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ABSTRACT 
 

GENETICALLY ENGINEERED MOUSE MODELS PREDICT ACTIONABLE MUTATIONS IN HUMAN CANCERS 
 

By 
 

Matthew Richard Swiatnicki 
 

 In the United States alone, cancer claims the lives of over 600,000 people a year.  While progress 

has been made in understanding this complex set of diseases, more work is needed if we are to end our 

struggle with cancer.  Bioinformatics analysis and genetically engineered mice are important tools for 

understanding the biological complexities of cancer.  When combined, these approaches can be an 

important avenue to uncover disrupted cellular pathways contributing to cancer formation.  While 

genetically engineered mouse models are important for the study of cancer, genome sequence analysis 

of many of these models is lacking.  Within this work, we sequenced whole genomes of two genetically 

engineered mouse models of cancer, MMTV-Neu and MMTV-PyMT.  Through this sequence data, we have 

found numerous disruptions to pathways contributing to the metastatic cascade.  These include tumor 

signatures associated with defective mismatch repair, as well as numerous genomic mutations within cell 

adhesion genes. 

 More importantly, we have uncovered a conserved V483M missense mutation within the protein 

tyrosine phosphatase receptor type H (Ptprh) gene.  Within mice, tumors harboring a Ptprh mutation 

correlate with increased phosphorylation of the epidermal growth factor receptor (EGFR).  EGFR is a 

known oncogene that is mutated in numerous cancers, including non-small cell lung cancer (NSCLC).  Lung 

cancer is the number one cancer cause of death in the United States.  Often, prognosis for lung cancer is 

poor, often due to late diagnosis.  NSCLC patients with mutations in EGFR typically have a more favorable 

prognosis, due to treatment with tyrosine kinase inhibitors.  More research is needed to improve survival 

rates of lung cancer patients who do not present with mutations in EGFR.   



 
 

Within NSCLC, 5% of patients have mutations in PTPRH, and many of these mutations correlated 

with increased EGFR activity as well as PI3K/AKT activity.  If PTPRH mutant patients have increased 

activation of EGFR and would benefit from TKI therapy, this presents a unique opportunity to treat a large 

subset of cancer patients with an FDA approved therapy.  CRISPR KO of PTPRH within the H23 lung cancer 

cell line resulted in increased phosphorylation of EGFR and downstream AKT.  Furthermore, PTPRH mutant 

NSCLC cell lines H1155 and H2228 respond to the tyrosine kinase inhibitor osimertinib.  In vivo osimertinib 

treatment of nude mice injected with H2228 cells also shows partial response, suggesting PTPRH mutant 

patients may benefit from EGFR therapy.
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This work is dedicated to my family, especially to my grandmother Rita Swiatnicki 
who passed from breast cancer in 2003. 

May we one day find a cure to ease the suffering for all those 
who toil with the affliction of cancer. 
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CANCER AS A GENOMIC DISEASE 
 

Current scientific paradigm surrounding the onset of cancer involves gene mutations leading to 

dysregulation of cellular pathways controlling proliferation, apoptosis, and cellular maintenance.  Often, 

mutations in a few oncogenes or tumor suppressor genes lead to oncogenic transformation of a cell [1–

4].  This is exemplified through the current model of colorectal cancer, which often relies on mutations in 

the tumor suppressor APC (Adenomatous polyposis coli), followed by mutations in the proto-oncogene 

KRAS (Kirsten Rat Sarcoma) to develop a malignancy [5–9].  With recent cost reductions in sequencing 

technologies, whole genome or whole exome sequencing has been completed on hundreds of thousands 

of human tumors.  This has revealed differing mutation burdens across various forms of cancer, with 

certain cancers such as glioblastomas harboring few mutations, and others such as colorectal cancers 

harboring a large number of mutations [4].  Analyzing whole genome sequence data has also revealed the 

importance of non-exonic mutations within cancer formation.  Genetic mutations in regions important for 

gene regulation, such as gene promoters, can impact tumor formation and growth.  Analyzing the impact 

of non-exonic mutations is a quickly growing area within the cancer field. 

Mutations to the genetic code can be broadly classified into two categories.  These include small 

structural changes such as single base pair mutations (SNVs) and small insertions and deletions (in/dels), 

as well as larger structural changes such as amplification or deletion events (CNVs) and translocations.  

While the vast majority of single base pair mutations are synonymous, resulting in no changes to protein 

structure, nonsynonymous and nonsense mutations can lead to amino acid shifts or truncated proteins 

that alter protein function.  Examples of SNVs contributing to cancer formation are L858R EGFR mutations 

in lung cancer, and various amino acid shifting KRAS mutations that occur in numerous cancers [10, 11].  

Large amplification or deletion events within the genome can result in cancer through disruption of a 

single gene or multiple genes.  This is evidenced within human epidermal growth factor receptor type 2 

(HER2) breast cancer patients, where amplification of the HER2 oncogene contributes to oncogenic 
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transformation [12].  Translocations are also capable of inducing cancer through a number of mechanisms, 

including fusing active gene promoters with known oncogenes, or simple truncation of a gene.  An 

example of translocations contributing to cancer formation lies within chronic myelogenous leukemia 

patients, where a translocation between chromosomes 9 and 22 fuses the C-ABL  (Abelson tyrosine kinase) 

oncogene with an active BCR (Breakpoint cluster region protein) promoter [13–15].  Mutations and 

structural changes affecting gene promoters, splice sites, and other regions important for gene regulation 

are now becoming more appreciated for their ability to cause cancer [16–18]. 

With the realization that cancer is largely a disease of underlying genetic mutations, much debate 

has swirled around the contribution of factors underlying these mutations.  There are currently thought 

to be three mechanisms for the onset of genetic insults, including heritable germline mutations, random 

mutations originating from DNA replication errors, and errors introduced by environmental mutagens.  

Heritable germline mutations are perhaps the easiest to trace, but account for the least amount of cancer 

incidence.  Heritable BRCA1/2 mutant breast cancers account for approximately 25% of all breast cancer 

cases, while heritable mutations in RB1 account for 40% of retinoblastoma cases [19, 20].  When analyzing 

overall cancer rates however, The National Cancer Institute (NCI) estimates germline mutations account 

for approximately five to ten percent of all cancers. 

Approximately 90% of cancers occur due to environmental factors and random chance, however 

there has been much debate over the contribution of these two factors to cancer incidence.  Samuel 

Epstein’s ‘The Politics of Cancer’ attributes the majority of cancers to increasing environmental pollution 

via carcinogens [21].  This notion is supported through a slew of epidemiological evidence, such as migrant 

cancer rates shifting towards rates of their adoptive countries [22], and higher cancer incidence seen in 

areas located in close proximity to heavy industrial presence [23–25].  However, these statements are 

more complicated when looking below the surface level.  For instance, other studies have shown migrants 

adopt rates of cancer similar to their adoptive country for only certain cancers, while other cancers 
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maintain rates to that of their country of origin [26, 27].  The most well known environmental factor 

contributing to increased cancer rates is smoking.  By the 1960s, there were numerous epidemiological 

and animal studies showing a link between smoking and lung cancer [28–30].  Since then, the data has 

evolved to show an overwhelming amount of evidence linking smoking to cancer.  This includes genomic 

studies showing differing mutation profiles of lung cancer patients who smoked, versus those who haven’t 

[31, 32]. 

 In a shift from Epstein’s line of thinking, some recent evidence suggests a majority of cancers 

occur by chance, due to random mutations within the genome [33].  This evidence was based on 

correlations between the number of stem cell divisions occurring within particular tissues, and the cancer 

incidence within those tissues.  This paper has come under fire for a number of reasons, namely, another 

group was able to show the correlation held in a hypothetical scenario where cancer incidence was high 

due to environmental effects [34].  A series of letters to Science has also pointed out that the original 

Vogelstein study didn’t include breast and prostate cancer in their analysis, two cancers thought to be 

highly impacted by environmental factors [35–37].  These letters also point out a potential flaw in the 

Vogelstein statistical analysis, showing that the confidence limits would actually be +/- 30, meaning the 

rates of incidence could be 30 times less or greater than their predicted value.  More recent data from 

Vogelstein and other groups have reiterated the importance of random DNA replication errors in the 

formation of cancer [38, 39].  They prudently pointed out however, that these studies don’t diminish the 

impact environmental mutagens have on the formation of cancer. 

 Questions surrounding the impact of certain gene mutations are important considerations for 

cancer biologists.  While tumors often carry a high mutational burden, it has been traditionally thought 

that only a few mutations, dubbed ‘driver mutations’, contribute to tumor progression.  A vast majority 

of the remaining mutations are dubbed ‘passenger mutations’, and thought to have little impact on tumor 

progression [4].  More recent data however has suggested that whether collectively or individually, 
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passenger mutations may have more of an impact on tumor progression than previously thought [40–42].  

With the development of MITE-seq (Mutagenesis by integrated tiles), the effect of every possible amino 

acid substitution within an individual gene can be determined [43, 44].  While this technology shows 

promise for investigating passenger mutations within individual genes, completing this assay for each 

gene with the exome remains a tall order.  Many important questions surrounding passenger mutations 

remain.  Do these passenger mutations arise within pre-neoplastic tissue, or after tumor formation?  

Furthermore, how do these mutations contribute to the metastatic process of cancer?  Future studies 

involving single cell, and MITE sequencing may be able to resolve some of these questions. 

EFFICACY OF MOUSE MODELS  

In cancer research, the use of mouse models is often two-fold.  The first includes studying cancer 

associated oncogenes, pathways, and histology, in other words, studying cancer itself.  The second 

includes utilizing mouse models to study the safety and efficacy of drug treatments.  In the two 

subsections below, I will touch on both of these uses. 

I. MICE AS A CANCER MODEL 

This subsection of the introduction has previously been published as a review in the Journal of 

Mammary Gland Biology and Neoplasia titled “How to Choose a Mouse Model of Breast Cancer, a 

Genomic Perspective”.  Portions of the review not applicable to this thesis were excluded.  While the 

review focuses specifically on mouse models of breast cancer, the principals can be applied to mouse 

models of various other cancers.   

 CARCINOGEN BASED MODELS 

A common method for modeling breast cancer is through mouse model systems.  Currently there 

are numerous systems, each with advantages and disadvantages, used to generate different models.  

Modeling cancer in animals began with the application of coal tar on rabbits and mice, leading to the 

formation of tumors [45].  Since that point, a wide array of carcinogens employed in mice have been used 
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to study cancer, including N-methyl-N-nitrosourea (MNU), 3-methy1cholanthrene (MCA), and perhaps 

the most widely used 7-12,Dimethylbenz[a]anthracene (DMBA) [46, 47].  Tumors in mice treated with 

carcinogens often express a variety of genomic alterations including mutations in PTEN, increased 

expression of CCND1 and MYC, and the activation of important cellular pathways including NF-κB, Wnt, 

and PI3K/AKT [48, 49].  Histologically, these tumors vary greatly between models, with MPA treated mice 

often exhibiting type-B adenocarcinomas, and DMBA treated mice often having tumors of the 

adenomyoepethelial and myoepithelial histologies [46, 50].   

TRANSPLANT MOUSE MODELS 

 To further study facets of human cancers in a more biologically relevant setting, transplantable 

mouse models have been developed.  These include the mammary intraductal (MIND) model in addition 

to the previously mentioned cell lined xenografts and patient derived xenograft models.  In order to study 

the progression of human cancers from ductal carcinoma in situ (DCIS), the MIND model mimics human 

DCIS through the injection of human DCIS cells into the ducts of severe combined immunodeficiency 

(SCID)-beige mice [51]. Indeed, this method allows for the subtypes of DCIS to be maintained in a mouse 

model [51, 52].  However, despite their clear strengths, these models are not readily amenable to 

modification or manipulation to allow quick and easily genetic testing of hypotheses. 

GENETICALLY ENGINEERED MOUSE MODELS 

 The complexity of human cancer may best be modeled through the various forms of genetically 

engineered mice, including transposon based, transgenic, knock-in, knock-out, and inducible mouse 

systems.  One of their largest advantages these models possess is the acquisition of impactful mutations 

[53, 54], analogous to the development and progression of human breast cancer. 

One method of generating mice with cancer in the mammary glands is through the use of 

transposable elements [55–57].  These systems are used for germline transmission, as well as generating 

somatic mutations for the study of cancer [58].  Use of these systems allowed mice to be characterized 
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with mutations in key genes.  As mentioned above, patients with invasive lobular carcinoma (ILC) tend to 

have loss of E-Cadherin.  Using the Sleeping Beauty (SB) transposable system, Kas et al. showed the 

importance of particular genes, including Myh9, and Ppp1r12b,  contributing to tumor formation in mice 

with ablated E-Cadherin [59]. 

To study potential oncogenes, transgenic mice are developed to determine whether 

overexpression of that particular gene results in tumor formation.  In these mice, tissue specific promoters 

direct oncogene expression to a particular organ or tissue.  Promoters for the study of breast cancer in 

mice include the commonly used mouse mammary tumor virus (MMTV) and whey acidic protein (WAP), 

as well as others including keratins [60–62].  Overexpression of a number of important oncogenes with 

these promoters has illustrated the importance of key genes, including C-MYC, RAS, and ERBB2 [60, 63, 

64].  In addition to the simple overexpression systems, work from the Chodosh lab introduced numerous 

inducible systems where expression of key oncogenes could be turned on or off in the mammary gland 

through introduction of doxycycline to the water [53, 65–67].  These systems revealed that while tumors 

were initially dependent upon the initiating oncogene, they accumulated enough mutations that when 

expression of the primary driving gene was withdrawn, tumors that initially regressed eventually relapsed.  

Other studies have used a combination of the inducible and standard transgenic systems to demonstrate 

oncogene dominance, where only one oncogene in a two oncogene system is needed to maintain tumor 

viability [68, 69]. 

In addition to transgenic models with overexpression of various oncogenes, knock-in models have 

been generated to express oncogenes in their native genomic location.  This has allowed for expression 

of oncogenes under the control of the Rosa26 promoter, resulting in lower levels of transgene expression 

[70].  Other groups have placed a lox-stop-lox cassette between the endogenous promoter and an 

oncogene.  The advantage of this system is that normal temporal and spatial control of gene expression 

occurs [71], but depending on timing of the excision event, mice can adapt to oncogene expression [72].  
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Importantly, with the lox-stop-lox system, erbB2 knock-in mice developed amplification and 

overexpression of the oncogene, analogous to HER2+ve breast cancer [71].  Numerous other knock-in 

models have been created to study breast cancer genes, including R273H, R248W, and R175H Tp53 

mutant mice, as well as H1047R Pik3ca mutant mice [73, 74].  

Alongside overexpression of oncogenes, knock-out mice permit the study of tumor suppressor 

genes in vivo.  TP53, the most mutated gene in breast cancer, as well as BRCA1, which has germline 

mutations in 5-10 percent of human breast cancer, have been studied extensively through the use of 

knockout models [75].  The combination of knockout models with transgenic models, where expression 

of Cre is linked to the transgene, have also allowed the study of specific facets of tumor development 

while lacking signaling pathways [76, 77]. 

In addition to standard transgenic and knock-in / knockout systems, engineered nuclease systems, 

including TALEN (Transcription activator-like effector nucleases) and CRISPR (clustered regularly 

interspaced short palindromic repeats), are used to generate mouse models.  These systems allow for the 

deletion, addition, and replacement of desired DNA sequences into numerous models, including mice.  

While TALEN systems are capable of editing genes anywhere in the genome, as opposed to CRISPR 

needing nearby PAM motifs, CRISPR has become a more widely used tool due to its simplicity and cost 

effectiveness.  Studies utilizing the power of TALEN and CRISPR systems have investigated numerous 

genes important to breast cancer, including BRCA1 and CDH1 [78, 79].  These systems can be employed 

through manipulation of mouse embryonic cells, or through direct injection of the system components 

into wildtype mice, and mice containing the CAS9 protein under control of the cre-lox system [80, 81].  

Gene specificity is achieved in these systems through the use of guide RNAs.   A further review of these 

systems can be found here [82].  With the recent advent of CRISPR systems easing the transgenic process, 

it will also be interesting to see whether there is a resurgence in the use of estrogen receptor (ER)+ rat 

models.  Another tool potentially capable of faithfully recapitulating human breast cancer progression is 
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the replication-competent avian sarcoma-leukosis virus – tumor virus A receptor (RCAS-TVA) system 

reviewed here [83].  This system can be used for the delivery of oncoproteins and dominant negative 

tumor suppressors in a timely matter, but is often limited to small insertions into the virus. 

With the heterogeneity of human breast cancer and the large number of mouse models available 

to study the disease, the central question becomes, which model is the best fit for a particular study? This 

is obviously dependent on the experimental question, but the characterization of the models and their 

relation to human breast cancer should be considered.  This is true on a phenotypic, genomic, and gene 

expression level. 

MOUSE PHENOTYPES 

 On a phenotypic level, there is a large amount of variation between the various mouse models of 

breast cancer.  In terms of latency, models range from the rapid MMTV-PyMT in the FVB background, to 

the prolonged GR/J, with tumors appearing at 45 days, and 12 months respectively.  Other notable models 

with strikingly different latency periods include MMTV-NeuNT (Erbb2) transgenics relative to the 

conditional expression of NeuNT under the control of the endogenous promoter, where tumors appear 

at 89 days and 15 months respectively [84, 85].  Variation is also observed in the tumor growth rate in 

various strains.  While MMTV-Neu mouse tumors grow to 2500mm3 from first palpitation in 

approximately 45 days [86], other models such as MMTV-Myc mice with Stat3 ablated, can take as long 

as 109 days to grow to 2500mm3 from the first palpitation [87].  Fluctuations in tumor latency and growth 

rate are also context dependent, relying on differentially activated signaling pathways.  This is exemplified 

with ablation of the E2F1 transcription factor in two different mouse models.  Loss of E2F1 in the MMTV-

Neu mouse model leads to increases in both tumor latency and growth rate, whereas in the MMTV-PyMT 

model, a decrease in latency and no alteration to growth rate was observed [86, 88].  These differences 

illustrate the importance of selecting particular models for a study. 



 

10 
 

Previous research has also shown histological differences between the primary tumors of various 

mouse models.  Genetically engineered mouse models (GEMM) exploring mice harboring specific genome 

alterations introduced through a number of genome editing techniques, have been important tools for 

cancer researchers.  A review of GEMMs by a panel of experts in 2000 found the majority of genetically 

engineered mouse tumors to have a set of histological forms unique from non-GEMM tumors such as 

carcinogen induced models [89].  Some GEM tumors, such as those from models expressing the neu and 

src transgenes, have also been found to have histologies similar to those of tumors from human patients 

[90].  Much like human breast cancer, a large amount of histological variation is seen within certain 

GEMMs.  MMTV-Myc mice have been shown to harbor multiple tumor histologies including papillary, 

microacinar, and squamous tumors [54].  Similar pathologies were noted in the MMTV-Met mice [91].  In 

MMTV-PyMT mice, while approximately 40 percent of tumors have a microacinar histology, tumors also 

display a wide array of histological patterns including adenosquamous, glandular, and those of mixed 

histology [88].  More recently, certain GEMM tumor histological subtypes have been shown to correlate 

with particular transcriptional profiles within the model, much like the human disease.  In fact, gene 

expression signatures have been generated that are capable of predicting histological patterns in mouse 

tumors [92]. 

The study of metastasis is also heavily reliant on mouse models.  While the expression of some 

oncoproteins such as PyMT and Neu result in a heavy metastatic burden in mice, other transgenic models 

with potent oncogenes such as WAP-Ras and MMTV-Myc have lower metastatic rates, or fail to 

metastasize at all [61, 64, 84].  Strain background is also an important consideration in the ability of the 

primary tumor to metastasize, with expression of PyMT in FVB mice resulting in nearly all tumor bearing 

mice developing metastasis to the lung.  However, the same transgenic line interbred to RF/J, C58/J, and 

other mouse backgrounds dramatically reduced the metastatic burden [93].  Of GEMMs that metastasize, 

most result in metastases to the lungs.  However, select models have the ability to metastasize to different 
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organs.  MT-Met mice have demonstrated metastasis to the heart and kidney as well as the lung, and 

tumors from p53fp/fp MMTV-Cre mice are able to metastasize to the liver [94, 95]. 

GENE EXPRESSION DATA 

The advent of microarray and sequencing technologies has made it possible to complete large 

scale gene analysis on large numbers of samples.  In breast cancer, conserved gene expression patterns 

led to the definition of the intrinsic subtypes of breast cancer [96].  Since the initial work on human breast 

tumor expression data, numerous studies have applied microarrays to study GEMM mammary tumors.  

This has been done for individual models [54, 91, 97–103], as well as in a broader survey approach across 

models. 

 When examining individual models using array analysis, a surprising amount of molecular 

heterogeneity has been a recurring finding.  Not surprisingly, this heterogeneity was present in tumors 

with long latency (MMTV-Myc), and correlated with histological subtypes.  Predicting that tumors with a 

short latency would be less heterogeneous would appear to be a logical hypothesis, however, it is notable 

that tumors with extremely short latency, driven by PyMT, also have a surprising level of heterogeneity 

from tumor to tumor.  Together these studies suggest that both models are dependent upon 

accumulation of other events for tumor formation and progression.  Not all models have extensive 

heterogeneity, and models such as Wap-Myc, C3(1)Tag, and MMTV-Neu, have less heterogeneity based 

on gene expression profiles.  Comparison of these individual models to human breast cancer has revealed 

that C3(1)-Tag and Wap-Myc models have expression patterns similar to basal-like human tumors (a highly 

aggressive molecular subtype of breast tumors), including high expression CRYAB, a known human basal-

like tumor marker [104].  Expression signatures from other tumor types, such as luminal, do not correlate 

as well between mouse models and human tumors, although they still share some similar features, like 

positive staining for the K8/18 marker [104].  While the MMTV-Neu model fails to actually reflect human 

Her2+ breast cancer on a gene expression level, this may simply be due to the altered expression of other 
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genes within the large HER2 amplicon.  A mouse model with amplification of the endogenous erbB2 locus 

[71]  should thus be assayed for similarities to human HER2+ve breast cancer.   

In addition to papers that have profiled individual models, there have been several publications 

that compared various models.  Herschkowitz et al examined 13 different models of breast cancer, 

identifying models with similarities to luminal tumors, despite being ER-negative, and having 

heterogeneous expression patterns.  They also identified other GEMMs resembling more basal like 

tumors.  [104].  Hollern et al increased the number of samples analyzed (1156) as well as profiling 

numerous additional models to examine 26 major models with several additional variants (wild type Myc, 

T58A Myc etc.).  This unsupervised approach demonstrated substantial heterogeneity in the majority of 

mouse models.  Using both a gene expression and a signaling pathway approach, they also noted several 

similarities between the intrinsic subtypes of human breast cancer, and subsets of various mouse models.  

Importantly, it was noted that only a portion of tumors from an individual model reflected each of the 

intrinsic subtypes [105].  Further, Pfefferle et al. examined 356 samples from 27 models to identify 17 

distinct mouse mammary tumor intrinsic subtypes, eight of which reflected subtypes in human breast 

cancer.  However, this analysis used an intrinsic approach, a supervised method of clustering that may 

add bias to the study.  Each of these three publications provides an important examination of the diversity 

of mouse models of breast cancer and are an essential starting point when choosing a mouse model for 

analysis. 

GENOMIC COPY NUMBER ALTERATIONS 

In tumor cells, regions of the genome are often deleted or repeated dozens of times, potentially 

serving to drive tumor formation or modify tumor progression.  A prime example of copy number variation 

(CNV) in cancer is the amplification of human epidermal growth factor receptor type 2 (HER2), resulting 

in uncontrolled activation of downstream signaling cascades, including the mitogen activated protein 

kinase (MAPK) pathway [12, 106].  While extensive CNV data from mouse tumor models has not been 
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generated, use of an algorithm that predicts CNV from gene expression data has been generated and 

validated [107].  Applied to mouse models of breast cancer, the prediction of CNV noted variation across 

numerous mouse models of breast cancer.  However, genes from some CNV regions, such as Gsn, are 

conserved among some models [107].  This same trend was seen within distinct mouse models, whereas 

some CNV events showed little conservation between mice in a given model, and other events were 

present in greater than 50 percent of mice in a given model [107].  More interestingly, integrated 

clustering of CNV events from mouse and human tumors showed conservation of some CNV events 

between the two species [107], demonstrating that mouse models can be an accurate depiction of human 

breast tumors in terms of copy number alterations.  

PATHWAY ANALYSIS 

Research has shown that complex networks of proteins work together in regulatory pathways 

that control cellular function.  These signaling pathways, including the MAPK/ERK and PI3K/AKT pathways, 

are often dysregulated in cancer [108, 109].  Expression data from the various genes that constitute these 

pathways and their downstream targets can predict activation or inactivation of particular pathways, 

making these pathway signatures an important tool for the study of breast cancer.  To uncover pathway 

use, gene expression analysis has been coupled with bioinformatic tools like Gene Set Enrichment Analysis 

(GSEA), which has been widely applied to many models.  Likewise, a Bayesian Regression Pathway 

signature system [110] has been applied to mouse models of breast cancer to predict cell signaling 

pathway activity [86–88].  Like differential gene expression data, pathway signatures often vary within 

GEMMs, the most prominent example of this perhaps being the Myc model [105].  In mice, pathway 

signatures have shown a correlation with histological subtypes, most notable being the microacinar 

histology associated with amplification events on chromosomes 11 and 15 [107].  Pathway signatures 

from mouse mammary tumors have also been found to correlate to human breast tumors.  A set of highly 

expressed pathways found in tumors from Myc mice were also found to be highly expressed in Basal-like 
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human tumors [111].  This trend has been seen in a number of pathway signature sets between mouse 

and human tumors.  

SEQUENCING 

 Sequencing of human breast cancer samples has led to both the discovery of novel mutations 

important to breast cancer, such as FOXP1 [112], as well as further characterization of genes already 

known to be important to cancer development including HER2 and PI3K [113, 114].  In mouse models, 

sequencing studies in lung cancer have shown the mutational burden from GEMM tumors to be lower 

than that of human lung tumors.  Tumors from Kras, and Egfr driven mice carry a mutational burden of 

~.05 non-synonymous mutations per mega base, while human tumors harbor a mutational burden of ~4.1 

non-synonymous mutations per mega base [115, 116].  While numerous publications have examined gene 

expression in mouse models of breast cancer, very few models have been examined at the sequence level. 

Recently, whole genome sequencing (WGS) from mouse mammary tumors (MMTV-Neu and MMTV-

PyMT) has also led to the discovery of alterations in genes potentially important to human breast cancer, 

including Col1a1 and Phb [117].  The potential impacts of these mutations on tumor behavior in such well 

characterized tumor models underscores the need to complete WGS on mouse models of breast cancer 

[118].  

 Researchers are now beginning to appreciate the cellular and genetic heterogeneity of tumors 

not only between patients, but within single tumors [119].  Intra-tumoral and metastatic site 

heterogeneity present issues for tumor treatment, as targeted therapies may be effective for only part of 

the tumor.  Single cell RNA sequencing (scRNA-seq) is beginning to confront these challenges through the 

understanding of the differences present within a primary tumor, and across the metastatic sites.  

Investigation of copy number alterations in single cell sequencing of two triple negative human breast 

tumors found four distinct populations of cells, with some shared CNV regions between the cell 

populations [120].  In mice, scRNA-seq has begun to show the distinct gene expression profiles of 
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mammary epithelial cells at different developmental stages.  In the mammary gland, a shift in gene 

expression from a basal-like transcriptional profile to a more luminal profile occurs around 5 weeks of age 

[121].  While more studies are needed using scRNA-seq, key insights into the single cell heterogeneity of 

cancer should continue to be uncovered as this technology continues to develop. 

OTHER CONSIDERATIONS - METABOLOMICS AND PROTEOMICS 

While cancer metabolomics is not a new area of study within the field, recent years have seen a 

surge in metabolic profiling of both human and mouse tumors.  A 2018 study from Dai et al. focuses on 

the metabolic profiles for a number of mouse models, including PyMT, Wnt1, and Neu [122].  This study 

not only found metabolomic differences between tumor and normal breast tissue for each model, it also 

found that each oncogene had a unique metabolomic profile.  Furthermore, the C3-TAg model was found 

to have metabolites of prognostic value, illustrating the importance of these studies. 

Advances in mass spectrometry have also led to a rise in large scale proteomics analysis.  These 

analyses in breast cancer mouse models have allowed both comparisons to the human disease, as well as 

enhanced the search for biomarkers capable of early cancer detection.  Indeed, proteins found 

upregulated in the plasma of tumor bearing PyMT mice have been found to coincide with multiple human 

breast cancer cell lines, including MCF7 and BT474 [123].  In some cases, such as with the conditionally 

activated Neu mouse model, entire proteomic profiles have been made publically accessible in hopes of 

enhancing the search for novel cancer biomarkers [124].  

CHOOSING A MODEL 

 Choosing the correct mouse model to investigate human breast cancer is an important 

experimental decision. As reviewed above, there are numerous categories stratifying the various models.  

Rather than simply using a model based on availability, investigators should carefully consider the choice 

of model.  First, if the research question is one related to a particular signaling pathway, then this may 

dictate the choice of model.  Numerous models have been profiled in comparison to each other in several 
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reports [105, 111], and both GSEA and Bayesian pathway predictions have been reported for these models 

[105].  These data may be downloaded and signaling pathways searched to determine models with high 

or low activity for a pathway of interest.  However, given the gene expression heterogeneity seen in 

various models [111, 125, 126], the number of tumors with the signaling pathway alterations in question 

should be considered when calculating the number of experimental subjects required. 

 If the primary consideration is a phenotype, such as metastatic progression, then the model 

choice will be constrained by that characteristic.  While a majority of studies use the MMTV-PyMT strain 

for metastatic research, other strains that metastasize are available.  The short tumor latency and 

extensive metastasis are attractive characteristics for the PyMT transgenic mice, but if the gene 

expression profile and signaling pathways that are of interest do not match, then other strains are 

available with metastatic properties.  Other characteristics, from tumor latency to promoter system can 

be considered when choosing a mouse model. 

 For investigators simply looking to ask which mouse model most closely resembles a subtype of 

human breast cancer, unfortunately there is not an easy answer or single best choice.  Examining co-

clustering of human and mouse model tumors by gene expression [92] or predicted CNV [107] has 

revealed that many different models cluster with each of the subtypes of human breast cancer.  MMTV-

Myc is particularly instructive with varied histological subtypes and gene expression subtypes that 

individually cluster with most of the major subtypes of human breast cancer [92].  While this confounds 

the choice of model system, it underscores how sample to sample heterogeneity of gene expression in 

human breast cancer is reflected in the majority of mouse model systems. 

 Ultimately, the choice of mouse model system is a multifactorial one.  This choice must take into 

account the initiating oncogene, latency, progression characteristics, gene expression similarities to 

human cancer, cell signaling pathway use, and whether copy number variation is relevant.  Moreover, 
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once a model is chosen, the resulting tumors must be characterized to determine how the tumor to tumor 

heterogeneity that is present in the various models has been altered with the experimental manipulations. 

DISCUSSION 

Numerous genomic perturbations, and a cascade of protein interactions and regulatory pathways 

all function together to initiate and maintain oncogenic transformation.  Given this complexity, the mouse 

model is highly suited to study breast cancer.  The in vivo nature of mouse models allows the complexity 

of cancer to be studied more accurately than cell culture and other in vitro experiments alone.  Numerous 

types of mouse models, including carcinogen induced, patient derived xenografts (PDXs), and GEMMs 

recapitulate certain aspects of the disease.  While their usefulness is dependent on the research question, 

GEMMs are perhaps the most comprehensive due to their ability to closely mimic the initiating oncogenic 

event that occurs in a number of cancers while maintaining an appropriate tumor microenvironment and 

functioning immune system. 

On an expression and histological level, GEMM tumors are as complex as the human tumors they 

attempt to mimic.  Just as a wide array of histologies are seen within human tumors, tumor histological 

differences can be seen within single GEMMs.  Classifying histological subtypes on their expression profile 

also shows relevancy to human breast cancer.  Since the initial characterization of human breast cancer 

into intrinsic subtypes, an increasing amount of data has been generated showing mouse subtypes that 

mimic each.  While little whole genome sequencing data has been generated for GEMM tumors, the data 

available has shown that like human tumors, mouse tumors display a large array of genomic 

rearrangements, including single nucleotide variants, copy number alterations, and translocations.  The 

histological, expression, and sequencing similarities between human and mouse breast tumors show that 

when used correctly, genetically engineered mouse models can be an accurate method for studying 

human breast cancer. 
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Given the complexity of both human breast cancer and the numerous mouse models used to 

study it, choosing the correct mouse model is essential for the experimental question.  Initial examination 

of expression based analysis and the human based subtypes that are mimicked through large scale gene 

expression experiments is critical [96, 105].  Depending on copy number alterations in the gene, it is also 

beneficial to examine the mouse models for similar changes [107].  Whether through GSEA or a signature 

based approach, signaling pathways should also be examined [105, 111] to ensure that the appropriate 

model is used.  Recent examples of drug screening in mouse models have taken these parameters into 

account [127, 128] in important demonstrations of the integration of bioinformatics analysis of mouse 

models with wet lab experiments. 

II. MICE AS MODELS FOR TREATMENT 

Clinical trials act as a controlled experiment, allowing researchers and doctors to determine the 

safety and efficacy of cancer drugs before they are widely prescribed for use.  While there are a variety of 

clinical trials for studying oncology, drug trials are used to study drug safety and efficacy.  Typically, drug 

trials consist of five phases (0-4), with phases 0 and 1 focusing on determining pharmacokinetics and 

safety respectively [129].  Phases 2 and 3 incorporate a larger number of participants to determine efficacy 

of the drug, and continue to monitor safety.  Finally, phase 4 evaluates long term affects and outcomes of 

the drug.  With the advent of numerous types of mouse models to study oncogenesis at a molecular, 

cellular, and histological level, there has also been an uptick in the usage of these models as pre-clinical 

indicators for the safety and efficacy of new cancer drugs.  Often, experiments on the safety and efficacy 

of drugs are completed on mice before a drug can be taken to clinical trials.  There is a question however, 

of whether these models are good indicators of how a drug will perform in the clinic.   

Before use of genetically engineered mouse models in pre-clinical trial studies, in vitro data and 

patient derived xenograft models were used widely.  Data from the National Cancer Institute (NCI) 

however showed experiments from these models did not correlate well with phase II clinical trial results 
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[130].  It was therefore hoped that use of GEMMs would better predict clinical trial results [131].  More 

recent studies however, have shown a continued failure of mouse models to predict safety and efficacy 

outcomes within the clinic [132–134].  Elongated telomeres found in laboratory mice may have 

implications in using mice as models for cancer and clinical studies [135, 136].  It is plausible that long 

telomeres in lab mice may result in an increased ability to repair tissue and resist toxicity, as well as 

enhance tumor promotion.  However, most carefully designed studies in mice involve normalized 

controls, which would seemingly circumvent questions surrounding tumorigenesis.   

It is also important to note many mouse studies failing to predict drug toxicity and efficacy may 

result from poorly designed experiments.  Careful consideration must be given to the mouse model’s 

histology, gene expression patterns driving that histology, molecular driver, immune microenvironment, 

and other factors [137, 138].  From available data, it seems the use of mouse models for pre-clinical 

studies must be reconsidered. With the current paradigm however, they will likely remain a staple for use 

as preclinical models. 

BIOINFORMATICS AS A MEANS TO INVESTIGATE CANCER 

The last few decades have seen an explosion of bioinformatics methods used to study cancer.  

These technologies have vastly improved our understanding of cancer on a molecular and epidemiological 

level.  A large array of new approaches now allows researchers to study gene sequences and expression, 

cellular pathways, proteins, tumor-stromal interactions, epidemiological trends, and many other facets of 

carcinogenesis.  With these new technologies has also come new hope for improved targeted treatments, 

and even more recently, a more serious look at pan cancer therapies.  The following paragraphs will briefly 

look at some of the more common technologies and methods that have revolutionized the study cancer 

biology. 
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SEQUENCING 

 Since the initial advent of sanger sequencing in the 1970s and the first draft of the human genome 

in the early 2000s, sequencing technologies have come a long way.  In sequencing the human genome, 

what initially took 3 billion dollars and 13 years to complete can now be done in a couple days with a few 

thousand dollars [139].  This is a testament to the newly available next generation sequencing 

technologies.  Sequencing technologies seemingly have the ability to cover most facets of gene regulation.  

Genome sequencing can uncover large and small changes to the genetic code, chromatin 

immunoprecipitation (ChIP)-sequencing is capable of discovering protein regulatory changes in promoter 

regions, and RNA sequencing can determine changes in gene expression.  Even more impressive are the 

advancements in single-cell sequencing, which can be applied at the DNA and RNA level, and has promise 

to tackle the questions surrounding intra-tumor heterogeneity [140].  On a clinical level, targeted 

sequencing and exome sequencing have become important for determining course of action for 

treatment regimes.  Utilization of targeted therapies has increased in recent years, but these therapies 

still rely on genetic information to make sound treatment decisions.  This is evident in the treatment of 

non-small cell lung cancer patients with tyrosine kinase inhibitors (TKI).  While TKIs work effectively in 

patients who harbor activating mutations in the oncogene EGFR, they show no results in patients without 

the mutations [141].  Targeted sequencing completed on lung tumor biopsies is capable of providing 

clinicians with the proper information. 

GENE EXPRESSION 

 While sequence analysis plays an important role in research and clinical therapy, gene expression 

analysis is another necessary piece of the puzzle.  Often, gene expression is not affected by mutations to 

the underlying gene, or gene expression may change without gene mutations.  Whether through 

microarray technology or RNA-sequencing, large scale shifts in gene expression can be determined for a 

large number of samples relatively simply.  While RNA sequencing is now more widely used, microarray 
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technology is still around, and a more cost effective technology.  The main difference between the two 

technologies is microarray’s dependence on transcript specific oligos annealed to a chip, while RNA-seq 

sequences do not rely on these transcript specific oligos.  When comparing the technologies, RNA-seq 

seems to have an advantage in detecting low level transcripts [142]. 

Like sequencing, gene expression patterns are often used to study cancer as well as determine 

the clinical course of action.  In the laboratory, gene expression is often used to determine genome wide 

expression changes across sample groups that are subject to gene knockouts, drug treatment, or other 

experimental scenarios [105, 143].  In the clinic, gene expression patters are often used to classify patient 

tumors and determine a course of action for treatment [96, 104]. 

PATHWAY ANALYSIS 

 Cellular processes are often organized into complicated pathways and protein networks.  A 

prudent example of this is the Ras/Raf/Mek/Erk signaling pathway stemming from RTK stimulation, and 

leading to eventual transcription factor activation or repression [144].  With the complicated nature of 

these pathways and their key role in stimulating and maintaining oncogenesis, researchers have 

developed a number of tools for their investigation.  Often, these tools rely on gene expression data 

gathered through microarray or RNA-seq technologies.  One such tool has been the development of 

pathway signatures for human breast cancer [110, 145].  Pathway signatures are often developed through 

overexpression of an oncogene or GFP (green fluorescent protein) control within a particular cell line.  

Expression data is then gathered from the oncogene or GFP overexpressed line, and a training dataset is 

developed to allow for classification of future samples.  This classification is given as a score that predicts 

whether the pathway in question is active.  Another pathway prediction tool is Gene Set Enrichment 

Analysis (GSEA) [146].  Briefly, GSEA uses gene expression data to compare two groups of samples in order 

to determine whether particular gene sets or pathways may be up or downregulated in one sample group 

compared to the other.  This analysis can often be useful when first exploring expression data from two 
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sample groups, such as drug treated vs. non-treated groups.  Overall, these programs can serve as good 

predictors to which pathways may be activated or repressed within a tumor.  This gives researchers the 

ability to narrow their search when completing lab validation. 

DATA ANALYSIS 

With the plethora of data that has been generated using the above technologies comes a need 

for expert data analysis.  Over the years, a number of regulations, programs, and analysis methods have 

been put forth to deal with the large amount of incoming data.  To ensure public access to data produced 

under federal grant money, authors are required to submit datasets to online portals, such as the Gene 

Expression Omnibus (GEO).  Large databases have also been developed to allow for analysis of large 

datasets by the public.  An example of this is The Cancer Genome Atlas (TCGA), a tool used to access 

genomic mutation data for thousands of human tumors of various cancers.   

Hundreds, if not thousands of programs have been generated to deal with the influx of data.  

Some of these programs are generated by individual labs, while others have been generated through the 

coordinated effort of multiple groups.  For sequence analysis there are programs that “clean and prep” 

data, programs to align data to reference genomes, and numerous programs to determine genomic 

variants occurring within the data.  Once the initial data processing is complete, there multitudes of other 

programs to complete specialized analysis, such as determining tumor heterogeneity or tumor mutation 

signatures.  There are also dedicated programs for RNA, ChIP, and single-cell sequencing analysis. 

While all of these programs work to achieve the same result, many go about it in a different 

fashion, making the choice of which program to use dependent on the biological question.  For instance, 

in genome sequence analysis, some programs can uncover rare mutations but also have a higher number 

of false positives, while other programs have a lower number of false positives but may miss low 

frequency mutations.  Overall, analysis methods have drastically improved to increase statistical power 

and remove confounding effects.  This is exemplified in RNA sequencing data, where data normalization 
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has improved to remove potential analysis errors including transcript number and length.  In many cases 

these advancements are beneficial, however in some cases they pose even more challenges.  For example, 

microarray technology was the go to for obtaining gene expression data in the early 2000s.  Even though 

microarray is still used, RNA sequencing has become the standard for many labs conducting large gene 

expression studies.  While there is a boon of available data, integrating microarray and RNA-seq datasets 

is still a challenging endeavor. 

THE FUTURE OF CANCER TREATMENT 

 Cancer therapy has made many strides since the 19th and 20th centuries, however there is still a 

long way to go.  This is evident when examining the treatment regimes and survival rates of breast cancer.  

Once common place, radical mastectomies are now considered barbaric as less invasive surgeries 

combined with adjuvant therapy have been found equally effective [147].  Drug treatments have also 

advanced tremendously, from early mustard gas derivatives [148] to more advanced chemotherapies and 

targeted therapies [149–151].  These treatments have seen vastly increased 5-year survival rates and 

decreased observed mortality rate [152].  Late stage metastatic and triple negative breast cancers still 

carry a poor prognosis, showing the need for improved therapies.  Like breast cancer, the overall success 

for treatment of cancers has varied widely.  Some cancers such as breast and skin melanomas are treated 

with high success, while others, such as lung and pancreatic, yield a poor prognosis [153, 154].  However, 

just like breast cancer, the overall 5-year survival rates do not tell the whole story.  Treatment success can 

vary widely within certain cancers depending on molecular phenotype, genetic mutations, and stage of 

diagnosis.  Melanoma for instance has an extremely high success rate when caught early, but has a poor 

prognosis after metastasis has occurred [155]. 

 Current research has focused on characterizing the molecular and histological profiles of tumors 

in order to develop new therapies.  Within the clinic, patients undergo tumor biopsies, which then 

undergo sequence, molecular, and histological analysis to apply applicable targeted therapies.  These 
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targeted therapies have improved survival rates within the clinic, but resistance mechanisms continue to 

be a challenging issue.  Some clinical trials, such as the ongoing SMMART trial [156], are attempting to 

circumvent these resistance mechanisms by closely monitoring tumor growth and performing new 

biopsies once resistance begins to develop.  This allows a new treatment regime to begin and a further 

reduction in tumor volume.  While these avenues show a lot of promise, they have issues as well.  For 

instance, some patients cannot be enrolled in the SMMART trial due to a lack of actionable mutations.  

Furthermore, multiple biopsies can be burdensome on the patient, and unfeasible in certain cancers.  

Finally, this approach is extremely costly in terms of financial burden and manpower.  It is fair to point out 

these issues may be solved with further research and technology development.  A further characterization 

of cancer genomes and molecular profiles may lead to a greater number of actionable mutations.  

Improvements in our understanding of, and sequencing extra-cellular vesicles and other biomarkers may 

eliminate the need for invasive biopsies [157].  Technology advancements may also reduce costs and 

labor. 

 The above financial challenges and patient burdens may make it impossible to apply this approach 

to every cancer patient and thus, other options need to be considered. While the heterogeneous nature 

of cancer has put finding a ‘universal cure’ in doubt, a universal cure is an endeavor we should still pursue 

even if that cure is more akin to a universal process than treatment with a single drug.  The biggest 

obstacle in such an approach would surely be distinguishing tumor cells from cells in normal physiological 

condition.  If this were done however, a number of targeting approaches could foreseeably be taken.  One 

includes treating with already developed drugs that target particular pathways.  More intriguing perhaps 

would be using Crispr technology in conjunction to inhibitors of DNA repair pathways.  Hypothetically, this 

could damage the cancer cells enough to make them undergo cell cycle arrest and apoptosis once they 

are unable to repair the DNA damage.  While these treatments may seem far off, they are surely worth 

investigation. 
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CHAPTER 1 
 
 

ALTERED METASTASIS IN E2F1 KNOCKOUT MODELS OF HUMAN BREAST CANCER 
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PREFACE 
 

While this chapter is not directly related to the bulk of the work in this thesis, its importance is 

two-fold.  First, this chapter underscores many of the important bioinformatics methods I have learned 

during my time in the Andrechek lab.  These methods are now vital for success as a cancer researcher.  

Second, the whole genome sequencing completed in this study directly resulted in finding a mutation in 

the Ptprh gene.  The characterization of this PTPRH mutation and its relevance to human non-small cell 

lung cancer is the bulk of my thesis work, and illustrates the importance of pan-cancer research. 

 

This chapter is adapted, with additional added data, from a manuscript previously published in Scientific 

Reports 

As:  “Metastasis is altered through multiple processes regulated by the E2F1 transcription factor” DOI: 

10.1038/s41598-021-88924-y 
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ABSTRACT 
 

The E2F family of transcription factors is important for many cellular processes, from their 

canonical role in cell cycle regulation to other roles in angiogenesis and metastasis.  Alteration of the 

Rb/E2F pathway occurs in various forms of cancer, including breast cancer.  E2F1 ablation has been shown 

to significantly decrease metastasis in MMTV-Neu and MMTV-PyMT transgenic mouse models of breast 

cancer.  Here we take a bioinformatics approach to determine the impact of E2F1 loss on the genomic 

landscape of these tumors, and look specifically at genes related to the metastatic cascade, in both Neu 

and PyMT models.  Through gene expression analysis, we reveal few transcriptome changes in non-

metastatic E2F1-/- tumors relative to transgenic tumor controls.  However investigation of these models 

through whole genome sequencing found numerous differences between the models, including 

differences in the proposed tumor etiology between E2F1-/- and E2F1+/+ tumors induced by Neu or 

PyMT.  For example, loss of E2F1 within the Neu model led to an increased contribution of the inefficient 

double stranded break repair signature to the proposed etiology of the tumors.  While the SNV mutation 

burden was higher in PyMT mouse tumors than Neu mouse tumors, there was no statistically significant 

differences between E2F WT and E2F1 KO mice.  Investigating mutated genes through gene set analysis 

also found a significant number of genes mutated in the cell adhesion pathway in E2F1-/- tumors, 

indicating this may be a route for disruption of metastasis in E2F1-/- tumors.  Overall, these findings 

illustrate the complicated nature of uncovering drivers of the metastatic process. 
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INTRODUCTION 
 

Breast cancer is the most diagnosed cancer in women.  To study genomic events contributing to 

breast cancer, numerous genetically engineered mouse models have been generated, including MMTV-

Neu [158] which recapitulates HER2+ve breast cancer, and MMTV-Polyoma virus Middle T antigen (PyMT) 

[84].  The PyMT model relies on overexpression of the PyMT oncogene, leading to downstream activation 

of the SRC and AKT pathways.  The PyMT model is highly aggressive, with tumors appearing at 45 days of 

age. Metastasis to the lung occurs in over 90% of tumor bearing mice, resulting in wide use of PyMT for 

metastasis studies.    Similar to human breast cancers, both Neu and PyMT models have striking 

heterogeneity at histological and gene expression levels [89, 92, 104, 105], reinforcing the importance of 

these models as tools for the study of breast cancer. 

Previous studies using Neu and PyMT models predicted a key role for the E2F1 transcription factor 

through a pathway signature analysis, suggesting that mechanisms outside the overexpression of the Neu 

or PyMT oncogene were contributing to tumor biology [86, 88].  The E2F family of transcription factors is 

involved in numerous cellular processes, best known for cell cycle control.  Usually sequestered by 

retinoblastoma (Rb), E2F1 is released to act on downstream targets upon Rb phosphorylation [159].  While 

mutations in E2F1 are not common in human breast cancer, mutations within the E2F pathway occur in 

over 25% of breast cancer patients, illustrating the importance of the pathway [160–164]. 

To test the hypothesis that E2F1 regulates key events in Neu and PyMT tumors, E2F1 knockout 

(KO) mice [163] were interbred with Neu and PyMT models [86, 88].  This resulted in mammary tumors 

with changes in latency, growth rate, and a significant decrease in metastasis to the lung.  Metastasis is 

the ultimate cause of mortality in cancer, with an estimated 90% of cancer deaths resulting from the 

spread of cancer cells to distal sites within the body [165].  Typically, cancer cells undergo numerous 

important steps for completion of the metastatic cascade.  These include escape from the primary tumor, 

intravasation, extravasation, and seeding the distal site [166] as reviewed by Welch [167]. 



 

29 
 

An important component contributing to the metastatic capability of a tumor is its 

microenvironment.  Various collagens and proteins integral to cellular and tissue structure are capable of 

impacting metastatic potential.  Indeed, proteins within the extracellular matrix, including collagen IV, 

have been found to regulate metastasis within the liver [168].  Collagen IV is a major component of the 

basement membrane, an important barrier to tumor invasion, and breaching this has been shown to be 

a critical early step in tumor invasion and metastasis [169, 170].  Interestingly, a previous report 

demonstrated a decrease in the number of circulating tumor cells within PyMT E2F1-/- mice, suggesting a 

disruption to the early steps in the metastatic cascade.  Other data shows remodeling of the extracellular 

matrix at pre-metastatic lesion sites to be important for eventual seeding of distant metastasis [171]. 

Recent advances in bioinformatics methods have facilitated the investigation of cancer biology.  

Publicly available transcriptomic datasets have allowed for comparisons between primary tumor and 

distant metastatic lesions [172, 173].  Next generation sequencing has furthered our understanding of 

cancer genomics.  Studies involving the sequencing of human tumors have described the mutation rate of 

solid tumors [174], and demonstrated that numerous genomic events are required for metastasis [120, 

175, 176].  To determine the underlying genomic events behind altered metastatic characteristics in E2F1 

KO tumors, gene expression and sequence data was analyzed.  Here, we characterize the genome 

landscape of E2F WT and E2F1 KO tumors from both the Neu and PyMT models and uncover new targets 

that may be critical to tumor development and progression. 

RESULTS 
 

ANALYSIS OF GENE EXPRESSION DATA IN NEU AND PYMT TUMORS 

 We previously demonstrated altered phenotypic characteristics upon ablation of E2F1 within Neu 

and PyMT models, including changes in growth rate and tumor latency for the primary tumors (Figure 

1.1A).  Given the short latency of PyMT mice, it was surprising to observe tumor latency in PyMT mice 

significantly decreased with E2F1 loss while growth rate remained unaffected.  Interestingly, the opposite 
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effect was seen within Neu E2F1-/- mice, where latency was significantly increased, and growth rate was 

significantly increased.  However, the most striking phenotype was a significant reduction of metastasis 

with loss of E2F1 in both strains (Figure 1.1B and 1.1C).   

To determine whether gene expression differences regulated phenotypic changes in E2F1 

knockout tumors, fold change differences were examined.  Volcano plots revealed few genes with major 

gene expression changes when analyzing E2F1 WT and E2F1 KO primary tumors (Figure 1.2A).  While there 

were some genes with a fold change between 1 and 1.5, there were very few genes with a fold change 

greater than 1.5.  To test whether this is recapitulated in human breast cancer, data from The Cancer 

Genome Atlas (TCGA) was analyzed.  E2F1 activity in HER2+ve samples was determined using pathway 

signature analysis.  Samples were stratified into quartiles for E2F1 activity and differential gene expression 

was determined.  As shown in Figure 1.2B, human breast tumors resemble mouse mammary tumors in 

that low E2F1 activity does not lead to vast gene expression changes.  To test for genetic pathways 

affected by loss of E2F1, Gene Set Enrichment Analysis (GSEA) was completed on Neu and PyMT tumors 

with and without E2F1.  GSEA analysis revealed several differentially regulated pathways, including WNT 

signaling, and nucleotide excision repair (Figure 1.2C).  Importantly, WNT signaling has been shown to 

regulate the epithelial to mesenchymal transition, a process involved in the metastatic cascade [177, 178]. 

MUTATION ANALYSIS THROUGH WHOLE GENOME SEQUENCING 

 Given that the gene expression analysis did not identify a mechanism altering metastatic 

potential, we examined genomic events occurring in Neu and PyMT tumors with and without E2F1.  Whole 

genome sequencing was completed and single nucleotide variant (SNV) profiles were called for each 

tumor using TCGA best practices.  Initial analysis of the SNV data resulted in an unexpectedly high 

proportion of SNVs occurring within chromosome 2 of the E2F1 knockout tumors (Figure 1.3A-D).  

However, E2F1 is located within the qH1 band of chromosome 2 and correlated to where the increased 

SNVs were observed (Figure 1.3E).  While E2F1 knockout mice were backcrossed 12 generations to FVB, 
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we hypothesized that SNV abundance was called due to residual background strain DNA from the original 

E2F1 knockout stain. Given that E2F1 mice were generated in the SV129 background, and Neu and PyMT 

mice are on the FVB background, we filtered SNV calls using a list of SNVs that were generated from 

comparing the SV129 background against the C57/BL6 background, the standard mouse reference 

genome (Figure 1.3F).  As a result, the majority of chromosome 2 SNV calls were filtered out, and the 

proportion of SNVs was roughly equal across the 19 autosomal mouse chromosomes in E2F1 WT and E2F1 

KO PyMT tumors (Figure 1.3G).  This was also the case for E2F1 KO Neu tumors (data not shown).  As such, 

residual background is an important caution when sequencing mouse models. 

Interestingly, the SNV mutation burden was higher in PyMT mice as compared to Neu mice (p-

value = 0.05), which was surprising due to the brief latency of PyMT tumors (Figure 1.4A).  Except for one 

PyMT E2F1 knockout tumor, the rate of exonic SNVs ranged from .005 to .08 mutations per megabase.  

This mutation rate is similar to previous rates shown for mouse tumors [179], and is lower than the 1 

mutation / megabase exonic mutation rate commonly observed in human breast cancer [174].  

Surprisingly, a significant percentage shift of exonic, intronic, and intergenic SNVs occurred when 

comparing PyMT E2F1 KO tumors to WT tumors (Figure 1.4A).  In PyMT WT tumors, the percent of exonic 

and intronic mutations were approximately 1 and 30 respectively.  This is in contrast to E2F1 KO tumors 

where the percentages were approximately 2 and 38 respectively.  The percentage increases (P-value = 

.05 for exonic and .03 for intronic) seen in E2F1 KO tumors corresponded to percentage decreases (P-

value = .03) in the intergenic regions of the tumors.  These shifts were not seen in Neu tumors. 

MUTATION SIGNATURES GENERATED FROM SNV PROFILES 

To analyze distinct types of SNVs occurring within our tumors, and investigate potential 

mechanisms driving these differences, a mutation signature approach was taken [180].  While 

trinucleotide signatures showed similarities between Neu and PyMT tumors, there were striking 

differences, such as T>G mutations occurring almost exclusively in Neu tumors of either E2F1 status 
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(Figure 1.4B).  The signatures for all 12 tumors are shown in (Figure 1.5).  Principal component analysis 

(PCA) completed using mutation signatures from all 12 tumors shows distinct clustering between Neu and 

PyMT tumors (Figure 1.4C).  Furthermore, apart from a single E2F1 KO PyMT tumor, PCA separates E2F1 

WT and E2F1 KO tumors into distinct clusters within the Neu and PyMT models.  While PyMT E2F1 KO 

sample 2 has a 6-fold increase in the number of SNVs, this is not reflected within the sample clustering of 

the principal component analysis.  This is due to PCA being completed on the mutation signatures of the 

samples.  For example, if sample X were to have an increased number of SNVs as compared to sample Y, 

but the overall mutation profile of those SNVs was similar between sample X and Y, they would cluster 

together. 

The contribution of the 30 known COSMIC (catalog of somatic mutations in cancer) signatures to 

each Neu and PyMT tumor were then determined [180].  While all Neu and PyMT tumors had some 

contribution from signature 18, there were stark differences in other COSMIC signatures contributing to 

Neu and PyMT tumors (Figure 1.4D).  For example, Neu tumors had contributions from signatures 1 and 

3, while PyMT tumors were associated with signatures 4 and 20.  Furthermore, there were signature 

differences when comparing E2F1 WT tumors to E2F1 KO tumors within the Neu and PyMT models.  For 

example, Neu E2F1 WT tumors were associated with signatures 5 and 9, while Neu E2F1 KO tumors lacked 

these associations.  Neu E2F1 KO tumors also had an association with signature 12, while Neu E2F WT 

tumors lacked this signature.  When analyzing the proposed etiology for these signatures, Neu tumor 

signatures are associated with age, while PyMT tumor signatures have no age association, which 

correlates with Neu and PyMT tumor latency (Table 1.1).  Interestingly, Neu tumors also have an 

association with inefficient double stranded break repair (DSB), with E2F1 KO tumors being more highly 

associated than E2F1 WT tumors.  E2F1 has been found to recruit DSB processing factors, particularly 

NBS1, to DSB sites, which serves as a possible explanation for this signature [181].  PyMT E2F1 KO tumor 

signatures were not associated with DSB, but were highly associated with the smoking signature number 
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4, and defective DNA mismatch repair (MMR) signature 20.  While it may seem counterintuitive that PyMT 

E2F1 KO tumors would be associated with one MMR signature and not the others (numbers 6, 15, and 

26), it is entirely possible for this to occur.  Multiple mutational profiles can be associated with a particular 

etiology, even though the mutational profiles themselves are distinct from each other.  Together, these 

data suggest E2F1 loss drives differences in DNA repair and tumor etiology. 

EXAMINING TUMOR CLONALITY 

A wealth of evidence has shown tumors to have intra-tumoral heterogeneity on a histological and 

molecular level [119, 182–186].  Previous research demonstrated a shift in histological heterogeneity 

within E2F1-/- PyMT mice, where no shift in histology was seen in E2F1-/- Neu mice [86, 88].  To assess the 

molecular intra-tumoral heterogeneity in PyMT and Neu tumors, variant allele frequencies (VAF) were 

investigated.  Briefly, the VAF is determined by taking a proportion of the number of reads containing a 

particular SNV mutation versus all of the reads in that location.  In a single clone tumor, the VAF for all 

mutations will be .5 since half of the reads will have the mutation (we assume here that only one copy of 

the DNA is mutated).  When analyzing the clonality of Neu and PyMT tumors, 5 of 6 Neu tumors had two 

clones, and all PyMT tumors had one clone (Figure 1.6).  This is unsurprisingly given the fast growth of 

PyMT tumors.  E2F1 status had no effect on the clonality of Neu or PyMT tumors.  

COPY NUMBER AND TRANSLOCATION EVENTS 

Multiple programs were also used to determine copy number variants and translocations 

occurring within Neu and PyMT tumors (Figure 1.7A-D).  Based on consensus CNV calls from two 

programs, over 98% of the copy number events were small in size (under 1 mb), while relatively few larger 

events (above 1 mb) were observed. Surprisingly, there was a large amount of copy number gene overlap 

between the E2F WT and E2F1 KO tumors (Figure 1.7E).  The large number of shared genes involved in 

copy number events may indicate E2F1 loss is not a primary driver of these events. 
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There were also a surprisingly large number of translocations occurring within the Neu and PyMT 

tumors.  When comparing average number of translocations per sample across the genomic models, there 

were statistically more translocations occurring within Neu tumors than PyMT tumors, regardless of E2F1 

status.  When comparing E2F1 status within each model, there was no statistically significant difference 

(Figure 1.7F).  To confirm the translocation calls made by Delly and Lumpy, 20 translocations from each 

tumor were chosen at random and read evidence for these translocations was analyzed using Genome 

Ribbon [187].  Translocation read data for one tumor is shown in Table 1.2.  All tumors had at least 75% 

of translocations with some read support, with 9 of 12 tumors having at least 85% of translocations with 

some read support (Table 1.3).  Interestingly, all translocation events analyzed had a varying level of wild 

type reads present.  Since care was taken to exclude normal tissue when primary tumor was collected for 

sequencing, and since the abundance of wild type reads is fairly large for many of the translocation sites, 

this suggests a large amount of heterogeneity within the tumors.  While some normal tissue (vasculature, 

immune etc.) is present in any tumor, the prevalence of wild type reads is far below that observed for 

mutations.  To verify one of the translocation events from Table 1, PCR was completed with primers 

flanking the translocation junction.  Both translocated and wild type reads were present at the breakpoint, 

confirming the existence of the translocation (Figure 1.8).  Based on this evidence, upwards of 80% of the 

translocations were predicted to be real events. 

ANALYSIS OF DISRUPTED PATHWAYS 

To determine whether cancer and metastasis related genes were mutated within E2F1 WT and 

E2F1 KO tumors, the mutation list was filtered with known cancer genes from COSMIC.  This analysis found 

mutations in a number of cancer associated genes (Table 1.4).  While a few of the genes listed in 

supplemental table 2 have known metastatic implications, they were not consistently mutated within the 

sample groups, or were mutated exclusively within E2F wildtype tumors.  To identify whether an 

abundance of mutations occurred within particular pathways comparing E2F1 knockout to wildtype 
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tumors, a database mining approach was taken using Gather [188].  First, genes with potentially impactful 

mutations were stratified into two gene lists that were distinct in E2F1-/- and E2F1+/+ tumors.  Potentially 

impactful mutations included SNVs causing stop gain or nonsynonymous mutations, translocations 

causing truncated or fusion genes, and copy number segments resulting in the amplification or deletion 

of genes.  These two gene lists were then applied to Gather to determine whether Gene Ontology (GO) 

lists or KEGG (Kyoto encyclopedia of genes and genomes) pathways were significantly mutated.  This 

analysis determined a number of significant GO lists that were present within the gene list from E2F1-/- 

tumors, but not E2F1+/+ tumors. 

In fact, the top three GO pathways associated with E2F1 KO tumors were involved in cell adhesion 

(GO:0007155 p-value = <.0001, GO:0007156 p-value = <.0001, GO:0016337 p-value = .0001).  Genes in 

those cell adhesion GO annotations included various collagens, integrins, and cadherins (Figure 1.9).  

Previous research has shown collagens to be important for tumor maintenance, angiogenesis, and 

metastasis [168].  Collagen IV is the major component of the basement membrane and is comprised of 

heterogeneous trimers stemming from six COL4A genes.  Three collagen IV genes were found mutated in 

different PyMT E2F1 KO tumors.  Other mutations within PyMT E2F1 KO tumors include COL5A2, with 

collagen V being a component of the interstitial matrix, COL6A1-3, with collagen VI being abundant in the 

tumor invasive front [168–170] and several integrin and cadherin genes.  Interestingly, a closer 

examination of the gene expression data revealed the integrin pathway was also found to be upregulated 

within E2F WT tumors, but not E2F1 KO tumors.  There was also an abundance of intronic and synonymous 

mutations within these genes, suggesting they may be hypermutated due to the disruption of E2F1 within 

the model, although this hasn’t been statistically verified.  Indeed, of the 64 mutated genes within the cell 

adhesion Gene Ontology number 0007155, half were noted to have an E2F1 binding motif using 

TRANSFAC (p-value = .003, data not shown).  With E2F1 known to regulate the cell cycle as well as a 

number of genes involved in DNA repair and adhesion, it is feasible that loss of E2F1 could result in an 
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abundance of mutations within certain gene profiles through a disruption of the cell’s ability to undergo 

DNA repair during the S phase.  E2F1 loss and corresponding disruptions to the cell cycle, especially during 

S phase could conceivably lead to an increased mutation burden, potentially within E2F regulated genes.  

E2F1 has also been shown to recruit nucleotide excision repair and double stranded break repair factors 

to sites of DNA damage [181, 189, 190].  It is possible that loss of recruitment of these factors could lead 

to inefficient DNA repair, and an increased mutational burden, although this would need to be further 

explored. 

DISCUSSION 
 
Ablation of E2F1 in PyMT and Neu transgenic mice results in a significant decrease in pulmonary 

metastasis.  To determine whether gene expression changes were responsible for altered phenotypes, 

transcriptomic data was analyzed but showed no large changes in gene expression between E2F1+/+ and 

E2F1-/- tumors.  This was recapitulated in human HER2+ breast cancers after separation into E2F1 high/low 

quartiles.  GSEA revealed several pathways differentially regulated between E2F1+/+ and E2F1-/- tumors, 

but without obvious implications in regulating metastasis.  To test for genomic alterations impacting 

metastasis, we completed WGS of E2F1+/+ and E2F1-/- tumors in Neu and PyMT models.  Mutation 

trinucleotide signatures showed differences between etiology of Neu and PyMT tumors, as well as 

between the E2F1 knockout and WT tumors.  Neu tumors were more closely associated with double 

stranded break repair, while PyMT tumors were associated with DNA Mismatch Repair.  As noted, Neu 

E2F1 KO tumors were more closely associated with defective double stranded break repair than Neu E2F 

wildtype tumors.  An interesting question that warrants further investigation would be whether this was 

due to increased alterations within these genes upon loss of E2F1, or due to some other transcriptional 

function of E2F1.  Analyzing mutated genes for GO and KEGG pathways revealed alterations in cell 

adhesion.  Further analysis of these genes uncovered a role in the basement membrane and interstitial 

matrix, which could be a potential mechanism for disruption of the metastatic cascade. 
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Sequencing data from genetically engineered mouse models is largely lacking, with only a few 

models having been sequenced [115, 179, 191, 192].  SNV mutation rates between previous studies and 

ours indicate similarities, and small discrepancies may be explained through differences in data processing 

methods.  For copy number variation prior research has shown numerous small copy number events and 

a few larger events [115], although this was estimated from whole exome sequencing data. This was 

recapitulated in our data, with the exception that large events were not prevalent after taking the 

consensus of two structural variant callers.  We also noted a substantially greater number of 

translocations within the mouse tumors as compared to a previous study comparing Neu and PyMT 

wildtype tumors, while the same trend of Neu tumors having more translocations than PyMT tumors held.  

This increase in called translocations is likely due to differences in calling methods.  Overall, the field would 

benefit from a large comparison of mouse tumor sequencing data with tumors analyzed under the same 

parameters. 

After analyzing mutated genes using a pathway approach, many genes involved in cell adhesion 

were found having potentially impactful mutations in E2F1 knockout tumors, but not E2F1 wild type 

tumors, including various collagens, integrins and cadherins.  Of the mutated genes found important to 

cell adhesion, genes such as Col4a1 are important components of the basement membrane and are 

involved in tumor progression.  Disruptions to the basement membrane and collagen formation has 

potential to disrupt the metastatic process. This theory is supported by previous data we generated, which 

found a significant decrease in circulating tumor cells [88].  Interestingly, we have also previously noted 

amplification of Col1a1 in Neu E2F1 WT tumors which impacted the metastatic process [193].  Combined, 

these data suggest collagens and proteins within the basement membrane are important to the 

metastatic process in Neu and PyMT tumors. 

SNV profiling for human tumors has utility for both discovery and treatment purposes.  

Sequencing of human breast tumors has revealed larger genomic trends as well as mutation rates for 
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oncogenes and tumor suppressors  [194].  The importance of determining SNVs within mouse models is 

evidenced by previous research from our lab and others [115, 179].  Potential sources of error when 

determining SNVs can stem from differing genetic background within mice, even after backcrossing, as 

well as being too loose or too stringent with the filtering process.  Interestingly, our prior work identified 

and validated a SNV in Ptprh in PyMT tumors [179], but this mutation was not present within this sequence 

analysis.  While the initial paper stipulated an SNV call must pass 3 of 4 SNV calling programs, the work 

herein stipulated a call must pass 3 of 3 programs used, leading to the discrepancy.  When analyzing the 

SNV data for each program used, a Ptprh SNV was called from SomaticSniper and Varscan, but not called 

from Mutect2.  This suggests the usage of multiple programs to call SNVs is more applicable for discovery 

purposes, and that less stringent filtering parameters may be beneficial. 

When analyzing copy number alterations and translocations within the models, there were a 

surprising lack of differences across E2F1 status, suggesting E2F1 loss is not a primary driver of these 

events.  Furthermore, the varying read support seen for confirmed translocations indicates a high amount 

of tumor heterogeneity occurring in both models, regardless of E2F1 status.  While there were numerous 

COSMIC associated genes mutated within the models, no mutations conserved between E2F1 knockout 

tumors (within or across models) were immediately apparent as important to the metastatic process. 

Analyzing gene expression changes between E2F1 WT and E2F1 KO tumors showed no major 

changes upon E2F1 loss.  This was recapitulated among human HER2+ve breast cancer tumors stratified 

between low and high E2F1 activity.  The lack of large gene expression changes may indicate that 

numerous small changes result in phenotypic alterations, or that genomic mutations are leading to altered 

protein function/localization.  Interestingly, the gene encoding Transcription Factor AP-2 Beta was 

significantly upregulated in Neu E2F1 KO mice.  This, combined with the data showing a lack of major gene 

expression changes between E2F1 WT and E2F1 KO tumors, indicates some possible compensation by 

Transcription Factor AP-2 Beta, as well as other members of the E2F family [86, 105].  The sequencing 
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data from E2F1-/- Neu and PyMT mice indicate phenotypic changes may be due to an abundance of 

mutations in particular pathways, in addition to minor expression changes.  Taking into consideration that 

the metastatic process likely originates from a small population of metastatic cells within the primary 

tumor, the contribution of a few metastatic cells to the bulk tumor gene expression or sequencing data 

may cause key events to be lost within the noise of the primary tumor.  Future work will address these 

issues through single cell sequencing and gene expression in matched primary and metastatic tumors. 

MATERIALS AND METHODS 
 

GENE EXPRESSION ANALYSIS 

Gene expression data was described previously [86, 92].  Volcano plots for Neu and PyMT tumors 

were generated by removing outliers for each sample group using Nowaclean (Holsb, Einar. 2017. 

“nowaclean”), samples greater than 3.0 standard deviations away when constructing PCA plots were 

removed.  Data were log2 transformed, and the mean for each gene was calculated within the four sample 

groups.  Fold change was calculated by subtracting the E2F1 KO mean from the E2F1 WT mean for each 

gene.  P-values were calculated and data plotted using EnhancedVolcano (Blighe, Kevin. 2018. 

“EnhancedVolcano”) in R.  Human RSEM normalized RNAseq breast cancer data from TCGA was 

downloaded from UCSC Xena, filtered to HER2+ samples, and sorted by E2F1 expression.  Lower and upper 

quartiles were kept and data were processed for volcano plots as above.  GSEA plots were generated from 

combining Neu and PyMT gene expression datasets.  Datasets were collapsed and combatted to remove 

batch effects.  GSEA was run using GenePattern [195]. 

WHOLE GENOME SEQUENCING AND PROCESSING 

Raw whole genome sequencing data from mouse tumors was previously obtained 28.  Briefly, 

three samples from each group (total of 12) were used, DNA from flash frozen extracted following 

manufacture’s protocol for Qiagen Genomic-tip 20/G kit.  Sequencing was completed at a depth of 40x 

with paired end, 150 base pair reads.  DNA was prepared and sequenced using Illumina TruSeq Nano DNA 
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library preparation and an Illumina HiSeq 2500.  For this study, raw fastq files were assessed for quality 

control using FASTQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed using 

Trimmomatic [196].  Files were aligned to mm10 mouse reference using BWA MEM [197] with standard 

parameters.  Picard tools (“Picard Toolkit.” 2019) was used to add read groups and remove duplicates. 

Samtools [198] was used to sort and index files.   

VARIANT CALLING 

Somatic SNVs were called using SomaticSniper [199], Mutect2 [200], and VarScan [201].  

Consensus calls were merged using R (R Core Team (2018)) base programming, and mutations were only 

kept if called by all three programs.  SNV calls were filtered using base R to account for differences 

between the FVB strain and mm10 alignment (C57/BL6), as well as differences between the SV129 strain 

(original E2F1 mouse background) and C57/BL6.  SNVs were annotated using Annovar [202].  CNVs were 

determined by keeping the consensus of Lumpy [203] and Delly [204].  Consensus was determined using 

Intansv (Yao W 2019) at a threshold of .2, and events smaller than 10,000 bp were filtered out.  Intansv 

was also used to annotate CNV events.  Translocations were called using Lumpy and Delly, and filtered 

based on read evidence.  Lumpy calls were kept if they had at least 20 supporting split end and paired end 

reads, Delly calls were kept if there was split end and paired end read evidence for the call.  WT FVB mouse 

sequence was used as a normal control. 

MUTATION SIGNATURES   

Trinucleotide mutation signatures were completed using the Musica [205] shiny app in R.  Musica 

code was altered to allow for the use of the mouse mm10 reference genome. 

TUMOR CLONALITY 

Clonality for each tumor was determined individually using the MAGOS program in R [206].  An 

updated R script was acquired through email correspondence with the author.  Base R was used to extract 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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VAFs from the consensus SNV calls, and to prep files for use in MAGOS.  VAFs of 0 and 1 were removed as 

per author’s suggestion. 

CIRCOS PLOTS   

Circos plots were generated for each sample using CIRCOS version .69 [207].  Genetic variants 

were plotted according to the mm10 reference genome. 

TRANSLOCATION VERIFICATION 

Read evidence for 20 randomly selected translocations from all 12 sequenced samples was 

examined using GenomeRibbon [187].  For PCR verification, primers were designed with at least 400 bp 

flanking the predicted breakpoint. 
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Figure 1.1:  Altered phenotypic characteristics in E2F1−/− tumors 
 
A) E2F1−/− mice were crossed with MMTV-Neu and MMTV-PyMT mice on the FVB background to create 
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Figure 1.1 (cont’d) 
 
E2F1 knockouts in both models. B) Phenotypic changes seen in PyMT E2F1−/− mice and (C) Neu E2F1−/− 

mice, summarizing changes in latency, growth rate, and number of metastasis. H&E staining of E2F1+/+ 

mouse lung shows a large number of metastasis, while E2F1−/− mice have little to no metastasis. Histology 

of the lungs was obtained at primary tumor endpoint. 
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Figure 1.2:  Gene expression changes in E2F1−/− mouse tumors, and E2F1 low human breast cancer 
 
A) Two volcano plots show significant fold changes in genes from Neu and PyMT mouse tumors 
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Figure 1.2 (cont’d) 

respectively. Fold change was determined by subtracting the E2F1 KO mean from the E2F1 WT mean for 

each gene. Fold change and p-value cutoff for Neu tumors was .5, and .05 respectively. Fold change and 

Pvalue for PyMT tumors was 1.0 and .001 respectively. B) Diagram represents data processing steps for 

human TCGA data. A volcano plot shows significant fold change genes in E2F1 high vs. E2F1 low human 

HER2+ve tumors. Fold change was determined by subtracting samples in the lowest E2F1 quartile mean 

from the highest E2F1 quartile mean for each gene. Fold change cutoff and p-value for human tumors was 

2.0, and 10e−60 respectively. C) GSEA plots generated for E2F1 WT vs E2F1 KO tumors (Neu and PyMT 

combined) show enrichment of Nucleotide excision repair, and WNT signaling pathways in E2F1 KO 

tumors. 
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Figure 1.3:  Filtering background strain to remove artifacts that have potential to confound analysis 
 

A) Pie chart from an E2F1+/+ PyMT tumor represents the normalized (SNVs/Chromosome Size) percentage 

of SNVs within each chromosome. B) Pie chart from an E2F1−/− PyMT tumor represents the  

normalized percentage of SNVs within each chromosome. An abundance of SNVs within chromosome 2 
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Figure 1.3 (cont’d) 

is observed. C) The banding pattern of mouse chromosome 2. The arrow highlights the location of E2F1, 

and the yellow box represents the bands represented in D and E. D) Manhattan plot shows the number 

of SNVs occurring within the 2qF3-2qH3 bands of chromosome 2, in the E2F1+/+ sample from A. E) 

Manhattan plot shows the number of SNVs occurring within the 2qF3-2qH3 bands of chromosome 2, in 

the E2F1−/− sample from B. F) Top pie chart is the same as in B. Bottom pie chart represents the percentage 

of SNVs across each chromosome of the same sample as above, after filtering on the sv129 background. 
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Figure 1.4:  SNV mutation burden in Neu and PyMT tumors 
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Figure 1.4 (cont’d) 
 
A) First two bar graphs represent the number of total or exonic mutations per megabase occurring in all 

12 sequenced tumors.  Third graph represents the percentage shift of exonic, intronic, and intergenic 

mutations in PyMT+/+ and PyMT-/- tumors. B) Shows representative mutation profiles for each of the four 

classes of samples sequenced. Mutation profiles are derived from 96 bp trinucleotide signatures originally 

developed by Alexandrov et. al. Four classes of samples are Neu E2F1+/+, Neu E2F1−/−, PyMT E2F1+/+, PyMT 

E2F1−/−. C) PCA plots derived from trinucleotide signatures show clustering of all 12 samples sequenced. 

D) The heatmap of cancer signatures for the 12 sequenced tumors, as well as various cancers is shown. 
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Figure 1.5:  Mutation profiles 
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Figure 1.5 (cont’d) 
 
Mutation profiles for all 12 Neu and PyMT mouse tumors corresponding to four classes in Figure 4B.  

Mutation profiles derived from 96 bp trinucleotide signatures originally developed by Alexandrov et. al. 
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Figure 1.6:  Clonal heterogeneity in Neu and PyMT tumors 
 
Graphs showing clonal populations in representative Neu and PyMT tumors.  Each dot represents a 

specific mutation, with the Y-axis showing the total number of reads covering that mutation, and the X-

axis showing the variant allele frequency of that mutation.  Each color represents a different predicted 

clone.  E2F1 status did not affect clonality. 
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Figure 1.7:  Mutation burden in Neu and PyMT tumors 
 
A) Circos plot for a representative Neu E2F1+/+ sample. B) Circos plot for a representative Neu E2F1−/− 

sample. C) Circos plot for a representative PyMT E2F1+/+ sample. D) Circos plot for a representative PyMT 

E2F1−/− sample. For A-D Circos plots, outer most ring represents the mouse chromosomes. Four successive 

inner rings represent the following mutation types; total SNVs, exonic SNVs, Copy number variation with 

green being amplification and red being deletion, and translocations. E) Venn diagram showing the 

overlap of genes within copy number events. Consensus copy number events were generated for each of 

the three samples within the four sample classes. Genes were then extracted and compared across the 

sample classes. F). Venn diagram showing the overlap of translocations occurring within the four sample 

classes. Consensus translocations calls from each of the three samples within each class were generated, 

and the four classes were then compared. 
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Figure 1.8:  Verification of translocation calls   
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Figure 1.8 (cont’d) 

A) Example of a GenomeRibbon plot where no structural variation occurs. The top colored bands 

represent each chromosome of the mouse, and the red box below represents the location searched within 

a sample’s bam file. Each line within that box represents a different read. B) A GenomeRibbon plot 

representing translocation number 13 from table 1. Translocated reads are shown between chromosome 

9 and chromosome 8. C) Gel image of the chromosome 8/9 translocation from the GenomeRibbon plot 

above. DNA was from a PyMT E2F1−/− tumor. Both translocation and wild type tumor DNA were amplified. 

Translocated reads were amplified using a primer set flanking the region where the two translocated ends 

ligate.   
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Figure 1.9:  Mutations in basement membrane genes 
 
Diagram shows various mutations occurring in genes that code for proteins making up the basement 

membrane and interstitial matrix. Circles at top indicate genes with colors representing 1 of 3 sequenced 

E2F1−/− PyMT tumors that has a mutation in that gene. Image on left represents a breast tumor with 

surrounding basement membrane. Image on right represents the basement membrane and interstitial 

matrix on the outer edge of a tumor. 
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Table 1.1:  Mouse tumor signature etiology 
 
Table showing contribution of each proposed tumor etiology for each of the 12 mouse tumors. 
 
Numbers represent a proportion of the whole. 
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Table 1.2:  Supporting reads for 20 randomly selected translocations from the tumor in figure 6  
 
Random translocations were selected by inputting all translocations from the tumor into Excel, and using 

the RAND() function to assign a random number.  The 20 highest translocations were then selected.  

Positions 1 and 2 represent the translocation breakpoint.  Genome Ribbon was used to analyze read 

evidence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Translocation # Position1 Position2 Supporting Reads (approximate) Total Reads (exact) % Support

1 3 _ 65552053 2 _ 20941004 10 61 16.39

2 2 _ 161669843 18 _ 78292047 10 119 8.40

3 15 _ 43944218 1 _ 112318855 6 89 6.74

4 13 _ 23307876 11 _ 88303305 11 104 10.58

5 5 _ 5609182 18 _ 56166475 14 77 18.18

6 5 _ 7058436 2 _ 8931319 4 49 8.16

7 16 _ 83532604 14 _ 96841358 15 83 18.07

8 3 _ 153288050 17 _ 10818207 15 88 17.05

9 16 _ 83532819 14 _ 96841377 19 94 20.21

10 16 _ 18368004 12 _ 80665928 10 85 11.76

11 8 _ 102861241 17 _ 67932443 0 57 0.00

12 14 _ 21312516 11 _ 9863013 16 234 6.84

13 9 _ 55224433 8 _ 85188141 13 82 15.85

14 X _ 38480149 9 _ 55983052 12 70 17.14

15 6 _ 73162349 16 _ 96121815 3 34 8.82

16 4 _ 43262573 3 _ 113857214 4 68 5.88

17 5 _ 62573934 13 _ 86796353 2 77 2.60

18 3 _ 135929183 1 _ 139635092 9 95 9.47

19 6 _ 67680744 4 _ 147419479 0 158 0.00

20 7 _ 79199005 19 _ 40536086 14 81 17.28
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Table 1.3:  Table showing read support for 20 randomly drawn translocations within each of the 12 
mouse tumors   
 
To pick 20 random translocations, for each tumor, all translocation events were imported into excel and 

a random number was assigned using RAND() function.  These were then sorted highest to lowest, and 

the 20 highest translocations were taken. Translocation read support was analyzed using GenomeRibbon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tumor

Translocations with 

Extensive* Read Support

Translocations with 

Low* Read Support

Translocations with 

no Read Support

% Extensive 

Support

% with at Least 

Some Support

Average Read 

Support (%)

Neu_E2F1KO_1 18 1 1 90 95 14.5

Neu_E2F1KO_2 17 0 3 85 85 14.78

Neu_E2F1KO_3 13 2 5 65 75 8.82

Neu_WT_1 17 1 2 85 90 15.83

Neu_WT_2 13 3 4 65 80 10.22

Neu_WT_3 18 1 1 90 95 12.42

PyMT_E2F1KO_1 16 2 2 80 90 13.21

PyMT_E2F1KO_2 18 1 1 90 95 13.48

PyMT_E2F1KO_3 17 1 2 85 90 10.8

PyMT_WT_1 14 4 2 70 90 13.62

PyMT_WT_2 13 3 5 65 80 14.94

PyMT_WT_3 15 4 1 75 95 14.06

*Extensive read support is deemed greater than 5% of reads supporting the translocation

*Low read support is deemed greater than 0, but less than 5% of reads supporting the translocation
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Cosmic Cancer Genes Exclusive 
to E2F1 KO Tumors 

Mutation 
Type 

Cosmic Cancer Gene 
Mutations Exclusive to E2F1 

WT Tumors 
Mutation 

Type 

ABL1 SNV AFF4 SNV 

AFF1 SNV ATP1A1 SNV 

AKT2 SNV BAP1 SNV 

ALK SNV BCL2 SNV 

ANK1 SNV BCL7A SNV 

AR SNV CARD11 SNV 

ARHGEF10 SNV CASP3 SNV 

ARID1A SNV CHEK2 SNV 

ATM SNV CPEB3 SNV 

ATRX SNV CTNNB1 SNV 

AXIN1 SNV ETV4 SNV 

BAZ1A Translocation FLI1 SNV 

BCL11A SNV FOXO4 SNV 

BCL9 SNV LHFP Translocation 

BCL9L SNV LMNA SNV 

BRD4 SNV MSH2 SNV 

CAMTA1 SNV NRG1 SNV 

CASP9 SNV PIK3R1 SNV 

CBLB SNV PLAG1 SNV 

CCDC6 SNV POLD1 SNV 

CD274 SNV PREX2 SNV 

CD79A SNV RANBP2 SNV 

CDKN1A SNV ROBO2 SNV 

CNTRL SNV RSPO3 SNV 

CREB1 SNV SF3B1 SNV 

DNMT3A SNV SMAD4 SNV 

ELF4 SNV SUZ12 SNV 

ELK4 SNV TGFBR2 SNV 

ELN SNV ZBTB16 SNV 

EPS15 SNV ZEB1 SNV 

ERCC2 SNV     

ERCC3 SNV     

ERCC4 SNV     

ETV5 SNV     

EZR SNV     

FAM47C SNV     

FAT3 SNV     

FGFR2 SNV     

FLNA SNV     

FLT3 SNV     

FOXP1 SNV     

 
Table 1.4:  Cosmic associated genes 
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Table 1.4 (cont’d) 
 
Table shows Cosmic cancer associated genes that are mutated exclusively within E2F1 KO or E2F WT  
 
mouse tumors. 
 

GAS7 SNV     

GPC5 SNV     

GRM3 SNV     

H3F3A SNV     

HOXD11 SNV     

IL6ST SNV     

JAK2 SNV     

KAT7 SNV     

KCNJ5 SNV     

KDM6A SNV     

KDSR SNV     

KEAP1 SNV     

KMT2A SNV     

KMT2C SNV     

KMT2D SNV     

LZTR1 SNV     

MAF SNV     

MALT1 SNV     

MAP2K4 SNV     

MAP3K13 SNV     

MITF Translocation     

MLLT1 SNV     

MLLT10 SNV     

MSN SNV     

MUTYH SNV     

NACA SNV     

NBEA Translocation     

NF1 SNV     

NFKB2 SNV     

NIN SNV     

NTRK3 SNV     

NUP98 SNV     

NUTM1 SNV     

PAX8 SNV     

PDGFRA SNV     

PDGFRB SNV     

PHOX2B SNV     

PICALM SNV     

POU2AF1 SNV     

PTCH1 SNV     
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Table 1.4 (cont’d) 
 

PTK6 SNV     

PTPN6 SNV     

PTPRT SNV     

PWWP2A SNV     

RARA SNV     

REL SNV     

RET SNV     

RMI2 SNV     

RNF213 SNV     

ROS1 SNV     

SDHAF2 SNV     

SETD2 SNV     

SFPQ SNV     

SIRPA SNV     

SIX1 SNV     

SKI SNV     

SMARCE1 SNV     

SOCS1 SNV     

SPEN SNV     

SRC SNV     

SRGAP3 SNV     

STAG1 SNV     

STK11 SNV     

STRN SNV     

TAF15 SNV     

TBX3 SNV     

TCF3 SNV     

TEC SNV     

TET1 SNV     

TET2 SNV     

TFEB SNV     

THRAP3 SNV     

TMPRSS2 SNV     

TRAF7 SNV     

TRIM24 SNV     

TRIM27 SNV     

TRIP11 SNV     

TSC1 SNV     

TSHR SNV     

VAV1 SNV     

VHL SNV     

WT1 SNV     

ZFHX3 SNV     

  



 

64 
 

 
 
 
 
 
 

CHAPTER 2 
 
 

PTPRH MUTATIONS IN PYMT MOUSE TUMORS 
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ABSTRACT 
 
 Genetically engineered mouse models are an important means for investigating a variety of 

cancers.  While their relevancy to human cancer has been well documented on a histological and 

molecular level, sequencing of mouse tumors has not been as common.  Through whole genome 

sequencing of PyMT mouse mammary tumors, we have uncovered a mutation in the protein tyrosine 

phosphatase receptor type H gene (Ptprh).  This conserved mutation is present in 80% of PyMT tumors, 

and correlates with increased phosphorylation of EGFR, a known target of PTPRH.  Interestingly, Ptprh 

mutations also correlated with increased p-AKT, an important signaling molecule downstream of EGFR. 
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INTRODUCTION 
 

PHOSPHATE SIGNALING WITHIN THE CELL 

 The human body is a highly organized, functional system.  To achieve this high degree of 

functionality, cells need to communicate effectively with their neighbors and within themselves.  

Communicating with neighboring cells is usually accomplished through a variety of extra-cellular ligands 

that act as messages travelling from cell to cell, and throughout the body.  Within each cell, signaling is 

achieved through a complicated network of specialized proteins that are often activated through a series 

of reactions catalyzing ATP to phosphorylate amino acid residues on target substrates.  Many of these 

proteins are classified as kinases and broken down into two large groups based on which amino acid 

residues are phosphorylated, including serine/threonine kinases and tyrosine kinases.  Within these 

cascades are a number of other proteins including guanine nucleotide exchange factors (GEF) that act as 

intermediaries, and become active upon exchange of their bound GDP for GTP.  Some downstream targets 

of these cascades are transcription factors.  Activation or repression of transcription factors by signaling 

cascades eventually leads to transcription of various genes.  While these signaling pathways are 

complicated, they are often initiated through various receptor tyrosine kinases (RTK)s. 

RECEPTOR TYROSINE KINASES 

 Receptor tyrosine kinases are perhaps some of the most important signaling molecules in cellular 

communication and cancer.  Prior to the name ‘receptor tyrosine kinase’ being coined in the late 1970’s, 

important work involving the elucidation of this class of proteins had been done.  Experiments in the early 

1960s were responsible for the discovery of epidermal growth factor (EGF), the ligand eventually found 

to be responsible for stimulation of the epidermal growth factor receptor (EGFR) and other RTKs.  EGF 

was found to prompt early tooth eruption and eyelid formation in 8 day old mice [208, 209].  Work in the 

70s also demonstrated the ability of the protein SRC and the growth factor EGF to stimulate serine and 

threonine phosphorylation, with the eventual seminal paper showing phosphorylation of tyrosine 
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residues by the SRC kinase [210–214].  It was a short time later when the phosphor-tyrosine activity of 

EGFR was also found [215]. 

 Decades later, we have a much clearer understanding of RTKs and how they operate within the 

cell.  While there are numerous classes of RTKs capable of being activated in a number of fashions, 

canonical RTK activation typically relies on dimerization of RTK monomers residing within the cell’s 

cytoplasmic membrane ([216].  These RTKs consist of an extracellular binding domain, transmembrane 

domain, and intracellular catalytic domain.  The basic RKT activation process consisting of ligand binding, 

dimerization, and phosphorylation of tyrosine residues on the C-terminal tail is conserved across varying 

RTK families, however the details of the process can differ significantly between individual receptors.  

While extracellular ligand binding appears necessary for RTK activation, and is usually associated with 

dimerization of RTK monomers, it isn’t always required for dimerization [217].  Early RTK paradigm, 

applicable to a number of RTKs, shows dimerization is driven by ligands that are themselves dimerized, as 

is the case with VEGF and Axl [218–220].  Dimerization of other RTKs is driven by monomeric ligands, such 

as FGF [221].  Certain RTKs also require accessory molecules to aid in dimerization [222, 223].  With certain 

RTKs, the ligands directly facilitate dimerization by binding to each other.  However, some RTKs dimerize 

by binding directly to themselves, with ligand binding facilitating activation by inducing a conformation 

shift.  In some cases, RTKs are capable of dimerizing with other members in their family, which is common 

within the ERBB family of RTKs [224].   

 After ligand binding and dimerization, activation of the RTK dimer occurs, usually through a 

conformational shift that releases cis-auto inhibition in the intracellular domain.  In most cases, the 

conformational shift opens up the active site, allowing ATP binding to occur.  Interestingly, while most 

RTKs have vastly different crystal structures in an inactive state, structures of active RTK catalytic domains 

are strikingly similar [225].  Other modes of activation are seen, including by-passing allosteric inhibition 

as well as inhibition by c-terminal sequences [226].  After the active site is made accessible, tyrosine 
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residues near the c-terminal end of the intracellular domain become phosphorylated.  Many RTKs have 

numerous tyrosine residues capable of being phosphorylated, and some evidence shows the residues are 

phosphorylated in a specific order [227]. 

 Once tyrosine residues on the C-terminal tail become phosphorylated, a number of signaling 

molecules are recruited to propagate downstream signaling.  Many of these molecules have SRC 

homology 2 (SH2) or phosphotyrosine binding (PTB) domains [228, 229].  These signaling cascades can 

achieve deregulated cell growth through numerous mechanisms, including activation or repression of 

numerous transcription factors capable of altering cellular programing, as well as differential control of 

the cell cycle.  Numerous mechanisms act as a negative feedback loop to keep RTK signaling in check, 

including RTK degradation through ubiquitination and phosphate removal by protein tyrosine 

phosphatases (PTPs) [230, 231].  Overall, the complexity of RTK signaling is vast, and disruptions to all 

facets of these processes can induce tumor formation.  Disruptions to RTKs themselves include 

chromosomal rearrangements, amplification events, and gene mutations resulting in a gain of function 

[226], something commonly seen within the epidermal growth factor receptor. 

EPIDERMAL GROWTH FACTOR RECEPTOR 

 EGFR plays a role in numerous cancers including glioma and lung cancer.  EGFR is a member of 

the ERBB family of RTKs, and is involved in numerous signaling pathways responsible for increasing cellular 

growth, proliferation, and an evasion of apoptotic signals.  Pathways stimulated by EGFR activation 

include Pi3k/Akt and Ras/Raf/Mek/Erk.  While EGFR follows the basic RTK activation process, there are 

notable differences compared to more ‘canonical’ receptor tyrosine kinases.  For example, some evidence 

has shown EGF is capable of activating pre-existing EGFR dimers [232, 233], and further evidence has 

shown increased expression of EGFR can stimulate ligand independent dimerization [234].  Even though 

ligand binding is capable of stimulating dimerization through conformational shifts, EGFR dimerization is 

entirely mediated by the extracellular domains [235, 236].  Furthermore, EGFR seems to differ in that the 
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receptor doesn’t require trans-autophosphorylation to phosphorylate and open the active domain in the 

C-terminal tail.  Instead, the intracellular region of EGFR contains a C-lobe and an N-lobe.  Once dimerized, 

the C-lobe is capable of swinging around to connect with the N-lobe allowing a disruption to the auto-

inhibited state, and an active conformation to be taken [237]. 

 After the active conformation is taken, phosphorylation can occur on the many tyrosine residues 

in EGFR’s c-terminal tail [238–240].  Interestingly, various ligands seem capable of inducing differential 

tyrosine phosphorylation and various downstream signaling pathways [241, 242].  Gene mutations are 

also capable of inducing EGFR’s active state, and these mutations are common in multiple cancers.  

Common mutations leading to constitutively active EGFR in non-small cell lung cancer (NSCLC) include a 

deletion in exon 19, and the L858R point mutation [243, 244].  EGFR stimulation can lead to eventual 

transcription of numerous genes, from immediate early genes such as the transcription factors FOS and 

JUN within minutes, to secondary late response genes over 120 minutes after stimulation [245].  After 

signaling, EGFR is internalized and returned to the cell surface or marked for degradation [246, 247].  Some 

research has indicated the cell’s ‘decision’ process involving EGFR internalization is pH dependent [248].   

EGFR has also been seen in the nucleus of regenerating liver tissue [249], and various cancers 

including ovarian and bladder [250, 251].  Furthermore, EGFR has been found to act as a transcriptional 

activator via direct binding to A/T-rich sequences (ATRS) in the promoters of certain genes, such as cyclin 

D1 [252].  Nuclear EGFR is also capable of acting as a co-activator through  interactions with transcription 

factors, such as STAT3, which recruits nuclear EGFR to the iNOS gene [253].  This has led to nuclear EGFR 

having prognostic value for a variety of cancers, including breast and non-small cell lung cancer [254, 255].  

Overall, EGFR is extensively involved in cancer progression through a variety of mechanisms.  Its 

importance is illustrated by the successful treatment of EGFR mutant cancers with tyrosine kinase 

inhibitors, which will be discussed in more detail further below. 
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PHOSPHATASES 

 Just as RTKs are responsible for propagating phosphate signaling within the cell, phosphatases are 

responsible for regulating these signaling pathways through the removal of phosphate groups from target 

residues.  While conventional wisdom suggested kinases were the most important aspect regarding 

intercellular signaling, phosphatases are just as important in that regard.   Since some of the earliest work 

on tyrosine phosphatases [256–260], the field has expanded rapidly as a sign of appreciation for how 

important these proteins are in the regulation of cellular pathways. 

Typically, phosphatases are broadly classified into two groups, including serine/threonine 

phosphatases and tyrosine phosphatases.  These groups are further delineated into a number of 

classifications dependent on the subcellular location and substrate specificity of the phosphatase.  Here I 

will focus more on protein tyrosine phosphatases (PTPs), and more specifically receptor like PTPs (RPTPs).  

RPTPs largely consist of a variable extracellular region, transmembrane domain, and largely conserved 

intra-cellular phosphatase domain [261].  Often, the extracellular regions of RPTPs are comprised of a 

number of immunoglobulin-like or fibronectin type III domains, which are thought to mediate substrate 

binding and cell-cell contacts [261].  The intracellular phosphatase domains of RPTPs consist of the highly 

conserved HC-(X5)-R motif responsible for catalytic activity, as well as nine other conserved motifs that 

play a role in selectivity and catalysis of target substrates [262].  Many PTPs contain a cleft within the 

conserved catalytic motif that is responsible for recognition of phosphorylated tyrosine [263].  This cleft 

is too deep for phosphorylated serine and threonine residues, which is thought to mediate the selectivity 

of PTPs for pTYR.  Catalysis of phosphorylated tyrosine occurs during a two step chemical process involving 

a conformational shift of the PTP active site, which makes the PTP catalytically competent [261]. 

While PTPs are generally thought to shut down pathway signaling, their impact is entirely context 

dependent.  In fact, the regulation of certain pathways by PTPs can result in activation or repression in an 

entirely context dependent manner.  In the case of  the RPTP CD45, dephosphoylation of SRC results in 
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activation of signaling downstream of SRC, rather than an inhibition of the pathways [264, 265].  These 

context dependent processes complicate the narrative of PTPs, allowing them to be viewed as having 

tumor suppressor or oncogenic properties depending on their cellular location and target pathways. 

 PROTEIN TYROSINE PHOSPHATASE RECEPTOR TYPE H 

 PTPRH, otherwise known as Stomach Cancer-Associated Phosphatase 1 (SAP-1) is a member of 

the receptor like protein phosphatases.  Like many other RPTPs, PTPRH has an extracellular region 

consisting of fibronectin domains, a transmembrane domain, and an intracellular phosphatase domain.  

The structure of PTPRH is largely conserved between humans and mice, with humans having eight 

fibronectin domains and mice having six [266].  PTPRH was first cloned in the early 1990’s (as SAP-1) 

from human gastrointestinal cancers, and much of its characterization has been in that context [267].  

Like CD45, PTPRH is capable of activating pathways downstream of SRC in a context dependent manner 

[266].  Interestingly, PTPRH becomes inactive upon dimerization, which is regulated by the extracellular 

fibronectin domains [266]. 

 While the literature base for PTPRH is small, it was found to be a regulator of EGFR through a 

screening approach in 2017 [268].  Within that study, Yao et. al found PTPRH to be a negative regulator 

of EGFR, specifically at EGFR tyrosine residue 1197.  PTPRH deficient ovarian cell lines were also found to 

have ERK activation downstream of EGFR [269].  Overall, this indicates PTPRH mutations may contribute 

to deregulated cellular pathways within tumors, through multiple mechanisms. 

RESULTS 
 

DISCOVERY OF PTPRH MUTATIONS IN MOUSE PYMT TUMORS 

Previous research in the lab discovered a Ptprh mutation within the mammary tumors of PyMT 

FVB mice [193].  Upon targeted resequencing, 81% of PyMT mice (n = 45) were found to have a conserved 

V483M mutation within Ptprh.  Further addition of 22 samples to this dataset found this ratio held, with 

Ptprh mutations occurring in 82% of PyMT tumors (Figure 2.1A).  Interestingly, mammary tumors that 
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arose within the same mouse had the same pattern of Ptprh mutations, so if one tumor from mouse A 

had a heterozygous Ptprh mutation, other tumors from that same mouse had heterozygous mutations as 

well (Table 2.1).  While a mechanism for this has yet to be explored, previous work has ruled out these 

mutations being germline [193].  Previous analysis of whole exome sequencing (WES) data acquired from 

a collaborator showed Ptprh mutations occurred throughout the Ptprh exome in PyMT mice of various 

backgrounds other than FVB.  This is in contrast to FVB mice, where the mutation in Ptprh always results 

in a valine to methionine shift at amino acid 483 (Figure 2.1B).  Interestingly, analysis of the WES data also 

found Ptprh mutation status to be conserved between primary tumors and their metastasis (Figure 2.1C).  

A student’s T-test found no statistical difference (p = .39) when comparing the number of exonic 

mutations in primary tumors, to exonic mutations in metastatic tumors.  These data suggest that when 

Ptprh mutations occur, they occur early within the primary tumor progression. 

PTPRH MUTANT TUMORS CORRELATE WITH HIGH EGFR ACTIVITY 

 As mentioned above, PTPRH has known interactions with the epidermal growth factor receptor.  

Therefore, we hypothesized PyMT tumors with a mutation in Ptprh would have increased phosphorylation 

of EGFR, specifically at EGFR residue 1197.  To correlate mouse Ptprh mutations with increased p-EGFR, 

western blots were run using an antibody specific for 1197-EGFR [193] (Figure 2.2A).  These blots show a 

clear correlation between mutated Ptprh and increased phosphorylation of EGFR.  In fact, homozygous 

mutant tumors have an even further increase in p-EGFR than heterozygous mutant tumors.  Suggesting a 

dominant negative mechanism may be occurring.  To further explore the relationship of mutated Ptprh 

with signaling pathways downstream of EGFR, western blots for phosphorylated AKT, ERK, and the 

transcription factor STAT3 were completed using mouse tumor lysates that were wildtype for Ptprh, or 

had a homozygous mutation (Figure 2.3A/B).  AKT, ERK, and STAT3 are both important regulators of 

pathways downstream of EGFR. [270–274].  As you can see, Ptprh mutant PyMT tumors have a clear 

increase in phosphorylated AKT, but not of ERK or STAT3.  This suggests mutated Ptprh is only responsible 
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for regulating some of the tyrosine residues on the c-terminal tail of EGFR.  Based on our data we believe 

PTPRH may specifically be targeting EGFR residue 1197, however, previous characterization of tyrosine 

residues on the c-terminal tail of EGFR has illustrated the complicated nature of these signaling pathways, 

and it may not be as simple as PTPRH targeting a single residue. 

DISCUSSION 
 

Through whole genome sequencing of PyMT mammary tumors from FVB mice, we have 

uncovered a conserved V483M mutation within the Ptprh gene.  This gene was found mutated in 82% of 

tumors (n = 67) and was determined not to be germline.  Further analysis of WES data found a 

conservation of Ptprh mutations within primary mammary tumors and their matched metastasis, 

suggesting Ptprh mutations occur within the early stages of tumor progression.  Correlative western blot 

analysis found increased phosphorylation of EGFR at residue 1197, as well as increased phosphorylation 

of AKT further downstream, but not of ERK or STAT3. 

It may be prudent in the future to determine if in fact Ptprh mutations are occurring early within 

tumor formation.  This may give insight as to whether PTPRH can be a driving force of tumor progression.  

82% of tumors harboring mutations in Ptprh also begs the question of whether this mutation is selected 

for in this particular oncogenic model.  While the above questions were not addressed within this work, 

the answers could provide beneficial insight into the role of PTPRH in PyMT carcinogenesis. 

We have yet to uncover a mechanism behind the failure of mutant Ptprh dephosphorylating EFGR, 

however heterozygous mutants resulting in increased p-EGFR suggest the mechanism may be dominant 

negative.  Furthermore, dimerization of PTPRH is known to cause loss of activity, suggesting a mutation in 

the fibronectin domain could lead to increased ability of PTPRH to bind to itself.  Uncovering this 

mechanism in future work, potentially through a series of co-immunoprecipitations and other biochemical 

assays, could lead to valuable insight as to how the V483M mutation impacts PTPRH’s ability to 

dephosphorylate EGFR. 
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With EGFR being a well know regulator of numerous cellular signaling pathways, Ptprh mutant 

tumors could have deregulated cellular growth dynamics through some of these pathways.  In fact, we 

saw increased phosphorylated AKT within Ptprh mutant tumors that also had increased p-EGFR.  AKT is 

an important regulator of pathways leading to increased cellular proliferation and evasion of pro 

apoptotic signals, so PTPRH mutations resulting in increased AKT activation could result in increased 

cellular proliferation and enhanced tumor growth.  In fact, this has been noted in PyMT tumors [193], 

which is a striking phenotype given the already fast growth of PyMT tumors.  A further exploration into 

how increased p-AKT is linked to increased –EGFR would be interesting.  That mechanism could occur 

through canonical signaling mechanisms, such as through GRB2 and PI3K and intermediaries, or perhaps 

through another mechanism.  Overall, further exploration V483M mutant Ptprh’s contribution to 

tumorigenesis in PyMT mice would provide valuable insights into phosphatase biology. 

MATERIALS AND METHODS 
 

TARGETED RESEQUENCING OF PYMT TUMORS 

DNA was extracted from flash frozen tumors using lysis buffer (50 mL Tris HCl, 5 mL 500 mM EDTA, 10 mL 

10% SDS, 20 mL 5M NaCl, H20 up to 500 mL), or FFPE tissue using Qiagen FFPE extraction kit.  The region 

flanking V483M was PCR amplified using the following primers, F = GGCCTTAGGTTCAATTGTGAATAC, R = 

CCTTAGCTTCCCGAGTATTGGTT.  Amplified DNA was sent to GeneWiz for Sanger sequencing with the 

following primer TCATCCAAACTACATCTATGATCCA.  Geneious software was used for alignment to 

reference DNA. 

ANALYSIS OF PTPRH MUTATIONS IN WES DATA 

Pre-annotated VCF files were downloaded for 64 tumors from GEO ascension number GSE142387.  Data 

was processed within R by reading in VCF files, then filtering to only keep mutations within the Chr 7 bp 

4548992 – 4604041 range (location of Ptprh in mouse genome).  These files were then converted to 

Annovar format, exported, and annotated using Annovar.  Statistical analysis was completed using a 
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student's t test (unequal variance, 2 tailed) between the metastasis group (mutations per met sample), 

and the primary group (mutations per primary tumor). 

WESTERN BLOTTING 

Tumor lysates were harvested from flash frozen tumors by crushing with a mortar and pestle, then 

dissolving in TNE lysis buffer (5 mL 1 M Tris HCl pH 8, 3 mL 5M NaCl, 1 mL NP40, 400 uL .5M EDTA, 2.0 mL 

.5M NaF, H2O to 100 mL).  Roche mini protease tablets and sodium orthovanadate were used and 

protease and phosphatase inhibitors respectively.  Sample concentrations were read using BCA assay, and 

were diluted to same concentration using extra lysis buffer.  SDS was added and samples were heated to 

95C for 10 min.  Samples were loaded onto an 8% gel and run for ~2 hours, then transferred onto .45 uM 

PVDF at 70 volts for 2 hours.  Blocking occurred for 1 hour at room temp in 5% BSA.  Primary antibodies 

were incubated overnight in blocking buffer.  Blots were rinsed with TBST and incubated at room temp 

with secondary for 1 hour before being rinsed and imaged again.  Antibodies were as follows; total EGFR 

(Cell sig. D38B1), p-EGFR (Invitrogen PA5-37553), AKT (Cell sig. 11E7), p-AKT (Cell sig. D9E), STAT3 (cell sig. 

79D7), p-STAT3 (D3A7), B-Tubulin (Proteintech 10094-1-AP), Vinculin (E1E9V). 
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APPENDIX 
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Figure 2.1:  Ptprh mutations in PyMT mouse tumors 
 
A) Ptprh V483M mutation frequency seen in PyMT mammary tumors of FVB background mice.  B) Lollipop 

plot of PTPRH exome showing location of V483M mutation within the predicted PTPRH fibronectin  
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Figure 2.1 (cont’d) 

domain.  C)  Table of Ptprh exonic mutations seen in primary PyMT FVB tumors and their matched 

metastasis.  WES data obtained from a collaborator.   
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Figure 2.2:  Increased p-EGFR in Ptprh mutant mouse tumors 
 
A) Increase in phosphorylated 1197 EGFR seen in heterozygous and homozygous Ptprh mutant PyMT 

mouse tumors. 
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Figure 2.3:  Downstream pathway activity in Ptprh mutant mouse tumors 

A)  Increase in phosphorylated S473 AKT seen in homozygous Ptprh mutant PyMT mouse tumors.  B)  No 

differences seen in phosphorylated ERK1/2 or Y705 STAT3.  
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Table 2.1:  Mammary gland Ptprh mutation status in PyMT mice 

Mouse # Tumor # (mammary gland #) Ptprh Status

2139 2 Heterozygous

2139 6 Heterozygous

273 1 WT

273 5 WT

273 6 WT

273 8 WT

274 3 WT

274 7 WT

274 8 WT

2831 4 Homozygous

2831 5 Homozygous

2831 6 homozygous

300 3 Heterozygous

300 7 Heterozygous

300 8 Heterozygous

300 9 Heterozygous

3146 6 Homozygous

3146 7 Homozygous

3304 1 Heterozygous

3304 8 Heterozygous

3720 2 Homozygous

3720 8 Homozygous

379 2 WT

379 5 WT

455 1 Heterozygous

455 2 Heterozygous

455 6 Heterozygous

456 1 Heterozygous

456 2 Heterozygous

456 3 Heterozygous

456 4 Heterozygous

547 2 Homozygous

547 5 Homozygous

547 6 Homozygous

563 1 Heterozygous

563 2 Heterozygous

563 4 Heterozygous

563 6 Heterozygous

592 1 Heterozygous

592 3 Heterozygous

616 1 Homozygous

616 2 Homozygous

618 1 WT

618 4 WT

618 6 WT

628 5 Heterozygous

628 6 Heterozygous

693 3 Heterozygous

693 4 Heterozygous



 

82 
 

Table 2.1 (cont’d) 

Ptprh mutation status is conserved amongst different mammary gland tumors from the same mouse. 
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CHAPTER 3 
 
 

RELATIONSHIP OF PTPRH AND EGFR IN HUMAN CANCER
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ABSTRACT 
 
 While mouse models of cancer can be beneficial tools for studying the disease, not all genomic 

mutations found within mouse tumors are relevant to human tumor development.  Here we investigate 

the importance of PTPRH mutations in human cancer, finding that 5% of NSCLC cases have mutations 

within PTPRH.  Many of these mutations are predicted to have increased EGFR activity, and activation of 

the PI3K/AKT pathway downstream of EGFR.  We show PTPRH ablation through CRISPR leads to increased 

phosphorylation of EGFR, as well as AKT.  A phosphorylated receptor tyrosine kinase array also discovered 

other RTKs potentially targeted by PTPRH, including a confirmed increase in phosphorylated FGFR1 upon 

loss of PTPRH.  Interestingly, Ptprh mutant mouse tumors and PTPRH KO lung cancer cells also display 

increased EGFR localization to the nucleus of cells,  which has been noted in other cancers and 

regenerating liver tissue. 
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INTRODUCTION 
 

Previous data found a Ptprh mutation within PyMT mammary tumors, with these tumors 

exhibiting increased p-EGFR and p-AKT as compared to Ptprh WT tumors.  While this data was striking, it 

does not show whether PTPRH mutations are relevant within human cancers.  Genetic aberrations found 

within mouse models of cancer are not always applicable to human forms of the disease [275, 276].  This 

is especially the case for certain oncogenic drivers in mice, such as the PyMT oncogene used to drive 

carcinogenesis within the PyMT model [277].  While tumor induction within the PyMT model relies on the 

activation of certain pathways known to be important for carcinogenesis, such as Pi3K/AKT, the main 

oncogenic driver (PyMT) is not found within human cancers. 

Determining whether genetic mutations found in mouse tumors are applicable to human cancers 

can also be complicated by a large number of passenger mutations, whose effect on tumor progression 

can be ambiguous [278].  Sorting through mutations found via whole genome sequencing is often 

completed by applying numerous filtering steps, including but not limited to the following;  

1. Annotating variants to determine their coding classification (nonsynonymous, etc.) 

2. Correlating particular mutations to survival data or another phenotype across multiple 

samples 

3. Analyzing human datasets to determine whether the mutation is present in human tumors 

4. Cross referencing mutation lists with known oncogenes and tumor suppressor genes 

5. Using pathway or gene set databases (such as Gather) to find relationships between lists of 

mutated genes 

6. Pairing mutations with transcriptomic data to check for a corresponding alteration in gene 

expression 

7. Determining whether the mutation results in a potential protein conformational shift  
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Overall, the resources available to aid in determining whether a particular mouse model gene mutation is 

relevant are vast, and numerous resources should be combined to shift through the noise occurring within 

the mutational landscape of mouse model tumors.  In this chapter, some of the listed resources are 

applied to show the relevancy of PTPRH to human cancers.  The relationship between PTPRH and EGFR is 

also flushed out. 

RESULTS 
 

PTPRH MUTATIONS IN HUMAN CANCER 

 To determine whether PTPRH mutations were present within human tumors, data from The 

Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were analyzed taking 

a pan-cancer data mining approach.  Initial analysis of these two data collections showed high rates of 

PTPRH mutations in skin, uterus, and lung cancers (Figure 3.1A).  Interestingly, when analyzing data from 

ICGC, the percentage of patients with PTPRH mutations within the same cancer type was noted to be 

variable across datasets from different countries.  For instance, a higher percentage of melanoma patients 

in Australia were noted to have PTPRH mutations than in the United States.  A closer look at the individual 

datasets however, revealed differences in data processing and reporting that accounted for most of the 

mutation percentage discrepancies.  When focusing on lung cancer however, it was noted that a higher 

percentage of patients in South Korea had PTPRH mutations as compared to the United States (Figure 

3.1B).  This analysis only considered exonic PTPRH mutations. 

Because of the known relationship between PTPRH and EGFR, we decided to focus more closely on 

PTPRH mutations within non-small cell lung cancer (NSCLC) patients, since EGFR activating mutations 

occur in a large subset of those patients.  This would give us a patient group that has already been 

characterized in the context of increased EGFR signaling and treatment with EGFR inhibitors.  With PTPRH 

known to target EGFR, we hypothesized a mutation in PTPRH could lead to increased EGFR signaling in 

patient tumors that have no canonical activating mutations in EGFR.  Importantly, we see that NSCLC 
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patients with mutations in PTPRH are mutually exclusive from NSCLC patients with activating mutations 

in EGFR (Figure 3.1C).  This means the subset of patients with PTPRH mutations could have increased 

activation of EGFR, but are not classified as such and are therefore missing out on potentially efficacious 

EGFR therapies.  Analyzing the TCGA NSCLC dataset for potential discrepancies in age, overall survival, 

sex, or race found no statistical differences (Figure 3.1D).  Interestingly, while EGFR mutant lung cancers 

are not typically associated with smoking, PTPRH mutant tumors have previously been associated smoking 

[279]. 

BIOINFORMATICS PREDICTS ACTIVATION OF EGFR AND DOWNSTREAM PATHWAYS 

To further explore whether PTPRH mutations in NSCLC tumors lead to increased EGFR activity, a 

number of bioinformatics predictions were used.  First, we predicted EGFR activity in PTPRH mutant NSCLC 

tumors using single sample gene set enrichment analysis (ssGSEA) on RNA-sequencing data from these 

tumors (Figure 3.2A).  This analysis showed certain PTPRH mutant tumors had predicted high EGFR 

activity.  In fact, there three ‘hotspot’ regions within the PTPRH exome where PTPRH mutations were 

predicted to have increased EGFR activity.  Two of these hotspot regions occur within PTPRH fibronectin 

domains where we also discovered our mouse Ptprh mutation, and the third region occurs within the 

phosphatase domain.  Interestingly, phosphatase domain PTPRH mutations with predicted high EGFR 

activity are located just downstream of the conserved HC(X5)R activity motif, but not within the motif. 

 With correlative predictions showing increased p-EGFR in PTPRH mutant lung cancer tumors, we 

wanted to determine whether pathways downstream of EGFR were also being impacted within those 

tumors.  To begin, ssGSEA was completed on 12 tumors in each of the three groups; PTPRH mutants with 

predicted high EGFR from the previous GSEA analysis, EGFR L858R mutants, and tumors WT for both 

PTPRH and EGFR.  The pathway predictions from ssGSEA were then clustered into a heatmap using 

hierarchical K-means clustering (Figure 3.2B).  This analysis showed certain PTPRH mutant tumors to 

cluster with EGFR mutant tumors, suggesting they have a similar pathway activation profile.  To further 
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investigate pathways downstream of EGFR, GSEA was completed on tumors the same 12 tumors used for 

the ssGSEA and pathway clustering.  GSEA showed predicted activation of the PI3K/AKT pathway, which 

matches the increased p-AKT seen in Ptprh mutant mouse tumors (Figure 3.2C). 

PTPRH TARGETS EGFR IN HUMAN LUNG CANCER LINE  

 With bioinformatics analysis showing PTPRH mutations occurring in 5% of NSCLC tumors and 

predicting activation of EGFR and EGFR pathways within those tumors, we wanted to determine whether 

non-functional PTPRH could indeed lead to activated EGFR.  CRISPR knockouts were created in the H23 

NSCLC cell line, targeting exon four of PTPRH.  Sanger sequencing of some CRISPR clones confirmed a 

disruption to PTPRH sequence a few base pairs upstream of the PAM sequence, where an adenosine 

insertion occurred (Figure 3.3A).  Adenosine insertion leads to truncation of the PTPRH mRNA through 

multiple early stop codons. 

 While we struggled to find a working antibody for PTPRH, we used Y1197 phosphorylated EGFR 

as a screen for determining the effectiveness of PTPRH knockout.   Increased Y1197 phosphorylation was 

seen in PTPRH KO clones harboring a disruption at the cut site, but not in clones without the disruption 

(Figure 3.3B).  To determine whether expressing PTPRH within the PTPRH KO clones could rescue the 

increased p-y-1197 EGFR phenotype, wild type PTPRH was transiently expressed within one of the PTPRH 

KO clones (Figure 3.3C).  This resulted in a decrease of phosphorylated tyrosine at EGFR site 1197.  

Overexpressing a catalytically dead version of PTPRH did not rescue the increased phosphorylation of 

EGFR tyrosine 1197 (Figure 3.3D).  Overall, these analysis show PTPRH is responsible for 

dephosphorylating EGFR at tyrosine residue 1197. 

 To determine whether there were increases in p-AKT, p-STAT3, and p-ERK within PTPRH KO cells, 

western blots were completed using lysates from the same PTPRH KO CRISPR clones that showed 

increased p-EGFR.  Interestingly, the same pattern of phosphorylation seen in mouse tumor lysates 

occurred within human cell line lysates (Figure 3.4A).  PTPRH KO clones showed increased p-AKT, but no 
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increases in p-STAT3 or p-ERK.  It was noted however, that one CRISPR clone did not have the same 

increase in p-AKT, suggesting the possibility of clonal effects.  To determine whether clonal effects were 

indeed occurring, a PTPRH KO CRISPR clone with high p-AKT was subjected to CRISPR homologous 

recombination repair to yield a Y1197F mutation in EGFR.  Y1197F mutants were confirmed through the 

addition of an ECORI cut site, as well as Sanger sequencing.  CRISPR repair yielded two mutant clones, one 

with a heterozygous mutation at Y1197, and one with a homozygous mutation.  Western blots completed 

on lysates from Y1197F mutant clones show decreases in p-EGFR and p-AKT as compared to the parent 

cell, confirming the increase in p-AKT was indeed due to the loss of PTPRH (Figure 3.4B/C). 

TARGETING OF OTHER KINASES BY PTPRH 

 Certain phosphatases are known to have multiple targets.  To determine whether loss of PTPRH 

may impact other kinases within H23 cells, a human receptor tyrosine kinase array was completed.  A 

membrane arrayed with RTK antibodies for specific phosphorylation sites was incubated with either H23 

WT lysate, or H23 PTPRH KO lysate.  The membrane was then incubated with biotinylated antibody 

followed by labelled streptavidin.  Numerous RTK’s were found to have different phosphorylation profiles 

between the membranes incubated with WT lysate as compared to PTPRH KO lysate (Figure 3.5A).  After 

quantifying the signals, two RTKs in particular had increased phosphorylation on the PTPRK KO blot as 

compared to the WT blot.  These were fibroblast growth factor receptor 1 (FGFR1), with an approximate 

3.5 fold increase, and insulin like growth factor 1 receptor (IGF1R) with an approximate 2.4 fold increase.  

Western blots were completed to confirm increased phosphorylation of FGFR1 in H23 PTPRH KO cells 

(Figure 3.5B).  Indeed, a substantial increase in phosphorylated FGFR1 was seen in PTPRH KO cell lysate 

as compared to WT lysate, when looking at the 145 KD band.   

To predict whether FGFR1 and IGF1R may have increased signaling within PTPRH mutant human 

tumors, we completed the same analysis as above for prediction of EGFR activation in human tumors.  

ssGSEA was completed to predict pathway activation status of FGFR1 and IGF1R within PTPRH mutant 
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tumors, and pathway activation status was correlated to each sample via a lollipop plot (Figure 3.5C).  

Interestingly, the same predicted hotspots for EGFR activation seem conserved for FGFR1 and IGF1R 

activation.  In other words, if one of the three kinases are predicted to be active, the other two kinases 

are most likely predicted to be active as well. 

NUCLEAR EGFR WITHIN PTPRH MUTANT TUMORS 

 As mentioned in the introduction of chapter two, EGFR has been noted within the nucleus of cells 

in times of cellular stress and deregulation.  To determine the subcellular location of EGFR within Ptprh 

mutant mouse tumors, immunohistochemistry was completed using an antibody specific for p-y-1197 

EGFR (Figure 3.6A).   IHC showed vast increases in EGFR staining within Ptprh mutant mouse tumors, with 

EGFR localized to the nucleus.  With the above mouse analysis being correlative, we wanted to determine 

whether loss of PTPRH resulted in increased EGFR translocation to the nucleus.  To accomplish this, H23 

PTPRH KO cells were injected into the left flank of nude mice.  After reaching 8-10mm in size, mice were 

necropsied and both flash frozen and formalin fixed tumor tissue was harvested.  No metastasis were 

noted in these mice.  IHC was completed using a p-y-1197 specific EGFR antibody, and an increase in 

nuclear EGFR was noted in mouse tumors derived from PTPRH KO cells (Figure 3.6B).  These data suggest 

a failure of PTPRH to dephosphorylate EGFR at tyrosine residue 1197 leads to increased localization of 

EGFR to the nucleus.  Future analysis to determine whether full or partial length EGFR is located within 

the nucleus, as well as putative targets of EGFR within the nucleus would be highly beneficial. 

DISCUSSION 
 
 A pan cancer analysis of human PTPRH mutations found numerous cancers harboring mutations 

in at least 5% of patients, suggesting mutated PTPRH may play a role in tumor development for various 

other cancers.  With PTPRH affecting cell signaling pathways in a context dependent manner, it is possible 

PTPRH mutations could have an oncogenic or tumor suppressive effect depending on the cancer site and 

cell type.  PTPRH mutations were found in approximately 5% of NSCLC patients, with these mutations 
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spread across the PTPRH exome.  This is an interesting contrast to the conserved V645M mutation found 

within our PyMT tumors, and has implications for which mutations may be impactful on tumor growth.  

While a mechanism has yet to be explored for these various mutations, it is possible the mutations are 

acting in different fashion from each other.  Mutations within phosphatase domain may abrogate catalytic 

activity, while mutations in the fibronectin domains may prevent dimerization and binding of target 

substrates.  Since some of the phosphatase domain mutations with predicted high EGFR activity lie outside 

the conserved activity HC(X5)R motif, it is also possible these mutations are occurring within other 

conserved PTP motfis, and preventing recognition of substrate binding sites.  More biochemical analysis 

will be needed to explore these hypothesis. 

 In the previous chapter, mouse tumors showed a correlation between mutant Ptprh and high 

phosphorylation of EGFR.  This was confirmed in a human NSCLC cell line through CRISPR ablation of 

PTPRH.  Overexpressing WT PTPRH within PTPRH KO cells rescued the increased p-EGFR phenotype, 

confirming PTPRH does indeed regulate EGFR within this context.  Bioinformatics predictions showed 

predicted activation of the PI3K/AKT pathway, and this was confirmed through western blotting of PTPRH 

KO clones.  Interestingly, phosphorylation of STAT3 (a transcription factor known to be regulated by EGFR) 

or ERK were not affected by PTPRH ablation.  This suggests PTPRH is only regulating certain tyrosine 

residues on the c-terminal tail of EGFR.  A more robust analysis of how other pathways downstream of 

EGFR may be affected by PTPRH loss would be a prudent next step.  In generating Y1197F EGFR mutants 

within the PTPRH KO clone with higher p-AKT levels, we noted a decrease in phosphorylation of AKT.  

However that phosphorylation did not reduce completely to wild type levels.  It is possible this failure to 

reduce p-AKT levels to those seen in WT is due to other activated pathways within the PTPRH KO cells, 

especially since we see increased phosphorylation of other kinases within PTPRH KO cells. 

 A kinase array showed increased phosphorylation of numerous RTKs within PTPRH KO cells, 

including FGFR1 and IGFR1.  Interestingly, increased phosphorylation of EGFR was not shown on the array.  
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However, when checking the phosphorylated antibodies used on the blot, tyrosine 1197 site was not 

included.  This is further confirmation that PTPRH is targeting tyrosine 1197 on EGFR, and not other 

tyrosine sites.  As the array was only designed for RTK interactions, other intracellular signaling molecules 

may have been impacted by loss of PTPRH, but would have been missed.  A mass-spec approach may be 

beneficial in the future, to determine what other signaling molecules may be impacted by loss of PTPRH.  

Increased phosphorylation of FGFR1 was confirmed through western blotting.  This has interesting 

implications for both cellular pathways that may be affected, as well as potential treatment options for 

those with non-functional PTPRH.  Perhaps a dual drug inhibition approach of targeting FGFR1 and EGFR 

would be prudent. 

 Finally, Ptprh mutant mouse tumors, and PTPRH KO human tumors implanted in mice have 

increased staining of nuclear EGFR.  Nuclear EGFR has been noted in times of cellular stress, as well as 

regenerating liver tissue.  While in the nucleus, EGFR can act as a cofactor, or direct transcriptional 

activator by binding to the promoters of certain genes, such as cyclin D1.  Increased nuclear EGFR upon 

loss of PTPRH activity could have profound impacts on cellular signaling pathways.  The mechanism behind 

increased nuclear localization of EGFR has not been explored, but warrants further exploration.  It is 

possible that loss of PTPRH activity leading to increased activation of EGFR could result in increased 

internalization of EGFR, although this hypothesis would need to be further explored. 

 One potential caveat to this work is the lack of other cell lines with PTPRH ablation.  While the 

addition of another PTPRH KO cell line would have added robustness to these data, we feel the current 

data sufficiently demonstrates PTPRH is responsible for regulating EGFR signaling due to two key 

experiments.  First, overexpression of WT PTPRH within leads to reduced phosphorylation of EGFR within 

PTPRH KO cells, while overexpression of a catalytically dead version of PTPRH does not result in this 

reduction.  Second, heterozygous and homozygous Y1197F EGFR mutants having a step-wise reduction in 

p-Y 1197 EGFR within PTPRH knockout cells, meaning the heterozygous mutant had some reduction of p-
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Y 1197, and the homozygous mutant had a larger reduction in p-Y 1197.  Overall, these data suggest PTPRH 

is indeed responsible for regulating EGFR signaling. 

MATERIALS AND METHODS 
 

DETERMINING PTPRH MUTATIONS IN HUMAN CANCERS 

 Pan-Cancer datasets from numerous sources, including TCGA and ICGC, were analyzed through 

CBioPortal and the ICGC portal.  Lung cancer mutation percentage were analyzed specifically using TCGA 

2016 dataset accessed through CBioPortal.  The South Korean and U.S datasets showing discrepancy in 

percentage of PTPRH mutations were analyzed on the ICGC portal.  Both datasets were filtered to include 

only patients with exonic mutations. 

MUTUAL EXLCUSIVITY 

 All NSCLC datasets available on CBioPortal were used for this analysis, and are listed below.  

PTPRH and EGFR SNV mutation data were downloaded and combined.  Duplicate samples were removed, 

and any sample with a PTPRH or EGFR mutation was considered.  A 2x2 contingency table was run to 

determine mutual exclusivity.  Datasets include; MSK - cancer cell 2018, MSKCC - J clin oncol 2018, 

TRACERx - NEJM 2017, University of Turnin, 2017, MSK - Science 2015, TCGA - Nat Genet 2016 (Pan), Broad 

- cell 2012, MSKCC - Science 2015, TCGA - Firehose Legacy, TCGA - Nature 2014, TCGA - Pan-cancer Atlas, 

TSP - Nature 2008, MSKCC - Cancer Discov 2017, TCGA - Nature 2012 

DEMOGRAPHICS OF PTPRH MUTATIONS 

 Age, overall survival, and race demographics were analyzed using the Lung Adenocarcinoma TCGA 

Pan-Cancer Atlas data set downloaded from CBioPortal.  This was one of the few datasets with race data.  

Two-tailed Student’s T-Tests assuming unequal variance were completed for PTPRH mutant VS. EGFR 

mutant samples, as well as PTPRH mutant VS. WT (non-EGFR mutant) samples for age of diagnosis and 

overall survival.  Samples without age or OS data were excluded.  Only samples with missense or 
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truncating mutations were included, and overexpression samples were excluded.  Race was analyzed 

using a 2x2 contingency table. 

EGFR ACTIVITY AND PATHWAY ACTIVITY PREDICTION 

TCGA pan-cancer RNA-seq dataset (downloaded from UCSC Xena) was analyzed for PTPRH, EGFR, 

FGFR1, and IGF1R mutations.  This mutation list was downloaded and filtered to keep samples that had a 

mutation in PTPRH, EGFR, or that were WT for PTPRH, EGFR, FGFR1, and IGF1R.  Any sample with a 

mutation in PTPRH was kept, resulting in 53 samples.  10 samples of each of the two categories were kept; 

WT for PTPRH and the above three RTKs, and L858R mutant EGFR that were WT for PTPRH, FGFR1, or 

IGF1R.  To decide which WT and EGFR samples to keep, the samples from those subsequent groups were 

assigned a random number using the RAND() function in excel.  These numbers were then sorted from 

highest to lowest, keeping the top 10 samples.  RSEM(log2 X+1) normalization was applied to the filtered 

sample list, resulting in 47 PTPRH mutant samples (WT for the kinases), 9 samples that WT for PTPRH and 

the three kinases, and 8 samples with EGFR mutations (WT for PTPRH, FGFR1, and IGF1R).  ssGSEA was 

run on the samples to predict pathway activation status.  Pathways for each kinase were filtered down, 

selecting the most relevant and robust pathway.  In Microsoft Excel, a ranking sum score was applied to 

the pathway prediction data for each sample using the following formula;  

=(B4-MIN(B$4:B$475))/(MAX(B$4:B$475)-MIN(B$4:B$475)) 

 For GSEA analysis of PTPRH mutant tumors, the pan-cancer RNA-seq dataset was again 

downloaded from UCSC Xena.  Twelve tumors for each of the three categories were kept; PTPRH mutant 

tumors predicted to have high EGFR activity, EGFR L858R mutants, and tumors that were WT for both 

PTPRH and EGFR.  GSEA was completed using the GenePattern server. 

CRISPR KNOCKOUT 

 Benchling [280] was used to design the guide RNA (AGCACACACTAACATCACCG) targeting the 

fourth exon of PTPRH.  The guide was cloned into px458 using AgeI and EcoRI, and transformed into DH5a.  
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Transient transfection of px458 into H23 cells was completed using Promega’s Viafect.  GFP positive cells 

were sorted into single cell clones into 96 well plates using FACS.  Once clones had grown into a colony, 

they were subsequently moved to 24-well plates, then 6-well plates.  DNA was harvested and sent to 

ACTG for sanger sequencing. 

CRISPR KNOCK-IN MUTATION 

 Guide RNA was designed in Benchling with the PAM (NGG) sequence 5 bp downstream of the 

desired EGFR a.a. 1197 mutation site.  The single stranded region of homology was designed in Benchling 

by choosing desired length for homology arms as well as the desired mutation, then taking the reverse 

complement of that strand.  The oligo was designed with 36 bp upstream of the desired mutation site and 

90 bp downstream.  The desired mutation resulting in a Y1197F amino acid substitution was added.  

Luckily, this mutation also resulted in the addition of an EcoRI cut site, which was used for downstream 

screening.  The mutation also altered the guide RNA enough to prevent re-annealing once HR mediated 

repair occurred.  Guide RNA was cloned into px458 in a manner similar to the CRISPR knockout protocol.  

For transfection, H23 PTPRH KO cells were seeded at ~85% confluency, then transfected using Viafect in 

a 6:1 ratio.  1 ug of px458 with guide, and 4 ug of ss repair template were transfected.  Sorting was 

completed using FACS for GFP.  Clones were screened using a digest for EcoRI, and confirmed with 

sequencing. 

WESTERN BLOTTING 

 Blocking was completed at room temperature for one hour, using manufactures recommended 

buffer.  Primary antibody was incubated overnight at four degrees C.  Blots were imaged using LiCOR 

system.  Antibodies used were as follows; total EGFR (Cell Signaling D38B1), 1197 EGFR (Invitrogen PA5-

37553), total AKT (Cell Signaling 11E7), p-s473 AKT (Cell Signaling D9E), total STAT3 Cell Signaling 79D7 

(), p-Y705 STAT3 (Cell Signaling D3A7), total FGFR1 (Cell Signaling D8E4), p-Y653/654 FGFR1 (Cell 

Signaling 3471s), beta tubulin (Proteintech 10094-1), vinculin (Cell Signaling E1E9V). 
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OVEREXPRESSION EXPERIMENTS 

 PTPRH c-DNA within plasmid PRc-CMV was kindly provided by Dr. Takashi Matozaki at Kobe 

University.  Site directed mutagenesis was used to achieve a D986A mutant.  5% DMSO and a 2 minute/kb 

extension time were used during SDM due to the high GC content of PTPRH.  Both WT and D986A mutant 

PTPRH plasmid constructs were transiently expressed in PTPRH KO cells using Viafect.  G418 Gentacin was 

used as a selection marker.  Once all control cells were dead, protein lysate was harvested using TNE lysis 

buffer with protease and phosphatase inhibitors. 

RECEPTOR TYROSINE KINASE ARRAY 

 Protocol for RayBiotech Human RTK Phosphorylation Array C1 kit was followed.  Membranes were 

incubated with lysate from H23 WT cells or H23 PTPRH KO cells.  Lysate concentration was read using a 

Bradford assay, then diluted and read again to ensure accuracy. 

IHC NUCLEAR EGFR 

 Human cell lines H23 PTPRH WT or H23 PTPRH KO were injected into the left flank of nude mice.  

H23 cell line tumors were grown to approximately 10 mm in the largest direction prior to necropsy.  Mouse 

PyMT tumors, and tumors grown from human H23 cells were necropsied with portions of tumor tissue 

preserved in formalin, and portions of tumor flash frozen for further downstream analysis.  Formalin fixed 

paraffin embedded tumors were subjected to staining using an antibody specific for 1197 EGFR (Thermo 

PA5-37553). 
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Figure 3.1:  PTPRH mutations within human cancers 
 
A) Pan-cancer analysis using data from ICGC and TCGA shows PTPRH mutations present within numerous 

cancers.  Lung cancer is highlighted.  B) PTPRH mutation rates can vary within NSCLC, depending on study 

site.  C) Oncoplot of TCGA data showing EGFR and PTPRH mutation rates with NSCLC.  Each rectangle 

represents a patient tumor.  PTPRH mutations are mutually exclusive from EGFR mutations.  D) Analysis 

completed on TCGA data shows no relationship seen between PTPRH mutations and age, overall survival, 

or race. 
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Figure 3.2:  Pathway activation predictions in PTPRH mutant tumors 
 
A) Lollipop plot correlates predicted EGFR activity with human PTPRH mutations.  Each dot represents a 

human tumor with its PTPRH mutation corresponding to that location on the PTPRH exome.  B) ssGSEA 

was used to predict gene set enrichment in EGFR or PTPRH mutant NSCLC tumors.  Enriched gene sets 

were subjected to hierarchical clustering and visualized with a heatmap.  C) GSEA predicts activation of 

the PI3K/AKT pathway downstream of EGFR. 
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Figure 3.3:  PTPRH knockout cells have increased p-EGFR 
 
A) Electropherogram shows indel of A insertion a few base pairs upstream of the PAM sequence within 

H23 NSCLC cells.  B) Western blotting for 1197 p-EGFR shows increased p-EGFR in PTPRH KO cells with 

indel.  Both KO clones had same A insertion seen in electropherogram shown in 3.3A.  C) Overexpression 

of a WT PTPRH plasmid in PTPRH KO cells reduces p-EGFR to WT H23 levels.  D)  Overexpression of a D986A 

catalytically dead version of PTPRH does not rescue increased p-EGFR phenotype. 
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Figure 3.4:  Downstream signaling of H23 PTPRH KO cells 
 
Western analysis shows activation of AKT pathway, but not STAT3 in PTPRH KO cells.  A) Western blotting 

shows no increase in p-ERK or p-Y705 STAT3 in PTPRH KO cells, but increased p-S473 AKT in one clonal 

population.  B)  Electropherogram of H23 PTPRH KO Clone 1 cells subjected to CRISPR for mutation  
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Figure 3.4 (cont’d) 

of EGFR tyrosine 1197.  Clone 16 had heterozygous mutation, and clone 10 had homozygous mutation to 

achieve tyrosine to phenylalanine amino acid substitution.   C)  Western blot of H23 PTPRH KO/EGFR 

Y1197F mutants shows decreased phosphorylation of EGFR at residue 1197, and decreased p S473 when 

mutating the tyrosine at 1197 to phenylalanine.  
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Figure 3.5:  PTPRH regulates other kinases 
 
A) Human phosphorylated RTK array shows variable phosphorylation of FGFR1, IGF1R, and other kinases 

between H23 PTPRH KO lysate and H23 WT lysate.  B) Lollipop plot showing predicted activity of RTKs in 

PTPRH mutant NSCLC tumors.  Hotspot regions are similar to those of the EGFR lollipop plot in figure 3.2A.  

C) Western showing increased p-FGFR1 in H23 PTPRH KO clones, as compared to PTPRH WT cells. 
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Figure 3.6:  Localization of EGFR to the nucleus in PTPRH ablated tumors 
 
Immunohistochemistry using an antibody specific for 1197 p-Y-EGFR shows increased nuclear localization 

of PTPRH in mouse and human tumors with PTPRH activity loss.  A) PyMT tumors with V486M mutation 

correlate with increased localization of 1197 EGFR to the nucleus.  B) H23 PTPRH WT or KO cells were 

injected into the left flank of nude mice.  Tumors grown from H23 PTPRH KO cells have increased EGFR 

staining within the nucleus. 
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CHAPTER 4 
 

TREATMENT OPPORTUNITIES FOR PTPRH MUTATIONS IN NON-SMALL CELL LUNG CANCER 
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ABSTRACT 
 
 Previous data has shown increased phosphorylation of EGFR upon loss of PTPRH in H23 NSCLC 

cells.  Pooled knockout of PTPRH within H23 cells leads to increased proliferation and cellular growth, 

suggesting PTPRH loss contributes to tumor growth through EGFR pathway activation.  We show PTPRH 

mutant non-small cell lung cancer lines respond to osimertinib treatment in vitro, and the H2228 PTPRH 

mutant cell line responds to osimertinib treatment in vivo.  Furthermore, treatment of H2228 tumors with 

osimertinib reduces cellular proliferation as seen through KI67 staining on formalin fixed tumors.  Overall, 

these data suggest PTPRH mutant NSCLC patients may benefit from tyrosine kinase inhibitor treatment of 

EGFR. 
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INTRODUCTION 
 

PTPRH DEREGULATION IN HUMAN CANCERS 

 While some phosphatases, such as PTEN [281, 282], have well defined tumor suppressive 

capabilities, many phosphatases are undefined in the context of cancer.  Overall, the importance of cell 

signaling changes through phosphatase regulation is becoming more appreciated.  Even with the 

literature on PTPRH being sparse, there have been investigations into the roles of PTPRH within some 

cancers.  Expression levels of PTPRH are thought to be low within normal colon epithelial tissue, however 

increased expression has been seen within severe dysplasia of the colon, and colon cancer [283].  An 

inverse of this expression profile deregulation is seen within cancers of the liver, where lower PTPRH 

expression is seen within poorly differentiated hepatocellular carcinomas (HCC) while normal liver tissue 

has high expression of PTPRH.  Furthermore, expression of PTPRH within two HCC cell lines having low 

PTPRH expression drastically reduced cellular motility and growth rate in vitro, suggesting PTPRH has a 

tumor suppressive role within hepatocellular carcinoma. 

While the differing nature of PTPRH expression between colon cancers and hepatocellular 

carcinomas seems contradictory, it is important to remember PTPRH can affect signaling pathways in a 

context dependent manner.  Loss of PTPRH expression within hepatocellular carcinomas aligns with 

canonical thinking that phosphatases abrogate downstream signaling of RTKS through removal of 

phosphate groups, while overexpression of PTPRH in colon cancers highlights the ability of PTPRH to act 

as an oncogene due to activation of SRC. 

 Overexpression of PTPRH has been noted in NSCLC, with correlative hypomethylation of PTPRH 

being suggested as the cause [279].  Furthermore, PTPRH overexpression has been noted as a prognostic 

indicator for poor survival.  This seems to be in contrast to our data, which suggests loss of PTPRH leads 

to increased oncogenic signaling.  On the surface it may seem logical that if loss of PTPRH function leads 

to increased oncogenic signaling through EGFR, then high expression of PTPRH should abrogate this 
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signaling.  However, there are two important pieces of information that could explain this discrepancy.  

First, PTPRH function has been shown to decrease upon homodimerization.  It is entirely possible that 

overexpression of PTPRH leads to increased homodimerization through increased contact of PTPRH with 

itself, although this would need to be further explored.  Second, overexpression of PTPRH could lead to 

increased targeting of other signaling molecules such as SRC.  As dephosphorylation of tyrosine residues 

on SRC activates downstream signaling, this mechanism could also explain the potential discrepancy.  

Overall, PTPRH deregulation has been noted in numerous cancers. 

NON-SMALL CELL LUNG CANCER  

 Lung cancer accounts for the greatest amount of U.S. cancer deaths in both men and women, and 

5 year survival rates remain poor [152].  Broadly, lung cancer is classified into two major histologies, 

including small-cell (SC) and non-small cell lung cancer (NSCLC).  SC lung cancer typically has a poorer 

prognosis than NSCLC, and is typically associated with smoking.  The mutation profile between the two 

histologies also varies, with SC lung cancer patients typically having mutations in the tumor suppressor 

genes Rb and Tp53, and NSCLC patients having mutations in oncogenes EGFR and KRAS. 

 Overall, NSCLC accounts for approximately 85% of all lung cancer cases, and is further delineated 

into three histologies including Adenocarcinoma, Squamous cell carcinoma, and Large cell carcinoma 

[284].  The prognosis for NSCLC patients is markedly improved compared to that of patients with small 

cell lung cancer, however prognosis varies widely depending on whether the tumor has metastasized.  5 

year survival rates for localized NSCLC approach 63%, but with distant metastasis 5 year survival rates 

drop to 7% (American Cancer Society).  Prognosis is complicated by a number of factors however, 

including smoking status, EGFR mutation status, and initial response to treatment [285]. 

Approximately 15% of NSCLC patients have tumors presenting with EGFR activating mutations, or 

amplification of EGFR, however this percentage is substantially higher in Asian patients [286].  80% of 

these EGFR mutations are putative oncogenic drives, with the vast majority of these mutations being 
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missense L858R mutations, or a small deletion around amino acids 750.  Activating EGFR mutations are 

indicators of responsiveness to tyrosine kinase inhibitors, however this is not the case for tumors with 

EGFR amplification [287].  Overall, patients with activating mutations in EGFR have better 5-year survival 

outcomes, as TKIs are capable of increasing survival time. 

TYROSINE KINASE INHIBITORS 

 Development of drugs targeting PTPs has proved difficult in many cases.  This is potentially due 

to the context dependent nature of many PTPs, as well as their tumor suppressive roles.  Targeting a PTP 

with potential tumor suppressive qualities would result in the opposite of the intended effect.  With these 

difficulties, drugs have been developed to target certain PTPs.  Typically, these drugs target PTPs with 

oncogenic properties that increase cellular pathway signaling.  Shp099 is an inhibitor of the protein 

tyrosine phosphatase SHP2, a PTP with SRC homology like domains known to activate MAPK signaling 

[288, 289]. 

 With the apparent difficulty of targeting PTPs for drug treatment, targeting PTP substrates may 

be another viable option.  Since we have shown non-functional PTPRH to enhance EGFR signaling, 

targeting PTPRH mutant tumors with tyrosine kinase inhibitors directed at EGFR may be a viable option.  

Tyrosine kinase inhibitors are often used to treat NSCLC patients who have tumors presenting with 

canonical EGFR activating mutations.  First generation TKIs, such as erlotinib and gefitinib, were designed 

to target the ATP binding domain of EGFR.  These TKIs successfully enhance progression free survival, 

however resistance mechanisms eventually develop, usually in the form of a T790M EGFR mutation which 

causes a structural shift and prevents binding of TKIs to the ATP binding domain [290].  Third generation 

TKIs, such as osimertinib, have been developed to get around this structural inhibition by binding to a 

nearby cysteine residue.  While third generation TKIs are capable of overcoming T790M resistance, new 

resistance mechanisms eventually develop.  Currently, 4th generation TKIs are being developed based on 

allosteric inhibition of EGFR. 
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RESULTS 
 

POOLED PTPRH KNOCKOUTS HAVE INCREASED GROWTH 

Previous data had shown Ptprh mutant PyMT tumors to have decreased tumor latency [193].  With 

loss of PTPRH function in the human H23 cell line resulting in increased PI3K/AKT pathway activation 

downstream of EGFR, we hypothesized this may lead to increased cellular proliferation within PTPRH KO 

cells.  To address this, growth curves were completed using H23 PTPRH WT cells, as well as two PTPRH KO 

clones (Figure 4.1).  Growth curves involving clones were ambiguous, with one clone showing clear 

increased growth, but a second clone growing at a similar rate as the wild type cells.  To determine 

whether clonal effects were responsible for the discrepancy in phenotype, PTPRH pooled knockouts were 

created in the H23 cell line.  Sanger sequencing of pooled knockout cells and subsequent TIDE (Tracking 

of Indels by Decomposition) analysis showed a knockout efficiency of approximately 45%.  Even with low 

efficiency of knockout, MTT assays and growth curves using PTPRH pooled knockout cells showed 

increased proliferation and growth of KO cells over wild type cells (Figure 4.2).  Overall, these data show 

loss of PTPRH leads to increased cellular growth. 

PTPRH MUTANT CELL LINES ARE SENSITIVE TO TYROSINE KINASE INHIBITION THROUGH 

OSIMERTINIB TREATMENT 

 Non-small cell lung cancer patients whose tumors present with EGFR mutations often benefit 

from tyrosine kinase inhibitor therapy.  With loss of PTPRH function leading to increased activation of 

EGFR and pathways downstream of EGFR, we hypothesized that PTPRH mutant tumors would benefit 

from treatment with tyrosine kinase inhibitors.  Previous work showed Ptprh mutant PyMT mouse tumors 

to be sensitive to the TKI erlotinib [193].  To explore whether human PTPRH mutations sensitize tumors 

to TKI therapy, we obtained two NSCLC cells lines with PTPRH mutations.  Cell line H1155 has an M188I 

PTPRH mutation within one of the fibronectin domains (similar to the mutation we found within our 

mouse tumors), and cell line H2228 has a Q887P mutation within the phosphatase domain.  Subjecting 
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these cell lines to a dose response curve with the TKI erlotinib showed no response (Figure 4.3A).  

However, when completing a dose response curve using the TKI osimertinib, a third generation TKI, PTPRH 

mutant cell lines showed a response (Figure 4.3B).  However, subjecting H23 PTPRH KO cell lines to the 

same osimertinib dose regime showed no response as compared to H23 WT cells (data not shown).  This 

may be due to the high mutational burden of the H23 cell line, which includes a mutation in the TP53 and 

KRAS genes, well characterized tumor suppressor and oncogenes respectively.  To explore whether H23 

PTPRH KO cells would show enhanced response to KRAS and EGFR inhibition, a dual drug dose response 

curve was completed.  However, no enhanced response was seen (Figure 4.3C).  With PTPRH KO cells also 

showing increased phosphorylation of FGFR1, it was hypothesized these cells may respond to dual 

inhibition of FGFR1 and EGFR.  A dose response curve was completed using osimertinib and the FGFR1 

inhibitior PD166866.  PD166866 was chosen due to its high selectivity for FGFR1 over other members of 

the FGFR family.  Even with increased FGFR1 noted within PTPRH KO cells, no increased sensitivity was 

seen upon inhibition with FGFR1 (Figure 4.3D). 

TREATING MICE WITH HUMAN PTPRH MUTANT TUMORS 

 With PTPRH mutant NSCLC lines responding to osimertinib in vitro, we wanted to determine 

whether tumors grown from these cell lines would respond in vivo.  To explore this, PTPRH mutant H2228 

cells or EGFR mutant H1975 cells serving as a positive control were injected into the left flank of nude 

mice.  After tumors reached approximately 6 mm in the largest direction, mice were randomized into 

vehicle control or drug treatment groups.  H1975 injected mice were subjected to an osimertinib dose of 

25 mg/kg, and H2228 injected mice were subjected to either 25 mg/kg or 50 mg/kg as seen in the 

literature.  As expected, H1975 injected mice serving as the positive control responded extremely well to 

osimertinib treatment (Figure 4.4A).  While H2228 mice receiving 25 mg/kg of osimertinib failed to 

respond to treatment, mice treated with 50 mg/kg responded favorably (Figure 4.4B).  However, 50 mg/kg 

treatment had to be stopped after 14 days due to weight loss. 
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 With PTPRH mutant tumors showing response to osimertinib in vivo, we wanted to determine 

whether tumors experienced reduced proliferation and increased apoptosis.  After completion of drug 

course, H2228 injected mice were necropsied with portions of the tumor preserved in formalin, as well as 

flash frozen for future analysis.  To assess proliferation and apoptosis within H2228 tumors, 

immunohistochemistry was completed for KI67 and TUNEL staining.  As seen via KI67 staining, tumors 

from mice treated with 50 mg/kg of osimertinib had vastly reduced proliferation when compared to 

tumors from mice given vehicle control (Figure 4.5A).  Interestingly, mice given vehicle control actually 

had slightly increased apoptosis as compared to osimertinib treated mice (Figure 4.5B), which was 

unexpected.  

 
DISCUSSION 

 Initial findings show increased phosphorylation of EGFR upon loss of PTPRH in the NSCLC line H23.  

Furthermore, 5% of NSCLC patients are shown to have mutations in PTPRH, with certain mutations having 

predicted high EGFR and PI3K/AKT activity.  With an estimated 235,000 cases of lung cancer occurring 

yearly within the United States (cancer.gov), over 10,000 patients (85% of all lung cancer cases are NSCLC, 

and 5% of those have PTPRH mutations) who present with PTPRH mutations could potentially benefit 

from EGFR targeted TKI therapy.  Two NSCLC lines with PTPRH mutations were found to respond to the 

TKI osimertinib in vitro, with the H2228 cell line also responding in vivo. 

 Interestingly, PTPRH mutant cell lines responded to osimertinib, but not the first line TKI erlotinib, 

even with erlotinib having more affinity for wild type EGFR and osimertinib having more affinity for T790M 

mutant EGFR.  A possible explanation for this may lie in the conformational state of EGFR, which may 

remain in an activated state upon PTPRH failing to dephosphorylate tyrosine residues on the c-terminal 

tail of EGFR.  However, this hypothesis would need to be further explored.  Osimertinib treatment of 

H2228 PTPRH mutant tumors in mice resulted in tumor shrinkage, showing proof of principal that PTPRH 

mutant tumors may benefit from treatment with TKIs.  Other potential options for treatment of PTPRH 
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targets include dual inhibition of kinases whose signaling pathways are altered by PTPRH loss, or targeting 

RTKs with proteolysis targeting chimera (PROTAC) molecules, which target them for degradation. 

Overall, treatment of downstream targets regulated by phosphatases, rather than the 

phosphatases themselves, may be a viable solution, although this will would require considerable 

characterization of the pathways affected by deregulated phosphatases.  This is especially important to 

consider with the context dependent nature of PTP regulation, such as PTPRH deactivating EGFR, but 

activating SRC. 

MATERIALS AND METHODS 
 

POOLED CRISPR KNOCKOUT 

Guide RNA (AGCACACACTAACATCACCG) for PTPRH was designed using Benchling.  Guide was cloned in 

lentiviral Cas9 plasmid Addgene # 52961.  Viral generation was completed through transfection of 293T 

cells with packaging plasmid psPAX2 and envelop plasmid pMD2.G in a ratio of 3.7:1.2:5 with the Cas9 

plasmid respectively.  Viafect was used for transfection.  Viral supernatant was collected from 293T cells 

3 days after transfection, and filtered through a .22 uM syringe filter.  1 mL of filtered viral supernatant 

was applied to H23 WT cells at ~30% confluency.  Puromycin at 2.5 ug/mL was used as a selectable marker.  

Sanger sequencing was used to confirm knockout, and for TIDE analysis [291].   

MTT ASSAY 

H23 WT and H23 pooled PTPRH KO cells were subjected to an MTT assay.  Assay kit (Roche 11465007001) 

instructions were followed.  Assay was completed in triplicate.  Graphpad was used to plot and statistically 

analyze results.  A Welch’s two-tailed t-test yielded a p-value of .0137. 

GROWTH CURVES 

On day 0, 1.0 x 105 cells were plated in triplicate within 6-well plates.  On days 1-5, cells were trypsinized 

and cell number was read using an automated cell counter.  Graphpad was used to plot results. 
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DOSE RESPONSE CURVES 

Cells were trypsinized and cell concentration was read using an automated cell counter.  Cells were then 

diluted to 5.0 x 104 cells per mL, and 20 uL of cell suspension was added to wells of an opaque 384 well 

plate using an electronic multichannel pipette.  After overnight recovery, cells were subjected to a dose 

response curve of increasing drug concentration in half log steps.  For single drug curves, osimertinib 

(Cayman AZD9291) range was .00003 to 30 uM.  For dual drug curves, osimertinib range was .03 to 10 

uM, and either KRAS inhibitor (ARS853, Cayman) or FGFR1 inhibitor (PD166866, Cayman) range was 

.00003 to 30 uM.  10 mM stocks of drugs were made by diluting with DMSO, and half-log drug series were 

diluted fresh with complete media.  Cell viability was read after 48 hours using Promega’s Cell Titer Glo.  

Luminescence values were normalized to non-drug treated controls, and plotted using Graphpad. 

IN VIVO MOUSE TREATMENT 

H2228 or H1975 cell lines were injected into the left flank of 6-12 week old nude mice.  Cells were 

trypsinized and suspended in PBS at a concentration of 10,000 cells/uL.  Mice were briefly anesthetized 

using isofluorane, and injected using a 25 gauge needle.  After tumors reached 6mm in the largest 

dimension, mice were randomized into one of three treatment groups; vehicle control, 25 mg/kg 

osimertinib, or 50 mg/kg osimertinib.  The 50 mg/kg dose was only used for mice with H2228 tumors.  

Osimertinib (AZD9291 Cayman) was diluted using the following in order to achieve a final ratio: 5% DMSO, 

40% polyethylene glycol, 5% tween-80, 50% H2O.  Max volume of treatment was 10 uL for 1 gram of body 

weight.  Mice were weighed on first day of treatment, and volume of drug was adjusted to achieve proper 

dose.  After endpoint (28 days or tumors reaching 20 mm in largest direction), mice were euthanized using 

CO2, and necropsied.  Portions of tumors were preserved in formalin for histology as well as flash frozen 

for future experiments.  Mice were also checked for metastasis. 
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Figure 4.1:  Variable growth of PTPRH KO clones 
 
Growth curves of H23 WT cells and two H23 PTPRH KO clones show variable growth of knockout clones. 
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Figure 4.2:  Increased cellular growth and proliferation upon pooled PTPRH knockdown 

H23 cells were subjected to pooled knockout of PTPRH using CRISPR.  A) TIDE analysis estimates 45% 

knockout efficiency from sequencing data.  Western blotting of pooled PTPRH KO cells showed increased  

 



 

118 
 

Figure 4.2 (cont’d) 

phosphorylation of EGFR at Y1197.  B) Growth curves and MTT assays using PTPRH pooled KO cells show 

increased growth and proliferation of PTPRH KO cells compare to PTPRH WT cells.  
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Figure 4.3:  Tyrosine kinase inhibitor treatment of PTPRH mutant cell lines 
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Figure 4.3 (cont’d) 

PTPRH mutations found within cell lines derived from human NSCLC tumors were subjected to dose 

response curves.  H1975 has canonical L858R activating EGFR mutation and T790M resistance mutation.   

H1975 serves as positive control, but is not inhibited by erlotinib due to T790M resistance mutation.  A427  

serves as negative control, and has no mutations in EGFR or PTPRH.  H1155 line has M188I PTPRH 

mutation residing within a fibronectin domain.  H2228 line has Q887P PTPRH mutation residing in 

phosphatase domain.  A) Cell lines treated with erlotinib, a 1st generation tyrosine kinase inhibitor.  B) Cell 

lines treated with osimertinib, a 3rd generation tyrosine kinase inhibitor used to overcome EGFR T790M 

resistance mutation.  C) H23 PTPRH KO cells don’t respond to TKI inhibition.  Since H23 has a KRAS G12C 

mutation, H23 PTPRH KO cells were subjected to dual inhibition of EGFR (osimertinib) and KRAS (ARS853).  

No response was seen upon the addition of KRAS inhibitor.  D) PTPRH KO cells have increased activation 

of FGFR1.  H23 PTPRH KO cells were subjected to a dual inhibition curve of EGFR inhibitor osimertinib and 

FGFR1 inhibitor PD166866, however no increased sensitivity to FGFR1 was noted. 
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Figure 4.3 (cont’d) 
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Figure 4.4:  In vivo treatment of H2228 PTPRH mutant tumors 
 
Graphs showing tumor size (measured in largest dimension) of nude mice injected with human NSCLC 

lines, and treated with osimertinib via oral gavage.  Treatment began when tumors reached ~6.0 mm.  X-

axis indicates measurements taken post initiation of treatment.  A) H1975 injected mice served as positive 

control arm for drug treatment.  B) Experimental arm H2228 injected mice was divided into two treatment 

arms, 25 mg/kg and 50 mg/kg.  Treatment was stopped after 14 days in 50 mg/kg treated mice due to 

weight loss. 
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Figure 4.5:  TUNEL and KI67 staining in PTPRH mutant tumors treated with osimertinib 
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Figure 4.5 (cont’d) 

Representative pictures of KI67 or TUNEL stained slides, from FFPE preserved mouse tumors.  Mouse 

tumor slides are from osimertinib treatment (50 mg/kg) or vehicle control groups of H2228 (PTPRH 

mutant) injected mice.  A)  KI67 staining shows decreased proliferation in mouse tumors treated with 50 

mg/kg osimertinib.  B) TUNEL staining shows mild increase in vehicle control treated tumors. 
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CHAPTER 5 

FUTURE DIRECTIONS 
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METASTASIS IN E2F1 KNOCKOUT MOUSE MODELS 

 While this work characterized the genomes of E2F1 KO mice using extensive bioinformatics 

analysis, bench work validation is needed to further explore potentially mutated pathways.  One of the 

most fruitful follow ups would be investigation into whether cell adhesion pathways are indeed disrupted 

within E2F1 KO mice.  Previous research from the lab found a decrease in circulating tumor cells within 

PyMT E2F1 KO mice, supporting the hypothesis that mutated cell adhesion genes allow potentially 

metastatic cells to leave the primary tumor in greater numbers.   

A possible exploration into this could involve immunohistochemistry staining for cadherin and 

other adhesion molecules, in PyMT WT and PyMT E2F1 KO tumors.  This experiment however wouldn’t 

differentiate between potentially disrupted collagen and cadherin fibers, so if these proteins were still 

present in PyMT E2F1 KO tumors, but were non-functional, staining wouldn’t be able to determine that.  

Another potential experiment would be the use of cell adhesion assays such as Vybrant.  These assays 

however, are just measures of whether cells are able to bind.  They are not capable of measuring the 

strength of that binding.  If disruptions occurred to cell adhesion molecules that allowed them to bind, 

but the strength of that binding was diminished, these assays would not make that distinction.  Advanced 

microscopy techniques may be prudent to investigate the binding forces of these cells, and could be used 

on cell lines derived from PyMT tumors.  An extremely interesting experiment would be to determine if 

E2F1 loss is indeed driving an increased mutational burden in cell adhesion genes, and how this may be 

occurring if it is the case. 

We also discovered a variation in the mutation profiles of E2F1 KO tumors, with PyMT E2F1 KO 

tumors having increased association with defective miss-match repair.  This may be tied to an increase in 

mutational burden within cell adhesion genes, as mentioned above.  All of this evidence points towards 

E2F1 loss leading to a shift in the mutation profile of these tumors.  As mentioned in chapter two, E2F1 is 

involved in numerous DNA repair mechanisms, including recruitment of double stranded break and 



 

127 
 

nucleotide excision repair processing factors.  Loss of recruitment of these factors, and a disruption to the 

S phase of the cell cycle could explain why we see a shift in mutation profile in E2F1 KO tumors, although 

this needs to be confirmed. 

 In our investigation, we also discovered potential disruptions to the WNT pathway, a pathway 

with known involvement in the epithelial to mesenchymal transition (EMT).  Further investigations into 

WNT and Beta Catenin may prove fruitful.  A good place to start may be determining whether these 

pathways are actually disrupted through a series of western blots for active beta catenin or other 

downstream signaling molecules.  It may also be beneficial to investigate whether PyMT E2F1 KO cells 

have a reduced ability to undergo EMT.  If that is indeed the case, a deeper dive into how E2F1 loss is 

preventing the epithelial to mesenchymal transition would be a potentially interesting paper.  

PTPRH MUTATIONS IN HUMAN CANCERS 

 We have uncovered a Ptprh mutation within PyMT mouse tumors.  Ptprh mutant tumors 

correlated with increased phosphorylation of EGFR, a known oncogene.  Throughout this work we have 

shown PTPRH mutations are present in 5% of human NSCLC patients, and many of these patient tumors 

have predicted high EGFR activity.  CRISPR knockout of PTPRH in the H23 NSCLC cell line results in 

increased phosphorylation of EGFR and AKT, and PTPRH mutant cell lines respond to the TKI osimertinib 

in vitro and in vivo.  This work suggests patients with PTPRH mutant tumors may respond to FDA approved 

TKI therapy, however there are a lot of avenues left to explore.  Below we will discuss the following three 

research areas that we believe will be the most fruitful going forward. 

 First, it would be prudent to explore the impact of various human PTPRH mutations of the 

mechanism of interaction between PTPRH and EGFR.  Our bioinformatics prediction data suggests certain 

mutations are more likely to result in the increase of phosphorylated EGFR, with some of these mutations 

occurring within the fibronectin domains of PTPRH, and other occurring within the phosphatase domain.  

Mutations within the fibronectin domains could result in a failure of PTPRH to bind target substrates, or 
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it could result in increased homodimerization of PTPRH.  Increased dimerization of PTPRH has been shown 

to decrease activity of the phosphatase.  A series of co-immunoprecipitation experiments of various 

overexpressed PTPRH mutants could potentially answer these questions.   

It would seem obvious that mutations within the phosphatase domain of PTPRH would abolish 

catalytic activity, however the majority of phosphatase domain mutations within NSCLC tumors appear 

outside of the conserved HC-(X5)-R activity motif.  This suggests other mechanisms may be at play for the 

disruption of PTPRH de-phosphorylating EGFR.  Other conserved motifs within the phosphatase domain 

are involved with recognition of phosphorylated tyrosines, so mutations within these motifs might result 

in a failure to recognize target substrates.  Further characterization of the PTPRH mutations occurring in 

NSCLC, as well as other cancers including melanoma, may prove fruitful for future genetic screening to 

determine whether patients may benefit from TKI therapy. 

The second area involves a deeper investigation into potential treatment methods for patients 

whose tumors harbor PTPRH mutations.  While we have shown the PTPRH mutant cell line H2228 to 

respond in vitro and in vivo to the TKI osimertinib, the response was not as robust as the EGFR mutant line 

H1975.  Interestingly, the H2228 cell line did not respond to the TKI erlotinib, a first generation TKI that 

has a higher affinity for WT EGFR that osimertinib.  If mutations in PTPRH led to increased EGFR signaling, 

one would expect an inhibitor with higher affinity for WT EGFR would have a greater impact, due to EGFR 

being WT in this scenario.  One potential explanation for this could be EGFR undergoing a conformational 

shift due to PTPRH failing to remove phosphate residues on the c-terminal tail, however this would need 

to be further explored.  Another potential explanation is the response of H2228 to osimertinib is simply 

due to other factors outside of PTPRH mutation, however we would point out that another cell line 

(H1155) with mutant PTPRH also responded to osimertinib inhibition.  To rule out this possibility, addback 

of WT PTPRH through an overexpression experiment would be prudent.  However, this experiment would 

need to be carefully managed, and perhaps done under the direction of the endogenous promoter.  This 
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is due to dimerization of PTPRH reducing PTPRH activity.  Strong overexpression of WT PTPRH could 

conceivably result in increased homodimerization due to saturation of the protein in the membrane 

leading to increased proximity. 

With this data in mind, there are a number of other avenues to explore.  The first is using 

combination therapies to determine if PTPRH mutant tumors are more responsive to multiple TKIs.  We 

have shown PTPRH KO cells to have increased FGFR1, therefore it is feasible PTPRH mutant tumors may 

have increased signaling of other RTKs.  Profiling the activation of these RTKs, and subsequent dual TKI 

inhibition may prove a fruitful endeavor for treating PTPRH mutant tumors.  While our data is not 

promising for dual EGFR and FGFR1 inhibition, it is only the result of one FGF1 inhibitor test.  With dozens 

of other FGFR1 inhibitors on the market, it may be prudent to test some of these as well.  Further 

characterization of RTK activation upon PTPRH mutation may lead to other RTKs being discovered as 

potential targets. 

Since PTPRH targets are often WT and uninterrupted themselves, PROTACs targeting RTKs and 

other signaling molecules downstream may be another area to explore.  Targeting EGFR or AKT with a 

PROTAC may be a beneficial treatment, however further characterization of what happens to EGFR 

molecules after failed interactions with PTPRH needs to be further explored.  If mutations in PTPRH simply 

cause higher turnover of EGFR, and EGFR is already being internalized and marked for ubiquitination at a 

high rate, PROTAC treatment may prove unbeneficial.  With in vivo CRISPR experiments for the treatment 

of mouse tumors beginning to be explored, as well as viral overexpression of genes in vivo, another avenue 

may be targeting expression of WT PTPRH to the tumor, although this is most likely a long way off if 

feasible at all. 

 A third area of interest would be the impact of increased nuclear EGFR within PTPRH mutant 

tumors.   Many questions remain here including determining a mechanism behind increased EGFR within 

the nucleus, what EGFR is doing within the nucleus, and whether this provides further treatment 
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opportunities.  To determine the mechanism behind increased EGFR localization to the nucleus, a prudent 

first step would be assessing whether nuclear EGFR was full length or truncated in this case.  This could 

be further explored through determining whether canonical mechanisms are responsible for EGFR 

internalization at the membrane through clathrin-mediated pits, and trafficking through the cell.  

Recycling of EGFR back to the membrane can be affected by cellular pH.  With tumors being known to 

have increased cellular acidity, it is also possible that mutant PTPRH is leading to increased internalization 

of EGFR due to a failure to remove phosphate groups, and then altered pH within tumor cells is resulting 

in increased trafficking to the nucleus. 

 Determining the impact of increased nuclear EGFR could be prudent for investigating tumor 

biology as well as other potential treatments.  EGFR is known to act as a transcriptional coactivator by 

binding AT rich regions directly on the promotor of certain genes such as cyclin-D1.  To determine what 

molecules and signaling pathways may be affected by nuclear EGFR, a Mass-spec experiment may prove 

fruitful.  Other pathways found deregulated through increased nuclear EGFR, may provide other targets 

for treatment.  Overall, this project has many potential areas for future exploration. 
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