
THE CLIMATOLOGY OF SPRINGTIME FREEZE EVENTS IN THE CENTRAL AND
EASTERN USA

By

Ting Wang

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Geography – Master of Science

2021



ABSTRACT

THE CLIMATOLOGY OF SPRINGTIME FREEZE EVENTS IN THE CENTRAL AND
EASTERN USA

By

Ting Wang

The agricultural productions in the central and eastern United States are sensitive to springtime

freeze events. As a result of global warming, increasing temperatures have led to earlier shifted

springs, usually called false springs, which have resulted in disastrous damage on premature plants

exposed to subsequent freeze events. This study analyzes the climatology of springtime freezes and

their impacts on agriculture in the Midwestern United States for the period of 1981-2018. The study

began by evaluating two potential datasets for the purpose of this analysis: the PRISM (Parameter-

elevation Regressions on Independent Slopes Model, http://prism.oregonstate.edu) analysis and the

ERA5 (the fifth major global reanalysis produced by European Centre for Medium-Range Weather

Forecasts, Hersbach et al., 2018) reanalysis. The PRISM data are found to be a better representation

of the observed freezing events and therefore used for establishing freeze events climatology, while

the ERA5 reanalysis is used to understand the weather conditions and climate background of the

freeze events. Freezing days in March show a decreasing trend across our study region from 1981

to 2018. EOF analysis of freezing days in March shows a relatively larger variation in the Ohio

Valley, and the first EOF time series shows substantial interannual variability. The positive phase

of NAO (North Atlantic Oscillation) is usually associated with less freezing risk in March across

the study region. A crop yield simulation model is used to investigate the historical impacts of

false springs and subsequent freeze events on fruit crop yields using apple as an example. Damage

tends to occur at the early growing stages of apples when they are more vulnerable. Damage is

generally occurring on earlier and warmer days, which could be due to the more frequent false

spring occurrences. The Upper Midwest and the Northeast are regions that are less vulnerable to

freeze damage.
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CHAPTER 1

INTRODUCTION

The Midwestern US (including the states of Illinois, Indiana, Iowa, Michigan, Minnesota, Mis-

souri, Ohio, and Wisconsin) ranks among the most intensive and extensive agricultural production

areas in the world and affects the global economy consistently and dynamically. Among the various

weather- and climate-related threats to agricultural production systems in the region are abnormally

mild winters followed by warm, early springs, usually called false springs, which have resulted

in disastrous damage to crops phenologically advanced by the early warmth but then exposed to

subsequent freeze events (Gu et al., 2008; O’Brien et al., 2019). For example, springtime freeze

events in 2002 and 2012 caused dramatic losses in regional agricultural production, including a

yield reduction of more than 95% of sour cherry yields in Michigan in 2002 and a loss of more than

85% of apple production in Michigan in 2012 (NASS, 2002; Marino et al., 2011; O’Brien et al.,

2019; Labe et al., 2015; Kistner et al., 2018; Gu et al., 2008). While the economic impacts of false

springs and subsequent freeze events are significant, there is a general lack of previous research

investigating the nature, extent, and impacts of such events, which is the primary objective of the

study presented in this thesis.

Understanding the statistical characteristics of springtime freeze events requires continuous,

long-term (decades) climate data from both station observations and gridded analysis/reanalysis.

Gridded datasets may provide considerable advantages over single site station observations with

continuous coverage over space and time, especially in areas with sparse meteorological stations or

restricted data accessibility and availability (Ceglar et al., 2017). Gridded datasets include analysis

or reanalysis products, both of which involve performing data assimilation, a process relying on

both observations from a variety of sources and forecasts from numerical weather prediction models

(Parker et al., 2016). Initially, some type of objective analysis is applied on a myriad of observations

to an irregular grid to represent the atmospheric state (Dee et al., 2011). As a follow-up process,

model-based reanalysis can be performed with individual data layers from the data assimilation
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system to provide a multivariate, spatially complete, and coherent record of the global atmospheric

circulation (Dee et al., 2011). A reanalysis is a particular type of analysis done with a fixed

software system. However, both reanalyses and analyses are sensitive to changes in observational

systems (Dee et al., 2011). Reanalyses are potentially more attractive since they provide more

comprehensive gridded estimates of atmospheric conditions at regular intervals over long periods

of time (Parker et al., 2016). Gridded reanalyses and analyses have been used in a wide range of

applications, including understanding atmospheric dynamics of jet streams (Kidston et al., 2010),

investigating the impact of climate variability on agriculture, air pollution applications, and wind

energy development (Toreti et al., 2019; Essou et al., 2017; Gleixner et al., 2020; Cannon et al.,

2015), and evaluating climate models (Gleckler et al., 2008).

There are also limitations. Despite their popularity, gridded datasets represent area-averaged,

and in some cases, time-averaged estimates of meteorological variables and hence may not accu-

rately represent meteorological conditions at a particular location or time (Tetzner et al., 2019;

Bosilovich et al., 2013). It is, therefore, necessary before a specific application to assess how

the gridded datasets represent the local variability in a region of interest. This necessity is the

motivation for the work presented in Chapter 2 that evaluates two gridded datasets used for the

studies in the later chapters: The analysis product PRISM (Parameter-elevation Regressions on

Independent Slopes Model, http://prism.oregonstate.edu), a gridded analysis dataset provided by

the PRISM climate group from Oregon State University, and a reanalysis product, ERA5, the fifth

major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts

(ECMWF; Hersbach et al., 2018). PRISM estimates temperatures over space using empirical

statistical relationships with observed single site climate data from nearby stations adjusted for

elevation (Walton and Hall et al., 2018). Station observations are given higher weights if they

are geographically closer to the target grid cell and have similar coastal proximity or topographic

position, considering all other factors (Walton and Hall et al., 2018). Previous research suggests

that consideration of these factors resulted in greater accuracy for PRISM in complex terrain and

along coastlines compared to other gridded analyses, including Daymet and WorldClim (Walton
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and Hall et al., 2018). ERA5 is a global reanalysis extending back to 1979 with a horizontal

resolution of 30 km and has been evaluated for a number of regions and historical periods. For

example, Tetzner et al. (2019) evaluated ERA5 in the southern Antarctic Peninsula and Ellsworth

Land, Antarctica, and concluded that ERA5 is highly accurate in representing the magnitude and

variability of near-surface air temperature. They also revealed that the higher spatial and tempo-

ral resolution of ERA5 compared to its predecessor, ERA-Interim, significantly reduced the cold

coastal bias. Gleixner et al. (2020) concluded that ERA5 reduced statistical biases and improved

the representation of interannual variability over most of Africa. However, few studies have specifi-

cally evaluated PRISM and ERA5 over the Midwestern and Eastern United States, necessitating an

assessment of how both datasets represent the local climatic variability of temperature prior to their

application as a proxy for observations to investigate the historical frequency of freeze events. In

an evaluation of the two gridded datasets across the region from 2001 to 2018, PRISM was found

to more accurately represent historical observations compared to ERA5 and was used as a proxy

for observations across the study region in a study of springtime freeze events (Chapter 3) and their

impacts on agriculture (Chapter 4).

To investigate the statistical characteristics of springtime freeze events, we need first to consider

the physical and causal mechanisms associated with them. There are two main types of freeze events,

advection freezes and radiation freezes. Advection freezes tend to occur in a well-mixed boundary

layer with strong winds associated with cold fronts or the leading edges of polar-origin high-pressure

systems (Winkler et al., 2012). Radiation freezes tend to be associated with surface anticyclones

located across the region characterized by relatively cloud-free and calm conditions in which the

earth’s surface cools more rapidly than the atmosphere above (Winkler et al., 2012). Radiation

freezes occur more frequently and are comparatively easier to predict due to the association with

a temperature inversion. On the contrary, advection freezes are less frequent and occur without

inversion developing and thus are difficult to predict.

There are also temporal changes in springtime freeze frequency to consider. Daily minimum

temperatures across the region have warmed in recent decades (Andresen et al. 2012), in many areas
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more quickly than maximum temperatures, resulting in a decrease in the diurnal temperature range

(Qu et al., 2014). There have also been changes at both ends of the temperature distribution. Rowe et

al. (2012) noted that the days with record low daily minimum temperatures had been significantly

and steadily decreasing nearly everywhere across the United States, while the days with record

high daily minimum temperatures increased considerably. There have also been decreases in the

number of days with freezing temperatures. DeGaetano (1996) detected an overall decreasing trend

in freezing days in the Northeastern United States from 1959 to 1993, while Easterling et al. (2002)

observed a significant reduction in springtime freezing days across the western and north-central

US from 1948 to 1999. In the same study, first fall freeze occurrences was found to be occurring

later in the year with time; the occurrences of the last spring freeze were trending earlier, resulting

in an overall increase in the length of the frost-free season (Easterling et al., 2002). Yu et al. (2014)

also revealed the same trend for first fall freeze dates, last spring freeze dates, and the frost-free

season length from 1980 to 2010 in the Midwest. Their study also identified lesser interannual

variability of these dates in the Great Lakes region versus other portions of the Midwest (Yu et al.,

2014).

Projected future changes in the frequency and severity of false spring events and subsequent

freeze events associated with a warming world may be complex (Allstadt et al., 2015). Both first

green dates and first bloom dates will likely continue to shift earlier in the year with rising global

temperatures, but the complex nature of this process complicates making a priori estimates of how

temperature changes will affect spring onset (Allstadt et al., 2015). Results from previous studies

suggest that the intermountain West, Great Plains, and upper Midwest regions of the United States

may experience increases in the frequency of false springs (Allstadt et al., 2015; Peterson and

Abatzoglou 2014; O’Brien et al., 2019). However, Winkler et al. (2012) concluded that projections

of freeze risk after false springs in Michigan are associated with high uncertainty.

Following an examination of historical freeze events across the region in Chapter 3, we study

potential associated agricultural impacts in Chapter 4. Springtime freeze events can cause severe

damage to crops, especially following false springs. The pattern of abnormal early warmth will not

4



directly cause damage, but the timing of any subsequent freeze events, particularly in relation to the

crop phenological stage, is critical (Augspurger et al., 2007; Longstroth et al., 2012). For example,

in the early phenological stages of temperate tree fruit crops such as apple and cherry, cold injury

and damage begin at temperatures near -6°C, but as the bloom stage approaches, temperatures as

warm as -2°C can cause considerable damage (Longstroth, 2005). Therefore, the magnitude of

cold injury may vary greatly depending on the crop phenological phase and the level of observed

minimum temperatures at the time of the freeze (Hufkens et al., 2012). Extensive damage in

both 2007 and 2012 freeze events was associated with record-breaking warm temperatures during

the month of March, which led to abnormally advanced and vulnerable crop phenological stages,

followed by a series of both advective and radiational freezes in April (Augspurger et al., 2007;

Kistner et al., 2017). Since changes in extreme weather events such as freeze events depend more

on variability than overall temperature trends, studies reveal that there is an increased risk of freeze

damage on crops with more significant temperature variability related to global climate change

(Rigby et al., 2008; Augspurger et al., 2013).

Deterministic or semi-deterministic crop simulation models are frequently applied to better

understand the potential impacts of climate variability and change on agricultural production

systems. However, the relatively slow growth and complexity of perennials tend to limit the

number and types of available crop simulation models (Lobell and Field, 2011). The growth and

development of vegetation is generally a function of many environmental variables, with the most

substantial contribution is typically associated with temperature (Rigby et al., 2008). Rigby et

al. (2008) used a simple Thermal Time (or Degree Day) model to estimate the phenology of bud

break, and their results revealed that frost risk to vegetation is as sensitive to increases in daily

temperature variance as to increases in the mean temperature. Similarly, Marino et al. (2011) used

a model to approximate the timing of leaf-out to reconstruct the seasonal start of the season over

the period 1901-2007 across the southeastern United States and noted a decreasing trend of false

spring occurrences over the study region (Marino et al., 2011). Various studies have focused on

how the phenological stages of plants respond to the temperature change with warming trends, but
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far fewer have investigated possible tree fruit production impacts. In Chapter 4 of this study, the

approach of Zavalloni et al. (2006) was applied over the Midwestern and Eastern United States to

estimate the yield response of apple, with phenological development based on the methodology of

Rijal (2017).

Given their importance in describing yield variability of tree fruit production over time, a

better understanding of the climatology of springtime freezes and their impacts on agriculture

is highly desirable. This study considers production areas across the central and eastern United

States. In Chapter 2, ERA5 reanalysis and PRISM analysis datasets are compared to single station

observations at different temporal scales for several relevant climate variables and then evaluated to

determine how these datasets capture freeze events with specified criteria. Chapter 3 investigates

the frequency, severity, and potential causes of springtime freeze event occurrences across the study

region using ERA5 reanalysis to understand the weather conditions and climate background of the

freeze events represented by the PRISM analysis dataset. In Chapter 4, we investigate the historical

impacts of springtime freeze event damage on apple in the Midwestern US from 1981 to 2018 with

a crop simulation model with input data from PRISM, including temporal changes in associated

agroclimatic variables. Finally, in Chapter 5, we summarize the main results from Chapter 2 to

Chapter 4 and also the limitations.
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CHAPTER 2

EVALUATION OF THE ERA5 AND PRISM DATASETS

2.1 Background

2.1.1 Necessity of evaluating gridded datasets

Many environmental-themed applications including crop simulation models require detailed

and comprehensive weather and climate data as inputs (Ceglar et al., 2017). Such input data are

usually obtained from various sources, including direct observations from networks of weather or

climate stations, gridded analyses of station observations, or gridded reanalyses blending observa-

tions with numerical weather or climate model outputs. Gridded analyses/reanalyses datasets have

advantages over station observations as they can provide reasonable estimates of missing data over

space and time, allowing for continuous pattern analysis (Ceglar et al., 2017). The gridded analy-

ses of station observations are typically generated by means of spatial and temporal interpolation

techniques (Daly et al., 2008; Walton et al., 2018), while gridded reanalyses generate gridded data

surfaces primarily with model simulations and their outputs. Because of the continuous spatial

and temporal coverage, gridded analyses or reanalyses datasets have been widely used for under-

standing weather phenomena, climate variability and trends, and other related applications such as

agriculture, air pollution, wind energy (Toreti et al., 2019; Essou et al., 2017; Gleixner et al., 2020;

Cannon et al., 2015). There are also challenges in their application. In particular, gridded datasets

represent area-averaged, and in some cases, time-averaged estimates of meteorological variables

and hence may not accurately represent meteorological conditions at a particular location or time

(Tetzner et al., 2019). Consequently, these datasets should be evaluated against actual observations

to document if biases or errors exist before being used to understand weather or climate conditions

for a particular application.
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2.1.2 PRISM analysis and ERA5 reanalysis datasets

PRISM (Parameter-elevation Regressions on Independent Slopes Model; Daly et al., 2008), a

gridded analysis dataset of surface climate variables provided by the PRISM climate group from

Oregon State University, was utilized to characterize freeze events in the study domain. The dataset

was first evaluated by comparing it with observational datasets at different locations in the region.

The PRISM climate group incorporates climate observations from a wide range of monitoring

networks and develops continuous spatial climate datasets by applying sophisticated quality control

measures. PRISM provides long-term (from 1981 to present) daily climate variables, including

daily minimum/maximum/mean temperature, precipitation, and vapor pressure deficit (VPD) at a

uniform 4 km grid spacing. The comparison of the freeze characteristics derived from the PRISM

data with those derived from station observations will determine whether it is a good proxy for

observations of freeze occurrences.

Because the PRISM dataset only contains daily surface variables, another dataset that provides

information above the surface is necessary to explain the variability and trends of freezing events

from the perspective of large-scale atmospheric conditions. The recently released climate reanalysis

dataset, ERA5, by the European Centre for Medium-Range Weather Forecasts (ECMWF) will be

used for this purpose. ERA refers to ‘ECMWF Re-Analysis,’ with ERA5 being the fifth major global

reanalysis produced by ECMWF. ERA5 provides hourly data from 1979 until present at 139 pressure

levels from 1000 hPa to 1 hPa with a horizontal resolution of 30 km. As the latest global reanalysis

dataset, ERA5 benefited from a decade of developments in model physics, core dynamics, and data

assimilation relative to earlier reanalysis datasets such as ERA-Interim (Hersbach et al., 2019). The

ERA5 dataset significantly enhances horizontal resolution with the 30 km grid spacing at different

pressure levels and 9 km grid spacing at the surface on land compared to 79 km for ERA-Interim.

A number of studies have evaluated the accuracy and applicability of ERA5 and ERA-Interim. For

example, Tarek et al. (2019) reveal that the ERA-Interim and ERA5 temperatures are generally

similar to site observations over North-America, and ERA5 demonstrates a substantial reduction

in warmer biases compared to those in the ERA-Interim dataset. Also, with a good representation

8



of observational precipitation data, the dry/wet bias pattern of ERA-Interim is sharply reduced in

ERA5 (Tarek et al., 2019). In this study, we will examine the accuracy of ERA5 in representing

freeze events in our study region.

2.1.3 Study objective

The primary objective of this study is to compare ERA5 reanalysis and PRISM analysis datasets

with single-site observations at different temporal scales for several relevant climate variables and

then evaluate how these datasets capture freeze events with specified criteria.
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2.2 Data and Method

2.2.1 Study region

The study domain is the central and eastern United States encompassing the region from 105º

W to 75º W longitude and from 35º N to 50º N latitude. This region encompasses one of the largest

and most intensive agricultural production areas in the world, including large areas of specialty-crop

agriculture such as tree fruit which are highly vulnerable to spring freezes.

2.2.2 Gridded datasets

ERA5 is the fifth generation reanalysis from ECMWF. The reanalysis is produced at a 1-hourly

time step using a significantly more advanced 4D-var assimilation scheme (Terek et al., 2019). The

ERA5-Land reanalysis dataset provides a consistent view of the evolution of land variables over

several decades at an enhanced resolution (9km) compared to ERA5 (Muñoz Sabater et al., 2019).

Hourly temperature, relative humidity, and precipitation from 2001 to 2018 across our study region

are obtained from ERA5-Land. Data from the centers of grid boxes from the reanalysis nearest to

the observational stations were then extracted for comparison. Also, it is noteworthy that variable

outputs in grid boxes containing adjacent water areas (e.g., along the shores of the Great Lakes)

only represent spatial averages across the land areas and do not include the water-covered surfaces

(Muñoz Sabater et al., 2019).

The Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et al. 1994)

is used to derive gridded surface variables for the conterminous United States. At each grid cell,

an elevation regression function, considering multiple physical factors that reflect their similarity

to the target grid cell, is fit to stational observations using a moving window (Walton et al.,

2018). These factors include distance, cluster, elevation, coastal proximity, topographic facet,

vertical layer, topographic position, and effective terrain height (Walton et al., 2018). PRISM

incorporates data from a wide range of networks, as many as possible, including COOP, RAWS, the

California Data Exchange Center (CDEC), Agrimet, NRCS, the California Irrigation Management
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Information System (CIMIS), and more (see http://prism.oregonstate.edu for details). We obtained

daily minimum and maximum temperatures from PRISM from 2001 to 2018 across our study

region for this comparison.

2.2.3 Observational datasets

Three stational observation datasets are used in the study. They are respectively the Michi-

gan Enviroweather (EW) network, the NOAA National Weather Service Automated Surface Ob-

serving System (ASOS), and the US Climate Reference Network (USCRN). The Michigan En-

viroweather (EW) network is an interactive information system linking real-time weather data

from a statewide mesonetwork, forecasts, and biological and other process-based models for as-

sistance in operational decision-making and risk management associated with Michigan’s agri-

culture and natural resource industries. It aims to develop a sustainable weather-based informa-

tion system that helps users make pests, plant production, and natural resource management de-

cisions in Michigan (https://www.canr.msu.edu/resources/enviroweather_weather_data_and_pest-

_modeling). The Automated Surface Observing System (ASOS) units are automated sensor suites

designed to serve as a primary meteorological observing network in the United States. There

are currently more than 900 ASOS sites with one-minute and five-minute data at hourly intervals

in the United States (https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-

datasets/automated-surface-observing-system-asos). Five-minute data was obtained for use in this

study. The US Climate Reference Network (USCRN) is a systematic and sustained network of

climate monitoring stations with sites across the conterminous US, Alaska, and Hawaii. It incorpo-

rates high-quality instruments to measure temperature, precipitation, wind speed, soil conditions,

and more. The USCRN program aims at maintaining a sustainable, high-quality climate observa-

tion network to provide a continuous series of climate observations for monitoring trends in the

nation’s climate and supporting climate-related research (https://www.ncdc.noaa.gov/crn/).

For the purpose of evaluating gridded weather products, six single site stations across Michigan

were chosen for reference observations: East Lansing, Gaylord, East Leland, South Haven, Grand
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Figure 2.1: Study comparison site locations. The red icons in the figure refer to the points of the
stational observation datasets, while the blue icons represent the centroids of the rectangles in
ERA5-land datasets which contain the stational points.

Rapids, and Traverse City (Figure 2.1). East Leland and South Haven were both chosen to reflect

the areas of the study domain near the Great Lakes, where the lakes may significantly modify local

climate (Andresen and Winkler, 2009). It is important to note that the comparisons of gridded

areal averages to individual point observations are not at identical spatial and temporal scales but

still close enough to determine their representativeness and relative applicability.

We evaluate the gridded datasets with the point observations at hourly, daily, monthly, annual,

and decadal scales. Missing hourly temperature, relative humidity, and precipitation observations

for the six chosen stations were omitted from the comparison and are summarized in table 2.1.

The fewest overall missing observations were found at East Lansing, East Leland, and South Haven

sites. The ASOS network misses more than half of the precipitation record. With a focus on freeze

events that are more related to temperature, we are not going to provide many results of evaluating

precipitation data. Also, we notice that more than a quarter of the relative humidity data is not

recorded at Gaylord.
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Network Station Lat Lon Date Atmp missing Relh missing Prcp missing
EW East Lansing 42.67° -84.49° 1/1/2001 to 12/31/2018 1.38% 0% 0.13%
EW East Leland 45.03° -85.67° 5/1/2003 to 12/31/2018 0.37% 0.37% 0.96%
EW South Haven 42.36° -86.29° 4/6/2006 to 12/31/2018 0.94% 0.99% 0.8%
ASOS Grand Rapids 42.881° -85.523° 1/1/2001 to 12/31/2018 1.97% 2.39% 54.91%
ASOS Traverse City 44.742° -85.582° 1/1/2001 to 12/31/2018 3.06% 3.88% 54.11%
USCRN Gaylord 44.91° -84.72° 9/19/2007 to 12/31/2018 0.06% 26.63% 0.69%

Table 2.1: Percent of hourly observations missing at six stations.



2.2.4 Evaluation Methods

To quantify the differences between gridded datasets and point observations, several statistics

were computed. Root Mean Squared Difference (RMSD), a common metric used to measure the

accuracy of variables, is the square root of the average of squared differences between estimations

and actual observations. In this study, estimations are the gridded datasets (ERA5 and PRISM)

and observations are the stational datasets (EW, ASOS, and USCRN). The definition for RMSD is

as follows. 𝑦 𝑗 and 𝑦 𝑗 are observations and estimations, respectively.

𝑅𝑀𝑆𝐷 =

√︃
1
𝑛

∑𝑛
𝑗=1(𝑦 𝑗 − 𝑦 𝑗 )2

And the definition for Bias is:

𝐵𝑖𝑎𝑠 = 1
𝑛

∑𝑛
𝑗=1(𝑦 𝑗 − 𝑦 𝑗 )
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2.3 Results

2.3.1 Assessment of weather variables

We first provide time series plots by comparing the reanalysis datasets and the observational

datasets (Figure 2.2 - Figure 2.5). We select three years, 2010, 2012, and 2014 (randomly selected;

all three years have complete data from observations), and plot the daily differences between the

reanalysis datasets and the observations. The conclusions from the time series of DmaxT (daily

maximum temperature) and DminT (daily minimum temperature) for both ERA5 and PRISM

reveal that ERA5 shows larger perturbations than PRISM for both DmaxT and DminT, indicating

the smaller RMSDs (Root Mean Squared Differences) of PRISM. Also, ERA5 underestimates

DmaxT for near-lake stations, especially for late springs, which period we care about most. The

time series of DminT for ERA5 shows that it dramatically overestimates DminT for stations near the

lake. Also, the DminT of ERA5 is consistently warmer than the observations near the lake during

the summertime for our selected three years. The difference between ERA5 and observations of

DmaxT shows overall smaller perturbations than DminT.

The time series of DminT and DmaxT for PRISM also reveal that DminT has noticeably larger

errors than DmaxT. And the time series of DmaxT shows much smoother patterns for all six stations

for three selected years. The differences between PRISM and observations for DminT reveal that

PRISM is consistently warmer than observations for the two near-lake stations. Also, since the

ASOS network is incorporated into the PRISM reanalysis dataset, Grand Rapids and Traverse city

show noticeably smaller perturbations than other stations.
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Figure 2.2: Difference between ERA5 and observations for daily maximum temperature in 2010,
2012, and 2014.
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Figure 2.3: Difference between ERA5 and observations for daily minimum temperature in 2010,
2012, and 2014.
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Figure 2.4: Difference between PRISM and observations for daily maximum temperature in 2010,
2012, and 2014.

18



Figure 2.5: Difference between PRISM and observations for daily minimum temperature in 2010,
2012, and 2014.
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Figure 2.6: Time series of the difference between ERA5 monthly mean daily mean temperature
and observed values at six locations.

We also evaluate the reanalysis datasets on a monthly scale. The differences between ERA5

reanalysis and observations of monthly means of daily mean temperature show noticeable annual

cycles (Figure 2.6). ERA5 reanalysis tends to overestimate daily mean temperature during summer

seasons and underestimate during winter seasons, which is out of our expectation. We think that

reanalysis datasets should reduce the cycle since they are area-averaged. And the two near-lake

stations still show larger amplitudes. Since the ASOS network is not incorporated into ERA5

reanalysis datasets, we don’t observe better agreements between the reanalysis and observations.

The differences between PRISM reanalysis and observations of monthly means of daily mean

temperature reveal that the lake effect tends to get PRISM consistently higher than observations

(Figure 2.7). Also, the two ASOS stations are showing overall smaller perturbations around

zero. We observe abnormally large differences between observations and both ERA5 and PRISM

reanalysis datasets in September of 2009 and November of 2007 at South Haven. The reanalysis

datasets both greatly overestimate the daily mean temperature for these two months. We then check

the observational data, and there are no missing data for these two months. The abnormal value

between gridded datasets and observations for East Lansing in December of 2009 is due to the

missing data in the stational observations.
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Figure 2.7: Time series of the difference between PRISM monthly mean daily mean temperature
and observed values at six locations.

To demonstrate the agreement between observations and reanalysis datasets in a more straight-

forward way, we provide scattered plots at daily scales between them for the selected six stations

(Figure 2.8). In this scatter plot, if the points are on the red line, it means that gridded data agree

with the observations. If the points are above the red line, it means that gridded data are larger

than observations; if below, smaller. Comparing ERA5 and PRISM, we observe that the DmaxT

and DminT of PRISM are in overall better agreements with observations. The shapes of DminT

of EAR5 tell us that the ERA5 reanalysis dataset tends to overestimate DminT during summertime

when DminT is higher and underestimate DminT during wintertime when DminT is lower. The

agreement between ERA5 and observations for DmaxT is better than DminT, and the two near-lake

stations are overall underestimated. For PRISM, DmaxT also agrees better with observations than

DminT. The same as ERA5, PRISM tends to overestimate DminT of East Leland and South Haven.

Most of the DminT and DmaxT of PRISM are scattered around the red line with small variations.

The two ASOS stations, Grand Rapids and Traverse City show great shapes of the agreement since

they are incorporated into the PRISM group model.
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Figure 2.8: Scatter plot of daily minimum and maximum temperature between observations and
reanalysis datasets.

22



Station Number RMSD RMSD RMSD Bias Bias Bias
Temp Rel Hum Precip Temp Rel Hum Precip
°C % mm °C % mm

East Lansing 157770 1.81 11.26 0.43 0.37 -3.75 0.1
East Leland 137346 3.05 11.85 0.4 0.27 0.33 0.11
South Haven 111666 3.18 12.97 0.51 0.3 3.45 0.12
Grand Rapids 157751 1.57 9.06 NaN -0.32 -0.09 NaN
Traverse City 157751 2.16 9.59 NaN -0.69 2.76 NaN
Gaylord 98905 1.71 9.59 0.6 0.23 -0.15 0
Median 147548 1.99 10.43 0.51 0.25 0.12 0.1

Table 2.2: Hourly summary statistics, root mean square difference (RMSD), and Bias between
ERA5 product and observational networks at six locations.

Since the ERA5 reanalysis dataset has hourly products, we are able to examine the performance

of the ERA5 on an hourly timescale (Table 2.2). Since more than half of the precipitation data

at Grand Rapids and Traverse City are not recorded by the network system, we do not assess

precipitation data at these two stations. ERA5 products overall overestimate temperature, relative

humidity, and precipitation for our six stations. Also, it is noteworthy that the Root Mean Squared

Errors (RMSDs) are large for relative humidity, which also reflected the Bias in temperature. Our

results also reveal that the two near-lake stations, East Leland and South Haven, have noticeably

larger RMSD for temperature and relative humidity. Since PRISM only has daily data, we could

not evaluate it on an hourly scale.

We also evaluate ERA5 products on a daily scale. To compare with the PRISM dataset, we

provide the assessment for daily minimum temperature (DminT) and daily maximum temperature

(DmaxT) (Table 2.3). PRISM defines a day as the 24 hours ending at Greenwich Mean Time

(GMT, or 7:00 a.m. Eastern Standard Time). This means that PRISM data, like daily minimum

temperature, for May 26th, refers to the 24 hours ending at 7:00 a.m. on May 26th. For consistency,

we use this method to define a day for the data of ERA5 as well. We observe PRISM has

overall smaller RMSDs and Bias for both the DminT and DmaxT compared to ERA5, showing a

better agreement with observations. The RMSD for DmaxT of ERA5 could be as large as 4.49

degrees. ERA5 overall overestimates the DminT and underestimates the DmaxT, while PRISM
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Station Days RMSD RMSD Bias Bias
DminT DmaxT DminT DmaxT
°C °C °C °C

East Lansing 6573 2.49 1.14 1.23 -0.1
East Leland 5722 4.27 3.15 2.76 -1.82
South Haven 4652 4.49 2.98 2.82 -1.83
Grand Rapids 6572 1.88 1.33 0.05 -0.6
Traverse City 6572 2.52 1.98 0.08 -1.23
Gaylord 4120 2.12 1.27 -0.05 0.34
Median 6147 2.51 1.66 0.66 -0.92

Table 2.3: Daily summary statistics, RMSD between ERA5 product and observational networks,
at six locations.

overestimates both the DminT and DmaxT. The underestimation for DmaxT and overestimation

for DminT of EAR5 are reasonable since the reanalysis data are area-averaged values across the

gridded boxes, which could reduce the diurnal cycle of observations. The lake effects are reflected

by the dramatically large RMSD and Bias at East Leland and South Haven from the EAR5 dataset,

which could be as three times large as those of other stations. The lake effects also have significant

but smaller influences on the PRISM dataset, which might be due to PRISM incorporates more

of the observational datasets. Also, it is noteworthy that PRISM has a larger RMSD and Bias of

DminT than that of DmaxT (Table 2.4). This might be due to that DmaxT is usually measured

at stable conditions, resulting in a smaller bias in the area-averaged reanalysis datasets. Also, we

observed overall better estimates of PRISM at the ASOS network stations than the EW network

since stations of the ASOS network are incorporated into the reanalysis datasets.
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Station Days RMSD RMSD Bias Bias
DminT DmaxT DminT DmaxT
°C °C °C °C

East Lansing 6573 1.49 0.91 0.65 0.5
East Leland 5722 2.98 0.96 2.13 0.08
South Haven 4652 2.84 1.27 1.51 -0.34
Grand Rapids 6572 0.73 0.33 -0.01 -0.01
Traverse City 6572 1.03 0.58 0.29 -0.04
Gaylord 4120 1.62 0.83 -0.74 0.6
Median 6147 1.56 0.87 0.47 0.04

Table 2.4: Daily summary statistics, RMSD between PRISM product and observational networks,
at six locations. The unit for temperature is °C.
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We also provide seasonal and annual summary statistics for both ERA5 and PRISM datasets.

We calculate the seasonal and annual averages for both daily minimum and maximum temperatures.

The seasons are defined with a continuous winter season from December to February. For example,

the winter season of 2001 is defined as December 2001, January 2002, and February 2002. The

table results (Table 2.5-2.8) tell us that from daily scale to annual scale, values of RMSDs are

overall reduced, and values of Bias are not significantly affected. In addition, PRISM always shows

overall better agreements with observations no matter what time scales. It is noteworthy that from

daily to annual, the RMSDs of DminT and DmaxT, especially for the two near-lake stations, for the

ERA5 are considerably decreasing, that is, at an annual scale, the RMSDs of ERA5 are comparable

to those of PRISM. The seasonal RMSDs and Bias are varied by season. Both PRISM and ERA5

tend to generally overestimate DminT and underestimate DmaxT during the spring and summer

seasons. ERA5 also underestimates DmaxT during the fall and winter seasons. However, ERA5

overestimates DminT during fall and underestimates DminT during winter. The magnitudes of Bias

of ERA5 overall show smaller values during the cold season, spring and winter, comparing to larger

values during the warm season, summer and fall. This characteristic is especially observed for East

Leland and South Haven. For fall and winter, PRISM overestimates both DmaxT and DminT. The

magnitudes of Bias of PRISM are similar for all seasons. RMSDs of DmaxT are overall smaller

than (half of the magnitude) those of DminT for both PRISM and ERA5. However, the RMSDs

of DminT are smaller than those of DmaxT, especially for the two near-lake stations. In addition,

ERA5 generally shows the best comparison results for DminT in the spring season compared to

other seasons considering both RMSDs and Bias. In contrast, PRISM generally shows the best

comparison results for DminT in the winter season compared to other seasons considering both

RMSDs and Bias. Still, PRISM shows more reliable results for both DmaxT and DminT throughout

all the seasons.
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Station season years RMSD RMSD Bias Bias
DminT DmaxT DminT DmaxT
°C °C °C °C

East Lansing Spring 18 0.92 0.30 0.85 -0.11
East Leland Spring 16 1.32 3.97 1.18 -3.92
South Haven Spring 13 1.49 3.71 1.34 -3.67
Grand Rapids Spring 18 0.44 0.63 -0.20 -0.51
Traverse City Spring 18 0.78 1.36 -0.55 -1.33
Gaylord Spring 11 0.78 0.36 -0.67 0.20
Median Spring 17 0.85 1.00 0.33 -0.92

East Lansing Summer 18 2.39 0.35 2.36 -0.23
East Leland Summer 16 4.46 2.57 4.39 -2.51
South Haven Summer 13 4.51 1.52 4.46 -1.40
Grand Rapids Summer 18 0.63 0.90 0.54 -0.83
Traverse City Summer 18 1.14 1.23 0.96 -1.15
Gaylord Summer 11 1.12 0.54 1.10 0.47
Median Summer 17 1.77 1.07 1.73 -0.99

East Lansing Fall 18 2.05 0.76 1.95 -0.34
East Leland Fall 16 3.99 0.82 3.92 -0.69
South Haven Fall 13 4.08 1.31 3.97 -1.26
Grand Rapids Fall 18 1.16 0.67 1.07 -0.58
Traverse City Fall 18 1.45 1.03 1.29 -0.94
Gaylord Fall 12 0.97 0.52 0.91 0.47
Median Fall 17 1.75 0.79 1.62 -0.64

East Lansing Winter 19 0.76 0.31 -0.36 0.19
East Leland Winter 16 1.58 0.60 1.38 -0.25
South Haven Winter 13 1.54 1.04 1.46 -0.98
Grand Rapids Winter 19 1.36 0.54 -1.19 -0.44
Traverse City Winter 19 1.62 1.57 -1.42 -1.53
Gaylord Winter 12 1.71 0.33 -1.56 0.21
Median Winter 17.5 1.56 0.57 -0.78 -0.35

Table 2.5: Seasonal summary statistics, RMSD between ERA5 product and observational
networks, at six locations. The unit for temperature is °C.
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Station season years RMSD RMSD Bias Bias
DminT DmaxT DminT DmaxT
°C °C °C °C

East Lansing Spring 18 0.89 0.62 0.82 0.50
East Leland Spring 16 2.34 0.23 2.32 -0.10
South Haven Spring 13 1.45 0.49 1.41 -0.40
Grand Rapids Spring 18 0.20 0.16 0.14 -0.04
Traverse City Spring 18 0.38 0.21 0.31 -0.01
Gaylord Spring 11 1.06 0.66 -1.02 0.63
Median Spring 17 0.98 0.36 0.57 -0.03

East Lansing Summer 18 1.03 0.61 0.94 0.43
East Leland Summer 16 2.76 0.36 2.74 -0.31
South Haven Summer 13 2.30 1.04 2.25 -0.90
Grand Rapids Summer 18 0.11 0.15 -0.08 -0.02
Traverse City Summer 18 0.46 0.40 0.31 -0.07
Gaylord Summer 11 0.73 0.93 -0.70 0.92
Median Summer 17 0.88 0.51 0.63 -0.05

East Lansing Fall 18 0.78 0.84 0.40 0.32
East Leland Fall 16 1.99 0.34 1.92 0.06
South Haven Fall 13 1.81 0.36 1.61 -0.22
Grand Rapids Fall 18 0.09 0.14 0.07 0.01
Traverse City Fall 18 0.47 0.26 0.36 -0.10
Gaylord Fall 12 0.56 0.51 -0.53 0.47
Median Fall 17 0.67 0.35 0.38 0.04

East Lansing Winter 19 0.54 0.72 0.36 0.65
East Leland Winter 16 1.45 0.60 1.39 0.58
South Haven Winter 13 0.83 0.41 0.71 0.19
Grand Rapids Winter 19 0.22 0.11 -0.18 0.02
Traverse City Winter 19 0.31 0.27 0.17 0.02
Gaylord Winter 12 0.83 0.42 -0.71 0.37
Median Winter 17.5 0.69 0.42 0.27 0.28

Table 2.6: Seasonal summary statistics, RMSD between PRISM product and observational
networks, at six locations. The unit for temperature is °C.
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Station years RMSD RMSD Bias Bias
DminT DmaxT DminT DmaxT
°C °C °C °C

East Lansing 18 1.23 0.57 1.11 -0.24
East Leland 16 2.77 1.87 2.75 -1.86
South Haven 13 2.85 1.87 2.81 -1.85
Grand Rapids 18 0.35 0.66 0.05 -0.6
Traverse City 18 0.35 1.25 0.08 -1.23
Gaylord 12 0.29 0.41 0 0.36
Median 17 0.79 0.96 0.6 -0.92

Table 2.7: Annual summary statistics, RMSD between ERA5 product and observational networks,
at six locations. The unit for temperature is °C.

Station years RMSD RMSD Bias Bias
DminT DmaxT DminT DmaxT
°C °C °C °C

East Lansing 18 0.71 0.71 0.55 0.36
East Leland 16 2.11 0.22 2.1 0.03
South Haven 13 1.52 0.46 1.49 -0.38
Grand Rapids 18 0.07 0.12 -0.01 -0.01
Traverse City 18 0.38 0.26 0.29 -0.04
Gaylord 12 0.75 0.61 -0.73 0.59
Median 17 0.73 0.36 0.42 0.01

Table 2.8: Annual summary statistics, RMSD between PRISM product and observational
networks, at six locations. The unit for temperature is °C.
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Station Days RMSD RMSD Bias Bias
ERA5 PRISM ERA5 PRISM

East Lansing 6573 0.99 0.77 0.49 0.38
East Leland 5722 1.79 1.07 0.2 0.59
South Haven 4652 1.96 1 0.27 0.36
Grand Rapids 6572 0.71 0.34 -0.07 0
Traverse City 6572 0.99 0.47 -0.13 0.05
Gaylord 4120 0.8 0.49 0.3 0.02
Median 6147 0.99 0.63 0.24 0.21

Table 2.9: Growing degree day (Base 4 °C) summary statistics.

2.3.2 Assessment of derived variables

Freeze events could result in differentiated risks on crops with different phenological stages.

Growing Degree Day (GDD) is a commonly used agro-climatic index to simulate plant phenologies.

We calculate the GDD with a base temperature of 4 °C (Table 2.9). The results show that calculations

based on DmaxT and DminT from PRISM have a relatively smaller RMSD and smaller Bias than

those from ERA5. Both ERA5 and PRISM overestimate GDD values. ERA5 still shows larger

RMSDs at these two near-lake stations and the same case for PRISM.

Since we care most about how the reanalysis datasets represent freeze occurrences, we need to

assess how they are captured or missed. For precipitation variable evaluation, some forecast scores

are utilized to measure the ability of a product. Here we use different criteria to define freeze

events and then calculate how reanalysis products capture these events. Tables 2.10 and 2.11 show

an example of how we examine this. We first define five levels of freeze events, ranging from 0°C

to -25°C with 5-degree steps. And then, we count these events for each month (July and August

are not showing here since no defined freeze events occurred). Here 107/131=0.82 means that

throughout the data period, from 1/1/2001 to 12/31/2018, there are 6573 days, and 131 days of

which in January have DminT between -5 degrees and 0 degrees. And of these 131 events, ERA5

captured 107 events with a ratio of 0.82. PRISM shows better results by capturing 112 events with

a ratio of 0.85. By comparing ERA5 and PRISM, we observe that PRISM overall behaves very well

in capturing different types of events throughout different months. The harder the freeze events, the
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month Type1 Type2 Type3 Type4 Type5
-5 to 0 -10 to -5 -15 to -10 -20 to -15 -25 to -20
°C °C °C °C °C

1 107/131=0.82 91/141=0.65 67/101=0.66 49/84=0.58 17/28=0.61
2 88/122=0.72 80/141=0.57 66/108=0.61 43/70=0.61 11/23=0.48
3 151/173=0.87 93/170=0.55 40/68=0.59 10/17=0.59 5/6=0.83
4 120/193=0.62 7/32=0.22 0/0=nan 0/0=nan 0/0=nan
5 3/20=0.15 0/0=nan 0/0=nan 0/0=nan 0/0=nan
6 0/0=nan 0/0=nan 0/0=nan 0/0=nan 0/0=nan
9 0/0=nan 0/0=nan 0/0=nan 0/0=nan 0/0=nan
10 26/114=0.23 0/0=nan 0/0=nan 0/0=nan 0/0=nan
11 122/188=0.65 36/95=0.38 3/7=0.43 2/2=1.00 0/0=nan
12 171/192=0.89 98/159=0.62 26/59=0.44 13/21=0.62 3/4=0.75

Table 2.10: Freeze events captured ratios at East Lansing of ERA5. Freeze events are categorized
into five types, which are, respectively, from -5 °C to 0 °C, from -10 °C to -5 °C, from -15 °C to
-10 °C, from -20 °C to -15 °C, and from -25 °C to -20 °C.

overall lower the capturing ratio for EAR5, which is not the case for PRISM. PRISM still shows high

capturing ratios for hard freeze events. Also, it is noteworthy that both ERA5 and PRISM show

better results for wintertime freeze events than springtime freeze events. For springtime freeze

events, we definitely see the advantages of PRISM. Even though not as good as wintertime ratios,

the springtime freeze events, especially for the late spring, are captured pretty well by PRISM. In

May, 20 days are reported to have freeze events throughout 18 years. And PRISM captures 13 of

20, which is much better than ERA5, which only captures 3 of 20. Therefore, generally, PRISM

demonstrates an advantageous ability to capture freeze events for different types and for different

occurring times. This benefit of PRISM leads to our later choice of using PRISM as a proxy for

observations to represent the surface freeze events as an excellent gridded dataset.

For the other five stations, we don’t present the detailed tables here since the results and

conclusions are similar. PRISM shows much better results than ERA5 for all categories of freeze

events. Also, for the two near-lake stations, even PRISM misses a lot of events for hard freezes

and late spring freezes. And the two stations from the ASOS network show excellent ratios of

PRISM, as we expect. We provide a summary table without detailed categories for six stations. In

tables 2.12 and 2.13, we count all the freeze events, defined as DminT less than 0 degrees. For
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month Type1 Type2 Type3 Type4 Type5
-5 to 0 -10 to -5 -15 to -10 -20 to -15 -25 to -20
°C °C °C °C °C

1 112/131=0.85 119/141=0.84 77/101=0.76 73/84=0.87 22/28=0.79
2 114/122=0.93 123/141=0.87 91/108=0.84 57/70=0.81 13/23=0.57
3 147/173=0.85 129/170=0.76 48/68=0.71 10/17=0.59 5/6=0.83
4 128/193=0.66 20/32=0.62 0/0=nan 0/0=nan 0/0=nan
5 13/20=0.65 0/0=nan 0/0=nan 0/0=nan 0/0=nan
6 0/0=nan 0/0=nan 0/0=nan 0/0=nan 0/0=nan
9 0/0=nan 0/0=nan 0/0=nan 0/0=nan 0/0=nan
10 86/114=0.75 0/0=nan 0/0=nan 0/0=nan 0/0=nan
11 159/188=0.85 62/95=0.65 6/7=0.86 0/2=0.00 0/0=nan
12 170/192=0.89 136/159=0.86 53/59=0.90 15/21=0.71 4/4=1.00

Table 2.11: Freeze events captured ratios at East Lansing of PRISM. Freeze events are
categorized into five types, which are, respectively, from -5 °C to 0 °C, from -10 °C to -5 °C, from
-15 °C to -10 °C, from -20 °C to -15 °C, and from -25 °C to -20 °C.

example, at East Lansing, from 1/1/2001 to 12/31/2018 with 6573 days, 493 days in January has a

DminT no higher than 0 degrees. The 493 days are more than the sum of five defined freeze event

days because there are days less than -25 degrees that are not counted above. Comparing ratios

throughout different months, we conclude that both ERA5 and PRISM show better freeze event

capturing behavior during wintertime freezes than springtime and fall freezes. ERA5 only captures

an overall 17 percent of the total freeze occurrences in May and 13 percent of the total freezes in

October. PRISM behaves better with an overall 63 percent in May and 65 percent in October. For

the months of January, February, March, and December, both ERA5 and PRISM show excellent

ratios from 0.97 to 0.99. Comparing ratios between different stations, the two near-lake stations,

East Leland and South Haven, show the lowest ratios for both ERA5 and PRISM. And Gaylord,

which is in the USCRN network, shows the best ratio for both EAR5 and PRISM. The several

freeze occurrences in June and September are not captured by either ERA5 or PRISM. Therefore,

we hope to understand how the springtime freeze events are determined in the later chapters.
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month East Lansing East Leland South Haven Grand Rapids Traverse City Gaylord Median
1 490/493=0.99 416/435=0.96 313/330=0.95 502/508=0.99 516/519=0.99 333/334=1.00 0.99
2 471/475=0.99 406/410=0.99 295/301=0.98 472/474=1.00 483/486=0.99 305/305=1.00 0.99
3 427/435=0.98 388/396=0.98 244/269=0.91 427/433=0.99 453/459=0.99 296/296=1.00 0.98
4 157/225=0.70 174/276=0.63 53/127=0.42 143/164=0.87 230/292=0.79 186/197=0.94 0.74
5 3/20=0.15 0/71=0.00 0/15=0.00 3/12=0.25 8/41=0.20 13/32=0.41 0.17
6 0/0=nan 0/6=0.00 0/0=nan 0/0=nan 0/1=0.00 0/1=0.00 0
9 0/0=nan 0/4=0.00 0/4=0.00 0/0=nan 0/3=0.00 0/1=0.00 0
10 26/114=0.23 0/83=0.00 0/34=0.00 12/70=0.17 9/96=0.09 48/98=0.49 0.13
11 230/292=0.79 104/253=0.41 50/169=0.30 207/265=0.78 198/281=0.70 229/252=0.91 0.74
12 429/437=0.98 370/436=0.85 239/304=0.79 449/461=0.97 458/472=0.97 347/351=0.99 0.97

Table 2.12: Freeze events below 0 °C captured ratios at six stations without detailed categories of ERA5.

month East Lansing East Leland South Haven Grand Rapids Traverse City Gaylord Median
1 484/493=0.98 426/435=0.98 320/330=0.97 503/508=0.99 518/519=1.00 333/334=1.00 0.99
2 472/475=0.99 403/410=0.98 291/301=0.97 474/474=1.00 484/486=1.00 305/305=1.00 0.99
3 414/435=0.95 362/396=0.91 241/269=0.90 424/433=0.98 451/459=0.98 295/296=1.00 0.97
4 162/225=0.72 156/276=0.57 65/127=0.51 144/164=0.88 242/292=0.83 188/197=0.95 0.77
5 13/20=0.65 6/71=0.08 1/15=0.07 10/12=0.83 25/41=0.61 31/32=0.97 0.63
6 0/0=nan 0/6=0.00 0/0=nan 0/0=nan 0/1=0.00 0/1=0.00 0
9 0/0=nan 0/4=0.00 0/4=0.00 0/0=nan 0/3=0.00 1/1=1.00 0
10 86/114=0.75 13/83=0.16 8/34=0.24 57/70=0.81 52/96=0.54 91/98=0.93 0.65
11 266/292=0.91 174/253=0.69 108/169=0.64 255/265=0.96 259/281=0.92 246/252=0.98 0.92
12 423/437=0.97 416/436=0.95 275/304=0.90 456/461=0.99 466/472=0.99 348/351=0.99 0.98

Table 2.13: Freeze events below 0 °C captured ratios at six stations without detailed categories of PRISM.



2.4 Summary

This study compares ERA5 and PRISM reanalysis products to stational observations. We

conclude that the PRISM dataset, with a higher horizontal resolution of 4km, overall demonstrates

a better agreement of temperatures with observations. However, ERA5 outperforms PRISM in its

availability of various weather variables. The major findings are as follows.

1) Both reanalysis datasets show better results for DmaxT than DminT, as shown in the lower

DmaxT perturbations of the time series and the smaller values of DmaxT RMSDs.

2) Gridded reanalysis datasets tend to reduce the observed daily cycles. ERA5 underestimates

DmaxT while overestimates DminT, resulting in reduced daily cycles. In contrast, PRISM tends

to overestimate both DminT and DmaxT. However, on a monthly scale, ERA5 reanalysis tends to

overestimate daily mean temperature during summer seasons and underestimate it during winter

seasons in the time series, which is consistent with the scatter plot results.

3) The ASOS network stations, which are incorporated into the PRISM analysis, show excellent

comparing results for both direct weather variables and derived variables. This behavior is not

observed in the evaluation of the ERA5 dataset.

4) The two near-lake stations show large RMSDs and Bias and also large perturbations of time

series for both reanalysis products. But PRISM still shows a better agreement.

5) PRISM also shows a better behavior in capturing the derived variables. With a base

temperature of 4 °C, both ERA5 and PRISM overestimate GDD values. PRISM shows excellent

ability in capturing different types of freeze events throughout different months. Both PRISM and

ERA5 show better freeze event capture during wintertime than other seasons.

In conclusion, we will use PRISM as a proxy of observations to represent freeze events in later

chapters. Since the whole thesis is focused on freeze events, we just evaluate temperatures and

temperature-derived variables. However, to assess both ERA5 and PRISM datasets, more work

needs to be done in the future. For example, with the availability and accessibility of precipitation

data in the ERA5 and PRISM, we could evaluate how precipitation events are captured by computing

analytical scores like the bias score (BS), the threat score (TS), and the Heidke skill score (HSS). In
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addition, since wind conditions also have a profound impact on freeze formation, it is a necessity

to assess the wind speed and direction of the ERA5 (PRISM does not provide wind data). Also,

ERA5 provides land-only datasets with a better resolution of 9km than the single-level datasets with

30km. It is significant to evaluate how this resolution improvement affects the overall agreement

with observations.
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CHAPTER 3

FREQUENCY AND SEVERITY OF SPRINGTIME FREEZE EVENTS

3.1 Background

3.1.1 False Springs and Springtime Freeze Events

As a consequence of the global warming trend, earlier springs induce premature plant develop-

ment, resulting in vulnerable and susceptible crops exposed to subsequent springtime freeze events

(Gu et al., 2008; Allstadt et al., 2015). In the early phenological stages, temperatures near -6°C

begin to cause damage to the crops, but as the bloom stage approaches, temperatures as warm as

-2°C could cause considerable damage (Longstroth, 2005). Springtime freeze events, especially

those after an untimely extended period of warmer temperatures known as "false spring", could have

devastating consequences to agriculture production. Prominent examples include freeze events that

occurred in late spring of 2002, 2007, and 2012 following an extended period of warm weather

and wiped out more than 90% of fruit production and other crops across the US Midwest, which

resulted in an agricultural loss of more than 2 billion dollars (NASS, 2002; Marino et al., 2011;

O’Brien et al., 2019; Labe et al., 2015; Kistner et al., 2018; Gu et al., 2008). These events share

two characteristics: they occurred following an extended period of unusually warm conditions, and

they caused disastrous consequences to premature developing vegetation and crops.

Earlier springs could result in the earlier development of crops and might increase the vulner-

ability of crops to freeze event damage (Winkler et al., 2013). Allstadt et al. (2015) projected

that the widespread historical advances in spring plant phenology would extend into the future,

with an increased risk of false springs in the Midwestern US. Besides, Katz and Brown (1992)

also emphasized that changes in variability were more important to extreme event frequencies than

changes in averages with statistical models.

Findings from previous research also revealed that false springs and subsequent freeze events
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could be related to large-scale atmospheric circulation patterns. When a relative low-pressure

system emerges over the North Pacific Ocean, creating a ripple effect downstream, warm air

mass intrudes, and then early spring occurs across much of western North America (Ault et al.,

2013). Kunkel et al. (2004) speculated that the shorter growing seasons in the early 1900s were

characterized by drier air masses and more global solar radiation while the longer growing seasons

in recent years may be associated with air masses that are moister in comparison and result in less

global solar radiation.

3.1.2 Spatiotemporal Variability of Springtime Freeze Events

Many previous studies have considered the spatiotemporal variability and trend of the spring-

time freeze events. DeGaetano (1996) detected a decreasing trend of freezing days in the North-

eastern United States from 1959 to 1993, with different thresholds at an individual station level.

Easterling et al. (2002) suggested that the springtime freezing days significantly decreased for the

period 1948-1999 in western and north-central US. They also noted that the regional trends in frost

days are substantially related to the mean annual temperature changes. Yu et al. (2014) revealed

earlier occurrences of the Last Spring Frost, delayed events of the First Fall Frost, and lengthening

periods of the Frost-Free Season from 1980 to 2010. Their study also showed weaker interannual

variability of these dates in the Great Lakes region than other regions in the Midwest (Yu et al.,

2014).

Most of these freeze event studies were carried out at the individual station level. Nevertheless,

the gridded 4-km dataset released by the PRISM (Parameter-elevation Regressions on Independent

Slopes Model) climate group from Oregon State University (PRISM Climate Group, Oregon

State University, http://prism.oregonstate.edu, created Feb 2020) allows continuous spatiotemporal

analysis of springtime freeze events across the Midwestern US. Besides, little research has focused

on freeze events in the individual springtime months.
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3.1.3 Study Objectives

With the necessity of understanding the climatology of springtime freeze events, we try to

investigate the frequency, severity, and potential causes of springtime freeze event occurrences.

This study aims to use ERA5 reanalysis (the fifth major global reanalysis produced by the European

Centre for Medium-Range Weather Forecasts) to understand the weather conditions and climate

background of the freeze events represented by the PRISM analysis dataset.
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3.2 Data and Method

The study domain is the central and eastern United States encompassing the region from

105º W to 75º W longitude and from 35º N to 50º N latitude. This region covers one of the

most intensive and extensive areas of agricultural production in the world. Since the agricultural

production in this region is substantially sensitive to climate variability, especially freeze events,

it is worthwhile to study the frequency and severity of freeze events represented by the gridded

datasets over this region.

PRISM, a gridded analysis dataset provided by the PRISM climate group from Oregon State

University, has a better agreement with the observational freezing events and provides estimates of

six basic climate elements: precipitation (ppt), minimum temperature (tmin), maximum tempera-

ture (tmax), mean dew point (tdmean), minimum vapor pressure deficit (vpdmin), and maximum

vapor pressure deficit (vpdmax). PRISM has an excellent spatial resolution of 4 km. But it just

provides climate variables at daily scales with time coverage from 1981 until the present. We

obtain daily minimum and mean air temperature from PRISM datasets to represent the frequency

and severity of freeze events on the surface. ERA5 is a climate reanalysis dataset released by the

European Centre for Medium-Range Weather Forecasts (ECMWF), covering the period from 1950

to the present. The name ERA refers to ’ECMWF ReAnalysis’, with ERA5 being the fifth major

global reanalysis produced by ECMWF (after FGGE, ERA-15, ERA-40, ERA-Interim) (Henner-

mann et al., 2020). The global ERA5 reanalysis dataset includes gridded datasets with a horizontal

resolution of 30 km at 37 pressure levels. We use ERA5 datasets for understanding the weather

conditions and climate background in the upper levels that occur simultaneously with the freeze

events in the surface.

We define the freeze days as days by different criteria when the daily minimum air temperature

is below different degrees Celsius, including the commonly used one, 0 ºC. The freeze events are

identified using the PRISM dataset that is comprised of 357 × 722 horizontal grid points with a 4

km grid spacing across the study region.

We obtain the teleconnection indices from the Climate Prediction Center (CPC). Niño-3.4 is an
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index indicating the SST anomalies across the region spans 5°N-5°S, 120°-170°W in the tropical

Pacific Ocean. Both the NAO (North Atlantic Oscillation) and PNA (Pacific North American)

indices are based on the leading rotated principal component analyses of mean 500-mb heights in

the Northern Hemisphere (20°–90°N latitude) (Dixon et al., 2007).

We also use the Empirical Orthogonal Function (EOF) technique to identify the spatial patterns

of the freezing days in different months. The EOF analysis produces a set of mutually orthogonal

modes that consist of spatial structures (EOFs) with corresponding time series (principal compo-

nents or PCs) (Yu et al., 2014). The corresponding eigenvalue of each mode describes the variance

explained by the mode (Yu et al., 2014). In this study, we analyse the first two modes that together

explain more than 60% of the variance.
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3.3 Results

3.3.1 Temporal and spatial variability of freeze events

We first examine the spatial variability of freeze events across the central and Midwestern

United States. The mean, standard deviation, and trend of freezing days in March, April, and

May across our study region from 1981 to 2019 are shown in Figure 3.1. The average numbers of

freezing days for the three months all show a latitude-dependent pattern, and also decreases as the

month proceeds. In May, some areas are moving toward the frost-free season, resulting in near-zero

freeze events there. The standard deviation here is divided by the average numbers of freezing days

at each grid point to represent the relative variations of the freezing days. Our results reveal that

freezing days in March have the least variation across the region throughout the study period, and

those in April show a relatively higher variation in the southern region. Freezing days in May show

a high variation in the central-southern region, which is dominated by the small mean values in these

areas. We also conduct trend analyses by linear least-squares regression. The results reveal that

freezing days in March show a decreasing trend across the central and Midwestern United States,

which is consistent with the decreasing trend in springtime freeze events in the previous studies

(DeGaetano, 1996; Easterling et al., 2002). However, nearly half of the region shows an upward

trend in April, which is especially significant in Northern Michigan, part of western Wisconsin,

and central Oklahoma. Freezing days in May show a significant downward trend in most of the

Northeast, in contrast to an upward trend in the western region. We try to understand why these

differentiated results are observed in April and May in the following part.

Figure 3.2 shows the time series of Spatially Averaged Freezing Days (defined as the days

with daily minimum temperatures below 0 ºC) Counts (SAFDC) and Spatially Averaged Daily

Minimum Temperature (SADMT) in spring (March, April, May) from 1981 to 2019. We calculate

the Theil-Sen slope, which is the median of all the paired values, to avoid having outliers’ effects

on the trend of the time series. A negative slope of -0.043 for SAFDC is observed, indicating a

general decreasing trend of springtime freeze events across the central and Midwestern US, which
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Figure 3.1: Average, standard deviation, and trend of freezing days in spring (March, April, May)
from 1981 to 2019.

agrees with previous studies (DeGaetano, 1996; Easterling et al., 2002). The year 1996, 2013 and

2018 all show abruptly high values of SAFDC, while the year 2012 shows the lowest SAFDC.

The results of SADMT were exactly on the contrary, as expected. It is noteworthy that, although

both the years 2007 and 2012 show a low frequency of freeze events, considerable crop damage

was observed in these two years, which were likely a consequence of false springs exposing the

earlier developed crops to the subsequent freeze events. As we expect, the SADMT shows an

exact opposite phase to the SAFDC with a positive Theil-Sen slope of 0.005. We also relate

the SAFDC to the spatially averaged daily minimum and mean temperature. The result reveals

both significant negative relationships with R-squared values of 0.7894 and 0.7414, indicating a

deterministic relationship between the monthly averaged daily minimum/mean temperature and

freezing days in that correspondent month. The significant tests for these relationships show that
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Figure 3.2: Time series of springtime freeze events count from 1981 to 2019. The fitted line was
fitted without the year 2018.

all these trends are not significant.

3.3.2 Freezing Area Percentage

To further understand and explain variations in some regions of interest, we introduce a variable

called Freezing Area Percentage (FAP), which is defined as the percentage of grid points whose

daily minimum temperature is below 0 ºC on each day in a pre-defined subset of the study region.

Here we use the regions defined in Karl and Knight (1998) and also used as climate regions

by NOAA (National Oceanic and Atmospheric Administration) as the subsets (Figure 3.3). We

calculate the FAP in each subregion respectively on each day and sum up the daily values for three

springtime months (Table 3.1). The larger the FAP, the more areas of that region are likely to
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Figure 3.3: Subset regions defined in Karl and Knight (1998).

suffer from freezing risks. The monthly FAP values could be explained as the number of freezing

days occurring in the defined region at some springtime month. Higher values of monthly FAP are

observed in the northern subregions and the earlier months.

Figure 3.4 shows the time series of monthly aggregated FAP values. Larger values are shown in

the northern regions, the Northern Great Plains, the Upper Midwest, and the Northeast. Throughout

the whole study region, a noticeably low FAP value is in the year 2012 is sandwiched between

two large values. We observed some interannual and interdecadal periodicity of the time series of

monthly FAP values by spectral analysis (not shown here). Since the causes of springtime freezes

could be related to large circulations, we later investigate the relationship between FAP values and

some teleconnection indices.

We conduct trend analyses for monthly FAP values (Table 3.2). The results reveal decreasing

trends of FAP in almost all regions for the three months, except for increasing trends in the Northern

Great Plains and also the Upper Midwest in March and in the Northeast and Southeast in May.

The trends for the accumulated springtime are downward with a significance in the Ohio Valley,

which extends the findings in Easterling et al. (2002) from the period 1948-1999 into 1981-2019.

44



Figure 3.4: Time series of monthly FAP values.

Easterling et al. (2002) revealed a non-significant trend of -0.1 days per decade in the Ohio Valley

for springtime from 1948 to 1999, while our results show a significant trend (p-value less than 0.1)

of -0.113 days per year for springtime from 1981 to 2019, furthering indicating fewer freezing days

occurring in the Ohio Valley during recent decades.
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Northern Great Plains Southern Great Plains Upper Midwest Ohio Valley Northeast Southeast
March 22.641 12.173 26.135 16.387 26.724 14.154
April 10.06 2.699 14.416 4.6 14.884 3.92
May 1.312 0.135 2.58 0.163 2.639 0.175
Springtime 34.013 15.007 43.131 21.15 44.248 18.248

Table 3.1: 39-year mean of regional averaged monthly FAP. Relationships with p values less than 0.10 are characterized with one star
and those less than 0.05 are with two stars.

Northern Great Plains Southern Great Plains Upper Midwest Ohio Valley Northeast Southeast
March 0.027 -0.001 0.004 -0.031 -0.006 -0.004
April -0.012 -0.037* -0.03 -0.06 -0.041 -0.013
May -0.031* -0.002 -0.016 -0.001 0.005 0
Springtime -0.065 -0.065 -0.016 -0.113* -0.019 -0.003

Table 3.2: Theil-Sen Slope for monthly FAP. Relationships with p values less than 0.10 are characterized with one star and those less
than 0.05 are with two stars.



To further investigate the periodicity of monthly FAP values, we relate them to some teleconnec-

tion indices, Niño-3.4, NAO, PNA, and PDO. The positive phase of the NAO reflects below-normal

heights and pressure across the high latitudes of the North Atlantic and above-normal heights and

pressure over the eastern United States. The pattern is reversed for the negative phase. The strong

positive phase of NAO tends to be associated with above-normal temperatures in the eastern United

States (CPC, 2012). Table 3.3 shows Pearson correlation values comparing monthly FAP values for

the springtime months to NAO values with 0-3 months earlier. It is noteworthy that we observe a

significantly strong negative correlation between FAP values and NAO in March from 1981 to 2019.

This result leads to the conclusion that the positive phase of NAO is usually associated with less

freezing risk in March across the study region. The Pearson correlation value could be as high as

-0.469 in the Ohio Valley, indicating a highly significant correlation with the positive phase of NAO

occurring during March for recent decades. Even though not significant, some positive correlations

are occurring for monthly FAP values in April and May after the significant negative correlation in

March, especially in the Southern Great Plains and Ohio Valley. This is likely because the effects

of the polar jet stream become weaker in the late springtime. With lagging lengths increasing

from 1 to 3 months, more positive correlations are observed. The monthly FAP values in April

are positively correlated with NAO in February, indicating a positive phase of NAO in February is

statistically associated with more freezing risks in April across the study region, especially in the

Northern Great Plains, Upper Midwest, Ohio Valley, and Northeast. Also, when the positive phase

of NAO in December occurs, fewer freezing risks in March are observed across our study region,

especially in the Upper Midwest, Northeast, and Southeast.
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Northern Great Plains Southern Great Plains Upper Midwest Ohio Valley Northeast Southeast
Lag 0
March -0.368** -0.576** -0.357** -0.469** -0.466** -0.376**
April -0.105 0.108 0.039 0.093 -0.096 -0.069
May 0.008 0.145 -0.029 0.047 -0.193 -0.08
Springtime -0.016 -0.045 0.036 -0.05 -0.114 -0.206
Lag 1
March 0.142 -0.159 0.129 0.028 0.055 0.08
April 0.226 0.294* 0.159 0.237 0.067 0.023
May -0.116 -0.175 0.07 -0.089 0.005 0.02
Springtime 0.039 -0.172 0.134 -0.06 -0.021 -0.188
Lag 2
March 0.178 0.075 0.138 0.239 -0.07 0.081
April 0.494** 0.251 0.416** 0.317** 0.289* 0.089
May -0.176 0.041 -0.015 -0.128 -0.102 -0.343**
Springtime 0.166 -0.244 0.19 0.042 0.071 -0.064
Lag 3
March -0.125 -0.085 -0.346** -0.179 -0.443** -0.418**
April 0.07 -0.158 0.093 -0.087 0.176 -0.011
May -0.216 0.009 0.137 -0.098 0.053 0.005
Springtime 0.233 -0.055 0.125 0.082 0.042 -0.067

Table 3.3: Pearson correlation values (r) comparing monthly FAP for the months of March, April, and May to NAO values 0-3 months
earlier. Relationships with p values less than 0.10 are characterized with one star and those less than 0.05 are with two stars.



Table 3.4 shows 0-3 month lagged Pearson correlation values between the monthly FAP values

for each of the three months to PNA values. The positive phase of the PNA pattern is associated

with above-average temperatures over western Canada and the extreme western United States and

below-average temperatures across the south-central and southeastern United States (Dixon et al.,

2007). The correlations between PNA and FAP are overall negative. Nevertheless, FAP values

in May are significantly positively associated with PNA in May, especially in the Northern Great

Plains and the Upper Midwest. This indicates that the positive phase of PNA in May could lead

to more freezing risks across most of our study regions in May. Also, we notice that the total

springtime FAP values are always significantly negatively correlated with PNA values 1-3 months

earlier, except in the Southern Great Plains region. This relationship provides forecast tools for

predicting springtime freezing risks across relevant areas for up to three months ahead.
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Northern Great Plains Southern Great Plains Upper Midwest Ohio Valley Northeast Southeast
Lag 0
March -0.17 0.121 -0.228 0.01 -0.197 -0.124
April -0.205 -0.08 -0.299* -0.185 -0.266 -0.12
May 0.356** 0.267 0.343** 0.304* 0.148 0.272*
Springtime -0.153 0.073 -0.198 -0.102 -0.158 -0.163
Lag 1
March -0.350** -0.217 -0.338** -0.26 -0.315* -0.185
April -0.465** -0.249 -0.362** -0.397** -0.17 -0.243
May 0.058 -0.105 -0.174 0.017 -0.175 -0.223
Springtime -0.407** -0.184 -0.429** -0.358** -0.324** -0.271*
Lag 2
March -0.067 0.125 -0.133 -0.041 -0.086 -0.138
April -0.191 -0.229 -0.238 -0.286* -0.134 -0.223
May 0.166 -0.144 -0.041 0.061 -0.136 -0.035
Springtime -0.397** -0.111 -0.430** -0.362** -0.358** -0.322**
Lag 3
March -0.142 -0.095 -0.269* -0.085 -0.245 -0.16
April -0.232 -0.097 -0.357** -0.267 -0.436** -0.302*
May 0.157 -0.003 -0.064 0.015 -0.044 -0.058
Springtime -0.285* -0.147 -0.429** -0.299* -0.401** -0.320**

Table 3.4: Pearson correlation values (r) comparing monthly FAP for the months of March, April, and May to PNA values 0-3 months
earlier. Relationships with p values less than 0.10 are characterized with one star and those less than 0.05 are with two stars.



El Niño events usually occur with above-normal temperatures in the northern regions of the

United States (CPC, 2008). Since the positive PNA is often associated with an El Niño event

(CPC 2007), the overall relationships between FAP values and Niño-3.4 are negative as well. It is

noteworthy that the FAP values across the Northern Great Plains in March show significant negative

correlations with Niño-3.4 0-3 months earlier. Our results also reveal general positive relationships

between monthly FAP and PDO values. In May, the FAPs are positively correlated with PDO,

especially in the Northern Great Plains, the South, the Upper Midwest, and the Ohio Valley.

3.3.3 Result of EOF analysis for freezing days in springtime months

Empirical Orthogonal Function (EOF) analysis is performed to identify the dominant spatial

patterns of interannual variability of freezing days in March, April, and May, respectively. We

discuss here the results of the leading two modes for each month.

For freezing days in March (Figure 3.5), the first EOF mode explains 61.97% of the total

variance with in-phase fluctuation across our study region. The first EOF spatial pattern shows

a relatively large variation in the Ohio Valley and the first EOF time series shows substantial

interannual variability. We conduct the spectral analysis to identify major periods, which reveals

prominent periods of 2.5 to 4.5 year, indicating that the in-phase fluctuation pattern of freezing

days across the region in March occurs every 2.5 to 4.5 years. The second mode only contributes

to 8.3% of the total variance. The second EOF spatial pattern shows opposite phases between the

region encompassing the Ohio Valley, the Southeast, and the Northeast, and the region covering

the Northern Great Plains and the Upper Midwest. The spectral analysis of the second EOF time

series reveals a major period of 6.5 years.

To further understand how the frequency of these patterns associated with large circulations, we

also relate the EOF time series to some teleconnection indices. The result reveals that the first EOF

time series is significantly correlated with positive phase NAO in March as well as December of

the previous year. This indicates that if we observe a positive phase of NAO in the aforementioned

months, the in-phase fluctuation across our study region with a higher intensity over the Ohio Valley
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Figure 3.5: The leading two EOF modes and PC times series for freezing days in March.

is likely to occur in March.

For freezing days in April (Figure 3.6), the first mode of in-phase fluctuations over the domain

explains 56.242%. The first spatial pattern also shows a larger variation across the Northern Great

Plains. The first EOF time series shows inter-decadal variability with major periods of 5 to 7 years.

The second mode accounts for 12.33% of the total variance. The spatial pattern of the second

mode shows out-of-phase variability between the Northern Great Plains and the rest of our study

region, and the time series of it shows interannual variability with major periods of 2.5 to 3.5 years.

The correlation of coefficients between freezing days in April and the three teleconnection indices

reveal that the first EOF time series is significantly correlated to positive phase NAO in February

and negative phase PNA in March and December of the previous year.

For freezing days in May (not shown here), the first mode explains 57.8% of the total variance.

Since in May, some southern areas are in frost-free season, we only observe in-phase fluctuation
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Figure 3.6: The leading two EOF modes and PC times series for freezing days in April.

in the northern part of the study region. And the time series for it shows major periods of 3 to 7

years. The second mode explains 10.71% of the total variance and shows opposite phases between

the Northern Rockies and Plains and the rest of our study region. The time series for it reveals

interannual variability. The relation to teleconnection indices shows that the second mode time

series is significantly related to both positive phases of NAO, PNA, and PDO in May.

To understand the spatial patterns of the two leading EOF modes of freezing days in different

months across our study region in the context of atmospheric circulation anomalies, we regress the

time series of the first two EOF modes of freezing days in March to several monthly anomalous

atmospheric variables, including the 500 hPa geopotential height (H500), 1000 hPa geopotential

height (H1000), the 500-1000 hPa thickness, and the 1000 hPa wind.

The anomalous 500-hPa geopotential height regressed on normalized PC1 in March shows

that this variable is negatively correlated with normalized PC1 throughout our study region, while
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Figure 3.7: The first PC times series for freezing days in March related to atmospheric variables.

anomalous 1000-hPa geopotential height is positively correlated (Figure 3.7). This result indicates

that the overall negative freezing day anomalies over the entire study domain (Figure 3.5) are

associated with lower- (higher-) than-normal 500-hPa (1000 hPa) height and shallower-than-normal

thickness between the two levels. The results for PC2 tells a different story (Figure 3.8) that when

PC2 of freezing days in March is positive, which is associated with the out-of-phase variability

EOF2 spatial pattern in Figure 3.5, the geopotential height is lower than average at the upper level

and below normal at the surface, resulting in a thickness thicker than normal. The regression results

between the anomalous atmospheric variables and NAO in March reveal significant Rossby wave

patterns. The thickness regression pattern of PC1 is similar to that of NAO, which is consistent with

the above conclusion that freezing days in March are significantly correlated to NAO (Figure 3.9).

The 1000 hPa wind anomalies regressed on normalized PC1 and PC2 show similar results, which

are both similar to the result of NAO. This anomalous wind field is characterized by an anomalous

cyclone over the Southern Great Plains and an anomalous easterly wind from the Atlantic to the

Ohio Valley.
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Figure 3.8: The second PC times series for freezing days in March related to atmospheric
variables.

Figure 3.9: Times series of NAO in March related to atmospheric variables.
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3.4 Summary

This study investigates the frequency, severity, and climate background of springtime freeze

event occurrences. We conduct trend analysis for freezing days at each grid point and also at

the region-averaged level. We also use the EOF technique to identify the spatial pattern and

corresponding trend of freezing days each springtime month. And we also use climate variables to

explain these results. The major findings are as follows.

1) Trend analysis at each grid point reveals that freezing days in March show a decreasing trend

across the central and Midwestern US. Trend analysis over the spatially averaged springtime freeze

events, which is significantly correlated to spatially averaged daily minimum temperature, also

reveals a general decreasing trend across the study region. Although the years 2007 and 2012 show

a low frequency of freeze events, considerable crop damage was observed in these two years, as a

consequence of false springs exposing the earlier developed crops to the subsequent freeze events.

2) We then define a variable, freezing area percentage (FAP), over the regions of interest. The

trends for the accumulated springtime are downward with a significance in the Ohio Valley, which

extends the findings in Easterling et al. (2002) from the period 1948-1999 into 1981-2019. To

further investigate the periodicity of monthly FAP values, we relate them to some teleconnection

indices, Niño-3.4, NAO, PNA, and PDO. We conclude that the positive phase of NAO is usually

associated with less freezing risk in March across the study region and the total springtime FAP

values are always significantly associated with the negative phase of PNA values 1-3 months earlier,

except in the Southern Great Plains region.

3) EOF analysis of freezing days in March shows a relatively larger variation in the Ohio Valley,

and the first EOF time series shows substantial interannual variability. And when a positive phase

of NAO in March and December of the previous year occurs, the in-phase fluctuation across our

study region with a higher intensity over the Ohio Valley is expected to occur in March. And this

pattern is likely associated with the geopotential height lower than average at the upper level and

higher than average at the surface and a thickness shallower than normal.

The analysis work done in this study has some limitations. First, to gain better results at the
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subregion level, the study region should be extended to the contiguous United States. We only

get limited parts of the defined subregions of the Northeast, the Southeast, and the Southern Great

Plains. Therefore, the freezing days averaged across these defined regions in this study could not

represent the general trend of the whole region defined in Karl and Knight (1998). Second, to

understand the weather conditions of freeze event formation, specific case studies could be done.

For example, we could select a couple of freeze events that profoundly impact crops’ growth to

investigate the particular weather conditions of wind, temperature, and humidity.

In spite of the limitations of this study, the implications of trends and causes of springtime

freeze events are important for fruit growers in the central and midwestern United States. NAO is

an excellent index to indicate the freeze event occurrences in March. Although the freeze event

occurrences tend to decrease in recent decades, crops are exposed to higher false spring risks,

which will be investigated in the next chapter.
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CHAPTER 4

SPRINGTIME FREEZE EVENTS IMPACTS ON AGRICULTURE

4.1 Background

4.1.1 Springtime freeze types and their impacts on perennials

Different types of freeze events could cause different levels of damage to perennials. Conse-

quently, it is important to understand when and how these freeze events occur and thus find ways

to minimize the impacts of these adverse weather events on crops. Although the terms frost and

freeze are often used interchangeably, they represent two kinds of weather events. The term freeze

is typically used to describe an invasion of a large, frigid air mass from the Arctic or Canadian

regions, which is commonly called the advective freeze (Powell et al., 2000). The advective freezes

tend to occur in a well-mixed boundary layer with strong winds associated with cold fronts or

with the leading edges of polar-origin high-pressure systems (Winkler et al., 2012). Frosts, also

known as the radiative freeze, usually occur under calm, clear conditions on cold nights where

the ground or plant canopy surface cools radiatively more quickly than the air above it, which is

usually associated with high-pressure systems. (Winkler et al., 2012). There are two types of frost:

hoar frost and black frost. Hoar frosts are visible with ice formation, and black frosts are invisible

due to insufficient water vapor (Powell et al., 2000). Empirically, radiative freezes happen more

frequently, and advective freezes result in colder and more extended periods. Both advective freezes

(intrusion of chilled air) and radiative freezes (negative heat energy balance) could significantly

decrease agricultural production. Radiative freezes occur more frequently and are associated with

temperature inversion and are comparatively easier to predict. On the contrary, advective freezes

are less frequent and occur without inversion developing and thus are difficult to predict.

Knowing the type of freeze could help suggest ways of managing crop plantation distributions

since the two types of freeze events produce different damage patterns across the growing region.
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Research has shown that freeze event that damage plants are more often radiative than advective

(Charrier et al., 2015). Radiative freezes typically occur after sunset when the weather conditions

are calm. Since there is no incoming solar radiation adding heat to the system, the outgoing long-

wave infrared radiation cools the ground and thus makes the heat energy balance negative (Charrier

et al., 2015). Therefore, radiative freezes occur more frequently in narrow valleys, in concave or

flat locations, and less regularly in elevated and convex areas more exposed to wind (Lindkvist et

al., 2000). Consequently, proper crop site selection is an effective way to avoid freezing injury

caused by radiative freezes. Hilltops and slopes are considered as good orchard sites from which

relatively cold air can flow downslope away from the orchard site, while landscape depressions are

regarded as poor sites where cold air accumulates at night due to air drainage (Winkler et al., 2012).

In contrast, advective freezes may cause more significant damage by enhancing the heat loss and

cooling of plant tissue (Perry 1998) at those good sites under radiative freezes (elevated and convex

areas more exposed to wind), which are more exposed to wind with subfreezing temperatures

(Winkler et al., 2012). Therefore, the combination of both types of freezes could result in crop

site selection failures. In addition, local topography complexity and variations play an important

role in leading to freezes events formation by influencing temperature and wind in valley or lake

systems (Lindkvist et al., 2000).

4.1.2 False spring occurrences and impacts on crops

Extreme temperature fluctuations during the springtime can have enormous impacts on the

growth of vegetation, and many agricultural and horticultural crops. An extended period of warmer

temperatures, identified as a "false spring", could cause perennial crops to break dormancy and start

their growing season earlier than usual (Kistner et al., 2018). As a result, when the cold air comes

back, these crops are especially vulnerable and susceptible during their bud stages, and, hence,

spring freezes have profound impacts on crops. In 2002, sour cherry production in Michigan was

reduced by at least 95% from the previous annual yields due to springtime freeze events following

the unexpected extended warm spells (NASS, 2002). In April 2007, after an extended warmth
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prompting early growth of vegetation and crops, cold arctic air infiltrated southward into the central

and eastern US, causing temperatures to drop to freezing and thus leading to an estimated $2 billion

of yield reductions for crops such as winter wheat, corn, and forage legumes due to frost burn and

plant mortality (Marino et al., 2011; Kral-O’Brien et al., 2019). During March 2012, a persistent

upper air ridging feature resulted in the warmest temperature anomalies at many locations across

the Midwestern US since 1900 for that month, which brought many crops out of dormancy (Labe

et al., 2015). Near the end of March and throughout April 2012, average temperatures returned to

these regions, resulting in a series of crop yield loss due to freeze damages, including the loss of

approximately 85% of apple crop yields and 90% of tart cherry crop yields for the year in Michigan

(Kistner et al., 2018).

Global climate change has sparked considerable research on extreme weather events and their

impacts on vegetation growth. Nevertheless, research focused on the occurrences, immediate

effects, and long-term consequences of false spring events have been limited, despite their potential

for extreme environmental and economic consequences (Kral-O’Brien et al., 2019). False springs

are related to global warming in the way that the onset of spring has generally shifted earlier in the

year over the past several decades due to rising average temperatures (Allstadt et al., 2015). False

springs, which usually happen in late winter or early spring, are sufficiently mild and long to bring

vegetation out of dormancy earlier, rendering the vegetation vulnerable to later freeze events (Ault

et al., 2013). The later the freeze occurs after growth begins, the more damage is likely to be caused

since plants are in a more vulnerable phenological stage (Marino et al., 2011). Additionally, it is

projected that false spring risks might increase in portions of the Midwestern US (Allstadt et al.,

2015).

4.1.3 Influence of phenology on freeze damage

Freeze events that occur at a different time could result in different injuries to crops. Usually,

freeze events after false springs could cause severe damage to growing crops. Also, phenological

processes are particularly crucial for freeze events avoidance in spring and autumn (Charrier et
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al., 2015). Microclimate factors that affect crop development include chill units, growing degree

hours, and minimum temperatures, varying in diversified topography (Logan et al., 2000). Since

phenological processes are strongly dependent on temperature, microclimate could affect crop

stages by delaying development with cooling and accelerating growth with warming. During

winter, fruit trees in the stage of dormancy are very resistant to cold temperatures. During the

annual cycle of growth and dormancy, the transition periods in autumn and spring are the riskiest

since there is a moderate probability of freezing when plants are most vulnerable (Charrier et al.,

2015). The temperatures that cause damage in spring are much lower than the temperatures that

trees encounter damage in autumn (Larcher et al., 2010). Therefore, moderately low temperatures

in spring could result in deadly impacts on crops. As fruit trees develop in the spring and buds start

to swell, they lose the ability to withstand cold winter temperatures (Longstroth et al., 2012). The

stage of bud development determines how susceptible any given fruit crop is when freeze events

occur (Longstroth et al., 2012). When a spell of unexpected warm weather in the spring occurs, the

plants will develop quickly. And when the temperatures return to normal, these developing crops

that are very vulnerable would suffer significant damages.

4.1.4 Study objectives

This study aims to investigate the historical impacts of springtime freeze event damage on crops

in the Midwestern US from 1981 to 2018. In particular, the study focuses on the first green dates,

bloom dates, poor pollination days, and the bud survival chance of the year for apples using crop

simulation models with input datasets from PRISM. Also, damage days of the year, daily minimum

temperature, and damage occurring dates for each phenology growing stage are included to explore

the impacts of false springs.
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4.2 Dataset and methods

4.2.1 PRISM dataset

PRISM, a gridded analysis dataset provided by the PRISM climate group from Oregon State

University, offers estimates for six essential climate elements: precipitation (ppt), minimum tem-

perature (tmin), maximum temperature (tmax), mean dew point (tdmean), minimum vapor pressure

deficit (vpdmin), and maximum vapor pressure deficit (vpdmax). PRISM has an excellent spatial

resolution of 4 km. Evaluations have been done in the second chapter, and conclusions reveal that

the PRISM analysis dataset generally agrees well with the observations and could represent the

freeze events. As inputs for our apple yield simulation model, we obtained three variables from

PRISM, daily minimum temperature, daily maximum temperature, and daily precipitation.

4.2.2 Apple yield simulation model

A primary cause of year-to-year yield fluctuations in tree fruit production across the United

States and international production areas is bud loss associated with the cold injury that typically

occurs either during the spring or winter seasons (Andresen and Baule, 2018). Bud sensitivity to

cold environmental temperatures is strongly dependent on the phenological stage of development

and generally increases from full dormancy through vegetative into reproductive stages. In this

study, potential seasonal yield losses for apple production associated with cold temperatures were

estimated following the approach of Zavalloni et al. (2006), in which phenological development

and cold sensitivity are simulated on a daily basis using observed maximum and minimum air

temperatures. Estimation of phenological development of apple was based on the methodology of

Rijal (2017) using summed seasonal totals of base 4°C growing degree days from March 1st. Ten

and ninety percent damage threshold temperatures for apples at a number of phenological stages

were obtained from Ballard et al. (1998). In general, the damage threshold temperatures vary from

-34.4ºC during dormancy to -2.2ºC during late vegetative stages through full bloom. Assuming a

linear relationship between the damage severity level and the critical freezing temperatures (Dennis

62



and Howell, 1972), daily percent damage estimates based on observed minimum temperatures were

developed for each phenological stage dormancy through full bloom. Potential yield losses due to

cold temperatures were then generated seasonally at each location as the cumulative sum of daily

cold damage simulated during the season.
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Figure 4.1: Average, absolute variation, relative variation, and trend of the first green date (Julian
date) from 1981 to 2018.

4.3 Results

4.3.1 Characteristics of the yearly results

The crop simulation model outputs two files at each grid point, daily results and yearly results.

The yearly results contain the first green date (’fgreen’ in Figure 4.1, referred to as leaf out in some

literature), the bloom dates, the poor days (in terms of pollination), and the yield (i.e., bud survival

chance). And the daily results provide information about the Growing Degree Day (GDD), the

phenological stage of apples, and the freeze damage.

Figure 4.1 shows characteristics of the first green date, including annual mean, absolute and

relative variation, and the trend. The values are the Julian dates of the year. For example, 60 means

the date of March 1st, which is the early springtime. The average values are latitude-dependent
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with later dates in the northern region and earlier dates in the southern region, similar to the

averaged temperature pattern. For Michigan, we observe a gradual increase from the south to

the north. The first green date in northern Michigan could be around early April, but that in the

upper peninsula could be as late as the middle of May. The interannual standard deviation shows

the absolute variation, while the coefficient of variation is the relative variation calculated as the

absolute variation divided by the mean values. Therefore, the absolute variation of the first green

date indicates that the northern regions have generally smaller variations than the southern regions.

The highest absolute variation is observed in the Southeast of the study region and the lowest in

the Northeast. So the first green date is more variable in warmer regions compared to cold regions.

Since the absolute variation values are generally small compared to the mean values of the first

green date, the relative variations are dominated by the averages, resulting in an opposite pattern

to the mean values. The values in the trend graph are the slopes of the regression of the first green

date on the 18 years, with negative values indicating earlier dates and positive values indicating

later dates. Also, the significant trend is indicated by the grey shades. The results reveal that the

first green dates are becoming earlier in most areas except for some northernmost regions of the

northern plains and Michigan’s Upper Peninsula.

Similar patterns are found for the bloom date (Figure 4.2) that occurs later in the year than the

first green dates. The absolute variations of the bloom date are overall smaller than those of the

first green date, especially across the entire Northeast, where the variations are small. The mean

values still dominate the relative variations. The general trend of the bloom date is still becoming

earlier. However, more areas of the Northern Great Plains and the Upper Midwest show later bloom

dates. Also, more significant points are shown in the Southern Great Plains, the Northeast, and the

Southeast.

The patterns for the poor pollination days, however, are different (Figure 4.3). The mean value

pattern is not latitude-dependent. Most areas of our study region show values from 2 to 3 days. And

large values are observed across the Ohio Valley and part of the Northern Great Plains. Most of

the areas show an interannual standard deviation of fewer than two days. However, the large mean
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Figure 4.2: Average, absolute variation, relative variation, and trend of the bloom date (Julian
date) from 1981 to 2018.

value areas also show larger absolute variations of around three days. The relative variation shows

an exactly different pattern, which reveals large values in the Northern and the Southern Great

Plains. Also, since the absolute variation values are in the same magnitude as the mean values, the

relative variations are not dominated by the mean values. Regression of poor pollination days over

the years reveals that the poor days increase across most of our study regions from 1981 to 2018,

with noticeable significance in the Northern Great Plains, the Upper Midwest, and the Northeast.

On the contrary, the poor days in the northern part of the Ohio Valley and the southern part of the

Southern Great Plains significantly decrease throughout our study period.

Similar to poor pollination days, the pattern for the mean bud survival chance is also not

latitude-dependent (Figure 4.4). The values are larger in the Upper Midwest and the Northeast than

in the rest of the regions. It is noteworthy that the mean values around lakeshores are consistently
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Figure 4.3: Average, absolute variation, relative variation, and trend of the yearly poor
pollination days from 1981 to 2018.

high throughout the study period, which could be a result of the large bias in the input PRISM

data in lake-modified areas, as discussed in Chapter 2. The large bias in the input data may also

explain the small values in the interannual standard deviation in areas along the shorelines. The

largest absolute variations are observed in the Northern Great Plains. Southern Michigan and the

west of the Southern Great Plains show smaller absolute variations compared to other areas. It is

also noticeable that there’s a highlight region in the upper part of Michigan, which shows smaller

bud survival chances and larger standard deviations compared to other parts of Michigan. Since

the absolute variation pattern is consistent with the mean pattern, the relative variation pattern is

still consistent, which is the opposite of the mean pattern. Regression of bud survival chance over

the years reveals that most areas of our study region increase throughout our study period. And

Wisconsin and the southern part of the Ohio Valley show significant increases.
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Figure 4.4: Average, absolute variation, relative variation, and trend of the yield (bud survival
chance) from 1981 to 2018.

4.3.2 Daily Results and some derived indices

Freeze damage on each day is characterized by a fraction number less than 1.0 in the daily

output files. Therefore, we could know the days when damage occurs and also the intensity of the

damage. Also, we could know the date when the damage occurs, the phenological stage of the

plant when damage occurs, in addition to the daily minimum temperature when damage occurs.

We conduct some analyses based on these results.

Figure 4.5 shows the results for yearly accumulated damage days. Since the bud survival chance

and the damage fraction numbers add up to 1.0, the mean pattern of damage days is the opposite

of that of the bud survival chance. In contrary to the yield values, damage days around the Great

Lakes Regions are fewer compared to other areas. The interannual standard deviation graph tells

us that the areas where more damage days occur also show higher amplitudes of perturbations.
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Figure 4.5: Average, absolute variation, relative variation, and trend of damage days from 1981 to
2018.

The results are characterized by lower variability in the Upper Midwest and the Northeast versus

higher variability in the Southern Great Plains, the southern Ohio Valley, and the Southeast. The

relative variation pattern tells a different story. Divided by the averages, the amplitudes around

the Great Lakes Regions and the Northeast are larger than other areas. The trend of damage days

across our study region is overall downward, which is the opposite of the bud survival chance. And

significant increases are observed in the Southern Great Plains. It is also noteworthy that most

areas of Michigan show a slight upward trend of damage days.

Figure 4.6 shows the average damage days at each growth stage. Stages are defined according

to the running total of base 4 oC growing degree days each year, calculated based on temperature.

By definition, we have Stage 0 and from 2 till 9 without Stage 1. In Stage 0, damage only occurs

in the northernmost regions near the US and Canada border, which is expected because of the
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Figure 4.6: Average of damage days at each growth stage from 1981 to 2018.

temperature-dependence. In Stage 2, damages occur over large areas of the Southern Great Plains

and in parts of the southern Ohio Valley and the Southeast. Damage areas stay in these regions

through the rest of the stages, with the number of damage days and the areas influenced becoming

smaller in Stages 3 -7, and larger again in Stages 8 and 9.

The trends of the damage days for each stage can be determined by regressing the time series of

average damage days during each growth stage on the time series of the years over the study period

(Figure 4.7). The damage days in Stage 0 that occur over the northern Plain exhibit a downward

trend. On the contrary, the trends are generally upward in regions of the southern Plains, especially

for Stage 2 and Stage 9.

Except for Stage 0, the dates when damage occurs during each growth stage show latitude-

dependence with progressively later dates towards north. (Figure 4.8). In Stage 0, damage only

occurs in the northern parts of the Great Plains and the Midwest as well as parts of the Ohio Valley.
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Figure 4.7: The trend of damage days at each growth stage from 1981 to 2018.

The damage across these regions happens around similar dates, with a slight delay in northern

Michigan and Wisconsin, possibly due to the lake effect. In Stage 2, damage happens from late

February in the southern edge of the study region to late March and early April in the southern

Plains and the Ohio Valley, and from late April to early May in the northern Plains and upper

Midwest. Similar delayed occurrence towards northern latitudes also occurs during other stages.

The trend analysis (Figure 4.9) reveals that, in general, the occurring damage dates are becoming

earlier across the study region over the 38-year study period, especially for Stage 9 when damage

occurs much earlier across southern Michigan and northern Ohio. The only exception is Stage 0,

during which damage in Michigan and Wisconsin happens significantly later.

The spatial patterns of the average damage days and the dates when damage occurs are consistent

with the patterns of daily minimum temperature during the damage days (Figure 4.10). In Stage

0, the daily minimum temperatures during damage days are below -10 °C. Then in Stage 2,

71



Figure 4.8: The average of freeze damage occurring date at each growth stage from 1981 to 2018.

most damage occurring in the Southern Great Plains with daily minimum temperature from -8

°C to -6 °C, while in the Upper Midwest with daily minimum temperature from -6 °C to -4 °C.

Then the daily minimum temperatures for Stage 3 and Stage 4 are similar, from -5 °C to -3 °C

across our study region. Then as the phenology marches into later stages, the daily minimum

temperatures are higher. Generally, the damage occurring in the northern areas with higher daily

minimum temperatures compared to the southern areas. The regression analysis (Figure 4.11)

reveals that the daily minimum temperatures are overall becoming warmer during damage days.

And larger trend values are only showing around the Great Lakes Region compared to other areas.

It is noteworthy that the areas showing earlier damage occurring dates in Figure 4.9 show daily

minimum temperature trends upward. Therefore, we conclude that damage is generally occurring

on earlier and warmer days. This conclusion could be related to the ’False Spring’ occurrences.

False springs are related to the global warming trend in the way that the onset of spring has generally
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Figure 4.9: The trend of freeze damage occurring date at each growth stage from 1981 to 2018.

shifted earlier in the year with rising average temperatures. As a consequence of earlier springs and

increasing temperatures, the damage is occurring earlier with warmer temperatures.

73



Figure 4.10: The average daily minimum temperature during damage occurring date at each
growth stage from 1981 to 2018.
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Figure 4.11: The trend of daily minimum temperature during damage occurring date at each
growth stage from 1981 to 2018.
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Following the division of the subregions in Chapter 3, we calculate the damage days averaged

across different subregions (Figure 4.12). We first calculate the annual damage days at each grid

point and then compute the spatial average in each subregion. Therefore, each subregion has a

time series of damage days. We find damage days show an abrupt high value in 2012 in the Upper

Midwest and the Northeast, which is consistent with the severe damage to crops reported during

that year. The annual mean damage days and standard deviations range from 1.56 days yr-1 and

0.99 yr-1 over the Upper Midwest to 7.88 day yr-1 and 4.85 days yr-1 over the Southern Great

Plains. The time series of damage days across different subregions suggests that the Southern Great

Plains and the Southeast are not favorable for apple growth, whereas the Upper Midwest is most

suitable for apple growth as far as the risk of freeze damage is concerned. Although only a small

part of the Northeast is covered in our study, the result shows that the Northeast is also favorable

for apple planting.

To further examine the regional differences of the damage days for each growth stage, we count

the annual damage days over each growth stage at each grid point and average over all grid points

in each subregion. We then sum the annual mean over the 38 years for each subregion, and the

results are shown in Figure 4.13. First, the results reveal that there are more damage days occurring

in the first two phenological stages since we know that crops are more vulnerable at early growing

stages. The Upper Midwest and the Northeast show lower values for all nine stages compared to

other regions. Also, there are no damage days during Stage 0 for the Southern Great Plains and

the Southeast and almost no damage days during Stage 0 for the Ohio Valley and the Northeast.

For most regions, the largest number of damage days occur during Stage 2, while for the Upper

Midwest, most damage days occur during Stage 0. Damage days for other stages vary from region

to region.

A similar calculation is done for annual damage values to understand how damage intensity

varies with stage and region (Figure 4.14). It turns out that the Upper Midwest and the Northeast

not only have fewer damage days but also show lower damage intensity, which is contrary to the

Southern Great Plains and the Southeast. Also, the results reveal that Stage 2 and Stage 3 show the

76



Figure 4.12: The time series of area-averaged damage days in six subregions from 1981 to 2018.

largest damage intensity of all nine stages for all our subregions. Therefore, for the six subregions

except for the Upper Midwest, Stage 2 not only shows the most damage days but also shows the

most intense damage. Although Stage 0 shows the most damage days in the Upper Midwest, the

damage values for Stage 0 are not large. Hence, Stage 2 is the phenological stage that considerable

damage might be most likely to occur.

The region- and stage-dependence of daily minimum temperature (Figure 4.15) shows a general

increasing trend from the earlier stages to the later stages. However, for the Northern Great Plain and

the Upper Midwest, the daily minimum temperatures during Stage 8 are higher than those during

Stage 9. Also, for the two considerable damage occurring regions, the Southern Great Plains and

the Southeast, the daily minimum temperatures during Stage 9 increase almost twice from Stage 8,

indicating a significant temperature change. Combined with Figure 4.14, we conclude that nearly
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Figure 4.13: The sum of damage days at each growth stage in six subregions from 1981 to 2018.

no significant damage occurs during Stage 9 as the temperature increases.

The spatial and time-averaged daily minimum temperature on damage days only (Figure 4.16)

reveal that the daily minimum temperatures during damage days of the Upper Midwest and the

Northeast are generally higher than in other regions, consistent with the conclusion that these

two regions have the least damage. At Stage 2, the phenological stage when the most severe

damage occurs, the Upper Midwest and the Northeast show almost 1 Degree Celsius higher than

the Southern Great Plain, where the most severe damage occurs. The daily minimum temperatures

during damage days at Stage 2 for the two least freeze-damaged regions are above -6 °C, while

those for other regions are all below -6 °C. There are sharp daily minimum temperature increases

during damage days from Stage 2 to Stage 3 and from Stage 4 to Stage 5.

Finally, the spatial and time-averaged damage-occurring dates for each growth stage (Figure
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Figure 4.14: The average of damage values at each growth stage in six subregions from 1981 to
2018.

4.17) reveal a large increase from an average Julian date of 20 for Stage 0 to an average Julian date

of more than 60 for Stage 2. Then from Stage 2 to Stage 9, the dates increase gradually. The two

most severe damage-occurring regions, the Southern Great Plains and the Southeast show much

earlier damage-occurring dates compared to other regions.
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Figure 4.15: The average daily minimum temperature at each growth stage in six subregions from
1981 to 2018.
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Figure 4.16: The average daily minimum temperature during damage days at each growth stage in
six subregions from 1981 to 2018.
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Figure 4.17: The average damage-occurring dates at each growth stage in six subregions from
1981 to 2018.
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4.4 Summary

This study investigates the historical impacts of springtime freeze event damage on crops in

the central and midwestern US from 1981 to 2018 using crop simulation models with input datasets

from PRISM. In particular, the variables examined in this study include the first green dates, bloom

dates, poor pollination days, and the bud survival chance of the year for apples. Also, damage days

of the year, daily minimum temperature, and damage occurring dates for each phenology growing

stage are included to explore the impacts of false springs. The major findings are as follows.

1) Trend analysis for the onset dates of springs reveals a tendency towards earlier first green

dates and bloom dates during our study period, indicating earlier springs in recent decades. This

earlier shift of springs could result in more frequent false spring occurrences. Also, the onset of

spring dates is more variable in the warmer southern regions than the colder northern regions.

2) Higher bud survival chances and fewer poor pollination days with lower variation around the

Great Lakes Region than other regions in the Midwestern and Central US are shown in our results,

indicating the favorable growing conditions for apples in these areas. This result is consistent

with the fewer freeze damage risks in the Upper Midwest and the Northeast with lower variability

compared to the Southern Great Plains and the Southeast.

3) Damage is generally occurring on earlier and warmer days, which could be a consequence of

more frequent ’False Spring’ occurrences. As a result of the global warming trend, earlier springs

and increasing temperatures lead to damage occurring earlier with warmer temperatures.

4) We also observe damage days show an abrupt high value in 2012 in the Upper Midwest and

the Northeast, which is consistent with observed severe damage during then. This abrupt change is

not observed in other defined regions.

5) There are more damage days in stage 2 with higher severity since apples are vulnerable

during the early growing stages. This information suggests that if apples begin their growing

seasons earlier, they could suffer from significant damage due to subsequent freeze events.

6) The Midwest and the Northeast are two regions favorable for apple planting since these

two regions show fewer damage days with lower damage intensity and also higher daily minimum
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temperature during damage occurring days, while the Southern Great Plains and the Southeast are

in the opposite.

This study simulates the historical yields of apples to show the impacts of false springs with some

limitations. First, the crop simulation model only takes inputs of temperatures and precipitation,

which might be problematic since crop growth could be related to more complicated factors.

Second, how this simulation model represents the observations needs to be evaluated. Some

observational records could be used to testify the model’s behavior. Also, if this model is reliable,

some future projections could be made to provide some valuable predictions for apple planters.

Despite the limitations, this study provides helpful information for apple planters about the damage

occurring earlier with warmer temperatures due to false springs.
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CHAPTER 5

CONCLUSION

This research focuses on the climatology of springtime freezes and their impacts on agriculture,

especially for the central and eastern United States. Chapter 2 assesses ERA5 reanalysis and

PRISM analysis datasets by comparing them to station observations at selected locations. Chapter

3 investigates the frequency, severity, and potential causes of springtime freeze event occurrences.

The Impacts of false springs and subsequent freeze events are examined in Chapter 4.

In Chapter 2, ERA5 and PRISM reanalysis products are compared to station observations.

The conclusion is that the PRISM dataset, demonstrating a better agreement of temperatures with

observations, could be used as a proxy to represent observed freeze events. Root mean squared

errors (RMSDs) and bias are calculated to evaluate how the gridded datasets agree with the

station observations. Gridded reanalysis datasets tend to reduce the observed daily cycles. At a

daily level, ERA5 underestimates daily maximum temperature while overestimates daily minimum

temperature, resulting in reduced daily cycles. In contrast, PRISM tends to overestimate both

daily minimum and maximum temperature. Since daily maximum temperatures are measured in

more mixed conditions, the observations should agree with the area-averaged gridded datasets to

a larger extent than daily minimum temperatures. Both gridded datasets show better results for

daily maximum temperature than daily minimum temperature, as shown in the lower amplitudes of

perturbations of the time series and the smaller values of RMSDs of daily maximum temperature.

Lake effects are shown by large RMSDs and Bias and also large perturbations of time series of

near-lake stations for both gridded datasets. PRISM shows excellent ability in capturing different

types of freeze events for both wintertime and springtime. Generally, freeze events are caught in a

better way during wintertime than other seasons.

In Chapter 3, we investigate the frequency, severity, as well as climate background of springtime

freeze event occurrences. Trend analysis and EOF analysis are conducted to reveal the characteris-

tics of freezing days during the springtime. Our results indicate a general decreasing trend in the
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frequency of springtime freeze events. Considerably damage years of 2007 and 2012 show a low

frequency of freeze events, indicating the profound impacts of false springs that expose the earlier

developed crops to the subsequent freeze events. By dividing our study region into six subregions,

we observe significant downward trends for the total freezing days during the springtime in the

Ohio Valley, which extends the findings in Easterling et al. (2002) from the period1948-1999

into 1981-2019. By relating the area-averaged freezing days to some teleconnection indices, we

conclude that the positive phase of NAO is usually associated with less freezing risk in March

across the study region. EOF analysis of freezing days in March shows a relatively larger variation

in the Ohio Valley, and the first EOF time series shows substantial interannual variability. When a

positive phase of NAO shows in March and December of the previous year, the in-phase fluctuation

across our study region with a higher intensity over the Ohio Valley tends to occur in March. And

this pattern is usually associated with the geopotential height lower than average at the upper level

and higher than average at the surface and a thickness shallower than average.

Chapter 4 investigates the historical impacts of springtime freeze event damage on crops in the

central and midwestern US from 1981 to 2018 using crop simulation models with input datasets

from PRISM. Our results reveal that the onset of springs is shifted earlier in recent decades with

the indicators of first green dates and bloom dates that are more variable in the warmer southern

regions than the colder northern regions during our study period. This earlier shift of springs is

associated with more frequent false spring occurrences. Results also reveal that the Upper Midwest

and the Northeast are less vulnerable to freeze damage for apple planting than the Southern Great

Plains and the Southeast indicated by higher bud survival chances, and fewer freeze damage risks

with lower variability. Damage is generally occurring on earlier and warmer days as a consequence

of more frequent ’False Spring’ occurrences. There are more damage days in Stage 2 with higher

severity since apple is vulnerable during the early growing stages.

There are some limitations in this research, as discussed in more detail in the individual chapters.

Wind speed and direction that have profound impacts on freeze event formation are not evaluated in

Chapter 2. Also, precipitation data needs to be assessed between the gridded datasets and stational
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observations. In Chapter 3, limited by our study region, our subregions could not exactly represent

the regions defined in Karl and Knight (1998). Specifically, the Northeast, the Southeast, and the

Southern Great Plains are only parts of the regions defined in Karl and Knight (1998), leading to

a misrepresentation of the conclusions of freeze events over these regions. In addition, specific

weather conditions need to be investigated to understand the causes of freeze event formation. In

Chapter 4, the crop yield simulation model should be not only evaluated but also improved. Also,

some future trends of damage risks could be projected to provide guidelines for fruit growers.

In conclusion, the most valuable information that could provide fruit growers is that associated

with global warming, fewer springtime freeze events but more frequent false spring events occur

in recent decades. The damage to crops occurs on earlier and warmer days in recent decades.
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APPENDIX
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A.1 Impacts of Soil Moisture on Springtime Freeze Events

The thermal conductivity of the soil depends on its mineralogical composition, texture, as

well as its water content (DeVries et al., 1986). Since soil moisture change has a profound effect on

soil temperature, soil reflectance, and soil heat storage (AL-KAYSSl et al., 1990), it is questionable

how the soil moisture change affects the apparent temperature, which is closely related to the heat

balance between the ground and above atmosphere. When soils hold more water, the ability to store

and transfer heat during the night is enhanced. The results from AL-KAYSSl et al. (1990) reveal

that an increase in soil moisture content decreases the soil temperature difference between day-time

and night-time. And this decreased temperature change could protect plant root systems from sharp

and sudden changes in soil temperature (AL-KAYSSl et al., 1990). Finally, plant growth rate and

yield might increase due to the modification of plant climate at higher soil moisture content. This

valuable information could provide crop growers with instructions on when and how to protect their

crops confronting a predicted sudden and extreme freeze event.

This study investigates the impacts of increasing soil moisture content on 2m air temperature

change. With the application of a deterministic regional-scale numerical forecast model, this study

aims to investigate the extent of how the soil moisture change affects the daily minimum temperature

change in the Great Lakes Region.

We use NAM (the North American Mesoscale Forecast System) analyses to initiate our

model configuration. NAM is one of the major weather models run by the National Centers

for Environmental Prediction (NCEP) for producing dozens of weather variables, from temper-

ature and precipitation to turbulent kinetic energy. The NAM generates multiple grids (or do-

mains) of weather forecasts over the North American continent at various horizontal resolutions

(https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-

system-nam). We take input data from NAM analyses and then use WRF (Weather Research and

Forecasting) model to forecast how the temperature is sensitive to soil moisture change.

Specifically, we conduct WRF sensitivity studies to investigate the sensitivity to changing

vertical resolution and changing initial soil moisture settings. We observe two noticeable freeze
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events on the nights of May 8th and May 12th. Therefore, based on these two events, we conduct

a series of studies. Before we modify any parameters, we first compare the WRF model outputs

to observations to know the representation of the WRF outputs. As shown in Figure A.1.1, the

WRF outputs measure soil moisture values at different layers compared to the observational data at

Williamsburg. The results reveal that the WRF simulations consistently overestimate the moisture

values at the upper soil levels and underestimate them at the bottom layer for both these two freeze

events (May 8th and May 12th) at this location. Then we compare other weather variables at three

stations, East Lansing, Gaylord, and Williamsburg. The results reveal that for both two freeze

events, WRF outputs capture the daily cycles well for all three variables, air temperature, relative

humidity, and wind speed, and the difference values vary by location. We compare WRF air

temperatures at 2m to observational air temperatures at 1.5m (Figure A.1.2). The differences range

from -5 degrees to 5 degrees. Generally, WRF outputs underestimate maximum air temperatures

in the afternoon and overestimate minimum air temperatures during the night. This bias is just

what we expect since WRF outputs are area-averaged results, which should reduce the daily cycle

amplitudes. It is noteworthy that in the graph, we note the time from WRF outputs, which is the

standard UTC that is four hours earlier than the local eastern time. WRF does not show excellent

behavior in representing the relative humidity since relative humidity is sensitive to temperature

values. For wind speed comparison, we also show that WRF outputs tend to overestimate the

minimum velocity during the night while tend to underestimate the maximum velocity in the

afternoon. Also, it is noteworthy that we are comparing WRF wind speed at 10m to observational

wind speed at 3m.

Since PRISM has been evaluated in Chapter 2, we choose to use PRISM as a proxy to represent

the observational daily minimum temperature values to assess WRF outputs’ quality. As shown

in Figure A.1.3, WRF captures the spatial variation on May 8th. We use a linear model, OLS

(ordinary least squares) regression model, to quantitatively investigate how the WRF outputs fit

the observation values from PRISM. Our results reveal that WRF outputs represent 68.3%, 27.1%,

31.8%, and 1.1%, respectively, for May 8th, May 9th, May 12th, and May 13th, as shown in the
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Figure A.1.1: Differences of soil moisture between WRF outputs and observations at
Williamsburg.

East Lansing Gaylord Williamsburg
30 levels 2.172 2.1566 1.898
38 levels 2.3653 2.0065 1.9866
40 levels 2.3213 2.068 1.3364
45 levels 2.3725 2.0733 1.3687

Table A.1.1: RMSDs of air temperature between WRF and observations at three locations for 48
hours from May12th to May13th with different vertical resolutions.

R squared values from the OLS model. Except for May 13th, WRF generally captures the spatial

characteristics over the Great Lakes Region.

Then we try to understand how the higher vertical resolution affects the representation of WRF

outputs. By modifying the initial vertical layer setting, we run WRF with 30 levels, 38 levels,
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Figure A.1.2: Differences of air temperature between WRF outputs and observations at three
locations.

Figure A.1.3: Comparison of daily minimum air temperature between WRF and PRISM on May
8th.
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East Lansing Gaylord Williamsburg
30 levels 1.6087 1.6753 1.5199
38 levels 1.5629 1.6919 1.8894
40 levels 1.267 1.1656 1.6803
45 levels 1.3944 1.3109 1.8251

Table A.1.2: RMSDs of wind speed between WRF and observations at three locations for 48 hours
from May12th to May13th with different vertical resolutions.

40 levels, and 45 levels. We increase the vertical resolution at lower levels. We do not observe

a general improvement in the comparison between model outputs and observations at the three

selected locations for air temperature and wind speed for 48 hours from May 12th to May 13th.

Varying by location and variables, increasing the vertical resolved resolution improves temperature

representation in Gaylord and Williamsburg and wind speed representation in East Lansing and

Gaylord (Table A.1.1 and Table A.1.2). It is interesting to show that when increasing the layers

from 40 to 45, usually the RMSDs are not becoming smaller; instead, larger RMSDs are observed

in our simulations. From the results of the OLS model, we also reveal that increasing the vertical

resolution does not necessarily improve the representation of the spatial characteristics of WRF.

Next, we examine how the air temperature is affected by an increase in soil moisture. We first

run the WRF simulation without any changes in the initial input data. Then we get the original

daily minimum air temperature for four days, as shown in the left column of Figure A.1.4. Then

we change the soil moisture values in the input data by multiplying the original values by 1.05,

increasing the initial soil moisture by 5 percent. The results are just as we expect; the daily

minimum air temperatures on four different days are all increased less than 1 degree. However,

it is not always physically reasonable to increase the soil moisture by multiplying a factor. As

shown in Figure A.1.5, the maximum and minimum soil moisture values actually depend on the

soil categories. For example, sandy loam is the type of soil that shows the best ability to store water.

So we also change the soil moisture values to the maximum and minimum values based on the

soil types (Figure A.1.6 and Figure A.1.7). The results reveal that decreasing soil moisture to the

minimum values considerably decreases daily minimum temperatures with a maximum amplitude
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Figure A.1.4: Daily minimum temperature changes in response to increased soil moisture by a
factor of 1.05 on May 8th and May 9th.

of 8 degrees, which is larger than the magnitude of changing soil moisture to maximum values.

In conclusion, this case study provides valuable information for crop growers that irrigation

before predicted freeze events could help to protect crops from severe damage due to the positive

response of temperature to increased soil moisture.

94



Figure A.1.5: Daily minimum temperature changes in response to increased soil moisture by a
factor of 1.05 on May 12th and May 13th.
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Figure A.1.6: Major soil categories in our study region.

Figure A.1.7: Soil moisture change based on soil types on May 8th and May 9th.
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Figure A.1.8: Soil moisture change based on soil types on May 12th and May 13th.
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