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ABSTRACT

ONLINE LEARNING ALGORITHMS FOR MINING TRAJECTORY DATA AND
THEIR APPLICATIONS

By

Ding Wang

Trajectories are spatio-temporal data that represent traces of moving objects, such as

humans, migrating animals, vehicles, and tropical cyclones. In addition to the geo-location

information, a trajectory data often contain other (non-spatial) features describing the states

of the moving objects. The time-varying geo-location and state information would collec-

tively characterize a trajectory dataset, which can be harnessed to understand the dynamics

of the moving objects. This thesis focuses on the development of efficient and accurate ma-

chine learning algorithms for forecasting the future trajectory path and state of a moving

object. Although many methods have been developed in recent years, there are still numer-

ous challenges that have not been sufficiently addressed by existing methods, which hamper

their effectiveness when applied to critical applications such as hurricane prediction. These

challenges include their difficulties in terms of handling concept drifts, error propagation in

long-term forecasts, missing values, and nonlinearities in the data.

In this thesis, I present a family of online learning algorithms to address these challenges.

Online learning is an effective approach as it can efficiently fit new observations while adapt-

ing to concept drifts present in the data. First, I proposed an online learning framework

called OMuLeT for long-term forecasting of the trajectory paths of moving objects. OMuLeT

employs an online learning with restart strategy to incrementally update the weights of its

predictive model as new observation data become available. It can also handle missing values

in the data using a novel weight renormalization strategy.

Second, I introduced the OOR framework to predict the future state of the moving object.

Since the state can be represented by ordinal values, OOR employs a novel ordinal loss function

to train its model. In addition, the framework was extended to OOQR to accommodate a



quantile loss function to improve its prediction accuracy for larger values on the ordinal

scale. Furthermore, I also developed the OOR-ε and OOQR-ε frameworks to generate real-

valued state predictions using the ε insensitivity loss function.

Third, I developed an online learning framework called JOHAN, that simultaneously pre-

dicts the location and state of the moving object. JOHAN generates its predictions by leverag-

ing the relationship between the state and location information. JOHAN utilizes a quantile loss

function to bias the algorithm towards predicting more accurately large categorical values in

terms of the state of the moving object, say, for a high intensity hurricane.

Finally, I present a deep learning framework to capture non-linear relationships in tra-

jectory data. The proposed DTP framework employs a TDM approach for imputing missing

values, coupled with an LSTM architecture for dynamic path prediction. In addition, the

framework was extended to ODTP, which applied an online learning setting to address concept

drifts present in the trajectory data.

As proof of concept, the proposed algorithms were applied to the hurricane prediction

task. Both OMuLeT and ODTP were used to predict the future trajectory path of a hurricane

up to 48 hours lead time. Experimental results showed that OMuLeT and ODTP outperformed

various baseline methods, including the official forecasts produced by the U.S. National

Hurricane Center. OOR was applied to predict the intensity of a hurricane up to 48 hours

in advance. Experimental results showed that OOR outperformed various state-of-the-art

online learning methods and can generate predictions close to the NHC official forecasts.

Since hurricane intensity prediction is a notoriously hard problem, JOHAN was applied to

improve its prediction accuracy by leveraging the trajectory information, particularly for

high intensity hurricanes that are near landfall.
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CHAPTER 1

INTRODUCTION

Trajectory comes from modern Latin word trajectorium, which means the "path described

by a body moving under the influence of given forces"1. Although the path of a moving

object is continuous and contains infinite number of positions and time points, trajectory

datasets typically contain only a subset of these positions measured at discrete time points.

1.1 Trajectory Dataset

The trajectory of a moving object is characterized by its spatial and temporal properties.

The spatial property corresponds to its location and is typically denoted by a 2-dimensional

(or 3-dimensional) vector, e.g., x = (xi, yi) ∈ R2. The trajectory path of an object can thus

be represented by a set of data points P = {p0, p1, ..., pn}, where pi = (xi, yi, ti) and ti denote

the i-th time step, as shown in Figure 1.1.

Figure 1.1: Example of a trajectory. Blue line is the trace of a moving object. Blue dots are
the sample points.

In addition to its time-varying location information, a trajectory dataset often contains

other (non-spatial) features describing the state of the moving object. For example, the state

of a moving vehicle could be the aggressive level of its driver; the state of a tropical cyclone

could be its intensity level; while the state of a pedestrian could be his/her walking speed

1https://www.etymonline.com/word/trajectory
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and mood. Assuming the state and path of the moving object is recorded at discrete time

steps t1, t2, · · · , tT , the overall trajectory data is represented as D = {(xi, si, ti)}Ti=1, where

xi ∈ R2 and si ∈ Rd are its respective location and state vectors at time ti.

A trajectory dataset can be collected in many ways, depending on the application do-

main. In some applications, the trajectory data is recorded by the moving object itself

using a Global Positioning System (GPS) sensor or other geo-positioning devices. For exam-

ple, travellers can use their GPS-equipped cellphones to record the trajectory paths of their

journeys. In other applications, the trajectories are recorded by external observers who mon-

itored the paths traversed by the moving objects. For example, the paths of a hurricane are

constantly monitored by the National Oceanic and Atmospheric Administration (NOAA)2.

Another example is the vehicle trajectory data obtained from traffic monitoring cameras,

where the trajectories for multiple vehicles can be collected at the same time.

1.2 Trajectory Data Mining

Trajectory data mining is an important task to discover useful information from trajectory

datasets. A general framework for trajectory data mining is shown in Figure 1.2. After the

data is collected, preprocessing is often needed to alleviate any data quality issues before

applying data mining algorithms. Examples of data preprocessing steps include noise reduc-

tion, data compression, map matching, and trajectory segmentation. The processed dataset

can then be used for subsequent trajectory mining tasks.

Similar to traditional data mining, trajectory mining tasks can be classified into several

categories, such as clustering, classification, regression, pattern mining, and outlier detection.

There are many applications that utilize the results of these trajectory mining tasks. For

example, clustering of human mobility patterns can be used to study social events; frequent

pattern mining on vehicle trajectories can help identify bottlenecks that lead to traffic jams;

while outlier detection may reveal instances of fraudulent taxi driving activities. A more

2http://www.noaa.gov
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Figure 1.2: General framework of trajectory data mining.

comprehensive review on the different trajectory mining tasks and their applications is given

in Chapter 2.

1.3 Application to Hurricane Prediction

Hurricanes are one of the most powerful storms on Earth that have the potential to cause

devastating losses and destruction along their paths. Given their severe impact, accurate

long-term forecasting of hurricane trajectory is critical to give ample time for emergency

response teams to take appropriate actions that will minimize property damages and loss of

human lives. In addition to its trajectory, hurricane intensity is another important aspect

that must be accurately predicted since it is directly related to the potential destructive

power of a hurricane. According to the National Hurricane Center (NHC), high-intensity

hurricanes usually cause huge damages. To support emergency preparedness efforts, accurate

long-term forecasting of the location and intensity of an impending hurricane is of upmost

importance.

There has been growing interest in recent years to apply machine learning methods to the

hurricane trajectory forecasting problem [59, 69, 3]. Lee and Liu [59] presented a Recurrent

Neural Network (RNN) based approach to predict the hurricane trajectory paths while Ko-

rdmahalleh et al. [69] employed a sparse RNN with flexible topology for hurricane trajectory
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prediction. Sheila et al. [3] used LSTM and Grid model to forecast the hurricane trajectory.

However, there are several limitations to these machine learning approaches. First, they are

mostly based on auto-regressive or recurrent neural network models, using only historical

observation data. Due to the inherent error propagation problem [16] in such models, they

are mostly suitable for short-range predictions. Second, due to the chaotic nature of the

weather system and the varying conditions in the atmosphere and ocean temperature, the

historical data alone may not be enough to train a reliable long-range forecasting model.

Third, the previous methods are mostly designed for batch learning. Thus, they require the

model to be re-trained from scratch whenever new observations become available. An online

learning method is more appealing as it allows the model to be efficiently updated to fit the

new observations while adapting to the concept drifts present in the data.

1.4 Research Challenges

This thesis focuses on the development of novel algorithms to address some of the fundamen-

tal challenges in predictive modeling of trajectory data. As proof of concept, the algorithms

developed in this research will be applied to the hurricane prediction problem. Even though

numerous trajectory mining algorithms have been developed, there are still notable chal-

lenges that have not been sufficiently addressed as listed below.

1. Trajectory data collection is often a continuous process, with new path and state

information collected over time. However, due to the dynamically changing and non-

stationary environment often encountered in many real-world applications, the presence

of concept drift will degrade the performance of many existing trajectory prediction

models. Therefore, a key challenge is to efficiently develop models that will adapt to

changes in the data distribution by fitting the new observation data available.

2. Forecasting the future trajectory path of a moving object is inherently a multi-lead

time prediction problem. Thus, the models trained for predicting the future locations or

states of a moving object must take into account the inherent temporal autocorrelation
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of the multi-lead time prediction task. However, current multi-lead time prediction

models are susceptible to error accumulation problem, where the prediction error at a

given time step may be propagated to its future time steps.

3. Missing values in the trajectory data can hamper the performance of trajectory pre-

diction models. For example, in hurricane prediction, outputs from an ensemble of

physics-based models can be used as input features for building a hurricane prediction

model. However, structured missing patterns may exist in the data as the outputs

from some physical models in the ensemble can be generated at different time intervals

or are available only for certain hurricanes. Handling missing values in the trajectory

data is a challenge that has yet to be sufficiently addressed.

4. The state of a moving object can be represented as both qualitative and qualitative

attributes. For example, the intensity of a hurricane can be measured in both ratio

and ordinal scales. Designing an algorithm that predicts the state of the moving object

in both ratio and ordinal scales is a challenge.

5. In practice, some prediction tasks are more important than others. For example,

accurate prediction of high-intensity hurricanes or hurricanes that will make landfall

in densely populated areas are essential to minimize casualties and property damages.

Since such trajectories tend to occur less frequently, this may lead to a class imbalance

(or distribution skew) problem. Therefore, designing prediction models that consider

the trade-off between prediction accuracy for different classes is another challenge that

needs to be addressed.

6. Since the location and state of the moving object are often highly related, it is natural

to consider learning their prediction models together. Designing a predictive modeling

algorithm that can simultaneously predict the trajectory and qualitative state of a

moving object is another challenge that has not been addressed in the literature.
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7. Since the trajectory of a moving object is typically governed by nonlinear dynamical

processes, developing models that account for nonlinear relationships in the data is

another major research challenge.

1.5 Thesis Statement

Online learning is an ideal approach for modeling trajectory data in non-stationary environ-

ments, since its model can be efficiently updated to fit the new observations while adapting

to concept drifts present in the data. In this research, I will develop a family of online

learning algorithms for trajectory data that overcome the research challenges described in

the previous section. Specifically, my thesis aims to address the following research questions.

RQ1: How to develop an online learning algorithm to generate multi-lead time forecasts

for trajectory prediction task?

RQ2: How to extend the online multi-lead time forecasting algorithm to state prediction

that consider both ordinal and ratio data types?

RQ3: How to adapt the online learning algorithm to make it pay more attentions on a

subset of the trajectory data?

RQ4: How to combine the online learning algorithms for location and state predictions

into a unified learning framework?

RQ5: How to develop an online deep learning model for trajectory prediction to handle

nonlinearities in the data?

1.6 Thesis Contributions

In this thesis, a family of online learning algorithms were developed to address various

challenges in trajectory and state prediction tasks. The algorithms were applied to hurricane
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prediction task as proof of concept.

First, I developed a framework called OMuLeT for trajectory prediction by casting the

task as a multi-lead time location prediction problem. OMuLeT employs an online learning

with restart strategy to incrementally update the model parameters as new observation data

become available. It can also handle the varying feature length problem due to missing

values using a re-normalization strategy. OMuLeT was applied to predict the trajectories of

hurricanes with a lead time ranging from 6 to 48 hours. Experimental results using the

Atlantic and Eastern Pacific hurricane data showed that OMuLeT significantly outperforms

various baseline methods, including the official forecasts produced by the U.S. National

Hurricane Center (NHC).

Second, I extended the OMuLeT framework to predict the state of the moving object,

where the state variable has an ordinal data type. Specifically, I proposed an online learning

framework called OOR, which employs an ordinal loss function to predict the ordinal-valued

target variable. The framework was subsequently be extended to OOQR to accommodate a

quantile loss function in order to improve its prediction accuracy for the high/low ordinal

values. The OOR/OOQR frameworks were applied to the hurricane dataset to predict the

hurricane categories with lead times from 6 to 48 hours. Experimental results showed that

OOR/OOQR outperformed various state-of-the-art online learning methods and can generate

predictions close to the NHC official forecasts. The OOQR framework can further improve

its accuracy in predicting high category hurricanes. Furthermore, using the ε insensitivity

loss function, I also developed the OOR-ε and OOQR-ε frameworks to generate real-valued

predictions of the hurricane intensities besides the category information. I’ve shown that

leveraging real-valued intensity information with constraints on the ordinal categories into

the learning formulation can further improve the accuracy of hurricane intensity prediction.

Third, I investigated the feasibility of learning a joint model for predicting the trajectory

and state of a moving object simultaneously. A framework called JOHAN is proposed that

utilizes quantile loss functions for both the location and state prediction tasks. The hyper-
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parameters of the quantile loss functions were updated jointly in an online learning fashion.

JOHAN was applied to the hurricane dataset with the goal of improving the performance of

hurricane intensity prediction, particularly for high category hurricanes that are near to the

coastal land. Experimental results demonstrate that JOHAN can further improve the hurri-

cane intensity predictions by incorporating the location information. The results also verified

that JOHAN has better performance in terms of identifying high category hurricanes with the

potential to strike the land.

Finally, I proposed an LSTM-based approach called DTP for multi-lead time location

prediction task. While existing RNN based approaches for trajectory prediction usually

learn from historical observations only, they are mostly suitable for short-range predictions

due to the inherent error propagation problem [16]. DTP aims to produce accurate long-range

predictions by utilizing the multi-lead time location predictions generated by an ensemble of

prediction models. A TDM (Temporal Decay Memory) was designed to handle the missing

value problem in the data. The DTP framework was extended to an online learning approach

known as ODTP to handle the concept drift issue present in trajectory modeling tasks. The

proposed frameworks were applied to the hurricane dataset to generate predictions with

a lead time up to 48 hours. Experimental results showed that ODTP can achieve better

performance than DTP, and generally outperforms other linear baseline approaches.

1.7 Publications

The materials in this thesis are adapted from the following publications:

• Ding Wang, Boyang Liu, Pang-Ning Tan and Lifeng Luo, OMuLeT: Online Multi-Lead

Time Location Prediction for Hurricane Trajectory Forecasting, Proceedings of 34th

AAAI Conference on Artificial Intelligence, 2020 (Chapter 3)

• Ding Wang, Boyang Liu, Pang-Ning Tan, Online Learning Algorithm for Hurricane

Intensity Prediction, FEED20: Fragile Earth: Data Science for a Sustainable Planet,

2020 (Chapter 4)
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1.8 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2: Literature Review In this chapter, I reviewed the trajectory data mining

algorithms and discussed their applications. Similar to the data mining algorithms, the

trajectory data mining algorithms can be classified into several major categories, such as

clustering, classification, pattern mining, prediction and outlier detection.

Chapter 3: Online Multi-Lead Time Trajectory Location Prediction In this chap-

ter, I presented an online learning framework called OMuLeT, which was developed for online

multi-lead time location prediction task. OMuLeT was applied to real-world hurricane dataset

to generate hurricane trajectory forecasting in multi-lead times.

Chapter 4: Online Multi-Lead Time Trajectory State Prediction with Ordinal

Data In this chapter, I presented a novel algorithm OOR, which is an extension of OMuLeT

to handle ordinal data type for the trajectory state prediction. In addition, the framework

can be further extended to OOQR, which accommodate a quantile loss function to improve

its accuracy for high/low ordinal data. Both algorithm was applied to hurricane dataset to

predict the hurricane intensity category, which is one of the most important state data for

hurricanes. Furthermore, using ε insensitivity loss, OOR-ε and OOQR-ε frameworks can be

developed to generate real-valued predictions of the hurricane intensities.

Chapter 5: Online Joint Prediction of Trajectory Location and State In this

chapter, I investigated the advantages of learning the trajectory location and state predictions

jointly and present a novel approach called JOHAN. It was applied to hurricane dataset with

the goal of improving the model performance of the near land high category hurricanes.
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Chapter 6: LSTM for Trajectory Location Prediction In this chapter, I proposed a

LSTM based approach DTP for multi-lead time location prediction task. This framework was

further extended to ODTP, which using online learning to address the concept drift issue in

trajectory prediction tasks. Both frameworks were applied to hurricane dataset to generate

hurricane trajectory forecasting in multi-lead times.

Chapter 7: Conclusion and Future Works In this chapter, I summarized the whole

thesis and gave a comprehensive conclusion. I also discussed how to further expand the

current research.
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CHAPTER 2

LITERATURE REVIEW

Data mining is the process of extracting useful information from large datasets [31, 79].

Since its inception, data mining has been successfully applied to various domains, including

trajectory data. The goal of trajectory data mining is two-fold: to build accurate prediction

models and to discover interesting patterns from the trajectory data. The general framework

for trajectory data mining is shown in Figure 2.1. This chapter reviews previous work related

to trajectory data mining.

Figure 2.1: General framework of trajectory data mining.

2.1 Trajectory Data Preprocessing

The raw trajectory data often contain noise, missing values, and other imperfections. Thus,

a preprocessing step is needed to improve the quality of the trajectory data for subsequent

mining tasks. Some downstream tasks may also require additional preprocessing steps such

as trajectory segmentation and map matching. In this section, I present some common

approaches for preprocessing the trajectory data.
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2.1.1 Data Cleaning

Raw trajectory data, such as the coordinates recorded by GPS devices, tend to be noisy. The

error in the recorded positions can be as large as hundreds of meters, which may affect the

results of the trajectory analysis. Data cleaning aims to filter noise from the trajectory data.

There are numerous approaches available to clean the trajectory data. In order to improve

the positioning accuracy of GPS data, a variety of filtering techniques can be applied, such

as mean and median filters, Kalman and particle filters [67, 60]. For vehicle GPS data, a

high density of GPS points indicates a high probability of being on the road, while a low

density indicates that the vehicle has deviated far from the road. In this case, low density

points are not as important and can be treated as outliers. This suggests the possibility

of applying outlier detection algorithms to clean up the GPS dataset [89, 90, 91, 96, 98].

In additions, Yang et al. proposed a GPS data cleaning method that considers movement

consistency [85].

2.1.2 Trajectory Compression

Trajectory datasets require considerable data storage as they contain the paths for a large

number of objects or trajectories with high temporal resolutions. Massive computing power is

also needed to process the data in subsequent mining tasks. Trajectory compression helps to

reduce the size of the trajectory data while still accurately retains most of the information in

the traces. The compression approach requires balancing the trade-off between maximizing

compression ratio and minimizing errors. There are two categories of trajectory compression

methods—offline compression [26, 47] and online compression [51, 66]. Offline compression

aims to generate lower resolution trajectories with fewer number of sampled points from

a trajectory dataset. Since many applications require trajectory compression in a timely

fashion, online compression was employed to determine if a newly collected position should

be retained in the trajectory dataset.
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2.1.3 Map Matching

Additional side information is often needed to improve the performance of some trajectory

mining tasks. For example, the modeling of vehicle trajectories can be improved by using

information about the road network topology. Map matching converts trajectory sample

points from a sequence of coordinates to a sequence of road segments. Different map matching

algorithms have been developed, such as topological algorithms [42, 86] and probabilistic

algorithms [71, 75, 74]. Topological algorithms consider the shape and connection of road

network and map the GPS position sequence to the road network with lowest distance

measure. Probabilistic algorithms consider multiple paths on road network and calculate

the probabilities from the trajectory sample points. Probabilistic algorithms can handle

noisy or low-sampling trajectory datasets.

2.1.4 Trajectory Segmentation

In many cases, we need to divide the trajectory into segments for further processing. Instead

of using the entire trajectory, sub-trajectories enable us to mine richer information. In

addition, processing trajectory segments can be less time consuming. A trajectory can be

segmented based on its properties. There are three types of trajectory segmentation methods.

The first type of the methods is based on time interval. If the time interval between two

data points is larger than a threshold, the trajectory is separated into two parts. The second

type of the methods is based on the shape of a trajectory [56]. If the movement direction

of the trajectory changes beyond a certain threshold, the trajectory will split at that point.

The third type of the methods is based on its semantic meaning [57, 92, 93]. For example,

Yuan et al. [92] estimated the travel speed of a taxi based on the sub-trajectories of the taxi

when it is driving. The stop points, which correspond to parked taxis, are used to split a

trajectory into a set of trajectory segments.
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2.2 Trajectory Data Mining Algorithms

Trajectory data mining algorithms are designed to discover useful knowledge from a trajec-

tory dataset. Many of these algorithms are extensions of traditional data mining algorithms.

Similar to traditional data mining, trajectory data mining approaches can be divided into

several categories, such as trajectory clustering, trajectory classification, trajectory pattern

mining and trajectory prediction. In this section, I will review the various trajectory data

mining algorithms.

2.2.1 Trajectory Clustering

Clustering is the task of grouping together related objects such that objects in the same

group are more similar to each other than to those in other groups. Clustering can be

applied to find representative trajectories or movement patterns shared by different moving

objects. Specifically, trajectories that share similar movement characteristics will be grouped

together into the same cluster. A typical clustering algorithm requires specifying a similarity

measure based on features extracted from the given objects. This can be challenging as the

trajectories can have different lengths, locations, etc. Clustering can be performed either on

the whole trajectory or on segments of the trajectory.

2.2.1.1 Clustering Trajectories

Many trajectory clustering algorithms are extensions of traditional clustering algorithms

using similarity measures specifically defined for the trajectory data. For example, Birant

and Kut [7] presented an extension of DBSCAN [30], which is a density-based clustering

algorithm, known as ST-DBSCAN, to cluster spatio-temporal data. Gaffney and Smyth

[33] introduced a probabilistic mixture regression based approach to cluster trajectories.

Furthermore, they applied their method to cluster cyclone trajectories based on their overall

directions [34].
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2.2.1.2 Clustering Trajectory Segments or Points

Some trajectory clustering tasks requires clustering segments of a single trajectory instead

of clustering multiple trajectories. For example, Lee et al. [56] designed a partition-and-

group framework for clustering trajectory segments and discovering common sub-trajectories.

Palma [72] introduced a spatio-temporal clustering approach to identify stops in the trajec-

tory. According to their definition, a trajectory is composed of a set of stops and moves,

with the stop being the most important part of the trajectory.

2.2.2 Trajectory Classification

Classification is the task of assigning objects into a set of pre-defined categories (labels

or classes). Classification is a supervised learning task that requires a set of annotated

labeled examples to be available for training a classification model. Traditional classification

algorithms can be applied to the trajectory classification task by first extracting relevant

features from the trajectories before training a classification algorithm on the extracted

features. For example, Zheng et al. [97] partitioned the trajectory data into segments and

extracted features such as direction change rate, velocity change rate, and stop rate from

the segments. These features are then used to construct a decision tree model for classifying

trajectories into their different transportation modes. Bolbol et al. [10] employed a support

vector machine approach to classify GPS trajectory data into different transportation modes.

They first identified the best discriminative features of the trajectory segments before training

an SVM classifier to determine the transportation modes.

There are some common steps in trajectory clustering and classification. Both need to

extract features from the trajectory data and then apply clustering or classification methods

on the extracted features. In some cases, trajectory clustering can be performed as a prior

step to trajectory classification. For example, Lee et al. [58] proposed a SVM based classifi-

cation framework that utilizes trajectory segmentation and clustering to extract regions and

sub-trajectory features for trajectory classification purposes.
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2.2.3 Trajectory Pattern Mining

Trajectory pattern mining discovers frequently occurring movement patterns in a single

trajectory or a group of trajectories. Trajectory pattern mining helps to better understand

the characteristics of moving objects. There are different types of trajectory pattern mining

tasks. The tasks can be mainly grouped into 3 categories, including periodic pattern mining,

sequential pattern mining and group pattern mining.

2.2.3.1 Periodic Pattern Mining

Periodic pattern mining is applicable to trajectory data with periodic activity patterns, such

as, the annual migration patterns of animals or the daily routes taken by a bus. Mining

periodic patterns from the trajectory data is a challenge due to the complex periodic be-

haviors including multiple interleaving periods, noise, and outliers. Cao et al. [14] proposed

an algorithm to discover frequent regions and iteratively combine them to obtain the com-

plete periodic patterns. This approach is applied to spatio-temporal sequences, though it

assumes that the periodicity is known by the user. Li et al. [63] suggested an alternative

approach that can detect the periods in advance. First, they detected multiple periods in the

movement using a method that combines Fourier transform with temporal auto-correlation.

They then designed a probabilistic model to reveal the periodic behavior from movement

sequences using hierarchical clustering.

2.2.3.2 Sequential Pattern Mining

Sequential pattern mining is the task of finding common subsequences shared by multiple

trajectories. The common subsequence is a subset of locations that appears in multiple

trajectories. The discovered sequential patterns enable us to better understand the relation-

ship between different trajectories. An example of a sequential pattern is shown in Figure

2.2. The trajectories A, B, and C share a common subsequence D containing the path
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p2
2 hour−−−→ p4

1 hour−−−→ p5.

A : p1
1 hour−−−→ p2

1.2 hour−−−−→ p3
0.8 hour−−−−→ p4

1 hour−−−→ p5

B : p2
1.2 hour−−−−→ p6

1 hour−−−→ p4
1 hour−−−→ p5

1 hour−−−→ p7

C : p1
1.2 hour−−−−→ p2

2.2 hour−−−−→ p4
0.5 hour−−−−→ p8

0.6 hour−−−−→ p5

D : p2
2 hour−−−→ p4

1 hour−−−→ p5

Figure 2.2: The trajectories A, B, C shared a common sequence as trajectory D with similar
time interval.

The sequential patterns can be uncovered according to their spatial, temporal, or spatio-

temporal properties, as shown in Figure 2.3. Some trajectory mining tasks consider only the

spatial property, which is the sequence of locations. Cao et al. [13] proposed an algorithm to

find sequential patterns. First, they transformed the original sequence into a list of sequence

segments before detecting the frequent regions. The patterns are found by employing a

substring tree structure approach that extends the Apriori technique. Giannotti et al. [37]

introduced the notion of a trajectory pattern (T-Pattern) and developed several approaches

to extract them from a given trajectory data.

A : p1 −−→ p2 −−→ p3 −−→ p4 −−→ p5

B : p
1 hour−−−→ p

2 hour−−−→ p
2 hour−−−→ p

1 hour−−−→ p

C : p1
1 hour−−−→ p2

2 hour−−−→ p3
2 hour−−−→ p4

1 hour−−−→ p5

Figure 2.3: Trajectory A considers only spatial property; trajectory B considers only tem-
poral property; while trajectory C considers both spatio-temporal properties.

2.2.3.3 Group Pattern Mining

Group pattern mining extracts the movement patterns for a group of objects moving together.

There are different kinds of group patterns, such as flocks [45, 44, 6], convoys [49, 50] and
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swarms [62]. These group patterns are the major categories of group patterns with examples

shown in Figure 2.4.

Figure 2.4: Example of a sequential group patterns: (a)flock, (b)convoy, (c)swarm.

A flock [45] is a group of objects that travel together for at least k consecutive time stamps

and stay within a disc of radius r. One major concern is that the predefined disc of radius r

may not represent the actual groups of moving objects in terms of their shapes and sizes. To

address this issue, Jeung et al. [49, 50] defined a convoy pattern as a group of objects that

travel together for at least k consecutive time stamps and stay within a shape generated by

density-based clustering. The convoy pattern relaxes the disc shape assumption required by

flock to any shapes formed by the moving objects. However, both flock and convoy patterns

require the group of objects to move together for at least k consecutive time steps. Later,

Li et al. [62] proposed an new group pattern, called swarm, which is defined as a group of

objects that travel together for at least k possibly non-consecutive time stamps.
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2.2.4 Trajectory Prediction

The goal of trajectory prediction is to forecast the future location of a moving object based

on its previous trajectory paths. Asahara et al. [4] designed a method for predicting pedes-

trian movement using a mixed Markov-chain model (MMM). Specifically, they modeled the

pedestrian’s personality as an unobservable parameter and utilized the pedestrian’s previous

status. Mathew et al. [64] presented a method for predicting human mobility based on

Hidden Markov Models (HMMs). They first clustered the location histories according to

their characteristics and then trained an HMM for each cluster. Besides Markov models, the

future trajectory path can be predicted by using trajectory pattern mining. For example,

Monreale et al. [68] presented a method, called WhereNext, to predict the next location of a

moving object with a decision tree built from the extracted trajectory patterns. Ying et al.

[87] modeled user’s movement behavior using historical trajectory patterns and estimated

the probability of user’s next location.

More recently, there has been considerable interests in applying deep learning approaches

to the trajectory prediction task. Alahi et al. proposed a Long Short-Term Memory (LSTM)

based approach to predict future trajectories of humans in crowded spaces. They built

multiple LSTMs for pedestrians and a pooling layer to share the information between LSTMs.

Kim et al. [52] designed an efficient LSTM based framework to predict vehicle trajectories.

They employed LSTM to analyze the vehicle temporal behavior and to predict the future

locations of the surrounding vehicles on a grid map. Lee and Liu [59] presented a RNN based

approach to predict the feature location of hurricanes. Kordmahalleh et al. [69] used sparse

RNN with flexible topology for hurricane trajectory predictions. To forecast the hurricane

trajectory, they found the most similar hurricanes to the target hurricane and trained their

RNN model with a genetic algorithm (GA). However, they were only interested in short-term

forecasts (up to 6 hours).Sheila et al. [3] used Long Short-Term Memory(LSTM) and Grid

model to forecast hurricane trajectory. They also focused on short-term forecasting up to 6

hours of lead time.
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2.2.5 Trajectory Outlier Detection

Outlier detection aims to find unusual trajectories or sub-trajectories that do not have similar

patterns in the given trajectory dataset. Trajectory clustering or classification algorithms can

be used for trajectory outlier detection. For example, Lee et al. [57] extended the partition-

and-group framework they had developed in [56] for trajectory clustering to a trajectory

outlier detection task. Li et al. [61] designed a rule-based classifier to detect abnormal

moving objects. They extracted features from the trajectories to form a hierarchical feature

space and trained a rule-based classifier to detect the outliers.

Trajectory outlier detection can be applied either to the whole trajectory [94] or sub-

trajectories [57, 88]. Zhang et al. [94] presented an algorithm for discovering anomalous

driving patterns from GPS traces of taxi rides. Yuan et al. [88] extracted features from

trajectory segments and employed a distance measure to find outliers.

2.3 Trajectory Data Mining Applications

There are many important applications of trajectory data mining. For example, the GPS

trajectories of taxis can be used to study city traffic dynamics. The study of the user’s travel

trajectory can be used to generate travel recommendations. In this thesis, I investigated the

hurricane trajectory prediction task, which is one of the most important trajectory prediction

tasks. I developed a set of trajectory prediction algorithms and applied them to real-world

hurricane data. In this section, the recent applications for hurricane prediction tasks were

discussed.

Hurricanes are strong tropical cyclones with wind speed exceeding 75 miles per hour

that it can cause severe damages at landfall. Therefore, hurricane trajectory forecasting is

crucial, which allows the civilians to have more time to prepare and evacuate. Hurricane

trajectory forecasting predicts future positions of the hurricane. The hurricane trajectory

forecasting relies on complex physical models, which are complex system contains mathe-

matical formulations of physical processes. There are numbers of different physical models,
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(a) (b)

Figure 2.5: Track errors of NHC official forecasts from year 1990 to 2019 [12]. Figure (a)
shows the errors at Atlantic basin. Figure (b) shows the errors at Eastern North Pacific
basin.

such as AVNO, AVNI, AEMN, AEMI1. Scientists are interested in improving the accuracy

of trajectory forecasts for extended period of time. For example, forecast for upcoming days.

However, it is difficult to improve the performance since these forecast models are sensitive

to the complexity and nonlinearity of atmospheric system. NHC published the error trend of

their official track forecasting error over past decades [12] as shown in Figure 2.5. With bet-

ter satellite data and faster computers, the forecast performance has been slowly improved

since the past decades.

Numerous data mining and machine learning approaches have been applied to the hur-

ricane prediction problem. For example, Lee and Liu [59] presented a neural network-based

approach to predict the features of hurricanes. Kordmahalleh et al. [69] used sparse RNN

with flexible topology for hurricane trajectory predictions. To forecast the hurricane tra-

jectory, they found the most similar hurricanes to the target hurricane and trained their

RNN model with Genetic Algorithm (GA). Sheila et al. [3] utilized Long Short-Term Mem-

ory(LSTM) and Grid model to forecast hurricane trajectory. However, these approaches

were mostly limited to short-term forecasts (of 6 hours) only. Accurate prediction of long-

term forecasts is needed to give ample time for emergency preparation efforts. The National

1https://www.nhc.noaa.gov/modelsummary.shtml
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Hurricane Center (NHC) of the National Oceanic and Atmospheric Administration (NOAA)

generates official forecasts for impending hurricanes based on various models. These models

can be categorized into four categories: dynamical, statistical, statistical-dynamical, and en-

semble or consensus models. During the life time of a hurricane, NOAA provides its official

forecasts every 6 hours, which include information such as longitude, latitude, maximum

wind speed, and the central pressure.
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CHAPTER 3

ONLINE MULTI-LEAD TIME TRAJECTORY LOCATION PREDICTION

Trajectory prediction is one of the most important tasks in trajectory data mining. The

goal of this task is to infer the future locations of a moving object. Trajectory prediction

is therefore equivalent to a multi-lead time location prediction task, which a challenging

problem due to the inherent error propagation problem [16]. The presence of concept drift

in the data will also result in outdated models, thereby degrading their predictive accuracy

over time. In this chapter, I propose to address these challenges by developing an online

learning algorithm to generate the anticipated trajectory path of the moving object. As

proof of concept, the framework was applied to hurricane trajectory prediction, which is an

important application with significant real-world implications.

Hurricanes are one of the most powerful storms on Earth that have the potential to

cause devastating losses and destruction along their paths. For example, the Galveston

Hurricane of 1900 is considered the deadliest hurricane in United States, responsible for

at least 8000 deaths [9]. In 2005, Hurricane Katrina took away more than 1500 lives and

caused at least $108 billion of property damages [9]. Given their severe impact, accurate

long-range prediction of hurricane tracks is critical to give ample time for emergency response

teams to take appropriate actions that will minimize property damages and loss of human

lives. Towards this end, dynamical models such as NOAA’s Hurricane Weather Research

and Forecasting (HWRF) system and U.S. Navy Global Environmental Model (NAVGEM)

have been widely used as the primary tool for hurricane forecasting. Although the skills of

these models have improved steadily over the years, the forecast errors and variability among

the model predictions still increase with lead time, as shown in Fig. 3.1.

Ensemble forecasting seeks to better represent the range of forecast uncertainties by

combining outputs generated by multiple dynamical models. Each dynamical model can

produce one or more ensemble member outputs by perturbing its initial conditions or model
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Figure 3.1: Hurricane track for the following 48 hours predicted by an ensemble of dynamical
models for Hurricane Irma on September 10, 2017. The green lines represent the various
forecasts produced by the ensemble members whereas the black dash line corresponds to
the ensemble mean. The red line corresponds to the best track according to the National
Hurricane Center.

parameters. The ensemble mean or median are commonly used as the deterministic forecast

from the ensemble. These estimates assume that every member is equally skillful, and thus,

their predictions should be weighted equally. Such an assumption may not be realistic due

to the inherent differences in the way the ensemble member outputs are generated. Thus in

an operational forecast environment when such ensemble forecasts are issued on a regular

basis, the weight of each member must be established based on their accuracy in predicting

the tracks. However, determining the appropriate weights is not a trivial task as the skills of

the models may vary overtime. To overcome this challenge, the primary goal of this chapter

is to develop an online trajectory forecasting framework that can dynamically update the

weights of the ensemble members based on their past and recent performance when verified

against observations.
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Ensemble member forecasts at different lead times, τ
τ = 1 (24 hrs) τ = 2 (48 hrs)

Hurricane Time NHC Best AEMI AEMN CLP5 AEMI AEMN CLP5
hi t track, yi,t xi,t,11 xi,t,12 xi,t,13 xi,t,11 xi,t,22 xi,t,23

SANDY 1 [12.7; -78.7] [14.6; -77.8] N/A [13.4; -80.7] [18.4; -76.4] N/A [14.2; -82.3]
2 [12.9; -78.1] [15.7; -77.7] N/A [14.1; -79.2] [19.8; -76.8] N/A [15.6; -79.9]
3 [14.0; -77.6] [17.8; -76.9] N/A [16.0; -77.5] [22.7; -76.5] N/A [18.0; -77.9]

IRMA 1 [16.4; -32.5] [18.5; -35.3] [18.8; -35.3] N/A [19.1; -39.7] [19.2; -40.0] N/A
2 [17.1; -34.2] [18.4; -38.4] N/A N/A [18.2; -42.9] N/A N/A
3 [17.9; -36.1] [18.4; -40.2] [18.7; -40.5] N/A [17.5; -44.4] [17.6; -45.0] N/A

Table 3.1: Example of NHC best track hurricane trajectory data along with the forecasts
generated by an ensemble of dynamical models such as AEMI, AEMN, and CLP5 for Hur-
ricanes Sandy and Irma at different lead times. N/A denotes missing values.

In the United States, the National Hurricane Center (NHC) is responsible for monitoring

and providing official forecasts of the trajectory and intensity of hurricanes in the Atlantic

and Eastern Pacific to the public. With a set of dynamical model forecasts as guidance, the

official NHC forecasts are produced based on the experience and judgment of the forecasters.

A secondary goal of this chapter is to investigate the feasibility of using an online learning

approach to generate forecasts that are equally or more skillful than the official forecasts

reported by NHC.

There has been growing research in recent years to apply data mining and machine learn-

ing methods to the hurricane trajectory forecasting problem [59, 69, 3]. However, there are

several limitations to these approaches. First, they are mostly based on auto-regressive or

recurrent neural network models, using only the historical observation data. Due to the inher-

ent error accumulation problem [16] in such models, they are mostly suitable for short-range

predictions and are ineffective for early warning systems. Second, due to the chaotic nature

of the weather system and the varying conditions in the atmosphere and ocean tempera-

ture, the historical data alone may not be enough to train a reliable long-range forecasting

model. By grounding the historical observations with multi-model ensemble forecasts from

dynamical models, it may lead to more reliable predictions. Third, the previous methods

are mostly designed for batch learning. Thus, they require the model to be re-trained from

scratch whenever new observations become available. An online learning method is more
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appealing as it allows the model to be efficiently updated to fit the new observations.

Designing an online learning algorithm for hurricane trajectory forecasting is a challenge

for several reasons. First, the models trained for predicting the hurricane’s location at dif-

ferent lead times must take into account the inherent autocorrelation along the trajectory.

Furthermore, they are susceptible to the partially observed data problem described in [84].

For example, if the model is updated every six hours with new observation data and the

forecast horizon (i.e., maximum lead time) is 48 hours, it is insufficient to revise only the

latest model. Instead, we should also revise the older models for all lead times starting

from 48 hours ago up to 6 hours ago. Otherwise, the errors from the older models will

continue to propagate into future prediction. Another challenge is that the ensemble mem-

bers available may vary from one hurricane to another (see Table 3.1). Due to the missing

forecasts by some model members, the online algorithm must adaptively learn the weights

in spite of the varying feature lengths. To address these challenges, we propose a novel

framework called OMuLeT (Online Multi-Lead Time Forecasting), which employs an online

learning with restart strategy to incrementally update the weights of the ensemble members.

OMuLeT can also handle the varying number of ensemble member forecasts by employing a

novel weight renormalization scheme. Theoretical proofs are provided to justify the weight

renormalization approach. Experimental results using the Atlantic and Eastern Pacific hur-

ricane data showed that OMuLeT can improve the 48-hour lead time official forecast of NHC

by more than 10%.

3.1 Related Work

Alemany et al. [3] categorized previous methods for hurricane trajectory forecasting into 4

types: (1) dynamical models [81, 22], (2) statistical models [24, 76], (3) statistical-dynamical

models [80] and (4) ensemble or consensus models [95]. Dynamical models require powerful

computers to solve the physical equations describing changes in the atmospheric system.

In contrast, statistical models consider the relationship between the current and historical
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trajectories. Statistical-dynamical models are hybrids of both techniques while ensemble

models generate forecasts by merging the forecasts from a suite of dynamical and/or statis-

tical models.

In addition to hurricane tracks, the multi-lead time trajectory prediction can be applied to

other domains. For example, Asahara et al. [4] designed a method for predicting pedestrian

movement using a mixed Markov-chain Model while Mathew et al. [64] presented a method

for predicting human mobility based on hidden Markov models (HMMs). Trajectory pattern

mining methods have also been developed for track prediction. For example, Monreale et al.

[68] presented a method called WhereNext to locate the position of a moving object using

a decision tree trained to fit features extracted from trajectory patterns. Ying et al. [87]

uses historical trajectory patterns to estimate the probability of a user’s next location. More

recently, deep learning methods have been developed for trajectory prediction tasks. For

example, Alahi et al. [2] proposed a Long Short-Term Memory (LSTM) based approach to

predict human future trajectories in crowded spaces while Kim et al. [52] designed an LSTM

based framework to predict vehicle trajectories.

There have also been some preliminary work on hurricane trajectory forecasting using

deep learning. Lee and Liu [59] presented a Recurrent Neural Network (RNN) based approach

to predict the hurricane trajectory paths while Kordmahalleh et al. [69] employed a sparse

RNN with flexible topology for hurricane trajectory prediction. Sheila et al. [3] used LSTM

and Grid model to forecast the hurricane trajectory. None of these approaches utilize the

multi-model ensemble forecast nor were they designed for an online learning setting unlike

the approach proposed in this thesis.

3.2 Problem Formulation

We investigate the problem of predicting the trajectory of a moving object based on a

set of input features that can be derived either from historical observations or through

other means (e.g., forecasts generated from a multi-model ensemble in the case of hurricane
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trajectory prediction). For brevity, the rest of the discussion in this chapter is presented in

the context of hurricane prediction, although the problem formulation and methodology can

be applied to other domains with similar characteristics. Consider a set of N hurricanes,

h1 ≤ h2 ≤ · · · ≤ hN , ordered by their start times. For the i-th hurricane, let yi,t ∈ R2 denote

its location (latitude and longitude) at time t, where t ∈ {ti,1, · · · , ti,Γi} and Γi denotes

the observed trajectory length for hurricane hi. Furthermore, at each time t, our goal is to

forecast the hurricane’s location at a future time step t+ τ , where τ ∈ {1, · · · , T} is the lead

time and T is the forecast horizon.

Let mi be the number of ensemble member forecasts available for hurricane hi. The set of

ensemble member forecasts available to predict the location of hi at time t+ τ is represented

by the matrix Xi,t,τ ∈ R2×mi , while its ground truth location is given by yi,t+τ ∈ R2. The

hurricane trajectory data is given by a set of 2-tuples, {(Xi,t,τ ,yi,t+τ )}, where the superscript

i denotes the hurricane, t is the forecast generation time, and τ is the forecast lead time.

Varying Feature Length: One of the key characteristics of the multi-model ensemble hur-

ricane trajectory data is that its feature length, i.e., number of ensemble member forecasts

(mi) associated with each hurricane, may vary from one hurricane to another . Specifi-

cally, although there are numerous ensemble member forecasts generated over the years,

each hurricane has forecasts obtained from an average of only 19 ensemble members in our

dataset. The unavailable ensemble members would create non-random missing patterns in

the data. Imputing the missing values is not a viable solution due to the high missing rate.

Instead, we propose an approach that can automatically handle the varying feature length

by renormalizing the weights of the ensemble members.

Temporal Inconsistencies: Outputs from the dynamical models have varying degrees

of temporal inconsistencies. First, the dynamical models can have different forecast time

intervals. Some models generate their forecasts every 6 hours, while others every 12 hours.

To address this problem, we perform interpolation to impute the missing values of the 12-

hourly forecast intervals to obtain 6-hour forecasts for all ensemble members. Second, the
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forecast duration often varies among the ensemble members. For example, some members

generate their forecasts for only a few days, while others may extend longer than a week.

In addition, their forecast horizon are also different. For example, some models produce

forecasts with a maximum lead time of 24 hours, while others may generate forecasts for

a lead time up to 120 hours. A novel weight renormalization approach is proposed in this

chapter to address such temporal discrepancies.

Partially Observed Labeled Data: Another challenge is that ground truth values for the

multi-lead time forecasts are only partially observed. This problem is illustrated in Figure

3.2. Let Xi,t−1,1 be the set of ensemble member forecasts generated for hurricane hi at time

t − 1 for the lead time τ = 1. If the current time is t, then the ground truth value yi,t will

be available to verify the accuracy of the forecasts in Xi,t−1,1. However, for the longer-range

forecasts, Xi,t−1,2, Xi,t−1,3, · · · , Xi,t−1,T , the ground truth values have not been observed. In

fact, the ground truth values are only available for any previous forecast Xi,t−k,τ for which

τ −k ≤ 0. This corresponds to the red rectangles shown in Figure 3.2. As time progresses to

t+1, the true value for yi,t+1 will be known. Conventional online learning algorithms use the

new observation yi,t+1 to update their latest models only. This is insufficient for multi-lead

time forecasting as the new observation data may trigger a cascading effect since some of the

earlier models from which the current models are obtained are also outdated. The models

for various lead times generated at time t must be rolled-back all the way to time t− T + 1

and updated again with the new observation data to alleviate the error propagation problem.

This strategy is known as online learning with restart [84].

3.3 Methodology

We consider an online model of the form f(Xi,t,τ ) = Xi,t,τwi,t,τ for predicting the location

of hurricane hi at time t + τ , where wi,t,τ ∈ Rmi is the estimated weight vector associated

with the mi ensemble member forecasts. Conventional online learning algorithms [21, 84]

typically assume that the feature matrix Xi,t,τ is complete, i.e., has no missing values, or
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Figure 3.2: An illustration of the partially observed labeled data problem. The red rectangles
denote the set of model forecasts for which ground truth are available at time t.

contains missing values that have been imputed. However, due to the varying feature length

problem described in the previous section, some ensemble member forecasts may not be

available for a given hurricane hi. Below, we describe our proposed approach to address this

problem.

3.3.1 Weight Renormalization

This section presents the weight renormalization approach employed by our online learning

framework to overcome the varying feature length problem. Let µ = {µ1, µ2, · · · , µm} be

the set of all ensemble members and Mi ⊆ µ be the subset of members whose forecasts

are available for hurricane hi. Since |Mi| � m, imputing the missing ensemble member

forecasts is not an effective approach given the large amount of missing values present in the

data. Instead, we present an online learning approach that uses only the ensemble member

forecasts available for the given hurricane (Mi) and update their weights accordingly when

new observation data becomes available at each time step. Specifically, we assume the

forecasts from each ensemble member follow a Gaussian distribution centered at the true

location. To illustrate this, Figure 3.3 shows a normalized histogram of the trajectory forecast
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errors for 5 dynamical models when applied to more than 200 hurricanes in our dataset.

Observe that the forecast error distribution indeed resembles that of a Gaussian distribution.

We also assume that the weights of the ensemble members form an m-dimensional simplex,

i.e.:

∆m = {wi1, wi2, · · · , wim
∣∣ ∀i :

∑
j

wij = 1, wij ≥ 0}.

Given a hurricane hi, our framework performs the following steps to incrementally update

the weights:

1. We extract the subvector wi
0 ∈ Rmi from the full vector w ∈ Rm, whose elements

contain only the weights of the mi ensemble members in Mi.

2. We normalize wi
0 to have unit sum as follows:

wi
0 ← wi

0/c, where c = |wi
0|1 =

∑
j

wi
0,j

3. At each time step t = {ti,1, ti,2, · · · , ti,Γi}:

a) We use the normalized weights to predict the location of the hurricane at lead

time t+τ , i.e., f(Xi,t,τ ) = Xi,t,τwi,t,τ , where wi,t,τ is computed from wi
0 according

to Eqn. (3.6).

b) After observing the ground truth location yi,t, we update wi,t,τ using the method

described in Section 3.3.3.

4. After the last update at time t = Γi, the updated weights are renormalized to their

original sum:

wi
0 ← cwi

0 (3.1)

before being replaced into the full vector w. This ensures that w remains a simplex

after the weight update.

The preceding approach enables our framework to update only the weights of the ensemble

members whose forecasts are available for hurricane hi. The weights need to be renormalized
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when replacing them back into the full vector w. Below, we provide a formal justification

for the weight renormalization approach. For brevity, we assume the hurricane location is a

scalar variable, even though the theorem below can be extended to 2-dimensional location

vectors.
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Figure 3.3: Normalized distribution of trajectory forecast errors (in 50 miles bin) for 5
different dynamical models along their latitude and longitude directions.

Example 1. Consider a set of forecasts generated from an ensemble of 5 members. Assume

their weights is given by the full vector w = [0.15, 0.1, 0.4, 0.05, 0.3]. Suppose we want to

update w based on the observed trajectory of hurricane hi. Assume the forecast data of hi

are only available for the second and third ensemble members. In the first step, we extract

the subvector wi = [0.1, 0.4]. After normalizing the vector to have unit sum, the weights

become wi = [0.2, 0.8]. Using the forecast data from the two ensemble members and their

ground truth values, suppose the weights are updated to wi = [0.4, 0.6]. We renormalize

their values to maintain the original sum of 0.5 before replacing them into the full weight

vector. The full vector after the weight update is w = [0.15, 0.2, 0.3, 0.05, 0.3].

Next, we provide formal proofs to justify the rationale for our proposed weight renormal-

ization approach. For brevity, we assume the hurricane location is a scalar variable instead
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of a 2-dimensional vector of latitude and longitude, though the proof below can be extended

to d-dimensional location vectors.

Theorem 1. Let y denotes the true hurricane location and {X1, X2, · · · , XM} be M i.i.d.

variables, representing the M ensemble member forecasts. Assume each Xj is a random

perturbation around y, i.e.:

Xj = y + ε(0, σ2
j ),

where ε(0, σ2
j ) is a Gaussian distribution with mean 0 and variance σ2

j . Then, the best

unbiased linear estimator (BLUE) for y is z =
∑

j wjXj, where wj = 1
σ2
j

∑M
j=1

1
σ2
j
.

Proof. We consider linear estimators of the form z =
∑

j wjXj. Since {X1, X2, . . . , XM} are

i.i.d. variables:

E(z) =
M∑
j=1

wjE(Xj) =
M∑
j=1

wjy (3.2)

Since z is unbiased, its expected value is equal to E[y]. Thus,

E(z) =
M∑
j=1

wjy = y ⇒
M∑
j=1

wj = 1 (3.3)

The variance of the linear estimator is

V ar(z) =
M∑
j=1

w2
jV ar(Xj) =

M∑
j=1

w2
jσ

2
j (3.4)

To find the w that minimizes the variance, subject to the constraint in Eq. (3.3), we consider

the following Lagrangian function:

L =
M∑
j=1

w2
jσ

2
j − λ(

M∑
j=1

wj − 1)

Taking its partial derivative w.r.t wk and setting it to 0 yields

∂L

∂wk
= 2wkσ

2
j − λ = 0⇒ wk =

λ

2σ2
k

Following the constraint
∑M

j=1wj = 1, we can solve for λ and obtain:

wj =
1

σ2
j

/

M∑
k=1

1

σ2
k

(3.5)

which completes the proof.

33



The preceding theorem considers an estimator z computed from M i.i.d. variables. Let

z̃ be another estimator computed using K of the i.i.d. variables in {Xj}. Without loss of

generality, we assume the K variables are X1, X2, · · · , XK .

Corollary 1. Let y be the true location of the hurricane and z̃ =
∑K

j=1 w̃jXj be a linear

estimator of y, where each Xj = y + ε(0, σj)
2. Then the best linear unbiased estimator

(BLUE) for y using theK i.i.d. variables is z̃ =
∑K

j=1 w̃jXj, where w̃j = cwj and c = 1∑K
j=1 wj

.

Proof. The BLUE for w̃j is similar to Eq. (3.5) except the sum in the denominator goes

from 1 to K. Taking the ratio of w̃j to wj:

w̃j
wj

=
1∑K

j=1
1
σ2
j
/
∑M

l=1
1
σ2
l

=
1∑K

j=1wj
≡ c

Thus, w̃j = cwj, which completes the proof.

The preceding corollary shows the normalization factor needed to re-scale the weights of

a subset of the ensemble members.

3.3.2 Geographic Distance Loss Function

Instead of using a squared `2 (Euclidean) loss function, our framework considers the squared

geographic distance to compute the error in location estimation. Let zi,t,τ = [zi,t,τ1 , zi,t,τ2 ] be

the predicted latitude and longitude position of hurricane hi at time t for the lead time τ and

yi,t+τ = [yi,t+τ1 , yi,t+τ2 ] be the corresponding true location. The squared geographic distance

between the predicted and true locations, d[zi,t,τ ,yi,t+τ ]2, can be estimated as follows:

R2
e

[
(zi,t,τ1 − yi,t+τ1 )2 + (zi,t,τ2 − yi,t+τ2 )2 cos2 yi,t+τ1

]
,

where Re is the radius of the earth. As Re is a constant that can be absorbed into the regular-

izer term of an objective function, we can set Re = 1 to simplify the notation. Furthermore,
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by transforming the coordinates of the location to

ỹi,t+τ = [yi,t+τ1 , yi,t+τ2 cos yi,t+τ1 ]

z̃i,t,τ = [zi,t,τ1 , zi,t,τ2 cos yi,t+τ1 ]

the geographic distance can be further simplified as follows:

d(zi,t,τ ,yi,t+τ )2 = ‖z̃i,t,τ − ỹi,t+τ‖2

which is an `2 loss on the transformed coordinates.

3.3.3 OMuLeT Framework

Our proposed framework, named OMuLeT, learns the optimal weights for the ensemble mem-

bers in an online fashion. Let M be the total number of ensemble members and mi be the

number of ensemble members whose forecasts are available for hurricane hi. Assume we

have extracted the subvector wi whose elements consist of the weights of the mi selected

members and renormalize the weights to sum up to 1. To predict the location of hurricane hi

at time t+ τ , we use the following linear estimator, zi,t,τ = Xi,t,τwi,t,τ , where Xi,t,τ ∈ R2×mi ,

wi,t,τ ∈ Rmi , and 1Tmiw
i,t,τ = 1. In addition, all weights should be non-negative according

Theorem 1, where the weight is assumed to be 1
σ2 . To simplify the problem, we relax it and

remove the weight non-negative constraint. Instead, we project the weight to a non-negative

weight space. The details is discussed in the following section.

OMuLeT assumes the weight vector wi,t,τ can be decomposed into the sum of the follow-

ing three factors:

wi,t,τ = oi + ui,t + vi,t,τ (3.6)

where 1Tmio
i = 1,1Tmiu

i,t = 0,1Tmiv
i,t,τ = 0

The first term, oi, is a global weight factor that retains the weight information from the

analysis of past hurricanes. The second term, ui,t, is a hurricane-specific factor that modifies
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Figure 3.4: Proposed online multi-lead time trajectory forecasting framework.

the global weight to better fit the prediction for the current hurricane. The third term, vi,t,τ ,

is a lead time adjustment factor to improve the model prediction at lead time τ .

The overall framework is shown in Figure 3.4. Given a hurricane hi, we extract the

subvector wi from w and normalize it to have unit sum before assigning it as the initial value

for oi. Both ui,0 and vi,0,τ are initialized to a vector of all zeros, 0mi . As new observation

data become available, we will update ui,t and vi,t,τ accordingly using the online approach

described in Section 3.3.3.1. Note that the global weight oi is not updated throughout the

online update. After processing all the observation data for hurricane hi, oi is used to derive

the new weight wi as follows:

wi = oi + ρui,Γi . (3.7)

where Γi denotes the trajectory length for hi. The hyperparameter ρ controls the tradeoff

between biasing wi with the learned weights from current and past hurricanes. Finally, the

weights in wi are renormalized based on the formula given in Corollary 1 before replacing

their original values in w.
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3.3.3.1 Objective Function

The online learning process for trajectory i is illustrated in the bottom diagram of Fig-

ure 3.4. At time t, when the true location yi,t is known, it can be used to verify the

following set of earlier forecasts, X i,t = {Xi,t−1,1, Xi,t−2,2, · · · , Xi,t−T,T}. Let Wi,t−1 =

[wi,t−1,1,wi,t−1,2, · · · ,wi,t−1,T ] denote the weight matrix for all lead times at time t− 1. Us-

ing yi,t to update the weight matrix Wi,t−1 alone is insufficient as some of the weight vectors

in Wi,t−1 are also outdated since they ignore the true values for X i,t. Instead, our proposed

framework employs a backtracking and restart strategy in its online learning process. Specif-

ically, since Wi,t−1 was updated from Wi,t−2, which in turn, was updated from Wi,t−3, and

so on, we restart the weight update procedure from time t−T and update wi,t−T,T to account

for the new ground truth value available for Xi,t−T,T . The updated weight matrix Wi,t−T is

then used to update Wi,t−T+1, taking into account the new ground truth value available for

Xi,t−T+1,T−1. This procedure is repeated until the new weight matrix Wi,t is obtained.

The weights are updated based on the objective function below:

minui,t,{vi,t,τ}
1

2

T∑
τ=1

δi,t,τγτd
[
zi,t,τ ,yi,t+τ

]2
+

ω

2

T−1∑
τ=1

∥∥wi,t,τ+1 −wi,t,τ
∥∥2

+
µ

2

∥∥ui,t − ui,t−1
∥∥2

+
ν

2

T∑
τ=1

∥∥vi,t,τ − vi,t−1,τ
∥∥2

+
η

2

T∑
τ=1

∥∥vi,t,τ∥∥2

s.t. ∀ t, τ : 1Tmiu
i,t = 0,1Tmiv

i,t,τ = 0, (3.8)

where d[·] is the geographic distance function described in Section 3.3.2 while δi,t,τ is delta

function whose value is 1 if yi,t+τ is known at time t and 0 otherwise. The first term in

the objective function represents the forecast error. The hyperparameter γ determines the

relative importance of making accurate forecasts at different lead times τ . The second term

ensures smoothness in the model parameters for different lead times whereas the third and

fourth terms are designed to ensure the hurricane-specific factor ui,t and lead time adjustment
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factor vi,t do not change rapidly from their previous values at time t− 1. The last term in

the objective function imposes a sparsity constraint on the lead time adjustment factor.

The Lagrange formulation for the optimization problem is

L =
1

2

T∑
τ=1

δi,t,τγτ
∥∥∥X̃i,t,τwi,t,τ − ỹi,t+τ

∥∥∥2

2

+
1

2
Tr
[
Vi,tT (ωL + ηI)Vi,t

]
+

µ

2

∥∥ui,t − ui,t−1
∥∥2

+
ν

2

∥∥Vi,t −Vi,t−1
∥∥2

F

− λ1Tmiu
i,t −

T∑
τ=1

θτ1
T
mi

vi,t,τ (3.9)

where Vi,t = [vi,t,1,vi,t,2, . . . ,vi,t,T ] and L is a matrix defined as follows

Li,j =



1, if i = j = 1 or i = j = T

2, if i = j 6= 1 and i = j 6= T

−1, if i = j + 1or i = j − 1

0, otherwise

To solve the function, taking the partial derivative of L and setting it to zero. Then, we

can built an equation as follows

∂L
∂ui,t

=

T∑
τ=1

δi,t,τγτ X̃i,t,τT
(
X̃i,t,τwi,t,τ − ỹi,t+τ

)
+ µ

(
ui,t − ui,t−1

)
− λ1di

=

T∑
τ=1

δi,t,τγτ X̃i,t,τT
(
X̃i,t,τ (wi,t−1,τ + ∆ui,t + ∆vi,t,τ )− ỹi,t+τ

)
+ µ∆ui,t − λ1di

=
(
M̃i,t + µIdi

)
∆ui,t +

T∑
τ=1

δi,t,τMi,t,τ∆vi,t,τ + C̃i,t − λ1di

=0di

(3.10)

∂L
∂vi,t,τ̂

=δi,t,τ̂γ τ̂ X̃i,t,τ̂T
(
X̃i,t,τwi,t,τ̂ − ỹi,t+τ̂

)
+
[
Vi,tQ

]
τ

+ ν
(
vi,t,τ̂ − vi,t−1,τ̂

)
− θτ̂1di

=δi,t,τ̂γ τ̂ X̃i,t,τ̂T
(
X̃i,t,τ̂ (wi,t−1,τ̂ + ∆ui,t + ∆vit,τ̂ )− ỹi,t+τ̂

)
+
[
Vi,tQ

]
τ

+ ν∆vi,t,τ̂ − θτ̂1di

=δi,t,τ̂Mi
t,τ̂∆ui,t +

(
δi,t,τ̂Mi

t,τ̂ + νIdi
)

∆vit,τ̂ +
[
Vi,tQ

]
τ

+ δi,t,τ̂Ci
t,τ̂ − θτ̂1di

=0di

(3.11)
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where [Vi,tQ]τ is the τth column of [Vi,tQ]. From the definition, we have

[
Vi,tQ

]
τ

=


(ω + η)vi,t,1 − ωvi,t,2 if τ = 1

(2ω + η)vi,t,τ − ωvi,t,τ−1 − ωvi,t,τ+1 if 1 < τ < T

(ω + η)vi,t,T − ωvi,t,T−1 if τ = T

(3.12)

Furthermore, I can express it in the term of ∆vi,t,τ

[
Vi,tQ

]
τ

=



(ω + η)∆vi,t,1 − ω∆vi,t,2 + (ω + η)vi,t−1,1 − ωvi,t−1,2 if τ = 1

(2ω + η)∆vi,t,τ − ω∆vi,t,τ−1 − ω∆vi,t,τ+1 + (2ω + η)vi,t−1,τ

−ωvi,t−1,τ−1 − ωvi,t−1,τ+1 if 1 < τ < T

(ω + η)∆vi,t,T − ω∆vi,t,T−1 + (ω + η)vi,t−1,T − ωvi,t−1,T−1 if τ = T

(3.13)

Using the Lagrange multiplier method with the notation given in Table 3.2, a closed-form

solution can be found by solving the following system of linear equations: Ai,tϕi,t = bi,t,

where

Ai,t =

Ai,t
1,1 Ai,t

1,2

Ai,t
2,1 0

 ϕi,t =



∆ui,t

∆vi,t,1

...

∆vi,t,T

λ

θ1

...

θT
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[bi,t]j =



−C̃i,t if j = 1

−δi,t,j−1Ci,t,j−1 − (ω + η)vi,t−1,j−1 + ωvi,t−1,j if j = 2

−δi,t,j−1Ci,t,j−1 − (2ω + η)vi,t−1,j−1 + ωvi,t−1,j−2

+ωvi,t−1,j if 2 < j ≤ T

−δi,t,j−1Ci,t,j−1 − (ω + η)vi,t−1,j−1 + ωvi,t−1,j−2 if j = T + 1

0 otherwise

[Ai,t
1,1]j,k =



M̃i,t + µImi if j = 1, k = 1

δit,jM
i
t,j if j > 1, k = 1

δit,kM
i
t,k if j = 1, k > 1

−ωImi if 2 ≤ j ≤ T, k = j + 1

−ωImi if 2 ≤ k ≤ T, j = k + 1

δi,t,1Mi,t,1 + (ω + η + ν)Imi if j = 2, k = 2

δi,t,TMi,t,T + (ω + η + ν)Imi if j = T + 1, k = T + 1

δi,t,TMi,t,T + (2ω + η + ν)Imi if j = k, 2 < j < T + 1

0 otherwise

Ai,t
1,2 = −IT+1 ⊗ 1mi

Ai,t
2,1 = IT+1 ⊗ 1Tmi

where [bi,t]j denote the j-th block of bi,t and [Ai,t
1,1]j,k denote the jk-th block of Ai,t

1,1. After

obtaining ϕi,t, the weights ui,t and vi,t,τ are updated as follows:

ui,t = ui,t−1 + ∆ui,t

vi,t,τ = vi,t−1,τ + ∆vi,t,τ
(3.14)

The pseudocode of our framework is shown in Algorithm 1.
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Notation Definition
0d a d-dimensional column vector of 0s
1d a d-dimensional column vector of 1s

δi,t,τ

{
1, if Xi,t,τ exist and yi,t+τ is observed
0, otherwise

∆ui,t ui,t − ui,t−1

∆vi,t,τ vi,t,τ − vi,t−1,τ

Mi,t,τ γτX̃i,t,τT X̃i,t,τ

M̃i,t
∑T

τ=1 δ
i,t,τMi,t,τ

Ci,t,τ γτX̃i,t,τT
(
X̃i,t,τwi,t−1,τ − yi,t+τ

)
C̃i,t

∑T
τ=1 δ

i,t,τCi,t,τ

Table 3.2: Summary of notations.

Input: ρ, γ, ω, µ, ν, η
Output: Ensemble forecasts z
Initialize: o = 1N/M ;
for i = 1, 2, . . . , N do

Extract oi from w;
Initialize: ∀t, τ : ui,t = 0mi ,v

i,t,τ = 0mi ;
for t = 1, 2, . . . ,Γi do

Observe yi,t;
for t′ = t− T, t− T + 1, . . . , t do

Update ui,t
′
, {vi,t′,τ} using Eq. (3.14);

end
Make new forecasts using linear estimator;

end
Update wi based on Eq. (3.7);

end
Algorithm 1: Proposed OMuLeT framework

3.3.3.2 Computational Complexity

To process each hurricane trajectory, the weight update formula involves calculating Eq.

(3.14), which requires computing the matrix Ai,t ∈ R(T+1)(mi+1)×(T+1)(mi+1). Calculating

Ai,t requires O(T 2m2
i ) floating point operations (flops), while solving the system of linear

equations for ϕi,t takes O(T 3m3
i ) flops. Therefore, the overall complexity for processing all

T lead times is O(T 4Γim
3
i ). Each hurricane in our dataset has an average trajectory length

Γavg ≈ 24 time steps, a forecast lead time of at most T = 20 time steps, and mi ≤ 30
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ensemble members. The overall computation needed for each hurricane is at most hundreds

of billions of floating point operations, which can be easily computed in less than a minute

on modern day computers with CPUs that can process tens of billions of operations per

second (GigaFlops).

3.4 Experimental Evaluation

The hurricane best track (ground truth) data and NHC official forecasts are available from

the NHC website1, while the ensemble member forecasts were downloaded from the Hurricane

Forecast Model Output website at University of Wisconsin-Milwaukee2. According to NHC,

46 models were used in the preparation of their official forecasts. However, only 28 of them

were available at the UWM website, which we use for our experiments.

While the physical models provide the trajectory forecasts, partial models also generate

intensity forecasts. According to NHC, 30 models were used in the preparation of their inten-

sity forecasts. 21 of these models were available at the UWM website. In our experiments,

we also applying our OMuLeT framework on the intensity forecasts.

Although the best track data dates back to 1851 for Atlantic and 1949 for Pacific oceans,

both the NHC official forecasts as well as the ensemble of dynamical model forecasts have a

much shorter history. After fusing the data, our final dataset contains 212 tropical cyclones

spanning 2012 to 2018. We performed linear interpolation to impute the missing values for

ensemble members with 12-hourly forecasts to ensure they also generate 6-hourly forecasts.

We set the maximum forecast lead time to 48 hours. We use the hurricane data from 2012

to 2014 (84 tropical cyclones) for training and validation while those from 2015 to 2018 (128

tropical cyclones) for testing. Each trajectory has an average length of 24 time steps at 6

hourly intervals. In total, there are 2086 observations in the training period to fit the online

model and 2946 observations in the test period. The hurricanes are divided into two groups,

those originating from the Atlantic ocean and those from the Eastern Pacific ocean. We

1https://www.nhc.noaa.gov
2http://derecho.math.uwm.edu/models
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report the forecasting results on the hurricanes from both groups as well as those from each

group separately. Following the approach used by NHC, we evaluate the forecast error of a

method in terms of the average geographic distance between the predicted and best track

locations (see Section 3.3.2).

We compared OMuLeT against the following baseline methods:

1. LSTM: LSTM is a widely used deep learning approach for time series forecasting.

Following the approach used in [3], the LSTM model was trained on historical data

only. We consider training LSTM using the best track data from 2012 to 2014 as well as

using the entire history (since 1851 for Atlantic and 1949 for Pacific oceans). Though

the results were not significantly different, we report the test results (2015-2018) for

LSTM trained on the longer history.

2. Ensemble mean (EM): This corresponds to taking the average of all the ensemble

member forecasts.

3. NHC: This corresponds to the official forecasts generated by NHC, which is the gold

standard for hurricane prediction.

4. Passive-Aggresive (PA)[21]: A well-known online algorithm that updates the weights

of its linear model based on the following equation:

wt+1 = wt + sign(yt − zt)τ txt (3.15)

5. ORION[84]: A recently developed online learning algorithm for multi-lead time pre-

diction.

For a fair comparison, the baseline methods such as PA and ORION also use the weight

renormalization strategy to deal with the varying feature length problem.
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3.4.1 Performance Comparison

Table 3.3 summarizes the forecast errors of the different methods, in terms of their average

geographic distance (in miles) between the true and predicted locations. There are several

interesting conclusions can be drawn from the results shown in the table. First, the LSTM

results were significantly worse than the results of other methods despite using a longer

history of hurricane trajectory data to train the model. This is not surprising as the historical

tracks do not capture the varying atmospheric conditions and ocean temperatures that affect

the path of the hurricanes. Furthermore, the parameters of the LSTM model are fixed after

training unlike online learning models such as PA, ORION, and OMuLeT that can continuously

update its model with new observation data.

Second, the performance of ensemble mean is comparable to the NHC official forecasts,

which validates the skills of the ensemble members. This result is again not surprising as the

skills of the dynamical models have continuously improved over the years and the ensemble

members considered in this study are a subset of those used in the NHC official forecasts.

Third, existing online learning algorithms such as PA and ORION do not significantly

improve the prediction error of ensemble mean even though their weights are updated contin-

uously. PA updates only its latest model whenever new observation data becomes available

unlike ORION and OMuLeT, which both employ the online update with restart strategy to

revise some of the older models as well. This shows the importance of addressing the par-

tially labeled data problem in online learning for multi-lead time forecasting. ORION was

designed for multi-lead time forecasting at a single location. Extending the approach to

modeling different hurricanes is not effective as it fails to retain the weight information from

past hurricanes, unlike the weight decomposition approach used in OMuLeT (see Eqs. (3.6))

and (3.7)).

Fourth, the results suggest that OMuLeT consistently outperforms all the baseline methods

in all regions irrespective of the forecast lead time. In particular, it significantly outperforms

the NHC official forecasts, especially at longer lead times. Figure 3.6 illustrates the forecast
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improvement of OMuLeT over NHC and other baselines for different lead times. First, observe

that the forecast improvement of OMuLeT over the baseline methods continue to grow with

increasing lead times. More importantly, OMuLeT outperforms the gold standard, i.e., NHC,

by more than 10% for the 48-hour lead time forecast. The significant improvement over other

online algorithms also show the effectiveness of the strategies used in OMuLeT to overcome

the varying feature length, temporal inconsistencies, and partially labeled data problems

encountered in hurricane trajectory forecasting.

Location Atlantic and Pacific ocean Atlantic ocean only Pacific ocean only
Lead Time 12 24 36 48 12 24 36 48 12 24 36 48
LSTM 142.89 211.42 305.91 537.29 175.62 257.16 361.63 594.01 113.21 161.93 259.31 385.17

Ensemble Mean 26.09 40.20 53.77 68.49 27.74 42.74 57.85 75.39 24.67 38.06 50.33 62.74
PA 26.09 40.07 53.60 68.01 27.68 42.57 57.77 74.87 24.66 38.03 50.29 62.67

ORION 25.50 39.04 51.97 66.27 26.77 41.08 55.55 72.26 24.51 37.46 49.27 61.48
NHC 26.58 40.97 54.41 68.47 28.83 44.03 58.66 75.94 24.65 38.39 50.83 62.25

OMuLeT 24.94 37.08 48.78 59.08 26.53 38.77 51.85 63.61 23.73 36.03 45.85 55.80

Table 3.3: Comparison of mean geographic distance error (in miles) for various hurricane
trajectory forecasting methods.

Location Atlantic and Pacific ocean
Lead Time 12 24 36 48
LSTM 142.89 211.42 305.91 537.29

Ensemble Mean 26.09 40.2 53.77 68.49
NHC 26.58 40.97 54.41 68.47
PA 26.09 40.07 53.6 68.01

OMuLeT (28 models) 24.94 37.08 48.78 59.08
OMuLeT (28 models + NHC) 24.51 36.93 47.96 58.77

OMuLeT (50 models) 25.34 38.79 50.38 62.16
OMuLeT (100 models) 25.27 38.03 49.12 62.35
OMuLeT (155 models) 25.22 37.88 48.93 60.54

Table 3.4: Comparison of mean geographic distance error (in miles) for various hurricane
trajectory forecasting methods.

We also compared the performance of OMuLeT when using different set of models. We

begin with the NHC used models as the default models for our OMuLeT framework and then

keep increasing more models based on their frequency of use. Table 3.4 demonstrates the

forecast errors as more physical model forecasts are incorporated into the OMuLeT framework.

If we add NHC official forecasts as one of the input models, the performance of OMuLeT
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Figure 3.5: Comparison of 48-hour forecasts for Hurricane Irma from 2017/09/08 to
2017/09/10 by different methods.

12 24 36 48

Lead Time (hours)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
re

d
ic

ti
o

n
 I

m
p

ro
v
e

m
e

n
t

EM

PA

ORION

NHC

Figure 3.6: Percentage of forecast improvement of OMuLeT compared to the baseline methods.
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slightly improved. However, we obtain mixed results when a larger number of ensemble

members are included into the learning framework. OMuLeT’s performance decreases when

the number of ensemble members increases from 28 to 50 models. However, the performance

improves as the number of ensemble members increases from 50 to 100 and 155 models.

Nevertheless, the best result is still obtained by using the 28 models employed by NHC in

their official forecasts.

Time (year 2012 to 2018)
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Figure 3.7: Global weight changes over time
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Figure 3.9: Effect of varying the hyperparameters ρ, γ, ω, µ, ν, η on mean forecast error (ME).

Figure 3.5 shows an example of the trajectory forecasts for Hurricane Irma from 2017/09/08

to 2017/09/10. Observe that OMuLeT’s 48-hour forecasts are closest to the best track com-

pared to the baseline methods, especially in Figure 3.5(a) and 3.5(b). Despite the large

variability among the ensemble member forecasts, OMuLeT was able to assign the appropriate

set of weights to the ensemble members, which led to more accurate forecasts.

Figure 3.7 shows the dynamic weights of the ensemble members learned using OMuLeT.

The plot suggests that the Global Forecast System (AVNO) generally has higher weights

than others. However, there are other models such as the Hurricane Weather Research and

Forecast system (HWRF) and U.K. Met Office Global Model (EGRI) that have become in-

creasingly skillful in recent years. This result shows the advantage of using an online learning

approach that can continuously adapt the weights of the ensemble members instead of using

batch learning approaches that assign equal or static weights to the ensemble members.
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Figure 3.8 shows the average forecast errors of the models for 48-hour lead time from

2012 to 2018. The plot generally shows a decreasing trend in the forecast error. The official

forecasts of NHC are more accurate than the ensemble mean from 2012 to 2014, but have

become more similar in recent year. Our proposed OMuLeT framework outperforms both

ensemble mean and the NHC official forecasts for all the years in the given time period.

3.4.2 Sensitivity Analysis

Figure 3.9 shows the results of OMuLeT when varying the hyperparameters of the framework.

The hyperparameter ρ controls the tradeoff between updating the weight using the past or

recent hurricane data. The result shows that one choosing a ρ around 0.5 or larger can lead

to lower forecast error. The results also suggest a low value of γ is more effective, which

allows the model for different lead times to vary quite significantly. The bottom three figures

show that the regularization parameters should be sufficiently large to ensure the model is

sufficiently sparse and does not change too rapidly from one online update round to another.

In our experiments, these hyperparameter values are determined based on their performance

on the training period. Empirically, there was no noticeable difference between choosing the

best hyperparameter based on the forecast error in training or validation period.

3.5 Conclusions

This chapter focuses on addressing research question RQ1 by developing a novel online

learning framework called OMuLeT for multi-lead time hurricane trajectory forecasting. Unlike

existing methods, OMuLeT uses multi-model ensemble member outputs to train its model.

OMuLeT also employs weight renormalization and backtracking with restart strategies to

address the missing value and error propagation problems. Experimental results showed that

OMuLeT significantly outperforms various baseline methods, including NHC official forecasts,

especially for long-range trajectory forecasting.
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CHAPTER 4

ONLINE MULTI-LEAD TIME TRAJECTORY STATE PREDICTION WITH
ORDINAL DATA

Trajectory prediction aims to infer the future positions of a moving object. In addition to

the time-varying location information, a trajectory dataset often contains other (non-spatial)

information describing the state of the moving object. For example, the state of a moving

vehicle could be the driver’s driving proficiency and aggressiveness; the state of a hurricane

could be the current wind speed, air pressure and temperature; the state of a pedestrian

could be walking speed and emotional state. In many applications, predicting the future

state of the moving object is just as important as predicting its trajectory. For example,

besides the trajectory path, accurate prediction of the hurricane intensity is essential to

determine the severity of its potential damages.

Due to increasing human activities, our climate system is now changing more rapidly than

in the past, which affects the frequency and severity of natural disasters such as hurricanes.

The destructive ability of hurricanes can be measured by their maximum sustained wind

speeds, also known as their intensities. Table 4.1 shows the categories of hurricane intensities

according to the Saffir-Simpson hurricane wind scale. Based on data from the NHC, high-

intensity hurricanes of categories 3 or higher usually cause huge damages. For example,

hurricane Harvey, a category 4 hurricane, caused an estimated $125 billion of property

damages and 107 confirmed deaths in 2017 [18, 8]. In 2018, a category 4 hurricane named

Florence caused $24.2 billion in damages and 54 deaths [1, 78].

Category 1 2 3 4 5
Wind speeds (mph) 74-95 96-110 111-129 130-156 ≥ 157

Table 4.1: Saffir-Simpson hurricane wind scale (SSHWS), for 1-minute maximum sustained
winds.

There have been numerous efforts devoted to developing machine learning techniques for
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Figure 4.1: Hurricane category distribution from year 2012 to 2020.

the hurricane prediction problem [59, 69, 3]. While these techniques have found success in

hurricane trajectory forecasting, challenges remain in applying them to improve the accuracy

of hurricane intensity prediction. First, to communicate the severity of an impending hurri-

cane to the public, accurate prediction of its category is often more important than the wind

speed itself. Indeed, a prediction error of 60 mph may seem trifle for a category 0 tropical

storm but is significant if a category 5 hurricane at 160mph is incorrectly predicted as a

category 2 storm at 100mph. Second, high category hurricanes tend to occur less frequently

than lower category ones, which leads to a class imbalance problem. Figure 4.1 shows that

the hurricane category distribution from year 2012 to 2020. The results suggest that there

are much less high category hurricanes. Third, accurate forecasts at longer lead times are

needed to ensure there is ample time for emergency preparation.

To address these challenges, we developed two online ordinal regression frameworks called

OOR (Online Ordinal Regression) and OOR-ε (Online Ordinal Regression with ε insensitivity

loss) for hurricane category and intensity prediction, respectively. These are extensions of

the OMuLeT framework described in the Chapter 3 and are designed to address the research

question RQ2. OOR aims to predict the hurricane categories by utilizing an ensemble of
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hurricane category forecasts produced from a set of prediction models. In contrast, OOR-ε

uses the real-valued hurricane intensities and employs an ε-insensitive loss function [28] with

constraints to preserve the accuracy of its ordinal category prediction. At first glance, the

ordinal category of a hurricane may not appear to add any new information since it is derived

from the maximum sustained wind speed value (see Table 4.1). However, as will be shown

in this work, the constraints help to ensure that the predicted category will not deviate

significantly from its true value even though the error in maximum sustained wind speed is

large. For example, consider a category 5 hurricane with maximum sustained wind speed of

160 mph. A model that predicts its intensity to be 125 mph will have a lower error than

one that predicts its intensity to be 220 mph; yet, the former has a larger category error

(since 125 mph is a category 3 hurricane) compared to the latter, which predicts the category

correctly. Similarly, a category 2 hurricane at 110 mph will have a lower intensity error if

predicted as 130 mph instead of 80 mph. However, in terms of its ordinal category, the

former has a larger error since the category 2 hurricane is incorrectly predicted as a major

category 4 storm rather than category 1, which is closer. These examples clearly illustrate

the importance of leveraging both ordinal category and real-valued intensity information into

the learning formulation.

Handling the skewed ordinal category distribution of the data is another challenge as

high category hurricanes occur less frequently than lower category ones. As the higher cat-

egory hurricanes often cost more property destruction and loss of human lives, its accurate

detection is critical to minimize its severe impact. In this chapter, we show how our pro-

posed framework can be extended to leverage a quantile loss function to bias its prediction

towards forecasting higher category hurricanes more accurately. The extended frameworks

are known as OOQR (Online Ordinal with Quantile Regression) and OOQR-ε (Online Ordinal

with Quantile Regression and ε insensitivity loss) for hurricane category prediction and in-

tensity prediction, respectively. The developed algorithms with quantile losses answered my

research question RQ3. Experimental results using real-world data demonstrates the effi-
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cacy of our frameworks, outperforming the baseline methods with results comparable to the

gold standard, which is the official forecasts of the U.S. National Hurricane Center.

4.1 Related Work

Due to the severe damages could be made by the hurricane, hurricane trajectory and intensity

predictions become very critical to give civilians enough time to take appropriate actions.

Numerous methods have been developed for hurricane prediction using dynamical models

[81, 22], statistical models [24, 76], or a hybrid of statistical-dynamical models [80]. More

recently, machine learning approaches have become increasingly popular to improve the

accuracy of hurricane prediction tasks [59, 69, 3, 54]. These approaches have been mostly

applied to historical trajectory data, ensemble model outputs, or satellite imagery data.

Unlike previous works, this research work focuses on designing online learning algorithms for

postprocessing the ensemble model outputs to improve hurricane intensity and its ordinal

category prediction. Ordinal regression [65] has been widely used for diverse applications,

such as credit ratings [25, 53, 32], medical research [27, 15, 73], and wind speed forecasting

[46, 36]. Despite recent works on online ordinal regression [20, 43], current methods are not

designed to generate both real- and ordinal-valued predictions. They also do not capture the

inherent temporal autocorrelation in multi-lead time forecasting problems such as hurricane

prediction. The frameworks developed in this chapter were designed to overcome these

limitations.

4.2 Problem Statement

The problem of predicting the state of a moving object is similar to predicting the object

trajectory. It can be studied based on a set of features derived from historical observations

or other methods, such as forecasts generated from a multi-model ensemble for trajectory

state prediction. In order to better describe our approach, the following discussion in this

chapter is conducted in the context of hurricane prediction, although the problem formulation
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and method can be applied to other fields with similar characteristics. Consider a set of

hurricanes, {h1, h2, . . . , hC}, ordered by their start times. Assuming there are ni data points

(time steps) associated with hurricane hi, let N =
∑C

i=1 ni be the total number of time steps

and t ∈ {1, 2, · · · , N} be the time steps available in the hurricane dataset. At each time

step t, assume there are mt numerical (dynamical) model outputs available to generate our

weighted ensemble forecast. If T is the forecast horizon, i.e., maximum lead time forecast,

then let xt,τ ∈ Rmt be the set of forecasts generated by the dynamical models at time t for

lead time τ ∈ {1, 2, · · · , T}. Furthermore, suppose yt,τ ∈ R is the actual hurricane intensity

value at t+ τ and ŷt,τ ∈ {0, 1, · · · , 5} is its corresponding ordinal category according to the

Saffir-Simpson scale. The hurricane category consists of 6 ordinal classes with boundaries

bj, j ∈ {1, ..., 5}. Let b0 = −∞ and b6 = ∞. Then, for any intensity prediction zt,τ belongs

to class ŷt,τ , we have bŷt,τ−1 < zt,τ ≤ bt,τŷ .

At each time step t, we use the set of forecasts from the ensemble members xt,τ to

generate the intensity prediction for lead time τ . First, we consider the real-valued intensity

prediction zt,τ ∈ R computed from the following linear predictor

zt,τ = f t,τ (xt,τ ) = (wt,τ )Txt,τ (4.1)

where wt,τ ∈ Rmt is the learned weight vector associated withmt ensemble member forecasts.

The weight vector is updated in an online fashion whenever new observation data becomes

available. Unlike standard online learning algorithms, which typically assume that there are

no or few missing values in the data, a significant proportion of the ensemble members may

not generate any forecasts at a given time t, as shown in Figure 4.2. We termed this as

the varying feature length problem (i.e., mi varies from one hurricane to another). In this

chapter, we apply the weight re-normalization technique developed in Chapter 3 to address

this problem.
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Figure 4.2: Availability of ensemble model forecast data. The dark cells denote the time
steps in which the model forecasts are available while the white cells denote otherwise.

4.3 Methodology

This section presents the proposed frameworks for multi-lead time hurricane category pre-

diction and intensity prediction.

4.3.1 OOR Framework

OOR is a novel online learning algorithm for multi-lead time prediction of ordinal target

variables. The framework is an extension of our proposed OMuLeT framework in Chapter

3, which was designed for real-valued trajectory prediction. In this framework, the weight

vector wt,τ is decomposed into the following factors:

wt,τ = ut + vt,τ (4.2)

s.t. 1Tmtu
t = 0,1Tmtv

t,τ = 0

where ut is a the shared weight vector for all lead times and vt,τ is the lead time adjustment

weight vector to improve prediction accuracy at lead time τ .

Let Wt = [wt,1,wt,2, · · · ,wt,T ] be the weight matrix for all lead times at time t. At each
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time step t, the weight matrix Wt is trained to minimize the following objection function:

L =
1

2

T∑
τ=1

δt,τγτ
(
ζt,τ + ζ∗t,τ

)
+
ω

2

T−1∑
τ=1

∥∥wt,τ+1 −wt,τ
∥∥2

+
µ

2

∥∥ut − ut−1
∥∥2

+
ν

2

T∑
τ=1

∥∥vt,τ − vt−1,τ
∥∥2

+
η

2

T∑
τ=1

∥∥vt,τ∥∥2

s.t. ∀ t, τ : 1Tmtu
t = 1, 1Tmtv

t,τ = 0,

zt,τ − bŷt,τ ≤ −1 + ζt,τ

zt,τ − bŷt,τ−1 ≥ 1− ζ∗t,τ

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(4.3)

where δt,τ is an indicator function whose value is equal to 1 if xt,τ and yt,τ values are both

available; otherwise its value is 0. γτ represents the relative importance of the prediction error

at lead time τ . The first term in the objective function along with the inequality constraints

are analogous to the loss function defined for support vector ordinal regression [17]. The

second term ensures that the estimated model parameters would vary smoothly at different

lead times, thus preserving the temporal autocorrelation of the predicted intensities. The

third and fourth terms ensure that the shared weight vector and lead time adjustment weights

are close to their values at previous time step. Finally, the last term penalizes large values

in the lead time adjustment weight vectors. The objective function is solved using standard

quadratic programming solvers.

For multi-lead time prediction, it is insufficient to update Wt from Wt−1 alone to pre-

vent the error in Wt−1 being propagated to its future prediction. To address this problem,

we apply the online learning with backtracking and restart strategy described in Chap-

ter 3. Specifically, at each time step t, we use the newly available ground truth values

{yt−T,T ,yt−T+1,T−1, . . . ,yt−1,1} to verify the long-term forecasts in Wt−1,Wt−2, · · · ,Wt−T .

Starting from Wt−T , we solve the objective function to re-compute Wt−T+1, which is then

used to estimate Wt−T+2 and so on until Wt is obtained. This strategy is illustrated in

Figure 4.3.
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Figure 4.3: OOR/OOR-ε framework with backtracking and restart.

Input: ρ, γ, ω, µ, ν, η
Output: Model parameters W and forecasts Z
Initialize: W = IM/M,u = 1M/M ;
for t = 1, 2, . . . , N do

Extract Wt from W,ut from u
Normalize: wt,τ ← wt,τ/cτ ,ut ← ut/c
// Backtracking and restart step
for t′ = t− T, t− T + 1, . . . , t− 1 do

Solve objective function Eqn. (4.3) for OOR
Solve objective function Eqn. (4.5) for OOQR
Solve objective function Eqn. (4.10) for OOR-ε
Solve objective function Eqn. (4.11) for OOQR-ε
Update the weights Wt′+1 and ut

′+1

end
// Prediction step
for τ = 1, 2, · · · , T do

zt,τ = Xt,τwt,τ

end
Renormalize: wt,τ ← cτwt,τ ,ut ← cut

Substitute Wt back into the full vector W
Substitute ut back into the full vector u
if t = ñi then

// End of hurricane predictions
Update weights using Eqn. (4.4)

end
end

Algorithm 2: Proposed OOR/OOQR/OOR-ε/OOQR-ε framework

The pseudocode for OOR framework is shown in Algorithm 2. Since the model is updated

incrementally, we need to consider how to transition the model weights from one hurricane

to another. Let ñi be the accumulated number of data points from hurricane h1 to hi, i.e.
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ñi =
∑i

j=1 nj. When t = ñi, which is the last time step observed for hurricane hi, we need

to control the percentage how the current weight affects the prediction for future hurricanes.

This requires a tradeoff between using the weights from the current hurricane against past

hurricanes, which is governed by a hyperparameter ρ, defined as follows:

Wñi ← ρWñi + (1− ρ)Wñi−1+1

uñi ← ρuñi + (1− ρ)uñi−1+1

(4.4)

4.3.2 OOQR Framework

As hurricanes of categories 3 or higher can cause more severe damages, it is essential to

predict such hurricanes more accurately compared to lower category hurricanes. In this

case, a quantile loss is useful to bias the model to achieve more accurate predictions for

high-category hurricanes. OOR can be extended to accommodate the following quantile loss

function (the first term in Eqn. (4.5)) in order to penalize models that incorrectly predict

high category hurricanes.

L =
T∑
τ=1

δt,τγτ
(
(1− ξ)ζt,τ + ξζ∗t,τ

)
+
ω

2

T−1∑
τ=1

∥∥wt,τ+1 −wt,τ
∥∥2

+
µ

2

∥∥ut − ut−1
∥∥2

+
ν

2

T∑
τ=1

∥∥vt,τ − vt−1,τ
∥∥2

+
η

2

T∑
τ=1

∥∥vt,τ∥∥2

s.t. ∀ t, τ : 1Tmtu
t = 1, 1Tmtv

t,τ = 0,

zt,τ − bŷt,τ ≤ −1 + ζt,τ

zt,τ − bŷt,τ−1 ≥ 1− ζ∗t,τ

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(4.5)

where ξ is the quantile hyperparameter. Note that ζt,τ represents the loss term if the pre-

dicted category is higher than the true category, whereas ζ∗t,τ represents the loss term if the

predicted category is less than the true category. As the prediction can either be larger or

smaller than the ground truth, only one of the two losses is incurred. The quantile hyperpa-

rameter ξ represents the importance of the two losses. When ξ ≈ 1, predictions with higher
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categories are encouraged as the loss from these predictions are much smaller. Furthermore,

the OOQR framework is equivalent to OOR when ξ = 0.5.

4.3.3 OOR-ε Framework

The OOR and OOQR frameworks described in the previous sections were designed to generate

ordinal-valued predictions only. In this section, we extend OOR to OOR-ε to utilized both

the hurricane intensity and category information. This is accomplished by incorporating an

ε-insensitivity loss function [84] into the formulation. We begin by describing our approach

for generating real-valued predictions. A standard approach is to learn a regression function

that minimizes the mean square error (MSE) loss function. Unlike mean square error, the

ε-insensitive loss is more robust as it provides a margin of tolerance ε [28, 5] when learning

the regression function. The loss function can be defined as follows:

L = ζt,τ + ζ∗t,τ

s.t. zt,τ − yt,τ ≤ ε+ ζt,τ

zt,τ − yt,τ ≥ −ε− ζ∗t,τ

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(4.6)

where ζt,τ represents the loss if the prediction is at least ε larger than the true value whereas

ζ∗t,τ represents the loss if the prediction is at least ε lower than the true value. Notice that

when ε = 0, it reduces to the standard `1 loss function.

In addition to predicting the real-valued intensity, our goal is to accurately predict the

ordinal category of the hurricane. In practice, predicting the category is more useful to

communicate the destructive power of a hurricane to policymakers and the public. As noted

in the introduction, intensity prediction alone is insufficient since it ignores how significant

the prediction error affects its predicted category. By adding an ordinal loss, we hope

the model will focus more on data points located near the boundary between two ordinal

59



categories. To achieve this, we introduce the following ordinal loss constraints:

L = ζt,τ + ζ∗t,τ

s.t. zt,τ − bŷt,τ ≤ −1 + ζt,τ

zt,τ − bŷt,τ−1 ≥ 1− ζ∗t,τ

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(4.7)

where [bŷt,τ−1, bŷt,τ ] denote the range of the ordinal category ŷt,τ . Here, ζt,τ represents the loss

if the prediction lies at the larger category whereas ζ∗t,τ represents the loss if the prediction

is in the lower category.

Our joint real-valued intensity and ordinal category prediction is obtained by combining

Equations (4.6) and (4.7):

L = ζt,τ + ζ∗t,τ

s.t. zt,τ − bŷt,τ ≤ −1 + ζt,τ

zt,τ − bŷt,τ−1 ≥ 1− ζ∗t,τ

zt,τ − yt,τ ≤ ε+ ζt,τ

zt,τ − yt,τ ≥ −ε− ζ∗t,τ

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(4.8)

Since their predictions are correlated, we expect the model to produce better results when

they are jointly learned.

Next, we extend the preceding formulation to an online, multi-lead time forecasting

setting. To do this, we decompose the weight vector wt,τ as follows:

wt,τ = ut + vt,τ (4.9)

s.t. 1Tmtu
t = 0,1Tmtv

t,τ = 0

where ut is a the shared weight vector for all lead times and vt,τ is the lead time adjustment

weight vector to improve prediction accuracy at lead time τ . Let Wt = [wt,1,wt,2, · · · ,wt,T ]

be the weight matrix for all lead times at time t. At each time step t, the weight matrix Wt
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is updated by minimizing the following objection function:

L =
1

2

T∑
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s.t. ∀ t, τ : 1Tmtu
t = 1, 1Tmtv

t,τ = 0,

zt,τ − bŷt,τ ≤ −1 + ζt,τ (4.10a)

zt,τ − bŷt,τ−1 ≥ 1− ζ∗t,τ (4.10b)

zt,τ − yt,τ ≤ ε+ ζt,τ (4.10c)

zt,τ − yt,τ ≥ −ε− ζ∗t,τ (4.10d)

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(4.10)

where δt,τ is an indicator function whose value is equal to 1 if xt,τ and yt,τ values are both

available; otherwise its value is 0. γτ represents the relative importance of the prediction error

at lead time τ . The first term in the objective function along with the inequality constraints

are analogous to the loss function defined for support vector ordinal regression [17]. The

second term ensures that the estimated model parameters would vary smoothly at different

lead times, thus preserving the temporal autocorrelation of the predicted intensities. The

third and fourth terms ensure that the shared weight vector and lead time adjustment weights

are close to their values at previous time step. Finally, the last term penalizes large values

in the lead time adjustment weight vectors. The objective function is solved using standard

quadratic programming solvers. Similar to OMuLeT, we also employed the backtracking and

restart strategy when updating the model weights. This strategy is illustrated in Figure 4.3,

with the pseudocode shown in Algorithm 2.
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4.3.4 OOQR-ε Framework

Another challenge to be addressed is the skewed distribution of the hurricane intensity values

as high category hurricanes tend to occur less frequently than lower category ones. Similar to

OOQR framework, OOR-ε framework can be extended to incorporate a quantile loss function.

Unlike conventional regression methods that minimize the square error loss to estimate the

conditional mean of a target variable, a quantile loss estimates the conditional quantiles of

the target variable.

To extend the framework, recall from Equation (4.8) that the loss for a single prediction

is L = ζt,τ +ζ∗t,τ , where ζt,τ represents the loss when the prediction is larger than a threshold

value while ζ∗t,τ is the corresponding loss if the prediction is smaller than the threshold. By

adding a quantile hyperparameter ξ, the prediction loss can be modified as L = (1− ξ)ζt,τ +

ξζ∗t,τ . The quantile hyperparameter ξ represents the importance of the two losses. When

ξ ≈ 1, predictions for higher category are encouraged as the losses from these predictions

will be significantly reduced. Therefore, QR can help bias the framework towards increasing

the number of high intensity predictions.

Thus, our OOQR-ε framework is designed to the minimize the following loss function.

L =
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δt,τγτ
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+
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2

T∑
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∥∥vt,τ − vt−1,τ
∥∥2
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2

T∑
τ=1

∥∥vt,τ∥∥2

s.t. ∀ t, τ : 1Tmtu
t = 1, 1Tmtv

t,τ = 0,

zt,τ − bŷt,τ ≤ −1 + ζt,τ

zt,τ − bŷt,τ−1 ≥ 1− ζ∗t,τ

zt,τ − yt,τ ≤ ε+ ζt,τ

zt,τ − yt,τ ≥ −ε− ζ∗t,τ

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(4.11)

where ξ is the quantile hyperparameter. Note that OOQR is equivalent to OOR when ξ = 0.5.
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4.4 Experiments

We have performed extensive experiments to evaluate the performance of our proposed frame-

works. The ground truth hurricane intensity data along with the official forecasts by the

U.S. National Hurricane Center (NHC) are obtained from their website1. Our hurricane

prediction models are trained using outputs generated by an ensemble of 21 statistical and

dynamical models obtained from the Hurricane Forecast Model Output website2. Note that

the ensemble members used as predictors in our framework are a subset of the statistical and

dynamical models used by NHC to generate their official forecasts. We collected 6-hourly

hurricane intensity data spanning the years 2012 to 2020, which contains 336 tropical cy-

clones. Each tropical cyclone has an average length of 21.9 time steps (data points), which

gives a total of 7,364 data points. The data from 2012 to 2017 (208 tropical cyclones) are

used for training and validation, while those from 2018 to 2020 (128 tropical cyclones) are

used for testing.

4.4.1 Baseline and Evaluation Metrics

We compared our proposed frameworks against the following baseline methods:

1. Ensemble mean: This method simply computes the average value of the ensemble

member outputs at each lead time as its predictions.

2. Persistence: This method assumes the intensity at each time step is equal to intensity

at its previous time step.

3. Passive-Aggressive(PA) [21]: This is a popular online learning algorithm that up-

dates the weights based on newly observed data points.

4. ORION [84]: This is an online multi-task learning algorithm for multi-lead time

forecasting.
1https://www.nhc.noaa.gov
2http://derecho.math.uwm.edu/models
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5. OMuLeT: This is the online learning algorithm described in the previous chapter for

trajectory prediction. It can be applied to the intensity prediction as well using the

ensemble member forecasts as predictors.

6. NHC: This corresponds to the official forecasts generated by NHC.

For a fair comparison, all the online methods apply the backtracking and restart strategy

to update their weights. Hyperparameters for the methods were tuned by minimizing the

following macro-averaged mean absolute error (MAE) on the validation set.

macro-MAE =
1

6

5∑
i=0

 1

Ni

∑
ŷt,τ=i

∣∣ẑt,τ − ŷt,τ ∣∣
 (4.12)

where Ni is the number of data points of category i in the validation set. We use MAE on

the test data to evaluate the error in both real- and ordinal-valued predictions. We also use

F1-score to evaluate accuracy of the ordinal category predictions.

4.4.2 Experimental Results for OOR/OOQR

4.4.2.1 Performance Comparison

Table 4.2 shows the MAE values for lead times 12 hours to 48 hours. The results suggest

that OOR clearly outperformed the other baseline methods for all lead times. Table 4.3 sum-

marizes the F1-scores of the different approaches over all lead times. Several interesting

conclusions can be drawn from the result. First, the F1-score for high category is generally

lower than the F1-score for low category, which means predicting high category is more chal-

lenging. As a consequence, micro-F1 is higher than macro-F1 for all methods since there

are more data points with lower categories than higher ones. Second, ensemble mean has

very low macro-F1 score due to its poor predictive performance on high category hurricanes.

Third, OMuLeT, ORION, and PA also performed poorly since they are not designed for ordinal

data, unlike OOR. Fourth, OOR is consistently among the best models for predicting high cat-

egory hurricanes. Finally, the NHC official forecasts outperform all the competing methods,
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which is not surprising as the NHC official forecasts were generated from a larger suite of

dynamical and statistical models as well as other data sources and human experts beyond

the resources available to us. Despite this, our OOR framework clearly outperformed all the

baseline methods and achieve macro-F1 and MAE values that are comparable to those for

NHC.

MAE
Lead Time (hrs) 12 24 36 48
Ensemble Mean 0.217 0.303 0.374 0.438

Persistence 0.239 0.451 0.625 0.787
PA 0.226 0.394 0.533 0.643

ORION 0.626 0.682 0.712 0.751
OMuLeT 0.508 0.582 0.647 0.699
OOR 0.158 0.265 0.342 0.387
NHC 0.144 0.249 0.310 0.380

Table 4.2: Comparison of MAE for various hurricane category forecasting methods at differ-
ent lead times.

F1-score for hurricane categories
Category macro-F1 0 1 2 3 4 5

Ensemble Mean 0.390 0.917 0.449 0.309 0.305 0.168 0.190
Persistence 0.396 0.859 0.327 0.247 0.234 0.330 0.378

PA 0.395 0.879 0.411 0.293 0.243 0.300 0.241
ORION 0.382 0.627 0.243 0.301 0.356 0.350 0.412
OMuLeT 0.408 0.594 0.349 0.359 0.336 0.404 0.403
OOR 0.492 0.920 0.495 0.364 0.373 0.374 0.425
NHC 0.540 0.924 0.554 0.411 0.390 0.462 0.502

Table 4.3: Comparison of F1-score for various hurricane category forecasting in different
categories.

To obtain a more detailed performance comparison, we examined the confusion matrices

generated by the various baseline algorithms in Figure 4.4. Based on these figures, it is

obvious that the hurricane category data is skewed since there are much more lower category

hurricanes than higher category ones. Yet, it is more important to make accurate predictions

on the higher category hurricanes, since these hurricanes are more powerful and can cause

more severe damages. The results suggest that the persistence approach performs the worst
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Figure 4.4: Comparison of the confusion matrices for hurricane category predictions from
multiple baseline algorithms.

among all the baseline methods. This is not surprising since it simply assumes that the

hurricane category does not change over time. The PA algorithm did a much better job

in terms of accurately predicting the high category hurricanes, but it also produces a large

number of false alarms. The ensemble mean approach can only identify a small number

of high category hurricanes. This is because the approach assumes each model is equally

skilful, without ruling out the effect of bad models. While ORION and OMuLeT algorithms

did a much better job compared to other baselines, they still produce a large number of

incorrect predictions. Overall, OOR outperformed other baselines by balancing the trade-off

between true positives and false alarms. As a result, OOR has higher F1 scores for most of

the hurricane categories compared to the other baselines.

Figure 4.5 shows how the shared weight vector ut of the ensemble members changes over

time using OOR. The plot suggests that some models, such as SHIP and DSHP, generally

have higher weights than others. Some models also become increasingly skillful in recent

years, such as CTCX. The plot provides evidence to support the need for applying online
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Figure 4.5: Weight for the model learned from OOR over hurricanes from year 2012 to 2020.

learning to hurricane intensity prediction in order to continuously adapt the model to the

varying skills of the ensemble members.

To investigate the effect of using quantile loss, we calculated the precision and recall of

OOQR predictions for different values of ξ. The results are presented in Table 4.4. Observe

that increasing the hyperparameter ξ generally leads to smaller precision but larger recall

for higher category hurricanes. This validates our rationale for using quantile loss to help

forecast high category hurricanes more accurately. To demonstrate how the hyperparameter

ξ affects the predictions, Figure 4.6 illustrates the distribution of predicted categories for

the OOQR framework using different hyperparameter values, ξ. For brevity, we only show the

results for 48-hour lead time forecasts generated by OOQR from the year 2012 to 2020. It

is clear that the predictions generated by the OOQR framework tend to be higher categories

with larger hyperparameter ξ. More details can be found in the confusion matrices for OOQR

with different hyperparameter ξ shown in Figure 4.7. As we increase the hyperparameter ξ

from 0.5 to 0.9, the number of accurately predicted hurricanes increases for both category 3

and category 4 hurricanes. For category 3 hurricanes, the number increases from 779 to 790.

For category 4 hurricanes, the number increases from 507 to 544. For category 5 hurricanes,
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the number decreases slightly from 83 to 82. Nevertheless, the results suggest that the

overall performance of our proposed framework improves for high category predictions when

utilizing the quantile loss function.

Precision
Category macro-Precision 0 1 2 3 4 5

OOQR(ξ=0.5) 0.550 0.897 0.489 0.411 0.384 0.540 0.576
OOQR(ξ=0.6) 0.548 0.897 0.488 0.409 0.383 0.536 0.576
OOQR(ξ=0.7) 0.544 0.898 0.489 0.409 0.380 0.532 0.557
OOQR(ξ=0.8) 0.544 0.898 0.488 0.411 0.379 0.532 0.554
OOQR(ξ=0.9) 0.541 0.899 0.488 0.412 0.378 0.527 0.539

Recall
Category macro-Recall 0 1 2 3 4 5

OOQR(ξ=0.5) 0.459 0.944 0.501 0.327 0.362 0.286 0.336
OOQR(ξ=0.6) 0.460 0.943 0.501 0.324 0.364 0.290 0.336
OOQR(ξ=0.7) 0.460 0.942 0.503 0.325 0.361 0.295 0.336
OOQR(ξ=0.8) 0.461 0.941 0.504 0.325 0.364 0.301 0.332
OOQR(ξ=0.9) 0.463 0.939 0.505 0.327 0.367 0.307 0.332

F1-score
Category macro-F1 0 1 2 3 4 5

OOQR(ξ=0.5) 0.492 0.920 0.495 0.364 0.373 0.374 0.425
OOQR(ξ=0.6) 0.492 0.919 0.494 0.362 0.374 0.377 0.425
OOQR(ξ=0.7) 0.491 0.919 0.496 0.362 0.370 0.380 0.419
OOQR(ξ=0.8) 0.492 0.919 0.496 0.363 0.371 0.385 0.415
OOQR(ξ=0.9) 0.492 0.919 0.496 0.365 0.372 0.388 0.411

Table 4.4: Comparison of precision, recall, and F1-score for OOQR with different hyperparam-
eter ξ.

4.4.2.2 Case Study

Figure 4.8 shows an example of the category forecasts for Hurricane Dorian from 2019/08/28

to 2019/08/29. During this period, the hurricane Dorian is rapidly intensified to category

5. The error bars represent the range of category forecasts from ensemble members. The

results showed that the ensemble member outputs have a large variance in their forecasts,

which implies that the forecast models are not equally skilful. Figure 4.8 demonstrates

that OOR/OOQR’s 48-hour forecasts are closer to the NHC official forecasts compared to the

baseline methods. OOQR with hyperparameter ξ = 0.9 would be preferred for forecasts with
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Figure 4.6: The figure shows the prediction difference for OOQR framework with different
hyperparameter ξ. The results considered the 48-hour forecasts generated by OOQR framework
for the hurricanes from year 2012 to year 2020.
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Figure 4.7: Comparison of the confusion matrices for hurricane category predictions from
multiple baseline algorithms.
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Figure 4.8: Comparison of 48-hour forecasts for Hurricane Dorian from 2019/08/28 to
2019/08/29 by different methods. The error bars represent the range of category forecasts
from ensemble members.

higher categories. Figure 4.8(b)(d)(e)(f) clearly show that OOQR generate more accurate

high category predictions than OOR. Although the predictions of the ensemble members vary

greatly, OOR/ OOQR were able to assign the appropriate set of weights to the ensemble members

to make its prediction more accurate.

4.4.3 Experimental Results for OOR-ε/OOQR-ε

4.4.3.1 Performance Comparison

Table 4.5 summarizes the intensity MAE and category MAE for various hurricane intensity

forecasting methods at different lead times. There are several interesting observations from

the results shown in the table. First, the persistence method performs poorly compared

to other methods, which is not surprising as it simply assumes that the intensity remains
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unchanged. Thus, its MAE becomes worse with increasing lead time. Second, PA is better

than the ensemble mean at shorter lead times but is worse at longer lead times, which makes

sense since PA does not consider correlations between the multi-lead time predictions. Third,

ORION and OMuLeT outperforms PA, ensemble mean, and persistence since they consider the

correlation between the multi-lead time predictions. Nevertheless, our proposed framework

OOR-ε outperforms all these baseline methods especially at longer lead times. Its intensity

prediction is comparable to NHC official results (better in terms of intensity MAE but slightly

worse in terms of category MAE). This result is achieved despite the fact that OOR-ε uses

only a small subset of the models used by NHC to generate their official forecasts.

MAE (intensity in kt) MAE (category)
Lead Time (hrs) 12 24 36 48 12 24 36 48
Ensemble Mean 6.742 8.692 9.899 11.036 0.217 0.303 0.374 0.438

Persistence 7.717 13.797 18.246 22.102 0.239 0.451 0.625 0.787
PA 6.042 8.868 10.245 11.917 0.181 0.298 0.372 0.452

ORION 5.792 7.941 9.388 10.551 0.171 0.254 0.338 0.411
OMuLeT 5.632 7.923 9.285 10.513 0.160 0.262 0.338 0.403
OOR-ε 5.700 7.654 8.880 9.840 0.160 0.251 0.329 0.375
NHC 5.019 7.730 8.959 10.140 0.144 0.249 0.310 0.380

Table 4.5: Comparison of the intensity and category MAE for various hurricane intensity
forecasting methods at different lead times.

We also compute the precision, recall, and F1-score of the different methods to assess

how well they perform in terms of predicting the different categories. The results are shown

in Table 4.6. Observe that ensemble mean performs poorly especially for high category

predictions. This suggests the need for an online learning approach that considers the forecast

skills of the individual ensemble members. PA is better than ensemble mean in terms of its

macro-F1 but is still much worse than other online learning approaches. While ORION seems

to have relatively high F1-scores, this is due to their higher recall values at the expense of their

low precision values. In other words, ORION may potentially generate a large number of false

alarms, which makes it ineffective as an early warning system. Finally, our OOR-ε framework

outperforms all the baselines in terms of its overall precision and F1-score, especially for
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F1-score
Category macro-F1 0 1 2 3 4 5

Ensemble Mean 0.390 0.917 0.449 0.309 0.305 0.168 0.190
Persistence 0.396 0.859 0.327 0.247 0.234 0.330 0.378

PA 0.453 0.912 0.487 0.323 0.321 0.362 0.313
ORION 0.491 0.922 0.530 0.377 0.349 0.418 0.350
OMuLeT 0.494 0.923 0.502 0.367 0.386 0.380 0.404
OOR-ε 0.498 0.923 0.499 0.361 0.390 0.372 0.444
NHC 0.540 0.924 0.554 0.411 0.390 0.462 0.502

Precision
Category macro-Precision 0 1 2 3 4 5

Ensemble Mean 0.585 0.876 0.446 0.358 0.370 0.463 1.000
Persistence 0.402 0.848 0.335 0.253 0.245 0.340 0.389

PA 0.449 0.924 0.456 0.328 0.305 0.449 0.230
ORION 0.497 0.917 0.516 0.410 0.340 0.488 0.313
OMuLeT 0.552 0.896 0.502 0.422 0.398 0.555 0.537
OOR-ε 0.590 0.896 0.492 0.416 0.407 0.578 0.750
NHC 0.579 0.924 0.517 0.448 0.386 0.556 0.642

Recall
Category macro-Recall 0 1 2 3 4 5

Ensemble Mean 0.359 0.963 0.453 0.271 0.260 0.102 0.105
Persistence 0.391 0.869 0.320 0.241 0.225 0.320 0.368

PA 0.479 0.899 0.522 0.318 0.339 0.303 0.490
ORION 0.490 0.928 0.544 0.349 0.359 0.366 0.397
OMuLeT 0.461 0.951 0.502 0.324 0.374 0.289 0.324
OOR-ε 0.457 0.951 0.507 0.319 0.374 0.275 0.316
NHC 0.517 0.925 0.596 0.379 0.393 0.395 0.413

Table 4.6: Comparison of F1-score, precision and recall for various hurricane intensity fore-
casting methods at different categories.

large categories. Although its precision for large categories is high, its recall is relatively low.

The OOQR-ε framework is designed to overcome this limitation.

To investigate the effect of using quantile loss, Table 4.7 shows the precision, recall,

and F1-score for OOQR-ε at different values of ξ for the different categories. The results

validate our assumption that increasing ξ will bias the framework towards predicting more

high category hurricanes, as evidenced by the increasing recall but decreasing the precision

values. Note that the result at ξ = 0.5 is equivalent to that for OOR-ε. Figure 4.9 plots the

48-hour forecast distributions of OOQR-ε for different values of ξ, which shows the increasing

number of high category predictions when ξ is larger. The F1-score of OOQR-ε at ξ = 0.9
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is also slightly higher than that for OOR-ε, which suggests the tradeoff between precision

and recall. Figure 4.10 shows the QQ-plots for 48-hour lead time forecasts generated by the

different methods. There are several interesting observations can be made from these plots.

Once again, persistence gives the worst result with many of its predicted values deviate from

the ground truth. This is to be expected since the persistence method does not perform any

learning from the data. Second, the predicted intensity values generated by the ensemble

mean are generally lower than the ground truth for high intensity hurricanes. Third, the

predictions generated by the PA algorithm are often much larger than the ground truth.

The predicted distributions for ORION, OOR-ε and OOQR-ε looked quite similar. A detailed

comparison between OOR-ε and OOQR-ε to the ground truth is shown in Figure 4.11. As

expected, when the hyperparameter ξ increases, the model is more biased towards predicting

higher intensity values, as evidenced by the upward shift in the distribution of the blue points

(for OOQR-ε) compared to the red points (for OOR-ε) in the diagram.

F1-score
Category macro-F1 0 1 2 3 4 5

OOQR-ε(ξ=0.5) 0.498 0.923 0.499 0.361 0.390 0.372 0.444
OOQR-ε(ξ=0.6) 0.500 0.923 0.502 0.362 0.390 0.378 0.445
OOQR-ε(ξ=0.7) 0.500 0.922 0.501 0.356 0.388 0.382 0.448
OOQR-ε(ξ=0.8) 0.500 0.922 0.504 0.357 0.385 0.385 0.448
OOQR-ε(ξ=0.9) 0.501 0.921 0.503 0.358 0.383 0.393 0.446

Precision
Category macro-Precision 0 1 2 3 4 5

OOQR-ε(ξ=0.5) 0.590 0.896 0.492 0.416 0.407 0.578 0.750
OOQR-ε(ξ=0.6) 0.579 0.898 0.494 0.415 0.402 0.571 0.692
OOQR-ε(ξ=0.7) 0.569 0.900 0.492 0.407 0.396 0.563 0.656
OOQR-ε(ξ=0.8) 0.562 0.901 0.494 0.405 0.390 0.555 0.628
OOQR-ε(ξ=0.9) 0.559 0.902 0.492 0.403 0.388 0.549 0.619

Recall
Category macro-Recall 0 1 2 3 4 5

OOQR-ε(ξ=0.5) 0.457 0.951 0.507 0.319 0.374 0.275 0.316
OOQR-ε(ξ=0.6) 0.461 0.949 0.510 0.321 0.378 0.282 0.328
OOQR-ε(ξ=0.7) 0.464 0.946 0.511 0.316 0.381 0.289 0.340
OOQR-ε(ξ=0.8) 0.467 0.944 0.514 0.320 0.379 0.294 0.348
OOQR-ε(ξ=0.9) 0.469 0.941 0.516 0.322 0.378 0.306 0.348

Table 4.7: Comparison of F1-score, precision, and recall for OOQR-ε with different values of
ξ.
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Figure 4.9: 48-hour forecast distribution of OOQR-ε for different ξ.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Comparison of QQ plot for 48-hour forecasts with different methods.
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Figure 4.11: Comparison of QQ plot for OOR-ε and OOQR-ε.

4.4.4 Ablation Study

Our OOR-ε framework uses an ε-insensitive loss function with ordinal constraints to generate

its predictions. To investigate the advantages of combining intensity with category informa-

tion, we consider two variations of our OOR-ε framework. OOR-I removes the ε-insensitive

constraints given by the Inequalities in (4.10c) and (4.10d) when optimizing Eqn. (4.10)

whereas OOR-II ignores the ordinal constraints given by the inequalities in (4.10a) and

(4.10b).

Table 4.8 summarizes the intensity and category MAE for the two variations of OOR-ε.

OOR-I has the worst performance in terms of both its intensity and category predictions. This

is not surprising because OOR-I utilizes only the coarser category information while ignoring

the intensity values. OOR-ε generally outperforms both variations especially at longer lead

times, which suggests the benefits of using both real-valued intensity and its ordinal category

information.
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MAE (intensity in kt) MAE (category)
Lead Time (hrs) 12 24 36 48 12 24 36 48

OOR-ε 5.700 7.654 8.880 9.840 0.160 0.251 0.329 0.375
OOR-I 5.767 8.030 9.411 10.520 0.158 0.265 0.342 0.387
OOR-II 5.669 7.819 9.072 10.119 0.163 0.259 0.333 0.379

Table 4.8: Comparison of intensity and category MAE for OOR-ε variations at different lead
times.

F1-score
Category macro-F1 0 1 2 3 4 5
OOR-ε 0.498 0.923 0.499 0.361 0.390 0.372 0.444
OOR-I 0.492 0.920 0.495 0.364 0.373 0.374 0.425
OOR-II 0.495 0.923 0.500 0.377 0.390 0.363 0.415

Precision
Category macro-Precision 0 1 2 3 4 5
OOR-ε 0.590 0.896 0.492 0.416 0.407 0.578 0.750
OOR-I 0.550 0.897 0.489 0.411 0.384 0.540 0.576
OOR-II 0.585 0.895 0.498 0.427 0.410 0.561 0.720

Recall
Category macro-Recall 0 1 2 3 4 5
OOR-ε 0.457 0.951 0.507 0.319 0.374 0.275 0.316
OOR-I 0.459 0.944 0.501 0.327 0.362 0.286 0.336
OOR-II 0.454 0.952 0.503 0.337 0.372 0.268 0.291

Table 4.9: Comparison of F1-score, precision and recall for OOR-ε variations at different
categories.

Table 4.9 compares the precision, recall, and F1-score for the different methods. Unlike

MAE, the F1-scores for both OOR-I and OOR-II are close, which suggests that the category

constraints (without ε-insensitive loss) still contain enough useful information for hurricane

category predictions. The results of OOR-I is better for higher categories, suggesting that

the ordinal constraints is beneficial for high category predictions. OOR-ε also demonstrates

good performance in high categories, with slightly better overall performance.

4.4.4.1 Case Study

Figure 4.12 shows an example of the forecasts for Hurricane Dorian from August 28 to 29,

2019. During this period, the hurricane rapidly intensified to category 5. The green error
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Figure 4.12: 6 to 48 hour forecasts of Hurricane Dorian from August 28 to 29, 2019. The
error bars represent the range of intensity predictions from the ensemble members.

bars represent the range of forecasts generated by the ensemble members. Despite the large

variance in the ensemble member outputs, OOR-ε and OOQR-ε’s multi-lead time forecasts were

closer to the ground truth compared to other the baseline methods. Nevertheless, Figure

4.12(d)(e)(f) show that none of the ensemble members could correctly infer the rapid intensi-

fication 48-hours ahead of time, which is not surprising since predicting rapid intensification

at longer lead time is a hard problem, This suggests a potential limitation of using the

ensemble member forecasts; better input features are therefore needed for predicting rapid

intensification at longer lead times. Finally, PA and ORION were able to generate high

category predictions since they do not impose the constraints that the sum of weights must

be equal to one. However, this leads to larger prediction errors at other times.
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4.5 Conclusions

In this chapter, I present two novel frameworks called OOR and OOR-ε for online multi-lead

time hurricane intensity predictions. These frameworks are designed to address research ques-

tion RQ2, which is to handle hurricane prediction with an ordinal-valued target variable.

While OOR utilized only the hurricane categories information to update the model, OOR-ε

considered the real-valued hurricane intensity information to further improve its predictive

performance. Experimental results showed that OOR/OOR-ε outperforms various state-of-the-

art online learning methods and can generate predictions close to the NHC official forecasts.

In addition, to address the research questionRQ3, both frameworks were extended to accom-

modate a quantile loss function to further improve its prediction accuracy for high category

hurricanes. Experimental results showed that OOQR/OOQR-ε can both improve the model

performance in high category hurricane predictions.
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CHAPTER 5

ONLINE JOINT PREDICTION OF TRAJECTORY LOCATION AND
STATE

In the previous two chapters, I have developed online learning algorithms for predicting

the trajectory path and state of a moving object separately. Since the tasks are often

quite related, this begs the question whether it is possible to leverage information from

the trajectory path to improve state prediction, and vice-versa. For example, the state of

a moving vehicle could be the driver’s driving proficiency and aggressiveness. The future

trajectory of the moving vehicle is greatly affected by the state of the driver. Therefore, it

is important to determine if the performance of two tasks can be further improved when

learning them jointly. The goal of this chapter is to develop a joint prediction framework

that can generate the trajectory location and state predictions simultaneously, to address

the research question RQ4 described in Chapter 1. To develop the joint learning algorithm,

I will combine the proposed OMuLeT algorithm for trajectory location prediction with the

OOR/OOR-ε framework for state predictions. As proof of concept, the developed joint learning

framework will be applied to the hurricane prediction task similar to previous chapters.

Hurricane prediction is a notoriously hard problem due to the complex physical mecha-

nisms governing the dynamics of a tropical cyclone, which include factors such as sea surface

temperature and vertical wind shear. To address this issue, numerous physics-based mod-

els [41] have been developed over the years to improve hurricane trajectory and intensity

forecasting. Figure 5.1 shows the track and intensity errors of NHC official forecasts in the

past 30 years. Despite the advances in trajectory prediction, little improvements have been

achieved for intensity prediction.

In recent years, there have been growing interests in applying machine learning techniques

to improve the performance of hurricane prediction tasks [59, 69, 3, 82]. However, many of

the existing works were developed for forecasting hurricane trajectories only, with very few
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(a) (b)

Figure 5.1: Errors of NHC official forecasts at Atlantic basin basin from year 1990 to 2019
[12]. Figure (a) shows the track error. Figure (b) shows the intensity error.

of them designed to predict intensities or both. Furthermore, accurate forecasting of its

ordinal category is often more important than the wind speed itself when communicating

the severity of an impending hurricane to the public. Indeed, a prediction error of 60 mph

may seem trifle for a category 0 tropical storm but is significant if a category 5 hurricane at

160mph was incorrectly predicted as a category 2 storm at 100mph. Furthermore, as shown

in Table 5.1, current methods were mostly limited to short-range predictions (24 hours or

less) using historical observations as predictors. These methods are also mostly trained in

a batch learning mode, and thus, are incapable of modeling the non-stationary nature of

hurricane trajectories and their intensities.

Reference Method Input Features Prediction Task Lead Time Learning
(Forecast horizon) Mode

DeMaria et al. 2005 Linear regression Historical data Intensity Multi-step (72 hrs) Batch
Moradi Kordmahalleh et al. 2016 RNN Historical data Trajectory Multi-step (12 hrs) Batch

Cox et al. 2018 Association rule Historical data Trajectory Multi-step Batch
Mudigonda et al. 2017 ConvLSTM Atmospheric data Trajectory Multi-step Batch

Gao et al. 2018 LSTM Historical data Trajectory Multi-step (72 hrs) Batch
Alemany et al. 2019 RNN Historical data Trajectory Multi-step (120 hrs) Batch
Rüttgers et al. 2019 GAN Atmospheric image Trajectory Single step (6 hrs) Batch
Kim et al. 2019 ConvLSTM Climate data Trajectory Multi-step (15 hrs) Batch

Eslami et al. 2019 CNN Physical model outputs Trajectory & intensity Multi-step Batch
Wang et al. 2020 Online linear Physical model outputs Trajectory Multi-step (48 hrs) Online

Giffard-Roisin et al. 2020 Neural network Historical data and atmospheric image Trajectory Multi-step (24 hrs) Batch

Table 5.1: Literature review of recent works on tropical cyclone prediction.

To overcome these limitations, this chapter presents a novel online learning framework

called JOHAN (Joint Online Hurricane TrAjectory and INtensity Prediction) for long-term
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forecasting (up to 48 hours) of hurricane trajectory and intensity. By using an online learning

approach, our model can be efficiently updated to fit new observations while adapting to

concept drifts present in the non-stationary data. JOHAN employs outputs from an ensemble

of dynamical (physical) models such as U.S. Navy Global Environmental Model (NAVGEM)

[48] and Hurricane Weather Research and Forecasting system (HWRF) [41] to generate

its forecasts. These dynamical models are designed to simulate the current and future

atmospheric conditions by solving a set of physical equations. However, the skills of these

ensemble members (i.e., dynamical models) may vary from one hurricane to another. By

training the model in an online fashion, our framework will be able to take into account the

varying skills of the ensemble members over time.

There are several reasons for developing an algorithm that can predict the hurricane

trajectory and intensity jointly. First, previous studies have shown the importance of using

trajectory information for intensity prediction [23, 24]. As an illustration, Figure 5.2 shows

the relationship between hurricane intensity and its distance to the nearest U.S. coastline

using 6-hourly hurricane data between 1851 to 2020 from NHC. The plot suggests that

hurricanes with higher intensities are more likely to be distributed at shorter distances to

the coastline. This phenomenon has been observed in other recent studies [83]. For example,

Wang and Toumi have noted that the distance at which the tropical cyclone hits its peak

intensity has grown closer to the coastline, decreasing at a rate of 30km per decade. This

suggests the utility of using location information from the trajectory to help improve the

prediction accuracy for high category hurricanes. Furthermore, the plot also shows that most

of the hurricanes lose their intensity after landfall, which is not surprising as their energy

dissipates rapidly on land, causing a sharp drop in its intensity.

It is also worth noting that not all predictions are equal in importance. Accurate predic-

tion of high category hurricanes with potential for landfall is more critical than lower cat-

egory hurricanes whose projected path is heading away from the coastline. This is because

hurricanes approaching landfall have potential to cause more damaging impacts to civilian
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Figure 5.2: Heat map showing the relationship between hurricane intensity and its distance
to nearest U.S. coastline. Negative distance indicate that the hurricane has made landfall.

population from storm surges, high winds, inland flooding, etc. Unfortunately, high cate-

gory hurricanes also tend to occur less frequently than the lower category ones, which leads

to a class imbalance problem. To overcome these challenges, JOHAN uses an exponentially-

weighted quantile loss function to bias its algorithm towards predicting more accurately high

intensity hurricanes that are approaching landfall.

5.1 Related Works

Due to the complexity of modeling the dynamics of tropical cyclones, there have been growing

interests in developing machine learning and deep learning techniques for the hurricane

prediction problem. Table 5.1 reviews some of the existing works, which can be categorized

in terms of the input features used, learning approaches, target variable to be predicted, and

the forecast horizon (i.e., maximum lead time).

First, existing methods typically use the historical trajectory data, climate/meteorolog-

ical data, or outputs from physical models as input features for their prediction models.

While historical data are more suitable for short-range predictions [69], their performance

tend to be poor since they do not capture the current and future environmental conditions
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that affect the hurricane’s path and intensity. Methods utilizing meteorological data are usu-

ally based on deep learning techniques, such as generalized advesarial networks (GAN) [77]

and convolutional LSTM (ConvLSTM) [54]. While these works are promising, their predic-

tion errors are still relatively large since the models are typically trained using coarse-scale

images (e.g., 0.5◦ × 0.5◦). Methods that use physical model outputs tend to generate more

reliable long-term forecasts since the dynamical models consider the current environmental

conditions when simulating their future forecast scenarios [29, 82].

Second, most of the existing works focused on the trajectory prediction task only even

though intensity forecasting is the more challenging problem. Although the regression and

deep learning methods can be applied to hurricane intensity forecasting problem, they are

not designed for predicting ordinal-valued categories, unlike the approach proposed in this

chapter. Third, current methods also employ a batch learning approach to train their models.

This may not be feasible nor effective in an operational forecast environment, when a new

hurricane is continuously tracked and the model needs to be periodically updated (say every

3 to 6 hours) to reflect the new trajectory and intensity information.

Finally, recent works have focused on using deep learning and online learning approaches

for hurricane trajectory prediction problems. For deep learning, [69] used sparse RNN with

a flexible topology to generate hurricane trajectory predictions. [35] proposed a Long Short-

Term Memory (LSTM) network to predict typhoon tracks using historical observation data

from 1949 to 2011 while [3] employed RNN over a grid system to handle the non-linearity

of hurricane trajectory forecasting. For online learning, [82] presented a multi-lead time

forecasting framework for hurricane trajectory prediction. They showed that ensemble fore-

casting using outputs from physical models significantly outperform batch methods such as

LSTM trained on historical trajectory data.
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5.2 Problem Statement

We investigate the problem of jointly predicting the trajectory location and state of a moving

object in an online learning fashion. To ground the discussion, we describe the framework

in the context of hurricane prediction, though the formulation and methodology can be

extended to other application domains with similar characteristics. Specifically. our goal

is to design an online learning framework for joint prediction of hurricane trajectory and

its intensity (both ordinal category and continuous values). At first glance, knowing the

category of a hurricane does not appear to add any new information about the hurricane

intensity since the former is derived from latter value (see Table 4.1). Nevertheless, the

information is indeed useful as it is possible for the predicted category error to be small even

though the error in predicting the maximum sustained wind speed is large. For example,

given a category 5 hurricane with maximum sustained wind speed of 140 knots. A model

that predicts its intensity to be 100 knots will have a lower error than one that predicts

its intensity to be 200 knots; yet, the former has a larger category error (since 100 knots

is a category 3 hurricane) compared to the latter, which still predicts the correct category.

Furthermore, a category 2 hurricane at 95 knots predicted as 115 knots has a lower intensity

prediction error compared to one predicted as 60 knots even though the former has a larger

error since the category 2 cyclone is incorrectly predicted as a major category 4 storm rather

than category 1, which is closer to it. Thus, leveraging both ordinal category and real-valued

intensity information can help improve the prediction framework.

Consider a set of hurricanes, {h1, h2, . . . , hC}, ordered by their start times. Assuming

there are ni data points (time steps) associated with hurricane hi, then N =
∑C

i=1 ni is the

total number of time steps in the hurricane dataset. Let X = {X 1,X 2, . . . ,XN} be the set

of trajectory forecasts generated by an ensemble of dynamical models, where each X t corre-

sponds to the hurricane trajectory forecasts generated at time step t. Similarly, the intensity

forecasts generated by the ensemble members can be denoted as X̃ = {X̃1, X̃2, . . . , X̃N}. Let

ñi be the accumulated number of data points from hurricane h1 to hi, i.e. ñi =
∑i

j=1 nj.

84



Thus, {(X j, X̃j) | ñi−1 < j ≤ ñi} is the set of trajectory and intensity data points asso-

ciated with hurricane hi. Assume T is the forecast horizon, i.e., maximum lead-time of

the forecasting task. For each time step t, let X t ∈ R2×mt×T be the hurricane trajectory

forecasts (latitude and longitude), where mt is the number of ensemble member (dynamic

model) forecasts available at time step t. The ensemble member trajectory forecasts for lead

time τ at time t is denoted as Xt,τ ∈ R2×mt , with the corresponding ground truth location

yt,τ ∈ R2. Let Y1,Y2, . . . ,YN be the ground truth locations for all lead times at each time

step t, where Yt ∈ R2×T . Similarly, let X̃t ∈ RT×m̃t be the hurricane intensity forecasts at

time step t, where m̃t is the number of ensemble member forecasts available at time step t.

The ensemble member forecasts for lead time τ at time t is denoted as x̃t,τ ∈ Rm̃t , with the

corresponding ground truth intensity value ỹt,τ ∈ R. Let ỹ1, ỹ2, . . . , ỹN be the true intensity

values for N time steps, where each ỹt = [ỹt,1 ỹt,2 · · · ỹt,T ]T is a vector of intensity values for

all lead times at time step t. Furthermore, let ŷt,τ and ŷt be the corresponding intensity

categories associated with the real-valued intensities in ỹt,τ and ỹt, respectively.

5.3 Methodology

At each time step t, we use the set of ensemble member forecasts for trajectory Xt,τ ∈ R2×mt

and intensity x̃t,τ ∈ Rm̃t , to generate the trajectory and intensity predictions for lead time

τ . The real-valued trajectory prediction zt,τ ∈ R2 and intensity prediction z̃t,τ ∈ R are

computed by linear predictors as follows:

zt,τ = f t,τ (Xt,τ ) = Xt,τwt,τ

z̃t,τ = f̃ t,τ (x̃t,τ ) = x̃t,τw̃t,τ

(5.1)

where wt,τ ∈ Rmt , w̃t,τ ∈ Rm̃t are the learned weight vectors associated with ensemble

member forecasts for the trajectory and intensity models, respectively. The weight vectors

are updated simultaneously in an online fashion whenever new observation data becomes

available. One major challenge in using the ensemble member forecasts is that a significant

proportion of the ensemble members may not generate any forecasts at a given time step t,
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which is why the number of ensemble members, mt, varies from one hurricane to another.

This is known as the varying feature length problem [82]. To address this challenge, we

applied the weight re-normalization technique proposed in Chapter 3.

5.3.1 JOHAN Framework

The novelty of JOHAN is its ability to jointly predict the hurricane trajectory and intensity.

The framework consists of a pair of weight updating components, for hurricane trajectory

and intensity prediction. Both components also employ an exponentially-weighted quantile

loss to improve their prediction performance for close-to-land hurricanes and high category

hurricanes.

To learn the tasks jointly, our framework is trained to minimize the following objective

function in an online learning fashion:

L = Ltra(Θ, ξ) + Lint(Θ̃, ξ̃)

s.t. ξt,τ =


g(ỹt,τ ), if ỹt,τ is available

g(z̃t,τ ), otherwise

ξ̃t,τ =


g̃(yt,τ ), if yt,τ is available

g̃(zt,τ ), otherwise

(5.2)

where Ltra corresponds to the loss function for trajectory prediction while Lint is the loss for

intensity forecasting. Θ and Θ̃ are hyperparameters associated with the hurricane trajectory

prediction tasks, respectively. The quantile hyperparameters ξ and ξ̃ are needed to bias the

model towards predicting more accurately hurricanes that are close to the coastline or those

with high categories. Unlike traditional quantile loss, the quantile hyperparameters here are

not constants but are automatically updated in an online fashion. Specifically, the quantile

loss terms are updated to reflect the significant threat of a hurricane using the functions g(·)

and g̃(·). Recall that yt,τ is the true hurricane location and ỹt,τ is the true intensity at time
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t for lead time τ . However, since yt,τ and ỹt,τ may not available during model update, we

use the model predictions zt,τ and z̃t,τ to estimate them and calculate their corresponding

quantile hyperparameters. Details of the quantile functions are given in Section 5.3.1.3.

5.3.1.1 Ltra with Distance Quantile Regression

As hurricanes can cause severe damages in civilian populated areas, it is imperative to

accurately identify hurricanes that are approaching landfall. Therefore, we would like to

bias the model towards learning hurricanes with potential to strike the land. This can be

done by encouraging hurricane forecasts that are more likely to make landfall. The possibility

of hurricane landfall can be measured by the distance between its current location to the

nearest coastline. Specifically, we introduce a distance loss decomposition to evaluate the

model performance by taking into account its predicted distance to the coastline. For every

ground truth location y, we can find its corresponding projected point p to the nearest

coastline. A unit normal vector to the coastline can be calculated as n = p−y
‖p−y‖ . Given a

predicted location z, its distance loss is defined as d = z−y. The distance loss vector d can

be decomposed into a parallel, d‖ = d · n, and a perpendicular component, d⊥ = d − d‖,

as shown in Figure 5.3. With the definition of distance loss decomposition, the square loss

1
2
‖z− y‖2

2 can be expressed equivalently as follows

Ltra =
1

2

(
ζ2 + ζ∗2 + (z− y)2

⊥
)

s.t. (z− y)‖ = ζ − ζ∗,

ζ ≥ 0, ζ∗ ≥ 0

(5.3)

In order to encourage predictions with shorter distances to the coastline, Eqn. (5.3) can

be further extended to accommodate the quantile loss in Eqn. (5.4). Note that Eqn. (5.4)

is equivalent to Eqn. (5.3) by setting the hyperparameter ξ to 0.5.
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Figure 5.3: Decomposition of the distance loss vector. The green circle is the true location
and the red star is its projected nearest coastline. The unit vector n points in the direction
towards the land. The blue circle is the predicted location. The vector directed from the
green circle to the blue circle is the distance loss vector d, which can be decomposed into a
parallel d‖ and a perpendicular component d⊥.

Ltra = (1− ξ)ζ2 + ξζ∗2 +
1

2
(z− y)2

⊥

s.t. (z− y)‖ = ζ − ζ∗,

ζ ≥ 0, ζ∗ ≥ 0

(5.4)

We assume that the weight vectors wt,τ in Eqn. (5.1) can be decomposed into the

following factors:

wt,τ = ut + vt,τ

s.t. 1Tmtu
t = 1,1Tmtv

t,τ = 0

(5.5)

where ut is the shared weight vectors for all lead times while vt,τ is adjustment to the

weight vectors associated with the different lead times τ . For brevity, we denote Wt =

[wt,1,wt,2, · · · ,wt,T ] as the weight matrix for all T lead times at time step t. To extend the
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preceding formulation to an online multi-lead time forecasting setting, the weight matrix Wt

is updated by minimizing the following objective function at each time step t:

Ltra =

T∑
τ=1

δt,τγτ
(

(1− ξ)ζt,τ 2
+ ξζ∗t,τ

2
+

1

2
(zt,τ − yt,τ )2

⊥

)

+
ω

2

T−1∑
τ=1

∥∥wt,τ+1 −wt,τ
∥∥2

+
µ

2

∥∥ut − ut−1
∥∥2

+
ν

2

T∑
τ=1

∥∥vt,τ − vt−1,τ
∥∥2

+
η

2

T∑
τ=1

∥∥vt,τ∥∥2

s.t. ∀ t, τ : 1Tmtu
t = 1, 1Tmtv

t,τ = 0,

(zt,τ − yt,τ )‖ = ζt,τ − ζ∗t,τ ,

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(5.6)

where δt,τ is an indicator function whose value is 1 if Xt,τ and yt,τ values are both available;

otherwise its value is 0. In the objective function, the first term represents the forecast

errors for all the lead times. The hyperparameter ξ determines the importance of making

location predictions with shorter distance to coastlines. The hyperparameter γ decides the

relative importance of making accurate predictions at different lead times. The second term

ensures that the estimated model parameters would vary smoothly at different lead times,

thus preserving the temporal autocorrelation of the predicted intensities. The third and

fourth terms guarantee that the shared weight vector ut and lead time adjustment weight

vectors vt,τ are close to their values at previous time step. The last term penalizes large

values in the lead time adjustment weight vectors. ω, µ, ν, η are hyperparameters determine

the relative importance of each term in the objective function. If we choose a large ξ ≈ 1,

then the distance loss can be ignored if (zt,τ − yt,τ )‖ > 0. It means that Ltra will give high

weights on the models with predictions with shorter distance to the coastline.

5.3.1.2 Lint with Quantile Ordinal Regression

Our goal is to generate accurate long range predictions of hurricane real-valued intensity

and category. Here, we use the ε-insensitive loss to measure the intensity prediction error.
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Compared to mean square loss, the ε-insensitive loss is more robust as it provides a margin

of tolerance ε [28, 5] when learning the regression function.

Lint = ζ + ζ∗

s.t. z − y ≤ ε+ ζ

z − y ≥ −ε− ζ∗

ζ ≥ 0, ζ∗ ≥ 0

(5.7)

Second, in order to communicate the severity of an impending hurricane to the public,

accurate prediction of its category is often more important than the wind speed itself. As

noted in Section 4.2, intensity prediction alone is insufficient because it ignores whether

the prediction error affects its prediction category. Therefore, we introduce an ordinal loss

to ensure the model is focused more on data points located near the boundary between

two ordinal categories. Analogous to the loss function defined for support vector ordinal

regression [17], the ordinal loss function is defined as follows:

Lint = ζ + ζ∗

s.t. z − by ≤ −1 + ζ,

z − by−1 ≥ 1− ζ∗,

ζ ≥ 0, ζ∗ ≥ 0

(5.8)

Our intensity prediction loss can be measured by combining Eqns. (5.7) and (5.8) as

follows. In addition, to penalize models that incorrectly predict high category hurricanes, it

can be extended to accommodate the quantile loss as (1− ξ)ζ + ξζ∗.

Lint = (1− ξ)ζ + ξζ∗

s.t. z − bŷ ≤ −1 + ζ

z − bŷ−1 ≥ 1− ζ∗

z − y ≤ ε+ ζ

z − y ≥ −ε− ζ∗

ζ ≥ 0, ζ∗ ≥ 0

(5.9)
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Similar to the trajectory model, we assume that the intensity weight vector w̃t,τ can be

decomposed into the following factors:

w̃t,τ = ũt + ṽt,τ

s.t. 1Tm̃tũ
t = 1,1Tm̃tṽ

t,τ = 0

(5.10)

where ũt is the shared weight vectors for all lead times while ṽt,τ is adjustment to the

weight vectors associated with the different lead times τ . For brevity, we denote W̃t =

[w̃t,1, w̃t,2, · · · , w̃t,T ] as the weight matrix for all T lead times at time step t.

Putting it together, the weight matrix W̃t for intensity prediction is trained to minimize

the following objection function:

Lint =
1

2

T∑
τ=1

δ̃t,τ γ̃τ
(

(1− ξ̃)ζt,τ + ξ̃ζ∗t,τ
)

+
ω̃

2

T−1∑
τ=1

∥∥w̃t,τ+1 − w̃t,τ
∥∥2

+
µ̃

2

∥∥ũt − ũt−1
∥∥2

+
ν̃

2

T∑
τ=1

∥∥ṽt,τ − ṽt−1,τ
∥∥2

+
η̃

2

T∑
τ=1

∥∥ṽt,τ∥∥2

s.t. ∀ t, τ : 1Tm̃tũ
t = 1, 1Tm̃tṽ

t,τ = 0,

z̃t,τ − bŷt,τ ≤ −1 + ζt,τ

z̃t,τ − bŷt,τ−1 ≥ 1− ζ∗t,τ

z̃t,τ − ỹt,τ ≤ ε+ ζt,τ

z̃t,τ − ỹt,τ ≥ −ε− ζ∗t,τ

ζt,τ ≥ 0, ζ∗t,τ ≥ 0

(5.11)

where δ̃t,τ is an indicator function whose value is 1 if x̃t,τ and ỹt,τ values are both available;

otherwise its value is 0. In the objective function, the first term represents the forecast errors

for all the lead times. The hyperparameter ξ̃ determines the importance of making accurate

predictions for high category hurricanes. The meanings of other terms in the objective

function are similar to Equation 5.6.
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5.3.1.3 Quantile Hyperparameter Update

As described in the previous section, the quantile hyperparameters are updated in an online

fashion. In general, we want the quantile hyperparameter for trajectory prediction to be large

if the hurricane category is high; and the quantile hyperparameter for intensity prediction

to be large if the hurricane location is close to coastline. In our framework, we use a sigmoid

function σ(x) = 1/(1 + e−x) to generate the quantile hyperparameters.

For Ltra, the hyperparameter ξt,τ is calculated from the function g(x) defined in Eqn.

(5.2) as follows:

g(x) =


0.5, for x < θ

σ([x− θ]/c), otherwise
(5.12)

where x is the ground truth or predicted intensity with current weight vector, θ is a hy-

perparameter that decide when quantile loss is not needed, c is the hyperparameter that

determines the magnitude of quantile hyperparameters. When the hurricane intensity is

low, g(x) = 0.5, and thus, the first loss term in Ltra reduces to the squared loss function.

For high intensity hurricanes, g(x) ≈ 1. In this case, the framework gives higher weights for

models that predict locations with shorter distance to the coastline.

For Lint, the hyperparameter ξ̃t,τ is calculated from the function g̃(·) defined in Eqn.

(5.2) as follows:

g̃(x) =


0.5, for dcoast(x) > θ̃

σ([θ̃ − dcoast(x)]/c̃), otherwise
(5.13)

where x is either the ground truth or predicted location for the current weight vector, dcoast(·)

is a function that computes distance to coastline, θ̃ is a hyperparameter that determines when

the quantile loss is not needed, c̃ is the hyperparameter that determines the magnitude of

quantile hyperparameters. When the hurricane is far from the coastline, we have g(x) = 0.5.

The first loss term of Lint is thus reduced to `1 loss. When the hurricane is very close the

land, g(x) ≈ 1. In this case, the framework gives higher weights to models that predict

higher intensities.
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Figure 5.4: Proposed JOHAN framework.

Error propagation is a challenge for multi-lead time forecasting. It is insufficient to up-

date Wt and W̃t from Wt−1 and W̃t−1 alone as the previous weights are outdated without

using the new observation. To address this problem, we apply the backtracking and restart

strategy described in Chapter 3. The overall framework with backtracking and restart strat-

egy is illustrated in Figure 5.4. The pseudocode for the proposed framework is described in

Algorithm 3. At each time step t, the newly available ground truth value can be determined

as {yt−T,T ,yt−T+1,T−1, . . . ,yt−1,1} for trajectory forecasts and {ỹt−T,T , ỹt−T+1,T−1, . . . , ỹt−1,1}

for intensity forecasts. Therefore, to make all the previous learned weight vectors up to date,

we updated the weight vectors from time step t − T until t − 1 with quantile hyperparam-

eters generated by Eqn. (5.12) and (5.13). Then, the multi-lead time predictions for both

trajectory and intensity can be produced given the ensemble of model outputs and updated

model weight vectors.

5.4 Experiments

We performed experiments using real-world hurricane trajectory and intensity data from

various sources. The ground truth hurricane trajectory and intensity data along with the
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Input: Θ, Θ̃, ξ, ξ
Output: Model parameters w, w̃ and forecasts z, z̃
Initialize: w = 1m/m, w̃ = 1m/m;
for t = 1,2, . . . , N do

if t is the first time step of a trajectory then
Extract ut from w, ũt from w̃
Normalize: ut ← ut/|ut|,vt,τ ← 0, ũt ← ũt/|ũt|, ṽt,τ ← 0

end
Observe yt, ỹt

/* Backtracking and restart step */
for t′ = t− T, t− T + 1, . . . , t− 1 do

Trajectory predictions zt
′,τ = f t

′,τ (Xt,τ ) = Xt′,τwt′,τ

Intensity predictions z̃t′,τ = f̃ t,τ (x̃t
′,τ ) = x̃t

′,τw̃t′,τ

Calculate hyperparameter ξt,τ and ξ̃t,τ using Eq. 5.12 and 5.13
Update ut

′+1,vt
′+1,τ by minimizing Ltra

Update ũt
′+1, ṽt

′+1,τ by minimizing Lint
end
/* Prediction step */
for τ = 1, 2, · · · , T do

Compute wt,τ and w̃t,τ for all lead times
Trajectory predictions zt,τ = f t,τ (Xt,τ ) = Xt,τwt,τ

Intensity predictions z̃t,τ = f̃ t,τ (x̃t,τ ) = x̃t,τw̃t,τ

end
if t is the last time step of a trajectory then

Substitute ut back into the full vector w
Substitute ũt back into the full vector w̃

end
end

Algorithm 3: Proposed JOHAN framework

official forecasts are obtained from the National Hurricane Center (NHC) website1, while

the ensemble member forecasts are obtained from the Hurricane Forecast Model Output

website at University of Wisconsin-Milwaukee2. We collected 6-hourly hurricane trajectory

and intensity data from the year 2012 to 2020, which contains 336 tropical cyclones. Each

tropical cyclone has an average length of 21.9 time steps (data points), which gives a total of

7364 data points. There are 27 trajectory forecast models and 21 intensity forecast models

used in our experiments, which are a subset of the models used by NHC in the preparation

1https://www.nhc.noaa.gov
2http://derecho.math.uwm.edu/models
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of their official forecasts. The data from 2012 to 2017 (208 tropical cyclones) are used for

training and validation, while those from 2018 to 2020 (128 tropical cyclones) are used for

testing.

5.4.1 Baseline and Evaluation Metrics

We compared JOHAN against the following baseline methods:

1. Ensemble mean: This method computes the mean value over all ensemble members

for each given lead time.

2. Persistence: This method assumes that the intensity and moving speed of the hurri-

cane at the next time step is the same as current time step.

3. Passive-Aggressive(PA) [21]: This is a well-known online regression algorithm.

4. ORION [84]: This is an online multi-task learning algorithm for ensemble forecasting.

5. OMuLeT: This is the online learning algorithm described in the Chapter 3 for tra-

jectory prediction. It can be also applied to the intensity prediction as well using the

ensemble member forecasts as predictors.

6. NHC: This corresponds to the official forecasts generated by NHC, which is the gold

standard.

For a fair comparison, the baseline methods (PA, ORION, OMuLeT, and JOHAN) also

apply the backtracking and restart strategy to update their weights. Hyperparameters of the

methods were tuned by minimizing the following mean distance error (MDE) for trajectory

forecasts and macro-averaged mean absolute error (MAE) for intensity forecasts on the

validation set.

MDE =
1

N

∑
t,τ

[
dis
(
zt,τ ,yt,τ

)]
(5.14)
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Figure 5.5: Distance to coastline for hurricanes from year 2012 to 2017 at different time
before landfall.

macro-MAE =
1

6

5∑
i=0

 1

Ni

∑
ŷt,τ=i

∣∣ẑt,τ − ŷt,τ ∣∣
 (5.15)

where N is total number of trajectory forecasts in the validation set, Ni is the number of

data points of category i in the validation set. We use MDE on the trajectory test data to

evaluate the location prediction error, and MAE on the intensity test data to evaluate the

error in both real- and ordinal-valued predictions. We also use F1-score to evaluate accuracy

of the ordinal category predictions.

For JOHAN framework, the hyperparameters Θ and Θ̃ are tuned with the fixed quantile

hyperparameters ξ = ξ̃ = 0.5. The threshold θ for the function g(·) is set to 34 knots

(kt), which is the lower bound for intensity of a tropical storm. As there are very few

time steps with intensity more than 64 kt the hyperparameter c is calculated by solving

g(x) = σ([x − θ]/c) = 0.9 with x = 64 kt. For the function g̃(·), Figure 5.5 shows the

distance to coastline for landfall hurricanes at different hours before landfall. The threshold

θ̃ is set to 300 nautical miles (n mi) where the hurricanes are unlikely to strike the land in

48 hours. The hyperparameter c̃ is calculated by solving g̃(x) = σ([θ̃ − dcoast(x)]/c̃) = 0.9
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with x = 200 n mi which is the distance from the coastline for hurricanes that might reach

landfall after 24 hours.

5.4.2 Experimental Results

Table 5.2 summarizes the trajectory and intensity forecast errors of JOHAN and other baseline

methods with lead times from 12 hours to 48 hours. For trajectory prediction, there are

several interesting conclusions that can be drawn. First, the performance of ensemble mean

is comparable to the NHC official forecast, which validates the advantage of using an ensemble

of physical model outputs as predictors. Second, persistence performs much worse than other

baselines. This is reasonable since persistence assumes that the moving speed of hurricane

is unchanged. Third, OMuLeT and JOHAN generate comparable results and both outperform

other baselines, including the official forecasts from NHC. This is not surprising as both

methods employ similar strategies to update their trajectory prediction models. However,

as will be shown below, OMuLeT is inferior to JOHAN in terms of its trajectory prediction

error for hurricanes within 200 n mi from the coastline.

For intensity forecasts, the performance of ensemble mean is significantly worse than

NHC as shown in Table 5.2. This is not surprising as intensity forecasting is still a very

challenging problem for the dynamical and statistical models in the ensemble. Second, both

persistence and PA perform poorly, much more so than other methods. Fourth, JOHAN

generally has significantly better performance especially at longer lead times with results

comparable to the official forecasts of NHC. This is impressive considering the fact that the

ensemble members used in JOHAN is only a subset of the models used by NHC to generate

their official forecasts.

JOHAN is designed to maximally identify threatening hurricanes with potential to strike

landfall. Table 5.3 summarizes the trajectory and intensity forecast errors for hurricanes

within 200 n mi to coastline with an intensity of at least 64 kt for different prediction

methods at varying lead times (from 12 to 48 hours). The relative performance of all the
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Trajectory error (in n mi) Intensity error (in kt)
Method 12 24 36 48 12 24 36 48

Ensemble Mean 23.30 36.34 50.22 65.03 6.742 8.692 9.899 11.036
Persistence 34.84 88.89 155.87 229.63 7.717 13.797 18.246 22.102

PA 23.30 36.34 50.23 64.80 6.547 10.563 13.294 15.268
ORION 23.37 36.36 50.21 65.00 5.792 7.941 9.388 10.551
OMuLeT 22.20 34.94 48.07 62.10 5.632 7.923 9.285 10.513
JOHAN 22.25 35.01 48.13 62.08 5.732 7.700 8.948 10.026
NHC 24.59 38.49 52.17 65.74 5.019 7.730 8.959 10.140

Table 5.2: Trajectory and intensity forecast errors for different methods at varying lead times
from 12 to 48 hours.

Trajectory error (in n mi) Intensity error (in kt)
Method 12 24 36 48 12 24 36 48

Ensemble Mean 15.80 28.47 41.21 52.09 13.274 17.325 20.246 20.382
Persistence 34.28 87.62 159.38 228.91 13.121 22.547 29.194 32.762

PA 15.81 28.48 41.22 51.98 8.765 16.042 24.275 24.656
ORION 16.02 28.61 41.29 52.15 8.483 13.171 16.806 17.555
OMuLeT 15.33 28.28 39.65 49.67 9.064 14.435 17.562 18.317
JOHAN 15.28 28.15 39.28 49.06 8.963 13.367 16.270 16.554
NHC 16.69 29.47 42.83 54.07 7.962 13.585 16.097 17.587

Table 5.3: Trajectory and intensity forecast errors for hurricanes within 200 n mi to coastline
with intensity at least 64 kt for different methods at varying lead times from 12 to 48 hours.

baseline methods is similar to Table 5.2. The trajectory prediction of JOHAN outperforms all

other baselines for near land hurricanes. This suggests that JOHAN is capable of utilizing the

relationship between high intensity hurricanes and distance to the coastline to improve its

prediction. For intensity predictions, JOHAN still maintains the best predictive performance

at longer lead times.

In addition, we also evaluated the hurricane category prediction for the different methods

by computing their F1-scores. The results are shown in Table 5.4. First, ensemble mean per-

forms poorly for high category predictions, which is not surprising as the different ensemble

members are not equally skillful. Second, the overall macro-F1 performance of persistence

is similar to ensemble mean and much worse than other baselines. Third, PA is better than

ensemble mean but still worse than both ORION and OMuLeT. The macro-F1 score of

JOHAN is slightly higher than ORION and OMuLeT, though JOHAN has better performance
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F1-score
Category macro-F1 0 1 2 3 4 5

Ensemble Mean 0.390 0.917 0.449 0.309 0.305 0.168 0.190
Persistence 0.396 0.859 0.327 0.247 0.234 0.330 0.378

PA 0.453 0.912 0.487 0.323 0.321 0.362 0.313
ORION 0.491 0.922 0.530 0.377 0.349 0.418 0.350
OMuLeT 0.494 0.923 0.502 0.367 0.386 0.380 0.404
JOHAN 0.499 0.922 0.499 0.357 0.385 0.380 0.450
NHC 0.540 0.924 0.554 0.411 0.390 0.462 0.502

Table 5.4: Comparison of F1-score, precision and recall for various hurricane intensity fore-
casting methods at different categories.

F1-score
Category macro-F1 0 1 2 3 4 5

Ensemble Mean 0.378 0.919 0.414 0.234 0.318 0.188 0.195
Persistence 0.394 0.854 0.309 0.182 0.236 0.389 0.392

PA 0.454 0.899 0.412 0.281 0.298 0.395 0.436
ORION 0.505 0.927 0.509 0.330 0.375 0.431 0.459
OMuLeT 0.493 0.923 0.465 0.290 0.402 0.435 0.445
JOHAN 0.496 0.923 0.462 0.274 0.402 0.447 0.467
NHC 0.516 0.920 0.511 0.328 0.362 0.442 0.534

Table 5.5: Comparison of F1-score, precision and recall for hurricanes within 200 n mi to
coastline with various hurricane intensity forecasting methods at different categories.

for the higher categories. Table 5.5 summarizes the F1-scores for hurricanes within 200 n mi

from the coastline, which clearly demonstrates the superiority of JOHAN compared to other

baselines for high category hurricanes.

5.4.3 Ablation Study

A key aspect of JOHAN is its ability to update the quantile hyperparameter in an online

fashion. To investigate the advantages of utilizing a varying quantile hyperparameter, we

consider two variations of our framework. JOHAN-NQ removes the quantile loss for the first

term in Eqn. (5.6) and (5.11) and reduced them to squared loss and `1 loss. JOHAN-Q uses

a fixed quantile hyperparameter for all the weight updates.

Table 5.6 summarizes the trajectory and intensity forecast errors for the two variations
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of JOHAN framework while Table 5.7 summarizes their corresponding forecast errors for near

land high intensity hurricanes. It is clear that increasing the fixed quantile hyperparameters

would lead to better performance for near land, high intensity hurricanes (Table 5.6) but at

the expense of decreasing overall prediction accuracy (Table 5.7). JOHAN, with its varying

quantile hyperparameter, manages to maintain consistently accurate predictions in both

scenarios.

Trajectory (n mi) Intensity (kt)
Method 12 24 36 48 12 24 36 48
JOHAN 22.25 35.01 48.13 62.08 5.732 7.700 8.948 10.026

JOHAN-NQ 22.20 34.94 48.07 62.10 5.700 7.654 8.880 9.840
JOHAN-Q(ξ=0.6) 22.21 34.94 48.08 62.07 5.696 7.647 8.877 9.872
JOHAN-Q(ξ=0.7) 22.23 34.94 48.07 62.06 5.704 7.659 8.897 9.939
JOHAN-Q(ξ=0.8) 22.27 34.96 48.08 62.09 5.722 7.704 8.964 10.064
JOHAN-Q(ξ=0.9) 22.33 35.01 48.11 62.14 5.749 7.781 9.073 10.248

Table 5.6: Trajectory and intensity forecast errors for different variations of JOHAN.

Trajectory (n mi) Intensity (kt)
Method 12 24 36 48 12 24 36 48
JOHAN 15.28 28.15 39.28 49.06 8.963 13.367 16.270 16.554

JOHAN-NQ 15.33 28.28 39.65 49.67 9.176 13.642 16.791 16.854
JOHAN-Q(ξ=0.6) 15.30 28.23 39.53 49.50 9.047 13.488 16.537 16.743
JOHAN-Q(ξ=0.7) 15.28 28.18 39.43 49.33 8.985 13.398 16.346 16.630
JOHAN-Q(ξ=0.8) 15.27 28.15 39.35 49.16 8.950 13.362 16.256 16.606
JOHAN-Q(ξ=0.9) 15.27 28.14 39.29 49.00 8.986 13.412 16.256 16.671

Table 5.7: Trajectory and intensity forecast errors for hurricanes within 200 n mi to coastline
and at least 64 kt using different variations of JOHAN.

5.4.4 Comparison of Model Weights

The time-varying model weights generated by JOHAN are shown in Figure 5.6 for trajectory

and intensity forecasts, respectively. Despite the shared information between the trajectory

and intensity components of the framework, it is clear that the best models for trajectory

prediction are not exactly the same as the best models for intensity prediction. For example,

AVNO was found to be one of the best models for trajectory prediction but its weight
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(a) Trajectory model weights (b) Intensity model weights

Figure 5.6: Trajectory and intensity model weights in JOHAN changes over time.

for intensity prediction is close to 0. This result is also reported by [29]. Compared with

hurricane track forecasting, intensity forecasting is still a very challenging problem [11].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: 6 to 48 hour forecasts of Hurricane Irma from Sep. 4th to Sep. 5th, 2017. Figure
(a) to (d) shows the multi-lead time trajectory forecasts generated from different methods.
Figure (e) to (h) demonstrate the multi-lead time intensity predictions from different meth-
ods. The error bars represent the range of intensity predictions from the ensemble members.
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5.4.5 Case Study

Figure 5.7 shows an example of trajectory and intensity forecasts generated by the different

methods for a major hurricane, Irma, from September 4th to 5th, 2017. For trajectory

prediction, our JOHAN framework is closest to the best track identified by NHC. The hurricane

intensified at the beginning of the period, but neither JOHAN nor other frameworks were able

to predict it as none of the ensemble members were able to capture the intensification.

Nevertheless, as time progresses, JOHAN was able to adapt its weights and its final prediction

gets close to the ground truth intensity. Note that PA and ORION algorithms were able

to generate high intensity predictions outside the range of the ensemble members as their

model weights are not constrained to sum up to 1. However, they can easily overestimate

the intensity at later time steps, as shown in Figure 5.7(g) and (h).

5.5 Conclusions

This chapter presents a novel framework called JOHAN for predicting long-range hurricane

trajectory and intensity simultaneously. The framework is designed to address research ques-

tion RQ4 described in Chapter 1. JOHAN employs a novel exponentially-weighted quantile

loss function to improve its accuracy in predicting high category hurricanes with the po-

tential for near landfall. Experimental results validated the efficacy of JOHAN, especially in

terms of accurately predicting near landfall, high category hurricanes.
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CHAPTER 6

LSTM FOR TRAJECTORY LOCATION PREDICTION

Long-range trajectory prediction has attracted widespread attention from researchers. There

are many applications for trajectory prediction such as animal migration prediction, vehi-

cle trajectory forecasting and hurricane trajectory forecasting. These tasks usually require

forecasting multiple lead times into the future, in which the forecasts between lead times

are often highly correlated. Researchers had developed many machine learning algorithms

to model the correlation between multi-lead times [84, 82]. In Chapter 3, I proposed an

online learning approach called OMuLeT, which can produce accurate multi-lead times loca-

tion predictions. However, one potential limitation of OMuLeT is that it is a linear model.

Due to the complexity and nonlinearity of atmospheric system, the dependencies between

the features as well as the multi-lead time forecasts could be non-linear, in which case the

OMuLeT framework may not be able to learn them effectively.

A neural network is designed to handle nonlinearities in the input features, by using

nonlinear activation functions. In recent years, deep learning approaches have found success

in many prediction tasks, from computer vision and natural language processing to healthcare

and environmental sciences. Among these deep learning models, long short-term memory

(LSTM) is one type of recurrent neural network (RNN) that is widely used for time series

prediction. Many variations of LSTM model had been developed to handle varieties of time

series and sequence prediction tasks. There has also been growing interest recently to apply

deep learning methods to the hurricane trajectory forecasting problem [59, 69, 3]. However,

there are several limitations to these approaches. First, they are mostly designed to generate

short-range forecasts only. Second, they only utilizes historical observation data, which

may not be sufficient to overcome the error propagation problem. For applications such as

hurricane prediction, the historical data alone is insufficient to capture the current and future

environmental conditions that affect its trajectory path. Similar to the approach described in
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Chapter 3, we will use the forecasts generated from an ensemble of statistical and dynamical

models to generate more accurate trajectory predictions for hurricanes. Third, most of the

previous deep learning approaches for hurricane prediction are designed in a batch learning

setting.

To address these issues and research question RQ5, a novel LSTM-based framework,

called DTP (Deep Trajectory Prediction) is proposed to aggregate the multi-model ensemble

forecasts with a temporal attention-like mechanism. LSTM is a type of Recurrent Neural

Network (RNN) that can effectively model time series data with long-term dependencies.

The proposed architecture consists of two stages. The first stage consists of a set of LSTM

based layers called model performance layers to learn the performance of the individual

ensemble members. The second stage is the prediction layer, which uses the output from the

previous stage to generate the final multi-lead time predictions. The proposed framework

allows us to learn the nonlinear relationships among the ensemble member forecasts as well

as the temporal autocorrelations of the predictions. The proposed framework generates its

multi-step forecasts by utilizing the outputs of multi-model ensemble members and their

corresponding attention weights. As the DTP algorithm is trained in a batch mode, it cannot

capture concept drift present in the data. To overcome this limitation, I extended the

DTP framework to ODTP (Online Deep Trajectory Prediction), which is an online learning

formulation to address the concept drift issue. The proposed frameworks were applied to

real-world hurricane data to predict future trajectory path of the hurricane for lead times

up to 48 hours. Experimental results showed that ODTP can achieve better performance than

DTP, and generally outperforms other baseline approaches.

6.1 Related Works

Deep learning has been widely used in hurricane trajectory prediction tasks, because of its

ability to effectively model the complex non-linear relationships. In order to generate fu-

ture tracks, existing methods usually use historical trajectory data, climate/meteorological
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data or the output of physical models as input features of their prediction models. [69]

applied sparse RNN with flexible topology for hurricane trajectory predictions. To gen-

erate the predictions, they found the most similar hurricanes to the target hurricane and

trained their RNN model with Genetic Algorithm (GA). Alemany et al. [3] utilized Long

Short-Term Memory (LSTM) with gridded data to forecast hurricane trajectory. These

approaches are only interested in 6-hour short-range forecasts using historical trajectories.

Because the historical data cannot capture current and future environmental conditions that

affect the path of a hurricane, its performance is often poor and can only be used to generate

short-range forecasts. Methods using meteorological data are usually based on deep learn-

ing techniques, such as, the generalized adversarial networks (GAN) [77] and convolutional

LSTM (ConvLSTM) [54]. Since these models are usually trained using coarse-scale images

(e.g., 0.5◦× 0.5◦), their prediction errors are still relatively large. Methods that use physical

model output tend to produce more reliable long-range forecasts [29, 82]. As the physical

models take current environmental conditions as input and simulate future environmental

conditions, their outputs can be used to generate reliable long-range predictions.

6.2 Problem Formulation

For brevity, we present the nonlinear trajectory prediction task in the context of hurricane

trajectory forecasting problem. The problem formulation and methodology is applicable

to other domains with similar properties. Consider a set of hurricanes, {h1, h2, . . . , hC},

ordered by their start times. Assuming there are ni data points (time steps) associated

with hurricane hi, then N =
∑C

i=1 ni is the total number of time steps in the hurricane

dataset. Assume T is the forecast horizon, i.e., maximum lead-time of the forecasting task,

and M is the total number of ensemble member forecasts. Let X ∈ R2×M×T×N be the set of

trajectory forecasts generated by the ensemble of dynamical (physical) models, where each

X t ∈ R2×M×T corresponds to the hurricane trajectory forecasts generated at time step t.

Let ñi be the accumulated number of data points from hurricane h1 to hi, i.e. ñi =
∑i

j=1 nj.
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Thus, {X j | ñi−1 < j ≤ ñi} is the set of trajectory and intensity data points associated

with hurricane hi. Let Y ∈ R2×T×N to be the corresponding ground truth locations for

X , and Yt ∈ R2×T to be the ground truth locations for for all lead times at each time

step t. The trajectory forecasts of the ensemble members for lead time τ at time t is

denoted as Xt,τ ∈ R2×M , with the corresponding ground truth location yt,τ ∈ R2. Let

E ∈ RM×T×N to be the distance errors corresponding to trajectory forecasts X . At each

time step t, Et ∈ RM×T is the distance errors for all the ensemble members at all lead

times computed based on their ground truth locations. The distance error for ensemble

member m at time t with lead time τ is denoted as et,τ,m = distance(xt,τ,m,yt,τ ) ∈ R. Let

ẽt,m = [et−T,T,m, et−T+1,T−1,m, . . . , et−1,1,m] be the distance errors at time t associated with

the multi-lead time forecasts generated by the ensemble member m.

Note that the forecast dataset X and the corresponding distance error E contain substan-

tial amount of missing values. This is one of the major challenges in using the multi-model

ensemble hurricane trajectory data [82], in which the feature length varies from one hur-

ricane to another. Let K ∈ {0, 1}M×T×N be the mask values corresponding to trajectory

forecasts set X. If the mask value is equal to 1, then the corresponding ensemble member

forecast is available; otherwise, the corresponding forecast is missing. At each time step t,

let Kt ∈ {0, 1}M×T be the mask values associated with all the ensemble members for all lead

times. The mask value of an ensemble member m for forecasts generated at time t with lead

time τ is denoted as kt,τ,m ∈ {0, 1}.

6.3 Methodology

6.3.1 DTP Framework

This section presents an overview of the proposed DTP framework as shown in Figure 6.1. In

the first stage shown in Figure 6.1(a), a set of LSTMs were trained to learn an embedding of

the ensemble members based on their model performance. Specifically, the distance errors

associated with each ensemble member were used as input to the LSTM. Since the distance
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Figure 6.1: The figure illustrate the DTP framework. Figure (a) shows model performance
layer. Figure (b) shows prediction layer.

errors contain missing values, I implemented an approach known as Temporal Decay Memory

(TDM) for imputing the missing values before providing the data as input to the LSTMs.

In the second stage shown in Figure 6.1(b), the outputs of model performance layer were

combined to generate attention-like weights for each ensemble member forecast. The final

multi-lead time predictions are computed based on the attention weights and multi-model

ensemble forecasts. The detailed architecture of proposed DTP framework is discussed in the

following sections.

6.3.1.1 Temporal Decay Memory

In 2018, Kim and Chi [55] proposed an approach Temporal Belief Memory (TBM) for im-

puting missing values in data. It is a memory module that has two gating units, a missing

gate m and a belief gate b. Inspired by this approach, I designed a method called Temporal

Decay Memory (TDM) to impute the distance errors in hurricane trajectory forecasts. The

architecture of TDM method is shown in Figure 6.2. It contains one gating unit, which is

the missing gate m. The missing gate m ∈ {0, 1} indicates if the value is missing or not. If

the value is missing, then m = 1, otherwise m = 0. If the value is observed (m = 0), the

observed value is directly passed to the output. If the value is missing (m = 1), the value

passed to the output is a combination of the last observation value xl, the mean value of all
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Figure 6.2: Temporal Decay Memory for data imputation.

observations xm and the time interval ∆t between the current time and the last observation

time. Unlike the TBM method, we do not replace the missing value by the last observation

xl nor the mean observation value xm. In TDM, we use a function g to calculate the im-

puted missing value based on xl and xm. Note that the influence of the last observed value

xl decreases as the time interval ∆t increases. The function g is calculated as follows:

x̃ = g(∆t,xl,xm) = e−∆t/λxl + (1− e−∆t/λ)xm (6.1)

where λ is the hyperparameter for the decay rate.

The overall implementation of TDM can be expressed by using Equation 6.2. If m = 0,

then x̃→ x. However, if m = 1 and ∆t→ 0, then x̃→ xl, whereas if m = 1 and ∆t→∞,

then x̃→ xm. The hyperparameter λ can be determined by minimizing the imputation loss

of the random sampled data points.

x̃ = TDM(m,∆t,xl,xm) = (1−m)x +m
(
e−∆t/λxl + (1− e−∆t/λ)xm

)
(6.2)

TDM was developed to impute the missing values in the distance error E . When the

forecast x of an ensemble member is missing, the corresponding distance error e is also

unavailable. Since LSTM requires a complete set of (non-missing) input values, we need to

impute the missing values in distance error e first using TDM before providing them to the

LSTM. While TDM can effectively impute the missing values in distance error for computing

a feature embedding of the models, using it to directly impute the trajectory forecasts of the

ensemble members is not optimal since the current location can be very different than the

most recently observed location as well as the mean location at all times.
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6.3.1.2 Model Performance Layer

The model performance layer aims to learn the performance of the individual ensemble

members, as well as the the temporal dependencies between different lead times. Let ẽt,m ∈

RT denotes the distance errors of the forecasts generated by ensemble member m with

respect to the predicting location at time t. The model performance layer takes the sequence

{ẽt−T+1,m, ẽt−T+2,m, . . . , ẽt,m} as input and output a final hidden state ht,m using the stacked

LSTM network. The outputs of LSTM can be considered as a feature embedding of the

ensemble model m at time t. The hidden state ht,m is calculated as a function of the

previous hidden state ht−1,m and ẽt,m using the following equation:

ht,m = LSTM
(
ẽt,m,ht−1,m

)
(6.3)

The long term memory is maintained by the cell sate vector ct in the LSTM, which is

updated using the following equation:

ct = it ◦ ct−1 + ft ◦ c̃t (6.4)

where it is the input gate and ft is the forget gate. The gates control the amount of change

to the cell state vector ct. The input gate it, forget gates ft and cell input activation vector

c̃t are calculated a follows:

it = σ
(
Wiẽ

t,m + Uih
t−1,m + bi

)
ft = σ

(
Wf ẽ

t,m + Ufh
t−1,m + bf

)
c̃t = tanh

(
Wcẽ

t,m + Uch
t−1,m + bc

) (6.5)

Next, the output gate’s activation vector ot and hidden state ht,m can be calculated as

follows:
ht,m = ot ◦ tanh (ct)

ot = σ
(
Woẽ

t,m + Uoh
t−1,m + bo

) (6.6)

In the above equations, the operator ◦ denotes the Hadamard product, σ(·) denotes a sigmoid

activation function, and tanh(·) denotes a hyperbolic tangent function.
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A fully connected network (FCN) takes the hidden states ht,m as input to generate a

multi-lead time performance vector αt,m ∈ RT . The relationship between the input and

output can be expressed as follows:

αt,m = FCN(ht,m) (6.7)

6.3.1.3 Prediction Layer

In this layer, a temporal attention mechanism is used to automatically generate the attention

weights for all the ensemble members across all lead times. Based on the outputs of the model

performance layer, a multi-lead time performance vector αt,m is obtained for each model m

at time t. The attention weights for all ensemble members across all lead times can be

generated using a masked softmax layer. The masked softmax function will ensure that the

weights of the missing values are set to zero. The attention weight βt,τ ∈ RM for all ensemble

members at time t with lead time τ can be calculated based on the following equation:

βt,τm =
exp(at,mτ )∑M
i=1 exp(a

t,i
τ )
,

where at,mτ =


αt,mτ , if kt,τ,m = 1

−∞, otherwise

(6.8)

Finally, the multi-lead time predictions at time step t can be computed as a linear com-

bination of the ensemble member forecasts.

zt,τ =
M∑
i=1

βt,τi xt,τ,i (6.9)

6.3.2 ODTP Framework

The DTP framework described in the previous subsection is trained in a batch mode. Due to

concept drift, such a model can easily become outdated when applied to real-world problems

such as hurricane prediction. To overcome this limitation, the DTP framework is extended to

110



𝜶 , 
𝒆 , 

…

LSTM

𝒉 , 
𝒉 , 

FCN

𝜶 , 
𝒆 , LSTM

𝒉 , 
𝒉 , 

FCN

𝜶 , 
𝒆 , LSTM

𝒉 , 
𝒉 , 

FCN

TDM

TDM

TDM

…

(a) Model performance layer

𝛼 , 

𝛼 , 

𝛼 , 

…

𝛽 , 

𝒌 , 

Mask Softmax

𝛽 , 

𝛽 , 

…

𝒙 , , 

×

𝒙 , , 

×

𝒙 , , 

×

𝛽 , 𝒙 , , 

𝛽 , 𝒙 , , 

𝛽 , 𝒙 , , 

…

𝒛 , Σ

(b) Prediction layer

Figure 6.3: The figure illustrate the ODTP framework. Figure (a) shows model performance
layer. Figure (b) shows prediction layer.

an online learning approach called ODTP, which allows the model to be continuously updated

as new observation data become available.

The proposed ODTP framework is shown in Figure 6.3. Similar to the DTP framework,

ODTP also contains two layers—the model performance layer and the prediction layer. Unlike

the model performance layer in DTP that employs a fixed sequence of length T to train the

LSTM model, ODTP considers only a sequence of length 1 to update the model incrementally.

Furthermore, for each given sequence of length T , the hidden state in DTP is initialized to

zero. In contrast, the hidden state of the LSTM cell is inherited from its previous time

step. This strategy allows the hidden state for each model to be continuously updated in

an online fashion. In addition, online learning is applied to update the model to fit the

new observations. Following the strategy described in Chapter 3, to alleviate the error

propagation problem, the algorithm will backtrack to its previous T time steps and restart

the update from the time step t−T and incrementally update the model until the current time

step t. The online learning with backtrack and restart strategy adopted by ODTP framework

can thus help to adapt to concept drift and overcome the error propagation issue in multi-

lead time forecasting problems. The overall proposed framework is shown in Figure 6.4, with

the pseudocode given in Algorithm 4.
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Figure 6.4: The ODTP framework using backtracking and restart strategy.

Input: Hyperparameter Θ for ODTP model M
Output: Forecasts z
Initialize: Pre-train model M (0) using training dataset;
for t = 1,2, . . . , N do

Observe the trajectory location at time t
/* Backtracking and restart step */
for t′ = t− T, t− T + 1, . . . , t− 1 do

Update model M (t′) using backpropagation with all observed trajectory
locations till current time t

end
M (t) ←M (t−1)

/* Prediction step */
for τ = 1, 2, · · · , T do

Generate trajectory predictions zt,τ using model M (t)

end
end

Algorithm 4: Proposed ODTP framework

6.4 Experiments

The hurricane best track (ground truth) data and NHC official forecasts are available from

the NHC website1, while the ensemble member forecasts were downloaded from the Hurricane

Forecast Model Output website at University of Wisconsin-Milwaukee2. According to NHC,

46 models were used in the preparation of their official forecasts. However, only 27 of them

have data available from the year 2012 to 2020 at the UWM website. We will use the

1https://www.nhc.noaa.gov
2http://derecho.math.uwm.edu/models
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forecasts from these 27 models as ensemble members in our experiments. We collected the

hurricane trajectory data from year 2012 to 2020. The final dataset contains 336 tropical

cyclones and total 7364 observations at 6 hour interval. Each tropical cyclones has a average

length of 21.9 time steps. For ensemble members with 12-hourly interval, we performed

linear interpolation to impute the missing values so that every ensemble member has 6-

hourly forecasts. The hurricane data from 2012 to 2017 (208 tropical cyclones) were used

for training and validation while those from 2018 to 2020 (128 tropical cyclones) were used

for testing.

6.4.1 Baseline and Evaluation Metrics

We compared our DTP framework against the following baseline methods:

1. Ensemble mean: This method simply calculates the mean value of the ensemble

member outputs at each lead time as its predictions.

2. Persistence: This method assumes the moving speed at each time step is equal to

moving speed at its previous time step. Then, the new location can be easily calculated

for each lead time.

3. Passive-Aggressive(PA) [21]: This is a well-known online learning algorithm that

updates the weights based on newly observed data points.

4. ORION [84]: This is an online multi-task learning algorithm for multi-lead time

forecasting.

5. OMuLeT: This is the online learning algorithm described in the Chapter 3 for trajec-

tory prediction.

6. NHC: This is the gold standard, corresponding to the official forecasts generated by

NHC.
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Online model Trajectory error (in n mi)
Lead Time 12 24 36 48
Ens Mean 23.30 36.34 50.22 65.03
Persistance 34.84 88.89 155.87 229.63

NHC 24.59 38.49 52.17 65.74
PA 23.30 36.34 50.23 64.80

ORION 23.37 36.36 50.21 65.00
OMuLeT 22.33 35.33 48.97 63.77
LSTM 41.64 94.50 160.35 232.80
DTP 23.20 36.08 49.72 64.40
ODTP 22.90 35.50 48.85 63.27

Table 6.1: Trajectory and intensity forecast errors for different methods at varying lead times
from 12 to 48 hours.

7. LSTM: This is the vanilla LSTM architecture trained on the historical trajectories

with a window size of 48 hours and 6-hour interval.

For a fair comparison, the model is trained on the same training set. The performance

of the forecasts can be evaluation by the Mean Distance Error (MDE). The mean distance

error for lead time τ can be defined as MDEτ in the following equation:

MDEτ =
1∑
t k

t,τ

∑
t,kt,τ=1

distance(zt,τ ,yt,τ ) (6.10)

6.4.2 Performance Comparison

The results comparing the hurricane trajectory prediction errors for various methods from

12 hour to 48 hour forecast lead times are shown in Table 6.1. Note that the results reported

here for OMuLeT are slightly different from the ones given in Section 3.4.1 since the latter

were based on models trained and tested on hurricane data from the years up to 2018 only.

The performance comparison results shown in the table can be summarized as follows. First,

observe that the performance of the persistence and vanilla LSTM methods are significantly

worse than other approaches. This is because both methods use only historical trajectories,

which are insufficient to generate accurate trajectory forecasts. Second, the performance
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of DTP framework is slightly worse than OMuLeT framework, though they both outperform

other baselines including the NHC official forecasts. Furthermore, ODTP can further improve

the performance of DTP in all lead times, which suggests the advantages of using an online

learning approach to adapt the model to changes in the distribution of the data. Specifically,

the 48-hour forecast error is decreased from 64.40 n mi to 63.27 n mi. Experiment results also

show that ODTP outperform all other online linear models such as PA, ORION, and OMuLeT

at 36 hour or more forecast lead times. This suggests the benefits of using a nonlinear model

to capture the relationships in the multi-lead time forecasts generated at different time steps.

6.4.2.1 Case Study

(a) (b) (c)

(d) (e) (f)

Figure 6.5: Comparison of 48-hour forecasts for Hurricane Irma from 2017/09/08 to
2017/09/09 by different methods.

Figure 6.5 shows an example of the trajectory forecasts for Hurricane Irma from Septem-
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Comparison of 48-hour forecasts for Hurricane Irma from 2017/09/08 to
2017/09/09 by different methods.

ber 8 to September 9, 2017. The plots compare the forecasts generated by ODTP against

DTP and several other batch learning algorithms. The results suggest that the vanilla LSTM

can only predict short-term forecasts accurately, but not for longer lead times. In most of

the cases, the forecasts generated by ODTP algorithm are closest to the best track compared

to other baseline methods. Although the trajectory forecasts generated by the ensemble

members vary quite significantly, ODTP can learn the appropriate attention weights to the

ensemble members to make the prediction more accurate. Furthermore, ODTP also produces

more accurate predictions than DTP, which can be clearly seen from Figures 6.5(b) and (c).

This verifies the importance of using an online learning approach for trajectory prediction.

Figure 6.6 compares ODTP algorithm against all other online learning baseline algorithms. As

can be seen from the figure, online learning algorithms generate quite comparable multi-lead

time forecasts. However, as shown in Table 6.1, there is still improvements in ODTP compared
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Figure 6.7: Mean residual distance error et−τ,m,τ vs. mean αt,mτ of all the time steps within
one hurricane for physical model AVNO. The correlations scores are -0.7294, -0.5489, -0.3457,
-0.2133 for 12-hour, 24-hour, 36-hour, 48-hour lead time forecasts, respectively.

to other online linear models.

6.4.2.2 Analysis of the Model Performance Layer

Based on the discussion in Section 6.3.1.2, we expect the performance layer should be able to

learn an embedding of the ensemble members based on their model performance. The em-

beddings are then used to generate appropriate attention weights for the ensemble members.

To verify this, we will analyze the relationship between the input and output of the model

performance layer. For each physical model m, the input of the LSTM in model performance

layer is the distance error ẽt,m while its output corresponds to the embedding vector, αt,m.

Figure 6.7 shows the scatter plots of mean residual distance error et−τ,m,τ against the mean

vector αt,mτ for all the time steps in a given hurricane for the AVNO model. The correlation

between the mean distance errors and mean vector αt,mτ are -0.7372, -0.5440, -0.3450, -0.2128

for 12-hour, 24-hour, 36-hour, 48-hour lead time forecasts, respectively. Even though the

output αt,m also depends on the long-term memory in LSTM, it is clear that there is a
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significant negative relationship between the residual distance error et−τ,m,τ and the output

score αt,mτ . The larger the residual error, the smaller the embedding vector αt,mτ . This agrees

with our expectation that αt,mτ captures the performance of the ensemble member m.

6.5 Conclusions

In this chapter, I proposed an LSTM based trajectory forecasting framework called DTP and

its online counterpart, ODTP. Unlike existing RNN based approaches for hurricane trajec-

tory prediction, the proposed frameworks aim to produce accurate long-range forecasts by

leveraging the outputs generated from an ensemble of statistical and dynamical models. To

handle the missing value problem, a novel TDM (Temporal Decay Memory) structure was

developed. Both frameworks were applied to real-world hurricane dataset to predict the hur-

ricane trajectory for up to 48 hours lead time. Experimental results showed that ODTP can

achieve better performance than DTP, and generally outperforms other baseline approaches.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

In this chapter, a summary of the thesis contributions are presented along with suggestions

for future research.

7.1 Summary of Thesis Contributions

In this thesis, a family of online learning algorithms was developed to handle a variety of

trajectory location prediction and state prediction tasks. These algorithms were designed to

overcome the various limitations of existing approaches, including handling multi-lead time

predictions, missing values, ordinal-valued state predictions, etc.

First of all, to address research question RQ1, I developed a framework called OMuLeT

for multi-lead time location prediction. The proposed framework could improve trajectory

prediction by combining outputs generated from an ensemble of prediction models in an

online fashion. In order to generate accurate long range predictions, OMuLeT employs a

backtracking with restart strategy to incrementally update the model weights when new

observation data become available. It can also handle the varying feature length issue with

a weight re-normalization strategy.

Second, I proposed the OOR framework to address research question RQ2, which is to

handle the state prediction task with an ordinal target variable. OOR employs an ordinal loss

function in its formulation to process the ordinal variable and generate ordinal predictions.

To address the research question RQ3, the framework was extended to OOQR, which accom-

modates a quantile loss function to improve its prediction accuracy for high/low ordinal

category values. Furthermore, using an ε-insensitive loss function, the OOR-ε and OOQR-ε

frameworks were developed to simultaneously generate real-valued and ordinal-valued state

predictions.

Third, I introduced a joint learning framework called JOHAN for the simultaneous location
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and state prediction of a moving object in order to address research question RQ4. JOHAN

utilizes an exponentially-weighted quantile loss function in its formulations for location and

state predictions, in which the hyperparameter of the quantile loss function is updated jointly

in real-time.

Finally, I proposed a LSTM based approach called DTP for research question RQ5. DTP

approach aims to produce accurate long-range predictions uses the location predictions gen-

erated from an ensemble of predicting models. In order to solve the concept drift problem in

the trajectory prediction task, I developed an online implementation of the DTP framework

called ODTP to further improve the prediction performance.

All of the developed approaches were successfully applied to the hurricane prediction task.

The OMuLeT approach was used to predict the future hurricane trajectory. Experimental re-

sults showed that OMuLeT significantly outperformed various baseline methods, including the

official trajectory forecasts produced by NHC. The OOR/OOQR framework was used to predict

the ordinal-valued hurricane categories. Experimental results suggested that OOR generates

more accurate predictions of the hurricane categories compared to several baseline methods.

In addition, a variation of the framework called OOQR can further improve its accuracy in

predicting high category hurricanes. The JOHAN framework can generate hurricane trajectory

and intensity predictions simultaneously. Experimental results demonstrated that JOHAN can

further improve hurricane intensity predictions and achieves superior performance in terms

of identifying high category hurricanes approaching the land. The DTP/ODTP are non-linear

models that were used to predict the trajectory paths of hurricanes. Experimental results

showed that DTP outperforms various batch learning algorithms whereas its online version,

called ODTP, can further boost the performance and generates more accurate long range

predictions than other baseline methods.
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7.2 Future Works

Although the proposed frameworks showed great promise in terms of addressing the hurricane

prediction problem, there are several potential directions for future research that can be

pursued. This section outlines some of the potential future works.

Application to other Domains In this thesis, I mainly applied the proposed frameworks

to hurricane prediction tasks. However, it is clear that many of these frameworks are also

applicable to other domains, in which useful features beyond historical trajectory (or state)

information are available. For example, the OMuLeT framework can be used to forecast

vehicle trajectory, utilizing a set of multi-lead time location predictions from various real-

time features available. The OOR/OOR-ε frameworks can also be applied to other ordinal

prediction tasks.

LSTM for Trajectory Location and State Prediction The DTP/ODTP frameworks

were developed and evaluated for trajectory location predictions. Extending the frameworks

to a joint learning approach for location and state prediction is a potential future research

direction. In particular, how to combine the joint trajectory/state learning into deep learning

framework is an interesting problem that has not been sufficiently addressed.

Deep Learning Approach for Hurricane Trajectory Prediction with Image Data

In this thesis, we developed an LSTM-based algorithms DTP/ODTP, which uses the outputs

from an ensemble of statistical/dynamical models. In recent years, deep learning approaches,

such as convolutional neural networks, have been successfully applied to satellite imagery

data [54, 39, 38] for hurricane location predictions. Merging my proposed frameworks with

trajectory prediction based on satellite imagery data will be an interesting direction to

pursue.
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