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ABSTRACT

ALIGNMENT CONTROL FOR OPTICAL COMMUNICATION BETWEEN
UNDERWATER ROBOTS

By

Pratap Bhanu Solanki

Light-emitting diode (LED)-based optical communication is emerging as a promising low-power,

low-cost, and high-data-rate alternative to acoustic communication for underwater applications.

However, it requires a close-to-line-of-sight (LOS) link between the communicating parties.

Achieving and maintaining the LOS is challenging due to the constant movement of underly-

ing mobile platforms caused by propulsion and unwanted disturbances. In this dissertation, a novel,

compact LED-based wireless communication systemwith active alignment control is presented that

maintains the LOS despite the movement of the underlying platform. Multiple alignment control

algorithms are developed for scenarios that range from a simple one-way two-dimensional (2D)

setting to a practical three-dimensional (3D) bi-directional underwater setting.

An extended Kalman filter (EKF)-based approach is first proposed to estimate the relative

orientation between the heading angle and the LOS direction, which is subsequently used for

alignment control. The EKF uses only the measurement of light intensity from a single photo-

diode, where successive measurements are obtained via a scanning technique that ensures the full

observability of the underlying system. The approach is first examined in a 2D setting, and then

extended to the 3D scenario with improvements in both the hardware and the algorithm. The

amplitude of the scanning is modulated according to the alignment performance to achieve a sound

trade-off between estimation accuracy, signal strength, and energy consumption. The efficacy of

the approach is tested and verified via simulation and on an experimental setup involving two robots

with relative 3D motion.



The EKF approach uses an assumption that the relative motion between the robots is small,

and consequently, requires the communicating robots to take the scanning in an alternating fashion

for the convergence of the estimator. An alternative approach, first explored in the 2D setting, is

developed that allows simultaneous, bi-directional alignment control for both parties. Because of

the convex nature of the measured intensity functions, model-free approaches, including both hill-

climbing (HC) and extremum-seeking (ES), are explored. The hill-climbing approach is found to be

superior to the ES approach in terms of convergence time and computational efficiency. Theoretical

analysis is provided for the hill-climbing approach that guarantees finite time convergence to an

$(X) neighborhood of the LOS, for control step size X.

Finally, amodel-free approach for the 3D setting is proposed thatmaximizes light intensity based

on three consecutive intensitymeasurements froman equilateral triangle configuration. The efficacy

of the approach is demonstrated experimentally, first with an underwater robot controlled by a

joystick viaLEDcommunication and thenwith two robots performing bi-directional communication

and tracking in an underwater setting.
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CHAPTER 1

INTRODUCTION

With the recent advancements in technology, the use of autonomous underwater vehicles (AUVs)

has become increasingly popular for underwater exploration [56], with application to marine

sciences, environmental engineering, and oil/gas exploration among others. One essential attribute

of these robots, while they are deployed, is to stay connected with each other or with a base

station via a wireless communication link. Due to the substantial attenuation of radio frequency

signals in water [9], acoustic communication is currently the industry standard for underwater

communication, with a range of up to tens of kilometers [53]. However, underwater acoustics

suffers from shortcomings like latency, low data rates, and high power consumption [13]. Recently,

optical wireless communication is emerging as a promising alternative or complementary solution

to the acoustics communication for low-to-medium range data transfer applications, due to its

properties such as low power, low cost, and high data rate [19, 29]. Figure 1.1 illustrates different

promising application scenarios of wireless underwater optical communication technology.

Many of the recent works in optical communication systems focused on increasing the commu-

nication range and/or data rate using narrow beams (e.g., laser). Oubei et al. showed a 2.3 Gbits/s

link over a distance of 7 m [37]. Liu et al. demonstrated 2.7 Gbits/s at 34.5 m using a 520 nm green

laser diode (LD) [28]. Wu et al. used a 450-nm blueGaN laser diode (LD) directly modulated by

pre-leveled 16-quadrature amplitude modulation (QAM) to achieve 12.2 and 5.6 Gbits/s data rate

at a distance of 1.7 m and 10.2 m, respectively [55].

1.1 LED Optical Communication and the Problem of Directionality

Over the past few years, light-emitting diode (LED)-based optical communication has been

proposed as a promising low-power, low-cost, high-rate solution for low-to-medium range under-

water data transfer [18, 19, 29]. Several studies focused on increasing the range and data rates

of LED communication. Brundage reported an optical communication system using a Titan blue
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Figure 1.1: Illustration of application of underwater wireless optical communication in diverse
scenarios (Source: Università degli Studi, Italy [42]).

lighting LED [8], which performed error-free communication over 1 Mbps at distances up to 13 m.

Doniec and Rus demonstrated a bidirectional underwater wireless communication system called

AquaOptical II [16], which used 18 Luxeon Rebel LEDs and an avalanche photodiode (APD) and

operated over a distance of 50 m at a data rate of 4 Mbps.

An inherent challenge in wireless optical communication is that light signals are highly direc-

tional and thus close-to-line-of-sight links are required. For many intended applications involving

mobile platforms (in particular, underwater robots), maintaining line of sight (LOS) is difficult

due to constant movement of the platform caused by propulsion or ambient disturbances. Several

approaches have been proposed to address the line-of-sight requirement in optical communication

systems. Pontbriand et al. increased the field of view (FOV) of the receiver by using large-area
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photomultiplier tubes (∼ 20 inch), to avoid the need for active pointing during communication [38].

Anguita et al. implemented a transmitter that used 12 LEDs arranged on a circle to transmit

omnidirectionally in the plane [4], [5]. They tested their system at a rate of 100 kbps for distances

of up to 2 m. Rust and Asada [41] used a high-power LED and 8 photodiodes arranged in a circle

to control an underwater robot, where the system was able to transmit at 100 kbps at a distance

of 23 m. Simpson et al. reported a system where the receiver had a 3-D spherical array of 7

lenses all focusing on a 2-D planar array of 7 photodiodes, and the transmitter consisted of a

truncated hexagonal pyramid with 7 LEDs and 7 lenses [44]. Most of the aforementioned systems

achieved the line-of-sight through redundancy in transmitters and/or receivers, which resulted in

larger footprint, higher cost, and higher complexity.

Modulating-retro-reflector (MRR)-based asymmetric pointing systems have been demonstrated

[14,17,21,36], where anMRR terminal is attached to a mobile robot. Galvanic [33,57] andMEMS-

based [21] laser scanners have been used at the active stationary nodes for the initial search of the

mobile platform. The approaches mentioned above work well when one of the communicating

agents is stationary and has access to high power; however, this configuration does not apply to two

mobile communicating robots, especially when they have limited computing and power resources.

Soysal et al. used quadrant photo-detector [52] to simultaneously obtain azimuthal and elevation

errors, and used Kalman Filter to predict the errors and henceforward control the alignment.

However, a quadrant detector is a combination of 4 photo-diodes arranged in a quadrant manner,

which is also, in a way redundancy in the hardware of the system. Theoretical work involving

formulation of a doubly stochastic space-time Poisson process model of light was used to derive

a linear-quadratic-Gaussian (LQG) controller for active pointing in the single-directional [24] and

bi-directional [23] communication settings. However, the controller needs access to the outputs

from each unit of a 2-dimensional grid that is obtained by partitioning the aperture of a receiver

photo-diode. A recent study [10] involves using extremum-seeking control for alignment between

a laser transmitter and a photo-diode mounted on mobile-robots, where the pointing mechanism is

assisted by a camera that computed the alignment error.
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1.2 Overview of Contributions

The contributions of this research reside in the design and development of a novel, compact

LED-based wireless communication system that maintains the LOS despite the movement of the

underlying platform. The novelty of the system lies in its simple design that uses only a single

photo-diode and a single LED. The signal from the photo-diode is used for both alignment control

and communication. Figure 1.2 illustrates the extraction of signal strength and information from

a signal from the photo-diode circuit. The output from the photo-diode is fed into a voltage

comparator and a low pass averaging filter. The output of the comparator is then used as the

received signal for communication, which contains the encoded information in a bit sequence

format. The output of the filter gives an average intensity measurement that serves as the signal

strength, which is used in alignment algorithms.

Figure 1.2: Illustration of the extraction of signal strength and information from optical signal
incident on a photo-diode.

Al-Rubaiai and Tan [1,2] achieved active alignment control using single pair of LED and photo-

diode, each of which was mounted on a base that could rotate independently of the underlying

robotic platform. This system also used redundancy in time by taking three measurements at
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three different orientations and then computing a desired orientation based on the interpolation

of the measurements. This alignment control approach is rudimentary and requires abrupt and

large rotation of the communication device for the signal strength probing, and thus is not energy-

efficient and creates unwanted mechanical vibrations. In this work, we use a principled approach

for active alignment where the system of transmitter and receiver first is modeled as a dynamical

system. Multiple alignment control algorithms are then developed for the system for scenarios that

range from a simple one-way two-dimensional (2D) setting to a practical three-dimensional (3D)

bi-directional underwater setting. Following are the details of the contributions of this work.

1.2.1 Alignment Control in the 2D Space

Firstly, we start with a two dimensional setting, where the receiver and the transmitter can only

move on a plane. We propose an extended Kalman filter (EKF) for estimating the angle between

the receiver orientation and the line connecting the receiver and the transmitter, which is then used

to adjust the receiver orientation towards the LOS. We note that Kalman filter and EKF have been

proposed in optical beam steering in the context of laser-based free space optical communication,

where the laser beam is considered as a single line and thus simple geometric relationships can be

used to relate the measurement to the receiver/transmitter configuration [52, 57]. For example, in

their simulation study, Soysal and Efe considered a quadrant photo-detector as the measurement

device, which was assumed to produce signals directly proportional to azimuth and elevation

errors [52]. Yoshida and Tsujimura used a two-dimensional position-sensitive device (PSD) and

the detected beam spot position was geometrically related to the relative position and orientation

between the transmitter and the receiver [57]. These approaches do not apply to our setting because

of the diffusive nature of LED and the use of single photo-detector in the proposed work.

We now briefly summarize our EKF-based alignment control approach. Based on a light

intensity model, we first formulate an estimation problem, where the receiver estimates both its

relative orientation to the transmitter and a quantity related to the overall light intensity at the

receiver site. The rotating base is then instructed to move towards alignment based on the estimated
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relative orientation. Due to the nonlinear nature of the observation function, an EKF is adopted

for the state estimation. In order to ensure convergence of the EKF, light intensity measurements

taken at two consecutive steps in the scanning motion are used in each state update. The feedback

control algorithm then updates the orientation bias in the angular scan motion based on the state

estimate.

Preliminary versions of parts of this work were presented at the 2016 American Control

Conference [45] and the 2016 IEEE International Conference onAdvanced IntelligentMechatronics

[48]. More comprehensive results were published in IEEE/ASME Transactions on Mechatronics

[46], where the tracking performance of the EKF approach was compared with two alternative

schemes, hill-climbing and three-point averaging is, in the presence of the measurement noise.

Hill-climbing is a widely used, computationally efficient algorithm for optimization that locally

updates the solution in the direction of higher objective function [40]. Since better alignment

between the receiver and the LED leads to higher measured light intensity, the hill-climbing

algorithm simply directs the receiver to keep moving in the direction of higher light intensity.

The three-point-averaging algorithm [1] computes the next orientation of the receiver based on the

weighted-average of three orientations: no change, a fixed rotation to the right, and a fixed rotation

to the left, where the measured intensities at these orientations are used as weights. A performance

metric is designed to evaluate and compare the three algorithms in terms of tracking effectiveness,

where a range of measurement noise levels is considered. For each of the noise levels, multiple

runs of simulation and the corresponding experiments have been performed to assess the average

performance and simultaneously alleviate the effects of stochasticity on the results. It is found that

the EKF algorithm significantly outperforms the alternatives in the presence of measurement noise.

Chapter 2 describes the details of this preliminary work.

1.2.2 Active Alignment Control in 3D Space

Since in a realistic underwater scenario, the robots move in a three-dimensional (3D) space, and

each needs to transmit and receive. Hence, we propose a bidirectional active LOS-alignment system
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for mobile robots moving in a 3D scenario. In this setup, each robot is equipped with a transceiver,

consisting of a photo-diode and an LED, attached to a two-degree-of-freedom (DOF) rotational

system. We propose an extended Kalman filter (EKF)-based alignment control approach, where

the estimates of azimuthal and elevation angles between the transceiver orientation and the LOS

direction are used to adjust the transceiver orientation towards the LOS. Due to the use of a single

photo-diode, only a single measurement is available at a time, which is not sufficient to estimate

all the states of the system. To address this issue, we propose a circular scanning technique that

ensures the system observability by taking three consecutive measurements of light intensity from

non-coplanar directions.

Once the estimate of the relative angle between each agent’s orientation and the LOS is known,

a proportional-integral (PI) control algorithm is then used to generate the control inputs to drive

the orientation of the transceiver towards the LOS. These control terms are translated into the

corresponding motor commands for the rotational system. Additionally, to increase signal strength

at the steady-state and to save energy, the amplitude of the circular scanning is adjusted based on the

estimation covariance. Furthermore, to enable two-way alignment, the aforementioned approach

is alternated between the robots, where each robot takes turns to conduct its circular scan while

the other robot is paused. The efficacy of the proposed method is evaluated in both simulation and

experiments, where we also implement an extremum-seeking (ES) approach [25] for comparison

with the proposed approach. The ES approach is well studied for real-time optimization, and due to

the unimodal nature of light-intensity function (see (3.2) and Figure 3.3 for details), it is applicable

to our setup and is thus chosen as the benchmark algorithm for comparison. The simulation

results demonstrate the functional limitation of the ES-based approach, as it becomes unstable at

low distances. Furthermore, we perform simulations and experiments for the scenario where the

robots move with a range of relative speeds. The results validate the efficacy of our approach at

relatively low speeds between the robots and illustrate the challenges when the relative motion gets

pronounced.

The details of this work are provided in Chapter 3. Simulation results of the proposed approach
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were presented at the 2017 ASME Dynamic Systems and Control Conference [51]. A more

refined approach with experimental results was presented at 2018 IEEE International Conference

on Robotics and Automation [49].

1.2.3 Bi-directional Alignment Approach for 2D Space

The EKF approach uses an assumption that the relative motion between the robots is small, and

consequently, requires the communicating robots to take the scanning in an alternating fashion

for the convergence of the estimator. In this work, we demonstrate bi-directional active beam

tracking between two parties in a 2D setting. It is desirable to achieve LOS without relying on

communication between the agents as the quality of communication link itself depends on the

LOS. This work proposes, analyzes, and evaluates a hill-climbing based computationally efficient

scheme for two agents in a plane to achieve and maintain LOS from arbitrary allowable initial

configurations.

In this work we consider the optical alignment question as a two-agent cooperative-control

problem. Each of the agents is assumed to have a local measurement of its output function that

denotes the received optical power in terms of states G1 and G2 of the underlying system, with

G8, 8 ∈ {1, 2}, denoting the heading orientation of an agent 8. The two output functions are non-

conflicting; both have the global maximum at origin, which corresponds to the LOS configuration.

Based on the setup, the agents do not have access to their own orientations. Furthermore, since the

communication relies on the LOS, the alignment algorithm assumes that the agents do not have any

communication with each other. Additionally, the agents act independently and simultaneously at

each time step, which eliminates candidate solutions based on sequential actions of the agents that

can greedily optimize their instantaneous output functions. We propose a computationally efficient

hill-climbing based control scheme to update the heading orientations G1 and G2 of the agents, which

only uses the current and previousmeasurements obtained by an agent. Furthermore, for a particular

case, when the measurement functions can be approximately characterized in a Gaussian form, the

proposed scheme guarantees that the headings of the agents are within a specified neighborhood of
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the LOS configuration within a finite number of steps.

The problem in this work can be considered as a special case of a multi-agent optimization

problem in which each agent seeks to optimize their own cost (reward) function that depends

on the state of the other agents. Several reported approaches based on distributed optimization

rely on assumptions of the local cost functions being convex and the agents communicating their

states/estimate of global state vectors as per a topology [30, 34]. Several approaches related to

distributed sensing and estimation with cooperative control in multi-agent systems are reported

in [11,20,26,35]. Collaborative source seeking via circular formation control is reported in [7,32],

where agents share their measurements and locations with their neighbors to estimate the gradient

of the underlying signal profile to steer the formation to the source of the signal. Passivity-based

tools have also been studied for multi-agent synchronization and extremum-seeking problems

[6,12]. However, these aforementionedworks require connected networkwith information exchange

between the agents or, in certain cases, access to the gradient of the local cost function with respect

to the state. In multi-agent game-theoretic formulations, gradient play is a popular technique that

converges to a Nash equilibrium for the game under mild technical assumptions [27,43]. However,

these techniques require that each agent has access to the gradient of its own cost function.

The contributions of this work are three-fold. First, we propose a computationally efficient novel

local control law for a class of systems that encompasses our free-space optical communication

experimental setup, and only requires the information of the current and the immediately preceding

reward function measurements. Second, under certain assumptions on the form of the measurement

functions, we prove that, from any admissible initial values of the states, the proposed control law

ensures that both agents reach a specified limiting set, which contains the global optimal, in a finite

number of steps (cf. Theorem 4.2.1 for additional details). For the choice of Gaussian measure-

ment functions derived from our setup, we obtain stronger convergence results (cf. Theorem 4.2.2).

Third, the approach’s effectiveness is evaluated in simulation and experiments, where the algorithm

is tested with relative motion between the agents. Simulation results demonstrate the superiority

of the proposed approach in terms of convergence speed, robustness to unknown disturbances, and
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handling large initial conditions against two alternative approaches. A 2D version of extremum-

seeking (ES) control algorithm [25] is used as a benchmark approach for comparing the proposed

method in this paper. The algorithm exhibits relatively slower convergence due to significant time

spent in exploration by each agent. The other approach considered for comparison is the EKF based

alignment approach [46]. However, the EKF formulation’s assumptions of quasi-static dynamics

are violated in the bi-directional setting, and consequentially, the algorithm fails to converge from

arbitrarily large initial conditions.

Preliminary results of this work were presented at the 2020 IEEE International Conference on

Advanced Intelligent Mechatronics [47], where the special case of Gaussian form measurement

functions was considered and the studies were limited to simulation setting. The details of this

work are provided in Chapter 4.

1.2.4 Bi-directional Alignment Approach for 3D Space and Experiments in Underwater
Scenario

In thiswork, we extend the approach to bi-directional active beam tracking between two parties to the

3D scenario. Inspired by the aforementioned model-free bidirectional approach for the 2D setting,

where maximizing own measurements by each agent leads to convergence to a neighborhood of the

LOS, we propose a novel triangular-exploration algorithm where an agent continuously maximize

its own local light intensity measurements, to achieve the LOS with the other communicating agent

in the 3D setting.

The proposed algorithm moves the transceiver pointing direction in an equilateral triangular

grid pattern and guarantees the pointing direction to be consistent with the local gradient direction.

The method only requires the light intensity to be a unimodal function of the angle offsets from

the LOS, and does not require an explicit model for implementation. Furthermore, the approach

works directly for the setting of bi-directional communication. The effectiveness of the approach

is first evaluated in a simulation setup of two robots by comparison with the EKF-based approach

and the ES approach. Simulation results show that the proposed approach is effective in terms
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of its convergence speed for a wide range of relative speed and distance between the robots. The

performance of the approach is further assessed against the EKF and the ES approach on an

experimental setup, where the results further support the superiority of the proposed approach.

The efficacy of the approach and the overall communication system is further demonstrated

in the underwater setting where communication is performed simultaneously with the alignment

control. First, one-way communication and alignment is demonstrated on a setup where a human

operator wirelessly controls a robot in the underwater scenario using an LED communication-

based joystick, followed by demonstration of bi-directional alignment control and communication

between two underwater robots. Preliminary results for the uni-directional setup were presented at

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) [50]. Chapter 5

provides the details of this work.
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CHAPTER 2

EKF-BASED ALIGNMENT CONTROL IN THE 2D SPACE

In this chapter, we present a novel, compact LED-based communication system with active align-

ment control, in a two-dimensional (2D) setting, that maintains the LOS despite the underlying

platform movement. An extended Kalman filter-based algorithm is proposed to estimate the angle

between the receiver orientation and the receiver-transmitter line, which is used subsequently to

adjust the receiver orientation. The algorithm uses only the measured light intensity from a single

photodiode, where successivemeasurements are obtained via a scanning technique that also ensures

the observability of the system. A simple proportional controller is designed for alignment. The ef-

fectiveness of the proposed active alignment algorithm is verified in simulation and experiments. In

particular, its robustness in the presence of measurement noise is demonstrated via comparison with

two alternative algorithms that are based on hill-climbing and three-point-averaging, respectively.

The organization of the chapter is as follows. In Section 2.1, the design and hardware im-

plementation of the LED communication system is described. In Section 2.2 the model for the

received light intensity is presented, followed by a state-space reformulation for the purpose of al-

gorithm development. In Section 2.3 the estimation and tracking control algorithms are described.

Simulation setup and results are presented in Section 2.4, while experimental setup and results are

discussed in Section 2.5. Chapter summary is provide in Section 2.6

2.1 System Design and Implementation

An LED-based optical communication system mainly consists of two parts, the transmitter and

the receiver. The transmitter converts the electrical signal into an optical signal. That signal passes

through the medium and is picked up by the receiver. The receiver detects the optical signal and

converts it back into an electrical signal for data processing. In addition to the transmitter and

the receiver, the proposed system includes a mechanism for rotating the transmitter/receiver, to

maintain communication despite the movement of the underlying robotic platform. Considering
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the intended applications, small footprint and low power consumption are among the major design

constraints.

The role of the optical transmitter is to convert the electrical signal into light pulses. Since

the signal attenuation underwater is minimum in the wavelength range of 400-500 nm [54], an

off-the-shelf blue LED (Cree XR-E Series LED from Cree Inc) is chosen. which provides 30.6

lumens at 1 A and requires 3.3 volts. It comes assembled with a heat sink. A circuit is designed to

modulate the LED (turning it on and off) in correlation with binary data [2]. A photodiode from

Advanced Photonix (part number PDB-V107) is chosen for the receiver, and it has high quantum

efficiency at 410 nm, low dark current, and fast rise time (20 ns). A 12 V reverse bias across

the photodiode is used to increase the bandwidth and quantum efficiency [3]. A trans-impedance

amplifier is used to convert the photodiode current signal into a voltage signal, which then goes

through a filter for noise reduction.

The components of the transmitter and the receiver are placed on two printed-circuit boards

(PCBs). The first PCB board is 2 inches in diameter and has two holes in the middle to attach set

screw hubs for connecting to a motor shaft. The second PCB board has a rectangular shape with

size of 1 inch × 2 inch, which holds the LED and the photodiode, and it is mounted perpendicularly

to the first circular board by using four 90-degree header pins (see Figure 2.1).

There are 8 pins in the PCB circuits involving the power supply, the transmitted signal, and the

received signal. These pins are connected by wires, which would be twisted when the PCBs are

rotated. To address this problem, a slip ring (MT007 fromMOFLON), an electromechanical device

that allows the transmission of power and electrical signals from a stationary to a rotating structure,

is adopted. A motor is used to rotate the device. We initially used a mini DCmotor equipped with a

shaft encoder, but later switched to a stepper motor due to the higher control precision of the latter.

2.2 Modeling

In this section, we first review a light intensity model and then formulate the state-space model

for an estimation problem, where, without the loss of generality, a scenario of two robots is
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Figure 2.1: A prototype of LED optical communication module with a rotational base.
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considered. In addition, in this work, we consider that the communicating parties are on the same

plane.

2.2.1 Light Intensity Model

The model adopted here largely follows [15] with minor adjustments to suit the experimental

prototype used in this work. The model takes into account all stages of the transmitter and receiver

circuits, including LED, lens, photodiode, and amplifiers. The model mainly describes the effect of

relative position and orientation between the transmitter and the receiver on the signal strength. See

Figure 2.2 for an illustration of the variables of interest, including transmission angle W, transmission

distance 3 and the angle of incidence q.

Transmitter

γ
𝑑

𝜙

Receiver

Figure 2.2: Illustration of the relative position and orientation between the transmitter and the
receiver.

The transmitter LED has an angular intensity distribution which is rotationally symmetric about

the LED’s normal (W = 0◦). So if we know the intensity of the LED along the normal, we can

compute the intensity at other points at the same radial distance based on spatial intensity curve

�W , which represents the light intensity at a unit distance for different transmitter angles. �W is

maximum at W = 0◦, and it rolls off as W increases. Typically, �W can be obtained either directly

from the LED vendor or measured experimentally.
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To describe the extinction of the light signal we will adopt Beer’s Law [31], which is used

in understanding the attenuation in physical optics. Let 2 be the attenuation coefficient for the

medium in which the light transmits. We assume that the coefficient is uniform across the entire

length of transmission. Beer’s law gives the exponential signal degradation at distance 3 caused by

absorption:

� = 4−23 (2.1)

By combining the effect of spherical spreading with exponential decay, we get the equation of

the irradiance reaching the receiver site:

�W(3) = �W4−23/32 (2.2)

where �W denotes the angular intensity distribution of transmitter (combination of the LED and

the lens), which characterizes the light signal strength for different transmission angles at a unit

distance. Finally, we need to consider the effect of angle of incidence q, which is basically the angle

made by the receiver normal with the line connecting the receiver to the transmitter. From [2],

the power incident on the detector can be computed based on the signal irradiance at the detector

position:

%in = �W(3)�06(q) (2.3)

where �0 denotes the detector area and 6(q) characterizes the dependence of the received light

intensity on the incidence angle q. The term 6(q) is setup-dependent. For the receiver used in this

work, we have found the function 6(q) using Gaussian curve fitting of the normalized measurement

data (Figure 2.3) collected at different orientations of the receiver. The resulting 6(q) takes the

form of a bimodal Gaussian function:

6(q) = 014
−(q−11

21
)2

+ 024
−(q−12

22
)2

(2.4)

where 01 = 0.6682, 11 = 7.752, 21 = 148.8, 02 = 0.3340, 12 = -13.57, 22 = 325.8 are the curve

fitting parameters. The parameters 11 and 12 are relatively close to each other (over the range of
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Figure 2.3: Gaussian curve fitting for the function 6 for the photodiode used in this work.

[−180◦, 180◦]), so the resulting sum of the two modes has a single peak, as shown in Figure 2.3.

The curve fitting could be done using a single Gaussian mode but having one extra Gaussian mode

gives significantly better fitting.

As the light arrives on the receiver photodiode, the photodiode produces a current, which gets

filtered and amplified, to be processed by an analog-digital converter. After all the stages, the full

signal strength model can be summarized as

+3 = �? �W4−236(q)/32 (2.5)

where +3 is the voltage signal and �? is a constant of proportionality, which depends on the area

of receiver photo-diode and various parameters associated with the filter and amplifier circuits.
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2.2.2 State-space Problem Formulation

From Figure 2.2 and Eq. (2.5), we can see that there are three independent variables, W, 3 and q,

that characterize the received light intensity. One could take these three variables as the states to be

estimated by the system, and then try to drive them towards their desired values through control, if

that is possible. However, often times the underlying robotic platforms are engaged in other tasks

and may not constrain or modify their motions to accommodate communication. For example, it

may not be possible to change distance 3 in a desirable way for communication since that would

involve the movement of the robots. What is much more practical is to control the receiver angle

q, since it is a completely local decision due to the independent rotation base for the transceiver. In

a two-way communication setting, since the transmitter and the receiver on each robot are pointing

in the same direction, adjusting q to zero on each robot automatically aligns each transmitter with

the line connecting two robots. In light of this discussion, we can combine terms involving W and

3 in a single variable and define the state variables as

x 4=

[
G1

G2

]
4=

[
�? �W4

−23/32

q

]
(2.6)

The value of G1 is dependent on the distance and the transmission angle. In a typical scenario,

the receiver does not have information about how the transmitter and its underlying robotic platform

move. So in our case, we will assume that the relative dynamics between the two communicating

robots is slow enough (quasi-static) that it can be captured with a Gaussian process. In particular,

the dynamics of the states defined in (2.6) can be represented in the discrete-time domain as

x:
4=

[
G1,:

G2,:

]
=

[
G1,:−1 + F1,:−1

G2,:−1 + D: + F2,:−1

]
(2.7)

where : is the time index, and F1,: and F2,: are the process noises, assumed to be independent,

white, Gaussian noises. These noise terms, to some extent, account for the slow dynamics of G1 and

G2, which are not modeled explicitly. The term D: is the control input through which the receiver

angle is changed.
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The :th measurement +3,: can be expressed in terms of the state variables, where an additive

white Gaussian noise E: , assumed to be independent from the process noises, is included:

+3,: = G1,:6(G2,: ) + E: (2.8)

Given the measurement, the goal is to estimate G1,: and G2,: , based on which the control D: is

designed to drive G2 towards 0◦, which is the orientation with the maximum light intensity.

2.3 Estimation and Alignment Algorithms

Given that the measurement model (2.8) is nonlinear, a discrete time extended Kalman filter

(EKF) [39] is explored for solving the estimation problem. From the (linear) state equation (2.7),

the � and � matrices are: 
� =

[
1 0
0 1

]
� =

[
0
1

] (2.9)

So that the system dynamics can be written as:

x: = �x:−1 + �D:−1 + w:−1 (2.10)

withw: =
[
F1,: , F2,:

]) . Given that the output function in (2.8) is nonlinear, denoting the system’s

linearized output matrix at kth time instant as�: , �(x: ), one can express the observability matrix

at that time instant as [39]

O: =

[
�:

�:+1�

]
=

[
�:

�:+1

]
(2.11)

If the observability matrix O: has a full rank of 2, the state estimation error under the EKF

will be exponentially bounded in mean square and bounded with probability one under proper

conditions [39]. A sufficient condition for O: to be full rank is to make�: a rank 2 matrix, which is

only possible with at least two independent measurements of the light intensity. One could use two

receivers with different orientations to address this problem, but that would increase the complexity

and cost of the system. Instead, we introduce a scanning technique, where the motor of the rotating
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base is commanded to oscillate around a mean position. This mean position, which is what the

control input modulates, is considered to be the state variable G2 from here on.

Figure 2.4 provides an outline of the proposed method. At each iteration, the states G1 and

G2 are updated according to the system dynamics. The scanning term is added to account for the

actual orientation of the receiver. The light intensity measured by the receiver is used by the EKF to

update the state estimates. Next, the estimate Ĝ2 is used to compute the control term. We note that

the focus of this work is on the use of nonlinear estimation and basic feedback concepts to enable

active alignment between the receiver and the LED. Therefore, exploration of advanced controllers

is beyond the scope of this work; for simplicity of implementation and presentation, a proportional

controller is adopted. The final command sent to the motor is the sum of control term and the

difference between the last two consecutive scanning terms.

Receiver’s dynamics

Eq. (7) 

Scanning Term: ψ!

Measurement:

"#,!$ "%,! + &!

EKF
Controller:

'! = −) *"%,!

Receiver’s actual 

Orientation:

"%,! + ψ!

Motor Command:

'! + ψ !" −ψ 

$%, 

& 

'$", , '$%, 

+

$", 

Figure 2.4: Block diagram illustrating the proposed method.

Figure 2.5 illustrates the scanning technique. The receiver oscillates through a defined array of

angles Ψ = { k1, k2, k3 ... k= }, which contains predefined angles used for scanning. In our case
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ψ k-1 ψ k

x2

Figure 2.5: Illustration of the receiver scanning sequence, with mean G2 and last two angles of
scanning k: and k:−1.

Ψ = {−2◦, −4◦, −6◦, −8◦, −10◦, −8◦, −6◦, −4◦, −2◦, 0◦, 2◦, 4◦, 6◦, 8◦, 10◦, 8◦, 6◦, 4◦, 2◦, 0◦ }.

In each iteration, one k: is chosen from this array sequentially. The measurement is taken at each

k: , and the last two measurements at k: and k:−1 form our output vector y:

y: =

[
G1,:6(G2,: + k: ) + E:

G1,:−16(G2,:−1 + k:−1) + E:−1

]
(2.12)

Using the dynamics equation (2.7) and the measurement equation (2.12), an EKF can be imple-

mented. The complete algorithm is explained as follows.

There are three covariance matrices, namely, %, & and ', associated with an EKF. % is the

conditional error covariance matrix and % 5 represents the forecast of the covariance matrix. % 5

needs to be initialized as a positive definite matrix. The initial value of the estimate of G2 can

be taken as 0◦. The initial value of the estimate of G1 depends on the maximum possible value

of intensity. A good choice of the initial estimate Ĝ1 would be from 1/3 to 2/3 of the maximum
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intensity value. & is the process noise covariancematrix, and ' is themeasurement noise covariance

matrix. At step : ,

1. Prediction phase: Both state estimates (Ĝ) and error co-variance matrix (% 5 ) are predicted:

x̂ 5
:

4=

Ĝ
5

1,:
Ĝ
5

2,:

 =

[
Ĝ1,:−1

Ĝ2,:−1 + D:−1

]
(2.13)

%
5

:
= �%:−1�

) +& (2.14)

where Ĝ 5
<,:

denotes the estimate of the <th state at :th interval and the superscript 5 stands

for ‘forecast’.

2. Estimated output: From (2.12), the estimated output can be written as

ŷ:
4=

[
Ĥ1,:

Ĥ2,:

]
4=

[
Ĝ
5

1,:6(Ĝ 52,: + k: )

Ĝ1,:−16(Ĝ2,:−1 + k:−1)

]
(2.15)

With (2.13), one can write

ŷ: = ℎ(Ĝ 51,: , Ĝ
5

2,: )

,


Ĝ
5

1,:6(Ĝ 52,: + k: )

Ĝ
5

1,:6(Ĝ 52,: − D:−1 + k:−1)


(2.16)

The term D:−1 would be expressed in terms of the state variables later. Now the linearized

observation matrix �: can be computed as:

�: =
mℎ(Ĝ 51,: , Ĝ

5

2,: )

mx̂ 5
:

=

[
�:,1,1 �:,1,2

�:,2,1 �:,2,2

]
(2.17)

where,

�:,1,1 = 6(Ĝ 52,: + k: )

�:,1,2 = Ĝ 51,:6
′(Ĝ 52,: + k: )

�:,2,1 = 6(Ĝ 52,: − D:−1 + k:−1)

�:,2,2 = Ĝ 51,:6
′(Ĝ 52,: − D:−1 + k:−1)
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with 6′(·) being the derivative of 6(·)with respect to its argument.

3. Update/analysis phase:

 : = % 5
:
�)
:

(�:%
5

:
�)
:

+ ')−1 (2.18)

x̂: = x̂ 5
:

+  : (y: − ŷ: ) (2.19)

%: = (� −  :�: )% 5
:

(2.20)

It is to be noted that %: and x̂: without any superscripts denote the updated values after the

analysis phase.

4. Finally, the control is computed as

D: = −�Ĝ2,: (2.21)

where � is a positive gain, which, is motivated by the goal of driving the mean of scan G2

to zero. The final rotation angle sent to the motor is D: + k:+1 − k: , which will be used to

update the receiver angle at time : + 1.

Since the algorithm is based on EKF, the convergence depends mainly on two factors: the

full rank condition of the observability matrix O: of the linearized system (recall Eq. (2.11), and

the initial conditions of the state estimates, which were already discussed earlier. Since the full

rank condition of O: is ensured by the non-singularity of the output matrix �: , we consider the

determinant of �:

|�: | = Ĝ
5

1,:6(Ĝ 52,: + k: )6′(Ĝ 52,: − D:−1 + k:−1)

−Ĝ 51,:6(Ĝ 52,: − D:−1 + k:−1)6′(Ĝ 52,: + k: )

Using (2.13) and (2.21), we obtain

D:−1 = −
�Ĝ

5

2,:
1 − �

which implies

Ĝ
5

2,: − D:−1 =
Ĝ
5

2,:
1 − �
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and thus

|�: | = Ĝ
5

1,:6(Ĝ 52,: + k: )6′(
Ĝ
5

2,:
1 − � + k:−1)

−Ĝ 51,:6(
Ĝ
5

2,:
1 − � + k:−1)6′(Ĝ 52,: + k: )

Since G1 represents the light intensity at the receiver site (which is in general different from the

measured intensity by the receiver), it is always positive – if G1 were zero, there would not be any

measured signal even if the receiver is perfectly pointing at the transmitter and the algorithm would

be stopped. Therefore, it is reasonable to assume Ĝ 51,: > 0. So the only possibility for |�: |= 0 is

then

6(Ĝ 52,: + k: )6′(
Ĝ
5

2,:
1 − � + k:−1)

−6(
Ĝ
5

2,:
1 − � + k:−1)6′(Ĝ 52,: + k: ) = 0

or

6′(Ĝ 52,: + k: )

6(Ĝ 52,: + k: )
=
6′(

Ĝ
5

2,:
1−� + k:−1)

6(
Ĝ
5

2,:
1−� + k:−1)

(2.22)

One can show that the function G = 6′(·)
6(·) is monotonously decreasing in our domain of interest:

(−180◦, 180◦). Hence (2.22) would be true if and only if

Ĝ
5

2,: + k: =
Ĝ
5

2,:
1 − � + k:−1 (2.23)

which implies

Ĝ
5

2,: =
(1 − �)
�

(k: − k:−1) (2.24)

Since

|Ĝ 52,: | < 180 and |k: − k:−1 | = 2

a sufficient condition for guaranteeing that (2.24) does not hold and thus �: is non-singular, is
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���1 − �
�

��� < 90, or � >
1

91

Here, we get a very relaxed criterion on�. So for our simulation and experiments, we used� = 0.5.

2.4 Simulation Results

In this section, we verify the effectiveness of our algorithm through Matlab simulation. In

addition, we introduce two alternative algorithms, followed by a comparison of EKF with the two

algorithms.

To further explore the effect of unmodeled system dynamics (which were ignored in the al-

gorithm development, considering that the receiver typically would not have access to the motion

information of the transmitter), we have included some arbitrary dynamics for the system in the

simulation. Specifically, the system state evolves according to the following,
G1,: = G1,:−1 + F1,:−1

G2,: = G2,:−1 + V + D:−1 + F2,:−1

(2.25)

where V is an unknown constant disturbance. The term V corresponds to the relative angular move-

ment between the transmitter and the receiver, and it simulates the scenario where the transmitter

revolves around the receiver while shining directly at it. Based on the model and the algorithms

described earlier, the simulation is conducted with parameters listed in Table 2.1. Note that we

have used different & and ' values for EKF, than the system’s noise covariance matrices, as it is

shown earlier [45] that using scaled-up noise covariance matrices for EKF implementation gives

an improvement in convergence performance.

Figure 2.6 shows the results obtained from a simulation run with V = 1.2. From Figure 2.6, it

can be seen that the estimated states converge to the neighborhood of the original states in about 2

seconds and remain there throughout the run. We note that the estimated value for the state G2 is

slightly lower than the actual. Most likely this can be attributed to the positive bias term V in the

system dynamics, which constantly produces a shift of receiver orientation in the positive direction.

Note that the oscillations in the measurements are attributed to the scanning motion of the receiver.
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Figure 2.6: Simulation results of EKF when the G2 dynamics contains an unknown constant
disturbance V = 1.2◦/s.
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Table 2.1: Parameters associated with EKF implementation in the simulation.

Parameter Description Value

x̂0 Initial state estimate [2, 0])

%
5

0 Initial error covariance matrix
[100 0

0 1000
]

&BHB System’s process noise covariance matrix
[0.0025 0

0 0.01
]

& EKF’s process noise covariance matrix
[0.25 0

0 1
]

'BHB System’s measurement noise covariance matrix
[0.04 0

0 0.04
]

' EKF’s measurement noise covariance matrix
[1 0
0 1

]
� Proportional controller gain 0.5

And we note that the actual mean (state G2) converges to the neighborhood of zero in about 2 - 3

seconds. This corresponds to the alignment of the mean direction of the receiver to the direction

that faces the transmitter.

To explore the limit of algorithm’s assumption on quasi-static dynamics, the constant disturbance

term V is increased to an extent where the tracking fails. Figure 2.7 shows the states when the EKF

algorithm stops working and the angle of incidence (G2) starts going unbounded. This corresponds

to the receiver’s direction moving away from the transmitter-facing direction.

Next, we compare the performance of the EKF-based algorithmwith two alternative algorithms:

hill-climbing and three-point-averaging. In particular, we explore the performance of the algorithms

in the presence of measurement noises. In hill-climbing, the receiver starts with an orientation,

measures the light intensity and rotates by angle ^ = 2◦ in either the clockwise or counterclockwise

direction. It then measures the new light intensity. If the latter is higher than the previous value, it

will rotate by ^ again in the same direction; otherwise it will rotate in the opposite direction.

For the three point-averaging algorithm [2], the receiver performs a clockwise rotation and then

a counter-clockwise rotation by an angle ^ from the original location. Meanwhile, it takes the light

intensity measurements at each step (+1, +2, +3), where +1, +2, +3 represent the voltages at the
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Figure 2.7: Simulation results of EKFmethod’s failurewhen the unknown constant rate disturbance
V is increased to 8◦/s.

clockwise rotation, counter-clockwise rotation, and original location (^ = 0), respectively. The new

turning angle ^? of the rotating base is calculated by taking a weighted average of these signals at

three steps:

^? =
^+1 − ^+2
+1 ++2 ++3

(2.26)

The algorithm is implemented in Matlab for simulation, with turning angle ^ = 2◦. To quantify

the alignment control performance, two metrics are considered based on the angle of incidence (q)

and the clean light intensity measurement (light intensity value uncorrupted by noise E: , defined as

‘clean measurement’), respectively. Note that the algorithms use the noise-corrupted measurement
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for alignment control, and the clean measurement is used only for performance evaluation. We

define the ‘tracking percentage’ as the fraction of timewhen the system is in the tracking zone, where

the latter could be determined based on either the angle of incidence or the clean measurement. In

particular, we consider a threshold of 15◦ for the angle of incidence q : if q is outside the range

[−15, 15]◦, it would be considered out of the tracking zone. From Figure 2.3, we can see that this

angular threshold corresponds to about 20% of the maximum level of the intensity, which we will

use as a threshold for the ‘clean measurement’ for determining whether the receiver orientation is

in the tracking zone. For a maximum intensity of 3 V, the corresponding intensity threshold for

tracking is 0.6 V.

For the comparison of alignment control performance, each algorithm is run with a series of

noise levels for the measurement. As the noise level increases, the stochasticity in the tracking

percentage increases. Hence in simulation, for each noise level, results of 1000 runs have been

combined. In each run, the tracking percentage is computed and then the average over the 1000

runs is obtained to get an estimate of the expected value. The standard deviation in each case is

also computed to capture the variation among the runs. Figure 2.8 shows the plots for the mean

of each algorithm with standard deviation as error bars. For clarity, the standard deviation in error

bars is scaled down by 5 times. For each of the algorithm, the tracking percentage is computed

by the two methods (based on the angle of incidence (q), legend ‘-angular’, and the light intensity

measurement, legend ‘measure’) mentioned earlier.

The purpose of using two methods to compute tracking is to show that there is a high amount of

correlation between the tracking percentages computed by these two methods. So that in the case

of experiments, even if the angular data is not available, we can confidently rely on the tracking

percentage generated by the intensity measurement data. From Figure 2.8, one can easily see that

the tracking performance of the EKF-based algorithm is much better than that of the other two. The

tracking remains 100% even at the noise level of 1.0 and it decreases gradually after that, which

gives a good range of operation. The other two algorithms perform well under low noise levels,

but their performance degrades faster than the EKF at higher noise levels. It can also be observed
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Figure 2.8: Simulation results on comparison of alignment control performance for the three
methods, for different levels of measurement noise, when system states are evolved according to
Eq.(2.25) with V = 1.2. Vertical bars denote the down-scaled standard deviations at each point.
“Hill” represents the hill-climbing algorithm, and “3Point” represents the three-point-averaging
algorithm.

that the standard deviation under the EKF-based algorithm is also much lower than the other two

algorithms, which further proves its reliability under higher noise levels.

2.5 Experimental Results

In this section, we verify the efficacy of our algorithm by implementing cases similar to the

simulation on an experimental setup. While the LED communication hardware design allows us

to use both the receiver and the transmitter in the same module at once, so that two robots, each

equipped with such a module, can communicate with each other both-ways, in this particular work

we are focused on implementation of tracking algorithm on the receiver. Therefore, a separate

light source is used as a transmitter. Figure 2.9 shows such a transmitter-receiver pair used in

the experiments. The transmitter is mounted on a mobile robot to facilitate relative motion with

respect to the receiver. It is to be noted that the receiver in Figure 2.9 is a modified version of the
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device shown in Figure 2.1. Here, as mentioned earlier, a stepper motor is used instead of a DC

motor. The stepper motor has a precise control over the angular position. For the real-time onboard

implementation of all computations, Intel Edison® mini-computer board is used. It is equipped

with 500 MHz Atom 2-Core CPU and 1 GB of LPDDR3 RAM. The hardware specifications are

sufficient for the real-time computation required for our algorithm, and each EKF iteration takes

about 50 ms to complete.

Photodiode LED

Transmitter RobotReceiver System

Battery

Hub

Receiver Circuit

Stepper

Motor

3D Printed 

Base

Slip Ring

Figure 2.9: Complete setup: Receiver(left) on a rotation base and transmitter LED on a mobile
robot (right).

A mobile robot equipped with the transmitter revolves around the static receiver at a distance of

1.25mwhile facing the receiver (Figure 2.10). Here the transmitter robot is hard-coded to follow the
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circular path centered around the receiver, which not only ensures the distance 3 to be constant but

also enables the transmitter to focus light on the receiver throughout the run (W ≈ 0>). The robot’s

speed is fixed in such a way so that it revolves around the receiver at 1◦/s. On the receiver’s end,

an averaging filter is implemented on the on-board measurement of the light intensity. Currently,

our experiments are conducted in the air so the noise is relatively small and can be removed by

averaging. The averaged output of the filter is termed as ‘clean measurement’ for the experiments.

Moreover, to implement a range of noises, an extra artificial Gaussian noise term is added to the

clean measurement.

Transmitter Robot

Receiver

Path of Robot

Figure 2.10: Experimental setup: Transmitter robot moving around static receiver, following the
marker lines.

Figure 2.11 shows the evolution of state estimates and measurement output for a particular run

with the additional, artificial noise level of 1.0 when the EKF-based algorithm is implemented.
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Here we can see that the estimate of the mean of the scan (Ĝ2) goes to a bounded neighborhood of

zero as well. It is to be noted that we do not have access to the original states of the system, hence

only the estimates are plotted. However, while running the experiment, we have visually observed

that after a few iterations, the mean angular position of the receiver-scan starts aligning itself with

the line connecting the transmitter to the receiver, which implies that the real G2 also converges to

the neighborhood of 0◦. Moreover, the estimate Ĝ1 stays within a relatively narrow range (according

to our design of experiment), which should be close to the actual G1. Hence, according to these

observations, the estimates remain within a close range around the original states.

0 5 10 15 20 25

0

2

4

0 5 10 15 20 25

-20

0

20

0 5 10 15 20 25

0

2

4

6

x̂
1
(V

)
x̂
2
(d
eg
re
e)

M
ea
su
re
m
en

t
(V

)

EKF (x̂2)

EKF plus scan (x̂2 + ψ)

Noisy measurement (y1)

Estimated measurement (ŷ1)
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Figure 2.11: Experimental results when the transmitter robot moves around the receiver with an
angular rate of about 1 degree/s. The measurements are corrupted with the noise level of 1.0.

33



To conduct a comparison between the three algorithms, we further perform multiple runs in the

experiment. However, unlike simulation, it is not practical to do 1000 runs in the experiments for

each case, and we limit the number of experiments to 10 runs. Moreover, when the transmitter robot

moves along the circular path, its trajectory is not always consistent. For instance, sometimes it

goes a little closer to the receiver and sometimes further. The data generated by this motion is good

for qualitative demonstration but to have a fair quantitative comparison between the algorithms,

we need a consistent system. Hence we choose to keep the transmitter robot static and introduce

an unknown constant disturbance term, similar to V in Eq. (2.25), in the onboard program. This

disturbance term forces the receiver to rotate away from the transmitter facing direction. Figure 2.12

shows the plot of the tracking percentage with scaled-down standard deviation error-bars over the

range of noise level. It is to be noted that since the angular data is not available, the tracking is

computed by thresholding of light intensity measurements. As we can see, the behaviors of the

algorithms in the experiment are similar to those observed in simulation. and the EKF algorithm has

higher tracking performance with gradual degradation as compared to other two algorithms. The

variance in the tracking percentage of EKF is also lower than the other two alternative algorithms.

Other than the comparative performance evaluation, if we consider the noise level of 1.0, which is

one-third of the maximum intensity or 22dB SNR (Signal to noise ratio), we have more than 95%

of tracking.

2.6 Chapter Summary

In this work, a compact LED-based communication system using a single receiver with active

alignment control has been presented. For tracking, we have tested the applicability of simpler

algorithms like the hill-climbing and the three-point averaging methods. These methods are good

for low noise environments but their performance degrades steeply at higher noise scenarios.

Whereas, a principled approach using state estimation and control like our proposed EKF-based

alignment control algorithm not only gives comparable results in lower noise cases but performs

robustly in the case of higher noise environment. In our approach, the motion of the transmitter
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Figure 2.12: Experimental results on comparison of alignment control performance for the three
methods, for different levels of measurement noise when the constant disturbance (V) is 2.8◦/s.
Vertical bars denote the down-scaled standard deviations at each point.

was assumed to be unknown and captured as part of a white Gaussian noise. A scanning technique

is implemented to satisfy the observability criterion required for the EKF. A simple proportional

controller is used for active alignment.

As mentioned in Section 2.3, the main focus of this work was to demonstrate the instrumental

role of nonlinear estimation and feedback control in the active alignment of the LED and the

receiver. In particular, this approach uses the measurement history to estimate the state variables

and subsequently applies a control action based on the state estimate. It outperforms algorithms

that simply react to the current measurement (such as the hill-climbing and three-point-averaging

algorithms) in the presence of measurement noises, at a modest cost of implementation complexity.
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CHAPTER 3

EKF-BASED ALIGNMENT CONTROL IN THE 3D SPACE

In this chapter, we extend the active alignment control approach to three-dimensional (3D) space.

We propose an extended Kalman filter (EKF)-based alignment approach, where the estimates of

azimuthal and elevation components of the heading bias with the LOS are used to correct the

alignment. We introduce and implement a new circular scanning technique on a two-degree-

of-freedom (DOF) rotational system, mounted on a robot, that enables consecutive independent

measurements froma single photo-diode, which are necessary to satisfy the observability constraints

of the EKF. Furthermore, we explore a synchronized alternating scheme to extend the approach to

a system of two robots in a bi-directional setting, where both robots participate in the alignment

scheme. The scanning amplitude is further adjusted based on the EKF estimation covariance, to

balance the trade-off between estimation accuracy and actuation effort. We compare the proposed

approach with an extremum-seeking (ES) approach in both simulation and experimentation, where

a setup of two robots with relative 3D motion is considered. The presented results support the

efficacy of the proposed method in the presence of slow relative motion between the robots, and

demonstrate the superiority of the proposed approach over the ES method over a wide range of

distances between the robots.

The organization for the rest of the chapter is as follows. In Section 3.1, the hardware setup of

the system is discussed, followed by a discussion on the light signal strength model for state-space

formulation. In Section 3.2, the EKF-based alignment algorithm is described, followed by a brief

description of the ES-based method. Discussion on simulation setup and results are presented in

Section 3.3, while experimental setup and results are reported in Section 3.4. Finally, concluding

notes are provided in Section 3.5.
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3.1 System Setup and Modeling

In this section, we first briefly describe the hardware-setup, which is essential in the subse-

quent mathematical modeling of the received light intensity. We then formulate the state-space

representation of the system, which is the basis for EKF algorithm development.

3.1.1 System Setup

Figure 3.1 illustrates the transceiver mounted on the two-DOF mechanism, along with miscella-

neous components of the setup. The transceiver comprises a transmitter, Cree XR-E Series LED

with principal wavelength around 480 nm, and a receiver, photo-diode from Advanced Photonix

(part number PDB-V107). Lens-optics is mounted on each of the devices to adjust the field of view.

Further, to enable dynamic adjustment of transceiver pointing direction in 3D, a two-DOF rotation

mechanism is used. The mechanism consists of two Dynamixel® servo motors; the first one, called

base servo, adjusts the azimuthal orientation of the transceiver, and the second servo motor adjusts

the elevation orientation of the transceiver. For the onboard computation and processing, we used

a Beaglebone-Blue® board.

In our work, we consider the signal from a single photo-diode, which can be used for both

alignment control and communication. We assume that the optical signal has an approximately

equal distribution of low and high values, and hence the average intensity stays approximately equal

to the half of the high value of the signal. This chapter focuses only on the alignment control aspect

of the problem. Please see Chapter 5 for details on the simultaneous alignment and communication.

Next, we briefly discuss the coordinate frames related to our physical setup and define the variables

associated with the light signal strength model used in this work.

3.1.2 Coordinate Frames and Received Light Intensity Model

We consider a scenario of two robots, say R1 and R2, located at arbitrary positions in a 3D space.

Each robot has its own set of two local frames of reference; without the loss of generality, we
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Figure 3.1: Hardware setup, where the transceiver (transmitter LED and receiver photo-diode)
mounted on two-DOF active pointing mechanism is shown.

study the frames of R1 that help in developing the intensity model of the light transmitted by R2

and received by R1. Figure 3.2 illustrates two 3D coordinate frames determined by the relative

orientation of the two robots, at robot R1’s receiver end. For modeling purposes, both the receiver

and the transmitter of the same robot are considered to be on a single point called a transceiver and

their normal axes are aligned. The coordinate frames are denoted as the base frame (>− G′H′I′) and

the transceiver frame (> − GHI), respectively. Both coordinate frames share the same origin, which

is the location of the transceiver of R1. The following sequential rule defines the axes of the frames:
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• H′ is the rotor’s axis of base stepper motor of R1.

• G is the heading direction (normal) of the receiver of R1.

• Both I and I′ are identical and are chosen as a perpendicular axis to the plane containing G

and H′.

• G′ and H are decided by the right-hand rule.

Figure 3.2 also describes all the associated variables of interest in our analysis. The parameter

3 is the distance between the transceivers of two robots. The line connecting the two robots’

transceivers represents the desired direction of LOS. The angle between the transmitter orientation

of R2 and the LOS is the transmission angle W. The angles q and \ represent two orthographic

projections of the angle between the LOS and the pointing direction G, where \ denotes the elevation,

and q denotes the azimuthal orientation in the transceiver frame.

γ 

x’z’

y’ y 

z 

x 

Transmitter normal 

d 

Receiver normal

Base Servo
Motor

LOS

φθR1

R2

Figure 3.2: Illustration of two local 3D coordinate frames and the associated variables to define
the relative position and orientation between the transceivers of two robots.
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The light signal strength model here is derived from Section 2.2, with minor modifications to

accommodate the 3D setting. From Eq. (2.2), considering the effect of the area and orientation of

receiver (combination of the lens and the photo-diode), the final received power is:

%in = �W(3)�0 5 (q, \) (3.1)

where �0 denotes the lens aperture area and 5 (q, \) characterizes the effect of incidence angles

q and \ on the received intensity of light. The term 5 (q, \) depends on the combination of the

lens and the photo-diode used in the receiver. To characterize the function 5 (q, \) for our receiver

setup, we first collected the measurement data at different values of q and \ at a distance of 1 m.

Figure 3.3 shows the collected light intensity data. The collected data is observed to be circularly

symmetric about the peak. Henceforth, for practical usage and simplicity in the formulation, 5 (q, \)

is approximated by a one-dimensional function of the receiver’s heading angle with respect to the

LOS, which is the equivalent angle combining q and \:

5 (q, \) = 6 (arccos (cos q cos \)) , (3.2)

where 6(·) is the Gaussian function obtained by performing curve-fitting on the normalized ver-

sion measurement data, the expression of 6(·) is provided in Eq. (2.4) in Chapter 2. The final

measurement model can be summarized as

+3 = C? �W4−236(arccos (cos q cos \))/32 (3.3)

where +3 is the signal strength in volts, and C? is a proportionality constant, which depends on

the lens aperture of the receiver along with various parameters associated with the photo-diode’s

signal filter and amplifier stages.

3.1.3 State-space Problem Formulation

We observe from Figure 3.2 and Eq. (3.3), that the received signal strength depends on the four

independent variables, W, 3, q and \. In light of the discussion provided in Section 2.2.2, we can
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Figure 3.3: Light intensity data for Gaussian curve fitting to approximate 5 (q, \).

merge the terms comprising W and 3 in a single variable and define the state variables as

x =


G1

G2

G3


4=


C? �W4

−23/32

q

\

 (3.4)

The states in x depend on the distance and relative orientation between the transceivers of the two

robots. In a typical scenario, a robot does not have the exact information about themotion of the other

robot. So we will assume that the relative motion between the two communicating robots is slow

enough that a constant model with Gaussian noises can capture the relative dynamics. In particular,

the dynamics for the state variables defined in (3.4) can be represented in the discrete-time domain as

x: =


G1,:

G2,:

G3,:

 =


G1,:−1 + F1,:−1

G2,:−1 + D2,:−1 + F2,:−1

G3,:−1 + D3,:−1 + F3,:−1

 (3.5)
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where F1,: , F2,: and F3,: represent process noise terms. We assume these noises to be inde-

pendent, white, and Gaussian. These noise terms, up to a certain extent, account for the slow

dynamics of x: , which we do not explicitly model. The terms D2,: and D3,: are the control inputs

for adjusting the transceiver’s orientation. These two inputs are defined in the transceiver frame and

thus require a rotational transformation to convert them into the base frame, in order to generate

motor commands. The details of the transformation are discussed later in Appendix A. The system

output at time instant : , the measurement +3,: , can be expressed as:

+3,: = G1,:6(arccos
(
cos G2,: cos G3,:

)
) + E: (3.6)

where E: is an additive white Gaussian noise, assumed to be independent of the process noise terms.

Given a sequence of measurements, the objective is to estimate x: , which is then used to design

the control term uk =
[
D2,: , D3,:

]) , in order to drive G2 and G3 (termed as angular states) towards

0◦, the configuration corresponding to the LOS.

3.2 Estimation and Alignment Algorithms

In this section, we first examine the observability of the formulated state-space model and then

introduce the circular scanning technique. Moving further, we discuss the implementation of the

EKF algorithm with a few refinements and the extension to the bi-directional setting, followed by

a brief description of the implementation of the extremum-seeking control algorithm.

3.2.1 Observability of the System

For the nonlinear measurement model (3.6), an extended Kalman filter [39] is explored for state

estimation. From the (linear) dynamic equation (3.5), we define

� =


1 0 0
0 1 0
0 0 1

 , � =


0 0
1 0
0 1

 . (3.7)

Then equation (3.5) can be re-written as:
x: = �x:−1 + �u:−1 + w:−1, (3.8)
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with w: =
[
F1,: , F2,: , F3,:

]) . Denoting �: , �(x: ) as the system’s linearized output matrix at

the kth time instant, the nonlinear observability matrix at that time instant, obtained from [39], can

be expressed as

O: =


�:

�:+1�

�:+2�
2

 =


�:

�:+1

�:+2

 . (3.9)

ThematrixO: needs to be full rank at each time instant : , for the system to be observable [39], which

is a necessary condition for the stability of the EKF estimate. A possible way to satisfy this criterion

is to ensure the linear-independence of three consecutive�: ’swith each other, which requires at least

three successive measurements of light intensity to be independent. In our system, we ensure the

linear-independence by taking the measurements from three non-planar pointing directions of the

transceiver. Henceforth, we introduce a circular scanning technique, where the pointing direction

of the transceiver moves in a circular manner centered around a mean orientation. This mean orien-

tation, which is what the control input modulates, is considered as the new modified states (G2, G3).

The scanning pattern depends on two parameters: scanning amplitude XA and angular step

Xk (see Figure 3.4), where XA modulates the radial angular displacement of the measurement

orientation from the mean orientation. The parameter Xk is the angular separation between the two

successive measurement orientations. The term k: accounts for the relative angular position of a

measurement orientation with respect to the mean (G2, G3) orientation at the :th instant and it has

two orthogonal components U: and V: as shown in (3.10):
k: = k:−1 + Xk

V: = XA cos(k: ),

U: = XA sin(k: ).

(3.10)

Figure 3.4 explains the scanning technique. The pointing orientation moves around the mean

(G2, G3) in successive angular steps of size Xk . The measurement obtained at each k: is considered

as our output y: ∈ R1:

y: = G1,:6
(
b
(
G2,: , G3,: , V: , U:

) )
+ E: , (3.11)
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Figure 3.4: Illustration of the circular scanning sequence, with mean pointing orientation (G2, G3)
and the last three angular positions of scanning k: , k:−1 and k:−2.

where b(·) computes the net angle between the LOS direction and the current pointing direction,

which depends on both the mean and the scanning terms. The details of the function b(·) are

covered in Appendix B.

3.2.2 Implementation of Extended Kalman Filter

With the system dynamics (3.8) and the output equation (3.11), an extended Kalman filter (EKF)

can now be implemented. The complete algorithm description is as follows.

The EKF has three covariance matrices: % ∈ R3×3, & ∈ R3×3, and ' ∈ R1. % denotes the

conditional error covariance matrix, & denotes the process noise covariance matrix, and ' is the

measurement noise covariance. At step : ,
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1. Prediction phase : The state estimates and error covariance matrix are predicted as:

x̂ 5
:

=


Ĝ
5

1,:
Ĝ
5

2,:
Ĝ
5

3,:

 =


Ĝ1,:−1

Ĝ2,:−1 + D2,:−1

Ĝ3,:−1 + D3,:−1

 , (3.12)

%
5

:
= �%:−1�

) +&, (3.13)

where Ĝ 5
=,:

represents the estimate of =th state at the :th time interval and the superscript 5

stands for ‘forecast’ of the associated entities.

2. Output estimation:

From (3.11), we get

ŷ: , ℎ(x̂ 5
:

) = Ĝ 51,:6
(
b

(
Ĝ
5

2,: , Ĝ
5

3,: , V:U:
))

(3.14)

Now the matrix �: ∈ R1×3 can be computed as:

�: ,
mℎ(x̂ 5

:
)

mx̂ 5
:

=
6(b̂ 5

:
),
−Ĝ1,: 6

′(b̂ 5
:

)√
1−(ĵ 5

:
)2

[
m ĵ

5

:
mĜ2,:

,
m ĵ

5

:
mĜ3,:

] , (3.15)

where 6′(·) indicates the derivative of 6(·) and

b̂
5

:
, b

(
Ĝ
5

2,: , Ĝ
5

3,: , V: , U:
)

= arccos(j 5
:

), and

ĵ
5

:
, j

(
Ĝ
5

2,: , Ĝ
5

3,: , V: , U:
)
.

The details of the functions j(·), b(·), and their derivatives are discussed in Appendix B.

3. Analysis/update phase: 
 : = % 5

:
�)
:

(�:%
5

:
�)
:

+ ')−1

x̂: = x̂ 5
:

+  : (y: − ŷ: )

%: = (�3 −  :�: )% 5
:

(3.16)

Here  : ∈ R3×1 denotes the filter gain. The matrix �3 denotes the 3 × 3 identity matrix and

it is to be noted that %: and x̂: with no superscripts denote the final estimated values of the

:th step.
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Using the state estimates, the control terms can now be computed as
D2,: = −�%Ĝ2,: − � � Î2,:

D3,: = −�%Ĝ3,: − � � Î3,:
(3.17)

where the terms Î2,: and Î3,: are the integrals of the estimates Ĝ2,: and Ĝ2,: , respectively, which

are defined by:

Î8,: ,
:−1∑
==0

)Ĝ8,= = Î8,:−1 + )Ĝ8,:−1, 8 ∈ {2, 3} (3.18)

where ) is the sampling time. The positive constants �% and � � account for the proportional and

integral gains of the PI-controller, respectively. The gains are designed to ensure the closed-loop

stability of the two-states; for more details, see [49].

Note that the above calculation is conducted in the local transceiver frame of R1, and the control

terms need to be translated to the base frame to generate final commands for motors. The details

of the command translation are discussed in Appendix A.

Moreover, when the mean of the scan achieves a steady state, there are still oscillations in

the intensity measurements due to the scanning motion. These oscillations limit the average

intensity below the available maximum. This difference of intensity can be critical during actual

communication, as lower light intensity leads to a weaker signal to noise ratio (SNR) and results

in a higher bit error rate. To avoid such cases and additionally, to reduce the power consumed in

the scanning motion [51], we propose an proportional scanning technique. Here, the amplitude of

scanning is made proportional to the time-average of the norm of the sub-matrix of % (denoted as

%0=6) corresponding to the angular components, where

%0=6 =

[
%2,2 %2,3

%3,2 %3,3

]
(3.19)

with %8, 9 denotes the entry in the 8th row and 9 th column of the % matrix:

XA,: = max

(
X; ,min

(
 X

:∑
8=:−=B+1

‖%0=6,8 ‖2, Xℎ

))
(3.20)

with the 2-norm ‖·‖2 being the largest eigenvalue of a matrix, and Xℎ and X; indicate the upper and

lower bounds of the scanning amplitude, respectively.  X denotes the proportional gain and =B is
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the number of iterations in an active scanning period, which is equal to 360>
Xk

. The lower bound is

implemented due to the constraint of the three independent measurements from the observability

criterion and hence, the scanning amplitude cannot be made zero.

3.2.3 Extension to the Bidirectional Scenario

So far, we have discussed the formulation and approach for a single directional scenario where the

receiver tries to align itself towards the direction of the maximum light intensity. Now, consider the

bidirectional case of two robots, where each of the robots is equipped with a transceiver. Here we

cannot implement the aforementioned algorithm on each robot as the simultaneous scanning would

violate the quasi-static assumption on the state G1 of each of the robot. Therefore, we implement an

alternating pausing-scanning approach. Here one robot starts with the active scanning phase while

the other with the passive pausing phase and they alternate afterward. The active and passives

phase are described as follows.

1. Active phase: In this phase the robot completes a circular scan of the EKF approach presented

earlier. The total number of steps in one circular scan equals to 360◦/Xk . After one circle of

the scan, the robot points to the center of the scan and switches to the passive phase.

2. Passive phase: In this phase a robot fixes its orientation; scanning amplitude (XA ) and the

control gains (� ? ,� � ) both are zero. Due to the zero scanning radius, the observability

matrix of the system has rank one and hence the original system is not observable. Therefore,

we implement the EKF only for the state G1 in this phase, detailed as follows:

Ĝ
5

1,: = Ĝ1,:−1 (3.21)

%
5

:,1,1 = %:,1,1 +&1,1 (3.22)

 : = % 5
:,1,1�:,1(% 5

:,1,1�
2
:,1 + ')−1 (3.23)

Ĝ: = Ĝ 5
:

+  : (y: − ŷ: ) (3.24)

%:,1,1 = (1 −  :�:,1)% 5
:,1,1 (3.25)
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Figure 3.5: Block diagram summarizing the proposed method. All the shaded color nodes denote
the steps known to the algorithm. The information at white color nodes is not available to the
algorithm.

At each iteration, the other entries of x̂: and %: are carried to the next iteration. This way at

the beginning of an active phase the initial conditions for Ĝ2 and Ĝ3 are propagated from the

end of the previous active phase. After waiting for the predetermined number of iterations

required to complete a circular scan, the robot switches to the active phase.

Figure 3.5 summarizes the overall flow of our approach.

3.2.4 Benchmark Approach: Extremum-seeking (ES) Control

Here, we briefly discuss the implementation of the discrete-time ES control method that is used as

a benchmark for comparison with our method [25]. The algorithm is typically used to optimize a

function in real-time. The light intensity measurement from each robot is used as the function for

maximization. The block diagram in Figure 3.6 illustrates the flow of the algorithm implemented
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on each of the robots. The plant represents the overall system of the two robots, the output from the

plant y8,: is passed through a high-pass filter, which is then multiplied by two separate perturbation

signals X�( sin(2c 5?,8):) and X�( cos(2c 5?,8):) to generate the corresponding bias signals, b2,:

and b3,: , respectively. The terms X�( and 5?,8 represent the amplitude, and the frequency of the

perturbation signals for robotR8, respectively. The bias signals are eachmultiplied by a gain of �(,

and then added to their corresponding perturbation terms to generate the control terms D2,: and D3,: .

Plant

High Pass
Filter

×

×

KES

KES

+

+

δES sin(2πfp,iTk)

δES cos(2πfp,iTk)

yi,k

ξ2,k

u2,k

ξ3,k

u3,k

Figure 3.6: Block Diagram for extremum seeking control.

3.3 Simulation Results

In this section, we simulate the proposed approach and the ES control method for a two-robot

scenario in MATLAB. The parameters used in the simulation are listed in Table 3.1. For EKF, the

initial condition for the state estimates is chosen as [0.5, 0, 0]) , where the first term is chosen as

a positive value close to the expected voltage at the LOS, and the other two terms are each chosen

to be zero as it is an unbiased initial condition. The matrices & and ' are the scaled version of

the noise-covariance matrices of the system. In our prior work [45], we compared the performance

49



of EKF over multiple values of scaling-coefficient of &, and it is shown that the scaled versions

improve the performance of the EKF algorithm. The exact values of the matrices are chosen

empirically. The initial error-covariance % 50 is chosen to be same as &.

First, we consider the case where the two robots are stationary and separated about two meters

apart in the 3D space, such that initially, none of them is aligned with the LOS. Figure 3.7

summarizes the evolution of the states and their estimates, the measured light intensity and its

estimate, and the scanning/perturbation amplitude by each robot during the course of the algorithm

execution. It is observed that, in the case of EKF, for both robots, the states G2 and G3, and their

estimates converge to a neighborhood of zero in about forty seconds. For the ES, the states converge

to a neighborhood of zero in about twenty seconds. The bottom sub-figures show the scanning

amplitude values (XA ) for EKF, along with the constant perturbation amplitude (X�() for ES. They

illustrate that, when a robot is in the active phase, it has a high value of XA , while the other robot’s

XA is zero, which signifies its passive phase. Initially, when the uncertainty in the estimates is

high, the value of XA is high (4◦), and when the states reach the steady-state, the value of XA in the

active phase changes between 2◦ and 3◦. It can be inferred from the plots that the alternating and

proportional nature of the scanning technique in the EKF approach helps in

• achieving lower steady-state error and high-intensity values, and

• reducing the effort by the actuators,

as compared to the ES-based approach where the perturbation amplitude is constant, which results

in the higher steady-state error and control effort.

Next, to assess the algorithms’ repeatability and study the effect of the distance on the tracking

performance, we have conducted multiple simulation runs with robots stay stationary for a range of

distances. To characterize the efficiency of tracking, we consider a metric called average pointing

error E, which is the average of the heading offset angle b during a run from both of the robots,
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Figure 3.7: Plot of a simulation run illustrating the evolution of the three states and measured
intensity for the EKF and the ES approach, and their EKF-estimates, and scanning/perturbation
amplitude for each robot, when the robots are stationary. The angular states: G2, G3, and their
estimates are augmented with scanning terms V and U to illustrate a fair comparison with the
angular states of the ES approach.

calculated after the steady-state is achieved, namely

E =
1

2(=<0G − =; + 1)

2∑
8=1

=<0G∑
:==;

b8,: ,

where =<0G denotes the total number of iterations in each run (we use 200) and =; is the time index

of an iteration that is inside the steady-state (161 is used here to capture the last twenty percent of

iterations). Furthermore, we consider another metric called average intensity I, which considers

the average intensity measurement and is defined similarly to E:

I =
1

2(=<0G − =; + 1)

2∑
8=1

=<0G∑
:==;

y8,: ,

Figure 3.8 shows the effect of the increasing distance on the average intensity and the average

pointing error. It also shows the curve of ILOS, which is the maximum attainable light intensity

at a distance, achieved for the case of perfect LOS between the robots. ILOS exhibits an inverse

quadratic decrease as per Eq. (3.3). For EKF, the average intensity I exhibits a similar decreasing

trend with the distance, and it stays close to ILOS. The pointing error E stays low for the distance
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from 1 m to 3 m, and then it starts increasing linearly with the distance. This degradation is due

to the decreasing signal to noise ratio (SNR) as the intensity measurement decreases by the inverse

square law with the distance while the level of the measurement noise stays constant.

For the ES algorithm, it is observed that at lowdistances, the pointing error becomes significantly

high, and that results in a low average-intensity value. At a low distance, the product of gain �( and

the high-pass-filtered output signal becomes high, and it results in the instability of the ES algorithm.

It illustrates that the ES approach would require varied values of gain  �( at different distances;

however, it is not practical for a real scenario where the operating distance between the robots could

change and may not be known for either robot. In the case of EKF, the estimate of the state G1 ac-

counts for the change in intensity due to the change in the distance, and hence the approachworks for

a wide range of the distances. For the current value of �(, the ES algorithm showsminimumpoint-

ing error between the distance of 2 m and 3 m, and the error starts increasing beyond three meters.

In a practical scenario, the robots would be moving; however, in our formulation of EKF, we

assumed a quasi-static relative motion between the robots. This assumption would be violated

when the robots move at a larger speed. Therefore, to explore the influence of robot movements

on the LOS alignment performance, the algorithms are further tested with the robots moving at a

range of speeds. Figure 3.9 illustrates the configuration of the motion of the two robots, which is

based on the experimental setup to be discussed in Section 3.4. In the setup, the robot R1, which

we call the Rover, moves on a horizontal plane, and the robot R2, which we call the Elevator, moves

upward. Initially, both the robots are placed at the points of minimum distance 3min between the

linear paths of them. Each of the robots moves at a certain speed, and since the directions of their

motion are orthogonal to each other, the relative speed B is computed by taking the square-root of

the sum of squares of their speeds (
√
B21 + B22) where B8 denotes the speed of the robot R8.

Next, we consider a range of relative speed values for the robots. At each speed, we perform

1000 runs and compute the average and the standard deviation of the pointing error E. Due to

the robots’ moving nature, the distance between them changes, and hence the maximum attainable

intensity changes through the course of a run, so the average intensity I is not considered in these
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Figure 3.8: Tracking performance in terms of average intensity I and average error E in simulation
over a range of distances between the robots. The error bars denote the standard-deviation. The
intensity at LOS (ILOS) is also shown for reference.

set of simulations. Figure 3.10 illustrates the average pointing error over the range of speed E. It is

observed that at low speeds, the pointing error for EKF stays lower than the error for ES; however, as

the speed increases, the error for EKF increases at a higher rate as compared to ES. Furthermore, the

EKF algorithm stops converging at high speeds that results in high pointing errors. This behavior

illustrates the limitation of the EKF algorithm when the quasi-static assumptions on the states are

violated. For, ES algorithm, the error stays relatively low as the gain  �( is finely tuned for the

distance range of two to three meters (the distance 3 stays in this range when the robots move), so it

exhibits fast convergence and hence can track the LOS, under the relatively fastmotion of the robots.
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elevator (R2)

rover (R1)

dmin

Figure 3.9: Illustration of the initial configuration of moving robots (denoted by spheres) placed
3<8= distance apart in simulation. The elevator robot moves upward, and the rover robot moves
horizontally in a direction orthogonal to the line joining the robots’ initial locations.
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Figure 3.10: Tracking performance in terms of average error E in simulation over a range of speeds
of the robots.
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Table 3.1: Parameters used in the simulation. The values of parameters marked as ’«’ are chosen
empirically.

Parameter Value Description

Ĝ
5

0 [0.5, 0, 0]) Initial value of the state estimates

%
5

0 diag([10, 900, 900]) « Initial error-covariance matrix

fF 0.009
Standard-deviation of system’s
process noise for angular states
G2 and G3

& diag([10, 900, 900]) «
EKF’s process noise-covariance
matrix

fE 5.15e−4 Standard-deviation of system’s
measurement noise

' 1 «
EKF’s measurement noise-
covariance matrix

[�%, � � ] [0.98, 0.2] PI controller gains[
X; , Xℎ

]
[2, 5] « Scanning amplitude limits

Xk 120◦ «
Scanning angular step-size in de-
gree

 X 0.0025 « Proportional scanning gain
) 500 <B Sampling time

[X�( ,  �(]
[
3◦, 5

]
«

Perturbation amplitude and gain
for ES control method

[ 5?,1, 5?,2]
[
0.66 �I, 0.5 �I

]
«

Perturbation frequencies of the
robots for ES control method

3.4 Experimental Results

In this section, we assess the algorithms on an experimental setup. The setup consists of two

robots, each equipped with a transceiver and the rotational tracking mechanism, as discussed in

Section 3.1. Figure 3.11 shows the actual experimental setup. The elevator robot on the left moves

vertically along a pole. A high torque DCmotor, along with a pulley and a string, is used to create a

controlled vertical motion. The rover robot on the right moves straight on the ground. The distance

of the path of the rover is 2.3 m from the pole. A similar setup is modeled for simulation in the
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Rover Robot
Elevator Robot

2.3 m

Guide pole for 
Elevator Robot

Figure 3.11: Experimental setup with two moving robots in a dark room. The dashed arrows
denote the moving direction of the robots.

previous section. The relevant parameters for experiments are also taken from Table 3.1.
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Figure 3.12: Plot of an experiment run illustrating the evolution of the angular states and their
estimates (augmented with scanning terms for EKF), intensity measurement and its estimate, and
scanning/perturbation amplitude for each robot, when the robots are stationary.

First, we discuss an experiment run with both robots kept stationary. For the EKF approach, a
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synchronization procedure is implemented, where the command to start the run with the start-time

(with sufficient margin to accommodate transmission delays) is sent from an external computer to

the on-board Beaglebone boards. The internal clocks of the boards are synchronized over theWi-Fi

network. Additionally, using the start time as the base, the timing of each iteration of both robots

is synchronized using their internal clocks without any communication between them. Figure 3.12

shows the results on the evolution of the states, estimated states, intensity measurement, and the

scanning amplitude. The actual states G2 and G3 are generated from data provided by the motion

tracking system. It can be seen that the states G2 and G3 for both EKF and ES, for both robots,

converge to a neighborhood of zero in about twenty seconds, resulting in the output to attain the

steady-state value of around 0.6 V. Overall, the results are similar to what is observed in simulation;

however, for EKF, the convergence time is lower than what is observed in simulation.
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Figure 3.13: Tracking performance of the algorithms in terms of average pointing error E over a
range of speeds of the robots in experiments.

Next, similar to simulation, we test the algorithm over a range of speeds of the robots. Five runs
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with the same initial configuration are conducted for each speed. Figure 3.13 shows the tracking

performance over different speeds. The characteristics of the plot are similar to what are observed

in simulation (Figure 3.10), where at lower speeds, the EKF algorithm shows a lower pointing error

than the ES algorithm. Additionally, as the relative speed between the robots increases, due to the

violation of the quasi-static assumption, the performance of the EKF algorithm degrades faster than

the ES algorithm. However, since the faster convergence is observed in the experiments for EKF, the

degradation in the pointing error is significantly slower, and the mean pointing error stays within 4◦.

We acknowledge that the proposed algorithm requires the relative speed between the robots to

be relatively small. Faster scanning will mitigate this constraint and allow the system to track and

maintain the LOS in the presence of larger relative motions between the communicating parties.

The iteration time ) in our current experimental system is 500 ms, largely determined by the time it

takes the servo motors to go from the current configuration to the next desired configuration. With

the availability of better actuators, this iteration time can be reduced by an order of magnitude.

With such an upgrade, we expect significant increase of allowable relative motion speed between

the communicating robots, which is important for practical applications.

3.5 Chapter Summary

In this work, we propose a bidirectional active alignment control system for LED-based wireless

optical communication in the 3D space. With a light signal-strength model, we first formulate

a control and estimation problem in the state-space domain. We further proposed a circular

scanning technique to take independent successive intensity measurements to satisfy the system’s

observability criterion for an EKF-based estimation algorithm implementation. The state estimates

are then used in a PI controller to achieve the desired alignment. The controller output is later

transformed to generate commands for the motors. Additionally, we propose the proportional

scanning technique to maximize signal strength at the steady-state and to reduced actuation effort.

Moreover, an alternate active switching layer is implemented to achieve bi-directional alignment,

where each of the robots takes turns for the scanning. The effectiveness of the proposed approach
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to achieve LOS is validated in both simulation and experiments involving two mobile robots.

Furthermore, the superiority of the approach over an alternative approach is established in terms of

efficacy across a range of distances.
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CHAPTER 4

SIMULTANEOUS BI-DIRECTIONAL ALIGNMENT CONTROL IN THE FOR 2D
SPACE

The EKF-based approaches presented in Chapter 2 and Chapter 3 assumes that the transmitting

agent is static and consequently requires the communicating robots to take the scanning in an

alternating fashion for the convergence of the estimator in bi-directional alignment control. This

approach results in the stopping of the agents for half of their time, and hence the effective tracking

efficiency is reduced to half. In a desirable method, the agents do not need to stop and should

continuously and simultaneously track each other.

In this chapter, an alternative approach is explored for the 2D setting that allows simultaneous,

bi-directional alignment control for both parties. The problem is formulated in a discrete-time

dynamical system setting. Each agent seeks to maximize its own output (measurement) function

that depends on the states of both agents, and furthermore, the agents simultaneously make their

moves. The output functions considered here are non-conflicting; the optimization of one output

function helps optimize the other. However, the constraints of no communication between the

agents, no access to the states, and parallel actions pose significant challenges. A computationally

efficient andmodel-free output feedback control algorithmmeeting all these constraints is proposed.

In particular, we establish that, when the output functions satisfy certain conditions, the proposed

control procedure guarantees that, in a finite number of steps, the system reaches a limiting set that

contains the global optimum of size proportional to the step size. Simulation results demonstrate

the efficacy of the approach and establish its superiority over two competing approaches, namely:

extremum-seeking control and extendedKalmanfilter, in terms of convergence speed and robustness

to disturbance. Experimental results on a setup involving two robots further validate the efficacy

and quantify the proposed approach’s performance.

The organization of this chapter is as follows. In Section 4.1, the hardware description of

the LED-based communication system is presented, followed by mathematical modeling of the
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setup. Section 4.2 presents the proposed control scheme along with the key results followed by

their mathematical analysis in Section 4.3. The simulation results are presented in Section 4.4,

and experimental setup and results are discussed in Section 4.5. Finally, Section 4.6 provides a

summary of the chapter.

4.1 System Setup and Problem Formulation

4.1.1 System Setup and Modeling

Consider two agents (e.g., robots) in a planar environment, as illustrated in Figure 4.1. The line

joining the robots is the LOS. The distance between the robots is 3. The optical axis of the

transceiver of robot R8 makes angle \8 with the LOS line, where 8 ∈ {1, 2}, \8 ∈ (−c, c]. In this

work, we assume that the positions of the agents are fixed, and they can only change their angle \8.

Figure 4.1: Two agents seeking to establish LOS in a 2D scenario.

Figure 4.2 shows the transceiver hardware setup for LED-based free-space optical communica-

tion, which has been shown in Figure 3.1, where it was mounted on amobile robot. Each transceiver

has two devices, a photo-diode with a lens and a light-emitting-diode (LED) with a lens, where
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the lenses are used to achieve desired collection and dispersion of the light, respectively. For the

purpose of mathematical modeling, the agents are considered as points, and the optical axes of the

LED and the photo-diode are assumed to be aligned for each agent. Moreover, the transceiver is

mounted on a rotating platform, which enables the adjustment of transceiver orientation.

Photo-diode 
with lens-optics

LED with 
lens-optics

Figure 4.2: Illustration of hardware components of the transceiver for LED communication.

The light signal strength model adopted here, is derived from Section 2.2.1 with minor adjust-

ments to suit the bi-directional experimental setup considered in this chapter. With Eqs. (2.2) and

(2.3), the signal strength of the light transmitted from agent R2, as measured by the photo-diode of

agent R1 can be obtained as

+3 = �
4−23

32 5 (\2)6(\1), (4.1)

where� is a constant of proportionality, 2 is the attenuation coefficient of the transmission medium

(typically air or water). The function 5 (\2) represents the angular intensity distribution of R2’s

LED (same as �W in Eq. (2.2)), while, 6 (\1) represents the angular sensitivity of the photo-diode

of R1. An expression analogous to (4.1) holds for the light intensity measured by R2. It is to be

noted that 5 (·) and 6(·) depend on multiple factors: optics of the combination of the lens and the

LED/photo-diode, the refraction between surrounding medium and the lens interface, and optical
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characteristics of the medium itself. Therefore, we characterize 5 (·) and 6(·) by collecting intensity

measurements (from the experimental setup discussed in Section 4.5) over a range of heading

angles and then fitting a Gaussian curve on the collected data. Figure 4.3 shows the data collected

on our setup and the corresponding Gaussian fitting functions.
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Figure 4.3: Illustration of the Gaussian approximation of the fitting functions of photo-diode
sensitivity curve 6(·) and LED intensity curve 5 (·).
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4.1.2 State-space problem formulation

Let the state variables G1 and G2 be the angles \1 and \2, respectively. When the agents’ positions

are fixed, the distance 3 is constant and can bemerged into a new proportional constant�? , resulting

in the measurement functions

y:
4=

[
H1,:

H2,:

]
=

[
�? 5 (G2,: )6(G1,: )
�? 5 (G1,: )6(G2,: )

]
=


�?4

−©­«
G2
1,:
02 +

G2
2,:
12

ª®¬
�?4

−©­«
G2
1,:
12 +

G2
2,:
02

ª®¬


. (4.2)

where H1,: and H2,: denote the light intensities measured by agent R1 and R2, respectively, at time

instant : . We consider the following dynamics for the states:

G8,:+1 = G8,: + D8,: , for 8 ∈ {1, 2}, (4.3)

where D8,: represents the control of the 8-th agent and takes the form,

D8,: = *(H8,: , ..., H8,0, D8,:−1, ..., D8,0) (4.4)

* : R2:+1 −→ R, and |D8,: |≤ X for some given X > 0. Eq. (4.4) captures the constraint of no

communication between agents since the control term of an agent 8 can only depend on its own

history of measurements and control inputs.

4.1.3 Generalized Problem Formulation

In this subsection, we pose a generalized version of the system, where the measurement functions

include but are not limited to the class of Gaussian functions. Consider a discrete-time two-agent

dynamic system where the agents’ measurement functions are non-conflicting; i.e., they have a

common global maximum, and at every point in the domain (except at the global maximum), there

always exists a direction where both of the measurement functions have a positive gradient. The

constraints are that 1) there is no communication between the agents, 2) neither agent has access to

any of the states, including its own, and 3) the agents move simultaneously at every time step. The
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assumption of simultaneous actions is justified because the sampling time Δ) is the same for both

agents, and each agent makes a move in each time-step.

We denote the state of the 8-th agent by G8 ∈ (−c, c], for 8 ∈ {1, 2}. Each agent has a smooth

measurement function ℎ8(x: ), x: =
[
G1,: , G2,:

]) . Therefore x: ∈ �, where� = (−c, c]× (−c, c].

The subscript : represents the :-th time instant and the generalized output now becomes

y: = [ℎ1(x: ), ℎ2(x: )]) . (4.5)

Note that in the context of Eq. (4.2), ℎ8(x: ) = �? 5 (G3−8,: )6(G8,: ), but the algorithm proposed

in this work applies to cases with the measurement functions of a general form ℎ8 that satisfy the

following assumptions.

Assumption 4.1.1 For all x: ∈ R2 \ {(0, 0)}:

1. x: · ∇ℎ8(x)|x=x: < 0 for 8 ∈ {1, 2}, (4.6)

2. ∇ℎ1(x)|x=x: · ∇ℎ2(x)|x=x: > 0, (4.7)

3. Both ℎ1 and ℎ2 have strictly convex super-level sets 1.

Eq. (4.6) implies that both measurement functions ℎ1 and ℎ2 are non-conflicting as they both

have a unique common global maximum at (0, 0) and the functions smoothly decay away from (0, 0).

Eq. (4.7) ensures that at every point in R2 \ {(0, 0)}, the gradients of the measurement functions

make an acute angle with each other, which results in the existence of a common direction of the

positive gradient. The convex super-level sets assumption on ℎ1 and ℎ2 results into a corresponding

uni-modal function on any line drawn in R2, which we shall see in Section 4.3. Furthermore, the

convex super-level set assumption is weaker than the stronger requirement of functions being convex

or concave, which makes the formulation less restrictive and applicable to practical scenarios. The

goal is to drive the system state to the origin, using only the knowledge of local measurement.

1A set !+
2 (ℎ, 2) = {(G1, G2)|ℎ(G1, G2) ≥ 2} is called a super-level set of the function ℎ.
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It can be verified that a set of any two quadratic measurement functions with an optimum at

the origin would satisfy the Assumption 4.1.1. There are several physical quantities that satisfy the

inverse-square law. The examples include the intensity of sound, light, electrical, and magnetic

radiation emitting from a point source. In a two-dimensional setting, this inverse-square law

corresponds to a quadratic function. Hence, Assumption 4.1.1 allows a large class of functions

that represent physical quantities. Furthermore, a Gaussian function can be mapped to a quadratic

function by applying a natural logarithm. The aforementioned Gaussian light-intensity model in

Eq. (4.2) can also be transformed into a quadratic function. Next, we propose a control law for the

aforementioned system complying with the requirements in Eq. (4.4).

4.2 Main Results

In this section, we first provide a control law satisfying the requirement in Eq. (4.4). Then we

define geometric terms which would be essential for upcoming analysis. Afterward, we provide

results that the proposed control law can drive the states of the system to an appropriately charac-

terized limiting set in a finite number of steps. Later, we provide stronger results for the model of

the physical setup, where the functions ℎ1 and ℎ2 are Gaussians.

4.2.1 Proposed Control Law

Consider the following control law:[
D1,:

D2,:

]
=

[
sgn

(
H1,: − H1,:−1

)
D1,:−1

sgn
(
H2,: − H2,:−1

)
D2,:−1

]
, (4.8)

where, sgn(?) =


+1, if ? ≥ 0,

−1, otherwise,
(4.9)

which essentially means that an agent takes an action in the direction of increasing measurements,

and when it observes a reduction in its measurement, it switches to an action in the opposite

direction. The initial direction (u0) is chosen at random from set SD:

SD ≡ {[+X, +X]) , [+X,−X]) , [−X, +X]) , [−X,−X]) }
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The control law performs only one comparison to generate the control for each agent, which

makes it highly efficient and ideal for real-time onboard applications. Next, we introduce some

geometric terms which would be essential to defining the limiting set and conducting the upcoming

analysis.

4.2.2 Definition of Essential Geometric Terms

Consider a line dx, u passing through a point x in a direction u. All points on this line can be

parametrized as dx, u(U) ≡ x + Uû, where, U ∈ R and û = u√
2X
.

Figure 4.4: Line dx, u with super-level sets of ℎ8(·).
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Definition 4.2.1 (Transition Interval) A transition interval on a line dx, u, corresponding to the

agent 8, is defined as the set

t8(dx, u) B {x̄ | x̄ = Vx; + (1 − V)x< , 0 ≤ V ≤ 1}, (4.10)

where x; and x< are the points of intersection of the line dx, u and a level set !+
2 (ℎ, ℎ(x;)), and

satisfy:

1. ℎ8(x;) = ℎ8(x<), and (4.11)

2. ‖x< − x; ‖ =
√

2X. (4.12)

Figure 4.5: Illustration of the transition interval in terms of measurement function ℎ8 and its
gradient along the line dx, u.

Figure 4.4 illustrates a line dx, u along with the super-level sets of measurement function ℎ8 and

Figure 4.5 illustrates the transition interval on the line dx, u. FromAssumption 4.1.1, because of the

68



strictly convex super-level set assumption on ℎ8, it can be inferred that the function ℎ8 demonstrates

a uni-modal behavior along the line dx, u and therefore, the pair (x; and x<) is unique under the

assumption.

Definition 4.2.2 (Transition region) A transition region of an agent 8 for a control u is a continuum

of transition intervals t8(dx,u) and is formally defined as the set

T8(u) B {x̄ | x̄ ∈ t8(dx̄,u)} (4.13)

Definition 4.2.3 (Intersecting transition region) An intersecting transition region D(u) for a con-

trol u is defined as the intersection of T1(u) and T2(u):

D(u) B T1(u) ∩ T2(u) (4.14)

Remark 1 The origin is the global optimum, and hence it belongs to both bands of the transition

region; consequently, the set D(u) is always non-empty.

Figure 4.6 illustrates the transition regions T1(u2) and T2(u2) for a control direction u2, and

the corresponding intersecting transition region D(u2).

The following subsection summarizes our results.

4.2.3 Key Results

Theorem 4.2.1 (Main Result) From any initial state x0 ∈ �, the control law defined in Eq. (4.8)

drives the system defined by Eqs. (4.3) and (4.5) to a set D∪ in a finite number of steps  satisfying

 ≤ 3
(
‖x0‖2
X

+ 2
)

(4.15)

The operator ‖·‖2 denotes the (Euclidean norm) of a vector and set D∪ is defined as

D∪ B D0 ∪
⋃

u∈SD
D(u) (4.16)
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Figure 4.6: Illustration of the intersecting transition region D(u2) for the control direction u2.

with

D0 B

{
x : ‖x‖1 ≤

3X
2

}
. (4.17)

The operator ‖·‖1 denotes the ℓ1-norm (Manhattan norm) of a vector.

�

Remark 2 If the system is already inside the set D∪ and if it leaves the set D∪, then Theorem 4.2.1

applies to the new state as the initial condition, and the system returns to D∪ in a finite number of

steps.
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Corollary 1 (Special Cases) For a choice of ℎ1 and ℎ2 such that D∪ is compact and contiguous,

the control law drives the system to an O(X)-neighborhood of the origin.

In Section 4.1, the functions ℎ1 and ℎ2 corresponding to measurement functions H1 and H2

in (4.2) for our setup, are characterized by Gaussians, in which case D∪ becomes a compact,

contiguous set around the origin (the illustration is provided in Section 4.3, Figure 4.13). This

set can be contained inside a neighborhood around the origin with size proportional to X. The

following theorem provides stronger results for the model of the aforementioned physical setup.

Theorem 4.2.2 (Results for Physical Setup) From any permissible initial condition x0, under the

assumption that 0 > 1, the control law defined in Eq. (4.8) drives the states of the system defined

in (4.3) and (4.2) to the set D∪ in a finite number of steps  , where

 ≤
√

2‖x0‖1
X

+ 4(
⌈ ln(2‖x0‖1

3X )

ln( 02+12
02−12 )

⌉
+ 1). (4.18)

The operator ‖·‖1 denotes the ℓ1-norm of a vector.

�

It is worth noting that the bound on the number of steps  in (4.18) is significantly tighter than

the bound provided in the equation (4.15). The proof of the Theorem 4.2.2 is provided in [47],

where properties of Gaussians are used to derive the stricter bound. The next section is dedicated

to the proof of Theorem 4.2.1.

4.3 Proof of Theorem 4.2.1

In this section, we discuss the proof of the Theorem 4.1. Fig 4.7 illustrates the roadmap of the

proof. We first discuss the local behavior of the trajectory of the system, where the next few steps

are determined on the basis of the location of the present states. Then we discuss the bounds on the

number of steps  . Then we provide a discussion on the nature of limiting configuration set D∪.
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Figure 4.7: Roadmap of the proof of Theorem 4.2.1.

4.3.1 Local Behavior

From the mean value theorem applied to function ℎ8, for 8 ∈ {1, 2}, for any : ≥ 0, there exists a

point x" on the line segment joining x: and x:+1 (x" = Ux: + (1 − U) x:+1 | U ∈ [0, 1]) such

that,

ℎ8 (x:+1) − ℎ8 (x: ) = ∇ℎ8
(
x"

)
· u: . (4.19)

Now there arise two cases:

Case I: Both x: and x:+1 are outside of any of the transition intervals: (t1(dx: ,u: ) or

t2(dx: ,u: )). This results in the following condition:

∀ U ∈ [0, 1] ,∇ℎ8 (Ux: + (1 − U) x:+1) 6= 0.

The condition essentially means that the sign of the dot product of the gradient of any of the

measurement functions and the control direction, remains same at any intermediate point x" along
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the control direction. Using (4.19),

sgn(ℎ8 (x:+1) − ℎ8 (x: )) = sgn
(
∇ℎ8

(
x"

)
· u:

)
= sgn(∇ℎ8 (x: ) · u: ).

Now the control law defined in (4.8) can be re-written as[
D1,:

D2,:

]
=

[
sgn(∇ℎ1(x: ) · u: )
sgn(∇ℎ2(x: ) · u: )

]
� u: , (4.20)

where the operator (�) represents the Hadamard product of two vectors.

Figure 4.8 illustrates a possible configuration of the gradients of the two reward functions,

where \8 denotes the angle of gradient of ℎ8, with respect to the positive G1 axis. From the figure

and (4.7), it can be deduced that out of the four possible control directions, there would be at

least one direction, which would make an acute angle with both of the gradients. From this point

onward, such control direction(s) is (are) referred to as improving direction(s). For example, u1 is

the improving direction in Figure 4.8.

Furthermore, since our problem is two-dimensional, all the variables are represented as complex

numbers to simplify the analysis. As the agents have the same control magnitude X, the overall

control term at any time instant : can be represented as:

u: = X4
9c
2

(
=:−

1
2
)
, for some =: ∈ {1, 2, 3, 4}

= X
(
cos

c

2

(
=: −

1
2

)
+ 9 sin

c

2

(
=: −

1
2

))
, (4.21)

where =: represents the quadrant of the complex representation of u: . Now with (4.21), Eq. (4.20)

results in

u:+1 = X sgn
(
cos

(
Δ\1,:

) )
cos

(
c

2

(
=: −

1
2

))
+ 9X sgn

(
cos

(
Δ\2,:

) )
sin

(
c

2

(
=: −

1
2

))
= sgn

(
cos

(
Δ\1,:

) )
D1,: + 9X sgn

(
cos

(
Δ\2,:

) )
D2,: , (4.22)
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Figure 4.8: Illustration of the gradients of the two measurement functions and the four control
directions. \1 and \2 represent the angles of the gradients of the measurement functions ℎ1 and
ℎ2, respectively, with respect to the positive G1 axis, evaluated at point x: . The improving control
direction u1 is denoted by a thicker arrow.

where Δ\8,: B \8,: − c
2 (=: − 1

2 ) is the angle between the current control direction with the

corresponding gradient direction. Here it can be observed thatwhen the gradient of themeasurement

function of an agent makes an obtuse angle with the improving control direction, the agent switches

its control direction at the subsequent time step. Table 4.1 summarizes the relation between the

two successive control terms.

All configurations of the gradient directions and the control directions can be captured in the

following two subcases:

Case I(a): When there is only one improving direction, and it is in between the two gradient

directions. Figure 4.8 illustrates this case when u1 is the only improving direction while Fig-

ure 4.9 shows two configurations of this case. Without loss of generality, all the configurations

become equivalent to one out of the two illustrated configurations. For ease of exposition, these
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Table 4.1: Summary of the outcome u:+1 based on u: and gradient angles. The term u∗
:
denotes

the complex conjugate of u: .

XXXXXXXXXXXX|Δ\1,: |
|Δ\2,: | ≤ c

2 > c
2

≤ c
2 u: u∗

:

> c
2 −u∗

:
−u:

configurations have been represented using a finite state machine in the remainder of this proof,

where each configuration is represented as a control state which is deduced from Table 4.1. The

finite state machine representation is also overlaid in Figure 4.9, to illustrate the transition from

any control state to the state of improving control direction. The control state &� represents the

improving direction, &� represents the direction opposite to the improving direction, &� is the

direction closer to \1, and &� is closer to \2.

Consider the first configuration in Figure 4.9(a), where the state &� always transitions to itself.

For state &� , since both of the agents’ measurement function gradients make obtuse angles with

the control direction, it always transitions to the state &�. Next, for state &�, \2 makes an obtuse

angle, and hence agent 2 flips the control direction. This results in transitioning to state &� , which

transitions to state &� in the next step. Similarly, &� transitions to &� and then to &�. In the

second configuration, shown in Figure 4.9(b), for state&�, the flip in the control direction by agent

2 results in a transition to the state &�. Similarly, &� also transitions to &� in one step. Hence,

in a maximum of two steps, the system achieves the improving direction.

Case I(b): There are two improving directions, and both of the gradient directions form acute

angles with the two improving directions. Figure 4.10 shows the configuration along with the

corresponding finite state machine. The improving directions are labeled as &�1 and &�2, and the

corresponding opposite directions are &�1 and &�2. Here, if the system is in &�1 or &�2, both

agents make obtuse angles with the current control direction. Hence, they switch simultaneously,
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Figure 4.9: Two configurations for the case when the improving direction is between the reward
function gradient directions. The corresponding state machine diagram is overlaid, where &�
represents the improving control direction state. Similarly, &�, &� and &� are defined relatively
w.r.t. control directions and the gradient directions.
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and it takes only one step to get into an improving direction&�1 (or&�2 depending on the previous

state).

xk

θ2

θ1

QA1

QA2 QC1

QC2

Figure 4.10: Configuration where both of the gradients are in between the improving directions.

Case II: Either of x: or x:+1 lies inside any of the transition intervals. Here, without loss of

generality, let x:+1 lie inside a transition interval. It is to be noticed that x: , x:+1 and x:+2 lie

on a straight line if the system is inside a transition interval at x:+1. There arise two sub-cases in

the scenario. Figure 4.11 illustrates two sub-cases of the effect of transition in the configuration of

gradients and the improving direction.

Case II(a): x:+1 /∈ D(u),∀ u ∈ SD. In this scenario the state x:+1 lies inside a transition region but

it is outside any intersecting transition region. In Figure 4.11(a), initially the system was moving

in the improving direction u4, at step : , according to the case I(b). It goes into a transition interval

(without loss of generality, t2(dx: ,u: ) is considered in the illustration) in the step : + 1 and goes
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out in the step : + 2. During the transition from x: to x:+2, the gradient direction of agent 2 crosses

a control direction u1 and the overall gradient configuration changes to case I(a). Therefore, u2

becomes the new improving direction. Additionally, depending on which of the configurations

described in case I(a) is applicable, the system takes at most two steps to achieve the new improving

control direction.

xk

u1u2

u3

θ1

θ2

u4

After transition

xk+2

u1u2

u3

θ1

θ2

u4

(a)

xk

u1u2

u3

θ1, θ2

u4

After transition

xk+2

u1u2

u3

θ1, θ2

u4

(b)

Figure 4.11: Illustration of two sub-cases of the change in gradient configuration when a transition
occurs between step : and : + 1.

Case II(b): ∃ u ∈ SD: x:+1 ∈ D(u). Here, the state x:+1 lies inside an intersecting transition region.

Figure 4.11(b) illustrates that while passing through an intersecting transition region D(u1), both

of the function gradients cross the control direction u1 together. This results in case I(b) after the

transition, where the system switches its control direction to u2, which is opposite to its initial
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direction u4. In this situation, the proposed control law leads to a perpetual oscillatory movement

around the intersecting transition region.

4.3.2 Calculation of path length and the number of steps

In the previous discussion, we have shown that after corrections at the initial instant and at the

transition regions, the system continues to move in an improving direction which is one of the four

control directions. Finally, the system reaches D∪ (it either reaches an intersecting transition region

or it reaches the set D0, which is defined in Eq. (4.17)). D0 accounts for the scenario when the

system reaches the vicinity of origin and oscillates in a neighborhood around the origin without

ever entering any intersecting transition region. Now we discuss the path-length and the number of

steps the system takes from an arbitrary initial condition x0 to D∪.

It can be deduced that the system always moves in two orthogonal directions and hence, the

total path length ;C>C0; from any initial point x0 to D would be smaller than theManhattan distance

of the initial point from the origin along the control directions, i.e.,

;C>C0; ≤
( |G1,0 + G2,0 |√

2
+
|G1,0 − G2,0 |√

2

)
. (4.23)

A bound on the number of steps  B can be calculated as:

 B ≤
⌈ |G1,0 + G2,0 |

2X

⌉
+

⌈ |G1,0 − G2,0 |
2X

⌉
≤
|G1,0 + G2,0 |

2X
+
|G1,0 − G2,0 |

2X
+ 2,

where d·e represents the greatest integer function. Now using the right triangle inequality, where

each side is smaller than the hypotenuse, we get

 B ≤
( |G1,0 + G2,0 |

2X
+
|G1,0 − G2,0 |

2X
+ 2

)
≤ ‖x0‖2

X
+ 2.

Additionally, at each transition, there can be at most two additional steps for correction (as per

the first configuration of Case I(a)). The total number of transitions depends on the functions ℎ1
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and ℎ2; however, a loose upper bound on the number of transitions can be the total number of steps

on the path. Hence, an upper bound on the total number of steps  is:

 ≤ 3
(
‖x0‖2
X

+ 2
)
, (4.24)

where the factor 3 accounts for the worst case that every step requires a transition. �

4.3.3 Limiting Configuration

It is desirable that the set D∪ be compact and contiguous. However, that is not true in general.

Figure 4.12 illustrate a separate portion D(u2), which is a part of D∪ but it is away from origin.

A sample path ? is shown that ends in oscillation between three points. The central point lie in

set D(u2). The two green shaded diamond regions on the side of D(u2) illustrate the limiting

configuration such that once the trajectory reaches D(u2), it stays within a region consisting of

D(u2) and the two diamonds.

Figure 4.13 illustrates the set D∪ as dark shaded region, for the case when the measurement

functions ℎ1 and ℎ2 are Gaussians and characterize the physical setup discussed in Section 4.1. It

can be seen that D∪ is a compact and contiguous set around the origin. Sample paths ?1 and ?2

are shown to illustrate that once a trajectory reaches D∪ it either stays in D∪ or when it comes out

of D∪, it comes back in one control step.

A set E is also shown, which consists ofD∪ and light-green shaded region around its periphery.

E can be formally defined as follows:

x ∈ E =⇒


x ∈ D∪ or

∃ xD ∈ D∪ and ∃ uD ∈ SD s.t. xD + uD = x
(4.25)

Now it can be easily shown that for any x: ∈ D∪, x:+= ∈ E,∀ = > 0, when the states are

governed by Eq. (4.8).

Figure 4.14 shows the set D∪ and E for Gaussian functions with 0 = 15◦ and 1 = 14◦. It is

observed that as 0 and 1 becomes closer in value, the length of set D(·) increases, that results in
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Figure 4.12: Illustration of D(u2) as a separate portion of D∪, and a path ? that ends in oscillation
around D(u2).

increase in size of sets D∪ and E. For 0 = 1, the transition regions T1(·) and T2(·) then become

identical, which results in the set D∪ and E to be unbounded.

4.4 Simulation results

In this section, we study the performance of the proposed algorithm in simulation. First,

we study the approach on a generalized system where the set D∪ is non-contiguous. Then we

implement the approach on the system corresponding to the physical setup used in this work, where

the measurement function is the product of Gaussians. We also compare the performance of the

approach with two other approaches, extremum seeking control and extended Kalman filter-based
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Figure 4.13: Illustration of an isolated portion of set D∪ and a sample path ?.

algorithms.

4.4.1 Case with Non-contiguous D∪

To illustrate the applicability of Theorem 4.2.1 on a system with non-contiguous D∪, the following

measurement model is considered:

y:
4=

[
ℎ1(x: )
ℎ2(x: )

]
=


�?4

−
(
G4
1,:
20 +

G2
2,:
21

)
+ E1,:

�?4
−

(
G4
2,:
20 +

G2
1,:
21

)
+ E2,:


, (4.26)

with �? = 5, 0 = 10000◦, 1 = 15◦ and X = 2◦. The terms E1,: and E2,: represent measurement
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Figure 4.14: Illustration of set D∪ for the scenario when the measurement functions are Gaussians
and corresponds to the physical setup with 0 = 15◦ and 1 = 14◦.

noise that follows normal distribution (∼ N (0, f2
E )). Figure 4.15 illustrates the convex super-level

sets of measurement functions of the system along with the transition region bands. It can be

observed that the intersection of the transition regions occurs at multiple places, which results in a

non-contiguous D∪. Additionally, three sample trajectory paths under the proposed control law are

illustrated in Figure 4.15. Initially, fE is set to zero for all of the simulation runs. Path ?1, which

starts at (1, reaches a portion D1 of the non-contiguous set D∪, which is away from the origin. The

path ?2 starting at (2 reaches the subset O of D, which contains the origin. The path ?3 starting at
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(3 reaches a subset D3. Figure 4.16 shows the evolution of the states corresponding to the paths

in Figure 4.15. It can be observed that the trajectory of ?3 oscillates around D3 until around 23 s.

The noise term E: is made non-zero (fE = 9.1 × 10−8) after the 23 s mark, that helps in bringing

the state out of D3 and then the state reaches the neighborhood O of the origin and then oscillates

in and one-step out for the rest of the run. This illustrates the advantage of the small measurement

noise, which brings stochasticity in the otherwise deterministic system, and is helpful in bringing

the system to the optimum point. Furthermore, the upper bound for convergence time, computed

using (4.24), is around 29 s (using the sampling time Δ) = 0.45 s) for the paths, and the algorithm

takes less than 15 s to reach D∪ in all of the scenarios, which supports the validity of the bound.

4.4.2 Case Corresponding to Optical Tracking Setup

Here, the system’s model is simulated with �? = 0.6, 0 = 15◦, 1 = 11◦ and X = 2◦. Figure 4.17

illustrates the elliptical super-level sets of the measurement functions. A sample trajectory path

under the proposed control law, starting from an initial point (, is also shown in Figure 4.17. It can

be observed that the system moves in a straight line path until it passes a transition region, where

it corrects itself. This motion transitions to a perpetual oscillatory motion when it reaches the set

D∪ around the origin.

To evaluate the performance of the algorithm in terms of convergence speed, two contending al-

gorithms are considered: extended Kalman filtering (EKF)-based alignment control and extremum-

seeking (ES) control. The EKF approach that is discussed in Chapter 2 is implemented on each robot

separately. In the ES control algorithm [25], sinusoidal perturbation signals are applied to the inputs

(states in this setting), and the corresponding changes in outputs are then used to drive the output to-

wards the extrema (maximum in this work). We briefly discuss a two-variable discrete-time version

of the ES algorithm that is implemented in this work for comparison. The block diagram in Fig-

ure 4.18 illustrates the details of the implementation. Starting from step 1, the perturbation signals

� sin(2c 5?Δ):) and � cos(2c 5?Δ):) are added to each of the currentmean (statewithout perturba-

tion) of the states: Ĝ1,: and Ĝ2,: . Themean is initializedwith the given initial condition [G1,0, G2,0]) .
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Figure 4.15: Illustration of the paths of sample trajectories for the system with non-contiguous D.
The trajectory starting at (1 reaches a subset D1 which is not around the origin. The trajectory
starting at (2 reaches a subset O around the origin. The trajectory starting at (3 reaches the subset
D3 and oscillates in the subset until the non-zero measurement noise terms are introduced.

This mean corresponds to the present configuration of the agents, which is not known to them. In

step 2 the resulting system outputs, generated by the measurement model applied on the perturbed

states, are passed through high-pass filters (HPF). In step 3 each of the filtered output ismultiplied by

the corresponding perturbation signals to generate the biases b1,: and b2,: , which are then used to get

control terms D1,: and D1,: tomove themean of the states, completing a feedback loop of the system.

For a fair comparison between the algorithms, the perturbation amplitude of ES and the scanning

amplitude of EKFaremade the same as the step-size of the proposed approach (X = 2◦). We consider

ideal and practical scenarios for the simulation of the physical setup that are discussed as follows.
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Figure 4.16: Evolution of the states of the trajectories corresponding to the paths illustrated in
Figure 4.15.

4.4.2.1 Ideal scenario

In this case we consider the physical system as described by equations (4.3) and (4.2) without any

non-idealities like noise, system uncertainties or disturbances. Figure 4.19 illustrates the paths of

the three algorithms with the same initial condition S (x0 = [−15, 10]) ) and converging to the

neighborhood D∪ of the origin O. The corresponding evolution of the states with time is shown

in Figure 4.20, and the corresponding outputs are shown in Figure 4.21. The proposed algorithm

drives the states to D∪ in less than 10 s, which is within the theoretical upper bound of 13.5 s,

computed from (4.18). It is to be noted that all of these algorithms have steady-state oscillations.

These oscillations are necessary for exploration and help in stabilizing the system in the presence

of disturbance and slow relative motion. It is observed that the steady-state region of oscillations

for the proposed algorithm is twice as bigger as that of the EKF and extremum-seeking, which

is not desirable. However, the proposed algorithm converges faster than both of the contending
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Figure 4.17: Illustration of the level sets, transition regions, and of a sample trajectory for the
physical system.
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Figure 4.18: Block diagram for extremum seeking control.

algorithms. The convergence speed of EKF is slightly slower than the proposed algorithm. The ES

algorithm is significantly slower than the other two algorithms. This delay is attributed to the large

time spent by the ES algorithm in exploration. In a trade-off between convergence speed and the

size of the region of oscillations, the high convergence speed is more desirable than the low-size

region of oscillations for a real scenario with moving robots.

4.4.2.2 Practical scenario

In this case we consider the following modified version of the dynamics of the physical system

which resembles the practical scenario:

[
G1,:+1

G2,:+1

]
=

[
G1,: + D1,: + F1,:

G2,: + D2,: + F2,:

]
,
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Figure 4.19: Comparison of the trajectories of a sample simulation run for the three algorithms.

where F1,: and F2,: represents the uncertainty in the motion of the motors that follows normal

distribution (∼ N (0, f2
F)). The output now becomes

y:
4=

[
ℎ1(x: )
ℎ2(x: )

]
=


�?4

−©­«
G2
1,:
02 +

(G2,:+^2)2

12
ª®¬ + E1,:

�?4

−©­«
G2
2,:
02 +

(G1,:+^1)2

12
ª®¬ + E2,:


,

where the new terms ^1 and ^2 are unknown constants that represent the misalignment angles

between the axes of the photo-diode and the LED of robots R1 and R2, respectively. It is worthy

to be noted that the problem formulation assumes the LED, the photo-diode and the anchor point

of the rotation as concurrent. This assumption is still viable as the distance 3 considered in this

work is significantly larger than the offsets between the location of the three aforementioned points
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Figure 4.20: Illustration of the evolution of the states for the three algorithms corresponding to
paths in Figure 4.19.
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Figure 4.21: Illustration of the outputs for the three algorithms corresponding to the paths in
Figure 4.19 and states in Figure 4.20.

of interest. Table 4.2 lists all the parameters of interest which are used in the simulation. The

parameters are obtained empirically from the experimental setup used in our work.

Figure 4.22 illustrates the paths of the three algorithms with the same initial condition S

and converging to origin O. The corresponding evolution of the states with time is shown in

Figure 4.23, and the corresponding outputs are shown in Figure 4.24. While comparing the

algorithms’ performance in the ideal scenario and the practical scenario, one can observe that there

is no significant deterioration in the performance in terms of the convergence time. However,

for the proposed algorithm, the region of steady-state oscillations becomes larger than what is

observed in the ideal scenario. This is attributed to the nature of the proposed algorithm that the
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Table 4.2: Parameters used in simulation.

Parameter Value Description
�? 0.6 V Proportionality constant for measurement functions
0 15◦ Gaussian width for function 6
1 11◦ Gaussian width for function 5

fE 5.151 × 10−4 V Standard deviation of measurement noise
fF 0.3095◦ Standard deviation of actuator uncertainty
^1 −0.41◦ Misalignment angle of R1
^2 0.14◦ Misalignment angle of R2
Δ) 0.45 s Sampling time
X 2◦ Step size
5? 6.67 Hz Perturbation frequency for ES
Γ 500 Controller gain for ES

feedback control law depends only on the present measurements. Hence, any stochasticity in the

measurements directly affects the states of the system. In contrast, the EKF and the ES algorithms

have inherent filtering of high-frequency noise; therefore, the stochasticity in the measurements is

not reflected directly in the states of the system.

To test the efficacy of the algorithms in the presence of unknown and unwanted relative motion,

we introduce a constant disturbance l in the state dynamics of one agent:

G1,:+1 = G1,: + D1,: + F1,: + lΔT

This disturbance emulates a scenario where the agent R1 is rotating with an unknown angular speed

l and ΔT is the sampling time. This is also equivalent to a scenario where the agent R2 revolves

in a circle around agent R1 with an angular speed of −l. Furthermore, to test repeatability, and to

characterize the performance and limitations of the algorithms, we simulate the algorithms over a

range of l; l ∈ [0.15, 3] ◦/B.

Next, we generate 1000 initial points from the set (x0 ∈ (0>, 30>) × (−30>, 30>)) using the

Latin Hyper-cube Sampling (LHS) technique in MATLAB, and perform a simulation run for each

of these initial conditions, for every value of angular speed. It is to be noted that we considered

only the positive values of the state G1, as the disturbance is positive and therefore, it acts to move

92



-20 -15 -10 -5 0 5

-5

0

5

10

15

20

O

S

Proposed Algorithm

Extremum Seeking

EKF

Figure 4.22: Comparison of the trajectories of a sample simulation run for the three algorithms in
the practical scenario.
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Figure 4.23: Illustration of the evolution of the states for the three algorithms in the practical
scenario.

the states away from the origin. A simulation run is labeled as converged if, at any iteration : , the

states lie inside the set D∪. The performance at each speed is measured by counting the number of

converged simulation runs (N�) and the average tracking error of the converging runs (E�), which

is defined for a simulation run as follows:

E� =
10
= 5

= 5∑
:==B
‖x: ‖2, with =B = = 5 − = 5 /10 + 1

where = 5 is the total number of time-steps in one simulation run of an algorithm (the value of
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Figure 4.24: Illustration of the outputs for the three algorithms in the practical scenario.

5000 is used in the simulation runs). The final 10% iterations (= 5 /10) are considered to effectively

capture the average of steady-state oscillating points. A new term called disturbance fraction

denoted by j is introduced, that equals lΔ)/X to represent the relative strength of the disturbance

in comparison with the speed of robots’ actuation.

Figure 4.25 shows the cumulative performance of the three algorithms in terms of N� and E�

over a range of j. The mean tracking error E� is plotted for an algorithm for a value of disturbance

strength only when more than 10% of the runs show convergence. All the algorithms show a

decreasing trend of convergence count as the disturbance fraction j increases. The convergence

count of the proposed algorithm remains highest throughout the range, with close to 100% runs

converging for the low range of the disturbances. Furthermore, the mean and standard deviation

of the error E� stays lowest for the proposed algorithm in the low range of disturbances. The
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convergence count of the EKF algorithm starts with about 600 that gradually decays to about 100.

From j = 0.15 onward, the mean tracking error of EKF stays close to zero with consistent values

of the standard deviation. It outlines that the system states for the converging runs stay moderately

close to the origin throughout the run. The standard-deviation of E� values stays significantly high

for most of the j values. The performance of the ES algorithm is poor; its convergence count starts

with about 400 and drops below 10% at a low j value of 0.10. Therefore only two data points of

E� are plotted. As discussed earlier, the ES algorithm is significantly slower than the other two

algorithms, and hence it fails to converge in the presence of disturbance.
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Figure 4.25: Illustration of performance of the algorithms in terms of convergence count N�
and tracking error E� over a range of disturbance fraction j. The error bars for E� denote the
standard-deviation.

To study the effect of the initial conditions on the convergence performance, we considered a

range of magnitude of initial conditions. For a given magnitude V, 1000 points are generated using
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the LHS technique on a circle of radius V centered around the origin. It is to be noted that our

domain � represents angles, and hence the radius V is expressed in degrees. A new metric called

convergence time T� , defined as the time taken to converge in a simulation run, is considered to

evaluate the performance.

Figure 4.26 shows the convergence performance of the algorithms over a range of magnitude

of initial conditions. For low initial conditions until 20◦, all of the simulation runs result in

convergence for each of the algorithms. At V = 30◦, the performance of the EKF and that of the ES

algorithms start degrading where the ES algorithm has a higher convergence count. At V = 60◦, the

convergence counts of both the algorithms diminish to less than 10%. The convergence count of

the proposed algorithm also degrades but significantly slower than the two algorithms, and despite

the high initial condition of V = 90◦, more than half of the simulation runs result in convergence.

Furthermore, it is observed that the convergence time (T�) increases with the magnitude of the

initial conditions V. Additionally, the standard deviation of T� also increases with V, which

is attributed to the increase in the stochasticity of the measurements; at high initial conditions,

the measurement values become small, and the magnitude of noise becomes comparable to the

measurements. This decrease in signal-to-noise ratio (SNR) contributes to the stochasticity in the

dynamics and hence results in the poor performance of the algorithms. Moreover, for high initial

conditions, the control steps for each agent for the EKF algorithm are large, which violates its

quasi-static assumption on the system dynamics. This violation further affects the failure rate of

convergence of the simulation runs, even for the relatively smaller initial conditions. On a side note,

it can be inferred that the converging runs of the EKF algorithm observed earlier in Figure 4.25

are the ones that started with smaller initial conditions. The mean tracking error E� remains small

for the ES and the proposed algorithm; however, for the EKF, the error increases with the V for

the reason that a significant fraction of the converging runs diverges away from the origin despite

coming close to the origin.

Henceforth, we have seen from the numerical results that the proposed approach significantly

outperforms the EKF and the ES algorithm in terms of convergence speed and robustness to
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noise and unknown disturbances and large initial conditions. Moreover, it is to be noted that the

proposed algorithm is computationally economical than the other two algorithms, which becomes

advantageous in real-time onboard implementation as it plays a major role in deciding the sampling

time Δ) .
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Figure 4.26: Illustration of performance of the algorithms in terms of convergence count N� ,
convergence time T� , and tracking error E� over a range of magnitudes of initial condition V. The
error bars for T� and E� denotes the standard-deviation.
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4.5 Experimental Results

In this section, we test the efficacy of the proposed algorithm in experiments. We first describe

the details of the experimental setup used in this work and then discuss the results.

Figure 4.27 illustrates the hardware components of one of the two robots. For the transmitter,

a Cree XR-E Series Blue LED with a principal wavelength of 480 nm is used, and for the receiver,

a blue-enhanced photo-diode from Advanced Photonix (part number PDB-V107) is used. A

DYNAMIXEL® servo motor (model number XL430-W250-T) is used to control the pointing angle

of the transceiver. A Beaglebone Blue® board is used as an on-board computer for real-time

processing and computation. The robot in Figure 4.27 is placed on a metal disc that serves

as a rotating base to emulate relative angular motion between the two robots. Another robot

with the same configuration on a static platform is used as the second agent. Furthermore, we

used OptiTrack® motion capture system to access the ground truth values of the system’s states.

Figure 4.27 shows the reflective markers placed on the top of the robot and on the base disc, which

are used by the motion capture system. The illustrated robot is labeled as R1, and the copy of this

robot is labeled as R2, which is placed on a static base. Figure 4.28, shows the experimental setup

consisting of robots R1 and R2, that are placed 2.8 meters apart. The experiments are performed

in a dark room to minimize ambient optical noise.

The code to implement the proposed algorithm setup is written in Python, which is then executed

on the on-board computer of each robot. Figure 4.29 and Figure 4.30 show the results of a sample

experiment run where the disc is rotating with an angular speed of l = 1◦/s (j = 0.23). The path

of the trajectory of the states of the system is shown in Figure 4.29, and the evolution of the states

and the intensity measurements is shown in Figure 4.30. The starting point S denotes the initial

condition, where the transceivers of both the robots were pointing away from the LOS. During the

course of the algorithm, the states reach the neighborhood D∪ of the origin O, in about 10 s, and

then they oscillate around the origin for the rest of the experiment run. The convergence of the

states to the set D∪ indicates the achievement of the near LOS by the transceivers of the robots. The

robots’ signal strength measurements start from low initial values, and then they reach steady-state
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Figure 4.27: Illustration of a robot with the optical transceiver system. The robot stands on a
rotating disc to emulate the relative motion between two robots.

oscillations at around 0.4 V when the system reaches the neighborhood of LOS.

Next, to test the repeatability of the experiments and limitations of the proposed algorithm on

the experimental setup, we consider a range of angular speeds for the disc similar to the range used

in the simulation. We first perform 10 experimental runs with practically the same initial condition

for each of the angular speeds. We perform additional 20 experimental runs if the initial 10 runs

exhibit both success and failure in convergence in order to obtain better statistical measures. The

sign of the initial angle G1,0 of robot R1 is chosen to be the same as the sign of the l so that the

rotation of the disc moves the pointing direction of R1 away from the LOS. Henceforth, all of the
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Figure 4.28: Illustration of experimental setup of the two-robots scenario. The overhead lights of
the room are turned off to minimize the ambient optical noise.

experiment runs start from the initial condition x0 = [16◦,−23◦]) .

Figure 4.31 shows the results of the experiment runs, performed over a range of rotational

speeds of the disc in terms of percentage of converging runs along with the metrics T� and E�

which were defined in Section 4.4. The G-axis of the sub-plots represents the disc speed in terms

of the disturbance fraction j. The number above each of the bars represents the total count of

experiment runs performed at that value of j. Similar to the simulation, the T� and E� are only

plotted at a particular value of j, if the convergence count is greater than 10% of the total count. It

is observed that at low disturbance values until j = 0.19, the success rate of convergence is 100%,

and then it decreases gradually. The average of convergence time T� remains between 10 s and

20 s till j = 0.44, as the initial condition is the same for all the runs. Based on consistent values,

it is inferred that when an experiment run converges, it is likely to reach the LOS-neighborhood
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Figure 4.29: Path of the trajectory of a sample experiment run when the base disc rotates with the
angular speed of l = 1◦/s.

in a certain time limit. Beyond that, it is extremely unlikely to converge as due to the platform’s

rotation, the pointing direction of the transceiver of robot R1 moves far away from the LOS where

the effect of the measurement noise and the motor uncertainty becomes prominent. The average

tracking error E� stays at consistently low value of about 4 degrees until j = 0.31. Beyond that

value, it starts increasing gradually, such that at j = 0.56, its value averaging at 35 degrees with

significantly high standard-deviation. These high values at high disturbances depict that the system

leaves the LOS-neighborhood after convergence most of the time.
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Figure 4.30: Evolution of the system’s states and the output corresponding to the path of the
sample experiment run shown in Figure 4.29.

4.6 Chapter Summary

In this work, we formulate a bidirectional optical beam tracking problem as a discrete-time

dynamical system. We propose a model-free output feedback control law for a class of systems that

follow certain assumptions with the constraint that the control command of an agent can depend

only on the information accessible to that agent. Through rigorous analysis, we show that for any

initial condition, the proposed control law drives the system to a defined set D∪ in a finite number

of steps. For our physical setup with Gaussian measurement function choices, we get stronger

results regarding the convergence towards O(X) neighborhood of the origin that corresponds to

LOS. The proposed algorithm is computationally economical than the two contending approaches:
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Figure 4.31: Illustration of performance of the algorithms in terms of convergence count N�
and tracking error E� over a range of disturbance speeds. The error bars for E� denotes the
standard-deviation. The number above each of the bar represents the total count of experiment runs
performed at that angular speed.

ES and EKF, and superior in terms of convergence speed, robustness to unknown disturbances, and

handling large initial conditions. The proposed approach is also validated on an experimental setup

consisting of two robots in the presence of a constant external disturbance.
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CHAPTER 5

SIMULTANEOUS BI-DIRECTIONAL ALIGNMENT CONTROL IN THE 3D SPACE

Motivated by themodel-free approach for the bi-directional 2D setting that is proposed in Chapter 4,

in this work, we explore a model-free bi-directional active alignment control-based approach for the

3D setting. Utilizing the uni-modal nature of the dependence of the light signal strength on local

angles, we propose a novel triangular exploration algorithm, that does not require the knowledge

of the underlying light intensity model, to maximize the signal strength that leads to achieving and

maintaining LOS. The method maintains an equilateral triangle shape in the angle space for any

three consecutive exploration points, while ensuring the consistency of exploration direction with

the local gradient of signal strength. The approach can be directly implemented on two robots for

bi-directional setting, without the need of any synchronization between the robots.

The effectiveness of the approach is first evaluated in the simulation setup of two robots,

which was presented in Section 3.3, by comparison with the EKF-based approach and the ES

approach. Simulation results show that the proposed approach is optimal and effective in terms

of its convergence speed for a wide range of relative speed and distance between the robots. The

performance of the approach is further assessed against the EKF approach and the ES approach

on the experimental setup, which was presented in Section 3.4. The experimental results further

support the superiority of the approach with the other two contending approaches.

The efficacy of the approach and the overall communication system is further demonstrated in

underwater setting where communication is performed simultaneously with the alignment control.

One way communication and alignment are first demonstrated on a setup where a human operator

wirelessly controls a robot in the underwater scenario using an LED communication-based joystick,

followed by demonstration of bi-directional alignment control and communication between two

underwater robots.

The organization of the rest of the chapter is as follows. Section 5.1 reviews the basic problem

set up. The details of the alignment algorithm is discussed in Section 5.2. Simulation results
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are presented in Section 5.3. In-air experiment results are provided in Section 5.4, followed by

the discussion on underwater experimental setup and results in Section 5.5. Finally, concluding

remarks are provided in Section 5.6.

5.1 Review of System Setup and Modeling

Figure 5.1: Hardware description of the active transceiver module.

Here, we first briefly review the hardware setup and system model from Chapter 3 and describe

the relevant mathematical representation of the system behavior. For simplicity in formulation,

we consider the model of each robot separately in this work. Figure 5.1 shows the hardware

setup consisting of the LED-photodiode pair in the transceiver module that is mounted on a 2DOF

active pointing mechanism. The same setup was used in the experiments which were presented in

Chapter 3. Next, we derive the states of the system for one robot from Eq. (3.4):

x =

[
G2

G3

]
=

[
q

\

]
, (5.1)

where q and \ are the azimuth and elevation component of relative angle between LOS and heading

direction of the transceiver. The state G1 from Eq. (3.4) is omitted from the state vector and it is
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considered as a constant C@ in this work. Now the system output, which is derived from Eq. (3.6),

can be expressed in terms of the state variables as

y: = C@6
(
arccos

(
cos G2,: cos G3,:

) )
. (5.2)

The evolution of system can be expressed in the discrete time as:[
G2,:+1

G3,:+1

]
=

[
G2,: + D2,:

G3,: + D3,: ,

]
(5.3)

where D2,: and D3,: denote the control terms. The noise terms are omitted from the dynamics and

the output equations for simplicity in the formulation.

5.2 A Triangular Exploration Algorithm

In this section, we discuss the details of the proposed alignment control algorithm that is termed

as a Triangular Exploration algorithm. Given any initial condition [G2,0, G3,0]) , we choose[
D2,0

D3,0

]
=

[
X cos(k0)
X sin(k0)

]
,

[
D2,1

D3,1

]
=

[
X cos(k0 + Δk0)
X sin(k0 + Δk0)

]
where X > 0 is the step-size, with k0 chosen randomly from (−c, c] and Δk0 = ±2c

3 , where

the sign is chosen randomly. The above initialization places the first three values of the states

(x0, x1, and x2) in an equilateral triangle pattern. Now, define the control law u: = [D2,: , D3,: ]) as

follows:

u: =


x:−1 − x:−2, if Δy: ≥ 0

x:−2 − x: , if Δy: < 0,
(5.4)

where Δy: = y:+y:−1
2 − y:−2. The control algorithm with the initialization ensures that the next,

present and the previous states form vertices of on an equilateral triangle, as illustrated in Figure 5.2.

Consider three points, illustrated in Figure 5.2 as, x: , x:−1 and x:−2 forming an equilateral tri-

angle with side X. There are only two possibilities for the next point x:+1; when Δy: < 0, the

next point G1
:+1 comes back to the second previous point x:−2, and when Δy: ≥ 0 the next point

G0
:+1 completes the rhombus with the last three points. Further, the approximate gradient at point
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(
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M

ŷk

x̂k

Figure 5.2: Illustration of the triangular-exploration method.

": (midpoint of segment joining x:−1 and x: ) along the local coordinate axes Ĝ: (direction of

x: − x:−1) and Ĥ: (direction orthogonal to Ĝ: ), computed by finite difference is

∇y: =


y:−y:−1
X

y:+y:−1−2y:−2√
3X

 .
The second component of the gradient is a scalar multiple of Δy: , and the next point always lies

on the local Ĥ: axis, which is orthogonal to the previous direction of motion, in the increasing

direction of the component of the gradient in Ĥ: .
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Figure 5.3: Illustration of the path of a simulation run of triangular-exploration algorithm.

5.3 Simulation Results

In this section, we first simulate the one-sided Triangular Exploration approach on MATLAB

where a transceiver tracks a static light source. Then we simulate the bi-directional scenario on a

system of two robots, the approach is implemented on each robot independently. We then compare

the performance of the triangular exploration approach with the EKF based approach and the

Extremum seeking approach.
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Figure 5.4: Illustration of the evolution of states and output for the simulation run of triangular-
exploration algorithm corresponding to Figure 5.3.

Figure 5.4 illustrates the path of the states of the system, starting from the initial condition

S. The path follows a zigzag pattern in the beginning for some time and then it corrects itself

frequently to follow the gradient and reach the neighborhood of the origin. Figure 5.4 illustrates the

evolution of states and the output of the system corresponding to the path in Figure 5.3. The states

and the output converges to the neighborhood in about 20 s and then they continue to oscillate in

the region. The output attains the steady state value of 1 V with some minor fluctuations.

Next, we consider the setup of two robots described in Section 3.3, where the robots are

stationary and separated about twometers apart in the 3D space. Initially, none of the robots’ heading

direction is aligned with the LOS. The same setup is used to fairly evaluate the performance of
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Figure 5.5: Illustration of paths of the states for the three algorithms for each robot, for a simulation
run when the robots are stationary.

the Triangular Exploration (TE) Algorithm in comparison with the EKF and ES-based algorithms.

Fig 5.5 shows the path of the states of each robots for the three algorithms. The states start from

initial condition S and reaches a neighborhood of the origin O. It can be observed that for each

of the robots, the path of TE approach initially follows a zigzag pattern and it gets corrected

frequently such that it finally reaches a neighborhood around O and continuously oscillates within

the neighborhood. Figure 5.6 illustrates the evolution of states and output for the three algorithms

corresponding to Figure 5.5. It can be visually observed that the speed of convergence for the TE

approach better than the other two approaches.

Next we compare the performance of the algorithms on repeated simulation runs over a range of

distance and relative speed. We use the same simulation setup and consider the same performance

metrics for evaluation as described in Section 3.3. Figure 5.7 shows the effect of increasing distance

on the average intensity I and the average pointing error E. It is observed that the average error E

for the TE approach stays relatively constant for the range of distances. For low distances the EKF
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Figure 5.6: Illustration of evolution of the states and output for the three algorithms for each robot,
for a simulation run corresponding to the Figure 5.5.

approach shows minimum error among the three approaches; however, the error of TE approach

becomes the minimum beyond 4 m. The average intensity I of the TE approach shows a trend that

is similar to I of the EKF, and is close to the maximum attainable intensity I!$(. These results

validate the operational efficacy of the TE approach over a wide range of distance.

Figure 5.8 shows the average pointing error over a range of the relative speed E. The error

for the TE approach stays constant and close to the error of the ES approach. The EKF approach

has low error for lower range of speed; however, as the speed increases, the error starts increasing

and becomes significantly high for higher speeds. Now, from the performance of the TE approach

exhibited in Figure 5.7 and Figure 5.8, we can conclude that the TE approach is significantly better
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Figure 5.7: Tracking performance of the three algorithms in terms of average error E and average
intensity I in simulation over a range of distances between the robots. The error bars denote the
standard-deviation. The intensity at LOS (I!$() is also shown for reference.

than the other two approaches in terms of its wide range of operation in both distance and speed.

5.4 In-air Experiment results

In this section, we evaluate the performance of the three algorithms on the experimental setup,

which is discussed in Section 3.4. Figure 5.9 illustrate paths of the states of each robot for the three

algorithm. The characteristics of the paths is similar to what is observed in simulation; however,

the size of the steady-state neighborhood for the TE approach is bigger than what is observed in

simulation. Additionally, for the elevator robot, the path of the TE approach initially goes away
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Figure 5.8: Illustration of tracking performance of the three algorithms in terms of average error
E in simulation over a range of speeds of the robots.

from the origin and after few corrections, it gets steered to a neighborhood of the origin. Figure 5.10

shows the evolution of the states and the output corresponding to Figure 5.9. Here, it is observed

that the speed of convergence for the TE approach is close to the speed of the ES approach.

Next, we consider the range of relative speeds of the robots. Figure 5.11 shows the plots of

the average pointing error E over the range of speed E for the three algorithms. The qualitative

characteristics of the plots are similar to what is observed in the simulation. Initially, at low speeds

the EKF approach show minimum error and as the speed increases, due to the violation of the

quasi-static assumption of the states, the EKF fails to converge and produces high tracking error.

The error for the TE approach stays relatively constant through the range of the speed and stays

minimum for mid-range and high range of speeds. For the ES approach, the error stays close to the

error of the TE approach, but it starts increasing moderately with the increase of the relative speed.
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Figure 5.9: Illustration of paths of the states for the three algorithms for each robot, for experiment
runs when the robots are stationary.

From the simulation and the experimental results, we establish that the TE approach shows

optimal performance in terms of the mean tracking error over the range of speed and distance.

Therefore, we used the triangular exploration algorithm for the alignment control in the underwater

setup, which is discussed in the next section.

5.5 Underwater Experiments and Results

In this section, we present the experiments with simultaneous alignment control and commu-

nication that are performed in the real underwater scenario. First we present a uni-directional

setup which comprises an underwater robot and an optical wireless joystick. Then we present a

bi-directional scenario comprising of two-robots.

Figure 5.12 shows an underwater robot equipped with the transceiver module, described in

Section 5.1, inside a transparent casing. It consists of three T100 thrusters from Blue Robotics: two

for horizontal motion and the other one for vertical motion of the robot. The robot is kept neutrally

buoyant for ease of operation. For on-board processing and computation, a BeagleBone™ blue
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Figure 5.10: Illustration of evolution of the states and output for the three algorithms for each
robot, for experiment runs corresponding to the Figure 5.10.

computer board is used.

Figure 5.13 shows an optical communication-based joystick controller, where a PS4 joystick

is integrated with the LED communication circuitry. The joystick is inspired by diver interface

module [22], where high-level commands were transmitted by a human scuba diver to a robotic fish

using acoustic communication. The joystick in this work is intended to direct the aforementioned

robot in the underwater scenario by sending commands "go up", "go forward", "turn left", etc.

The commands corresponding to the buttons pressed on the joystick are received by an on-board

BeagleBone™ blue computer through a USB cable. The board then generates on-off keying (OOK)

signals by the UART (Universal Asynchronous Receiver/Transmitter) protocol at a baud-rate of
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Figure 5.11: Tracking performance of the algorithms in terms of average pointing error E over a
range of speeds of the robots in experiments.

115, 200 bits per second (bps), which are then transmitted through the LEDof the joystick-controller.

In addition, a predefined dummy string of characters is always transmitted repetitively from the

LED to generate a constant average light intensity that facilitates active alignment control at the

receiver end of the robot.

On the robot’s end, the optical signals are received by the photo-diode and the two components,

the average value H, and the information signal, are passed on to the on-board computer, which then

uses the triangular exploration algorithm to steer the transceiver to align with the LOS. Figure 5.14

shows the plots of the received signal intensity H along with bit-rates of reception and error rates

over the course of an algorithm run. For this experiment, the robot is held steady underwater, and

the LED-joystick is held about a meter away, pointing at the transceiver’s location of the robot. The

controller only transmits the dummy string, so that it is easier to compute the bit error rate on the

other end. The received data-rate is computed by dividing the number of bits received by the length
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Figure 5.12: An underwater robot equipped with the active transceiver.

of the iteration interval (0.5 s). Since the expected incoming string is known, the bit-error-rate is

computed by calculating the hamming distance between the received and expected bit strings.

At the beginning of the experiment, the transceiver of the robot is pointing away from the

LED-joystick, and hence the received signal signal-strength is too low (less than the threshold of

the comparator) for enabling communication. As time progresses, the signal strength increases,

and at about the 21 second mark, the receiver starts receiving some bits. However, a major portion

of the bits has error at this point. Here, the signal strength must be comparable to the comparator

threshold resulting in a high signal to noise ratio (SNR).Moving forward, at about 25 seconds, as the

signal strength increases further, the bit error eventually drops to zero, and the received information
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Figure 5.13: A uni-directional LED-communication based joystick controller designed for this
work.

rate stabilizes to a value of about 100 kbps, which is close to the baud-rate of transmission. The

difference between the rates is attributed to a parity bit, which is used for built-in error correction

by the UART protocol. At about 30 seconds, the signal strength gets saturated around a constant

intensity; at this point, it is also visually observed that the transceiver pointing direction oscillates

around the LOS with the LED-controller.

The setup is further tested in a swimming pool facility at the Michigan State University. The

LED-controller is made operational underwater by sealing inside a transparent plastic bag so that the

buttons remain accessible, and the light of LED is not blocked. Figure 5.15 shows a human operator

directing the robot to navigate inside the pool. The robot is commanded tomove forward, backward,

turn, and move upward/downward. It is to be noted that the human supervisor sometimes manually

adjusts the pointing direction of the joystick to re-establish LOS with the robot’s transceiver as the

LOS gets disturbed due to fast relative motion between the robot and the controller.

Next, we present the bi-directional alignment and communication performance, for the under-

water scenario, Figure 5.16 shows two copies of the underwater robot placed about 1.5 m apart

in water. The transmission beams of both the robots are visible due to the scattering of light and
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Figure 5.14: Evolution of light intensity and data rates for an experiment run of triangular
exploration algorithm on the experiment setup. The received data-rate is correlated with the
signal-strength.

hence they are considered as visual indicators of the alignment.

Figure 5.17 shows the plots of received signal strength, received data-rate and error-rate. In

the beginning of the experiment, both of the robots are pointing away from the direction of LOS,

and each of the robots is transmitting the dummy string from its transceiver at 57, 600 bps. From

the plots, it can be observed that, initially the signal strength for both the robots was low (less than

0.1 V) and as the time progresses the strength increases and oscillates between 0.2 to 0.5 V. The

received signal rate during these oscillation gets stable between 30 and 40 kbps, which is close to

the two-third of the transmission rate. The difference here is due to four extra bits (two parity and

two stop bits) per eight-bit sequence, which results in the effective data rate of 38, 400 bps. The

observed magnitude of oscillations in light intensity is higher than what is observed in the in-air
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Figure 5.15: Underwater robot being commanded by a human operator using the LED-joystick
controller inside a swimming pool.

Figure 5.16: Setup of two underwater robots which are communicating and actively aligning with
each other.
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Figure 5.17: Illustration of light intensity measurements and data rates for an experiment run on
the setup shown in Figure 5.16.

experiments. This difference can be attributed to change in light-intensity model, largely due to

refraction caused by multiple changes of medium in the path of the transmitted beam in its path

before reaching the photo-diode at the receiving end.

Figure 5.18 shows the setup of two robots in a swimming pool setting at a depth of 3.7 m. The

setup is intended to perform the bi-directional alignment control and communication experiments.

The robots maintained the LOS for some time but failed to maintain the alignment throughout the

run. Possible reasons for the failure include the interference from ambient sunlight in the pool and

the leakage of water inside one of the robots affecting the overall functionality of the robot.
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Figure 5.18: Setup of two underwater robots for bi-directional alignment and communication in
the swimming pool.

5.6 Chapter Summary

In thiswork, we present amodel-free active alignment control approach that is directly applicable

to bi-directional setting. Given that the dependence of received light intensity on the local angles is

unimodal, we propose a triangular-exploration algorithm for real-time alignment control to achieve

and maintain LOS. The algorithm ensures that the last three points always form an equilateral

triangle so that it has a good estimate of the local gradient, and it uses the last three measurements

to decide its next step in the gradient direction while maintaining the equilateral triangle shape. The

tracking performance of the TE approach is compared with the previously proposed EKF method

and the ES control method in simulation and experiments. The TE approach is found to be optimal

and effective in terms of its convergence speed for a wide range of relative speed and distance

between the robots.

The efficacy of the overall system is also tested in underwater scenario where communication is

performed simultaneously with the alignment control, and the dependence of data-rate on signal-

strength is also demonstrated. First, an application of uni-directional system is demonstrated

where a human operator wirelessly controlled a robot in an underwater scenario using an LED
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communication-based joystick. Then bi-directional alignment control and communication is shown

between two underwater robots. Although the presented results are validated on the specialized

hardware setup, the model-free and generic nature of the approach makes the results widely useful

for scenarios of active alignment of beam signals.
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CHAPTER 6

SUMMARY & FUTUREWORK

6.1 Summary

In this dissertation, a novel active-alignment control based LED communication system design

was presented where each transceiver on an agent consisted of only a single photo-diode and a

single LED. Starting with a simple 2D scenario, an EKF-based algorithm was proposed to estimate

the relative orientation between the heading angle and the LOS direction, which was subsequently

used for alignment control. A scanning technique was introduced to obtain successive intensity

measurements that ensured the full observability of the underlying system. The approach was later

extended to a 3D scenario with improvements in both the hardware and the algorithm. A new

circular scanning technique was proposed for the 3D setting, where the amplitude of the scanning

was modulated according to the alignment performance to achieve a sound trade-off between

estimation accuracy, signal strength, and energy consumption. The efficacy of the approach was

tested and verified against an extremum-seeking approach via simulation and experiments involving

two robots with relative 3D motion. The results established the superiority of the EKF approach

approach over the ES approach in terms of efficacy across a range of distances.

Moving forward, we formulated the bidirectional optical beam tracking problem as a two-

agent discrete-time dynamical system, where the origin corresponds to the LOS and is the point

of maximum output function for each of the agents. We proposed a model-free output feedback

control law for a class of systems that follow certain assumptions with the constraint that the

control command of an agent can depend only on the information accessible to that agent. Through

rigorous analysis, we showed that for any initial condition, the proposed control law drives the

physical system to an appropriately characterized neighborhood of the LOS in a finite number of

steps. From simulation results, the proposed algorithm was shown to be superior than the two

contending approaches based on the EKF and the ES, in terms of convergence speed, robustness
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to unknown disturbances, and handling large initial condition. The proposed approach was also

validated on an experimental setup consisting of two robots in the presence of a constant external

disturbance.

Finally, we proposed a model-free approach for bi-directional alignment control in the 3D set-

ting. The approach always maintains an equilateral triangle shape in the angular space by its last

three pointing directions, which gives a good estimate of the local gradient, which is used to take

the next step in the increasing gradient direction while maintaining the triangle shape. The efficacy

of the proposed triangular exploration approach was tested against the EKF and the ES approach in

simulation and experiments and was found to be better in terms of higher convergence speed for a

wide range of relative speed and distance between two underlying robots. The overall system was

also tested in the underwater scenario where communication was performed simultaneously with

the alignment control, and the dependence of data-rate on signal-strength was also demonstrated.

First, an application of the uni-directional system was demonstrated where a human operator wire-

lessly controlled a robot in an underwater scenario using an LED communication-based joystick.

Then simultaneous bi-directional alignment control and communication was shown between two

underwater robots.

6.2 Future Work

For future work, additional experimental trials of simultaneous alignment and communications

between two moving underwater robots shall be conducted to test the efficacy of our proposed

approach in more practical scenarios and exploring the limit of the communication bandwidth for

moving robots. It will also be of interest to provide analytical results and guarantees of convergence

for the triangular-exploration approach on the four-dimensional (4D) system of two robots (two

states of each robot).

Since the alignment approaches presented in this work do not rely on the information exchange

between the communication parties, a future direction of this research could include exploration

of algorithms that use some of the bandwidth of communication to exchange useful information

126



between the communicating robots, that can be used to enhance the tracking performance. Fur-

thermore, the framework of two robots can be extended to a multi-agent system that emulates

a fleet of underwater robots on a mission. As the robots can communicate only in pairs based

on their physical location and orientation of their transceivers, thus the overall network becomes

intermittent and techniques like agreement protocol and formation control will be challenging to

analyze and implement and would require exploration of advanced algorithms.
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APPENDIX A

GENERATION OF MOTOR COMMANDS

In this section, we discuss the details of generating the motor commands from control terms at each

iteration. The motor commands represent the differences between the present states of motors,

and their values at the next step. The details of the control terms for the EKF, the ES and the TE

approach are provided in Eq. (3.17), Figure 3.6 and Eq. (5.4) respectively.[
Δq",:

Δ\",:

]
=

[
q",:+1

\",:+1

]
−

[
q",:

\",:

]
, (A.1)

where q",: and \",: are the azimuthal and elevation angles of the motor-system at the :th iteration

respectively.

Figure A.1 illustrates the relation between multiple coordinate-systems, which share a common

origin, and are related by rotation matrices. The mean and scan terms are specific to EKF based

approach and their details are included in Chapter 3, Section 3.2. For the extremum-seeking

base(k)

mean(k)

scan(k)

mean(k+1)

scan(k + 1)

R(0, θk, 0)

R−1(αk, βk, γ1)

R(u1,k, u2,k, γ2)

R(αk+1, βk+1, γ3)

Figure A.1: Block diagram illustrating the relation between coordinate systems.
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approach and the triangular-exploration approach, since the notion of scan is not applicable, the

mean and scan coordinate systems of each iteration are same and can be merged together. The

motor commands (angles Δq",:+1 and Δ\",:+1) are the differences between the current pointing

direction (G-axis of the scan(:) co-ordinate system) and the next pointing direction (G-axis of the

scan(: + 1) co-ordinate system) measured in the coordinate system of base frame. The rotational

transformation ' is defined as,

'(U, V, W) = 'H(V)'I(U)'G(W),

where

'H(V) =


cos(V) 0 sin(V)

0 1 0
− sin(V) 0 cos(V)

 ,
'I(U) =


cos(U) − sin(U) 0
sin(U) cos(U) 0

0 0 1

 ,
'G(W) =


1 0 0
0 cos(W) − sin(W)
0 sin(W) cos(W)

 .
Now, at any given time iteration : , without the loss of generality, we can assume that the base(:)-

coordinate system and the scan(:)-coordinate system have their I-axes aligned. Hence, the current

scan has motor angles as
[
0, \:

])
. It is assumed that the motor system has access to its elevation

angle \: at every instant; however, the access to the azimuthal angle is not required. The next scan

direction in the base-coordinate systems (s) can be computed by the following series of rotational

transforms on the unit vector corresponding to the G-axis of the local scan(:+1) coordinate systems:

s = '(0, \: , 0)'−1(U: , V: , W1)

'(D1,: , D2,: , W2)'(U:+1, V:+1, W3)
[
1 0 0

])
.

(A.2)

Additionally, in all of the local coordinate systems, there is a requirement that the local I axis should

be in the GI plane. This constraint essentially means that none of the coordinate systems has any
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roll angle with respect to the base coordinate system. This constraint requires a roll correction at

every stage, and hence the roll angle W1 can be computed by solving the following:

'(0, \: , 0)'−1(U: , V: , W1)(2,3) = 0

⇒ sin(W1) cos(\: ) cos(V: ) + cos(W1) cos(\: )

sin(U: ) sin(V: ) − sin(\: ) cos(U: ) sin(V: ) = 0.

Once W1 is known, W2 is computed by solving

'(0, \: , 0)'−1(U: , V: , W1)'(D1,: , D2,: , W2)(2,3) = 0.

It has been noted that Eq. (A.2) is independent of W3, hence the computation of W3 is not required.

Once the vector s is obtained, the motor angles for the next iteration are

q",:+1 = atan2(−sI, sG), and

\",:+1 = atan2(sH,
√

s2
G + s2

I ).

Now using Eq. (A.1), one can finally compute the motor commands as[
Δq",:

Δ\",:

]
=


atan2(−sI, sG)

atan2(sH,
√

s2
G + s2

I ) − \:

 . (A.3)
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APPENDIX B

CALCULATION OF THE HEADING OFFSET ANGLE AND ITS DERIVATIVES

This appendix discusses the computation of b (and its gradient), which is introduced in Eq. (3.15).

At any given instant, in the mean(:) coordinate system, b(·) computes the angle of the current

pointing direction (spherical angles-(V, U)) with the LOS (spherical angles-(G2, G3)), which is the

inverse cosine of the dot product of the unit vectors in these two directions.

b (G2, G3, U, V) = arccos (j (G2, G3, U, V)) ,

j (G2, G3, U, V) =


cos G2 cos G3

sin G3

sin G2 cos G3

 ·

cos V cosU

sinU
sin V cosU

 .
For notational convenience, we define x̃ as [G2, G3]) , b̃ as b (G2, G3, U, V) and j̃ as j (G2, G3, U, V).

Next, we compute the gradient of b̃ with respect to x̃:

mb̃

mx̃
=

1√
1 − j2

[
mj

mG2
,
mj

mG3

]
,

with
m j̃

mG2
= − cosU cos V cos G2 sin G3+

cosU sin V cos G2 cos G3,

and
m j̃

mG3
= − cosU cos V sin G2 sin G3

+ sinU cos G2 − cosU sin V sin G2 sin G3.
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