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ABSTRACT 

 

ECONOMIC DAMAGES OF WATER QUALITY WARNINGS AT GREAT LAKE 

BEACHES 

 

By 

 

Gregory Boudreaux 

 

This thesis estimates welfare impacts of two types of water quality warnings using a 

combined revealed-stated preference approach. The data was collected in a survey that randomly 

sampled visitors to 28 public beaches in Michigan and Ohio. The first essay uses a discrete 

choice experiment to measure preferences for common beach attributes including the presence of 

active or recent warnings for harmful algal blooms (HAB) or bacterial contamination. We find 

respondents are willing to drive over 200 miles to avoid a site with either of these warnings, with 

a negative lag effect for both hazards that remains at least 6 days after warnings are lifted.  

The second essay builds on this understanding of beachgoers’ preferences for attributes 

of beaches, by modeling site substitution behavior when beachgoers face warnings. We use a 

multi-site demand model that explicitly accounts for site substitution to estimate welfare impacts 

of site closures and HAB and bacterial warnings. A contraction map identifies the disutility of 

warnings by calibrating changes in site demands to match contingent behavior questions. The 

findings show that, at the average beach, season-long bacterial or HAB warnings cause losses of 

about 1.4 million dollars per year for either hazard. For 2019, the observed HAB and bacterial 

warnings caused about $5.8 million in welfare losses. This estimate accounts for beachgoers’ 

lagged aversion to recently lifted warnings; omitting lagged effects would understate welfare 

losses by 34 percent. Together, the essays show that cost-benefit analyses that fail to account for 

the dynamic disamenity effects of HAB and bacterial warnings will likely understate the costs of 

these events, which are projected to increase in frequency and intensity under climate change. 



 

 

Copyright by 

GREGORY BOUDREAUX 

2021 

 



 

iv 

 

ACKNOWLEDGEMENTS 

 

This work is the result of a long and collaborate process of scholarship, during which I 

have benefitted from the support of countless friends and colleagues. I would like to mention a 

few of them here. First and foremost, I’d like to thank the National Science Foundation, NOAA, 

and the Ohio Sea Grant for their generous funding and research support.   

I sincerely thank my major professor, Dr. Frank Lupi, for his guidance and reassurance 

over the past two years. Dr. Lupi’s willingness to trust my judgment and vision for this thesis has 

been humbling, and his willingness to assist at every turn has helped me become a better 

researcher. He is truly a model for scholarship in this profession. 

Dr. Brent Sohngen and Alan Xu of Ohio State University have been fantastic 

collaborators throughout this project and have taught me the boundless value of being part of a 

research team. I’d like to particularly thank Alan, as well as Sophia Tanner, for helping me 

navigate the wide world of R. In addition to Drs. Lupi and Sohngen, I’d like to thank Dr. Scott 

Swinton for agreeing to serve on my thesis committee, and for his fruitful research suggestions 

and words of encouragement. I am especially grateful to Henry Leto, Will Vaughn, Debra 

Johnson, Kristi Tabaj, Adam Swint, Jacob Zinkhon, Emily Anderson, Hannah Below, Michelle 

Bock, Rachel Dufresne, Madeline Franz, Paige Lampman, Leah Roginski, Alexis Scharrer, and 

Sarah Sutton for assisting with data collection. Without your hard work and dedication, this 

research would not exist.  

Sara—thank you for tolerating our bi-weekly drives around Lake Michigan, and for 

going on this adventure with me. Mom and Dad—any successes I experience in life are the direct 

result of the lessons you’ve taught me and the opportunities you’ve given me. I couldn’t be more 

grateful to be your son.



 

v 

 

TABLE OF CONTENTS 

 

LIST OF TABLES ...................................................................................................................... vii 

 

LIST OF FIGURES ..................................................................................................................... ix 

 

CHAPTER 1: Great Lake Beach Visitor Preferences Toward Water Quality, Bacteria, and  

                         Harmful Algal Blooms ............................................................................................1 

 1.1: Introduction ..........................................................................................................................1 

 1.2: Background ..........................................................................................................................4 

 1.3: Random Utility Theory ......................................................................................................10 

 1.4: Data and Choice Experiment ..............................................................................................15 

    1.5: Results ................................................................................................................................22 

 1.6: Robustness Checks .............................................................................................................29 

 1.7: Discussion ..........................................................................................................................31 

 1.8: Conclusion ..........................................................................................................................39 

 

CHAPTER 2: Economic Welfare Effects of Harmful Algal Blooms and Bacterial 

                         Contamination Warnings in the Great Lakes ........................................................40 

 2.1: Introduction ........................................................................................................................40 

 2.2: Background ........................................................................................................................45 

 2.3: Onsite Counts and Intercept Survey ...................................................................................49 

 2.4: Follow-up Survey and Contingent Behavior Data .............................................................54 

 2.5: Zonal Dataset ......................................................................................................................57 

 2.6: Site Choice Model and Calibration to Stated Preference Data ..........................................63 

 2.7: Results ................................................................................................................................70 

 2.8: Simulation of 2019 Season .................................................................................................82 

 2.9: Conclusion ..........................................................................................................................86   

 

APPENDICES… ..........................................................................................................................89 

APPENDIX A: Intercept Survey Instrument ............................................................................90 

APPENDIX B: Online Follow-up Survey ...............................................................................100 

APPENDIX C: Data Collection ..............................................................................................125 

APPENDIX D: Pilot Survey ...................................................................................................127 

APPENDIX E: Follow-up Disposition Tables and Item Non-response ..................................134 

APPENDIX F: Follow-up Responses to Contingent Behavior and COVID-19 questions .....146 

APPENDIX G: Follow-up Robustness Checks for Choice Experiment .................................136 

APPENDIX H: 2019 Respondent Summary Statistics ...........................................................141 

APPENDIX I: Mixed Logit Conditional Parameter Regressions ...........................................142 

APPENDIX J: Choice Experiment Simulation Results ..........................................................143 

APPENDIX K: Creation of Trip Estimates from Individual Weights ....................................144 

APPENDIX L: Observed HAB and Bacterial Warnings in 2019 Season ...............................147 

APPENDIX M: Re-calibrated Baseline ASC Adjustments and Welfare Estimates ...............148 

APPENDIX N: Contraction Mapping Substitution Predictions..............................................152 



 

vi 

 

APPENDIX O: Comparison of Impaired ASCs and Re-calibrated Baseline ASCs ...............154 

 

REFERENCES.. .........................................................................................................................155 

 

  
 

  



 

vii 

 

LIST OF TABLES 

 

Table 1.1: Beach Sites Sampled in 2019 .......................................................................................15 

Table 1.2:  Choice Experiment Attribute Levels ...........................................................................20 

Table 1.3:  Mixed Logit Estimates .................................................................................................22 

Table 1.4:  Contingent Behavior Response Percentages ................................................................34 

Table 2.1:  Beach Sites Sampled during the 2019 Intercept Survey ..............................................52 

Table 2.2:  Contingent Behavior Scenarios ....................................................................................55 

Table 2.3:  Zonal Dataset Descriptive Statistics ............................................................................62 

Table 2.4:  Average Contingent Behavior Responses Percentages and Standard Errors ...............70 

Table 2.5:  Revealed Preference Recreation Demand Model Estimates ........................................72 

Table 2.6:  Site Closure Welfare Estimates ...................................................................................75 

Table 2.7:  Average ASC Adjustment and Trip-Weighted Average Welfare Loss, Across All 

Sites, for Each Water Quality Scenario .........................................................................................80 

Table 2.8: Simulation of Welfare Losses Attributable to Bacterial and HAB Warnings during the 

2019 Recreation Season .................................................................................................................83 

Table D.1: Conditional Logit Estimates from Pilot Survey ........................................................130 

Table D.2: Mixed Logit Estimates from Pilot Survey ................................................................132 

Table D.3: Contingent Behavior Response Percentages from Pilot Survey ...............................133 

Table D.4: COVID-19 question response percentages from Pilot Survey ..................................133 

Table E.1: Case Disposition Across Beach Sites Sampled in 2019 ............................................134 

Table E.2: Stated Preference Item Non-Response ......................................................................134 

Table F.1: Contingent Behavior Response Percentages (2019 Respondents) ............................135 

Table F.2: COVID-19 Question Response Percentages (2019 Respondents) ........................... 135 

Table G.1: Mixed Logit Robustness Checks ..............................................................................136 

Table G.2: Ordering Effects in Mixed Logit Model ...................................................................138 

Table G.3: Ordering Effects in Contingent Behavior Response Percentages .............................139 

Table G.4: Choice Model Estimate Comparisons .......................................................................140 



 

viii 

 

Table H.1: 2019 Respondent Summary Statistics .......................................................................141 

Table I.1:  Summary of Mixed Logit Posterior Parameter Regressions ......................................142 

Table J.1:  Choice Experiment Simulation Results .....................................................................143 

 

Table K.1: Strata Used in Visitation Estimation .........................................................................146 

 

Table L.1: Observed HAB and Bacterial Warnings in 2019 Season ..........................................147 

 

Table M.1: Recalibrated ASC Estimates and Adjustments for All Sites and Scenarios ............148 

 

Table M.2: Recalibrated Value per Lost Trip Estimates for All Sites and Scenarios .................150 

 

Table N.1: Comparison of Contingent Behavior Data and Nested Logit Predictions ................153 

 

Table O.1: Comparison of Impaired ASCs and Re-calibrated Baseline ASCs ..........................154 

 

  



 

ix 

 

LIST OF FIGURES 

 

Figure 1.1:  Example Choice Experiment Table ............................................................................18 

Figure 1.2: Mean Willingness to Drive to Avoid Sites with Recent Water Quality Events and 

95% Confidence Intervals around the Means ................................................................................26 

Figure 1.3: Average Percent Decrease in the Probability of Visiting Intercepted Site, Relative to 

“Business-as-usual” Scenario ........................................................................................................37 

Figure 1.4: Simulated Percentages of Respondents Who Would Go to the Same Site Given a 

HAB or Bacterial Scenario, and Contingent Behavior Question Response Percentages ..............38 

 

Figure 2.1: Study Area and Sites Used in Analysis ......................................................................51 

Figure 2.2: Nesting Structure for Repeated Nested Logit Model of Great Lakes Beaches ..........63 

Figure 2.3: Contraction Mapping Algorithm ................................................................................69 

Figure A.1: Lake St. Clair & Belle Isle Intercept Survey .............................................................91 

Figure B.1: Online Follow-Up Survey ........................................................................................101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

CHAPTER 1: Great Lake Beach Visitor Preferences Toward Water Quality, Bacteria, and 

Harmful Algal Blooms 

 

1.1: Introduction 

 

 The Great Lakes are one of the United States’ most treasured natural and cultural 

resources and have occupied a substantial place in the nation’s consciousness for centuries. With 

shores stretching over 4000 miles across eight US states and two Canadian provinces, these five 

inland lakes contain 21 percent of the world’s fresh water (NOAA 2019). The Great Lakes are 

also a large driver of economic activity, and their maritime economy generates an average of 8.8 

billion dollars in yearly wages across the tourism, recreation, and transportation sectors (NOAA 

2019). Though the immediate economic impact of the Great Lakes on surrounding communities 

is widely understood and researched, it is much less clear how valuable the Great Lakes are to 

those who use their waters and shores for outdoor recreation. Because budgets for managing the 

Great Lakes are limited, understanding how beach and lake users value their experiences is 

useful information for policy makers when deciding how to use funds. This paper adds to the 

information about beach user preferences available to policymakers and beach managers by 

estimating how beach users value different beach attributes and levels of water quality.  

In recent years, the health of the Great Lakes has come under threat due to increasing 

incidences of harmful algal blooms, large masses of plant matter which are driven in part by 

agricultural runoff. This runoff interacts with other environmental drivers to produce 

cyanobacteria, which in turn produce harmful algal blooms (also known as HABs). Additionally, 

the Lakes have faced perennial difficulties concerning high bacterial concentrations, chiefly 

caused by E. coli-contaminated runoff from urban wastewater, septic tanks, and livestock 

operations. Exposure to E. coli bacteria can cause cramps, diarrhea, vomiting, and life-

threatening kidney failure (Mayo Clinic 2019), while exposure to HABs can cause liver damage 
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and gastrointestinal illness (NIEHS 2020). To protect the public from the health effects of 

bacterial contamination and harmful algal blooms, the eight Great Lakes states have established 

state-level procedures for warning beach users about these events.  

This paper aims to further examine how Great Lakes beach users value beach attributes, 

with a focus on user preferences toward HAB and bacterial warnings, and it is one of the few 

studies that uses a discrete choice experiment to elicit beach user preferences regarding harmful 

algal blooms. This study is also unique in the way that it approaches the question of how to 

frame these welfare effects. While most of the previous studies use beach closings to 

approximate the damage caused by HABs, closures are not the usual course of action taken by 

beach managers, at least in the short term. When a HAB is observed it is much more common for 

state agencies to issue HAB warnings than to close the affected beach. Accordingly, we estimate 

beach user preferences to avoid beaches with HAB and bacterial warnings in effect, as well as 

the effect that the amount of time since the expiration of a past warning has on these preferences.  

We find that both HAB and bacterial warnings have the potential to affect beach 

visitation behavior for significantly longer than the warning is in place. While large HAB events 

have dominated the news cycle in recent years, we find that beach users are willing to drive 

longer distances to avoid beaches with bacterial warnings in effect, relative to similar sites with 

HAB warnings in effect. We also find that preferences to avoid HAB- and bacteria-affected 

beaches behave differently over time, with the disutility of visiting a site with a recent HAB 

warning dying off more quickly in comparison to a site with a recent bacterial warning.    

The structure of this paper is as follows. Section 1.3 outlines random utility theory and its 

application to questions in environmental and resource economics, and summarizes the 

techniques used in this paper for modeling preferences. Section 1.4 describes our data collection 
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process, survey pretesting and the choice experiment. Section 1.5 presents the results of the 

study, and Section 1.6 discusses robustness checks. Finally, Section 1.7 discusses possible policy 

implications of this work and explores validity and further implications of our results using 

auxiliary survey data. Section 1.8 concludes. 

 

 

 

  



 

4 

 

1.2: Background 

 

Lake Erie and Lake St. Clair, a smaller lake which lies between Erie and Lake Huron to 

the north, are the focus of our analysis. Lake Erie is connected to Lake St. Clair by the Detroit 

River, and in turn the St. Clair River connects Lake St. Clair with Lake Huron. Bordered by the 

states of Michigan, Ohio, Pennsylvania, and New York, Lake Erie is the world’s 12th largest 

lake by surface area (Ohio Geological Survey 2014). The Ohio Geological Survey estimates that 

the Ohio shoreline occupies 312 miles of Erie’s 800-mile coast. 

Over the past decade, Lake Erie has become a locus of severe and widely publicized 

HAB incidents. In the summer of 2011, Lake Erie experienced its largest HAB on record, 

hypothesized by researchers to be caused by increased nutrient loadings brought on by heavy 

rainfall as well as above-average temperatures (Michalak et al. 2013). Just three years later in 

August 2014, another HAB event in Lake Erie contaminated the city of Toledo’s water supply, 

affecting over 400,000 people and resulting in the declaration of a state of emergency by then- 

Ohio governor John Kasich. 

This marked increase in HAB events is far from a recent and isolated occurrence. Using 

satellite data of 71 lakes around the world, researchers at the Carnegie Institute for Science found 

that in 68% of these lakes, peak summertime bloom intensity has been steadily increasing since 

the 1980s (Ho et al. 2013). Additionally, in 2019 the United Nations Intergovernmental Panel on 

Climate Change reported that increasing global water temperatures, in conjunction with 

business-as-usual agricultural practices, have the potential to increase this upward trend (IPCC 

2019). This possibility is worrisome, especially for coastal communities in areas like Ohio which 

depend on already HAB-prone waters for drinking water, tourism, and recreation. 
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 Ohio and Michigan both maintain active, publicly available “BeachGuard” websites, 

where daily updates about beach warnings and closures are posted. Since HAB events are not 

very prevalent in Lake St. Clair or along the Michigan coast of Lake Erie, the Michigan 

BeachGuard website mostly functions as a bacterial contamination warning system. If dangerous 

levels of bacteria are detected off the coast of Michigan, a notification is posted to the website, a 

warning sign is posted on the beach in question, and in some cases the beach is closed to the 

public. Ohio follows a similar procedure for cases of bacterial contamination. Additionally, when 

toxins from harmful algal blooms are observed beyond a certain threshold, the Ohio 

Environmental Protection Agency declares a Recreational Public Health Warning, and a sign is 

posted on the affected beach warning visitors of the possible health impacts of coming in contact 

with HABs (Ohio EPA 2019). 

To estimate Lakes Erie and St. Clair beach users’ preferences to experience (or avoid) a 

series of regionally common beach characteristics including harmful algal bloom warnings and 

bacterial warnings, we use a discrete choice experiment administered to Lake Erie and Lake St. 

Clair beach users. In the experiment, respondents are presented with five different choice 

situations, in which they are asked to choose which of two beaches they would rather visit. In 

each choice situation, respondents can also select that they would not visit either beach. Each 

proposed beach alternative is described by a set of attributes, and the levels of the attributes vary 

between and across alternatives. By observing how respondents choose between site alternatives, 

we will be able to estimate marginal utility parameters, and willingness to drive (WTD) metrics, 

for each attribute (Haab and McConnell 2003, Freeman et al. 2014). In the case of beach 

attributes that may negatively impact utility, such as the presence of a HAB or bacterial warning, 

these WTD metrics can be thought of as respondents’ willingness to drive to avoid the hazard. 
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If a researcher decides to use a revealed-preference approach such as a travel cost model, 

identifying the effects of differing levels of environmental attributes on beach use requires 

significant sample variation across in the levels of these attributes (Haab and McConnell 2003) 

and the variation needs to be independent of any unmeasured site attribute. However, due to the 

logistic and time constraints of primary data collection, researchers are often unable to sample 

over long-enough time scales for gathering sufficient variation in environmental attributes in 

observed trips. In the case of assessing the welfare impacts of harmful algal blooms and bacterial 

contamination, this problem is exacerbated since these events are largely stochastic and typically 

only occur a few times per season in any given body of water. Stated preference approaches are 

well suited to this type of research, as they allow analysts to identify and evaluate the effects of 

environmental scenarios that may not have been present during the study’s timeframe.  

Previously, researchers have used several different valuation techniques, including choice 

experiments, to measure how much beach users value changes in water quality and other beach 

attributes. Loomis and Santiago (2013) use both a choice experiment and a contingent valuation 

survey to estimate per-visitor, per-day values of both water clarity and the elimination of trash on 

Puerto Rican beaches, finding that the estimates of these values ($51 and $103, respectively) are 

statistically robust to the elicitation method. Beharry-Borg and Scarpa (2010) use a choice 

experiment to estimate Tobago beach users’ willingness to pay for several different metrics of 

water quality, and then examine preference heterogeneity using a mixed logit model and a latent 

class model. Hilger and Hanemann (2006) also use a latent class model to infer consumer 

valuations of water quality from self-reported trip data collected from visitors to Southern 

California beaches. While most of these studies rely on respondent-perceived water quality 

metrics, Egan et al. (2009) combine visitation data collected from Iowa beachgoers with an 
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extensive dataset detailing biological water quality measures and use a mixed logit approach to 

link the two.  

While the use of recreation demand models to value changes in environmental quality is 

common in the environmental economics literature, much less of this work is focused on the 

Great Lakes (and freshwater beaches in general). In one of the earlier studies to focus on the 

value of Great Lakes beaches, Sohngen et al. (1999) use data from intercept surveys conducted at 

Maumee Bay State Park and Headlands Beach State Park, both Ohio beaches on the Erie coast, 

to value single day trips to both sites. They find average single-day trip values of $25 for 

Maumee and $16 for Headlands, which aggregate to $6.1 and 3.5 billion dollars in annual value, 

respectively. In another early study, Murray et al. (2001) estimate the value of reducing E. coli 

advisories using intercept data collected from visitors at 15 Lake Erie beaches. Importantly, their 

intercept survey asked beach users whether or not they take advantage of publicly-available data 

on current beach advisories when deciding whether or not to make a trip, and the researchers 

found that visitors who use this data would gain on average $24 per year from one less beach 

advisory. Meanwhile, beach users who only use signs posted at the beach during an advisory 

would gain more from the reduction of an advisory, roughly $38 per year. Song et al. (2010) use 

a survey of a web-based consumer panel of Michigan residents to calculate the welfare effects of 

beach closings at Great Lakes beaches in Michigan, including Lake Erie and Lake St. Clair. They 

find that closing one of Michigan’s beaches would result in a loss of around $50 per person, per 

trip. Additionally, the researchers use the number of beach advisories and closures at a given 

beach during 2006 as a proxy variable for the water quality at that beach, although the number of 

beach advisories was not significant in their demand model and they did not control for possible 

correlation with unobserved beach attributes.  
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In one of the first studies to focus explicitly on the welfare impacts of HABs in western 

Lake Erie, Palm-Forster et al. (2016) build on earlier work by Chen (2013) which estimated 

beach visitation for Great Lakes beaches in Michigan. Palm-Forster et al. use two benefit transfer 

approaches, a value transfer and a function transfer, to apply Chen’s earlier model to valuing 

HAB-induced closures of 67 Ohio beach sites on the coast of Lake Erie. They find that the 

typical day trip to a western Lake Erie beach is worth about $18 per trip, and total seasonal 

visitation is worth roughly $2 million per year. In another study focused on the welfare effects of 

Erie HABs, Zhang and Sohngen (2018) use choice experiment data from a survey of Ohio 

anglers to estimate angler willingness to pay to avoid HABs. Using several different discrete 

choice models including mixed logit and latent class logit to account for angler preference 

heterogeneity, the researchers find anglers are willing to pay $8-$11 more to avoid boating 

through a HAB on the way to a fishing site. Finally, Wolf et al. (2019) use survey data and a 

latent-class framework to simulate the welfare effects of HABs and E. coli events in Lake Erie 

on both beach users and anglers. By simulating the full closure of all western Lake Erie beaches 

due to poor water quality conditions, the researchers find that beachgoers and anglers would 

annually lose $7 million and $69 million, respectively, as a result of these closures. Additionally, 

they find that while beachgoers are more averse to E. coli, anglers are more averse to algae. This 

prior research has shown that water quality is a valuable good for which the public is willing to 

pay. Recent work focused on estimating beachgoers’ willingness to pay to reduce HABs and E. 

coli warnings has advanced this understanding in the context of Great Lakes beaches, but there 

are still relatively few studies in this area. Additionally, much of this research uses beach 

closings as a proxy for warnings, yet warnings rarely result in full beach closures. Our work 

contributes to this literature by estimating beachgoer preferences for the presence or absence of 



 

9 

 

HAB and bacterial warnings and by specifically distinguishing between warnings and closings. 

This work is also the first study to consider the lagged effects of recent warnings on beachgoer 

preferences. 

  



 

10 

 

1.3: Random Utility Theory 

 

To estimate beachgoers preferences toward beach attributes such as water clarity, HAB 

warnings and bacteria warnings, we use a discrete choice experiment based on random utility 

theory, which is widely used in transportation, environmental, and other areas of applied 

microeconomics. Pioneered by the early work of psychologists L.L. Thurstone (1927) and R. 

Duncan Luce (1959), random utility theory was formalized in an economic context by Daniel 

McFadden (1974). Random utility models provide a framework for modeling economic choices 

over discrete alternatives, such as which recreation site to visit. Assume that we observe an 

individual i making a choice between J distinct alternatives. The individual’s decision process 

can be represented as follows: 

max
{𝐻𝑖,  𝐼𝑗(∙)}

  𝑈(𝐻𝑖,  𝒛𝒊, 𝒙)      

                                                  𝑠. 𝑡.   𝑌𝑖 = ∑ 𝑝𝑖𝑗𝐼𝑗(∙)𝑗 + 𝐻𝑖 (1) 

∑ 𝐼𝑗(∙) = 1
𝑗

  ;   ∑ 𝐼𝑗(∙)𝒙𝒋 = 𝒙
𝑗

 

where 𝒙𝒋  is a vector of site-specific variables for site j, 𝒛𝒊 is a vector of individual characteristics 

that do not vary by alternative, 𝑌𝑖 is the individual’s income, and 𝑝𝑖𝑗 is i’s price of alternative j. 

𝐻𝑖 is a Hicksian composite commodity, and 𝐼𝑗(∙) is an indicator function equal to 1 if individual i 

chooses alternative j, and 0 otherwise. 

 For utility-maximizing individual i, the conditional indirect utility 𝑈𝑖𝑗 of choosing 

alternative j can be written as: 

                                      𝑈𝑖𝑗 =  𝑉𝑖𝑗(𝐻𝑖,  𝒛𝒊,  𝒙𝒋) +  𝜀𝑖𝑗 = 𝑉𝑖𝑗(𝑌𝑖 − 𝑝𝑖𝑗,  𝒛𝒊, 𝒙𝒋) +  𝜀𝑖𝑗  (2) 
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where we have substituted i’s budget constraint for the Hicksian composite commodity 𝐻𝑖.  𝑈𝑖𝑗 

is made up of the deterministic portion of the utility function 𝑉𝑖𝑗 and the random error term 𝜀𝑖𝑗. 

𝑉𝑖𝑗 can be a function of both attributes of the individual and attributes of the alternative, and is 

commonly written as a linear-in-parameters function: 

                                             𝑈𝑖𝑗 =  𝛽0 +  𝒙𝒋
′𝜷𝟏 + 𝒛𝒊

′𝜷𝟐 +  𝜆(𝑌𝑖 −  𝑝𝑖𝑗)  +  𝜀𝑖𝑗 (3) 

 where 𝜆 represents the marginal utility of income.  

When analyzing the estimated parameters in this indirect utility function, it is useful to 

compute a marginal rate of substitution (MRS) between a given attribute 𝑥𝑗1 and the marginal 

utility of income. This provides an empirical estimate of the implicit trade-off individuals face 

between direct expenditures and attributes of the alternative. Taking the total differential of 

Equation (3) for optimizing choices and recognizing so that the attribute-expenditure tradeoff we 

are considering keeps utility constant for individual i, we have: 

                                                𝑑𝑈𝑖𝑗 = 0 = 𝑑𝒙𝒋
′𝜷𝟏 + 𝑑𝒛𝒊

′𝜷𝟐 + (𝜆𝑑𝑌𝑖 − 𝜆𝑑𝑝𝑖𝑗) (4) 

 Setting the differentials for all attributes besides 𝑥𝑗1  and price equal to zero and 

rearranging, we have: 

                                                           𝑀𝑅𝑆𝑥𝑗1,𝑝𝑖𝑗
=   

𝑑𝜆𝑝𝑖𝑗

𝑑𝑥𝑗1
 =  

𝛽𝑥𝑗1

𝜆
  (5) 

In Equation (5), this MRS between attribute 𝑥𝑗1 and 𝑝𝑖𝑗 represents the individual’s willingness to 

pay (WTP) for a marginal increase in attribute 𝑥𝑗1 ∈ 𝒙𝒋, conditional on choosing j. Since the 

model only captures use values, if the individual does not choose j, marginal willingness to pay 

for  𝑥𝑗1 is zero.  
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As the error term 𝜀𝑖𝑗 is random from the perspective of the researcher, a natural way to 

conceptualize individual i’s decision-making process is in terms of probabilities. The probability 

that individual i chooses alternative j over any other alternative in the choice set J is given by: 

                                                          𝑃𝑖𝑗 = 𝑃[𝑈𝑖𝑗 >  𝑈𝑖𝑘] ∀𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘     (6) 

If the researcher assumes that the error terms 𝜀𝑖𝑗 are independent and identically 

distributed as type 1 extreme value, these choice probabilities take on the familiar conditional 

logit form (McFadden 1974): 

                                                                          𝑃𝑖𝑗 =  𝜋𝑖𝑗 =
𝑒𝑥𝑝 (𝑉𝑖𝑗)

∑ 𝑒𝑥𝑝 (𝑉𝑖𝑘)
𝐽
𝑘=1

    (7) 

which can be thought of as the expected demand for site j. In this context, individual i’s marginal 

willingness to pay for an increase in attribute 𝑥𝑗1is a function of the probability that i chooses 

alternative j and modifies the result in Equation (5) as follows: 

                                             𝑀𝑅𝑆𝑥𝑗1,𝑝𝑖𝑗
= 𝑀𝑊𝑇𝑃𝑥𝑗1

=  
𝜋𝑖𝑗𝛽𝑥𝑗1

𝜆
 (8) 

In our empirical analysis, we generalize the MRS concept and estimate respondent willingness to 

drive for certain beach characteristics, although we later convert our results to willingness to pay 

measures, in both cases using Equation (5) as is common in choice experiments, while 

recognizing the importance of Equation (8) for actual choice settings. 

Although the conditional logit model possesses several intuitive and desirable features for 

modeling discrete choices, it exhibits a statistical property known as independence of irrelevant 

alternatives (IIA): the probability ratio of choosing alternative j to alternative k remains 

unchanged when another alternative is added to the choice set, which can lead to unrealistic 

predictions of substitution behavior. A common way to relax IIA is to use a mixed logit model. 

Mixed logit models are a type of finite mixture model that assume the relevant preferences are 
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drawn from a mixture of underlying population distributions (Greene 2018). In contrast to the 

conditional logit, which produces point estimates for the preference parameters 𝞫, the mixed 

logit model estimates the mean and standard deviation of each parameter across the 

sample. Thus, while the conditional logit model inherently assumes that preferences are 

homogenous across the sample, the mixed logit allows for variation in individuals’ preferences.  

The mixed logit probability of individual i choosing alternative j can be written as 

follows: 

                                                      𝑃𝑖𝑗 = ∫
𝑒𝑥𝑝 (𝑉𝑖𝑗) 

∑ 𝑒𝑥𝑝 (𝑉𝑖𝑘)𝐽
𝑘=1  

𝑔(𝜷|𝜃)𝑑(𝜷)  (9) 

where g(𝞫|𝜃) is the mixing distribution specified by the analyst and 𝜃 represents the parameters 

of this distribution. g(𝞫|𝜃) can be specified as any distribution of preferences in the underlying 

population. The analyst can also allow for correlation among the individual attribute preferences. 

If an attribute parameter’s standard deviation is estimated to be significantly different from zero, 

there is evidence of preference heterogeneity for that attribute in the sample.  

The analyst can use the mixing distribution g(𝞫|𝜃) to further examine the shares of 

respondents with either positive or negative preferences for each attribute level, and this is the 

approach we take in our analysis. In addition, following Revelt and Train (2000), it is possible to 

further isolate where particular individuals lie in the sample distribution of preferences when the 

analyst possesses repeated choice data for each individual.  By specifying the mixing distribution 

g(𝞫|𝜃), the analyst assumes that the true parameter vector 𝞫 follows this distribution in the 

population. Suppose individual i is observed to choose between alternatives j = 1, … , J across t 

= 1, … , T repeated choice situations. Let 𝑪𝒊 =  {𝐶𝑖1, … , 𝐶𝑖𝑇 } denote the particular sequence of 

choices that person i makes across the T observed choice situations, and let 𝑨𝒊𝒋 = {𝐴𝑖𝑗1, … , 𝐴𝑖𝑗𝑇} 

denote the attributes of the unique sequence of alternatives from which the individual chooses 𝐶𝑖. 
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We can then define h(𝞫|𝑪𝒊, 𝑨𝒊𝒋, 𝜃) as the distribution of parameters in the segment of the 

population that would make the sequence of choices 𝑪𝒊 when faced with 𝑨𝒊𝒋. The probability that 

individual I chooses 𝑪𝒊 when faced with 𝑨𝒊𝒋 can be written in a modified mixed logit form: 

        𝑃𝑖𝑗(𝑪𝒊|𝑨𝒊𝒋, 𝜃) =  ∫ 𝑃𝑖𝑗(𝑪𝒊|𝑨𝒊𝒋, 𝜷)𝑔(𝜷|𝜃)𝑑(𝜷) 

                                               = ∫ ∏
𝑒𝑥𝑝 (𝑉𝑖𝐶𝑖𝑡𝑡) 

𝑒𝑥𝑝(𝑉𝑖𝐶𝑖𝑡𝑡) +∑ 𝑒𝑥𝑝 (𝑉𝑖𝑗𝑡)
𝐽
𝑗≠𝐶𝑖𝑡

 
𝑔(𝜷|𝜃)𝑑(𝜷)𝑇

𝑡=1   (10) 

 Using Bayes’ Rule, the sub-population distribution h(𝞫|𝑪𝒊, 𝑨𝒊𝒋, 𝜃) can now be computed 

as follows: 

                                                           ℎ(𝑪𝒊, 𝑨𝒊𝒋, 𝜃) =  
𝑃𝑖𝑗(𝑪𝒊|𝑨𝒊𝒋,𝜷)𝑔(𝜷|𝜃)

𝑃𝑖𝑗(𝑪𝒊|𝑨𝒊𝒋,𝜃)
  (11) 

The analyst can now use this distribution to compute the conditional mean parameter vector in 

the sub-population of people who would make the sequence of choices 𝑪𝒊 when faced with 𝑨𝒊𝒋: 

                                                         𝐸(𝑪𝒊 , 𝑨𝒊𝒋) = ∫ 𝜷 ∗ ℎ(𝑪𝒊, 𝑨𝒊𝒋, 𝜃)𝑑(𝜷) (12) 

This term does not have a closed form solution, so Revelt and Train lay out a simulation process 

to recover the conditional expectation. With large T, the conditional mean above consistently 

estimates the parameter vector of any individual who is observed to choose 𝑪𝒊 when faced with 

𝑨𝒊𝒋 (Train 2009). In the survey, each respondent was offered five choice situations, allowing us 

to examine the determinants of preference heterogeneity using the process outlined in Equations 

(10) through (12). 
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1.4: Data and Choice Experiment 

 

 The data used in this work was collected in a two-stage survey of Michigan and Ohio 

beach users. In the summer of 2019, we performed intercept interviews with beach users at 25 

sites along the Ohio shore of Lake Erie, as well as 3 sites on the coast of Lake St. Clair and the 

Detroit River (Table 1.1). The 28 sites reflect coastal areas most heavily affected by harmful 

algae blooms and bacterial contamination. These 28 sites include all sandy beaches in this area 

that we could identify as open for public use during our sample period. 

 

Table 1.1: Beach Sites Sampled in 2019 

Lake or River County, State Site 

   

Detroit River Wayne, MI Belle Isle Beach 

Lake St. Clair Macomb, MI Lake St. Clair Metropark 

  Walter & Mary Burke Park 

   

Lake Erie Monroe, MI 

 

Lucas, OH 

Sterling State Park 

Luna Pier Beach 

Maumee Bay State Park Erie Beach 

Maumee Bay State Park Inland Beach 

 Ottawa, OH Camp Perry Beach 

  Port Clinton City Beach 

  East Harbor State Park 

 Erie, OH Nickel Plate Beach 

  Old Woman Creek Beach 

  Sherod Park Beach 

  Main Street Beach 

  Showse Park Beach 

 Lorain, OH Lakeview Park Beach 

  Century Park Beach 

  Veteran’s Memorial Park Beach 

 Cuyahoga, OH Huntington Beach 

  Edgewater Park Beach 

  Euclid State Park 

  Sims Beach 

 Lake, OH 

 

Ashtabula, OH 

Headlands Beach State Park 

Fairport Harbor 

Walnut Beach 

Geneva State Park 

Lakeshore Park Beach 

Conneaut Beach 

 

Intercept surveys were conducted on randomly selected days between May 27th and 

September 1st, and each sampled day was divided into morning and afternoon shifts. After 
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arriving at a site, interviewers walked the shoreline and counted beachgoers both in the water and 

on the sandy portions of the beach. Boaters in the water were excluded from these counts. 

Intercept interviews were then conducted with a random sample of visitors. Intercept respondents 

were asked about their beach recreation behavior, demographic information, and whether they 

would provide an e-mail address for a follow-up survey.  

The intercept survey resulted in 4239 interviews for an 86% response rate (see Appendix 

E for a complete disposition of attempted interviews). In total, we collected 2538 (60%) usable 

emails of sampled beach users from the intercept survey. In May and June of 2020, these 2538 

respondents were each e-mailed up to 5 invitations to the online follow-up survey. Of these 

invitations, 252 were undeliverable and 3 people explicitly refused to take the survey. 127 people 

partially completed the survey (i.e., did not answer any stated preference questions), and 1067 

respondents completed the survey (47% of valid email invitations). These 1067 respondents 

answered an average of 4.7 out of 5 possible choice experiment questions—see Appendix E for a 

complete item non-response table for the stated preference questions. 

In the follow-up survey, we used a discrete choice experiment to elicit stated preferences 

for common beach attributes, including sand quality, crowding, water quality, and the presence 

of harmful algal bloom and bacterial warnings. The choice experiment presented respondents 

with five pairs of possible sites with varying levels of beach characteristics, and asked them to 

choose which beach they preferred, including a “neither” option. Respondents were also asked 

questions about their demographic information and various other items. 

As part of the survey design process, we pre-tested the follow-up survey instrument via 

one focus group and several cognitive interviews with Michigan and Ohio beach users. Focus 

groups and cognitive interviews ensure that respondents from the target population can 



 

17 

 

understand the questions and tasks that they are being asked to complete and are an essential part 

of stated preference survey development (Kaplowitz et al. 2004, Johnston et al. 2017). In August 

2019, we conducted the focus group with 14 Ohio beach users using an early version of the 

choice experiment. To further refine the survey instrument, we conducted 15 cognitive 

interviews with eligible Ohio and Michigan beach users. Interview participants were recruited 

from Amazon Mechanical Turk (MTurk) and the undergraduate student populations of Ohio 

State University and Michigan State University.  The one-on-one cognitive interviews were done 

iteratively online via screensharing, so we were able to watch as participants completed the 

survey and assess how well they comprehended the questions and choice scenarios in real time. 

After respondents completed the survey, we further probed them on the survey instrument, 

focusing on the stated preference sections. The cognitive interviews resulted in several 

substantive changes to the choice experiment and survey.1  

  

 
1 For example, several respondents were confused by the inclusion of beaches with both “clear” water 

clarity and a harmful algal bloom warning in effect and considered this situation implausible. Our final experimental 

design was specified to exclude such implausible attribute combinations. Additionally, the presence of either a 

harmful algal bloom warning or a bacterial warning at one of the beaches in the choice experiment caused almost all 

respondents to choose the other beach. Thus, we expanded HAB and bacterial warning levels to include intermediate 

levels for the days passed since the warning was lifted. 
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In the choice experiment, respondents were instructed to assume that the two beaches 

presented in each choice set were the only beaches available to visit, and that choosing the 

“neither” option meant they would stay home. Each beach varied in five environmental 

attributes, as well as one-way distance from the respondent’s home. An example of the choice 

experiment tables presented in the follow-up survey is shown below in Figure 1.1. 

 

Figure 1.1: Example Choice Experiment Table 
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 The follow-up survey instrument began with a series of questions explaining each beach 

attribute and its levels, and then asked each respondent which attribute levels best described the 

beach where he or she was intercepted. This was done early in the survey to inform respondents 

about the attribute levels in a way which facilitated participation and minimized survey fatigue. 

Directly before the choice experiments, respondents were reminded of the attributes presented 

before and were offered the option to click a hyperlink that opened a summary of the attribute 

levels that looked similar to Table 1.2. 

Sand quality was presented in three levels: mostly sand, half sand/half pebbles, and 

mostly pebbles, and each level was accompanied by a corresponding picture of sand taken at one 

of the 28 beaches included in the study. Pictures and levels of sand quality reflect the actual 

range of sand quality along the coasts of Lake Erie and Lake St. Clair. Water clarity was also 

presented in three levels: clear, somewhat murky, and very murky. To standardize these terms’ 

meanings, we defined each water clarity level as the maximum depth at which a beach visitor 

can clearly see his or her submerged feet on a typical trip to the beach. Similarly, we specified 

the three levels of crowding (not crowded, somewhat crowded, and very crowded) in terms of 

how easy it is to find a spot to sit on a typical day at the given beach. During pre-test cognitive 

interviews, most beachgoers indicated that these descriptions made sense to them and were 

similar to how they usually think about these beach attributes. 

The beaches presented in the choice experiment also varied in terms of harmful algal 

bloom and bacterial warnings (Table 1.2). The HAB and bacterial warning attribute levels 

indicated: there is not and has not been a warning at the site this season; there is a warning at the 

site, or that there is not currently a warning but there was a recent warning that expired either 1, 

3 or 6 days earlier. The three intermediate levels are meant to reflect the possibility that 
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beachgoers may care about the amount of time since the last warning was lifted, in addition to 

the presence of a warning.  

Finally, the choice experiment included the one-way distance (in miles) from the 

respondent’s home to the beach. The final distance levels varied individually for each respondent 

as 10, 50, 100, and 150 miles, plus the minimum distance from the respondent’s zip code to any 

beach in our sample. This “minimum distance” correction ensured that none of the proposed sites 

in the choice experiment were implausibly close to any given respondent’s residence.  

 

Table 1.2: Choice Experiment Attribute Levels 

Attribute Levels 

  

Sand quality Mostly sand 

 Half sand/ half pebbles 

 Mostly pebbles 

  

Water clarity Clear 

 Somewhat murky 

 Very murky 

  

Crowding Not crowded 

 Somewhat crowded 

 Very crowded 

  

Presence of bacterial warning No warning, none this season 

 No warning, last warning lifted {1, 3, 6} days ago 

 Warning in effect 

  

Presence of HAB warning No warning, none this season 

 No warning, last warning lifted {1, 3, 6} days ago 

 Warning in effect 

  

One-way distance to site  {10, 50, 100, 150} miles + minimum distance from respondent 

zip code to any site in the sample frame 

  

 

Sand Quality Pictures  

 

 

 

 

 

 

 

 

 

       Mostly sand         Half sand/ half pebbles       Mostly pebbles 
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To efficiently estimate the preference parameters in beachgoers’ indirect utility functions, 

we used Ngene (ChoiceMetrics 2018) to generate an experimental design that minimized D-error 

subject to several conditions imposed on the design. Although such designs result in efficient 

estimates of the preference parameters used to build the design, researchers generally do not 

know the true distribution of preferences in the population. Therefore, when generating D-

efficient designs researchers must supply prior estimates of these parameters. To ground our 

experimental design in empirical evidence, we conducted a pilot study to generate more 

informed priors and used the estimated parameter distributions from the pilot data to generate a 

Bayesian design for the final survey.  

In addition to providing evidence-based preference priors, the pilot study allowed us to 

troubleshoot other early issues with the survey. We conducted the pilot in two stages. The first-

stage pilot survey presented respondents with a list of the 28 beaches in our sample frame, asked 

respondents to indicate whether they were familiar with each beach, and which beaches (if any) 

they visited in 2019. If a given respondent indicated that he or she had visited any of the 28 

sampled beaches at least once during 2019, the respondent was invited to complete the second-

stage pilot survey containing which contained the five choice experiment questions. The second-

stage pilot survey was designed to mirror the structure and information treatments of the final 

follow-up survey to be sent to intercept respondents. 176 respondents completed the pilot survey, 

supplying 880 unique choices that were used to estimate a conditional logit choice model for the 

Bayesian priors in our final experimental design. The final design consisted of 35 choice sets 

total, organized into 7 blocks of 5 choice sets each.  In the follow-up survey, each respondent 

was randomly shown one of these 7 blocks for their 5 choice experiment tables.  
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1.5: Results 

 

To examine respondents’ preferences and preference heterogeneity for beach attributes, 

we estimate a mixed logit choice model for panel data (Train 2009). The mixed logit parameter 

estimates are reported below in Table 1.3. 

Table 1.3: Mixed Logit Estimates2 
 (1) (2) (3) (4) 

Variables Mean parameter 

estimate 

Std. deviation 

estimate 

% with 

parameter > 03 

Willingness to drive 

(WTD) at mean 

parameters (miles) 

     

Distance from home (miles) -0.0148***    

 (0.000721)    

Mostly sand 1.177*** 0.680*** 96 80 

 (0.0892) (0.120)   

Half sand/half pebbles 0.380*** 0.0412  26 

 (0.0734) (0.145)   

Clear water  1.500*** 0.662*** 99 101 

 (0.103) (0.158)   

Somewhat murky water 0.707*** 0.226*** 99 48 

 (0.0738) (0.0836)   

Not crowded 1.011*** 0.780*** 90 68 

 (0.0925) (0.108)   

Somewhat crowded 0.643*** 0.0873  43 

 (0.0780) (0.0829)   

Bacterial warning in effect -3.938*** 0.605  -266 

 (0.267) (0.699)   

-Lifted 1 day ago -1.732*** 0.554** 1 -117 

 (0.119) (0.236)   

-Lifted 3 days ago -1.211*** 0.180  -82 

 (0.0931) (0.150)   

-Lifted 6 days ago -1.136*** 0.00744  -77 

 (0.0900) (0.165)   

HAB warning in effect -3.855*** 1.971*** 3 -260 

 (0.314) (0.475)   

-Lifted 1 day ago -1.280*** 0.200  -86 

 (0.102) (0.149)   

-Lifted 3 days ago -0.873*** 0.332** 1 -59 

 (0.0870) (0.166)   

-Lifted 6 days ago -0.454*** 0.214  -31 

 (0.0780) (0.173)   

Neither -0.554*** 1.657*** 37  

 (0.127) (0.0881)   

     

Respondents 1048 1048 1048  

Choice Occasions 5082 5082 5082  

 
2 Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.  Each attribute level preference parameter 

is estimated relative to the following excluded base levels: “Mostly pebbles”, “Very murky”, “Very crowded”, and 

“There is not a HAB/bacterial warning in effect and there have not been any warnings this season”.  
3 These values are only calculated for attribute levels with significant standard deviation estimates and rely on the 

assumption that attribute preferences are normally distributed, which may not hold at the tails for some attributes. 
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 Each attribute level parameter other than distance was assumed to follow a normal 

distribution. Mean parameter estimates for all attribute levels are significantly different from 

zero at the 1% level and have the expected signs, i.e., are positive on levels of attributes thought 

to be valued by beach users, such as sand quality, and negative on driving distance and levels of 

HAB and bacterial warnings. Each parameter estimate represents the marginal utility of a site 

attribute level relative to the relevant excluded attribute level. For example, our results indicate 

that, on average, respondents value a site with a half sandy/half pebbly beach more than one with 

mostly pebbles, all else equal. Similarly, on average respondents value a somewhat crowded 

beach relative to a crowded beach. The estimated distance parameter is negative and significant 

at the 1% level, indicating the familiar result that respondents would prefer to go to a closer 

beach, all else equal. 

 Across the site attributes, all but one adjacent pair of attribute level parameters are 

statistically different from one another4 based on a Wald test, implying an intuitive and 

monotonic ordering of respondents’ preferences. These parameter estimates provide information 

about the relative rankings of respondent preferences; however, it is useful to express estimates 

into meaningful information about travel behavior. Following Equation (5), the estimated 

willingness to drive (WTD) for each attribute level provide a way to discuss our parameter 

estimates in a more immediate and policy-relevant context. Average respondent WTD for each 

attribute level is reported in the final column of Table 1.3. 

 The most striking WTD results involve the presence of a harmful algal bloom warning 

and the presence of a bacterial warning. These values are -260 and -266 respectively, indicating 

that on average respondents would be willing to drive 260 miles to avoid a beach where a 

 
4 The bacterial warning parameter estimates for “3 day expired” and “6 day expired” attribute levels are not 

statistically different. This relationship is examined in detail later in this section. 
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harmful algal bloom warning is in effect, and 266 miles to avoid a beach where a bacterial 

warning is in effect. Considering that the state of Ohio is roughly 250 miles wide and that the 

median distance respondents live from the nearest beach in our sample is 15 miles5, the 

magnitude of these estimates demonstrates their high importance. Additionally, these estimates 

indicate that to avoid either type of warning, on average respondents are willing to drive more 

than double the distance they would drive for a mostly sandy beach (80 miles), a beach with 

clear water (101 miles), or a beach that is not crowded (68 miles). It should be noted that these 

estimates do not account for the substitution observed in a non-hypothetical demand system. 

Because substitute sites exist in the real world, respondents likely would not need to drive the 

full distance they are willing to. Thus, the distance they incur is not the same as their willingness 

to drive, a difference that is akin to why willingness to pay for a good exceeds payments and 

yields consumer surplus.  

 The average respondent WTD values to avoid a site with a HAB warning in effect and a 

site with a bacterial warning in effect are not statistically different from one another. However, 

differences in preferences begin to emerge when the other three warning attribute levels are 

considered. Our estimates indicate that respondents are willing to drive on average 86, 59, and 31 

miles to avoid a site with a HAB warning that expired 1, 3, or 6 days earlier, respectively. 

Similarly, respondents are willing to drive on average 117, 82, and 77 miles to avoid a site with a 

bacterial warning that expired 1, 3, or 6 days earlier. Estimated willingness-to-drive values at 

each attribute level are significantly different from one another across both types of warning. 

Taken together, these results imply that the disutility of each type of water quality 

warnings exhibit strong lag effects, and do not disappear immediately after a warning is lifted. 

 
5 Respondents live an average of 69 miles from their closest site in our sample. However, the median and mean 

travel distances for the sites where respondents were interviewed was 58 and 154 miles. 
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While respondents seem to be equally as averse to sites with a current HAB warning as they are 

to sites with a current bacterial warning, this aversion fades more quickly for HAB warnings. 

Respondents are willing to drive 36% farther to avoid a site with a 1-day expired bacterial 

warning relative to a site with a 1-day expired HAB warning and 39% farther to avoid a site with 

a 3-day expired bacterial warning relative to a site with a similarly recent HAB event. 

Additionally, respondent WTD estimates for 3-day and 6-day expired bacterial warnings are the 

only adjacent attribute level WTD estimates in our results that are not statistically different. In 

comparison, WTD to avoid a site with a recent HAB warning steadily decreases as time since the 

HAB warning increases. This disparity, along with the difference in magnitude between the 

HAB and bacterial warning WTD estimates, indicates that the preference effects of past bacterial 

warnings are significantly more intense, and last longer after an event, than those of HAB 

warnings. The behavior of respondent WTD estimates over time (at the mean parameter 

estimates), as well as their 95% confidence intervals, is plotted below in Figure 1.2. 

  Our mixed logit model allows the attribute level parameters to vary according to a 

multivariate normal distribution and estimates a standard deviation for each parameter. A 

statistically significant standard deviation estimate provides evidence of preference heterogeneity 

in the sample for the relevant attribute level. The parameter estimates on “Mostly sand”, “Never 

crowded”, and “Clear water” all exhibit heterogeneity in the sample. This makes intuitive sense, 

as it is likely that different beachgoers value certain beach characteristics more than others, 

which in turn affects their choice of sites and travel behavior. 
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Figure 1.2: Mean Willingness to Drive to Avoid Sites with Recent Water Quality Events 

and 95% Confidence Intervals around the Means6 

 
 

The standard deviation estimates also reveal it is unlikely that any of the warning 

attributes are positively valued by beachgoers. Although the vast majority of respondents are 

estimated to have positive marginal utility for the best levels of crowding, sand quality, and 

water clarity,7 the magnitude of this positive valuation significantly varies in the sample. The 

marginal utility of a site with the intermediate water clarity level, “Somewhat murky”, relative to 

one with murky water, also exhibits heterogeneity in the sample. This is the only intermediate 

 
6 95% confidence intervals were computed using Stata’s -wtp- postestimation command (Hole 2007a) 
7 90% for “Never crowded”, 96% for “Mostly sand”, 99% for “Clear water”. See the second to last column of Table 

1.3 for further details. 
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attribute level parameter across the water clarity, sand quality, and crowding attributes estimated 

to significantly vary across sampled beachgoers. The estimated heterogeneity in both water 

clarity attributes makes sense in that not all beach users enter the water during a typical beach 

trip, while all of our beach users interacted with the sandy portion of the beach at some time 

during their visit. Alternatively, regardless of whether they plan to enter the water, people are 

unlikely to prefer murky water at the beach; 99% of respondents are estimated to positively value 

somewhat murky water relative to murky water. 

Preferences for sites with a 1-day lifted bacterial warning, 3-day lifted HAB warning, and 

current HAB warning also exhibit significant heterogeneity among sampled beachgoers. Since 

the mean WTD estimates for the current HAB and bacterial attribute levels are not statistically 

different, this heterogeneity indicates that roughly half of sampled beachgoers would be willing 

to drive a longer distance to avoid a site with a HAB warning in effect than they would be to 

avoid a site with a bacterial warning in effect. One possible reason for this is that respondents in 

our sample tended to have more experience with bacterial warnings relative to HABs; while 44% 

of respondents indicated that they have seen a bacterial warning sign on a beach, only 34% of 

respondents indicated having seen a HAB warning sign. Additionally, most respondents (56%) 

had seen news reports of people getting sick due to bacterial contamination in bodies of water. 

This greater level of familiarity with bacterial contamination events may contribute to 

respondents’ relatively homogenous preferences for bacterial warning events. 

The significant standard deviation estimates for several marginal utility parameters reveal 

that for some beach characteristics there is a distribution of preferences across individual 

beachgoers, but the standard deviations do not reveal how this preference heterogeneity relates to 

observable characteristics of beachgoers. To examine possible determinants of preference 
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heterogeneity in the sample, we use Stata’s mixlogit command (Hole 2007b) to predict each 

respondent’s individual marginal utility parameter for each attribute level conditional on the 

person’s observed choices using Equation (12). For each of the 15 attribute level parameters 

(including “Neither”), we regress the predicted individual-specific parameter on a constant and a 

vector of 15 demographic and attitudinal variables from the survey that may influence the 

distribution of beachgoer preferences. These variables include respondent age, income, race, and 

gender, as well as the distance from each respondent’s zip code to the closest site, the number of 

years each respondent has regularly visited area beaches, and whether each respondent entered 

the water on their intercepted trip, among others. Significant results from these regressions could 

assist policymakers and managers understand possible market segments of beachgoers with 

distinct preferences.  

The results of these regressions are summarized in detail in Appendix I. The available 

demographic and attitudinal variables do not explain much of the variation in the conditional 

marginal utility parameters—the 15 regressions have an average 𝑅2 of 0.015 with an average 

adjusted 𝑅2 of 0.004. Out of the 225 estimated parameters in these regressions, 8 are significant 

at the 5% level, and 4 are significant at the 1% level. These results are not unprecedented; 

several recreation studies examining heterogeneity show that attitudes explained preference 

heterogeneity but demographics did not (Ehrlich et al. 2017; Campbell et al. 2014) or that 

demographics had substantially less explanatory power that attitudes (Komossa et al. 2019). 

Since our current data identifies significant preference heterogeneity but is largely unable to 

explain the determinants of this heterogeneity, this remains fertile ground for future research.8   

  

 
8 Indeed, we examined several specifications of mixed logits with discrete preference distributions (also called latent 

class models); these latent class models often did not converge, and those that did failed to reveal substantial 

differences in preferences across classes with class memberships poorly explained by demographics. 
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1.6: Robustness Checks 

 

To test the sensitivity of the mixed logit estimates to different model specifications, we 

estimate a conditional logit model and a nested logit model with trip/no-trip nests. The results are 

provided in Table G.1 of Appendix G. Preference parameter estimates are stable across all three 

models, and estimated parameter vectors are highly correlated ( 𝜌 > .99 for all pairwise 

combinations). Consequently, our WTD estimates are robust to different distributional 

specifications, with an average 7% difference between the mixed and conditional logit WTD 

estimates and an average 4% difference between the mixed and nested logit WTD estimates. 

To test the sensitivity of our estimates to sample definitions, we re-estimate mixed logit 

models on the following subsets of the full sample: (1) respondents that completed the survey in 

less than 29 minutes (the 75th percentile of task duration), (2) respondents that completed the 

survey in more than 8 minutes (the 10th percentile of task duration), (3) respondents that live 

within 50 miles of their intercept beach (the 75th percentile of distances), and (4) respondents that 

did not exhibit intransitive preferences in their choice experiment responses. Subsets (1) and (2) 

were chosen because an influence due to especially fast or slow respondents may be indicative of 

inattention or poor comprehension, respectively. Subset (3) was chosen to test whether 

preferences were swayed by differences in non-local respondents. Finally, subset (4) is tested 

because choices of respondents with intransitive preferences may be indicative of either 

irrationality or inattention.  

Sensitivity analysis estimates are reported in Appendix Tables G.1 through G.4. The 

mean preference parameter estimates are highly stable across the four robustness subsamples, 

and the patterns of preference heterogeneity are similar, though as expected when sample sizes 

shrink there are generally fewer parameters with significant distributions. In all cases the 
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estimated mean parameter vectors are highly correlated (𝜌 > .99 for all pairwise combinations). 

In addition, model estimates were compared across alternative randomized question orderings 

that were present in the survey (Table VIId), and the results are similarly robust to ordering 

effects with the pooled mean parameter vector again being similar and highly correlated with the 

randomized orders (𝜌 > .99). 
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1.7: Discussion 

 

The estimates discussed in the previous section provide useful information about how 

Lake Erie and Lake St. Clair beachgoers value different beach attributes, and how their 

preferences for certain attributes behave in comparison to others. By forming ratios of marginal 

utility parameter estimates, we can further examine how the average beach user implicitly trades 

off different levels of environmental quality, in the form of marginal rates of substitution (MRS) 

of driving for quality attributes. These MRS estimates have the potential to be valuable for beach 

managers and state financial planners, who must make decisions about how to manage public 

funds and want to do so in a manner that enhances societal and environmental benefits. 

Consider the mixed logit estimation results. The average beachgoer has a MRS of clear 

water for sandy beaches of about 1.3 and MRS estimates of the absence of bacterial warnings for 

sandy beaches and the absence of HAB warnings for sandy beaches of about 3.3 each9. These 

clear preferences for water-related attributes suggest that the marginal dollar of state funding 

would likely be better spent on pollution control than local beach maintenance. However, 

because sand quality affects beach recreation on every trip while HAB and bacterial warnings are 

comparatively rare, more detailed analysis would be needed for the purposes of program 

evaluation and cost-benefit analysis. 

While the ratios of the WTD estimates and their ordering in relation to one another  are 

potentially useful in a policy context, one must exercise caution when interpreting the absolute 

magnitude of the individual WTD estimates for different beach attribute levels. As mentioned 

previously, many of our estimates indicate that beach users would be willing to drive large 

 
9 The estimated marginal rates of substitution of the absence of HAB warnings for sandy beaches and the absence of 

bacterial warnings for sandy beaches are not statistically different. This is consistent with our prior result that 

beachgoers’ WTD to avoid sites with bacterial or HAB warnings in effect are not statistically different. 
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distances to avoid a beach with a HAB or bacterial warning in place. The largest estimates 

produced by our mixed logit model indicate that the average respondent would be willing to 

drive almost 300 miles to avoid a beach with either a bacterial or HAB warning in effect.  

To further contextualize the magnitude of our results, we can compare our WTD 

estimates with previous WTP estimates from the water quality valuation and recreation demand 

literature by converting distances to dollars. After using the cost of travel to convert the results to 

round trip dollar values, our WTD estimates can be viewed as roughly equivalent to WTP.10 In 

one of the few studies to use a choice experiment to value HABs in Lake Erie, Zhang and 

Sohngen (2018) find that Lake Erie anglers would be willing to pay up to $80 per trip to avoid 

boating through 8 miles of a HAB. Although we have no directly comparable result for beach 

users, Zhang and Sohngen’s choice experiment included a “water clarity” attribute which used 

very similar levels to those in our study. They found that boaters would be willing to pay about 

$96 per trip for clear water relative to murky water, which is very similar to our estimate for the 

average beachgoer’s WTP of about $101 to avoid a beach with very murky water.  

While Zhang and Sohngen offer the closest point of comparison to our estimates, other 

stated preference valuation work conducted in marine and international settings can help to 

examine the validity of our results. Marsh (2012) uses a household-level choice experiment to 

 
10 1897 unique zip-site combinations were observed in our intercept data. Round-trip travel distances (in miles) and 

travel times (in minutes) were computed for each observed combination using Georoute (Weber and Péclat 2017). 

For each combination, we computed the travel cost from zip code z to site j as follows: 

 

TCzj=distzj*$0.27 +timezj*(1/3)*(median incomez/2000) 

Per-mile driving cost of $0.27 is computed with AAA’s Your Driving Costs report (AAA 2019) using a weighted 

average across vehicle types and assuming 15,000 miles driven per year. Opportunity cost of time is specified using 

zip code z’s median income, obtained from the 2018 ACS 5-year Estimates (US Census Bureau 2019) and assumes 

50 weeks worked per year and 40 hours worked a week. To obtain the factor to convert WTD to WTP, we divide 

round-trip travel cost by travel distance and average across all observed combinations. The resulting cost is $0.47 

per mile. Since a WTP measure using travel cost would typically be a round trip value, we can convert our one-way 

distance value by a factor of 0.5, making our one-way WTP about the same as round trip WTP. 
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examine how New Zealand residents value reduced probability of algal bloom warnings in two 

inland lakes, and finds that the average household would be willing to pay up to $138 (USD 

2020) a year to reduce the probability of HAB warnings by 40%. The choice experiment was 

administered to a random sample of residents of New Zealand’s Waikato region, and only about 

35% of respondents indicated that they had visited either of the lakes in the last year. 

Considering that this relatively large WTP estimate was obtained from a sample which included 

non-users and was for a reduction in probability rather than a certain HAB as in our case, the 

relative value compared to our results for observed beach users make intuitive sense. 

Using data from a mail survey of Finnish households, Kosenius (2010) similarly 

estimates yearly WTP for a series of policies designed to reduce concentrations of cyanobacteria 

and other types of algae.  The results of the researchers’ mixed logit model indicate that the 

average household would be willing to pay $596 per year (USD 2020) to reduce cyanobacteria 

and other algal biomass in Finnish coastal waters by 15- 35%. To value reduction of HABs in 

Quebec, L’Ecuyer-Sauvageau et al. (2018) use choice experiment responses of beach users (via 

intercept interviews) and residents (via door-to-door interviews) in coastal cities that had been 

affected by cyanobacteria blooms within the past ten years. The researchers estimate mean yearly 

marginal WTP for reduction of common attributes of algal blooms, such as smell, recreational 

impacts, and low water clarity using a mixed logit model, and aggregate these measures. They 

conclude that the average coastal resident in the sampled area would be willing to pay roughly 

$269 per year (USD 2020) to reduce the incidence of HABs. While these studies differ from ours 

in important methodological ways and in their focus on annual WTP for reductions of negative 

events, the magnitude of these WTP estimates help provide further context for our results. 
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Johnston et al. (2017) suggest that auxiliary evidence collected in stated preference 

surveys can be useful in assessing the validity of the preference elicitation mechanism. In our 

case, supplemental information can be used to assess how much respondents care about common 

beach attribute levels outside of the context of the choice experiments because our survey 

respondents also answered a series of contingent behavior (CB) questions The CB questions 

asked respondents if they would still have made the same trip to the beach where they were 

intercepted if faced with certain HAB and bacterial warnings at that beach on the day of their 

trip. The CB questions covered the same eight scenarios as covered by the HAB and bacterial 

warning attribute levels in the choice experiment. Table 1.4 summarizes each contingent 

behavior scenario and the percentage of respondents that indicated that they would have made 

the same trip if faced with each scenario.  

Table 1.4: Contingent Behavior Response Percentages  

  

CB Scenario I would have gone to 

the same beach. (%) 

  

Bacterial warning- day of trip 19 

  

-Lifted 1 day before trip 35 

  

-Lifted 3 days before trip 53 

  

-Lifted 6 days before trip 76 

  

HAB warning- day of trip 19 

  

-Lifted 1 day before trip 39 

  

-Lifted 3 days before trip 62 

  

-Lifted 6 days before trip 80 

  

 

Table 1.4 shows that as the time since the last water quality event grew, more CB question 

respondents indicated they would have gone to the same beach. However, about 20% of 
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respondents indicate that they still would not have gone to the same beach if a HAB warning had 

been lifted for 6 days, and 24% indicate they would not have gone to the same beach if a 

bacterial warning had been lifted for 6 days. For each time-since-event level, fewer respondents 

would have made the same trip given that the event was a bacterial warning, relative to if the 

event was a HAB warning. Each of these percentage estimates is statistically different from its 

adjacent level; however, the percentage of respondents who would have made the same trip 

given a bacterial warning and the percentage of respondents who would have made the same trip 

given a HAB warning are not statistically different from one another.  Although these insights 

from our CB questions are consistent with and corroborate the results and patterns of the choice 

experiment, the CB percentages are not yet directly comparable to the parameters of the choice 

models.  

To more directly compare the preference data gathered in the choice experiment and CB 

questions, we use the estimated parameters from our mixed logit model to simulate the effect of 

current/recent HAB and bacterial warnings on the probability of visiting a site, relative to a 

baseline scenario with no warnings. This requires specifying a simulation choice set and attribute 

levels analogous to what was shown in the choice experiments, and then using this structure to 

compute changes in choice probabilities corresponding to the CB scenarios. Specifically, for 

each follow-up respondent who answered every CB question (n = 907), we created a simulation 

choice set with three alternatives. The first alternative represented the site where the respondent 

was interviewed, and the beach attribute levels for this alternative were populated using averages 

of subjective environmental quality assessments collected earlier in the survey11. The first 

 
11 In the follow-up survey, respondents were asked to report the typical levels of crowding, sand quality, and water 

clarity at the beach where they were interviewed. The first alternative in each respondent’s simulated choice set used 

the average levels of sand quality, water clarity, and crowding reported by beachgoers intercepted at the same beach 
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alternative’s distance level was the one-way distance from that respondent’s zip code to their 

intercept site. The second alternative in each respondent’s simulated choice set represented an 

average substitute site, and this alternative’s distance level was computed as the distance from 

the respondent’s zip code to their intercept site, plus the average distance from the respondent’s 

intercept site to any of the other 27 sites in our sample. The third alternative in each simulation 

choice set was a “neither” option like the one offered in the choice experiment. 

To compute baseline choice probabilities for the simulation, within each simulation 

choice set we set the HAB and bacterial attribute levels to zero for each respondent’s “intercept 

beach” and “average site” alternatives and used the mixed logit’s estimated preference 

parameters to compute the probability of each respondent visiting the beach where he or she was 

interviewed. In the simulation, this represented the baseline scenario with no current or recent 

HAB or bacterial warnings. The simulation then created 8 counterfactual beach quality scenarios 

to correspond to each of the 8 CB scenarios. For each counterfactual, we set the levels of the 

HAB and bacteria variables for each respondent’s “chosen beach” to match the CB levels, and 

we computed the probability that each respondent would visit their intercept beach under the 

counterfactual. Next, we computed each respondent’s percent change in probability of visiting 

their intercept site relative to the baseline scenario. These percent changes were then averaged 

across all respondents for each of the 8 scenarios. Figure 1.3 plots the average percent decrease 

in the probability a respondent would visit the same site for each HAB and bacterial warning 

scenario. 

 

 

 
as the given respondent. The second alternative in each choice set used the average reported levels of each attribute 

across the whole sample. 
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     Figure 1.3: Average Percent Decrease in the Probability of Visiting Intercepted Site, Relative 

to “Business-as-usual” Scenario  

 
 

  These simulated visitation probabilities are very consistent with the WTD estimates 

plotted previously in Figure 1.2 and offer a way to evaluate the validity of the choice experiment 

(CE) preference estimates. For each scenario, our CE estimates also imply that a percentage of 

respondents would go to the same site, and these percentages are highly correlated with the 

contingent behavior response percentages (𝜌 =  .85) 12. The graphs in Figure 1.4 plot the implied 

percentage of CE respondents who would go to the same site given a HAB or bacterial warning 

 
12 The similarity is particularly reassuring given the different framing of the questions – the CB question was 

explicitly framed about the site and time of the intercept trip whereas the CE question was about a more generic trip 

occasion. For a detailed table comparing the implied percentages from our choice experiment simulation with the 

contingent behavior response percentages, see Appendix J. 
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against the CB response percentages to further illustrate the high correlation between the two. 

Even though the mixed logit preference parameters were estimated in the context of a choice 

between hypothetical beaches, they are able to approximate contingent behavior scenarios 

concerning observed trips. 

Figure 1.4: Simulated Percentages of Respondents Who Would Go to the Same Site Given a 

HAB or Bacterial Scenario, and Contingent Behavior Question Response Percentages 

 

 

 

 

 

 

 

 

Taken together, these observations lend credence to our previous hypothesis that a 

temporal preference lag effect exists for HAB and bacterial warnings, and that this lag has the 

potential to affect travel behavior even after warnings have been lifted. The fact that such a large 

percentage of respondents would not make the same trip if either type of warning were in effect 

indicates the presence of a substantial aversion to these hazard events. Considering this auxiliary 

evidence, the magnitude of the estimated respondent WTD values make more sense, as such an 

aversion would naturally equate to a larger willingness to incur avoidance costs, all else equal.  
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1.8: Conclusion 

 

This paper demonstrates that beachgoers are willing to drive farther for beaches that are 

less crowded, are less rocky, have higher water clarity, and do not have current or recent 

warnings for bacteria or HABs. In particular, the results demonstrate a significant preference lag 

effect concerning HAB and bacterial warnings, i.e. these events affect the visitation and welfare 

of beach users even after they are lifted. While respondents are willing to drive similar distances 

to avoid current bacterial and HAB events, the disutility of a bacterial warning lingers for much 

longer than a HAB warning, and the results show a remarkably similar pattern is observed in 

responses to the survey’s contingent behavior questions. These findings have ramifications for 

future research and policy analyses seeking to quantify benefits of non-point source pollution 

control programs. If the costs of HAB and bacterial warnings are solely measured in terms of 

value-per lost trip during warning events, these costs will be understated. 
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CHAPTER 2: Economic Welfare Effects of Harmful Algal Blooms and Bacterial 

Contamination Warnings in the Great Lakes 

 

2.1: Introduction 

 

 While some may consider climate change to be a distant concern, global water resources 

have already been impacted by climate change-induced extreme weather patterns through the 

increasing frequency of harmful algal bloom events. Algal blooms are water-borne masses of 

plant matter, which can be caused by excess agricultural nutrient runoff. Under certain 

environmental conditions, this runoff contributes to cyanobacteria growth in waterways, which 

in turn contributes to the growth of harmful algal blooms (also known as HABs). HABs can 

cause liver damage, gastrointestinal illness, and skin irritation for people who come into contact 

with them (NIEHS 2020), and they have severe ecological impacts on the bodies of water in 

which they appear. HAB growth routinely causes hypoxic “dead zones”, depleting nutrients and 

oxygen that would otherwise nourish aquatic wildlife (NOAA 2020). Fish or shellfish that are 

not killed by this lack of oxygen and nutrients can be rendered poisonous by algal toxins, with 

potentially devastating effects on coastal communities who depend on aquaculture and the 

fishing industry for their livelihoods (CDC 2020).  

 High bacterial concentrations in ambient waterways, caused by runoff from untreated 

urban wastewater, septic tank overflow, and concentrated animal feeding operations (CAFOs), 

often affects the same communities which deal with HABs on a regular basis. One of the most 

well-known bacteria that commonly reaches unsafe levels in waterbodies is Escherichia coli (E. 

coli), exposure to which can cause cramps, diarrhea, vomiting, and in older people and children, 

life-threatening kidney failure (Mayo Clinic 2019). Because climate variability has been linked 

to more intense precipitation and more frequent flood events, increased water-borne bacterial 
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contamination events will be a natural consequence of these changes without a large national 

overhaul in flood protection infrastructure and agricultural practices (Rose et al. 2001, Jung et al. 

2014, Patz et al. 2008). Extreme precipitation events have been shown to be linked to past water-

borne disease outbreaks (Curriero et al. 2001), underscoring the potentially large impacts of 

bacterial contamination on human health in the wake of rapidly changing weather patterns. 

 In light of the potential impacts of climate change on the frequency and intensity of 

HABs and bacterial contamination, policy makers and resource managers would likely benefit 

from information concerning the economic costs and welfare effects of these events. However, a 

relatively small amount of empirical research in environmental economics has sought to quantify 

the specific damages of HABs and bacterial contamination.  

With few exceptions, the existing literature devoted to estimating the costs of HABs and 

bacterial contamination has used stated preference methods. Stated preference methods are 

useful when valuing changes in environmental quality because they allow the analyst to value 

quality changes that may not have occurred during the study’s time frame (Carson and 

Hanemann 2005) or may be correlated with unobserved attributes of sites. This is especially true 

of HAB and bacterial events, which are random and, in the case of HAB events, usually only 

occur a few times per season. Despite their relative benefits, however, a drawback to stated 

preference studies is that they often produce willingness-to-pay estimates which may exceed 

what respondents would be willing to pay in real life, a concept known as hypothetical bias (List 

and Gallet 2001; Murphy et al. 2004; Loomis 2011).  

To mitigate possible effects of hypothetical bias while taking advantage of the flexibility 

of stated preference methods, the use of combined RP-SP approaches in empirical valuation 

studies has become more common. In applications of combined RP-SP models, researchers have 
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commonly augmented revealed preference data with contingent valuation surveys (Cameron 

1992) and choice experiments (Adamowicz et al. 1994; Cheng and Lupi 2016; Whitehead and 

Lew 2020). Englin and Cameron (1996) was the first recreation demand study to suggest 

combining RP travel cost data with contingent behavior (CB) data, which asks respondents about 

their expected trip behavior after a price or quality change. The authors posit that CB questions 

may be more practical than the contingent valuation approach, as respondents may be better able 

to conceptualize future trips compared to the future prices offered in a contingent valuation 

survey. Since Englin and Cameron’s original proposal, combined RP-CB methods have proven 

useful for answering questions in coastal resource management and environmental economics 

(Cameron et al. 1996; Eiswerth et al. 2000; Hanley et al. 2003). 

 In most of the contingent behavior literature, researchers ask respondents to report 

hypothetical future trips or demand behavior. An alternative approach asks respondents if they 

would still engage in the observed behavior given a change in price or quantity (Tanner et al. 

2019; Parsons and Stefanova 2011) and seeks to ground CB scenarios in observed behavior 

respondents are familiar with. We take this approach and embed contingent behavior data in a 

revealed-preference site choice model to value Great Lakes recreation and water quality. The 

work is one of the few studies to value Great Lakes beaches and is one of the few to estimate the 

recreational costs of harmful algal blooms and bacterial contamination in freshwater more 

generally. 

We utilize a multi-stage research strategy to examine the welfare effects of freshwater 

harmful algal blooms and bacterial warnings. Using responses to a rigorously designed intercept 

survey conducted at 28 Great Lake beaches over the course of the 2019 recreation season, we 

construct a multi-site, zonal dataset following the strategy developed by von Haefen et al. 
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(2019). Using this revealed preference data, we estimate a multi-site nested logit model of 

recreation demand and simulate the welfare effects of beach closures. In a follow-up survey, we 

elicited contingent behavior data concerning various HAB and bacterial scenarios asking 

beachgoers if they would have made the trip on which they were interviewed if certain HAB and 

bacterial events were in effect. We use the CB responses in a contraction-mapping algorithm to 

identify the disutilities of HAB and bacterial events, and then produce seasonal estimates of the 

average welfare effects of each contingent behavior scenario. We find that season-long HAB and 

bacterial warnings each cause welfare losses of roughly $1.4 million at the average site in our 

sample. We then use our estimates to simulate the welfare effects of the observed HAB and 

bacterial events that occurred during the 2019 recreation season, finding that these events caused 

roughly $5.8 million dollars in losses. We show that this estimate is about 34% larger than 

welfare losses computed under the assumption that beachgoers only reap disutility when 

warnings are in effect, illustrating the importance of accounting for the “lag” effect of beachgoer 

preferences in welfare estimation and policymaking. Finally, after standardized by the number of 

days affected by each type of warning, we show that while the majority of the 2019 season’s 

recreational welfare loss can be attributed to bacterial warnings, beachgoers reap more than three 

times more disutility from the sites that had HAB warnings than those that had bacterial 

warnings.  

The structure of this essay is as follows. Section 2.2 provides background on water 

quality issues in Lakes Erie and St. Clair and reviews the available literature. Section 2.3 

summarizes the on-site sampling plan used to collect intercept data, and details how the 

intercepted trip data is used in our revealed-preference site choice model. Section 2.4 introduces 

the follow-up survey, with a particular focus on the contingent behavior questions and their 
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motivation. Section 2.5 summarizes how intercept probabilities derived from our sampling 

scheme are used to create our multi-site zonal dataset, and Section 2.6 outlines the theory 

underpinning our empirical estimation strategy. Finally, Section 2.7 and 2.8 present our results 

and discuss their practical significance. Section 2.9 concludes.  
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2.2: Background 

 

According to the Environmental Protection Agency, HABs have been observed in all 50 

US states (EPA) and are a significant and growing problem worldwide (Anderson 2012). Using 

satellite data of 71 lakes around the world, researchers found that in 68% of these lakes, peak 

summertime bloom intensity has been steadily increasing since the 1980s (Ho, Michalak, and 

Pahlevan 2013). Additionally, in 2019 the United Nations Intergovernmental Panel on Climate 

Change reported that increasing global water temperatures brought on by climate change, in 

conjunction with business-as-usual agricultural practices, have the potential to increase this 

upward trend (IPCC 2019). Because HABs can occur in freshwater, saltwater, and the brackish 

water between the two, the entirety of earth’s water resource stock is susceptible to their effects. 

Despite the relatively small amount of research concerning the welfare effects of HABs 

and bacterial contamination, the wide international scope of the existing literature reflects the 

global nature of this problem. In one of the few articles focused on measuring the welfare effects 

of HAB events, L’Ecuyer-Sauvageau et al. (2019) use a choice experiment on a convenience 

sample of Quebec residents’ preferences for several nutrient-reduction policies, finding an 

average household willingness to pay of $269 per year (USD 2020) for eliminating the visual, 

recreational, odorous, and ecological consequences of HABs on local lakes. In a similar study, 

Kosenius (2010) uses a mail survey administered to Finnish households to estimate preferences 

for reduction of eutrophication in the Baltic Sea. Using a mixed logit model, the researchers find 

that the average household would be willing to pay $596 per year (USD 2020) for a 15-35% 

reduction in cyanobacteria biomass. Marsh (2012) also uses a household-level choice experiment 

to examine how residents of New Zealand’s Waikato region value HAB reduction in two inland 

lakes, and finds that the average household would be willing to pay up to $138 (USD 2020) a 
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year to reduce the probability of HAB warnings by 40%. Importantly, while L’Ecuyer-

Sauvageau et al. and Kosenius frame their choice experiments by asking respondents about 

nutrient reduction policies and biomass levels, Marsh focuses on the reduction of HAB warnings, 

which is a central focus of our analysis in this paper. Finally, Taylor and Longo (2010) use a 

choice experiment to estimate the willingness to pay of residents of Bulgaria’s Varna Bay region 

for HAB reduction. While the previously referenced studies find comparatively large WTP for 

nutrient abatement policies and HAB reduction, Taylor and Longo estimate a more modest 

figure, as their average respondent would be willing to pay a one-off tax of $13 (USD 2020) to 

fund the elimination of HABs in the Varna Bay.  

In the United States, the western Lake Erie basin (consisting of Lake Erie, Lake St. Clair, 

and the surrounding watersheds) is one of the areas most frequently affected by HAB and 

bacterial events, and it is the focus of our analysis. In the summer of 2011, Lake Erie suffered 

from its largest HAB on record. Three years later in August of 2014, another HAB event 

poisoned the city of Toledo, Ohio’s water supply, affecting over 400,000 people and forcing 

many to drive across state lines to purchase drinking water. Lake Erie’s HAB problem is also not 

immune to the threat of climate change, and the nutrient loading reductions needed to manage 

Erie’s eutrophication will likely be more difficult to achieve under business-as-usual agricultural 

practices in the coming decades (Scavia et al. 2014; IJC 2014). 

In one of the earliest studies to focus on the value of Lake Erie beaches, Sohngen et al. 

(1999) use revealed preference intercept data to value single day trips to Maumee Bay State Park 

and Headlands Beach State Park, both sites on the northern coast of Ohio. They find average 

single-day trip values of $25 for Maumee and $16 for Headlands and aggregate these values to 

$6.1 and 3.5 billion dollars in annual surplus value, respectively. While Sohngen et al. do not 
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model the effects of HAB or bacterial events on the value of these sites, Murray et al. (2001) 

estimate the value of reducing E. coli advisories using intercept data collected from visitors at 15 

Lake Erie beaches. They find that beachgoers would benefit between $24 and $38 per year from 

one less E. coli advisory, and that the relative value of these welfare gains is dependent on the 

methods by which beachgoers learn about advisories. Zhang and Sohngen (2018) use choice 

experiment data to estimate Ohio anglers’ willingness to pay to avoid boating through HABs, 

which boaters likely only must do once or twice each season, and find anglers are willing to pay 

$8-$11 more to avoid boating through a HAB on the way to a fishing site.  

Because the majority of Lake Erie’s U.S. shoreline is in Ohio, most of the existing 

research concerning the value of Erie beaches uses data from Ohio sites and beachgoers. 

However, within a larger study of all Great Lakes beaches in Michigan, Song et al. (2010) use 

self-reported trip data from a consumer web-based panel of Michigan residents to calculate the 

welfare effects of beach closings at Michigan Great Lake beaches, including Lake Erie and Lake 

St. Clair. They find that closing an average public beach would cause losses of roughly $50 per 

person per trip. The researchers suggest that these large values are likely due to the small number 

of substitute sites on the Michigan coasts of Erie and St. Clair (10 were considered in the study) 

coupled with the larger number of potential beach users in the Detroit metropolitan area. While 

Song et al. use the number of beach advisories and closures at a given beach during 2006 as a 

proxy variable for the water quality at that beach, because they do not control for unobserved 

beach attributes and the number of advisory days is not significant, welfare loss of an advisory is 

not calculated.  

In one of the first studies to explicitly focus on the welfare impacts of HABs in Lake 

Erie, Palm-Forster et al. (2016) use a benefit transfer approach to apply an existing model of 
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Michigan beach recreation (Chen 2013) to valuing HAB-induced closures of 67 Ohio beach sites 

on the coast of Lake Erie. They find that the typical day trip to a Lake Erie beach is worth about 

$18 per person per trip, and they aggregate this to roughly $2 million per year in total seasonal 

value. In recent work, Wolf et al. (2019) use self-reported visitation data and a latent-class 

modeling framework to simulate the welfare effects of HAB and E. coli events on both 

beachgoers and anglers in Lake Erie. By simulating the full closure of all western Lake Erie 

beaches due to poor water quality conditions, the researchers find that beachgoers and anglers 

would annually lose $7 million and $69 million, respectively, as a result of these closures. 

Additionally, they find beachgoers to be comparatively more averse to E. coli, and anglers more 

averse to HABs.  

While Palm-Forster et al. and Wolf et al. each reach important conclusions about the 

impacts of common water quality events in Lake Erie, both studies frame their discussion of 

worst-case welfare scenarios in terms of beach closures, and their analyses do not consider the 

welfare effects of HAB and E. coli advisories when beaches stay open. This distinction is 

important, as Lake Erie and Lake St. Clair beach managers typically do not close sites in 

response to HAB and bacterial events. This comparative infrequency of beach closure, and its 

implications for accurate welfare estimation, are discussed in detail later in this paper. 

 

 

  



 

49 

 

2.3: Onsite Counts and Intercept Survey 

 

 On randomly selected days during the 2019 summer recreation season, we conducted 

visitor counts and collected intercept data from Ohio and Michigan beach users at all 25 sandy 

public beaches along the southern and western coasts of Lake Erie, as well as 3 beaches on the 

coast of Lake St. Clair and the Detroit River. Interviewers approached randomly selected 

beachgoers at each site and asked if they would be willing to participate in a short interview 

about their beach visitation. At the end of each interview, respondents were given the option to 

participate in an online follow-up survey about their experiences with water quality at the beach. 

If they agreed, respondents were asked to provide an email address. The counts and intercept 

surveys provided revealed-preference data on beach visitation that is used to construct a 

recreation demand system grounded in observed travel behavior. The online follow-up survey 

collected contingent behavior data on trip responses to possible HAB and bacterial 

contamination events, which is used to identify disutilities of these events and simulate the 

welfare impacts within the structure of the revealed-preference site choice model.  

The intercept survey was conducted randomly selected days between May 27th and 

September 1st, 2019. Interviews were conducted at the 25 Lake Erie sites for the entire summer 

season, and interviews were conducted at the 3 Lake St. Clair/Detroit River sites between June 

29th and September 1st.  A map of our study area is pictured in Figure 2.1, and a full list of the 

sites sampled in our analysis can be found in Table 2.1 below. The sites were randomly sampled 

within strata for weekend or weekdays and morning or afternoon shifts. After arriving at a site, 

interviewers walked the length of the beach and counted the number of beachgoers both in the 

water and on the sandy portion of the beach. Boaters in the water were excluded from these 
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counts. After the counts, interviewers were instructed to approach every third person or group on 

the beach and ask if they would complete a short interview about their visit. 
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Figure 2.1: Study Area and Sites Used in Analysis  
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Table 2.1: Beach Sites Sampled during the 2019 Intercept Survey 

Lake or River County, State Site 

   

Lake St. Clair Macomb, MI 

 

 Walter & Mary Burke Park 

 Lake St. Clair Metropark 

   

Detroit River Wayne, MI  Belle Isle Beach 

   

Lake Erie Monroe, MI 

 

Lucas, OH 

 Sterling State Park 

 Luna Pier Beach 

 Maumee Bay State Park Erie Beach 

 Maumee Bay State Park Inland Beach 

 Ottawa, OH  Camp Perry Beach 

   Port Clinton City Beach 

   East Harbor State Park 

 Erie, OH  Nickel Plate Beach 

   Old Woman Creek Beach 

   Sherod Park Beach 

   Main Street Beach 

   Showse Park Beach 

 Lorain, OH  Lakeview Park Beach 

   Century Park Beach 

   Veteran’s Memorial Park Beach 

 Cuyahoga, OH  Huntington Beach 

   Edgewater Park Beach 

   Euclid State Park 

   Sims Beach 

 Lake, OH 

 

Ashtabula, OH 

 Headlands Beach State Park 

 Fairport Harbor 

 Geneva State Park 

 Walnut Beach 

 Lakeshore Park Beach 

 Conneaut Beach 

 

If an interviewer approached a group of beachgoers, he or she was instructed to ask to 

speak to the person 18 years or older with the most recent birthday, to ensure that respondent 

selection was random. Respondents were asked questions about their beach recreation behavior, 

including how many people traveled to the beach in the same vehicle with them. After asking 

about respondents’ demographic information, interviewers asked respondents whether they 

would participate in a follow-up survey. If they agreed, respondents were asked to provide an 

email address for the follow-up survey.  



 

53 

 

The 2019 intercept survey resulted in 4239 initial observations and an 86% response rate, 

and of these, 4159 usable intercept observations13 were used to create a multi-site zonal dataset, 

designed to model beach site choices across the 2019 recreation season. Taking advantage of the 

rigorous sampling plan, each observed trip could be assigned an individual weight equal to the 

inverse probability of being selected for an intercept interview on a given day at a given site. 

These weights were then aggregated to estimate seasonal visitation from zip code z to destination 

site j, for all observed zip-site combinations in the usable intercept data. These estimated trips 

serve as the dependent variables in our repeated random utility model of site choice, which treats 

each origin zip code as a representative agent. The creation of the weights and zonal dataset is 

described in further detail later in this essay. 

 

 

  

 
13 Excluded interviews included 69 that refused to provide a zip code or provided foreign or nonexistent zip codes; 4 

zip codes only accessible by boat; 4 zip codes for which the round-trip driving cost could otherwise not be obtained, 

and 3 zip codes over 2500 miles from the site where they were intercepted. 



 

54 

 

2.4: Follow-Up Survey and Contingent Behavior Data 

An online follow-up survey was used to gather the contingent behavior data. The follow-

up survey began by asking respondents questions about their perceptions of several beach 

characteristics at the site where they were intercepted. Respondents were then shown information 

concerning the causes of HAB and bacterial warnings, as well as the possible effects of each type 

of event on human health and the environment. After each information page, respondents were 

asked questions about their personal experiences with HAB and bacterial warnings to encourage 

them to interact with the survey instrument. Respondents were then shown the contingent 

behavior questions. The survey development and questionnaire testing process followed 

recommendations for revealed and stated preference studies (Lupi et al. 2020; Johnston et al. 

2017) and included a focus group with 14 participants, 15 individual cognitive interviews 

conducted in March and April of 2020, and a 176-respondent pilot survey conducted via Amazon 

MTurk in May 2020. 

In May and June 2020, respondents who provided email addresses during the intercept 

survey were invited to participate in the follow-up survey. Out of the 4159 intercept participants 

who provided usable trip data in 2019, 2538 provided an email address. After the initial 

invitation email, non-respondents were sent up to 5 reminder messages over the course of a 

month. After the first reminder email, non-respondents were offered a $20 completion incentive. 

Of the 2538 contacted via email, 1067 respondents14 (46% of deliverable emails) completed the 

survey, and these 1067 respondents answered an average of 8 contingent behavior questions. An 

item non-response table which further summarizes responses to the survey’s stated preference 

 
14 251 email addresses were undeliverable; 3 respondents refused; 3 opened the survey but did not click past the first 

page, 1194 clicked through the consent form, and 127 partially completed the survey (did not answer any stated 

preference questions). 
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questions is available in Appendix E. The nine contingent behavior scenarios used in the follow-

up survey are listed below in Table 2.2. 

Table 2.2: Contingent Behavior Scenarios 

Type of water quality event Contingent Behavior Scenario 

  

Harmful algal bloom A harmful algal bloom warning is in effect at the beach where you were 

interviewed. 

 A harmful algal bloom warning was issued at the beach where you were 

interviewed 7 days before your trip, and was lifted 1 day before your trip. 

 A harmful algal bloom warning was issued at the beach where you were 

interviewed 7 days before your trip, and was lifted 3 days before your 

trip. 

 A harmful algal bloom warning was issued at the beach where you were 

interviewed 7 days before your trip, and was lifted 6 days before your 

trip. 

 A harmful algal bloom warning was issued for the next beach along the 

shore on the day you were interviewed, but no warning was issued for 

the beach you visited. 

  
 

Bacterial contamination A bacterial warning is in effect at the beach where you were interviewed. 

 A bacterial warning was issued at the beach where you were interviewed 

7 days before your trip, and was lifted 1 day before your trip. 

 A bacterial warning was issued at the beach where you were interviewed 

7 days before your trip, and was lifted 3 days before your trip. 

 A bacterial warning was issued at the beach where you were interviewed 

7 days before your trip, and was lifted 6 days before your trip. 

  

  

 For each contingent behavior question, respondents were asked if, given the scenario 

described, they still would have made the same beach trip they made on the day they were 

interviewed. Each question had three possible answers: respondents could either indicate they 

would have gone to the same beach, gone to a different beach, or stayed home. The contingent 

behavior questions were written to reflect the hypothesis that the average beachgoer is less likely 

to visit a beach if he or she knows a HAB or bacterial warning is in effect at that beach. As part 
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of our larger goal of identifying the welfare impacts of these water quality events, the questions 

about recently lifted warnings were used to examine whether these events have a lag effect on 

visitation.  
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2.5: Zonal Dataset 

 

Our revealed preference site-choice model is specified as a repeated random utility model 

(Morey et al. 1993) to capture both site choices and seasonal participation. Traditionally, 

repeated RUMs estimated using individual-level data require detailed data on the number of trips 

taken by each person to each relevant site in order to model both the intensive and extensive 

margins of recreation behavior. Our model treats each origin zip code as a representative agent 

(English 2008) and uses site-selection and intercept probabilities derived from our original 

sampling design to estimate seasonal trips for each origin zip-destination site combination 

observed in the intercept data. Using zip code population data, we can then estimate the number 

of no-trip choice occasions in each zip code across the 2019 recreational season. Developed for 

intercept data by von Haefen et al. (2019), this approach allows us to use the survey design 

weights to estimate demand in a two-level nested logit framework which includes a non-

participation alternative in each choice set.  

Each beach user who completed a full interview at an intercept site reported his or her 

home zip code, and so we were able to compile a list of the unique zip-site combinations 

observed in the intercept data. Using the intercept data, we derive the trip estimates from each 

origin zone to each intercept site using inverse selection probabilities (Leggett 2017, Tourangeau 

et al. 2017). With the estimated number of trips from each origin zip code to each site for every 

unique zip-site combination, we form our zonal dataset. Let j = 0, …, J represent the sites in our 

dataset, with j=0 representing the no-trip option in each representative agent’s choice set. The 

total number of possible destination sites in each choice set is J = 28, and the total number of 

alternatives in each choice set is J+1 = 29.  



 

58 

 

To form the inverse selection probabilities, each sampled trip is assigned to one of ten 

mutually exclusive strata, based on the day of the week and month when the trip was intercepted, 

as well as on which interviewer team (Michigan State or Ohio State) conducted the interview. 

The list of strata used in our trip estimation is available in Appendix K. The selection 

probabilities also use the trip counts conducted during each site visit. Since multiple interviewers 

were usually present at a site on any given day, daily beachgoer counts for each site were 

obtained by averaging the individual counts. Additionally, trip durations are derived from the 

intercept survey questions about respondents’ arrival and planned departure times. Finally, 

because each interviewed beachgoer was asked if recreation was the primary purpose for their 

visit, we are able to construct 𝑃𝑟𝑒𝑐,ℎ, the probability that any given beachgoer in stratum h was 

engaging in recreation. These quantities are the main components used to construct our zonal trip 

estimates.  

 Following Leggett (2017) and Tourangeau et al. (2017), we first create a weight 𝑤ℎ𝑖𝑗𝑘 for 

each beachgoer k intercepted on date i at site j in stratum h, as follows: 

                                                                  𝑤ℎ𝑖𝑗𝑘 =
𝑁ℎ

𝑛𝑗ℎ

𝑀𝑖

𝑑̃

𝑐ℎ𝑖𝑗̅̅ ̅̅ ̅̅

𝐾ℎ𝑖𝑗
𝑃𝑟𝑒𝑐,ℎ (1) 

                                                                       𝑑̃ = (
∑ (1 𝑑𝑖⁄ )

𝐼ℎ
𝑖=1

𝐾
)

−1

  (2) 

Each individual weight is equal to the inverse of the probability that beachgoer k was sampled. 

𝑐ℎ𝑖𝑗̅̅ ̅̅ ̅  is the average instantaneous count of beachgoers at site j on day i, and 𝐾ℎ𝑖𝑗 is the number of 

beachgoers interviewed at site j on day i. 𝑀𝑖 is the length of time, in minutes, during which 

instantaneous counts could have taken place on day i. 𝑁ℎ is the total number of days in stratum 
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h15, and 𝑛𝑗ℎ is the total number of days in stratum h that sampled site j.  𝑑̃ is the harmonic mean 

of the average trip duration across the sample, which is used instead of the arithmetic mean to 

account for the fact that visitors who stay at a site longer have a larger probability of being 

intercepted16. The harmonic mean (Equation 2) is calculated as the inverse of the mean of the 

inverse trip durations, and 𝐾 denotes the number of intercepted trips. 

 Once 𝑤ℎ𝑖𝑗𝑘 is obtained for every intercepted beachgoer, we sum these weights over the  

𝐾ℎ beachgoers in a given stratum h to recover an estimate of the total visitation in each stratum: 

                                                                𝑇ℎ̂ =  ∑ 𝑤ℎ𝑖𝑗𝑘
𝐾ℎ
𝑘=1   (3) 

For each origin zip-destination site combination, 𝑇𝑧𝑗̂  are the trips taken to j from z for each zip-

code representative agent in our zonal dataset. We use the stratum-specific visitation estimates 

𝑇ℎ̂ to construct 𝑇𝑧𝑗̂, and this process is explained in detail in Appendix K. 

Additionally, we define the total estimated trips to each site (𝑇𝑗̂) and from each origin zip 

code (𝑇𝑧̂)  by summing 𝑇𝑧𝑗̂ over the Z total origin zips and J sites in the choice set: 

                                                             𝑇𝑗̂ =  ∑ 𝑇𝑧𝑗̂
𝑍
𝑧=1   (4) 

                                                             𝑇𝑧̂ =  ∑ 𝑇𝑧𝑗̂
𝐽
𝑗=1   (5) 

Following von Haefen et al. (2019) and Tanner et al. (2019), we construct  𝑇𝑧0̂, the 

number of times in zip z the no-trip option was chosen during the season, using 𝑇𝑧̂ and the total 

population of z: 

                                                       𝑇𝑧0̂ = 𝐴 ∗ 𝑝𝑜𝑝𝑧 −  𝑇𝑧̂  (6) 

 
15 The total number of days in each stratum varies, as the sample was stratified by month and weekend/weekday 

combinations (i.e., “August weekend” or “June weekday”.) 
16 For detailed discussions of the use of the harmonic mean to estimate trips in the context of recreation demand 

modeling, see Leggett (2017), Deacon and Kolstad (2000), and Tourangeau and Ruser (1999). 
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                                                                    𝐴 =  max
𝑧∈𝑍

{1.1 ∗
 𝑇𝑧̂

𝑝𝑜𝑝𝑧
}   (7) 

where A is a scaling factor which ensures that the number of choice occasions for each zip code 

can never be less than the number of estimated visits and is always at least 10% larger. 

To prepare the zonal dataset for estimation, we use Stata’s Georoute package (Weber and 

Peclat 2017) to compute the round-trip travel time (in minutes) and distance (in miles) between 

the centroid of each origin zip code and each site in our sample. Using the 2019 AAA Your 

Driving Costs report (AAA 2019), we construct the travel cost for each zip-site combination in 

each individual choice set. The travel cost accounts for per-mile driving costs as well as the 

opportunity cost of time17, and is specified as follows:  

                             𝑇𝐶𝑧𝑗 = 𝑑𝑖𝑠𝑡𝑧𝑗 ∗ ($0.27 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒) + 𝑡𝑖𝑚𝑒𝑧𝑗 ∗
1

3
(

𝑚𝑒𝑑𝑖𝑎𝑛 𝑖𝑛𝑐𝑜𝑚𝑒𝑧

2000
)  (8) 

where z indexes the origin zip and j indexes the destination site. Median annual income for each 

zip code is obtained from the American Community Survey’s 2018 five-year estimates (US 

Census Bureau 2019). Our per-mile driving cost of $0.27 is computed using a weighted average 

of costs across vehicle types from the AAA Your Driving Costs report for 15,000 miles driven 

each year. The driving cost is made up of maintenance costs as well as marginal depreciation 

costs (Lupi et al. 2020). The hourly value of time for recreation travel is specified as one-third of 

zip z’s median hourly income, assuming a 40-hour work week and 50 weeks worked each year. 

 The zonal dataset was constructed using the intercept interviews and is described in detail in 

Table 2.3 below. The dataset was made up of 4159 individual beachgoers from 999 origin zip 

codes. Within this data, we observed 1896 unique origin zip-destination site combinations. At the 

individual level, 95 percent of respondents indicated that recreation was the primary purpose of 

 
17 For a survey of the recreation demand literature concerning how to construct travel costs, as well as a discussion 

of the challenges inherent in measuring the value of travel time, see Lupi, Phaneuf, and von Haefen (2020). 
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their visit. Respondents spent a harmonic average of 104 minutes at sites. The 999 origin zip 

codes had an average median income of $61,938, and an average median age of about 41 years 

old. The average origin zip code was predominantly white (82%) and was 5% Hispanic. At the 

trip-site level, the average estimated number of trips from origin zip z to destination site j (𝑇𝑧𝑗̂) 

was 777. Estimated total trips from zip code z (𝑇𝑧̂) range from 28 to 38,465 with an average of 

1475 and estimated total trips to any site j (𝑇𝑗) range from 1717 to 262,944, with an average of 

52,638 trips.
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Table 2.3: Zonal Dataset Descriptive Statistics 

  Arithmeti

c Mean 

Harmonic 

Mean 
Median Min Max N 

        
Individual 

Variables 

Recreation primary purpose of beach 

visit? (0/1) 

 

 

0.95  1 0 1 4159 

 Time spent at site (minutes) 175.9 104.4 165 5 870 4159 

        

Trip Variables Visits from origin zip z to destination 

site j (𝑇𝑧𝑗̂) 

777  356 28 31,301 1896 

 Visits from origin zip z (𝑇𝑧̂) 1475  495 28 38,465 999 

 Visits to destination site j (𝑇𝑗̂) 52,638  35,478 1757 262,94

4 

28 

        

Origin Zip 

Demographics 

Median household income ($) 61,938  58,495 11,049 201,23

2 

999 

 College degree (%) 29.5  25 3 85 999 

 Median age (years) 40.8  41 19 66 999 

 Hispanic (%) 5.1  3 0 69 999 

 White (%) 82.3  90 2 100 999 

 Unemployment rate (%) 5.9  5 0 30 999 

        

Trip Statistics Round trip distance to any site (miles) 571  336.2 1.2 5126.4 27,972 

 Round trip distance to visited site 

(miles) 

308.5  115.5 1.2 4975.9 1896 

 Round trip travel cost to any site ($) 259.9  148.6 1.2 3313 27,972 

 Round trip travel cost to visited site ($) 143  52.7 1.2 3212.4 1896 
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2.6: Site Choice Model and Calibration to Stated Preference Data 

 

 Our site choice model is rooted in random utility maximization theory and uses revealed 

preference data to model the recreation decision process in a two-level nested logit framework. 

In each choice occasion, individuals decide whether to make a trip and conditional on a trip, they 

decide which of the 28 sites (j = 1, … , 28) to visit. In keeping with the traditional assumptions 

of RUM theory, we assume that an agent chooses alternative j if it yields the most utility out of 

all the available alternatives in the choice set. Figure 2.2 below illustrates the nests within our 

model, where the site nest alternatives may have errors that are more correlated with one another 

than with the “no-trip” alterative. 

 

Figure 2.2: Nesting Structure for Repeated Nested Logit Model of Great Lakes Beaches 

 

The conditional indirect utility an individual from zip code z receives from choosing the 

no-trip option (j = 0) is composed of an observable representative utility component and a 

random error term, unobservable to the researcher. Representative utility for the no-trip option is 

specified as a function of zip-level demographic variables obtained from the 2018 American 

Community Survey five-year estimates:  
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    𝑈𝑧0 =  𝑉𝑧0 + 𝜀𝑧0 = 𝛽𝑖𝑛𝑐𝑚𝑒𝑑. 𝑖𝑛𝑐𝑜𝑚𝑒𝑧 + 𝛽𝑎𝑔𝑒𝑚𝑒𝑑. 𝑎𝑔𝑒𝑧 + 𝛽𝑐𝑜𝑙𝑙%𝑐𝑜𝑙𝑙. 𝑔𝑟𝑎𝑑𝑧 +

                        𝛽𝑒𝑚𝑝%𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝑧 + 𝛽𝑤ℎ𝑖𝑡𝑒%𝑤ℎ𝑖𝑡𝑒𝑧 + 𝛽ℎ𝑖𝑠𝑝%ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑧 + 𝜀𝑧0   (9) 

The conditional indirect utility an individual from zip code z receives from choosing to visit site 

j≠0 is also composed of representative utility and a random error term, where the representative 

utility term is specified as a function of the travel cost from zip code z to site j≠0: 

                                                    𝑈𝑧𝑗 = 𝑉𝑧𝑗 + 𝜀𝑧𝑗 = 𝛽𝑇𝐶𝑇𝐶𝑧𝑗 + 𝛼𝑗 + 𝜀𝑧𝑗   (10) 

Here, 𝛼𝑗 is an alternative-specific constant (ASC), a site-level fixed effect that captures the 

influence of site-specific characteristics omitted from the utility function. Because random utility 

models are defined in terms of utility differences, of the J+1 alternatives in the repeated RUM, 

only J =28 constants are identified for estimation (one for each site in the choice set).  

 The probability that a person from zip z chooses site j can be expressed as the product of  𝑃𝑧,𝑡𝑟𝑖𝑝, 

the probability that a person from z takes a trip, and 𝑃𝑧𝑗|𝑡𝑟𝑖𝑝, the conditional probability of 

choosing site j: 

                                                                                𝑃𝑧𝑗 =  𝑃𝑧,𝑡𝑟𝑖𝑝𝑃𝑧𝑗|𝑡𝑟𝑖𝑝 (11) 

Because we model the site-choice process in a nested-logit framework, we assume the random 

error terms 𝜀𝑧𝑗 follow a generalized extreme value (GEV) distribution, and write the 

components of 𝑃𝑧𝑗 as follows: 

𝑃𝑧,𝑡𝑟𝑖𝑝 =
𝑒𝑥𝑝 [𝜏 ∗ ln (∑ 𝑒𝑥𝑝 (

1
𝜏 𝑉𝑧𝑘))]28

𝑘=1

𝑒𝑥𝑝(𝑉𝑧0) + 𝑒𝑥𝑝 [𝜏 ∗ ln (∑ 𝑒𝑥𝑝 (
1
𝜏 𝑉𝑧𝑘))]28

𝑘=1

 

=
[∑ 𝑒𝑥𝑝 (

1
𝜏 𝑉𝑧𝑘

28
𝑘=1 )]𝜏

𝑒𝑥𝑝(𝑉𝑧0) + [∑ 𝑒𝑥𝑝 (
1
𝜏 𝑉𝑧𝑘)28

𝑘=1 ]𝜏
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                                                                   𝑃𝑧𝑗|𝑡𝑟𝑖𝑝 =
𝑒𝑥𝑝 (

1

𝜏
𝑉𝑧𝑗)

∑ 𝑒𝑥𝑝 (
1

𝜏
𝑉𝑧𝑘)28

𝑘=1

 (12) 

Train (2009) shows how these probabilities are obtained by decomposing the structural 𝑃𝑧𝑗 term 

derived from the multivariate GEV distribution. The dissimilarity coefficient 𝜏 reflects the 

degree to which the random error terms in each site utility are correlated, with a lower value of 𝜏 

indicating more correlation. The term  ln(∑ 𝑒𝑥𝑝 (
1

𝜏
𝑉𝑧𝑘))28

𝑘=1  , which appears in the numerator of  

𝑃𝑧,𝑡𝑟𝑖𝑝, is often called the log-sum or inclusive value term. The inclusive value represents the 

expected utility that a representative agent reaps from the ability to choose between the site 

alternatives in the trip nest and is a central quantity in our empirical welfare estimation later in 

this essay. As the inclusive value increases, the probability that an agent chooses to make a trip 

increases as well, an intuitive result that connects the upper and lower nests of the choice 

structure. 

In our empirical estimation, we first examine the welfare effects of site closure. To do so, 

we use the concept of compensating variation (CV). Following a change in the price or quality of 

a good, the compensating variation is the amount of money that leaves an economic agent as 

well off, in terms of utility, as they were before the change. Specifically, consider a set of 

recreation sites 𝐽0 which are substitutes, and with level of environmental quality 𝑄0.  Now 

suppose a policy change or natural event shifts the quality level and number of viable sites from 

(𝑄0, 𝐽0) to (𝑄1, 𝐽1). Defining 𝑆𝑧 as a vector of demographic variables for representative agent z, 

the compensating variation per choice occasion for agent z can be implicitly defined as follows: 

                       max
𝑗∈𝐽1

[𝑉(𝑌 − 𝑇𝐶𝑧𝑗, 𝑄1, 𝑆𝑧) + 𝜀𝑧𝑗] =  max
𝑗∈𝐽0

[𝑉(𝑌 −  𝑇𝐶𝑧𝑗 − 𝐶𝑉, 𝑄0, 𝑆𝑧)]  (13) 

Specifying the linear functional form of our site-choice model and rearranging, we can isolate 

the CV term. Because our model accounts for site-specific environmental quality variation using 
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alternative-specific constants, we represent the change to 𝑄1 by adding a term ∆𝑄1 to the relevant 

constant:  

(𝑌 − 𝑇𝐶𝑧𝑗,𝑚𝑎𝑥
1 )𝛽𝑇𝐶 + 𝑆𝑧

′ 𝛽𝑠 + (𝛼𝑗,𝑚𝑎𝑥
1 + ∆𝑄1) + 𝜀𝑧𝑗,𝑚𝑎𝑥

1  

                        =  (𝑌 − 𝑇𝐶𝑧𝑗,𝑚𝑎𝑥
0 − 𝐶𝑉)𝛽𝑇𝐶 + 𝑆𝑧

′ 𝛽𝑠 + 𝛼𝑗,𝑚𝑎𝑥
0 + 𝜀𝑧𝑗,𝑚𝑎𝑥

0  (14) 

↔ 

             𝐶𝑉 =  
1

−𝛽𝑇𝐶
 [

(−𝑇𝐶𝑧𝑗,𝑚𝑎𝑥
1 𝛽𝑇𝐶 + 𝑆𝑧

′𝛽𝑠 + (𝛼𝑗,𝑚𝑎𝑥
1 + ∆𝑄1) + 𝜀𝑧𝑗,𝑚𝑎𝑥

1 )

−(−𝑇𝐶𝑧𝑗,𝑚𝑎𝑥
0 𝛽𝑇𝐶 + 𝑆𝑧

′𝛽𝑠 + 𝛼𝑗,𝑚𝑎𝑥
0 + 𝜀𝑧𝑗,𝑚𝑎𝑥

0 )
] (15) 

To aggregate this welfare measure to a full recreation season, we multiply per-choice 

occasion CV by each agent’s choice occasions,18 and sum over all agents Z: 

           𝐶𝑉𝐶𝐿𝑂𝑆𝑈𝑅𝐸 = ∑ 𝐶𝑂𝑧
1

−𝛽𝑇𝐶

𝑍
𝑧=1  [

−(𝑇𝐶𝑧𝑗,𝑚𝑎𝑥
1 𝛽𝑇𝐶 + 𝑆𝑧

′ 𝛽𝑠 + (𝛼𝑗,𝑚𝑎𝑥
1 + ∆𝑄1) + 𝜀𝑧𝑗,𝑚𝑎𝑥

1 )

−(−𝑇𝐶𝑧𝑗,𝑚𝑎𝑥
0 𝛽𝑇𝐶 + 𝑆𝑧

′ 𝛽𝑠 + 𝛼𝑗,𝑚𝑎𝑥
0 + 𝜀𝑧𝑗,𝑚𝑎𝑥

0 )
]  (16) 

For the analyst, the best sites and the error terms are unknown, so expectations are taken. 

Given our model is a nested logit, the expected compensating variation for site closures or 

quality changes can be written as a function of the monetized difference between two inclusive 

value terms, which represent the maximum expected utilities that can be achieved under baseline 

and post-change conditions. For our purposes, let ∆𝑄1,𝐽 denote an adjustment to site j’s ASC 

which represents a quality change, or in the case of a closure, a larger change that drives 

predicted trips to j to zero. Here, I𝑗[∆𝑄1,𝐽] is an indicator function which equals ∆𝑄1,𝐽 if site j is 

affected, and zero otherwise: 

𝐶𝑉 =  ∑ 𝐶𝑂𝑧
1

−𝛽𝑇𝐶

𝑍
𝑧=1  [

ln (𝑒𝑥𝑝(𝑉𝑧0) + [∑ 𝑒𝑥𝑝 (
1

𝜏
(𝑉𝑧𝑘 + I𝑗[∆𝑄1,𝐽]) )27

𝑘=1 ]
𝜏

)

− ln (𝑒𝑥𝑝(𝑉𝑧0) + [∑ 𝑒𝑥𝑝 (
1

𝜏
𝑉𝑧𝑘)27

𝑘=1 ]
𝜏

)
]      (17) 

 
18 For events which vary over the season, we can sum the measure over the relevant choice occasions rather than 

simply multiplying by choice occasions. 
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The average seasonal welfare effect of a given scenario s at site(s) j≠0 is evaluated using 

Equation (17) above (English et al. 2018).  

Because harmful algal bloom and bacterial warnings do not usually result in beach 

closings, we are interested in the welfare effects of these events when sites stay open. To 

estimate the welfare effect of beach closures, we use data from respondents’ answers to the 9 

contingent behavior questions in the online follow-up survey. Respondents were asked whether, 

given each of the algae/bacterial scenarios in Table 2.2, they would have gone to another site on 

the day they were interviewed. Because each site’s ASC captures unobserved environmental 

quality attributes that affect site utility, we adjust each site’s constant to identify the disutility of 

different warning scenarios. Following Tanner et al. (2019) and English et al. (2018), we adjust 

the alternative-specific constant for each site j≠0 and each scenario s: 

                                                                𝛼𝑗
𝑠 = 𝛼𝑗 + ∆𝑗

𝑠    (18) 

For each site in the choice set, we can obtain  𝜎𝑗
𝑠, the percentage of follow-up respondents who 

indicated they would have gone to the same site under scenario s. The above adjustments to the 

alternative specific constants are made to replicate the pattern of demand predicted by the 

contingent behavior responses; in other words, the adjustments solve for the value of 𝑇𝑟𝑖𝑝𝑠𝑗
𝑠 that 

satisfies the following equation: 

                                                   𝑇𝑟𝑖𝑝𝑠𝑗
𝑠 =  𝜎𝑗

𝑠𝑇𝑟𝑖𝑝𝑠𝑗 (19) 

For each site-scenario combination, we recalibrate the initial ASCs and solve for ∆𝑗
𝑠 using 

an iterative contraction mapping algorithm. This method has been most notably used to calibrate 

automobile market share data for demand forecasting (Berry, Levinsohn, and Pakes 1995)19, and 

has been applied to recreation demand by Murdock (2006), English et al. (2018) and Tanner et 

 
19  For a discussion of this technique as applied to empirical industrial organization, see pp. 32-33 of Train (2009). 
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al. (2019)20. The contraction mapping estimates values of  ∆𝑗
𝑠, which are then used to repeatedly 

compute guesses of 𝑇𝑟𝑖𝑝𝑠𝑗
𝑠̂  until it is as close as possible to 𝑇𝑟𝑖𝑝𝑠𝑗

𝑠. The algorithm begins by 

guessing  ∆𝑗,0
𝑠  , adjusting the ASC, and estimating 𝑇𝑟𝑖𝑝𝑠𝑗0

𝑠̂ . Then for each successive iteration k, 

the algorithm calculates ∆𝑗,𝑘+1
𝑠  as follows: 

                                 ∆𝑗,𝑘+1
𝑠 =  ∆𝑗,𝑘

𝑠 + [𝑙𝑛(𝑇𝑟𝑖𝑝𝑠𝑗
𝑠) − 𝑙𝑛 ( 𝑇𝑟𝑖𝑝𝑠𝑗𝑘

𝑠 )]̂  (20) 

Once the constants have been recalibrated, we can use them to estimate the welfare effects of the 

9 different water quality scenarios. For each scenario s we compute ∆𝑠̅̅ ̅, the weighted average of 

the ASC adjustment terms ∆𝑗
𝑠 across the J = 28 sites.  

Figure 2.3 below illustrates the contraction mapping graphically in price-quantity space, 

and it shows how the algorithm iteratively guesses values of ∆𝑗
𝑠 until 𝑇𝑟𝑖𝑝𝑠𝑗

𝑠 is reached. The 

movement from 𝐷𝑗  to 𝐷𝑗
𝑠 reflects the downward shift in recreation demand induced by warning 

scenario s at site j. In the illustration, 𝐷𝑗1
𝑠 , the algorithm’s first guess, understates the targeted 

demand, 𝐷𝑗2
𝑠  overstates the target, and 𝐷𝑗3

𝑠  once again understates the target but less dramatically 

than 𝐷𝑗1
𝑠 . This pattern continues until 𝐷𝑗

𝑠 is reached. ∆𝑗
𝑠 is the disutility adjustment that moves the 

original ASC 𝛼𝑗 to the calibrated term, 𝛼𝑗
𝑠. 

 

 

 

 

 

  

 
20 Anciaes, Metcalfe, and Sen (2020) also use the same contraction mapping algorithm to calibrate choice 

experiment responses to an RP model to estimate the preferences of UK anglers for site attributes. 
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Figure 2.3: Contraction Mapping Algorithm 

 

Naturally, high-use beach sites will likely incur higher recreational welfare losses from 

HAB and bacterial scenarios, relative to less popular sites. To standardize our welfare estimates 

and compare the impacts of different water quality scenarios at both high-use and low-use sites, 

we divide the CV term in Equation (17) by the predicted change in trips under scenario s to 

recover an estimate of the value per lost trip associated with s: 

 

𝐶𝑉𝑗
𝑠 𝑝𝑒𝑟 𝑙𝑜𝑠𝑡 𝑡𝑟𝑖𝑝

=  
∑ 𝐶𝑂𝑧

1
𝛽𝑇𝐶

𝑍
𝑧=1  [ln (𝑒𝑥𝑝(𝑉𝑧0) + [∑ 𝑒𝑥𝑝 (

1
𝜏

(𝑉𝑧𝑘 + I𝑗[ ∆𝑠̅̅ ̅]) )28
𝑘=1 ]

𝜏

) − ln (𝑒𝑥𝑝(𝑉𝑧0) + [∑ 𝑒𝑥𝑝 (
1
𝜏

𝑉𝑧𝑘)28
𝑘=1 ]

𝜏

)]

∑ 𝐶𝑂𝑧
𝑍
𝑧=1 𝑃𝑧𝑗 −  ∑ 𝐶𝑂𝑧

𝑍
𝑧=1 𝑃𝑧𝑗

𝑠     (21) 

 

where  𝐶𝑂𝑧 = 𝐴 ∗ 𝑝𝑜𝑝𝑧 is equal to the specified number of choice occasions for zip code z. 
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2.7: Results 

 

Table 2.4 lists the percentage breakdown of responses to the contingent behavior 

questions, along with the standard errors of these percentages. Roughly 81 percent of 

respondents indicated that they would have not taken the same trip if a HAB or bacterial warning 

was in effect at the site where they were intercepted. 46 percent of respondents would not have 

gone to any site if a bacterial warning was in effect at the site they visited, and similarly 42 

percent would not have gone to any site if a HAB warning was in effect at the site they visited. 

For both types of water quality events, the percentage of respondents who indicated that they 

would have made the same trip gradually increased as the time since the event’s lifting grew. 

However, roughly 24% of respondents still would not have made the same trip if a bacterial 

warning had been lifted 6 days before their trip, and roughly 20% would not have made the same 

trip in a similar HAB warning scenario.  

Table 2.4: Average Contingent Behavior Response Percentages and Standard Errors 
    

CB Scenario I would have gone to 

the same beach. 

% 

I would have gone to 

another beach. 

% 

I would not have gone to 

any beach. 

% 

    

Bac. warning- day of trip 18.97 34.81 46.23 

 (1.32) (1.62) (1.69) 

-Lifted 1 day before trip 34.55 31.95 33.51 

 (1.62) (1.58) (1.60) 

-Lifted 3 days before trip 52.62 25.79 21.59 

 (1.69) (1.48) (1.39) 

-Lifted 6 days before trip 76.22 11.42 12.36 

 (1.44) (1.08) (1.10) 

HAB warning- day of trip 19.23 38.12 42.65 

 (1.33) (1.65) (1.68) 

-Lifted 1 day before trip 39.03 30.02 30.95 

 (1.66) (1.56) (1.56) 

-Lifted 3 days before trip 62.24 22.10 15.66 

 (1.64) (1.40) (1.23) 

-Lifted 6 days before trip 80.10 11.03 8.87 

 (1.34) (1.06) (0.95) 

HAB warning- next beach 

along the shore  

56.29 

(1.68) 

15.18 

(1.22) 

28.52 

(1.53) 
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At all warning attribute levels, fewer respondents would have made the same trip in a 

bacterial scenario compared to a HAB warning scenario. For each level of lifted warnings (1, 3, 

and 6 day-lifted warnings) we reject the null hypothesis of equality between the percentages of 

respondents who would make the same trip given a HAB or bacterial warning.  However, the 

percentages of respondents who would have made the same trip if either a HAB or bacterial 

warning were currently in effect are not statistically different from one another. Consistent with 

findings from the first paper in this thesis, these results indicate that respondents in the sample 

are similarly averse to current HAB and bacterial events, but this aversion seems to linger more 

intensely and for a more sustained period after a bacterial event.  

The results of our nested logit site-choice model are shown in Table 2.5. The choice of 

whether to take a trip (the participation nest) is modeled as a function of zip code-level 

demographics obtained from the American Community Survey 2018 five-year estimates. Our 

parameter estimates imply that, all else equal, potential beachgoers from zip codes with a higher 

median age are more likely to make a trip, as are potential beachgoers from zip codes with a 

higher percentage of college graduates. Beachgoers from zip codes with a higher share of white 

and Hispanic residents, as well as higher unemployment rates, are also more likely to make a 

trip. The estimated parameter on median income is positive and implies that potential beachgoers 

from zip codes with higher incomes have a lower probability of making a trip to these beaches, 

all else equal.  
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Table 2.5: Revealed Preference Recreation Demand Model Estimates 

Nest Variable Coefficient 
Std. 

Error21 

95% Confidence 

Interval 

Trip Travel cost -0.0072*** 3.62E-05 (-0.0073, -0.0072) 

 
Dissimilarity coefficient 0.111*** 5.16E-04 (0.109, 0.111) 

      

No Trip Median income (/10k) 0.078*** 8.58E-04 (0.077, 0.080) 

 
Median age -0.056*** 2.7E-04 (-0.059, -0.058) 

 
% college graduate -0.0054*** 9.43E-05 (-0.0056, -0.0052) 

 
% unemployed -0.031*** 4.45E-04 (-0.032, -0.030) 

 
% white -0.0098*** 7.15E-05 (-0.0098, -0.0095) 

 % Hispanic -0.027*** 9.51E-05 (-0.027, -0.026) 

(***) denotes significance at the 1% level.  

Estimated site constants are reported in Table 2.6. 

 

In the trip nest, we estimate a negative and significant coefficient on the round-trip travel 

cost, indicating that a higher travel cost lowers the probability of choosing a site, all else equal. 

We also estimate a full set of 𝐽 = 28 alternative specific constants, which are listed in Table 2.6. 

As discussed earlier, the dissimilarity coefficient 𝜏 reflects the degree of correlation between the 

alternatives in the trip nest. We estimate a value of 𝜏 that is between 0 and 1 and significantly 

different from 1, indicating significant correlation between the random error terms in the trip nest 

site utilities. This result confirms that a nested logit model is better suited to explain the observed 

variation in site utilities than the standard conditional logit model, and it implies that when prices 

or site qualities change, the sites are closer substitutes for one another than the no-trip option.  

We use the results of our site-choice model to examine the welfare effects of site 

closures. The disutility of closing a site j is equal to the expected maximum utility of the choice 

 
21 The reported standard errors and confidence intervals were obtained via bootstrap estimation on 127 replicate 

datasets. However, these estimates do not yet take into account the underlying variation in our trip estimates, and 

future efforts will account for this variation. 
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between the original set of J sites, less the expected maximum utility of the choice between the J-

1 sites other than site j. As explained earlier, the measure is given by Equation (21) and produces 

the monetized value of lost surplus due to the closure of j. 

For each site, we estimate the lost surplus value of site closures across a single recreation 

season, and the loss in trips that these closures would induce (Table 2.6). We also report each 

site’s value per lost trip, which are more readily compared to results in the literature. Total 

seasonal welfare loss from the closure of a single beach ranges from $24,000 to $3,915,000 

across each of the sites, with a trip-weighted average loss of $1,779,000. Value per lost trip 

across one season averages $16.34 in our sample of sites, and Detroit’s Belle Isle has the largest 

value per lost trip at $19.48. Using a welfare computation for multiple site closures based on 

Equation (17), we calculate that the closure of all 28 beaches in our sample would induce 

roughly $208 million in welfare losses per year. While a closure of this magnitude is extremely 

unlikely to occur, and so policy analysis using this value would be unwise, this estimate 

illustrates the total recreational value of the public beaches in our sample area.   

To illustrate how beachgoers make tradeoffs between environmental quality and the price 

of site access in the presence or absence of substitute sites, consider the estimated site ASCs 

from our site choice model (Table 2.6). A comparatively small ASC indicates a lower level of 

the unobserved environmental attributes which enter a given site’s utility function, relative to the 

level of environmental attributes at other sites. To more readily compare ASCs across sites, the 

last column of Table 2.6 normalizes each constant relative to the lowest estimated ASC. The 

lowest ASC of any beach in the sample belongs to Showse Park Beach, a site in Vermillion, 

Ohio with a relatively small sandy area. This low ASC makes sense given Showse Park’s size 
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and proximity to larger, more sandy public beaches such as Main Street and Lakeview Park. 

Showse Park also has the smallest value per lost trip in the sample ($15.28).  
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Table 2.6: Site Closure Welfare Estimates 

 

 

 

Site 
Welfare loss 

from seasonal 

site closure 

Lost trips 

due to site 

closure 

Value 

per lost 

trip 

ASC/site 

fixed 

effect 

Normalized 

ASC 

Walter & Mary Burke Park $659,000 38,000 $17.27 -6.268 0.163 

Lake St. Clair Metropark $1,118,000 64,000 $17.41 -6.228 0.203 

Belle Isle Beach $3,014,000 155,000 $19.48 -6.126 0.305 

Sterling State Park $2,221,000 122,000 $18.21 -6.106 0.325 

Luna Pier Beach $389,000 25,000 $15.70 -6.274 0.157 

Maumee - Erie Beach $775,000 47,000 $16.44 -6.144 0.287 

Maumee – Inland Beach $250,000 16,000 $15.62 -6.264 0.167 

Camp Perry Beach $229,000 15,000 $15.53 -6.194 0.237 

Port Clinton City Beach $284,000 18,000 $15.58 -6.175 0.256 

East Harbor State Park $1,756,000 101,000 $17.42 -5.935 0.496 

Nickel Plate Beach $767,000 48,000 $16.10 -6.06 0.371 

Old Woman Creek Beach $93,000 6,000 $15.35 -6.3 0.131 

Sherod Park Beach $59,000 4,000 $15.31 -6.337 0.094 

Main Street Beach $463,000 29,000 $15.69 -6.118 0.313 

Showse Park Beach $24,000 2,000 $15.28 -6.431 0 

Lakeview Park Beach $650,000 41,000 $15.84 -6.075 0.356 

Century Park Beach  $96,000 6,000 $15.34 -6.286 0.145 

Veteran’s Beach $84,000 5,000 $15.33 -6.3 0.131 

Huntington Beach $1,137,000 70,000 $16.22 -6.039 0.392 

Edgewater Park Beach $3,915,000 215,000 $18.22 -5.937 0.494 

Euclid State Park $287,000 19,000 $15.46 -6.176 0.255 

Sims Park Beach $117,000 8,000 $15.34 -6.269 0.162 

Headlands Beach St. Park $1,410,000 86,000 $16.49 -5.952 0.479 

Fairport Harbor Park Beach $1,398,000 86,000 $16.27 -5.951 0.48 

Geneva State Park $1,154,000 71,000 $16.26 -5.926 0.505 

Walnut Beach $1,397,000 83,000 $16.92 -5.945 0.486 

Lakeshore Park Beach $311,000 20,000 $15.61 -6.114 0.317 

Conneaut Beach $1,343,000 76,000 $17.74 -5.939 0.492 

Min $24,000 2,000 $15.28   

Max $3,915,000 215,000 $19.48   

Mean (trip-weighted) $1,779,000 53,000 $16.34   
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On the other hand, while Detroit’s Belle Isle has the largest estimated value per lost trip 

($19.48), its ASC is only the 14th largest among the 28 sampled beaches. These results indicate 

that while Belle Isle does not have the most desirable beach attributes to the average beach user, 

its closure would have the largest welfare effects. This result is likely attributable to the fact that 

Belle Isle is the only public beach in the city of Detroit, and accordingly has much higher 

baseline visitation than any other site in our sample due to the surrounding population density22. 

Additionally, Belle Isle’s closest substitute sites, Lake St. Clair Metropark and Sterling State 

Park, are 24 and 48 miles away, and the absence of close substitutes likely also contributes to 

Belle Isle’s high value. St. Clair Metropark and Sterling State Park exhibit a similar pattern, as 

both have high values per lost trip and low ASCs relative to the other sites in our sample.  

While there are only 5 public beaches on the roughly 100 miles of shoreline which extend 

from the Michigan border to the northern tip of Lake St. Clair, Ohio’s roughly 200-mile Erie 

coast has 23 public beaches. This denser spatial ordering of Ohio sites is reflected in the welfare 

estimates above. Edgewater Park Beach, East Harbor State Park Beach, and Conneaut Beach 

have the highest values per lost trip of all sites in Ohio, however the highest value among these 

three ($18.22 at Edgewater Park Beach) is still over a dollar less per lost trip than Belle Isle. All 

three sites have higher ASCs than Belle Isle, and so the most likely explanation for the relatively 

lower values of Ohio sites despite higher levels of unobserved environmental amenities is the 

dense clustering of substitute sites nearby. Edgewater Park can be most readily compared to 

Belle Isle given its location in downtown Cleveland, and its $18.22 value per lost trip estimate is 

likely influenced by the large number of Cleveland residents who use the site (Edgewater Park 

has the highest number of estimated lost trips in our sample).  

 
22 Indeed, Belle Isle is estimated to lose the second highest number trips across all sites, over 155,000, in the event 

of a seasonal closure. 
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 The above welfare estimates offer important information about the value of Lake Erie 

and Lake St. Clair beaches. However, because HAB and bacterial events do not usually result in 

the closing of sites,23 these estimates do not best reflect the welfare impacts of HABs and 

bacterial contamination in the region. To estimate these impacts, we use the disutilities identified 

by the contraction mapping procedure described earlier. Before doing so, we correct the initially 

estimated constants to account for the HAB and bacterial events which were observed during the 

2019 recreation season.  

If the contraction mapping was computed using the estimated constants without 

correction, this procedure would implicitly assume that the initial site-choice model was 

estimated using data from sites unaffected by HAB or bacterial warnings during the 2019 

recreational season. However, this is not the case, as 21 of the 28 sites used in our analysis 

experienced at least one type of warning from May 27th to September 1st.24 Given the purpose of 

this study and the regularity of HAB and bacterial warnings in the area, this complication is not 

unexpected. However, since this discrepancy can potentially influence the absolute magnitude of 

total welfare loss and lost trips, the ASCs are adjusted to a counterfactual level of “pristine” 

water quality before using the contraction mapping to identify the true disutility parameters 

associated with different HAB and bacterial scenarios.  

 For each site j in our analysis, we estimated an alternative-specific constant 𝛼𝑗 which 

captured the effect of unobserved environmental quality attributes on site-specific utility. In the 

 
23 Across the 28 sampled sites, 115 HAB and bacterial events were reported on the Michigan and Ohio BeachGuard 

websites from May to August 2019. Of the 115 events reported, only 3 were closings and 112 were warnings.  
24 115 total warnings were observed at these 21 sites during the season, according to Michigan BeachGuard and 

Ohio BeachGuard. 110 of these were bacterial warnings, and 5 were HAB warnings. Here, we only consider 

warnings directly attributed to observed bacterial contamination or algal blooms in the BeachGuard system. 

Warnings informed by predictive modeling are excluded from our analysis. 
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case of the 21 sites where HAB and bacterial warnings were observed during the 2019 season25,  

𝛼𝑗 do not represent the counterfactual, unimpaired levels of environmental quality at each site in 

the absence of HABs and bacterial warnings. Let 𝛼𝑗
0 denote the unknown ASC for site j which 

captures this level of unobserved environmental quality in the absence of warnings. For the 7 

sites where no warnings were issued in 2019, 𝛼𝑗
0 =  𝛼𝑗. For all 28 sites, we also obtain ∆𝑗

𝑠, the 

contraction mapping adjustment to 𝛼𝑗 which calibrates the site choice model to the pattern of 

demand observed in the CB responses for scenario s. 

 Suppose that site j only suffers from one type of warning during the season, the fraction of 

days in the season affected by a warning s is given by 𝛾𝑗
𝑠, and assume for the moment that 

beachgoers do not derive any disutility from a site with a recently-lifted warning. Further, let 

𝛼𝑗
𝑠∗ = 𝛼𝑗

0 + 𝛿𝑗
𝑠∗ denote the constant which results from adjusting the unknown “baseline” ASC 

𝛼𝑗
0 by the quantity 𝛿𝑗

𝑠∗, and simulates the effects of a season-long warning. In this case, the 

initially estimated “impaired” ASC 𝛼𝑗 can be written as: 

𝛼𝑗 = (1 − 𝛾𝑗
𝑠)𝛼𝑗

0 + (𝛾𝑗
𝑠)𝛼𝑗

𝑠∗ 

= (1 − 𝛾𝑗
𝑠)𝛼𝑗

0 + (𝛾𝑗
𝑠)(𝛼𝑗

0 + 𝛿𝑗
𝑠∗) 

= 𝛼𝑗
0 + 𝛾𝑗

𝑠𝛿𝑗
𝑠∗ 

                                                                      ∴  𝛼𝑗
0 = 𝛼𝑗 − 𝛾𝑗

𝑠𝛿𝑗
𝑠∗ (22) 

 All terms on the right side of this final equation are known26, except for 𝛿𝑗
𝑠∗, the calibration 

adjustment to the baseline unimpaired ASC of site j, 𝛼𝑗
0. However, noting that 𝛼𝑗

0 = 𝛼𝑗 for the 7 

unaffected sites, we can see that in these cases, the “true” calibration adjustment 𝛿𝑗
𝑠∗ is precisely 

equal to the known adjustment produced by the contraction mapping, ∆𝑗
𝑠. Let the average of 

 
25 Defined as May 27th through September 1st, the length of the summer 2019 intercept survey. 
26 γj

s is obtained from the BeachGuard websites. 
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these calibration adjustments across the 7 unimpaired sites be denoted 𝛿𝑈
𝑠∗̅̅ ̅̅ . Then, for any site j 

which experienced a warning during the season, 𝛿𝑈
𝑠∗̅̅ ̅̅ can be used to estimate the baseline ASC 𝛼𝑗

0, 

as follows: 

                                                      𝛼𝑗
0 = 𝛼𝑗 − 𝛾𝑗

𝑠𝛿𝑗
𝑠∗ ≈ 𝛼𝑗

0 = 𝛼𝑗 − 𝛾𝑗
𝑠𝛿𝑈

𝑠∗̅̅ ̅̅  (23) 

 

This process is similarly expanded to account for the disamenity effects of recently lifted 

HAB and bacterial warnings. The adjusted baseline ASCs can then be fed back into the 

contraction mapping algorithm and welfare formulas to recover correctly scaled estimates of 

total welfare loss and lost trips for each HAB and bacterial scenario.  

For each contingent behavior scenario s, we obtain  𝜎, the proportion of respondents who 

indicated that they would have gone to the same site if the given scenario were in effect. For 

each site j and scenario s, the contraction mapping algorithm adjusts site j’s ASC by ∆𝑗
𝑠, a 

constant which replicates the pattern of demand predicted by the contingent behavior responses 

within the structural demand system. These individual ASC adjustments are listed in Table M.1 

of Appendix M. 

 For each scenario, we compute the average of ∆𝑗
𝑠 across the J = 28 sites, weighted by predicted 

trips to each site, to obtain  ∆𝒔̅̅ ̅. The outcome of the site adjustments from the contraction map 

allows us to produce estimates of seasonal welfare losses and lost trips for each site-scenario 

combination. Table 2.7 reports average welfare estimates for each HAB or bacterial scenario, 

weighted by predicted trips to each site, as well as the bootstrapped confidence intervals for these 

welfare estimates.   
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Table 2.7: Average ASC Adjustment and Trip-Weighted Average Welfare Loss, Across All Sites, 

for Each Water Quality Scenario 

Water Quality Scenario ∆𝒔̅̅ ̅ Seasonal welfare loss  Lost trips  Value per lost trip 

Bacterial warning- day of trip 
-0.206 

(-0.22, -0.192) 
$1,448,823 

($1,361,575, $1,551,253) 

82,170 

(77,167, 88,113) 

$17.27 

($17.19, $17.33) 

-Lifted 1 day before trip 
-0.132 

(-0.142, -0.123) 
$1,172,656 

($1,097,839, $1,256,520) 

65,286 

(61,014, 70,044) 

$17.57 

($17.50, $17.64) 

-Lifted 3 days before trip 
-0.081 

(-0.09, -0.075) 
$853,871 

($780,057, $932,242) 

46,596 

(42,388, 50,942) 

$17.90 

($17.81, $17.96) 

-Lifted 6 days before trip 
-0.035 

(-0.04, -0.031) 
$434,521 

($373,109, $490,907) 

23,137 

(19,824, 26,200) 

$18.32 

($18.24, $18.39) 

HAB warning- day of trip 
-0.203 

(-0.219, -0.186) 
$1,441,475 

($1,346,812, $1,521,045) 

81,712 

(76,248, 84,451) 

$17.28 

($17.21, $17.34) 

-Lifted 1 day before trip 
-0.118 

(-0.129, -0.109) 
$1,096,386 

($1,022,130, $1,190,257) 

60,742 

(56,256, 66,285) 

$17.65 

($17.56, $17.75) 

-Lifted 3 days before trip 
-0.06 

(-0.067, -0.053) 
$681,624 

($616,538, $756,165) 

36,815 

(33,165, 40,926) 

$18.07 

($17.98, $18.17) 

-Lifted 6 days before trip 
-0.029 

(-0.033, -0.024) 
$363,875 

($310,308, $421,638) 

19,299 

(16,432, 22,426) 

$18.38 

($18.31, $18.46) 
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These estimates represent the average welfare losses which would occur if each scenario 

were in effect for an entire summer recreational season. On average, a HAB or bacterial warning 

which affects the average site for an entire season is estimated to result in losses of about $17.30 

per lost trip, and roughly $1.4 million in seasonal welfare losses. 

Our estimates of seasonal welfare loss and lost trips behave as expected—current HAB 

and bacterial warnings result in higher welfare losses and more lost trips than day-old warnings, 

and so on. However, as the time since either type of warning grows, total estimated welfare 

losses decrease at a faster rate than lost trips, which causes our value per lost trip estimates to 

increase. The gap between value per lost trip for a current warning and a 6-day expired warning 

is relatively small in both cases (just over $1).  

While our welfare estimates for season-long HAB and bacterial warnings are easy to 

interpret, it isn’t clear what a “season-long 1-day lifted HAB warning” (for example) means in 

practice. In the next section, we develop a more easily interpretable method for using these 

estimates to simulate the temporal welfare impacts of observed warnings in 2019.  



 

82 

 

2.8: Simulation of 2019 Season 

 

In addition to estimating the welfare losses associated with a full season of HAB and bacterial 

warnings, our results can be used to move from modeling the abstract notion of season-long 

warnings to simulating the effects of actual observed events. The Michigan and Ohio 

BeachGuard websites provide the number of warnings in effect at each site during the 2019 

season, as well as the dates and durations of each warning. Once total seasonal welfare loss 

estimates are obtained for each HAB or bacterial scenario at each site, these estimates can be 

prorated across a season to match the number of days with an observed warning (or days within 

1, 3, or 6 days after a warning) at each site.  

 Appendix L summarizes the bacterial and HAB warnings observed during the 2019 

season. Dividing each seasonal welfare loss estimate by the number of days in the season 

produces a rough estimate of the per-day welfare loss of each scenario. By multiplying each of 

these estimates by the number of days in which the respective warning scenario is in effect and 

summing these products, we recover an estimate of the total recreational welfare loss caused by 

the observed HAB and bacterial warnings during the 2019 season. We treat days which fall 2 

days after the lifting of a warning as “1-day lifted”, and days which fall 4 and 5 days after the 

lifting of a warning as “3-day lifted”.27 By executing this process on 127 bootstrapped datasets, 

we generate empirical confidence intervals for this simulation of the 2019 season’s welfare 

losses. The results of this estimation process are shown below in Table 2.8.  

 

 
27 This welfare loss is calculated assuming that the welfare effects of a 2-day lifted warning are the same as a 1-day 

lifted warning, and likewise the effects of a 4-5 day lifted warning are the same as a 3-day lifted warning, but it 

assumes no effect after 6 days. An alternative approach that maintained the assumption of no losses after 6 days, 

losses for 2-day lifted warnings = 3-day lifted warnings and 4-5 day lifted warnings = 6-day lifted warnings found 

welfare losses totaling 93% of the above approach. A linear interpolation of the values from these two approaches 

totaled 96% of the above approach. 
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Table 2.8: Simulation of Welfare Losses Attributable to Bacterial and HAB  

Warnings during the 2019 Recreation Season 

Simulated Scenario 
Welfare loss attributable to observed 

warnings in 2019  

All bacterial and HAB warnings, including  

welfare losses from up to six days following a 

warning 

$5,802,336 

($5,461,049, $6,184,385) 

All bacterial and HAB warnings, only 

accounting for day-of welfare losses 
$3,848,011 

($3,619,996, $4,111,074) 

% Understatement of not accounting for 

lagged welfare effects 
33.68 

(32.91, 34.67) 

All HAB warnings, but no bacterial warnings, 

including welfare losses from up to six days 

following a warning 

$854,585 

($787,797, $928,934) 

All HAB warnings, but no bacterial warnings, 

only accounting for day-of welfare losses 

$750,408 

($689,515, $818,426) 

All bacterial warnings, but no HAB warnings, 

including welfare losses from up to six days 

following a warning 

$4,947,751 

($4,636,671, $5,283,923) 

All bacterial warnings, but no HAB warnings, 

only accounting for day-of welfare losses 
$3,097,603 

($2,894,187, $3,305,886) 

Note: 95% confidence intervals are in parentheses. 

 

We find a mean total seasonal welfare loss of about $5.8 million during the 2019 

recreational season which can be attributed to HAB and bacterial warnings28. This information 

can be used by policy makers to begin to quantify the effects of E. coli and HAB warnings on 

public beach recreation.  This amounts to roughly 2.8% of the total annual value of recreation at 

these beaches.  Eliminating warnings would provide benefits to beachgoers as well as the nearby 

businesses that benefit from their patronage due to the additional trips that would be taken.   

 
28 See footnote 27 for robustness of this method. 
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We have also established that the recreational welfare effects of bacterial and HAB 

warnings do not immediately dissipate over time. There are two important implications of this 

finding. First, any warning, even if only a day, has longer-term consequences for recreation. This 

finding heightens the need to develop policies that work to eliminate warnings themselves, not 

just the length of warnings. Second, and consequentially for welfare measurement, the failure to 

account for this “lag” effect understates the resulting welfare estimates. To illustrate the effect of 

ignoring recently lifted warnings, we recalculate the 2019 season’s welfare losses using only 

days on which a warning was in effect and find a mean total welfare loss of about $3.8 million. 

This estimate is roughly 34% lower than our initial estimate that accounted for “lag” effects, 

which explicitly illustrates the importance of accounting for the full costs of HAB and bacterial 

warnings in policymaking and cost-benefit analysis. Additionally, accounting for the disamenity 

effects of recently lifted warnings, we find that bacterial warnings are responsible for 85% of 

total 2019 welfare losses (roughly $4.95 million), while HAB warnings are responsible for 15% 

of seasonal welfare losses (roughly $855,000). These estimates indicate that while HAB events 

often command significant media attention and possess a visual aspect that bacterial 

contamination events do not, bacterial contamination currently represents a much larger 

proportional threat to beach recreation in the region.  

While this information is useful from a policy standpoint, it is also worthwhile to note 

that the magnitude of welfare losses attributable to bacterial contamination is driven by the large 

number of bacterial warning days in the 2019 season, relative to HAB warning days. Rather than 

relying solely on absolute welfare loss estimates, we obtain standardized measures of the 

disamenity value of HAB and bacterial warnings to more reliably compare how beachgoers 

value the presence of these warnings. The mean day-of welfare loss attributable to warnings in 
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the 2019 season is about $3 million for bacterial contamination and $750,000 for HABs; 

likewise, 475 days of the season were directly affected by a bacterial warning in 2019, and 73 

were directly affected by a HAB warning. The quotient of these values produces a standardized 

“loss per beach-day” value for each type of warning of $6,500 per day for bacterial warning 

events and $10,300 per day for HABs events. Despite the larger share of total losses attributable 

to bacterial warnings, these standardized values indicate that beachgoers reap much larger 

disutility from the sites where HAB warnings were effect, as opposed to the ones with a bacterial 

warning in effect. 
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2.9: Conclusion 

 

In this paper, we have shown that the welfare costs of water-borne health hazard 

warnings are high and persist for at least six days after warnings are lifted. Our research 

contributes to the relatively small number of studies that estimate the economic value of Great 

Lakes recreation and is one of the few studies to use contingent behavior data embedded within a 

revealed preference model to value environmental quality at freshwater beaches. This work also 

contributes to the limited number of studies estimating welfare impacts of freshwater HABs and 

bacterial contamination, events projected to worsen in frequency and intensity under global 

climate change. While prior studies have used beach closings as a proxy for season-long HABs, 

we estimate the welfare effects of HAB events when beaches stay open, which more accurately 

reflects observed beach management. 

We utilized a combined stated preference and revealed preference approach to estimate 

the welfare impacts of water quality warnings that are common in the western Lake Erie Basin. 

Revealed preference data on observed trips to 28 public beaches was collected using an intercept 

survey during the summer of 2019. Each randomly selected respondent was recruited for an 

online stated preference survey that included contingent behavior questions asking about stated 

travel behavior in the face of possible harmful algal bloom (HAB) and bacterial warnings. The 

RP data was used to create a zonal dataset that treated each observed origin zip code as a 

representative agent, and inverse probability weights were created to estimate trips from each 

origin zip code to each destination site. We estimated a repeated random utility zonal site choice 

model on this dataset and were able to isolate the welfare effects of seasonal site closures, 

finding an average loss of $16.34 per lost trip across all sites. The model also produced a full set 

of alternative-specific constants, which capture the influence of unobserved environmental 
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quality attributes. After estimating the site-choice model, we identified the disutilities of HAB 

and bacterial warnings using a contraction mapping algorithm that calibrated the ASCs until the 

predicted pattern of demand matched the pattern implied by the stated preference responses to 

our follow-up survey.  This calibrated model was used to examine the welfare impacts of season-

long HAB and bacterial warnings, finding that these scenarios would each result in welfare 

losses of $1.4 million at the average site in our sample. We also used our seasonal welfare 

estimates to show that the observed HAB and bacterial events in the western Lake Erie Basin 

caused over $5.8 million in losses during the 2019 season, and we demonstrated that not 

accounting for the disamenity effects of recently lifted warnings would underestimate these 

damages by roughly 34 percent. Additionally, we find that 85% of the estimated 2019 welfare 

losses (4,900,000) are attributable to bacterial events, while the 2019 HABs are responsible for 

15% of seasonal welfare losses ($855,000). However, when these estimates are standardized by 

dividing by the number of days on which each type of warning was in effect, we find that 

beachgoers reap more than three times as much daily disutility from the sites that had a HAB 

warning in effect, compared to sites that had a bacterial warning. 

These results can aid state agencies and policy makers in understanding the full costs of 

current freshwater HAB and bacterial events, especially as both are projected to increase as a 

direct result of climate change. Our results are descriptive of the 2019 recreation season that was 

marked by high water levels which may have affected overall visitation and that was a relatively 

mild HAB season relative to years like 2011 and 2014. Accordingly, our results serve as a rough 

lower bound estimate of the yearly recreational welfare impacts to beachgoers of HAB and 

bacterial warnings. Without serious investment in runoff control technology or policy change, 

the welfare impacts of these events will likely continue to grow. In planning for the future, 
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government agencies need improved understanding of the discounted future benefits resulting 

result from the up-front costs of environmental protection. Accordingly, future interdisciplinary 

research can build on our work by examining how the economic costs of point and non-point 

source water pollution will likely behave over time, and this dynamic consideration may also 

apply to other pollution costs such as non-use values. These dynamic cost estimates can then 

serve as empirical benchmarks for governments to use when making water quality policy in the 

face of a warming world.
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APPENDIX A: Intercept Survey Instrument 

 The survey below was read to Michigan beachgoers who agreed to participate in a survey 

about their beach visit, and who indicated they were over 18 years of age. This version of the 

survey was administered to beachgoers at two public Lake St. Clair beaches, Lake St. Clair 

Metropark and Walter & Mary Burke Park Beach, as well as Belle Isle Beach in Detroit. The 

version of the intercept survey administered to beachgoers at the other 26 beaches in our sample 

was essentially identical to this version. 

 To ensure that potential respondent selection was unbiased, interviewers approached 

every third beachgoer and asked if they would be willing to participate in the survey. 

Interviewers read questions to each respondent from the interviewer’s mobile Qualtrics survey 

app, and then responses were recorded by the interviewer.  
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Figure A.1: Lake St. Clair and Belle Isle Intercept Survey 

 

 



 

92 

 

Figure A.1: (cont’d) 
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Figure A.1: (cont’d) 
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Figure A.1: (cont’d) 
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Figure A.1: (cont’d) 
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Figure A.1: (cont’d) 
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Figure A.1: (cont’d) 
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Figure A.1: (cont’d) 
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Figure A.1: (cont’d) 
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APPENDIX B: Online Follow-Up Survey 

 

 The following survey was sent to Ohio and Michigan beachgoers who provided their 

emails during the intercept survey and indicated they would be willing to participate in the 

follow-up. Each follow-up instrument was specifically written to show the individual site where 

the respondent was interviewed; in this example the site has been specified as Belle Isle Beach. 

Similarly, the intercept year in this example has been specified as 2019. In the follow-up 

instrument, each respondent was shown 5 choice situations as part of the discrete choice 

experiment. For the sake of brevity, only one choice occasion is presented here. Individuals 

intercepted by the Ohio teams were send a version branded by Ohio State University. 
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Figure B.1: Online Follow-Up Survey 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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Figure B.1: (cont.d) 
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APPENDIX C: Data Collection 

 

The intercept surveys were conducted on randomly selected beaches and days between 

May 27th and September 1st, with the exception of the 3 sites on Lake St. Clair and the Detroit 

River, where intercept surveys were conducted between June 29th and August 29th. For the 25 

sites on the coast of Lake Erie, interviewer schedules were determined by a random sampling 

scheme, stratified by weekend (Saturday and Sunday) and weekday days. All weekend days were 

sampled, 4 of the 5 weekdays in any given week were sampled, and a random-number generator 

was used to determine the order of non-sampled weekdays. Each sampled day was then divided 

into two possible sampling shifts: a morning shifts from 10am to 4pm, and an afternoon shift 

from 1pm to 7pm. Two teams of interviewers were allocated to each sampled day and were 

randomly assigned to either both work the morning shift, both work the evening shift, or 

individually work both shifts. These 25 Lake Erie sites were then divided into 8 groups 

composed of 3 sites each (Group 1 had 4 sites), and each unique interviewer team/shift 

combination was randomly assigned one of these groups to determine which sites were sampled 

during each shift. Finally, the order in which the interviewers visited each site within the selected 

group was randomized, to avoid systematically visiting certain sites only at certain times of day.  

The 3 beaches on Lake St. Clair and the Detroit River were sampled differently to 

accommodate less-frequent local interviewer availability. For these sites, three days were 

sampled per week in one of two arrangements: either both weekend days and one weekday were 

sampled, or one weekend day and two weekdays were sampled. The first week of sampling was 

randomly chosen to follow the two weekend-day/one weekday pattern, and each following week 

alternated between the day-sampling arrangements. Each day then was divided into a morning 

shift from 10am to 4pm and an afternoon shift from 2pm to 8pm. Only one interviewer team 
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conducted interviews each day, and weekend shifts were selected using random number 

generation. Likewise, if a given week was selected to sample one weekday, the particular shift 

was randomly drawn from the ten possible shift-day combinations. If a given week was selected 

to sample two weekdays, the above process was completed to select the first day-shift 

combination, and then a sampled shift was randomly selected from the remaining eight shifts. 

Similar to the method used when sampling the 26 Lake Erie beaches, the order in which the 

interviewers visited the three sites was randomized for each shift. 
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APPENDIX D: Pilot Survey  

 

In order to avoid using up respondent emails gathered in our initial intercept survey, we 

used Amazon’s MTurk task completion web service to recruit Ohio residents, age 18 or older, to 

complete our pilot survey. In mid-April, we used MTurk to recruit Ohio residents via a short, 

five-minute Qualtrics screening survey concerning their visits to Lake Erie beaches in 2019. This 

first-stage survey was used to isolate Ohio residents who had actually visited one of the 28 

beaches in our sample, before inviting them to take a second-stage survey which included the 

choice experiments questions. Accordingly, the first-stage survey was analogous to our summer 

2019 intercept survey and allowed us to ensure that the pilot survey drew from a similar 

population of Ohio beach users. 

The first-stage survey presented respondents with a list of the 28 beaches in our sample 

frame, and it asked respondents to indicate whether or not they were familiar with each beach. 

For each beach that a given respondent indicated he or she was familiar with, the respondent was 

asked how many times he or she visited the beach in 2019. Respondents were then asked to 

provide their zip code, gender, and indicate if they had a college degree. If a given respondent 

indicated that he or she was not familiar with any of the sites and/or visited none of the beaches 

in the sample during 2019, the survey ended. However, if a given respondent indicated that he or 

she had visited at least one of the 28 beaches during 2019, they were asked two questions about 

their typical 2019 beach trip. These included whether recreation was the primary purpose for the 

respondent's typical trip in 2019, and how many people typically ride in the same car with the 

respondent when driving to the beach. The demographic questions, as well as the questions about 

the respondents’ typical trips, were analogous to questions posed to respondents during the initial 

intercept interviews. The first-stage screener was administered in two parts, hereby referred to as 
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1A and 1BC, to maximize the number of prospective respondents to invite to the second-stage 

survey. Out of 276 responses to the first-stage 1A instrument, 179 were eligible for the second-

stage instrument. Out of 232 responses to the first-stage 1BC instrument, 161 were eligible for 

the second-stage instrument.  

The second-stage pilot survey was designed to mirror the final follow-up survey sent to 

intercepted respondents from summer 2019. The survey began with a series of questions 

designed to educate respondents about harmful algal blooms and E. coli contamination in Lake 

Erie and Lake St. Clair. These questions also asked respondents about their experiences visiting 

area beaches, and about their attitudes concerning different beach attributes. Respondents were 

then asked to complete the five choice experiments and contingent behavior questions. The order 

in which these two sections were presented to respondents was randomized, to avoid any 

systematic ordering effects across the sample which could influence respondent answers to either 

section. Finally, respondents were asked a series of questions about their demographics, and their 

typical spending during beach trips. 

The second-stage survey was distributed in three parts, hereby denoted instruments 2A, 

2BC, and 2BC-Corona (this version included several questions related to the coronavirus 

pandemic, which will be discussed later). The five choice experiments in instrument 2A were 

designed in Ngene using our anecdotal prior assumptions concerning each attribute’s marginal 

utility parameter and insights from the qualitative efforts.  

The 179 respondents to instrument 1A who had visited at least one of the sampled 

beaches during 2019 were invited via MTurk to complete instrument 2A, and this resulted in 105 

usable responses. Using these respondents’ answers to the choice experiment questions, we ran a 

conditional logit choice model and used the estimated parameters from this model to generate a 
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new D-efficient experimental design in Ngene. This design was subsequently used in instruments 

2BC and 2BC-Corona. The remaining 74 eligible respondents to instrument 1A, as well as the 

161 eligible respondents to instrument 1BC, were then invited to complete instrument 2BC, and 

this instrument resulted in 77 usable responses. At this stage, we designed instrument 2BC-

Corona, which was identical to instruments 2A and 2BC but included the six additional 

coronavirus-related questions. These questions concerned whether respondents believed the 

Covid-19 pandemic influenced their answers, and whether they expected their future beach 

recreation behavior to change as a consequence of the pandemic. After making these changes, 

the remaining non-respondents from both instruments 1A and 1BC were invited to complete 

instrument 2BC-Corona, which resulted in 62 additional usable responses. In total, the final 

model used to generate the Ngene design for our follow-up survey used data from 176 

respondents, and 880 unique choice situations. 
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Table D.1: Conditional Logit Estimates from Pilot Survey 

 (1) (2) (3) (4) 

Variables  Neither 

Interactions 

Distance 

Interactions 

Model 1 WTD 

 (in miles) 

     

Mostly sand 0.888*** 0.905*** 0.898*** 91 

 (0.158) (0.159) (0.160)  

Half sand/half pebbles 0.303** 0.305** 0.301** 31 

 (0.151) (0.152) (0.151)  

Clear water 0.852*** 0.878*** 0.871*** 87 

 (0.182) (0.183) (0.183)  

Somewhat murky water 0.440*** 0.462*** 0.459*** 45 

 (0.161) (0.162) (0.163)  

Never crowded 1.016*** 1.035*** 1.011*** 104 

 (0.169) (0.167) (0.168)  

Somewhat crowded 0.396*** 0.404*** 0.389*** 40 

 (0.148) (0.149) (0.149)  

Bac. warning in effect -2.446*** -2.497*** -2.468*** -250 

 (0.284) (0.285) (0.282)  

-Lifted 1 day ago -1.307*** -1.331*** -1.316*** -134 

 (0.216) (0.217) (0.214)  

-Lifted 3 days ago -0.678*** -0.681*** -0.684*** -69 

 (0.153) (0.153) (0.153)  

-Lifted 5 days ago -0.755*** -0.756*** -0.760*** -77 

 (0.149) (0.148) (0.150)  

HAB warning in effect -2.208*** -2.239*** -2.214*** -226 

 (0.332) (0.329) (0.332)  

-Lifted 1 day ago -1.171*** -1.195*** -1.176*** -120 

 (0.207) (0.207) (0.209)  

-Lifted 3 days ago -0.809*** -0.813*** -0.806*** -83 

 (0.150) (0.150) (0.151)  

-Lifted 5 days ago -0.837*** -0.817*** -0.818*** -85 

 (0.151) (0.150) (0.152)  

Neither 0.0967 1.008** 0.0902  

 (0.271) (0.479) (0.270)  

Distance -0.00979*** -0.0102*** -0.0201***  

 (0.00268) (0.00266) (0.00619)  

nindist_neither -0.00426** -0.00409** -0.00417**  

 (0.00189) (0.00189) (0.00187)  

neither_income  -1.17e-06   

  (2.26e-06)   

neither_white  -0.564   

  (0.351)   

neither_hispanic  -1.043**   

  (0.520)   

neither_male  -0.350   

  (0.236)   

neither_collgrad  -0.209   

 

 

 (0.237)  
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Table D.1: (cont.) 
dist_income   1.93e-09  

   (3.04e-08)  

dist_white   0.00786  

   (0.00537)  

dist_hispanic   0.00739  

   (0.00596)  

dist_male   0.00248  

   (0.00336)  

dist_collgrad   0.00233  

   (0.00356)  

     

Respondents 

Choice Sets  

176 

880 

176 

880 

176 

880 

 

 

 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.2: Mixed Logit Estimates from Pilot Survey 
 (1) (2) (3) (4) 

Variables Parameter Estimate SD Estimates % with  

Parameter >0 

WTD at mean 

parameter est. 

(miles) 

     

Mostly sand 8.237*** 1.619*** 100 118 

 (2.834) (0.558)   

Half sand/half pebbles 3.783** 1.794** 98 54 

 (1.698) (0.826)   

Clear water 4.862*** 1.720** 100 69 

 (1.643) (0.840)   

Somewhat murky water 1.282* 7.921*** 56 18 

 (0.688) (2.291)   

Never crowded 6.395*** 5.913*** 86 91 

 (1.712) (1.611)   

Somewhat crowded 4.966*** 7.893*** 74 71 

 (1.258) (2.251)   

Bac. warning in effect -19.933*** 16.863*** 11 -285 

 (5.960) (4.683)   

-Lifted 1 day ago -7.348*** 10.191*** 24 -105 

 (2.670) (2.988)   

-Lifted 3 days ago -2.794** 7.147*** 35 -40 

 (1.157) (1.929)   

-Lifted 5 days ago -3.342*** 9.153*** 36 -48 

 (1.120) (2.622)   

HAB warning in effect -15.935*** 14.078*** 13 -228 

 (4.078) (3.414)   

-Lifted 1 day ago -4.785*** 9.067*** 30 -68 

 (1.481) (2.613)   

-Lifted 3 days ago -5.559*** 10.789*** 30 -79 

 (1.432) (3.087)   

-Lifted 5 days ago -4.462*** 12.706*** 36 -64 

 (1.265) (3.881)   

Neither 4.713*** 7.849*** 73  

 (1.779) (2.026)   

mindist_neither -0.030*** 0.489*** 48  

 (0.011) (0.149)   

Distance -0.070**    

 (0.030)    

     

Respondents 

Choice Sets 

176 

880 

 

176 

880 

 

176 

880 

 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.3: Contingent Behavior Response Percentages from Pilot Survey 
 (1) (2) (3) 

CB Scenario I would have gone to 

the same beach. 

I would have gone to 

another beach. 

I would not have gone to 

any beach. 

    

E. coli  advisory- day of trip 8.52 35.23 56.25 

    

HAB warning- day of trip 10.23 39.77 50 

    

-Lifted 1 day before trip 23.3 39.77 36.93 

    

-Lifted 3 days before trip 35.23 34.66 30.11 

    

-Lifted 5 days before trip 56.82 26.7 16.48 

    

HAB warning- next beach 

along the shore  

32.95 28.41 38.64 

    

 

 

Table D.4: COVID-19 Question Response Percentages from Pilot Survey 

As a result of the coronavirus pandemic… Disagree 
Somewhat 

disagree 
Neutral 

Somewhat 

agree 
Agree 

      

I will be more likely to avoid all beaches. 22% 28% 14% 18% 18% 

I will likely visit beaches as much or more than 

in the past. 

21% 24% 20% 16% 19% 

I will be more likely to go to different beaches 

than in the past. 

20% 24% 24% 27% 5% 

I will be less likely to avoid crowds at beaches 51% 10% 15% 14% 10% 

I will be more likely to avoid beaches with 

warnings and advisories. 

 

2% 7% 25% 25% 41% 
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APPENDIX E: Follow-up Disposition Tables and Item Non-response 

 

Table E.1: Case Disposition Across Beach Sites Sampled in 2019 

 

*729 interviews were attempted at the 3 Detroit River and Lake St. Clair sites, and 4253 were attempted at the 25 Lake Erie sites. 

 

Table E.2: Stated Preference Item Non-Response 

Contingent Behavior Questions 

# of questions answered 0 1 2 3 4 5 6 7 8 9 

% of respondents 7.69 0.66 0.28 0.56 0.37 0.37 3.56 1.31 3.84 81.35 

Choice Experiments 

# of questions answered 0 1 2 3 4 5 

% of respondents 1.78 1.87 0.84 0.84 3.09 91.57 

Includes only respondents intercepted in 2019 who completed the follow-up survey, 

 i.e. provided an answer to at least one stated preference question (n = 1067). 

   Onsite Interviews* Follow-Up Interviews 

Lake or River County, State Site Completed Emails Invites 
Partial 

Complete 
Complete 

        

Detroit River Wayne, MI 

 

Belle Isle Beach 

 

366 262 259 10 113 

Lake St. Clair Macomb, MI Lake St. Clair Metropark 164 113 113 5 31 

  Walter & Mary Burke Park 88 63 62 5 22 

        

Lake Erie Monroe, MI 

 

Lucas, OH 

Sterling State Park 

Luna Pier Beach 

Maumee – Erie Beach 

106 

38 

48 

56 

19 

20 

56 

19 

19 

0 

2 

0 

19 

6 

4 

  Maumee – Inland Beach 20 11 11 0 5 

 Ottawa, OH Camp Perry Beach 19 9 9 1 4 

  Port Clinton City Beach 30 17 17 1 6 

  East Harbor State Park 120 56 54 2 24 

 Erie, OH Nickel Plate Beach 129 89 85 6 39 

  Old Woman Creek Beach 41 24 24 2 16 

  Sherod Park Beach 24 14 14 0 7 

  Main Street Beach 178 118 118 7 42 

  Showse Park Beach 10 6 6 0 2 

 Lorain, OH Lakeview Park Beach 193 115 115 0 48 

  Century Park Beach 32 19 19 2 6 

  Veteran’s Memorial Park 

Beach 

29 17 16 1 7 

 Cuyahoga, OH Huntington Beach 256 161 158 8 88 

  Edgewater Park Beach 445 295 289 12 109 

  Euclid State Park 133 77 76 5 25 

  Sims Beach 54 38 38 2 10 

 Lake, OH 

 

Ashtabula, OH 

Headlands State Park 

Fairport Harbor 

Walnut Beach 

Geneva State Park 

Lakeshore Park Beach 

Conneaut Beach 

378 

318 

305 

321 

80 

310 

210 

202 

176 

187 

50 

152 

207 

202 

172 

185 

49 

147 

11 

9 

10 

17 

4 

4 

97 

93 

78 

75 

20 

71 
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APPENDIX F: Follow-Up Responses to Contingent Behavior & COVID-19 Questions 

 

Table F.1: Contingent Behavior Response Percentages (2019 respondents) 
 (1) (2) (3) (4) 

CB Scenario I would have gone to 

the same beach. 

I would have gone to 

another beach. 

I would not have gone 

to any beach. 

N 

     

E. coli  advisory- day of trip 18.97 34.81 46.23 928 

     

-Lifted 1 day before trip 34.55 31.95 33.51 961 

     

-Lifted 3 days before trip 52.62 25.79 21.59 954 

     

-Lifted 6 days before trip 76.22 11.42 12.36 963 

     

HAB warning- day of trip 19.23 38.12 42.65 905 

     

-Lifted 1 day before trip 39.03 30.02 30.95 966 

     

-Lifted 3 days before trip 62.24 22.10 15.66 964 

     

-Lifted 6 days before trip 80.10 11.03 8.87 970 

     

HAB warning- next beach 

along the shore  

56.29 15.18 28.52 922 

     

 

 

 

Table F.2: COVID-19 Question Response Percentages (2019 Respondents) 

 

 

As a result of the coronavirus 

pandemic… 
Disagree 

Somewhat 

disagree 
Neutral 

Somewhat 

agree 
Agree N 

       

I will be more likely to avoid all beaches. 42.68 16.82 14.19 16.93 9.38 874 

I will likely visit beaches as much or more 

than in the past. 

16.57 17.15 20.02 19.79 26.47 869 

I will be more likely to go to different 

beaches than in the past. 

33.56 16.27 29.1 15.12 5.96 873 

I will be less likely to avoid crowds at 

beaches 

44.27 14.68 11.70 11.93 17.43 872 

I will be more likely to avoid beaches 

with warnings and advisories. 

 

9.74 6.07 22.57 22.22 39.4 873 
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APPENDIX G: Follow-Up Robustness Checks for Choice Experiment 

 

Table G.1: Mixed Logit Robustness Checks 

Variables 
(1) 

All 2019 Respondents 

(2) 

Under 29 mins. to complete (75th pctl.) 

(3) 

Over 8 mins. to complete (10th pctl.) 

 
Mean SD Mean SD Mean SD 

       

Distance -0.0148***  -0.0145***  -0.0153***  

 (0.000721)  (0.000848)  (0.000770)  

Mostly sand 1.177*** 0.680*** 1.179*** 0.559** 1.135*** 0.614*** 

 (0.0892) (0.120) (0.107) (0.250) (0.0922) (0.123) 

Half sand/half pebbles 0.380*** 0.0412 0.407*** 0.463** 0.373*** 0.0335 

 (0.0734) (0.145) (0.0899) (0.186) (0.0794) (0.159) 

Clear water 1.500*** 0.662*** 1.419*** 0.708*** 1.520*** 0.573*** 

 (0.103) (0.158) (0.122) (0.209) (0.102) (0.197) 

Somewhat murky water 0.707*** 0.226*** 0.628*** 0.0359 0.747*** 0.107 

 (0.0738) (0.0836) (0.0870) (0.251) (0.0744) (0.144) 

Never crowded 1.011*** 0.780*** 0.892*** 0.780*** 1.041*** 0.755*** 

 (0.0925) (0.108) (0.108) (0.139) (0.0943) (0.103) 

Somewhat crowded 0.643*** 0.0873 0.550*** 0.114 0.660*** 0.00920 

 (0.0780) (0.0829) (0.0888) (0.116) (0.0810) (0.0912) 

Bac. warning in effect -3.938*** 0.605 -3.792*** 0.607 -4.056*** 0.705 

 (0.267) (0.699) (0.381) (1.212) (0.283) (0.613) 

-Lifted 1 day ago -1.732*** 0.554** -1.679*** 0.392 -1.746*** 0.412 

 (0.119) (0.236) (0.139) (0.380) (0.119) (0.324) 

-Lifted 3 days ago -1.211*** 0.180 -1.192*** 0.328** -1.177*** 0.0239 

 (0.0931) (0.150) (0.108) (0.153) (0.0908) (0.323) 

-Lifted 6 days ago -1.136*** 0.00744 -1.192*** 0.187 -1.137*** 0.219 

 (0.0900) (0.165) (0.105) (0.203) (0.0953) (0.299) 

HAB warning in effect -3.855*** 1.971*** -3.501*** 1.783*** -3.813*** 1.788*** 

 (0.314) (0.475) (0.312) (0.481) (0.261) (0.379) 

-Lifted 1 day ago -1.280*** 0.200 -1.158*** 0.169 -1.245*** 0.0204 

 (0.102) (0.149) (0.115) (0.267) (0.104) (0.195) 

-Lifted 3 days ago -0.873*** 0.332** -0.812*** 0.315 -0.899*** 0.227 

 (0.0870) (0.166) (0.100) (0.235) (0.0902) (0.255) 

-Lifted 6 days ago -0.454*** 0.214 -0.490*** 0.293 -0.441*** 0.0543 

 (0.0780) (0.173) (0.0922) (0.199) (0.0822) (0.172) 

Neither -0.554*** 1.657*** -0.691*** 1.659*** -0.568*** 1.707*** 

 (0.127) (0.0881) (0.144) (0.112) (0.134) (0.0875) 

       

Respondents 1048 779 944 

Choice Occasions 5082 3775 4640 

Correlation with model 1 means    0.9988 0.9997 
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         Table G.1: (cont.) 

Variables 

(1) 

All 2019 Respondents 

(4) 

Respondents who live within 50 miles 

of a beach (75th pctl.) 

(5) 

Only respondents with transitive 

preferences 

 Mean SD Mean SD Mean SD 

       

Distance -0.0148***  -0.0161***  -0.0151***  

 (0.000721)  (0.000844)  (0.000819)  

Mostly sand 1.177*** 0.680*** 1.084*** 0.722*** 1.198*** 0.697*** 

 (0.0892) (0.120) (0.104) (0.158) (0.0941) (0.132) 

Half sand/half pebbles 0.380*** 0.0412 0.350*** 0.166 0.376*** 0.160 

 (0.0734) (0.145) (0.0881) (0.319) (0.0796) (0.186) 

Clear water 1.500*** 0.662*** 1.425*** 0.734*** 1.493*** 0.798*** 

 (0.103) (0.158) (0.116) (0.171) (0.107) (0.151) 

Somewhat murky water 0.707*** 0.226*** 0.653*** 0.0100 0.724*** 0.0876 

 (0.0738) (0.0836) (0.0850) (0.156) (0.0775) (0.132) 

Never crowded 1.011*** 0.780*** 0.863*** 0.774*** 0.986*** 0.708*** 

 (0.0925) (0.108) (0.108) (0.116) (0.0992) (0.121) 

Somewhat crowded 0.643*** 0.0873 0.482*** 0.165 0.612*** 0.0343 

 (0.0780) (0.0829) (0.0906) (0.120) (0.0843) (0.0933) 

Bac. warning in effect -3.938*** 0.605 -4.323*** 1.840*** -4.045*** 1.002* 

 (0.267) (0.699) (0.456) (0.616) (0.318) (0.583) 

-Lifted 1 day ago -1.732*** 0.554** -1.675*** 0.182 -1.716*** 0.497** 

 (0.119) (0.236) (0.132) (0.467) (0.126) (0.244) 

-Lifted 3 days ago -1.211*** 0.180 -1.299*** 0.144 -1.199*** 0.180 

 (0.0931) (0.150) (0.117) (0.494) (0.0977) (0.149) 

-Lifted 6 days ago -1.136*** 0.00744 -1.185*** 0.106 -1.155*** 0.395* 

 (0.0900) (0.165) (0.106) (0.162) (0.0982) (0.225) 

HAB warning in effect -3.855*** 1.971*** -3.596*** 2.135*** -3.829*** 1.976*** 

 (0.314) (0.475) (0.335) (0.507) (0.291) (0.414) 

-Lifted 1 day ago -1.280*** 0.200 -1.238*** 0.104 -1.257*** 0.223 

 (0.102) (0.149) (0.119) (0.224) (0.119) (0.255) 

-Lifted 3 days ago -0.873*** 0.332** -0.870*** 0.327* -0.849*** 0.302* 

 (0.0870) (0.166) (0.100) (0.181) (0.0941) (0.182) 

-Lifted 6 days ago -0.454*** 0.214 -0.363*** 0.0446 -0.469*** 0.240 

 (0.0780) (0.173) (0.0907) (0.149) (0.0859) (0.146) 

Neither -0.554*** 1.657*** -0.704*** 1.515*** -1.109*** 1.753*** 

 (0.127) (0.0881) (0.143) (0.0961) (0.144) (0.0967) 

       

Respondents 1048 801 1016 

Choice Occasions 5082 3881 4465 

Correlation with model 1 means  0.9963 0.9962 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.10
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Table G.2: Ordering Effects in Mixed Logit Model 
 

Variables 

(2) 

CB|CE - contingent behavior appeared first 

(3) 

CE|CB – choice experiment appeared first 

 Mean SD WTD (miles) Mean SD WTD (miles) 

       

Distance -0.0151***   -0.0149***   

 (0.00104)   (0.00101)   

Mostly sand 1.205*** 0.521* 80 1.172*** 0.742*** 79 

 (0.127) (0.288)  (0.127) (0.169)  

Half sand/half pebbles 0.476*** 0.157 32 0.316*** 0.458 21 

 (0.104) (0.225)  (0.118) (0.293)  

Clear water 1.316*** 0.568*** 87 1.703*** 0.685** 114 

 (0.141) (0.213)  (0.145) (0.288)  

Somewhat murky water 0.732*** 0.0858 48 0.684*** 0.408** 46 

 (0.105) (0.187)  (0.105) (0.177)  

Never crowded 0.807*** 0.832*** 53 1.150*** 0.710*** 77 

 (0.130) (0.116)  (0.132) (0.174)  

Somewhat crowded 0.583*** -0.0790 39 0.635*** 0.0859 43 

 (0.115) (0.161)  (0.109) (0.166)  

Bac. warning in effect -3.820*** 1.100* -253 -4.480*** 1.306* -301 

 (0.415) (0.582)  (0.435) (0.697)  

-Lifted 1 day ago -1.608*** 0.442 -106 -1.874*** 0.574 -126 

 (0.165) (0.384)  (0.173) (0.449)  

-Lifted 3 days ago -1.107*** 0.218 -73 -1.263*** 0.0224 -85 

 (0.131) (0.203)  (0.133) (0.285)  

-Lifted 6 days ago -0.924*** 0.308 -61 -1.331*** 0.0763 -89 

 (0.125) (0.354)  (0.131) (0.197)  

HAB warning in effect -3.540*** 1.360** -234 -3.677*** 1.568 -247 

 (0.384) (0.652)  (0.489) (1.018)  

-Lifted 1 day ago -1.163*** 0.00477 -77 -1.409*** 0.136 -95 

 (0.148) (0.306)  (0.144) (0.234)  

-Lifted 3 days ago -0.889*** 0.0804 -59 -0.855*** 0.00345 -57 

 (0.126) (0.664)  (0.122) (0.347)  

-Lifted 6 days ago -0.428*** 0.231 -28 -0.543*** 0.506*** -36 

 (0.114) (0.154)  (0.114) (0.178)  

Neither -0.612*** 1.817***  -0.572*** 1.581***  

 (0.185) (0.133)  (0.189) (0.121)  

       

Respondents 508 540 

Choice Occasions 2483 2599 

Correlation with Model 1 means 0.9983 0.9963 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table G.3: Ordering Effects in Contingent Behavior Response Percentages 
 (1) (2) (3) 

CB Scenario I would have gone to 

the same beach. 

I would have gone to 

another beach. 

I would not have gone to 

any beach. 

 CE|CB CB|CE CE|CB CB|CE CE|CB CB|CE 

       

E. coli  advisory- day of trip 18.14 19.75 39.38 30.46 42.48 49.79 

       

-Lifted 1 day before trip 37.42 31.85 33.33 30.65 29.25 37.50 

       

-Lifted 3 days before trip 60.00 45.75 24.35 27.13 15.65 27.13 

       

-Lifted 6 days before trip 82.19 70.62 9.87 12.88 7.94 16.50 

       

HAB warning- day of trip 16.97 21.38 43.44 33.05 39.59 45.57 

       

-Lifted 1 day before trip 42.92 35.40 29.61 30.40 27.47 34.20 

       

-Lifted 3 days before trip 68.25 56.69 20.73 23.35 11.02 19.96 

       

-Lifted 6 days before trip 85.26 75.30 8.97 12.95 5.77 11.75 

       

HAB warning- next beach 

along the shore  

61.61 51.27 13.39 16.88 25.00 31.86 

       

Comparison with pooled data 

results from Table IVa 

      

Average difference  -3.72 3.47 -0.29 0.30 4.02 -3.77 

Min absolute difference 0.83 0.78 0.41 0.38 3.06 2.88 

Max absolute difference 7.38 6.87 5.32 5.07 5.94 5.54 

Correlation  0.9996 0.9963 0.9926 0.9835 0.9979 0.9980 

 

 



 

140 

 

Table G.4: Choice Model Estimate Comparisons 
 

Variables 

(1) 

Mixed Logit 

(3) 

Conditional Logit 

(4) 

Nested Logit 

 Mean Estimate SD Estimates WTD (miles) Estimate WTD 
% diff. from 

m. logit WTD 
Estimate WTD 

% diff. from 

m. logit WTD 

          

Distance -0.0148***   -0.0112***   -0.00941***   

 (0.000721)   (0.000501)   (0.000638)   

Mostly sand 1.177*** 0.680*** 80 0.834*** 74 -7% 0.758*** 81 1% 

 (0.0892) (0.120)  (0.0674)   (0.0624)   

Half sand/half pebbles 0.380*** 0.0412 26 0.297*** 26 3% 0.273*** 29 13% 

 (0.0734) (0.145)  (0.0584)   (0.0472)   

Clear water 1.500*** 0.662*** 101 1.053*** 94 -8% 0.911*** 97 -5% 

 (0.103) (0.158)  (0.0727)   (0.0756)   

Somewhat murky water 0.707*** 0.226*** 48 0.524*** 47 -2% 0.441*** 47 -2% 

 (0.0738) (0.0836)  (0.0560)   (0.0537)   

Never crowded 1.011*** 0.780*** 68 0.725*** 65 -6% 0.681*** 72 6% 

 (0.0925) (0.108)  (0.0706)   (0.0612)   

Somewhat crowded 0.643*** 0.0873 43 0.501*** 45 3% 0.439*** 47 7% 

 (0.0780) (0.0829)  (0.0621)   (0.0546)   

Bac. warning in effect -3.938*** 0.605 -266 -2.733*** -243 -9% -2.427*** -258 -3% 

 (0.267) (0.699)  (0.145)   (0.164)   

-Lifted 1 day ago -1.732*** 0.554** -117 -1.195*** -106 -9% -1.095*** -116 -1% 

 (0.119) (0.236)  (0.0805)   (0.0803)   

-Lifted 3 days ago -1.211*** 0.180 -82 -0.801*** -71 -13% -0.709*** -75 -8% 

 (0.0931) (0.150)  (0.0673)   (0.0640)   

-Lifted 6 days ago -1.136*** 0.00744 -77 -0.756*** -67 -12% -0.653*** -69 -10% 

 (0.0900) (0.165)  (0.0683)   (0.0639)   

HAB  warning in effect -3.855*** 1.971*** -261 -2.256*** -201 -23% -2.022*** -215 -18% 

 (0.314) (0.475)  (0.133)   (0.143)   

-Lifted 1 day ago -1.280*** 0.200 -87 -0.942*** -84 -3% -0.789*** -84 -3% 

 (0.102) (0.149)  (0.0754)   (0.0798)   

-Lifted 3 days ago -0.873*** 0.332** -59 -0.646*** -57 -3% -0.549*** -58 -1% 

 (0.0870) (0.166)  (0.0656)   (0.0614)   

-Lifted 6 days ago -0.454*** 0.214 -31 -0.294*** -26 -15% -0.276*** -29 -4% 

 (0.0780) (0.173)  (0.0595)   (0.0498)   

Neither (nest in n. logit) -0.554*** 1.657***  -0.240**   -0.302***   

 (0.127) (0.0881)  (0.0960)   (0.0816)   

Nesting parameter       0.759***   

       0.062   

Respondents 1048 1048 1048 

Choice Occasions 5082 5082 5082 

Corr. w/ Model 1 means  .996 .999 

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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APPENDIX H: 2019 Respondent Summary Statistics 

 

Table H.1: 2019 Respondent Summary Statistics 

 
Mean Min Max N 

Variable 
(1) (2) (3)  (1) (2) (3) 

         
Male (0/1)* . . 0.24 0 1 . . 964 

Hispanic (0/1)* . . 0.03 0 1 . . 853 

White (0/1)* . . 0.94 0 1 . . 847 

Income (in thousands)* . . 80.9 12.5 250 . . 854 

Age 42.9 41.1 42 22 70 4159 2535 1195 

College graduate (0/1) 

 

 

0.58 0.62 0.58 0 1 4140 2524 959 

Have you, or do you plan to, enter the water? (0/1) 0.69 0.73 0.73 0 1 4157 2534 1196 

Is rec. the primary purpose of visit? (0/1) 0.95 0.95 0.95 0 1 4163 2538 1196 

         

(1) Intercept survey participants 

(2) Intercept participants who provided an email 

(3) Follow-up respondents used in analysis 

*These variables are only available for follow-up respondents 
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APPENDIX I: Mixed Logit Conditional Parameter Regressions 

 

Table I.1: Summary of Mixed Logit Posterior Parameter Regressions 

Conditional Beta for 

Dependent Variable 
𝑅2 

Adjusted 

𝑅2 

P-value for 

regression 

F test  

Number of 

demographic 

regressors 

significant at 5% 

Demographic regressors 

significant at 5% 

Number of 

demographic 

regressors 

significant at 1% 

Demographic regressors 

significant at 1% 

Mostly sand 0.008 0.005 0.86 0  0  

Half sand/half pebbles 0.021 0.009 0.055 0  1 Employed full time (0/1) 

Clear water 0.009 0.003 0.74 0  0  

Somewhat murky water 0.017 0.005 0.16 1 Male (0/1) 0  

Never crowded 0.017 0.005 0.17 1 College grad (0/1) 1 
Visits to intercepted 

beach each season 

Somewhat crowded 0.007 0.005 0.87 0  0  

Bac. warning in effect 0.014 0.001 0.35 1 Years visit area beaches 0  

-Lifted 1 day ago 0.016 0.003 0.22 1 
Visits to intercepted 

beach each season 
0  

-Lifted 3 days ago 0.012 0.0004 0.48 0  0  

-Lifted 6 days ago 0.018 0.005 0.14 0  0  

HAB warning in effect 0.017 0.004 0.18 2 
College grad (0/1) & 

Num. children in hh. 
0  

-Lifted 1 day ago 0.014 0.002 0.32 1 White (0/1) 0  

-Lifted 3 days ago 0.015 0.003 0.24 0  1 Years visit area beaches 

-Lifted 6 days ago 0.024 0.011 0.025 1 College grad (0/1) 1 
Enter water during 

intercepted trip? (0/1) 

   
 

    

Average 0.015 0.004 
 

0.57  0.29  
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APPENDIX J: Choice Experiment Simulation Results 

Table J.1: Choice Experiment Simulation Results 

Scenario 

(1) 

Avg. % change in prob. 

of visiting same site 

(2) 

Implied percentage of 

CE respondents who 

would go to same site 

(3) 

Percentage of CB 

respondents who would 

go to the same site 

∆ 

Bac. warning in effect -94% 6% 19% -13% 

-Lifted 1 day ago -60% 40% 39% -1% 

-Lifted 3 days ago -44% 56% 62% 6% 

-Lifted 6 days ago -41% 59% 80% 21% 

HAB warning in effect -93% 7% 19% 12% 

-Lifted 1 day ago -46% 54% 35% -19% 

-Lifted 3 days ago -32% 68% 53% -15% 

-Lifted 6 days ago -17% 83% 76% -17% 

Correlation between (2) 

and (3) 
  0.85  
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APPENDIX K: Creation of Trip Estimates from Individual Weights 

Once the individual weight 𝑤ℎ𝑖𝑗𝑘 is obtained for every intercepted beachgoer, these 

weights are summed over the  𝐾ℎ beachgoers in a given stratum h to recover an estimate of the 

total visitation in each stratum: 

𝑇ℎ̂ =  ∑ 𝑤ℎ𝑖𝑗𝑘

𝐾ℎ

𝑘=1

 

Total estimated visits to the 3 sites where Michigan State interviewers conducted 

interviews is computed by summing 𝑇ℎ̂ over the 4 MSU-specific strata, and the same strategy is 

used for the 25 sites in the 6 OSU-specific strata: 

𝑇𝑀𝑆𝑈,𝐽𝑈𝐿/𝐴𝑈𝐺
̂  =  ∑  𝑇ℎ̂

4

ℎ=1

  

𝑇𝑂𝑆𝑈̂ =  ∑  𝑇ℎ̂

10

ℎ=5

  

 Because the Michigan State interviewer team did not conduct interviews from May 27th 

to June 28th, at this stage we are only able to construct  𝑇𝑀𝑆𝑈,𝐽𝑈𝐿/𝐴𝑈𝐺
̂  , which estimates site 

visitation from June 29th to September 1st at Belle Isle, St. Clair Metropark, and Burke Park. 

Conversely, the Ohio State team conducted interviews from   May 27th to September 1st, and so 

𝑇𝑂𝑆𝑈̂ estimates visitation across the full summer season at the 25 Erie sites. In order to estimate 

full seasonal visitation to all 28 sites in our sample, we needed to recover estimated visitation to 

the 3 MSU sites during the period of May 27th to June 28th.  Accordingly, we first partition 

estimated visits to OSU-sampled sites into two mutually exclusive groups based on the sampling 

date: 

𝑇𝑂𝑆𝑈,𝐽𝑈𝐿/𝐴𝑈𝐺
̂ =  ∑ 𝑇ℎ̂

ℎ=6,7,9,10
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𝑇𝑂𝑆𝑈,𝑀𝐴𝑌/𝐽𝑈𝑁
̂ =  ∑ 𝑇ℎ̂

ℎ=5,8

 

 We then compute 𝜎, the ratio of total estimated visits to OSU-sampled sites to the 

number of estimated visits to OSU-sampled sites in July and August.  

𝑇𝑂𝑆𝑈̂ 𝑇𝑂𝑆𝑈,𝐽𝑈𝐿/𝐴𝑈𝐺
̂⁄ =  𝜎 > 1 

Note that multiplying 𝑇𝑂𝑆𝑈,𝐽𝑈𝐿/𝐴𝑈𝐺
̂  by 𝜎 returns the total estimated seasonal trips for the 

OSU-sampled sites. To adjust for the lack of data on May and June trips to MSU-sampled sites, 

we first assume that the constant 𝜎 also characterizes the relationship between the known 

𝑇𝑀𝑆𝑈,𝐽𝑈𝐿/𝐴𝑈𝐺
̂  and the unknown 𝑇𝑀𝑆𝑈̂ ∶ 

𝑇𝑀𝑆𝑈̂ 𝑇𝑀𝑆𝑈,𝐽𝑈𝐿/𝐴𝑈𝐺
̂⁄ =  𝜎 > 1 

Operating under this assumption, we inflate each individual weight 𝑤ℎ𝑖𝑗𝑘 assigned to a 

beachgoer in the MSU-specific strata by 𝜎 and sum these weights to recover  𝑇𝑀𝑆𝑈̂ : 

∑ ∑ 𝜎(𝑤ℎ𝑖𝑗𝑘)

𝐾ℎ

𝑘=1

4

ℎ=1

= 𝜎 ∑ 𝑇ℎ̂

4

ℎ=1

= 𝜎𝑇𝑀𝑆𝑈,𝐽𝑈𝐿/𝐴𝑈𝐺
̂ = 𝑇𝑀𝑆𝑈̂
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Table K.1: Strata Used in Visitation Estimation 
     

Stratum Interviewer Team Time Period Day Period # Intercepted Trips 

     

1 MSU June 29- August 1 Weekday 83 

     

2 MSU August 1 – September 1 Weekday 134 

     

3 MSU June 29- August 1 Weekend 289 

     

4 MSU August 1 – September 1 Weekend 103 

     

5 OSU May 27 – July 1 Weekday 638 

     

6 OSU July 1 – August 1 Weekday 766 

7 OSU August 1 – September 1 Weekday 632 

     

8 OSU May 27 – July 1 Weekend 320 

     

9 OSU July 1 – August 1 Weekend 650 

     

10 

 

OSU August 1 – September 1 Weekend 544 
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APPENDIX L: Observed HAB and Bacterial Warnings in 2019 Season 

Table L.1: Observed HAB and Bacterial Warnings in 2019 Season 

 

Warning type Affected site 

Number of 

warnings during 

2019 season 

Number of 

affected days 

Number of days 1-

2 days after 

warning 

Number of days 3-

5 days after 

warning 

Number of days 6 

days after warning 

Bacterial Camp Perry Beach 3 22 6 9 3 

 Century Park Beach  13 56 14 11 3 

 Conneaut Beach 1 3 2 1 0 

 East Harbor State Park 3 9 6 7 2 

 

Fairport Harbor Park Beach 
1 3 2 3 1 

 Geneva State Park 2 6 4 6 2 

 Headlands Beach St. Park 1 3 2 3 1 

 Lakeshore Park Beach 2 6 4 6 2 

 Lakeview Park Beach 12 45 14 17 5 

 Main Street Beach 13 47 14 18 6 

 Maumee – Inland Beach 9 74 8 7 2 

 Nickel Plate Beach 4 15 6 9 3 

 Old Woman Creek Beach 4 13 8 12 4 

 Sims Park Beach 5 32 10 11 3 

 Sherod Park Beach 12 46 13 11 6 

 Showse Park Beach 10 37 13 16 5 

 Veteran’s Beach 15 58 18 20 6 

HAB Edgewater Park Beach 1 9 2 3 1 

 Euclid State Park 1 9 2 3 1 

 Huntington Beach 1 10 2 3 1 

 Maumee- Erie Beach 2 45 2 3 1 

Total  115 548 152 179 58 

Mean  5.48 26.1 7.24 8.52 2.76 

Max  15 74 18 20 6 

Min  1 3 2 1 0 
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APPENDIX M: Re-calibrated Baseline ASC Adjustments and Welfare Estimates 

 

Table M.1: Recalibrated ASC Estimates and Adjustments for All Sites and Scenarios (* denotes unaffected site/ no ASC adjustment) 

Site 
Baseline  

ASC 

HAB 

warning 

HAB 1 

day ago 

HAB 3 

days ago 

HAB 6 

days ago 

HAB 

next 

beach 

Bac. 

warning 

Bac. 1 

day ago 

Bac. 3 

days ago 

Bac. 6 

days ago 

Belle Isle* -6.126 -0.235 -0.147 -0.072 -0.036 -0.086 -0.241 -0.159 -0.084 -0.040 

Walter & Mary 

Burke Park* 
-6.268 -0.215 -0.130 -0.061 -0.031 -0.074 -0.221 -0.142 -0.073 -0.033 

Luna Pier Beach* -6.274 -0.195 -0.115 -0.052 -0.026 -0.064 -0.200 -0.126 -0.062 -0.028 

Lake St. Clair 

Metropark* 
-6.228 -0.216 -0.131 -0.062 -0.031 -0.075 -0.222 -0.143 -0.074 -0.034 

Sterling State Park* -6.106 -0.218 -0.133 -0.063 -0.031 -0.076 -0.224 -0.145 -0.075 -0.034 

Camp Perry Beach -6.128 -0.194 -0.114 -0.052 -0.026 -0.064 -0.200 -0.125 -0.062 -0.028 

Century Park Beach  -6.131 -0.193 -0.113 -0.052 -0.025 -0.063 -0.199 -0.124 -0.062 -0.028 

Conneaut Beach -5.929 -0.221 -0.135 -0.064 -0.032 -0.077 -0.227 -0.147 -0.076 -0.035 

East Harbor State 

Park 
-5.9 -0.210 -0.126 -0.059 -0.029 -0.072 -0.216 -0.138 -0.070 -0.032 

Edgewater Park 

Beach 
-5.913 -0.220 -0.135 -0.064 -0.032 -0.077 -0.226 -0.147 -0.076 -0.035 

Euclid State Park -6.152 -0.193 -0.114 -0.052 -0.025 -0.063 -0.199 -0.125 -0.062 -0.028 

Fairport Harbor  

Beach 

 

-5.939 -0.202 -0.120 -0.056 -0.028 -0.068 -0.208 -0.132 -0.066 -0.030 
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Table M.1: (cont.) 

Geneva State Park -5.902 -0.204 -0.122 -0.057 -0.028 -0.069 -0.209 -0.133 -0.067 -0.031 

Headlands Beach 

State Park 
-5.94 -0.204 -0.122 -0.057 -0.028 -0.069 -0.210 -0.134 -0.067 -0.031 

Huntington Beach -6.013 -0.200 -0.119 -0.055 -0.027 -0.066 -0.205 -0.130 -0.065 -0.030 

Lakeshore Park 

Beach 
-6.09 -0.196 -0.115 -0.053 -0.026 -0.064 -0.201 -0.126 -0.063 -0.028 

Lakeview Park Beach -5.939 -0.204 -0.122 -0.056 -0.028 -0.068 -0.209 -0.133 -0.067 -0.031 

Main Street Beach -5.977 -0.201 -0.119 -0.055 -0.027 -0.067 -0.206 -0.131 -0.066 -0.030 

Maumee Bay State 

Park- Erie 
-6.041 -0.210 -0.127 -0.059 -0.030 -0.072 -0.216 -0.138 -0.071 -0.032 

Maumee Bay State 

Park- Inland 
-6.08 -0.204 -0.122 -0.057 -0.028 -0.069 -0.209 -0.133 -0.067 -0.031 

Nickel Plate Beach -6.01 -0.199 -0.118 -0.054 -0.027 -0.066 -0.205 -0.129 -0.065 -0.029 

Old Woman Creek 

Beach 
-6.248 -0.192 -0.113 -0.051 -0.025 -0.062 -0.198 -0.124 -0.061 -0.028 

Port Clinton City 

Beach* 
-6.175 -0.193 -0.113 -0.052 -0.025 -0.063 -0.199 -0.125 -0.062 -0.028 

Sims Park Beach -6.174 -0.193 -0.113 -0.052 -0.025 -0.063 -0.198 -0.124 -0.062 -0.028 

Sherod Park Beach -6.205 -0.192 -0.113 -0.051 -0.025 -0.063 -0.198 -0.124 -0.061 -0.028 

Showse Park Beach -6.316 -0.191 -0.112 -0.051 -0.025 -0.062 -0.197 -0.123 -0.061 -0.027 

Veteran’s Beach -6.127 -0.194 -0.114 -0.052 -0.025 -0.063 -0.199 -0.125 -0.062 -0.028 

Walnut Beach* -5.945 -0.207 -0.125 -0.058 -0.029 -0.071 -0.213 -0.136 -0.069 -0.032 
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Table M.2: Recalibrated Value per Lost Trip Estimates for All Sites and Scenarios (* denotes unaffected site) 

Site 
HAB 

warning 

HAB 1 

day ago 

HAB 3 

days ago 

HAB 6 

days ago 

HAB 

next 

beach 

Bac. 

warning 

Bac. 1 

day ago 

Bac. 3 

days ago 

Bac. 6 

days ago 

Belle Isle* $19.85 $20.70 $21.88 $22.60 $21.62 $19.81 $20.55 $21.65 $22.52 

Walter & Mary 

Burke Park* 
$17.64 $18.00 $18.48 $18.76 $18.37 $17.63 $17.94 $18.38 $18.73 

Luna Pier Beach* $15.60 $15.65 $15.73 $15.78 $15.71 $15.59 $15.64 $15.71 $15.77 

Lake St. Clair 

Metropark* 
$17.76 $18.17 $18.75 $19.11 $18.62 $17.74 $18.09 $18.64 $19.07 

Sterling State Park* $17.95 $18.39 $18.99 $19.37 $18.86 $17.93 $18.31 $18.87 $19.33 

Camp Perry Beach $15.55 $15.60 $15.66 $15.71 $15.65 $15.55 $15.59 $15.65 $15.71 

Century Park Beach  $15.45 $15.48 $15.53 $15.56 $15.52 $15.45 $15.48 $15.52 $15.56 

Conneaut Beach $18.22 $18.68 $19.28 $19.64 $19.15 $18.20 $18.59 $19.16 $19.60 

East Harbor State 

Park 
$17.10 $17.38 $17.77 $18.01 $17.68 $17.09 $17.33 $17.69 $17.98 

Edgewater Park 

Beach 
$18.20 $18.69 $19.39 $19.82 $19.23 $18.17 $18.60 $19.25 $19.77 

Euclid State Park $15.47 $15.50 $15.55 $15.59 $15.54 $15.47 $15.50 $15.54 $15.58 

Fairport Harbor Park 

Beach 
$16.34 $16.51 $16.76 $16.93 $16.70 $16.34 $16.48 $16.71 $16.91 

 

Geneva State Park 

 

$16.50 $16.69 $16.98 $17.17 $16.92 $16.49 $16.66 $16.92 $17.15 



 

151 

 

Table M.2: (cont.) 
 

Headlands Beach 

State Park 
$16.56 $16.75 $17.03 $17.21 $16.97 $16.55 $16.72 $16.98 $17.19 

Huntington Beach $16.10 $16.23 $16.42 $16.55 $16.38 $16.10 $16.21 $16.38 $16.54 

Lakeshore Park 

Beach 
$15.69 $15.76 $15.86 $15.93 $15.83 $15.69 $15.74 $15.84 $15.92 

Lakeview Park 

Beach 
$16.48 $16.67 $16.95 $17.12 $16.88 $16.48 $16.64 $16.89 $17.11 

Main Street Beach $16.21 $16.35 $16.57 $16.71 $16.52 $16.20 $16.32 $16.52 $16.70 

Maumee Bay State 

Park- Erie 
$17.15 $17.45 $17.89 $18.17 $17.79 $17.14 $17.40 $17.80 $18.14 

Maumee Bay State 

Park- Inland 
$16.50 $16.69 $16.98 $17.17 $16.92 $16.49 $16.66 $16.92 $17.15 

Nickel Plate Beach $16.05 $16.16 $16.34 $16.46 $16.30 $16.04 $16.14 $16.30 $16.45 

Old Woman Creek 

Beach 
$15.35 $15.36 $15.38 $15.40 $15.38 $15.35 $15.36 $15.38 $15.39 

Port Clinton City 

Beach* 
$15.46 $15.49 $15.53 $15.56 $15.52 $15.46 $15.48 $15.52 $15.56 

Sims Park Beach $15.43 $15.46 $15.49 $15.52 $15.49 $15.43 $15.45 $15.49 $15.52 

Sherod Park Beach $15.36 $15.38 $15.40 $15.42 $15.40 $15.36 $15.37 $15.40 $15.42 

Showse Park Beach $15.29 $15.30 $15.31 $15.31 $15.30 $15.29 $15.30 $15.31 $15.31 

Veteran’s Beach $15.49 $15.53 $15.58 $15.62 $15.57 $15.49 $15.52 $15.57 $15.61 

Walnut Beach* $16.87 $17.13 $17.52 $17.78 $17.43 $16.86 $17.08 $17.44 $17.75 
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APPENDIX N: Contraction Mapping Substitution Predictions 

The contraction mapping algorithm calibrates a change in the ASCs so that the site choice 

model generates the same pattern of demand implied by the contingent behavior responses. This 

pattern of demand depends on the proportion of respondents who indicated that they would visit 

the same site given each HAB or bacterial scenario. However, respondents could also select that 

they would have gone to another beach or stayed home. The proportions of agents in the 

recalibrated demand model that select each of these two options are dictated by the estimated site 

choice model structure, rather than the pattern of demand reported in the CB responses. Table 

XIV compares the responses from the follow-up survey with the predictions from our nested 

logit model. In the case of the percentage of respondents who selected that they would go to the 

same beach, our model’s predictions are very close to the stated preference data. However, our 

model predicts that the majority of respondents who elect to not go to the same site would 

substitute to other sites, rather than stay home. Indeed, for each contingent behavior scenario, 

under 1 percent of beachgoers are predicted to stay at home. In comparison, the stated preference 

results indicate that a fairly large percentage of respondents would stay home for each scenario 

(26.7% on average). A similar pattern of visitation predictions was observed by Tanner et al. 

(2019), who estimated a similar calibrated RP-SP model of southern California forest recreation. 

Taken together, these results provide evidence that models like the one used in this paper are 

useful in terms of estimating the welfare effects of environmental quality changes but may not as 

be accurate in forecasting patterns of site substitution. 
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Table N.1: Comparison of Contingent Behavior Data and Nested Logit Predictions 

 
Survey Responses 

Model Predictions, weighted by 

predicted trips 

CB Scenario 

I would have 

gone to 

the same 

beach. 

I would 

have gone 

to another 

beach. 

I would not 

have gone 

to any 

beach. 

I would have 

gone to 

the same 

beach. 

I would 

have gone 

to another 

beach. 

I would not 

have gone 

to any 

beach. 

       

Bacterial warning- day of trip 19.0 34.8 46.2 16.95 83.03  0.02 

       

-Lifted 1 day before trip 34.6 32.0 33.5 32.91 67.07 0.016 

       

-Lifted 3 days before trip 52.6 25.8 21.6 57.60 42.39 0.01 

       

-Lifted 6 days before trip 76.2 11.4 12.4 77.9 22.10 0.005 

       

HAB warning- day of trip 19.2 38.1 42.7 17.82 82.16 0.019 

       

-Lifted 1 day before trip 39.0 30.0 31.0 36.32 63.37 0.015 

       

-Lifted 3 days before trip 62.2 22.1 15.7 62.94 37.05 0.009 

       

-Lifted 6 days before trip 80.1 11.0 8.9 79.67 20.33 0.005 

       

HAB warning- next beach 56.3 15.2 28.6 56.92 43.07 0.01 
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APPENDIX O: Comparison of Impaired ASCs and Re-calibrated Baseline ASCs 

 

Table O.1: Comparison of Impaired ASCs and Re-calibrated Baseline ASCs 

Observed 

Warning 

Site Impaired 

ASC 

Re-calibrated  

ASC 

Absolute % 

change 

Bacterial Camp Perry Beach -6.194 -6.128 1.1 

 Century Park Beach  -6.286 -6.131 2.5 

 Conneaut Beach -5.939 -5.929 0.2 

 East Harbor State Park -5.935 -5.9 0.6 

 Fairport Harbor Park Beach -5.951 -5.939 0.2 

 Geneva State Park -5.926 -5.902 0.4 

 Headlands Beach St. Park -5.952 -5.94 0.2 

 Lakeshore Park Beach -6.114 -6.09 0.4 

 Lakeview Park Beach -6.075 -5.939 2.2 

 Main Street Beach -6.118 -5.977 2.3 

 Maumee – Inland Beach -6.264 -6.08 2.9 

 Nickel Plate Beach -6.06 -6.01 0.8 

 Old Woman Creek Beach -6.299 -6.248 0.8 

 Sims Park Beach -6.270 -6.174 1.5 

 Sherod Park Beach -6.337 -6.205 2.1 

 Showse Park Beach -6.431 -6.315 1.8 

 Veteran’s Beach -6.300 -6.127 2.7 

HAB Edgewater Park Beach -5.937 -5.913 0.4 

 Euclid State Park -6.176 -6.152 0.4 

 Huntington Beach -6.039 -6.013 0.4 

 Maumee - Erie Beach -6.144 -6.041 1.7 
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