contents of the
fourth register. Here, we show the state of memory after the Mult instruction has been executed.
Note that not all instructions use all three arguments.

use similarly rigid naming schemes where memory is numerically indexed, and mutation

operators must guarantee the validity of memory-referencing instructions. Interestingly,

although exact naming is the most intuitive referencing mechanism for human programmers,

evolution in other contexts (such as identifying modules to run (Lalejini and Ofria, 2019b))

has been shown to be more successful when program references are allowed to be inexact.

Beyond computer code, robustness to perturbations is also thought to be important in the

evolution of complex biological systems (Kitano, 2004).

Tags are evolvable labels that give genetic programs a flexible mechanism for specifica-

tion, originally used by Holland in genetic algorithms (Holland, 1993) and refined by Spector

et al. for GP (Spector et al., 2011b). To facilitate inexact referencing, the similarity (or

dissimilarity) between any two tags must be quantifiable; a referring tag can always ref-

erence the closest matching referent tag. Here, we continue to expand the integration of

tags into linear GP by allowing instructions to use tags to identify positions in memory (as

needed for their function). All instructions have three tag-based arguments, each of which

is represented as a length-16 bit string and compared using Hamming distance to measure

similarity. Our instruction set allows programs to perform basic computations, manipulate

134

memory contents, and control execution flow (see supplemental material (Lalejini, 2019) for

details). Programs are executed in the context of a virtual CPU that gives them access to

16 statically tagged memory registers used for storing data for performing computations.

Figure 6.1 contrasts tag-based memory with direct-indexed memory. Tag-based instruction

arguments reference the memory position with the closest matching tag; as such, argument

tags need not exactly match any of the tags associated with memory positions. This inex-

actness makes program phenotypes more robust to minor genetic perturbations, smoothing

the genotype-phenotype mapping relative to more traditional memory-indexing techniques.

6.2 Experimental Results

We compared the performance of our simple linear GP to a variant that replaced the

tag-accessed memory with memory indexed with direct arguments (which is more akin to

memory access in traditional linear GP (Brameier and Banzhaf, 2007)). We evolved programs

using the lexicase parent selection algorithm Helmuth et al. (2015) to solve five problems

from Helmuth and Spector’s program synthesis benchmark suite (Helmuth and Spector,

2015): number IO, smallest, median, grade, and for loop index. For each problem, we

added custom instructions to the instruction set that facilitated loading test case inputs into

memory and returning program responses. We used the same training and testing sets when

evaluating programs as Helmuth and Spector in (Helmuth and Spector, 2015). We measured

performance by counting the number of successful runs (i.e., runs that produced a perfect

solution).

For each experimental condition, we evolved 50 replicate populations of 500 individuals

(for 100 generations for the number IO problem and 500 generations for all other problems),

giving each replicate a unique random number seed. We propagated programs asexually and

applied mutations to offspring (single-instruction insertions, deletions, and substitutions at a

per-instruction rate of 0.005 each and multi-instruction sequence duplications and deletions

at a per-program rate of 0.05). The relative success of these two memory-indexing techniques

135

22 26
32 35 37 42 44 46 46 48

13 16 20
28 28 30

39 40 37
26

23 26
36 33 31

39 37 39
31 28

28 31 35
41 44 46 46 45 41

34

10
17 18 22

30
21

35 31
39 35

33
40 44 45 49 45 49 48 47 50

19 24
32 29 24 29 24

0 0 0

21

34 30 28
37

27

12
0 0 0

34
44 40 40 41 36

8
0 0 0

16
23

29
37 34 38

22

7
1 1

Numeric Arguments Tag−based Arguments

N
um

ber IO
S

m
allest

M
edian

G
rade

F
or Loop Ind.

1e
−

04

0.
00

1

0.
00

25

0.
00

5

0.
00

75

0.
01

0.
02

5

0.
05

0.
07

5

0.
1

1e
−

04

0.
00

1

0.
00

25

0.
00

5

0.
00

75

0.
01

0.
02

5

0.
05

0.
07

5

0.
1

0

20

40

0

20

40

0

20

40

0

20

40

0

20

40

Argument Mutation Rate

S
uc

ce
ss

fu
l R

un
s

Figure 6.2: Number of successful runs when using tag-accessed memory (right column) versus
using traditional direct-indexed memory (left column) across five problems and ten instruction
argument mutation rates (after 100 generations for number IO and 500 generations for all other
problems).

is influenced by how (and at what rate) we mutate instruction arguments. As such, we

mutated tag-based arguments (per-bit) and traditional arguments (per-argument) at the

following ten rates: 0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, and 0.1. See

our online supplemental material (Lalejini, 2019) for source code, details on problem-specific

configurations (e.g., program evaluation time, etc.), and for our more detailed analyses.

Figure 6.2 shows the performance of tag-accessed memory and direct-indexed memory

for each problem and mutation rate. For each problem, we selected the best (most suc-

cessful) mutation rate for tag-based arguments and the best mutation rate for traditional

arguments. We compared the performance of tag-based arguments and numeric arguments

136

at these “optimal” mutation rates, and we tested for we tested for statistical significance us-

ing Fisher’s exact test (with a significance threshold of 0.05). Across all problems, there was

no statistically significant difference between tag-based instruction arguments (tag-accessed

memory) and numeric instruction arguments (direct-indexed memory).

Figure 6.2 also seems to indicate that tag-accessed memory is more sensitive to mutation

rate than direct-addressed memory. Indeed, on the smallest, median, and grade problems,

three mutation rates resulted in no solutions in our tag-based argument treatment, whereas

all mutation rates in the numeric arguments treatment resulted in at least one solution on

all problems. This result does not necessarily indicate that tag-based arguments are less

mutationally robust than numeric arguments. We mutated numeric arguments at a per-

argument rate, and as such, a mutation rate of 0.1 is an expected one mutation for every

ten arguments mutated. We mutated tag-based arguments at a per-bit rate, and as such, a

mutation rate of 0.1 is an expected one to two bit flips per mutated tag. That is, in practice,

the 0.1 per-bit mutation rate for tags is substantially higher than the 0.1 per-argument

mutation rate for numeric arguments. More experiments are needed to quantify tag-based

argument and numeric argument sensitivity to mutation.

6.3 Conclusion

Our preliminary experiments show that, under favorable mutation rates, both tag-

accessed and direct-indexed memory achieve statistically equivalent performance. Because

tag-based instruction arguments index into the closest matching memory register, single

bit-flip mutations may be neutral (not affecting the program’s behavior), which affords pro-

grams robustness to minor genetic perturbations. The down-side to a more robust genetic

encoding for instruction arguments is that mutations are less able to generate novel pheno-

typic variation (program behavior). For the relatively simple program synthesis problems

used in our experiments, the capacity of our GP system to generate novel phenotypic vari-

ation is likely more important than robustness to mutation. Future work will continue to

137

explore the efficacy of tag-accessed memory, supplementing bit-flip mutation operators with

more impactful mutation operators that allow tag-mutations to more easily generate novel

phenotypic variation. Future work will also investigate the possibility of coevolving register

labels (tags) with programs, allowing evolution to adjust the adjacency of memory registers

in tag-space.

138

Chapter 7

Conclusions

The capacity for adaptive phenotypic plasticity is an important characteristic of adaptive

systems, including both biological organisms and solutions to computational problems (e.g.,

computer programs). In this dissertation, I used digital evolution experiments to explore

the process by which adaptive plasticity evolves and to illuminate its effects on subsequent

evolutionary dynamics. I have also demonstrated the value of phenotypic plasticity in the

context of genetic programming, introducing novel techniques that allow us to evolve more

dynamically responsive computer programs.

7.1 Contributions

In summary, this dissertation makes the following contributions:

• In Chapter 2, I found that both environmental change rate and mutation rate in-

fluence the likelihood for adaptive phenotypic plasticity to evolve in populations of

digital organisms. By analyzing the lineages of plastic organisms, I identified that un-

conditional trait expression and imperfect forms of phenotypic plasticity are important

evolutionary building blocks for adaptive plasticity.

• In Chapter 3, I used populations of digital organisms to empirically test whether

the evolution of adaptive phenotypic plasticity alters evolutionary dynamics and in-

fluences evolutionary outcomes in cyclically changing environments. I found that the

139

evolution of adaptive phenotypic plasticity stabilizes populations against environmen-

tal fluctuations and constrains subsequent evolution. By buffering populations against

environmental change, adaptive plasticity improved novel trait retention and reduced

the accumulation of deleterious mutations relative to non-plastic populations evolved

in an otherwise identical environment.

• In Chapter 4, I introduced SignalGP, a novel genetic programming technique for

evolving event-driven computer programs. I showed that SignalGP allows us to evolve

programs better able to rapidly interact with the environment or with other agents.

• In Chapter 5, I developed tag-based genetic regulation, a new genetic programming

technique that allows programs to dynamically adjust the code modules that they

express. I described how to augment existing genetic programming systems with tag-

based regulation, and I showed that tag-based regulation improves problem-solving

performance on context-dependent problems where programs must adjust how they

respond to current inputs based on prior inputs.

• In Chapter 6, I proposed tag-accessed memory, a new mechanism for labeling and

identifying memory positions in genetic programming. With preliminary experiments,

I found that, under favorable mutation rates, both tag-accessed memory and con-

ventional direct-indexed memory achieve similar performance on a range of program

synthesis problems. These results indicate promise as tag-accessed memory is further

integrated into tag-enabled genetic programming systems.

7.2 Future Directions

Thus far, I have focused on using digital evolution techniques to study general principles

about evolutionary processes (Chapters 2 and 3) and applying inspiration from biology to

evolutionary computing (Chapters 4, 5, and 6). There are many future directions with which

to take my research. Here, I highlight just two (of many) planned directions: broadened ap-

140

plications of SignalGP and transferring techniques and insights from evolutionary computing

back into laboratory-based experimental evolution.

7.2.1 Broadened applications of SignalGP

There are many extensions and applications of SignalGP that I hope to either pursue,

facilitate, or eagerly watch others carry out. Given that SignalGP is a new genetic program-

ming representation able to address new types of problems, there are many fundamental

topics ripe for exploration. For example, I have yet to investigate the effects of crossover or

any form of horizontal gene transfer in SignalGP. In addition, most of the program synthesis

problems that I have applied SignalGP to have been primarily diagnostic; in the future, I

look forward to more broadly benchmarking SignalGP on challenging event-driven program

synthesis problems.

Below, I discuss in detail two additional extensions to my work: positioning SignalGP as

a model organism for digital experimental evolution and developing a multi-representation

version of SignalGP that can bring together the most effective aspects of different GP rep-

resentations.

SignalGP as model organism for digital experimental evolution

In Chapters 4 and 5, I demonstrated SignalGP in an applied genetic programming

context. However, one of my original motivations for developing SignalGP was to design a

new approach for representing self-replicating computer programs that emphasizes dynamic

interactions among digital organisms and between digital organisms and their environment.

In Chapters 2 and 3, I experimentally evolved relatively simple forms of adaptive phenotypic

plasticity; that is, to achieve an optimal form of plasticity, digital organisms needed to toggle

between two relatively simple phenotypes based on environmental conditions. In some of my

earliest (unpublished) experiments using Avida, I attempted to evolve more complex forms of

adaptive plasticity (e.g., the capacity to independently regulate many traits). Such adaptive

plasticity proved to be challenging to evolve (and thus study) in Avida because genomes are

141

expressed procedurally: actions are performed one at a time in a single chain of execution

and must explicitly check for new sensory information. As such, organisms in Avida must

continuously generate explicit queries in order to identify (and react to) any changes in their

environment. Further, the genetic mechanisms in Avida for encoding adaptive plasticity are

not easily scalable; I found that plastic programs typically regulate a few key instructions to

alter their phenotype and cannot as easily toggle large sequences of instructions on or off.

There are many different model organisms used in biological research, each with their

own benefits and shortcomings for conducting evolution experiments. Yet, historically, there

have been very few different forms of self-replicating computer programs used in digital evo-

lution experiments. I envision SignalGP as providing a useful representation for experiments

where digital organisms need to dynamically react to signals from the environment or from

other agents. I look forward to expanding on my work presented in Chapter 5 on tag-based

regulation to further enhance gene regulation and epigenetic inheritance in SignalGP.

I am most excited, however, by ongoing digital evolution work using SignalGP that

is being conducted by other researchers. For example, Matthew Andres Moreno has in-

corporated SignalGP into the DISHTINY digital evolution platform (Moreno and Ofria,

2019; Lalejini et al., 2020a). DISHTINY provides independently replicating digital organ-

isms (cells) with the ability and the incentive to unite into higher-level individuals. The

system demonstrates de novo major evolutionary transitions in individuality without direct

interventions by the experimenter. Individual cells are SignalGP agents, which allows them

to respond to the environment and communicate with one another in a signal-driven con-

text. Moreno has developed novel approaches to SignalGP module regulation and execution

(Moreno, 2021), distributed agent-agent interactions (Moreno and Ofria, 2020), and even

implemented substantially more efficient versions of the SignalGP virtual hardware (Moreno

and Rodriguez Papa, 2021).

142

Multi-representation SignalGP

In Chapters 4 and 5, SignalGP functions (modules) associate a tag with the start of a

linear sequence of instructions. We can imagine these functions to be black-box input-output

machines: when called or triggered by an event, a function is provided with input and can

return output, writing to memory or generating signals as it goes. Instead of constructing

functions with linear sequences of instructions, we could use other computational substrates

capable of receiving input and producing output (e.g., other GP representations, artificial

neural networks, Markov brains, hard-coded modules, etc.). We could even employ a variety

of representations within a single SignalGP agent.

SignalGP’s tag-based naming scheme enables this black-box metaphor. Functions com-

posed of different representations can still refer to one another via tags, and events are

agnostic to the underlying representation used to handle them, requiring only that the repre-

sentation is capable of processing event-specific data. Allowing for such multi-representation

agents may complicate the SignalGP virtual hardware, program evaluation, and mutation

operators, but in exchange, it would provide evolution with a toolbox of diverse representa-

tions.

Hintze et al. proposed and demonstrated the evolutionary “buffet method” where

Markov brains could be composed of heterogeneous computational substrates, allowing evolu-

tion to work out the most appropriate representation for a given problem (Hintze et al., 2019).

Indeed, Hintze et al. observed that different problems produced solutions with different dis-

tributions of component types, making buffet-style Markov brains a flexible representation

for solving a range of different types of problems. Multi-representation SignalGP provides

an unexplored, alternative approach to evolving multi-representation agents, bringing the

buffet method into an event-driven context.

143

7.2.2 Transferring algorithms from evolutionary computing to

laboratory-based experimental evolution

My eventual goal is to work, teach, and mentor seamlessly across computational and

laboratory evolution systems, cyclically transferring insights from biology to evolutionary

computing and back again. However, my research thus far has been entirely computational

in nature, and I have yet to work with laboratory experimental evolution systems. To this

end, my immediate future plans are to learn more about microbial experimental evolution

as a postdoctoral researcher in Dr. Luis Zaman’s laboratory at the University of Michigan.

In collaboration with Dr. Zaman’s lab, I will use cutting-edge laboratory automation

and equipment fabrication technology to conduct evolution experiments that take advantage

of precise environmental controls and high-resolution sensor feedback. One of the initial

ways we aim to bridge computational and laboratory experimental evolution is by converting

modern evolutionary computing algorithms to direct the evolution of microbial populations.

Directed evolution wields artificial selection as a tool to generate biomolecules and or-

ganisms with enhanced or novel functional traits (Chen and Arnold, 1993; Sánchez et al.,

2021). The scale and specificity of artificial selection has been revolutionized by a deeper

understanding of evolutionary and molecular biology in combination with technological inno-

vations in sequencing, sensing, and laboratory automation. These advances have cultivated

growing interest in directing the evolution of whole microbial communities with functions

that can be harnessed in medicine, biotechnology, and agriculture (Sánchez et al., 2021).

Yet, the procedures for selecting which communities to propagate tend to focus on those

that are the most fit, leaving more nuanced techniques unexplored, despite many highly

effective results in evolutionary computation.

Indeed, since the 1960s, evolutionary computing has harnessed the principles of natu-

ral evolution as a general purpose search engine for solving challenging computational and

engineering problems (Bäck et al., 1997). As evolutionary computing has matured, the field

has identified common pitfalls in directing evolution and has developed a robust toolbox of

144

algorithms to more effectively steer evolutionary processes.

As in evolutionary computing, directed evolution in vitro begins with a library of vari-

ants (e.g., communities, genomes, or molecules). Variants are scored according to the pheno-

typic trait (or set of traits) of interest, and the variants with the “best” traits are selected and

used to produce the next generation. The method by which we select variants to propagate

from generation to generation dramatically influences the success of directing evolution. In

complex fitness landscapes, using only the overall “best” variants to produce the next gen-

eration can lead to premature convergence on local optima and adaptive stagnation; this is

especially likely in scenarios with multiple objectives that have inherent functional trade-offs.

These pitfalls are well studied in evolutionary computation and have motivated new selection

schemes that have dramatically improved the quality and diversity of evolved solutions.

I plan to apply modern evolutionary computing selection algorithms (e.g., novelty-based

algorithms, quality-diversity algorithms, lexicase-based algorithms, and multi-objective al-

gorithms) to steer the evolution of microbial communities. Eventually, we aim to further

bridge digital and microbial experimental evolution by coevolving communities of digital

organisms with microbial communities in real time, giving each influence over aspects of

the other’s environment. Such a hybrid experimental evolution platform would provide the

opportunity to investigate the de novo evolution of feedbacks between different ecosystems.

145

BIBLIOGRAPHY

146

BIBLIOGRAPHY

Adami, C. and Brown, C. T. (1994). Evolutionary Learning in the 2D Artificial Life System
Avida. arXiv:adap-org/9405003. arXiv: adap-org/9405003.

Adami, C., Ofria, C., and Collier, T. C. (2000). Evolution of biological complexity. Proceed-
ings of the National Academy of Sciences, 97(9):4463–4468.

Ahlmann-Eltze, C. and Patil, I. (2021). ggsignif: Significance Brackets for ’ggplot2’. R
package version 0.6.1.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., editors (2002).
Molecular biology of the cell. Garland Science, New York, 4th ed edition.

Aldana, M., Balleza, E., Kauffman, S., and Resendiz, O. (2007). Robustness and evolvability
in genetic regulatory networks. Journal of Theoretical Biology, 245(3):433–448.

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng,
J., Chang, W., and Iannone, R. (2020). rmarkdown: Dynamic Documents for R. R package
version 2.6.

Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., and Kievit, R. A. (2019). Raincloud
plots: a multi-platform tool for robust data visualization. Wellcome Open Research, 4:63.

Ancel, L. W. (2000). Undermining the Baldwin Expediting Effect: Does Phenotypic Plas-
ticity Accelerate Evolution? Theoretical Population Biology, 58(4):307–319.

Angeline, P. J. and Pollack, J. B. (1992). The evolutionary induction of subroutines. In
Proceedings of the fourteenth annual conference of the cognitive science society, pages
236–241. Bloomington, Indiana.

Banscherus, D., Banzhaf, W., and Dittrich, P. (2001). Hierarchical Genetic Programming
using Local Modules. Technical report, Universität Dortmund. Publication Title: Reihe
Computational Intelligence ; 56.

Banzhaf, W. (2003). Artificial Regulatory Networks and Genetic Programming. In Riolo, R.
and Worzel, B., editors, Genetic Programming Theory and Practice, pages 43–61. Springer
US, Boston, MA.

Banzhaf, W. and Yamamoto, L. (2015). Artificial chemistries. The MIT Press, Cambridge,
MA.

Barrett, R. and Schluter, D. (2008). Adaptation from standing genetic variation. Trends in
Ecology & Evolution, 23(1):38–44.

147

Barrick, J. E., Deatherage, D. E., and Lenski, R. E. (2020). A Test of the Repeatability
of Measurements of Relative Fitness in the Long-Term Evolution Experiment with Es-
cherichia coli. In Banzhaf, W., Cheng, B. H., Deb, K., Holekamp, K. E., Lenski, R. E.,
Ofria, C., Pennock, R. T., Punch, W. F., and Whittaker, D. J., editors, Evolution in
Action: Past, Present and Future, pages 77–89. Springer International Publishing, Cham.
Series Title: Genetic and Evolutionary Computation.

Barton, N. H. (2000). Genetic hitchhiking. Philosophical Transactions of the Royal Society
of London. Series B: Biological Sciences, 355(1403):1553–1562. Publisher: The Royal
Society.

Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C., and Rainey, P. B. (2009). Exper-
imental evolution of bet hedging. Nature, 462(7269):90–93.

Beckmann, B. E., Knoester, D. B., Connelly, B. D., Waters, C. M., and McKinley, P. K.
(2012). Evolution of Resistance to Quorum Quenching in Digital Organisms. Artificial
Life, 18(3):291–310.

Beckmann, B. E. and McKinley, P. K. (2009). Evolving quorum sensing in digital organisms.
In Proceedings of the 11th Annual conference on Genetic and evolutionary computation -
GECCO ’09, page 97, Montreal, Québec, Canada. ACM Press.

Bender, J. (2002). Plant epigenetics. Current Biology, 12(12):R412–R414.

Binard, F. and Felty, A. (2007). An abstraction-based genetic programming system. In
Bosman, P. A. N., editor, Late breaking paper at Genetic and Evolutionary Computation
Conference (GECCO’2007), pages 2415–2422, London, United Kingdom. ACM Press.

Black, A. R. and Dodson, S. I. (1990). Demographic costs of Chaoborus-induced phenotypic
plasticity in Daphnia pulex. Oecologia, 83(1):117–122.

Blount, Z. D., Borland, C. Z., and Lenski, R. E. (2008). Historical contingency and the
evolution of a key innovation in an experimental population of Escherichia coli. Proceedings
of the National Academy of Sciences, 105(23):7899–7906.

Boyer, S., Hérissant, L., and Sherlock, G. (2021). Adaptation is influenced by the complexity
of environmental change during evolution in a dynamic environment. PLOS Genetics,
17(1):e1009314.

Bradshaw, A. (1965). Evolutionary Significance of Phenotypic Plasticity in Plants. In
Advances in Genetics, volume 13, pages 115–155. Elsevier.

Brameier, M. F. and Banzhaf, W. (2007). Linear Genetic Programming. Genetic and Evo-
lutionary Computation. Springer US, Boston, MA.

Buskirk, S. W., Peace, R. E., and Lang, G. I. (2017). Hitchhiking and epistasis give rise
to cohort dynamics in adapting populations. Proceedings of the National Academy of
Sciences, 114(31):8330–8335.

148

Byers, C., Cheng, B., and McKinley, P. (2012). Exploring the evolution of internal control
structure using digital enzymes. In Proceedings of the fourteenth international conference
on Genetic and evolutionary computation conference companion - GECCO Companion
’12, page 1407, Philadelphia, Pennsylvania, USA. ACM Press.

Byers, C. M., Cheng, B. H., and McKinley, P. K. (2011). Digital enzymes: agents of reaction
inside robotic controllers for the foraging problem. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation - GECCO ’11, page 243, Dublin,
Ireland. ACM Press.

Bäck, T., Fogel, D. B., and Michalewics, Z., editors (1997). Handbook of evolutionary com-
putation. Institute of Physics Pub. ; Oxford University Press, Bristol ; Philadelphia : New
York.

Canino-Koning, R., Wiser, M. J., and Ofria, C. (2016). The Evolution of Evolvability:
Changing Environments Promote Rapid Adaptation in Digital Organisms. In Proceedings
of the Artificial Life Conference 2016, pages 268–275, Cancun, Mexico. MIT Press.

Canino-Koning, R., Wiser, M. J., and Ofria, C. (2019). Fluctuating environments select for
short-term phenotypic variation leading to long-term exploration. PLOS Computational
Biology, 15(4):e1006445.

Canty, A. and Ripley, B. D. (2019). boot: Bootstrap R (S-Plus) Functions. R package version
1.3-23.

Card, K. J., LaBar, T., Gomez, J. B., and Lenski, R. E. (2019). Historical contingency in
the evolution of antibiotic resistance after decades of relaxed selection. PLOS Biology,
17(10):e3000397.

Cassandras, C. G. (2014). The event-driven paradigm for control, communication and opti-
mization. Journal of Control and Decision, 1(1):3–17.

Chadwick, W. and Little, T. J. (2005). A parasite-mediated life-history shift in Daphnia
magna. Proceedings of the Royal Society B: Biological Sciences, 272(1562):505–509.

Chen, K. and Arnold, F. H. (1993). Tuning the activity of an enzyme for unusual environ-
ments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide.
Proceedings of the National Academy of Sciences, 90(12):5618–5622.

Chevin, L.-M. and Lande, R. (2010). When do adaptive plasticity and genetic evolution
prevent extinction of a density-regulated population? Evolution, 64(4):1143–1150.

Chevin, L.-M., Lande, R., and Mace, G. M. (2010). Adaptation, Plasticity, and Extinction
in a Changing Environment: Towards a Predictive Theory. PLoS Biology, 8(4):e1000357.

Clune, J., Ofria, C., and Pennock, R. T. (2007). Investigating the Emergence of Phenotypic
Plasticity in Evolving Digital Organisms. In Almeida e Costa, F., Rocha, L. M., Costa,
E., Harvey, I., and Coutinho, A., editors, Advances in Artificial Life, volume 4648, pages
74–83. Springer Berlin Heidelberg, Berlin, Heidelberg.

149

Cooper, T. F. and Ofria, C. (2002). Evolution of Stable Ecosystems in Populations of Digital
Organisms. In Proceedings of the Eighth International Conference on Artificial Life, ICAL
2003, pages 227–232, Cambridge, MA, USA. MIT Press.

Covert, A. W., Lenski, R. E., Wilke, C. O., and Ofria, C. (2013). Experiments on the role of
deleterious mutations as stepping stones in adaptive evolution. Proceedings of the National
Academy of Sciences, 110(34):E3171–E3178.

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential pro-
grams. In Grefenstette, J. J., editor, Proceedings of an International Conference on Genetic
Algorithms and the Applications, pages 183–187, Carnegie-Mellon University, Pittsburgh,
PA, USA.

Crispo, E. (2007). The Baldwin effect and genetic assimilation: revisiting two mechanisms
of evolutionary change mediated by phenotypic plasticity. Evolution, 61(11):2469–2479.

Crombach, A. and Hogeweg, P. (2008). Evolution of Evolvability in Gene Regulatory Net-
works. PLoS Computational Biology, 4(7):e1000112.

Crosbie, M. and Spafford, E. H. (1996). Evolving Event-driven Programs. In Proceedings
of the 1st Annual Conference on Genetic Programming, pages 273–278, Cambridge, MA,
USA. MIT Press. event-place: Stanford, California.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems:1695.

Cussat-Blanc, S., Harrington, K., and Banzhaf, W. (2019). Artificial Gene Regulatory Net-
works—A Review. Artificial Life, 24(4):296–328.

Dewdney, A. K. (1984). Computer recreations: In the game called core war hostile programs
engage in a battle of bits. Scientific American, 250(5):14–23.

Dolson, E., Lalejini, A., Jorgensen, S., and Ofria, C. (2020). Interpreting the Tape of Life:
Ancestry-Based Analyses Provide Insights and Intuition about Evolutionary Dynamics.
Artificial Life, 26(1):58–79.

Dolson, E. and Ofria, C. (2017). Spatial resource heterogeneity creates local hotspots of
evolutionary potential. In Proceedings of the 14th European Conference on Artificial Life
ECAL 2017, pages 122–129, Lyon, France. MIT Press.

Dolson, E. L., Pérez, S. G., Olson, R. S., and Ofria, C. (2017). Spatial resource heterogeneity
increases diversity and evolutionary potential. preprint, Ecology.

Downing, K. L. (2015). Intelligence emerging: adaptivity and search in evolving neural
systems. The MIT Press, Cambridge, Massachusetts.

Draghi, J. and Wagner, G. P. (2009). The evolutionary dynamics of evolvability in a gene
network model. Journal of Evolutionary Biology, 22(3):599–611.

150

Dunn, A. M., Hogg, J. C., Kelly, A., and Hatcher, M. J. (2005). Two cues for sex determi-
nation in Gammarus duebeni : Adaptive variation in environmental sex determination?
Limnology and Oceanography, 50(1):346–353.

Elena, S. F., Wilke, C. O., Ofria, C., and Lenski, R. E. (2007). Effects Of Population Size And
Mutation Rate On The Evolution Of Mutational Robustness. Evolution, 61(3):666–674.

Ellefsen, K. O., Mouret, J.-B., and Clune, J. (2015). Neural Modularity Helps Organisms
Evolve to Learn New Skills without Forgetting Old Skills. PLOS Computational Biology,
11(4):e1004128.

Etzion, O. and Niblett, P. (2010). Event Processing in Action. Manning Publications Co.,
Greenwich, CT, USA, 1st edition.

Forsman, A. (2015). Rethinking phenotypic plasticity and its consequences for individuals,
populations and species. Heredity, 115(4):276–284.

Forsyth, R. (1981). BEAGLE - A Darwinian Approach to Pattern Recognition. Kybernetes,
10(3):159–166.

Fortuna, M. A., Barbour, M. A., Zaman, L., Hall, A. R., Buckling, A., and Bascompte, J.
(2019). Coevolutionary dynamics shape the structure of bacteria-phage infection networks.
Evolution, 73(5):1001–1011.

Garnier, S. (2018). viridis: Default Color Maps from matplotlib. R package version 0.5.1.

Ghalambor, C. K., Angeloni, L. M., and Carroll, S. P. (2010). Behavior as phenotypic
plasticity. In Westneat, D. and Fox, C. W., editors, Evolutionary behavioral ecology, pages
90–107. Oxford University Press, New York, NY.

Ghalambor, C. K., Hoke, K. L., Ruell, E. W., Fischer, E. K., Reznick, D. N., and Hughes,
K. A. (2015). Non-adaptive plasticity potentiates rapid adaptive evolution of gene expres-
sion in nature. Nature, 525(7569):372–375.

Ghalambor, C. K., McKAY, J. K., Carroll, S. P., and Reznick, D. N. (2007). Adaptive versus
non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new
environments. Functional Ecology, 21(3):394–407.

Gibert, P., Debat, V., and Ghalambor, C. K. (2019). Phenotypic plasticity, global change,
and the speed of adaptive evolution. Current Opinion in Insect Science, 35:34–40.

Gibson, G. and Dworkin, I. (2004). Uncovering cryptic genetic variation. Nature Reviews
Genetics, 5(9):681–690.

Goings, S., Goldsby, H., Cheng, B. H., and Ofria, C. (2012). An ecology-based evolutionary
algorithm to evolve solutions to complex problems. In Artificial Life 13, pages 171–177.
MIT Press.

151

Goldberg, D. E. and Richardson, J. (1987). Genetic Algorithms with Sharing for Multimodal
Function Optimization. In Proceedings of the Second International Conference on Genetic
Algorithms on Genetic Algorithms and Their Application, pages 41–49, USA. L. Erlbaum
Associates Inc. event-place: Cambridge, Massachusetts, USA.

Goldsby, H. J., Dornhaus, A., Kerr, B., and Ofria, C. (2012a). Task-switching costs promote
the evolution of division of labor and shifts in individuality. Proceedings of the National
Academy of Sciences, 109(34):13686–13691.

Goldsby, H. J., Knoester, D. B., and Ofria, C. (2010). Evolution of division of labor in
genetically homogenous groups. In Proceedings of the 12th annual conference on Genetic
and evolutionary computation - GECCO ’10, page 135, Portland, Oregon, USA. ACM
Press.

Goldsby, H. J., Knoester, D. B., Ofria, C., and Kerr, B. (2014). The Evolutionary Origin of
Somatic Cells under the Dirty Work Hypothesis. PLoS Biology, 12(5):e1001858.

Goldsby, H. J., Serra, N., Dyer, F., Kerr, B., and Ofria, C. (2012b). The Evolution of
Temporal Polyethism. In Artificial Life 13, pages 178–185. MIT Press.

Gomulkiewicz, R. and Holt, R. D. (1995). When does Evolution by Natural Selection Prevent
Extinction? Evolution, 49(1):201.

Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E., and Desai, M. M. (2017). The
dynamics of molecular evolution over 60,000 generations. Nature, 551(7678):45–50.

Grabowski, L. M., Bryson, D. M., Dyer, F. C., Ofria, C., and Pennock, R. T. (2010). Early
evolution of memory usage in digital organisms. In Artificial Life XII: Proceedings of
the Twelfth International Conference on the Synthesis and Simulation of Living Systems,
pages 224–231. MIT Press.

Grabowski, L. M., Bryson, D. M., Dyer, F. C., Pennock, R. T., and Ofria, C. (2013). A Case
Study of the De Novo Evolution of a Complex Odometric Behavior in Digital Organisms.
PLoS ONE, 8(4):e60466.

Grant, N. A., Maddamsetti, R., and Lenski, R. E. (2020). Maintenance of Metabolic Plas-
ticity Despite Relaxed Selection in a Long-Term Evolution Experiment with Escherichia
coli. preprint, Evolutionary Biology.

Gupta, A. P. and Lewontin, R. C. (1982). A Study of Reaction Norms in Natural Populations
of Drosophila pseudoobscura. Evolution, 36(5):934.

Hallsson, L. R. and Björklund, M. (2012). Selection in a fluctuating environment leads to de-
creased genetic variation and facilitates the evolution of phenotypic plasticity: Evolution-
ary response in a fluctuating environment. Journal of Evolutionary Biology, 25(7):1275–
1290.

Harrell Jr, F. E., with contributions from Charles Dupont, and many others. (2020). Hmisc:
Harrell Miscellaneous. R package version 4.4-2.

152

Harrower, M. and Brewer, C. A. (2003). ColorBrewer.org: An Online Tool for Selecting
Colour Schemes for Maps. The Cartographic Journal, 40(1):27–37.

Heemels, W., Johansson, K., and Tabuada, P. (2012). An introduction to event-triggered
and self-triggered control. In 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), pages 3270–3285, Maui, HI, USA. IEEE.

Helmuth, T. and Spector, L. (2015). General Program Synthesis Benchmark Suite. In
Proceedings of the 2015 on Genetic and Evolutionary Computation Conference - GECCO
’15, pages 1039–1046, Madrid, Spain. ACM Press.

Helmuth, T., Spector, L., and Matheson, J. (2015). Solving Uncompromising Problems With
Lexicase Selection. IEEE Transactions on Evolutionary Computation, 19(5):630–643.

Hendry, A. P. (2016). Key Questions on the Role of Phenotypic Plasticity in Eco-
Evolutionary Dynamics. Journal of Heredity, 107(1):25–41.

Hernandez, J. G., Lalejini, A., Dolson, E., and Ofria, C. (2019). Random subsampling
improves performance in lexicase selection. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion on - GECCO ’19, pages 2028–2031, Prague, Czech
Republic. ACM Press.

Hintze, A., Edlund, J. A., Olson, R. S., Knoester, D. B., Schossau, J., Albantakis, L.,
Tehrani-Saleh, A., Kvam, P., Sheneman, L., Goldsby, H., Bohm, C., and Adami, C.
(2017). Markov Brains: A Technical Introduction. arXiv:1709.05601 [cs, q-bio]. arXiv:
1709.05601.

Hintze, A., Schossau, J., and Bohm, C. (2019). The Evolutionary Buffet Method. In Banzhaf,
W., Spector, L., and Sheneman, L., editors, Genetic Programming Theory and Practice
XVI, pages 17–36. Springer International Publishing, Cham. Series Title: Genetic and
Evolutionary Computation.

Holland, J. H. (1987). Genetic algorithms and classifier systems: foundations and future
directions. Technical report, Michigan Univ., Ann Arbor (USA).

Holland, J. H. (1990). Concerning the emergence of tag-mediated lookahead in classifier
systems. Physica D: Nonlinear Phenomena, 42(1-3):188–201.

Holland, J. H. (1993). The effect of labels (tags) on social interactions. Technical report,
Santa Fe Institute Working Paper 93-10-064. Santa Fe, NM.

Holland, J. H. (2006). Studying Complex Adaptive Systems. Journal of Systems Science
and Complexity, 19(1):1–8.

Huey, R., Hertz, P., and Sinervo, B. (2003). Behavioral Drive versus Behavioral Inertia in
Evolution: A Null Model Approach. The American Naturalist, 161(3):357–366.

153

Huizinga, J., Mouret, J.-B., and Clune, J. (2016). Does Aligning Phenotypic and Genotypic
Modularity Improve the Evolution of Neural Networks? In Proceedings of the Genetic and
Evolutionary Computation Conference 2016, GECCO ’16, pages 125–132, New York, NY,
USA. Association for Computing Machinery. event-place: Denver, Colorado, USA.

Jablonka, E. and Raz, G. (2009). Transgenerational Epigenetic Inheritance: Prevalence,
Mechanisms, and Implications for the Study of Heredity and Evolution. The Quarterly
Review of Biology, 84(2):131–176.

Johnson, A., Strauss, E., Pickett, R., Adami, C., Dworkin, I., and Goldsby, H. (2014).
More Bang For Your Buck: Quorum-Sensing Capabilities Improve the Efficacy of Suicidal
Altruism. In Artificial Life 14: Proceedings of the Fourteenth International Conference on
the Synthesis and Simulation of Living Systems, pages 120–128. The MIT Press.

Karlebach, G. and Shamir, R. (2008). Modelling and analysis of gene regulatory networks.
Nature Reviews Molecular Cell Biology, 9(10):770–780.

Kassambara, A. (2021). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R
package version 0.7.0.

Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., and Whitlock, M. C. (2012).
Experimental evolution. Trends in Ecology & Evolution, 27(10):547–560.

Keijzer, M., Ryan, C., and Cattolico, M. (2004). Run Transferable Libraries — Learning
Functional Bias in Problem Domains. In Kanade, T., Kittler, J., Kleinberg, J. M., Mattern,
F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M.,
Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., and Deb, K., editors, Genetic and
Evolutionary Computation – GECCO 2004, volume 3103, pages 531–542. Springer Berlin
Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in Computer Science.

Keijzer, M., Ryan, C., Murphy, G., and Cattolico, M. (2005). Undirected Training of Run
Transferable Libraries. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mat-
tern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan,
M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Keijzer, M., Tettamanzi, A.,
Collet, P., van Hemert, J., and Tomassini, M., editors, Genetic Programming, volume
3447, pages 361–370. Springer Berlin Heidelberg, Berlin, Heidelberg.

Kelly, S. and Heywood, M. I. (2017). Multi-task learning in Atari video games with emergent
tangled program graphs. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 195–202, Berlin Germany. ACM.

Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11):826–837.

Knoester, D. B., Goldsby, H. J., and McKinley, P. K. (2013). Genetic Variation and the
Evolution of Consensus in Digital Organisms. IEEE Transactions on Evolutionary Com-
putation, 17(3):403–417.

Knoester, D. B. and McKinley, P. K. (2011). Evolution of Synchronization and Desynchro-
nization in Digital Organisms. Artificial Life, 17(1):1–20.

154

Knoester, D. B., McKinley, P. K., and Ofria, C. A. (2007). Using group selection to evolve
leadership in populations of self-replicating digital organisms. In Proceedings of the 9th
annual conference on Genetic and evolutionary computation - GECCO ’07, page 293,
London, England. ACM Press.

Koza, J. R. (1989). Hierarchical genetic algorithms operating on populations of computer
programs. In Sridharan, N. S., editor, Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence IJCAI-89, volume 1, pages 768–774, Detroit, MI,
USA. Morgan Kaufmann.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of
natural selection. Complex adaptive systems. MIT Press, Cambridge, Mass.

Koza, J. R. (1994). Genetic programming II: automatic discovery of reusable programs.
Complex adaptive systems. MIT Press, Cambridge, Mass.

Krawiec, K. and Wieloch, B. (2009). Functional modularity for genetic programming. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computation -
GECCO ’09, page 995, Montreal, Québec, Canada. ACM Press.

Kruskal, W. H. and Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis.
Journal of the American Statistical Association, 47(260):583–621.

La Cava, W., Helmuth, T., Spector, L., and Danai, K. (2015). Genetic Programming with
Epigenetic Local Search. In Proceedings of the 2015 on Genetic and Evolutionary Com-
putation Conference - GECCO ’15, pages 1055–1062, Madrid, Spain. ACM Press.

La Cava, W. and Spector, L. (2015). Inheritable Epigenetics in Genetic Programming. In
Riolo, R., Worzel, W. P., and Kotanchek, M., editors, Genetic Programming Theory and
Practice XII, pages 37–51. Springer International Publishing, Cham. Series Title: Genetic
and Evolutionary Computation.

Lahti, D. C., Johnson, N. A., Ajie, B. C., Otto, S. P., Hendry, A. P., Blumstein, D. T., Coss,
R. G., Donohue, K., and Foster, S. A. (2009). Relaxed selection in the wild. Trends in
Ecology & Evolution, 24(9):487–496.

Lalejini, A. (2018). Supplemental material for “Evolving Event-driven pro-
grams with SignalGP” hosted on GitHub. Zenodo. doi:10.5281/zenodo.1283352.
https://github.com/amlalejini/GECCO-2018-Evolving-Event-driven-Programs-with-
SignalGP.

Lalejini, A. (2019). Supplemental material for “Tag-accessed Memory For Genetic Program-
ming”. Zenodo. doi: 10.5281/zenodo.2641176. url: https://github.com/amlalejini/

GECCO-2019-tag-accessed-memory.

Lalejini, A. and Ferguson, A. (2021a). Supplemental material for “the evolutionary
consequences of phenotypic plasticity”. Zenodo. doi: 10.5281/zenodo.4642704. url:
https://github.com/amlalejini/evolutionary-consequences-of-plasticity.

155

https://github.com/amlalejini/GECCO-2019-tag-accessed-memory
https://github.com/amlalejini/GECCO-2019-tag-accessed-memory

Lalejini, A., Moreno, M. A., and Ofria, C. (2020a). Case study of adaptive gene regulation
in dishtiny. Open Science Framework. doi: 10.17605/OSF.IO/KQVMN.

Lalejini, A., Moreno, M. A., and Ofria, C. (2020b). Tag-based genetic regulation for genetic
programming. Preprint. arXiv:2012.09229.

Lalejini, A., Moreno, M. A., and Ofria, C. (2021). Supplemental material for “Improv-
ing context-dependent problem solving with a tag-based approach to regulating genetic
programming modules” hosted on GitHub. Zenodo. doi: 10.5281/zenodo.4316015. url:
https://lalejini.com/Tag-based-Genetic-Regulation-for-LinearGP/.

Lalejini, A. and Ofria, C. (2016). The Evolutionary Origins of Phenotypic Plasticity. In
Proceedings of the Artificial Life Conference 2016, pages 372–379, Cancun, Mexico. MIT
Press.

Lalejini, A. and Ofria, C. (2018). Evolving event-driven programs with SignalGP. In Proceed-
ings of the Genetic and Evolutionary Computation Conference on - GECCO ’18, pages
1135–1142, Kyoto, Japan. ACM Press.

Lalejini, A. and Ofria, C. (2019a). Tag-accessed memory for genetic programming. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion on -
GECCO ’19, pages 346–347, Prague, Czech Republic. ACM Press.

Lalejini, A. and Ofria, C. (2019b). What Else Is in an Evolved Name? Exploring Evolvable
Specificity with SignalGP. In Banzhaf, W., Spector, L., and Sheneman, L., editors, Genetic
Programming Theory and Practice XVI, pages 103–121. Springer International Publishing,
Cham.

Lalejini, A., Wiser, M. J., and Ofria, C. (2017). Gene duplications drive the evolution of
complex traits and regulation. In Proceedings of the 14th European Conference on Artificial
Life ECAL 2017, pages 257–264, Lyon, France. MIT Press.

Lalejini, A. M. and Ferguson, A. J. (2021b). Data for “evolutionary consequences of pheno-
typic plasticity”. OSF. doi: 10.17605/OSF.IO/SAV2C. url: https://osf.io/sav2c.

Lande, R. and Arnold, S. J. (1983). The Measurement of Selection on Correlated Characters.
Evolution, 37(6):1210.

Le Goues, C., Dewey-Vogt, M., Forrest, S., and Weimer, W. (2012a). A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In 2012 34th Interna-
tional Conference on Software Engineering (ICSE), pages 3–13, Zurich. IEEE.

Le Goues, C., Nguyen, T., Forrest, S., and Weimer, W. (2012b). GenProg: A Generic
Method for Automatic Software Repair. IEEE Transactions on Software Engineering,
38(1):54–72.

Lenski, R. E., Ofria, C., Collier, T. C., and Adami, C. (1999). Genome complexity, robustness
and genetic interactions in digital organisms. Nature, 400(6745):661–664.

156

Lenski, R. E., Ofria, C., Pennock, R. T., and Adami, C. (2003). The evolutionary origin of
complex features. Nature, 423(6936):139–144.

Leroi, A. M., Bennett, A. F., and Lenski, R. E. (1994). Temperature acclimation and com-
petitive fitness: an experimental test of the beneficial acclimation assumption. Proceedings
of the National Academy of Sciences, 91(5):1917–1921.

Levis, N. A. and Pfennig, D. W. (2016). Evaluating ‘Plasticity-First’ Evolution in Nature:
Key Criteria and Empirical Approaches. Trends in Ecology & Evolution, 31(7):563–574.

Li, Y. and Wilke, C. O. (2004). Digital Evolution in Time-Dependent Fitness Landscapes.
Artificial Life, 10(2):123–134.

Londe, S., Monnin, T., Cornette, R., Debat, V., Fisher, B. L., and Molet, M. (2015). Phe-
notypic plasticity and modularity allow for the production of novel mosaic phenotypes in
ants. EvoDevo, 6(1):36.

Lones, M. A., Fuente, L. A., Turner, A. P., Caves, L. S. D., Stepney, S., Smith, S. L., and
Tyrrell, A. M. (2014). Artificial Biochemical Networks: Evolving Dynamical Systems to
Control Dynamical Systems. IEEE Transactions on Evolutionary Computation, 18(2):145–
166.

Lones, M. A., Turner, A. P., Fuente, L. A., Stepney, S., Caves, L. S. D., and Tyrrell, A. M.
(2013). Biochemical connectionism. Natural Computing, 12(4):453–472.

Lones, M. A. and Tyrrell, A. M. (2004). Modelling biological evolvability: implicit context
and variation filtering in enzyme genetic programming. Biosystems, 76(1-3):229–238.

Lopes, R. L. and Costa, E. (2012). The Regulatory Network Computational Device. Genetic
Programming and Evolvable Machines, 13(3):339–375. Place: USA Publisher: Kluwer
Academic Publishers.

Maynard Smith, J. (1992). Byte-sized evolution. Nature, 355(6363):772–773.

McDermott, J. and O’Reilly, U.-M. (2015). Genetic Programming. In Kacprzyk, J. and
Pedrycz, W., editors, Springer Handbook of Computational Intelligence, pages 845–869.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Miller, J. F. (1999). An Empirical Study of the Efficiency of Learning Boolean Functions
Using a Cartesian Genetic Programming Approach. In Proceedings of the 1st Annual
Conference on Genetic and Evolutionary Computation - Volume 2, GECCO’99, pages
1135–1142, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. event-place:
Orlando, Florida.

Miller, M. B. and Bassler, B. L. (2001). Quorum Sensing in Bacteria. Annual Review of
Microbiology, 55(1):165–199.

Misevic, D., Ofria, C., and Lenski, R. E. (2006). Sexual reproduction reshapes the genetic
architecture of digital organisms. Proceedings of the Royal Society B: Biological Sciences,
273(1585):457–464.

157

Misevic, D., Ofria, C., and Lenski, R. E. (2010). Experiments with Digital Organisms
on the Origin and Maintenance of Sex in Changing Environments. Journal of Heredity,
101(Supplement 1):S46–S54.

Mohn, F. and Schübeler, D. (2009). Genetics and epigenetics: stability and plasticity during
cellular differentiation. Trends in Genetics, 25(3):129–136.

Moreno, M. A. (2021). Evaluating function dispatch methods in signalgp. OSF. doi:
10.17605/OSF.IO/RMKCV. url: osf.io/rmkcv.

Moreno, M. A. and Ofria, C. (2019). Toward Open-Ended Fraternal Transitions in Individ-
uality. Artificial Life, 25(2):117–133.

Moreno, M. A. and Ofria, C. (2020). Practical steps toward indefinite scalability:
In pursuit of robust computational substrates for open-ended evolution. OSF. doi:
10.17605/OSF.IO/53VGH. url: osf.io/53vgh.

Moreno, M. A. and Rodriguez Papa, S. (2021). signalgp-lite. OSF. doi:
10.17605/OSF.IO/J8PGE. url: osf.io/j8pge.

Moxon, R., Bayliss, C., and Hood, D. (2006). Bacterial Contingency Loci: The Role of
Simple Sequence DNA Repeats in Bacterial Adaptation. Annual Review of Genetics,
40(1):307–333.

Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, C. A., Heskel,
M. A., Kingsolver, J. G., Maclean, H. J., Masel, J., Maughan, H., Pfennig, D. W., Relyea,
R. A., Seiter, S., Snell-Rood, E., Steiner, U. K., and Schlichting, C. D. (2015). Constraints
on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity.
Heredity, 115(4):293–301.

Nahum, J. R., West, J., Althouse, B. M., Zaman, L., Ofria, C., and Kerr, B. (2017). Improved
adaptation in exogenously and endogenously changing environments. In Proceedings of the
14th European Conference on Artificial Life ECAL 2017, pages 306–313, Lyon, France.
MIT Press.

Nakazawa, M. (2019). fmsb: Functions for Medical Statistics Book with some Demographic
Data. R package version 0.7.0.

Neuwirth, E. (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2.

Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic plasticity in evolving neural net-
works. In Proceedings of PerAc ’94. From Perception to Action, pages 146–157, Lausanne,
Switzerland. IEEE Comput. Soc. Press.

Ofria, C., Bryson, D. M., and Wilke, C. O. (2009). Avida: A Software Platform for Research
in Computational Evolutionary Biology. In Komosinski, M. and Adamatzky, A., editors,
Artificial Life Models in Software, pages 3–35. Springer London, London.

158

Ofria, C., Huang, W., and Torng, E. (2008). On the Gradual Evolution of Complexity and
the Sudden Emergence of Complex Features. Artificial Life, 14(3):255–263.

Ofria, C., Moreno, M. A., Dolson, E., Lalejini, A., Rodriguez-Papa, S., Fenton, J., Perry,
K., Jorgensen, S., Hoffman, R., Miller, R., Edwards, O. B., Stredwick, J., G, N. C.,
Clemons, R., Vostinar, A., Moreno, R., Schossau, J., Zaman, L., and Rainbow, D. (2020).
Empirical: A scientific software library for research, education, and public engagement.
doi: 10.5281/zenodo.4141943. url: https://github.com/devosoft/Empirical.

Ofria, C. and Wilke, C. O. (2004). Avida: A Software Platform for Research in Computa-
tional Evolutionary Biology. Artificial Life, 10(2):191–229.

Ogle, D. H. (2017). FSA: Fisheries Stock Analysis. R package version 0.8.17.

O’Neill, M. and Ryan, C. (2000). Grammar based function definition in Grammatical
Evolution. In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., and
Beyer, H.-G., editors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2000), pages 485–490, Las Vegas, Nevada, USA. Morgan Kaufmann.

Orzechowski, P., La Cava, W., and Moore, J. H. (2018). Where are we now?: a large
benchmark study of recent symbolic regression methods. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 1183–1190, Kyoto Japan. ACM.

O’Neill, M. and Spector, L. (2019). Automatic programming: The open issue? Genetic
Programming and Evolvable Machines.

Paaby, A. B. and Rockman, M. V. (2014). Cryptic genetic variation: evolution’s hidden
substrate. Nature Reviews Genetics, 15(4):247–258.

Paenke, I., Sendhoff, B., and Kawecki, T. (2007). Influence of Plasticity and Learning on
Evolution under Directional Selection. The American Naturalist, 170(2):E47–E58.

Perkis, T. (1994). Stack-based genetic programming. In Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on Computational In-
telligence, pages 148–153, Orlando, FL, USA. IEEE.

Pigliucci, M. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of
Experimental Biology, 209(12):2362–2367.

Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd.

Pontes, A. C., Mobley, R. B., Ofria, C., Adami, C., and Dyer, F. C. (2020). The Evolutionary
Origin of Associative Learning. The American Naturalist, 195(1):E1–E19.

Pontes, A. C., Whalen, I., Mitchell, A. C., Mobley, R. B., Dyer, F. C., and Ofria, C. (2017).
Investigations into the evolutionary origin of navigation and learning. In Proceedings of
the 14th European Conference on Artificial Life ECAL 2017, pages 358–359, Lyon, France.
MIT Press.

159

Price, T. D., Qvarnström, A., and Irwin, D. E. (2003). The role of phenotypic plasticity in
driving genetic evolution. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 270(1523):1433–1440.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng,
A. Y. (2009). ROS: an open-source Robot Operating System. In ICRA workshop on open
source software, volume 3, page 5. Kobe.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

Rainey, P. B., Beaumont, H. J., Ferguson, G. C., Gallie, J., Kost, C., Libby, E., and Zhang,
X.-X. (2011). The evolutionary emergence of stochastic phenotype switching in bacteria.
Microbial Cell Factories, 10(Suppl 1):S14.

Rasmussen, S., Feldberg, R., Hindsholm, M., and Knudsen, C. (1989). Core evolution:
Emergence of cooperative structures in a computational chemistry.

Rasmussen, S., Knudsen, C., Feldberg, R., and Hindsholm, M. (1990). The coreworld:
Emergence and evolution of cooperative structures in a computational chemistry. Physica
D: Nonlinear Phenomena, 42(1):111 – 134.

Ray, T. S. (1991). An Approach to the Synthesis of Life. In Langton, C. G., Taylor, C.,
Farmer, J. D., and Rasmussen, S., editors, Artificial Life II, volume XI, pages 371–408,
Redwood City, CA. Addison-Wesley.

Ricalde, E. and Banzhaf, W. (2017). Evolving Adaptive Traffic Signal Controllers for a
Real Scenario Using Genetic Programming with an Epigenetic Mechanism. In 2017 16th
IEEE International Conference on Machine Learning and Applications (ICMLA), pages
897–902, Cancun. IEEE.

Rice, W. R. (1989). Analyzing Tables of Statistical Tests. Evolution, 43(1):223.

Roberts, S. C., Howard, D., and Koza, J. R. (2001). Evolving Modules in Genetic Program-
ming by Subtree Encapsulation. In Goos, G., Hartmanis, J., van Leeuwen, J., Miller, J.,
Tomassini, M., Lanzi, P. L., Ryan, C., Tettamanzi, A. G. B., and Langdon, W. B., editors,
Genetic Programming, volume 2038, pages 160–175. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Rosca, J. and Ballard, D. (1994). Learning by adapting representations in genetic program-
ming. In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE
World Congress on Computational Intelligence, pages 407–412, Orlando, FL, USA. IEEE.

160

Saini, A. K. and Spector, L. (2019). Modularity metrics for genetic programming. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion on -
GECCO ’19, pages 2056–2059, Prague, Czech Republic. ACM Press.

Saini, A. K. and Spector, L. (2020). Using Modularity Metrics as Design Features to Guide
Evolution in Genetic Programming. In Banzhaf, W., Goodman, E., Sheneman, L., Trujillo,
L., and Worzel, B., editors, Genetic Programming Theory and Practice XVII, pages 165–
180. Springer International Publishing, Cham. Series Title: Genetic and Evolutionary
Computation.

Schaum, C. E. and Collins, S. (2014). Plasticity predicts evolution in a marine alga. Pro-
ceedings of the Royal Society B: Biological Sciences, 281(1793):20141486.

Schlichting, C. D. (2003). Origins of differentiation via phenotypic plasticity. Evolution and
Development, 5(1):98–105.

Schlichting, C. D. (2008). Hidden Reaction Norms, Cryptic Genetic Variation, and Evolv-
ability. Annals of the New York Academy of Sciences, 1133(1):187–203.

Schlichting, C. D. and Wund, M. A. (2014). Phenotypic Plasticity and Epigenetic Marking:
An Assessment of Evidence for Genetic Accommodation. Evolution, 68(3):656–672.

Schwander, T. and Leimar, O. (2011). Genes as leaders and followers in evolution. Trends
in Ecology & Evolution, 26(3):143–151.

Seger, J. and Brockmann, H. (1987). What is Bet-Hedging? Oxf. Surv. Evol. Biol., 4:182–
211.

Skocelas, K. G. and DeVries, B. (2020). Test Data Generation for Recurrent Neural Net-
work Implementations. In 2020 IEEE International Conference on Electro Information
Technology (EIT), pages 469–474, Chicago, IL, USA. IEEE.

Smith, J. M. and Haigh, J. (1974). The hitch-hiking effect of a favourable gene. Genetical
Research, 23(1):23–35.

Smith, Z. D. and Meissner, A. (2013). DNA methylation: roles in mammalian development.
Nature Reviews Genetics, 14(3):204–220.

Sniegowski, P. D., Gerrish, P. J., Johnson, T., and Shaver, A. (2000). The evolution of
mutation rates: separating causes from consequences. BioEssays, 22(12):1057–1066.

Sniegowski, P. D., Gerrish, P. J., and Lenski, R. E. (1997). Evolution of high mutation rates
in experimental populations of E. coli. Nature, 387(6634):703–705.

Soltoggio, A., Stanley, K. O., and Risi, S. (2018). Born to learn: The inspiration, progress,
and future of evolved plastic artificial neural networks. Neural Networks, 108:48–67.

Spector, L. (1996). Simultaneous Evolution of Programs and Their Control Structures. In
Angeline, P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming, pages
137–154. MIT Press, Cambridge, MA, USA.

161

Spector, L. (2001). Autoconstructive Evolution: Push, PushGP, and Pushpop. In Proceed-
ings Of The Genetic And Evolutionary Computation Conference, pages 137–146. Morgan
Kaufmann Publishers.

Spector, L. (2011). Towards Practical Autoconstructive Evolution: Self-Evolution of
Problem-Solving Genetic Programming Systems. In Riolo, R., McConaghy, T., and
Vladislavleva, E., editors, Genetic Programming Theory and Practice VIII, volume 8,
pages 17–33. Springer New York, New York, NY. Series Title: Genetic and Evolutionary
Computation.

Spector, L., Harrington, K., and Helmuth, T. (2012). Tag-based modularity in tree-based
genetic programming. In Proceedings of the fourteenth international conference on Genetic
and evolutionary computation conference - GECCO ’12, page 815, Philadelphia, Pennsyl-
vania, USA. ACM Press.

Spector, L., Harrington, K., Martin, B., and Helmuth, T. (2011a). What’s in an Evolved
Name? The Evolution of Modularity via Tag-Based Reference. In Riolo, R., Vladislavleva,
E., and Moore, J. H., editors, Genetic Programming Theory and Practice IX, pages 1–16.
Springer New York, New York, NY.

Spector, L., Martin, B., Harrington, K., and Helmuth, T. (2011b). Tag-based modules
in genetic programming. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation - GECCO ’11, page 1419, Dublin, Ireland. ACM Press.

Sánchez, Á., Vila, J. C., Chang, C.-Y., Diaz-Colunga, J., Estrela, S., and Rebolleda-Gomez,
M. (2021). Directed Evolution of Microbial Communities. Annual Review of Biophysics,
50(1):annurev–biophys–101220–072829.

Travisano, M., Mongold, J., Bennett, A., and Lenski, R. (1995). Experimental tests of the
roles of adaptation, chance, and history in evolution. Science, 267(5194):87–90.

Turner, A. J. and Miller, J. F. (2015). Neutral genetic drift: an investigation using Cartesian
Genetic Programming. Genetic Programming and Evolvable Machines, 16(4):531–558.

Turner, A. P., Caves, L. S. D., Stepney, S., Tyrrell, A. M., and Lones, M. A. (2017). Artificial
Epigenetic Networks: Automatic Decomposition of Dynamical Control Tasks Using Topo-
logical Self-Modification. IEEE Transactions on Neural Networks and Learning Systems,
28(1):218–230.

Van den Bergh, B., Swings, T., Fauvart, M., and Michiels, J. (2018). Experimental Design,
Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiology
and Molecular Biology Reviews, 82(3):e00008–18, /mmbr/82/3/e00008–18.atom.

Wagenaar, D. A. and Adami, C. (2004). Influence of Chance, History, and Adaptation on
Digital Evolution. Artificial Life, 10(2):181–190.

Wagner, A. P., Zaman, L., Dworkin, I., and Ofria, C. (2014). Behavioral Strategy Chases
Promote the Evolution of Prey Intelligence. arXiv:1310.1369 [q-bio]. arXiv: 1310.1369.

162

Wagner, A. P., Zaman, L., Dworkin, I., and Ofria, C. (2020). Behavioral Strategy Chases
Promote the Evolution of Prey Intelligence. In Banzhaf, W., Cheng, B. H., Deb, K.,
Holekamp, K. E., Lenski, R. E., Ofria, C., Pennock, R. T., Punch, W. F., and Whittaker,
D. J., editors, Evolution in Action: Past, Present and Future, pages 225–246. Springer
International Publishing, Cham. Series Title: Genetic and Evolutionary Computation.

Wagner, G. P., Pavlicev, M., and Cheverud, J. M. (2007). The road to modularity. Nature
Reviews Genetics, 8(12):921–931.

Walker, J. and Miller, J. (2008). The Automatic Acquisition, Evolution and Reuse of Modules
in Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation,
12(4):397–417.

Weiner, S. A. and Toth, A. L. (2012). Epigenetics in Social Insects: A New Direction for
Understanding the Evolution of Castes. Genetics Research International, 2012:1–11.

Weise, T. and Tang, K. (2012). Evolving Distributed Algorithms With Genetic Program-
ming. IEEE Transactions on Evolutionary Computation, 16(2):242–265.

Wennersten, L. and Forsman, A. (2012). Population-level consequences of polymorphism,
plasticity and randomized phenotype switching: a review of predictions. Biological Re-
views, 87(3):756–767.

West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. Oxford University
Press.

West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences.
Proceedings of the National Academy of Sciences, 102(Supplement 1):6543–6549.

Wickham, H. (2020). reshape2: Flexibly Reshape Data: A Reboot of the Reshape Package.
R package version 1.4.4.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund,
G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M.,
Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D.,
Wilke, C., Woo, K., and Yutani, H. (2019). Welcome to the tidyverse. Journal of Open
Source Software, 4(43):1686.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K.,
Yutani, H., and Dunnington, D. (2020). ggplot2: Create Elegant Data Visualisations Using
the Grammar of Graphics. R package version 3.3.2.

Wickham, H. and Seidel, D. (2020). scales: Scale Functions for Visualization. R package
version 1.1.1.

Wilcoxon, F. (1992). Individual Comparisons by Ranking Methods. In Kotz, S. and Johnson,
N. L., editors, Breakthroughs in Statistics, pages 196–202. Springer New York, New York,
NY. Series Title: Springer Series in Statistics.

163

Wilke, C. O. (2020). cowplot: Streamlined Plot Theme and Plot Annotations for ggplot2. R
package version 1.1.0.

Wilke, C. O. and Adami, C. (2002). The biology of digital organisms. Trends in Ecology &
Evolution, 17(11):528–532.

Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E., and Adami, C. (2001). Evolution of digital
organisms at high mutation rates leads to survival of the flattest. Nature, 412(6844):331–
333.

Wilson, G. and Banzhaf, W. (2008). A Comparison of Cartesian Genetic Programming and
Linear Genetic Programming. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M.,
Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B.,
Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., O’Neill, M., Vanneschi,
L., Gustafson, S., Esparcia Alcázar, A. I., De Falco, I., Della Cioppa, A., and Tarantino, E.,
editors, Genetic Programming, volume 4971, pages 182–193. Springer Berlin Heidelberg,
Berlin, Heidelberg. Series Title: Lecture Notes in Computer Science.

Winger, B. M., Auteri, G. G., Pegan, T. M., and Weeks, B. C. (2019). A long winter
for the Red Queen: rethinking the evolution of seasonal migration. Biological Reviews,
94(3):737–752.

Wiser, M. J. (2015). An analysis of fitness in long-term asexual evolution experiments.
OCLC: 945891091.

Wiser, M. J., Dolson, E. L., Vostinar, A., Lenski, R. E., and Ofria, C. (2018). The Bound-
edness Illusion: Asymptotic projections from early evolution underestimate evolutionary
potential. preprint, PeerJ Preprints.

Wiser, M. J., Ribeck, N., and Lenski, R. E. (2013). Long-Term Dynamics of Adaptation in
Asexual Populations. Science, 342(6164):1364–1367.

Wróbel, B. and Joachimczak, M. (2014). Using the Genetic Regulatory Evolving Artifi-
cial Networks (GReaNs) Platform for Signal Processing, Animat Control, and Artificial
Multicellular Development. In Kowaliw, T., Bredeche, N., and Doursat, R., editors, Grow-
ing Adaptive Machines, volume 557, pages 187–200. Springer Berlin Heidelberg, Berlin,
Heidelberg. Series Title: Studies in Computational Intelligence.

Wund, M. A. (2012). Assessing the Impacts of Phenotypic Plasticity on Evolution. Integrative
and Comparative Biology, 52(1):5–15.

Xie, Y. (2020). bookdown: Authoring Books and Technical Documents with R Markdown. R
package version 0.21.

Yeboah-Antwi, K. (2012). Evolving software applications using genetic programming – Push-
Calc: the evolved calculator. In Proceedings of the fourteenth international conference on
Genetic and evolutionary computation conference companion - GECCO Companion ’12,
page 569, Philadelphia, Pennsylvania, USA. ACM Press.

164

Yuan, Y. and Banzhaf, W. (2020). ARJA: Automated Repair of Java Programs via
Multi-Objective Genetic Programming. IEEE Transactions on Software Engineering,
46(10):1040–1067.

Zheng, J., Payne, J. L., and Wagner, A. (2019). Cryptic genetic variation accelerates evolu-
tion by opening access to diverse adaptive peaks. Science, 365(6451):347–353.

Zimmer, C. and Emlen, D. J. (2013). Evolution: making sense of life. Roberts and Company
Publishers, Greenwood Village, CO.

165

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Digital Evolution
	Historical context
	The Benefits of Digital Evolution
	Phenotypically plastic digital organisms

	Genetic programming
	Thesis Statement
	Contributions
	Part 1. Understanding the evolutionary origins and consequences of adaptive phenotypic plasticity in fluctuating environments
	Part 2. Building more responsive program representations

	The evolutionary origins of phenotypic plasticity
	Introduction
	Methods
	The Avida Digital Evolution Platform
	Experimental Design

	Results and Discussion
	What conditions promote the evolution of phenotypic plasticity?
	How do environmental factors impact the evolution of phenotypic plasticity?
	What are the evolutionary stepping stones for phenotypic plasticity?
	Does plasticity still evolve when evolutionary stepping stones are disallowed?
	Are stochastic strategies evolving as an alternative to phenotypic plasticity?

	Conclusion

	The Evolutionary Consequences of Adaptive Phenotypic Plasticity
	Introduction
	Materials and Methods
	The Avida Digital Evolution Platform
	Experimental design
	Experimental analyses
	Statistical analyses
	Software availability

	Results
	The evolution of adaptive phenotypic plasticity slows evolutionary change in fluctuating environments
	Adaptively plastic populations retain more novel tasks than non-plastic populations in fluctuating environments
	Lineages without plasticity that evolve in fluctuating environments express more deleterious tasks

	Discussion
	The speed of evolutionary change
	The evolution and maintenance of novel tasks
	The accumulation of deleterious instructions
	Limitations and future directions

	Evolving Event-driven Programs with SignalGP
	Introduction
	The event-driven paradigm
	SignalGP
	Tag-based Referencing
	Virtual Hardware
	Program Evaluation
	Evolution

	Test Problems
	Changing Environment Problem
	Distributed Leader Election Problem

	Results and Discussion
	Changing Environment Problem
	Distributed Leader Election Problem

	Conclusion
	Beyond Linear GP

	Software and Data Availability

	 Tag-based regulation of modules in genetic programming improves context-dependent problem solving
	Introduction
	Specifying Modules with Tag-based Referencing
	Tag-based Genetic Regulation
	Methods
	SignalGP
	Signal-counting Problem
	Contextual-signal Problem
	Boolean-logic Calculator Problem
	Independent-signal Problem
	Data Analysis and Reproducibility

	Results and Discussion
	Tag-based regulation improves problem-solving performance on context-dependent tasks
	Erroneous regulation can hinder task generalization
	Reducing the context required for the Boolean-logic calculator problem eliminates the benefit of regulation

	Conclusion

	Tag-accessed Memory for Genetic Programming
	Introduction
	Experimental Results
	Conclusion

	Conclusions
	Contributions
	Future Directions
	Broadened applications of SignalGP
	Transferring algorithms from evolutionary computing to laboratory-based experimental evolution

	BIBLIOGRAPHY

