THECLIMATOLOGYOFSPRINGTIMEFREEZEEVENTSINTHECENTRALAND EASTERNUSA By TingWang ATHESIS Submittedto MichiganStateUniversity inpartialful˝llmentoftherequirements forthedegreeof GeographyMasterofScience 2021 ABSTRACT THECLIMATOLOGYOFSPRINGTIMEFREEZEEVENTSINTHECENTRALAND EASTERNUSA By TingWang TheagriculturalproductionsinthecentralandeasternUnitedStatesaresensitivetospringtime freezeevents.Asaresultofglobalwarming,increasingtemperatureshaveledtoearliershifted springs,usuallycalledfalsesprings,whichhaveresultedindisastrousdamageonprematureplants exposedtosubsequentfreezeevents.Thisstudyanalyzestheclimatologyofspringtimefreezesand theirimpactsonagricultureintheMidwesternUnitedStatesfortheperiodof1981-2018.Thestudy beganbyevaluatingtwopotentialdatasetsforthepurposeofthisanalysis:thePRISM(Parameter- elevationRegressionsonIndependentSlopesModel,http://prism.oregonstate.edu)analysisandthe ERA5(the˝fthmajorglobalreanalysisproducedbyEuropeanCentreforMedium-RangeWeather Forecasts,Hersbachetal.,2018)reanalysis.ThePRISMdataarefoundtobeabetterrepresentation oftheobservedfreezingeventsandthereforeusedforestablishingfreezeeventsclimatology,while theERA5reanalysisisusedtounderstandtheweatherconditionsandclimatebackgroundofthe freezeevents.FreezingdaysinMarchshowadecreasingtrendacrossourstudyregionfrom1981 to2018.EOFanalysisoffreezingdaysinMarchshowsarelativelylargervariationintheOhio Valley,andthe˝rstEOFtimeseriesshowssubstantialinterannualvariability.Thepositivephase ofNAO(NorthAtlanticOscillation)isusuallyassociatedwithlessfreezingriskinMarchacross thestudyregion.Acropyieldsimulationmodelisusedtoinvestigatethehistoricalimpactsof falsespringsandsubsequentfreezeeventsonfruitcropyieldsusingappleasanexample.Damage tendstooccurattheearlygrowingstagesofappleswhentheyaremorevulnerable.Damageis generallyoccurringonearlierandwarmerdays,whichcouldbeduetothemorefrequentfalse springoccurrences.TheUpperMidwestandtheNortheastareregionsthatarelessvulnerableto freezedamage. ACKNOWLEDGEMENTS Iwouldliketothankmyadvisors,Drs.Je˙AndresenandShiyuanZhong,andcommittee memberandgraduatedirector,NathanMoore,fortheirhelpandguidanceinthisresearch.They havebeenverysupportiveandinstructive,andIamsogratefultohavetheopportunitytowork withthem. IwouldliketoacknowledgetheDepartmentofGeography,EnvironmentandSpatialSciences forgivingmetheopportunitytopursuemygraduatestudyandtothankallmyfellowgraduate studentsandcollaboratorsfortheirhelpandencouragement.Itisawonderfulexperiencebeinga geographerhere.Ihavelearnedalotandexpandedmyinterests. IwouldliketothankresearchersintheForestServiceNorthernResearchStationLansing O˚ce,particularlyXindiBian,WarrenHeilman,JosephCharney,andMikeKiefer,fortheir scienti˝cdiscussionsandforprovidingcomputationalanddatastorageresourcesando˚cespace. Lastbutnotleast,IwouldliketothankthebeautyofMichigan.Thegorgeousviewshere attractmetochoosetostayherefortwoyears.IlovethesapphireshinesoftheGreatLakes;Ilove thefantasticbikingtrailsaroundtheMackinacIsland;IlovethemelodioussoundoflakewavesI recordedattheimpressiveAirbnbhouse;IlovethethickcarpetoffallenleavesinPictureRocks;I lovethespectacularsunsetoftheLakeLansingNorth. Solongasmencanbreatheoreyescansee, Solonglivesthis,andthisgiveslifetothee. iii TABLEOFCONTENTS LISTOFTABLES ....................................... vi LISTOFFIGURES ....................................... viii CHAPTER1INTRODUCTION ............................... 1 CHAPTER2EVALUATIONOFTHEERA5ANDPRISMDATASETS .......... 7 2.1Background......................................7 2.1.1Necessityofevaluatinggriddeddatasets...................7 2.1.2PRISManalysisandERA5reanalysisdatasets................8 2.1.3Studyobjective................................9 2.2DataandMethod...................................10 2.2.1Studyregion..................................10 2.2.2Griddeddatasets...............................10 2.2.3Observationaldatasets............................11 2.2.4EvaluationMethods..............................14 2.3Results.........................................15 2.3.1Assessmentofweathervariables.......................15 2.3.2Assessmentofderivedvariables.......................30 2.4Summary.......................................34 CHAPTER3FREQUENCYANDSEVERITYOFSPRINGTIMEFREEZEEVENTS .. 36 3.1Background......................................36 3.1.1FalseSpringsandSpringtimeFreezeEvents.................36 3.1.2SpatiotemporalVariabilityofSpringtimeFreezeEvents...........37 3.1.3StudyObjectives...............................38 3.2DataandMethod...................................39 3.3Results.........................................41 3.3.1Temporalandspatialvariabilityoffreezeevents...............41 3.3.2FreezingAreaPercentage...........................43 3.3.3ResultofEOFanalysisforfreezingdaysinspringtimemonths.......51 3.4Summary.......................................56 CHAPTER4SPRINGTIMEFREEZEEVENTSIMPACTSONAGRICULTURE ..... 58 4.1Background......................................58 4.1.1Springtimefreezetypesandtheirimpactsonperennials..........58 4.1.2Falsespringoccurrencesandimpactsoncrops................59 4.1.3In˛uenceofphenologyonfreezedamage..................60 4.1.4Studyobjectives................................61 4.2Datasetandmethods.................................62 4.2.1PRISMdataset................................62 4.2.2Appleyieldsimulationmodel........................62 iv 4.3Results.........................................64 4.3.1Characteristicsoftheyearlyresults......................64 4.3.2DailyResultsandsomederivedindices...................68 4.4Summary.......................................83 CHAPTER5CONCLUSION ................................. 85 APPENDIX ........................................... 88 BIBLIOGRAPHY ........................................ 98 v LISTOFTABLES Table2.1:Percentofhourlyobservationsmissingatsixstations...............13 Table2.2:Hourlysummarystatistics,rootmeansquaredi˙erence(RMSD),andBias betweenERA5productandobservationalnetworksatsixlocations.......23 Table2.3:Dailysummarystatistics,RMSDbetweenERA5productandobservational networks,atsixlocations..............................24 Table2.4:Dailysummarystatistics,RMSDbetweenPRISMproductandobservational networks,atsixlocations..............................25 Table2.5:Seasonalsummarystatistics,RMSDbetweenERA5productandobservational networks,atsixlocations..............................27 Table2.6:Seasonalsummarystatistics,RMSDbetweenPRISMproductandobserva- tionalnetworks,atsixlocations..........................28 Table2.7:Annualsummarystatistics,RMSDbetweenERA5productandobservational networks,atsixlocations..............................29 Table2.8:Annualsummarystatistics,RMSDbetweenPRISMproductandobservational networks,atsixlocations..............................29 Table2.9:Growingdegreeday(Base4 ° C)summarystatistics................30 Table2.10:FreezeeventscapturedratiosatEastLansingofERA5..............31 Table2.11:FreezeeventscapturedratiosatEastLansingofPRISM.............32 Table2.12:Freezeeventsbelow0 ° Ccapturedratiosatsixstationswithoutdetailedcate- goriesofERA5...................................33 Table2.13:Freezeeventsbelow0 ° Ccapturedratiosatsixstationswithoutdetailedcate- goriesofPRISM..................................33 Table3.1:39-yearmeanofregionalaveragedmonthlyFAP.................46 Table3.2:Theil-SenSlopeformonthlyFAP..........................46 Table3.3:Pearsoncorrelationvalues(r)comparingmonthlyFAPforthemonthsof March,April,andMaytoNAOvalues0-3monthsearlier.............48 vi Table3.4:Pearsoncorrelationvalues(r)comparingmonthlyFAPforthemonthsof March,April,andMaytoPNAvalues0-3monthsearlier.............50 TableA.1.1:.RMSDsofairtemperaturebetweenWRFandobservationsatthreelocations for48hoursfromMay12thtoMay13thwithdi˙erentverticalresolutions....91 TableA.1.2:.RMSDsofwindspeedbetweenWRFandobservationsatthreelocationsfor 48hoursfromMay12thtoMay13thwithdi˙erentverticalresolutions......93 vii LISTOFFIGURES Figure2.1:Studycomparisonsitelocations..........................12 Figure2.2:Di˙erencebetweenERA5andobservationsfordailymaximumtemperature in2010,2012,and2014..............................16 Figure2.3:Di˙erencebetweenERA5andobservationsfordailyminimumtemperature in2010,2012,and2014..............................17 Figure2.4:Di˙erencebetweenPRISMandobservationsfordailymaximumtemperature in2010,2012,and2014..............................18 Figure2.5:Di˙erencebetweenPRISMandobservationsfordailyminimumtemperature in2010,2012,and2014..............................19 Figure2.6:Timeseriesofthedi˙erencebetweenERA5monthlymeandailymeantem- peratureandobservedvaluesatsixlocations...................20 Figure2.7:Timeseriesofthedi˙erencebetweenPRISMmonthlymeandailymean temperatureandobservedvaluesatsixlocations.................21 Figure2.8:Scatterplotofdailyminimumandmaximumtemperaturebetweenobserva- tionsandreanalysisdatasets............................22 Figure3.1:Average,standarddeviation,andtrendoffreezingdaysinspring(March, April,May)from1981to2019..........................42 Figure3.2:Timeseriesofspringtimefreezeeventscountfrom1981to2019........43 Figure3.3:Subsetregionsde˝nedinKarlandKnight(1998)................44 Figure3.4:TimeseriesofmonthlyFAPvalues........................45 Figure3.5:TheleadingtwoEOFmodesandPCtimesseriesforfreezingdaysinMarch..52 Figure3.6:TheleadingtwoEOFmodesandPCtimesseriesforfreezingdaysinApril...53 Figure3.7:The˝rstPCtimesseriesforfreezingdaysinMarchrelatedtoatmospheric variables......................................54 Figure3.8:ThesecondPCtimesseriesforfreezingdaysinMarchrelatedtoatmospheric variables......................................55 viii Figure3.9:TimesseriesofNAOinMarchrelatedtoatmosphericvariables.........55 Figure4.1:Average,absolutevariation,relativevariation,andtrendofthe˝rstgreendate (Juliandate)from1981to2018..........................64 Figure4.2:Average,absolutevariation,relativevariation,andtrendofthebloomdate (Juliandate)from1981to2018..........................66 Figure4.3:Average,absolutevariation,relativevariation,andtrendoftheyearlypoor pollinationdaysfrom1981to2018........................67 Figure4.4:Average,absolutevariation,relativevariation,andtrendoftheyield(bud survivalchance)from1981to2018........................68 Figure4.5:Average,absolutevariation,relativevariation,andtrendofdamagedaysfrom 1981to2018....................................69 Figure4.6:Averageofdamagedaysateachgrowthstagefrom1981to2018........70 Figure4.7:Thetrendofdamagedaysateachgrowthstagefrom1981to2018........71 Figure4.8:Theaverageoffreezedamageoccurringdateateachgrowthstagefrom1981 to2018.......................................72 Figure4.9:Thetrendoffreezedamageoccurringdateateachgrowthstagefrom1981to 2018........................................73 Figure4.10:Theaveragedailyminimumtemperatureduringdamageoccurringdateat eachgrowthstagefrom1981to2018.......................74 Figure4.11:Thetrendofdailyminimumtemperatureduringdamageoccurringdateat eachgrowthstagefrom1981to2018.......................75 Figure4.12:Thetimeseriesofarea-averageddamagedaysinsixsubregionsfrom1981to 2018........................................77 Figure4.13:Thesumofdamagedaysateachgrowthstageinsixsubregionsfrom1981to201878 Figure4.14:Theaverageofdamagevaluesateachgrowthstageinsixsubregionsfrom 1981to2018....................................79 Figure4.15:Theaveragedailyminimumtemperatureateachgrowthstageinsixsubregions from1981to2018.................................80 ix Figure4.16:Theaveragedailyminimumtemperatureduringdamagedaysateachgrowth stageinsixsubregionsfrom1981to2018....................81 Figure4.17:Theaveragedamage-occurringdatesateachgrowthstageinsixsubregions from1981to2018.................................82 FigureA.1.1:.Di˙erencesofsoilmoisturebetweenWRFoutputsandobservationsat Williamsburg...................................91 FigureA.1.2:.Di˙erencesofairtemperaturebetweenWRFoutputsandobservationsat threelocations...................................92 FigureA.1.3:.ComparisonofdailyminimumairtemperaturebetweenWRFandPRISM onMay8th.....................................92 FigureA.1.4:.Dailyminimumtemperaturechangesinresponsetoincreasedsoilmoisture byafactorof1.05onMay8thandMay9th...................94 FigureA.1.5:.Dailyminimumtemperaturechangesinresponsetoincreasedsoilmoisture byafactorof1.05onMay12thandMay13th..................95 FigureA.1.6:.Majorsoilcategoriesinourstudyregion....................96 FigureA.1.7:.SoilmoisturechangebasedonsoiltypesonMay8thandMay9th.......96 FigureA.1.8:.SoilmoisturechangebasedonsoiltypesonMay12thandMay13th.....97 x CHAPTER1 INTRODUCTION TheMidwesternUS(includingthestatesofIllinois,Indiana,Iowa,Michigan,Minnesota,Mis- souri,Ohio,andWisconsin)ranksamongthemostintensiveandextensiveagriculturalproduction areasintheworldanda˙ectstheglobaleconomyconsistentlyanddynamically.Amongthevarious weather-andclimate-relatedthreatstoagriculturalproductionsystemsintheregionareabnormally mildwintersfollowedbywarm,earlysprings,usuallycalledfalsesprings,whichhaveresulted indisastrousdamagetocropsphenologicallyadvancedbytheearlywarmthbutthenexposedto subsequentfreezeevents(Guetal.,2008;O'Brienetal.,2019).Forexample,springtimefreeze eventsin2002and2012causeddramaticlossesinregionalagriculturalproduction,includinga yieldreductionofmorethan95%ofsourcherryyieldsinMichiganin2002andalossofmorethan 85%ofappleproductioninMichiganin2012(NASS,2002;Marinoetal.,2011;O'Brienetal., 2019;Labeetal.,2015;Kistneretal.,2018;Guetal.,2008).Whiletheeconomicimpactsoffalse springsandsubsequentfreezeeventsaresigni˝cant,thereisagenerallackofpreviousresearch investigatingthenature,extent,andimpactsofsuchevents,whichistheprimaryobjectiveofthe studypresentedinthisthesis. Understandingthestatisticalcharacteristicsofspringtimefreezeeventsrequirescontinuous, long-term(decades)climatedatafrombothstationobservationsandgriddedanalysis/reanalysis. Griddeddatasetsmayprovideconsiderableadvantagesoversinglesitestationobservationswith continuouscoverageoverspaceandtime,especiallyinareaswithsparsemeteorologicalstationsor restricteddataaccessibilityandavailability(Ceglaretal.,2017).Griddeddatasetsincludeanalysis orreanalysisproducts,bothofwhichinvolveperformingdataassimilation,aprocessrelyingon bothobservationsfromavarietyofsourcesandforecastsfromnumericalweatherpredictionmodels (Parkeretal.,2016).Initially,sometypeofobjectiveanalysisisappliedonamyriadofobservations toanirregulargridtorepresenttheatmosphericstate(Deeetal.,2011).Asafollow-upprocess, model-basedreanalysiscanbeperformedwithindividualdatalayersfromthedataassimilation 1 systemtoprovideamultivariate,spatiallycomplete,andcoherentrecordoftheglobalatmospheric circulation(Deeetal.,2011).Areanalysisisaparticulartypeofanalysisdonewitha˝xed softwaresystem.However,bothreanalysesandanalysesaresensitivetochangesinobservational systems(Deeetal.,2011).Reanalysesarepotentiallymoreattractivesincetheyprovidemore comprehensivegriddedestimatesofatmosphericconditionsatregularintervalsoverlongperiods oftime(Parkeretal.,2016).Griddedreanalysesandanalyseshavebeenusedinawiderangeof applications,includingunderstandingatmosphericdynamicsofjetstreams(Kidstonetal.,2010), investigatingtheimpactofclimatevariabilityonagriculture,airpollutionapplications,andwind energydevelopment(Toretietal.,2019;Essouetal.,2017;Gleixneretal.,2020;Cannonetal., 2015),andevaluatingclimatemodels(Gleckleretal.,2008). Therearealsolimitations.Despitetheirpopularity,griddeddatasetsrepresentarea-averaged, andinsomecases,time-averagedestimatesofmeteorologicalvariablesandhencemaynotaccu- ratelyrepresentmeteorologicalconditionsataparticularlocationortime(Tetzneretal.,2019; Bosilovichetal.,2013).Itis,therefore,necessarybeforeaspeci˝capplicationtoassesshow thegriddeddatasetsrepresentthelocalvariabilityinaregionofinterest.Thisnecessityisthe motivationfortheworkpresentedinChapter2thatevaluatestwogriddeddatasetsusedforthe studiesinthelaterchapters:TheanalysisproductPRISM(Parameter-elevationRegressionson IndependentSlopesModel,http://prism.oregonstate.edu),agriddedanalysisdatasetprovidedby thePRISMclimategroupfromOregonStateUniversity,andareanalysisproduct,ERA5,the˝fth majorglobalreanalysisproducedbytheEuropeanCentreforMedium-RangeWeatherForecasts (ECMWF;Hersbachetal.,2018).PRISMestimatestemperaturesoverspaceusingempirical statisticalrelationshipswithobservedsinglesiteclimatedatafromnearbystationsadjustedfor elevation(WaltonandHalletal.,2018).Stationobservationsaregivenhigherweightsifthey aregeographicallyclosertothetargetgridcellandhavesimilarcoastalproximityortopographic position,consideringallotherfactors(WaltonandHalletal.,2018).Previousresearchsuggests thatconsiderationofthesefactorsresultedingreateraccuracyforPRISMincomplexterrainand alongcoastlinescomparedtoothergriddedanalyses,includingDaymetandWorldClim(Walton 2 andHalletal.,2018).ERA5isaglobalreanalysisextendingbackto1979withahorizontal resolutionof30kmandhasbeenevaluatedforanumberofregionsandhistoricalperiods.For example,Tetzneretal.(2019)evaluatedERA5inthesouthernAntarcticPeninsulaandEllsworth Land,Antarctica,andconcludedthatERA5ishighlyaccurateinrepresentingthemagnitudeand variabilityofnear-surfaceairtemperature.Theyalsorevealedthatthehigherspatialandtempo- ralresolutionofERA5comparedtoitspredecessor,ERA-Interim,signi˝cantlyreducedthecold coastalbias.Gleixneretal.(2020)concludedthatERA5reducedstatisticalbiasesandimproved therepresentationofinterannualvariabilityovermostofAfrica.However,fewstudieshavespeci˝- callyevaluatedPRISMandERA5overtheMidwesternandEasternUnitedStates,necessitatingan assessmentofhowbothdatasetsrepresentthelocalclimaticvariabilityoftemperaturepriortotheir applicationasaproxyforobservationstoinvestigatethehistoricalfrequencyoffreezeevents.In anevaluationofthetwogriddeddatasetsacrosstheregionfrom2001to2018,PRISMwasfound tomoreaccuratelyrepresenthistoricalobservationscomparedtoERA5andwasusedasaproxy forobservationsacrossthestudyregioninastudyofspringtimefreezeevents(Chapter3)andtheir impactsonagriculture(Chapter4). Toinvestigatethestatisticalcharacteristicsofspringtimefreezeevents,weneed˝rsttoconsider thephysicalandcausalmechanismsassociatedwiththem.Therearetwomaintypesoffreezeevents, advectionfreezesandradiationfreezes.Advectionfreezestendtooccurinawell-mixedboundary layerwithstrongwindsassociatedwithcoldfrontsortheleadingedgesofpolar-originhigh-pressure systems(Winkleretal.,2012).Radiationfreezestendtobeassociatedwithsurfaceanticyclones locatedacrosstheregioncharacterizedbyrelativelycloud-freeandcalmconditionsinwhichthe earth'ssurfacecoolsmorerapidlythantheatmosphereabove(Winkleretal.,2012).Radiation freezesoccurmorefrequentlyandarecomparativelyeasiertopredictduetotheassociationwith atemperatureinversion.Onthecontrary,advectionfreezesarelessfrequentandoccurwithout inversiondevelopingandthusaredi˚culttopredict. Therearealsotemporalchangesinspringtimefreezefrequencytoconsider.Dailyminimum temperaturesacrosstheregionhavewarmedinrecentdecades(Andresenetal.2012),inmanyareas 3 morequicklythanmaximumtemperatures,resultinginadecreaseinthediurnaltemperaturerange (Quetal.,2014).Therehavealsobeenchangesatbothendsofthetemperaturedistribution.Roweet al.(2012)notedthatthedayswithrecordlowdailyminimumtemperatureshadbeensigni˝cantly andsteadilydecreasingnearlyeverywhereacrosstheUnitedStates,whilethedayswithrecord highdailyminimumtemperaturesincreasedconsiderably.Therehavealsobeendecreasesinthe numberofdayswithfreezingtemperatures.DeGaetano(1996)detectedanoveralldecreasingtrend infreezingdaysintheNortheasternUnitedStatesfrom1959to1993,whileEasterlingetal.(2002) observedasigni˝cantreductioninspringtimefreezingdaysacrossthewesternandnorth-central USfrom1948to1999.Inthesamestudy,˝rstfallfreezeoccurrenceswasfoundtobeoccurring laterintheyearwithtime;theoccurrencesofthelastspringfreezeweretrendingearlier,resulting inanoverallincreaseinthelengthofthefrost-freeseason(Easterlingetal.,2002).Yuetal.(2014) alsorevealedthesametrendfor˝rstfallfreezedates,lastspringfreezedates,andthefrost-free seasonlengthfrom1980to2010intheMidwest.Theirstudyalsoidenti˝edlesserinterannual variabilityofthesedatesintheGreatLakesregionversusotherportionsoftheMidwest(Yuetal., 2014). Projectedfuturechangesinthefrequencyandseverityoffalsespringeventsandsubsequent freezeeventsassociatedwithawarmingworldmaybecomplex(Allstadtetal.,2015).Both˝rst greendatesand˝rstbloomdateswilllikelycontinuetoshiftearlierintheyearwithrisingglobal temperatures,butthecomplexnatureofthisprocesscomplicatesmakingaprioriestimatesofhow temperaturechangeswilla˙ectspringonset(Allstadtetal.,2015).Resultsfrompreviousstudies suggestthattheintermountainWest,GreatPlains,andupperMidwestregionsoftheUnitedStates mayexperienceincreasesinthefrequencyoffalsesprings(Allstadtetal.,2015;Petersonand Abatzoglou2014;O'Brienetal.,2019).However,Winkleretal.(2012)concludedthatprojections offreezeriskafterfalsespringsinMichiganareassociatedwithhighuncertainty. FollowinganexaminationofhistoricalfreezeeventsacrosstheregioninChapter3,westudy potentialassociatedagriculturalimpactsinChapter4.Springtimefreezeeventscancausesevere damagetocrops,especiallyfollowingfalsesprings.Thepatternofabnormalearlywarmthwillnot 4 directlycausedamage,butthetimingofanysubsequentfreezeevents,particularlyinrelationtothe cropphenologicalstage,iscritical(Augspurgeretal.,2007;Longstrothetal.,2012).Forexample, intheearlyphenologicalstagesoftemperatetreefruitcropssuchasappleandcherry,coldinjury anddamagebeginattemperaturesnear-6 ° C,butasthebloomstageapproaches,temperaturesas warmas-2 ° Ccancauseconsiderabledamage(Longstroth,2005).Therefore,themagnitudeof coldinjurymayvarygreatlydependingonthecropphenologicalphaseandthelevelofobserved minimumtemperaturesatthetimeofthefreeze(Hufkensetal.,2012).Extensivedamagein both2007and2012freezeeventswasassociatedwithrecord-breakingwarmtemperaturesduring themonthofMarch,whichledtoabnormallyadvancedandvulnerablecropphenologicalstages, followedbyaseriesofbothadvectiveandradiationalfreezesinApril(Augspurgeretal.,2007; Kistneretal.,2017).Sincechangesinextremeweathereventssuchasfreezeeventsdependmore onvariabilitythanoveralltemperaturetrends,studiesrevealthatthereisanincreasedriskoffreeze damageoncropswithmoresigni˝canttemperaturevariabilityrelatedtoglobalclimatechange (Rigbyetal.,2008;Augspurgeretal.,2013). Deterministicorsemi-deterministiccropsimulationmodelsarefrequentlyappliedtobetter understandthepotentialimpactsofclimatevariabilityandchangeonagriculturalproduction systems.However,therelativelyslowgrowthandcomplexityofperennialstendtolimitthe numberandtypesofavailablecropsimulationmodels(LobellandField,2011).Thegrowthand developmentofvegetationisgenerallyafunctionofmanyenvironmentalvariables,withthemost substantialcontributionistypicallyassociatedwithtemperature(Rigbyetal.,2008).Rigbyet al.(2008)usedasimpleThermalTime(orDegreeDay)modeltoestimatethephenologyofbud break,andtheirresultsrevealedthatfrostrisktovegetationisassensitivetoincreasesindaily temperaturevarianceastoincreasesinthemeantemperature.Similarly,Marinoetal.(2011)used amodeltoapproximatethetimingofleaf-outtoreconstructtheseasonalstartoftheseasonover theperiod1901-2007acrossthesoutheasternUnitedStatesandnotedadecreasingtrendoffalse springoccurrencesoverthestudyregion(Marinoetal.,2011).Variousstudieshavefocusedon howthephenologicalstagesofplantsrespondtothetemperaturechangewithwarmingtrends,but 5 farfewerhaveinvestigatedpossibletreefruitproductionimpacts.InChapter4ofthisstudy,the approachofZavallonietal.(2006)wasappliedovertheMidwesternandEasternUnitedStatesto estimatetheyieldresponseofapple,withphenologicaldevelopmentbasedonthemethodologyof Rijal(2017). Giventheirimportanceindescribingyieldvariabilityoftreefruitproductionovertime,a betterunderstandingoftheclimatologyofspringtimefreezesandtheirimpactsonagriculture ishighlydesirable.ThisstudyconsidersproductionareasacrossthecentralandeasternUnited States.InChapter2,ERA5reanalysisandPRISManalysisdatasetsarecomparedtosinglestation observationsatdi˙erenttemporalscalesforseveralrelevantclimatevariablesandthenevaluatedto determinehowthesedatasetscapturefreezeeventswithspeci˝edcriteria.Chapter3investigates thefrequency,severity,andpotentialcausesofspringtimefreezeeventoccurrencesacrossthestudy regionusingERA5reanalysistounderstandtheweatherconditionsandclimatebackgroundofthe freezeeventsrepresentedbythePRISManalysisdataset.InChapter4,weinvestigatethehistorical impactsofspringtimefreezeeventdamageonappleintheMidwesternUSfrom1981to2018with acropsimulationmodelwithinputdatafromPRISM,includingtemporalchangesinassociated agroclimaticvariables.Finally,inChapter5,wesummarizethemainresultsfromChapter2to Chapter4andalsothelimitations. 6 CHAPTER2 EVALUATIONOFTHEERA5ANDPRISMDATASETS 2.1Background 2.1.1Necessityofevaluatinggriddeddatasets Manyenvironmental-themedapplicationsincludingcropsimulationmodelsrequiredetailed andcomprehensiveweatherandclimatedataasinputs(Ceglaretal.,2017).Suchinputdataare usuallyobtainedfromvarioussources,includingdirectobservationsfromnetworksofweatheror climatestations,griddedanalysesofstationobservations,orgriddedreanalysesblendingobserva- tionswithnumericalweatherorclimatemodeloutputs.Griddedanalyses/reanalysesdatasetshave advantagesoverstationobservationsastheycanprovidereasonableestimatesofmissingdataover spaceandtime,allowingforcontinuouspatternanalysis(Ceglaretal.,2017).Thegriddedanaly- sesofstationobservationsaretypicallygeneratedbymeansofspatialandtemporalinterpolation techniques(Dalyetal.,2008;Waltonetal.,2018),whilegriddedreanalysesgenerategriddeddata surfacesprimarilywithmodelsimulationsandtheiroutputs.Becauseofthecontinuousspatial andtemporalcoverage,griddedanalysesorreanalysesdatasetshavebeenwidelyusedforunder- standingweatherphenomena,climatevariabilityandtrends,andotherrelatedapplicationssuchas agriculture,airpollution,windenergy(Toretietal.,2019;Essouetal.,2017;Gleixneretal.,2020; Cannonetal.,2015).Therearealsochallengesintheirapplication.Inparticular,griddeddatasets representarea-averaged,andinsomecases,time-averagedestimatesofmeteorologicalvariables andhencemaynotaccuratelyrepresentmeteorologicalconditionsataparticularlocationortime (Tetzneretal.,2019).Consequently,thesedatasetsshouldbeevaluatedagainstactualobservations todocumentifbiasesorerrorsexistbeforebeingusedtounderstandweatherorclimateconditions foraparticularapplication. 7 2.1.2PRISManalysisandERA5reanalysisdatasets PRISM(Parameter-elevationRegressionsonIndependentSlopesModel;Dalyetal.,2008),a griddedanalysisdatasetofsurfaceclimatevariablesprovidedbythePRISMclimategroupfrom OregonStateUniversity,wasutilizedtocharacterizefreezeeventsinthestudydomain.Thedataset was˝rstevaluatedbycomparingitwithobservationaldatasetsatdi˙erentlocationsintheregion. ThePRISMclimategroupincorporatesclimateobservationsfromawiderangeofmonitoring networksanddevelopscontinuousspatialclimatedatasetsbyapplyingsophisticatedqualitycontrol measures.PRISMprovideslong-term(from1981topresent)dailyclimatevariables,including dailyminimum/maximum/meantemperature,precipitation,andvaporpressurede˝cit(VPD)ata uniform4kmgridspacing.ThecomparisonofthefreezecharacteristicsderivedfromthePRISM datawiththosederivedfromstationobservationswilldeterminewhetheritisagoodproxyfor observationsoffreezeoccurrences. BecausethePRISMdatasetonlycontainsdailysurfacevariables,anotherdatasetthatprovides informationabovethesurfaceisnecessarytoexplainthevariabilityandtrendsoffreezingevents fromtheperspectiveoflarge-scaleatmosphericconditions.Therecentlyreleasedclimatereanalysis dataset,ERA5,bytheEuropeanCentreforMedium-RangeWeatherForecasts(ECMWF)willbe usedforthispurpose.ERArefersto`ECMWFRe-Analysis,'withERA5beingthe˝fthmajorglobal reanalysisproducedbyECMWF.ERA5provideshourlydatafrom1979untilpresentat139pressure levelsfrom1000hPato1hPawithahorizontalresolutionof30km.Asthelatestglobalreanalysis dataset,ERA5bene˝tedfromadecadeofdevelopmentsinmodelphysics,coredynamics,anddata assimilationrelativetoearlierreanalysisdatasetssuchasERA-Interim(Hersbachetal.,2019).The ERA5datasetsigni˝cantlyenhanceshorizontalresolutionwiththe30kmgridspacingatdi˙erent pressurelevelsand9kmgridspacingatthesurfaceonlandcomparedto79kmforERA-Interim. AnumberofstudieshaveevaluatedtheaccuracyandapplicabilityofERA5andERA-Interim.For example,Tareketal.(2019)revealthattheERA-InterimandERA5temperaturesaregenerally similartositeobservationsoverNorth-America,andERA5demonstratesasubstantialreduction inwarmerbiasescomparedtothoseintheERA-Interimdataset.Also,withagoodrepresentation 8 ofobservationalprecipitationdata,thedry/wetbiaspatternofERA-Interimissharplyreducedin ERA5(Tareketal.,2019).Inthisstudy,wewillexaminetheaccuracyofERA5inrepresenting freezeeventsinourstudyregion. 2.1.3Studyobjective TheprimaryobjectiveofthisstudyistocompareERA5reanalysisandPRISManalysisdatasets withsingle-siteobservationsatdi˙erenttemporalscalesforseveralrelevantclimatevariablesand thenevaluatehowthesedatasetscapturefreezeeventswithspeci˝edcriteria. 9 2.2DataandMethod 2.2.1Studyregion ThestudydomainisthecentralandeasternUnitedStatesencompassingtheregionfrom105 º Wto75 º Wlongitudeandfrom35 º Nto50 º Nlatitude.Thisregionencompassesoneofthelargest andmostintensiveagriculturalproductionareasintheworld,includinglargeareasofspecialty-crop agriculturesuchastreefruitwhicharehighlyvulnerabletospringfreezes. 2.2.2Griddeddatasets ERA5isthe˝fthgenerationreanalysisfromECMWF.Thereanalysisisproducedata1-hourly timestepusingasigni˝cantlymoreadvanced4D-varassimilationscheme(Tereketal.,2019).The ERA5-Landreanalysisdatasetprovidesaconsistentviewoftheevolutionoflandvariablesover severaldecadesatanenhancedresolution(9km)comparedtoERA5(MuñozSabateretal.,2019). Hourlytemperature,relativehumidity,andprecipitationfrom2001to2018acrossourstudyregion areobtainedfromERA5-Land.Datafromthecentersofgridboxesfromthereanalysisnearestto theobservationalstationswerethenextractedforcomparison.Also,itisnoteworthythatvariable outputsingridboxescontainingadjacentwaterareas(e.g.,alongtheshoresoftheGreatLakes) onlyrepresentspatialaveragesacrossthelandareasanddonotincludethewater-coveredsurfaces (MuñozSabateretal.,2019). TheParameter-elevationRegressionsonIndependentSlopesModel(PRISM;Dalyetal.1994) isusedtoderivegriddedsurfacevariablesfortheconterminousUnitedStates.Ateachgridcell, anelevationregressionfunction,consideringmultiplephysicalfactorsthatre˛ecttheirsimilarity tothetargetgridcell,is˝ttostationalobservationsusingamovingwindow(Waltonetal., 2018).Thesefactorsincludedistance,cluster,elevation,coastalproximity,topographicfacet, verticallayer,topographicposition,ande˙ectiveterrainheight(Waltonetal.,2018).PRISM incorporatesdatafromawiderangeofnetworks,asmanyaspossible,includingCOOP,RAWS,the CaliforniaDataExchangeCenter(CDEC),Agrimet,NRCS,theCaliforniaIrrigationManagement 10 InformationSystem(CIMIS),andmore(seehttp://prism.oregonstate.edufordetails).Weobtained dailyminimumandmaximumtemperaturesfromPRISMfrom2001to2018acrossourstudy regionforthiscomparison. 2.2.3Observationaldatasets Threestationalobservationdatasetsareusedinthestudy.TheyarerespectivelytheMichi- ganEnviroweather(EW)network,theNOAANationalWeatherServiceAutomatedSurfaceOb- servingSystem(ASOS),andtheUSClimateReferenceNetwork(USCRN).TheMichiganEn- viroweather(EW)networkisaninteractiveinformationsystemlinkingreal-timeweatherdata fromastatewidemesonetwork,forecasts,andbiologicalandotherprocess-basedmodelsforas- sistanceinoperationaldecision-makingandriskmanagementassociatedwithMichigan'sagri- cultureandnaturalresourceindustries.Itaimstodevelopasustainableweather-basedinforma- tionsystemthathelpsusersmakepests,plantproduction,andnaturalresourcemanagementde- cisionsinMichigan(https://www.canr.msu.edu/resources/enviroweather_weather_data_and_pest- _modeling).TheAutomatedSurfaceObservingSystem(ASOS)unitsareautomatedsensorsuites designedtoserveasaprimarymeteorologicalobservingnetworkintheUnitedStates.There arecurrentlymorethan900ASOSsiteswithone-minuteand˝ve-minutedataathourlyintervals intheUnitedStates(https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based- datasets/automated-surface-observing-system-asos).Five-minutedatawasobtainedforuseinthis study.TheUSClimateReferenceNetwork(USCRN)isasystematicandsustainednetworkof climatemonitoringstationswithsitesacrosstheconterminousUS,Alaska,andHawaii.Itincorpo- rateshigh-qualityinstrumentstomeasuretemperature,precipitation,windspeed,soilconditions, andmore.TheUSCRNprogramaimsatmaintainingasustainable,high-qualityclimateobserva- tionnetworktoprovideacontinuousseriesofclimateobservationsformonitoringtrendsinthe nation'sclimateandsupportingclimate-relatedresearch(https://www.ncdc.noaa.gov/crn/). Forthepurposeofevaluatinggriddedweatherproducts,sixsinglesitestationsacrossMichigan werechosenforreferenceobservations:EastLansing,Gaylord,EastLeland,SouthHaven,Grand 11 Figure2.1: Studycomparisonsitelocations. Therediconsinthe˝gurerefertothepointsofthe stationalobservationdatasets,whiletheblueiconsrepresentthecentroidsoftherectanglesin ERA5-landdatasetswhichcontainthestationalpoints. Rapids,andTraverseCity(Figure2.1).EastLelandandSouthHavenwerebothchosentore˛ect theareasofthestudydomainneartheGreatLakes,wherethelakesmaysigni˝cantlymodifylocal climate(AndresenandWinkler,2009).Itisimportanttonotethatthecomparisonsofgridded arealaveragestoindividualpointobservationsarenotatidenticalspatialandtemporalscalesbut stillcloseenoughtodeterminetheirrepresentativenessandrelativeapplicability. Weevaluatethegriddeddatasetswiththepointobservationsathourly,daily,monthly,annual, anddecadalscales.Missinghourlytemperature,relativehumidity,andprecipitationobservations forthesixchosenstationswereomittedfromthecomparisonandaresummarizedintable2.1. ThefewestoverallmissingobservationswerefoundatEastLansing,EastLeland,andSouthHaven sites.TheASOSnetworkmissesmorethanhalfoftheprecipitationrecord.Withafocusonfreeze eventsthataremorerelatedtotemperature,wearenotgoingtoprovidemanyresultsofevaluating precipitationdata.Also,wenoticethatmorethanaquarteroftherelativehumiditydataisnot recordedatGaylord. 12 Network Station Lat Lon Date Atmpmissing Relhmissing Prcpmissing EW EastLansing 42.67 ° -84.49 ° 1/1/2001to12/31/2018 1.38% 0% 0.13% EW EastLeland 45.03 ° -85.67 ° 5/1/2003to12/31/2018 0.37% 0.37% 0.96% EW SouthHaven 42.36 ° -86.29 ° 4/6/2006to12/31/2018 0.94% 0.99% 0.8% ASOS GrandRapids 42.881 ° -85.523 ° 1/1/2001to12/31/2018 1.97% 2.39% 54.91% ASOS TraverseCity 44.742 ° -85.582 ° 1/1/2001to12/31/2018 3.06% 3.88% 54.11% USCRN Gaylord 44.91 ° -84.72 ° 9/19/2007to12/31/2018 0.06% 26.63% 0.69% Table2.1: Percentofhourlyobservationsmissingatsixstations. 2.2.4EvaluationMethods Toquantifythedi˙erencesbetweengriddeddatasetsandpointobservations,severalstatistics werecomputed.RootMeanSquaredDi˙erence(RMSD),acommonmetricusedtomeasurethe accuracyofvariables,isthesquarerootoftheaverageofsquareddi˙erencesbetweenestimations andactualobservations.Inthisstudy,estimationsarethegriddeddatasets(ERA5andPRISM) andobservationsarethestationaldatasets(EW,ASOS,andUSCRN).Thede˝nitionforRMSDis asfollows. H 9 and b H 9 areobservationsandestimations,respectively. '"(ˇ = q 1 = Í = 9 = 1 ¹ H 9 b H 9 º 2 Andthede˝nitionforBiasis: 0B = 1 = Í = 9 = 1 ¹ H 9 b H 9 º 14 2.3Results 2.3.1Assessmentofweathervariables We˝rstprovidetimeseriesplotsbycomparingthereanalysisdatasetsandtheobservational datasets(Figure2.2-Figure2.5).Weselectthreeyears,2010,2012,and2014(randomlyselected; allthreeyearshavecompletedatafromobservations),andplotthedailydi˙erencesbetweenthe reanalysisdatasetsandtheobservations.TheconclusionsfromthetimeseriesofDmaxT(daily maximumtemperature)andDminT(dailyminimumtemperature)forbothERA5andPRISM revealthatERA5showslargerperturbationsthanPRISMforbothDmaxTandDminT,indicating thesmallerRMSDs(RootMeanSquaredDi˙erences)ofPRISM.Also,ERA5underestimates DmaxTfornear-lakestations,especiallyforlatesprings,whichperiodwecareaboutmost.The timeseriesofDminTforERA5showsthatitdramaticallyoverestimatesDminTforstationsnearthe lake.Also,theDminTofERA5isconsistentlywarmerthantheobservationsnearthelakeduring thesummertimeforourselectedthreeyears.Thedi˙erencebetweenERA5andobservationsof DmaxTshowsoverallsmallerperturbationsthanDminT. ThetimeseriesofDminTandDmaxTforPRISMalsorevealthatDminThasnoticeablylarger errorsthanDmaxT.AndthetimeseriesofDmaxTshowsmuchsmootherpatternsforallsixstations forthreeselectedyears.Thedi˙erencesbetweenPRISMandobservationsforDminTrevealthat PRISMisconsistentlywarmerthanobservationsforthetwonear-lakestations.Also,sincethe ASOSnetworkisincorporatedintothePRISMreanalysisdataset,GrandRapidsandTraversecity shownoticeablysmallerperturbationsthanotherstations. 15 Figure2.2: Di˙erencebetweenERA5andobservationsfordailymaximumtemperaturein2010, 2012,and2014. 16 Figure2.3: Di˙erencebetweenERA5andobservationsfordailyminimumtemperaturein2010, 2012,and2014. 17 Figure2.4: Di˙erencebetweenPRISMandobservationsfordailymaximumtemperaturein2010, 2012,and2014. 18 Figure2.5: Di˙erencebetweenPRISMandobservationsfordailyminimumtemperaturein2010, 2012,and2014. 19 Figure2.6: Timeseriesofthedi˙erencebetweenERA5monthlymeandailymeantemperature andobservedvaluesatsixlocations. Wealsoevaluatethereanalysisdatasetsonamonthlyscale.Thedi˙erencesbetweenERA5 reanalysisandobservationsofmonthlymeansofdailymeantemperatureshownoticeableannual cycles(Figure2.6).ERA5reanalysistendstooverestimatedailymeantemperatureduringsummer seasonsandunderestimateduringwinterseasons,whichisoutofourexpectation.Wethinkthat reanalysisdatasetsshouldreducethecyclesincetheyarearea-averaged.Andthetwonear-lake stationsstillshowlargeramplitudes.SincetheASOSnetworkisnotincorporatedintoERA5 reanalysisdatasets,wedon'tobservebetteragreementsbetweenthereanalysisandobservations. Thedi˙erencesbetweenPRISMreanalysisandobservationsofmonthlymeansofdailymean temperaturerevealthatthelakee˙ecttendstogetPRISMconsistentlyhigherthanobservations (Figure2.7).Also,thetwoASOSstationsareshowingoverallsmallerperturbationsaround zero.Weobserveabnormallylargedi˙erencesbetweenobservationsandbothERA5andPRISM reanalysisdatasetsinSeptemberof2009andNovemberof2007atSouthHaven.Thereanalysis datasetsbothgreatlyoverestimatethedailymeantemperatureforthesetwomonths.Wethencheck theobservationaldata,andtherearenomissingdataforthesetwomonths.Theabnormalvalue betweengriddeddatasetsandobservationsforEastLansinginDecemberof2009isduetothe missingdatainthestationalobservations. 20 Figure2.7: Timeseriesofthedi˙erencebetweenPRISMmonthlymeandailymeantemperature andobservedvaluesatsixlocations. Todemonstratetheagreementbetweenobservationsandreanalysisdatasetsinamorestraight- forwardway,weprovidescatteredplotsatdailyscalesbetweenthemfortheselectedsixstations (Figure2.8).Inthisscatterplot,ifthepointsareontheredline,itmeansthatgriddeddataagree withtheobservations.Ifthepointsareabovetheredline,itmeansthatgriddeddataarelarger thanobservations;ifbelow,smaller.ComparingERA5andPRISM,weobservethattheDmaxT andDminTofPRISMareinoverallbetteragreementswithobservations.TheshapesofDminT ofEAR5tellusthattheERA5reanalysisdatasettendstooverestimateDminTduringsummertime whenDminTishigherandunderestimateDminTduringwintertimewhenDminTislower.The agreementbetweenERA5andobservationsforDmaxTisbetterthanDminT,andthetwonear-lake stationsareoverallunderestimated.ForPRISM,DmaxTalsoagreesbetterwithobservationsthan DminT.ThesameasERA5,PRISMtendstooverestimateDminTofEastLelandandSouthHaven. MostoftheDminTandDmaxTofPRISMarescatteredaroundtheredlinewithsmallvariations. ThetwoASOSstations,GrandRapidsandTraverseCityshowgreatshapesoftheagreementsince theyareincorporatedintothePRISMgroupmodel. 21 Figure2.8: Scatterplotofdailyminimumandmaximumtemperaturebetweenobservationsand reanalysisdatasets. 22 Station Number RMSD RMSD RMSD Bias Bias Bias Temp RelHum Precip Temp RelHum Precip ° C % mm ° C % mm EastLansing 157770 1.81 11.26 0.43 0.37 -3.75 0.1 EastLeland 137346 3.05 11.85 0.4 0.27 0.33 0.11 SouthHaven 111666 3.18 12.97 0.51 0.3 3.45 0.12 GrandRapids 157751 1.57 9.06 NaN -0.32 -0.09 NaN TraverseCity 157751 2.16 9.59 NaN -0.69 2.76 NaN Gaylord 98905 1.71 9.59 0.6 0.23 -0.15 0 Median 147548 1.99 10.43 0.51 0.25 0.12 0.1 Table2.2: Hourlysummarystatistics,rootmeansquaredi˙erence(RMSD),andBiasbetween ERA5productandobservationalnetworksatsixlocations. SincetheERA5reanalysisdatasethashourlyproducts,weareabletoexaminetheperformance oftheERA5onanhourlytimescale(Table2.2).Sincemorethanhalfoftheprecipitationdata atGrandRapidsandTraverseCityarenotrecordedbythenetworksystem,wedonotassess precipitationdataatthesetwostations.ERA5productsoveralloverestimatetemperature,relative humidity,andprecipitationforoursixstations.Also,itisnoteworthythattheRootMeanSquared Errors(RMSDs)arelargeforrelativehumidity,whichalsore˛ectedtheBiasintemperature.Our resultsalsorevealthatthetwonear-lakestations,EastLelandandSouthHaven,havenoticeably largerRMSDfortemperatureandrelativehumidity.SincePRISMonlyhasdailydata,wecould notevaluateitonanhourlyscale. WealsoevaluateERA5productsonadailyscale.TocomparewiththePRISMdataset,we providetheassessmentfordailyminimumtemperature(DminT)anddailymaximumtemperature (DmaxT)(Table2.3).PRISMde˝nesadayasthe24hoursendingatGreenwichMeanTime (GMT,or7:00a.m.EasternStandardTime).ThismeansthatPRISMdata,likedailyminimum temperature,forMay26th,referstothe24hoursendingat7:00a.m.onMay26th.Forconsistency, weusethismethodtode˝neadayforthedataofERA5aswell.WeobservePRISMhas overallsmallerRMSDsandBiasforboththeDminTandDmaxTcomparedtoERA5,showinga betteragreementwithobservations.TheRMSDforDmaxTofERA5couldbeaslargeas4.49 degrees.ERA5overalloverestimatestheDminTandunderestimatestheDmaxT,whilePRISM 23 Station Days RMSD RMSD Bias Bias DminT DmaxT DminT DmaxT ° C ° C ° C ° C EastLansing 6573 2.49 1.14 1.23 -0.1 EastLeland 5722 4.27 3.15 2.76 -1.82 SouthHaven 4652 4.49 2.98 2.82 -1.83 GrandRapids 6572 1.88 1.33 0.05 -0.6 TraverseCity 6572 2.52 1.98 0.08 -1.23 Gaylord 4120 2.12 1.27 -0.05 0.34 Median 6147 2.51 1.66 0.66 -0.92 Table2.3: Dailysummarystatistics,RMSDbetweenERA5productandobservationalnetworks, atsixlocations. overestimatesboththeDminTandDmaxT.TheunderestimationforDmaxTandoverestimation forDminTofEAR5arereasonablesincethereanalysisdataarearea-averagedvaluesacrossthe griddedboxes,whichcouldreducethediurnalcycleofobservations.Thelakee˙ectsarere˛ected bythedramaticallylargeRMSDandBiasatEastLelandandSouthHavenfromtheEAR5dataset, whichcouldbeasthreetimeslargeasthoseofotherstations.Thelakee˙ectsalsohavesigni˝cant butsmallerin˛uencesonthePRISMdataset,whichmightbeduetoPRISMincorporatesmore oftheobservationaldatasets.Also,itisnoteworthythatPRISMhasalargerRMSDandBiasof DminTthanthatofDmaxT(Table2.4).ThismightbeduetothatDmaxTisusuallymeasured atstableconditions,resultinginasmallerbiasinthearea-averagedreanalysisdatasets.Also,we observedoverallbetterestimatesofPRISMattheASOSnetworkstationsthantheEWnetwork sincestationsoftheASOSnetworkareincorporatedintothereanalysisdatasets. 24 Station Days RMSD RMSD Bias Bias DminT DmaxT DminT DmaxT ° C ° C ° C ° C EastLansing 6573 1.49 0.91 0.65 0.5 EastLeland 5722 2.98 0.96 2.13 0.08 SouthHaven 4652 2.84 1.27 1.51 -0.34 GrandRapids 6572 0.73 0.33 -0.01 -0.01 TraverseCity 6572 1.03 0.58 0.29 -0.04 Gaylord 4120 1.62 0.83 -0.74 0.6 Median 6147 1.56 0.87 0.47 0.04 Table2.4: Dailysummarystatistics,RMSDbetweenPRISMproductandobservationalnetworks, atsixlocations. Theunitfortemperatureis ° C. 25 WealsoprovideseasonalandannualsummarystatisticsforbothERA5andPRISMdatasets. Wecalculatetheseasonalandannualaveragesforbothdailyminimumandmaximumtemperatures. Theseasonsarede˝nedwithacontinuouswinterseasonfromDecembertoFebruary.Forexample, thewinterseasonof2001isde˝nedasDecember2001,January2002,andFebruary2002.The tableresults(Table2.5-2.8)tellusthatfromdailyscaletoannualscale,valuesofRMSDsare overallreduced,andvaluesofBiasarenotsigni˝cantlya˙ected.Inaddition,PRISMalwaysshows overallbetteragreementswithobservationsnomatterwhattimescales.Itisnoteworthythatfrom dailytoannual,theRMSDsofDminTandDmaxT,especiallyforthetwonear-lakestations,forthe ERA5areconsiderablydecreasing,thatis,atanannualscale,theRMSDsofERA5arecomparable tothoseofPRISM.TheseasonalRMSDsandBiasarevariedbyseason.BothPRISMandERA5 tendtogenerallyoverestimateDminTandunderestimateDmaxTduringthespringandsummer seasons.ERA5alsounderestimatesDmaxTduringthefallandwinterseasons.However,ERA5 overestimatesDminTduringfallandunderestimatesDminTduringwinter.ThemagnitudesofBias ofERA5overallshowsmallervaluesduringthecoldseason,springandwinter,comparingtolarger valuesduringthewarmseason,summerandfall.ThischaracteristicisespeciallyobservedforEast LelandandSouthHaven.Forfallandwinter,PRISMoverestimatesbothDmaxTandDminT.The magnitudesofBiasofPRISMaresimilarforallseasons.RMSDsofDmaxTareoverallsmaller than(halfofthemagnitude)thoseofDminTforbothPRISMandERA5.However,theRMSDs ofDminTaresmallerthanthoseofDmaxT,especiallyforthetwonear-lakestations.Inaddition, ERA5generallyshowsthebestcomparisonresultsforDminTinthespringseasoncomparedto otherseasonsconsideringbothRMSDsandBias.Incontrast,PRISMgenerallyshowsthebest comparisonresultsforDminTinthewinterseasoncomparedtootherseasonsconsideringboth RMSDsandBias.Still,PRISMshowsmorereliableresultsforbothDmaxTandDminTthroughout alltheseasons. 26 Station season years RMSD RMSD Bias Bias DminT DmaxT DminT DmaxT ° C ° C ° C ° C EastLansing Spring 18 0.92 0.30 0.85 -0.11 EastLeland Spring 16 1.32 3.97 1.18 -3.92 SouthHaven Spring 13 1.49 3.71 1.34 -3.67 GrandRapids Spring 18 0.44 0.63 -0.20 -0.51 TraverseCity Spring 18 0.78 1.36 -0.55 -1.33 Gaylord Spring 11 0.78 0.36 -0.67 0.20 Median Spring 17 0.85 1.00 0.33 -0.92 EastLansing Summer 18 2.39 0.35 2.36 -0.23 EastLeland Summer 16 4.46 2.57 4.39 -2.51 SouthHaven Summer 13 4.51 1.52 4.46 -1.40 GrandRapids Summer 18 0.63 0.90 0.54 -0.83 TraverseCity Summer 18 1.14 1.23 0.96 -1.15 Gaylord Summer 11 1.12 0.54 1.10 0.47 Median Summer 17 1.77 1.07 1.73 -0.99 EastLansing Fall 18 2.05 0.76 1.95 -0.34 EastLeland Fall 16 3.99 0.82 3.92 -0.69 SouthHaven Fall 13 4.08 1.31 3.97 -1.26 GrandRapids Fall 18 1.16 0.67 1.07 -0.58 TraverseCity Fall 18 1.45 1.03 1.29 -0.94 Gaylord Fall 12 0.97 0.52 0.91 0.47 Median Fall 17 1.75 0.79 1.62 -0.64 EastLansing Winter 19 0.76 0.31 -0.36 0.19 EastLeland Winter 16 1.58 0.60 1.38 -0.25 SouthHaven Winter 13 1.54 1.04 1.46 -0.98 GrandRapids Winter 19 1.36 0.54 -1.19 -0.44 TraverseCity Winter 19 1.62 1.57 -1.42 -1.53 Gaylord Winter 12 1.71 0.33 -1.56 0.21 Median Winter 17.5 1.56 0.57 -0.78 -0.35 Table2.5: Seasonalsummarystatistics,RMSDbetweenERA5productandobservational networks,atsixlocations. Theunitfortemperatureis ° C. 27 Station season years RMSD RMSD Bias Bias DminT DmaxT DminT DmaxT ° C ° C ° C ° C EastLansing Spring 18 0.89 0.62 0.82 0.50 EastLeland Spring 16 2.34 0.23 2.32 -0.10 SouthHaven Spring 13 1.45 0.49 1.41 -0.40 GrandRapids Spring 18 0.20 0.16 0.14 -0.04 TraverseCity Spring 18 0.38 0.21 0.31 -0.01 Gaylord Spring 11 1.06 0.66 -1.02 0.63 Median Spring 17 0.98 0.36 0.57 -0.03 EastLansing Summer 18 1.03 0.61 0.94 0.43 EastLeland Summer 16 2.76 0.36 2.74 -0.31 SouthHaven Summer 13 2.30 1.04 2.25 -0.90 GrandRapids Summer 18 0.11 0.15 -0.08 -0.02 TraverseCity Summer 18 0.46 0.40 0.31 -0.07 Gaylord Summer 11 0.73 0.93 -0.70 0.92 Median Summer 17 0.88 0.51 0.63 -0.05 EastLansing Fall 18 0.78 0.84 0.40 0.32 EastLeland Fall 16 1.99 0.34 1.92 0.06 SouthHaven Fall 13 1.81 0.36 1.61 -0.22 GrandRapids Fall 18 0.09 0.14 0.07 0.01 TraverseCity Fall 18 0.47 0.26 0.36 -0.10 Gaylord Fall 12 0.56 0.51 -0.53 0.47 Median Fall 17 0.67 0.35 0.38 0.04 EastLansing Winter 19 0.54 0.72 0.36 0.65 EastLeland Winter 16 1.45 0.60 1.39 0.58 SouthHaven Winter 13 0.83 0.41 0.71 0.19 GrandRapids Winter 19 0.22 0.11 -0.18 0.02 TraverseCity Winter 19 0.31 0.27 0.17 0.02 Gaylord Winter 12 0.83 0.42 -0.71 0.37 Median Winter 17.5 0.69 0.42 0.27 0.28 Table2.6: Seasonalsummarystatistics,RMSDbetweenPRISMproductandobservational networks,atsixlocations. Theunitfortemperatureis ° C. 28 Station years RMSD RMSD Bias Bias DminT DmaxT DminT DmaxT ° C ° C ° C ° C EastLansing 18 1.23 0.57 1.11 -0.24 EastLeland 16 2.77 1.87 2.75 -1.86 SouthHaven 13 2.85 1.87 2.81 -1.85 GrandRapids 18 0.35 0.66 0.05 -0.6 TraverseCity 18 0.35 1.25 0.08 -1.23 Gaylord 12 0.29 0.41 0 0.36 Median 17 0.79 0.96 0.6 -0.92 Table2.7: Annualsummarystatistics,RMSDbetweenERA5productandobservationalnetworks, atsixlocations. Theunitfortemperatureis ° C. Station years RMSD RMSD Bias Bias DminT DmaxT DminT DmaxT ° C ° C ° C ° C EastLansing 18 0.71 0.71 0.55 0.36 EastLeland 16 2.11 0.22 2.1 0.03 SouthHaven 13 1.52 0.46 1.49 -0.38 GrandRapids 18 0.07 0.12 -0.01 -0.01 TraverseCity 18 0.38 0.26 0.29 -0.04 Gaylord 12 0.75 0.61 -0.73 0.59 Median 17 0.73 0.36 0.42 0.01 Table2.8: Annualsummarystatistics,RMSDbetweenPRISMproductandobservational networks,atsixlocations. Theunitfortemperatureis ° C. 29 Station Days RMSD RMSD Bias Bias ERA5 PRISM ERA5 PRISM EastLansing 6573 0.99 0.77 0.49 0.38 EastLeland 5722 1.79 1.07 0.2 0.59 SouthHaven 4652 1.96 1 0.27 0.36 GrandRapids 6572 0.71 0.34 -0.07 0 TraverseCity 6572 0.99 0.47 -0.13 0.05 Gaylord 4120 0.8 0.49 0.3 0.02 Median 6147 0.99 0.63 0.24 0.21 Table2.9: Growingdegreeday(Base4 ° C)summarystatistics. 2.3.2Assessmentofderivedvariables Freezeeventscouldresultindi˙erentiatedrisksoncropswithdi˙erentphenologicalstages. GrowingDegreeDay(GDD)isacommonlyusedagro-climaticindextosimulateplantphenologies. WecalculatetheGDDwithabasetemperatureof4 ° C(Table2.9).Theresultsshowthatcalculations basedonDmaxTandDminTfromPRISMhavearelativelysmallerRMSDandsmallerBiasthan thosefromERA5.BothERA5andPRISMoverestimateGDDvalues.ERA5stillshowslarger RMSDsatthesetwonear-lakestationsandthesamecaseforPRISM. Sincewecaremostabouthowthereanalysisdatasetsrepresentfreezeoccurrences,weneedto assesshowtheyarecapturedormissed.Forprecipitationvariableevaluation,someforecastscores areutilizedtomeasuretheabilityofaproduct.Hereweusedi˙erentcriteriatode˝nefreeze eventsandthencalculatehowreanalysisproductscapturetheseevents.Tables2.10and2.11show anexampleofhowweexaminethis.We˝rstde˝ne˝velevelsoffreezeevents,rangingfrom0 ° C to-25 ° Cwith5-degreesteps.Andthen,wecounttheseeventsforeachmonth(JulyandAugust arenotshowingheresincenode˝nedfreezeeventsoccurred).Here107/131=0.82meansthat throughoutthedataperiod,from1/1/2001to12/31/2018,thereare6573days,and131daysof whichinJanuaryhaveDminTbetween-5degreesand0degrees.Andofthese131events,ERA5 captured107eventswitharatioof0.82.PRISMshowsbetterresultsbycapturing112eventswith aratioof0.85.BycomparingERA5andPRISM,weobservethatPRISMoverallbehavesverywell incapturingdi˙erenttypesofeventsthroughoutdi˙erentmonths.Theharderthefreezeevents,the 30 month Type1 Type2 Type3 Type4 Type5 -5to0 -10to-5 -15to-10 -20to-15 -25to-20 ° C ° C ° C ° C ° C 1 107/131=0.82 91/141=0.65 67/101=0.66 49/84=0.58 17/28=0.61 2 88/122=0.72 80/141=0.57 66/108=0.61 43/70=0.61 11/23=0.48 3 151/173=0.87 93/170=0.55 40/68=0.59 10/17=0.59 5/6=0.83 4 120/193=0.62 7/32=0.22 0/0=nan 0/0=nan 0/0=nan 5 3/20=0.15 0/0=nan 0/0=nan 0/0=nan 0/0=nan 6 0/0=nan 0/0=nan 0/0=nan 0/0=nan 0/0=nan 9 0/0=nan 0/0=nan 0/0=nan 0/0=nan 0/0=nan 10 26/114=0.23 0/0=nan 0/0=nan 0/0=nan 0/0=nan 11 122/188=0.65 36/95=0.38 3/7=0.43 2/2=1.00 0/0=nan 12 171/192=0.89 98/159=0.62 26/59=0.44 13/21=0.62 3/4=0.75 Table2.10: FreezeeventscapturedratiosatEastLansingofERA5. Freezeeventsarecategorized into˝vetypes,whichare,respectively,from-5 ° Cto0 ° C,from-10 ° Cto-5 ° C,from-15 ° Cto -10 ° C,from-20 ° Cto-15 ° C,andfrom-25 ° Cto-20 ° C. overalllowerthecapturingratioforEAR5,whichisnotthecaseforPRISM.PRISMstillshowshigh capturingratiosforhardfreezeevents.Also,itisnoteworthythatbothERA5andPRISMshow betterresultsforwintertimefreezeeventsthanspringtimefreezeevents.Forspringtimefreeze events,wede˝nitelyseetheadvantagesofPRISM.Eventhoughnotasgoodaswintertimeratios, thespringtimefreezeevents,especiallyforthelatespring,arecapturedprettywellbyPRISM.In May,20daysarereportedtohavefreezeeventsthroughout18years.AndPRISMcaptures13of 20,whichismuchbetterthanERA5,whichonlycaptures3of20.Therefore,generally,PRISM demonstratesanadvantageousabilitytocapturefreezeeventsfordi˙erenttypesandfordi˙erent occurringtimes.Thisbene˝tofPRISMleadstoourlaterchoiceofusingPRISMasaproxyfor observationstorepresentthesurfacefreezeeventsasanexcellentgriddeddataset. Fortheother˝vestations,wedon'tpresentthedetailedtablesheresincetheresultsand conclusionsaresimilar.PRISMshowsmuchbetterresultsthanERA5forallcategoriesoffreeze events.Also,forthetwonear-lakestations,evenPRISMmissesalotofeventsforhardfreezes andlatespringfreezes.AndthetwostationsfromtheASOSnetworkshowexcellentratiosof PRISM,asweexpect.Weprovideasummarytablewithoutdetailedcategoriesforsixstations.In tables2.12and2.13,wecountallthefreezeevents,de˝nedasDminTlessthan0degrees.For 31 month Type1 Type2 Type3 Type4 Type5 -5to0 -10to-5 -15to-10 -20to-15 -25to-20 ° C ° C ° C ° C ° C 1 112/131=0.85 119/141=0.84 77/101=0.76 73/84=0.87 22/28=0.79 2 114/122=0.93 123/141=0.87 91/108=0.84 57/70=0.81 13/23=0.57 3 147/173=0.85 129/170=0.76 48/68=0.71 10/17=0.59 5/6=0.83 4 128/193=0.66 20/32=0.62 0/0=nan 0/0=nan 0/0=nan 5 13/20=0.65 0/0=nan 0/0=nan 0/0=nan 0/0=nan 6 0/0=nan 0/0=nan 0/0=nan 0/0=nan 0/0=nan 9 0/0=nan 0/0=nan 0/0=nan 0/0=nan 0/0=nan 10 86/114=0.75 0/0=nan 0/0=nan 0/0=nan 0/0=nan 11 159/188=0.85 62/95=0.65 6/7=0.86 0/2=0.00 0/0=nan 12 170/192=0.89 136/159=0.86 53/59=0.90 15/21=0.71 4/4=1.00 Table2.11: FreezeeventscapturedratiosatEastLansingofPRISM. Freezeeventsare categorizedinto˝vetypes,whichare,respectively,from-5 ° Cto0 ° C,from-10 ° Cto-5 ° C,from -15 ° Cto-10 ° C,from-20 ° Cto-15 ° C,andfrom-25 ° Cto-20 ° C. example,atEastLansing,from1/1/2001to12/31/2018with6573days,493daysinJanuaryhasa DminTnohigherthan0degrees.The493daysaremorethanthesumof˝vede˝nedfreezeevent daysbecausetherearedayslessthan-25degreesthatarenotcountedabove.Comparingratios throughoutdi˙erentmonths,weconcludethatbothERA5andPRISMshowbetterfreezeevent capturingbehaviorduringwintertimefreezesthanspringtimeandfallfreezes.ERA5onlycaptures anoverall17percentofthetotalfreezeoccurrencesinMayand13percentofthetotalfreezesin October.PRISMbehavesbetterwithanoverall63percentinMayand65percentinOctober.For themonthsofJanuary,February,March,andDecember,bothERA5andPRISMshowexcellent ratiosfrom0.97to0.99.Comparingratiosbetweendi˙erentstations,thetwonear-lakestations, EastLelandandSouthHaven,showthelowestratiosforbothERA5andPRISM.AndGaylord, whichisintheUSCRNnetwork,showsthebestratioforbothEAR5andPRISM.Theseveral freezeoccurrencesinJuneandSeptemberarenotcapturedbyeitherERA5orPRISM.Therefore, wehopetounderstandhowthespringtimefreezeeventsaredeterminedinthelaterchapters. 32 month EastLansing EastLeland SouthHaven GrandRapids TraverseCity Gaylord Median 1 490/493=0.99 416/435=0.96 313/330=0.95 502/508=0.99 516/519=0.99 333/334=1.00 0.99 2 471/475=0.99 406/410=0.99 295/301=0.98 472/474=1.00 483/486=0.99 305/305=1.00 0.99 3 427/435=0.98 388/396=0.98 244/269=0.91 427/433=0.99 453/459=0.99 296/296=1.00 0.98 4 157/225=0.70 174/276=0.63 53/127=0.42 143/164=0.87 230/292=0.79 186/197=0.94 0.74 5 3/20=0.15 0/71=0.00 0/15=0.00 3/12=0.25 8/41=0.20 13/32=0.41 0.17 6 0/0=nan 0/6=0.00 0/0=nan 0/0=nan 0/1=0.00 0/1=0.00 0 9 0/0=nan 0/4=0.00 0/4=0.00 0/0=nan 0/3=0.00 0/1=0.00 0 10 26/114=0.23 0/83=0.00 0/34=0.00 12/70=0.17 9/96=0.09 48/98=0.49 0.13 11 230/292=0.79 104/253=0.41 50/169=0.30 207/265=0.78 198/281=0.70 229/252=0.91 0.74 12 429/437=0.98 370/436=0.85 239/304=0.79 449/461=0.97 458/472=0.97 347/351=0.99 0.97 Table2.12: Freezeeventsbelow0 ° CcapturedratiosatsixstationswithoutdetailedcategoriesofERA5. month EastLansing EastLeland SouthHaven GrandRapids TraverseCity Gaylord Median 1 484/493=0.98 426/435=0.98 320/330=0.97 503/508=0.99 518/519=1.00 333/334=1.00 0.99 2 472/475=0.99 403/410=0.98 291/301=0.97 474/474=1.00 484/486=1.00 305/305=1.00 0.99 3 414/435=0.95 362/396=0.91 241/269=0.90 424/433=0.98 451/459=0.98 295/296=1.00 0.97 4 162/225=0.72 156/276=0.57 65/127=0.51 144/164=0.88 242/292=0.83 188/197=0.95 0.77 5 13/20=0.65 6/71=0.08 1/15=0.07 10/12=0.83 25/41=0.61 31/32=0.97 0.63 6 0/0=nan 0/6=0.00 0/0=nan 0/0=nan 0/1=0.00 0/1=0.00 0 9 0/0=nan 0/4=0.00 0/4=0.00 0/0=nan 0/3=0.00 1/1=1.00 0 10 86/114=0.75 13/83=0.16 8/34=0.24 57/70=0.81 52/96=0.54 91/98=0.93 0.65 11 266/292=0.91 174/253=0.69 108/169=0.64 255/265=0.96 259/281=0.92 246/252=0.98 0.92 12 423/437=0.97 416/436=0.95 275/304=0.90 456/461=0.99 466/472=0.99 348/351=0.99 0.98 Table2.13: Freezeeventsbelow0 ° CcapturedratiosatsixstationswithoutdetailedcategoriesofPRISM. 2.4Summary ThisstudycomparesERA5andPRISMreanalysisproductstostationalobservations.We concludethatthePRISMdataset,withahigherhorizontalresolutionof4km,overalldemonstrates abetteragreementoftemperatureswithobservations.However,ERA5outperformsPRISMinits availabilityofvariousweathervariables.Themajor˝ndingsareasfollows. 1)BothreanalysisdatasetsshowbetterresultsforDmaxTthanDminT,asshowninthelower DmaxTperturbationsofthetimeseriesandthesmallervaluesofDmaxTRMSDs. 2)Griddedreanalysisdatasetstendtoreducetheobserveddailycycles.ERA5underestimates DmaxTwhileoverestimatesDminT,resultinginreduceddailycycles.Incontrast,PRISMtends tooverestimatebothDminTandDmaxT.However,onamonthlyscale,ERA5reanalysistendsto overestimatedailymeantemperatureduringsummerseasonsandunderestimateitduringwinter seasonsinthetimeseries,whichisconsistentwiththescatterplotresults. 3)TheASOSnetworkstations,whichareincorporatedintothePRISManalysis,showexcellent comparingresultsforbothdirectweathervariablesandderivedvariables.Thisbehaviorisnot observedintheevaluationoftheERA5dataset. 4)Thetwonear-lakestationsshowlargeRMSDsandBiasandalsolargeperturbationsoftime seriesforbothreanalysisproducts.ButPRISMstillshowsabetteragreement. 5)PRISMalsoshowsabetterbehaviorincapturingthederivedvariables.Withabase temperatureof4 ° C,bothERA5andPRISMoverestimateGDDvalues.PRISMshowsexcellent abilityincapturingdi˙erenttypesoffreezeeventsthroughoutdi˙erentmonths.BothPRISMand ERA5showbetterfreezeeventcaptureduringwintertimethanotherseasons. Inconclusion,wewillusePRISMasaproxyofobservationstorepresentfreezeeventsinlater chapters.Sincethewholethesisisfocusedonfreezeevents,wejustevaluatetemperaturesand temperature-derivedvariables.However,toassessbothERA5andPRISMdatasets,morework needstobedoneinthefuture.Forexample,withtheavailabilityandaccessibilityofprecipitation dataintheERA5andPRISM,wecouldevaluatehowprecipitationeventsarecapturedbycomputing analyticalscoreslikethebiasscore(BS),thethreatscore(TS),andtheHeidkeskillscore(HSS).In 34 addition,sincewindconditionsalsohaveaprofoundimpactonfreezeformation,itisanecessity toassessthewindspeedanddirectionoftheERA5(PRISMdoesnotprovidewinddata).Also, ERA5providesland-onlydatasetswithabetterresolutionof9kmthanthesingle-leveldatasetswith 30km.Itissigni˝canttoevaluatehowthisresolutionimprovementa˙ectstheoverallagreement withobservations. 35 CHAPTER3 FREQUENCYANDSEVERITYOFSPRINGTIMEFREEZEEVENTS 3.1Background 3.1.1FalseSpringsandSpringtimeFreezeEvents Asaconsequenceoftheglobalwarmingtrend,earlierspringsinduceprematureplantdevelop- ment,resultinginvulnerableandsusceptiblecropsexposedtosubsequentspringtimefreezeevents (Guetal.,2008;Allstadtetal.,2015).Intheearlyphenologicalstages,temperaturesnear-6 ° C begintocausedamagetothecrops,butasthebloomstageapproaches,temperaturesaswarmas -2 ° Ccouldcauseconsiderabledamage(Longstroth,2005).Springtimefreezeevents,especially thoseafteranuntimelyextendedperiodofwarmertemperaturesknownas"falsespring",couldhave devastatingconsequencestoagricultureproduction.Prominentexamplesincludefreezeeventsthat occurredinlatespringof2002,2007,and2012followinganextendedperiodofwarmweather andwipedoutmorethan90%offruitproductionandothercropsacrosstheUSMidwest,which resultedinanagriculturallossofmorethan2billiondollars(NASS,2002;Marinoetal.,2011; O'Brienetal.,2019;Labeetal.,2015;Kistneretal.,2018;Guetal.,2008).Theseeventsshare twocharacteristics:theyoccurredfollowinganextendedperiodofunusuallywarmconditions,and theycauseddisastrousconsequencestoprematuredevelopingvegetationandcrops. Earlierspringscouldresultintheearlierdevelopmentofcropsandmightincreasethevulner- abilityofcropstofreezeeventdamage(Winkleretal.,2013).Allstadtetal.(2015)projected thatthewidespreadhistoricaladvancesinspringplantphenologywouldextendintothefuture, withanincreasedriskoffalsespringsintheMidwesternUS.Besides,KatzandBrown(1992) alsoemphasizedthatchangesinvariabilityweremoreimportanttoextremeeventfrequenciesthan changesinaverageswithstatisticalmodels. Findingsfrompreviousresearchalsorevealedthatfalsespringsandsubsequentfreezeevents 36 couldberelatedtolarge-scaleatmosphericcirculationpatterns.Whenarelativelow-pressure systememergesovertheNorthPaci˝cOcean,creatingaripplee˙ectdownstream,warmair massintrudes,andthenearlyspringoccursacrossmuchofwesternNorthAmerica(Aultetal., 2013).Kunkeletal.(2004)speculatedthattheshortergrowingseasonsintheearly1900swere characterizedbydrierairmassesandmoreglobalsolarradiationwhilethelongergrowingseasons inrecentyearsmaybeassociatedwithairmassesthataremoisterincomparisonandresultinless globalsolarradiation. 3.1.2SpatiotemporalVariabilityofSpringtimeFreezeEvents Manypreviousstudieshaveconsideredthespatiotemporalvariabilityandtrendofthespring- timefreezeevents.DeGaetano(1996)detectedadecreasingtrendoffreezingdaysintheNorth- easternUnitedStatesfrom1959to1993,withdi˙erentthresholdsatanindividualstationlevel. Easterlingetal.(2002)suggestedthatthespringtimefreezingdayssigni˝cantlydecreasedforthe period1948-1999inwesternandnorth-centralUS.Theyalsonotedthattheregionaltrendsinfrost daysaresubstantiallyrelatedtothemeanannualtemperaturechanges.Yuetal.(2014)revealed earlieroccurrencesoftheLastSpringFrost,delayedeventsoftheFirstFallFrost,andlengthening periodsoftheFrost-FreeSeasonfrom1980to2010.Theirstudyalsoshowedweakerinterannual variabilityofthesedatesintheGreatLakesregionthanotherregionsintheMidwest(Yuetal., 2014). Mostofthesefreezeeventstudieswerecarriedoutattheindividualstationlevel.Nevertheless, thegridded4-kmdatasetreleasedbythePRISM(Parameter-elevationRegressionsonIndependent SlopesModel)climategroupfromOregonStateUniversity(PRISMClimateGroup,Oregon StateUniversity,http://prism.oregonstate.edu,createdFeb2020)allowscontinuousspatiotemporal analysisofspringtimefreezeeventsacrosstheMidwesternUS.Besides,littleresearchhasfocused onfreezeeventsintheindividualspringtimemonths. 37 3.1.3StudyObjectives Withthenecessityofunderstandingtheclimatologyofspringtimefreezeevents,wetryto investigatethefrequency,severity,andpotentialcausesofspringtimefreezeeventoccurrences. ThisstudyaimstouseERA5reanalysis(the˝fthmajorglobalreanalysisproducedbytheEuropean CentreforMedium-RangeWeatherForecasts)tounderstandtheweatherconditionsandclimate backgroundofthefreezeeventsrepresentedbythePRISManalysisdataset. 38 3.2DataandMethod ThestudydomainisthecentralandeasternUnitedStatesencompassingtheregionfrom 105 º Wto75 º Wlongitudeandfrom35 º Nto50 º Nlatitude.Thisregioncoversoneofthe mostintensiveandextensiveareasofagriculturalproductionintheworld.Sincetheagricultural productioninthisregionissubstantiallysensitivetoclimatevariability,especiallyfreezeevents, itisworthwhiletostudythefrequencyandseverityoffreezeeventsrepresentedbythegridded datasetsoverthisregion. PRISM,agriddedanalysisdatasetprovidedbythePRISMclimategroupfromOregonState University,hasabetteragreementwiththeobservationalfreezingeventsandprovidesestimatesof sixbasicclimateelements:precipitation(ppt),minimumtemperature(tmin),maximumtempera- ture(tmax),meandewpoint(tdmean),minimumvaporpressurede˝cit(vpdmin),andmaximum vaporpressurede˝cit(vpdmax).PRISMhasanexcellentspatialresolutionof4km.Butitjust providesclimatevariablesatdailyscaleswithtimecoveragefrom1981untilthepresent.We obtaindailyminimumandmeanairtemperaturefromPRISMdatasetstorepresentthefrequency andseverityoffreezeeventsonthesurface.ERA5isaclimatereanalysisdatasetreleasedbythe EuropeanCentreforMedium-RangeWeatherForecasts(ECMWF),coveringtheperiodfrom1950 tothepresent.ThenameERArefersto'ECMWFReAnalysis',withERA5beingthe˝fthmajor globalreanalysisproducedbyECMWF(afterFGGE,ERA-15,ERA-40,ERA-Interim)(Henner- mannetal.,2020).TheglobalERA5reanalysisdatasetincludesgriddeddatasetswithahorizontal resolutionof30kmat37pressurelevels.WeuseERA5datasetsforunderstandingtheweather conditionsandclimatebackgroundintheupperlevelsthatoccursimultaneouslywiththefreeze eventsinthesurface. Wede˝nethefreezedaysasdaysbydi˙erentcriteriawhenthedailyminimumairtemperature isbelowdi˙erentdegreesCelsius,includingthecommonlyusedone,0 º C.Thefreezeeventsare identi˝edusingthePRISMdatasetthatiscomprisedof357 Ö 722horizontalgridpointswitha4 kmgridspacingacrossthestudyregion. WeobtaintheteleconnectionindicesfromtheClimatePredictionCenter(CPC).Niño-3.4isan 39 indexindicatingtheSSTanomaliesacrosstheregionspans5 ° N-5 ° S,120 ° -170 ° Winthetropical Paci˝cOcean.BoththeNAO(NorthAtlanticOscillation)andPNA(Paci˝cNorthAmerican) indicesarebasedontheleadingrotatedprincipalcomponentanalysesofmean500-mbheightsin theNorthernHemisphere(20 ° ° Nlatitude)(Dixonetal.,2007). WealsousetheEmpiricalOrthogonalFunction(EOF)techniquetoidentifythespatialpatterns ofthefreezingdaysindi˙erentmonths.TheEOFanalysisproducesasetofmutuallyorthogonal modesthatconsistofspatialstructures(EOFs)withcorrespondingtimeseries(principalcompo- nentsorPCs)(Yuetal.,2014).Thecorrespondingeigenvalueofeachmodedescribesthevariance explainedbythemode(Yuetal.,2014).Inthisstudy,weanalysethe˝rsttwomodesthattogether explainmorethan60%ofthevariance. 40 3.3Results 3.3.1Temporalandspatialvariabilityoffreezeevents We˝rstexaminethespatialvariabilityoffreezeeventsacrossthecentralandMidwestern UnitedStates.Themean,standarddeviation,andtrendoffreezingdaysinMarch,April,and Mayacrossourstudyregionfrom1981to2019areshowninFigure3.1.Theaveragenumbersof freezingdaysforthethreemonthsallshowalatitude-dependentpattern,andalsodecreasesasthe monthproceeds.InMay,someareasaremovingtowardthefrost-freeseason,resultinginnear-zero freezeeventsthere.Thestandarddeviationhereisdividedbytheaveragenumbersoffreezingdays ateachgridpointtorepresenttherelativevariationsofthefreezingdays.Ourresultsrevealthat freezingdaysinMarchhavetheleastvariationacrosstheregionthroughoutthestudyperiod,and thoseinAprilshowarelativelyhighervariationinthesouthernregion.FreezingdaysinMayshow ahighvariationinthecentral-southernregion,whichisdominatedbythesmallmeanvaluesinthese areas.Wealsoconducttrendanalysesbylinearleast-squaresregression.Theresultsrevealthat freezingdaysinMarchshowadecreasingtrendacrossthecentralandMidwesternUnitedStates, whichisconsistentwiththedecreasingtrendinspringtimefreezeeventsinthepreviousstudies (DeGaetano,1996;Easterlingetal.,2002).However,nearlyhalfoftheregionshowsanupward trendinApril,whichisespeciallysigni˝cantinNorthernMichigan,partofwesternWisconsin, andcentralOklahoma.FreezingdaysinMayshowasigni˝cantdownwardtrendinmostofthe Northeast,incontrasttoanupwardtrendinthewesternregion.Wetrytounderstandwhythese di˙erentiatedresultsareobservedinAprilandMayinthefollowingpart. Figure3.2showsthetimeseriesofSpatiallyAveragedFreezingDays(de˝nedasthedays withdailyminimumtemperaturesbelow0 º C)Counts(SAFDC)andSpatiallyAveragedDaily MinimumTemperature(SADMT)inspring(March,April,May)from1981to2019.Wecalculate theTheil-Senslope,whichisthemedianofallthepairedvalues,toavoidhavingoutliers'e˙ects onthetrendofthetimeseries.Anegativeslopeof-0.043forSAFDCisobserved,indicatinga generaldecreasingtrendofspringtimefreezeeventsacrossthecentralandMidwesternUS,which 41 Figure3.1: Average,standarddeviation,andtrendoffreezingdaysinspring(March,April,May) from1981to2019. agreeswithpreviousstudies(DeGaetano,1996;Easterlingetal.,2002).Theyear1996,2013and 2018allshowabruptlyhighvaluesofSAFDC,whiletheyear2012showsthelowestSAFDC. TheresultsofSADMTwereexactlyonthecontrary,asexpected.Itisnoteworthythat,although boththeyears2007and2012showalowfrequencyoffreezeevents,considerablecropdamage wasobservedinthesetwoyears,whichwerelikelyaconsequenceoffalsespringsexposingthe earlierdevelopedcropstothesubsequentfreezeevents.Asweexpect,theSADMTshowsan exactoppositephasetotheSAFDCwithapositiveTheil-Senslopeof0.005.Wealsorelate theSAFDCtothespatiallyaverageddailyminimumandmeantemperature.Theresultreveals bothsigni˝cantnegativerelationshipswithR-squaredvaluesof0.7894and0.7414,indicatinga deterministicrelationshipbetweenthemonthlyaverageddailyminimum/meantemperatureand freezingdaysinthatcorrespondentmonth.Thesigni˝canttestsfortheserelationshipsshowthat 42 Figure3.2: Timeseriesofspringtimefreezeeventscountfrom1981to2019. The˝ttedlinewas ˝ttedwithouttheyear2018. allthesetrendsarenotsigni˝cant. 3.3.2FreezingAreaPercentage Tofurtherunderstandandexplainvariationsinsomeregionsofinterest,weintroduceavariable calledFreezingAreaPercentage(FAP),whichisde˝nedasthepercentageofgridpointswhose dailyminimumtemperatureisbelow0 º Coneachdayinapre-de˝nedsubsetofthestudyregion. Hereweusetheregionsde˝nedinKarlandKnight(1998)andalsousedasclimateregions byNOAA(NationalOceanicandAtmosphericAdministration)asthesubsets(Figure3.3).We calculatetheFAPineachsubregionrespectivelyoneachdayandsumupthedailyvaluesforthree springtimemonths(Table3.1).ThelargertheFAP,themoreareasofthatregionarelikelyto 43 Figure3.3: Subsetregionsde˝nedinKarlandKnight(1998). su˙erfromfreezingrisks.ThemonthlyFAPvaluescouldbeexplainedasthenumberoffreezing daysoccurringinthede˝nedregionatsomespringtimemonth.HighervaluesofmonthlyFAPare observedinthenorthernsubregionsandtheearliermonths. Figure3.4showsthetimeseriesofmonthlyaggregatedFAPvalues.Largervaluesareshownin thenorthernregions,theNorthernGreatPlains,theUpperMidwest,andtheNortheast.Throughout thewholestudyregion,anoticeablylowFAPvalueisintheyear2012issandwichedbetween twolargevalues.Weobservedsomeinterannualandinterdecadalperiodicityofthetimeseriesof monthlyFAPvaluesbyspectralanalysis(notshownhere).Sincethecausesofspringtimefreezes couldberelatedtolargecirculations,welaterinvestigatetherelationshipbetweenFAPvaluesand someteleconnectionindices. WeconducttrendanalysesformonthlyFAPvalues(Table3.2).Theresultsrevealdecreasing trendsofFAPinalmostallregionsforthethreemonths,exceptforincreasingtrendsintheNorthern GreatPlainsandalsotheUpperMidwestinMarchandintheNortheastandSoutheastinMay. Thetrendsfortheaccumulatedspringtimearedownwardwithasigni˝canceintheOhioValley, whichextendsthe˝ndingsinEasterlingetal.(2002)fromtheperiod1948-1999into1981-2019. 44 Figure3.4: TimeseriesofmonthlyFAPvalues. Easterlingetal.(2002)revealedanon-signi˝canttrendof-0.1daysperdecadeintheOhioValley forspringtimefrom1948to1999,whileourresultsshowasigni˝canttrend(p-valuelessthan0.1) of-0.113daysperyearforspringtimefrom1981to2019,furtheringindicatingfewerfreezingdays occurringintheOhioValleyduringrecentdecades. 45 NorthernGreatPlains SouthernGreatPlains UpperMidwest OhioValley Northeast Southeast March 22.641 12.173 26.135 16.387 26.724 14.154 April 10.06 2.699 14.416 4.6 14.884 3.92 May 1.312 0.135 2.58 0.163 2.639 0.175 Springtime 34.013 15.007 43.131 21.15 44.248 18.248 Table3.1: 39-yearmeanofregionalaveragedmonthlyFAP. Relationshipswithpvalueslessthan0.10arecharacterizedwithonestar andthoselessthan0.05arewithtwostars. NorthernGreatPlains SouthernGreatPlains UpperMidwest OhioValley Northeast Southeast March 0.027 -0.001 0.004 -0.031 -0.006 -0.004 April -0.012 -0.037* -0.03 -0.06 -0.041 -0.013 May -0.031* -0.002 -0.016 -0.001 0.005 0 Springtime -0.065 -0.065 -0.016 -0.113* -0.019 -0.003 Table3.2: Theil-SenSlopeformonthlyFAP. Relationshipswithpvalueslessthan0.10arecharacterizedwithonestarandthoseless than0.05arewithtwostars. TofurtherinvestigatetheperiodicityofmonthlyFAPvalues,werelatethemtosometeleconnec- tionindices,Niño-3.4,NAO,PNA,andPDO.ThepositivephaseoftheNAOre˛ectsbelow-normal heightsandpressureacrossthehighlatitudesoftheNorthAtlanticandabove-normalheightsand pressureovertheeasternUnitedStates.Thepatternisreversedforthenegativephase.Thestrong positivephaseofNAOtendstobeassociatedwithabove-normaltemperaturesintheeasternUnited States(CPC,2012).Table3.3showsPearsoncorrelationvaluescomparingmonthlyFAPvaluesfor thespringtimemonthstoNAOvalueswith0-3monthsearlier.Itisnoteworthythatweobservea signi˝cantlystrongnegativecorrelationbetweenFAPvaluesandNAOinMarchfrom1981to2019. ThisresultleadstotheconclusionthatthepositivephaseofNAOisusuallyassociatedwithless freezingriskinMarchacrossthestudyregion.ThePearsoncorrelationvaluecouldbeashighas -0.469intheOhioValley,indicatingahighlysigni˝cantcorrelationwiththepositivephaseofNAO occurringduringMarchforrecentdecades.Eventhoughnotsigni˝cant,somepositivecorrelations areoccurringformonthlyFAPvaluesinAprilandMayafterthesigni˝cantnegativecorrelationin March,especiallyintheSouthernGreatPlainsandOhioValley.Thisislikelybecausethee˙ects ofthepolarjetstreambecomeweakerinthelatespringtime.Withlagginglengthsincreasing from1to3months,morepositivecorrelationsareobserved.ThemonthlyFAPvaluesinApril arepositivelycorrelatedwithNAOinFebruary,indicatingapositivephaseofNAOinFebruaryis statisticallyassociatedwithmorefreezingrisksinAprilacrossthestudyregion,especiallyinthe NorthernGreatPlains,UpperMidwest,OhioValley,andNortheast.Also,whenthepositivephase ofNAOinDecemberoccurs,fewerfreezingrisksinMarchareobservedacrossourstudyregion, especiallyintheUpperMidwest,Northeast,andSoutheast. 47 NorthernGreatPlains SouthernGreatPlains UpperMidwest OhioValley Northeast Southeast Lag0 March -0.368** -0.576** -0.357** -0.469** -0.466** -0.376** April -0.105 0.108 0.039 0.093 -0.096 -0.069 May 0.008 0.145 -0.029 0.047 -0.193 -0.08 Springtime -0.016 -0.045 0.036 -0.05 -0.114 -0.206 Lag1 March 0.142 -0.159 0.129 0.028 0.055 0.08 April 0.226 0.294* 0.159 0.237 0.067 0.023 May -0.116 -0.175 0.07 -0.089 0.005 0.02 Springtime 0.039 -0.172 0.134 -0.06 -0.021 -0.188 Lag2 March 0.178 0.075 0.138 0.239 -0.07 0.081 April 0.494** 0.251 0.416** 0.317** 0.289* 0.089 May -0.176 0.041 -0.015 -0.128 -0.102 -0.343** Springtime 0.166 -0.244 0.19 0.042 0.071 -0.064 Lag3 March -0.125 -0.085 -0.346** -0.179 -0.443** -0.418** April 0.07 -0.158 0.093 -0.087 0.176 -0.011 May -0.216 0.009 0.137 -0.098 0.053 0.005 Springtime 0.233 -0.055 0.125 0.082 0.042 -0.067 Table3.3: Pearsoncorrelationvalues(r)comparingmonthlyFAPforthemonthsofMarch,April,andMaytoNAOvalues0-3months earlier. Relationshipswithpvalueslessthan0.10arecharacterizedwithonestarandthoselessthan0.05arewithtwostars. Table3.4shows0-3monthlaggedPearsoncorrelationvaluesbetweenthemonthlyFAPvalues foreachofthethreemonthstoPNAvalues.ThepositivephaseofthePNApatternisassociated withabove-averagetemperaturesoverwesternCanadaandtheextremewesternUnitedStatesand below-averagetemperaturesacrossthesouth-centralandsoutheasternUnitedStates(Dixonetal., 2007).ThecorrelationsbetweenPNAandFAPareoverallnegative.Nevertheless,FAPvalues inMayaresigni˝cantlypositivelyassociatedwithPNAinMay,especiallyintheNorthernGreat PlainsandtheUpperMidwest.ThisindicatesthatthepositivephaseofPNAinMaycouldlead tomorefreezingrisksacrossmostofourstudyregionsinMay.Also,wenoticethatthetotal springtimeFAPvaluesarealwayssigni˝cantlynegativelycorrelatedwithPNAvalues1-3months earlier,exceptintheSouthernGreatPlainsregion.Thisrelationshipprovidesforecasttoolsfor predictingspringtimefreezingrisksacrossrelevantareasforuptothreemonthsahead. 49 NorthernGreatPlains SouthernGreatPlains UpperMidwest OhioValley Northeast Southeast Lag0 March -0.17 0.121 -0.228 0.01 -0.197 -0.124 April -0.205 -0.08 -0.299* -0.185 -0.266 -0.12 May 0.356** 0.267 0.343** 0.304* 0.148 0.272* Springtime -0.153 0.073 -0.198 -0.102 -0.158 -0.163 Lag1 March -0.350** -0.217 -0.338** -0.26 -0.315* -0.185 April -0.465** -0.249 -0.362** -0.397** -0.17 -0.243 May 0.058 -0.105 -0.174 0.017 -0.175 -0.223 Springtime -0.407** -0.184 -0.429** -0.358** -0.324** -0.271* Lag2 March -0.067 0.125 -0.133 -0.041 -0.086 -0.138 April -0.191 -0.229 -0.238 -0.286* -0.134 -0.223 May 0.166 -0.144 -0.041 0.061 -0.136 -0.035 Springtime -0.397** -0.111 -0.430** -0.362** -0.358** -0.322** Lag3 March -0.142 -0.095 -0.269* -0.085 -0.245 -0.16 April -0.232 -0.097 -0.357** -0.267 -0.436** -0.302* May 0.157 -0.003 -0.064 0.015 -0.044 -0.058 Springtime -0.285* -0.147 -0.429** -0.299* -0.401** -0.320** Table3.4: Pearsoncorrelationvalues(r)comparingmonthlyFAPforthemonthsofMarch,April,andMaytoPNAvalues0-3months earlier. Relationshipswithpvalueslessthan0.10arecharacterizedwithonestarandthoselessthan0.05arewithtwostars. ElNiñoeventsusuallyoccurwithabove-normaltemperaturesinthenorthernregionsofthe UnitedStates(CPC,2008).SincethepositivePNAisoftenassociatedwithanElNiñoevent (CPC2007),theoverallrelationshipsbetweenFAPvaluesandNiño-3.4arenegativeaswell.Itis noteworthythattheFAPvaluesacrosstheNorthernGreatPlainsinMarchshowsigni˝cantnegative correlationswithNiño-3.40-3monthsearlier.Ourresultsalsorevealgeneralpositiverelationships betweenmonthlyFAPandPDOvalues.InMay,theFAPsarepositivelycorrelatedwithPDO, especiallyintheNorthernGreatPlains,theSouth,theUpperMidwest,andtheOhioValley. 3.3.3ResultofEOFanalysisforfreezingdaysinspringtimemonths EmpiricalOrthogonalFunction(EOF)analysisisperformedtoidentifythedominantspatial patternsofinterannualvariabilityoffreezingdaysinMarch,April,andMay,respectively.We discussheretheresultsoftheleadingtwomodesforeachmonth. ForfreezingdaysinMarch(Figure3.5),the˝rstEOFmodeexplains61.97%ofthetotal variancewithin-phase˛uctuationacrossourstudyregion.The˝rstEOFspatialpatternshows arelativelylargevariationintheOhioValleyandthe˝rstEOFtimeseriesshowssubstantial interannualvariability.Weconductthespectralanalysistoidentifymajorperiods,whichreveals prominentperiodsof2.5to4.5year,indicatingthatthein-phase˛uctuationpatternoffreezing daysacrosstheregioninMarchoccursevery2.5to4.5years.Thesecondmodeonlycontributes to8.3%ofthetotalvariance.ThesecondEOFspatialpatternshowsoppositephasesbetweenthe regionencompassingtheOhioValley,theSoutheast,andtheNortheast,andtheregioncovering theNorthernGreatPlainsandtheUpperMidwest.ThespectralanalysisofthesecondEOFtime seriesrevealsamajorperiodof6.5years. Tofurtherunderstandhowthefrequencyofthesepatternsassociatedwithlargecirculations,we alsorelatetheEOFtimeseriestosometeleconnectionindices.Theresultrevealsthatthe˝rstEOF timeseriesissigni˝cantlycorrelatedwithpositivephaseNAOinMarchaswellasDecemberof thepreviousyear.ThisindicatesthatifweobserveapositivephaseofNAOintheaforementioned months,thein-phase˛uctuationacrossourstudyregionwithahigherintensityovertheOhioValley 51 Figure3.5: TheleadingtwoEOFmodesandPCtimesseriesforfreezingdaysinMarch. islikelytooccurinMarch. ForfreezingdaysinApril(Figure3.6),the˝rstmodeofin-phase˛uctuationsoverthedomain explains56.242%.The˝rstspatialpatternalsoshowsalargervariationacrosstheNorthernGreat Plains.The˝rstEOFtimeseriesshowsinter-decadalvariabilitywithmajorperiodsof5to7years. Thesecondmodeaccountsfor12.33%ofthetotalvariance.Thespatialpatternofthesecond modeshowsout-of-phasevariabilitybetweentheNorthernGreatPlainsandtherestofourstudy region,andthetimeseriesofitshowsinterannualvariabilitywithmajorperiodsof2.5to3.5years. Thecorrelationofcoe˚cientsbetweenfreezingdaysinAprilandthethreeteleconnectionindices revealthatthe˝rstEOFtimeseriesissigni˝cantlycorrelatedtopositivephaseNAOinFebruary andnegativephasePNAinMarchandDecemberofthepreviousyear. ForfreezingdaysinMay(notshownhere),the˝rstmodeexplains57.8%ofthetotalvariance. SinceinMay,somesouthernareasareinfrost-freeseason,weonlyobservein-phase˛uctuation 52 Figure3.6: TheleadingtwoEOFmodesandPCtimesseriesforfreezingdaysinApril. inthenorthernpartofthestudyregion.Andthetimeseriesforitshowsmajorperiodsof3to7 years.Thesecondmodeexplains10.71%ofthetotalvarianceandshowsoppositephasesbetween theNorthernRockiesandPlainsandtherestofourstudyregion.Thetimeseriesforitreveals interannualvariability.Therelationtoteleconnectionindicesshowsthatthesecondmodetime seriesissigni˝cantlyrelatedtobothpositivephasesofNAO,PNA,andPDOinMay. TounderstandthespatialpatternsofthetwoleadingEOFmodesoffreezingdaysindi˙erent monthsacrossourstudyregioninthecontextofatmosphericcirculationanomalies,weregressthe timeseriesofthe˝rsttwoEOFmodesoffreezingdaysinMarchtoseveralmonthlyanomalous atmosphericvariables,includingthe500hPageopotentialheight(H500),1000hPageopotential height(H1000),the500-1000hPathickness,andthe1000hPawind. Theanomalous500-hPageopotentialheightregressedonnormalizedPC1inMarchshows thatthisvariableisnegativelycorrelatedwithnormalizedPC1throughoutourstudyregion,while 53 Figure3.7: The˝rstPCtimesseriesforfreezingdaysinMarchrelatedtoatmosphericvariables. anomalous1000-hPageopotentialheightispositivelycorrelated(Figure3.7).Thisresultindicates thattheoverallnegativefreezingdayanomaliesovertheentirestudydomain(Figure3.5)are associatedwithlower-(higher-)than-normal500-hPa(1000hPa)heightandshallower-than-normal thicknessbetweenthetwolevels.TheresultsforPC2tellsadi˙erentstory(Figure3.8)thatwhen PC2offreezingdaysinMarchispositive,whichisassociatedwiththeout-of-phasevariability EOF2spatialpatterninFigure3.5,thegeopotentialheightislowerthanaverageattheupperlevel andbelownormalatthesurface,resultinginathicknessthickerthannormal.Theregressionresults betweentheanomalousatmosphericvariablesandNAOinMarchrevealsigni˝cantRossbywave patterns.ThethicknessregressionpatternofPC1issimilartothatofNAO,whichisconsistentwith theaboveconclusionthatfreezingdaysinMarcharesigni˝cantlycorrelatedtoNAO(Figure3.9). The1000hPawindanomaliesregressedonnormalizedPC1andPC2showsimilarresults,which arebothsimilartotheresultofNAO.Thisanomalouswind˝eldischaracterizedbyananomalous cycloneovertheSouthernGreatPlainsandananomalouseasterlywindfromtheAtlantictothe OhioValley. 54 Figure3.8: ThesecondPCtimesseriesforfreezingdaysinMarchrelatedtoatmospheric variables. Figure3.9: TimesseriesofNAOinMarchrelatedtoatmosphericvariables. 55 3.4Summary Thisstudyinvestigatesthefrequency,severity,andclimatebackgroundofspringtimefreeze eventoccurrences.Weconducttrendanalysisforfreezingdaysateachgridpointandalsoat theregion-averagedlevel.WealsousetheEOFtechniquetoidentifythespatialpatternand correspondingtrendoffreezingdayseachspringtimemonth.Andwealsouseclimatevariablesto explaintheseresults.Themajor˝ndingsareasfollows. 1)TrendanalysisateachgridpointrevealsthatfreezingdaysinMarchshowadecreasingtrend acrossthecentralandMidwesternUS.Trendanalysisoverthespatiallyaveragedspringtimefreeze events,whichissigni˝cantlycorrelatedtospatiallyaverageddailyminimumtemperature,also revealsageneraldecreasingtrendacrossthestudyregion.Althoughtheyears2007and2012show alowfrequencyoffreezeevents,considerablecropdamagewasobservedinthesetwoyears,asa consequenceoffalsespringsexposingtheearlierdevelopedcropstothesubsequentfreezeevents. 2)Wethende˝neavariable,freezingareapercentage(FAP),overtheregionsofinterest.The trendsfortheaccumulatedspringtimearedownwardwithasigni˝canceintheOhioValley,which extendsthe˝ndingsinEasterlingetal.(2002)fromtheperiod1948-1999into1981-2019.To furtherinvestigatetheperiodicityofmonthlyFAPvalues,werelatethemtosometeleconnection indices,Niño-3.4,NAO,PNA,andPDO.WeconcludethatthepositivephaseofNAOisusually associatedwithlessfreezingriskinMarchacrossthestudyregionandthetotalspringtimeFAP valuesarealwayssigni˝cantlyassociatedwiththenegativephaseofPNAvalues1-3monthsearlier, exceptintheSouthernGreatPlainsregion. 3)EOFanalysisoffreezingdaysinMarchshowsarelativelylargervariationintheOhioValley, andthe˝rstEOFtimeseriesshowssubstantialinterannualvariability.Andwhenapositivephase ofNAOinMarchandDecemberofthepreviousyearoccurs,thein-phase˛uctuationacrossour studyregionwithahigherintensityovertheOhioValleyisexpectedtooccurinMarch.Andthis patternislikelyassociatedwiththegeopotentialheightlowerthanaverageattheupperleveland higherthanaverageatthesurfaceandathicknessshallowerthannormal. Theanalysisworkdoneinthisstudyhassomelimitations.First,togainbetterresultsatthe 56 subregionlevel,thestudyregionshouldbeextendedtothecontiguousUnitedStates.Weonly getlimitedpartsofthede˝nedsubregionsoftheNortheast,theSoutheast,andtheSouthernGreat Plains.Therefore,thefreezingdaysaveragedacrossthesede˝nedregionsinthisstudycouldnot representthegeneraltrendofthewholeregionde˝nedinKarlandKnight(1998).Second,to understandtheweatherconditionsoffreezeeventformation,speci˝ccasestudiescouldbedone. Forexample,wecouldselectacoupleoffreezeeventsthatprofoundlyimpactcrops'growthto investigatetheparticularweatherconditionsofwind,temperature,andhumidity. Inspiteofthelimitationsofthisstudy,theimplicationsoftrendsandcausesofspringtime freezeeventsareimportantforfruitgrowersinthecentralandmidwesternUnitedStates.NAOis anexcellentindextoindicatethefreezeeventoccurrencesinMarch.Althoughthefreezeevent occurrencestendtodecreaseinrecentdecades,cropsareexposedtohigherfalsespringrisks, whichwillbeinvestigatedinthenextchapter. 57 CHAPTER4 SPRINGTIMEFREEZEEVENTSIMPACTSONAGRICULTURE 4.1Background 4.1.1Springtimefreezetypesandtheirimpactsonperennials Di˙erenttypesoffreezeeventscouldcausedi˙erentlevelsofdamagetoperennials.Conse- quently,itisimportanttounderstandwhenandhowthesefreezeeventsoccurandthus˝ndways tominimizetheimpactsoftheseadverseweathereventsoncrops.Althoughthetermsfrostand freezeareoftenusedinterchangeably,theyrepresenttwokindsofweatherevents.Thetermfreeze istypicallyusedtodescribeaninvasionofalarge,frigidairmassfromtheArcticorCanadian regions,whichiscommonlycalledtheadvectivefreeze(Powelletal.,2000).Theadvectivefreezes tendtooccurinawell-mixedboundarylayerwithstrongwindsassociatedwithcoldfrontsor withtheleadingedgesofpolar-originhigh-pressuresystems(Winkleretal.,2012).Frosts,also knownastheradiativefreeze,usuallyoccurundercalm,clearconditionsoncoldnightswhere thegroundorplantcanopysurfacecoolsradiativelymorequicklythantheairaboveit,whichis usuallyassociatedwithhigh-pressuresystems.(Winkleretal.,2012).Therearetwotypesoffrost: hoarfrostandblackfrost.Hoarfrostsarevisiblewithiceformation,andblackfrostsareinvisible duetoinsu˚cientwatervapor(Powelletal.,2000).Empirically,radiativefreezeshappenmore frequently,andadvectivefreezesresultincolderandmoreextendedperiods.Bothadvectivefreezes (intrusionofchilledair)andradiativefreezes(negativeheatenergybalance)couldsigni˝cantly decreaseagriculturalproduction.Radiativefreezesoccurmorefrequentlyandareassociatedwith temperatureinversionandarecomparativelyeasiertopredict.Onthecontrary,advectivefreezes arelessfrequentandoccurwithoutinversiondevelopingandthusaredi˚culttopredict. Knowingthetypeoffreezecouldhelpsuggestwaysofmanagingcropplantationdistributions sincethetwotypesoffreezeeventsproducedi˙erentdamagepatternsacrossthegrowingregion. 58 Researchhasshownthatfreezeeventthatdamageplantsaremoreoftenradiativethanadvective (Charrieretal.,2015).Radiativefreezestypicallyoccuraftersunsetwhentheweatherconditions arecalm.Sincethereisnoincomingsolarradiationaddingheattothesystem,theoutgoinglong- waveinfraredradiationcoolsthegroundandthusmakestheheatenergybalancenegative(Charrier etal.,2015).Therefore,radiativefreezesoccurmorefrequentlyinnarrowvalleys,inconcaveor ˛atlocations,andlessregularlyinelevatedandconvexareasmoreexposedtowind(Lindkvistet al.,2000).Consequently,propercropsiteselectionisane˙ectivewaytoavoidfreezinginjury causedbyradiativefreezes.Hilltopsandslopesareconsideredasgoodorchardsitesfromwhich relativelycoldaircan˛owdownslopeawayfromtheorchardsite,whilelandscapedepressionsare regardedaspoorsiteswherecoldairaccumulatesatnightduetoairdrainage(Winkleretal.,2012). Incontrast,advectivefreezesmaycausemoresigni˝cantdamagebyenhancingtheheatlossand coolingofplanttissue(Perry1998)atthosegoodsitesunderradiativefreezes(elevatedandconvex areasmoreexposedtowind),whicharemoreexposedtowindwithsubfreezingtemperatures (Winkleretal.,2012).Therefore,thecombinationofbothtypesoffreezescouldresultincrop siteselectionfailures.Inaddition,localtopographycomplexityandvariationsplayanimportant roleinleadingtofreezeseventsformationbyin˛uencingtemperatureandwindinvalleyorlake systems(Lindkvistetal.,2000). 4.1.2Falsespringoccurrencesandimpactsoncrops Extremetemperature˛uctuationsduringthespringtimecanhaveenormousimpactsonthe growthofvegetation,andmanyagriculturalandhorticulturalcrops.Anextendedperiodofwarmer temperatures,identi˝edasa"falsespring",couldcauseperennialcropstobreakdormancyandstart theirgrowingseasonearlierthanusual(Kistneretal.,2018).Asaresult,whenthecoldaircomes back,thesecropsareespeciallyvulnerableandsusceptibleduringtheirbudstages,and,hence, springfreezeshaveprofoundimpactsoncrops.In2002,sourcherryproductioninMichiganwas reducedbyatleast95%fromthepreviousannualyieldsduetospringtimefreezeeventsfollowing theunexpectedextendedwarmspells(NASS,2002).InApril2007,afteranextendedwarmth 59 promptingearlygrowthofvegetationandcrops,coldarcticairin˝ltratedsouthwardintothecentral andeasternUS,causingtemperaturestodroptofreezingandthusleadingtoanestimated$2billion ofyieldreductionsforcropssuchaswinterwheat,corn,andforagelegumesduetofrostburnand plantmortality(Marinoetal.,2011;Kral-O'Brienetal.,2019).DuringMarch2012,apersistent upperairridgingfeatureresultedinthewarmesttemperatureanomaliesatmanylocationsacross theMidwesternUSsince1900forthatmonth,whichbroughtmanycropsoutofdormancy(Labe etal.,2015).NeartheendofMarchandthroughoutApril2012,averagetemperaturesreturnedto theseregions,resultinginaseriesofcropyieldlossduetofreezedamages,includingthelossof approximately85%ofapplecropyieldsand90%oftartcherrycropyieldsfortheyearinMichigan (Kistneretal.,2018). Globalclimatechangehassparkedconsiderableresearchonextremeweathereventsandtheir impactsonvegetationgrowth.Nevertheless,researchfocusedontheoccurrences,immediate e˙ects,andlong-termconsequencesoffalsespringeventshavebeenlimited,despitetheirpotential forextremeenvironmentalandeconomicconsequences(Kral-O'Brienetal.,2019).Falsesprings arerelatedtoglobalwarminginthewaythattheonsetofspringhasgenerallyshiftedearlierinthe yearoverthepastseveraldecadesduetorisingaveragetemperatures(Allstadtetal.,2015).False springs,whichusuallyhappeninlatewinterorearlyspring,aresu˚cientlymildandlongtobring vegetationoutofdormancyearlier,renderingthevegetationvulnerabletolaterfreezeevents(Ault etal.,2013).Thelaterthefreezeoccursaftergrowthbegins,themoredamageislikelytobecaused sinceplantsareinamorevulnerablephenologicalstage(Marinoetal.,2011).Additionally,itis projectedthatfalsespringrisksmightincreaseinportionsoftheMidwesternUS(Allstadtetal., 2015). 4.1.3In˛uenceofphenologyonfreezedamage Freezeeventsthatoccuratadi˙erenttimecouldresultindi˙erentinjuriestocrops.Usually, freezeeventsafterfalsespringscouldcauseseveredamagetogrowingcrops.Also,phenological processesareparticularlycrucialforfreezeeventsavoidanceinspringandautumn(Charrieret 60 al.,2015).Microclimatefactorsthata˙ectcropdevelopmentincludechillunits,growingdegree hours,andminimumtemperatures,varyingindiversi˝edtopography(Loganetal.,2000).Since phenologicalprocessesarestronglydependentontemperature,microclimatecoulda˙ectcrop stagesbydelayingdevelopmentwithcoolingandacceleratinggrowthwithwarming.During winter,fruittreesinthestageofdormancyareveryresistanttocoldtemperatures.Duringthe annualcycleofgrowthanddormancy,thetransitionperiodsinautumnandspringaretheriskiest sincethereisamoderateprobabilityoffreezingwhenplantsaremostvulnerable(Charrieretal., 2015).Thetemperaturesthatcausedamageinspringaremuchlowerthanthetemperaturesthat treesencounterdamageinautumn(Larcheretal.,2010).Therefore,moderatelylowtemperatures inspringcouldresultindeadlyimpactsoncrops.Asfruittreesdevelopinthespringandbudsstart toswell,theylosetheabilitytowithstandcoldwintertemperatures(Longstrothetal.,2012).The stageofbuddevelopmentdetermineshowsusceptibleanygivenfruitcropiswhenfreezeevents occur(Longstrothetal.,2012).Whenaspellofunexpectedwarmweatherinthespringoccurs,the plantswilldevelopquickly.Andwhenthetemperaturesreturntonormal,thesedevelopingcrops thatareveryvulnerablewouldsu˙ersigni˝cantdamages. 4.1.4Studyobjectives Thisstudyaimstoinvestigatethehistoricalimpactsofspringtimefreezeeventdamageoncrops intheMidwesternUSfrom1981to2018.Inparticular,thestudyfocusesonthe˝rstgreendates, bloomdates,poorpollinationdays,andthebudsurvivalchanceoftheyearforapplesusingcrop simulationmodelswithinputdatasetsfromPRISM.Also,damagedaysoftheyear,dailyminimum temperature,anddamageoccurringdatesforeachphenologygrowingstageareincludedtoexplore theimpactsoffalsesprings. 61 4.2Datasetandmethods 4.2.1PRISMdataset PRISM,agriddedanalysisdatasetprovidedbythePRISMclimategroupfromOregonState University,o˙ersestimatesforsixessentialclimateelements:precipitation(ppt),minimumtem- perature(tmin),maximumtemperature(tmax),meandewpoint(tdmean),minimumvaporpressure de˝cit(vpdmin),andmaximumvaporpressurede˝cit(vpdmax).PRISMhasanexcellentspatial resolutionof4km.Evaluationshavebeendoneinthesecondchapter,andconclusionsrevealthat thePRISManalysisdatasetgenerallyagreeswellwiththeobservationsandcouldrepresentthe freezeevents.Asinputsforourappleyieldsimulationmodel,weobtainedthreevariablesfrom PRISM,dailyminimumtemperature,dailymaximumtemperature,anddailyprecipitation. 4.2.2Appleyieldsimulationmodel Aprimarycauseofyear-to-yearyield˛uctuationsintreefruitproductionacrosstheUnited Statesandinternationalproductionareasisbudlossassociatedwiththecoldinjurythattypically occurseitherduringthespringorwinterseasons(AndresenandBaule,2018).Budsensitivityto coldenvironmentaltemperaturesisstronglydependentonthephenologicalstageofdevelopment andgenerallyincreasesfromfulldormancythroughvegetativeintoreproductivestages.Inthis study,potentialseasonalyieldlossesforappleproductionassociatedwithcoldtemperatureswere estimatedfollowingtheapproachofZavallonietal.(2006),inwhichphenologicaldevelopment andcoldsensitivityaresimulatedonadailybasisusingobservedmaximumandminimumair temperatures.Estimationofphenologicaldevelopmentofapplewasbasedonthemethodologyof Rijal(2017)usingsummedseasonaltotalsofbase4 ° CgrowingdegreedaysfromMarch1st.Ten andninetypercentdamagethresholdtemperaturesforapplesatanumberofphenologicalstages wereobtainedfromBallardetal.(1998).Ingeneral,thedamagethresholdtemperaturesvaryfrom -34.4 º Cduringdormancyto-2.2 º Cduringlatevegetativestagesthroughfullbloom.Assuminga linearrelationshipbetweenthedamageseveritylevelandthecriticalfreezingtemperatures(Dennis 62 andHowell,1972),dailypercentdamageestimatesbasedonobservedminimumtemperatureswere developedforeachphenologicalstagedormancythroughfullbloom.Potentialyieldlossesdueto coldtemperatureswerethengeneratedseasonallyateachlocationasthecumulativesumofdaily colddamagesimulatedduringtheseason. 63 Figure4.1: Average,absolutevariation,relativevariation,andtrendofthe˝rstgreendate(Julian date)from1981to2018. 4.3Results 4.3.1Characteristicsoftheyearlyresults Thecropsimulationmodeloutputstwo˝lesateachgridpoint,dailyresultsandyearlyresults. Theyearlyresultscontainthe˝rstgreendate('fgreen'inFigure4.1,referredtoasleafoutinsome literature),thebloomdates,thepoordays(intermsofpollination),andtheyield(i.e.,budsurvival chance).AndthedailyresultsprovideinformationabouttheGrowingDegreeDay(GDD),the phenologicalstageofapples,andthefreezedamage. Figure4.1showscharacteristicsofthe˝rstgreendate,includingannualmean,absoluteand relativevariation,andthetrend.ThevaluesaretheJuliandatesoftheyear.Forexample,60means thedateofMarch1st,whichistheearlyspringtime.Theaveragevaluesarelatitude-dependent 64 withlaterdatesinthenorthernregionandearlierdatesinthesouthernregion,similartothe averagedtemperaturepattern.ForMichigan,weobserveagradualincreasefromthesouthto thenorth.The˝rstgreendateinnorthernMichigancouldbearoundearlyApril,butthatinthe upperpeninsulacouldbeaslateasthemiddleofMay.Theinterannualstandarddeviationshows theabsolutevariation,whilethecoe˚cientofvariationistherelativevariationcalculatedasthe absolutevariationdividedbythemeanvalues.Therefore,theabsolutevariationofthe˝rstgreen dateindicatesthatthenorthernregionshavegenerallysmallervariationsthanthesouthernregions. ThehighestabsolutevariationisobservedintheSoutheastofthestudyregionandthelowestin theNortheast.Sothe˝rstgreendateismorevariableinwarmerregionscomparedtocoldregions. Sincetheabsolutevariationvaluesaregenerallysmallcomparedtothemeanvaluesofthe˝rst greendate,therelativevariationsaredominatedbytheaverages,resultinginanoppositepattern tothemeanvalues.Thevaluesinthetrendgrapharetheslopesoftheregressionofthe˝rstgreen dateonthe18years,withnegativevaluesindicatingearlierdatesandpositivevaluesindicating laterdates.Also,thesigni˝canttrendisindicatedbythegreyshades.Theresultsrevealthatthe ˝rstgreendatesarebecomingearlierinmostareasexceptforsomenorthernmostregionsofthe northernplainsandMichigan'sUpperPeninsula. Similarpatternsarefoundforthebloomdate(Figure4.2)thatoccurslaterintheyearthanthe ˝rstgreendates.Theabsolutevariationsofthebloomdateareoverallsmallerthanthoseofthe ˝rstgreendate,especiallyacrosstheentireNortheast,wherethevariationsaresmall.Themean valuesstilldominatetherelativevariations.Thegeneraltrendofthebloomdateisstillbecoming earlier.However,moreareasoftheNorthernGreatPlainsandtheUpperMidwestshowlaterbloom dates.Also,moresigni˝cantpointsareshownintheSouthernGreatPlains,theNortheast,andthe Southeast. Thepatternsforthepoorpollinationdays,however,aredi˙erent(Figure4.3).Themeanvalue patternisnotlatitude-dependent.Mostareasofourstudyregionshowvaluesfrom2to3days.And largevaluesareobservedacrosstheOhioValleyandpartoftheNorthernGreatPlains.Mostof theareasshowaninterannualstandarddeviationoffewerthantwodays.However,thelargemean 65 Figure4.2: Average,absolutevariation,relativevariation,andtrendofthebloomdate(Julian date)from1981to2018. valueareasalsoshowlargerabsolutevariationsofaroundthreedays.Therelativevariationshows anexactlydi˙erentpattern,whichrevealslargevaluesintheNorthernandtheSouthernGreat Plains.Also,sincetheabsolutevariationvaluesareinthesamemagnitudeasthemeanvalues,the relativevariationsarenotdominatedbythemeanvalues.Regressionofpoorpollinationdaysover theyearsrevealsthatthepoordaysincreaseacrossmostofourstudyregionsfrom1981to2018, withnoticeablesigni˝canceintheNorthernGreatPlains,theUpperMidwest,andtheNortheast. Onthecontrary,thepoordaysinthenorthernpartoftheOhioValleyandthesouthernpartofthe SouthernGreatPlainssigni˝cantlydecreasethroughoutourstudyperiod. Similartopoorpollinationdays,thepatternforthemeanbudsurvivalchanceisalsonot latitude-dependent(Figure4.4).ThevaluesarelargerintheUpperMidwestandtheNortheastthan intherestoftheregions.Itisnoteworthythatthemeanvaluesaroundlakeshoresareconsistently 66 Figure4.3: Average,absolutevariation,relativevariation,andtrendoftheyearlypoor pollinationdaysfrom1981to2018. highthroughoutthestudyperiod,whichcouldbearesultofthelargebiasintheinputPRISM datainlake-modi˝edareas,asdiscussedinChapter2.Thelargebiasintheinputdatamayalso explainthesmallvaluesintheinterannualstandarddeviationinareasalongtheshorelines.The largestabsolutevariationsareobservedintheNorthernGreatPlains.SouthernMichiganandthe westoftheSouthernGreatPlainsshowsmallerabsolutevariationscomparedtootherareas.Itis alsonoticeablethatthere'sahighlightregionintheupperpartofMichigan,whichshowssmaller budsurvivalchancesandlargerstandarddeviationscomparedtootherpartsofMichigan.Since theabsolutevariationpatternisconsistentwiththemeanpattern,therelativevariationpatternis stillconsistent,whichistheoppositeofthemeanpattern.Regressionofbudsurvivalchanceover theyearsrevealsthatmostareasofourstudyregionincreasethroughoutourstudyperiod.And WisconsinandthesouthernpartoftheOhioValleyshowsigni˝cantincreases. 67 Figure4.4: Average,absolutevariation,relativevariation,andtrendoftheyield(budsurvival chance)from1981to2018. 4.3.2DailyResultsandsomederivedindices Freezedamageoneachdayischaracterizedbyafractionnumberlessthan1.0inthedaily output˝les.Therefore,wecouldknowthedayswhendamageoccursandalsotheintensityofthe damage.Also,wecouldknowthedatewhenthedamageoccurs,thephenologicalstageofthe plantwhendamageoccurs,inadditiontothedailyminimumtemperaturewhendamageoccurs. Weconductsomeanalysesbasedontheseresults. Figure4.5showstheresultsforyearlyaccumulateddamagedays.Sincethebudsurvivalchance andthedamagefractionnumbersaddupto1.0,themeanpatternofdamagedaysistheopposite ofthatofthebudsurvivalchance.Incontrarytotheyieldvalues,damagedaysaroundtheGreat LakesRegionsarefewercomparedtootherareas.Theinterannualstandarddeviationgraphtells usthattheareaswheremoredamagedaysoccuralsoshowhigheramplitudesofperturbations. 68 Figure4.5: Average,absolutevariation,relativevariation,andtrendofdamagedaysfrom1981to 2018. TheresultsarecharacterizedbylowervariabilityintheUpperMidwestandtheNortheastversus highervariabilityintheSouthernGreatPlains,thesouthernOhioValley,andtheSoutheast.The relativevariationpatterntellsadi˙erentstory.Dividedbytheaverages,theamplitudesaround theGreatLakesRegionsandtheNortheastarelargerthanotherareas.Thetrendofdamagedays acrossourstudyregionisoveralldownward,whichistheoppositeofthebudsurvivalchance.And signi˝cantincreasesareobservedintheSouthernGreatPlains.Itisalsonoteworthythatmost areasofMichiganshowaslightupwardtrendofdamagedays. Figure4.6showstheaveragedamagedaysateachgrowthstage.Stagesarede˝nedaccording totherunningtotalofbase4oCgrowingdegreedayseachyear,calculatedbasedontemperature. Byde˝nition,wehaveStage0andfrom2till9withoutStage1.InStage0,damageonlyoccurs inthenorthernmostregionsneartheUSandCanadaborder,whichisexpectedbecauseofthe 69 Figure4.6: Averageofdamagedaysateachgrowthstagefrom1981to2018. temperature-dependence.InStage2,damagesoccuroverlargeareasoftheSouthernGreatPlains andinpartsofthesouthernOhioValleyandtheSoutheast.Damageareasstayintheseregions throughtherestofthestages,withthenumberofdamagedaysandtheareasin˛uencedbecoming smallerinStages3-7,andlargeragaininStages8and9. Thetrendsofthedamagedaysforeachstagecanbedeterminedbyregressingthetimeseriesof averagedamagedaysduringeachgrowthstageonthetimeseriesoftheyearsoverthestudyperiod (Figure4.7).ThedamagedaysinStage0thatoccuroverthenorthernPlainexhibitadownward trend.Onthecontrary,thetrendsaregenerallyupwardinregionsofthesouthernPlains,especially forStage2andStage9. ExceptforStage0,thedateswhendamageoccursduringeachgrowthstageshowlatitude- dependencewithprogressivelylaterdatestowardsnorth.(Figure4.8).InStage0,damageonly occursinthenorthernpartsoftheGreatPlainsandtheMidwestaswellaspartsoftheOhioValley. 70 Figure4.7: Thetrendofdamagedaysateachgrowthstagefrom1981to2018. Thedamageacrosstheseregionshappensaroundsimilardates,withaslightdelayinnorthern MichiganandWisconsin,possiblyduetothelakee˙ect.InStage2,damagehappensfromlate FebruaryinthesouthernedgeofthestudyregiontolateMarchandearlyAprilinthesouthern PlainsandtheOhioValley,andfromlateApriltoearlyMayinthenorthernPlainsandupper Midwest.Similardelayedoccurrencetowardsnorthernlatitudesalsooccursduringotherstages. Thetrendanalysis(Figure4.9)revealsthat,ingeneral,theoccurringdamagedatesarebecoming earlieracrossthestudyregionoverthe38-yearstudyperiod,especiallyforStage9whendamage occursmuchearlieracrosssouthernMichiganandnorthernOhio.TheonlyexceptionisStage0, duringwhichdamageinMichiganandWisconsinhappenssigni˝cantlylater. Thespatialpatternsoftheaveragedamagedaysandthedateswhendamageoccursareconsistent withthepatternsofdailyminimumtemperatureduringthedamagedays(Figure4.10).InStage 0,thedailyminimumtemperaturesduringdamagedaysarebelow-10 ° C.TheninStage2, 71 Figure4.8: Theaverageoffreezedamageoccurringdateateachgrowthstagefrom1981to2018. mostdamageoccurringintheSouthernGreatPlainswithdailyminimumtemperaturefrom-8 ° Cto-6 ° C,whileintheUpperMidwestwithdailyminimumtemperaturefrom-6 ° Cto-4 ° C. ThenthedailyminimumtemperaturesforStage3andStage4aresimilar,from-5 ° Cto-3 ° C acrossourstudyregion.Thenasthephenologymarchesintolaterstages,thedailyminimum temperaturesarehigher.Generally,thedamageoccurringinthenorthernareaswithhigherdaily minimumtemperaturescomparedtothesouthernareas.Theregressionanalysis(Figure4.11) revealsthatthedailyminimumtemperaturesareoverallbecomingwarmerduringdamagedays. AndlargertrendvaluesareonlyshowingaroundtheGreatLakesRegioncomparedtootherareas. ItisnoteworthythattheareasshowingearlierdamageoccurringdatesinFigure4.9showdaily minimumtemperaturetrendsupward.Therefore,weconcludethatdamageisgenerallyoccurring onearlierandwarmerdays.Thisconclusioncouldberelatedtothe'FalseSpring'occurrences. Falsespringsarerelatedtotheglobalwarmingtrendinthewaythattheonsetofspringhasgenerally 72 Figure4.9: Thetrendoffreezedamageoccurringdateateachgrowthstagefrom1981to2018. shiftedearlierintheyearwithrisingaveragetemperatures.Asaconsequenceofearlierspringsand increasingtemperatures,thedamageisoccurringearlierwithwarmertemperatures. 73 Figure4.10: Theaveragedailyminimumtemperatureduringdamageoccurringdateateach growthstagefrom1981to2018. 74 Figure4.11: Thetrendofdailyminimumtemperatureduringdamageoccurringdateateach growthstagefrom1981to2018. 75 FollowingthedivisionofthesubregionsinChapter3,wecalculatethedamagedaysaveraged acrossdi˙erentsubregions(Figure4.12).We˝rstcalculatetheannualdamagedaysateachgrid pointandthencomputethespatialaverageineachsubregion.Therefore,eachsubregionhasa timeseriesofdamagedays.We˝nddamagedaysshowanabrupthighvaluein2012intheUpper MidwestandtheNortheast,whichisconsistentwiththeseveredamagetocropsreportedduring thatyear.Theannualmeandamagedaysandstandarddeviationsrangefrom1.56daysyr-1and 0.99yr-1overtheUpperMidwestto7.88dayyr-1and4.85daysyr-1overtheSouthernGreat Plains.Thetimeseriesofdamagedaysacrossdi˙erentsubregionssuggeststhattheSouthernGreat PlainsandtheSoutheastarenotfavorableforapplegrowth,whereastheUpperMidwestismost suitableforapplegrowthasfarastheriskoffreezedamageisconcerned.Althoughonlyasmall partoftheNortheastiscoveredinourstudy,theresultshowsthattheNortheastisalsofavorable forappleplanting. Tofurtherexaminetheregionaldi˙erencesofthedamagedaysforeachgrowthstage,wecount theannualdamagedaysovereachgrowthstageateachgridpointandaverageoverallgridpoints ineachsubregion.Wethensumtheannualmeanoverthe38yearsforeachsubregion,andthe resultsareshowninFigure4.13.First,theresultsrevealthattherearemoredamagedaysoccurring inthe˝rsttwophenologicalstagessinceweknowthatcropsaremorevulnerableatearlygrowing stages.TheUpperMidwestandtheNortheastshowlowervaluesforallninestagescomparedto otherregions.Also,therearenodamagedaysduringStage0fortheSouthernGreatPlainsand theSoutheastandalmostnodamagedaysduringStage0fortheOhioValleyandtheNortheast. Formostregions,thelargestnumberofdamagedaysoccurduringStage2,whilefortheUpper Midwest,mostdamagedaysoccurduringStage0.Damagedaysforotherstagesvaryfromregion toregion. Asimilarcalculationisdoneforannualdamagevaluestounderstandhowdamageintensity varieswithstageandregion(Figure4.14).ItturnsoutthattheUpperMidwestandtheNortheast notonlyhavefewerdamagedaysbutalsoshowlowerdamageintensity,whichiscontrarytothe SouthernGreatPlainsandtheSoutheast.Also,theresultsrevealthatStage2andStage3showthe 76 Figure4.12: Thetimeseriesofarea-averageddamagedaysinsixsubregionsfrom1981to2018. largestdamageintensityofallninestagesforalloursubregions.Therefore,forthesixsubregions exceptfortheUpperMidwest,Stage2notonlyshowsthemostdamagedaysbutalsoshowsthe mostintensedamage.AlthoughStage0showsthemostdamagedaysintheUpperMidwest,the damagevaluesforStage0arenotlarge.Hence,Stage2isthephenologicalstagethatconsiderable damagemightbemostlikelytooccur. Theregion-andstage-dependenceofdailyminimumtemperature(Figure4.15)showsageneral increasingtrendfromtheearlierstagestothelaterstages.However,fortheNorthernGreatPlainand theUpperMidwest,thedailyminimumtemperaturesduringStage8arehigherthanthoseduring Stage9.Also,forthetwoconsiderabledamageoccurringregions,theSouthernGreatPlainsand theSoutheast,thedailyminimumtemperaturesduringStage9increasealmosttwicefromStage8, indicatingasigni˝canttemperaturechange.CombinedwithFigure4.14,weconcludethatnearly 77 Figure4.13: Thesumofdamagedaysateachgrowthstageinsixsubregionsfrom1981to2018. nosigni˝cantdamageoccursduringStage9asthetemperatureincreases. Thespatialandtime-averageddailyminimumtemperatureondamagedaysonly(Figure4.16) revealthatthedailyminimumtemperaturesduringdamagedaysoftheUpperMidwestandthe Northeastaregenerallyhigherthaninotherregions,consistentwiththeconclusionthatthese tworegionshavetheleastdamage.AtStage2,thephenologicalstagewhenthemostsevere damageoccurs,theUpperMidwestandtheNortheastshowalmost1DegreeCelsiushigherthan theSouthernGreatPlain,wherethemostseveredamageoccurs.Thedailyminimumtemperatures duringdamagedaysatStage2forthetwoleastfreeze-damagedregionsareabove-6 ° C,while thoseforotherregionsareallbelow-6 ° C.Therearesharpdailyminimumtemperatureincreases duringdamagedaysfromStage2toStage3andfromStage4toStage5. Finally,thespatialandtime-averageddamage-occurringdatesforeachgrowthstage(Figure 78 Figure4.14: Theaverageofdamagevaluesateachgrowthstageinsixsubregionsfrom1981to 2018. 4.17)revealalargeincreasefromanaverageJuliandateof20forStage0toanaverageJuliandate ofmorethan60forStage2.ThenfromStage2toStage9,thedatesincreasegradually.Thetwo mostseveredamage-occurringregions,theSouthernGreatPlainsandtheSoutheastshowmuch earlierdamage-occurringdatescomparedtootherregions. 79 Figure4.15: Theaveragedailyminimumtemperatureateachgrowthstageinsixsubregionsfrom 1981to2018. 80 Figure4.16: Theaveragedailyminimumtemperatureduringdamagedaysateachgrowthstagein sixsubregionsfrom1981to2018. 81 Figure4.17: Theaveragedamage-occurringdatesateachgrowthstageinsixsubregionsfrom 1981to2018. 82 4.4Summary Thisstudyinvestigatesthehistoricalimpactsofspringtimefreezeeventdamageoncropsin thecentralandmidwesternUSfrom1981to2018usingcropsimulationmodelswithinputdatasets fromPRISM.Inparticular,thevariablesexaminedinthisstudyincludethe˝rstgreendates,bloom dates,poorpollinationdays,andthebudsurvivalchanceoftheyearforapples.Also,damagedays oftheyear,dailyminimumtemperature,anddamageoccurringdatesforeachphenologygrowing stageareincludedtoexploretheimpactsoffalsesprings.Themajor˝ndingsareasfollows. 1)Trendanalysisfortheonsetdatesofspringsrevealsatendencytowardsearlier˝rstgreen datesandbloomdatesduringourstudyperiod,indicatingearlierspringsinrecentdecades.This earliershiftofspringscouldresultinmorefrequentfalsespringoccurrences.Also,theonsetof springdatesismorevariableinthewarmersouthernregionsthanthecoldernorthernregions. 2)Higherbudsurvivalchancesandfewerpoorpollinationdayswithlowervariationaroundthe GreatLakesRegionthanotherregionsintheMidwesternandCentralUSareshowninourresults, indicatingthefavorablegrowingconditionsforapplesintheseareas.Thisresultisconsistent withthefewerfreezedamagerisksintheUpperMidwestandtheNortheastwithlowervariability comparedtotheSouthernGreatPlainsandtheSoutheast. 3)Damageisgenerallyoccurringonearlierandwarmerdays,whichcouldbeaconsequenceof morefrequent'FalseSpring'occurrences.Asaresultoftheglobalwarmingtrend,earliersprings andincreasingtemperaturesleadtodamageoccurringearlierwithwarmertemperatures. 4)Wealsoobservedamagedaysshowanabrupthighvaluein2012intheUpperMidwestand theNortheast,whichisconsistentwithobservedseveredamageduringthen.Thisabruptchangeis notobservedinotherde˝nedregions. 5)Therearemoredamagedaysinstage2withhigherseveritysinceapplesarevulnerable duringtheearlygrowingstages.Thisinformationsuggeststhatifapplesbegintheirgrowing seasonsearlier,theycouldsu˙erfromsigni˝cantdamageduetosubsequentfreezeevents. 6)TheMidwestandtheNortheastaretworegionsfavorableforappleplantingsincethese tworegionsshowfewerdamagedayswithlowerdamageintensityandalsohigherdailyminimum 83 temperatureduringdamageoccurringdays,whiletheSouthernGreatPlainsandtheSoutheastare intheopposite. Thisstudysimulatesthehistoricalyieldsofapplestoshowtheimpactsoffalsespringswithsome limitations.First,thecropsimulationmodelonlytakesinputsoftemperaturesandprecipitation, whichmightbeproblematicsincecropgrowthcouldberelatedtomorecomplicatedfactors. Second,howthissimulationmodelrepresentstheobservationsneedstobeevaluated.Some observationalrecordscouldbeusedtotestifythemodel'sbehavior.Also,ifthismodelisreliable, somefutureprojectionscouldbemadetoprovidesomevaluablepredictionsforappleplanters. Despitethelimitations,thisstudyprovideshelpfulinformationforappleplantersaboutthedamage occurringearlierwithwarmertemperaturesduetofalsesprings. 84 CHAPTER5 CONCLUSION Thisresearchfocusesontheclimatologyofspringtimefreezesandtheirimpactsonagriculture, especiallyforthecentralandeasternUnitedStates.Chapter2assessesERA5reanalysisand PRISManalysisdatasetsbycomparingthemtostationobservationsatselectedlocations.Chapter 3investigatesthefrequency,severity,andpotentialcausesofspringtimefreezeeventoccurrences. TheImpactsoffalsespringsandsubsequentfreezeeventsareexaminedinChapter4. InChapter2,ERA5andPRISMreanalysisproductsarecomparedtostationobservations. TheconclusionisthatthePRISMdataset,demonstratingabetteragreementoftemperatureswith observations,couldbeusedasaproxytorepresentobservedfreezeevents.Rootmeansquared errors(RMSDs)andbiasarecalculatedtoevaluatehowthegriddeddatasetsagreewiththe stationobservations.Griddedreanalysisdatasetstendtoreducetheobserveddailycycles.Ata dailylevel,ERA5underestimatesdailymaximumtemperaturewhileoverestimatesdailyminimum temperature,resultinginreduceddailycycles.Incontrast,PRISMtendstooverestimateboth dailyminimumandmaximumtemperature.Sincedailymaximumtemperaturesaremeasuredin moremixedconditions,theobservationsshouldagreewiththearea-averagedgriddeddatasetsto alargerextentthandailyminimumtemperatures.Bothgriddeddatasetsshowbetterresultsfor dailymaximumtemperaturethandailyminimumtemperature,asshownintheloweramplitudesof perturbationsofthetimeseriesandthesmallervaluesofRMSDsofdailymaximumtemperature. Lakee˙ectsareshownbylargeRMSDsandBiasandalsolargeperturbationsoftimeseriesof near-lakestationsforbothgriddeddatasets.PRISMshowsexcellentabilityincapturingdi˙erent typesoffreezeeventsforbothwintertimeandspringtime.Generally,freezeeventsarecaughtina betterwayduringwintertimethanotherseasons. InChapter3,weinvestigatethefrequency,severity,aswellasclimatebackgroundofspringtime freezeeventoccurrences.TrendanalysisandEOFanalysisareconductedtorevealthecharacteris- ticsoffreezingdaysduringthespringtime.Ourresultsindicateageneraldecreasingtrendinthe 85 frequencyofspringtimefreezeevents.Considerablydamageyearsof2007and2012showalow frequencyoffreezeevents,indicatingtheprofoundimpactsoffalsespringsthatexposetheearlier developedcropstothesubsequentfreezeevents.Bydividingourstudyregionintosixsubregions, weobservesigni˝cantdownwardtrendsforthetotalfreezingdaysduringthespringtimeinthe OhioValley,whichextendsthe˝ndingsinEasterlingetal.(2002)fromtheperiod1948-1999 into1981-2019.Byrelatingthearea-averagedfreezingdaystosometeleconnectionindices,we concludethatthepositivephaseofNAOisusuallyassociatedwithlessfreezingriskinMarch acrossthestudyregion.EOFanalysisoffreezingdaysinMarchshowsarelativelylargervariation intheOhioValley,andthe˝rstEOFtimeseriesshowssubstantialinterannualvariability.Whena positivephaseofNAOshowsinMarchandDecemberofthepreviousyear,thein-phase˛uctuation acrossourstudyregionwithahigherintensityovertheOhioValleytendstooccurinMarch.And thispatternisusuallyassociatedwiththegeopotentialheightlowerthanaverageattheupperlevel andhigherthanaverageatthesurfaceandathicknessshallowerthanaverage. Chapter4investigatesthehistoricalimpactsofspringtimefreezeeventdamageoncropsinthe centralandmidwesternUSfrom1981to2018usingcropsimulationmodelswithinputdatasets fromPRISM.Ourresultsrevealthattheonsetofspringsisshiftedearlierinrecentdecadeswith theindicatorsof˝rstgreendatesandbloomdatesthataremorevariableinthewarmersouthern regionsthanthecoldernorthernregionsduringourstudyperiod.Thisearliershiftofspringsis associatedwithmorefrequentfalsespringoccurrences.ResultsalsorevealthattheUpperMidwest andtheNortheastarelessvulnerabletofreezedamageforappleplantingthantheSouthernGreat PlainsandtheSoutheastindicatedbyhigherbudsurvivalchances,andfewerfreezedamagerisks withlowervariability.Damageisgenerallyoccurringonearlierandwarmerdaysasaconsequence ofmorefrequent'FalseSpring'occurrences.TherearemoredamagedaysinStage2withhigher severitysinceappleisvulnerableduringtheearlygrowingstages. Therearesomelimitationsinthisresearch,asdiscussedinmoredetailintheindividualchapters. Windspeedanddirectionthathaveprofoundimpactsonfreezeeventformationarenotevaluatedin Chapter2.Also,precipitationdataneedstobeassessedbetweenthegriddeddatasetsandstational 86 observations.InChapter3,limitedbyourstudyregion,oursubregionscouldnotexactlyrepresent theregionsde˝nedinKarlandKnight(1998).Speci˝cally,theNortheast,theSoutheast,andthe SouthernGreatPlainsareonlypartsoftheregionsde˝nedinKarlandKnight(1998),leadingto amisrepresentationoftheconclusionsoffreezeeventsovertheseregions.Inaddition,speci˝c weatherconditionsneedtobeinvestigatedtounderstandthecausesoffreezeeventformation.In Chapter4,thecropyieldsimulationmodelshouldbenotonlyevaluatedbutalsoimproved.Also, somefuturetrendsofdamageriskscouldbeprojectedtoprovideguidelinesforfruitgrowers. Inconclusion,themostvaluableinformationthatcouldprovidefruitgrowersisthatassociated withglobalwarming,fewerspringtimefreezeeventsbutmorefrequentfalsespringeventsoccur inrecentdecades.Thedamagetocropsoccursonearlierandwarmerdaysinrecentdecades. 87 APPENDIX 88 A.1ImpactsofSoilMoistureonSpringtimeFreezeEvents Thethermalconductivityofthesoildependsonitsmineralogicalcomposition,texture,as wellasitswatercontent(DeVriesetal.,1986).Sincesoilmoisturechangehasaprofounde˙ecton soiltemperature,soilre˛ectance,andsoilheatstorage(AL-KAYSSletal.,1990),itisquestionable howthesoilmoisturechangea˙ectstheapparenttemperature,whichiscloselyrelatedtotheheat balancebetweenthegroundandaboveatmosphere.Whensoilsholdmorewater,theabilitytostore andtransferheatduringthenightisenhanced.TheresultsfromAL-KAYSSletal.(1990)reveal thatanincreaseinsoilmoisturecontentdecreasesthesoiltemperaturedi˙erencebetweenday-time andnight-time.Andthisdecreasedtemperaturechangecouldprotectplantrootsystemsfromsharp andsuddenchangesinsoiltemperature(AL-KAYSSletal.,1990).Finally,plantgrowthrateand yieldmightincreaseduetothemodi˝cationofplantclimateathighersoilmoisturecontent.This valuableinformationcouldprovidecropgrowerswithinstructionsonwhenandhowtoprotecttheir cropsconfrontingapredictedsuddenandextremefreezeevent. Thisstudyinvestigatestheimpactsofincreasingsoilmoisturecontenton2mairtemperature change.Withtheapplicationofadeterministicregional-scalenumericalforecastmodel,thisstudy aimstoinvestigatetheextentofhowthesoilmoisturechangea˙ectsthedailyminimumtemperature changeintheGreatLakesRegion. WeuseNAM(theNorthAmericanMesoscaleForecastSystem)analysestoinitiateour modelcon˝guration.NAMisoneofthemajorweathermodelsrunbytheNationalCenters forEnvironmentalPrediction(NCEP)forproducingdozensofweathervariables,fromtemper- atureandprecipitationtoturbulentkineticenergy.TheNAMgeneratesmultiplegrids(ordo- mains)ofweatherforecastsovertheNorthAmericancontinentatvarioushorizontalresolutions (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast- system-nam).WetakeinputdatafromNAManalysesandthenuseWRF(WeatherResearchand Forecasting)modeltoforecasthowthetemperatureissensitivetosoilmoisturechange. Speci˝cally,weconductWRFsensitivitystudiestoinvestigatethesensitivitytochanging verticalresolutionandchanginginitialsoilmoisturesettings.Weobservetwonoticeablefreeze 89 eventsonthenightsofMay8thandMay12th.Therefore,basedonthesetwoevents,weconduct aseriesofstudies.Beforewemodifyanyparameters,we˝rstcomparetheWRFmodeloutputs toobservationstoknowtherepresentationoftheWRFoutputs.AsshowninFigureA.1.1,the WRFoutputsmeasuresoilmoisturevaluesatdi˙erentlayerscomparedtotheobservationaldataat Williamsburg.TheresultsrevealthattheWRFsimulationsconsistentlyoverestimatethemoisture valuesattheuppersoillevelsandunderestimatethematthebottomlayerforboththesetwofreeze events(May8thandMay12th)atthislocation.Thenwecompareotherweathervariablesatthree stations,EastLansing,Gaylord,andWilliamsburg.Theresultsrevealthatforbothtwofreeze events,WRFoutputscapturethedailycycleswellforallthreevariables,airtemperature,relative humidity,andwindspeed,andthedi˙erencevaluesvarybylocation.WecompareWRFair temperaturesat2mtoobservationalairtemperaturesat1.5m(FigureA.1.2).Thedi˙erencesrange from-5degreesto5degrees.Generally,WRFoutputsunderestimatemaximumairtemperatures intheafternoonandoverestimateminimumairtemperaturesduringthenight.Thisbiasisjust whatweexpectsinceWRFoutputsarearea-averagedresults,whichshouldreducethedailycycle amplitudes.Itisnoteworthythatinthegraph,wenotethetimefromWRFoutputs,whichisthe standardUTCthatisfourhoursearlierthanthelocaleasterntime.WRFdoesnotshowexcellent behaviorinrepresentingtherelativehumiditysincerelativehumidityissensitivetotemperature values.Forwindspeedcomparison,wealsoshowthatWRFoutputstendtooverestimatethe minimumvelocityduringthenightwhiletendtounderestimatethemaximumvelocityinthe afternoon.Also,itisnoteworthythatwearecomparingWRFwindspeedat10mtoobservational windspeedat3m. SincePRISMhasbeenevaluatedinChapter2,wechoosetousePRISMasaproxytorepresent theobservationaldailyminimumtemperaturevaluestoassessWRFoutputs'quality.Asshown inFigureA.1.3,WRFcapturesthespatialvariationonMay8th.Weusealinearmodel,OLS (ordinaryleastsquares)regressionmodel,toquantitativelyinvestigatehowtheWRFoutputs˝t theobservationvaluesfromPRISM.OurresultsrevealthatWRFoutputsrepresent68.3%,27.1%, 31.8%,and1.1%,respectively,forMay8th,May9th,May12th,andMay13th,asshowninthe 90 FigureA.1.1: Di˙erencesofsoilmoisturebetweenWRFoutputsandobservationsat Williamsburg. EastLansing Gaylord Williamsburg 30levels 2.172 2.1566 1.898 38levels 2.3653 2.0065 1.9866 40levels 2.3213 2.068 1.3364 45levels 2.3725 2.0733 1.3687 TableA.1.1: RMSDsofairtemperaturebetweenWRFandobservationsatthreelocationsfor48 hoursfromMay12thtoMay13thwithdi˙erentverticalresolutions. RsquaredvaluesfromtheOLSmodel.ExceptforMay13th,WRFgenerallycapturesthespatial characteristicsovertheGreatLakesRegion. Thenwetrytounderstandhowthehigherverticalresolutiona˙ectstherepresentationofWRF outputs.Bymodifyingtheinitialverticallayersetting,werunWRFwith30levels,38levels, 91 FigureA.1.2: Di˙erencesofairtemperaturebetweenWRFoutputsandobservationsatthree locations. FigureA.1.3: ComparisonofdailyminimumairtemperaturebetweenWRFandPRISMonMay 8th. 92 EastLansing Gaylord Williamsburg 30levels 1.6087 1.6753 1.5199 38levels 1.5629 1.6919 1.8894 40levels 1.267 1.1656 1.6803 45levels 1.3944 1.3109 1.8251 TableA.1.2: RMSDsofwindspeedbetweenWRFandobservationsatthreelocationsfor48hours fromMay12thtoMay13thwithdi˙erentverticalresolutions. 40levels,and45levels.Weincreasetheverticalresolutionatlowerlevels.Wedonotobserve ageneralimprovementinthecomparisonbetweenmodeloutputsandobservationsatthethree selectedlocationsforairtemperatureandwindspeedfor48hoursfromMay12thtoMay13th. Varyingbylocationandvariables,increasingtheverticalresolvedresolutionimprovestemperature representationinGaylordandWilliamsburgandwindspeedrepresentationinEastLansingand Gaylord(TableA.1.1andTableA.1.2).Itisinterestingtoshowthatwhenincreasingthelayers from40to45,usuallytheRMSDsarenotbecomingsmaller;instead,largerRMSDsareobserved inoursimulations.FromtheresultsoftheOLSmodel,wealsorevealthatincreasingthevertical resolutiondoesnotnecessarilyimprovetherepresentationofthespatialcharacteristicsofWRF. Next,weexaminehowtheairtemperatureisa˙ectedbyanincreaseinsoilmoisture.We˝rst runtheWRFsimulationwithoutanychangesintheinitialinputdata.Thenwegettheoriginal dailyminimumairtemperatureforfourdays,asshownintheleftcolumnofFigureA.1.4.Then wechangethesoilmoisturevaluesintheinputdatabymultiplyingtheoriginalvaluesby1.05, increasingtheinitialsoilmoistureby5percent.Theresultsarejustasweexpect;thedaily minimumairtemperaturesonfourdi˙erentdaysareallincreasedlessthan1degree.However, itisnotalwaysphysicallyreasonabletoincreasethesoilmoisturebymultiplyingafactor.As showninFigureA.1.5,themaximumandminimumsoilmoisturevaluesactuallydependonthe soilcategories.Forexample,sandyloamisthetypeofsoilthatshowsthebestabilitytostorewater. Sowealsochangethesoilmoisturevaluestothemaximumandminimumvaluesbasedonthe soiltypes(FigureA.1.6andFigureA.1.7).Theresultsrevealthatdecreasingsoilmoisturetothe minimumvaluesconsiderablydecreasesdailyminimumtemperatureswithamaximumamplitude 93 FigureA.1.4: Dailyminimumtemperaturechangesinresponsetoincreasedsoilmoisturebya factorof1.05onMay8thandMay9th. of8degrees,whichislargerthanthemagnitudeofchangingsoilmoisturetomaximumvalues. Inconclusion,thiscasestudyprovidesvaluableinformationforcropgrowersthatirrigation beforepredictedfreezeeventscouldhelptoprotectcropsfromseveredamageduetothepositive responseoftemperaturetoincreasedsoilmoisture. 94 FigureA.1.5: Dailyminimumtemperaturechangesinresponsetoincreasedsoilmoisturebya factorof1.05onMay12thandMay13th. 95 FigureA.1.6: Majorsoilcategoriesinourstudyregion. FigureA.1.7: SoilmoisturechangebasedonsoiltypesonMay8thandMay9th. 96 FigureA.1.8: SoilmoisturechangebasedonsoiltypesonMay12thandMay13th. 97 BIBLIOGRAPHY 98 BIBLIOGRAPHY Andresen,J.A.andW.J.Baule,2018.TemperateFruitTreesandGrapes.In:AgronomyMono- graphs,60:Agroclimatology:LinkingAgriculturetoClimate.Eds.:J.Hat˝eld,M.Sivakumar,J. Prueger,.ASA,CSSA,andSSSA,Madison,WI.doi:10.2134/agronmonogr60.2014.0035. AboutUs-MSUEnviroweather-WeatherforIPMAccessedMarch6,2020. https://enviroweather.msu.edu/about.php. Allstadt,AndrewJ,StephenJVavrus,PatriciaJHeglund,AnnaMPidgeon,WayneEThog- martin,andVolkerCRadelo˙.ingPlantPhenologyandFalseSpringsintheConterminousUS duringthe21stCenturyEnvironmentalResearchLetters10,no.10(October1,2015):104008. https://doi.org/10.1088/1748-9326/10/10/104008. AL-KAYSSl,AW,AAAl-Karaghouli,andAMHasson.ofSoilMoistureContent onSoilTemperatureandHeatStorageunderGreenhouseConditions,n.d.,12. Augspurger,CarolK.econstructingPatternsofTemperature,Phenology,andFrostDam- ageover124Years:SpringDamageRiskIsEcology94,no.1(2013): https://doi.org/10.1890/12-0200.1. AutomatedSurfaceObservingSystem(ASOS)|NationalCentersforEnvironmentalInforma- tion(NCEI)FormerlyKnownasNationalClimaticDataCenter(NAccessedApril5,2021. https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/automated-surface- observing-system-asos. ing2007WarmthandFrost:Phenology,DamageandRefoliationinaTemperate DeciduousForesFunctionalEcology23,no.6(2009):https://doi.org/10.1111/j.1365- 2435.2009.01587.x. Ault,T.R.,G.M.Henebry,K.M.deBeurs,M.D.Schwartz,J.L.Betancourt,andD.Moore. TheFalseSpringof2012,EarliestinNorthAmericanREos,TransactionsAmerican GeophysicalUnion94,no.20(2013):https://doi.org/10.1002/2013EO200001. Ballard,J.,E.Proebsting,andR.Tukey,1998.CriticalSpringTemperaturesForTreeFruitBud DevelopmentStages.WashingtonStateUniversityExtensionBulletinEB1128,WashingtonState University,Pullman,WA. Bosilovich,MichaelG.,JohnKennedy,DickDee,RobAllan,andAlanO'Neill.theRe- processingandReanalysisofObservationsforInClimateScienceforServingSociety: Research,ModelingandPredictionPriorities,editedbyGhassemR.AsrarandJamesW.Hurrell, Dordrecht:SpringerNetherlands,2013.https://doi.org/10.1007/978-94-007-6692-1-3. 99 DennisFGandHowellGS,1974.Coldhardinessoftartcherrybarkand˛owerbuds.Res. Rep.220,MichiganStateUniversity,Ag.Exp.Stn.,EastLansing,MI,USA. Menzel,Annette.TrendsinPhenologicalPhasesinEuropebetween1951andInterna- tionalJournalofBiometeorology44,no.2(August1,2000):https://doi.org/10.1007/s00484- 0000054. MuñozSabater,J.,(2019):ERA5-Landhourlydatafrom1981topresent.CopernicusClimate ChangeService(C3S)ClimateDataStore(CDS). Cannon,D.J.,D.J.Brayshaw,J.Methven,P.J.Coker,andD.Lenaghan.ReanalysisData toQuantifyExtremeWindPowerGenerationStatistics:A33YearCaseStudyinGreatBr RenewableEnergy75(March1,2015):https://doi.org/10.1016/j.renene.2014.10.024. Cayan,DanielR.,SusanA.Kammerdiener,MichaelD.Dettinger,JosephM.Caprio,andDavid H.Peterson.esintheOnsetofSpringintheWesternUnitedSBulletinoftheAmer- icanMeteorologicalSociety82,no.3(March1,2001):https://doi.org/10.1175/1520- 0477(2001)082<0399:CITOOS>2.3.CO;2. Chai,T.,andR.R.Draxler.ootMeanSquareError(RMSD)orMeanAbsoluteError(MAE)? ArgumentsagainstAvoidingRMSDintheGeoscienti˝cModelDevelopment7,no. 3(June30,2014):https://doi.org/10.5194/gmd-7-1247-2014. Charrier,Guillaume,JérômeNgao,MarcSaudreau,andThierryAméglio.ofEn- vironmentalFactorsandManagementPracticesonMicroclimate,WinterPhysiology,andFrost ResistanceinTFrontiersinPlantScience6(2015).https://doi.org/10.3389/fpls.2015.00259. Daly,Christopher.forAssessingtheSuitabilityofSpatialClimateData InternationalJournalofClimatology26,no.6(2006):https://doi.org/10.1002/joc.1322. Daly,Christopher,MichaelHalbleib,JosephI.Smith,WayneP.Gibson,MatthewK.Doggett, GeorgeH.Taylor,JanCurtis,andPhillipP.Pasteris.ysiographicallySensitiveMappingofCli- matologicalTemperatureandPrecipitationacrosstheConterminousUnitedSInternational JournalofClimatology28,no.15(2008):https://doi.org/10.1002/joc.1688. Dee,D.P.,S.M.Uppala,A.J.Simmons,P.Berrisford,P.Poli,S.Kobayashi,U.Andrae, etal.TheERA-InterimReanalysis:Con˝gurationandPerformanceoftheDataAssimilation SysQuarterlyJournaloftheRoyalMeteorologicalSociety137,no.656(2011): https://doi.org/10.1002/qj.828. DeGaetano,ArthurT.ecentTrendsinMaximumandMinimumTemperatureThresholdEx- ceedencesintheNortheasternUnitedSJournalofClimate9,no.7(July1,1996): https://doi.org/10.1175/1520-0442(1996)009<1646:RTIMAM>2.0.CO;2. 100 DeVriesD.A.,Thermalpropertiesofsoils.WijkW.R.(Ed.),PhysicsofPlantEnvironment, North-HollandPublishingCo.,Amsterdam(1963),pp.210-235 Dulière,Valérie,YongxinZhang,andEricP.Salathé.PrecipitationandTemperature overtheU.S.Paci˝cNorthwest:AComparisonbetweenObservations,ReanalysisData,andRe- gionalJournalofClimate24,no.7(January7,2011):64.https://doi.org/10.1175/- 2010JCLI3224.1. Easterling,DavidR.CHANGESINFROSTDAYSANDTHEFROST-FREESEA- SONINTHEUNITEDSTATES,n.d.,6. Essou,GillesR.C.,FrançoisBrissette,andPhilippeLucas-Picher.TheUseofReanaly- sesandGriddedObservationsasWeatherInputDataforaHydrologicalModel:Comparisonof PerformancesofSimulatedRiverFlowsBasedontheDensityofWeatherSJournalof Hydrometeorology18,no.2(February1,2017):https://doi.org/10.1175/JHM-D-16- 0088.1. Fitchett,JenniferM.,StefanW.Grab,DaveI.Thompson,andGholamrezaRoshan. creasingFrostRiskAssociatedwithAdvancedCitrusFloweringDatesinKermanandShiraz, Iran:InternationalJournalofBiometeorology58,no.8(October2014): https://doi.org/10.1007/s00484-013-0778-0. MSUExtension.DamageDependsonTreeFruitStageofDevAccessed March17,2021.https://www.canr.msu.edu/news/freeze_damage_depends_on_tree_fruit_stage_of- _development. ProtectionAccessedFebruary11,2020.https://ssl.acesag.auburn.edu/- department/peaches/freeze.html. Gleixner,Stephanie,TeferiDemissie,andGulilatTeferaDiro.ERA5ImproveTempera- tureandPrecipitationReanalysisoverEastAfrAtmosphere11,no.9(September17,2020): 996.https://doi.org/10.3390/atmos11090996. Gu,Lianhong,PaulJ.Hanson,W.MacPost,DaleP.Kaiser,BaiYang,RamakrishnaNe- mani,StephenG.Pallardy,andTildenMeyers.The2007EasternUSSpringFreeze:In- creasedColdDamageinaWarmingWorBioScience58,no.3(March1,2008): https://doi.org/10.1641/B580311. Hat˝eld,Jerry,andMariaJanowiak.AMidwestandNorthernForestsRegionalClimate Hub:AssessmentofClimateChangeVulnerabilityandAdaptationandMitigationStrategies,n.d., 55. Hufkens,Koen,MarkA.Friedl,TrevorF.Keenan,OliverSonnentag,AmeyBailey,John O'Keefe,andAndrewD.Richardson.ImpactsofaWidespreadFrostEventFollowing EarlySpringGlobalChangeBiology18,no.7(2012):https://doi.org/10.1111- 101 /j.1365-2486.2012.02712.x. IntegratedPestManagement.viroweatherWeatherDataandPestAccessed April5,2021.https://www.canr.msu.edu/resources/enviroweather_weather_data_and_pest_modeling. Janowiak,MariaK,DanielNDostie,MichaelAWilson,MichaelJKucera,RHowardSkinner, JerryLHat˝eld,DavidHollinger,andChristopherWSwanston.ADAPTATIONRESOURCES FORAGRICULTURE,n.d.,72. JJ.andRMSDWhichMetricIsMedium,March23,2016.https://medium.com- /human-in-a-machine-world/mae-and-RMSD-which-metric-is-better-e60ac3bde13d. Karl,ThomasR.,andRichardW.Knight.TrendsofPrecipitationAmount,Frequency, andIntensityintheUnitedSBulletinoftheAmericanMeteorologicalSociety79,no.2 (February1,1998):https://doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2. Katz,RichardW.,andBarbaraG.Brown.EventsinaChangingClimate:Vari- abilityIsMoreImportantthanAveragClimaticChange21,no.3(July1992): https://doi.org/10.1007/BF00139728. Kidston,J.,D.M.W.Frierson,J.A.Renwick,andG.K.Vallis.vations,Simulations, andDynamicsofJetStreamVariabilityandAnnularJournalofClimate23,no.23(2010): Kistner,Erica,OliviaKellner,Je˙reyAndresen,DennisTodey,andLoisWrightMorton.ul- nerabilityofSpecialtyCropstoShort-TermClimaticVariabilityandAdaptationStrategiesinthe MidwesternUSClimaticChange146,no.(January2018):https://doi.org/10.1007- /s10584-017-2066-1. Kral-O'Brien,KatherineC.,PeterL.O'Brien,andJasonP.Harmon.eedforFalseSpring ResearchintheNorthernGreatPlains,USAgricultural&EnvironmentalLetters4,no.1 (January2019):https://doi.org/10.2134/ael2019.07.0025. Kunkel,KennethE.,DavidR.Easterling,KennethHubbard,andKellyRedmond.Temporal VariationsinFrost-FreeSeasonintheUnitedStates:GeophysicalResearchLetters 31,no.3(2004).https://doi.org/10.1029/2003GL018624. Kurlus,Robert,LukaszMalarzewski,andTadeuszNiedzwiedz.TemperatureCharacteristics andSpringFrostRiskintheSourCherry(PrunusCerasusL.)BloomingPeriodin BulletinofGeography.PhysicalGeographySeries6,no.1(December1,2013): https://doi.org/10.2478/bgeo-2013-0006. Labe,Zachary,TobyAult,andRaulZurita-Milla.AnomalouslyEarlySpring OnsetsintheCESMLargeEnsembleClimateDynamics48,no.(June2017): 102 https://doi.org/10.1007/s00382-016-3313-2. Larcher,Walter,ChristineKainmüller,andJohannaWagner.vivalTypesofHighMoun- tainPlantsunderExtremeTFlora-Morphology,Distribution,FunctionalEcology ofPlants205,no.1(January1,2010):https://doi.org/10.1016/j.˛ora.2008.12.005. Lawhorn,Brandon,andRobertC.Balling.TemporalandSpatialVariationsinFreezeWarn- ingsintheConterminousUnitedStates:TheoreticalandAppliedClimatology139, no.3(February1,2020):https://doi.org/10.1007/s00704-019-03056-8. León,JoséAndrésPérez.Reanalysis:GoodbyeERA-Interim,HelloText. ECMWF,April15,2019.https://www.ecmwf.int/en/newsletter/159/meteorology/global-reanalysis- goodbye-era-interim-hello-era5. Lindkvist,L.,Gustavsson,T.,Bogren,J.,2000.Afrostassessmentmethodformountainous areas.AgriculturalandForestMeteorology102,doi:10.1016/S0168-1923(99)00087-8 Lobell,DavidB.,andChristopherB.Field.orniaPerennialCropsinaChanging ClimaticChange109(December2011):http://dx.doi.org.proxy1.cl.msu.edu/10.1007/s10584- 011-0303-6. Logan,Joanne,MarcellaA.Mueller,andMichaelJ.Searcy.PeachBud Phenology,andFreezeRisksinaTopographicallyDiverseOrcHortTechnology10,no.2 (January2000):https://doi.org/10.21273/HORTTECH.10.2.337. Longstroth,Mark.DamageDependsonTreeFruitStageofDevMSUExten- sion,March2012.https://www.canr.msu.edu/news/freeze_damage_depends_on_tree_fruit_stage- _of_development. Marino,GarrettP,DalePKaiser,LianhongGu,andDanielMRicciuto.econstructionof FalseSpringOccurrencesovertheSoutheasternUnitedStates,AnIncreasingRisk ofSpringFreezeDamagEnvironmentalResearchLetters6,no.2(April1,2011):024015. https://doi.org/10.1088/1748-9326/6/2/024015. Maurer,E.P.,H.G.Hidalgo,T.Das,M.D.Dettinger,andD.R.Cayan.TheUtilityof DailyLarge-ScaleClimateDataintheAssessmentofClimateChangeImpactsonDailyStream- ˛owinCaliforHydrologyandEarthSystemSciences14,no.6(June1,2010): https://doi.org/10.5194/hess-14-1125-2010. NASS,2015.CherryProduction.NationalAgriculturalStatisticsService,AgriculturalStatis- ticsBoard,U.S.DepartmentofAgriculture. NASS,2012.CherryProduction.NationalAgriculturalStatisticsService,AgriculturalStatis- ticsBoard,U.S.DepartmentofAgriculture. 103 NASS,2002.CherryProduction.NationalAgriculturalStatisticsService,AgriculturalStatis- ticsBoard,U.S.DepartmentofAgriculture. orthAmericanMesoscaleForecastSystem(NAM)|NationalCentersforEnvironmentalIn- formation(NCEI)FormerlyKnownasNationalClimaticDataCenter(NAccessedApril4, 2021.https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale- forecast-system-nam. CSNationalWaterandClimateCenter-ClimateProducts-AccessedMarch 6,2020.https://www.wcc.nrcs.usda.gov/climate/prism.html.Parker,WendyS.eanalysesand Observations:What'stheBulletinoftheAmericanMeteorologicalSociety97,no.9 (September1,2016):https://doi.org/10.1175/BAMS-D-14-00226.1. erformanceMetricsforClimateModels-Gleckler-2008-JournalofGeophysicalResearch: Atmospheres-WileyOnlineLibraryAccessedMarch17,2021.https://agupubs.onlinelibrary.wile- y.com/doi/10.1029/2007JD008972. Perry,K.B.,1998.Basicsoffrostandfreezeprotectionforhorticulturalcrops.HortTechnology 8, Peterson,AlexanderG.,andJohnT.Abatzoglou.vedChangesinFalseSprings overtheContiguousUnitedSGeophysicalResearchLetters41,no.6(2014): https://doi.org/10.1002/2014GL059266. Powell,ArlieA.andHimelrick,DavidProtectionAccessedApril5, 2021.https://ssl.acesag.auburn.edu/department/peaches/freeze.html. overMonsoonAsia:AComparisonofReanalysesandObservationsin:Journal ofClimateVolume30Issue2AccessedMarch12,2021.https://journals.ametsoc.org/view/- journals/clim/30/2/jcli-d-16-0227.1.xml. ClimateGroup,OregonStateUAccessedMarch30,2020.http://www.prism.oregon- state.edu/. Qu,Michael,JoeWan,andXianjunHao.AnalysisofDiurnalAirTemperatureRangeChange intheContinentalUnitedSWeatherandClimateExtremes4(August1,2014): https://doi.org/10.1016/j.wace.2014.05.002. eanalyses.OrgHomePage|AdvancingReanalyAccessedMarch30,2020.https://reanaly- ses.org/reanalysesorg-home-page. Rigby,J.R.,andAmilcarePorporato.ingFrostRiskinaChangingGeophysical ResearchLetters35,no.12(2008).https://doi.org/10.1029/2008GL033955. 104 Rijal,I.,2017.UseOfWaterMistToReduceTheRiskOfFrostDamageInTreeFruits.Ph.D. Dissertation,Dept.ofGeography,MichiganStateUniversity,EastLansing,MI. Rodrigo,J.ingFrostsinDeciduousFruitTreesMorphologicalDamageand˛owerHar- ScientiaHorticulturae,2000,19. Rowe,ClintonM.,andLoganE.Derry.TrendsinRecord-BreakingTemperaturesfortheCon- terminousUnitedSGeophysicalResearchLetters39,no.16(2012).https://doi.org/10.1029/- 2012GL052775. Skaggs,KariE.,andSuatIrmak.TermTrendsinAirTemperatureDistributionand Extremes,GrowingDegree-Days,andSpringandFallFrostsforClimateImpactAssessmentson AgriculturalPracticesinNJournalofAppliedMeteorologyandClimatology51,no.11 (November1,2012):https://doi.org/10.1175/JAMC-D-11-0146.1. Tarek,Mostafa,FrançoisP.Brissette,andRichardArsenault.aluationoftheERA5Reanal- ysisasaPotentialReferenceDatasetforHydrologicalModelingoverNorth-AmerHydrology andEarthSystemSciencesDiscussions,July10,2019,https://doi.org/10.5194/hess-2019- 316. Tetzner,Dieter,ElizabethThomas,andClaireAllen.AValidationofERA5ReanalysisData intheSouthernAntarcticPorthLandRegion,andItsImplicationsforIceCore SGeosciences9,no.7(June29,2019):289.https://doi.org/10.3390/geosciences9070289. Toreti,A.,A.Maiorano,G.DeSanctis,H.Webber,A.C.Ruane,D.Fumagalli,A.Ceglar,S. Niemeyer,andM.Zampieri.ReanalysisinCropMonitoringandForecastingSys AgriculturalSystems168(January1,2019):https://doi.org/10.1016/j.agsy.2018.07.001. .S.SurfaceClimateObservingReferenceNetwAccessedApril5,2021.https://www.- ncdc.noaa.gov/crn/. Walton,Daniel,andAlexHall.AnAssessmentofHigh-ResolutionGriddedTempera- tureDatasetsoverCaliforJournalofClimate31,no.10(May15,2018): https://doi.org/10.1175/JCLI-D-17-0410.1. AretheDi˙erentMethodsofStatisticalDownscalingandWhatAretheStrengths/Weak- nesses?|TheClimateWAccessedMarch4,2020.http://www.glisaclimate.org/faqs/what- are-the-di˙erent-methods-of-statistical-downscaling-and-what-are-the-strengthsweaknesses. IsERA5-CopernicusKnowledgeBase-ECMWFCon˛uenceWAccessedMarch 6,2020.https://con˛uence.ecmwf.int/display/CKB/What+is+ERA5. Winkler,J.,Andresen,J.A.,Bisanz,J.M.,Guentchev,G.,Nugent,J.,Piromsopa,K.,Rothwell, N.,Zavalloni,C.,Clark,J.,Min,H.K.,Pollyea,A.,Prawiranata,H.,2012.Ch.8Michigan'sSour CherryIndustry:VulnerabilitytoClimateVariabilityandChange,in:Pryor,S.C.(Ed.),Climate 105 ChangeintheMidwest:Impacts,Risks,Vulnerability,andAdaptation.IndianaUniversityPress, Bloomington,IN,pp. Winkler,J.A.,Cinderich,A.B.,Ddumba,S.D.,Doubler,D.,Nikolic,J.,Perdinan,Pollyea, A.M.,143Young,D.R.,Zavalloni,C.,2013.2.04-UnderstandingtheImpactsofClimateon PerennialCrops,in:ClimateVulnerability:UnderstandingandAddressingThreatstoEssential Resources.Elsevier,pp. Yu,Lejiang,ShiyuanZhong,XindiBian,WarrenE.Heilman,andJe˙reyA.Andresen.Tem- poralandSpatialVariabilityofFrost-FreeSeasonsintheGreatLakesRegionoftheUnitedS InternationalJournalofClimatology34,no.13(November2014):https://doi.org/10.- 1002/joc.3923. Zavalloni,C.,J.A.Andresen,andJ.A.FloreJ.A.WinklerJ.R.BlackandT.L.Beedy,2006. ThePileusProject:ClimaticImpactsonSourCherryProductionintheGreatLakesRegioninPast andProjectedFutureTimeFrames.ActaHort707:101-108. 106